scripts for create a dataset
Browse files- blind_watermark.py +86 -0
- bwm_core.py +220 -0
- inDATASET.py +113 -0
- pool.py +29 -0
blind_watermark.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from bwm_core import WaterMarkCore
|
4 |
+
|
5 |
+
class WaterMark:
|
6 |
+
def __init__(self, password_wm=1, password_img=1, block_shape=(4, 4), mode='common', processes=None, d1 = 9, d2 = 7, fast_mode = False, n = 3):
|
7 |
+
self.bwm_core = WaterMarkCore(password_img=password_img, mode=mode, processes=processes, d1 = 9, d2 = 7, fast_mode = fast_mode, n = n)
|
8 |
+
self.password_wm = password_wm
|
9 |
+
self.wm_bit = None
|
10 |
+
self.wm_size = 0
|
11 |
+
|
12 |
+
def read_img(self, filename=None, img=None):
|
13 |
+
if img is None:
|
14 |
+
# 从文件读入图片 = Чтение изображений из файла
|
15 |
+
img = cv2.imread(filename, flags=cv2.IMREAD_UNCHANGED)
|
16 |
+
assert img is not None, "image file '{filename}' not read".format(filename=filename)
|
17 |
+
self.bwm_core.read_img_arr(img=img)
|
18 |
+
return img
|
19 |
+
|
20 |
+
def read_wm(self, wm_content, mode='img'):
|
21 |
+
assert mode in ('img', 'str', 'bit'), "mode in ('img','str','bit')"
|
22 |
+
if mode == 'img':
|
23 |
+
wm = cv2.imread(filename=wm_content, flags=cv2.IMREAD_GRAYSCALE)
|
24 |
+
assert wm is not None, 'file "{filename}" not read'.format(filename=wm_content)
|
25 |
+
# 读入图片格式的水印,并转为一维 bit 格式,抛弃灰度级别 =
|
26 |
+
# Считывание водяных знаков в формате изображений и преобразование их в 1D-битный формат, отбрасывая уровни серого.
|
27 |
+
self.wm_bit = wm.flatten() > 128
|
28 |
+
elif mode == 'str':
|
29 |
+
byte = bin(int(wm_content.encode('utf-8').hex(), base=16))[2:]
|
30 |
+
self.wm_bit = (np.array(list(byte)) == '1')
|
31 |
+
else:
|
32 |
+
self.wm_bit = np.array(wm_content)
|
33 |
+
self.wm_size = self.wm_bit.size
|
34 |
+
# 水印加密: = шифрование водяных знаков
|
35 |
+
# перемещает массив только по первой оси многомерного массива.
|
36 |
+
# Порядок подмассивов изменяется, но их содержимое остается прежним.
|
37 |
+
np.random.RandomState(self.password_wm).shuffle(self.wm_bit)
|
38 |
+
self.bwm_core.read_wm(self.wm_bit)
|
39 |
+
|
40 |
+
def embed(self, filename=None, compression_ratio=None):
|
41 |
+
'''
|
42 |
+
:param filename: string
|
43 |
+
Save the image file as filename
|
44 |
+
:param compression_ratio: int or None
|
45 |
+
If compression_ratio = None, do not compression,
|
46 |
+
If compression_ratio is integer between 0 and 100, the smaller, the output file is smaller.
|
47 |
+
:return:
|
48 |
+
'''
|
49 |
+
embed_img = self.bwm_core.embed()
|
50 |
+
if filename is not None:
|
51 |
+
if compression_ratio is None:
|
52 |
+
cv2.imwrite(filename=filename, img=embed_img)
|
53 |
+
elif filename.endswith('.jpg'):
|
54 |
+
cv2.imwrite(filename=filename, img=embed_img, params=[cv2.IMWRITE_JPEG_QUALITY, compression_ratio])
|
55 |
+
elif filename.endswith('.png'):
|
56 |
+
cv2.imwrite(filename=filename, img=embed_img, params=[cv2.IMWRITE_PNG_COMPRESSION, compression_ratio])
|
57 |
+
else:
|
58 |
+
cv2.imwrite(filename=filename, img=embed_img)
|
59 |
+
return embed_img
|
60 |
+
|
61 |
+
def extract_decrypt(self, wm_avg):
|
62 |
+
wm_index = np.arange(self.wm_size)
|
63 |
+
np.random.RandomState(self.password_wm).shuffle(wm_index)
|
64 |
+
wm_avg[wm_index] = wm_avg.copy()
|
65 |
+
return wm_avg
|
66 |
+
|
67 |
+
def extract(self, filename=None, embed_img=None, wm_shape=None, out_wm_name=None, mode='img', fast_mode = True):
|
68 |
+
assert wm_shape is not None, 'wm_shape needed'
|
69 |
+
if filename is not None:
|
70 |
+
embed_img = cv2.imread(filename, flags=cv2.IMREAD_COLOR)
|
71 |
+
assert embed_img is not None, "{filename} not read".format(filename=filename)
|
72 |
+
self.wm_size = np.array(wm_shape).prod()
|
73 |
+
if mode in ('str', 'bit'):
|
74 |
+
wm_avg = self.bwm_core.extract_with_kmeans(img=embed_img, wm_shape=wm_shape)
|
75 |
+
else:
|
76 |
+
wm_avg = self.bwm_core.extract(img=embed_img, wm_shape=wm_shape)
|
77 |
+
# 解密:= рассекречивание
|
78 |
+
wm = self.extract_decrypt(wm_avg=wm_avg)
|
79 |
+
# 转化为指定格式:= Преобразование в указанный формат
|
80 |
+
if mode == 'img':
|
81 |
+
wm = 255 * wm.reshape(wm_shape[0], wm_shape[1])
|
82 |
+
cv2.imwrite(out_wm_name, wm)
|
83 |
+
elif mode == 'str':
|
84 |
+
byte = ''.join(str((i >= 0.5) * 1) for i in wm)
|
85 |
+
wm = bytes.fromhex(hex(int(byte, base=2))[2:]).decode('utf-8', errors='replace')
|
86 |
+
return wm
|
bwm_core.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from numpy.linalg import svd
|
3 |
+
import copy, cv2
|
4 |
+
from cv2 import dct, idct
|
5 |
+
from pywt import dwt2, idwt2
|
6 |
+
from pool import AutoPool
|
7 |
+
|
8 |
+
class WaterMarkCore:
|
9 |
+
def __init__(self, password_img=1, mode='common', processes=None, d1 = 9, d2 = 7, fast_mode = False, n = 3):
|
10 |
+
self.n = n
|
11 |
+
self.block_shape = np.array([self.n, self.n])#([4, 4])
|
12 |
+
self.password_img = password_img
|
13 |
+
self.d1, self.d2 = d1, d2 # 36, 20 # d1/d2 越大鲁棒性越强,但输出图片的失真越大
|
14 |
+
# Чем больше размер, тем выше стойкость, но тем больше искажается выходное изображение.
|
15 |
+
# init data
|
16 |
+
self.img, self.img_YUV = None, None # self.img 是原图,self.img_YUV 对像素做了加白偶数化 = исходное изображение, self.img_YUV отбеливает и выравнивает пиксели
|
17 |
+
self.ca, self.hvd, = [np.array([])] * 3, [np.array([])] * 3 # 每个通道 dct 的结果 = Результаты для: dct на канал
|
18 |
+
self.ca_block = [np.array([])] * 3 # 每个 channel 存一个四维 array,代表四维分块后的结果 = Каждый канал хранит четырехмерный массив, представляющий результат четырехмерной разбивки.
|
19 |
+
self.ca_part = [np.array([])] * 3 # 四维分块后,有时因不整除而少一部分,self.ca_part 是少这一部分的 self.ca = После четырехмерной разбивки иногда часть отсутствует из-за нецелочисленного
|
20 |
+
# деления. self.ca_part - это часть self.ca, которая отсутствует.
|
21 |
+
self.wm_size, self.block_num = 0, 0 # 水印的长度,原图片可插入信息的个数 = Длина водяного знака, количество фрагментов информации, которые могут быть вставлены в исходное изображение
|
22 |
+
self.pool = AutoPool(mode=mode, processes=processes)
|
23 |
+
self.fast_mode = fast_mode
|
24 |
+
self.alpha = None # 用于处理透明图 = Используется для обработки диаграмм прозрачности
|
25 |
+
|
26 |
+
def init_block_index(self):
|
27 |
+
self.block_num = self.ca_block_shape[0] * self.ca_block_shape[1]
|
28 |
+
assert self.wm_size < self.block_num, IndexError(
|
29 |
+
'最多可嵌入{}kb信息,多于水印的{}kb信息,溢出'.format(self.block_num / 1000, self.wm_size / 1000))
|
30 |
+
# До {} кб встроенной информации, более {} кб информации с водяными знаками, переполнение
|
31 |
+
# self.part_shape 是取整后的ca二维大小,用于嵌入时忽略右边和下面对不齐的细条部分。
|
32 |
+
# это округленный двумерный размер ca, который используется для игнорирования смещения элементов справа и снизу при встраивании.
|
33 |
+
self.part_shape = self.ca_block_shape[:2] * self.block_shape
|
34 |
+
self.block_index = [(i, j) for i in range(self.ca_block_shape[0]) for j in range(self.ca_block_shape[1])]
|
35 |
+
|
36 |
+
def read_img_arr(self, img):
|
37 |
+
# 处理透明图 = Обработка прозрачных изображений
|
38 |
+
self.alpha = None
|
39 |
+
if img.shape[2] == 4:
|
40 |
+
if img[:, :, 3].min() < 255:
|
41 |
+
self.alpha = img[:, :, 3]
|
42 |
+
img = img[:, :, :3]
|
43 |
+
# 读入图片->YUV化->加白边使像素变偶数->四维分块 = Считывание изображения -> YUVise -> добавление белой границы, чтобы сделать пиксели равномерными -> 4D чанкинг
|
44 |
+
self.img = img.astype(np.float32)
|
45 |
+
self.img_shape = self.img.shape[:2]
|
46 |
+
# 如果不是偶数,那么补上白边,Y(明亮度)UV(颜色)= Если это не четное число, то заполните белые края, Y (яркость) UV (цвет)
|
47 |
+
self.img_YUV = cv2.copyMakeBorder(cv2.cvtColor(self.img, cv2.COLOR_BGR2YUV),
|
48 |
+
0, self.img.shape[0] % 2, 0, self.img.shape[1] % 2,
|
49 |
+
cv2.BORDER_CONSTANT, value=(0, 0, 0))
|
50 |
+
self.ca_shape = [(i + 1) // 2 for i in self.img_shape]
|
51 |
+
self.ca_block_shape = (self.ca_shape[0] // self.block_shape[0], self.ca_shape[1] // self.block_shape[1],
|
52 |
+
self.block_shape[0], self.block_shape[1])
|
53 |
+
strides = 4 * np.array([self.ca_shape[1] * self.block_shape[0], self.block_shape[1], self.ca_shape[1], 1])
|
54 |
+
for channel in range(3):
|
55 |
+
self.ca[channel], self.hvd[channel] = dwt2(self.img_YUV[:, :, channel], 'haar')
|
56 |
+
# 转为4维度 = Переход к 4 измерениям
|
57 |
+
self.ca_block[channel] = np.lib.stride_tricks.as_strided(self.ca[channel].astype(np.float32),
|
58 |
+
self.ca_block_shape, strides)
|
59 |
+
|
60 |
+
def read_wm(self, wm_bit):
|
61 |
+
self.wm_bit = wm_bit
|
62 |
+
self.wm_size = wm_bit.size
|
63 |
+
|
64 |
+
def block_add_wm(self, arg):
|
65 |
+
if self.fast_mode:
|
66 |
+
return self.block_add_wm_fast(arg)
|
67 |
+
else:
|
68 |
+
return self.block_add_wm_slow(arg)
|
69 |
+
|
70 |
+
def block_add_wm_slow(self, arg):
|
71 |
+
block, shuffler, i = arg
|
72 |
+
# dct->(flatten->加密->逆flatten)->svd->打水印->逆svd->(flatten->解密->逆flatten)->逆dct
|
73 |
+
# dct->(flatten->encrypt->inverse flatten)->svd->watermark->inverse svd->(flatten->decrypt->inverse flatten)->inverse dct
|
74 |
+
wm_1 = self.wm_bit[i % self.wm_size]
|
75 |
+
block_dct = dct(block)
|
76 |
+
# 加密(打乱顺序)= Шифрование (не по порядку)
|
77 |
+
block_dct_shuffled = block_dct.flatten()[shuffler].reshape(self.block_shape)
|
78 |
+
u, s, v = svd(block_dct_shuffled)
|
79 |
+
s[0] = (s[0] // self.d1 + 1 / 4 + 1 / 2 * wm_1) * self.d1
|
80 |
+
if self.d2:
|
81 |
+
s[1] = (s[1] // self.d2 + 1 / 4 + 1 / 2 * wm_1) * self.d2
|
82 |
+
block_dct_flatten = np.dot(u, np.dot(np.diag(s), v)).flatten()
|
83 |
+
block_dct_flatten[shuffler] = block_dct_flatten.copy()
|
84 |
+
return idct(block_dct_flatten.reshape(self.block_shape))
|
85 |
+
|
86 |
+
def block_add_wm_fast(self, arg):
|
87 |
+
# dct->svd->打水印->逆svd->逆dct = dct->svd->watermark->reverse svd->reverse dct
|
88 |
+
block, shuffler, i = arg
|
89 |
+
wm_1 = self.wm_bit[i % self.wm_size] # "мигалка" = Бу́лева фу́нкция (или логи́ческая функция)
|
90 |
+
# print(f'wm_1 = {wm_1}') # True или False
|
91 |
+
|
92 |
+
u, s, v = svd(dct(block))
|
93 |
+
|
94 |
+
# s[0] = (s[0] // self.d1 + 0.25 + 0.5 * wm_1) * self.d1
|
95 |
+
# print(f's[0] before = {s[0]}')
|
96 |
+
# s[0] = (s[0] // self.d1 + 1/4 + 1/16 + 1/32 + 1/2 * wm_1) * self.d1 # работает, но хуже
|
97 |
+
|
98 |
+
# from math import ceil
|
99 |
+
# s[0] = ceil(s[0]) + (1/4 + 1/16 + 1/64 + 1/2 * wm_1) * self.d1 # некорректное извлечение
|
100 |
+
|
101 |
+
# print(f's[0] after = {s[0]}')
|
102 |
+
s[0] = (s[0] // self.d1 + 1/4 + 1/2 * wm_1) * self.d1 # 1/2*True = 1/2*1 = 1/2; 1/2*False = 1/2*0 = 0
|
103 |
+
# s[0] // d1 = целой части от деления s[0] / d1, if s[0] > d1, else s[0] // d1 = 0
|
104 |
+
# print(f's[0] = {s[0]}, d1 = {self.d1}, s[0] // self.d1 = {s[0] // self.d1},\
|
105 |
+
# \ns[0] // self.d1 + 1/4 + 1/2 * wm_1 = {s[0] // self.d1 + 1/4 + 1/2 * wm_1},\n \
|
106 |
+
# (s[0] // self.d1 * self.d1 + 1/4* self.d1 + 1/2 * wm_1* self.d1 = {s[0] // self.d1 * self.d1 + 1/4 * self.d1+ 1/2 * wm_1 * self.d1}, \n \
|
107 |
+
# s[0] // self.d1 * self.d1 = {s[0] // self.d1 * self.d1},\n \
|
108 |
+
# 1/2 * wm_1 * self.d1 = {1/2 * wm_1 * self.d1}')
|
109 |
+
return idct(np.dot(u, np.dot(np.diag(s), v)))
|
110 |
+
|
111 |
+
def embed(self):
|
112 |
+
self.init_block_index()
|
113 |
+
embed_ca = copy.deepcopy(self.ca)
|
114 |
+
embed_YUV = [np.array([])] * 3
|
115 |
+
self.idx_shuffle = random_strategy1(self.password_img, self.block_num,
|
116 |
+
self.block_shape[0] * self.block_shape[1])
|
117 |
+
for channel in range(3):
|
118 |
+
tmp = self.pool.map(self.block_add_wm,
|
119 |
+
[(self.ca_block[channel][self.block_index[i]], self.idx_shuffle[i], i)
|
120 |
+
for i in range(self.block_num)])
|
121 |
+
for i in range(self.block_num):
|
122 |
+
self.ca_block[channel][self.block_index[i]] = tmp[i]
|
123 |
+
# 4维分块变回2维 = Четырехмерное преобразование в двухмерное
|
124 |
+
self.ca_part[channel] = np.concatenate(np.concatenate(self.ca_block[channel], 1), 1)
|
125 |
+
# 4维分块时右边和下边不能整除的长条保留,其余是主体部分,换成 embed 之后的频域的数据
|
126 |
+
# При 4-мерном разбиении правая и нижняя часть длинной полосы, которая не является делимой, сохраняется,
|
127 |
+
# а остальное - это основная часть данных, которая после встраивания преобразуется в частотную область.
|
128 |
+
embed_ca[channel][:self.part_shape[0], :self.part_shape[1]] = self.ca_part[channel]
|
129 |
+
# 逆变换回去 = инверсия
|
130 |
+
embed_YUV[channel] = idwt2((embed_ca[channel], self.hvd[channel]), "haar")
|
131 |
+
# 合并3通道 = Объединить 3 канала
|
132 |
+
embed_img_YUV = np.stack(embed_YUV, axis=2)
|
133 |
+
# 之前如果不是2的整数,增加了白边,这里去除掉
|
134 |
+
# Ранее, если оно не было целым числом 2, оно добавляло белую рамку, которая здесь удалена
|
135 |
+
embed_img_YUV = embed_img_YUV[:self.img_shape[0], :self.img_shape[1]]
|
136 |
+
embed_img = cv2.cvtColor(embed_img_YUV, cv2.COLOR_YUV2BGR)
|
137 |
+
embed_img = np.clip(embed_img, a_min=0, a_max=255)
|
138 |
+
if self.alpha is not None:
|
139 |
+
embed_img = cv2.merge([embed_img.astype(np.uint8), self.alpha])
|
140 |
+
return embed_img
|
141 |
+
|
142 |
+
def block_get_wm(self, args):
|
143 |
+
if self.fast_mode:
|
144 |
+
return self.block_get_wm_fast(args)
|
145 |
+
else:
|
146 |
+
return self.block_get_wm_slow(args)
|
147 |
+
|
148 |
+
def block_get_wm_slow(self, args):
|
149 |
+
block, shuffler = args
|
150 |
+
# dct->flatten->加密->逆flatten->svd->解水印 = dct->flatten->encrypt->inverse flatten->svd->unwatermark
|
151 |
+
block_dct_shuffled = dct(block).flatten()[shuffler].reshape(self.block_shape)
|
152 |
+
u, s, v = svd(block_dct_shuffled)
|
153 |
+
wm = (s[0] % self.d1 > self.d1 / 2) * 1
|
154 |
+
if self.d2:
|
155 |
+
tmp = (s[1] % self.d2 > self.d2 / 2) * 1
|
156 |
+
wm = (wm * 3 + tmp * 1) / 4
|
157 |
+
return wm
|
158 |
+
|
159 |
+
def block_get_wm_fast(self, args):
|
160 |
+
block, shuffler = args
|
161 |
+
# dct->svd->解水印 = dct->svd->unwatermark
|
162 |
+
u, s, v = svd(dct(block))
|
163 |
+
wm = (s[0] % self.d1 > self.d1 / 2) # wm = 0 or wm = 1
|
164 |
+
# print(f's[0] = {s[0]}, wm = {wm}')
|
165 |
+
return wm
|
166 |
+
|
167 |
+
def extract_raw(self, img):
|
168 |
+
# 每个分块提取 1 bit 信息 = Извлечение 1 бита информации из каждого чанка
|
169 |
+
self.read_img_arr(img=img)
|
170 |
+
self.init_block_index()
|
171 |
+
wm_block_bit = np.zeros(shape=(3, self.block_num)) # 3个channel,length 个分块提取的水印,全都记录下来 = 3 канала,
|
172 |
+
# длина водяных знаков извлекается кусками, все записано.
|
173 |
+
self.idx_shuffle = random_strategy1(seed=self.password_img,
|
174 |
+
size=self.block_num,
|
175 |
+
block_shape=self.block_shape[0] * self.block_shape[1], # 16
|
176 |
+
)
|
177 |
+
for channel in range(3):
|
178 |
+
wm_block_bit[channel, :] = self.pool.map(self.block_get_wm,
|
179 |
+
[(self.ca_block[channel][self.block_index[i]], self.idx_shuffle[i])
|
180 |
+
for i in range(self.block_num)])
|
181 |
+
return wm_block_bit
|
182 |
+
|
183 |
+
def extract_avg(self, wm_block_bit):
|
184 |
+
# 对循环嵌入+3个 channel 求平均 = Усреднение по циклическому вкраплению + 3 канала
|
185 |
+
wm_avg = np.zeros(shape=self.wm_size)
|
186 |
+
for i in range(self.wm_size):
|
187 |
+
wm_avg[i] = wm_block_bit[:, i::self.wm_size].mean()
|
188 |
+
return wm_avg
|
189 |
+
|
190 |
+
def extract(self, img, wm_shape):
|
191 |
+
self.wm_size = np.array(wm_shape).prod()
|
192 |
+
# 提取每个分块埋入的 bit:= Извлеките бит, содержащийся в каждом фрагменте
|
193 |
+
wm_block_bit = self.extract_raw(img=img)
|
194 |
+
# 做平均:= найти оптимальный баланс
|
195 |
+
wm_avg = self.extract_avg(wm_block_bit)
|
196 |
+
return wm_avg
|
197 |
+
|
198 |
+
def extract_with_kmeans(self, img, wm_shape):
|
199 |
+
wm_avg = self.extract(img=img, wm_shape=wm_shape)
|
200 |
+
return one_dim_kmeans(wm_avg)
|
201 |
+
|
202 |
+
def one_dim_kmeans(inputs):
|
203 |
+
threshold = 0
|
204 |
+
e_tol = 10 ** (-6)
|
205 |
+
center = [inputs.min(), inputs.max()] # 1. 初始化中心点 = Инициализация центральной точки
|
206 |
+
for i in range(300):
|
207 |
+
threshold = (center[0] + center[1]) / 2
|
208 |
+
is_class01 = inputs > threshold # 2. 检查所有点与这k个点之间的距离,每个点归类到最近的中心
|
209 |
+
# Проверьте расстояния между всеми точками и этими k точками, каждая из которых классифицирована до ближайшего центра
|
210 |
+
center = [inputs[~is_class01].mean(), inputs[is_class01].mean()] # 3. 重新找中心点 = Заново открывая центральную точку
|
211 |
+
if np.abs((center[0] + center[1]) / 2 - threshold) < e_tol: # 4. 停止条件 = условие остановки
|
212 |
+
threshold = (center[0] + center[1]) / 2
|
213 |
+
break
|
214 |
+
is_class01 = inputs > threshold
|
215 |
+
return is_class01
|
216 |
+
|
217 |
+
def random_strategy1(seed, size, block_shape):
|
218 |
+
return np.random.RandomState(seed) \
|
219 |
+
.random(size=(size, block_shape)) \
|
220 |
+
.argsort(axis=1)
|
inDATASET.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
DATASET/:
|
3 |
+
test/:
|
4 |
+
0/ # without watermark
|
5 |
+
1/ # with
|
6 |
+
train/:
|
7 |
+
0/
|
8 |
+
1/
|
9 |
+
validation/:
|
10 |
+
0/
|
11 |
+
1/
|
12 |
+
'''
|
13 |
+
|
14 |
+
# pip install opencv-python
|
15 |
+
# pip install PyWavelets
|
16 |
+
|
17 |
+
from blind_watermark import WaterMark
|
18 |
+
from PIL import Image
|
19 |
+
import os, sys, PIL, shutil, time, glob
|
20 |
+
from numpy.random import randint
|
21 |
+
|
22 |
+
|
23 |
+
def renameimg(path):
|
24 |
+
os.getcwd()
|
25 |
+
for i, filename in enumerate(os.listdir(path)):
|
26 |
+
try:
|
27 |
+
os.rename(path + "/" + filename, path + "/" + str(i) + ".jpeg")
|
28 |
+
|
29 |
+
except FileExistsError:
|
30 |
+
pass
|
31 |
+
|
32 |
+
def resize(path, color_mode):
|
33 |
+
dirs = os.listdir(path)
|
34 |
+
print('before resize ', len(dirs))
|
35 |
+
for item in dirs:
|
36 |
+
try:
|
37 |
+
# print(item)
|
38 |
+
with Image.open(fr'{path}/{item}') as im:
|
39 |
+
resized = im.convert(f'{color_mode}').resize((Width,Height))
|
40 |
+
resized.save(fr'{path}/{item}')
|
41 |
+
time.sleep(0.0003)
|
42 |
+
# print(fr'for {item} have been done')
|
43 |
+
except PIL.UnidentifiedImageError:
|
44 |
+
print(fr"Confirmed: This image {path}/{item} cannot be opened!")
|
45 |
+
# os.remove(f'{path}{item}')
|
46 |
+
except OSError:
|
47 |
+
im = Image.open(fr'{path}/{item}').convert(f'{color_mode}').resize((Width,Height))
|
48 |
+
im.save(fr'{path}/{item}')
|
49 |
+
print(fr"Chanched by hands for {path}/{item}")
|
50 |
+
dirs = os.listdir(path)
|
51 |
+
print('after resize ', len(dirs))
|
52 |
+
|
53 |
+
def moveimg(fromdir, todir, STOP):
|
54 |
+
for i, filename in enumerate(os.listdir(fromdir)):
|
55 |
+
if i == STOP:
|
56 |
+
break
|
57 |
+
else:
|
58 |
+
shutil.move(fromdir + "/" + filename, todir + "/" + filename)
|
59 |
+
i += 1
|
60 |
+
|
61 |
+
def lenght_watermark(img_name, watermark, passwordwm=1):
|
62 |
+
bwm1 = WaterMark(password_img=1, password_wm=passwordwm) # mode='common' vs mode='multithreading'
|
63 |
+
bwm1.read_img(f'{img_name}')
|
64 |
+
bwm1.read_wm(watermark, mode='str')
|
65 |
+
len_wm = len(bwm1.wm_bit)
|
66 |
+
return len_wm
|
67 |
+
|
68 |
+
def embed_watermark(img_name, watermark, passwordwm=1, compression_ratio=100, d1 = 9, d2 = 7, fast_mode = True, n = 3):
|
69 |
+
bwm1 = WaterMark(password_img=1, password_wm=passwordwm, mode='common', d1 = d1, d2 = d2, fast_mode = fast_mode, n = n)
|
70 |
+
bwm1.read_img(f'{img_name}')
|
71 |
+
bwm1.read_wm(watermark, mode='str')
|
72 |
+
bwm1.embed(f'{img_name}', compression_ratio=compression_ratio)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
Width, Height = 512, 256
|
77 |
+
path = "COCO"
|
78 |
+
color_mode = "RGB"
|
79 |
+
# renameimg(path)
|
80 |
+
# resize(path, color_mode)
|
81 |
+
|
82 |
+
|
83 |
+
src = 'COCO'
|
84 |
+
train_list = ['DATASET/train/0', 'DATASET/train/1']
|
85 |
+
# for dst in train_list:
|
86 |
+
# moveimg(src, dst, 37020)
|
87 |
+
|
88 |
+
validation_and_test_list = ['DATASET/validation/0', 'DATASET/validation/1', 'DATASET/test/0', 'DATASET/test/1']
|
89 |
+
# for dst in validation_and_test_list:
|
90 |
+
# moveimg(src, dst, 12340)
|
91 |
+
|
92 |
+
|
93 |
+
image_with_wm = ['DATASET/train/1', 'DATASET/validation/1', 'DATASET/test/1']
|
94 |
+
times = 4
|
95 |
+
|
96 |
+
for paths in image_with_wm:
|
97 |
+
count = len(os.listdir(paths))
|
98 |
+
print(f'current count = {count}')
|
99 |
+
|
100 |
+
os.chdir(f"{paths}/")
|
101 |
+
print('current directory = ', os.getcwd())
|
102 |
+
images = glob.glob("*.jpeg")
|
103 |
+
|
104 |
+
for name in images:
|
105 |
+
# print(name)
|
106 |
+
password_wm = randint(1,999999999)
|
107 |
+
wm = str(randint(1000000,9999999))
|
108 |
+
d1 = d2 = randint(1,9)
|
109 |
+
block_size = randint(1,5)
|
110 |
+
embed_watermark(name, wm*times, password_wm, d1 = d1, d2 = d2, n = block_size)
|
111 |
+
count -= 1
|
112 |
+
if count % 10 == 0:
|
113 |
+
print(f'current count = {count}')
|
pool.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys, multiprocessing, warnings
|
2 |
+
|
3 |
+
if sys.platform != 'win32':
|
4 |
+
multiprocessing.set_start_method('fork')
|
5 |
+
|
6 |
+
class CommonPool(object):
|
7 |
+
def map(self, func, args):
|
8 |
+
return list(map(func, args))
|
9 |
+
|
10 |
+
class AutoPool(object):
|
11 |
+
def __init__(self, mode, processes):
|
12 |
+
if mode == 'multiprocessing' and sys.platform == 'win32':
|
13 |
+
warnings.warn('multiprocessing not support in windows, turning to multithreading')
|
14 |
+
mode = 'multithreading'
|
15 |
+
self.mode = mode
|
16 |
+
self.processes = processes
|
17 |
+
if mode == 'multithreading':
|
18 |
+
from multiprocessing.dummy import Pool as ThreadPool
|
19 |
+
# Этот параметр устанавливает количество воркеров в пуле.
|
20 |
+
# Если оставить это поле пустым, то по умолчанию оно будет равно количеству ядер в вашем процессоре.
|
21 |
+
self.pool = ThreadPool(processes=processes)
|
22 |
+
elif mode == 'multiprocessing':
|
23 |
+
from multiprocessing import Pool
|
24 |
+
self.pool = Pool(processes=processes)
|
25 |
+
else: # common
|
26 |
+
self.pool = CommonPool()
|
27 |
+
|
28 |
+
def map(self, func, args):
|
29 |
+
return self.pool.map(func, args)
|