---
license: apache-2.0
configs:
- config_name: default
data_files:
- split: train
path: '*/*.arrow'
- config_name: UTSD-1G
data_files:
- split: train
path: UTSD-1G/*.arrow
- config_name: UTSD-2G
data_files:
- split: train
path: UTSD-2G/*.arrow
- config_name: UTSD-4G
data_files:
- split: train
path: UTSD-4G/*.arrow
- config_name: UTSD-12G
data_files:
- split: train
path: UTSD-12G/*.arrow
task_categories:
- time-series-forecasting
tags:
- time series forecasting
- time series analysis
- time series
pretty_name: UTSD
size_categories:
- 100M
**Unified Time Series Dataset (UTSD)** is meticulously assembled from a blend of publicly accessible online data repositories and empirical data derived from real-world machine operations.
All datasets are classified into seven distinct domains by their source: **Energy, Environment, Health, Internet of Things (IoT), Nature, Transportation, and Web** with diverse sampling frequencies.
See this [paper](https://arxiv.org/abs/2402.02368) for more information.
## Usage
You can access and load UTSD based on this [GitHub](https://github.com/thuml/Large-Time-Series-Model).
```bash
# huggingface-cli login
# export HF_ENDPOINT=https://hf-mirror.com
python ./scripts/UTSD/download_dataset.py
# dataloader
python ./scripts/UTSD/utsdataset.py
```
It should be noted that due to the construction of our dataset with diverse lengths, the sequence lengths of different samples vary. You can construct the data organization logic according to your own needs.
In addition, we provide code `dataset_evaluation.py` for evaluating time series datasets, which you can use to evaluate your Huggingface formatted dataset. The usage of this script is as follows:
```bash
python ./scripts/UTSD/dataset_evaluation.py --root_path --log_path