Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
File size: 3,672 Bytes
20c00d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
language:
- ace
- bg
- da
- fur
- ilo
- lij
- mzn
- qu
- su
- vi
- af
- bh
- de
- fy
- io
- lmo
- nap
- rm
- sv
- vls
- als
- bn
- diq
- ga
- is
- ln
- nds
- ro
- sw
- vo
- am
- bo
- dv
- gan
- it
- lt
- ne
- ru
- szl
- wa
- an
- br
- el
- gd
- ja
- lv
- nl
- rw
- ta
- war
- ang
- bs
- eml
- gl
- jbo
- nn
- sa
- te
- wuu
- ar
- ca
- en
- gn
- jv
- mg
- no
- sah
- tg
- xmf
- arc
- eo
- gu
- ka
- mhr
- nov
- scn
- th
- yi
- arz
- cdo
- es
- hak
- kk
- mi
- oc
- sco
- tk
- yo
- as
- ce
- et
- he
- km
- min
- or
- sd
- tl
- zea
- ast
- ceb
- eu
- hi
- kn
- mk
- os
- sh
- tr
- ay
- ckb
- ext
- hr
- ko
- ml
- pa
- si
- tt
- az
- co
- fa
- hsb
- ksh
- mn
- pdc
- ug
- ba
- crh
- fi
- hu
- ku
- mr
- pl
- sk
- uk
- zh
- bar
- cs
- hy
- ky
- ms
- pms
- sl
- ur
- csb
- fo
- ia
- la
- mt
- pnb
- so
- uz
- cv
- fr
- id
- lb
- mwl
- ps
- sq
- vec
- be
- cy
- frr
- ig
- li
- my
- pt
- sr
multilinguality:
- multilingual
size_categories:
- 10K<100k
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: WikiAnn
---
# Dataset Card for "tner/wikiann"
## Dataset Description
- **Repository:** [T-NER](https://github.com/asahi417/tner)
- **Paper:** [https://aclanthology.org/P17-1178/](https://aclanthology.org/P17-1178/)
- **Dataset:** WikiAnn
- **Domain:** Wikipedia
- **Number of Entity:** 3
### Dataset Summary
WikiAnn NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
- Entity Types: `LOC`, `ORG`, `PER`
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```
{
'tokens': ['I', 'hate', 'the', 'words', 'chunder', ',', 'vomit', 'and', 'puke', '.', 'BUUH', '.'],
'tags': [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/btc/raw/main/dataset/label.json).
```python
{
"B-LOC": 0,
"B-ORG": 1,
"B-PER": 2,
"I-LOC": 3,
"I-ORG": 4,
"I-PER": 5,
"O": 6
}
```
### Data Splits
| name |train|validation|test|
|---------|----:|---------:|---:|
|btc | 6338| 1001|2000|
### Citation Information
```
@inproceedings{pan-etal-2017-cross,
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
author = "Pan, Xiaoman and
Zhang, Boliang and
May, Jonathan and
Nothman, Joel and
Knight, Kevin and
Ji, Heng",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1178",
doi = "10.18653/v1/P17-1178",
pages = "1946--1958",
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}
``` |