File size: 12,687 Bytes
20c00d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a597ef4
20c00d2
 
 
a597ef4
 
20c00d2
 
 
 
e17a819
20c00d2
 
 
 
 
 
 
 
 
 
 
 
 
 
a597ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20c00d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
---
language:
- ace
- bg
- da
- fur
- ilo
- lij
- mzn
- qu
- su
- vi
- af
- bh
- de
- fy
- io
- lmo
- nap
- rm
- sv
- vls
- als
- bn
- diq
- ga
- is
- ln
- nds
- ro
- sw
- vo
- am
- bo
- dv
- gan
- it
- lt
- ne
- ru
- szl
- wa
- an
- br
- el
- gd
- ja
- lv
- nl
- rw
- ta
- war
- ang
- bs
- eml
- gl
- jbo
- nn
- sa
- te
- wuu
- ar
- ca
- en
- gn
- jv
- mg
- no
- sah
- tg
- xmf
- arc
- eo
- gu
- ka
- mhr
- nov
- scn
- th
- yi
- arz
- cdo
- es
- hak
- kk
- mi
- oc
- sco
- tk
- yo
- as
- ce
- et
- he
- km
- min
- or
- sd
- tl
- zea
- ast
- ceb
- eu
- hi
- kn
- mk
- os
- sh
- tr
- ay
- ckb
- ext
- hr
- ko
- ml
- pa
- si
- tt
- az
- co
- fa
- hsb
- ksh
- mn
- pdc
- ug
- ba
- crh
- fi
- hu
- ku
- mr
- pl
- sk
- uk
- zh
- bar
- cs
- hy
- ky
- ms
- pms
- sl
- ur
- csb
- fo
- ia
- la
- mt
- pnb
- so
- uz
- cv
- fr
- id
- lb
- mwl
- ps
- sq
- vec
- be
- cy
- frr
- ig
- li
- my
- pt
- sr
multilinguality:
- multilingual
size_categories:
- 10K<100k
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: WikiAnn
---

# Dataset Card for "tner/wikiann"

## Dataset Description

- **Repository:** [T-NER](https://github.com/asahi417/tner)
- **Paper:** [https://aclanthology.org/P17-1178/](https://aclanthology.org/P17-1178/)
- **Dataset:** WikiAnn
- **Domain:** Wikipedia
- **Number of Entity:** 3


### Dataset Summary
WikiAnn NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
- Entity Types: `LOC`, `ORG`, `PER`

## Dataset Structure

### Data Instances
An example of `train` of `ja` looks as follows.

```
{
  'tokens': ['#', '#', 'ユ', 'リ', 'ウ', 'ス', '・', 'ベ', 'ー', 'リ', 'ッ', 'ク', '#', '1', '9','9','9'],
  'tags': [6, 6, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6]
}
```

### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikiann/raw/main/dataset/label.json).
```python
{
    "B-LOC": 0,
    "B-ORG": 1,
    "B-PER": 2,
    "I-LOC": 3,
    "I-ORG": 4,
    "I-PER": 5,
    "O": 6
}
```

### Data Splits

| language     |   train |   validation |   test |
|:-------------|--------:|-------------:|-------:|
| ace          |     100 |          100 |    100 |
| bg           |   20000 |        10000 |  10000 |
| da           |   20000 |        10000 |  10000 |
| fur          |     100 |          100 |    100 |
| ilo          |     100 |          100 |    100 |
| lij          |     100 |          100 |    100 |
| mzn          |     100 |          100 |    100 |
| qu           |     100 |          100 |    100 |
| su           |     100 |          100 |    100 |
| vi           |   20000 |        10000 |  10000 |
| af           |    5000 |         1000 |   1000 |
| bh           |     100 |          100 |    100 |
| de           |   20000 |        10000 |  10000 |
| fy           |    1000 |         1000 |   1000 |
| io           |     100 |          100 |    100 |
| lmo          |     100 |          100 |    100 |
| nap          |     100 |          100 |    100 |
| rm           |     100 |          100 |    100 |
| sv           |   20000 |        10000 |  10000 |
| vls          |     100 |          100 |    100 |
| als          |     100 |          100 |    100 |
| bn           |   10000 |         1000 |   1000 |
| diq          |     100 |          100 |    100 |
| ga           |    1000 |         1000 |   1000 |
| is           |    1000 |         1000 |   1000 |
| ln           |     100 |          100 |    100 |
| nds          |     100 |          100 |    100 |
| ro           |   20000 |        10000 |  10000 |
| sw           |    1000 |         1000 |   1000 |
| vo           |     100 |          100 |    100 |
| am           |     100 |          100 |    100 |
| bo           |     100 |          100 |    100 |
| dv           |     100 |          100 |    100 |
| gan          |     100 |          100 |    100 |
| it           |   20000 |        10000 |  10000 |
| lt           |   10000 |        10000 |  10000 |
| ne           |     100 |          100 |    100 |
| ru           |   20000 |        10000 |  10000 |
| szl          |     100 |          100 |    100 |
| wa           |     100 |          100 |    100 |
| an           |    1000 |         1000 |   1000 |
| br           |    1000 |         1000 |   1000 |
| el           |   20000 |        10000 |  10000 |
| gd           |     100 |          100 |    100 |
| ja           |   20000 |        10000 |  10000 |
| lv           |   10000 |        10000 |  10000 |
| nl           |   20000 |        10000 |  10000 |
| rw           |     100 |          100 |    100 |
| ta           |   15000 |         1000 |   1000 |
| war          |     100 |          100 |    100 |
| ang          |     100 |          100 |    100 |
| bs           |   15000 |         1000 |   1000 |
| eml          |     100 |          100 |    100 |
| gl           |   15000 |        10000 |  10000 |
| jbo          |     100 |          100 |    100 |
| map-bms      |     100 |          100 |    100 |
| nn           |   20000 |         1000 |   1000 |
| sa           |     100 |          100 |    100 |
| te           |    1000 |         1000 |   1000 |
| wuu          |     100 |          100 |    100 |
| ar           |   20000 |        10000 |  10000 |
| ca           |   20000 |        10000 |  10000 |
| en           |   20000 |        10000 |  10000 |
| gn           |     100 |          100 |    100 |
| jv           |     100 |          100 |    100 |
| mg           |     100 |          100 |    100 |
| no           |   20000 |        10000 |  10000 |
| sah          |     100 |          100 |    100 |
| tg           |     100 |          100 |    100 |
| xmf          |     100 |          100 |    100 |
| arc          |     100 |          100 |    100 |
| cbk-zam      |     100 |          100 |    100 |
| eo           |   15000 |        10000 |  10000 |
| gu           |     100 |          100 |    100 |
| ka           |   10000 |        10000 |  10000 |
| mhr          |     100 |          100 |    100 |
| nov          |     100 |          100 |    100 |
| scn          |     100 |          100 |    100 |
| th           |   20000 |        10000 |  10000 |
| yi           |     100 |          100 |    100 |
| arz          |     100 |          100 |    100 |
| cdo          |     100 |          100 |    100 |
| es           |   20000 |        10000 |  10000 |
| hak          |     100 |          100 |    100 |
| kk           |    1000 |         1000 |   1000 |
| mi           |     100 |          100 |    100 |
| oc           |     100 |          100 |    100 |
| sco          |     100 |          100 |    100 |
| tk           |     100 |          100 |    100 |
| yo           |     100 |          100 |    100 |
| as           |     100 |          100 |    100 |
| ce           |     100 |          100 |    100 |
| et           |   15000 |        10000 |  10000 |
| he           |   20000 |        10000 |  10000 |
| km           |     100 |          100 |    100 |
| min          |     100 |          100 |    100 |
| or           |     100 |          100 |    100 |
| sd           |     100 |          100 |    100 |
| tl           |   10000 |         1000 |   1000 |
| zea          |     100 |          100 |    100 |
| ast          |    1000 |         1000 |   1000 |
| ceb          |     100 |          100 |    100 |
| eu           |   10000 |        10000 |  10000 |
| hi           |    5000 |         1000 |   1000 |
| kn           |     100 |          100 |    100 |
| mk           |   10000 |         1000 |   1000 |
| os           |     100 |          100 |    100 |
| sh           |   20000 |        10000 |  10000 |
| tr           |   20000 |        10000 |  10000 |
| zh-classical |     100 |          100 |    100 |
| ay           |     100 |          100 |    100 |
| ckb          |    1000 |         1000 |   1000 |
| ext          |     100 |          100 |    100 |
| hr           |   20000 |        10000 |  10000 |
| ko           |   20000 |        10000 |  10000 |
| ml           |   10000 |         1000 |   1000 |
| pa           |     100 |          100 |    100 |
| si           |     100 |          100 |    100 |
| tt           |    1000 |         1000 |   1000 |
| zh-min-nan   |     100 |          100 |    100 |
| az           |   10000 |         1000 |   1000 |
| co           |     100 |          100 |    100 |
| fa           |   20000 |        10000 |  10000 |
| hsb          |     100 |          100 |    100 |
| ksh          |     100 |          100 |    100 |
| mn           |     100 |          100 |    100 |
| pdc          |     100 |          100 |    100 |
| simple       |   20000 |         1000 |   1000 |
| ug           |     100 |          100 |    100 |
| zh-yue       |   20000 |        10000 |  10000 |
| ba           |     100 |          100 |    100 |
| crh          |     100 |          100 |    100 |
| fi           |   20000 |        10000 |  10000 |
| hu           |   20000 |        10000 |  10000 |
| ku           |     100 |          100 |    100 |
| mr           |    5000 |         1000 |   1000 |
| pl           |   20000 |        10000 |  10000 |
| sk           |   20000 |        10000 |  10000 |
| uk           |   20000 |        10000 |  10000 |
| zh           |   20000 |        10000 |  10000 |
| bar          |     100 |          100 |    100 |
| cs           |   20000 |        10000 |  10000 |
| fiu-vro      |     100 |          100 |    100 |
| hy           |   15000 |         1000 |   1000 |
| ky           |     100 |          100 |    100 |
| ms           |   20000 |         1000 |   1000 |
| pms          |     100 |          100 |    100 |
| sl           |   15000 |        10000 |  10000 |
| ur           |   20000 |         1000 |   1000 |
| bat-smg      |     100 |          100 |    100 |
| csb          |     100 |          100 |    100 |
| fo           |     100 |          100 |    100 |
| ia           |     100 |          100 |    100 |
| la           |    5000 |         1000 |   1000 |
| mt           |     100 |          100 |    100 |
| pnb          |     100 |          100 |    100 |
| so           |     100 |          100 |    100 |
| uz           |    1000 |         1000 |   1000 |
| be-x-old     |    5000 |         1000 |   1000 |
| cv           |     100 |          100 |    100 |
| fr           |   20000 |        10000 |  10000 |
| id           |   20000 |        10000 |  10000 |
| lb           |    5000 |         1000 |   1000 |
| mwl          |     100 |          100 |    100 |
| ps           |     100 |          100 |    100 |
| sq           |    5000 |         1000 |   1000 |
| vec          |     100 |          100 |    100 |
| be           |   15000 |         1000 |   1000 |
| cy           |   10000 |         1000 |   1000 |
| frr          |     100 |          100 |    100 |
| ig           |     100 |          100 |    100 |
| li           |     100 |          100 |    100 |
| my           |     100 |          100 |    100 |
| pt           |   20000 |        10000 |  10000 |
| sr           |   20000 |        10000 |  10000 |
| vep          |     100 |          100 |    100 |

### Citation Information

```
@inproceedings{pan-etal-2017-cross,
    title = "Cross-lingual Name Tagging and Linking for 282 Languages",
    author = "Pan, Xiaoman  and
      Zhang, Boliang  and
      May, Jonathan  and
      Nothman, Joel  and
      Knight, Kevin  and
      Ji, Heng",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P17-1178",
    doi = "10.18653/v1/P17-1178",
    pages = "1946--1958",
    abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}
```