LiLei commited on
Commit
1db86ec
·
1 Parent(s): 9283371

update load script

Browse files
Files changed (1) hide show
  1. VEC.py +182 -0
VEC.py CHANGED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @misc{
29
+ li2023what,
30
+ title={What Does Vision Supervision Bring to Language Models? A Case Study of {CLIP}},
31
+ author={Lei Li and Jingjing Xu and Qingxiu Dong and Ce Zheng and Qi Liu and Lingpeng Kong and Xu Sun},
32
+ year={2023},
33
+ url={https://openreview.net/forum?id=SdBfRJE9SX-}
34
+ }
35
+ """
36
+
37
+ # TODO: Add description of the dataset here
38
+ # You can copy an official description
39
+ _DESCRIPTION = """\
40
+ Visual and Embodied Concept (VEC) benchmark is designed for evaluating the LLM understanding ability of basic visual (color, shape, size, height and material) and embodied (mass, temperature, hardness) concepts.
41
+ """
42
+
43
+ # TODO: Add a link to an official homepage for the dataset here
44
+ _HOMEPAGE = ""
45
+
46
+ # TODO: Add the licence for the dataset here if you can find it
47
+ _LICENSE = "Apache 2.0"
48
+
49
+ # TODO: Add link to the official dataset URLs here
50
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
51
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
52
+ _URLS = {
53
+ "color": {"test": "./data/color.json"},
54
+ "shape": {"test":"./data/shape.json"},
55
+ "size": {"test":"./data/size.json"},
56
+ "height": {"test": "./data/height.json"},
57
+ "material": {"test":"./data/material.json"},
58
+ "hardness": {"test":"./data/hardness.json"},
59
+ "temperature": {"test":"./data/temperature.json"},
60
+ "mass": {"test":"./data/mass.json"},
61
+ }
62
+
63
+
64
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
65
+ class NewDataset(datasets.GeneratorBasedBuilder):
66
+ """TODO: Short description of my dataset."""
67
+
68
+ VERSION = datasets.Version("1.1.0")
69
+
70
+ # This is an example of a dataset with multiple configurations.
71
+ # If you don't want/need to define several sub-sets in your dataset,
72
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
73
+
74
+ # If you need to make complex sub-parts in the datasets with configurable options
75
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
76
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
77
+
78
+ # You will be able to load one or the other configurations in the following list with
79
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
80
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
81
+ BUILDER_CONFIGS = [
82
+ datasets.BuilderConfig(name="mass", version=VERSION, description="mass dataset"),
83
+ datasets.BuilderConfig(name="temperature", version=VERSION, description="temperature dataset"),
84
+ datasets.BuilderConfig(name="hardness", version=VERSION, description="hardness dataset"),
85
+ datasets.BuilderConfig(name="shape", version=VERSION, description="shape dataset"),
86
+ datasets.BuilderConfig(name="size", version=VERSION, description="size dataset"),
87
+ datasets.BuilderConfig(name="material", version=VERSION, description="material dataset"),
88
+ datasets.BuilderConfig(name="color", version=VERSION, description="color dataset"),
89
+ datasets.BuilderConfig(name="height", version=VERSION, description="height dataset"),
90
+ ]
91
+
92
+ DEFAULT_CONFIG_NAME = "hardness" # It's not mandatory to have a default configuration. Just use one if it make sense.
93
+
94
+ def _info(self):
95
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
96
+ if self.config.name in ["color", "shape", "material"]: # This is the name of the configuration selected in BUILDER_CONFIGS above
97
+ features = datasets.Features(
98
+ {
99
+ "obj": datasets.Value("string"),
100
+ "positive": datasets.Value("string"),
101
+ "regative": datasets.Value("string"),
102
+ "relation": datasets.Value("string"),
103
+ # These are the features of your dataset like images, labels ...
104
+ }
105
+ )
106
+ else: # for pair comparison
107
+ features = datasets.Features(
108
+ {
109
+ "obj1": datasets.Value("string"),
110
+ "obj2": datasets.Value("string"),
111
+ "relation": datasets.Value("string"),
112
+ "label": datasets.ClassLabel(num_classes=2, names=["<", ">"])
113
+ # These are the features of your dataset like images, labels ...
114
+ }
115
+ )
116
+ return datasets.DatasetInfo(
117
+ # This is the description that will appear on the datasets page.
118
+ description=_DESCRIPTION,
119
+ # This defines the different columns of the dataset and their types
120
+ features=features, # Here we define them above because they are different between the two configurations
121
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
122
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
123
+ # supervised_keys=("sentence", "label"),
124
+ # Homepage of the dataset for documentation
125
+ homepage=_HOMEPAGE,
126
+ # License for the dataset if available
127
+ license=_LICENSE,
128
+ # Citation for the dataset
129
+ citation=_CITATION,
130
+ )
131
+
132
+ def _split_generators(self, dl_manager):
133
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
134
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
135
+
136
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
137
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
138
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
139
+ urls = _URLS[self.config.name]
140
+ data_dir = dl_manager.download_and_extract(urls)
141
+ return [
142
+ datasets.SplitGenerator(
143
+ name=datasets.Split.TEST,
144
+ # These kwargs will be passed to _generate_examples
145
+ gen_kwargs={
146
+ "filepath": data_dir[f"{self.config.name}.json"],
147
+ "split": "test"
148
+ },
149
+ ),
150
+ ]
151
+
152
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
153
+ def _generate_examples(self, filepath, split):
154
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
155
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
156
+ with open(filepath, encoding="utf-8") as f:
157
+ for key, row in enumerate(f):
158
+ data = json.loads(row)
159
+ if self.config.name in ['color', 'shape', 'material']:
160
+ # Yields examples as (key, example) tuples
161
+ # {"sub": "jacket", "obj": "black", "alt": "purple"}
162
+ yield f"{self.config.name}-{key}", {
163
+ "obj": data['sub'],
164
+ "positive": data['obj'],
165
+ "negative": data['alt'],
166
+ "relation": self.config.name # change to prompt template later
167
+ }
168
+ elif self.config.name in ["shape", "height"]: # shape
169
+ #{"text": "An ant and a bird.", "question": "Is an ant taller than a bird?", "obj_a": "ant", "obj_b": "bird", "label": 0, "obj1": "ant", "obj2": "bird"}
170
+ yield f"{self.config.name}-{key}", {
171
+ "obj1": data['obj1'],
172
+ "obj2": data['obj2'],
173
+ "relation": self.config.name, # change to prompt template later
174
+ "label": data['label']
175
+ }
176
+ else: # hardness, mass, temperature
177
+ yield f"{self.config.name}-{key}", {
178
+ "obj1": data['obj1'],
179
+ "obj2": data['obj2'],
180
+ "relation": self.config.name,
181
+ "label": data['label'],
182
+ }