from pathlib import Path from torch_uncertainty.models.resnet import resnet from safetensors.torch import load_file def load_model(version: int): """Load the model corresponding to the given version.""" model = resnet( arch=18, num_classes=200, in_channels=3, style="cifar", conv_bias=False, ) path = Path( f"tiny-imagenet-resnet18/tiny-imagenet-resnet18-0-1023/version_{version}.safetensors" ) if not path.exists(): raise ValueError("File does not exist") state_dict = load_file(path) model.load_state_dict(state_dict=state_dict) return model from torch_uncertainty.datamodules.classification.tiny_imagenet import TinyImageNetDataModule from torchmetrics import Accuracy # Compute the accuracy using the first checkpoint acc = Accuracy("multiclass", num_classes=200) data_module = TinyImageNetDataModule( root="data", batch_size=32, ) model = load_model(0) model.eval() data_module.setup("test") for batch in data_module.test_dataloader()[0]: x, y = batch y_hat = model(x) acc.update(y_hat, y) print(f"Accuracy on the test set: {acc.compute():.3%}")