# Document loaders | |
<span data-heading-keywords="document loader,document loaders"></span> | |
* [Document loaders API reference](/docs/how_to/#document-loaders) | |
Document loaders are designed to load document objects. LangChain has hundreds of integrations with various data sources to load data from: Slack, Notion, Google Drive, etc. | |
## Integrations | |
You can find available integrations on the [Document loaders integrations page](/docs/integrations/document_loaders/). | |
## Interface | |
Documents loaders implement the [BaseLoader interface](https://python.langchain.com/api_reference/core/document_loaders/langchain_core.document_loaders.base.BaseLoader.html). | |
Each DocumentLoader has its own specific parameters, but they can all be invoked in the same way with the `.load` method or `.lazy_load`. | |
Here's a simple example: | |
```python | |
from langchain_community.document_loaders.csv_loader import CSVLoader | |
loader = CSVLoader( | |
... # <-- Integration specific parameters here | |
) | |
data = loader.load() | |
``` | |
When working with large datasets, you can use the `.lazy_load` method: | |
```python | |
for document in loader.lazy_load(): | |
print(document) | |
``` | |
## Related resources | |
Please see the following resources for more information: | |
* [How-to guides for document loaders](/docs/how_to/#document-loaders) | |
* [Document API reference](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) | |
* [Document loaders integrations](/docs/integrations/document_loaders/) | |