body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
4a8279a046b80c607cc1d120e006480daea41a5e23f15a149cbda95ae25e8b38
def smooth_density_legacy(coords, tile_width, tile_height, n): 'legacy function to homogenize distribution of points within a\n rectangular area by reducing the number of points within\n n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' min_count = np.Inf for i in range(n): r = np.arange(((i * tile_width) / n), (((i + 1) * tile_width) / n)) for j in range(n): c = np.arange(((j * tile_height) / n), (((j + 1) * tile_height) / n)) ind = np.argwhere(((((coords[(:, 0)] >= r.min()) & (coords[(:, 0)] <= r.max())) & (coords[(:, 1)] >= c.min())) & (coords[(:, 1)] <= c.max()))).flatten() if (ind.size < min_count): min_count = ind.size new_coords = [] for i in range(n): r = np.arange(((i * tile_width) / n), (((i + 1) * tile_width) / n)) for j in range(n): c = np.arange(((j * tile_height) / n), (((j + 1) * tile_height) / n)) ind = np.argwhere(((((coords[(:, 0)] >= r.min()) & (coords[(:, 0)] <= r.max())) & (coords[(:, 1)] >= c.min())) & (coords[(:, 1)] <= c.max()))).flatten() a = np.arange(ind.size) np.random.shuffle(a) ind = ind[a[0:min_count]] new_coords.append(coords[ind]) return np.concatenate(new_coords)
legacy function to homogenize distribution of points within a rectangular area by reducing the number of points within n**2 equally-sized bounding boxes to the minimum number of points in one of those boxes. Parameters ---------- coords : numpy.ndarray Nx2 numpy array of coordinates to consider tile_width : int width of rectangular area containing coords tile_height : int height of rectangular area containing coords n : int number of subdivisions into which tile_width and tile_height should be divided Returns ------- smoothed_coords : numpy.ndarray Nx2 numpy array of smoothed subset of input coords
em_stitch/lens_correction/mesh_and_solve_transform.py
smooth_density_legacy
AllenInstitute/em_stitch
2
python
def smooth_density_legacy(coords, tile_width, tile_height, n): 'legacy function to homogenize distribution of points within a\n rectangular area by reducing the number of points within\n n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' min_count = np.Inf for i in range(n): r = np.arange(((i * tile_width) / n), (((i + 1) * tile_width) / n)) for j in range(n): c = np.arange(((j * tile_height) / n), (((j + 1) * tile_height) / n)) ind = np.argwhere(((((coords[(:, 0)] >= r.min()) & (coords[(:, 0)] <= r.max())) & (coords[(:, 1)] >= c.min())) & (coords[(:, 1)] <= c.max()))).flatten() if (ind.size < min_count): min_count = ind.size new_coords = [] for i in range(n): r = np.arange(((i * tile_width) / n), (((i + 1) * tile_width) / n)) for j in range(n): c = np.arange(((j * tile_height) / n), (((j + 1) * tile_height) / n)) ind = np.argwhere(((((coords[(:, 0)] >= r.min()) & (coords[(:, 0)] <= r.max())) & (coords[(:, 1)] >= c.min())) & (coords[(:, 1)] <= c.max()))).flatten() a = np.arange(ind.size) np.random.shuffle(a) ind = ind[a[0:min_count]] new_coords.append(coords[ind]) return np.concatenate(new_coords)
def smooth_density_legacy(coords, tile_width, tile_height, n): 'legacy function to homogenize distribution of points within a\n rectangular area by reducing the number of points within\n n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' min_count = np.Inf for i in range(n): r = np.arange(((i * tile_width) / n), (((i + 1) * tile_width) / n)) for j in range(n): c = np.arange(((j * tile_height) / n), (((j + 1) * tile_height) / n)) ind = np.argwhere(((((coords[(:, 0)] >= r.min()) & (coords[(:, 0)] <= r.max())) & (coords[(:, 1)] >= c.min())) & (coords[(:, 1)] <= c.max()))).flatten() if (ind.size < min_count): min_count = ind.size new_coords = [] for i in range(n): r = np.arange(((i * tile_width) / n), (((i + 1) * tile_width) / n)) for j in range(n): c = np.arange(((j * tile_height) / n), (((j + 1) * tile_height) / n)) ind = np.argwhere(((((coords[(:, 0)] >= r.min()) & (coords[(:, 0)] <= r.max())) & (coords[(:, 1)] >= c.min())) & (coords[(:, 1)] <= c.max()))).flatten() a = np.arange(ind.size) np.random.shuffle(a) ind = ind[a[0:min_count]] new_coords.append(coords[ind]) return np.concatenate(new_coords)<|docstring|>legacy function to homogenize distribution of points within a rectangular area by reducing the number of points within n**2 equally-sized bounding boxes to the minimum number of points in one of those boxes. Parameters ---------- coords : numpy.ndarray Nx2 numpy array of coordinates to consider tile_width : int width of rectangular area containing coords tile_height : int height of rectangular area containing coords n : int number of subdivisions into which tile_width and tile_height should be divided Returns ------- smoothed_coords : numpy.ndarray Nx2 numpy array of smoothed subset of input coords<|endoftext|>
e38ebeb79c90bbeb3e1e8715ce796a2f54db2929e307bea9ce941aa1badbf710
def get_bboxes(tile_width, tile_height, n): 'get list of bounds for n**2 equally-sized bounding boxes within a\n rectangular bounding box\n\n\n Parameters\n ----------\n tile_width : int\n width of rectangular area to divide\n tile_height : int\n height of rectangular area to divide\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n vtxs : list of tuple of numpy.ndarray\n list of min/max tuples of vertices representing bounding boxes\n ' numX = n numY = n diffX = ((tile_width - 1) / numX) diffY = ((tile_height - 1) / numY) squaremesh = np.mgrid[(0:(tile_width - 1):(numX * 1j), 0:(tile_height - 1):(numY * 1j))].reshape(2, (- 1)).T maxpt = squaremesh.max(axis=0) vtxs = [] for pt in squaremesh: if np.any((pt == maxpt)): continue vtxs.append((pt, (pt + np.array([diffX, diffY])))) return vtxs
get list of bounds for n**2 equally-sized bounding boxes within a rectangular bounding box Parameters ---------- tile_width : int width of rectangular area to divide tile_height : int height of rectangular area to divide n : int number of subdivisions into which tile_width and tile_height should be divided Returns ------- vtxs : list of tuple of numpy.ndarray list of min/max tuples of vertices representing bounding boxes
em_stitch/lens_correction/mesh_and_solve_transform.py
get_bboxes
AllenInstitute/em_stitch
2
python
def get_bboxes(tile_width, tile_height, n): 'get list of bounds for n**2 equally-sized bounding boxes within a\n rectangular bounding box\n\n\n Parameters\n ----------\n tile_width : int\n width of rectangular area to divide\n tile_height : int\n height of rectangular area to divide\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n vtxs : list of tuple of numpy.ndarray\n list of min/max tuples of vertices representing bounding boxes\n ' numX = n numY = n diffX = ((tile_width - 1) / numX) diffY = ((tile_height - 1) / numY) squaremesh = np.mgrid[(0:(tile_width - 1):(numX * 1j), 0:(tile_height - 1):(numY * 1j))].reshape(2, (- 1)).T maxpt = squaremesh.max(axis=0) vtxs = [] for pt in squaremesh: if np.any((pt == maxpt)): continue vtxs.append((pt, (pt + np.array([diffX, diffY])))) return vtxs
def get_bboxes(tile_width, tile_height, n): 'get list of bounds for n**2 equally-sized bounding boxes within a\n rectangular bounding box\n\n\n Parameters\n ----------\n tile_width : int\n width of rectangular area to divide\n tile_height : int\n height of rectangular area to divide\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n vtxs : list of tuple of numpy.ndarray\n list of min/max tuples of vertices representing bounding boxes\n ' numX = n numY = n diffX = ((tile_width - 1) / numX) diffY = ((tile_height - 1) / numY) squaremesh = np.mgrid[(0:(tile_width - 1):(numX * 1j), 0:(tile_height - 1):(numY * 1j))].reshape(2, (- 1)).T maxpt = squaremesh.max(axis=0) vtxs = [] for pt in squaremesh: if np.any((pt == maxpt)): continue vtxs.append((pt, (pt + np.array([diffX, diffY])))) return vtxs<|docstring|>get list of bounds for n**2 equally-sized bounding boxes within a rectangular bounding box Parameters ---------- tile_width : int width of rectangular area to divide tile_height : int height of rectangular area to divide n : int number of subdivisions into which tile_width and tile_height should be divided Returns ------- vtxs : list of tuple of numpy.ndarray list of min/max tuples of vertices representing bounding boxes<|endoftext|>
fbcfe3ddedfe584676134cdd469ef6c85c5cc1a7d58298c9f70f09707945d2ff
def smooth_density_bbox(coords, tile_width, tile_height, n): 'homogenize distribution of points within a rectangular area by reducing\n the number of points within n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' vtxs = get_bboxes(tile_width, tile_height, n) index_arr = np.zeros(coords.shape[0], dtype='int64') for (ei, (ll, ur)) in enumerate(vtxs): vi = (ei + 1) index_arr[np.all(((ll <= coords) & (ur >= coords)), axis=1)] = vi bc = np.bincount(index_arr) mincount = bc[1:].min() idxs = _uniq(index_arr) new_coords = np.concatenate([coords[np.random.choice(np.argwhere((index_arr == idx)).flatten(), mincount)] for idx in idxs]) return new_coords
homogenize distribution of points within a rectangular area by reducing the number of points within n**2 equally-sized bounding boxes to the minimum number of points in one of those boxes. Parameters ---------- coords : numpy.ndarray Nx2 numpy array of coordinates to consider tile_width : int width of rectangular area containing coords tile_height : int height of rectangular area containing coords n : int number of subdivisions into which tile_width and tile_height should be divided Returns ------- smoothed_coords : numpy.ndarray Nx2 numpy array of smoothed subset of input coords
em_stitch/lens_correction/mesh_and_solve_transform.py
smooth_density_bbox
AllenInstitute/em_stitch
2
python
def smooth_density_bbox(coords, tile_width, tile_height, n): 'homogenize distribution of points within a rectangular area by reducing\n the number of points within n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' vtxs = get_bboxes(tile_width, tile_height, n) index_arr = np.zeros(coords.shape[0], dtype='int64') for (ei, (ll, ur)) in enumerate(vtxs): vi = (ei + 1) index_arr[np.all(((ll <= coords) & (ur >= coords)), axis=1)] = vi bc = np.bincount(index_arr) mincount = bc[1:].min() idxs = _uniq(index_arr) new_coords = np.concatenate([coords[np.random.choice(np.argwhere((index_arr == idx)).flatten(), mincount)] for idx in idxs]) return new_coords
def smooth_density_bbox(coords, tile_width, tile_height, n): 'homogenize distribution of points within a rectangular area by reducing\n the number of points within n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' vtxs = get_bboxes(tile_width, tile_height, n) index_arr = np.zeros(coords.shape[0], dtype='int64') for (ei, (ll, ur)) in enumerate(vtxs): vi = (ei + 1) index_arr[np.all(((ll <= coords) & (ur >= coords)), axis=1)] = vi bc = np.bincount(index_arr) mincount = bc[1:].min() idxs = _uniq(index_arr) new_coords = np.concatenate([coords[np.random.choice(np.argwhere((index_arr == idx)).flatten(), mincount)] for idx in idxs]) return new_coords<|docstring|>homogenize distribution of points within a rectangular area by reducing the number of points within n**2 equally-sized bounding boxes to the minimum number of points in one of those boxes. Parameters ---------- coords : numpy.ndarray Nx2 numpy array of coordinates to consider tile_width : int width of rectangular area containing coords tile_height : int height of rectangular area containing coords n : int number of subdivisions into which tile_width and tile_height should be divided Returns ------- smoothed_coords : numpy.ndarray Nx2 numpy array of smoothed subset of input coords<|endoftext|>
da0feef53c0f36d8922711f800dcd5aaaaa1efafad926d076b8f80558b5a1e14
def smooth_density(coords, tile_width, tile_height, n, legacy_smooth_density=False, **kwargs): 'homogenize distribution of points within a rectangular area by reducing\n the number of points within n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n legacy_smooth_density : boolean\n whether to use (slower) legacy code. Not recommended.\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' if legacy_smooth_density: return smooth_density_legacy(coords, tile_width, tile_height, n) else: return smooth_density_bbox(coords, tile_width, tile_height, n)
homogenize distribution of points within a rectangular area by reducing the number of points within n**2 equally-sized bounding boxes to the minimum number of points in one of those boxes. Parameters ---------- coords : numpy.ndarray Nx2 numpy array of coordinates to consider tile_width : int width of rectangular area containing coords tile_height : int height of rectangular area containing coords n : int number of subdivisions into which tile_width and tile_height should be divided legacy_smooth_density : boolean whether to use (slower) legacy code. Not recommended. Returns ------- smoothed_coords : numpy.ndarray Nx2 numpy array of smoothed subset of input coords
em_stitch/lens_correction/mesh_and_solve_transform.py
smooth_density
AllenInstitute/em_stitch
2
python
def smooth_density(coords, tile_width, tile_height, n, legacy_smooth_density=False, **kwargs): 'homogenize distribution of points within a rectangular area by reducing\n the number of points within n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n legacy_smooth_density : boolean\n whether to use (slower) legacy code. Not recommended.\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' if legacy_smooth_density: return smooth_density_legacy(coords, tile_width, tile_height, n) else: return smooth_density_bbox(coords, tile_width, tile_height, n)
def smooth_density(coords, tile_width, tile_height, n, legacy_smooth_density=False, **kwargs): 'homogenize distribution of points within a rectangular area by reducing\n the number of points within n**2 equally-sized bounding boxes to\n the minimum number of points in one of those boxes.\n\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 numpy array of coordinates to consider\n tile_width : int\n width of rectangular area containing coords\n tile_height : int\n height of rectangular area containing coords\n n : int\n number of subdivisions into which tile_width and tile_height\n should be divided\n legacy_smooth_density : boolean\n whether to use (slower) legacy code. Not recommended.\n\n Returns\n -------\n smoothed_coords : numpy.ndarray\n Nx2 numpy array of smoothed subset of input coords\n ' if legacy_smooth_density: return smooth_density_legacy(coords, tile_width, tile_height, n) else: return smooth_density_bbox(coords, tile_width, tile_height, n)<|docstring|>homogenize distribution of points within a rectangular area by reducing the number of points within n**2 equally-sized bounding boxes to the minimum number of points in one of those boxes. Parameters ---------- coords : numpy.ndarray Nx2 numpy array of coordinates to consider tile_width : int width of rectangular area containing coords tile_height : int height of rectangular area containing coords n : int number of subdivisions into which tile_width and tile_height should be divided legacy_smooth_density : boolean whether to use (slower) legacy code. Not recommended. Returns ------- smoothed_coords : numpy.ndarray Nx2 numpy array of smoothed subset of input coords<|endoftext|>
332d70b2cb812e8dd13586d03344ce5f703d6ed378c7349796699a8ac2c62534
def approx_snap_contour(contour, width, height, epsilon=20, snap_dist=5): "Approximate a contour within a number of pixels, so it isn't too\n fine in the corner and snap to edges\n\n Parameters\n ----------\n contour : numpy.ndarray\n Nx2 array input to cv2.approxPolyDP\n width : int\n width to which approximated values are snapped\n height : int\n height to which approximated values are snapped\n epsilon : int\n maximum pixel distance between the original curve and its approximation\n\n Returns\n -------\n approx : numpy.ndarray\n Polygon approximating the contour\n " approx = cv2.approxPolyDP(contour, epsilon, True) for i in range(approx.shape[0]): for j in [0, width]: if (np.abs((approx[(i, 0, 0)] - j)) <= snap_dist): approx[(i, 0, 0)] = j for j in [0, height]: if (np.abs((approx[(i, 0, 1)] - j)) <= snap_dist): approx[(i, 0, 1)] = j return approx
Approximate a contour within a number of pixels, so it isn't too fine in the corner and snap to edges Parameters ---------- contour : numpy.ndarray Nx2 array input to cv2.approxPolyDP width : int width to which approximated values are snapped height : int height to which approximated values are snapped epsilon : int maximum pixel distance between the original curve and its approximation Returns ------- approx : numpy.ndarray Polygon approximating the contour
em_stitch/lens_correction/mesh_and_solve_transform.py
approx_snap_contour
AllenInstitute/em_stitch
2
python
def approx_snap_contour(contour, width, height, epsilon=20, snap_dist=5): "Approximate a contour within a number of pixels, so it isn't too\n fine in the corner and snap to edges\n\n Parameters\n ----------\n contour : numpy.ndarray\n Nx2 array input to cv2.approxPolyDP\n width : int\n width to which approximated values are snapped\n height : int\n height to which approximated values are snapped\n epsilon : int\n maximum pixel distance between the original curve and its approximation\n\n Returns\n -------\n approx : numpy.ndarray\n Polygon approximating the contour\n " approx = cv2.approxPolyDP(contour, epsilon, True) for i in range(approx.shape[0]): for j in [0, width]: if (np.abs((approx[(i, 0, 0)] - j)) <= snap_dist): approx[(i, 0, 0)] = j for j in [0, height]: if (np.abs((approx[(i, 0, 1)] - j)) <= snap_dist): approx[(i, 0, 1)] = j return approx
def approx_snap_contour(contour, width, height, epsilon=20, snap_dist=5): "Approximate a contour within a number of pixels, so it isn't too\n fine in the corner and snap to edges\n\n Parameters\n ----------\n contour : numpy.ndarray\n Nx2 array input to cv2.approxPolyDP\n width : int\n width to which approximated values are snapped\n height : int\n height to which approximated values are snapped\n epsilon : int\n maximum pixel distance between the original curve and its approximation\n\n Returns\n -------\n approx : numpy.ndarray\n Polygon approximating the contour\n " approx = cv2.approxPolyDP(contour, epsilon, True) for i in range(approx.shape[0]): for j in [0, width]: if (np.abs((approx[(i, 0, 0)] - j)) <= snap_dist): approx[(i, 0, 0)] = j for j in [0, height]: if (np.abs((approx[(i, 0, 1)] - j)) <= snap_dist): approx[(i, 0, 1)] = j return approx<|docstring|>Approximate a contour within a number of pixels, so it isn't too fine in the corner and snap to edges Parameters ---------- contour : numpy.ndarray Nx2 array input to cv2.approxPolyDP width : int width to which approximated values are snapped height : int height to which approximated values are snapped epsilon : int maximum pixel distance between the original curve and its approximation Returns ------- approx : numpy.ndarray Polygon approximating the contour<|endoftext|>
fb0a96b1b7178df111a6a02153c5661bb9e2920d21e5d573c9fa6f8bd339bb14
def create_PSLG(tile_width, tile_height, maskUrl): 'create a PSLG (Planar Straight Line Graph) based on a masked image\n\n Parameters\n ----------\n tile_width : int\n width of tile for which PSLG will be created\n tile_height : int\n height of tile for which PSLG will be created\n maskUrl : str or None\n file uri to binary mask image\n\n Returns\n -------\n bbox : dict\n dictionary with keys vertices and segments representing the PSLG\n ' if (maskUrl is None): vertices = np.array([[0, 0], [0, tile_height], [tile_width, tile_height], [tile_width, 0]]) segments = np.array([[0, 1], [1, 2], [2, 3], [3, 0]]) else: mpath = urllib.parse.unquote(urllib.parse.urlparse(maskUrl).path) im = cv2.imread(mpath, 0) (_, contours, _) = cv2.findContours(im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) approx = approx_snap_contour(contours[0], tile_width, tile_height) vertices = np.array(approx).squeeze() segments = np.zeros((vertices.shape[0], 2)) segments[(:, 0)] = np.arange(vertices.shape[0]) segments[(:, 1)] = (segments[(:, 0)] + 1) segments[((- 1), 1)] = 0 bbox = {} bbox['vertices'] = vertices bbox['segments'] = segments return bbox
create a PSLG (Planar Straight Line Graph) based on a masked image Parameters ---------- tile_width : int width of tile for which PSLG will be created tile_height : int height of tile for which PSLG will be created maskUrl : str or None file uri to binary mask image Returns ------- bbox : dict dictionary with keys vertices and segments representing the PSLG
em_stitch/lens_correction/mesh_and_solve_transform.py
create_PSLG
AllenInstitute/em_stitch
2
python
def create_PSLG(tile_width, tile_height, maskUrl): 'create a PSLG (Planar Straight Line Graph) based on a masked image\n\n Parameters\n ----------\n tile_width : int\n width of tile for which PSLG will be created\n tile_height : int\n height of tile for which PSLG will be created\n maskUrl : str or None\n file uri to binary mask image\n\n Returns\n -------\n bbox : dict\n dictionary with keys vertices and segments representing the PSLG\n ' if (maskUrl is None): vertices = np.array([[0, 0], [0, tile_height], [tile_width, tile_height], [tile_width, 0]]) segments = np.array([[0, 1], [1, 2], [2, 3], [3, 0]]) else: mpath = urllib.parse.unquote(urllib.parse.urlparse(maskUrl).path) im = cv2.imread(mpath, 0) (_, contours, _) = cv2.findContours(im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) approx = approx_snap_contour(contours[0], tile_width, tile_height) vertices = np.array(approx).squeeze() segments = np.zeros((vertices.shape[0], 2)) segments[(:, 0)] = np.arange(vertices.shape[0]) segments[(:, 1)] = (segments[(:, 0)] + 1) segments[((- 1), 1)] = 0 bbox = {} bbox['vertices'] = vertices bbox['segments'] = segments return bbox
def create_PSLG(tile_width, tile_height, maskUrl): 'create a PSLG (Planar Straight Line Graph) based on a masked image\n\n Parameters\n ----------\n tile_width : int\n width of tile for which PSLG will be created\n tile_height : int\n height of tile for which PSLG will be created\n maskUrl : str or None\n file uri to binary mask image\n\n Returns\n -------\n bbox : dict\n dictionary with keys vertices and segments representing the PSLG\n ' if (maskUrl is None): vertices = np.array([[0, 0], [0, tile_height], [tile_width, tile_height], [tile_width, 0]]) segments = np.array([[0, 1], [1, 2], [2, 3], [3, 0]]) else: mpath = urllib.parse.unquote(urllib.parse.urlparse(maskUrl).path) im = cv2.imread(mpath, 0) (_, contours, _) = cv2.findContours(im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) approx = approx_snap_contour(contours[0], tile_width, tile_height) vertices = np.array(approx).squeeze() segments = np.zeros((vertices.shape[0], 2)) segments[(:, 0)] = np.arange(vertices.shape[0]) segments[(:, 1)] = (segments[(:, 0)] + 1) segments[((- 1), 1)] = 0 bbox = {} bbox['vertices'] = vertices bbox['segments'] = segments return bbox<|docstring|>create a PSLG (Planar Straight Line Graph) based on a masked image Parameters ---------- tile_width : int width of tile for which PSLG will be created tile_height : int height of tile for which PSLG will be created maskUrl : str or None file uri to binary mask image Returns ------- bbox : dict dictionary with keys vertices and segments representing the PSLG<|endoftext|>
e3d491fd31ae4e562027db3cb2029f308998cc3ca7881ff6aa0a8140d907db8e
def calculate_mesh(a, bbox, target, get_t=False): 'triangulate a mesh based on a Planar Straight Line Graph with\n mesh constraints. Return either the Delaunay triangulation or a\n difference in number of triangles from a target.\n\n Parameters\n ----------\n a : float\n global maximum triangular area constraint\n bbox : dict\n dictionary with keys vertices and segments representing PSLG\n target : int\n number of triangles to which the triangulation will be compared if\n get_t is False\n get_t : boolean\n whether to return a Delaunay Triangulation rather than a\n comparison to target\n\n Returns\n -------\n val : scipy.spatial.Delaunay or int\n Delaunay triangulation if get_t is True, otherwise the number of\n vertices in the triangulation subtracted from the target\n ' t = triangle.triangulate(bbox, ('pqa%0.1f' % a)) if get_t: return Delaunay(t['vertices']) return (target - len(t['vertices']))
triangulate a mesh based on a Planar Straight Line Graph with mesh constraints. Return either the Delaunay triangulation or a difference in number of triangles from a target. Parameters ---------- a : float global maximum triangular area constraint bbox : dict dictionary with keys vertices and segments representing PSLG target : int number of triangles to which the triangulation will be compared if get_t is False get_t : boolean whether to return a Delaunay Triangulation rather than a comparison to target Returns ------- val : scipy.spatial.Delaunay or int Delaunay triangulation if get_t is True, otherwise the number of vertices in the triangulation subtracted from the target
em_stitch/lens_correction/mesh_and_solve_transform.py
calculate_mesh
AllenInstitute/em_stitch
2
python
def calculate_mesh(a, bbox, target, get_t=False): 'triangulate a mesh based on a Planar Straight Line Graph with\n mesh constraints. Return either the Delaunay triangulation or a\n difference in number of triangles from a target.\n\n Parameters\n ----------\n a : float\n global maximum triangular area constraint\n bbox : dict\n dictionary with keys vertices and segments representing PSLG\n target : int\n number of triangles to which the triangulation will be compared if\n get_t is False\n get_t : boolean\n whether to return a Delaunay Triangulation rather than a\n comparison to target\n\n Returns\n -------\n val : scipy.spatial.Delaunay or int\n Delaunay triangulation if get_t is True, otherwise the number of\n vertices in the triangulation subtracted from the target\n ' t = triangle.triangulate(bbox, ('pqa%0.1f' % a)) if get_t: return Delaunay(t['vertices']) return (target - len(t['vertices']))
def calculate_mesh(a, bbox, target, get_t=False): 'triangulate a mesh based on a Planar Straight Line Graph with\n mesh constraints. Return either the Delaunay triangulation or a\n difference in number of triangles from a target.\n\n Parameters\n ----------\n a : float\n global maximum triangular area constraint\n bbox : dict\n dictionary with keys vertices and segments representing PSLG\n target : int\n number of triangles to which the triangulation will be compared if\n get_t is False\n get_t : boolean\n whether to return a Delaunay Triangulation rather than a\n comparison to target\n\n Returns\n -------\n val : scipy.spatial.Delaunay or int\n Delaunay triangulation if get_t is True, otherwise the number of\n vertices in the triangulation subtracted from the target\n ' t = triangle.triangulate(bbox, ('pqa%0.1f' % a)) if get_t: return Delaunay(t['vertices']) return (target - len(t['vertices']))<|docstring|>triangulate a mesh based on a Planar Straight Line Graph with mesh constraints. Return either the Delaunay triangulation or a difference in number of triangles from a target. Parameters ---------- a : float global maximum triangular area constraint bbox : dict dictionary with keys vertices and segments representing PSLG target : int number of triangles to which the triangulation will be compared if get_t is False get_t : boolean whether to return a Delaunay Triangulation rather than a comparison to target Returns ------- val : scipy.spatial.Delaunay or int Delaunay triangulation if get_t is True, otherwise the number of vertices in the triangulation subtracted from the target<|endoftext|>
8952c5c0fbc558dd85e53c6db31ddc85d799894b8e216d1638d633e46b768ffa
def force_vertices_with_npoints(area_par, bbox, coords, npts, **kwargs): 'create a triangular mesh which iteratively attempts to conform to a\n minimum number of points per vertex by adjusting the maximum\n triangle area\n\n Parameters\n ----------\n area_par : float\n initial maximum triangle area constraint for triangle.triangulate\n bbox : dict\n PSLG bounding box dictionary from :func:create_PSLG\n coords : numpy.ndarray\n Nx2 points\n npts : int\n minimum number of points near each vertex\n\n Returns\n -------\n t : scipy.spatial.qhull.Delaunay\n triangle mesh with minimum point count near vertices\n area_par : float\n area parameter used to calculate result t\n ' fac = 1.02 count = 0 max_iter = 20 while True: t = calculate_mesh(area_par, bbox, None, get_t=True) pt_count = count_points_near_vertices(t, coords, **kwargs) if (pt_count.min() >= npts): break area_par *= fac count += 1 if (np.mod(count, 2) == 0): fac += 0.5 if (np.mod(count, max_iter) == 0): e = ('did not meet vertex requirement after %d iterations' % max_iter) raise MeshLensCorrectionException(e) return (t, area_par)
create a triangular mesh which iteratively attempts to conform to a minimum number of points per vertex by adjusting the maximum triangle area Parameters ---------- area_par : float initial maximum triangle area constraint for triangle.triangulate bbox : dict PSLG bounding box dictionary from :func:create_PSLG coords : numpy.ndarray Nx2 points npts : int minimum number of points near each vertex Returns ------- t : scipy.spatial.qhull.Delaunay triangle mesh with minimum point count near vertices area_par : float area parameter used to calculate result t
em_stitch/lens_correction/mesh_and_solve_transform.py
force_vertices_with_npoints
AllenInstitute/em_stitch
2
python
def force_vertices_with_npoints(area_par, bbox, coords, npts, **kwargs): 'create a triangular mesh which iteratively attempts to conform to a\n minimum number of points per vertex by adjusting the maximum\n triangle area\n\n Parameters\n ----------\n area_par : float\n initial maximum triangle area constraint for triangle.triangulate\n bbox : dict\n PSLG bounding box dictionary from :func:create_PSLG\n coords : numpy.ndarray\n Nx2 points\n npts : int\n minimum number of points near each vertex\n\n Returns\n -------\n t : scipy.spatial.qhull.Delaunay\n triangle mesh with minimum point count near vertices\n area_par : float\n area parameter used to calculate result t\n ' fac = 1.02 count = 0 max_iter = 20 while True: t = calculate_mesh(area_par, bbox, None, get_t=True) pt_count = count_points_near_vertices(t, coords, **kwargs) if (pt_count.min() >= npts): break area_par *= fac count += 1 if (np.mod(count, 2) == 0): fac += 0.5 if (np.mod(count, max_iter) == 0): e = ('did not meet vertex requirement after %d iterations' % max_iter) raise MeshLensCorrectionException(e) return (t, area_par)
def force_vertices_with_npoints(area_par, bbox, coords, npts, **kwargs): 'create a triangular mesh which iteratively attempts to conform to a\n minimum number of points per vertex by adjusting the maximum\n triangle area\n\n Parameters\n ----------\n area_par : float\n initial maximum triangle area constraint for triangle.triangulate\n bbox : dict\n PSLG bounding box dictionary from :func:create_PSLG\n coords : numpy.ndarray\n Nx2 points\n npts : int\n minimum number of points near each vertex\n\n Returns\n -------\n t : scipy.spatial.qhull.Delaunay\n triangle mesh with minimum point count near vertices\n area_par : float\n area parameter used to calculate result t\n ' fac = 1.02 count = 0 max_iter = 20 while True: t = calculate_mesh(area_par, bbox, None, get_t=True) pt_count = count_points_near_vertices(t, coords, **kwargs) if (pt_count.min() >= npts): break area_par *= fac count += 1 if (np.mod(count, 2) == 0): fac += 0.5 if (np.mod(count, max_iter) == 0): e = ('did not meet vertex requirement after %d iterations' % max_iter) raise MeshLensCorrectionException(e) return (t, area_par)<|docstring|>create a triangular mesh which iteratively attempts to conform to a minimum number of points per vertex by adjusting the maximum triangle area Parameters ---------- area_par : float initial maximum triangle area constraint for triangle.triangulate bbox : dict PSLG bounding box dictionary from :func:create_PSLG coords : numpy.ndarray Nx2 points npts : int minimum number of points near each vertex Returns ------- t : scipy.spatial.qhull.Delaunay triangle mesh with minimum point count near vertices area_par : float area parameter used to calculate result t<|endoftext|>
fc1ebbead02b61e145265dae7d801f7f13699fe4c4c4c4d41c9ecbeca1539427
def find_delaunay_with_max_vertices(bbox, nvertex): 'optimize a delaunay triangulation of a PSLG to create an\n expected number of vertices\n\n Parameters\n ----------\n bbox : dict\n dictionary with keys vertices and segments representing a PSLG\n nvertex : int\n number of vertices for the triangulation to target\n\n Returns\n -------\n mesh : scipy.spatial.Delaunay\n resultant triangulation\n a : float\n area constraint used in the optimized triangulation\n ' a1 = a2 = 1000000.0 t1 = calculate_mesh(a1, bbox, nvertex) afac = np.power(10.0, (- np.sign(t1))) while (np.sign(t1) == np.sign(calculate_mesh(a2, bbox, nvertex))): a2 *= afac val_at_root = (- 1) nvtweak = nvertex while (val_at_root < 0): a = scipy.optimize.brentq(calculate_mesh, a1, a2, args=(bbox, nvtweak)) val_at_root = calculate_mesh(a, bbox, nvertex) a1 = (a * 2) a2 = (a * 0.5) nvtweak -= 1 mesh = calculate_mesh(a, bbox, None, get_t=True) return (mesh, a)
optimize a delaunay triangulation of a PSLG to create an expected number of vertices Parameters ---------- bbox : dict dictionary with keys vertices and segments representing a PSLG nvertex : int number of vertices for the triangulation to target Returns ------- mesh : scipy.spatial.Delaunay resultant triangulation a : float area constraint used in the optimized triangulation
em_stitch/lens_correction/mesh_and_solve_transform.py
find_delaunay_with_max_vertices
AllenInstitute/em_stitch
2
python
def find_delaunay_with_max_vertices(bbox, nvertex): 'optimize a delaunay triangulation of a PSLG to create an\n expected number of vertices\n\n Parameters\n ----------\n bbox : dict\n dictionary with keys vertices and segments representing a PSLG\n nvertex : int\n number of vertices for the triangulation to target\n\n Returns\n -------\n mesh : scipy.spatial.Delaunay\n resultant triangulation\n a : float\n area constraint used in the optimized triangulation\n ' a1 = a2 = 1000000.0 t1 = calculate_mesh(a1, bbox, nvertex) afac = np.power(10.0, (- np.sign(t1))) while (np.sign(t1) == np.sign(calculate_mesh(a2, bbox, nvertex))): a2 *= afac val_at_root = (- 1) nvtweak = nvertex while (val_at_root < 0): a = scipy.optimize.brentq(calculate_mesh, a1, a2, args=(bbox, nvtweak)) val_at_root = calculate_mesh(a, bbox, nvertex) a1 = (a * 2) a2 = (a * 0.5) nvtweak -= 1 mesh = calculate_mesh(a, bbox, None, get_t=True) return (mesh, a)
def find_delaunay_with_max_vertices(bbox, nvertex): 'optimize a delaunay triangulation of a PSLG to create an\n expected number of vertices\n\n Parameters\n ----------\n bbox : dict\n dictionary with keys vertices and segments representing a PSLG\n nvertex : int\n number of vertices for the triangulation to target\n\n Returns\n -------\n mesh : scipy.spatial.Delaunay\n resultant triangulation\n a : float\n area constraint used in the optimized triangulation\n ' a1 = a2 = 1000000.0 t1 = calculate_mesh(a1, bbox, nvertex) afac = np.power(10.0, (- np.sign(t1))) while (np.sign(t1) == np.sign(calculate_mesh(a2, bbox, nvertex))): a2 *= afac val_at_root = (- 1) nvtweak = nvertex while (val_at_root < 0): a = scipy.optimize.brentq(calculate_mesh, a1, a2, args=(bbox, nvtweak)) val_at_root = calculate_mesh(a, bbox, nvertex) a1 = (a * 2) a2 = (a * 0.5) nvtweak -= 1 mesh = calculate_mesh(a, bbox, None, get_t=True) return (mesh, a)<|docstring|>optimize a delaunay triangulation of a PSLG to create an expected number of vertices Parameters ---------- bbox : dict dictionary with keys vertices and segments representing a PSLG nvertex : int number of vertices for the triangulation to target Returns ------- mesh : scipy.spatial.Delaunay resultant triangulation a : float area constraint used in the optimized triangulation<|endoftext|>
d8d28b194db1e816bb5ee2aaf1e25941228f06e0d1876209d90707989297fe05
def compute_barycentrics_legacy(coords, mesh): 'legacy function to compute barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' triangle_indices = mesh.find_simplex(coords) vt = np.vstack((np.transpose(mesh.points), np.ones(mesh.points.shape[0]))) mt = np.vstack((np.transpose(coords), np.ones(coords.shape[0]))) bary = np.zeros((3, coords.shape[0])) Rinv = [] for tri in mesh.simplices: Rinv.append(np.linalg.inv(vt[(:, tri)])) for i in range(mesh.nsimplex): ind = np.argwhere((triangle_indices == i)).flatten() bary[(:, ind)] = Rinv[i].dot(mt[(:, ind)]) return (np.transpose(bary), triangle_indices)
legacy function to compute barycentric coordinates on mesh Parameters ---------- coords : numpy.ndarray Nx2 array of points mesh : scipy.spatial.qhull.Delaunay triangular mesh Returns ------- bcoords : numpy.ndarray Nx2 array of barycentric coordinates triangle_indices : numpy.ndarray simplex indices of barycentric coordinates
em_stitch/lens_correction/mesh_and_solve_transform.py
compute_barycentrics_legacy
AllenInstitute/em_stitch
2
python
def compute_barycentrics_legacy(coords, mesh): 'legacy function to compute barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' triangle_indices = mesh.find_simplex(coords) vt = np.vstack((np.transpose(mesh.points), np.ones(mesh.points.shape[0]))) mt = np.vstack((np.transpose(coords), np.ones(coords.shape[0]))) bary = np.zeros((3, coords.shape[0])) Rinv = [] for tri in mesh.simplices: Rinv.append(np.linalg.inv(vt[(:, tri)])) for i in range(mesh.nsimplex): ind = np.argwhere((triangle_indices == i)).flatten() bary[(:, ind)] = Rinv[i].dot(mt[(:, ind)]) return (np.transpose(bary), triangle_indices)
def compute_barycentrics_legacy(coords, mesh): 'legacy function to compute barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' triangle_indices = mesh.find_simplex(coords) vt = np.vstack((np.transpose(mesh.points), np.ones(mesh.points.shape[0]))) mt = np.vstack((np.transpose(coords), np.ones(coords.shape[0]))) bary = np.zeros((3, coords.shape[0])) Rinv = [] for tri in mesh.simplices: Rinv.append(np.linalg.inv(vt[(:, tri)])) for i in range(mesh.nsimplex): ind = np.argwhere((triangle_indices == i)).flatten() bary[(:, ind)] = Rinv[i].dot(mt[(:, ind)]) return (np.transpose(bary), triangle_indices)<|docstring|>legacy function to compute barycentric coordinates on mesh Parameters ---------- coords : numpy.ndarray Nx2 array of points mesh : scipy.spatial.qhull.Delaunay triangular mesh Returns ------- bcoords : numpy.ndarray Nx2 array of barycentric coordinates triangle_indices : numpy.ndarray simplex indices of barycentric coordinates<|endoftext|>
1c83430e336247a05749963db192c5b03875aeb193045524a4478ed77a2c6bca
def compute_barycentrics_native(coords, mesh): 'convert coordinates to barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' triangle_indices = mesh.find_simplex(coords) X = mesh.transform[(triangle_indices, :2)] Y = (coords - mesh.transform[(triangle_indices, 2)]) b = np.einsum('ijk,ik->ij', X, Y) bcoords = np.c_[(b, (1 - b.sum(axis=1)))] return (bcoords, triangle_indices)
convert coordinates to barycentric coordinates on mesh Parameters ---------- coords : numpy.ndarray Nx2 array of points mesh : scipy.spatial.qhull.Delaunay triangular mesh Returns ------- bcoords : numpy.ndarray Nx2 array of barycentric coordinates triangle_indices : numpy.ndarray simplex indices of barycentric coordinates
em_stitch/lens_correction/mesh_and_solve_transform.py
compute_barycentrics_native
AllenInstitute/em_stitch
2
python
def compute_barycentrics_native(coords, mesh): 'convert coordinates to barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' triangle_indices = mesh.find_simplex(coords) X = mesh.transform[(triangle_indices, :2)] Y = (coords - mesh.transform[(triangle_indices, 2)]) b = np.einsum('ijk,ik->ij', X, Y) bcoords = np.c_[(b, (1 - b.sum(axis=1)))] return (bcoords, triangle_indices)
def compute_barycentrics_native(coords, mesh): 'convert coordinates to barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' triangle_indices = mesh.find_simplex(coords) X = mesh.transform[(triangle_indices, :2)] Y = (coords - mesh.transform[(triangle_indices, 2)]) b = np.einsum('ijk,ik->ij', X, Y) bcoords = np.c_[(b, (1 - b.sum(axis=1)))] return (bcoords, triangle_indices)<|docstring|>convert coordinates to barycentric coordinates on mesh Parameters ---------- coords : numpy.ndarray Nx2 array of points mesh : scipy.spatial.qhull.Delaunay triangular mesh Returns ------- bcoords : numpy.ndarray Nx2 array of barycentric coordinates triangle_indices : numpy.ndarray simplex indices of barycentric coordinates<|endoftext|>
ade31d2253571136321c960f6e47b170806278530d1e186f6d11ef40466dd0b1
def compute_barycentrics(coords, mesh, legacy_barycentrics=False, **kwargs): 'convert coordinates to barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n legacy_barycentrics : boolean\n whether to use (slower) legacy method to find barycentrics.\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' if legacy_barycentrics: return compute_barycentrics_legacy(coords, mesh) else: return compute_barycentrics_native(coords, mesh)
convert coordinates to barycentric coordinates on mesh Parameters ---------- coords : numpy.ndarray Nx2 array of points mesh : scipy.spatial.qhull.Delaunay triangular mesh legacy_barycentrics : boolean whether to use (slower) legacy method to find barycentrics. Returns ------- bcoords : numpy.ndarray Nx2 array of barycentric coordinates triangle_indices : numpy.ndarray simplex indices of barycentric coordinates
em_stitch/lens_correction/mesh_and_solve_transform.py
compute_barycentrics
AllenInstitute/em_stitch
2
python
def compute_barycentrics(coords, mesh, legacy_barycentrics=False, **kwargs): 'convert coordinates to barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n legacy_barycentrics : boolean\n whether to use (slower) legacy method to find barycentrics.\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' if legacy_barycentrics: return compute_barycentrics_legacy(coords, mesh) else: return compute_barycentrics_native(coords, mesh)
def compute_barycentrics(coords, mesh, legacy_barycentrics=False, **kwargs): 'convert coordinates to barycentric coordinates on mesh\n\n Parameters\n ----------\n coords : numpy.ndarray\n Nx2 array of points\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n legacy_barycentrics : boolean\n whether to use (slower) legacy method to find barycentrics.\n\n Returns\n -------\n bcoords : numpy.ndarray\n Nx2 array of barycentric coordinates\n triangle_indices : numpy.ndarray\n simplex indices of barycentric coordinates\n ' if legacy_barycentrics: return compute_barycentrics_legacy(coords, mesh) else: return compute_barycentrics_native(coords, mesh)<|docstring|>convert coordinates to barycentric coordinates on mesh Parameters ---------- coords : numpy.ndarray Nx2 array of points mesh : scipy.spatial.qhull.Delaunay triangular mesh legacy_barycentrics : boolean whether to use (slower) legacy method to find barycentrics. Returns ------- bcoords : numpy.ndarray Nx2 array of barycentric coordinates triangle_indices : numpy.ndarray simplex indices of barycentric coordinates<|endoftext|>
f324f024111c1d1be221fda87022b23fe4e8ea685a3b2bd087943d0c08514b39
def count_points_near_vertices(t, coords, bruteforce_simplex_counts=False, count_bincount=True, **kwargs): 'enumerate coordinates closest to the vertices in a mesh\n\n Parameters\n ----------\n t : scipy.spatial.qhull.Delaunay\n triangular mesh\n coords : numpy.ndarray\n Nx2 array of points to assign to vertices on t\n bruteforce_simplex_counts : boolean\n whether to do a bruteforce simplex finding\n count_bincount : boolean\n use numpy.bincount based counting rather than legacy counting\n\n Returns\n -------\n pt_count : numpy.ndarray\n array with counts of points corresponding to indices of vertices in t\n ' flat_tri = t.simplices.flatten() flat_ind = np.repeat(np.arange(t.nsimplex), 3) v_touches = [] for i in range(t.npoints): v_touches.append(flat_ind[np.argwhere((flat_tri == i))]) found = t.find_simplex(coords, bruteforce=bruteforce_simplex_counts) if count_bincount: bc = np.bincount(found, minlength=t.nsimplex) pt_count = np.array([bc[v_touches[i]].sum() for i in range(t.npoints)]) else: pt_count = np.zeros(t.npoints) for i in range(t.npoints): for j in v_touches[i]: pt_count[i] += np.count_nonzero((found == j)) return pt_count
enumerate coordinates closest to the vertices in a mesh Parameters ---------- t : scipy.spatial.qhull.Delaunay triangular mesh coords : numpy.ndarray Nx2 array of points to assign to vertices on t bruteforce_simplex_counts : boolean whether to do a bruteforce simplex finding count_bincount : boolean use numpy.bincount based counting rather than legacy counting Returns ------- pt_count : numpy.ndarray array with counts of points corresponding to indices of vertices in t
em_stitch/lens_correction/mesh_and_solve_transform.py
count_points_near_vertices
AllenInstitute/em_stitch
2
python
def count_points_near_vertices(t, coords, bruteforce_simplex_counts=False, count_bincount=True, **kwargs): 'enumerate coordinates closest to the vertices in a mesh\n\n Parameters\n ----------\n t : scipy.spatial.qhull.Delaunay\n triangular mesh\n coords : numpy.ndarray\n Nx2 array of points to assign to vertices on t\n bruteforce_simplex_counts : boolean\n whether to do a bruteforce simplex finding\n count_bincount : boolean\n use numpy.bincount based counting rather than legacy counting\n\n Returns\n -------\n pt_count : numpy.ndarray\n array with counts of points corresponding to indices of vertices in t\n ' flat_tri = t.simplices.flatten() flat_ind = np.repeat(np.arange(t.nsimplex), 3) v_touches = [] for i in range(t.npoints): v_touches.append(flat_ind[np.argwhere((flat_tri == i))]) found = t.find_simplex(coords, bruteforce=bruteforce_simplex_counts) if count_bincount: bc = np.bincount(found, minlength=t.nsimplex) pt_count = np.array([bc[v_touches[i]].sum() for i in range(t.npoints)]) else: pt_count = np.zeros(t.npoints) for i in range(t.npoints): for j in v_touches[i]: pt_count[i] += np.count_nonzero((found == j)) return pt_count
def count_points_near_vertices(t, coords, bruteforce_simplex_counts=False, count_bincount=True, **kwargs): 'enumerate coordinates closest to the vertices in a mesh\n\n Parameters\n ----------\n t : scipy.spatial.qhull.Delaunay\n triangular mesh\n coords : numpy.ndarray\n Nx2 array of points to assign to vertices on t\n bruteforce_simplex_counts : boolean\n whether to do a bruteforce simplex finding\n count_bincount : boolean\n use numpy.bincount based counting rather than legacy counting\n\n Returns\n -------\n pt_count : numpy.ndarray\n array with counts of points corresponding to indices of vertices in t\n ' flat_tri = t.simplices.flatten() flat_ind = np.repeat(np.arange(t.nsimplex), 3) v_touches = [] for i in range(t.npoints): v_touches.append(flat_ind[np.argwhere((flat_tri == i))]) found = t.find_simplex(coords, bruteforce=bruteforce_simplex_counts) if count_bincount: bc = np.bincount(found, minlength=t.nsimplex) pt_count = np.array([bc[v_touches[i]].sum() for i in range(t.npoints)]) else: pt_count = np.zeros(t.npoints) for i in range(t.npoints): for j in v_touches[i]: pt_count[i] += np.count_nonzero((found == j)) return pt_count<|docstring|>enumerate coordinates closest to the vertices in a mesh Parameters ---------- t : scipy.spatial.qhull.Delaunay triangular mesh coords : numpy.ndarray Nx2 array of points to assign to vertices on t bruteforce_simplex_counts : boolean whether to do a bruteforce simplex finding count_bincount : boolean use numpy.bincount based counting rather than legacy counting Returns ------- pt_count : numpy.ndarray array with counts of points corresponding to indices of vertices in t<|endoftext|>
6e241c010f03aa15302360768c6e592ef447ef70c96db901650d8ca9a9abbd66
def create_regularization(ncols, ntiles, defaultL, transL, lensL): 'create sparse regularization matrix with distinct\n translation and lens regularization factors\n\n Parameters\n ----------\n ncols : int\n columns to generate (based on solver matrix)\n ntiles : int\n number of tiles to regularize\n defaultL : float\n default regularization parameter lambda\n transL : float\n translation-only regularization factor applied to default\n regularization parameter\n lensL : float\n nonlinear-only regularization factor applied to default\n regularization parameter\n\n Returns\n -------\n rmat : :class:`scipy.sparse.csr`\n sparse regularization matrix\n ' reg = (np.ones(ncols).astype('float64') * defaultL) reg[0:(ntiles * 3)] *= transL reg[(ntiles * 3):] *= lensL rmat = sparse.eye(reg.size, dtype='float64', format='csr') rmat.data = reg return rmat
create sparse regularization matrix with distinct translation and lens regularization factors Parameters ---------- ncols : int columns to generate (based on solver matrix) ntiles : int number of tiles to regularize defaultL : float default regularization parameter lambda transL : float translation-only regularization factor applied to default regularization parameter lensL : float nonlinear-only regularization factor applied to default regularization parameter Returns ------- rmat : :class:`scipy.sparse.csr` sparse regularization matrix
em_stitch/lens_correction/mesh_and_solve_transform.py
create_regularization
AllenInstitute/em_stitch
2
python
def create_regularization(ncols, ntiles, defaultL, transL, lensL): 'create sparse regularization matrix with distinct\n translation and lens regularization factors\n\n Parameters\n ----------\n ncols : int\n columns to generate (based on solver matrix)\n ntiles : int\n number of tiles to regularize\n defaultL : float\n default regularization parameter lambda\n transL : float\n translation-only regularization factor applied to default\n regularization parameter\n lensL : float\n nonlinear-only regularization factor applied to default\n regularization parameter\n\n Returns\n -------\n rmat : :class:`scipy.sparse.csr`\n sparse regularization matrix\n ' reg = (np.ones(ncols).astype('float64') * defaultL) reg[0:(ntiles * 3)] *= transL reg[(ntiles * 3):] *= lensL rmat = sparse.eye(reg.size, dtype='float64', format='csr') rmat.data = reg return rmat
def create_regularization(ncols, ntiles, defaultL, transL, lensL): 'create sparse regularization matrix with distinct\n translation and lens regularization factors\n\n Parameters\n ----------\n ncols : int\n columns to generate (based on solver matrix)\n ntiles : int\n number of tiles to regularize\n defaultL : float\n default regularization parameter lambda\n transL : float\n translation-only regularization factor applied to default\n regularization parameter\n lensL : float\n nonlinear-only regularization factor applied to default\n regularization parameter\n\n Returns\n -------\n rmat : :class:`scipy.sparse.csr`\n sparse regularization matrix\n ' reg = (np.ones(ncols).astype('float64') * defaultL) reg[0:(ntiles * 3)] *= transL reg[(ntiles * 3):] *= lensL rmat = sparse.eye(reg.size, dtype='float64', format='csr') rmat.data = reg return rmat<|docstring|>create sparse regularization matrix with distinct translation and lens regularization factors Parameters ---------- ncols : int columns to generate (based on solver matrix) ntiles : int number of tiles to regularize defaultL : float default regularization parameter lambda transL : float translation-only regularization factor applied to default regularization parameter lensL : float nonlinear-only regularization factor applied to default regularization parameter Returns ------- rmat : :class:`scipy.sparse.csr` sparse regularization matrix<|endoftext|>
af028e487807d5b030dec6b33b95cf89115daca1cc96e17901a64ec1acbc64d9
def create_thinplatespline_tf(mesh, solution, lens_dof_start, logger=default_logger, compute_affine=False): 'create 2D Thin Plate Spline transform required to transform mesh to\n the solution derived from\n em_stitch.lens_correction.mesh_and_solve_transform.solve\n\n Parameters\n ----------\n mesh : scipy.spatial.qhull.Delaunay\n triangular source mesh object\n solution : list of numpy.ndarray\n list of numpy arrays of x and y vertex positions of the solution\n lens_dof_start : int\n start index describing degrees of freedom used in create_A\n logger : logging.Logger, optional\n logger used in this method\n compute_affine : bool\n Whether to compute an affine in Thin Plate Spline estimation.\n See renderapi.transform.ThinPlateSplineTransform\n\n Returns\n -------\n transform : renderapi.transform.ThinPlateSplineTransform\n transformation object deforming the mesh to the solution\n ' dst = np.zeros_like(mesh.points) dst[(:, 0)] = (mesh.points[(:, 0)] + solution[0][lens_dof_start:]) dst[(:, 1)] = (mesh.points[(:, 1)] + solution[1][lens_dof_start:]) transform = renderapi.transform.ThinPlateSplineTransform() transform.estimate(mesh.points, dst, computeAffine=compute_affine) npts0 = transform.srcPts.shape[1] transform = transform.adaptive_mesh_estimate(max_iter=1000) npts1 = transform.srcPts.shape[1] logger.info(('adaptive_mesh_estimate reduced control points from %d to %d' % (npts0, npts1))) transform.transformId = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')[:(- 3)] transform.labels = None return transform
create 2D Thin Plate Spline transform required to transform mesh to the solution derived from em_stitch.lens_correction.mesh_and_solve_transform.solve Parameters ---------- mesh : scipy.spatial.qhull.Delaunay triangular source mesh object solution : list of numpy.ndarray list of numpy arrays of x and y vertex positions of the solution lens_dof_start : int start index describing degrees of freedom used in create_A logger : logging.Logger, optional logger used in this method compute_affine : bool Whether to compute an affine in Thin Plate Spline estimation. See renderapi.transform.ThinPlateSplineTransform Returns ------- transform : renderapi.transform.ThinPlateSplineTransform transformation object deforming the mesh to the solution
em_stitch/lens_correction/mesh_and_solve_transform.py
create_thinplatespline_tf
AllenInstitute/em_stitch
2
python
def create_thinplatespline_tf(mesh, solution, lens_dof_start, logger=default_logger, compute_affine=False): 'create 2D Thin Plate Spline transform required to transform mesh to\n the solution derived from\n em_stitch.lens_correction.mesh_and_solve_transform.solve\n\n Parameters\n ----------\n mesh : scipy.spatial.qhull.Delaunay\n triangular source mesh object\n solution : list of numpy.ndarray\n list of numpy arrays of x and y vertex positions of the solution\n lens_dof_start : int\n start index describing degrees of freedom used in create_A\n logger : logging.Logger, optional\n logger used in this method\n compute_affine : bool\n Whether to compute an affine in Thin Plate Spline estimation.\n See renderapi.transform.ThinPlateSplineTransform\n\n Returns\n -------\n transform : renderapi.transform.ThinPlateSplineTransform\n transformation object deforming the mesh to the solution\n ' dst = np.zeros_like(mesh.points) dst[(:, 0)] = (mesh.points[(:, 0)] + solution[0][lens_dof_start:]) dst[(:, 1)] = (mesh.points[(:, 1)] + solution[1][lens_dof_start:]) transform = renderapi.transform.ThinPlateSplineTransform() transform.estimate(mesh.points, dst, computeAffine=compute_affine) npts0 = transform.srcPts.shape[1] transform = transform.adaptive_mesh_estimate(max_iter=1000) npts1 = transform.srcPts.shape[1] logger.info(('adaptive_mesh_estimate reduced control points from %d to %d' % (npts0, npts1))) transform.transformId = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')[:(- 3)] transform.labels = None return transform
def create_thinplatespline_tf(mesh, solution, lens_dof_start, logger=default_logger, compute_affine=False): 'create 2D Thin Plate Spline transform required to transform mesh to\n the solution derived from\n em_stitch.lens_correction.mesh_and_solve_transform.solve\n\n Parameters\n ----------\n mesh : scipy.spatial.qhull.Delaunay\n triangular source mesh object\n solution : list of numpy.ndarray\n list of numpy arrays of x and y vertex positions of the solution\n lens_dof_start : int\n start index describing degrees of freedom used in create_A\n logger : logging.Logger, optional\n logger used in this method\n compute_affine : bool\n Whether to compute an affine in Thin Plate Spline estimation.\n See renderapi.transform.ThinPlateSplineTransform\n\n Returns\n -------\n transform : renderapi.transform.ThinPlateSplineTransform\n transformation object deforming the mesh to the solution\n ' dst = np.zeros_like(mesh.points) dst[(:, 0)] = (mesh.points[(:, 0)] + solution[0][lens_dof_start:]) dst[(:, 1)] = (mesh.points[(:, 1)] + solution[1][lens_dof_start:]) transform = renderapi.transform.ThinPlateSplineTransform() transform.estimate(mesh.points, dst, computeAffine=compute_affine) npts0 = transform.srcPts.shape[1] transform = transform.adaptive_mesh_estimate(max_iter=1000) npts1 = transform.srcPts.shape[1] logger.info(('adaptive_mesh_estimate reduced control points from %d to %d' % (npts0, npts1))) transform.transformId = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')[:(- 3)] transform.labels = None return transform<|docstring|>create 2D Thin Plate Spline transform required to transform mesh to the solution derived from em_stitch.lens_correction.mesh_and_solve_transform.solve Parameters ---------- mesh : scipy.spatial.qhull.Delaunay triangular source mesh object solution : list of numpy.ndarray list of numpy arrays of x and y vertex positions of the solution lens_dof_start : int start index describing degrees of freedom used in create_A logger : logging.Logger, optional logger used in this method compute_affine : bool Whether to compute an affine in Thin Plate Spline estimation. See renderapi.transform.ThinPlateSplineTransform Returns ------- transform : renderapi.transform.ThinPlateSplineTransform transformation object deforming the mesh to the solution<|endoftext|>
361b20d4432139a23de7a3680c7388d5e65a5098368f96de5ca51ac38ed10464
def new_specs_with_tf(ref_transform, tilespecs, transforms): 'create a copy of each tilespec in tilespecs with the first transform\n being a reference to ref_transform and the second based on transforms\n provided in transforms.\n This likely expects a single transformation in the input tilespecs.\n\n Parameters\n ----------\n ref_transform : renderapi.transform.Transform\n transform to attach as a reference transform at index 0 for\n each tilespec\n tilespecs : list of renderapi.tilespec.TileSpec\n tilespecs to which ref_transform and the corresponding tranform\n from transforms should be applied\n transforms : list of renderapi.transform.Transform\n list of transforms of same length as tilespecs to apply as transform at index 1 of each tilespec\n\n Returns\n -------\n newspecs : list of renderapi.tilespec.TileSpec\n copied tilespecs with transformations applied\n ' newspecs = [] for i in range(len(tilespecs)): newspecs.append(copy.deepcopy(tilespecs[i])) newspecs[(- 1)].tforms.insert(0, renderapi.transform.ReferenceTransform(refId=ref_transform.transformId)) newspecs[(- 1)].tforms[1] = transforms[i] return newspecs
create a copy of each tilespec in tilespecs with the first transform being a reference to ref_transform and the second based on transforms provided in transforms. This likely expects a single transformation in the input tilespecs. Parameters ---------- ref_transform : renderapi.transform.Transform transform to attach as a reference transform at index 0 for each tilespec tilespecs : list of renderapi.tilespec.TileSpec tilespecs to which ref_transform and the corresponding tranform from transforms should be applied transforms : list of renderapi.transform.Transform list of transforms of same length as tilespecs to apply as transform at index 1 of each tilespec Returns ------- newspecs : list of renderapi.tilespec.TileSpec copied tilespecs with transformations applied
em_stitch/lens_correction/mesh_and_solve_transform.py
new_specs_with_tf
AllenInstitute/em_stitch
2
python
def new_specs_with_tf(ref_transform, tilespecs, transforms): 'create a copy of each tilespec in tilespecs with the first transform\n being a reference to ref_transform and the second based on transforms\n provided in transforms.\n This likely expects a single transformation in the input tilespecs.\n\n Parameters\n ----------\n ref_transform : renderapi.transform.Transform\n transform to attach as a reference transform at index 0 for\n each tilespec\n tilespecs : list of renderapi.tilespec.TileSpec\n tilespecs to which ref_transform and the corresponding tranform\n from transforms should be applied\n transforms : list of renderapi.transform.Transform\n list of transforms of same length as tilespecs to apply as transform at index 1 of each tilespec\n\n Returns\n -------\n newspecs : list of renderapi.tilespec.TileSpec\n copied tilespecs with transformations applied\n ' newspecs = [] for i in range(len(tilespecs)): newspecs.append(copy.deepcopy(tilespecs[i])) newspecs[(- 1)].tforms.insert(0, renderapi.transform.ReferenceTransform(refId=ref_transform.transformId)) newspecs[(- 1)].tforms[1] = transforms[i] return newspecs
def new_specs_with_tf(ref_transform, tilespecs, transforms): 'create a copy of each tilespec in tilespecs with the first transform\n being a reference to ref_transform and the second based on transforms\n provided in transforms.\n This likely expects a single transformation in the input tilespecs.\n\n Parameters\n ----------\n ref_transform : renderapi.transform.Transform\n transform to attach as a reference transform at index 0 for\n each tilespec\n tilespecs : list of renderapi.tilespec.TileSpec\n tilespecs to which ref_transform and the corresponding tranform\n from transforms should be applied\n transforms : list of renderapi.transform.Transform\n list of transforms of same length as tilespecs to apply as transform at index 1 of each tilespec\n\n Returns\n -------\n newspecs : list of renderapi.tilespec.TileSpec\n copied tilespecs with transformations applied\n ' newspecs = [] for i in range(len(tilespecs)): newspecs.append(copy.deepcopy(tilespecs[i])) newspecs[(- 1)].tforms.insert(0, renderapi.transform.ReferenceTransform(refId=ref_transform.transformId)) newspecs[(- 1)].tforms[1] = transforms[i] return newspecs<|docstring|>create a copy of each tilespec in tilespecs with the first transform being a reference to ref_transform and the second based on transforms provided in transforms. This likely expects a single transformation in the input tilespecs. Parameters ---------- ref_transform : renderapi.transform.Transform transform to attach as a reference transform at index 0 for each tilespec tilespecs : list of renderapi.tilespec.TileSpec tilespecs to which ref_transform and the corresponding tranform from transforms should be applied transforms : list of renderapi.transform.Transform list of transforms of same length as tilespecs to apply as transform at index 1 of each tilespec Returns ------- newspecs : list of renderapi.tilespec.TileSpec copied tilespecs with transformations applied<|endoftext|>
b80e11b9b1cfab5c2b80fb3dab8c32f95835be3dc8f60297b7e09337fe270b75
def solve(A, weights, reg, x0, b, precomputed_ATW=None, precomputed_ATWA=None, precomputed_K_factorized=None): 'regularized weighted solve\n\n Parameters\n ----------\n A : :class:`scipy.sparse.csr`\n the matrix, N (equations) x M (degrees of freedom)\n weights : :class:`scipy.sparse.csr_matrix`\n N x N diagonal matrix containing weights\n reg : :class:`scipy.sparse.csr_matrix`\n M x M diagonal matrix containing regularizations\n x0 : :class:`numpy.ndarray`\n M x nsolve float constraint values for the DOFs\n b : :class:`numpy.ndarray`:\n N x nsolve float right-hand-side(s)\n precomputed_ATW : :class:`scipy.sparse.csc_matrix`\n value to use rather than computing A.T.dot(weights)\n precomputed_ATWA : :class:`scipy.sparse.csc_matrix`\n value to use rather than computing A.T.dot(weights).dot(A)\n precomputed_K_factorized : func\n factorized solve function to use rather than computing\n scipy.sparse.linalg.factorized(A.T.dot(weights).dot(A) + reg)\n\n Returns\n -------\n solution : list of numpy.ndarray\n list of numpy arrays of x and y vertex positions of solution\n errx : numpy.ndarray\n numpy array of x residuals\n erry : numpy.ndarray\n numpy array of y residuals\n\n ' ATW = (A.transpose().dot(weights) if (precomputed_ATW is None) else precomputed_ATW) if (precomputed_K_factorized is None): K = ((ATW.dot(A) if (precomputed_ATWA is None) else precomputed_ATWA) + reg) K_factorized = factorized(K) else: K_factorized = precomputed_K_factorized solution = [] i = 0 for x in x0: Lm = (reg.dot(x) + ATW.dot(b[(:, i)])) i += 1 solution.append(K_factorized(Lm)) errx = (A.dot(solution[0]) - b[(:, 0)]) erry = (A.dot(solution[1]) - b[(:, 1)]) return (solution, errx, erry)
regularized weighted solve Parameters ---------- A : :class:`scipy.sparse.csr` the matrix, N (equations) x M (degrees of freedom) weights : :class:`scipy.sparse.csr_matrix` N x N diagonal matrix containing weights reg : :class:`scipy.sparse.csr_matrix` M x M diagonal matrix containing regularizations x0 : :class:`numpy.ndarray` M x nsolve float constraint values for the DOFs b : :class:`numpy.ndarray`: N x nsolve float right-hand-side(s) precomputed_ATW : :class:`scipy.sparse.csc_matrix` value to use rather than computing A.T.dot(weights) precomputed_ATWA : :class:`scipy.sparse.csc_matrix` value to use rather than computing A.T.dot(weights).dot(A) precomputed_K_factorized : func factorized solve function to use rather than computing scipy.sparse.linalg.factorized(A.T.dot(weights).dot(A) + reg) Returns ------- solution : list of numpy.ndarray list of numpy arrays of x and y vertex positions of solution errx : numpy.ndarray numpy array of x residuals erry : numpy.ndarray numpy array of y residuals
em_stitch/lens_correction/mesh_and_solve_transform.py
solve
AllenInstitute/em_stitch
2
python
def solve(A, weights, reg, x0, b, precomputed_ATW=None, precomputed_ATWA=None, precomputed_K_factorized=None): 'regularized weighted solve\n\n Parameters\n ----------\n A : :class:`scipy.sparse.csr`\n the matrix, N (equations) x M (degrees of freedom)\n weights : :class:`scipy.sparse.csr_matrix`\n N x N diagonal matrix containing weights\n reg : :class:`scipy.sparse.csr_matrix`\n M x M diagonal matrix containing regularizations\n x0 : :class:`numpy.ndarray`\n M x nsolve float constraint values for the DOFs\n b : :class:`numpy.ndarray`:\n N x nsolve float right-hand-side(s)\n precomputed_ATW : :class:`scipy.sparse.csc_matrix`\n value to use rather than computing A.T.dot(weights)\n precomputed_ATWA : :class:`scipy.sparse.csc_matrix`\n value to use rather than computing A.T.dot(weights).dot(A)\n precomputed_K_factorized : func\n factorized solve function to use rather than computing\n scipy.sparse.linalg.factorized(A.T.dot(weights).dot(A) + reg)\n\n Returns\n -------\n solution : list of numpy.ndarray\n list of numpy arrays of x and y vertex positions of solution\n errx : numpy.ndarray\n numpy array of x residuals\n erry : numpy.ndarray\n numpy array of y residuals\n\n ' ATW = (A.transpose().dot(weights) if (precomputed_ATW is None) else precomputed_ATW) if (precomputed_K_factorized is None): K = ((ATW.dot(A) if (precomputed_ATWA is None) else precomputed_ATWA) + reg) K_factorized = factorized(K) else: K_factorized = precomputed_K_factorized solution = [] i = 0 for x in x0: Lm = (reg.dot(x) + ATW.dot(b[(:, i)])) i += 1 solution.append(K_factorized(Lm)) errx = (A.dot(solution[0]) - b[(:, 0)]) erry = (A.dot(solution[1]) - b[(:, 1)]) return (solution, errx, erry)
def solve(A, weights, reg, x0, b, precomputed_ATW=None, precomputed_ATWA=None, precomputed_K_factorized=None): 'regularized weighted solve\n\n Parameters\n ----------\n A : :class:`scipy.sparse.csr`\n the matrix, N (equations) x M (degrees of freedom)\n weights : :class:`scipy.sparse.csr_matrix`\n N x N diagonal matrix containing weights\n reg : :class:`scipy.sparse.csr_matrix`\n M x M diagonal matrix containing regularizations\n x0 : :class:`numpy.ndarray`\n M x nsolve float constraint values for the DOFs\n b : :class:`numpy.ndarray`:\n N x nsolve float right-hand-side(s)\n precomputed_ATW : :class:`scipy.sparse.csc_matrix`\n value to use rather than computing A.T.dot(weights)\n precomputed_ATWA : :class:`scipy.sparse.csc_matrix`\n value to use rather than computing A.T.dot(weights).dot(A)\n precomputed_K_factorized : func\n factorized solve function to use rather than computing\n scipy.sparse.linalg.factorized(A.T.dot(weights).dot(A) + reg)\n\n Returns\n -------\n solution : list of numpy.ndarray\n list of numpy arrays of x and y vertex positions of solution\n errx : numpy.ndarray\n numpy array of x residuals\n erry : numpy.ndarray\n numpy array of y residuals\n\n ' ATW = (A.transpose().dot(weights) if (precomputed_ATW is None) else precomputed_ATW) if (precomputed_K_factorized is None): K = ((ATW.dot(A) if (precomputed_ATWA is None) else precomputed_ATWA) + reg) K_factorized = factorized(K) else: K_factorized = precomputed_K_factorized solution = [] i = 0 for x in x0: Lm = (reg.dot(x) + ATW.dot(b[(:, i)])) i += 1 solution.append(K_factorized(Lm)) errx = (A.dot(solution[0]) - b[(:, 0)]) erry = (A.dot(solution[1]) - b[(:, 1)]) return (solution, errx, erry)<|docstring|>regularized weighted solve Parameters ---------- A : :class:`scipy.sparse.csr` the matrix, N (equations) x M (degrees of freedom) weights : :class:`scipy.sparse.csr_matrix` N x N diagonal matrix containing weights reg : :class:`scipy.sparse.csr_matrix` M x M diagonal matrix containing regularizations x0 : :class:`numpy.ndarray` M x nsolve float constraint values for the DOFs b : :class:`numpy.ndarray`: N x nsolve float right-hand-side(s) precomputed_ATW : :class:`scipy.sparse.csc_matrix` value to use rather than computing A.T.dot(weights) precomputed_ATWA : :class:`scipy.sparse.csc_matrix` value to use rather than computing A.T.dot(weights).dot(A) precomputed_K_factorized : func factorized solve function to use rather than computing scipy.sparse.linalg.factorized(A.T.dot(weights).dot(A) + reg) Returns ------- solution : list of numpy.ndarray list of numpy arrays of x and y vertex positions of solution errx : numpy.ndarray numpy array of x residuals erry : numpy.ndarray numpy array of y residuals<|endoftext|>
31e77a317bcac278b05fc7a98d2a2019711cc737521a77ebcc10124d97011066
def report_solution(errx, erry, transforms, criteria): 'compile results, statistics, and messages for reporting information\n about lens correction solves\n\n Parameters\n ----------\n errx : numpy.ndarray\n numpy array of x residuals\n erry : numpy.ndarray\n numpy array of y residuals\n transforms : list of renderapi.transform.Transform\n list of transforms considered for the translation parameter\n criteria : dict\n criteria for good solve (deprecated)\n\n Returns\n -------\n translation : numpy.ndarray\n numpy array describing the resultant translations of the solution\n jresult : dict\n solution statistics dictionary\n message : str\n string reporting results\n ' translation = np.array([tf.translation for tf in transforms]) jresult = {} jresult['x_res_min'] = errx.min() jresult['x_res_max'] = errx.max() jresult['x_res_mean'] = errx.mean() jresult['x_res_std'] = errx.std() jresult['y_res_min'] = erry.min() jresult['y_res_max'] = erry.max() jresult['y_res_mean'] = erry.mean() jresult['y_res_std'] = erry.std() for k in jresult.keys(): jresult[k] = np.round(jresult[k], 3) message = 'lens solver results [px]' for val in ['res']: for xy in ['x', 'y']: d = ('\n%8s' % (((xy + '_') + val) + ' ')) v = '' for calc in ['min', 'max', 'mean', 'std']: d += (calc + ',') k = ((((xy + '_') + val) + '_') + calc) v += ('%8.2f' % jresult[k]) message += (d + v) return (translation, jresult, message)
compile results, statistics, and messages for reporting information about lens correction solves Parameters ---------- errx : numpy.ndarray numpy array of x residuals erry : numpy.ndarray numpy array of y residuals transforms : list of renderapi.transform.Transform list of transforms considered for the translation parameter criteria : dict criteria for good solve (deprecated) Returns ------- translation : numpy.ndarray numpy array describing the resultant translations of the solution jresult : dict solution statistics dictionary message : str string reporting results
em_stitch/lens_correction/mesh_and_solve_transform.py
report_solution
AllenInstitute/em_stitch
2
python
def report_solution(errx, erry, transforms, criteria): 'compile results, statistics, and messages for reporting information\n about lens correction solves\n\n Parameters\n ----------\n errx : numpy.ndarray\n numpy array of x residuals\n erry : numpy.ndarray\n numpy array of y residuals\n transforms : list of renderapi.transform.Transform\n list of transforms considered for the translation parameter\n criteria : dict\n criteria for good solve (deprecated)\n\n Returns\n -------\n translation : numpy.ndarray\n numpy array describing the resultant translations of the solution\n jresult : dict\n solution statistics dictionary\n message : str\n string reporting results\n ' translation = np.array([tf.translation for tf in transforms]) jresult = {} jresult['x_res_min'] = errx.min() jresult['x_res_max'] = errx.max() jresult['x_res_mean'] = errx.mean() jresult['x_res_std'] = errx.std() jresult['y_res_min'] = erry.min() jresult['y_res_max'] = erry.max() jresult['y_res_mean'] = erry.mean() jresult['y_res_std'] = erry.std() for k in jresult.keys(): jresult[k] = np.round(jresult[k], 3) message = 'lens solver results [px]' for val in ['res']: for xy in ['x', 'y']: d = ('\n%8s' % (((xy + '_') + val) + ' ')) v = for calc in ['min', 'max', 'mean', 'std']: d += (calc + ',') k = ((((xy + '_') + val) + '_') + calc) v += ('%8.2f' % jresult[k]) message += (d + v) return (translation, jresult, message)
def report_solution(errx, erry, transforms, criteria): 'compile results, statistics, and messages for reporting information\n about lens correction solves\n\n Parameters\n ----------\n errx : numpy.ndarray\n numpy array of x residuals\n erry : numpy.ndarray\n numpy array of y residuals\n transforms : list of renderapi.transform.Transform\n list of transforms considered for the translation parameter\n criteria : dict\n criteria for good solve (deprecated)\n\n Returns\n -------\n translation : numpy.ndarray\n numpy array describing the resultant translations of the solution\n jresult : dict\n solution statistics dictionary\n message : str\n string reporting results\n ' translation = np.array([tf.translation for tf in transforms]) jresult = {} jresult['x_res_min'] = errx.min() jresult['x_res_max'] = errx.max() jresult['x_res_mean'] = errx.mean() jresult['x_res_std'] = errx.std() jresult['y_res_min'] = erry.min() jresult['y_res_max'] = erry.max() jresult['y_res_mean'] = erry.mean() jresult['y_res_std'] = erry.std() for k in jresult.keys(): jresult[k] = np.round(jresult[k], 3) message = 'lens solver results [px]' for val in ['res']: for xy in ['x', 'y']: d = ('\n%8s' % (((xy + '_') + val) + ' ')) v = for calc in ['min', 'max', 'mean', 'std']: d += (calc + ',') k = ((((xy + '_') + val) + '_') + calc) v += ('%8.2f' % jresult[k]) message += (d + v) return (translation, jresult, message)<|docstring|>compile results, statistics, and messages for reporting information about lens correction solves Parameters ---------- errx : numpy.ndarray numpy array of x residuals erry : numpy.ndarray numpy array of y residuals transforms : list of renderapi.transform.Transform list of transforms considered for the translation parameter criteria : dict criteria for good solve (deprecated) Returns ------- translation : numpy.ndarray numpy array describing the resultant translations of the solution jresult : dict solution statistics dictionary message : str string reporting results<|endoftext|>
def1d304e1cea7309d08d7f03089b99916641959ece472e64bc8a309efcb083a
def create_x0(nrows, tilespecs): 'create initialization array x0\n\n Parameters\n ----------\n nrows : int\n number of rows in array (defined to match A[1])\n tilespecs : list of renderapi.tilespecs.TileSpec\n tilespecs from which initialization is built\n\n Returns\n -------\n x0 : numpy.ndarray\n initialization array x0\n ' ntiles = len(tilespecs) x0 = [] x0.append(np.zeros(nrows).astype('float64')) x0.append(np.zeros(nrows).astype('float64')) x0[0][0:ntiles] = np.zeros(ntiles) x0[1][0:ntiles] = np.zeros(ntiles) for i in range(ntiles): x0[0][i] = tilespecs[i].tforms[0].B0 x0[1][i] = tilespecs[i].tforms[0].B1 return x0
create initialization array x0 Parameters ---------- nrows : int number of rows in array (defined to match A[1]) tilespecs : list of renderapi.tilespecs.TileSpec tilespecs from which initialization is built Returns ------- x0 : numpy.ndarray initialization array x0
em_stitch/lens_correction/mesh_and_solve_transform.py
create_x0
AllenInstitute/em_stitch
2
python
def create_x0(nrows, tilespecs): 'create initialization array x0\n\n Parameters\n ----------\n nrows : int\n number of rows in array (defined to match A[1])\n tilespecs : list of renderapi.tilespecs.TileSpec\n tilespecs from which initialization is built\n\n Returns\n -------\n x0 : numpy.ndarray\n initialization array x0\n ' ntiles = len(tilespecs) x0 = [] x0.append(np.zeros(nrows).astype('float64')) x0.append(np.zeros(nrows).astype('float64')) x0[0][0:ntiles] = np.zeros(ntiles) x0[1][0:ntiles] = np.zeros(ntiles) for i in range(ntiles): x0[0][i] = tilespecs[i].tforms[0].B0 x0[1][i] = tilespecs[i].tforms[0].B1 return x0
def create_x0(nrows, tilespecs): 'create initialization array x0\n\n Parameters\n ----------\n nrows : int\n number of rows in array (defined to match A[1])\n tilespecs : list of renderapi.tilespecs.TileSpec\n tilespecs from which initialization is built\n\n Returns\n -------\n x0 : numpy.ndarray\n initialization array x0\n ' ntiles = len(tilespecs) x0 = [] x0.append(np.zeros(nrows).astype('float64')) x0.append(np.zeros(nrows).astype('float64')) x0[0][0:ntiles] = np.zeros(ntiles) x0[1][0:ntiles] = np.zeros(ntiles) for i in range(ntiles): x0[0][i] = tilespecs[i].tforms[0].B0 x0[1][i] = tilespecs[i].tforms[0].B1 return x0<|docstring|>create initialization array x0 Parameters ---------- nrows : int number of rows in array (defined to match A[1]) tilespecs : list of renderapi.tilespecs.TileSpec tilespecs from which initialization is built Returns ------- x0 : numpy.ndarray initialization array x0<|endoftext|>
3d442f3e534ca70aa05363cfedb1926e3bad9065eca0a40a16a49a387ec4d11b
def create_A(matches, tilespecs, mesh, **kwargs): 'create A matrix describing translation and lens correction\n\n Parameters\n ----------\n matches : list of dict\n list of match dictionaries in render format\n tilespecs : list of renderapi.tilespecs.TileSpec\n tilespecs to include in solve\n mesh : scipy.spatial.qhull.Delaunay\n mesh of input points as produced by\n em_stitch.lens_Correction.mesh_and_solve_transform._create_mesh\n\n Returns\n -------\n A : :class:`scipy.sparse.csr`\n matrix, N (equations) x M (degrees of freedom)\n wts : :class:`scipy.sparse.csr_matrix`\n N x N diagonal matrix containing weights\n b : :class:`numpy.ndarray`:\n N x nsolve float right-hand-side(s)\n lens_dof_start : int\n start index defined by degrees of freedom used to generate A\n ' dof_per_tile = 1 dof_per_vertex = 1 vertex_per_patch = 3 nnz_per_row = (2 * (dof_per_tile + (vertex_per_patch * dof_per_vertex))) nrows = sum([len(m['matches']['p'][0]) for m in matches]) nd = (nnz_per_row * nrows) lens_dof_start = (dof_per_tile * len(tilespecs)) data = np.zeros(nd).astype('float64') b = np.zeros((nrows, 2)).astype('float64') indices = np.zeros(nd).astype('int64') indptr = np.zeros((nrows + 1)).astype('int64') indptr[1:] = (np.arange(1, (nrows + 1)) * nnz_per_row) weights = np.ones(nrows).astype('float64') unique_ids = np.array([t.tileId for t in tilespecs]) offset = 0 rows = 0 for mi in range(len(matches)): m = matches[mi] pindex = np.argwhere((unique_ids == m['pId'])) qindex = np.argwhere((unique_ids == m['qId'])) npoint_pairs = len(m['matches']['q'][0]) pcoords = np.transpose(np.vstack((m['matches']['p'][0], m['matches']['p'][1]))).astype('float64') qcoords = np.transpose(np.vstack((m['matches']['q'][0], m['matches']['q'][1]))).astype('float64') b[rows:(rows + pcoords.shape[0])] = (qcoords - pcoords) rows += pcoords.shape[0] pbary = compute_barycentrics(pcoords, mesh, **kwargs) qbary = compute_barycentrics(qcoords, mesh, **kwargs) mstep = ((np.arange(npoint_pairs) * nnz_per_row) + offset) data[(mstep + 0)] = 1.0 data[(mstep + 1)] = (- 1.0) data[(mstep + 2)] = pbary[0][(:, 0)] data[(mstep + 3)] = pbary[0][(:, 1)] data[(mstep + 4)] = pbary[0][(:, 2)] data[(mstep + 5)] = (- qbary[0][(:, 0)]) data[(mstep + 6)] = (- qbary[0][(:, 1)]) data[(mstep + 7)] = (- qbary[0][(:, 2)]) indices[(mstep + 0)] = pindex indices[(mstep + 1)] = qindex indices[(mstep + 2)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 0)]) indices[(mstep + 3)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 1)]) indices[(mstep + 4)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 2)]) indices[(mstep + 5)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 0)]) indices[(mstep + 6)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 1)]) indices[(mstep + 7)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 2)]) offset += (npoint_pairs * nnz_per_row) A = csr_matrix((data, indices, indptr), dtype='float64') wts = sparse.eye(weights.size, format='csr', dtype='float64') wts.data = weights return (A, wts, b, lens_dof_start)
create A matrix describing translation and lens correction Parameters ---------- matches : list of dict list of match dictionaries in render format tilespecs : list of renderapi.tilespecs.TileSpec tilespecs to include in solve mesh : scipy.spatial.qhull.Delaunay mesh of input points as produced by em_stitch.lens_Correction.mesh_and_solve_transform._create_mesh Returns ------- A : :class:`scipy.sparse.csr` matrix, N (equations) x M (degrees of freedom) wts : :class:`scipy.sparse.csr_matrix` N x N diagonal matrix containing weights b : :class:`numpy.ndarray`: N x nsolve float right-hand-side(s) lens_dof_start : int start index defined by degrees of freedom used to generate A
em_stitch/lens_correction/mesh_and_solve_transform.py
create_A
AllenInstitute/em_stitch
2
python
def create_A(matches, tilespecs, mesh, **kwargs): 'create A matrix describing translation and lens correction\n\n Parameters\n ----------\n matches : list of dict\n list of match dictionaries in render format\n tilespecs : list of renderapi.tilespecs.TileSpec\n tilespecs to include in solve\n mesh : scipy.spatial.qhull.Delaunay\n mesh of input points as produced by\n em_stitch.lens_Correction.mesh_and_solve_transform._create_mesh\n\n Returns\n -------\n A : :class:`scipy.sparse.csr`\n matrix, N (equations) x M (degrees of freedom)\n wts : :class:`scipy.sparse.csr_matrix`\n N x N diagonal matrix containing weights\n b : :class:`numpy.ndarray`:\n N x nsolve float right-hand-side(s)\n lens_dof_start : int\n start index defined by degrees of freedom used to generate A\n ' dof_per_tile = 1 dof_per_vertex = 1 vertex_per_patch = 3 nnz_per_row = (2 * (dof_per_tile + (vertex_per_patch * dof_per_vertex))) nrows = sum([len(m['matches']['p'][0]) for m in matches]) nd = (nnz_per_row * nrows) lens_dof_start = (dof_per_tile * len(tilespecs)) data = np.zeros(nd).astype('float64') b = np.zeros((nrows, 2)).astype('float64') indices = np.zeros(nd).astype('int64') indptr = np.zeros((nrows + 1)).astype('int64') indptr[1:] = (np.arange(1, (nrows + 1)) * nnz_per_row) weights = np.ones(nrows).astype('float64') unique_ids = np.array([t.tileId for t in tilespecs]) offset = 0 rows = 0 for mi in range(len(matches)): m = matches[mi] pindex = np.argwhere((unique_ids == m['pId'])) qindex = np.argwhere((unique_ids == m['qId'])) npoint_pairs = len(m['matches']['q'][0]) pcoords = np.transpose(np.vstack((m['matches']['p'][0], m['matches']['p'][1]))).astype('float64') qcoords = np.transpose(np.vstack((m['matches']['q'][0], m['matches']['q'][1]))).astype('float64') b[rows:(rows + pcoords.shape[0])] = (qcoords - pcoords) rows += pcoords.shape[0] pbary = compute_barycentrics(pcoords, mesh, **kwargs) qbary = compute_barycentrics(qcoords, mesh, **kwargs) mstep = ((np.arange(npoint_pairs) * nnz_per_row) + offset) data[(mstep + 0)] = 1.0 data[(mstep + 1)] = (- 1.0) data[(mstep + 2)] = pbary[0][(:, 0)] data[(mstep + 3)] = pbary[0][(:, 1)] data[(mstep + 4)] = pbary[0][(:, 2)] data[(mstep + 5)] = (- qbary[0][(:, 0)]) data[(mstep + 6)] = (- qbary[0][(:, 1)]) data[(mstep + 7)] = (- qbary[0][(:, 2)]) indices[(mstep + 0)] = pindex indices[(mstep + 1)] = qindex indices[(mstep + 2)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 0)]) indices[(mstep + 3)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 1)]) indices[(mstep + 4)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 2)]) indices[(mstep + 5)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 0)]) indices[(mstep + 6)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 1)]) indices[(mstep + 7)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 2)]) offset += (npoint_pairs * nnz_per_row) A = csr_matrix((data, indices, indptr), dtype='float64') wts = sparse.eye(weights.size, format='csr', dtype='float64') wts.data = weights return (A, wts, b, lens_dof_start)
def create_A(matches, tilespecs, mesh, **kwargs): 'create A matrix describing translation and lens correction\n\n Parameters\n ----------\n matches : list of dict\n list of match dictionaries in render format\n tilespecs : list of renderapi.tilespecs.TileSpec\n tilespecs to include in solve\n mesh : scipy.spatial.qhull.Delaunay\n mesh of input points as produced by\n em_stitch.lens_Correction.mesh_and_solve_transform._create_mesh\n\n Returns\n -------\n A : :class:`scipy.sparse.csr`\n matrix, N (equations) x M (degrees of freedom)\n wts : :class:`scipy.sparse.csr_matrix`\n N x N diagonal matrix containing weights\n b : :class:`numpy.ndarray`:\n N x nsolve float right-hand-side(s)\n lens_dof_start : int\n start index defined by degrees of freedom used to generate A\n ' dof_per_tile = 1 dof_per_vertex = 1 vertex_per_patch = 3 nnz_per_row = (2 * (dof_per_tile + (vertex_per_patch * dof_per_vertex))) nrows = sum([len(m['matches']['p'][0]) for m in matches]) nd = (nnz_per_row * nrows) lens_dof_start = (dof_per_tile * len(tilespecs)) data = np.zeros(nd).astype('float64') b = np.zeros((nrows, 2)).astype('float64') indices = np.zeros(nd).astype('int64') indptr = np.zeros((nrows + 1)).astype('int64') indptr[1:] = (np.arange(1, (nrows + 1)) * nnz_per_row) weights = np.ones(nrows).astype('float64') unique_ids = np.array([t.tileId for t in tilespecs]) offset = 0 rows = 0 for mi in range(len(matches)): m = matches[mi] pindex = np.argwhere((unique_ids == m['pId'])) qindex = np.argwhere((unique_ids == m['qId'])) npoint_pairs = len(m['matches']['q'][0]) pcoords = np.transpose(np.vstack((m['matches']['p'][0], m['matches']['p'][1]))).astype('float64') qcoords = np.transpose(np.vstack((m['matches']['q'][0], m['matches']['q'][1]))).astype('float64') b[rows:(rows + pcoords.shape[0])] = (qcoords - pcoords) rows += pcoords.shape[0] pbary = compute_barycentrics(pcoords, mesh, **kwargs) qbary = compute_barycentrics(qcoords, mesh, **kwargs) mstep = ((np.arange(npoint_pairs) * nnz_per_row) + offset) data[(mstep + 0)] = 1.0 data[(mstep + 1)] = (- 1.0) data[(mstep + 2)] = pbary[0][(:, 0)] data[(mstep + 3)] = pbary[0][(:, 1)] data[(mstep + 4)] = pbary[0][(:, 2)] data[(mstep + 5)] = (- qbary[0][(:, 0)]) data[(mstep + 6)] = (- qbary[0][(:, 1)]) data[(mstep + 7)] = (- qbary[0][(:, 2)]) indices[(mstep + 0)] = pindex indices[(mstep + 1)] = qindex indices[(mstep + 2)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 0)]) indices[(mstep + 3)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 1)]) indices[(mstep + 4)] = (lens_dof_start + mesh.simplices[pbary[1][:]][(:, 2)]) indices[(mstep + 5)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 0)]) indices[(mstep + 6)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 1)]) indices[(mstep + 7)] = (lens_dof_start + mesh.simplices[qbary[1][:]][(:, 2)]) offset += (npoint_pairs * nnz_per_row) A = csr_matrix((data, indices, indptr), dtype='float64') wts = sparse.eye(weights.size, format='csr', dtype='float64') wts.data = weights return (A, wts, b, lens_dof_start)<|docstring|>create A matrix describing translation and lens correction Parameters ---------- matches : list of dict list of match dictionaries in render format tilespecs : list of renderapi.tilespecs.TileSpec tilespecs to include in solve mesh : scipy.spatial.qhull.Delaunay mesh of input points as produced by em_stitch.lens_Correction.mesh_and_solve_transform._create_mesh Returns ------- A : :class:`scipy.sparse.csr` matrix, N (equations) x M (degrees of freedom) wts : :class:`scipy.sparse.csr_matrix` N x N diagonal matrix containing weights b : :class:`numpy.ndarray`: N x nsolve float right-hand-side(s) lens_dof_start : int start index defined by degrees of freedom used to generate A<|endoftext|>
2c0d319c088da1aa8def8b7c72751f073357c2d59007af5a09280fade672966b
def create_transforms(ntiles, solution): 'create translation transformations from a solution array\n\n Parameters\n ----------\n ntiles : int\n number of tiles represented in the solution\n solution : list of numpy.ndarray\n list of numpy arrays of x and y positions result of solve\n\n Returns\n -------\n rtransforms : list of renderapi.transform.AffineModel\n transforms described by solution\n ' rtransforms = [] for i in range(ntiles): rtransforms.append(renderapi.transform.AffineModel(B0=solution[0][i], B1=solution[1][i])) return rtransforms
create translation transformations from a solution array Parameters ---------- ntiles : int number of tiles represented in the solution solution : list of numpy.ndarray list of numpy arrays of x and y positions result of solve Returns ------- rtransforms : list of renderapi.transform.AffineModel transforms described by solution
em_stitch/lens_correction/mesh_and_solve_transform.py
create_transforms
AllenInstitute/em_stitch
2
python
def create_transforms(ntiles, solution): 'create translation transformations from a solution array\n\n Parameters\n ----------\n ntiles : int\n number of tiles represented in the solution\n solution : list of numpy.ndarray\n list of numpy arrays of x and y positions result of solve\n\n Returns\n -------\n rtransforms : list of renderapi.transform.AffineModel\n transforms described by solution\n ' rtransforms = [] for i in range(ntiles): rtransforms.append(renderapi.transform.AffineModel(B0=solution[0][i], B1=solution[1][i])) return rtransforms
def create_transforms(ntiles, solution): 'create translation transformations from a solution array\n\n Parameters\n ----------\n ntiles : int\n number of tiles represented in the solution\n solution : list of numpy.ndarray\n list of numpy arrays of x and y positions result of solve\n\n Returns\n -------\n rtransforms : list of renderapi.transform.AffineModel\n transforms described by solution\n ' rtransforms = [] for i in range(ntiles): rtransforms.append(renderapi.transform.AffineModel(B0=solution[0][i], B1=solution[1][i])) return rtransforms<|docstring|>create translation transformations from a solution array Parameters ---------- ntiles : int number of tiles represented in the solution solution : list of numpy.ndarray list of numpy arrays of x and y positions result of solve Returns ------- rtransforms : list of renderapi.transform.AffineModel transforms described by solution<|endoftext|>
fd99f510df909d7bb3e8f53b6ff3bc6c2fe933465ba977fb5254ee73222c7ed4
def estimate_stage_affine(t0, t1): 'estimate affine transformation between translation components\n of tiles in t0 and tiles in t1 to give overall stage affine transformation.\n\n Parameters\n ----------\n t0 : list of renderapi.tilespec.TileSpec\n source tilespecs (initial position)\n t1 : list of renderapi.tilespec.TileSpec\n destination tilespecs (post-solve)\n \n Returns\n -------\n aff : renderapi.transform.AffineModel\n 2D affine transform representing stage transformation\n ' src = np.array([t.tforms[0].translation for t in t0]) dst = np.array([t.tforms[1].translation for t in t1]) aff = renderapi.transform.AffineModel() aff.estimate(src, dst) return aff
estimate affine transformation between translation components of tiles in t0 and tiles in t1 to give overall stage affine transformation. Parameters ---------- t0 : list of renderapi.tilespec.TileSpec source tilespecs (initial position) t1 : list of renderapi.tilespec.TileSpec destination tilespecs (post-solve) Returns ------- aff : renderapi.transform.AffineModel 2D affine transform representing stage transformation
em_stitch/lens_correction/mesh_and_solve_transform.py
estimate_stage_affine
AllenInstitute/em_stitch
2
python
def estimate_stage_affine(t0, t1): 'estimate affine transformation between translation components\n of tiles in t0 and tiles in t1 to give overall stage affine transformation.\n\n Parameters\n ----------\n t0 : list of renderapi.tilespec.TileSpec\n source tilespecs (initial position)\n t1 : list of renderapi.tilespec.TileSpec\n destination tilespecs (post-solve)\n \n Returns\n -------\n aff : renderapi.transform.AffineModel\n 2D affine transform representing stage transformation\n ' src = np.array([t.tforms[0].translation for t in t0]) dst = np.array([t.tforms[1].translation for t in t1]) aff = renderapi.transform.AffineModel() aff.estimate(src, dst) return aff
def estimate_stage_affine(t0, t1): 'estimate affine transformation between translation components\n of tiles in t0 and tiles in t1 to give overall stage affine transformation.\n\n Parameters\n ----------\n t0 : list of renderapi.tilespec.TileSpec\n source tilespecs (initial position)\n t1 : list of renderapi.tilespec.TileSpec\n destination tilespecs (post-solve)\n \n Returns\n -------\n aff : renderapi.transform.AffineModel\n 2D affine transform representing stage transformation\n ' src = np.array([t.tforms[0].translation for t in t0]) dst = np.array([t.tforms[1].translation for t in t1]) aff = renderapi.transform.AffineModel() aff.estimate(src, dst) return aff<|docstring|>estimate affine transformation between translation components of tiles in t0 and tiles in t1 to give overall stage affine transformation. Parameters ---------- t0 : list of renderapi.tilespec.TileSpec source tilespecs (initial position) t1 : list of renderapi.tilespec.TileSpec destination tilespecs (post-solve) Returns ------- aff : renderapi.transform.AffineModel 2D affine transform representing stage transformation<|endoftext|>
ad2cfe0b351e4f390252b2624e1cb07e038a15fed94496aa8f5acf91027e01ba
def _create_mesh(resolvedtiles, matches, nvertex, return_area_triangle_par=False, **kwargs): 'create mesh with a given number of vertices based on example tiles\n and pointmatches\n\n Parameters\n ----------\n resolvedtiles : renderapi.resolvedtiles.ResolvedTiles\n resolvedtiles containing a tilespec with mask, width, and height\n properties to use as a template for the mesh\n matches : list of dict\n list of point correspondences in render pointmatch format\n nvertex : int\n number of vertices for mesh\n return_area_triangle_par : boolean\n whether to return the area parameter used to generate the\n triangular mesh\n\n Returns\n -------\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n area_triangle_par : float\n max area constraint used in generating mesh\n ' remove_weighted_matches(matches, weight=0.0) tilespecs = resolvedtiles.tilespecs example_tspec = tilespecs[0] tile_width = example_tspec.width tile_height = example_tspec.height maskUrl = example_tspec.ip[0].maskUrl coords = condense_coords(matches) nc0 = coords.shape[0] coords = smooth_density(coords, tile_width, tile_height, 10, **kwargs) nc1 = coords.shape[0] logger.info(('\n smoothing point density reduced points from %d to %d' % (nc0, nc1))) if (coords.shape[0] == 0): raise MeshLensCorrectionException('no point matches left after smoothing density, probably some sparse areas of matching') bbox = create_PSLG(tile_width, tile_height, maskUrl) (mesh, area_triangle_par) = find_delaunay_with_max_vertices(bbox, nvertex) (mesh, area_triangle_par) = force_vertices_with_npoints(area_triangle_par, bbox, coords, 3, **kwargs) return ((mesh, area_triangle_par) if return_area_triangle_par else mesh)
create mesh with a given number of vertices based on example tiles and pointmatches Parameters ---------- resolvedtiles : renderapi.resolvedtiles.ResolvedTiles resolvedtiles containing a tilespec with mask, width, and height properties to use as a template for the mesh matches : list of dict list of point correspondences in render pointmatch format nvertex : int number of vertices for mesh return_area_triangle_par : boolean whether to return the area parameter used to generate the triangular mesh Returns ------- mesh : scipy.spatial.qhull.Delaunay triangular mesh area_triangle_par : float max area constraint used in generating mesh
em_stitch/lens_correction/mesh_and_solve_transform.py
_create_mesh
AllenInstitute/em_stitch
2
python
def _create_mesh(resolvedtiles, matches, nvertex, return_area_triangle_par=False, **kwargs): 'create mesh with a given number of vertices based on example tiles\n and pointmatches\n\n Parameters\n ----------\n resolvedtiles : renderapi.resolvedtiles.ResolvedTiles\n resolvedtiles containing a tilespec with mask, width, and height\n properties to use as a template for the mesh\n matches : list of dict\n list of point correspondences in render pointmatch format\n nvertex : int\n number of vertices for mesh\n return_area_triangle_par : boolean\n whether to return the area parameter used to generate the\n triangular mesh\n\n Returns\n -------\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n area_triangle_par : float\n max area constraint used in generating mesh\n ' remove_weighted_matches(matches, weight=0.0) tilespecs = resolvedtiles.tilespecs example_tspec = tilespecs[0] tile_width = example_tspec.width tile_height = example_tspec.height maskUrl = example_tspec.ip[0].maskUrl coords = condense_coords(matches) nc0 = coords.shape[0] coords = smooth_density(coords, tile_width, tile_height, 10, **kwargs) nc1 = coords.shape[0] logger.info(('\n smoothing point density reduced points from %d to %d' % (nc0, nc1))) if (coords.shape[0] == 0): raise MeshLensCorrectionException('no point matches left after smoothing density, probably some sparse areas of matching') bbox = create_PSLG(tile_width, tile_height, maskUrl) (mesh, area_triangle_par) = find_delaunay_with_max_vertices(bbox, nvertex) (mesh, area_triangle_par) = force_vertices_with_npoints(area_triangle_par, bbox, coords, 3, **kwargs) return ((mesh, area_triangle_par) if return_area_triangle_par else mesh)
def _create_mesh(resolvedtiles, matches, nvertex, return_area_triangle_par=False, **kwargs): 'create mesh with a given number of vertices based on example tiles\n and pointmatches\n\n Parameters\n ----------\n resolvedtiles : renderapi.resolvedtiles.ResolvedTiles\n resolvedtiles containing a tilespec with mask, width, and height\n properties to use as a template for the mesh\n matches : list of dict\n list of point correspondences in render pointmatch format\n nvertex : int\n number of vertices for mesh\n return_area_triangle_par : boolean\n whether to return the area parameter used to generate the\n triangular mesh\n\n Returns\n -------\n mesh : scipy.spatial.qhull.Delaunay\n triangular mesh\n area_triangle_par : float\n max area constraint used in generating mesh\n ' remove_weighted_matches(matches, weight=0.0) tilespecs = resolvedtiles.tilespecs example_tspec = tilespecs[0] tile_width = example_tspec.width tile_height = example_tspec.height maskUrl = example_tspec.ip[0].maskUrl coords = condense_coords(matches) nc0 = coords.shape[0] coords = smooth_density(coords, tile_width, tile_height, 10, **kwargs) nc1 = coords.shape[0] logger.info(('\n smoothing point density reduced points from %d to %d' % (nc0, nc1))) if (coords.shape[0] == 0): raise MeshLensCorrectionException('no point matches left after smoothing density, probably some sparse areas of matching') bbox = create_PSLG(tile_width, tile_height, maskUrl) (mesh, area_triangle_par) = find_delaunay_with_max_vertices(bbox, nvertex) (mesh, area_triangle_par) = force_vertices_with_npoints(area_triangle_par, bbox, coords, 3, **kwargs) return ((mesh, area_triangle_par) if return_area_triangle_par else mesh)<|docstring|>create mesh with a given number of vertices based on example tiles and pointmatches Parameters ---------- resolvedtiles : renderapi.resolvedtiles.ResolvedTiles resolvedtiles containing a tilespec with mask, width, and height properties to use as a template for the mesh matches : list of dict list of point correspondences in render pointmatch format nvertex : int number of vertices for mesh return_area_triangle_par : boolean whether to return the area parameter used to generate the triangular mesh Returns ------- mesh : scipy.spatial.qhull.Delaunay triangular mesh area_triangle_par : float max area constraint used in generating mesh<|endoftext|>
0ab49d4964e62cd5f8fbf2bad144027defa941e667eb284243c27062e5688c44
def _solve_resolvedtiles(resolvedtiles, matches, nvertex, regularization_lambda, regularization_translation_factor, regularization_lens_lambda, good_solve_dict, logger=default_logger, **kwargs): 'generate lens correction from resolvedtiles and pointmatches\n\n Parameters\n ----------\n resolvedtiles : renderapi.resolvedtiles.ResolvedTiles\n resolvedtiles object on which transformation will be computed\n matches : list of dict\n point correspondences to consider in render pointmatch format\n nvertex :\n number of vertices in mesh\n regularization_lambda : float\n lambda value for affine regularization\n regularization_translation_factor : float\n translation factor of regularization\n regularization_lens_lambda : float\n lambda value for lens regularization\n good_solve_dict :\n dictionary to define when a solve fails\n logger : logging.Logger\n logger to use in reporting\n Returns\n -------\n resolved : renderapi.resolvedtiles.ResolvedTiles\n new resolvedtiles object with derived lens correction applied\n new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform\n derived lens correction transform\n jresult : dict\n dictionary of solve information\n ' tilespecs = resolvedtiles.tilespecs example_tspec = tilespecs[0] mesh = _create_mesh(resolvedtiles, matches, nvertex, **kwargs) nend = mesh.points.shape[0] logger.info(('\n aimed for %d mesh points, got %d' % (nvertex, nend))) if (mesh.points.shape[0] < (0.5 * nvertex)): raise MeshLensCorrectionException('mesh coarser than intended') (A, weights, b, lens_dof_start) = create_A(matches, tilespecs, mesh) x0 = create_x0(A.shape[1], tilespecs) reg = create_regularization(A.shape[1], len(tilespecs), regularization_lambda, regularization_translation_factor, regularization_lens_lambda) (solution, errx, erry) = solve(A, weights, reg, x0, b) transforms = create_transforms(len(tilespecs), solution) (tf_trans, jresult, solve_message) = report_solution(errx, erry, transforms, good_solve_dict) logger.info(solve_message) if (not all([(errx.mean() < good_solve_dict['error_mean']), (erry.mean() < good_solve_dict['error_mean']), (errx.std() < good_solve_dict['error_std']), (erry.std() < good_solve_dict['error_std'])])): raise MeshLensCorrectionException(('Solve not good: %s' % solve_message)) logger.debug(solve_message) new_ref_transform = create_thinplatespline_tf(mesh, solution, lens_dof_start, logger) bbox = example_tspec.bbox_transformed(tf_limit=0) tbbox = new_ref_transform.tform(bbox) bstr = 'new transform corners:\n' for i in range((bbox.shape[0] - 1)): bstr += (' (%0.1f, %0.1f) -> (%0.1f, %0.1f)\n' % (bbox[(i, 0)], bbox[(i, 1)], tbbox[(i, 0)], tbbox[(i, 1)])) logger.info(bstr) new_tilespecs = new_specs_with_tf(new_ref_transform, tilespecs, transforms) stage_affine = estimate_stage_affine(tilespecs, new_tilespecs) sastr = (((('affine estimate of tile translations:\n' + ' scale: {}\n'.format(stage_affine.scale)) + ' translation: {}\n'.format(stage_affine.translation)) + ' shear: {}\n'.format(stage_affine.shear)) + ' rotation: {}\n'.format(np.degrees(stage_affine.rotation))) logger.info(sastr) resolved = renderapi.resolvedtiles.ResolvedTiles(tilespecs=new_tilespecs, transformList=[new_ref_transform]) return (resolved, new_ref_transform, jresult)
generate lens correction from resolvedtiles and pointmatches Parameters ---------- resolvedtiles : renderapi.resolvedtiles.ResolvedTiles resolvedtiles object on which transformation will be computed matches : list of dict point correspondences to consider in render pointmatch format nvertex : number of vertices in mesh regularization_lambda : float lambda value for affine regularization regularization_translation_factor : float translation factor of regularization regularization_lens_lambda : float lambda value for lens regularization good_solve_dict : dictionary to define when a solve fails logger : logging.Logger logger to use in reporting Returns ------- resolved : renderapi.resolvedtiles.ResolvedTiles new resolvedtiles object with derived lens correction applied new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform derived lens correction transform jresult : dict dictionary of solve information
em_stitch/lens_correction/mesh_and_solve_transform.py
_solve_resolvedtiles
AllenInstitute/em_stitch
2
python
def _solve_resolvedtiles(resolvedtiles, matches, nvertex, regularization_lambda, regularization_translation_factor, regularization_lens_lambda, good_solve_dict, logger=default_logger, **kwargs): 'generate lens correction from resolvedtiles and pointmatches\n\n Parameters\n ----------\n resolvedtiles : renderapi.resolvedtiles.ResolvedTiles\n resolvedtiles object on which transformation will be computed\n matches : list of dict\n point correspondences to consider in render pointmatch format\n nvertex :\n number of vertices in mesh\n regularization_lambda : float\n lambda value for affine regularization\n regularization_translation_factor : float\n translation factor of regularization\n regularization_lens_lambda : float\n lambda value for lens regularization\n good_solve_dict :\n dictionary to define when a solve fails\n logger : logging.Logger\n logger to use in reporting\n Returns\n -------\n resolved : renderapi.resolvedtiles.ResolvedTiles\n new resolvedtiles object with derived lens correction applied\n new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform\n derived lens correction transform\n jresult : dict\n dictionary of solve information\n ' tilespecs = resolvedtiles.tilespecs example_tspec = tilespecs[0] mesh = _create_mesh(resolvedtiles, matches, nvertex, **kwargs) nend = mesh.points.shape[0] logger.info(('\n aimed for %d mesh points, got %d' % (nvertex, nend))) if (mesh.points.shape[0] < (0.5 * nvertex)): raise MeshLensCorrectionException('mesh coarser than intended') (A, weights, b, lens_dof_start) = create_A(matches, tilespecs, mesh) x0 = create_x0(A.shape[1], tilespecs) reg = create_regularization(A.shape[1], len(tilespecs), regularization_lambda, regularization_translation_factor, regularization_lens_lambda) (solution, errx, erry) = solve(A, weights, reg, x0, b) transforms = create_transforms(len(tilespecs), solution) (tf_trans, jresult, solve_message) = report_solution(errx, erry, transforms, good_solve_dict) logger.info(solve_message) if (not all([(errx.mean() < good_solve_dict['error_mean']), (erry.mean() < good_solve_dict['error_mean']), (errx.std() < good_solve_dict['error_std']), (erry.std() < good_solve_dict['error_std'])])): raise MeshLensCorrectionException(('Solve not good: %s' % solve_message)) logger.debug(solve_message) new_ref_transform = create_thinplatespline_tf(mesh, solution, lens_dof_start, logger) bbox = example_tspec.bbox_transformed(tf_limit=0) tbbox = new_ref_transform.tform(bbox) bstr = 'new transform corners:\n' for i in range((bbox.shape[0] - 1)): bstr += (' (%0.1f, %0.1f) -> (%0.1f, %0.1f)\n' % (bbox[(i, 0)], bbox[(i, 1)], tbbox[(i, 0)], tbbox[(i, 1)])) logger.info(bstr) new_tilespecs = new_specs_with_tf(new_ref_transform, tilespecs, transforms) stage_affine = estimate_stage_affine(tilespecs, new_tilespecs) sastr = (((('affine estimate of tile translations:\n' + ' scale: {}\n'.format(stage_affine.scale)) + ' translation: {}\n'.format(stage_affine.translation)) + ' shear: {}\n'.format(stage_affine.shear)) + ' rotation: {}\n'.format(np.degrees(stage_affine.rotation))) logger.info(sastr) resolved = renderapi.resolvedtiles.ResolvedTiles(tilespecs=new_tilespecs, transformList=[new_ref_transform]) return (resolved, new_ref_transform, jresult)
def _solve_resolvedtiles(resolvedtiles, matches, nvertex, regularization_lambda, regularization_translation_factor, regularization_lens_lambda, good_solve_dict, logger=default_logger, **kwargs): 'generate lens correction from resolvedtiles and pointmatches\n\n Parameters\n ----------\n resolvedtiles : renderapi.resolvedtiles.ResolvedTiles\n resolvedtiles object on which transformation will be computed\n matches : list of dict\n point correspondences to consider in render pointmatch format\n nvertex :\n number of vertices in mesh\n regularization_lambda : float\n lambda value for affine regularization\n regularization_translation_factor : float\n translation factor of regularization\n regularization_lens_lambda : float\n lambda value for lens regularization\n good_solve_dict :\n dictionary to define when a solve fails\n logger : logging.Logger\n logger to use in reporting\n Returns\n -------\n resolved : renderapi.resolvedtiles.ResolvedTiles\n new resolvedtiles object with derived lens correction applied\n new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform\n derived lens correction transform\n jresult : dict\n dictionary of solve information\n ' tilespecs = resolvedtiles.tilespecs example_tspec = tilespecs[0] mesh = _create_mesh(resolvedtiles, matches, nvertex, **kwargs) nend = mesh.points.shape[0] logger.info(('\n aimed for %d mesh points, got %d' % (nvertex, nend))) if (mesh.points.shape[0] < (0.5 * nvertex)): raise MeshLensCorrectionException('mesh coarser than intended') (A, weights, b, lens_dof_start) = create_A(matches, tilespecs, mesh) x0 = create_x0(A.shape[1], tilespecs) reg = create_regularization(A.shape[1], len(tilespecs), regularization_lambda, regularization_translation_factor, regularization_lens_lambda) (solution, errx, erry) = solve(A, weights, reg, x0, b) transforms = create_transforms(len(tilespecs), solution) (tf_trans, jresult, solve_message) = report_solution(errx, erry, transforms, good_solve_dict) logger.info(solve_message) if (not all([(errx.mean() < good_solve_dict['error_mean']), (erry.mean() < good_solve_dict['error_mean']), (errx.std() < good_solve_dict['error_std']), (erry.std() < good_solve_dict['error_std'])])): raise MeshLensCorrectionException(('Solve not good: %s' % solve_message)) logger.debug(solve_message) new_ref_transform = create_thinplatespline_tf(mesh, solution, lens_dof_start, logger) bbox = example_tspec.bbox_transformed(tf_limit=0) tbbox = new_ref_transform.tform(bbox) bstr = 'new transform corners:\n' for i in range((bbox.shape[0] - 1)): bstr += (' (%0.1f, %0.1f) -> (%0.1f, %0.1f)\n' % (bbox[(i, 0)], bbox[(i, 1)], tbbox[(i, 0)], tbbox[(i, 1)])) logger.info(bstr) new_tilespecs = new_specs_with_tf(new_ref_transform, tilespecs, transforms) stage_affine = estimate_stage_affine(tilespecs, new_tilespecs) sastr = (((('affine estimate of tile translations:\n' + ' scale: {}\n'.format(stage_affine.scale)) + ' translation: {}\n'.format(stage_affine.translation)) + ' shear: {}\n'.format(stage_affine.shear)) + ' rotation: {}\n'.format(np.degrees(stage_affine.rotation))) logger.info(sastr) resolved = renderapi.resolvedtiles.ResolvedTiles(tilespecs=new_tilespecs, transformList=[new_ref_transform]) return (resolved, new_ref_transform, jresult)<|docstring|>generate lens correction from resolvedtiles and pointmatches Parameters ---------- resolvedtiles : renderapi.resolvedtiles.ResolvedTiles resolvedtiles object on which transformation will be computed matches : list of dict point correspondences to consider in render pointmatch format nvertex : number of vertices in mesh regularization_lambda : float lambda value for affine regularization regularization_translation_factor : float translation factor of regularization regularization_lens_lambda : float lambda value for lens regularization good_solve_dict : dictionary to define when a solve fails logger : logging.Logger logger to use in reporting Returns ------- resolved : renderapi.resolvedtiles.ResolvedTiles new resolvedtiles object with derived lens correction applied new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform derived lens correction transform jresult : dict dictionary of solve information<|endoftext|>
bcdac2e334b94440749a2980ddb86492bc73f85c59f722d3ec6497b3cdcaa71c
def solve_resolvedtiles_from_args(self): 'use arguments to run lens correction\n\n Returns\n -------\n resolved : renderapi.resolvedtiles.ResolvedTiles\n new resolvedtiles object with derived lens correction applied\n new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform\n derived lens correction transform\n jresult : dict\n dictionary of solve information\n ' if ('tilespecs' in self.args): jspecs = self.args['tilespecs'] else: jspecs = jsongz.load(self.args['tilespec_file']) self.tilespecs = np.array([renderapi.tilespec.TileSpec(json=j) for j in jspecs]) if ('matches' in self.args): self.matches = self.args['matches'] else: self.matches = jsongz.load(self.args['match_file']) return _solve_resolvedtiles(renderapi.resolvedtiles.ResolvedTiles(tilespecs=self.tilespecs, transformList=[]), self.matches, self.args['nvertex'], self.args['regularization']['default_lambda'], self.args['regularization']['translation_factor'], self.args['regularization']['lens_lambda'], self.args['good_solve'], logger=self.logger)
use arguments to run lens correction Returns ------- resolved : renderapi.resolvedtiles.ResolvedTiles new resolvedtiles object with derived lens correction applied new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform derived lens correction transform jresult : dict dictionary of solve information
em_stitch/lens_correction/mesh_and_solve_transform.py
solve_resolvedtiles_from_args
AllenInstitute/em_stitch
2
python
def solve_resolvedtiles_from_args(self): 'use arguments to run lens correction\n\n Returns\n -------\n resolved : renderapi.resolvedtiles.ResolvedTiles\n new resolvedtiles object with derived lens correction applied\n new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform\n derived lens correction transform\n jresult : dict\n dictionary of solve information\n ' if ('tilespecs' in self.args): jspecs = self.args['tilespecs'] else: jspecs = jsongz.load(self.args['tilespec_file']) self.tilespecs = np.array([renderapi.tilespec.TileSpec(json=j) for j in jspecs]) if ('matches' in self.args): self.matches = self.args['matches'] else: self.matches = jsongz.load(self.args['match_file']) return _solve_resolvedtiles(renderapi.resolvedtiles.ResolvedTiles(tilespecs=self.tilespecs, transformList=[]), self.matches, self.args['nvertex'], self.args['regularization']['default_lambda'], self.args['regularization']['translation_factor'], self.args['regularization']['lens_lambda'], self.args['good_solve'], logger=self.logger)
def solve_resolvedtiles_from_args(self): 'use arguments to run lens correction\n\n Returns\n -------\n resolved : renderapi.resolvedtiles.ResolvedTiles\n new resolvedtiles object with derived lens correction applied\n new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform\n derived lens correction transform\n jresult : dict\n dictionary of solve information\n ' if ('tilespecs' in self.args): jspecs = self.args['tilespecs'] else: jspecs = jsongz.load(self.args['tilespec_file']) self.tilespecs = np.array([renderapi.tilespec.TileSpec(json=j) for j in jspecs]) if ('matches' in self.args): self.matches = self.args['matches'] else: self.matches = jsongz.load(self.args['match_file']) return _solve_resolvedtiles(renderapi.resolvedtiles.ResolvedTiles(tilespecs=self.tilespecs, transformList=[]), self.matches, self.args['nvertex'], self.args['regularization']['default_lambda'], self.args['regularization']['translation_factor'], self.args['regularization']['lens_lambda'], self.args['good_solve'], logger=self.logger)<|docstring|>use arguments to run lens correction Returns ------- resolved : renderapi.resolvedtiles.ResolvedTiles new resolvedtiles object with derived lens correction applied new_ref_transform : renderapi.transform.leaf.ThinPlateSplineTransform derived lens correction transform jresult : dict dictionary of solve information<|endoftext|>
ec7177b489cf300df91b85888be97a8e248b03b76414f5ede1b23ab92e682687
def colorWipe(self, R, G, B): 'Wipe color across display a pixel at a time.' color = Color(R, G, B) for i in range(self.strip.numPixels()): self.strip.setPixelColor(i, color) self.strip.show()
Wipe color across display a pixel at a time.
server/LEDapp.py
colorWipe
ggoupy/Adeept_RaspTank
2
python
def colorWipe(self, R, G, B): color = Color(R, G, B) for i in range(self.strip.numPixels()): self.strip.setPixelColor(i, color) self.strip.show()
def colorWipe(self, R, G, B): color = Color(R, G, B) for i in range(self.strip.numPixels()): self.strip.setPixelColor(i, color) self.strip.show()<|docstring|>Wipe color across display a pixel at a time.<|endoftext|>
6955dec1a1d2ccc348eceba460c235a39d88f3637dbcf5bdf6c7b3d904ca5b46
def generate_args2cmd(self, args, shell): '\n 转换请求参数为命令行\n :param args:\n :param shell:\n :return:\n ' if shell: cmd_args = (self.path if self.path else '') for (name, value) in args.items(): cmd_args += f' -{name} {shlex.quote(str(value))}' else: cmd_args = [self.path] for (name, value) in args.items(): cmd_args.append(f'-{name}') cmd_args.append(f'{value}') return cmd_args
转换请求参数为命令行 :param args: :param shell: :return:
sql/plugins/sqladvisor.py
generate_args2cmd
sosofun123/Archery
3,458
python
def generate_args2cmd(self, args, shell): '\n 转换请求参数为命令行\n :param args:\n :param shell:\n :return:\n ' if shell: cmd_args = (self.path if self.path else ) for (name, value) in args.items(): cmd_args += f' -{name} {shlex.quote(str(value))}' else: cmd_args = [self.path] for (name, value) in args.items(): cmd_args.append(f'-{name}') cmd_args.append(f'{value}') return cmd_args
def generate_args2cmd(self, args, shell): '\n 转换请求参数为命令行\n :param args:\n :param shell:\n :return:\n ' if shell: cmd_args = (self.path if self.path else ) for (name, value) in args.items(): cmd_args += f' -{name} {shlex.quote(str(value))}' else: cmd_args = [self.path] for (name, value) in args.items(): cmd_args.append(f'-{name}') cmd_args.append(f'{value}') return cmd_args<|docstring|>转换请求参数为命令行 :param args: :param shell: :return:<|endoftext|>
18062f8f6efb2665b834e63c4ba451207149f6ad4aefe16cbbe185f4ed547de1
def main(argv=sys.argv): 'Main method called by the aip.' try: utils.vip_main(historian) except Exception as e: print(e) _log.exception('unhandled exception')
Main method called by the aip.
services/core/ForwardHistorian/forwarder/agent.py
main
ashrafulhaque99/BEMOSS3.5
73
python
def main(argv=sys.argv): try: utils.vip_main(historian) except Exception as e: print(e) _log.exception('unhandled exception')
def main(argv=sys.argv): try: utils.vip_main(historian) except Exception as e: print(e) _log.exception('unhandled exception')<|docstring|>Main method called by the aip.<|endoftext|>
2fc836bce2d493d2c9e3ddf0d36ee190c6b9c8d8c91358314fe3ffadcb5af942
@Core.receiver('onstart') def starting_base(self, sender, **kwargs): '\n Subscribes to the platform message bus on the actuator, record,\n datalogger, and device topics to capture data.\n ' def subscriber(subscription, callback_method): _log.debug('subscribing to {}'.format(subscription)) self.vip.pubsub.subscribe(peer='pubsub', prefix=subscription, callback=callback_method) _log.debug('Starting Forward historian') for topic_subscriptions in services_topic_list: subscriber(topic_subscriptions, self.capture_data) for custom_topic in custom_topic_list: subscriber(custom_topic, self.capture_data) self._started = True
Subscribes to the platform message bus on the actuator, record, datalogger, and device topics to capture data.
services/core/ForwardHistorian/forwarder/agent.py
starting_base
ashrafulhaque99/BEMOSS3.5
73
python
@Core.receiver('onstart') def starting_base(self, sender, **kwargs): '\n Subscribes to the platform message bus on the actuator, record,\n datalogger, and device topics to capture data.\n ' def subscriber(subscription, callback_method): _log.debug('subscribing to {}'.format(subscription)) self.vip.pubsub.subscribe(peer='pubsub', prefix=subscription, callback=callback_method) _log.debug('Starting Forward historian') for topic_subscriptions in services_topic_list: subscriber(topic_subscriptions, self.capture_data) for custom_topic in custom_topic_list: subscriber(custom_topic, self.capture_data) self._started = True
@Core.receiver('onstart') def starting_base(self, sender, **kwargs): '\n Subscribes to the platform message bus on the actuator, record,\n datalogger, and device topics to capture data.\n ' def subscriber(subscription, callback_method): _log.debug('subscribing to {}'.format(subscription)) self.vip.pubsub.subscribe(peer='pubsub', prefix=subscription, callback=callback_method) _log.debug('Starting Forward historian') for topic_subscriptions in services_topic_list: subscriber(topic_subscriptions, self.capture_data) for custom_topic in custom_topic_list: subscriber(custom_topic, self.capture_data) self._started = True<|docstring|>Subscribes to the platform message bus on the actuator, record, datalogger, and device topics to capture data.<|endoftext|>
fc090acc53b060a2963d3cac7e09d588d273e07ea80e196c3e16a8fb1e3bcff5
@click.command(name='set-active', context_settings=CONTEXT_SETTINGS) @add_options(OPTIONS) @click.pass_context def cmd(ctx, url, key, secret, adapter_node, adapter_name, cnx_id, active, save_and_fetch, **kwargs): 'Activate/deactivate a connection.' client = ctx.obj.start_client(url=url, key=key, secret=secret) with ctx.obj.exc_wrap(wraperror=ctx.obj.wraperror): try: cnx = client.adapters.cnx.get_by_id(adapter_name=adapter_name, adapter_node=adapter_node, cnx_id=cnx_id) cnx_new = client.adapters.cnx.set_cnx_active(cnx=cnx, value=active, save_and_fetch=save_and_fetch) ctx.obj.echo_ok(msg='Connection updated successfully!') except CnxUpdateError as exc: ctx.obj.echo_error(msg=f'{exc}', abort=False) cnx_new = exc.cnx_new handle_export(ctx=ctx, rows=cnx_new, **kwargs)
Activate/deactivate a connection.
axonius_api_client/cli/grp_adapters/grp_cnx/cmd_set_active.py
cmd
kf-careem/axonius_api_client
11
python
@click.command(name='set-active', context_settings=CONTEXT_SETTINGS) @add_options(OPTIONS) @click.pass_context def cmd(ctx, url, key, secret, adapter_node, adapter_name, cnx_id, active, save_and_fetch, **kwargs): client = ctx.obj.start_client(url=url, key=key, secret=secret) with ctx.obj.exc_wrap(wraperror=ctx.obj.wraperror): try: cnx = client.adapters.cnx.get_by_id(adapter_name=adapter_name, adapter_node=adapter_node, cnx_id=cnx_id) cnx_new = client.adapters.cnx.set_cnx_active(cnx=cnx, value=active, save_and_fetch=save_and_fetch) ctx.obj.echo_ok(msg='Connection updated successfully!') except CnxUpdateError as exc: ctx.obj.echo_error(msg=f'{exc}', abort=False) cnx_new = exc.cnx_new handle_export(ctx=ctx, rows=cnx_new, **kwargs)
@click.command(name='set-active', context_settings=CONTEXT_SETTINGS) @add_options(OPTIONS) @click.pass_context def cmd(ctx, url, key, secret, adapter_node, adapter_name, cnx_id, active, save_and_fetch, **kwargs): client = ctx.obj.start_client(url=url, key=key, secret=secret) with ctx.obj.exc_wrap(wraperror=ctx.obj.wraperror): try: cnx = client.adapters.cnx.get_by_id(adapter_name=adapter_name, adapter_node=adapter_node, cnx_id=cnx_id) cnx_new = client.adapters.cnx.set_cnx_active(cnx=cnx, value=active, save_and_fetch=save_and_fetch) ctx.obj.echo_ok(msg='Connection updated successfully!') except CnxUpdateError as exc: ctx.obj.echo_error(msg=f'{exc}', abort=False) cnx_new = exc.cnx_new handle_export(ctx=ctx, rows=cnx_new, **kwargs)<|docstring|>Activate/deactivate a connection.<|endoftext|>
5a5d070c206483008f365f76cb5300b7a14f2db1be89a20bb2a1e813c2279dc1
def exchangeRefAlt(vcfLine): 'Exchange ref/alt representation of a vcf line\n Ref <---> alt\n ' ss = vcfLine (ss[3], ss[4]) = (ss[4], ss[3]) for i in range(seqStart, len(ss)): ns = list(ss[i]) ns[0] = convertMap[ns[0]] ns[2] = convertMap[ns[2]] ss[i] = ''.join(ns) return ss
Exchange ref/alt representation of a vcf line Ref <---> alt
GWAS/CorrectRef4VCF/CorrectRef4VCF.py
exchangeRefAlt
wavefancy/BIDMC-PYTHON
0
python
def exchangeRefAlt(vcfLine): 'Exchange ref/alt representation of a vcf line\n Ref <---> alt\n ' ss = vcfLine (ss[3], ss[4]) = (ss[4], ss[3]) for i in range(seqStart, len(ss)): ns = list(ss[i]) ns[0] = convertMap[ns[0]] ns[2] = convertMap[ns[2]] ss[i] = .join(ns) return ss
def exchangeRefAlt(vcfLine): 'Exchange ref/alt representation of a vcf line\n Ref <---> alt\n ' ss = vcfLine (ss[3], ss[4]) = (ss[4], ss[3]) for i in range(seqStart, len(ss)): ns = list(ss[i]) ns[0] = convertMap[ns[0]] ns[2] = convertMap[ns[2]] ss[i] = .join(ns) return ss<|docstring|>Exchange ref/alt representation of a vcf line Ref <---> alt<|endoftext|>
db8682f0d1e48dcfcae3f28f82fe77aff3679f1e072972d3df24c17198ca312e
def getOutputArray(vcfLine, refAllele): 'Check consistency of a vcf line, exchange ref/alt if necessary.\n return corrected vcfLine, [] if exchange also failed.\n ' out = [] ref = vcfLine[3].upper() alt = vcfLine[4].upper() if (ref_a == ref): out = vcfLine elif (ref_a == alt): out = exchangeRefAlt(vcfLine) else: out = [] return out
Check consistency of a vcf line, exchange ref/alt if necessary. return corrected vcfLine, [] if exchange also failed.
GWAS/CorrectRef4VCF/CorrectRef4VCF.py
getOutputArray
wavefancy/BIDMC-PYTHON
0
python
def getOutputArray(vcfLine, refAllele): 'Check consistency of a vcf line, exchange ref/alt if necessary.\n return corrected vcfLine, [] if exchange also failed.\n ' out = [] ref = vcfLine[3].upper() alt = vcfLine[4].upper() if (ref_a == ref): out = vcfLine elif (ref_a == alt): out = exchangeRefAlt(vcfLine) else: out = [] return out
def getOutputArray(vcfLine, refAllele): 'Check consistency of a vcf line, exchange ref/alt if necessary.\n return corrected vcfLine, [] if exchange also failed.\n ' out = [] ref = vcfLine[3].upper() alt = vcfLine[4].upper() if (ref_a == ref): out = vcfLine elif (ref_a == alt): out = exchangeRefAlt(vcfLine) else: out = [] return out<|docstring|>Check consistency of a vcf line, exchange ref/alt if necessary. return corrected vcfLine, [] if exchange also failed.<|endoftext|>
ba95ff4eaf7927022abbdb106ccacfb04d92ddbc229947c62c8f21b078d3ed3e
def get_label(self, name): '\n\t\tReturns a label JSON-encoded object\n\t\t' labels = self.api.get_labels() for label in labels: if (label.name == name): return label return None
Returns a label JSON-encoded object
lib/ics2doist.py
get_label
jamesbrond/ics2doist
0
python
def get_label(self, name): '\n\t\t\n\t\t' labels = self.api.get_labels() for label in labels: if (label.name == name): return label return None
def get_label(self, name): '\n\t\t\n\t\t' labels = self.api.get_labels() for label in labels: if (label.name == name): return label return None<|docstring|>Returns a label JSON-encoded object<|endoftext|>
6220712118f5d8109093449d64be839be106f0bcdea6a86291feb7c1cd2685b0
def label_ids(self, label_name): "\n\t\tGet label id. If label doesn't exitst it will create it\n\t\t" l = None if label_name: l = self.get_label(label_name) if (l is None): logging.debug(f'create new label {label_name}') l = self.api.add_label({'name': label_name}) if (l != None): l = [l.id] return l
Get label id. If label doesn't exitst it will create it
lib/ics2doist.py
label_ids
jamesbrond/ics2doist
0
python
def label_ids(self, label_name): "\n\t\t\n\t\t" l = None if label_name: l = self.get_label(label_name) if (l is None): logging.debug(f'create new label {label_name}') l = self.api.add_label({'name': label_name}) if (l != None): l = [l.id] return l
def label_ids(self, label_name): "\n\t\t\n\t\t" l = None if label_name: l = self.get_label(label_name) if (l is None): logging.debug(f'create new label {label_name}') l = self.api.add_label({'name': label_name}) if (l != None): l = [l.id] return l<|docstring|>Get label id. If label doesn't exitst it will create it<|endoftext|>
71a531a51ac772c7d8547c2f5cea9cc78c896fa4ec07ec8fb12cffc0a1f00329
def javascript_confirm(url, js_msg, abort_on, *, escape_msg=True): 'Display a javascript confirm prompt.' log.js.debug('confirm: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = 'From <b>{}</b>:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) ans = message.ask('Javascript confirm', msg, mode=usertypes.PromptMode.yesno, abort_on=abort_on, url=urlstr) return bool(ans)
Display a javascript confirm prompt.
luminos/browser/Shared.py
javascript_confirm
linuxaddict89/luminos
0
python
def javascript_confirm(url, js_msg, abort_on, *, escape_msg=True): log.js.debug('confirm: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = 'From <b>{}</b>:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) ans = message.ask('Javascript confirm', msg, mode=usertypes.PromptMode.yesno, abort_on=abort_on, url=urlstr) return bool(ans)
def javascript_confirm(url, js_msg, abort_on, *, escape_msg=True): log.js.debug('confirm: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = 'From <b>{}</b>:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) ans = message.ask('Javascript confirm', msg, mode=usertypes.PromptMode.yesno, abort_on=abort_on, url=urlstr) return bool(ans)<|docstring|>Display a javascript confirm prompt.<|endoftext|>
59b77ee7d39d0c0726fa2813b07f013b5470cb3c5a2646a2b01336207d874df4
def javascript_prompt(url, js_msg, default, abort_on, *, escape_msg=True): 'Display a javascript prompt.' log.js.debug('prompt: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = '<b>{}</b> asks:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) answer = message.ask('Javascript prompt', msg, mode=usertypes.PromptMode.text, default=default, abort_on=abort_on, url=urlstr) if (answer is None): return (False, '') else: return (True, answer)
Display a javascript prompt.
luminos/browser/Shared.py
javascript_prompt
linuxaddict89/luminos
0
python
def javascript_prompt(url, js_msg, default, abort_on, *, escape_msg=True): log.js.debug('prompt: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = '<b>{}</b> asks:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) answer = message.ask('Javascript prompt', msg, mode=usertypes.PromptMode.text, default=default, abort_on=abort_on, url=urlstr) if (answer is None): return (False, ) else: return (True, answer)
def javascript_prompt(url, js_msg, default, abort_on, *, escape_msg=True): log.js.debug('prompt: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = '<b>{}</b> asks:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) answer = message.ask('Javascript prompt', msg, mode=usertypes.PromptMode.text, default=default, abort_on=abort_on, url=urlstr) if (answer is None): return (False, ) else: return (True, answer)<|docstring|>Display a javascript prompt.<|endoftext|>
bf1a19c77458501d312efe0856ed6f5baef31895e6a918315c94705e56d24112
def javascript_alert(url, js_msg, abort_on, *, escape_msg=True): 'Display a javascript alert.' log.js.debug('alert: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = 'From <b>{}</b>:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) message.ask('Javascript alert', msg, mode=usertypes.PromptMode.alert, abort_on=abort_on, url=urlstr)
Display a javascript alert.
luminos/browser/Shared.py
javascript_alert
linuxaddict89/luminos
0
python
def javascript_alert(url, js_msg, abort_on, *, escape_msg=True): log.js.debug('alert: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = 'From <b>{}</b>:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) message.ask('Javascript alert', msg, mode=usertypes.PromptMode.alert, abort_on=abort_on, url=urlstr)
def javascript_alert(url, js_msg, abort_on, *, escape_msg=True): log.js.debug('alert: {}'.format(js_msg)) js_msg = (html.escape(js_msg) if escape_msg else js_msg) msg = 'From <b>{}</b>:<br/>{}'.format(html.escape(url.toDisplayString()), js_msg) urlstr = url.toString((QUrl.RemovePassword | QUrl.FullyEncoded)) message.ask('Javascript alert', msg, mode=usertypes.PromptMode.alert, abort_on=abort_on, url=urlstr)<|docstring|>Display a javascript alert.<|endoftext|>
d99336a87df5e544c8c6f58984b40c7af0527d7ea1a7b8a7dae9d0cc662d50f9
def javascript_log_message(level, source, line, msg): 'Display a JavaScript log message.' logstring = '[{}:{}] {}'.format(source, line, msg) logger = None if (level == usertypes.JsLogLevel.info): logger = log.js.info if (level == usertypes.JsLogLevel.warning): logger = log.js.warning if (level == usertypes.JsLogLevel.error): logger = log.js.error logger(logstring)
Display a JavaScript log message.
luminos/browser/Shared.py
javascript_log_message
linuxaddict89/luminos
0
python
def javascript_log_message(level, source, line, msg): logstring = '[{}:{}] {}'.format(source, line, msg) logger = None if (level == usertypes.JsLogLevel.info): logger = log.js.info if (level == usertypes.JsLogLevel.warning): logger = log.js.warning if (level == usertypes.JsLogLevel.error): logger = log.js.error logger(logstring)
def javascript_log_message(level, source, line, msg): logstring = '[{}:{}] {}'.format(source, line, msg) logger = None if (level == usertypes.JsLogLevel.info): logger = log.js.info if (level == usertypes.JsLogLevel.warning): logger = log.js.warning if (level == usertypes.JsLogLevel.error): logger = log.js.error logger(logstring)<|docstring|>Display a JavaScript log message.<|endoftext|>
cdd75aac2fb251eae0e248f2409eaf9025dd3127d8aeb299467a3ae383ecb069
def default_units(self, kwargs): '\n Return the unit value and the default units specified\n from the given keyword arguments dictionary.\n ' aliases = self.get_aliases() laliases = self.get_lowercase_aliases() units = self.get_units() val = 0.0 default_unit = self.STANDARD_UNIT for (unit, value) in kwargs.items(): if (unit in units): val = self._convert_value_from(units[unit], value) default_unit = unit elif (unit in aliases): u = aliases[unit] val = self._convert_value_from(units[u], value) default_unit = u else: lower = unit.lower() if (lower in units): val = self._convert_value_from(units[lower], value) default_unit = lower elif (lower in laliases): u = laliases[lower] val = self._convert_value_from(units[u], value) default_unit = u else: raise AttributeError(('Unknown unit type: %s' % unit)) return (val, default_unit)
Return the unit value and the default units specified from the given keyword arguments dictionary.
env/Lib/site-packages/measurement/base.py
default_units
UtkarshR8j/Jeeva-server
2
python
def default_units(self, kwargs): '\n Return the unit value and the default units specified\n from the given keyword arguments dictionary.\n ' aliases = self.get_aliases() laliases = self.get_lowercase_aliases() units = self.get_units() val = 0.0 default_unit = self.STANDARD_UNIT for (unit, value) in kwargs.items(): if (unit in units): val = self._convert_value_from(units[unit], value) default_unit = unit elif (unit in aliases): u = aliases[unit] val = self._convert_value_from(units[u], value) default_unit = u else: lower = unit.lower() if (lower in units): val = self._convert_value_from(units[lower], value) default_unit = lower elif (lower in laliases): u = laliases[lower] val = self._convert_value_from(units[u], value) default_unit = u else: raise AttributeError(('Unknown unit type: %s' % unit)) return (val, default_unit)
def default_units(self, kwargs): '\n Return the unit value and the default units specified\n from the given keyword arguments dictionary.\n ' aliases = self.get_aliases() laliases = self.get_lowercase_aliases() units = self.get_units() val = 0.0 default_unit = self.STANDARD_UNIT for (unit, value) in kwargs.items(): if (unit in units): val = self._convert_value_from(units[unit], value) default_unit = unit elif (unit in aliases): u = aliases[unit] val = self._convert_value_from(units[u], value) default_unit = u else: lower = unit.lower() if (lower in units): val = self._convert_value_from(units[lower], value) default_unit = lower elif (lower in laliases): u = laliases[lower] val = self._convert_value_from(units[u], value) default_unit = u else: raise AttributeError(('Unknown unit type: %s' % unit)) return (val, default_unit)<|docstring|>Return the unit value and the default units specified from the given keyword arguments dictionary.<|endoftext|>
864117164ff6e38e6c5a69f3c2833476d10088b5640a46b5713152db6db15716
@classmethod def unit_attname(cls, unit_str): "\n Retrieves the unit attribute name for the given unit string.\n For example, if the given unit string is 'metre', 'm' would be returned.\n An exception is raised if an attribute cannot be found.\n " laliases = cls.get_lowercase_aliases() units = cls.get_units() lower = unit_str.lower() if (unit_str in units): return unit_str elif (lower in units): return lower elif (lower in laliases): return laliases[lower] else: raise Exception(('Could not find a unit keyword associated with "%s"' % (unit_str,)))
Retrieves the unit attribute name for the given unit string. For example, if the given unit string is 'metre', 'm' would be returned. An exception is raised if an attribute cannot be found.
env/Lib/site-packages/measurement/base.py
unit_attname
UtkarshR8j/Jeeva-server
2
python
@classmethod def unit_attname(cls, unit_str): "\n Retrieves the unit attribute name for the given unit string.\n For example, if the given unit string is 'metre', 'm' would be returned.\n An exception is raised if an attribute cannot be found.\n " laliases = cls.get_lowercase_aliases() units = cls.get_units() lower = unit_str.lower() if (unit_str in units): return unit_str elif (lower in units): return lower elif (lower in laliases): return laliases[lower] else: raise Exception(('Could not find a unit keyword associated with "%s"' % (unit_str,)))
@classmethod def unit_attname(cls, unit_str): "\n Retrieves the unit attribute name for the given unit string.\n For example, if the given unit string is 'metre', 'm' would be returned.\n An exception is raised if an attribute cannot be found.\n " laliases = cls.get_lowercase_aliases() units = cls.get_units() lower = unit_str.lower() if (unit_str in units): return unit_str elif (lower in units): return lower elif (lower in laliases): return laliases[lower] else: raise Exception(('Could not find a unit keyword associated with "%s"' % (unit_str,)))<|docstring|>Retrieves the unit attribute name for the given unit string. For example, if the given unit string is 'metre', 'm' would be returned. An exception is raised if an attribute cannot be found.<|endoftext|>
aa433758909c43fc57f62a23fda8d2568bf0267adb11310bb05039595136d1fa
def get_l2_fn(target_nt_names, target_opname, arg_nts, arg_name, empty_seq_name, is_const): "Generate L2 function name from IMM NT names list and EOSZ NT names list.\n\n Each L2 function is defined by a single PATTERN row in xed's grammar.\n (By pattern's IMM-binding and EOSZ-binding NTs)\n Hence, it is enough to know the IMM NTs sequence and EOSZ NTs sequence to\n define a L2 function. Or in this case to define a L2 function name.\n\n ATTENTION: as we decided to hardcode special AMD's double immediate\n instruction's L1 functions, the length of imm_nt_names can be ONLY 1\n\n @param imm_nt_names: list of IMM-binding NT names\n @param eosz_nt_names: list of EOSZ-binding NT names\n\n @return: L2 function name\n\n " if (len(target_nt_names) == 0): return empty_seq_name if (len(target_nt_names) > 1): ildutil.ild_err(('Cannot generate L2 function name for NT seq %s' % target_nt_names)) if is_const: arg_suffix = _arg_const_suffix else: arg_suffix = '_'.join((arg_nts + [arg_name])) l3_prefix = ild_nt.get_lufn(target_nt_names, target_opname) return (l3_prefix + ('_%s_l2' % arg_suffix))
Generate L2 function name from IMM NT names list and EOSZ NT names list. Each L2 function is defined by a single PATTERN row in xed's grammar. (By pattern's IMM-binding and EOSZ-binding NTs) Hence, it is enough to know the IMM NTs sequence and EOSZ NTs sequence to define a L2 function. Or in this case to define a L2 function name. ATTENTION: as we decided to hardcode special AMD's double immediate instruction's L1 functions, the length of imm_nt_names can be ONLY 1 @param imm_nt_names: list of IMM-binding NT names @param eosz_nt_names: list of EOSZ-binding NT names @return: L2 function name
pysrc/ild_codegen.py
get_l2_fn
javiereguiluz/xed
1,261
python
def get_l2_fn(target_nt_names, target_opname, arg_nts, arg_name, empty_seq_name, is_const): "Generate L2 function name from IMM NT names list and EOSZ NT names list.\n\n Each L2 function is defined by a single PATTERN row in xed's grammar.\n (By pattern's IMM-binding and EOSZ-binding NTs)\n Hence, it is enough to know the IMM NTs sequence and EOSZ NTs sequence to\n define a L2 function. Or in this case to define a L2 function name.\n\n ATTENTION: as we decided to hardcode special AMD's double immediate\n instruction's L1 functions, the length of imm_nt_names can be ONLY 1\n\n @param imm_nt_names: list of IMM-binding NT names\n @param eosz_nt_names: list of EOSZ-binding NT names\n\n @return: L2 function name\n\n " if (len(target_nt_names) == 0): return empty_seq_name if (len(target_nt_names) > 1): ildutil.ild_err(('Cannot generate L2 function name for NT seq %s' % target_nt_names)) if is_const: arg_suffix = _arg_const_suffix else: arg_suffix = '_'.join((arg_nts + [arg_name])) l3_prefix = ild_nt.get_lufn(target_nt_names, target_opname) return (l3_prefix + ('_%s_l2' % arg_suffix))
def get_l2_fn(target_nt_names, target_opname, arg_nts, arg_name, empty_seq_name, is_const): "Generate L2 function name from IMM NT names list and EOSZ NT names list.\n\n Each L2 function is defined by a single PATTERN row in xed's grammar.\n (By pattern's IMM-binding and EOSZ-binding NTs)\n Hence, it is enough to know the IMM NTs sequence and EOSZ NTs sequence to\n define a L2 function. Or in this case to define a L2 function name.\n\n ATTENTION: as we decided to hardcode special AMD's double immediate\n instruction's L1 functions, the length of imm_nt_names can be ONLY 1\n\n @param imm_nt_names: list of IMM-binding NT names\n @param eosz_nt_names: list of EOSZ-binding NT names\n\n @return: L2 function name\n\n " if (len(target_nt_names) == 0): return empty_seq_name if (len(target_nt_names) > 1): ildutil.ild_err(('Cannot generate L2 function name for NT seq %s' % target_nt_names)) if is_const: arg_suffix = _arg_const_suffix else: arg_suffix = '_'.join((arg_nts + [arg_name])) l3_prefix = ild_nt.get_lufn(target_nt_names, target_opname) return (l3_prefix + ('_%s_l2' % arg_suffix))<|docstring|>Generate L2 function name from IMM NT names list and EOSZ NT names list. Each L2 function is defined by a single PATTERN row in xed's grammar. (By pattern's IMM-binding and EOSZ-binding NTs) Hence, it is enough to know the IMM NTs sequence and EOSZ NTs sequence to define a L2 function. Or in this case to define a L2 function name. ATTENTION: as we decided to hardcode special AMD's double immediate instruction's L1 functions, the length of imm_nt_names can be ONLY 1 @param imm_nt_names: list of IMM-binding NT names @param eosz_nt_names: list of EOSZ-binding NT names @return: L2 function name<|endoftext|>
fa9c2170abbe98f6fb700fbfeeea41f9819c17346baa15c588f900f4de58ac30
def gen_l2_func_list(agi, target_nt_dict, arg_nt_dict, ild_t_member): 'generate L2 functions' l2_func_list = [] for (nt_name, array) in sorted(target_nt_dict.items()): target_opname = array.get_target_opname() if array.is_const_lookup_fun(): fo = gen_const_l2_function(agi, nt_name, target_opname, ild_t_member) l2_func_list.append(fo) else: for (arg_nt_seq, arg_arr) in sorted(arg_nt_dict.items()): fo = gen_scalable_l2_function(agi, nt_name, target_opname, ild_t_member, arg_arr, list(arg_nt_seq)) l2_func_list.append(fo) return l2_func_list
generate L2 functions
pysrc/ild_codegen.py
gen_l2_func_list
javiereguiluz/xed
1,261
python
def gen_l2_func_list(agi, target_nt_dict, arg_nt_dict, ild_t_member): l2_func_list = [] for (nt_name, array) in sorted(target_nt_dict.items()): target_opname = array.get_target_opname() if array.is_const_lookup_fun(): fo = gen_const_l2_function(agi, nt_name, target_opname, ild_t_member) l2_func_list.append(fo) else: for (arg_nt_seq, arg_arr) in sorted(arg_nt_dict.items()): fo = gen_scalable_l2_function(agi, nt_name, target_opname, ild_t_member, arg_arr, list(arg_nt_seq)) l2_func_list.append(fo) return l2_func_list
def gen_l2_func_list(agi, target_nt_dict, arg_nt_dict, ild_t_member): l2_func_list = [] for (nt_name, array) in sorted(target_nt_dict.items()): target_opname = array.get_target_opname() if array.is_const_lookup_fun(): fo = gen_const_l2_function(agi, nt_name, target_opname, ild_t_member) l2_func_list.append(fo) else: for (arg_nt_seq, arg_arr) in sorted(arg_nt_dict.items()): fo = gen_scalable_l2_function(agi, nt_name, target_opname, ild_t_member, arg_arr, list(arg_nt_seq)) l2_func_list.append(fo) return l2_func_list<|docstring|>generate L2 functions<|endoftext|>
ef53ebd13ed86f0640abb9628d82e6e98e782d7c148d8f015ae72210a741e6b7
def _test_map_all_zero(vv, phash_map_lu): 'phash_map_lu is a dict[maps][0...255] pointing to a 2nd level\n lookup or it might be None indicating an empty map.' all_zero_map = collections.defaultdict(bool) for xmap in phash_map_lu.keys(): omap = phash_map_lu[xmap] if (omap == None): all_zero_map[xmap] = True mbuild.msgb('ALL ZEROS', 'VV={} MAP={}'.format(vv, xmap)) return all_zero_map
phash_map_lu is a dict[maps][0...255] pointing to a 2nd level lookup or it might be None indicating an empty map.
pysrc/ild_codegen.py
_test_map_all_zero
javiereguiluz/xed
1,261
python
def _test_map_all_zero(vv, phash_map_lu): 'phash_map_lu is a dict[maps][0...255] pointing to a 2nd level\n lookup or it might be None indicating an empty map.' all_zero_map = collections.defaultdict(bool) for xmap in phash_map_lu.keys(): omap = phash_map_lu[xmap] if (omap == None): all_zero_map[xmap] = True mbuild.msgb('ALL ZEROS', 'VV={} MAP={}'.format(vv, xmap)) return all_zero_map
def _test_map_all_zero(vv, phash_map_lu): 'phash_map_lu is a dict[maps][0...255] pointing to a 2nd level\n lookup or it might be None indicating an empty map.' all_zero_map = collections.defaultdict(bool) for xmap in phash_map_lu.keys(): omap = phash_map_lu[xmap] if (omap == None): all_zero_map[xmap] = True mbuild.msgb('ALL ZEROS', 'VV={} MAP={}'.format(vv, xmap)) return all_zero_map<|docstring|>phash_map_lu is a dict[maps][0...255] pointing to a 2nd level lookup or it might be None indicating an empty map.<|endoftext|>
9e28c0efd4e8f861613a6af9072f93c6ae0eca98981482f69cef5d756dd234c8
def gen_static_decode(agi, vv_lu, op_lu_list, h_fn='xed3-phash.h'): 'generate static decoder' phash_headers = ['xed-ild-eosz-getters.h', 'xed-ild-easz-getters.h', 'xed-internal-header.h', 'xed-ild-private.h'] maplu_headers = [] all_zero_by_map = {} for vv in sorted(vv_lu.keys()): (phash_map_lu, lu_fo_list) = vv_lu[vv] all_zero_by_map[vv] = _test_map_all_zero(vv, phash_map_lu) pheader = 'xed3-phash-vv{}.h'.format(vv) dump_flist_2_header(agi, pheader, ['xed3-operand-lu.h'], lu_fo_list) map_lu_cfn = 'xed3-phash-lu-vv{}.c'.format(vv) map_lu_hfn = 'xed3-phash-lu-vv{}.h'.format(vv) maplu_headers.append(map_lu_hfn) name_pfx = 'xed3_phash_vv{}'.format(vv) elem_type = 'xed3_find_func_t' dump_lookup(agi, phash_map_lu, name_pfx, map_lu_cfn, [pheader], elem_type, output_dir=None, all_zero_by_map=all_zero_by_map[vv]) h_file = agi.open_file(mbuild.join('include-private', map_lu_hfn), start=False) h_file.start() for insn_map in sorted(phash_map_lu.keys()): arr_name = _get_map_lu_name(name_pfx, insn_map) if all_zero_by_map[vv][insn_map]: pass else: h_file.add_code('extern const {} {}[256];'.format(elem_type, arr_name)) h_file.close() hdr = 'xed3-operand-lu.h' dump_flist_2_header(agi, hdr, phash_headers, op_lu_list, emit_bodies=False) dump_flist_2_header(agi, 'xed3-operand-lu.c', [hdr], op_lu_list, is_private=False, emit_headers=False) h_file = agi.open_file(mbuild.join('include-private', h_fn), start=False) for header in maplu_headers: h_file.add_header(header) h_file.start() maps = ild_info.get_maps(agi) vv_num = [int(x) for x in vv_lu.keys()] vv_max = (max(vv_num) + 1) max_maps = (ild_info.get_maps_max_id(agi) + 1) arr_name = 'xed3_phash_lu' h_file.add_code('#define XED_PHASH_MAP_LIMIT {}'.format(max_maps)) h_file.add_code('const xed3_find_func_t* {}[{}][XED_PHASH_MAP_LIMIT] = {{'.format(arr_name, vv_max)) for vv in range(0, vv_max): maps = ild_info.get_maps_for_space(agi, vv) dmap = {mi.map_id: mi for mi in maps} init_vals = (['0'] * max_maps) for imap in range(0, max_maps): if (imap in dmap): mi = dmap[imap] if all_zero_by_map[str(vv)][mi.map_name]: init_vals[imap] = '0' else: init_vals[imap] = _get_map_lu_name('xed3_phash_vv{}'.format(vv), mi.map_name) h_file.add_code('{{ {} }},'.format(', '.join(init_vals))) h_file.add_code('};') h_file.close()
generate static decoder
pysrc/ild_codegen.py
gen_static_decode
javiereguiluz/xed
1,261
python
def gen_static_decode(agi, vv_lu, op_lu_list, h_fn='xed3-phash.h'): phash_headers = ['xed-ild-eosz-getters.h', 'xed-ild-easz-getters.h', 'xed-internal-header.h', 'xed-ild-private.h'] maplu_headers = [] all_zero_by_map = {} for vv in sorted(vv_lu.keys()): (phash_map_lu, lu_fo_list) = vv_lu[vv] all_zero_by_map[vv] = _test_map_all_zero(vv, phash_map_lu) pheader = 'xed3-phash-vv{}.h'.format(vv) dump_flist_2_header(agi, pheader, ['xed3-operand-lu.h'], lu_fo_list) map_lu_cfn = 'xed3-phash-lu-vv{}.c'.format(vv) map_lu_hfn = 'xed3-phash-lu-vv{}.h'.format(vv) maplu_headers.append(map_lu_hfn) name_pfx = 'xed3_phash_vv{}'.format(vv) elem_type = 'xed3_find_func_t' dump_lookup(agi, phash_map_lu, name_pfx, map_lu_cfn, [pheader], elem_type, output_dir=None, all_zero_by_map=all_zero_by_map[vv]) h_file = agi.open_file(mbuild.join('include-private', map_lu_hfn), start=False) h_file.start() for insn_map in sorted(phash_map_lu.keys()): arr_name = _get_map_lu_name(name_pfx, insn_map) if all_zero_by_map[vv][insn_map]: pass else: h_file.add_code('extern const {} {}[256];'.format(elem_type, arr_name)) h_file.close() hdr = 'xed3-operand-lu.h' dump_flist_2_header(agi, hdr, phash_headers, op_lu_list, emit_bodies=False) dump_flist_2_header(agi, 'xed3-operand-lu.c', [hdr], op_lu_list, is_private=False, emit_headers=False) h_file = agi.open_file(mbuild.join('include-private', h_fn), start=False) for header in maplu_headers: h_file.add_header(header) h_file.start() maps = ild_info.get_maps(agi) vv_num = [int(x) for x in vv_lu.keys()] vv_max = (max(vv_num) + 1) max_maps = (ild_info.get_maps_max_id(agi) + 1) arr_name = 'xed3_phash_lu' h_file.add_code('#define XED_PHASH_MAP_LIMIT {}'.format(max_maps)) h_file.add_code('const xed3_find_func_t* {}[{}][XED_PHASH_MAP_LIMIT] = {{'.format(arr_name, vv_max)) for vv in range(0, vv_max): maps = ild_info.get_maps_for_space(agi, vv) dmap = {mi.map_id: mi for mi in maps} init_vals = (['0'] * max_maps) for imap in range(0, max_maps): if (imap in dmap): mi = dmap[imap] if all_zero_by_map[str(vv)][mi.map_name]: init_vals[imap] = '0' else: init_vals[imap] = _get_map_lu_name('xed3_phash_vv{}'.format(vv), mi.map_name) h_file.add_code('{{ {} }},'.format(', '.join(init_vals))) h_file.add_code('};') h_file.close()
def gen_static_decode(agi, vv_lu, op_lu_list, h_fn='xed3-phash.h'): phash_headers = ['xed-ild-eosz-getters.h', 'xed-ild-easz-getters.h', 'xed-internal-header.h', 'xed-ild-private.h'] maplu_headers = [] all_zero_by_map = {} for vv in sorted(vv_lu.keys()): (phash_map_lu, lu_fo_list) = vv_lu[vv] all_zero_by_map[vv] = _test_map_all_zero(vv, phash_map_lu) pheader = 'xed3-phash-vv{}.h'.format(vv) dump_flist_2_header(agi, pheader, ['xed3-operand-lu.h'], lu_fo_list) map_lu_cfn = 'xed3-phash-lu-vv{}.c'.format(vv) map_lu_hfn = 'xed3-phash-lu-vv{}.h'.format(vv) maplu_headers.append(map_lu_hfn) name_pfx = 'xed3_phash_vv{}'.format(vv) elem_type = 'xed3_find_func_t' dump_lookup(agi, phash_map_lu, name_pfx, map_lu_cfn, [pheader], elem_type, output_dir=None, all_zero_by_map=all_zero_by_map[vv]) h_file = agi.open_file(mbuild.join('include-private', map_lu_hfn), start=False) h_file.start() for insn_map in sorted(phash_map_lu.keys()): arr_name = _get_map_lu_name(name_pfx, insn_map) if all_zero_by_map[vv][insn_map]: pass else: h_file.add_code('extern const {} {}[256];'.format(elem_type, arr_name)) h_file.close() hdr = 'xed3-operand-lu.h' dump_flist_2_header(agi, hdr, phash_headers, op_lu_list, emit_bodies=False) dump_flist_2_header(agi, 'xed3-operand-lu.c', [hdr], op_lu_list, is_private=False, emit_headers=False) h_file = agi.open_file(mbuild.join('include-private', h_fn), start=False) for header in maplu_headers: h_file.add_header(header) h_file.start() maps = ild_info.get_maps(agi) vv_num = [int(x) for x in vv_lu.keys()] vv_max = (max(vv_num) + 1) max_maps = (ild_info.get_maps_max_id(agi) + 1) arr_name = 'xed3_phash_lu' h_file.add_code('#define XED_PHASH_MAP_LIMIT {}'.format(max_maps)) h_file.add_code('const xed3_find_func_t* {}[{}][XED_PHASH_MAP_LIMIT] = {{'.format(arr_name, vv_max)) for vv in range(0, vv_max): maps = ild_info.get_maps_for_space(agi, vv) dmap = {mi.map_id: mi for mi in maps} init_vals = (['0'] * max_maps) for imap in range(0, max_maps): if (imap in dmap): mi = dmap[imap] if all_zero_by_map[str(vv)][mi.map_name]: init_vals[imap] = '0' else: init_vals[imap] = _get_map_lu_name('xed3_phash_vv{}'.format(vv), mi.map_name) h_file.add_code('{{ {} }},'.format(', '.join(init_vals))) h_file.add_code('};') h_file.close()<|docstring|>generate static decoder<|endoftext|>
12b3302868c6e26c0fe498878eed717e7597e9ae3d241f3bc093f7043c54af24
def dump_lookup(agi, l1_lookup, name_pfx, lu_h_fn, headers, lu_elem_type, define_dict=None, all_zero_by_map=None, output_dir='include-private'): "Dump the lookup tables - from opcode value to\n the L1 function pointers (in most cases they are L2 function pointers,\n which doesn't matter, because they have the same signature)\n @param l1_lookup: 2D dict so that\n l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name)\n all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F\n map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set\n to some string indicating that L1 function is undefined.\n\n all_zero_by_map is an optional dict[map] -> {True,False}. If True\n skip emitting the map.\n \n return a dictionary of the array names generated. " if output_dir: ofn = mbuild.join(output_dir, lu_h_fn) else: ofn = lu_h_fn h_file = agi.open_file(ofn, start=False) for header in headers: h_file.add_header(header) h_file.start() if define_dict: print_defines(h_file, define_dict) array_names = _dump_lookup_low(agi, h_file, l1_lookup, name_pfx, lu_elem_type, all_zero_by_map) h_file.close() return array_names
Dump the lookup tables - from opcode value to the L1 function pointers (in most cases they are L2 function pointers, which doesn't matter, because they have the same signature) @param l1_lookup: 2D dict so that l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name) all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set to some string indicating that L1 function is undefined. all_zero_by_map is an optional dict[map] -> {True,False}. If True skip emitting the map. return a dictionary of the array names generated.
pysrc/ild_codegen.py
dump_lookup
javiereguiluz/xed
1,261
python
def dump_lookup(agi, l1_lookup, name_pfx, lu_h_fn, headers, lu_elem_type, define_dict=None, all_zero_by_map=None, output_dir='include-private'): "Dump the lookup tables - from opcode value to\n the L1 function pointers (in most cases they are L2 function pointers,\n which doesn't matter, because they have the same signature)\n @param l1_lookup: 2D dict so that\n l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name)\n all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F\n map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set\n to some string indicating that L1 function is undefined.\n\n all_zero_by_map is an optional dict[map] -> {True,False}. If True\n skip emitting the map.\n \n return a dictionary of the array names generated. " if output_dir: ofn = mbuild.join(output_dir, lu_h_fn) else: ofn = lu_h_fn h_file = agi.open_file(ofn, start=False) for header in headers: h_file.add_header(header) h_file.start() if define_dict: print_defines(h_file, define_dict) array_names = _dump_lookup_low(agi, h_file, l1_lookup, name_pfx, lu_elem_type, all_zero_by_map) h_file.close() return array_names
def dump_lookup(agi, l1_lookup, name_pfx, lu_h_fn, headers, lu_elem_type, define_dict=None, all_zero_by_map=None, output_dir='include-private'): "Dump the lookup tables - from opcode value to\n the L1 function pointers (in most cases they are L2 function pointers,\n which doesn't matter, because they have the same signature)\n @param l1_lookup: 2D dict so that\n l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name)\n all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F\n map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set\n to some string indicating that L1 function is undefined.\n\n all_zero_by_map is an optional dict[map] -> {True,False}. If True\n skip emitting the map.\n \n return a dictionary of the array names generated. " if output_dir: ofn = mbuild.join(output_dir, lu_h_fn) else: ofn = lu_h_fn h_file = agi.open_file(ofn, start=False) for header in headers: h_file.add_header(header) h_file.start() if define_dict: print_defines(h_file, define_dict) array_names = _dump_lookup_low(agi, h_file, l1_lookup, name_pfx, lu_elem_type, all_zero_by_map) h_file.close() return array_names<|docstring|>Dump the lookup tables - from opcode value to the L1 function pointers (in most cases they are L2 function pointers, which doesn't matter, because they have the same signature) @param l1_lookup: 2D dict so that l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name) all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set to some string indicating that L1 function is undefined. all_zero_by_map is an optional dict[map] -> {True,False}. If True skip emitting the map. return a dictionary of the array names generated.<|endoftext|>
22051faca72edfd2eefdc8e562cbedf28858d35a634dc1ca85520720d0b517a2
def _dump_lookup_low(agi, h_file, l1_lookup, name_pfx, lu_elem_type, all_zero_by_map=None): "Dump the lookup tables - from opcode value to\n the L1 function pointers (in most cases they are L2 function pointers,\n which doesn't matter, because they have the same signature)\n @param l1_lookup: 2D dict so that\n l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name)\n all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F\n map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set\n to some string indicating that L1 function is undefined.\n\n all_zero_by_map is an optional dict[map] -> {True,False}. If True\n skip emitting the map.\n \n return a dictionary of the array names generated. " array_names = {} for insn_map in sorted(l1_lookup.keys()): arr_name = _get_map_lu_name(name_pfx, insn_map) if ((all_zero_by_map == None) or (all_zero_by_map[insn_map] == False)): ild_dump_map_array(l1_lookup[insn_map], arr_name, lu_elem_type, h_file) array_names[insn_map] = arr_name return array_names
Dump the lookup tables - from opcode value to the L1 function pointers (in most cases they are L2 function pointers, which doesn't matter, because they have the same signature) @param l1_lookup: 2D dict so that l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name) all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set to some string indicating that L1 function is undefined. all_zero_by_map is an optional dict[map] -> {True,False}. If True skip emitting the map. return a dictionary of the array names generated.
pysrc/ild_codegen.py
_dump_lookup_low
javiereguiluz/xed
1,261
python
def _dump_lookup_low(agi, h_file, l1_lookup, name_pfx, lu_elem_type, all_zero_by_map=None): "Dump the lookup tables - from opcode value to\n the L1 function pointers (in most cases they are L2 function pointers,\n which doesn't matter, because they have the same signature)\n @param l1_lookup: 2D dict so that\n l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name)\n all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F\n map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set\n to some string indicating that L1 function is undefined.\n\n all_zero_by_map is an optional dict[map] -> {True,False}. If True\n skip emitting the map.\n \n return a dictionary of the array names generated. " array_names = {} for insn_map in sorted(l1_lookup.keys()): arr_name = _get_map_lu_name(name_pfx, insn_map) if ((all_zero_by_map == None) or (all_zero_by_map[insn_map] == False)): ild_dump_map_array(l1_lookup[insn_map], arr_name, lu_elem_type, h_file) array_names[insn_map] = arr_name return array_names
def _dump_lookup_low(agi, h_file, l1_lookup, name_pfx, lu_elem_type, all_zero_by_map=None): "Dump the lookup tables - from opcode value to\n the L1 function pointers (in most cases they are L2 function pointers,\n which doesn't matter, because they have the same signature)\n @param l1_lookup: 2D dict so that\n l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name)\n all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F\n map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set\n to some string indicating that L1 function is undefined.\n\n all_zero_by_map is an optional dict[map] -> {True,False}. If True\n skip emitting the map.\n \n return a dictionary of the array names generated. " array_names = {} for insn_map in sorted(l1_lookup.keys()): arr_name = _get_map_lu_name(name_pfx, insn_map) if ((all_zero_by_map == None) or (all_zero_by_map[insn_map] == False)): ild_dump_map_array(l1_lookup[insn_map], arr_name, lu_elem_type, h_file) array_names[insn_map] = arr_name return array_names<|docstring|>Dump the lookup tables - from opcode value to the L1 function pointers (in most cases they are L2 function pointers, which doesn't matter, because they have the same signature) @param l1_lookup: 2D dict so that l1_lookup[string(insn_map)][string(opcode)] == string(L1_function_name) all 0..255 opcode values should be set in the dict, so that if 0x0,0x0F map-opcode is illegal, then l1_lookup['0x0']['0x0F'] should be set to some string indicating that L1 function is undefined. all_zero_by_map is an optional dict[map] -> {True,False}. If True skip emitting the map. return a dictionary of the array names generated.<|endoftext|>
e1642101710286bf3e869408c083e78fcfd776641a07214e46a2b14c9e352863
def _gen_intervals_dict(fun_dict): 'If there are keys that map to the same value, we want to unite\n them to intervals in order to have less conditional branches in\n code. For example if fun_dict is something like: \n {0:f1, 1:f1, 2:f2, 3:f2 , ...} then we will generate dict\n {(0,1):f1, (2,3,4,5,6,7):f2} ' sorted_keys = sorted(fun_dict.keys()) cur_int = [sorted_keys[0]] int_dict = {} for key in sorted_keys[1:]: if (fun_dict[key] == fun_dict[(key - 1)]): cur_int.append(key) else: int_dict[tuple(cur_int)] = fun_dict[(key - 1)] cur_int = [key] int_dict[tuple(cur_int)] = fun_dict[sorted_keys[(- 1)]] return int_dict
If there are keys that map to the same value, we want to unite them to intervals in order to have less conditional branches in code. For example if fun_dict is something like: {0:f1, 1:f1, 2:f2, 3:f2 , ...} then we will generate dict {(0,1):f1, (2,3,4,5,6,7):f2}
pysrc/ild_codegen.py
_gen_intervals_dict
javiereguiluz/xed
1,261
python
def _gen_intervals_dict(fun_dict): 'If there are keys that map to the same value, we want to unite\n them to intervals in order to have less conditional branches in\n code. For example if fun_dict is something like: \n {0:f1, 1:f1, 2:f2, 3:f2 , ...} then we will generate dict\n {(0,1):f1, (2,3,4,5,6,7):f2} ' sorted_keys = sorted(fun_dict.keys()) cur_int = [sorted_keys[0]] int_dict = {} for key in sorted_keys[1:]: if (fun_dict[key] == fun_dict[(key - 1)]): cur_int.append(key) else: int_dict[tuple(cur_int)] = fun_dict[(key - 1)] cur_int = [key] int_dict[tuple(cur_int)] = fun_dict[sorted_keys[(- 1)]] return int_dict
def _gen_intervals_dict(fun_dict): 'If there are keys that map to the same value, we want to unite\n them to intervals in order to have less conditional branches in\n code. For example if fun_dict is something like: \n {0:f1, 1:f1, 2:f2, 3:f2 , ...} then we will generate dict\n {(0,1):f1, (2,3,4,5,6,7):f2} ' sorted_keys = sorted(fun_dict.keys()) cur_int = [sorted_keys[0]] int_dict = {} for key in sorted_keys[1:]: if (fun_dict[key] == fun_dict[(key - 1)]): cur_int.append(key) else: int_dict[tuple(cur_int)] = fun_dict[(key - 1)] cur_int = [key] int_dict[tuple(cur_int)] = fun_dict[sorted_keys[(- 1)]] return int_dict<|docstring|>If there are keys that map to the same value, we want to unite them to intervals in order to have less conditional branches in code. For example if fun_dict is something like: {0:f1, 1:f1, 2:f2, 3:f2 , ...} then we will generate dict {(0,1):f1, (2,3,4,5,6,7):f2}<|endoftext|>
306d593e1211b479a3cee3b7d9206fca36a620fd2cfbfff5d9531638efc8f55d
def _is_special_op(opname): '\n Some operands are "special" - like RM: Sometimes we don\'t have modrm,\n but grammar still likes to use RM operand - in this case it is first\n 3 bits of the opcode.\n In this case we can\'t just use regular RM operand scanned with ILD -\n we must check if MODRM exists and if not take 3 LSB nits from opcode.\n This is what getter should do for RM, that\'s why RM is special.\n REG is probably the same.\n is_special_op(opname) checks if the operand has special getter.\n ' return (opname in _special_ops_dict)
Some operands are "special" - like RM: Sometimes we don't have modrm, but grammar still likes to use RM operand - in this case it is first 3 bits of the opcode. In this case we can't just use regular RM operand scanned with ILD - we must check if MODRM exists and if not take 3 LSB nits from opcode. This is what getter should do for RM, that's why RM is special. REG is probably the same. is_special_op(opname) checks if the operand has special getter.
pysrc/ild_codegen.py
_is_special_op
javiereguiluz/xed
1,261
python
def _is_special_op(opname): '\n Some operands are "special" - like RM: Sometimes we don\'t have modrm,\n but grammar still likes to use RM operand - in this case it is first\n 3 bits of the opcode.\n In this case we can\'t just use regular RM operand scanned with ILD -\n we must check if MODRM exists and if not take 3 LSB nits from opcode.\n This is what getter should do for RM, that\'s why RM is special.\n REG is probably the same.\n is_special_op(opname) checks if the operand has special getter.\n ' return (opname in _special_ops_dict)
def _is_special_op(opname): '\n Some operands are "special" - like RM: Sometimes we don\'t have modrm,\n but grammar still likes to use RM operand - in this case it is first\n 3 bits of the opcode.\n In this case we can\'t just use regular RM operand scanned with ILD -\n we must check if MODRM exists and if not take 3 LSB nits from opcode.\n This is what getter should do for RM, that\'s why RM is special.\n REG is probably the same.\n is_special_op(opname) checks if the operand has special getter.\n ' return (opname in _special_ops_dict)<|docstring|>Some operands are "special" - like RM: Sometimes we don't have modrm, but grammar still likes to use RM operand - in this case it is first 3 bits of the opcode. In this case we can't just use regular RM operand scanned with ILD - we must check if MODRM exists and if not take 3 LSB nits from opcode. This is what getter should do for RM, that's why RM is special. REG is probably the same. is_special_op(opname) checks if the operand has special getter.<|endoftext|>
b18a795e51f083b14c17ca6050c096a11221b35c53fe25a1da32a53c1fce2c6c
def _get_special_op_getter_fn(opname): "\n Returns special operand's getter name.\n See is_special_op comment.\n " return _special_ops_dict[opname]
Returns special operand's getter name. See is_special_op comment.
pysrc/ild_codegen.py
_get_special_op_getter_fn
javiereguiluz/xed
1,261
python
def _get_special_op_getter_fn(opname): "\n Returns special operand's getter name.\n See is_special_op comment.\n " return _special_ops_dict[opname]
def _get_special_op_getter_fn(opname): "\n Returns special operand's getter name.\n See is_special_op comment.\n " return _special_ops_dict[opname]<|docstring|>Returns special operand's getter name. See is_special_op comment.<|endoftext|>
b2e8bd6152f75864fcc08a5e85c969fa38fe6519a31cad6826eb7792a9a77ea2
def emit_ild_access_call(opname, data_name, eoasz_set=False): "\n @param opname: the name of the operand of xed grammar.\n @type opname: string\n\n @param data_name: the name of xed_decoded_inst_t* pointer\n @type data_name: string\n\n @param eoasz_set: when doing static decoding EOSZ and EASZ are not\n yet set correctly in the operands structure and we have to use\n special ILD getters to get their correct value.\n After dynamic decoding (and before we do operands decoding) EOSZ\n and EASZ are already set and we can use regular getter for them.\n @type eoasz_set: boolean\n\n IMPORTANT: EASZ and EOSZ cannot be computed with this function,\n see how it's done in ild_imm and ild_disp for these two.\n\n @return: C statement (no semicolon, no eol) that returns the\n value of corresponding operand.\n " if ((opname in ['EASZ', 'EOSZ']) and (not eoasz_set)): ildutil.ild_err(('No simple getter for %s operand' % opname)) elif _is_special_op(opname): getter_fn = _get_special_op_getter_fn(opname) else: getter_fn = operand_storage.get_op_getter_fn(opname) call_str = ('%s(%s)' % (getter_fn, data_name)) return call_str
@param opname: the name of the operand of xed grammar. @type opname: string @param data_name: the name of xed_decoded_inst_t* pointer @type data_name: string @param eoasz_set: when doing static decoding EOSZ and EASZ are not yet set correctly in the operands structure and we have to use special ILD getters to get their correct value. After dynamic decoding (and before we do operands decoding) EOSZ and EASZ are already set and we can use regular getter for them. @type eoasz_set: boolean IMPORTANT: EASZ and EOSZ cannot be computed with this function, see how it's done in ild_imm and ild_disp for these two. @return: C statement (no semicolon, no eol) that returns the value of corresponding operand.
pysrc/ild_codegen.py
emit_ild_access_call
javiereguiluz/xed
1,261
python
def emit_ild_access_call(opname, data_name, eoasz_set=False): "\n @param opname: the name of the operand of xed grammar.\n @type opname: string\n\n @param data_name: the name of xed_decoded_inst_t* pointer\n @type data_name: string\n\n @param eoasz_set: when doing static decoding EOSZ and EASZ are not\n yet set correctly in the operands structure and we have to use\n special ILD getters to get their correct value.\n After dynamic decoding (and before we do operands decoding) EOSZ\n and EASZ are already set and we can use regular getter for them.\n @type eoasz_set: boolean\n\n IMPORTANT: EASZ and EOSZ cannot be computed with this function,\n see how it's done in ild_imm and ild_disp for these two.\n\n @return: C statement (no semicolon, no eol) that returns the\n value of corresponding operand.\n " if ((opname in ['EASZ', 'EOSZ']) and (not eoasz_set)): ildutil.ild_err(('No simple getter for %s operand' % opname)) elif _is_special_op(opname): getter_fn = _get_special_op_getter_fn(opname) else: getter_fn = operand_storage.get_op_getter_fn(opname) call_str = ('%s(%s)' % (getter_fn, data_name)) return call_str
def emit_ild_access_call(opname, data_name, eoasz_set=False): "\n @param opname: the name of the operand of xed grammar.\n @type opname: string\n\n @param data_name: the name of xed_decoded_inst_t* pointer\n @type data_name: string\n\n @param eoasz_set: when doing static decoding EOSZ and EASZ are not\n yet set correctly in the operands structure and we have to use\n special ILD getters to get their correct value.\n After dynamic decoding (and before we do operands decoding) EOSZ\n and EASZ are already set and we can use regular getter for them.\n @type eoasz_set: boolean\n\n IMPORTANT: EASZ and EOSZ cannot be computed with this function,\n see how it's done in ild_imm and ild_disp for these two.\n\n @return: C statement (no semicolon, no eol) that returns the\n value of corresponding operand.\n " if ((opname in ['EASZ', 'EOSZ']) and (not eoasz_set)): ildutil.ild_err(('No simple getter for %s operand' % opname)) elif _is_special_op(opname): getter_fn = _get_special_op_getter_fn(opname) else: getter_fn = operand_storage.get_op_getter_fn(opname) call_str = ('%s(%s)' % (getter_fn, data_name)) return call_str<|docstring|>@param opname: the name of the operand of xed grammar. @type opname: string @param data_name: the name of xed_decoded_inst_t* pointer @type data_name: string @param eoasz_set: when doing static decoding EOSZ and EASZ are not yet set correctly in the operands structure and we have to use special ILD getters to get their correct value. After dynamic decoding (and before we do operands decoding) EOSZ and EASZ are already set and we can use regular getter for them. @type eoasz_set: boolean IMPORTANT: EASZ and EOSZ cannot be computed with this function, see how it's done in ild_imm and ild_disp for these two. @return: C statement (no semicolon, no eol) that returns the value of corresponding operand.<|endoftext|>
788d54e2bb725dc4676db1f11c825e9510ba8b093bf372f5876a6a810d5fc584
def test_init_optimiser(): 'Test init method of Optimiser class.' with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) assert (not optimiser.scoring) assert (optimiser.n_folds == 2) assert (optimiser.random_state == 1) assert (optimiser.to_path == 'save') assert optimiser.verbose
Test init method of Optimiser class.
tests/test_optimiser.py
test_init_optimiser
manugarri/MLBox
1,382
python
def test_init_optimiser(): with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) assert (not optimiser.scoring) assert (optimiser.n_folds == 2) assert (optimiser.random_state == 1) assert (optimiser.to_path == 'save') assert optimiser.verbose
def test_init_optimiser(): with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) assert (not optimiser.scoring) assert (optimiser.n_folds == 2) assert (optimiser.random_state == 1) assert (optimiser.to_path == 'save') assert optimiser.verbose<|docstring|>Test init method of Optimiser class.<|endoftext|>
a3dc28e053391a336527031c768a4791dec350a70c84336bf8c88ea03767638f
def test_get_params_optimiser(): 'Test get_params method of optimiser class.' with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) dict = {'scoring': None, 'n_folds': 2, 'random_state': 1, 'to_path': 'save', 'verbose': True} assert (optimiser.get_params() == dict)
Test get_params method of optimiser class.
tests/test_optimiser.py
test_get_params_optimiser
manugarri/MLBox
1,382
python
def test_get_params_optimiser(): with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) dict = {'scoring': None, 'n_folds': 2, 'random_state': 1, 'to_path': 'save', 'verbose': True} assert (optimiser.get_params() == dict)
def test_get_params_optimiser(): with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) dict = {'scoring': None, 'n_folds': 2, 'random_state': 1, 'to_path': 'save', 'verbose': True} assert (optimiser.get_params() == dict)<|docstring|>Test get_params method of optimiser class.<|endoftext|>
375c61fd643ef1b9959fd79f27d5141a1c8eed94ae19f5ffab1f0d5bde33fe11
def test_set_params_optimiser(): 'Test set_params method of Optimiser class.' with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) optimiser.set_params(scoring='accuracy') assert (optimiser.scoring == 'accuracy') optimiser.set_params(n_folds=3) assert (optimiser.n_folds == 3) optimiser.set_params(random_state=2) assert (optimiser.random_state == 2) optimiser.set_params(to_path='name') assert (optimiser.to_path == 'name') optimiser.set_params(verbose=False) assert (not optimiser.verbose) with pytest.warns(UserWarning) as record: optimiser.set_params(wrong_key=3) assert (len(record) == 1)
Test set_params method of Optimiser class.
tests/test_optimiser.py
test_set_params_optimiser
manugarri/MLBox
1,382
python
def test_set_params_optimiser(): with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) optimiser.set_params(scoring='accuracy') assert (optimiser.scoring == 'accuracy') optimiser.set_params(n_folds=3) assert (optimiser.n_folds == 3) optimiser.set_params(random_state=2) assert (optimiser.random_state == 2) optimiser.set_params(to_path='name') assert (optimiser.to_path == 'name') optimiser.set_params(verbose=False) assert (not optimiser.verbose) with pytest.warns(UserWarning) as record: optimiser.set_params(wrong_key=3) assert (len(record) == 1)
def test_set_params_optimiser(): with pytest.warns(UserWarning) as record: optimiser = Optimiser() assert (len(record) == 1) optimiser.set_params(scoring='accuracy') assert (optimiser.scoring == 'accuracy') optimiser.set_params(n_folds=3) assert (optimiser.n_folds == 3) optimiser.set_params(random_state=2) assert (optimiser.random_state == 2) optimiser.set_params(to_path='name') assert (optimiser.to_path == 'name') optimiser.set_params(verbose=False) assert (not optimiser.verbose) with pytest.warns(UserWarning) as record: optimiser.set_params(wrong_key=3) assert (len(record) == 1)<|docstring|>Test set_params method of Optimiser class.<|endoftext|>
2406fd396ed59f9a510a5135dc8933816bb9c24969fa409ffcbe4a67aa94a3af
def test_evaluate_classification_optimiser(): 'Test evaluate method of Optimiser class for classication.' reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train.csv', 'data_for_tests/test.csv'], target_name='Survived') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=None, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='roc_auc', n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert (0.0 <= score <= 1.0) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='wrong_scoring', n_folds=3) assert (len(record) == 1) with pytest.warns(UserWarning) as record: score = opt.evaluate(None, dict) assert (opt.scoring == 'neg_log_loss')
Test evaluate method of Optimiser class for classication.
tests/test_optimiser.py
test_evaluate_classification_optimiser
manugarri/MLBox
1,382
python
def test_evaluate_classification_optimiser(): reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train.csv', 'data_for_tests/test.csv'], target_name='Survived') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=None, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='roc_auc', n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert (0.0 <= score <= 1.0) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='wrong_scoring', n_folds=3) assert (len(record) == 1) with pytest.warns(UserWarning) as record: score = opt.evaluate(None, dict) assert (opt.scoring == 'neg_log_loss')
def test_evaluate_classification_optimiser(): reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train.csv', 'data_for_tests/test.csv'], target_name='Survived') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=None, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='roc_auc', n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert (0.0 <= score <= 1.0) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='wrong_scoring', n_folds=3) assert (len(record) == 1) with pytest.warns(UserWarning) as record: score = opt.evaluate(None, dict) assert (opt.scoring == 'neg_log_loss')<|docstring|>Test evaluate method of Optimiser class for classication.<|endoftext|>
e3582b5bf1b0b37cf53a9e8fd4698a51785e6edeeee18cc9060bc5408fa951a0
def test_evaluate_regression_optimiser(): 'Test evaluate method of Optimiser class for regression.' reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train_regression.csv', 'data_for_tests/test_regression.csv'], target_name='SalePrice') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) mape = make_scorer((lambda y_true, y_pred: ((100 * np.sum((np.abs((y_true - y_pred)) / y_true))) / len(y_true))), greater_is_better=False, needs_proba=False) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=mape, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=None, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='wrong_scoring', n_folds=3) assert (len(record) == 1) with pytest.warns(UserWarning) as record: score = opt.evaluate(None, dict) assert ((- np.Inf) <= score)
Test evaluate method of Optimiser class for regression.
tests/test_optimiser.py
test_evaluate_regression_optimiser
manugarri/MLBox
1,382
python
def test_evaluate_regression_optimiser(): reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train_regression.csv', 'data_for_tests/test_regression.csv'], target_name='SalePrice') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) mape = make_scorer((lambda y_true, y_pred: ((100 * np.sum((np.abs((y_true - y_pred)) / y_true))) / len(y_true))), greater_is_better=False, needs_proba=False) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=mape, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=None, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='wrong_scoring', n_folds=3) assert (len(record) == 1) with pytest.warns(UserWarning) as record: score = opt.evaluate(None, dict) assert ((- np.Inf) <= score)
def test_evaluate_regression_optimiser(): reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train_regression.csv', 'data_for_tests/test_regression.csv'], target_name='SalePrice') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) mape = make_scorer((lambda y_true, y_pred: ((100 * np.sum((np.abs((y_true - y_pred)) / y_true))) / len(y_true))), greater_is_better=False, needs_proba=False) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=mape, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring=None, n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert ((- np.Inf) <= score) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='wrong_scoring', n_folds=3) assert (len(record) == 1) with pytest.warns(UserWarning) as record: score = opt.evaluate(None, dict) assert ((- np.Inf) <= score)<|docstring|>Test evaluate method of Optimiser class for regression.<|endoftext|>
f20dc53e0fa183f2832d84701c35a0b5ff18e6f82a8e6242df662162547e0bd4
def test_evaluate_and_optimise_classification(): 'Test evaluate_and_optimise method of Optimiser class.' reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train.csv', 'data_for_tests/test.csv'], target_name='Survived') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='accuracy', n_folds=3) assert (len(record) == 1) dict_error = dict.copy() dict_error['target'] = dict_error['target'].astype(str) with pytest.raises(ValueError): score = opt.evaluate(None, dict_error) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='accuracy', n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert (0.0 <= score <= 1.0) space = {'ne__numerical_strategy': {'search': 'choice', 'space': [0]}, 'ce__strategy': {'search': 'choice', 'space': ['label_encoding']}, 'fs__threshold': {'search': 'uniform', 'space': [0.01, 0.3]}, 'est__max_depth': {'search': 'choice', 'space': [3, 4, 5, 6, 7]}} best = opt.optimise(space, dict, 1) assert (type(best) == type(dict))
Test evaluate_and_optimise method of Optimiser class.
tests/test_optimiser.py
test_evaluate_and_optimise_classification
manugarri/MLBox
1,382
python
def test_evaluate_and_optimise_classification(): reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train.csv', 'data_for_tests/test.csv'], target_name='Survived') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='accuracy', n_folds=3) assert (len(record) == 1) dict_error = dict.copy() dict_error['target'] = dict_error['target'].astype(str) with pytest.raises(ValueError): score = opt.evaluate(None, dict_error) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='accuracy', n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert (0.0 <= score <= 1.0) space = {'ne__numerical_strategy': {'search': 'choice', 'space': [0]}, 'ce__strategy': {'search': 'choice', 'space': ['label_encoding']}, 'fs__threshold': {'search': 'uniform', 'space': [0.01, 0.3]}, 'est__max_depth': {'search': 'choice', 'space': [3, 4, 5, 6, 7]}} best = opt.optimise(space, dict, 1) assert (type(best) == type(dict))
def test_evaluate_and_optimise_classification(): reader = Reader(sep=',') dict = reader.train_test_split(Lpath=['data_for_tests/train.csv', 'data_for_tests/test.csv'], target_name='Survived') drift_thresholder = Drift_thresholder() drift_thresholder = drift_thresholder.fit_transform(dict) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='accuracy', n_folds=3) assert (len(record) == 1) dict_error = dict.copy() dict_error['target'] = dict_error['target'].astype(str) with pytest.raises(ValueError): score = opt.evaluate(None, dict_error) with pytest.warns(UserWarning) as record: opt = Optimiser(scoring='accuracy', n_folds=3) assert (len(record) == 1) score = opt.evaluate(None, dict) assert (0.0 <= score <= 1.0) space = {'ne__numerical_strategy': {'search': 'choice', 'space': [0]}, 'ce__strategy': {'search': 'choice', 'space': ['label_encoding']}, 'fs__threshold': {'search': 'uniform', 'space': [0.01, 0.3]}, 'est__max_depth': {'search': 'choice', 'space': [3, 4, 5, 6, 7]}} best = opt.optimise(space, dict, 1) assert (type(best) == type(dict))<|docstring|>Test evaluate_and_optimise method of Optimiser class.<|endoftext|>
8a680b662a8c410411557f926c70968d80ed006b7000d43ce8f90f8c7ceb11f3
def solve(self, func): 'Uses the Riemann sum approximation to compute the integral of func.\n\n Args:\n func ([function]): [Possibly vectorised function to integrate over]\n\n Returns:\n [torch.Tensor]: [Integral of func]\n ' return (self.volume * torch.mean(func(self.mesh)))
Uses the Riemann sum approximation to compute the integral of func. Args: func ([function]): [Possibly vectorised function to integrate over] Returns: [torch.Tensor]: [Integral of func]
src/gaussed/solver/integral_transform/riemann_sum.py
solve
MatthewAlexanderFisher/GaussED
2
python
def solve(self, func): 'Uses the Riemann sum approximation to compute the integral of func.\n\n Args:\n func ([function]): [Possibly vectorised function to integrate over]\n\n Returns:\n [torch.Tensor]: [Integral of func]\n ' return (self.volume * torch.mean(func(self.mesh)))
def solve(self, func): 'Uses the Riemann sum approximation to compute the integral of func.\n\n Args:\n func ([function]): [Possibly vectorised function to integrate over]\n\n Returns:\n [torch.Tensor]: [Integral of func]\n ' return (self.volume * torch.mean(func(self.mesh)))<|docstring|>Uses the Riemann sum approximation to compute the integral of func. Args: func ([function]): [Possibly vectorised function to integrate over] Returns: [torch.Tensor]: [Integral of func]<|endoftext|>
d6f55452833eb6011a63cbdaa767a614a937f0cb8da5a9c74b38b3d9b21faf6e
def line_integral_basis(self, func, m): 'Uses the Riemann sum approximation to compute the integral of func over a flattened mesh.\n\n Args:\n func ([function]): [Function to integrate over]\n m ([int, list]): [Number of basis functions]\n\n Returns:\n [torch.Tensor]: [Integral of func]\n ' return (self.volume * torch.mean(func(self.mesh, m).T, dim=1))
Uses the Riemann sum approximation to compute the integral of func over a flattened mesh. Args: func ([function]): [Function to integrate over] m ([int, list]): [Number of basis functions] Returns: [torch.Tensor]: [Integral of func]
src/gaussed/solver/integral_transform/riemann_sum.py
line_integral_basis
MatthewAlexanderFisher/GaussED
2
python
def line_integral_basis(self, func, m): 'Uses the Riemann sum approximation to compute the integral of func over a flattened mesh.\n\n Args:\n func ([function]): [Function to integrate over]\n m ([int, list]): [Number of basis functions]\n\n Returns:\n [torch.Tensor]: [Integral of func]\n ' return (self.volume * torch.mean(func(self.mesh, m).T, dim=1))
def line_integral_basis(self, func, m): 'Uses the Riemann sum approximation to compute the integral of func over a flattened mesh.\n\n Args:\n func ([function]): [Function to integrate over]\n m ([int, list]): [Number of basis functions]\n\n Returns:\n [torch.Tensor]: [Integral of func]\n ' return (self.volume * torch.mean(func(self.mesh, m).T, dim=1))<|docstring|>Uses the Riemann sum approximation to compute the integral of func over a flattened mesh. Args: func ([function]): [Function to integrate over] m ([int, list]): [Number of basis functions] Returns: [torch.Tensor]: [Integral of func]<|endoftext|>
4c3a6d403515efc09e355083d221b914a9a63cdfd83c21e76ce0679f7bfff326
def print_reversed_list_integer(my_list=[]): '\n prints the reverse of a given list\n ' if (type(my_list) is list): new_l = my_list[0:] new_l.reverse() for i in range(len(new_l)): print('{:d}'.format(new_l[i]))
prints the reverse of a given list
0x03-python-data_structures/3-print_reversed_list_integer.py
print_reversed_list_integer
BennettDixon/holbertonschool-higher_level_programming
1
python
def print_reversed_list_integer(my_list=[]): '\n \n ' if (type(my_list) is list): new_l = my_list[0:] new_l.reverse() for i in range(len(new_l)): print('{:d}'.format(new_l[i]))
def print_reversed_list_integer(my_list=[]): '\n \n ' if (type(my_list) is list): new_l = my_list[0:] new_l.reverse() for i in range(len(new_l)): print('{:d}'.format(new_l[i]))<|docstring|>prints the reverse of a given list<|endoftext|>
96872c7b0e422a50ecd4cbc8cb5aae714749676ef5f5e809c59a56434cb0590e
def filter(self, npc): "\n Get NPC's shop.\n\n Args:\n npc: (string) NPC's key.\n " return self.objects.filter(npc=npc)
Get NPC's shop. Args: npc: (string) NPC's key.
muddery/worlddata/dao/npc_shops_mapper.py
filter
noahzaozao/muddery
0
python
def filter(self, npc): "\n Get NPC's shop.\n\n Args:\n npc: (string) NPC's key.\n " return self.objects.filter(npc=npc)
def filter(self, npc): "\n Get NPC's shop.\n\n Args:\n npc: (string) NPC's key.\n " return self.objects.filter(npc=npc)<|docstring|>Get NPC's shop. Args: npc: (string) NPC's key.<|endoftext|>
d72120a96352246e60d35bc146952d0f2e6850e821bec9a39ff624552e9762e0
def mean(v): '\n Return the mean of the elements of `v`.\n\n We define the mean of the empty list to be the (symbolic) NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.mean`` or ``numpy.nanmean``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: mean([pi, e])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead\n See https://trac.sagemath.org/29662 for details.\n 1/2*pi + 1/2*e\n sage: mean([])\n NaN\n sage: mean([I, sqrt(2), 3/5])\n 1/3*sqrt(2) + 1/3*I + 1/5\n sage: mean([RIF(1.0103,1.0103), RIF(2)])\n 1.5051500000000000?\n sage: mean(range(4))\n 3/2\n sage: v = stats.TimeSeries([1..100])\n sage: mean(v)\n 50.5\n ' deprecation(29662, 'sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead') if hasattr(v, 'mean'): return v.mean() if (not v): return NaN s = sum(v) if isinstance(s, int): return (s / ZZ(len(v))) return (s / len(v))
Return the mean of the elements of `v`. We define the mean of the empty list to be the (symbolic) NaN, following the convention of MATLAB, Scipy, and R. This function is deprecated. Use ``numpy.mean`` or ``numpy.nanmean`` instead. INPUT: - `v` -- a list of numbers OUTPUT: - a number EXAMPLES:: sage: mean([pi, e]) doctest:warning... DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead See https://trac.sagemath.org/29662 for details. 1/2*pi + 1/2*e sage: mean([]) NaN sage: mean([I, sqrt(2), 3/5]) 1/3*sqrt(2) + 1/3*I + 1/5 sage: mean([RIF(1.0103,1.0103), RIF(2)]) 1.5051500000000000? sage: mean(range(4)) 3/2 sage: v = stats.TimeSeries([1..100]) sage: mean(v) 50.5
src/sage/stats/basic_stats.py
mean
LaisRast/sage
1,742
python
def mean(v): '\n Return the mean of the elements of `v`.\n\n We define the mean of the empty list to be the (symbolic) NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.mean`` or ``numpy.nanmean``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: mean([pi, e])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead\n See https://trac.sagemath.org/29662 for details.\n 1/2*pi + 1/2*e\n sage: mean([])\n NaN\n sage: mean([I, sqrt(2), 3/5])\n 1/3*sqrt(2) + 1/3*I + 1/5\n sage: mean([RIF(1.0103,1.0103), RIF(2)])\n 1.5051500000000000?\n sage: mean(range(4))\n 3/2\n sage: v = stats.TimeSeries([1..100])\n sage: mean(v)\n 50.5\n ' deprecation(29662, 'sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead') if hasattr(v, 'mean'): return v.mean() if (not v): return NaN s = sum(v) if isinstance(s, int): return (s / ZZ(len(v))) return (s / len(v))
def mean(v): '\n Return the mean of the elements of `v`.\n\n We define the mean of the empty list to be the (symbolic) NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.mean`` or ``numpy.nanmean``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: mean([pi, e])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead\n See https://trac.sagemath.org/29662 for details.\n 1/2*pi + 1/2*e\n sage: mean([])\n NaN\n sage: mean([I, sqrt(2), 3/5])\n 1/3*sqrt(2) + 1/3*I + 1/5\n sage: mean([RIF(1.0103,1.0103), RIF(2)])\n 1.5051500000000000?\n sage: mean(range(4))\n 3/2\n sage: v = stats.TimeSeries([1..100])\n sage: mean(v)\n 50.5\n ' deprecation(29662, 'sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead') if hasattr(v, 'mean'): return v.mean() if (not v): return NaN s = sum(v) if isinstance(s, int): return (s / ZZ(len(v))) return (s / len(v))<|docstring|>Return the mean of the elements of `v`. We define the mean of the empty list to be the (symbolic) NaN, following the convention of MATLAB, Scipy, and R. This function is deprecated. Use ``numpy.mean`` or ``numpy.nanmean`` instead. INPUT: - `v` -- a list of numbers OUTPUT: - a number EXAMPLES:: sage: mean([pi, e]) doctest:warning... DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead See https://trac.sagemath.org/29662 for details. 1/2*pi + 1/2*e sage: mean([]) NaN sage: mean([I, sqrt(2), 3/5]) 1/3*sqrt(2) + 1/3*I + 1/5 sage: mean([RIF(1.0103,1.0103), RIF(2)]) 1.5051500000000000? sage: mean(range(4)) 3/2 sage: v = stats.TimeSeries([1..100]) sage: mean(v) 50.5<|endoftext|>
962d4e6530a134a27b3f9ddf06365705e1ffaa433208794179b84bc7585b33e3
def mode(v): "\n Return the mode of `v`.\n\n The mode is the list of the most frequently occurring\n elements in `v`. If `n` is the most times that any element occurs\n in `v`, then the mode is the list of elements of `v` that\n occur `n` times. The list is sorted if possible.\n\n This function is deprecated. Use ``scipy.stats.mode`` or\n ``statistics.mode`` instead.\n\n .. NOTE::\n\n The elements of `v` must be hashable.\n\n INPUT:\n\n - `v` -- a list\n\n OUTPUT:\n\n - a list (sorted if possible)\n\n EXAMPLES::\n\n sage: v = [1,2,4,1,6,2,6,7,1]\n sage: mode(v)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mode is deprecated; use scipy.stats.mode or statistics.mode instead\n See https://trac.sagemath.org/29662 for details.\n [1]\n sage: v.count(1)\n 3\n sage: mode([])\n []\n\n sage: mode([1,2,3,4,5])\n [1, 2, 3, 4, 5]\n sage: mode([3,1,2,1,2,3])\n [1, 2, 3]\n sage: mode([0, 2, 7, 7, 13, 20, 2, 13])\n [2, 7, 13]\n\n sage: mode(['sage', 'four', 'I', 'three', 'sage', 'pi'])\n ['sage']\n\n sage: class MyClass:\n ....: def mode(self):\n ....: return [1]\n sage: stats.mode(MyClass())\n [1]\n " deprecation(29662, 'sage.stats.basic_stats.mode is deprecated; use scipy.stats.mode or statistics.mode instead') if hasattr(v, 'mode'): return v.mode() if (not v): return v freq = {} for i in v: if (i in freq): freq[i] += 1 else: freq[i] = 1 n = max(freq.values()) try: return sorted((u for (u, f) in freq.items() if (f == n))) except TypeError: return [u for (u, f) in freq.items() if (f == n)]
Return the mode of `v`. The mode is the list of the most frequently occurring elements in `v`. If `n` is the most times that any element occurs in `v`, then the mode is the list of elements of `v` that occur `n` times. The list is sorted if possible. This function is deprecated. Use ``scipy.stats.mode`` or ``statistics.mode`` instead. .. NOTE:: The elements of `v` must be hashable. INPUT: - `v` -- a list OUTPUT: - a list (sorted if possible) EXAMPLES:: sage: v = [1,2,4,1,6,2,6,7,1] sage: mode(v) doctest:warning... DeprecationWarning: sage.stats.basic_stats.mode is deprecated; use scipy.stats.mode or statistics.mode instead See https://trac.sagemath.org/29662 for details. [1] sage: v.count(1) 3 sage: mode([]) [] sage: mode([1,2,3,4,5]) [1, 2, 3, 4, 5] sage: mode([3,1,2,1,2,3]) [1, 2, 3] sage: mode([0, 2, 7, 7, 13, 20, 2, 13]) [2, 7, 13] sage: mode(['sage', 'four', 'I', 'three', 'sage', 'pi']) ['sage'] sage: class MyClass: ....: def mode(self): ....: return [1] sage: stats.mode(MyClass()) [1]
src/sage/stats/basic_stats.py
mode
LaisRast/sage
1,742
python
def mode(v): "\n Return the mode of `v`.\n\n The mode is the list of the most frequently occurring\n elements in `v`. If `n` is the most times that any element occurs\n in `v`, then the mode is the list of elements of `v` that\n occur `n` times. The list is sorted if possible.\n\n This function is deprecated. Use ``scipy.stats.mode`` or\n ``statistics.mode`` instead.\n\n .. NOTE::\n\n The elements of `v` must be hashable.\n\n INPUT:\n\n - `v` -- a list\n\n OUTPUT:\n\n - a list (sorted if possible)\n\n EXAMPLES::\n\n sage: v = [1,2,4,1,6,2,6,7,1]\n sage: mode(v)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mode is deprecated; use scipy.stats.mode or statistics.mode instead\n See https://trac.sagemath.org/29662 for details.\n [1]\n sage: v.count(1)\n 3\n sage: mode([])\n []\n\n sage: mode([1,2,3,4,5])\n [1, 2, 3, 4, 5]\n sage: mode([3,1,2,1,2,3])\n [1, 2, 3]\n sage: mode([0, 2, 7, 7, 13, 20, 2, 13])\n [2, 7, 13]\n\n sage: mode(['sage', 'four', 'I', 'three', 'sage', 'pi'])\n ['sage']\n\n sage: class MyClass:\n ....: def mode(self):\n ....: return [1]\n sage: stats.mode(MyClass())\n [1]\n " deprecation(29662, 'sage.stats.basic_stats.mode is deprecated; use scipy.stats.mode or statistics.mode instead') if hasattr(v, 'mode'): return v.mode() if (not v): return v freq = {} for i in v: if (i in freq): freq[i] += 1 else: freq[i] = 1 n = max(freq.values()) try: return sorted((u for (u, f) in freq.items() if (f == n))) except TypeError: return [u for (u, f) in freq.items() if (f == n)]
def mode(v): "\n Return the mode of `v`.\n\n The mode is the list of the most frequently occurring\n elements in `v`. If `n` is the most times that any element occurs\n in `v`, then the mode is the list of elements of `v` that\n occur `n` times. The list is sorted if possible.\n\n This function is deprecated. Use ``scipy.stats.mode`` or\n ``statistics.mode`` instead.\n\n .. NOTE::\n\n The elements of `v` must be hashable.\n\n INPUT:\n\n - `v` -- a list\n\n OUTPUT:\n\n - a list (sorted if possible)\n\n EXAMPLES::\n\n sage: v = [1,2,4,1,6,2,6,7,1]\n sage: mode(v)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mode is deprecated; use scipy.stats.mode or statistics.mode instead\n See https://trac.sagemath.org/29662 for details.\n [1]\n sage: v.count(1)\n 3\n sage: mode([])\n []\n\n sage: mode([1,2,3,4,5])\n [1, 2, 3, 4, 5]\n sage: mode([3,1,2,1,2,3])\n [1, 2, 3]\n sage: mode([0, 2, 7, 7, 13, 20, 2, 13])\n [2, 7, 13]\n\n sage: mode(['sage', 'four', 'I', 'three', 'sage', 'pi'])\n ['sage']\n\n sage: class MyClass:\n ....: def mode(self):\n ....: return [1]\n sage: stats.mode(MyClass())\n [1]\n " deprecation(29662, 'sage.stats.basic_stats.mode is deprecated; use scipy.stats.mode or statistics.mode instead') if hasattr(v, 'mode'): return v.mode() if (not v): return v freq = {} for i in v: if (i in freq): freq[i] += 1 else: freq[i] = 1 n = max(freq.values()) try: return sorted((u for (u, f) in freq.items() if (f == n))) except TypeError: return [u for (u, f) in freq.items() if (f == n)]<|docstring|>Return the mode of `v`. The mode is the list of the most frequently occurring elements in `v`. If `n` is the most times that any element occurs in `v`, then the mode is the list of elements of `v` that occur `n` times. The list is sorted if possible. This function is deprecated. Use ``scipy.stats.mode`` or ``statistics.mode`` instead. .. NOTE:: The elements of `v` must be hashable. INPUT: - `v` -- a list OUTPUT: - a list (sorted if possible) EXAMPLES:: sage: v = [1,2,4,1,6,2,6,7,1] sage: mode(v) doctest:warning... DeprecationWarning: sage.stats.basic_stats.mode is deprecated; use scipy.stats.mode or statistics.mode instead See https://trac.sagemath.org/29662 for details. [1] sage: v.count(1) 3 sage: mode([]) [] sage: mode([1,2,3,4,5]) [1, 2, 3, 4, 5] sage: mode([3,1,2,1,2,3]) [1, 2, 3] sage: mode([0, 2, 7, 7, 13, 20, 2, 13]) [2, 7, 13] sage: mode(['sage', 'four', 'I', 'three', 'sage', 'pi']) ['sage'] sage: class MyClass: ....: def mode(self): ....: return [1] sage: stats.mode(MyClass()) [1]<|endoftext|>
259a3fd73739799d66f927c992ed789004def61ecaf9e91f98280b789fe2a5fe
def std(v, bias=False): '\n Return the standard deviation of the elements of `v`.\n\n We define the standard deviation of the empty list to be NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.std`` or ``numpy.nanstd``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n - ``bias`` -- bool (default: False); if False, divide by\n len(v) - 1 instead of len(v)\n to give a less biased estimator (sample) for the\n standard deviation.\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: std([1..6], bias=True)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.std is deprecated; use numpy.std or numpy.nanstd instead\n See https://trac.sagemath.org/29662 for details.\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead\n See https://trac.sagemath.org/29662 for details.\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead\n See https://trac.sagemath.org/29662 for details.\n 1/2*sqrt(35/3)\n sage: std([1..6], bias=False)\n sqrt(7/2)\n sage: std([e, pi])\n sqrt(1/2)*abs(pi - e)\n sage: std([])\n NaN\n sage: std([I, sqrt(2), 3/5])\n 1/15*sqrt(1/2)*sqrt((10*sqrt(2) - 5*I - 3)^2\n + (5*sqrt(2) - 10*I + 3)^2 + (5*sqrt(2) + 5*I - 6)^2)\n sage: std([RIF(1.0103, 1.0103), RIF(2)])\n 0.6998235813403261?\n sage: import numpy\n sage: x = numpy.array([1,2,3,4,5])\n sage: std(x, bias=False)\n 1.5811388300841898\n sage: x = stats.TimeSeries([1..100])\n sage: std(x)\n 29.011491975882016\n\n TESTS::\n\n sage: data = [random() for i in [1 .. 20]]\n sage: std(data) # random\n 0.29487771726609185\n ' deprecation(29662, 'sage.stats.basic_stats.std is deprecated; use numpy.std or numpy.nanstd instead') if hasattr(v, 'standard_deviation'): return v.standard_deviation(bias=bias) import numpy if isinstance(v, numpy.ndarray): if bias: return v.std() else: return v.std(ddof=1) if (not v): return NaN return sqrt(variance(v, bias=bias))
Return the standard deviation of the elements of `v`. We define the standard deviation of the empty list to be NaN, following the convention of MATLAB, Scipy, and R. This function is deprecated. Use ``numpy.std`` or ``numpy.nanstd`` instead. INPUT: - `v` -- a list of numbers - ``bias`` -- bool (default: False); if False, divide by len(v) - 1 instead of len(v) to give a less biased estimator (sample) for the standard deviation. OUTPUT: - a number EXAMPLES:: sage: std([1..6], bias=True) doctest:warning... DeprecationWarning: sage.stats.basic_stats.std is deprecated; use numpy.std or numpy.nanstd instead See https://trac.sagemath.org/29662 for details. doctest:warning... DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead See https://trac.sagemath.org/29662 for details. doctest:warning... DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead See https://trac.sagemath.org/29662 for details. 1/2*sqrt(35/3) sage: std([1..6], bias=False) sqrt(7/2) sage: std([e, pi]) sqrt(1/2)*abs(pi - e) sage: std([]) NaN sage: std([I, sqrt(2), 3/5]) 1/15*sqrt(1/2)*sqrt((10*sqrt(2) - 5*I - 3)^2 + (5*sqrt(2) - 10*I + 3)^2 + (5*sqrt(2) + 5*I - 6)^2) sage: std([RIF(1.0103, 1.0103), RIF(2)]) 0.6998235813403261? sage: import numpy sage: x = numpy.array([1,2,3,4,5]) sage: std(x, bias=False) 1.5811388300841898 sage: x = stats.TimeSeries([1..100]) sage: std(x) 29.011491975882016 TESTS:: sage: data = [random() for i in [1 .. 20]] sage: std(data) # random 0.29487771726609185
src/sage/stats/basic_stats.py
std
LaisRast/sage
1,742
python
def std(v, bias=False): '\n Return the standard deviation of the elements of `v`.\n\n We define the standard deviation of the empty list to be NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.std`` or ``numpy.nanstd``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n - ``bias`` -- bool (default: False); if False, divide by\n len(v) - 1 instead of len(v)\n to give a less biased estimator (sample) for the\n standard deviation.\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: std([1..6], bias=True)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.std is deprecated; use numpy.std or numpy.nanstd instead\n See https://trac.sagemath.org/29662 for details.\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead\n See https://trac.sagemath.org/29662 for details.\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead\n See https://trac.sagemath.org/29662 for details.\n 1/2*sqrt(35/3)\n sage: std([1..6], bias=False)\n sqrt(7/2)\n sage: std([e, pi])\n sqrt(1/2)*abs(pi - e)\n sage: std([])\n NaN\n sage: std([I, sqrt(2), 3/5])\n 1/15*sqrt(1/2)*sqrt((10*sqrt(2) - 5*I - 3)^2\n + (5*sqrt(2) - 10*I + 3)^2 + (5*sqrt(2) + 5*I - 6)^2)\n sage: std([RIF(1.0103, 1.0103), RIF(2)])\n 0.6998235813403261?\n sage: import numpy\n sage: x = numpy.array([1,2,3,4,5])\n sage: std(x, bias=False)\n 1.5811388300841898\n sage: x = stats.TimeSeries([1..100])\n sage: std(x)\n 29.011491975882016\n\n TESTS::\n\n sage: data = [random() for i in [1 .. 20]]\n sage: std(data) # random\n 0.29487771726609185\n ' deprecation(29662, 'sage.stats.basic_stats.std is deprecated; use numpy.std or numpy.nanstd instead') if hasattr(v, 'standard_deviation'): return v.standard_deviation(bias=bias) import numpy if isinstance(v, numpy.ndarray): if bias: return v.std() else: return v.std(ddof=1) if (not v): return NaN return sqrt(variance(v, bias=bias))
def std(v, bias=False): '\n Return the standard deviation of the elements of `v`.\n\n We define the standard deviation of the empty list to be NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.std`` or ``numpy.nanstd``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n - ``bias`` -- bool (default: False); if False, divide by\n len(v) - 1 instead of len(v)\n to give a less biased estimator (sample) for the\n standard deviation.\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: std([1..6], bias=True)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.std is deprecated; use numpy.std or numpy.nanstd instead\n See https://trac.sagemath.org/29662 for details.\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead\n See https://trac.sagemath.org/29662 for details.\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead\n See https://trac.sagemath.org/29662 for details.\n 1/2*sqrt(35/3)\n sage: std([1..6], bias=False)\n sqrt(7/2)\n sage: std([e, pi])\n sqrt(1/2)*abs(pi - e)\n sage: std([])\n NaN\n sage: std([I, sqrt(2), 3/5])\n 1/15*sqrt(1/2)*sqrt((10*sqrt(2) - 5*I - 3)^2\n + (5*sqrt(2) - 10*I + 3)^2 + (5*sqrt(2) + 5*I - 6)^2)\n sage: std([RIF(1.0103, 1.0103), RIF(2)])\n 0.6998235813403261?\n sage: import numpy\n sage: x = numpy.array([1,2,3,4,5])\n sage: std(x, bias=False)\n 1.5811388300841898\n sage: x = stats.TimeSeries([1..100])\n sage: std(x)\n 29.011491975882016\n\n TESTS::\n\n sage: data = [random() for i in [1 .. 20]]\n sage: std(data) # random\n 0.29487771726609185\n ' deprecation(29662, 'sage.stats.basic_stats.std is deprecated; use numpy.std or numpy.nanstd instead') if hasattr(v, 'standard_deviation'): return v.standard_deviation(bias=bias) import numpy if isinstance(v, numpy.ndarray): if bias: return v.std() else: return v.std(ddof=1) if (not v): return NaN return sqrt(variance(v, bias=bias))<|docstring|>Return the standard deviation of the elements of `v`. We define the standard deviation of the empty list to be NaN, following the convention of MATLAB, Scipy, and R. This function is deprecated. Use ``numpy.std`` or ``numpy.nanstd`` instead. INPUT: - `v` -- a list of numbers - ``bias`` -- bool (default: False); if False, divide by len(v) - 1 instead of len(v) to give a less biased estimator (sample) for the standard deviation. OUTPUT: - a number EXAMPLES:: sage: std([1..6], bias=True) doctest:warning... DeprecationWarning: sage.stats.basic_stats.std is deprecated; use numpy.std or numpy.nanstd instead See https://trac.sagemath.org/29662 for details. doctest:warning... DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead See https://trac.sagemath.org/29662 for details. doctest:warning... DeprecationWarning: sage.stats.basic_stats.mean is deprecated; use numpy.mean or numpy.nanmean instead See https://trac.sagemath.org/29662 for details. 1/2*sqrt(35/3) sage: std([1..6], bias=False) sqrt(7/2) sage: std([e, pi]) sqrt(1/2)*abs(pi - e) sage: std([]) NaN sage: std([I, sqrt(2), 3/5]) 1/15*sqrt(1/2)*sqrt((10*sqrt(2) - 5*I - 3)^2 + (5*sqrt(2) - 10*I + 3)^2 + (5*sqrt(2) + 5*I - 6)^2) sage: std([RIF(1.0103, 1.0103), RIF(2)]) 0.6998235813403261? sage: import numpy sage: x = numpy.array([1,2,3,4,5]) sage: std(x, bias=False) 1.5811388300841898 sage: x = stats.TimeSeries([1..100]) sage: std(x) 29.011491975882016 TESTS:: sage: data = [random() for i in [1 .. 20]] sage: std(data) # random 0.29487771726609185<|endoftext|>
4f7fb6d143f6f5f05b5114033c094c384471b4510a9e8ba04f4013871d0bb7bd
def variance(v, bias=False): '\n Return the variance of the elements of `v`.\n\n We define the variance of the empty list to be NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.var`` or ``numpy.nanvar``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n - ``bias`` -- bool (default: False); if False, divide by\n len(v) - 1 instead of len(v)\n to give a less biased estimator (sample) for the\n standard deviation.\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: variance([1..6])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead\n See https://trac.sagemath.org/29662 for details.\n 7/2\n sage: variance([1..6], bias=True)\n 35/12\n sage: variance([e, pi])\n 1/2*(pi - e)^2\n sage: variance([])\n NaN\n sage: variance([I, sqrt(2), 3/5])\n 1/450*(10*sqrt(2) - 5*I - 3)^2 + 1/450*(5*sqrt(2) - 10*I + 3)^2\n + 1/450*(5*sqrt(2) + 5*I - 6)^2\n sage: variance([RIF(1.0103, 1.0103), RIF(2)])\n 0.4897530450000000?\n sage: import numpy\n sage: x = numpy.array([1,2,3,4,5])\n sage: variance(x, bias=False)\n 2.5\n sage: x = stats.TimeSeries([1..100])\n sage: variance(x)\n 841.6666666666666\n sage: variance(x, bias=True)\n 833.25\n sage: class MyClass:\n ....: def variance(self, bias = False):\n ....: return 1\n sage: stats.variance(MyClass())\n 1\n sage: class SillyPythonList:\n ....: def __init__(self):\n ....: self.__list = [2, 4]\n ....: def __len__(self):\n ....: return len(self.__list)\n ....: def __iter__(self):\n ....: return self.__list.__iter__()\n ....: def mean(self):\n ....: return 3\n sage: R = SillyPythonList()\n sage: variance(R)\n 2\n sage: variance(R, bias=True)\n 1\n\n TESTS:\n\n The performance issue from :trac:`10019` is solved::\n\n sage: variance([1] * 2^18)\n 0\n ' deprecation(29662, 'sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead') if hasattr(v, 'variance'): return v.variance(bias=bias) import numpy x = 0 if isinstance(v, numpy.ndarray): if bias: return v.var() else: return v.var(ddof=1) if (not v): return NaN mu = mean(v) for vi in v: x += ((vi - mu) ** 2) if bias: if isinstance(x, int): return (x / ZZ(len(v))) return (x / len(v)) else: if isinstance(x, int): return (x / ZZ((len(v) - 1))) return (x / (len(v) - 1))
Return the variance of the elements of `v`. We define the variance of the empty list to be NaN, following the convention of MATLAB, Scipy, and R. This function is deprecated. Use ``numpy.var`` or ``numpy.nanvar`` instead. INPUT: - `v` -- a list of numbers - ``bias`` -- bool (default: False); if False, divide by len(v) - 1 instead of len(v) to give a less biased estimator (sample) for the standard deviation. OUTPUT: - a number EXAMPLES:: sage: variance([1..6]) doctest:warning... DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead See https://trac.sagemath.org/29662 for details. 7/2 sage: variance([1..6], bias=True) 35/12 sage: variance([e, pi]) 1/2*(pi - e)^2 sage: variance([]) NaN sage: variance([I, sqrt(2), 3/5]) 1/450*(10*sqrt(2) - 5*I - 3)^2 + 1/450*(5*sqrt(2) - 10*I + 3)^2 + 1/450*(5*sqrt(2) + 5*I - 6)^2 sage: variance([RIF(1.0103, 1.0103), RIF(2)]) 0.4897530450000000? sage: import numpy sage: x = numpy.array([1,2,3,4,5]) sage: variance(x, bias=False) 2.5 sage: x = stats.TimeSeries([1..100]) sage: variance(x) 841.6666666666666 sage: variance(x, bias=True) 833.25 sage: class MyClass: ....: def variance(self, bias = False): ....: return 1 sage: stats.variance(MyClass()) 1 sage: class SillyPythonList: ....: def __init__(self): ....: self.__list = [2, 4] ....: def __len__(self): ....: return len(self.__list) ....: def __iter__(self): ....: return self.__list.__iter__() ....: def mean(self): ....: return 3 sage: R = SillyPythonList() sage: variance(R) 2 sage: variance(R, bias=True) 1 TESTS: The performance issue from :trac:`10019` is solved:: sage: variance([1] * 2^18) 0
src/sage/stats/basic_stats.py
variance
LaisRast/sage
1,742
python
def variance(v, bias=False): '\n Return the variance of the elements of `v`.\n\n We define the variance of the empty list to be NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.var`` or ``numpy.nanvar``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n - ``bias`` -- bool (default: False); if False, divide by\n len(v) - 1 instead of len(v)\n to give a less biased estimator (sample) for the\n standard deviation.\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: variance([1..6])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead\n See https://trac.sagemath.org/29662 for details.\n 7/2\n sage: variance([1..6], bias=True)\n 35/12\n sage: variance([e, pi])\n 1/2*(pi - e)^2\n sage: variance([])\n NaN\n sage: variance([I, sqrt(2), 3/5])\n 1/450*(10*sqrt(2) - 5*I - 3)^2 + 1/450*(5*sqrt(2) - 10*I + 3)^2\n + 1/450*(5*sqrt(2) + 5*I - 6)^2\n sage: variance([RIF(1.0103, 1.0103), RIF(2)])\n 0.4897530450000000?\n sage: import numpy\n sage: x = numpy.array([1,2,3,4,5])\n sage: variance(x, bias=False)\n 2.5\n sage: x = stats.TimeSeries([1..100])\n sage: variance(x)\n 841.6666666666666\n sage: variance(x, bias=True)\n 833.25\n sage: class MyClass:\n ....: def variance(self, bias = False):\n ....: return 1\n sage: stats.variance(MyClass())\n 1\n sage: class SillyPythonList:\n ....: def __init__(self):\n ....: self.__list = [2, 4]\n ....: def __len__(self):\n ....: return len(self.__list)\n ....: def __iter__(self):\n ....: return self.__list.__iter__()\n ....: def mean(self):\n ....: return 3\n sage: R = SillyPythonList()\n sage: variance(R)\n 2\n sage: variance(R, bias=True)\n 1\n\n TESTS:\n\n The performance issue from :trac:`10019` is solved::\n\n sage: variance([1] * 2^18)\n 0\n ' deprecation(29662, 'sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead') if hasattr(v, 'variance'): return v.variance(bias=bias) import numpy x = 0 if isinstance(v, numpy.ndarray): if bias: return v.var() else: return v.var(ddof=1) if (not v): return NaN mu = mean(v) for vi in v: x += ((vi - mu) ** 2) if bias: if isinstance(x, int): return (x / ZZ(len(v))) return (x / len(v)) else: if isinstance(x, int): return (x / ZZ((len(v) - 1))) return (x / (len(v) - 1))
def variance(v, bias=False): '\n Return the variance of the elements of `v`.\n\n We define the variance of the empty list to be NaN,\n following the convention of MATLAB, Scipy, and R.\n\n This function is deprecated. Use ``numpy.var`` or ``numpy.nanvar``\n instead.\n\n INPUT:\n\n - `v` -- a list of numbers\n\n - ``bias`` -- bool (default: False); if False, divide by\n len(v) - 1 instead of len(v)\n to give a less biased estimator (sample) for the\n standard deviation.\n\n OUTPUT:\n\n - a number\n\n EXAMPLES::\n\n sage: variance([1..6])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead\n See https://trac.sagemath.org/29662 for details.\n 7/2\n sage: variance([1..6], bias=True)\n 35/12\n sage: variance([e, pi])\n 1/2*(pi - e)^2\n sage: variance([])\n NaN\n sage: variance([I, sqrt(2), 3/5])\n 1/450*(10*sqrt(2) - 5*I - 3)^2 + 1/450*(5*sqrt(2) - 10*I + 3)^2\n + 1/450*(5*sqrt(2) + 5*I - 6)^2\n sage: variance([RIF(1.0103, 1.0103), RIF(2)])\n 0.4897530450000000?\n sage: import numpy\n sage: x = numpy.array([1,2,3,4,5])\n sage: variance(x, bias=False)\n 2.5\n sage: x = stats.TimeSeries([1..100])\n sage: variance(x)\n 841.6666666666666\n sage: variance(x, bias=True)\n 833.25\n sage: class MyClass:\n ....: def variance(self, bias = False):\n ....: return 1\n sage: stats.variance(MyClass())\n 1\n sage: class SillyPythonList:\n ....: def __init__(self):\n ....: self.__list = [2, 4]\n ....: def __len__(self):\n ....: return len(self.__list)\n ....: def __iter__(self):\n ....: return self.__list.__iter__()\n ....: def mean(self):\n ....: return 3\n sage: R = SillyPythonList()\n sage: variance(R)\n 2\n sage: variance(R, bias=True)\n 1\n\n TESTS:\n\n The performance issue from :trac:`10019` is solved::\n\n sage: variance([1] * 2^18)\n 0\n ' deprecation(29662, 'sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead') if hasattr(v, 'variance'): return v.variance(bias=bias) import numpy x = 0 if isinstance(v, numpy.ndarray): if bias: return v.var() else: return v.var(ddof=1) if (not v): return NaN mu = mean(v) for vi in v: x += ((vi - mu) ** 2) if bias: if isinstance(x, int): return (x / ZZ(len(v))) return (x / len(v)) else: if isinstance(x, int): return (x / ZZ((len(v) - 1))) return (x / (len(v) - 1))<|docstring|>Return the variance of the elements of `v`. We define the variance of the empty list to be NaN, following the convention of MATLAB, Scipy, and R. This function is deprecated. Use ``numpy.var`` or ``numpy.nanvar`` instead. INPUT: - `v` -- a list of numbers - ``bias`` -- bool (default: False); if False, divide by len(v) - 1 instead of len(v) to give a less biased estimator (sample) for the standard deviation. OUTPUT: - a number EXAMPLES:: sage: variance([1..6]) doctest:warning... DeprecationWarning: sage.stats.basic_stats.variance is deprecated; use numpy.var or numpy.nanvar instead See https://trac.sagemath.org/29662 for details. 7/2 sage: variance([1..6], bias=True) 35/12 sage: variance([e, pi]) 1/2*(pi - e)^2 sage: variance([]) NaN sage: variance([I, sqrt(2), 3/5]) 1/450*(10*sqrt(2) - 5*I - 3)^2 + 1/450*(5*sqrt(2) - 10*I + 3)^2 + 1/450*(5*sqrt(2) + 5*I - 6)^2 sage: variance([RIF(1.0103, 1.0103), RIF(2)]) 0.4897530450000000? sage: import numpy sage: x = numpy.array([1,2,3,4,5]) sage: variance(x, bias=False) 2.5 sage: x = stats.TimeSeries([1..100]) sage: variance(x) 841.6666666666666 sage: variance(x, bias=True) 833.25 sage: class MyClass: ....: def variance(self, bias = False): ....: return 1 sage: stats.variance(MyClass()) 1 sage: class SillyPythonList: ....: def __init__(self): ....: self.__list = [2, 4] ....: def __len__(self): ....: return len(self.__list) ....: def __iter__(self): ....: return self.__list.__iter__() ....: def mean(self): ....: return 3 sage: R = SillyPythonList() sage: variance(R) 2 sage: variance(R, bias=True) 1 TESTS: The performance issue from :trac:`10019` is solved:: sage: variance([1] * 2^18) 0<|endoftext|>
8aa4c24f24c0e81a3b54edacd91362c26d799523f1fb0f324918a4010bc04fb0
def median(v): "\n Return the median (middle value) of the elements of `v`\n\n If `v` is empty, we define the median to be NaN, which is\n consistent with NumPy (note that R returns NULL).\n If `v` is comprised of strings, TypeError occurs.\n For elements other than numbers, the median is a result of ``sorted()``.\n\n This function is deprecated. Use ``numpy.median`` or ``numpy.nanmedian``\n instead.\n\n INPUT:\n\n - `v` -- a list\n\n OUTPUT:\n\n - median element of `v`\n\n EXAMPLES::\n\n sage: median([1,2,3,4,5])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.median is deprecated; use numpy.median or numpy.nanmedian instead\n See https://trac.sagemath.org/29662 for details.\n 3\n sage: median([e, pi])\n 1/2*pi + 1/2*e\n sage: median(['sage', 'linux', 'python'])\n 'python'\n sage: median([])\n NaN\n sage: class MyClass:\n ....: def median(self):\n ....: return 1\n sage: stats.median(MyClass())\n 1\n " deprecation(29662, 'sage.stats.basic_stats.median is deprecated; use numpy.median or numpy.nanmedian instead') if hasattr(v, 'median'): return v.median() if (not v): return NaN values = sorted(v) if (len(values) % 2): return values[(((len(values) + 1) // 2) - 1)] else: lower = values[(((len(values) + 1) // 2) - 1)] upper = values[(len(values) // 2)] return ((lower + upper) / ZZ(2))
Return the median (middle value) of the elements of `v` If `v` is empty, we define the median to be NaN, which is consistent with NumPy (note that R returns NULL). If `v` is comprised of strings, TypeError occurs. For elements other than numbers, the median is a result of ``sorted()``. This function is deprecated. Use ``numpy.median`` or ``numpy.nanmedian`` instead. INPUT: - `v` -- a list OUTPUT: - median element of `v` EXAMPLES:: sage: median([1,2,3,4,5]) doctest:warning... DeprecationWarning: sage.stats.basic_stats.median is deprecated; use numpy.median or numpy.nanmedian instead See https://trac.sagemath.org/29662 for details. 3 sage: median([e, pi]) 1/2*pi + 1/2*e sage: median(['sage', 'linux', 'python']) 'python' sage: median([]) NaN sage: class MyClass: ....: def median(self): ....: return 1 sage: stats.median(MyClass()) 1
src/sage/stats/basic_stats.py
median
LaisRast/sage
1,742
python
def median(v): "\n Return the median (middle value) of the elements of `v`\n\n If `v` is empty, we define the median to be NaN, which is\n consistent with NumPy (note that R returns NULL).\n If `v` is comprised of strings, TypeError occurs.\n For elements other than numbers, the median is a result of ``sorted()``.\n\n This function is deprecated. Use ``numpy.median`` or ``numpy.nanmedian``\n instead.\n\n INPUT:\n\n - `v` -- a list\n\n OUTPUT:\n\n - median element of `v`\n\n EXAMPLES::\n\n sage: median([1,2,3,4,5])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.median is deprecated; use numpy.median or numpy.nanmedian instead\n See https://trac.sagemath.org/29662 for details.\n 3\n sage: median([e, pi])\n 1/2*pi + 1/2*e\n sage: median(['sage', 'linux', 'python'])\n 'python'\n sage: median([])\n NaN\n sage: class MyClass:\n ....: def median(self):\n ....: return 1\n sage: stats.median(MyClass())\n 1\n " deprecation(29662, 'sage.stats.basic_stats.median is deprecated; use numpy.median or numpy.nanmedian instead') if hasattr(v, 'median'): return v.median() if (not v): return NaN values = sorted(v) if (len(values) % 2): return values[(((len(values) + 1) // 2) - 1)] else: lower = values[(((len(values) + 1) // 2) - 1)] upper = values[(len(values) // 2)] return ((lower + upper) / ZZ(2))
def median(v): "\n Return the median (middle value) of the elements of `v`\n\n If `v` is empty, we define the median to be NaN, which is\n consistent with NumPy (note that R returns NULL).\n If `v` is comprised of strings, TypeError occurs.\n For elements other than numbers, the median is a result of ``sorted()``.\n\n This function is deprecated. Use ``numpy.median`` or ``numpy.nanmedian``\n instead.\n\n INPUT:\n\n - `v` -- a list\n\n OUTPUT:\n\n - median element of `v`\n\n EXAMPLES::\n\n sage: median([1,2,3,4,5])\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.median is deprecated; use numpy.median or numpy.nanmedian instead\n See https://trac.sagemath.org/29662 for details.\n 3\n sage: median([e, pi])\n 1/2*pi + 1/2*e\n sage: median(['sage', 'linux', 'python'])\n 'python'\n sage: median([])\n NaN\n sage: class MyClass:\n ....: def median(self):\n ....: return 1\n sage: stats.median(MyClass())\n 1\n " deprecation(29662, 'sage.stats.basic_stats.median is deprecated; use numpy.median or numpy.nanmedian instead') if hasattr(v, 'median'): return v.median() if (not v): return NaN values = sorted(v) if (len(values) % 2): return values[(((len(values) + 1) // 2) - 1)] else: lower = values[(((len(values) + 1) // 2) - 1)] upper = values[(len(values) // 2)] return ((lower + upper) / ZZ(2))<|docstring|>Return the median (middle value) of the elements of `v` If `v` is empty, we define the median to be NaN, which is consistent with NumPy (note that R returns NULL). If `v` is comprised of strings, TypeError occurs. For elements other than numbers, the median is a result of ``sorted()``. This function is deprecated. Use ``numpy.median`` or ``numpy.nanmedian`` instead. INPUT: - `v` -- a list OUTPUT: - median element of `v` EXAMPLES:: sage: median([1,2,3,4,5]) doctest:warning... DeprecationWarning: sage.stats.basic_stats.median is deprecated; use numpy.median or numpy.nanmedian instead See https://trac.sagemath.org/29662 for details. 3 sage: median([e, pi]) 1/2*pi + 1/2*e sage: median(['sage', 'linux', 'python']) 'python' sage: median([]) NaN sage: class MyClass: ....: def median(self): ....: return 1 sage: stats.median(MyClass()) 1<|endoftext|>
7adca9d4b49527f25bcdd3df4fa359aa2a0906e12335020699556dd98f3e0191
def moving_average(v, n): '\n Return the moving average of a list `v`.\n\n The moving average of a list is often used to smooth out noisy data.\n\n If `v` is empty, we define the entries of the moving average to be NaN.\n\n This method is deprecated. Use ``pandas.Series.rolling`` instead.\n\n INPUT:\n\n - `v` -- a list\n\n - `n` -- the number of values used in computing each average.\n\n OUTPUT:\n\n - a list of length ``len(v)-n+1``, since we do not fabric any values\n\n EXAMPLES::\n\n sage: moving_average([1..10], 1)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.moving_average is deprecated; use pandas.Series.rolling instead\n See https://trac.sagemath.org/29662 for details.\n [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n sage: moving_average([1..10], 4)\n [5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2]\n sage: moving_average([], 1)\n []\n sage: moving_average([pi, e, I, sqrt(2), 3/5], 2)\n [1/2*pi + 1/2*e, 1/2*e + 1/2*I, 1/2*sqrt(2) + 1/2*I,\n 1/2*sqrt(2) + 3/10]\n\n We check if the input is a time series, and if so use the\n optimized ``simple_moving_average`` method, but with (slightly\n different) meaning as defined above (the point is that the\n ``simple_moving_average`` on time series returns `n` values::\n\n sage: a = stats.TimeSeries([1..10])\n sage: stats.moving_average(a, 3)\n [2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000]\n sage: stats.moving_average(list(a), 3)\n [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]\n\n ' deprecation(29662, 'sage.stats.basic_stats.moving_average is deprecated; use pandas.Series.rolling instead') if (not v): return v from .time_series import TimeSeries if isinstance(v, TimeSeries): return v.simple_moving_average(n)[(n - 1):] n = int(n) if (n <= 0): raise ValueError('n must be positive') nn = ZZ(n) s = sum(v[:n]) ans = [(s / nn)] for i in range(n, len(v)): s += (v[i] - v[(i - n)]) ans.append((s / nn)) return ans
Return the moving average of a list `v`. The moving average of a list is often used to smooth out noisy data. If `v` is empty, we define the entries of the moving average to be NaN. This method is deprecated. Use ``pandas.Series.rolling`` instead. INPUT: - `v` -- a list - `n` -- the number of values used in computing each average. OUTPUT: - a list of length ``len(v)-n+1``, since we do not fabric any values EXAMPLES:: sage: moving_average([1..10], 1) doctest:warning... DeprecationWarning: sage.stats.basic_stats.moving_average is deprecated; use pandas.Series.rolling instead See https://trac.sagemath.org/29662 for details. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: moving_average([1..10], 4) [5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2] sage: moving_average([], 1) [] sage: moving_average([pi, e, I, sqrt(2), 3/5], 2) [1/2*pi + 1/2*e, 1/2*e + 1/2*I, 1/2*sqrt(2) + 1/2*I, 1/2*sqrt(2) + 3/10] We check if the input is a time series, and if so use the optimized ``simple_moving_average`` method, but with (slightly different) meaning as defined above (the point is that the ``simple_moving_average`` on time series returns `n` values:: sage: a = stats.TimeSeries([1..10]) sage: stats.moving_average(a, 3) [2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000] sage: stats.moving_average(list(a), 3) [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
src/sage/stats/basic_stats.py
moving_average
LaisRast/sage
1,742
python
def moving_average(v, n): '\n Return the moving average of a list `v`.\n\n The moving average of a list is often used to smooth out noisy data.\n\n If `v` is empty, we define the entries of the moving average to be NaN.\n\n This method is deprecated. Use ``pandas.Series.rolling`` instead.\n\n INPUT:\n\n - `v` -- a list\n\n - `n` -- the number of values used in computing each average.\n\n OUTPUT:\n\n - a list of length ``len(v)-n+1``, since we do not fabric any values\n\n EXAMPLES::\n\n sage: moving_average([1..10], 1)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.moving_average is deprecated; use pandas.Series.rolling instead\n See https://trac.sagemath.org/29662 for details.\n [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n sage: moving_average([1..10], 4)\n [5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2]\n sage: moving_average([], 1)\n []\n sage: moving_average([pi, e, I, sqrt(2), 3/5], 2)\n [1/2*pi + 1/2*e, 1/2*e + 1/2*I, 1/2*sqrt(2) + 1/2*I,\n 1/2*sqrt(2) + 3/10]\n\n We check if the input is a time series, and if so use the\n optimized ``simple_moving_average`` method, but with (slightly\n different) meaning as defined above (the point is that the\n ``simple_moving_average`` on time series returns `n` values::\n\n sage: a = stats.TimeSeries([1..10])\n sage: stats.moving_average(a, 3)\n [2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000]\n sage: stats.moving_average(list(a), 3)\n [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]\n\n ' deprecation(29662, 'sage.stats.basic_stats.moving_average is deprecated; use pandas.Series.rolling instead') if (not v): return v from .time_series import TimeSeries if isinstance(v, TimeSeries): return v.simple_moving_average(n)[(n - 1):] n = int(n) if (n <= 0): raise ValueError('n must be positive') nn = ZZ(n) s = sum(v[:n]) ans = [(s / nn)] for i in range(n, len(v)): s += (v[i] - v[(i - n)]) ans.append((s / nn)) return ans
def moving_average(v, n): '\n Return the moving average of a list `v`.\n\n The moving average of a list is often used to smooth out noisy data.\n\n If `v` is empty, we define the entries of the moving average to be NaN.\n\n This method is deprecated. Use ``pandas.Series.rolling`` instead.\n\n INPUT:\n\n - `v` -- a list\n\n - `n` -- the number of values used in computing each average.\n\n OUTPUT:\n\n - a list of length ``len(v)-n+1``, since we do not fabric any values\n\n EXAMPLES::\n\n sage: moving_average([1..10], 1)\n doctest:warning...\n DeprecationWarning: sage.stats.basic_stats.moving_average is deprecated; use pandas.Series.rolling instead\n See https://trac.sagemath.org/29662 for details.\n [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n sage: moving_average([1..10], 4)\n [5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2]\n sage: moving_average([], 1)\n []\n sage: moving_average([pi, e, I, sqrt(2), 3/5], 2)\n [1/2*pi + 1/2*e, 1/2*e + 1/2*I, 1/2*sqrt(2) + 1/2*I,\n 1/2*sqrt(2) + 3/10]\n\n We check if the input is a time series, and if so use the\n optimized ``simple_moving_average`` method, but with (slightly\n different) meaning as defined above (the point is that the\n ``simple_moving_average`` on time series returns `n` values::\n\n sage: a = stats.TimeSeries([1..10])\n sage: stats.moving_average(a, 3)\n [2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000]\n sage: stats.moving_average(list(a), 3)\n [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]\n\n ' deprecation(29662, 'sage.stats.basic_stats.moving_average is deprecated; use pandas.Series.rolling instead') if (not v): return v from .time_series import TimeSeries if isinstance(v, TimeSeries): return v.simple_moving_average(n)[(n - 1):] n = int(n) if (n <= 0): raise ValueError('n must be positive') nn = ZZ(n) s = sum(v[:n]) ans = [(s / nn)] for i in range(n, len(v)): s += (v[i] - v[(i - n)]) ans.append((s / nn)) return ans<|docstring|>Return the moving average of a list `v`. The moving average of a list is often used to smooth out noisy data. If `v` is empty, we define the entries of the moving average to be NaN. This method is deprecated. Use ``pandas.Series.rolling`` instead. INPUT: - `v` -- a list - `n` -- the number of values used in computing each average. OUTPUT: - a list of length ``len(v)-n+1``, since we do not fabric any values EXAMPLES:: sage: moving_average([1..10], 1) doctest:warning... DeprecationWarning: sage.stats.basic_stats.moving_average is deprecated; use pandas.Series.rolling instead See https://trac.sagemath.org/29662 for details. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: moving_average([1..10], 4) [5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2] sage: moving_average([], 1) [] sage: moving_average([pi, e, I, sqrt(2), 3/5], 2) [1/2*pi + 1/2*e, 1/2*e + 1/2*I, 1/2*sqrt(2) + 1/2*I, 1/2*sqrt(2) + 3/10] We check if the input is a time series, and if so use the optimized ``simple_moving_average`` method, but with (slightly different) meaning as defined above (the point is that the ``simple_moving_average`` on time series returns `n` values:: sage: a = stats.TimeSeries([1..10]) sage: stats.moving_average(a, 3) [2.0000, 3.0000, 4.0000, 5.0000, 6.0000, 7.0000, 8.0000, 9.0000] sage: stats.moving_average(list(a), 3) [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]<|endoftext|>
9f86e2304d0fb1f91c18c9ca54fba1e2bc607fe8fd2ea9a68d9cab22afb063f5
def Whoami(self): 'Rucio Summoner:Whoami\n Results a dictionary to identify the current\n Rucio user and credentials.\n\n :return A dictionary with Rucio whoami information\n ' return self._rucio.Whoami()
Rucio Summoner:Whoami Results a dictionary to identify the current Rucio user and credentials. :return A dictionary with Rucio whoami information
admix/interfaces/rucio_summoner.py
Whoami
XENONnT/admix
2
python
def Whoami(self): 'Rucio Summoner:Whoami\n Results a dictionary to identify the current\n Rucio user and credentials.\n\n :return A dictionary with Rucio whoami information\n ' return self._rucio.Whoami()
def Whoami(self): 'Rucio Summoner:Whoami\n Results a dictionary to identify the current\n Rucio user and credentials.\n\n :return A dictionary with Rucio whoami information\n ' return self._rucio.Whoami()<|docstring|>Rucio Summoner:Whoami Results a dictionary to identify the current Rucio user and credentials. :return A dictionary with Rucio whoami information<|endoftext|>
b25f74bd094f17c90864f75f3425963ca44753ba0042471faac1cab39f9af6b0
def Alive(self): 'Function: Alive\n Simple print statement to test Rucio setup\n ' whoami = self._rucio.Whoami() print('Rucio ') print('Rucio Whoami()') for (ikey, ival) in whoami.items(): print(ikey, '\t \t', ival) print() print('Rucio alive')
Function: Alive Simple print statement to test Rucio setup
admix/interfaces/rucio_summoner.py
Alive
XENONnT/admix
2
python
def Alive(self): 'Function: Alive\n Simple print statement to test Rucio setup\n ' whoami = self._rucio.Whoami() print('Rucio ') print('Rucio Whoami()') for (ikey, ival) in whoami.items(): print(ikey, '\t \t', ival) print() print('Rucio alive')
def Alive(self): 'Function: Alive\n Simple print statement to test Rucio setup\n ' whoami = self._rucio.Whoami() print('Rucio ') print('Rucio Whoami()') for (ikey, ival) in whoami.items(): print(ikey, '\t \t', ival) print() print('Rucio alive')<|docstring|>Function: Alive Simple print statement to test Rucio setup<|endoftext|>
fa81e23684654c539970da9e30d22ad1e4781e20532c3a58192fe4b7cc68175b
def _md5_hash(self, string): 'Function: _md5_hash(...)\n\n Calculate a md5 hash from a string\n\n :param string: A string\n :return result: A md5 checksum of the input string\n ' return hashlib.md5(string.encode('utf-8')).hexdigest()
Function: _md5_hash(...) Calculate a md5 hash from a string :param string: A string :return result: A md5 checksum of the input string
admix/interfaces/rucio_summoner.py
_md5_hash
XENONnT/admix
2
python
def _md5_hash(self, string): 'Function: _md5_hash(...)\n\n Calculate a md5 hash from a string\n\n :param string: A string\n :return result: A md5 checksum of the input string\n ' return hashlib.md5(string.encode('utf-8')).hexdigest()
def _md5_hash(self, string): 'Function: _md5_hash(...)\n\n Calculate a md5 hash from a string\n\n :param string: A string\n :return result: A md5 checksum of the input string\n ' return hashlib.md5(string.encode('utf-8')).hexdigest()<|docstring|>Function: _md5_hash(...) Calculate a md5 hash from a string :param string: A string :return result: A md5 checksum of the input string<|endoftext|>
e0a05fb1d1ab8629f5ad86b37e983ac87ae9318b3f5f0ab6220b4638f38b0ae1
def _VerifyStructure(self, upload_structure=None, level=(- 1)): 'The Rucio summoner is able to deal with\n two kinds of valid input arguments. To avoid\n a break in the command chain we verify the\n structure here first and prepare further steps.\n The two valid input arguments are:\n - A Rucio scope:name structure (DID) which is encoded\n by a string\n - A stacked container-dataset-file structure which\n is encoded in a dictionary\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: (val_scope, val_dname): The extracted Rucio DID to which certain operations are applied.\n ' val_scope = None val_dname = None if isinstance(upload_structure, str): try: val_scope = upload_structure.split(':')[0] val_dname = upload_structure.split(':')[1] except IndexError as e: print('Function _VerifyStructure for Rucio DID input: IndexError') print('Message:', e) elif isinstance(upload_structure, dict): sorted_keys = [key for key in sorted(upload_structure.keys())] try: val_scope = upload_structure[sorted_keys[level]]['did'].split(':')[0] val_dname = upload_structure[sorted_keys[level]]['did'].split(':')[1] except IndexError as e: print('Function _VerifyStructure for Rucio template input: IndexError') print('Message:', e) return (val_scope, val_dname)
The Rucio summoner is able to deal with two kinds of valid input arguments. To avoid a break in the command chain we verify the structure here first and prepare further steps. The two valid input arguments are: - A Rucio scope:name structure (DID) which is encoded by a string - A stacked container-dataset-file structure which is encoded in a dictionary :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return: (val_scope, val_dname): The extracted Rucio DID to which certain operations are applied.
admix/interfaces/rucio_summoner.py
_VerifyStructure
XENONnT/admix
2
python
def _VerifyStructure(self, upload_structure=None, level=(- 1)): 'The Rucio summoner is able to deal with\n two kinds of valid input arguments. To avoid\n a break in the command chain we verify the\n structure here first and prepare further steps.\n The two valid input arguments are:\n - A Rucio scope:name structure (DID) which is encoded\n by a string\n - A stacked container-dataset-file structure which\n is encoded in a dictionary\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: (val_scope, val_dname): The extracted Rucio DID to which certain operations are applied.\n ' val_scope = None val_dname = None if isinstance(upload_structure, str): try: val_scope = upload_structure.split(':')[0] val_dname = upload_structure.split(':')[1] except IndexError as e: print('Function _VerifyStructure for Rucio DID input: IndexError') print('Message:', e) elif isinstance(upload_structure, dict): sorted_keys = [key for key in sorted(upload_structure.keys())] try: val_scope = upload_structure[sorted_keys[level]]['did'].split(':')[0] val_dname = upload_structure[sorted_keys[level]]['did'].split(':')[1] except IndexError as e: print('Function _VerifyStructure for Rucio template input: IndexError') print('Message:', e) return (val_scope, val_dname)
def _VerifyStructure(self, upload_structure=None, level=(- 1)): 'The Rucio summoner is able to deal with\n two kinds of valid input arguments. To avoid\n a break in the command chain we verify the\n structure here first and prepare further steps.\n The two valid input arguments are:\n - A Rucio scope:name structure (DID) which is encoded\n by a string\n - A stacked container-dataset-file structure which\n is encoded in a dictionary\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: (val_scope, val_dname): The extracted Rucio DID to which certain operations are applied.\n ' val_scope = None val_dname = None if isinstance(upload_structure, str): try: val_scope = upload_structure.split(':')[0] val_dname = upload_structure.split(':')[1] except IndexError as e: print('Function _VerifyStructure for Rucio DID input: IndexError') print('Message:', e) elif isinstance(upload_structure, dict): sorted_keys = [key for key in sorted(upload_structure.keys())] try: val_scope = upload_structure[sorted_keys[level]]['did'].split(':')[0] val_dname = upload_structure[sorted_keys[level]]['did'].split(':')[1] except IndexError as e: print('Function _VerifyStructure for Rucio template input: IndexError') print('Message:', e) return (val_scope, val_dname)<|docstring|>The Rucio summoner is able to deal with two kinds of valid input arguments. To avoid a break in the command chain we verify the structure here first and prepare further steps. The two valid input arguments are: - A Rucio scope:name structure (DID) which is encoded by a string - A stacked container-dataset-file structure which is encoded in a dictionary :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return: (val_scope, val_dname): The extracted Rucio DID to which certain operations are applied.<|endoftext|>
923a49dca8d30fbcaa7026b06d0512ca43d5ded30c57e03d400faabc6a855881
def _IsTemplate(self, upload_structure): 'Function: _IsTemplate()\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :return is_template: Returns True if the input is a template_dictionary, otherwise false\n ' is_template = False val_scope = None val_dname = None if isinstance(upload_structure, dict): sorted_keys = [key for key in sorted(upload_structure.keys())] level_checks = [] for i_level in sorted_keys: i_level = upload_structure[i_level] level_check = False if (isinstance(i_level, dict) and ('did' in list(i_level.keys())) and ('type' in list(i_level.keys())) and ('tag_words' in list(i_level.keys()))): level_check = True level_checks.append(level_check) if (False not in level_checks): is_template = True return is_template
Function: _IsTemplate() :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :return is_template: Returns True if the input is a template_dictionary, otherwise false
admix/interfaces/rucio_summoner.py
_IsTemplate
XENONnT/admix
2
python
def _IsTemplate(self, upload_structure): 'Function: _IsTemplate()\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :return is_template: Returns True if the input is a template_dictionary, otherwise false\n ' is_template = False val_scope = None val_dname = None if isinstance(upload_structure, dict): sorted_keys = [key for key in sorted(upload_structure.keys())] level_checks = [] for i_level in sorted_keys: i_level = upload_structure[i_level] level_check = False if (isinstance(i_level, dict) and ('did' in list(i_level.keys())) and ('type' in list(i_level.keys())) and ('tag_words' in list(i_level.keys()))): level_check = True level_checks.append(level_check) if (False not in level_checks): is_template = True return is_template
def _IsTemplate(self, upload_structure): 'Function: _IsTemplate()\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :return is_template: Returns True if the input is a template_dictionary, otherwise false\n ' is_template = False val_scope = None val_dname = None if isinstance(upload_structure, dict): sorted_keys = [key for key in sorted(upload_structure.keys())] level_checks = [] for i_level in sorted_keys: i_level = upload_structure[i_level] level_check = False if (isinstance(i_level, dict) and ('did' in list(i_level.keys())) and ('type' in list(i_level.keys())) and ('tag_words' in list(i_level.keys()))): level_check = True level_checks.append(level_check) if (False not in level_checks): is_template = True return is_template<|docstring|>Function: _IsTemplate() :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :return is_template: Returns True if the input is a template_dictionary, otherwise false<|endoftext|>
775d944da536e279ba4b7c871113c0e7aeb9624de0f59ed1ae4c183c64c6b378
def AddRule(self, did, rse, lifetime=None, protocol='rucio-catalogue', priority=3): 'Add rules for a Rucio DID or dictionary template.\n\n :param: did: Rucio DID form of "scope:name"\n :param: rse: An existing Rucio storage element (RSE)\n :param: lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: protocol: Should always be \'rucio-catalogue\'?\n :return:\n ' (val_scope, val_dname) = self._VerifyStructure(did) rules = self._rucio.ListDidRules(val_scope, val_dname) current_rses = [r['rse_expression'] for r in rules] if (rse in current_rses): print(('There already exists a rule for DID %s at RSE %s' % (did, rse))) return 1 did_dict = {} did_dict['scope'] = val_scope did_dict['name'] = val_dname self._rucio.AddRule([did_dict], copies=1, rse_expression=rse, lifetime=lifetime, priority=priority) return 0
Add rules for a Rucio DID or dictionary template. :param: did: Rucio DID form of "scope:name" :param: rse: An existing Rucio storage element (RSE) :param: lifetime: Choose a lifetime of the transfer rule in seconds or None :param: protocol: Should always be 'rucio-catalogue'? :return:
admix/interfaces/rucio_summoner.py
AddRule
XENONnT/admix
2
python
def AddRule(self, did, rse, lifetime=None, protocol='rucio-catalogue', priority=3): 'Add rules for a Rucio DID or dictionary template.\n\n :param: did: Rucio DID form of "scope:name"\n :param: rse: An existing Rucio storage element (RSE)\n :param: lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: protocol: Should always be \'rucio-catalogue\'?\n :return:\n ' (val_scope, val_dname) = self._VerifyStructure(did) rules = self._rucio.ListDidRules(val_scope, val_dname) current_rses = [r['rse_expression'] for r in rules] if (rse in current_rses): print(('There already exists a rule for DID %s at RSE %s' % (did, rse))) return 1 did_dict = {} did_dict['scope'] = val_scope did_dict['name'] = val_dname self._rucio.AddRule([did_dict], copies=1, rse_expression=rse, lifetime=lifetime, priority=priority) return 0
def AddRule(self, did, rse, lifetime=None, protocol='rucio-catalogue', priority=3): 'Add rules for a Rucio DID or dictionary template.\n\n :param: did: Rucio DID form of "scope:name"\n :param: rse: An existing Rucio storage element (RSE)\n :param: lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: protocol: Should always be \'rucio-catalogue\'?\n :return:\n ' (val_scope, val_dname) = self._VerifyStructure(did) rules = self._rucio.ListDidRules(val_scope, val_dname) current_rses = [r['rse_expression'] for r in rules] if (rse in current_rses): print(('There already exists a rule for DID %s at RSE %s' % (did, rse))) return 1 did_dict = {} did_dict['scope'] = val_scope did_dict['name'] = val_dname self._rucio.AddRule([did_dict], copies=1, rse_expression=rse, lifetime=lifetime, priority=priority) return 0<|docstring|>Add rules for a Rucio DID or dictionary template. :param: did: Rucio DID form of "scope:name" :param: rse: An existing Rucio storage element (RSE) :param: lifetime: Choose a lifetime of the transfer rule in seconds or None :param: protocol: Should always be 'rucio-catalogue'? :return:<|endoftext|>
611fed30647511dbe62e97f1cab96e7a52059b934a9f3cf386964811cde8bb90
def AddConditionalRule(self, did, from_rse, to_rse, lifetime=None, protocol='rucio-catalogue', priority=3): 'Add rules for a Rucio DID or dictionary template.\n\n :param: did: Rucio DID form of "scope:name"\n :param: rse: An existing Rucio storage element (RSE)\n :param: lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: protocol: Should always be \'rucio-catalogue\'?\n :return:\n ' (val_scope, val_dname) = self._VerifyStructure(did) rules = self._rucio.ListDidRules(val_scope, val_dname) current_rses = [r['rse_expression'] for r in rules] if (to_rse in current_rses): print(('There already exists a rule for DID %s at RSE %s' % (did, to_rse))) return 1 did_dict = {} did_dict['scope'] = val_scope did_dict['name'] = val_dname self._rucio.AddRule([did_dict], copies=1, rse_expression=to_rse, source_replica_expression=from_rse, lifetime=lifetime, priority=priority) return 0
Add rules for a Rucio DID or dictionary template. :param: did: Rucio DID form of "scope:name" :param: rse: An existing Rucio storage element (RSE) :param: lifetime: Choose a lifetime of the transfer rule in seconds or None :param: protocol: Should always be 'rucio-catalogue'? :return:
admix/interfaces/rucio_summoner.py
AddConditionalRule
XENONnT/admix
2
python
def AddConditionalRule(self, did, from_rse, to_rse, lifetime=None, protocol='rucio-catalogue', priority=3): 'Add rules for a Rucio DID or dictionary template.\n\n :param: did: Rucio DID form of "scope:name"\n :param: rse: An existing Rucio storage element (RSE)\n :param: lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: protocol: Should always be \'rucio-catalogue\'?\n :return:\n ' (val_scope, val_dname) = self._VerifyStructure(did) rules = self._rucio.ListDidRules(val_scope, val_dname) current_rses = [r['rse_expression'] for r in rules] if (to_rse in current_rses): print(('There already exists a rule for DID %s at RSE %s' % (did, to_rse))) return 1 did_dict = {} did_dict['scope'] = val_scope did_dict['name'] = val_dname self._rucio.AddRule([did_dict], copies=1, rse_expression=to_rse, source_replica_expression=from_rse, lifetime=lifetime, priority=priority) return 0
def AddConditionalRule(self, did, from_rse, to_rse, lifetime=None, protocol='rucio-catalogue', priority=3): 'Add rules for a Rucio DID or dictionary template.\n\n :param: did: Rucio DID form of "scope:name"\n :param: rse: An existing Rucio storage element (RSE)\n :param: lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: protocol: Should always be \'rucio-catalogue\'?\n :return:\n ' (val_scope, val_dname) = self._VerifyStructure(did) rules = self._rucio.ListDidRules(val_scope, val_dname) current_rses = [r['rse_expression'] for r in rules] if (to_rse in current_rses): print(('There already exists a rule for DID %s at RSE %s' % (did, to_rse))) return 1 did_dict = {} did_dict['scope'] = val_scope did_dict['name'] = val_dname self._rucio.AddRule([did_dict], copies=1, rse_expression=to_rse, source_replica_expression=from_rse, lifetime=lifetime, priority=priority) return 0<|docstring|>Add rules for a Rucio DID or dictionary template. :param: did: Rucio DID form of "scope:name" :param: rse: An existing Rucio storage element (RSE) :param: lifetime: Choose a lifetime of the transfer rule in seconds or None :param: protocol: Should always be 'rucio-catalogue'? :return:<|endoftext|>
19d3027c890a258d15b5823dbdae3f07172f1a9ed7902224e267be87d8b185a6
def UpdateRules(self, upload_structure=None, rse_rules=None, level=(- 1)): 'Update existing rules for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: rse_rules: A list of strings which follow a certain template of ["{protocol}:{rse}:{lifetime}",...]\n With:\n protocol: rucio-catalogue\n rse: An existing Rucio storage element (RSE)\n lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: A dictionary with Rucio Storage Elements (RSE) as keys. The value is another dictionary\n with keys \'result\' (0 on success, 1 on failure) and lifetime ( an integer > 0)\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) r_rse_ids = {} for i_rule in r_rules: r_rse = i_rule['rse_expression'] r_rse_ids[r_rse] = i_rule['id'] result = {} for i_rule in rse_rules: g_ptr = i_rule.split(':')[0] g_rse = i_rule.split(':')[1] g_rlt = i_rule.split(':')[2] if (g_rlt == 'None'): g_rlt = None else: g_rlt = int(g_rlt) if (g_rse not in list(r_rse_ids.keys())): continue options = {} options['lifetime'] = g_rlt r = self._rucio.UpdateRule(r_rse_ids[g_rse], options) result[g_rse] = {} result[g_rse]['result'] = r result[g_rse]['lifetime'] = g_rlt return result
Update existing rules for a Rucio DID or dictionary template. :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: rse_rules: A list of strings which follow a certain template of ["{protocol}:{rse}:{lifetime}",...] With: protocol: rucio-catalogue rse: An existing Rucio storage element (RSE) lifetime: Choose a lifetime of the transfer rule in seconds or None :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return result: A dictionary with Rucio Storage Elements (RSE) as keys. The value is another dictionary with keys 'result' (0 on success, 1 on failure) and lifetime ( an integer > 0)
admix/interfaces/rucio_summoner.py
UpdateRules
XENONnT/admix
2
python
def UpdateRules(self, upload_structure=None, rse_rules=None, level=(- 1)): 'Update existing rules for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: rse_rules: A list of strings which follow a certain template of ["{protocol}:{rse}:{lifetime}",...]\n With:\n protocol: rucio-catalogue\n rse: An existing Rucio storage element (RSE)\n lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: A dictionary with Rucio Storage Elements (RSE) as keys. The value is another dictionary\n with keys \'result\' (0 on success, 1 on failure) and lifetime ( an integer > 0)\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) r_rse_ids = {} for i_rule in r_rules: r_rse = i_rule['rse_expression'] r_rse_ids[r_rse] = i_rule['id'] result = {} for i_rule in rse_rules: g_ptr = i_rule.split(':')[0] g_rse = i_rule.split(':')[1] g_rlt = i_rule.split(':')[2] if (g_rlt == 'None'): g_rlt = None else: g_rlt = int(g_rlt) if (g_rse not in list(r_rse_ids.keys())): continue options = {} options['lifetime'] = g_rlt r = self._rucio.UpdateRule(r_rse_ids[g_rse], options) result[g_rse] = {} result[g_rse]['result'] = r result[g_rse]['lifetime'] = g_rlt return result
def UpdateRules(self, upload_structure=None, rse_rules=None, level=(- 1)): 'Update existing rules for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: rse_rules: A list of strings which follow a certain template of ["{protocol}:{rse}:{lifetime}",...]\n With:\n protocol: rucio-catalogue\n rse: An existing Rucio storage element (RSE)\n lifetime: Choose a lifetime of the transfer rule in seconds or None\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: A dictionary with Rucio Storage Elements (RSE) as keys. The value is another dictionary\n with keys \'result\' (0 on success, 1 on failure) and lifetime ( an integer > 0)\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) r_rse_ids = {} for i_rule in r_rules: r_rse = i_rule['rse_expression'] r_rse_ids[r_rse] = i_rule['id'] result = {} for i_rule in rse_rules: g_ptr = i_rule.split(':')[0] g_rse = i_rule.split(':')[1] g_rlt = i_rule.split(':')[2] if (g_rlt == 'None'): g_rlt = None else: g_rlt = int(g_rlt) if (g_rse not in list(r_rse_ids.keys())): continue options = {} options['lifetime'] = g_rlt r = self._rucio.UpdateRule(r_rse_ids[g_rse], options) result[g_rse] = {} result[g_rse]['result'] = r result[g_rse]['lifetime'] = g_rlt return result<|docstring|>Update existing rules for a Rucio DID or dictionary template. :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: rse_rules: A list of strings which follow a certain template of ["{protocol}:{rse}:{lifetime}",...] With: protocol: rucio-catalogue rse: An existing Rucio storage element (RSE) lifetime: Choose a lifetime of the transfer rule in seconds or None :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return result: A dictionary with Rucio Storage Elements (RSE) as keys. The value is another dictionary with keys 'result' (0 on success, 1 on failure) and lifetime ( an integer > 0)<|endoftext|>
5f989e1099fc62c1b958c943d3c093c425c1c5dda51ca894dd584a64d59b398c
def _rule_status_dictionary(self): 'This dictionary defines the full set of rule information\n what is returned from Rucio and dedicated to further usage.\n Add information carefully if you need to. Removing anything from\n this dictionary breaks aDMIX.' rule = {} rule['rse'] = None rule['exists'] = False rule['state'] = 'Unkown' rule['cnt_ok'] = 0 rule['cnt_repl'] = 0 rule['cnt_stuck'] = 0 rule['id'] = None rule['expires'] = None return rule
This dictionary defines the full set of rule information what is returned from Rucio and dedicated to further usage. Add information carefully if you need to. Removing anything from this dictionary breaks aDMIX.
admix/interfaces/rucio_summoner.py
_rule_status_dictionary
XENONnT/admix
2
python
def _rule_status_dictionary(self): 'This dictionary defines the full set of rule information\n what is returned from Rucio and dedicated to further usage.\n Add information carefully if you need to. Removing anything from\n this dictionary breaks aDMIX.' rule = {} rule['rse'] = None rule['exists'] = False rule['state'] = 'Unkown' rule['cnt_ok'] = 0 rule['cnt_repl'] = 0 rule['cnt_stuck'] = 0 rule['id'] = None rule['expires'] = None return rule
def _rule_status_dictionary(self): 'This dictionary defines the full set of rule information\n what is returned from Rucio and dedicated to further usage.\n Add information carefully if you need to. Removing anything from\n this dictionary breaks aDMIX.' rule = {} rule['rse'] = None rule['exists'] = False rule['state'] = 'Unkown' rule['cnt_ok'] = 0 rule['cnt_repl'] = 0 rule['cnt_stuck'] = 0 rule['id'] = None rule['expires'] = None return rule<|docstring|>This dictionary defines the full set of rule information what is returned from Rucio and dedicated to further usage. Add information carefully if you need to. Removing anything from this dictionary breaks aDMIX.<|endoftext|>
f1db240755c2abc1a0dda8e4cdd51b3d75514326efcb13f4dffb0cbc9b19f0a0
def ListDidRules(self, upload_structure=None, level=(- 1)): 'List existing rules for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: A list of Rucio transfer rules with additional rule information. Each list element stands for a\n Rucio Storage Element (RSE). If no rule exists it returns an empty list\n\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) return r_rules
List existing rules for a Rucio DID or dictionary template. :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return: A list of Rucio transfer rules with additional rule information. Each list element stands for a Rucio Storage Element (RSE). If no rule exists it returns an empty list
admix/interfaces/rucio_summoner.py
ListDidRules
XENONnT/admix
2
python
def ListDidRules(self, upload_structure=None, level=(- 1)): 'List existing rules for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: A list of Rucio transfer rules with additional rule information. Each list element stands for a\n Rucio Storage Element (RSE). If no rule exists it returns an empty list\n\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) return r_rules
def ListDidRules(self, upload_structure=None, level=(- 1)): 'List existing rules for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: A list of Rucio transfer rules with additional rule information. Each list element stands for a\n Rucio Storage Element (RSE). If no rule exists it returns an empty list\n\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) return r_rules<|docstring|>List existing rules for a Rucio DID or dictionary template. :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return: A list of Rucio transfer rules with additional rule information. Each list element stands for a Rucio Storage Element (RSE). If no rule exists it returns an empty list<|endoftext|>
5eecbeebe07c11a819a06ea46113bc9f7f88251f9b887e500b87a99bc473443e
def ListFileReplicas(self, upload_structure=None, rse=None, level=(- 1), localpath=False): 'Function: ListFileReplicas(...)\n\n List all your file replicas which are attached to a dataset or container.\n\n Hint: List of RSE wide file replicas (local path) was not available in Rucio 1.19.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param rse: A valid Rucio Storage Element (RSE) of the current Rucio setting.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: Dictionary which with key->value ordering follows:\n\n - key: filename of the attached file\n\n - value: The local file location for the selected RSE\n\n Otherwise: {}\n\n ' result = {} file_list = [i_file['name'] for i_file in self.ListFiles(upload_structure, level)] (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) list_rse = [i_rse['rse'] for i_rse in list(self._rucio.ListRSEs())] if (rse not in list_rse): return result rse_overview = self._rucio.GetRSE(rse) _istape = False if (rse_overview.get('rse_type') == 'DISK'): _istape = False else: _istape = True rse_hostname = rse_overview['protocols'][0]['hostname'] rse_prefix = rse_overview['protocols'][0]['prefix'] rse_port = rse_overview['protocols'][0]['port'] rse_scheme = rse_overview['protocols'][0]['scheme'] lfn = None lfn_disk = '{protocol}://{hostname}:{port}{prefix}/{scope}/{h1}/{h2}/{fname}' lfn_local_disk = '{prefix}/{scope}/{h1}/{h2}/{fname}' lfn_tape = '{protocol}://{hostname}:{port}{prefix}/{scope}/{fname}' if (_istape == False): for i_filename in file_list: rucio_did = '{scope}:{name}'.format(scope=val_scope, name=i_filename) t1 = self._md5_hash(rucio_did)[0:2] t2 = self._md5_hash(rucio_did)[2:4] if localpath: lfn = lfn_local_disk.format(prefix=rse_prefix, scope=val_scope, h1=t1, h2=t2, fname=i_filename) result[i_filename] = lfn else: lfn = lfn_disk.format(protocol=rse_scheme, hostname=rse_hostname, port=rse_port, prefix=rse_prefix, scope=val_scope, h1=t1, h2=t2, fname=i_filename) result[i_filename] = lfn else: for i_filename in file_list: lfn = lfn_tape.format(protocol=rse_scheme, hostname=rse_hostname, port=rse_port, prefix=rse_prefix, scope=val_scope, fname=i_filename) result[i_filename] = lfn return result
Function: ListFileReplicas(...) List all your file replicas which are attached to a dataset or container. Hint: List of RSE wide file replicas (local path) was not available in Rucio 1.19. :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param rse: A valid Rucio Storage Element (RSE) of the current Rucio setting. :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return result: Dictionary which with key->value ordering follows: - key: filename of the attached file - value: The local file location for the selected RSE Otherwise: {}
admix/interfaces/rucio_summoner.py
ListFileReplicas
XENONnT/admix
2
python
def ListFileReplicas(self, upload_structure=None, rse=None, level=(- 1), localpath=False): 'Function: ListFileReplicas(...)\n\n List all your file replicas which are attached to a dataset or container.\n\n Hint: List of RSE wide file replicas (local path) was not available in Rucio 1.19.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param rse: A valid Rucio Storage Element (RSE) of the current Rucio setting.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: Dictionary which with key->value ordering follows:\n\n - key: filename of the attached file\n\n - value: The local file location for the selected RSE\n\n Otherwise: {}\n\n ' result = {} file_list = [i_file['name'] for i_file in self.ListFiles(upload_structure, level)] (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) list_rse = [i_rse['rse'] for i_rse in list(self._rucio.ListRSEs())] if (rse not in list_rse): return result rse_overview = self._rucio.GetRSE(rse) _istape = False if (rse_overview.get('rse_type') == 'DISK'): _istape = False else: _istape = True rse_hostname = rse_overview['protocols'][0]['hostname'] rse_prefix = rse_overview['protocols'][0]['prefix'] rse_port = rse_overview['protocols'][0]['port'] rse_scheme = rse_overview['protocols'][0]['scheme'] lfn = None lfn_disk = '{protocol}://{hostname}:{port}{prefix}/{scope}/{h1}/{h2}/{fname}' lfn_local_disk = '{prefix}/{scope}/{h1}/{h2}/{fname}' lfn_tape = '{protocol}://{hostname}:{port}{prefix}/{scope}/{fname}' if (_istape == False): for i_filename in file_list: rucio_did = '{scope}:{name}'.format(scope=val_scope, name=i_filename) t1 = self._md5_hash(rucio_did)[0:2] t2 = self._md5_hash(rucio_did)[2:4] if localpath: lfn = lfn_local_disk.format(prefix=rse_prefix, scope=val_scope, h1=t1, h2=t2, fname=i_filename) result[i_filename] = lfn else: lfn = lfn_disk.format(protocol=rse_scheme, hostname=rse_hostname, port=rse_port, prefix=rse_prefix, scope=val_scope, h1=t1, h2=t2, fname=i_filename) result[i_filename] = lfn else: for i_filename in file_list: lfn = lfn_tape.format(protocol=rse_scheme, hostname=rse_hostname, port=rse_port, prefix=rse_prefix, scope=val_scope, fname=i_filename) result[i_filename] = lfn return result
def ListFileReplicas(self, upload_structure=None, rse=None, level=(- 1), localpath=False): 'Function: ListFileReplicas(...)\n\n List all your file replicas which are attached to a dataset or container.\n\n Hint: List of RSE wide file replicas (local path) was not available in Rucio 1.19.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param rse: A valid Rucio Storage Element (RSE) of the current Rucio setting.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: Dictionary which with key->value ordering follows:\n\n - key: filename of the attached file\n\n - value: The local file location for the selected RSE\n\n Otherwise: {}\n\n ' result = {} file_list = [i_file['name'] for i_file in self.ListFiles(upload_structure, level)] (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) list_rse = [i_rse['rse'] for i_rse in list(self._rucio.ListRSEs())] if (rse not in list_rse): return result rse_overview = self._rucio.GetRSE(rse) _istape = False if (rse_overview.get('rse_type') == 'DISK'): _istape = False else: _istape = True rse_hostname = rse_overview['protocols'][0]['hostname'] rse_prefix = rse_overview['protocols'][0]['prefix'] rse_port = rse_overview['protocols'][0]['port'] rse_scheme = rse_overview['protocols'][0]['scheme'] lfn = None lfn_disk = '{protocol}://{hostname}:{port}{prefix}/{scope}/{h1}/{h2}/{fname}' lfn_local_disk = '{prefix}/{scope}/{h1}/{h2}/{fname}' lfn_tape = '{protocol}://{hostname}:{port}{prefix}/{scope}/{fname}' if (_istape == False): for i_filename in file_list: rucio_did = '{scope}:{name}'.format(scope=val_scope, name=i_filename) t1 = self._md5_hash(rucio_did)[0:2] t2 = self._md5_hash(rucio_did)[2:4] if localpath: lfn = lfn_local_disk.format(prefix=rse_prefix, scope=val_scope, h1=t1, h2=t2, fname=i_filename) result[i_filename] = lfn else: lfn = lfn_disk.format(protocol=rse_scheme, hostname=rse_hostname, port=rse_port, prefix=rse_prefix, scope=val_scope, h1=t1, h2=t2, fname=i_filename) result[i_filename] = lfn else: for i_filename in file_list: lfn = lfn_tape.format(protocol=rse_scheme, hostname=rse_hostname, port=rse_port, prefix=rse_prefix, scope=val_scope, fname=i_filename) result[i_filename] = lfn return result<|docstring|>Function: ListFileReplicas(...) List all your file replicas which are attached to a dataset or container. Hint: List of RSE wide file replicas (local path) was not available in Rucio 1.19. :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param rse: A valid Rucio Storage Element (RSE) of the current Rucio setting. :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return result: Dictionary which with key->value ordering follows: - key: filename of the attached file - value: The local file location for the selected RSE Otherwise: {}<|endoftext|>
b14105686a4789348f766e8a6b1f133f0210bca35380b715d5536785402a5c7d
def ListFiles(self, upload_structure=None, long=None, level=(- 1)): 'List existing files for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :param long: Define another output (Check the Rucio tutorials for it)\n :return result: A list of files, otherwise []\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) result = [] result = self._rucio.ListFiles(val_scope, val_dname, long=long) return result
List existing files for a Rucio DID or dictionary template. :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :param long: Define another output (Check the Rucio tutorials for it) :return result: A list of files, otherwise []
admix/interfaces/rucio_summoner.py
ListFiles
XENONnT/admix
2
python
def ListFiles(self, upload_structure=None, long=None, level=(- 1)): 'List existing files for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :param long: Define another output (Check the Rucio tutorials for it)\n :return result: A list of files, otherwise []\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) result = [] result = self._rucio.ListFiles(val_scope, val_dname, long=long) return result
def ListFiles(self, upload_structure=None, long=None, level=(- 1)): 'List existing files for a Rucio DID or dictionary template.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :param long: Define another output (Check the Rucio tutorials for it)\n :return result: A list of files, otherwise []\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) result = [] result = self._rucio.ListFiles(val_scope, val_dname, long=long) return result<|docstring|>List existing files for a Rucio DID or dictionary template. :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :param long: Define another output (Check the Rucio tutorials for it) :return result: A list of files, otherwise []<|endoftext|>
a3a17f5e878e6f8039825bbcb8134de7e32938b76fbb1f4595f2d61bd32fde1a
def ListDids(self, scope, filters, type='collection', long=False, recursive=False): "\n List all data identifiers in a scope which match a given pattern. Check Rucio github page for details\n\n :param scope: The valid string which follows the Rucio scope name.\n :param filters: A dictionary of key/value pairs like {'name': 'file_name','rse-expression': 'tier0'}.\n :param type: The type of the did: 'all'(container, dataset or file)|'collection'(dataset or container)|'dataset'|'container'|'file'\n :param long: Long format option to display more information for each DID.\n :param result: Recursively list DIDs content.\n " result = [] result = self._rucio.ListDids(scope=scope, filters=filters, type=type, long=long, recursive=recursive) return result
List all data identifiers in a scope which match a given pattern. Check Rucio github page for details :param scope: The valid string which follows the Rucio scope name. :param filters: A dictionary of key/value pairs like {'name': 'file_name','rse-expression': 'tier0'}. :param type: The type of the did: 'all'(container, dataset or file)|'collection'(dataset or container)|'dataset'|'container'|'file' :param long: Long format option to display more information for each DID. :param result: Recursively list DIDs content.
admix/interfaces/rucio_summoner.py
ListDids
XENONnT/admix
2
python
def ListDids(self, scope, filters, type='collection', long=False, recursive=False): "\n List all data identifiers in a scope which match a given pattern. Check Rucio github page for details\n\n :param scope: The valid string which follows the Rucio scope name.\n :param filters: A dictionary of key/value pairs like {'name': 'file_name','rse-expression': 'tier0'}.\n :param type: The type of the did: 'all'(container, dataset or file)|'collection'(dataset or container)|'dataset'|'container'|'file'\n :param long: Long format option to display more information for each DID.\n :param result: Recursively list DIDs content.\n " result = [] result = self._rucio.ListDids(scope=scope, filters=filters, type=type, long=long, recursive=recursive) return result
def ListDids(self, scope, filters, type='collection', long=False, recursive=False): "\n List all data identifiers in a scope which match a given pattern. Check Rucio github page for details\n\n :param scope: The valid string which follows the Rucio scope name.\n :param filters: A dictionary of key/value pairs like {'name': 'file_name','rse-expression': 'tier0'}.\n :param type: The type of the did: 'all'(container, dataset or file)|'collection'(dataset or container)|'dataset'|'container'|'file'\n :param long: Long format option to display more information for each DID.\n :param result: Recursively list DIDs content.\n " result = [] result = self._rucio.ListDids(scope=scope, filters=filters, type=type, long=long, recursive=recursive) return result<|docstring|>List all data identifiers in a scope which match a given pattern. Check Rucio github page for details :param scope: The valid string which follows the Rucio scope name. :param filters: A dictionary of key/value pairs like {'name': 'file_name','rse-expression': 'tier0'}. :param type: The type of the did: 'all'(container, dataset or file)|'collection'(dataset or container)|'dataset'|'container'|'file' :param long: Long format option to display more information for each DID. :param result: Recursively list DIDs content.<|endoftext|>
f06ade64b95645addb1bd60d6f99d0d3119f2d0c5b2693e38fabdbecaa7cbc66
def GetRule(self, upload_structure=None, rse=None, level=(- 1)): 'This function checks if for a given upload structure or Rucio DID a requested\n upload destination rule exists in Rucio already and returns a standardized\n dictionary.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: rse: A valid Rucio Storage Element (RSE)\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return rule: A dictionary of pre-definied rule information.\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) if (len(r_rules) == 0): return self._rule_status_dictionary() rule = self._rule_status_dictionary() for i_rule in r_rules: if ((rse != None) and (i_rule['rse_expression'] != rse)): continue rule['rse'] = i_rule['rse_expression'] rule['exists'] = True rule['state'] = i_rule['state'] rule['cnt_ok'] = i_rule['locks_ok_cnt'] rule['cnt_repl'] = i_rule['locks_replicating_cnt'] rule['cnt_stuck'] = i_rule['locks_stuck_cnt'] rule['id'] = i_rule['id'] if (i_rule['expires_at'] == None): rule['expires'] = None else: rule['expires'] = i_rule['expires_at'].strftime('%Y-%m-%d-%H:%M:%S') return rule
This function checks if for a given upload structure or Rucio DID a requested upload destination rule exists in Rucio already and returns a standardized dictionary. :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: rse: A valid Rucio Storage Element (RSE) :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return rule: A dictionary of pre-definied rule information.
admix/interfaces/rucio_summoner.py
GetRule
XENONnT/admix
2
python
def GetRule(self, upload_structure=None, rse=None, level=(- 1)): 'This function checks if for a given upload structure or Rucio DID a requested\n upload destination rule exists in Rucio already and returns a standardized\n dictionary.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: rse: A valid Rucio Storage Element (RSE)\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return rule: A dictionary of pre-definied rule information.\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) if (len(r_rules) == 0): return self._rule_status_dictionary() rule = self._rule_status_dictionary() for i_rule in r_rules: if ((rse != None) and (i_rule['rse_expression'] != rse)): continue rule['rse'] = i_rule['rse_expression'] rule['exists'] = True rule['state'] = i_rule['state'] rule['cnt_ok'] = i_rule['locks_ok_cnt'] rule['cnt_repl'] = i_rule['locks_replicating_cnt'] rule['cnt_stuck'] = i_rule['locks_stuck_cnt'] rule['id'] = i_rule['id'] if (i_rule['expires_at'] == None): rule['expires'] = None else: rule['expires'] = i_rule['expires_at'].strftime('%Y-%m-%d-%H:%M:%S') return rule
def GetRule(self, upload_structure=None, rse=None, level=(- 1)): 'This function checks if for a given upload structure or Rucio DID a requested\n upload destination rule exists in Rucio already and returns a standardized\n dictionary.\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param: rse: A valid Rucio Storage Element (RSE)\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return rule: A dictionary of pre-definied rule information.\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) r_rules = self._rucio.ListDidRules(val_scope, val_dname) if (len(r_rules) == 0): return self._rule_status_dictionary() rule = self._rule_status_dictionary() for i_rule in r_rules: if ((rse != None) and (i_rule['rse_expression'] != rse)): continue rule['rse'] = i_rule['rse_expression'] rule['exists'] = True rule['state'] = i_rule['state'] rule['cnt_ok'] = i_rule['locks_ok_cnt'] rule['cnt_repl'] = i_rule['locks_replicating_cnt'] rule['cnt_stuck'] = i_rule['locks_stuck_cnt'] rule['id'] = i_rule['id'] if (i_rule['expires_at'] == None): rule['expires'] = None else: rule['expires'] = i_rule['expires_at'].strftime('%Y-%m-%d-%H:%M:%S') return rule<|docstring|>This function checks if for a given upload structure or Rucio DID a requested upload destination rule exists in Rucio already and returns a standardized dictionary. :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param: rse: A valid Rucio Storage Element (RSE) :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return rule: A dictionary of pre-definied rule information.<|endoftext|>
8b5343d87d81f852a463b768f71cc3c2efa75468e963f282e52c79790b9d3d1a
def CheckRule(self, upload_structure=None, rse=None, level=(- 1)): 'Check the status message for a Rucio DID or dictionary template rule.\n This is a shortcut in combination with the memberfunction GetRule()\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary. The member\n function GetRule(...) evaluates the upload_structure variable.\n :param: rse: Specify a valid Rucio Storage Element (RSE)\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: r_status: Rucio rule status: OK, STUCK or REPLICATING. If rule does not exists returns NoRule\n ' if (rse == None): return 'NoRule' rule = self.GetRule(upload_structure, rse, level) r_status = None if (rule['exists'] == False): r_status = 'NoRule' elif ((rule['exists'] == True) and (rule['state'] == 'OK') and (rule['cnt_ok'] > 0) and (rule['cnt_repl'] == 0) and (rule['cnt_stuck'] == 0)): r_status = 'OK' elif ((rule['exists'] == True) and (rule['state'] == 'REPLICATING')): r_status = 'REPLICATING' elif ((rule['exists'] == True) and (rule['state'] == 'STUCK')): r_status = 'STUCK' return r_status
Check the status message for a Rucio DID or dictionary template rule. This is a shortcut in combination with the memberfunction GetRule() :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary. The member function GetRule(...) evaluates the upload_structure variable. :param: rse: Specify a valid Rucio Storage Element (RSE) :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return: r_status: Rucio rule status: OK, STUCK or REPLICATING. If rule does not exists returns NoRule
admix/interfaces/rucio_summoner.py
CheckRule
XENONnT/admix
2
python
def CheckRule(self, upload_structure=None, rse=None, level=(- 1)): 'Check the status message for a Rucio DID or dictionary template rule.\n This is a shortcut in combination with the memberfunction GetRule()\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary. The member\n function GetRule(...) evaluates the upload_structure variable.\n :param: rse: Specify a valid Rucio Storage Element (RSE)\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: r_status: Rucio rule status: OK, STUCK or REPLICATING. If rule does not exists returns NoRule\n ' if (rse == None): return 'NoRule' rule = self.GetRule(upload_structure, rse, level) r_status = None if (rule['exists'] == False): r_status = 'NoRule' elif ((rule['exists'] == True) and (rule['state'] == 'OK') and (rule['cnt_ok'] > 0) and (rule['cnt_repl'] == 0) and (rule['cnt_stuck'] == 0)): r_status = 'OK' elif ((rule['exists'] == True) and (rule['state'] == 'REPLICATING')): r_status = 'REPLICATING' elif ((rule['exists'] == True) and (rule['state'] == 'STUCK')): r_status = 'STUCK' return r_status
def CheckRule(self, upload_structure=None, rse=None, level=(- 1)): 'Check the status message for a Rucio DID or dictionary template rule.\n This is a shortcut in combination with the memberfunction GetRule()\n\n :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary. The member\n function GetRule(...) evaluates the upload_structure variable.\n :param: rse: Specify a valid Rucio Storage Element (RSE)\n :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return: r_status: Rucio rule status: OK, STUCK or REPLICATING. If rule does not exists returns NoRule\n ' if (rse == None): return 'NoRule' rule = self.GetRule(upload_structure, rse, level) r_status = None if (rule['exists'] == False): r_status = 'NoRule' elif ((rule['exists'] == True) and (rule['state'] == 'OK') and (rule['cnt_ok'] > 0) and (rule['cnt_repl'] == 0) and (rule['cnt_stuck'] == 0)): r_status = 'OK' elif ((rule['exists'] == True) and (rule['state'] == 'REPLICATING')): r_status = 'REPLICATING' elif ((rule['exists'] == True) and (rule['state'] == 'STUCK')): r_status = 'STUCK' return r_status<|docstring|>Check the status message for a Rucio DID or dictionary template rule. This is a shortcut in combination with the memberfunction GetRule() :param: upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary. The member function GetRule(...) evaluates the upload_structure variable. :param: rse: Specify a valid Rucio Storage Element (RSE) :param: level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return: r_status: Rucio rule status: OK, STUCK or REPLICATING. If rule does not exists returns NoRule<|endoftext|>
fc30c75cdc779ecf806d532821e7284508acb6677340543154e997fb6feefba9
def VerifyLocations(self, upload_structure=None, upload_path=None, checksum_test=False, level=(- 1)): 'This function checks if for a given upload structure or Rucio DID a requested\n upload destination rule exists in Rucio already and returns a standardized\n dictionary.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param upload_path: A path which holds the files for the Rucio upload\n :param checksum_test: Enable extended checksum test with True.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return (check_success, diff_rucio, diff_disk): check_success True if the same files in Rucio such on disk\n otherwise False.\n diff_rucio returns a list of files which are in Rucio but not\n on disk.\n diff_disk returns a list of files which are on disk but not\n attached to the Rucio DID.\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) list_folder_phys = [] list_dirpath_phys = [] list_files_phys = [] for (dirpath, dirnames, filenames) in os.walk(upload_path): list_dirpath_phys.extend(dirpath) list_folder_phys.extend(dirnames) list_files_phys.extend(filenames) break nb_files_phys = len(list_files_phys) list_files_rucio = self._rucio.ListContent(val_scope, val_dname) rucio_files = [] for i_file in list_files_rucio: rucio_files.append(i_file['name']) nb_files_rucio = len(rucio_files) diff_rucio = list((set(rucio_files) - set(list_files_phys))) diff_disk = list((set(list_files_phys) - set(rucio_files))) if (checksum_test == True): print('Implement a checksum test') pass if (nb_files_phys == nb_files_rucio): return (True, diff_rucio, diff_disk) else: return (False, diff_rucio, diff_disk)
This function checks if for a given upload structure or Rucio DID a requested upload destination rule exists in Rucio already and returns a standardized dictionary. :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param upload_path: A path which holds the files for the Rucio upload :param checksum_test: Enable extended checksum test with True. :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return (check_success, diff_rucio, diff_disk): check_success True if the same files in Rucio such on disk otherwise False. diff_rucio returns a list of files which are in Rucio but not on disk. diff_disk returns a list of files which are on disk but not attached to the Rucio DID.
admix/interfaces/rucio_summoner.py
VerifyLocations
XENONnT/admix
2
python
def VerifyLocations(self, upload_structure=None, upload_path=None, checksum_test=False, level=(- 1)): 'This function checks if for a given upload structure or Rucio DID a requested\n upload destination rule exists in Rucio already and returns a standardized\n dictionary.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param upload_path: A path which holds the files for the Rucio upload\n :param checksum_test: Enable extended checksum test with True.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return (check_success, diff_rucio, diff_disk): check_success True if the same files in Rucio such on disk\n otherwise False.\n diff_rucio returns a list of files which are in Rucio but not\n on disk.\n diff_disk returns a list of files which are on disk but not\n attached to the Rucio DID.\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) list_folder_phys = [] list_dirpath_phys = [] list_files_phys = [] for (dirpath, dirnames, filenames) in os.walk(upload_path): list_dirpath_phys.extend(dirpath) list_folder_phys.extend(dirnames) list_files_phys.extend(filenames) break nb_files_phys = len(list_files_phys) list_files_rucio = self._rucio.ListContent(val_scope, val_dname) rucio_files = [] for i_file in list_files_rucio: rucio_files.append(i_file['name']) nb_files_rucio = len(rucio_files) diff_rucio = list((set(rucio_files) - set(list_files_phys))) diff_disk = list((set(list_files_phys) - set(rucio_files))) if (checksum_test == True): print('Implement a checksum test') pass if (nb_files_phys == nb_files_rucio): return (True, diff_rucio, diff_disk) else: return (False, diff_rucio, diff_disk)
def VerifyLocations(self, upload_structure=None, upload_path=None, checksum_test=False, level=(- 1)): 'This function checks if for a given upload structure or Rucio DID a requested\n upload destination rule exists in Rucio already and returns a standardized\n dictionary.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param upload_path: A path which holds the files for the Rucio upload\n :param checksum_test: Enable extended checksum test with True.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return (check_success, diff_rucio, diff_disk): check_success True if the same files in Rucio such on disk\n otherwise False.\n diff_rucio returns a list of files which are in Rucio but not\n on disk.\n diff_disk returns a list of files which are on disk but not\n attached to the Rucio DID.\n ' (val_scope, val_dname) = self._VerifyStructure(upload_structure, level) list_folder_phys = [] list_dirpath_phys = [] list_files_phys = [] for (dirpath, dirnames, filenames) in os.walk(upload_path): list_dirpath_phys.extend(dirpath) list_folder_phys.extend(dirnames) list_files_phys.extend(filenames) break nb_files_phys = len(list_files_phys) list_files_rucio = self._rucio.ListContent(val_scope, val_dname) rucio_files = [] for i_file in list_files_rucio: rucio_files.append(i_file['name']) nb_files_rucio = len(rucio_files) diff_rucio = list((set(rucio_files) - set(list_files_phys))) diff_disk = list((set(list_files_phys) - set(rucio_files))) if (checksum_test == True): print('Implement a checksum test') pass if (nb_files_phys == nb_files_rucio): return (True, diff_rucio, diff_disk) else: return (False, diff_rucio, diff_disk)<|docstring|>This function checks if for a given upload structure or Rucio DID a requested upload destination rule exists in Rucio already and returns a standardized dictionary. :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param upload_path: A path which holds the files for the Rucio upload :param checksum_test: Enable extended checksum test with True. :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return (check_success, diff_rucio, diff_disk): check_success True if the same files in Rucio such on disk otherwise False. diff_rucio returns a list of files which are in Rucio but not on disk. diff_disk returns a list of files which are on disk but not attached to the Rucio DID.<|endoftext|>
3228ca8599ac17f2ec95220998820986b72013c68abf01467aff474e4b68dacb
def DownloadDids(self, dids=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=3, trace_custom_fields={}): 'Function: DownloadDids(...)\n\n This functions offers to download a list if Rucio DIDs which are given by a list.\n\n :param dids: A string or a list of strings which follows the Rucio DID nameing convention\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional)\n :param trace_custom_fields: Customize download, see Rucio tutorials optional)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n ' if (dids == None): return 1 if isinstance(dids, str): dids = [dids] dw = [] for i_did in dids: dw_dict = {} dw_dict['did'] = i_did dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout dw.append(dw_dict) result = self._rucio.DownloadDids(items=dw, num_threads=num_threads, trace_custom_fields=trace_custom_fields) return result
Function: DownloadDids(...) This functions offers to download a list if Rucio DIDs which are given by a list. :param dids: A string or a list of strings which follows the Rucio DID nameing convention :param download_path: Path to store the downloaded data :param rse: Specify the RSE from where the data are going to be downloaded :param no_subdir: True if no sub directory is going to be created. :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional) :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional) :param trace_custom_fields: Customize download, see Rucio tutorials optional) :return result: A list of Rucio download information as a list of dictionaries. If it fails 1
admix/interfaces/rucio_summoner.py
DownloadDids
XENONnT/admix
2
python
def DownloadDids(self, dids=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=3, trace_custom_fields={}): 'Function: DownloadDids(...)\n\n This functions offers to download a list if Rucio DIDs which are given by a list.\n\n :param dids: A string or a list of strings which follows the Rucio DID nameing convention\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional)\n :param trace_custom_fields: Customize download, see Rucio tutorials optional)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n ' if (dids == None): return 1 if isinstance(dids, str): dids = [dids] dw = [] for i_did in dids: dw_dict = {} dw_dict['did'] = i_did dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout dw.append(dw_dict) result = self._rucio.DownloadDids(items=dw, num_threads=num_threads, trace_custom_fields=trace_custom_fields) return result
def DownloadDids(self, dids=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=3, trace_custom_fields={}): 'Function: DownloadDids(...)\n\n This functions offers to download a list if Rucio DIDs which are given by a list.\n\n :param dids: A string or a list of strings which follows the Rucio DID nameing convention\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional)\n :param trace_custom_fields: Customize download, see Rucio tutorials optional)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n ' if (dids == None): return 1 if isinstance(dids, str): dids = [dids] dw = [] for i_did in dids: dw_dict = {} dw_dict['did'] = i_did dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout dw.append(dw_dict) result = self._rucio.DownloadDids(items=dw, num_threads=num_threads, trace_custom_fields=trace_custom_fields) return result<|docstring|>Function: DownloadDids(...) This functions offers to download a list if Rucio DIDs which are given by a list. :param dids: A string or a list of strings which follows the Rucio DID nameing convention :param download_path: Path to store the downloaded data :param rse: Specify the RSE from where the data are going to be downloaded :param no_subdir: True if no sub directory is going to be created. :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional) :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional) :param trace_custom_fields: Customize download, see Rucio tutorials optional) :return result: A list of Rucio download information as a list of dictionaries. If it fails 1<|endoftext|>
f6dcfae0cf1923050819319e0de9dccfe32180cacba6028992dfec0dd7b45d1e
def DownloadChunks(self, download_structure=None, chunks=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=2, trace_custom_fields={}, level=(- 1)): "Function: DownloadChunks(...)\n\n This function offers to download specific chunks from Rucio a specific DiD.\n Warning: This function is heavily made for XENON internal structures. Please use with care.\n\n :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param chunks: A list (strings) chunk numbers (Format: XXXXXX (six digits), or metadata.json:\n Example: list=['000000', '000001', 'metadata.json']\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional)\n :param trace_custom_fields: Customize download, see Rucio tutorials optional)\n :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level\n is chosen)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n " (val_scope, val_dname) = self._VerifyStructure(download_structure, level) dw = [] for i_chunk in chunks: dw_dict = {} dw_dict['did'] = '{0}:{1}-{2}'.format(val_scope, val_dname, i_chunk) dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout dw.append(dw_dict) result = self._rucio.DownloadDids(dw, num_threads, trace_custom_fields) return result
Function: DownloadChunks(...) This function offers to download specific chunks from Rucio a specific DiD. Warning: This function is heavily made for XENON internal structures. Please use with care. :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID :param download_path: Path to store the downloaded data :param rse: Specify the RSE from where the data are going to be downloaded :param chunks: A list (strings) chunk numbers (Format: XXXXXX (six digits), or metadata.json: Example: list=['000000', '000001', 'metadata.json'] :param no_subdir: True if no sub directory is going to be created. :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional) :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional) :param trace_custom_fields: Customize download, see Rucio tutorials optional) :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level is chosen) :return result: A list of Rucio download information as a list of dictionaries. If it fails 1
admix/interfaces/rucio_summoner.py
DownloadChunks
XENONnT/admix
2
python
def DownloadChunks(self, download_structure=None, chunks=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=2, trace_custom_fields={}, level=(- 1)): "Function: DownloadChunks(...)\n\n This function offers to download specific chunks from Rucio a specific DiD.\n Warning: This function is heavily made for XENON internal structures. Please use with care.\n\n :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param chunks: A list (strings) chunk numbers (Format: XXXXXX (six digits), or metadata.json:\n Example: list=['000000', '000001', 'metadata.json']\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional)\n :param trace_custom_fields: Customize download, see Rucio tutorials optional)\n :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level\n is chosen)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n " (val_scope, val_dname) = self._VerifyStructure(download_structure, level) dw = [] for i_chunk in chunks: dw_dict = {} dw_dict['did'] = '{0}:{1}-{2}'.format(val_scope, val_dname, i_chunk) dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout dw.append(dw_dict) result = self._rucio.DownloadDids(dw, num_threads, trace_custom_fields) return result
def DownloadChunks(self, download_structure=None, chunks=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=2, trace_custom_fields={}, level=(- 1)): "Function: DownloadChunks(...)\n\n This function offers to download specific chunks from Rucio a specific DiD.\n Warning: This function is heavily made for XENON internal structures. Please use with care.\n\n :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param chunks: A list (strings) chunk numbers (Format: XXXXXX (six digits), or metadata.json:\n Example: list=['000000', '000001', 'metadata.json']\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional)\n :param trace_custom_fields: Customize download, see Rucio tutorials optional)\n :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level\n is chosen)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n " (val_scope, val_dname) = self._VerifyStructure(download_structure, level) dw = [] for i_chunk in chunks: dw_dict = {} dw_dict['did'] = '{0}:{1}-{2}'.format(val_scope, val_dname, i_chunk) dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout dw.append(dw_dict) result = self._rucio.DownloadDids(dw, num_threads, trace_custom_fields) return result<|docstring|>Function: DownloadChunks(...) This function offers to download specific chunks from Rucio a specific DiD. Warning: This function is heavily made for XENON internal structures. Please use with care. :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID :param download_path: Path to store the downloaded data :param rse: Specify the RSE from where the data are going to be downloaded :param chunks: A list (strings) chunk numbers (Format: XXXXXX (six digits), or metadata.json: Example: list=['000000', '000001', 'metadata.json'] :param no_subdir: True if no sub directory is going to be created. :param transfer_timeout: Wait for so many seconds and try to continue with the download (optional) :param num_threads: Standard two (2) threads are used for downloading on a CPU (optional) :param trace_custom_fields: Customize download, see Rucio tutorials optional) :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level is chosen) :return result: A list of Rucio download information as a list of dictionaries. If it fails 1<|endoftext|>
b56785c88c41fd43045099c02ed02e1a99ddcba2485a02fc5c7a6b48a225e57f
def Download(self, download_structure=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=2, trace_custom_fields={}, level=(- 1)): 'Function: Download(...)\n\n This function offers to download from Rucio a specific DiD.\n\n :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optinal)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optinal)\n :param trace_custom_fields: Customize download, see Rucio tutorials (optinal)\n :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level\n is chosen)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n ' (val_scope, val_dname) = self._VerifyStructure(download_structure, level) dw_dict = {} dw_dict['did'] = '{0}:{1}'.format(val_scope, val_dname) dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout result = self._rucio.DownloadDids(dw_dict, num_threads, trace_custom_fields) return result
Function: Download(...) This function offers to download from Rucio a specific DiD. :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID :param download_path: Path to store the downloaded data :param rse: Specify the RSE from where the data are going to be downloaded :param no_subdir: True if no sub directory is going to be created. :param transfer_timeout: Wait for so many seconds and try to continue with the download (optinal) :param num_threads: Standard two (2) threads are used for downloading on a CPU (optinal) :param trace_custom_fields: Customize download, see Rucio tutorials (optinal) :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level is chosen) :return result: A list of Rucio download information as a list of dictionaries. If it fails 1
admix/interfaces/rucio_summoner.py
Download
XENONnT/admix
2
python
def Download(self, download_structure=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=2, trace_custom_fields={}, level=(- 1)): 'Function: Download(...)\n\n This function offers to download from Rucio a specific DiD.\n\n :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optinal)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optinal)\n :param trace_custom_fields: Customize download, see Rucio tutorials (optinal)\n :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level\n is chosen)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n ' (val_scope, val_dname) = self._VerifyStructure(download_structure, level) dw_dict = {} dw_dict['did'] = '{0}:{1}'.format(val_scope, val_dname) dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout result = self._rucio.DownloadDids(dw_dict, num_threads, trace_custom_fields) return result
def Download(self, download_structure=None, download_path='.', rse=None, no_subdir=False, transfer_timeout=None, num_threads=2, trace_custom_fields={}, level=(- 1)): 'Function: Download(...)\n\n This function offers to download from Rucio a specific DiD.\n\n :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID\n :param download_path: Path to store the downloaded data\n :param rse: Specify the RSE from where the data are going to be downloaded\n :param no_subdir: True if no sub directory is going to be created.\n :param transfer_timeout: Wait for so many seconds and try to continue with the download (optinal)\n :param num_threads: Standard two (2) threads are used for downloading on a CPU (optinal)\n :param trace_custom_fields: Customize download, see Rucio tutorials (optinal)\n :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level\n is chosen)\n :return result: A list of Rucio download information as a list of dictionaries. If it fails 1\n ' (val_scope, val_dname) = self._VerifyStructure(download_structure, level) dw_dict = {} dw_dict['did'] = '{0}:{1}'.format(val_scope, val_dname) dw_dict['rse'] = rse dw_dict['base_dir'] = download_path dw_dict['no_subdir'] = no_subdir dw_dict['transfer_timeout'] = transfer_timeout result = self._rucio.DownloadDids(dw_dict, num_threads, trace_custom_fields) return result<|docstring|>Function: Download(...) This function offers to download from Rucio a specific DiD. :param download_structure: A valid Rucio DID (string) or a template dictionary of an existing DID :param download_path: Path to store the downloaded data :param rse: Specify the RSE from where the data are going to be downloaded :param no_subdir: True if no sub directory is going to be created. :param transfer_timeout: Wait for so many seconds and try to continue with the download (optinal) :param num_threads: Standard two (2) threads are used for downloading on a CPU (optinal) :param trace_custom_fields: Customize download, see Rucio tutorials (optinal) :param level: Specify the download DID from a template dictionary if it is hand over (optional, the last level is chosen) :return result: A list of Rucio download information as a list of dictionaries. If it fails 1<|endoftext|>
7156efcdd263ffeed5a8ac8d47a622a210c5a502982a0487f1ad278788ccea46
def UploadToScope(self, scope=None, upload_path=None, rse=None, rse_lifetime=None): "Function: UploadToScope()\n\n Upload a folder to a Rucio scope\n\n :param scope: A string which follows the rules of Rucio string\n :param upload_path: A valid (string) to a folder which holds a file (or files) for upload\n :param rse: A valid Rucio Storage Element (RSE)\n :param rse_lifetime: A valid (int) which defines the lifetime of the transfer rule after upload.\n :return result: (upload_status, rse_rule) means:\n\n * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule\n\n * (0, 1) for success and no rse_lifetime to the rule\n\n * (1, 1) for upload failure and rse_lifetime is not given\n\n * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically\n " result = 1 result_rule = 1 if (isinstance(scope, str) == False): print('Function UploadToScope() needs an Rucio (str) scope as input') exit(1) if (rse == None): print('No Rucio Storage Element (rse) given.') exit(1) if (upload_path == None): print('No path/file given for upload') exit(1) list_files_phys = [] for (dirpath, dirnames, filenames) in os.walk(upload_path): list_files_phys.extend(filenames) break result = self._rucio.CreateScope(account=self.rucio_account, scope=scope) upload_dict = {} upload_dict['path'] = (upload_path + '/') upload_dict['rse'] = rse upload_dict['did_scope'] = scope result = self._rucio.Upload(upload_dict=[upload_dict]) if ((rse_lifetime != None) and isinstance(rse_lifetime, int) and (rse_lifetime > 0)): rule = [f'rucio-catalogue:{rse}:{rse_lifetime}'] result_rule_count = [] for i_file in list_files_phys: upload_structure = f'{scope}:{i_file}' result_count = self.UpdateRules(upload_structure=upload_structure, rse_rules=rule) result_rule_count.append(result_count.get(rse, 1)) k_count = 0 for ik in result_rule_count: k_count += ik['result'] if (k_count == 0): result_rule = 0 return (result, result_rule)
Function: UploadToScope() Upload a folder to a Rucio scope :param scope: A string which follows the rules of Rucio string :param upload_path: A valid (string) to a folder which holds a file (or files) for upload :param rse: A valid Rucio Storage Element (RSE) :param rse_lifetime: A valid (int) which defines the lifetime of the transfer rule after upload. :return result: (upload_status, rse_rule) means: * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule * (0, 1) for success and no rse_lifetime to the rule * (1, 1) for upload failure and rse_lifetime is not given * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically
admix/interfaces/rucio_summoner.py
UploadToScope
XENONnT/admix
2
python
def UploadToScope(self, scope=None, upload_path=None, rse=None, rse_lifetime=None): "Function: UploadToScope()\n\n Upload a folder to a Rucio scope\n\n :param scope: A string which follows the rules of Rucio string\n :param upload_path: A valid (string) to a folder which holds a file (or files) for upload\n :param rse: A valid Rucio Storage Element (RSE)\n :param rse_lifetime: A valid (int) which defines the lifetime of the transfer rule after upload.\n :return result: (upload_status, rse_rule) means:\n\n * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule\n\n * (0, 1) for success and no rse_lifetime to the rule\n\n * (1, 1) for upload failure and rse_lifetime is not given\n\n * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically\n " result = 1 result_rule = 1 if (isinstance(scope, str) == False): print('Function UploadToScope() needs an Rucio (str) scope as input') exit(1) if (rse == None): print('No Rucio Storage Element (rse) given.') exit(1) if (upload_path == None): print('No path/file given for upload') exit(1) list_files_phys = [] for (dirpath, dirnames, filenames) in os.walk(upload_path): list_files_phys.extend(filenames) break result = self._rucio.CreateScope(account=self.rucio_account, scope=scope) upload_dict = {} upload_dict['path'] = (upload_path + '/') upload_dict['rse'] = rse upload_dict['did_scope'] = scope result = self._rucio.Upload(upload_dict=[upload_dict]) if ((rse_lifetime != None) and isinstance(rse_lifetime, int) and (rse_lifetime > 0)): rule = [f'rucio-catalogue:{rse}:{rse_lifetime}'] result_rule_count = [] for i_file in list_files_phys: upload_structure = f'{scope}:{i_file}' result_count = self.UpdateRules(upload_structure=upload_structure, rse_rules=rule) result_rule_count.append(result_count.get(rse, 1)) k_count = 0 for ik in result_rule_count: k_count += ik['result'] if (k_count == 0): result_rule = 0 return (result, result_rule)
def UploadToScope(self, scope=None, upload_path=None, rse=None, rse_lifetime=None): "Function: UploadToScope()\n\n Upload a folder to a Rucio scope\n\n :param scope: A string which follows the rules of Rucio string\n :param upload_path: A valid (string) to a folder which holds a file (or files) for upload\n :param rse: A valid Rucio Storage Element (RSE)\n :param rse_lifetime: A valid (int) which defines the lifetime of the transfer rule after upload.\n :return result: (upload_status, rse_rule) means:\n\n * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule\n\n * (0, 1) for success and no rse_lifetime to the rule\n\n * (1, 1) for upload failure and rse_lifetime is not given\n\n * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically\n " result = 1 result_rule = 1 if (isinstance(scope, str) == False): print('Function UploadToScope() needs an Rucio (str) scope as input') exit(1) if (rse == None): print('No Rucio Storage Element (rse) given.') exit(1) if (upload_path == None): print('No path/file given for upload') exit(1) list_files_phys = [] for (dirpath, dirnames, filenames) in os.walk(upload_path): list_files_phys.extend(filenames) break result = self._rucio.CreateScope(account=self.rucio_account, scope=scope) upload_dict = {} upload_dict['path'] = (upload_path + '/') upload_dict['rse'] = rse upload_dict['did_scope'] = scope result = self._rucio.Upload(upload_dict=[upload_dict]) if ((rse_lifetime != None) and isinstance(rse_lifetime, int) and (rse_lifetime > 0)): rule = [f'rucio-catalogue:{rse}:{rse_lifetime}'] result_rule_count = [] for i_file in list_files_phys: upload_structure = f'{scope}:{i_file}' result_count = self.UpdateRules(upload_structure=upload_structure, rse_rules=rule) result_rule_count.append(result_count.get(rse, 1)) k_count = 0 for ik in result_rule_count: k_count += ik['result'] if (k_count == 0): result_rule = 0 return (result, result_rule)<|docstring|>Function: UploadToScope() Upload a folder to a Rucio scope :param scope: A string which follows the rules of Rucio string :param upload_path: A valid (string) to a folder which holds a file (or files) for upload :param rse: A valid Rucio Storage Element (RSE) :param rse_lifetime: A valid (int) which defines the lifetime of the transfer rule after upload. :return result: (upload_status, rse_rule) means: * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule * (0, 1) for success and no rse_lifetime to the rule * (1, 1) for upload failure and rse_lifetime is not given * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically<|endoftext|>
459e2627d14b2a1765d310dd22a63ad2572939cc7b09376e93916a908dfa84f7
def UploadToDid(self, upload_structure=None, upload_path=None, rse=None, rse_lifetime=None): "Function UploadToDid()\n\n This function uploads the content of given folder into a Rucio dataset\n which is identified by given DID.\n\n For example a folder:\n\n | /path/to/example/calibration_source_1\n | │\n | ├──18_t2_01\n | ├──18_t2_02\n | └──18_t2_03\n\n DID (dataset): calibration_data_day1:calibration_source_1\n\n Results a Rucio structure:\n\n | calibration_data_day1:calibration_source_1 (Rucio dataset)\n | │\n | ├──calibration_data_day1:18_t2_01 (Rucio file attached to dataset)\n | ├──calibration_data_day1:18_t2_02 (Rucio file attached to dataset)\n | └──calibration_data_day1:18_t2_03 (Rucio file attached to dataset)\n\n\n :param upload_structure: A Rucio DID (type str) in form of scope:name\n :param upload_path: A path to an existing folder with data for upload\n :param rse: A valid Rucio Storage Element (RSE) for the initial upload\n :param rse_lifetime: (Optional) A lifetime in seconds\n :return result: (upload_status, rse_rule) means:\n\n * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule\n\n * (0, 1) for success and no rse_lifetime to the rule\n\n * (1, 1) for upload failure and rse_lifetime is not give\n\n * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically\n " result = 1 result_rule = 1 if ((isinstance(upload_structure, str) == False) and (':' not in upload_structure)): print('Function UploadDid() needs an Rucio (str) DID as input (scope:name)') return (1, 1) if (rse == None): print('No Rucio Storage Element (rse) given.') return (1, 1) if (upload_path == None): print('No path/file given for upload') return (1, 1) upload_scope = upload_structure.split(':')[0] upload_dname = upload_structure.split(':')[1] result = self._rucio.CreateScope(account=self.rucio_account, scope=upload_scope) upload_dict = {} upload_dict['path'] = (upload_path + '/') upload_dict['rse'] = rse upload_dict['lifetime'] = rse_lifetime upload_dict['dataset_scope'] = upload_scope upload_dict['dataset_name'] = upload_dname upload_dict['did_scope'] = upload_scope result = self._rucio.Upload(upload_dict=[upload_dict]) if ((rse_lifetime != None) and isinstance(rse_lifetime, int) and (rse_lifetime > 0) and (result == 0)): rule = [f'rucio-catalogue:{rse}:{rse_lifetime}'] result_rule = self.UpdateRules(upload_structure=upload_structure, rse_rules=rule) result_rule = result_rule.get(rse, 1) return (result, result_rule)
Function UploadToDid() This function uploads the content of given folder into a Rucio dataset which is identified by given DID. For example a folder: | /path/to/example/calibration_source_1 | │ | ├──18_t2_01 | ├──18_t2_02 | └──18_t2_03 DID (dataset): calibration_data_day1:calibration_source_1 Results a Rucio structure: | calibration_data_day1:calibration_source_1 (Rucio dataset) | │ | ├──calibration_data_day1:18_t2_01 (Rucio file attached to dataset) | ├──calibration_data_day1:18_t2_02 (Rucio file attached to dataset) | └──calibration_data_day1:18_t2_03 (Rucio file attached to dataset) :param upload_structure: A Rucio DID (type str) in form of scope:name :param upload_path: A path to an existing folder with data for upload :param rse: A valid Rucio Storage Element (RSE) for the initial upload :param rse_lifetime: (Optional) A lifetime in seconds :return result: (upload_status, rse_rule) means: * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule * (0, 1) for success and no rse_lifetime to the rule * (1, 1) for upload failure and rse_lifetime is not give * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically
admix/interfaces/rucio_summoner.py
UploadToDid
XENONnT/admix
2
python
def UploadToDid(self, upload_structure=None, upload_path=None, rse=None, rse_lifetime=None): "Function UploadToDid()\n\n This function uploads the content of given folder into a Rucio dataset\n which is identified by given DID.\n\n For example a folder:\n\n | /path/to/example/calibration_source_1\n | │\n | ├──18_t2_01\n | ├──18_t2_02\n | └──18_t2_03\n\n DID (dataset): calibration_data_day1:calibration_source_1\n\n Results a Rucio structure:\n\n | calibration_data_day1:calibration_source_1 (Rucio dataset)\n | │\n | ├──calibration_data_day1:18_t2_01 (Rucio file attached to dataset)\n | ├──calibration_data_day1:18_t2_02 (Rucio file attached to dataset)\n | └──calibration_data_day1:18_t2_03 (Rucio file attached to dataset)\n\n\n :param upload_structure: A Rucio DID (type str) in form of scope:name\n :param upload_path: A path to an existing folder with data for upload\n :param rse: A valid Rucio Storage Element (RSE) for the initial upload\n :param rse_lifetime: (Optional) A lifetime in seconds\n :return result: (upload_status, rse_rule) means:\n\n * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule\n\n * (0, 1) for success and no rse_lifetime to the rule\n\n * (1, 1) for upload failure and rse_lifetime is not give\n\n * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically\n " result = 1 result_rule = 1 if ((isinstance(upload_structure, str) == False) and (':' not in upload_structure)): print('Function UploadDid() needs an Rucio (str) DID as input (scope:name)') return (1, 1) if (rse == None): print('No Rucio Storage Element (rse) given.') return (1, 1) if (upload_path == None): print('No path/file given for upload') return (1, 1) upload_scope = upload_structure.split(':')[0] upload_dname = upload_structure.split(':')[1] result = self._rucio.CreateScope(account=self.rucio_account, scope=upload_scope) upload_dict = {} upload_dict['path'] = (upload_path + '/') upload_dict['rse'] = rse upload_dict['lifetime'] = rse_lifetime upload_dict['dataset_scope'] = upload_scope upload_dict['dataset_name'] = upload_dname upload_dict['did_scope'] = upload_scope result = self._rucio.Upload(upload_dict=[upload_dict]) if ((rse_lifetime != None) and isinstance(rse_lifetime, int) and (rse_lifetime > 0) and (result == 0)): rule = [f'rucio-catalogue:{rse}:{rse_lifetime}'] result_rule = self.UpdateRules(upload_structure=upload_structure, rse_rules=rule) result_rule = result_rule.get(rse, 1) return (result, result_rule)
def UploadToDid(self, upload_structure=None, upload_path=None, rse=None, rse_lifetime=None): "Function UploadToDid()\n\n This function uploads the content of given folder into a Rucio dataset\n which is identified by given DID.\n\n For example a folder:\n\n | /path/to/example/calibration_source_1\n | │\n | ├──18_t2_01\n | ├──18_t2_02\n | └──18_t2_03\n\n DID (dataset): calibration_data_day1:calibration_source_1\n\n Results a Rucio structure:\n\n | calibration_data_day1:calibration_source_1 (Rucio dataset)\n | │\n | ├──calibration_data_day1:18_t2_01 (Rucio file attached to dataset)\n | ├──calibration_data_day1:18_t2_02 (Rucio file attached to dataset)\n | └──calibration_data_day1:18_t2_03 (Rucio file attached to dataset)\n\n\n :param upload_structure: A Rucio DID (type str) in form of scope:name\n :param upload_path: A path to an existing folder with data for upload\n :param rse: A valid Rucio Storage Element (RSE) for the initial upload\n :param rse_lifetime: (Optional) A lifetime in seconds\n :return result: (upload_status, rse_rule) means:\n\n * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule\n\n * (0, 1) for success and no rse_lifetime to the rule\n\n * (1, 1) for upload failure and rse_lifetime is not give\n\n * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically\n " result = 1 result_rule = 1 if ((isinstance(upload_structure, str) == False) and (':' not in upload_structure)): print('Function UploadDid() needs an Rucio (str) DID as input (scope:name)') return (1, 1) if (rse == None): print('No Rucio Storage Element (rse) given.') return (1, 1) if (upload_path == None): print('No path/file given for upload') return (1, 1) upload_scope = upload_structure.split(':')[0] upload_dname = upload_structure.split(':')[1] result = self._rucio.CreateScope(account=self.rucio_account, scope=upload_scope) upload_dict = {} upload_dict['path'] = (upload_path + '/') upload_dict['rse'] = rse upload_dict['lifetime'] = rse_lifetime upload_dict['dataset_scope'] = upload_scope upload_dict['dataset_name'] = upload_dname upload_dict['did_scope'] = upload_scope result = self._rucio.Upload(upload_dict=[upload_dict]) if ((rse_lifetime != None) and isinstance(rse_lifetime, int) and (rse_lifetime > 0) and (result == 0)): rule = [f'rucio-catalogue:{rse}:{rse_lifetime}'] result_rule = self.UpdateRules(upload_structure=upload_structure, rse_rules=rule) result_rule = result_rule.get(rse, 1) return (result, result_rule)<|docstring|>Function UploadToDid() This function uploads the content of given folder into a Rucio dataset which is identified by given DID. For example a folder: | /path/to/example/calibration_source_1 | │ | ├──18_t2_01 | ├──18_t2_02 | └──18_t2_03 DID (dataset): calibration_data_day1:calibration_source_1 Results a Rucio structure: | calibration_data_day1:calibration_source_1 (Rucio dataset) | │ | ├──calibration_data_day1:18_t2_01 (Rucio file attached to dataset) | ├──calibration_data_day1:18_t2_02 (Rucio file attached to dataset) | └──calibration_data_day1:18_t2_03 (Rucio file attached to dataset) :param upload_structure: A Rucio DID (type str) in form of scope:name :param upload_path: A path to an existing folder with data for upload :param rse: A valid Rucio Storage Element (RSE) for the initial upload :param rse_lifetime: (Optional) A lifetime in seconds :return result: (upload_status, rse_rule) means: * (0, {'result': 0, 'lifetime': rse_lifetime}) for success and applied lifetime to the rule * (0, 1) for success and no rse_lifetime to the rule * (1, 1) for upload failure and rse_lifetime is not give * (1, {'result':1, 'lifetime': rse_lifetime}) for upload failure and rse_lifetime is skipped automatically<|endoftext|>
70e5c6f2ce72c71b9012d74024b12705d9c6d184dc4815c60cd9e75fb515d484
def Upload(self, did, upload_path, rse, lifetime=None): 'Function: Upload(...)\n The data files of the upload_path are always uploaded to the last Rucio dataset.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param upload_path: The absolute path of your dataset\n :param rse: A valid Rucio Storage Element (RSE) for the upload\n :param rse_lifetime: The lifetime of the dataset (lowest level of template dictionary) after the upload\n Hint: dataset lifetimes below 24h (86400 sec) are automatically set to 86400 sec.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: 0 for success, 1 for failure\n ' (scope, dataset) = did.split(':') logger.debug(f"Creating scope {scope}, if it doesn't exist") self._rucio.CreateScope(account=self.rucio_account, scope=scope) if ((lifetime != None) and (int(lifetime) < 86400)): lifetime = 86400 upload_dict = dict(path=upload_path, rse=rse, lifetime=lifetime, did_scope=scope, dataset_scope=scope, dataset_name=dataset) result = self._rucio.Upload(upload_dict=[upload_dict]) return result
Function: Upload(...) The data files of the upload_path are always uploaded to the last Rucio dataset. :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param upload_path: The absolute path of your dataset :param rse: A valid Rucio Storage Element (RSE) for the upload :param rse_lifetime: The lifetime of the dataset (lowest level of template dictionary) after the upload Hint: dataset lifetimes below 24h (86400 sec) are automatically set to 86400 sec. :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return result: 0 for success, 1 for failure
admix/interfaces/rucio_summoner.py
Upload
XENONnT/admix
2
python
def Upload(self, did, upload_path, rse, lifetime=None): 'Function: Upload(...)\n The data files of the upload_path are always uploaded to the last Rucio dataset.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param upload_path: The absolute path of your dataset\n :param rse: A valid Rucio Storage Element (RSE) for the upload\n :param rse_lifetime: The lifetime of the dataset (lowest level of template dictionary) after the upload\n Hint: dataset lifetimes below 24h (86400 sec) are automatically set to 86400 sec.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: 0 for success, 1 for failure\n ' (scope, dataset) = did.split(':') logger.debug(f"Creating scope {scope}, if it doesn't exist") self._rucio.CreateScope(account=self.rucio_account, scope=scope) if ((lifetime != None) and (int(lifetime) < 86400)): lifetime = 86400 upload_dict = dict(path=upload_path, rse=rse, lifetime=lifetime, did_scope=scope, dataset_scope=scope, dataset_name=dataset) result = self._rucio.Upload(upload_dict=[upload_dict]) return result
def Upload(self, did, upload_path, rse, lifetime=None): 'Function: Upload(...)\n The data files of the upload_path are always uploaded to the last Rucio dataset.\n\n :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary\n :param upload_path: The absolute path of your dataset\n :param rse: A valid Rucio Storage Element (RSE) for the upload\n :param rse_lifetime: The lifetime of the dataset (lowest level of template dictionary) after the upload\n Hint: dataset lifetimes below 24h (86400 sec) are automatically set to 86400 sec.\n :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at\n which the \'did\' is chosen from.\n :return result: 0 for success, 1 for failure\n ' (scope, dataset) = did.split(':') logger.debug(f"Creating scope {scope}, if it doesn't exist") self._rucio.CreateScope(account=self.rucio_account, scope=scope) if ((lifetime != None) and (int(lifetime) < 86400)): lifetime = 86400 upload_dict = dict(path=upload_path, rse=rse, lifetime=lifetime, did_scope=scope, dataset_scope=scope, dataset_name=dataset) result = self._rucio.Upload(upload_dict=[upload_dict]) return result<|docstring|>Function: Upload(...) The data files of the upload_path are always uploaded to the last Rucio dataset. :param upload_structure: A string (Rucio DID form of "scope:name") or a template dictionary :param upload_path: The absolute path of your dataset :param rse: A valid Rucio Storage Element (RSE) for the upload :param rse_lifetime: The lifetime of the dataset (lowest level of template dictionary) after the upload Hint: dataset lifetimes below 24h (86400 sec) are automatically set to 86400 sec. :param level: If a template dictionary is used, the level refers to the depth of the sorted dictionary at which the 'did' is chosen from. :return result: 0 for success, 1 for failure<|endoftext|>
2f5b7c977eb6c84bc1bba8c56526d7ebabb33da19b811c719920293c0f0cb390
def palindroma(palabra): '\n Función para detectar palabras palíndromas.\n \n Args: palabra.\n \n Salida: Confirmación si la palabra introducida es palíndroma (o no).\n ' palabra = palabra.lower() palabra_inv = palabra[::(- 1)] if (palabra_inv == palabra): return print(f'La palabra introducida "{palabra}" es palíndroma') else: return print(f'La palabra introducida "{palabra}" NO es palíndroma')
Función para detectar palabras palíndromas. Args: palabra. Salida: Confirmación si la palabra introducida es palíndroma (o no).
ejercicios_basicos/funciones/ejerc7_T10.py
palindroma
JuanDuran85/ejemplos_python
0
python
def palindroma(palabra): '\n Función para detectar palabras palíndromas.\n \n Args: palabra.\n \n Salida: Confirmación si la palabra introducida es palíndroma (o no).\n ' palabra = palabra.lower() palabra_inv = palabra[::(- 1)] if (palabra_inv == palabra): return print(f'La palabra introducida "{palabra}" es palíndroma') else: return print(f'La palabra introducida "{palabra}" NO es palíndroma')
def palindroma(palabra): '\n Función para detectar palabras palíndromas.\n \n Args: palabra.\n \n Salida: Confirmación si la palabra introducida es palíndroma (o no).\n ' palabra = palabra.lower() palabra_inv = palabra[::(- 1)] if (palabra_inv == palabra): return print(f'La palabra introducida "{palabra}" es palíndroma') else: return print(f'La palabra introducida "{palabra}" NO es palíndroma')<|docstring|>Función para detectar palabras palíndromas. Args: palabra. Salida: Confirmación si la palabra introducida es palíndroma (o no).<|endoftext|>
60333911a530c6d0de3d9c6f3fd4f03d0a21d8c3aa7fd465a1f2ea70405cc5e6
@validate({'client': 's3', 'bucket': 'str'}) def get(client, bucket): '\n Get the BIG-IP admin password from the S3 bucket created by the CFT\n ' data = client.get_object(Bucket=bucket, Key='credentials/master') json_data = data['Body'].read() return json.loads(json_data)['password']
Get the BIG-IP admin password from the S3 bucket created by the CFT
lambda/f5_sca_libs/src/f5_sca_libs/password.py
get
vinnie357/f5-sca-securitystack
11
python
@validate({'client': 's3', 'bucket': 'str'}) def get(client, bucket): '\n \n ' data = client.get_object(Bucket=bucket, Key='credentials/master') json_data = data['Body'].read() return json.loads(json_data)['password']
@validate({'client': 's3', 'bucket': 'str'}) def get(client, bucket): '\n \n ' data = client.get_object(Bucket=bucket, Key='credentials/master') json_data = data['Body'].read() return json.loads(json_data)['password']<|docstring|>Get the BIG-IP admin password from the S3 bucket created by the CFT<|endoftext|>
154a8d616bf53be4b4350b72ae87483090afdaa4c9e0f3868622bc82b7647a1a
def snap_del(snap_file, session_name): '\n Delete an existing attribute in a snap file.\n\n Args:\n --------\n snap_file: \n a snap format file.\n\n session_name: \n attribute to delete ["AM", "GM", "PM", "FM"].\n \n ' if (not os.path.exists(snap_file)): print((('error: ' + snap_file) + ' does not exist!')) sys.exit(1) file_format = snaptools.utilities.checkFileFormat(snap_file) if (file_format != 'snap'): print(('error: input file %s is not a snap file!' % snap_file)) sys.exit(1) fin = h5py.File(snap_file, 'r', libver='earliest') if (session_name not in list(fin.keys())): print(('error: --session-name %s does not exist in %s' % (session_name, snap_file))) sys.exit(1) fout_name = tempfile.NamedTemporaryFile(delete=False, dir=None) fout = h5py.File(fout_name.name, 'a', libver='earliest') session_name_list = list(fin.keys()) session_name_list.remove(session_name) for group_name in session_name_list: fout.copy(fin[group_name], group_name, shallow=False) fin.close() fout.close() subprocess.check_call('\t'.join(['mv', fout_name.name, snap_file]), shell=True)
Delete an existing attribute in a snap file. Args: -------- snap_file: a snap format file. session_name: attribute to delete ["AM", "GM", "PM", "FM"].
snaptools/snap_del.py
snap_del
hisplan/SnapTools
26
python
def snap_del(snap_file, session_name): '\n Delete an existing attribute in a snap file.\n\n Args:\n --------\n snap_file: \n a snap format file.\n\n session_name: \n attribute to delete ["AM", "GM", "PM", "FM"].\n \n ' if (not os.path.exists(snap_file)): print((('error: ' + snap_file) + ' does not exist!')) sys.exit(1) file_format = snaptools.utilities.checkFileFormat(snap_file) if (file_format != 'snap'): print(('error: input file %s is not a snap file!' % snap_file)) sys.exit(1) fin = h5py.File(snap_file, 'r', libver='earliest') if (session_name not in list(fin.keys())): print(('error: --session-name %s does not exist in %s' % (session_name, snap_file))) sys.exit(1) fout_name = tempfile.NamedTemporaryFile(delete=False, dir=None) fout = h5py.File(fout_name.name, 'a', libver='earliest') session_name_list = list(fin.keys()) session_name_list.remove(session_name) for group_name in session_name_list: fout.copy(fin[group_name], group_name, shallow=False) fin.close() fout.close() subprocess.check_call('\t'.join(['mv', fout_name.name, snap_file]), shell=True)
def snap_del(snap_file, session_name): '\n Delete an existing attribute in a snap file.\n\n Args:\n --------\n snap_file: \n a snap format file.\n\n session_name: \n attribute to delete ["AM", "GM", "PM", "FM"].\n \n ' if (not os.path.exists(snap_file)): print((('error: ' + snap_file) + ' does not exist!')) sys.exit(1) file_format = snaptools.utilities.checkFileFormat(snap_file) if (file_format != 'snap'): print(('error: input file %s is not a snap file!' % snap_file)) sys.exit(1) fin = h5py.File(snap_file, 'r', libver='earliest') if (session_name not in list(fin.keys())): print(('error: --session-name %s does not exist in %s' % (session_name, snap_file))) sys.exit(1) fout_name = tempfile.NamedTemporaryFile(delete=False, dir=None) fout = h5py.File(fout_name.name, 'a', libver='earliest') session_name_list = list(fin.keys()) session_name_list.remove(session_name) for group_name in session_name_list: fout.copy(fin[group_name], group_name, shallow=False) fin.close() fout.close() subprocess.check_call('\t'.join(['mv', fout_name.name, snap_file]), shell=True)<|docstring|>Delete an existing attribute in a snap file. Args: -------- snap_file: a snap format file. session_name: attribute to delete ["AM", "GM", "PM", "FM"].<|endoftext|>
547a04af09a9782f7ed9ef15f1316b3bbd18a5d3299df34d07a16b1f8ae24287
def _check_for_flux_ratio_errors(self): '\n If combination of settings and models are invalid, raise exceptions.\n ' if (self.fix_source_flux_ratio is not False): if (self._model.n_sources != 2): msg = ('fix_source_flux_ratio only valid for models with 2' + 'sources. n_sources = {0}'.format(self._model.n_sources)) raise ValueError(msg) elif (self.fix_source_flux is not False): msg = (('fix_source_flux_ratio + fixed_source_flux not ' + 'implemented. Fix the fluxes for each source ') + 'individually instead.') raise NotImplementedError(msg)
If combination of settings and models are invalid, raise exceptions.
source/MulensModel/fitdata.py
_check_for_flux_ratio_errors
rpoleski/MulensModel
30
python
def _check_for_flux_ratio_errors(self): '\n \n ' if (self.fix_source_flux_ratio is not False): if (self._model.n_sources != 2): msg = ('fix_source_flux_ratio only valid for models with 2' + 'sources. n_sources = {0}'.format(self._model.n_sources)) raise ValueError(msg) elif (self.fix_source_flux is not False): msg = (('fix_source_flux_ratio + fixed_source_flux not ' + 'implemented. Fix the fluxes for each source ') + 'individually instead.') raise NotImplementedError(msg)
def _check_for_flux_ratio_errors(self): '\n \n ' if (self.fix_source_flux_ratio is not False): if (self._model.n_sources != 2): msg = ('fix_source_flux_ratio only valid for models with 2' + 'sources. n_sources = {0}'.format(self._model.n_sources)) raise ValueError(msg) elif (self.fix_source_flux is not False): msg = (('fix_source_flux_ratio + fixed_source_flux not ' + 'implemented. Fix the fluxes for each source ') + 'individually instead.') raise NotImplementedError(msg)<|docstring|>If combination of settings and models are invalid, raise exceptions.<|endoftext|>
216882eb9fd9a55b40cc8c01fccab28af02ea8cb1becda681f0ff74dbc55ae92
def update(self, bad=False): '\n Calculate the best-fit source and blend fluxes as well as the chi2.\n\n Keywords :\n bad: *bool*\n Default is *False*. If *True* recalculates the data\n magnification for each point to ensure that there are values\n even for bad datapoints.\n\n ' self.fit_fluxes() model_flux = self.get_model_fluxes(bad=bad) diff = (self._dataset.flux - model_flux) self._chi2_per_point = ((diff / self._dataset.err_flux) ** 2)
Calculate the best-fit source and blend fluxes as well as the chi2. Keywords : bad: *bool* Default is *False*. If *True* recalculates the data magnification for each point to ensure that there are values even for bad datapoints.
source/MulensModel/fitdata.py
update
rpoleski/MulensModel
30
python
def update(self, bad=False): '\n Calculate the best-fit source and blend fluxes as well as the chi2.\n\n Keywords :\n bad: *bool*\n Default is *False*. If *True* recalculates the data\n magnification for each point to ensure that there are values\n even for bad datapoints.\n\n ' self.fit_fluxes() model_flux = self.get_model_fluxes(bad=bad) diff = (self._dataset.flux - model_flux) self._chi2_per_point = ((diff / self._dataset.err_flux) ** 2)
def update(self, bad=False): '\n Calculate the best-fit source and blend fluxes as well as the chi2.\n\n Keywords :\n bad: *bool*\n Default is *False*. If *True* recalculates the data\n magnification for each point to ensure that there are values\n even for bad datapoints.\n\n ' self.fit_fluxes() model_flux = self.get_model_fluxes(bad=bad) diff = (self._dataset.flux - model_flux) self._chi2_per_point = ((diff / self._dataset.err_flux) ** 2)<|docstring|>Calculate the best-fit source and blend fluxes as well as the chi2. Keywords : bad: *bool* Default is *False*. If *True* recalculates the data magnification for each point to ensure that there are values even for bad datapoints.<|endoftext|>
1bdf8233395879dfb4eba5383231370c0e6b7b521216a49019da6b9ad75eee0c
def _calculate_magnifications(self, bad=True): '\n Calculate the model magnifications for the epochs of the dataset.\n ' if bad: select = np.ones(self._dataset.n_epochs, dtype=bool) else: select = self._dataset.good if (self.dataset.ephemerides_file is None): satellite_skycoord = None else: satellite_skycoord = self.dataset.satellite_skycoord magnification_kwargs = {'gamma': self.gamma, 'satellite_skycoord': satellite_skycoord} if (self._model.n_sources == 1): mag_matrix = self._model.get_magnification(time=self._dataset.time[select], **magnification_kwargs) elif (self._model.n_sources == 2): mag_matrix = self._model.get_magnification(time=self._dataset.time[select], separate=True, **magnification_kwargs) else: msg = (('{0} '.format(self._model.n_sources) + 'sources used. Function model.get_magnification can ') + 'only handle <=2 sources') raise NotImplementedError(msg) if bad: self._data_magnification = mag_matrix elif (self._model.n_sources == 1): self._data_magnification = np.zeros(self._dataset.n_epochs) self._data_magnification[self._dataset.good] = mag_matrix else: self._data_magnification = [np.zeros(self._dataset.n_epochs)] self._data_magnification[0][self._dataset.good] = mag_matrix[0] for source in range(1, self.model.n_sources): self._data_magnification.append(np.zeros(self._dataset.n_epochs)) self._data_magnification[source][self._dataset.good] = mag_matrix[source]
Calculate the model magnifications for the epochs of the dataset.
source/MulensModel/fitdata.py
_calculate_magnifications
rpoleski/MulensModel
30
python
def _calculate_magnifications(self, bad=True): '\n \n ' if bad: select = np.ones(self._dataset.n_epochs, dtype=bool) else: select = self._dataset.good if (self.dataset.ephemerides_file is None): satellite_skycoord = None else: satellite_skycoord = self.dataset.satellite_skycoord magnification_kwargs = {'gamma': self.gamma, 'satellite_skycoord': satellite_skycoord} if (self._model.n_sources == 1): mag_matrix = self._model.get_magnification(time=self._dataset.time[select], **magnification_kwargs) elif (self._model.n_sources == 2): mag_matrix = self._model.get_magnification(time=self._dataset.time[select], separate=True, **magnification_kwargs) else: msg = (('{0} '.format(self._model.n_sources) + 'sources used. Function model.get_magnification can ') + 'only handle <=2 sources') raise NotImplementedError(msg) if bad: self._data_magnification = mag_matrix elif (self._model.n_sources == 1): self._data_magnification = np.zeros(self._dataset.n_epochs) self._data_magnification[self._dataset.good] = mag_matrix else: self._data_magnification = [np.zeros(self._dataset.n_epochs)] self._data_magnification[0][self._dataset.good] = mag_matrix[0] for source in range(1, self.model.n_sources): self._data_magnification.append(np.zeros(self._dataset.n_epochs)) self._data_magnification[source][self._dataset.good] = mag_matrix[source]
def _calculate_magnifications(self, bad=True): '\n \n ' if bad: select = np.ones(self._dataset.n_epochs, dtype=bool) else: select = self._dataset.good if (self.dataset.ephemerides_file is None): satellite_skycoord = None else: satellite_skycoord = self.dataset.satellite_skycoord magnification_kwargs = {'gamma': self.gamma, 'satellite_skycoord': satellite_skycoord} if (self._model.n_sources == 1): mag_matrix = self._model.get_magnification(time=self._dataset.time[select], **magnification_kwargs) elif (self._model.n_sources == 2): mag_matrix = self._model.get_magnification(time=self._dataset.time[select], separate=True, **magnification_kwargs) else: msg = (('{0} '.format(self._model.n_sources) + 'sources used. Function model.get_magnification can ') + 'only handle <=2 sources') raise NotImplementedError(msg) if bad: self._data_magnification = mag_matrix elif (self._model.n_sources == 1): self._data_magnification = np.zeros(self._dataset.n_epochs) self._data_magnification[self._dataset.good] = mag_matrix else: self._data_magnification = [np.zeros(self._dataset.n_epochs)] self._data_magnification[0][self._dataset.good] = mag_matrix[0] for source in range(1, self.model.n_sources): self._data_magnification.append(np.zeros(self._dataset.n_epochs)) self._data_magnification[source][self._dataset.good] = mag_matrix[source]<|docstring|>Calculate the model magnifications for the epochs of the dataset.<|endoftext|>
bc42e8b79f4e6dfb445d1b451328f98e3b0e41d6a27056d20f73a9acfec4d85f
def _get_xy_qflux(self): ' Apply a fixed flux ratio. ' y = self._dataset.flux[self._dataset.good] x = np.array((self._data_magnification[0][self._dataset.good] + (self.fix_source_flux_ratio * self._data_magnification[1][self._dataset.good]))) self.n_fluxes = 1 return (x, y)
Apply a fixed flux ratio.
source/MulensModel/fitdata.py
_get_xy_qflux
rpoleski/MulensModel
30
python
def _get_xy_qflux(self): ' ' y = self._dataset.flux[self._dataset.good] x = np.array((self._data_magnification[0][self._dataset.good] + (self.fix_source_flux_ratio * self._data_magnification[1][self._dataset.good]))) self.n_fluxes = 1 return (x, y)
def _get_xy_qflux(self): ' ' y = self._dataset.flux[self._dataset.good] x = np.array((self._data_magnification[0][self._dataset.good] + (self.fix_source_flux_ratio * self._data_magnification[1][self._dataset.good]))) self.n_fluxes = 1 return (x, y)<|docstring|>Apply a fixed flux ratio.<|endoftext|>
d4057665b889b58cee7e7983c152420ed96f856f87550519d5f0237ab815562c
def _get_xy_individual_fluxes(self): ' Account for source fluxes individually ' y = self._dataset.flux[self._dataset.good] if (self.fix_source_flux is False): x = np.array(self._data_magnification) if (self.model.n_sources == 1): x = x[self._dataset.good] else: x = x[(:, self._dataset.good)] self.n_fluxes = self._model.n_sources else: x = None if (self._model.n_sources == 1): y -= (self.fix_source_flux[0] * self._data_magnification[self._dataset.good]) else: for i in range(self._model.n_sources): if (self.fix_source_flux[i] is False): self.n_fluxes += 1 if (x is None): x = self._data_magnification[i][self._dataset.good] else: x = np.vstack((x, self._data_magnification[i][self._dataset.good])) else: y -= (self.fix_source_flux[i] * self._data_magnification[i][self._dataset.good]) return (x, y)
Account for source fluxes individually
source/MulensModel/fitdata.py
_get_xy_individual_fluxes
rpoleski/MulensModel
30
python
def _get_xy_individual_fluxes(self): ' ' y = self._dataset.flux[self._dataset.good] if (self.fix_source_flux is False): x = np.array(self._data_magnification) if (self.model.n_sources == 1): x = x[self._dataset.good] else: x = x[(:, self._dataset.good)] self.n_fluxes = self._model.n_sources else: x = None if (self._model.n_sources == 1): y -= (self.fix_source_flux[0] * self._data_magnification[self._dataset.good]) else: for i in range(self._model.n_sources): if (self.fix_source_flux[i] is False): self.n_fluxes += 1 if (x is None): x = self._data_magnification[i][self._dataset.good] else: x = np.vstack((x, self._data_magnification[i][self._dataset.good])) else: y -= (self.fix_source_flux[i] * self._data_magnification[i][self._dataset.good]) return (x, y)
def _get_xy_individual_fluxes(self): ' ' y = self._dataset.flux[self._dataset.good] if (self.fix_source_flux is False): x = np.array(self._data_magnification) if (self.model.n_sources == 1): x = x[self._dataset.good] else: x = x[(:, self._dataset.good)] self.n_fluxes = self._model.n_sources else: x = None if (self._model.n_sources == 1): y -= (self.fix_source_flux[0] * self._data_magnification[self._dataset.good]) else: for i in range(self._model.n_sources): if (self.fix_source_flux[i] is False): self.n_fluxes += 1 if (x is None): x = self._data_magnification[i][self._dataset.good] else: x = np.vstack((x, self._data_magnification[i][self._dataset.good])) else: y -= (self.fix_source_flux[i] * self._data_magnification[i][self._dataset.good]) return (x, y)<|docstring|>Account for source fluxes individually<|endoftext|>
2acd09c48566dfe638d2af2c3a90a5d49638e6732d29a1954434de9b1aba2b67
def _setup_linalg_arrays(self): '\n Create xT and y arrays\n ' (x, y) = self._create_arrays() xT = self._invert_x_array(x) (xT, y) = self._weight_linalg_arrays(xT, y) return (xT, y)
Create xT and y arrays
source/MulensModel/fitdata.py
_setup_linalg_arrays
rpoleski/MulensModel
30
python
def _setup_linalg_arrays(self): '\n \n ' (x, y) = self._create_arrays() xT = self._invert_x_array(x) (xT, y) = self._weight_linalg_arrays(xT, y) return (xT, y)
def _setup_linalg_arrays(self): '\n \n ' (x, y) = self._create_arrays() xT = self._invert_x_array(x) (xT, y) = self._weight_linalg_arrays(xT, y) return (xT, y)<|docstring|>Create xT and y arrays<|endoftext|>
88d9946ebfdeb0ff31093cc4658747114674207de0f3e981d28f61a253ca20d8
def _invert_x_array(self, x): ' Take the transpose of x ' n_epochs = np.sum(self._dataset.good) xT = np.copy(x).T xT.shape = (n_epochs, self.n_fluxes) return xT
Take the transpose of x
source/MulensModel/fitdata.py
_invert_x_array
rpoleski/MulensModel
30
python
def _invert_x_array(self, x): ' ' n_epochs = np.sum(self._dataset.good) xT = np.copy(x).T xT.shape = (n_epochs, self.n_fluxes) return xT
def _invert_x_array(self, x): ' ' n_epochs = np.sum(self._dataset.good) xT = np.copy(x).T xT.shape = (n_epochs, self.n_fluxes) return xT<|docstring|>Take the transpose of x<|endoftext|>
a2589f4e547cb0b098e52f464815509fb2f9876ddd37a907c71fcd3fea1ac5a4
def _weight_linalg_arrays(self, xT, y): 'weight by data uncertainties' sigma_inverse = (1.0 / self._dataset.err_flux[self._dataset.good]) y *= sigma_inverse xT *= np.array(([sigma_inverse] * self.n_fluxes)).T return (xT, y)
weight by data uncertainties
source/MulensModel/fitdata.py
_weight_linalg_arrays
rpoleski/MulensModel
30
python
def _weight_linalg_arrays(self, xT, y): sigma_inverse = (1.0 / self._dataset.err_flux[self._dataset.good]) y *= sigma_inverse xT *= np.array(([sigma_inverse] * self.n_fluxes)).T return (xT, y)
def _weight_linalg_arrays(self, xT, y): sigma_inverse = (1.0 / self._dataset.err_flux[self._dataset.good]) y *= sigma_inverse xT *= np.array(([sigma_inverse] * self.n_fluxes)).T return (xT, y)<|docstring|>weight by data uncertainties<|endoftext|>
14162515b5a27fbf15f3aabf24bd57d4722b1fd7fae9b723d321776201724d25
def fit_fluxes(self): '\n Execute the linear least squares fit to determine the fitted fluxes.\n Sets the values of :py:obj:`~source_fluxes`, :py:obj:`~blend_flux`,\n and (if applicable) :py:obj:`~source_flux`.\n\n Does *not* calculate chi2. To fit for the fluxes and calculate chi2,\n run :py:func:`~update()`.\n ' (xT, y) = self._setup_linalg_arrays() try: results = np.linalg.lstsq(xT, y, rcond=(- 1))[0] except ValueError as e: message = "{0}\nIf either of these numbers ({1}, {2}) is greater than zero, there is a NaN somewhere, probably in the data. The cause of this error may be the epochs with extreme brightness (e.g., 99.999 mag), which is sometimes used to mark bad data. Other possible reason is mistakenly using phot_fmt='flux' instead of 'mag'" args = (e, np.sum(np.isnan(xT)), np.sum(np.isnan(y))) raise ValueError(message.format(*args)) if (self.fix_source_flux_ratio is False): if (self.fix_source_flux is False): self._source_fluxes = results[0:self._model.n_sources] else: self._source_fluxes = [] index = 0 for i in range(self._model.n_sources): if (self.fix_source_flux[i] is False): self._source_fluxes.append(results[index]) index += 1 else: self._source_fluxes.append(self.fix_source_flux[i]) else: self._source_fluxes = [results[0], (results[0] * self.fix_source_flux_ratio)] if (self.fix_blend_flux is False): self._blend_flux = results[(- 1)] else: self._blend_flux = self.fix_blend_flux
Execute the linear least squares fit to determine the fitted fluxes. Sets the values of :py:obj:`~source_fluxes`, :py:obj:`~blend_flux`, and (if applicable) :py:obj:`~source_flux`. Does *not* calculate chi2. To fit for the fluxes and calculate chi2, run :py:func:`~update()`.
source/MulensModel/fitdata.py
fit_fluxes
rpoleski/MulensModel
30
python
def fit_fluxes(self): '\n Execute the linear least squares fit to determine the fitted fluxes.\n Sets the values of :py:obj:`~source_fluxes`, :py:obj:`~blend_flux`,\n and (if applicable) :py:obj:`~source_flux`.\n\n Does *not* calculate chi2. To fit for the fluxes and calculate chi2,\n run :py:func:`~update()`.\n ' (xT, y) = self._setup_linalg_arrays() try: results = np.linalg.lstsq(xT, y, rcond=(- 1))[0] except ValueError as e: message = "{0}\nIf either of these numbers ({1}, {2}) is greater than zero, there is a NaN somewhere, probably in the data. The cause of this error may be the epochs with extreme brightness (e.g., 99.999 mag), which is sometimes used to mark bad data. Other possible reason is mistakenly using phot_fmt='flux' instead of 'mag'" args = (e, np.sum(np.isnan(xT)), np.sum(np.isnan(y))) raise ValueError(message.format(*args)) if (self.fix_source_flux_ratio is False): if (self.fix_source_flux is False): self._source_fluxes = results[0:self._model.n_sources] else: self._source_fluxes = [] index = 0 for i in range(self._model.n_sources): if (self.fix_source_flux[i] is False): self._source_fluxes.append(results[index]) index += 1 else: self._source_fluxes.append(self.fix_source_flux[i]) else: self._source_fluxes = [results[0], (results[0] * self.fix_source_flux_ratio)] if (self.fix_blend_flux is False): self._blend_flux = results[(- 1)] else: self._blend_flux = self.fix_blend_flux
def fit_fluxes(self): '\n Execute the linear least squares fit to determine the fitted fluxes.\n Sets the values of :py:obj:`~source_fluxes`, :py:obj:`~blend_flux`,\n and (if applicable) :py:obj:`~source_flux`.\n\n Does *not* calculate chi2. To fit for the fluxes and calculate chi2,\n run :py:func:`~update()`.\n ' (xT, y) = self._setup_linalg_arrays() try: results = np.linalg.lstsq(xT, y, rcond=(- 1))[0] except ValueError as e: message = "{0}\nIf either of these numbers ({1}, {2}) is greater than zero, there is a NaN somewhere, probably in the data. The cause of this error may be the epochs with extreme brightness (e.g., 99.999 mag), which is sometimes used to mark bad data. Other possible reason is mistakenly using phot_fmt='flux' instead of 'mag'" args = (e, np.sum(np.isnan(xT)), np.sum(np.isnan(y))) raise ValueError(message.format(*args)) if (self.fix_source_flux_ratio is False): if (self.fix_source_flux is False): self._source_fluxes = results[0:self._model.n_sources] else: self._source_fluxes = [] index = 0 for i in range(self._model.n_sources): if (self.fix_source_flux[i] is False): self._source_fluxes.append(results[index]) index += 1 else: self._source_fluxes.append(self.fix_source_flux[i]) else: self._source_fluxes = [results[0], (results[0] * self.fix_source_flux_ratio)] if (self.fix_blend_flux is False): self._blend_flux = results[(- 1)] else: self._blend_flux = self.fix_blend_flux<|docstring|>Execute the linear least squares fit to determine the fitted fluxes. Sets the values of :py:obj:`~source_fluxes`, :py:obj:`~blend_flux`, and (if applicable) :py:obj:`~source_flux`. Does *not* calculate chi2. To fit for the fluxes and calculate chi2, run :py:func:`~update()`.<|endoftext|>