Datasets:

Languages:
German
License:
system HF staff commited on
Commit
27b4a40
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +147 -0
  3. dataset_infos.json +1 -0
  4. dummy/0.9.1/dummy_data.zip +3 -0
  5. germaner.py +117 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators: []
3
+ language_creators: []
4
+ languages:
5
+ - de
6
+ licenses:
7
+ - other-ASL 2-0
8
+ multilinguality:
9
+ - monolingual
10
+ size_categories:
11
+ - 10K<n<100K
12
+ source_datasets:
13
+ - original
14
+ task_categories:
15
+ - structure-prediction
16
+ task_ids:
17
+ - named-entity-recognition
18
+ ---
19
+
20
+ # Dataset Card Creation Guide
21
+
22
+ ## Table of Contents
23
+ - [Dataset Description](#dataset-description)
24
+ - [Dataset Summary](#dataset-summary)
25
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
26
+ - [Languages](#languages)
27
+ - [Dataset Structure](#dataset-structure)
28
+ - [Data Instances](#data-instances)
29
+ - [Data Fields](#data-instances)
30
+ - [Data Splits](#data-instances)
31
+ - [Dataset Creation](#dataset-creation)
32
+ - [Curation Rationale](#curation-rationale)
33
+ - [Source Data](#source-data)
34
+ - [Annotations](#annotations)
35
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
36
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
37
+ - [Social Impact of Dataset](#social-impact-of-dataset)
38
+ - [Discussion of Biases](#discussion-of-biases)
39
+ - [Other Known Limitations](#other-known-limitations)
40
+ - [Additional Information](#additional-information)
41
+ - [Dataset Curators](#dataset-curators)
42
+ - [Licensing Information](#licensing-information)
43
+ - [Citation Information](#citation-information)
44
+
45
+ ## Dataset Description
46
+
47
+ - **Homepage:** None
48
+ - **Repository:** https://github.com/tudarmstadt-lt/GermaNER
49
+ - **Paper:** https://pdfs.semanticscholar.org/b250/3144ed2152830f6c64a9f797ab3c5a34fee5.pdf
50
+ - **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
51
+ - **Point of Contact:** Darina Benikova ([email protected],)
52
+
53
+ ### Dataset Summary
54
+
55
+ [More Information Needed]
56
+
57
+ ### Supported Tasks and Leaderboards
58
+
59
+ [More Information Needed]
60
+
61
+ ### Languages
62
+
63
+ [More Information Needed]
64
+
65
+ ## Dataset Structure
66
+
67
+ ### Data Instances
68
+
69
+ Here are some examples of questions and facts:
70
+
71
+ * What American cartoonist is the creator of Andy Lippincott?
72
+ Fact: (andy_lippincott, character_created_by, garry_trudeau)
73
+ * Which forest is Fires Creek in?
74
+ Fact: (fires_creek, containedby, nantahala_national_forest)
75
+ * What does Jimmy Neutron do?
76
+ Fact: (jimmy_neutron, fictional_character_occupation, inventor)
77
+ * What dietary restriction is incompatible with kimchi?
78
+ Fact: (kimchi, incompatible_with_dietary_restrictions, veganism)
79
+
80
+ ### Data Fields
81
+
82
+ [More Information Needed]
83
+
84
+ ### Data Splits
85
+
86
+ [More Information Needed]
87
+ ## Dataset Creation
88
+
89
+ ### Curation Rationale
90
+
91
+ [More Information Needed]
92
+
93
+ ### Source Data
94
+
95
+ [More Information Needed]
96
+
97
+ #### Initial Data Collection and Normalization
98
+
99
+ [More Information Needed]
100
+
101
+ #### Who are the source language producers?
102
+
103
+ [More Information Needed]
104
+
105
+ ### Annotations
106
+
107
+ [More Information Needed]
108
+
109
+ #### Annotation process
110
+
111
+ [More Information Needed]
112
+
113
+ #### Who are the annotators?
114
+
115
+ [More Information Needed]
116
+
117
+ ### Personal and Sensitive Information
118
+
119
+ [More Information Needed]
120
+
121
+ ## Considerations for Using the Data
122
+
123
+ ### Social Impact of Dataset
124
+
125
+ [More Information Needed]
126
+
127
+ ### Discussion of Biases
128
+
129
+ [More Information Needed]
130
+
131
+ ### Other Known Limitations
132
+
133
+ [More Information Needed]
134
+
135
+ ## Additional Information
136
+
137
+ ### Dataset Curators
138
+
139
+ [More Information Needed]
140
+
141
+ ### Licensing Information
142
+
143
+ [More Information Needed]
144
+
145
+ ### Citation Information
146
+
147
+ [More Information Needed]
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "GermaNER is a freely available statistical German Named Entity Tagger based on conditional random fields(CRF). The tagger is trained and evaluated on the NoSta-D Named Entity dataset, which was used in the GermEval 2014 for named entity recognition. The tagger comes close to the performance of the best (proprietary) system in the competition with 77% F-measure (this is the latest result; the one reported in the paper is 76%) test set performance on the four standard NER classes (PERson, LOCation, ORGanisation and OTHer).\n\nWe describe a range of features and their influence on German NER classification and provide a comparative evaluation and some analysis of the results. The software components, the training data and all data used for feature generation are distributed under permissive licenses, thus this tagger can be used in academic and commercial settings without restrictions or fees. The tagger is available as a command-line tool and as an Apache UIMA component.\n", "citation": "GermaNER: Free Open German Named Entity Recognition Tool, Darina Benikova,Seid Muhie Yimam, Prabhakaran Santhanam and Chris Biemann, In: International Conference of the German Society for Computational Linguistics and Language Technology (GSCL-2015), 2015.", "homepage": "https://github.com/tudarmstadt-lt/GermaNER", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 9, "names": ["B-LOC", "B-ORG", "B-OTH", "B-PER", "I-LOC", "I-ORG", "I-OTH", "I-PER", "O"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "germa_ner", "config_name": "default", "version": {"version_str": "0.9.1", "description": null, "major": 0, "minor": 9, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 9059606, "num_examples": 26200, "dataset_name": "germa_ner"}}, "download_checksums": {"https://raw.githubusercontent.com/tudarmstadt-lt/GermaNER/a206b554feca263d740302449fff0776c66d0040/data/v0.9.1/full_train.tsv": {"num_bytes": 4363657, "checksum": "7532d8372e4f40730383629205c24a12fddd04eb5dac121c75688f06c6ccb8a9"}}, "download_size": 4363657, "post_processing_size": null, "dataset_size": 9059606, "size_in_bytes": 13423263}}
dummy/0.9.1/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b4e88c313ed53a4120b0a0481819f9ea6981c4e580f7a1d5a8474209c4ed056
3
+ size 295
germaner.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ import datasets
18
+
19
+
20
+ _DESCRIPTION = """\
21
+ GermaNER is a freely available statistical German Named Entity Tagger based on conditional random fields(CRF). The tagger is trained and evaluated on the NoSta-D Named Entity dataset, which was used in the GermEval 2014 for named entity recognition. The tagger comes close to the performance of the best (proprietary) system in the competition with 77% F-measure (this is the latest result; the one reported in the paper is 76%) test set performance on the four standard NER classes (PERson, LOCation, ORGanisation and OTHer).
22
+
23
+ We describe a range of features and their influence on German NER classification and provide a comparative evaluation and some analysis of the results. The software components, the training data and all data used for feature generation are distributed under permissive licenses, thus this tagger can be used in academic and commercial settings without restrictions or fees. The tagger is available as a command-line tool and as an Apache UIMA component.
24
+ """
25
+ _HOMEPAGE_URL = "https://github.com/tudarmstadt-lt/GermaNER"
26
+ _URL = "https://raw.githubusercontent.com/tudarmstadt-lt/GermaNER/a206b554feca263d740302449fff0776c66d0040/data/v0.9.1/full_train.tsv"
27
+ _CITATION = """\
28
+ @inproceedings{Benikova2015GermaNERFO,
29
+ title={GermaNER: Free Open German Named Entity Recognition Tool},
30
+ author={Darina Benikova and S. Yimam and Prabhakaran Santhanam and Chris Biemann},
31
+ booktitle={GSCL},
32
+ year={2015}
33
+ }
34
+ """
35
+
36
+
37
+ class GermaNER(datasets.GeneratorBasedBuilder):
38
+ VERSION = datasets.Version("0.9.1")
39
+
40
+ def _info(self):
41
+ return datasets.DatasetInfo(
42
+ description=_DESCRIPTION,
43
+ features=datasets.Features(
44
+ {
45
+ "id": datasets.Value("string"),
46
+ "tokens": datasets.Sequence(datasets.Value("string")),
47
+ "ner_tags": datasets.Sequence(
48
+ datasets.features.ClassLabel(
49
+ names=[
50
+ "B-LOC",
51
+ "B-ORG",
52
+ "B-OTH",
53
+ "B-PER",
54
+ "I-LOC",
55
+ "I-ORG",
56
+ "I-OTH",
57
+ "I-PER",
58
+ "O",
59
+ ]
60
+ )
61
+ ),
62
+ },
63
+ ),
64
+ supervised_keys=None,
65
+ homepage=_HOMEPAGE_URL,
66
+ citation=_CITATION,
67
+ )
68
+
69
+ def _split_generators(self, dl_manager):
70
+ path = dl_manager.download_and_extract(_URL)
71
+ return [
72
+ datasets.SplitGenerator(
73
+ name=datasets.Split.TRAIN,
74
+ gen_kwargs={"datapath": path},
75
+ )
76
+ ]
77
+
78
+ def _generate_examples(self, datapath):
79
+ sentence_counter = 0
80
+ with open(datapath, encoding="utf-8") as f:
81
+ current_words = []
82
+ current_labels = []
83
+ for row in f:
84
+ row = row.rstrip()
85
+ row_split = row.split()
86
+ if len(row_split) == 2:
87
+ token, label = row_split
88
+ current_words.append(token)
89
+ current_labels.append(label)
90
+ else:
91
+ if not current_words:
92
+ continue
93
+ assert len(current_words) == len(current_labels), "word len doesnt match label length"
94
+ sentence = (
95
+ sentence_counter,
96
+ {
97
+ "id": str(sentence_counter),
98
+ "tokens": current_words,
99
+ "ner_tags": current_labels,
100
+ },
101
+ )
102
+ sentence_counter += 1
103
+ current_words = []
104
+ current_labels = []
105
+ yield sentence
106
+
107
+ # if something remains:
108
+ if current_words:
109
+ sentence = (
110
+ sentence_counter,
111
+ {
112
+ "id": str(sentence_counter),
113
+ "tokens": current_words,
114
+ "ner_tags": current_labels,
115
+ },
116
+ )
117
+ yield sentence