Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Turkish
Size:
100K - 1M
Tags:
sentiment
License:
added benchmark info
Browse files
README.md
CHANGED
@@ -149,11 +149,22 @@ Here are the dataset sizes and number of labels:
|
|
149 |
|---|---|---|
|
150 |
| e-commerce | 103K | 5 |
|
151 |
| movies | 78K | 2|
|
152 |
-
| hate |
|
153 |
|
154 |
|
155 |
### Benchmarking
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
### Citation
|
159 |
|
|
|
149 |
|---|---|---|
|
150 |
| e-commerce | 103K | 5 |
|
151 |
| movies | 78K | 2|
|
152 |
+
| hate | 52K| 4 |
|
153 |
|
154 |
|
155 |
### Benchmarking
|
156 |
|
157 |
+
We benchmarked BERTurk on all of our datasets.
|
158 |
+
All benchmarking scripts can be found under the dedicated [SentiTurca Github repo](https://github.com/turkish-nlp-suite/SentiTurca).
|
159 |
+
|
160 |
+
| Subset | metrics | success |
|
161 |
+
|---|---|---|
|
162 |
+
| movies | Matthews corr. | 0.67 |
|
163 |
+
| e-commerce | acc./F1 | 0.66/0.64 |
|
164 |
+
| hate | acc./F1 | 0.61/0.58 |
|
165 |
+
|
166 |
+
As one sees, hate dataset is quite challenging. For a full critique of the benchmark please visit our [research paper]().
|
167 |
+
|
168 |
|
169 |
### Citation
|
170 |
|