File size: 3,088 Bytes
2954102
 
 
e417aa0
2954102
e417aa0
 
2954102
e417aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2954102
 
e417aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2954102
 
 
 
 
 
e417aa0
2954102
 
 
e417aa0
2954102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import json
import os
from random import shuffle, seed
import pandas as pd

with open("data/tweet_hate/full.jsonl") as f:
    data = [json.loads(i) for i in f if len(i)]

df = pd.DataFrame(data)
df.pop("source")
df["date_dt"] = pd.to_datetime(df.date)
df = df.sort_values(by="date_dt")
dist_date = df.groupby("date_dt").size()
total_n = len(df)
n = 0
while True:
    n += 1
    if dist_date[:n].sum() > total_n/2:
        break
split_date = dist_date.index[n]
print(split_date)

train = df[df["date_dt"] <= split_date]
test = df[df["date_dt"] > split_date]
print(train.date_dt.min(), train.date_dt.max())
print(test.date_dt.min(), test.date_dt.max())

train.pop("date_dt")
test.pop("date_dt")
train = list(train.T.to_dict().values())
test = list(test.T.to_dict().values())

seed(42)
shuffle(train)
shuffle(test)
valid = train[:int(len(train)*0.2)]
train = train[len(valid):]

n_test = int(len(test)/4)
n_train = len(train)
n_validation = len(valid)
test_1 = test[:n_test]
test_2 = test[n_test:n_test*2]
test_3 = test[n_test*2:n_test*3]
test_4 = test[n_test*3:]

os.makedirs("data/tweet_hate", exist_ok=True)
with open("data/tweet_hate/test.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test]))
with open("data/tweet_hate/test_1.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test_1]))
with open("data/tweet_hate/test_2.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test_2]))
with open("data/tweet_hate/test_3.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test_3]))
with open("data/tweet_hate/test_4.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in test_4]))
with open("data/tweet_hate/train.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in train]))
with open("data/tweet_hate/validation.jsonl", "w") as f:
    f.write("\n".join([json.dumps(i) for i in valid]))


def sampler(dataset_test, r_seed):
    seed(r_seed)
    shuffle(dataset_test)
    shuffle(train)
    shuffle(valid)
    test_tr = dataset_test[:int(n_train / 2)]
    test_vl = dataset_test[int(n_train / 2): int(n_train / 2) + int(n_validation / 2)]
    new_train = test_tr + train[:n_train - len(test_tr)]
    new_validation = test_vl + valid[:n_validation - len(test_vl)]
    return new_train, new_validation

id2test = {n: t for n, t in enumerate([test_1, test_2, test_3, test_4])}
for n, _test in enumerate([
        test_4 + test_2 + test_3,
        test_1 + test_4 + test_3,
        test_1 + test_2 + test_4,
        test_1 + test_2 + test_3]):
    for s in range(3):
        os.makedirs(f"data/tweet_hate_test{n}_seed{s}", exist_ok=True)
        _train, _valid = sampler(_test, s)
        with open(f"data/tweet_hate_test{n}_seed{s}/train.jsonl", "w") as f:
            f.write("\n".join([json.dumps(i) for i in _train]))
        with open(f"data/tweet_hate_test{n}_seed{s}/validation.jsonl", "w") as f:
            f.write("\n".join([json.dumps(i) for i in _valid]))
        with open(f"data/tweet_hate_test{n}_seed{s}/test.jsonl", "w") as f:
            f.write("\n".join([json.dumps(i) for i in id2test[n]]))