File size: 3,044 Bytes
9ae5648 7c23da9 9ae5648 7c23da9 9ae5648 7c23da9 9ae5648 7c23da9 9ae5648 f4fc7e9 7c23da9 f4fc7e9 9ae5648 f4fc7e9 9ae5648 f4fc7e9 9ae5648 f4fc7e9 9ae5648 f4fc7e9 9ae5648 f4fc7e9 9ae5648 7c23da9 9ae5648 f4fc7e9 9ae5648 f4fc7e9 9ae5648 f4fc7e9 9ae5648 f4fc7e9 7c23da9 9ae5648 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import json
import os
from random import shuffle, seed
from datasets import load_dataset
test = load_dataset("cardiffnlp/super_tweeteval", "tweet_ner7", split="test").shuffle(seed=42)
test = list(test.to_pandas().T.to_dict().values())
train = load_dataset("cardiffnlp/super_tweeteval", "tweet_ner7", split="train").shuffle(seed=42)
train = list(train.to_pandas().T.to_dict().values())
validation = load_dataset("cardiffnlp/super_tweeteval", "tweet_ner7", split="validation").shuffle(seed=42)
validation = list(validation.to_pandas().T.to_dict().values())
n_train = len(train)
n_validation = len(validation)
for data in [train, validation, test]:
for i in data:
i["gold_label_sequence"] = i["gold_label_sequence"].tolist()
i["entities"] = {k: v.tolist() for k, v in i["entities"].items()}
i["text_tokenized"] = i["text_tokenized"].tolist()
n_test = int(len(test)/4)
test_1 = test[:n_test]
test_2 = test[n_test:n_test*2]
test_3 = test[n_test*2:n_test*3]
test_4 = test[n_test*3:]
os.makedirs("data/tweet_ner", exist_ok=True)
with open("data/tweet_ner/test.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in test]))
with open("data/tweet_ner/test_1.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in test_1]))
with open("data/tweet_ner/test_2.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in test_2]))
with open("data/tweet_ner/test_3.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in test_3]))
with open("data/tweet_ner/test_4.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in test_4]))
with open("data/tweet_ner/train.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in train]))
with open("data/tweet_ner/validation.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in validation]))
def sampler(dataset_test, r_seed):
seed(r_seed)
shuffle(dataset_test)
shuffle(train)
shuffle(validation)
test_tr = dataset_test[:int(n_train / 2)]
test_vl = dataset_test[int(n_train / 2): int(n_train / 2) + int(n_validation / 2)]
new_train = test_tr + train[:n_train - len(test_tr)]
new_validation = test_vl + validation[:n_validation - len(test_vl)]
return new_train, new_validation
id2test = {n: t for n, t in enumerate([test_1, test_2, test_3, test_4])}
for n, _test in enumerate([
test_4 + test_2 + test_3,
test_1 + test_4 + test_3,
test_1 + test_2 + test_4,
test_1 + test_2 + test_3]):
for s in range(3):
os.makedirs(f"data/tweet_ner_test{n}_seed{s}", exist_ok=True)
_train, _valid = sampler(_test, s)
with open(f"data/tweet_ner_test{n}_seed{s}/train.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in _train]))
with open(f"data/tweet_ner_test{n}_seed{s}/validation.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in _valid]))
with open(f"data/tweet_ner_test{n}_seed{s}/test.jsonl", "w") as f:
f.write("\n".join([json.dumps(i) for i in id2test[n]]))
|