asahi417 commited on
Commit
0280861
·
1 Parent(s): 8da4e9b

add chinese

Browse files
experiments/huggingface_ops.py CHANGED
@@ -3,8 +3,10 @@ from pprint import pprint
3
 
4
  api = HfApi()
5
  models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
6
- models_filtered = [i.modelId for i in models if 'twitter-roberta-base-sep2021' in i.modelId]
7
  pprint(sorted(models_filtered))
 
 
8
  # models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
9
  # models_filtered = [i.modelId for i in models if 'topic-' in i.modelId]
10
  # pprint(sorted([i for i in models_filtered if i.endswith('twitter-roberta-base-2019-90m')]))
 
3
 
4
  api = HfApi()
5
  models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
6
+ models_filtered = [i.modelId for i in models if 'emoji' in i.modelId]
7
  pprint(sorted(models_filtered))
8
+ for i in models_filtered:
9
+ api.delete_repo(i, repo_type="model")
10
  # models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
11
  # models_filtered = [i.modelId for i in models if 'topic-' in i.modelId]
12
  # pprint(sorted([i for i in models_filtered if i.endswith('twitter-roberta-base-2019-90m')]))
experiments/main.sh CHANGED
@@ -5,70 +5,41 @@ MODEL="jhu-clsp/bernice"
5
  MODEL="roberta-large"
6
  MODEL="vinai/bertweet-large"
7
  MODEL="cardiffnlp/twitter-roberta-base-2019-90m"
8
-
9
  MODEL="cardiffnlp/twitter-roberta-base-dec2020"
10
  MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
11
- MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
12
-
13
  MODEL="cardiffnlp/twitter-roberta-large-2022-154m"
14
-
15
 
16
  # EMOJI
17
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_temporal"
18
- rm -rf "ckpt/emoji*${MODEL##*/}"
19
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random0_seed0"
20
- rm -rf "ckpt/emoji*${MODEL##*/}"
21
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random1_seed0"
22
- rm -rf "ckpt/emoji*${MODEL##*/}"
23
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random2_seed0"
24
- rm -rf "ckpt/emoji*${MODEL##*/}"
25
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random3_seed0"
26
- rm -rf "ckpt/emoji*${MODEL##*/}"
27
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random0_seed1"
28
- rm -rf "ckpt/emoji*${MODEL##*/}"
29
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random1_seed1"
30
- rm -rf "ckpt/emoji*${MODEL##*/}"
31
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random2_seed1"
32
- rm -rf "ckpt/emoji*${MODEL##*/}"
33
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random3_seed1"
34
- rm -rf "ckpt/emoji*${MODEL##*/}"
35
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random0_seed2"
36
- rm -rf "ckpt/emoji*${MODEL##*/}"
37
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random1_seed2"
38
- rm -rf "ckpt/emoji*${MODEL##*/}"
39
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random2_seed2"
40
- rm -rf "ckpt/emoji*${MODEL##*/}"
41
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random3_seed2"
42
- rm -rf "ckpt/emoji*${MODEL##*/}"
43
 
44
 
45
  # HATE
46
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_temporal"
47
- rm -rf "ckpt/hate*${MODEL##*/}"
48
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random0_seed0"
49
- rm -rf "ckpt/hate*${MODEL##*/}"
50
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random1_seed0"
51
- rm -rf "ckpt/hate*${MODEL##*/}"
52
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random2_seed0"
53
- rm -rf "ckpt/hate*${MODEL##*/}"
54
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random3_seed0"
55
- rm -rf "ckpt/hate*${MODEL##*/}"
56
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random0_seed1"
57
- rm -rf "ckpt/hate*${MODEL##*/}"
58
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random1_seed1"
59
- rm -rf "ckpt/hate*${MODEL##*/}"
60
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random2_seed1"
61
- rm -rf "ckpt/hate*${MODEL##*/}"
62
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random3_seed1"
63
- rm -rf "ckpt/hate*${MODEL##*/}"
64
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random0_seed2"
65
- rm -rf "ckpt/hate*${MODEL##*/}"
66
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random1_seed2"
67
- rm -rf "ckpt/hate*${MODEL##*/}"
68
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random2_seed2"
69
- rm -rf "ckpt/hate*${MODEL##*/}"
70
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random3_seed2"
71
- rm -rf "ckpt/hate*${MODEL##*/}"
72
 
73
 
74
  # SENTIMENT
 
5
  MODEL="roberta-large"
6
  MODEL="vinai/bertweet-large"
7
  MODEL="cardiffnlp/twitter-roberta-base-2019-90m"
 
8
  MODEL="cardiffnlp/twitter-roberta-base-dec2020"
9
  MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
 
 
10
  MODEL="cardiffnlp/twitter-roberta-large-2022-154m"
11
+ MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
12
 
13
  # EMOJI
14
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_temporal"
 
15
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random0_seed0"
 
16
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random1_seed0"
 
17
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random2_seed0"
 
18
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random3_seed0"
 
19
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random0_seed1"
 
20
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random1_seed1"
 
21
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random2_seed1"
 
22
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random3_seed1"
 
23
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random0_seed2"
 
24
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random1_seed2"
 
25
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random2_seed2"
 
26
  python model_finetuning_emoji.py -m "${MODEL}" -d "emoji_random3_seed2"
 
27
 
28
 
29
  # HATE
30
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_temporal"
 
31
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random0_seed0"
 
32
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random1_seed0"
 
33
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random2_seed0"
 
34
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random3_seed0"
 
35
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random0_seed1"
 
36
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random1_seed1"
 
37
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random2_seed1"
 
38
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random3_seed1"
 
39
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random0_seed2"
 
40
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random1_seed2"
 
41
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random2_seed2"
 
42
  python model_finetuning_hate.py -m "${MODEL}" -d "hate_random3_seed2"
 
43
 
44
 
45
  # SENTIMENT
experiments/model_predict_classifier.py CHANGED
@@ -140,6 +140,44 @@ class SentimentClassification(Classifier):
140
  f.write("\n".join([json.dumps(i) for i in predictions]))
141
 
142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
  class NERDClassification(Classifier):
144
 
145
  id_to_label = {'0': '0', '1': '1'}
@@ -178,30 +216,50 @@ if __name__ == '__main__':
178
  ]
179
  for model_m in model_list:
180
  alias = f"tweettemposhift/topic-topic_temporal-{model_m}"
181
- TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
182
  torch.cuda.empty_cache()
183
  for random_r in range(4):
184
  for seed_s in range(3):
185
- alias = f"tweettemposhift/topic-topic_random{random_r}_seed{seed_s}-{model_m}"
186
  TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
187
  torch.cuda.empty_cache()
188
 
189
  for model_m in model_list:
190
- alias = f"tweettemposhift/sentiment-sentiment_small_temporal-{model_m}"
191
- SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
192
  torch.cuda.empty_cache()
193
  for random_r in range(4):
194
  for seed_s in range(3):
195
- alias = f"tweettemposhift/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}"
196
- SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
197
- torch.cuda.empty_cache()
198
-
199
- for model_m in model_list:
200
- alias = f"tweettemposhift/nerd-nerd_temporal-{model_m}"
201
- NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
202
- torch.cuda.empty_cache()
203
- for random_r in range(4):
204
- for seed_s in range(3):
205
- alias = f"tweettemposhift/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}"
206
- NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
207
  torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  f.write("\n".join([json.dumps(i) for i in predictions]))
141
 
142
 
143
+ class HateClassification(Classifier):
144
+
145
+ id_to_label = {'0': '0', '1': '1'}
146
+
147
+ def __init__(self, model_name: str):
148
+ super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
149
+ self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal")
150
+
151
+ def get_prediction(self, export_dir: str, batch_size: int):
152
+ os.makedirs(export_dir, exist_ok=True)
153
+ for test_split in ["test_1", "test_2", "test_3", "test_4"]:
154
+ if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
155
+ continue
156
+ data = self.dataset[test_split]
157
+ predictions = self.predict(data["text"], batch_size)
158
+ with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
159
+ f.write("\n".join([json.dumps(i) for i in predictions]))
160
+
161
+
162
+ class EmojiClassification(Classifier):
163
+
164
+ def __init__(self, model_name: str):
165
+ self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "hate_temporal")
166
+ id_to_label = dict(enumerate(self.dataset["test"].features["gold_label"].names))
167
+ super().__init__(model_name, max_length=128, multi_label=False, id_to_label=id_to_label)
168
+
169
+ def get_prediction(self, export_dir: str, batch_size: int):
170
+ os.makedirs(export_dir, exist_ok=True)
171
+ for test_split in ["test_1", "test_2", "test_3", "test_4"]:
172
+ if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
173
+ continue
174
+ data = self.dataset[test_split]
175
+ predictions = self.predict(data["text"], batch_size)
176
+ with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
177
+ f.write("\n".join([json.dumps(i) for i in predictions]))
178
+
179
+
180
+
181
  class NERDClassification(Classifier):
182
 
183
  id_to_label = {'0': '0', '1': '1'}
 
216
  ]
217
  for model_m in model_list:
218
  alias = f"tweettemposhift/topic-topic_temporal-{model_m}"
219
+ HateClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
220
  torch.cuda.empty_cache()
221
  for random_r in range(4):
222
  for seed_s in range(3):
223
+ alias = f"tweettemposhift/hate-hate_random{random_r}_seed{seed_s}-{model_m}"
224
  TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
225
  torch.cuda.empty_cache()
226
 
227
  for model_m in model_list:
228
+ alias = f"tweettemposhift/emoji-emoji_temporal-{model_m}"
229
+ EmojiClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
230
  torch.cuda.empty_cache()
231
  for random_r in range(4):
232
  for seed_s in range(3):
233
+ alias = f"tweettemposhift/emoji-emoji_random{random_r}_seed{seed_s}-{model_m}"
234
+ TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
 
 
 
 
 
 
 
 
 
 
235
  torch.cuda.empty_cache()
236
+ #
237
+ # for model_m in model_list:
238
+ # alias = f"tweettemposhift/topic-topic_temporal-{model_m}"
239
+ # TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
240
+ # torch.cuda.empty_cache()
241
+ # for random_r in range(4):
242
+ # for seed_s in range(3):
243
+ # alias = f"tweettemposhift/topic-topic_random{random_r}_seed{seed_s}-{model_m}"
244
+ # TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
245
+ # torch.cuda.empty_cache()
246
+ #
247
+ # for model_m in model_list:
248
+ # alias = f"tweettemposhift/sentiment-sentiment_small_temporal-{model_m}"
249
+ # SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
250
+ # torch.cuda.empty_cache()
251
+ # for random_r in range(4):
252
+ # for seed_s in range(3):
253
+ # alias = f"tweettemposhift/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}"
254
+ # SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
255
+ # torch.cuda.empty_cache()
256
+ #
257
+ # for model_m in model_list:
258
+ # alias = f"tweettemposhift/nerd-nerd_temporal-{model_m}"
259
+ # NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
260
+ # torch.cuda.empty_cache()
261
+ # for random_r in range(4):
262
+ # for seed_s in range(3):
263
+ # alias = f"tweettemposhift/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}"
264
+ # NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
265
+ # torch.cuda.empty_cache()