asahi417 commited on
Commit
05199ad
·
1 Parent(s): 6951d33
Files changed (1) hide show
  1. tweet_temporal_shift.py +26 -26
tweet_temporal_shift.py CHANGED
@@ -2,7 +2,7 @@
2
  import json
3
  import datasets
4
 
5
- _VERSION = "0.0.1"
6
  _TWEET_TEMPORAL_DESCRIPTION = """"""
7
  _TWEET_TEMPORAL_CITATION = """"""
8
  _TWEET_TOPIC_DESCRIPTION = """
@@ -117,13 +117,13 @@ class TweetTemporalShift(datasets.GeneratorBasedBuilder):
117
  features=["text", "gold_label_list", "date"],
118
  data_url=f"{_ROOT_URL}/tweet_topic",
119
  ),
120
- TweetTemporalShiftConfig(
121
- name="ner_temporal",
122
- description=_TWEET_NER7_DESCRIPTION,
123
- citation=_TWEET_NER7_CITATION,
124
- features=["text", "text_tokenized", "gold_label_sequence", "date"],
125
- data_url=f"{_ROOT_URL}/tweet_ner",
126
- ),
127
  TweetTemporalShiftConfig(
128
  name="nerd_temporal",
129
  description=_TWEET_NERD_DESCRIPTION,
@@ -142,13 +142,13 @@ class TweetTemporalShift(datasets.GeneratorBasedBuilder):
142
  features=["text", "gold_label_list", "date"],
143
  data_url=f"{_ROOT_URL}/tweet_topic_test{i}_seed{s}",
144
  ),
145
- TweetTemporalShiftConfig(
146
- name=f"ner_random{i}_seed{s}",
147
- description=_TWEET_NER7_DESCRIPTION,
148
- citation=_TWEET_NER7_CITATION,
149
- features=["text", "text_tokenized", "gold_label_sequence", "date"],
150
- data_url=f"{_ROOT_URL}/tweet_ner_test{i}_seed{s}",
151
- ),
152
  TweetTemporalShiftConfig(
153
  name=f"nerd_random{i}_seed{s}",
154
  description=_TWEET_NERD_DESCRIPTION,
@@ -160,7 +160,7 @@ class TweetTemporalShift(datasets.GeneratorBasedBuilder):
160
 
161
  def _info(self):
162
  features = {feature: datasets.Value("string") for feature in self.config.features}
163
- if "topic_" in self.config.name:
164
  names = [
165
  "arts_&_culture", "business_&_entrepreneurs", "celebrity_&_pop_culture", "diaries_&_daily_life",
166
  "family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
@@ -168,16 +168,7 @@ class TweetTemporalShift(datasets.GeneratorBasedBuilder):
168
  "science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"]
169
  features["gold_label_list"] = datasets.Sequence(
170
  datasets.features.ClassLabel(names=names))
171
- if "ner_" in self.config.name:
172
- names = [
173
- "B-corporation", "B-creative_work", "B-event", "B-group", "B-location", "B-person", "B-product",
174
- "I-corporation", "I-creative_work", "I-event", "I-group", "I-location", "I-person", "I-product", "O"]
175
- features["gold_label_sequence"] = datasets.Sequence(
176
- datasets.features.ClassLabel(names=names))
177
- features["text_tokenized"] = datasets.Sequence(
178
- datasets.Value("string"))
179
- features["entities"] = datasets.features.Sequence({"entity": datasets.Value("string"), "type": datasets.Value("string")})
180
- if "nerd_" in self.config.name:
181
  features["target"] = datasets.Value("string")
182
  features["text"] = datasets.Value("string")
183
  features["definition"] = datasets.Value("string")
@@ -185,6 +176,15 @@ class TweetTemporalShift(datasets.GeneratorBasedBuilder):
185
  features["text_end"] = datasets.Value("int32")
186
  features["gold_label_binary"] = datasets.Value("int32")
187
  features["date"] = datasets.Value("string")
 
 
 
 
 
 
 
 
 
188
  return datasets.DatasetInfo(
189
  description=_TWEET_TEMPORAL_DESCRIPTION + "\n" + self.config.description,
190
  features=datasets.Features(features),
 
2
  import json
3
  import datasets
4
 
5
+ _VERSION = "0.0.2"
6
  _TWEET_TEMPORAL_DESCRIPTION = """"""
7
  _TWEET_TEMPORAL_CITATION = """"""
8
  _TWEET_TOPIC_DESCRIPTION = """
 
117
  features=["text", "gold_label_list", "date"],
118
  data_url=f"{_ROOT_URL}/tweet_topic",
119
  ),
120
+ # TweetTemporalShiftConfig(
121
+ # name="ner_temporal",
122
+ # description=_TWEET_NER7_DESCRIPTION,
123
+ # citation=_TWEET_NER7_CITATION,
124
+ # features=["text", "text_tokenized", "gold_label_sequence", "date"],
125
+ # data_url=f"{_ROOT_URL}/tweet_ner",
126
+ # ),
127
  TweetTemporalShiftConfig(
128
  name="nerd_temporal",
129
  description=_TWEET_NERD_DESCRIPTION,
 
142
  features=["text", "gold_label_list", "date"],
143
  data_url=f"{_ROOT_URL}/tweet_topic_test{i}_seed{s}",
144
  ),
145
+ # TweetTemporalShiftConfig(
146
+ # name=f"ner_random{i}_seed{s}",
147
+ # description=_TWEET_NER7_DESCRIPTION,
148
+ # citation=_TWEET_NER7_CITATION,
149
+ # features=["text", "text_tokenized", "gold_label_sequence", "date"],
150
+ # data_url=f"{_ROOT_URL}/tweet_ner_test{i}_seed{s}",
151
+ # ),
152
  TweetTemporalShiftConfig(
153
  name=f"nerd_random{i}_seed{s}",
154
  description=_TWEET_NERD_DESCRIPTION,
 
160
 
161
  def _info(self):
162
  features = {feature: datasets.Value("string") for feature in self.config.features}
163
+ if "topic" in self.config.name:
164
  names = [
165
  "arts_&_culture", "business_&_entrepreneurs", "celebrity_&_pop_culture", "diaries_&_daily_life",
166
  "family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
 
168
  "science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"]
169
  features["gold_label_list"] = datasets.Sequence(
170
  datasets.features.ClassLabel(names=names))
171
+ elif "nerd" in self.config.name:
 
 
 
 
 
 
 
 
 
172
  features["target"] = datasets.Value("string")
173
  features["text"] = datasets.Value("string")
174
  features["definition"] = datasets.Value("string")
 
176
  features["text_end"] = datasets.Value("int32")
177
  features["gold_label_binary"] = datasets.Value("int32")
178
  features["date"] = datasets.Value("string")
179
+ # elif "ner" in self.config.name:
180
+ # names = [
181
+ # "B-corporation", "B-creative_work", "B-event", "B-group", "B-location", "B-person", "B-product",
182
+ # "I-corporation", "I-creative_work", "I-event", "I-group", "I-location", "I-person", "I-product", "O"]
183
+ # features["gold_label_sequence"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
184
+ # features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
185
+ # features["entities"] = datasets.features.Sequence(
186
+ # {"entity": datasets.Value("string"), "type": datasets.Value("string")}
187
+ # )
188
  return datasets.DatasetInfo(
189
  description=_TWEET_TEMPORAL_DESCRIPTION + "\n" + self.config.description,
190
  features=datasets.Features(features),