init
Browse files
experiments/analysis/nerd.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
experiments/analysis/sentiment.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
experiments/analysis/topic.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
experiments/analysis_prediction.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from datasets import load_dataset
|
6 |
+
|
7 |
+
root_dir = "experiments/prediction_files"
|
8 |
+
id_to_label = {
|
9 |
+
'0': 'arts_&_culture',
|
10 |
+
'1': 'business_&_entrepreneurs',
|
11 |
+
'2': 'celebrity_&_pop_culture',
|
12 |
+
'3': 'diaries_&_daily_life',
|
13 |
+
'4': 'family',
|
14 |
+
'5': 'fashion_&_style',
|
15 |
+
'6': 'film_tv_&_video',
|
16 |
+
'7': 'fitness_&_health',
|
17 |
+
'8': 'food_&_dining',
|
18 |
+
'9': 'gaming',
|
19 |
+
'10': 'learning_&_educational',
|
20 |
+
'11': 'music',
|
21 |
+
'12': 'news_&_social_concern',
|
22 |
+
'13': 'other_hobbies',
|
23 |
+
'14': 'relationships',
|
24 |
+
'15': 'science_&_technology',
|
25 |
+
'16': 'sports',
|
26 |
+
'17': 'travel_&_adventure',
|
27 |
+
'18': 'youth_&_student_life'
|
28 |
+
}
|
29 |
+
tasks = ["nerd", "sentiment", "topic"]
|
30 |
+
splits = ["test_1", "test_2", "test_3", "test_4"]
|
31 |
+
model_list = [
|
32 |
+
"roberta-base",
|
33 |
+
"bertweet-base",
|
34 |
+
"bernice",
|
35 |
+
"roberta-large",
|
36 |
+
"bertweet-large",
|
37 |
+
"twitter-roberta-base-2019-90m",
|
38 |
+
"twitter-roberta-base-dec2020",
|
39 |
+
"twitter-roberta-base-2021-124m",
|
40 |
+
"twitter-roberta-base-2022-154m",
|
41 |
+
"twitter-roberta-large-2022-154m"
|
42 |
+
]
|
43 |
+
references = {}
|
44 |
+
|
45 |
+
for task in tasks:
|
46 |
+
references[task] = {}
|
47 |
+
for s in splits:
|
48 |
+
data = load_dataset("tweettemposhift/tweet_temporal_shift", f"{task}_temporal", split=s)
|
49 |
+
if task in ["nerd", "sentiment"]:
|
50 |
+
references[task][s] = [str(i) for i in data['gold_label_binary']]
|
51 |
+
else:
|
52 |
+
references[task][s] = [{id_to_label[str(n)] for n, k in enumerate(i) if k == 1} for i in data['gold_label_list']]
|
53 |
+
|
54 |
+
os.makedirs("experiments/analysis", exist_ok=True)
|
55 |
+
|
56 |
+
output = {}
|
57 |
+
for model_m in model_list:
|
58 |
+
flags = []
|
59 |
+
for s in splits:
|
60 |
+
with open(f"{root_dir}/topic-topic_temporal-{model_m}/{s}.jsonl") as f:
|
61 |
+
pred = [set(json.loads(i)["label"]) for i in f.read().split('\n') if len(i)]
|
62 |
+
flags += [a == b for a, b in zip(references["topic"][s], pred)]
|
63 |
+
count = {}
|
64 |
+
for seed_s in range(3):
|
65 |
+
flags_rand = []
|
66 |
+
for random_r in range(4):
|
67 |
+
with open(f"{root_dir}/topic-topic_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
|
68 |
+
pred = [set(json.loads(i)["label"]) for i in f.read().split('\n') if len(i)]
|
69 |
+
flags_rand += [a == b for a, b in zip(references["topic"][f"test_{random_r + 1}"], pred)]
|
70 |
+
count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
|
71 |
+
output[model_m] = pd.DataFrame(count).sum(1)
|
72 |
+
|
73 |
+
df_main = []
|
74 |
+
for s in splits:
|
75 |
+
df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "topic_temporal", split=s).to_pandas())
|
76 |
+
df_main = pd.concat(df_main)
|
77 |
+
df_main["error_count"] = pd.DataFrame(output).sum(1).values
|
78 |
+
df_main["gold_label_list"] = [", ".join([id_to_label[str(n)] for n, k in enumerate(i) if k == 1]) for i in df_main['gold_label_list']]
|
79 |
+
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/topic.csv")
|
80 |
+
|
81 |
+
|
82 |
+
output = {}
|
83 |
+
for model_m in model_list:
|
84 |
+
flags = []
|
85 |
+
for s in splits:
|
86 |
+
with open(f"{root_dir}/nerd-nerd_temporal-{model_m}/{s}.jsonl") as f:
|
87 |
+
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
|
88 |
+
flags += [a == b for a, b in zip(references["nerd"][s], pred)]
|
89 |
+
count = {}
|
90 |
+
for seed_s in range(3):
|
91 |
+
flags_rand = []
|
92 |
+
for random_r in range(4):
|
93 |
+
with open(f"{root_dir}/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
|
94 |
+
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
|
95 |
+
flags_rand += [a == b for a, b in zip(references["nerd"][f"test_{random_r + 1}"], pred)]
|
96 |
+
count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
|
97 |
+
output[model_m] = pd.DataFrame(count).sum(1)
|
98 |
+
|
99 |
+
df_main = []
|
100 |
+
for s in splits:
|
101 |
+
df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "nerd_temporal", split=s).to_pandas())
|
102 |
+
df_main = pd.concat(df_main)
|
103 |
+
df_main["error_count"] = pd.DataFrame(output).sum(1).values
|
104 |
+
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/nerd.csv")
|
105 |
+
|
106 |
+
|
107 |
+
output = {}
|
108 |
+
for model_m in model_list:
|
109 |
+
flags = []
|
110 |
+
for s in splits:
|
111 |
+
with open(f"{root_dir}/sentiment-sentiment_small_temporal-{model_m}/{s}.jsonl") as f:
|
112 |
+
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
|
113 |
+
flags += [a == b for a, b in zip(references["sentiment"][s], pred)]
|
114 |
+
count = {}
|
115 |
+
for seed_s in range(3):
|
116 |
+
flags_rand = []
|
117 |
+
for random_r in range(4):
|
118 |
+
with open(f"{root_dir}/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f:
|
119 |
+
pred = [json.loads(i)["label"] for i in f.read().split('\n') if len(i)]
|
120 |
+
flags_rand += [a == b for a, b in zip(references["sentiment"][f"test_{random_r + 1}"], pred)]
|
121 |
+
count[f"{model_m}_{seed_s}"] = [not x and y for x, y in zip(flags, flags_rand)]
|
122 |
+
output[model_m] = pd.DataFrame(count).sum(1)
|
123 |
+
|
124 |
+
df_main = []
|
125 |
+
for s in splits:
|
126 |
+
df_main.append(load_dataset("tweettemposhift/tweet_temporal_shift", "sentiment_small_temporal", split=s).to_pandas())
|
127 |
+
df_main = pd.concat(df_main)
|
128 |
+
df_main["error_count"] = pd.DataFrame(output).sum(1).values
|
129 |
+
df_main.sort_values("error_count", ascending=False).to_csv("experiments/analysis/sentiment.csv")
|
experiments/model_predict_classifier.py
CHANGED
@@ -113,6 +113,8 @@ class TopicClassification(Classifier):
|
|
113 |
def get_prediction(self, export_dir: str, batch_size: int):
|
114 |
os.makedirs(export_dir, exist_ok=True)
|
115 |
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
|
|
|
|
116 |
data = self.dataset[test_split]
|
117 |
predictions = self.predict(data["text"], batch_size)
|
118 |
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
@@ -130,6 +132,8 @@ class SentimentClassification(Classifier):
|
|
130 |
def get_prediction(self, export_dir: str, batch_size: int):
|
131 |
os.makedirs(export_dir, exist_ok=True)
|
132 |
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
|
|
|
|
133 |
data = self.dataset[test_split]
|
134 |
predictions = self.predict(data["text"], batch_size)
|
135 |
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
@@ -147,6 +151,8 @@ class NERDClassification(Classifier):
|
|
147 |
def get_prediction(self, export_dir: str, batch_size: int):
|
148 |
os.makedirs(export_dir, exist_ok=True)
|
149 |
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
|
|
|
|
150 |
data = self.dataset[test_split]
|
151 |
text = [
|
152 |
f"{d['target']} {self.tokenizer.sep_token} {d['definition']} {self.tokenizer.sep_token} {d['text']}"
|
|
|
113 |
def get_prediction(self, export_dir: str, batch_size: int):
|
114 |
os.makedirs(export_dir, exist_ok=True)
|
115 |
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
116 |
+
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
|
117 |
+
continue
|
118 |
data = self.dataset[test_split]
|
119 |
predictions = self.predict(data["text"], batch_size)
|
120 |
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
|
|
132 |
def get_prediction(self, export_dir: str, batch_size: int):
|
133 |
os.makedirs(export_dir, exist_ok=True)
|
134 |
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
135 |
+
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
|
136 |
+
continue
|
137 |
data = self.dataset[test_split]
|
138 |
predictions = self.predict(data["text"], batch_size)
|
139 |
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
|
|
151 |
def get_prediction(self, export_dir: str, batch_size: int):
|
152 |
os.makedirs(export_dir, exist_ok=True)
|
153 |
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
154 |
+
if os.path.exists(f"{export_dir}/{test_split}.jsonl"):
|
155 |
+
continue
|
156 |
data = self.dataset[test_split]
|
157 |
text = [
|
158 |
f"{d['target']} {self.tokenizer.sep_token} {d['definition']} {self.tokenizer.sep_token} {d['text']}"
|
experiments/model_predict_ner.py
CHANGED
@@ -1,109 +1,110 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
from
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
1 |
+
# #WIP
|
2 |
+
# import re
|
3 |
+
# import os
|
4 |
+
# import torch
|
5 |
+
# import json
|
6 |
+
# from typing import Dict, List
|
7 |
+
# from transformers import AutoTokenizer, AutoModelForTokenClassification, AutoConfig
|
8 |
+
# from datasets import load_dataset
|
9 |
+
#
|
10 |
+
# URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
|
11 |
+
# HANDLE_RE = re.compile(r"@\w+")
|
12 |
+
#
|
13 |
+
#
|
14 |
+
# def preprocess_bernice(text):
|
15 |
+
# text = HANDLE_RE.sub("@USER", text)
|
16 |
+
# text = URL_RE.sub("HTTPURL", text)
|
17 |
+
# return text
|
18 |
+
#
|
19 |
+
#
|
20 |
+
# def preprocess_timelm(text):
|
21 |
+
# text = HANDLE_RE.sub("@user", text)
|
22 |
+
# text = URL_RE.sub("http", text)
|
23 |
+
# return text
|
24 |
+
#
|
25 |
+
#
|
26 |
+
# def preprocess(model_name, text):
|
27 |
+
# if model_name == "jhu-clsp/bernice":
|
28 |
+
# return preprocess_bernice(text)
|
29 |
+
# if "twitter-roberta-base" in model_name:
|
30 |
+
# return preprocess_timelm(text)
|
31 |
+
# return text
|
32 |
+
#
|
33 |
+
#
|
34 |
+
# class NER:
|
35 |
+
#
|
36 |
+
# def __init__(self, model_name: str, max_length: int, id_to_label: Dict[str, str]):
|
37 |
+
# self.model_name = model_name
|
38 |
+
# self.config = AutoConfig.from_pretrained(self.model_name)
|
39 |
+
# self.model = AutoModelForTokenClassification.from_pretrained(self.model_name, config=self.config)
|
40 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
41 |
+
# self.max_length = max_length
|
42 |
+
# self.id_to_label = id_to_label
|
43 |
+
# # GPU setup (https://github.com/cardiffnlp/tweetnlp/issues/15)
|
44 |
+
# if torch.cuda.is_available() and torch.cuda.device_count() > 0:
|
45 |
+
# self.device = torch.device('cuda')
|
46 |
+
# elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
47 |
+
# self.device = torch.device("mps")
|
48 |
+
# else:
|
49 |
+
# self.device = torch.device('cpu')
|
50 |
+
# self.parallel = torch.cuda.device_count() > 1
|
51 |
+
# if self.parallel:
|
52 |
+
# self.model = torch.nn.DataParallel(self.model)
|
53 |
+
# self.model.to(self.device)
|
54 |
+
# self.model.eval()
|
55 |
+
# self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "ner_temporal")
|
56 |
+
#
|
57 |
+
# def get_prediction(self, export_dir: str, batch_size: int):
|
58 |
+
# os.makedirs(export_dir, exist_ok=True)
|
59 |
+
# for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
60 |
+
# data = self.dataset[test_split]
|
61 |
+
# predictions = self.predict(data["text"], batch_size)
|
62 |
+
# with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
63 |
+
# f.write("\n".join([json.dumps(i) for i in predictions]))
|
64 |
+
#
|
65 |
+
# with open(export_dir, "w") as f:
|
66 |
+
# predictions = self.predict(self.dataset[], batch_size)
|
67 |
+
# for i in :
|
68 |
+
# f.write(json.dumps(i) + "\n")
|
69 |
+
#
|
70 |
+
# def predict(self, text: List[str], batch_size: int):
|
71 |
+
# text = [[preprocess(self.model_name, t) for t in i] for i in text]
|
72 |
+
# indices = list(range(0, len(text), batch_size)) + [len(text) + 1]
|
73 |
+
# inputs = []
|
74 |
+
# preds = []
|
75 |
+
# with torch.no_grad():
|
76 |
+
# for i in range(len(indices) - 1):
|
77 |
+
# encoded_input = self.tokenizer.batch_encode_plus(
|
78 |
+
# text[indices[i]: indices[i + 1]],
|
79 |
+
# max_length=self.max_length,
|
80 |
+
# return_tensors='pt',
|
81 |
+
# padding=True,
|
82 |
+
# truncation=True)
|
83 |
+
# inputs += encoded_input['input_ids'].cpu().detach().int().tolist()
|
84 |
+
# output = self.model(**{k: v.to(self.device) for k, v in encoded_input.items()})
|
85 |
+
# prob = torch.softmax(output['logits'], dim=-1).cpu().detach().float().tolist()
|
86 |
+
# pred = torch.max(prob, dim=-1)[1].cpu().detach().int().tolist()
|
87 |
+
# preds += [[self.id_to_label[_p] for _p in p] for p in pred]
|
88 |
+
# return [{"label": p, "input_id": i} for p, i in zip(preds, inputs)]
|
89 |
+
#
|
90 |
+
#
|
91 |
+
# if __name__ == '__main__':
|
92 |
+
# model_list = [
|
93 |
+
# "roberta-base",
|
94 |
+
# "bertweet-base",
|
95 |
+
# "bernice",
|
96 |
+
# "roberta-large",
|
97 |
+
# "bertweet-large",
|
98 |
+
# "twitter-roberta-base-2019-90m",
|
99 |
+
# "twitter-roberta-base-dec2020",
|
100 |
+
# "twitter-roberta-base-2021-124m",
|
101 |
+
# "twitter-roberta-base-2022-154m",
|
102 |
+
# "twitter-roberta-large-2022-154m"
|
103 |
+
# ]
|
104 |
+
# for model_m in model_list:
|
105 |
+
# alias = f"tweettemposhift/ner-ner_temporal-{model_m}"
|
106 |
+
# NER(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=32)
|
107 |
+
# for random_r in range(4):
|
108 |
+
# for seed_s in range(3):
|
109 |
+
# alias = f"tweettemposhift/ner-ner_random{random_r}_seed{seed_s}-{model_m}"
|
110 |
+
# TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=32)
|
experiments/prediction.py
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
-
|
3 |
-
pipe = pipeline(model="tweettemposhift/nerd-nerd_random1_seed2-twitter-roberta-base-2019-90m")
|
4 |
-
out = pipe("This restaurant is awesome")
|
5 |
-
|
6 |
-
pipe = pipeline(model="tweettemposhift/sentiment-sentiment_small_random3_seed2-twitter-roberta-base-dec2020")
|
7 |
-
pipe("This restaurant is awesome")
|
8 |
-
|
9 |
-
pipe = pipeline(model="tweettemposhift/topic-topic_random3_seed2-twitter-roberta-base-dec2020")
|
10 |
-
pipe("This restaurant is awesome")
|
11 |
-
|
12 |
-
pipe = pipeline(model="tweettemposhift/ner-ner_random1_seed2-twitter-roberta-base-2019-90m")
|
13 |
-
pipe("This restaurant is awesome")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|