asahi417 commited on
Commit
5a7343a
·
1 Parent(s): d5c52c5
experiments/main.sh CHANGED
@@ -1,7 +1,7 @@
1
  MODEL="cardiffnlp/twitter-roberta-base"
2
 
3
  MODEL="jhu-clsp/bernice" # nerd[ukri], topic[hawk]
4
- MODEL="roberta-base" # nerd[hawk], topic [hawk]
5
  MODEL="vinai/bertweet-base" # nerd [stone], topic [ukri]
6
 
7
 
@@ -27,7 +27,7 @@ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed2"
27
  # NERD
28
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_temporal"
29
 
30
- python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed0"
31
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed0"
32
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed0"
33
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed0"
 
1
  MODEL="cardiffnlp/twitter-roberta-base"
2
 
3
  MODEL="jhu-clsp/bernice" # nerd[ukri], topic[hawk]
4
+ MODEL="roberta-base" # ner[hawk], nerd[hawk], topic [hawk]
5
  MODEL="vinai/bertweet-base" # nerd [stone], topic [ukri]
6
 
7
 
 
27
  # NERD
28
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_temporal"
29
 
30
+ python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed0" --skip-train --skip-test
31
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed0"
32
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed0"
33
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed0"
experiments/model_finetuning_ner.py CHANGED
@@ -107,8 +107,7 @@ def main(
107
  truncation=True,
108
  is_split_into_words=True,
109
  padding="max_length",
110
- max_length=128 if model in ["jhu-clsp/bernice", "vinai/bertweet-base"] else 256
111
- )
112
  all_labels = examples["gold_label_sequence"]
113
  new_labels = []
114
  for ind, labels in enumerate(all_labels):
 
107
  truncation=True,
108
  is_split_into_words=True,
109
  padding="max_length",
110
+ max_length=128)
 
111
  all_labels = examples["gold_label_sequence"]
112
  new_labels = []
113
  for ind, labels in enumerate(all_labels):
experiments/model_finetuning_topic.py CHANGED
@@ -94,7 +94,7 @@ def main(
94
  [preprocess(model, t) for t in x["text"]],
95
  padding="max_length",
96
  truncation=True,
97
- max_length=128 if model in ["jhu-clsp/bernice", "vinai/bertweet-base"] else 256),
98
  batched=True
99
  )
100
  tokenized_datasets = tokenized_datasets.rename_column("gold_label_list", "label")
 
94
  [preprocess(model, t) for t in x["text"]],
95
  padding="max_length",
96
  truncation=True,
97
+ max_length=128),
98
  batched=True
99
  )
100
  tokenized_datasets = tokenized_datasets.rename_column("gold_label_list", "label")
statistics.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from datasets import load_dataset
3
+
4
+ stats = []
5
+ for i in ["topic_temporal", "nerd_temporal", "ner_temporal"]:
6
+ for s in ["train", "validation", "test"]:
7
+ # for s in ["train", "validation", "test", "test_1", "test_2", "test_3", "test_4"]:
8
+ dataset = load_dataset("tweettemposhift/tweet_temporal_shift", i, split=s)
9
+ df = dataset.to_pandas()
10
+ stats.append({
11
+ "data": i,
12
+ "split": s,
13
+ "size": len(dataset),
14
+ "date": f'{str(pd.to_datetime(df.date).max()).split(" ")[0]}/{str(pd.to_datetime(df.date).max()).split(" ")[0]}',
15
+ })
16
+ df = pd.DataFrame(stats)
17
+