init
Browse files- experiments/main.sh +2 -2
- experiments/model_finetuning_ner.py +1 -2
- experiments/model_finetuning_topic.py +1 -1
- statistics.py +17 -0
experiments/main.sh
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
MODEL="cardiffnlp/twitter-roberta-base"
|
2 |
|
3 |
MODEL="jhu-clsp/bernice" # nerd[ukri], topic[hawk]
|
4 |
-
MODEL="roberta-base" # nerd[hawk], topic [hawk]
|
5 |
MODEL="vinai/bertweet-base" # nerd [stone], topic [ukri]
|
6 |
|
7 |
|
@@ -27,7 +27,7 @@ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed2"
|
|
27 |
# NERD
|
28 |
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_temporal"
|
29 |
|
30 |
-
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed0"
|
31 |
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed0"
|
32 |
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed0"
|
33 |
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed0"
|
|
|
1 |
MODEL="cardiffnlp/twitter-roberta-base"
|
2 |
|
3 |
MODEL="jhu-clsp/bernice" # nerd[ukri], topic[hawk]
|
4 |
+
MODEL="roberta-base" # ner[hawk], nerd[hawk], topic [hawk]
|
5 |
MODEL="vinai/bertweet-base" # nerd [stone], topic [ukri]
|
6 |
|
7 |
|
|
|
27 |
# NERD
|
28 |
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_temporal"
|
29 |
|
30 |
+
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed0" --skip-train --skip-test
|
31 |
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed0"
|
32 |
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed0"
|
33 |
python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed0"
|
experiments/model_finetuning_ner.py
CHANGED
@@ -107,8 +107,7 @@ def main(
|
|
107 |
truncation=True,
|
108 |
is_split_into_words=True,
|
109 |
padding="max_length",
|
110 |
-
max_length=128
|
111 |
-
)
|
112 |
all_labels = examples["gold_label_sequence"]
|
113 |
new_labels = []
|
114 |
for ind, labels in enumerate(all_labels):
|
|
|
107 |
truncation=True,
|
108 |
is_split_into_words=True,
|
109 |
padding="max_length",
|
110 |
+
max_length=128)
|
|
|
111 |
all_labels = examples["gold_label_sequence"]
|
112 |
new_labels = []
|
113 |
for ind, labels in enumerate(all_labels):
|
experiments/model_finetuning_topic.py
CHANGED
@@ -94,7 +94,7 @@ def main(
|
|
94 |
[preprocess(model, t) for t in x["text"]],
|
95 |
padding="max_length",
|
96 |
truncation=True,
|
97 |
-
max_length=128
|
98 |
batched=True
|
99 |
)
|
100 |
tokenized_datasets = tokenized_datasets.rename_column("gold_label_list", "label")
|
|
|
94 |
[preprocess(model, t) for t in x["text"]],
|
95 |
padding="max_length",
|
96 |
truncation=True,
|
97 |
+
max_length=128),
|
98 |
batched=True
|
99 |
)
|
100 |
tokenized_datasets = tokenized_datasets.rename_column("gold_label_list", "label")
|
statistics.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
stats = []
|
5 |
+
for i in ["topic_temporal", "nerd_temporal", "ner_temporal"]:
|
6 |
+
for s in ["train", "validation", "test"]:
|
7 |
+
# for s in ["train", "validation", "test", "test_1", "test_2", "test_3", "test_4"]:
|
8 |
+
dataset = load_dataset("tweettemposhift/tweet_temporal_shift", i, split=s)
|
9 |
+
df = dataset.to_pandas()
|
10 |
+
stats.append({
|
11 |
+
"data": i,
|
12 |
+
"split": s,
|
13 |
+
"size": len(dataset),
|
14 |
+
"date": f'{str(pd.to_datetime(df.date).max()).split(" ")[0]}/{str(pd.to_datetime(df.date).max()).split(" ")[0]}',
|
15 |
+
})
|
16 |
+
df = pd.DataFrame(stats)
|
17 |
+
|