asahi417 commited on
Commit
5aaad9b
·
1 Parent(s): 440447c
experiments/model_finetuning_emoji.py CHANGED
@@ -95,7 +95,7 @@ def main(
95
  validate_index = validate_index[:N_VALIDATE_SIZE]
96
 
97
  trainer = Trainer(
98
- model=AutoModelForSequenceClassification.from_pretrained(model, num_labels=100),
99
  args=TrainingArguments(
100
  output_dir=output_dir,
101
  evaluation_strategy="steps",
@@ -106,7 +106,7 @@ def main(
106
  eval_dataset=tokenized_datasets["validation"].select(validate_index),
107
  compute_metrics=compute_metric,
108
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
109
- model, return_dict=True, num_labels=100,
110
  )
111
  )
112
 
@@ -141,7 +141,7 @@ def main(
141
  metric = {}
142
  for single_test in test_split:
143
  trainer = Trainer(
144
- model=AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=100),
145
  args=TrainingArguments(
146
  output_dir=output_dir,
147
  evaluation_strategy="no",
@@ -159,7 +159,7 @@ def main(
159
  if not skip_upload:
160
  logging.info("uploading to huggingface")
161
  model_organization = "tweettemposhift"
162
- model_instance = AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=100)
163
  model_instance.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
164
  tokenizer.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
165
  repo = Repository(model_alias, f"{model_organization}/{model_alias}")
 
95
  validate_index = validate_index[:N_VALIDATE_SIZE]
96
 
97
  trainer = Trainer(
98
+ model=AutoModelForSequenceClassification.from_pretrained(model, num_labels=99),
99
  args=TrainingArguments(
100
  output_dir=output_dir,
101
  evaluation_strategy="steps",
 
106
  eval_dataset=tokenized_datasets["validation"].select(validate_index),
107
  compute_metrics=compute_metric,
108
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
109
+ model, return_dict=True, num_labels=99,
110
  )
111
  )
112
 
 
141
  metric = {}
142
  for single_test in test_split:
143
  trainer = Trainer(
144
+ model=AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=99),
145
  args=TrainingArguments(
146
  output_dir=output_dir,
147
  evaluation_strategy="no",
 
159
  if not skip_upload:
160
  logging.info("uploading to huggingface")
161
  model_organization = "tweettemposhift"
162
+ model_instance = AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=99)
163
  model_instance.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
164
  tokenizer.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
165
  repo = Repository(model_alias, f"{model_organization}/{model_alias}")
tweet_temporal_shift.py CHANGED
@@ -2,7 +2,7 @@
2
  import json
3
  import datasets
4
 
5
- _VERSION = "1.1.1"
6
  _TWEET_TEMPORAL_DESCRIPTION = """"""
7
  _TWEET_TEMPORAL_CITATION = """"""
8
  _TWEET_TOPIC_DESCRIPTION = """
@@ -232,6 +232,7 @@ class TweetTemporalShift(datasets.GeneratorBasedBuilder):
232
  with open(dl_manager.download(url_map)) as f:
233
  label_classes = f.readlines()
234
  label_classes = [x.strip('\n') for x in label_classes]
 
235
  features['gold_label'] = datasets.features.ClassLabel(names=label_classes)
236
  elif "sentiment" in self.config.name:
237
  features["text"] = datasets.Value("string")
 
2
  import json
3
  import datasets
4
 
5
+ _VERSION = "1.1.2"
6
  _TWEET_TEMPORAL_DESCRIPTION = """"""
7
  _TWEET_TEMPORAL_CITATION = """"""
8
  _TWEET_TOPIC_DESCRIPTION = """
 
232
  with open(dl_manager.download(url_map)) as f:
233
  label_classes = f.readlines()
234
  label_classes = [x.strip('\n') for x in label_classes]
235
+ label_classes = [x for n, x in enumerate(label_classes) if n != 68]
236
  features['gold_label'] = datasets.features.ClassLabel(names=label_classes)
237
  elif "sentiment" in self.config.name:
238
  features["text"] = datasets.Value("string")