init
Browse files- experiments/main.sh +5 -5
- process/tweet_nerd.py +5 -0
- statistics.py +5 -3
experiments/main.sh
CHANGED
@@ -12,16 +12,16 @@ MODEL="jhu-clsp/bernice"
|
|
12 |
|
13 |
|
14 |
# NER
|
15 |
-
python model_finetuning_ner.py -m "${MODEL}" -d "ner_temporal"
|
16 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed0"
|
17 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed0"
|
18 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed0"
|
19 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed0"
|
20 |
-
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed1"
|
21 |
-
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed1"
|
22 |
-
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed1"
|
23 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed1"
|
24 |
-
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed2"
|
25 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed2"
|
26 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed2"
|
27 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed2"
|
|
|
12 |
|
13 |
|
14 |
# NER
|
15 |
+
python model_finetuning_ner.py -m "${MODEL}" -d "ner_temporal" --skip-train --skip-test
|
16 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed0"
|
17 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed0"
|
18 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed0"
|
19 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed0"
|
20 |
+
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed1" --skip-train --skip-test
|
21 |
+
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed1" --skip-train --skip-test
|
22 |
+
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed1" --skip-train --skip-test
|
23 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed1"
|
24 |
+
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed2" --skip-train --skip-test
|
25 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed2"
|
26 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed2"
|
27 |
python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed2"
|
process/tweet_nerd.py
CHANGED
@@ -23,8 +23,13 @@ while True:
|
|
23 |
if dist_date[:n].sum() > total_n/2:
|
24 |
break
|
25 |
split_date = dist_date.index[n]
|
|
|
|
|
26 |
train = df[df["date_dt"] <= split_date]
|
27 |
test = df[df["date_dt"] > split_date]
|
|
|
|
|
|
|
28 |
train.pop("date_dt")
|
29 |
test.pop("date_dt")
|
30 |
train = list(train.T.to_dict().values())
|
|
|
23 |
if dist_date[:n].sum() > total_n/2:
|
24 |
break
|
25 |
split_date = dist_date.index[n]
|
26 |
+
input(split_date)
|
27 |
+
|
28 |
train = df[df["date_dt"] <= split_date]
|
29 |
test = df[df["date_dt"] > split_date]
|
30 |
+
print(train.date_dt.min(), train.date_dt.max())
|
31 |
+
print(test.date_dt.min(), test.date_dt.max())
|
32 |
+
input()
|
33 |
train.pop("date_dt")
|
34 |
test.pop("date_dt")
|
35 |
train = list(train.T.to_dict().values())
|
statistics.py
CHANGED
@@ -5,23 +5,25 @@ from transformers import AutoTokenizer
|
|
5 |
|
6 |
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
7 |
stats = []
|
8 |
-
for i in ["
|
9 |
# for s in ["train", "validation", "test", "test_1", "test_2", "test_3", "test_4"]:
|
10 |
for s in ["train", "validation", "test"]:
|
11 |
-
dataset = load_dataset("tweettemposhift/tweet_temporal_shift", i, split=s
|
12 |
df = dataset.to_pandas()
|
13 |
if i != "nerd_temporal":
|
14 |
token_length = [len(tokenizer.tokenize(t)) for t in dataset['text']]
|
15 |
else:
|
16 |
token_length = [len(tokenizer.tokenize(f"{d['target']} {tokenizer.sep_token} {d['definition']} {tokenizer.sep_token} {d['text']}")) for d in dataset]
|
17 |
token_length_in = [i for i in token_length if i <= 126]
|
|
|
18 |
stats.append({
|
19 |
"data": i,
|
20 |
"split": s,
|
21 |
"size": len(dataset),
|
22 |
"size (token length < 128)": len(token_length_in),
|
23 |
"mean_token_length": sum(token_length)/len(token_length),
|
24 |
-
"date": f'{str(
|
25 |
})
|
|
|
26 |
df = pd.DataFrame(stats)
|
27 |
print(df)
|
|
|
5 |
|
6 |
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
7 |
stats = []
|
8 |
+
for i in ["nerd_temporal", "ner_temporal", "topic_temporal"]:
|
9 |
# for s in ["train", "validation", "test", "test_1", "test_2", "test_3", "test_4"]:
|
10 |
for s in ["train", "validation", "test"]:
|
11 |
+
dataset = load_dataset("tweettemposhift/tweet_temporal_shift", i, split=s)
|
12 |
df = dataset.to_pandas()
|
13 |
if i != "nerd_temporal":
|
14 |
token_length = [len(tokenizer.tokenize(t)) for t in dataset['text']]
|
15 |
else:
|
16 |
token_length = [len(tokenizer.tokenize(f"{d['target']} {tokenizer.sep_token} {d['definition']} {tokenizer.sep_token} {d['text']}")) for d in dataset]
|
17 |
token_length_in = [i for i in token_length if i <= 126]
|
18 |
+
date = pd.to_datetime(df.date).sort_values().values
|
19 |
stats.append({
|
20 |
"data": i,
|
21 |
"split": s,
|
22 |
"size": len(dataset),
|
23 |
"size (token length < 128)": len(token_length_in),
|
24 |
"mean_token_length": sum(token_length)/len(token_length),
|
25 |
+
"date": f'{str(date[0]).split(" ")[0]} / {str(date[-1]).split(" ")[0]}',
|
26 |
})
|
27 |
+
break
|
28 |
df = pd.DataFrame(stats)
|
29 |
print(df)
|