asahi417 commited on
Commit
8858ced
·
1 Parent(s): 5db21d7
experiments/main.sh CHANGED
@@ -1,4 +1,6 @@
1
- MODEL=""
 
 
2
  MODEL="roberta-base"
3
 
4
 
 
1
+ MODEL="cardiffnlp/twitter-roberta-base"
2
+ MODEL="jhu-clsp/bernice"
3
+ MODEL="vinai/bertweet-base"
4
  MODEL="roberta-base"
5
 
6
 
experiments/model_finetuning_ner.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Experiment.
2
+
3
+ ```
4
+ python model_finetuning_ner.py -m "roberta-base" -d "ner_temporal"
5
+ ```
6
+ """
7
+ import argparse
8
+ import json
9
+ import logging
10
+ import math
11
+ import os
12
+ from os.path import join as pj
13
+ from shutil import copyfile
14
+ from glob import glob
15
+
16
+ import numpy as np
17
+ import evaluate
18
+ from datasets import load_dataset
19
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
20
+ from huggingface_hub import Repository
21
+
22
+ logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
23
+ EVAL_STEP = 500
24
+ RANDOM_SEED = 42
25
+ N_TRIALS = 10
26
+
27
+
28
+ def sigmoid(x):
29
+ return 1 / (1 + math.exp(-x))
30
+
31
+
32
+ def main(
33
+ dataset: str = "tweettemposhift/tweet_temporal_shift",
34
+ dataset_type: str = "ner_temporal",
35
+ model: str = "roberta-base",
36
+ skip_train: bool = False,
37
+ skip_test: bool = False,
38
+ skip_upload: bool = False):
39
+
40
+ model_alias = f"ner-{dataset_type}-{os.path.basename(model)}"
41
+ output_dir = f"ckpt/{model_alias}"
42
+ best_model_path = pj(output_dir, "best_model")
43
+
44
+ tokenizer = AutoTokenizer.from_pretrained(model, add_prefix_space=True)
45
+
46
+ def align_labels_with_tokens(labels, word_ids):
47
+ new_labels = []
48
+ current_word = None
49
+ for word_id in word_ids:
50
+ if word_id != current_word:
51
+ # Start of a new word!
52
+ current_word = word_id
53
+ label = -100 if word_id is None else labels[word_id]
54
+ new_labels.append(label)
55
+ elif word_id is None:
56
+ # Special token
57
+ new_labels.append(-100)
58
+ else:
59
+ # Same word as previous token
60
+ label = labels[word_id]
61
+ # If the label is B-XXX we change it to I-XXX
62
+ if label % 2 == 1:
63
+ label += 1
64
+ new_labels.append(label)
65
+
66
+ return new_labels
67
+
68
+ def tokenize_and_align_labels(examples):
69
+ tokenized_inputs = tokenizer(
70
+ examples["tokens"], truncation=True, is_split_into_words=True, padding="max_length", max_length=256
71
+ )
72
+ all_labels = examples["ner_tags"]
73
+ new_labels = []
74
+ for ind, labels in enumerate(all_labels):
75
+ word_ids = tokenized_inputs.word_ids(ind)
76
+ new_labels.append(align_labels_with_tokens(labels, word_ids))
77
+
78
+ tokenized_inputs["labels"] = new_labels
79
+ return tokenized_inputs
80
+
81
+ dataset = load_dataset(dataset, dataset_type)
82
+ tokenized_datasets = dataset.map(
83
+ lambda x: tokenize_and_align_labels(x),
84
+ batched=True
85
+ )
86
+
87
+ metric_accuracy = evaluate.load("accuracy")
88
+ metric_f1 = evaluate.load("f1")
89
+
90
+ def compute_metric_search(eval_pred):
91
+ logits, labels = eval_pred
92
+ predictions = np.argmax(logits, axis=-1)
93
+ return metric_accuracy.compute(predictions=predictions, references=labels)
94
+
95
+ def compute_metric_all(eval_pred):
96
+ logits, labels = eval_pred
97
+ predictions = np.argmax(logits, axis=-1)
98
+ return {
99
+ "f1": metric_f1.compute(predictions=predictions, references=labels)["f1"],
100
+ "accuracy": metric_accuracy.compute(predictions=predictions, references=labels)["accuracy"]
101
+ }
102
+
103
+ if not skip_train:
104
+ logging.info("training model")
105
+ trainer = Trainer(
106
+ model=AutoModelForSequenceClassification.from_pretrained(model, num_labels=2),
107
+ args=TrainingArguments(
108
+ output_dir=output_dir,
109
+ evaluation_strategy="steps",
110
+ eval_steps=EVAL_STEP,
111
+ seed=RANDOM_SEED
112
+ ),
113
+ train_dataset=tokenized_datasets["train"],
114
+ eval_dataset=tokenized_datasets["validation"],
115
+ compute_metrics=compute_metric_search,
116
+ model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
117
+ model, return_dict=True, num_labels=2,
118
+ )
119
+ )
120
+
121
+ best_run = trainer.hyperparameter_search(
122
+ hp_space=lambda trial: {
123
+ "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
124
+ "per_device_train_batch_size": trial.suggest_categorical(
125
+ "per_device_train_batch_size", [8, 16, 32]
126
+ ),
127
+ },
128
+ direction="maximize",
129
+ backend="optuna",
130
+ n_trials=N_TRIALS
131
+ )
132
+ for n, v in best_run.hyperparameters.items():
133
+ setattr(trainer.args, n, v)
134
+ trainer.train()
135
+ trainer.save_model(best_model_path)
136
+
137
+ if not skip_test:
138
+ logging.info("testing model")
139
+ test_split = ["test"]
140
+ if dataset_type.endswith("temporal"):
141
+ test_split += ["test_1", "test_2", "test_3", "test_4"]
142
+ summary_file = pj(output_dir, "summary.json")
143
+ if os.path.exists(summary_file):
144
+ with open(summary_file) as f:
145
+ metric = json.load(f)
146
+ else:
147
+ metric = {}
148
+ for single_test in test_split:
149
+ trainer = Trainer(
150
+ model=AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=2),
151
+ args=TrainingArguments(
152
+ output_dir=output_dir,
153
+ evaluation_strategy="no",
154
+ seed=RANDOM_SEED
155
+ ),
156
+ train_dataset=tokenized_datasets["train"],
157
+ eval_dataset=tokenized_datasets[single_test],
158
+ compute_metrics=compute_metric_all
159
+ )
160
+ metric.update({f"{single_test}/{k}": v for k, v in trainer.evaluate().items()})
161
+ logging.info(json.dumps(metric, indent=4))
162
+ with open(summary_file, "w") as f:
163
+ json.dump(metric, f)
164
+
165
+ if not skip_upload:
166
+ logging.info("uploading to huggingface")
167
+ model_organization = "tweettemposhift"
168
+ model_instance = AutoModelForSequenceClassification.from_pretrained(best_model_path, num_labels=2)
169
+ tokenizer = AutoTokenizer.from_pretrained(best_model_path)
170
+ model_instance.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
171
+ tokenizer.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
172
+ repo = Repository(model_alias, f"{model_organization}/{model_alias}")
173
+ for i in glob(f"{best_model_path}/*"):
174
+ if not os.path.exists(f"{model_alias}/{os.path.basename(i)}"):
175
+ copyfile(i, f"{model_alias}/{os.path.basename(i)}")
176
+ repo.push_to_hub()
177
+
178
+
179
+ if __name__ == "__main__":
180
+ parser = argparse.ArgumentParser(description="Fine-tuning language model.")
181
+ parser.add_argument("-m", "--model", help="transformer LM", default="roberta-base", type=str)
182
+ parser.add_argument("-d", "--dataset-type", help='dataset type', default="ner_temporal", type=str)
183
+ parser.add_argument("--skip-train", action="store_true")
184
+ parser.add_argument("--skip-test", action="store_true")
185
+ parser.add_argument("--skip-upload", action="store_true")
186
+ opt = parser.parse_args()
187
+ main(
188
+ dataset_type=opt.dataset_type,
189
+ model=opt.model,
190
+ skip_train=opt.skip_train,
191
+ skip_test=opt.skip_test,
192
+ skip_upload=opt.skip_upload,
193
+ )
194
+