asahi417 commited on
Commit
aa41154
·
1 Parent(s): ea2c2e9
experiments/main.sh CHANGED
@@ -1,56 +1,40 @@
1
- # topic [hawk]
2
- MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
3
- # topic [hawk]
4
  MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
5
- # topic [hawk]
 
 
 
 
6
  MODEL="jhu-clsp/bernice"
7
- # topic [hawk]
8
  MODEL="vinai/bertweet-base"
9
- # topic [hawk], ner [stone]
10
- MODEL="roberta-base"
11
 
12
 
13
  # NER
14
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_temporal"
15
- rm -rf ckpt
16
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed0"
17
- rm -rf ckpt
18
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed0"
19
- rm -rf ckpt
20
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed0"
21
- rm -rf ckpt
22
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed0"
23
- rm -rf ckpt
24
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed1"
25
- rm -rf ckpt
26
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed1"
27
- rm -rf ckpt
28
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed1"
29
- rm -rf ckpt
30
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed1"
31
- rm -rf ckpt
32
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed2"
33
- rm -rf ckpt
34
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed2"
35
- rm -rf ckpt
36
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed2"
37
- rm -rf ckpt
38
- python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed2"
39
- rm -rf ckpt
40
 
41
  # NERD
42
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_temporal"
43
-
44
- python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed0" --skip-train --skip-test
45
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed0"
46
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed0"
47
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed0"
48
-
49
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed1"
50
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed1"
51
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed1"
52
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed1"
53
-
54
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed2"
55
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed2"
56
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed2"
@@ -58,19 +42,16 @@ python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed2"
58
 
59
 
60
  # TOPIC
61
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_temporal"
62
-
63
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random0_seed0"
64
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random1_seed0"
65
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random2_seed0"
66
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random3_seed0"
67
-
68
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random0_seed1"
69
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random1_seed1"
70
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random2_seed1"
71
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random3_seed1"
72
-
73
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random0_seed2"
74
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random1_seed2"
75
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random2_seed2"
76
- python model_finetuning_topic.py -m "${MODEL}" -d "topic_random3_seed2"
 
1
+ # topic, ner
 
 
2
  MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
3
+ # topic, ner
4
+ MODEL="roberta-base"
5
+ # topic, ner [ukri]
6
+ MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
7
+ # topic [hawk], ner [ukri]
8
  MODEL="jhu-clsp/bernice"
9
+ # topic, ner [as it's not fasttokenizer, a bit tricky...]
10
  MODEL="vinai/bertweet-base"
 
 
11
 
12
 
13
  # NER
14
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_temporal" --skip-train --skip-test
15
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed0" --skip-train --skip-test
16
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed0" --skip-train --skip-test
17
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed0" --skip-train --skip-test
18
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed0" --skip-train --skip-test
19
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed1" --skip-train --skip-test
20
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed1" --skip-train --skip-test
21
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed1" --skip-train --skip-test
22
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed1" --skip-train --skip-test
23
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random0_seed2" --skip-train --skip-test
24
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random1_seed2" --skip-train --skip-test
25
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random2_seed2" --skip-train --skip-test
26
+ python model_finetuning_ner.py -m "${MODEL}" -d "ner_random3_seed2" --skip-train --skip-test
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  # NERD
29
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_temporal"
30
+ python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed0"
 
31
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed0"
32
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed0"
33
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed0"
 
34
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed1"
35
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed1"
36
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed1"
37
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random3_seed1"
 
38
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random0_seed2"
39
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random1_seed2"
40
  python model_finetuning_nerd.py -m "${MODEL}" -d "nerd_random2_seed2"
 
42
 
43
 
44
  # TOPIC
45
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_temporal" --skip-train --skip-test
46
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random0_seed0" --skip-train --skip-test
47
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random1_seed0" --skip-train --skip-test
48
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random2_seed0" --skip-train --skip-test
49
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random3_seed0" --skip-train --skip-test
50
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random0_seed1" --skip-train --skip-test
51
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random1_seed1" --skip-train --skip-test
52
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random2_seed1" --skip-train --skip-test
53
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random3_seed1" --skip-train --skip-test
54
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random0_seed2" --skip-train --skip-test
55
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random1_seed2" --skip-train --skip-test
56
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random2_seed2" --skip-train --skip-test
57
+ python model_finetuning_topic.py -m "${MODEL}" -d "topic_random3_seed2" --skip-train --skip-test
 
 
 
experiments/model_finetuning_ner.py CHANGED
@@ -17,7 +17,7 @@ from glob import glob
17
  import numpy as np
18
  import evaluate
19
  from datasets import load_dataset
20
- from transformers import convert_slow_tokenizer, AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
21
  from huggingface_hub import Repository
22
 
23
  logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
@@ -102,7 +102,6 @@ def main(
102
 
103
  def tokenize_and_align_labels(examples):
104
  tokens = [[preprocess(model, w) for w in t] for t in examples["text_tokenized"]]
105
- # if tokenizer.is_fast:
106
  tokenized_inputs = tokenizer(
107
  tokens,
108
  truncation=True,
@@ -111,23 +110,20 @@ def main(
111
  max_length=128)
112
  all_labels = examples["gold_label_sequence"]
113
  new_labels = []
114
- for ind, labels in enumerate(all_labels):
115
- word_ids = tokenized_inputs.word_ids(ind)
116
- new_labels.append(align_labels_with_tokens(labels, word_ids))
 
 
 
 
 
 
 
 
 
117
  tokenized_inputs["labels"] = new_labels
118
  return tokenized_inputs
119
- # else:
120
- # tokenized_inputs = tokenizer(
121
- # tokens)
122
- # all_labels = examples["gold_label_sequence"]
123
- # new_labels = []
124
- # for ind, labels in enumerate(all_labels):
125
- # word_ids = tokenized_inputs.word_ids(ind)
126
- # new_labels.append(align_labels_with_tokens(labels, word_ids))
127
- # tokenized_inputs["labels"] = new_labels
128
- # return tokenized_inputs
129
-
130
-
131
 
132
  dataset = load_dataset(dataset, dataset_type)
133
  tokenized_datasets = dataset.map(lambda x: tokenize_and_align_labels(x), batched=True)
 
17
  import numpy as np
18
  import evaluate
19
  from datasets import load_dataset
20
+ from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
21
  from huggingface_hub import Repository
22
 
23
  logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
 
102
 
103
  def tokenize_and_align_labels(examples):
104
  tokens = [[preprocess(model, w) for w in t] for t in examples["text_tokenized"]]
 
105
  tokenized_inputs = tokenizer(
106
  tokens,
107
  truncation=True,
 
110
  max_length=128)
111
  all_labels = examples["gold_label_sequence"]
112
  new_labels = []
113
+ if tokenizer.is_fast:
114
+ for ind, labels in enumerate(all_labels):
115
+ word_ids = tokenized_inputs.word_ids(ind)
116
+ new_labels.append(align_labels_with_tokens(labels, word_ids))
117
+ else:
118
+ for token, label in zip(tokens, all_labels):
119
+ tmp_labels = [-100]
120
+ for to, la in enumerate(token, label):
121
+ to_tokenized = tokenizer.tokenize(to)
122
+ tmp_labels += [la] * len(to_tokenized)
123
+ tmp_labels = tmp_labels + [-100] * (128 - len(tmp_labels))
124
+ new_labels.append(tmp_labels)
125
  tokenized_inputs["labels"] = new_labels
126
  return tokenized_inputs
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
  dataset = load_dataset(dataset, dataset_type)
129
  tokenized_datasets = dataset.map(lambda x: tokenize_and_align_labels(x), batched=True)