init
Browse files- experiments/huggingface_ops.py +9 -0
- experiments/main.sh +7 -8
- experiments/model_predict_classifier.py +201 -0
- experiments/model_predict_ner.py +109 -0
- experiments/prediction.py +13 -0
experiments/huggingface_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi, ModelFilter
|
2 |
+
from pprint import pprint
|
3 |
+
|
4 |
+
api = HfApi()
|
5 |
+
models = api.list_models(filter=ModelFilter(author='tweettemposhift'))
|
6 |
+
models_filtered = [i.modelId for i in models if 'topic-' in i.modelId]
|
7 |
+
|
8 |
+
pprint(sorted([i for i in models_filtered if i.endswith('twitter-roberta-base-2019-90m')]))
|
9 |
+
pprint(sorted([i for i in models_filtered if i.endswith('twitter-roberta-base-dec2020')]))
|
experiments/main.sh
CHANGED
@@ -1,22 +1,21 @@
|
|
1 |
# MAIN EXPERIMENT
|
2 |
MODEL="roberta-base"
|
3 |
MODEL="vinai/bertweet-base"
|
4 |
-
MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
|
5 |
MODEL="jhu-clsp/bernice"
|
6 |
-
MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
|
7 |
MODEL="roberta-large"
|
8 |
-
|
9 |
-
# topic, ner, nerd[hk], sentiment[ukri]
|
10 |
MODEL="vinai/bertweet-large"
|
11 |
-
|
|
|
|
|
|
|
12 |
MODEL="cardiffnlp/twitter-roberta-large-2022-154m"
|
13 |
|
14 |
# ABLATION (TimeLMs)
|
15 |
## Topic & NER
|
16 |
-
MODEL="twitter-roberta-base-jun2020"
|
17 |
-
MODEL="twitter-roberta-base-sep2021"
|
18 |
## NERD
|
19 |
-
MODEL="twitter-roberta-base-jun2021"
|
20 |
|
21 |
# SENTIMENT
|
22 |
python model_finetuning_sentiment.py -m "${MODEL}" -d "sentiment_small_temporal"
|
|
|
1 |
# MAIN EXPERIMENT
|
2 |
MODEL="roberta-base"
|
3 |
MODEL="vinai/bertweet-base"
|
|
|
4 |
MODEL="jhu-clsp/bernice"
|
|
|
5 |
MODEL="roberta-large"
|
|
|
|
|
6 |
MODEL="vinai/bertweet-large"
|
7 |
+
MODEL="cardiffnlp/twitter-roberta-base-2019-90m"
|
8 |
+
MODEL="cardiffnlp/twitter-roberta-base-dec2020"
|
9 |
+
MODEL="cardiffnlp/twitter-roberta-base-2021-124m"
|
10 |
+
MODEL="cardiffnlp/twitter-roberta-base-2022-154m"
|
11 |
MODEL="cardiffnlp/twitter-roberta-large-2022-154m"
|
12 |
|
13 |
# ABLATION (TimeLMs)
|
14 |
## Topic & NER
|
15 |
+
MODEL="cardiffnlp/twitter-roberta-base-jun2020"
|
16 |
+
MODEL="cardiffnlp/twitter-roberta-base-sep2021"
|
17 |
## NERD
|
18 |
+
MODEL="cardiffnlp/twitter-roberta-base-jun2021"
|
19 |
|
20 |
# SENTIMENT
|
21 |
python model_finetuning_sentiment.py -m "${MODEL}" -d "sentiment_small_temporal"
|
experiments/model_predict_classifier.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Simple interface for CardiffNLP twitter models. """
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
import json
|
6 |
+
from typing import List, Dict
|
7 |
+
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
|
9 |
+
from datasets import load_dataset
|
10 |
+
|
11 |
+
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
|
12 |
+
HANDLE_RE = re.compile(r"@\w+")
|
13 |
+
|
14 |
+
|
15 |
+
def preprocess_bernice(text):
|
16 |
+
text = HANDLE_RE.sub("@USER", text)
|
17 |
+
text = URL_RE.sub("HTTPURL", text)
|
18 |
+
return text
|
19 |
+
|
20 |
+
|
21 |
+
def preprocess_timelm(text):
|
22 |
+
text = HANDLE_RE.sub("@user", text)
|
23 |
+
text = URL_RE.sub("http", text)
|
24 |
+
return text
|
25 |
+
|
26 |
+
|
27 |
+
def preprocess(model_name, text):
|
28 |
+
if model_name == "jhu-clsp/bernice":
|
29 |
+
return preprocess_bernice(text)
|
30 |
+
if "twitter-roberta-base" in model_name:
|
31 |
+
return preprocess_timelm(text)
|
32 |
+
return text
|
33 |
+
|
34 |
+
|
35 |
+
class Classifier:
|
36 |
+
|
37 |
+
def __init__(self,
|
38 |
+
model_name: str,
|
39 |
+
max_length: int,
|
40 |
+
multi_label: bool,
|
41 |
+
id_to_label: Dict[str, str]):
|
42 |
+
|
43 |
+
self.model_name = model_name
|
44 |
+
self.config = AutoConfig.from_pretrained(self.model_name)
|
45 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
46 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=self.config)
|
47 |
+
self.max_length = max_length
|
48 |
+
self.multi_label = multi_label
|
49 |
+
self.id_to_label = id_to_label
|
50 |
+
# GPU setup (https://github.com/cardiffnlp/tweetnlp/issues/15)
|
51 |
+
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
|
52 |
+
self.device = torch.device("cuda")
|
53 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
54 |
+
self.device = torch.device("mps")
|
55 |
+
else:
|
56 |
+
self.device = torch.device("cpu")
|
57 |
+
self.parallel = torch.cuda.device_count() > 1
|
58 |
+
if self.parallel:
|
59 |
+
self.model = torch.nn.DataParallel(self.model)
|
60 |
+
self.model.to(self.device)
|
61 |
+
self.model.eval()
|
62 |
+
|
63 |
+
def predict(self, text: List[str], batch_size: int):
|
64 |
+
text = [preprocess(self.model_name, t) for t in text]
|
65 |
+
indices = list(range(0, len(text), batch_size)) + [len(text) + 1]
|
66 |
+
probs = []
|
67 |
+
with torch.no_grad():
|
68 |
+
for i in range(len(indices) - 1):
|
69 |
+
encoded_input = self.tokenizer.batch_encode_plus(
|
70 |
+
text[indices[i]: indices[i+1]],
|
71 |
+
max_length=self.max_length,
|
72 |
+
return_tensors="pt",
|
73 |
+
padding=True,
|
74 |
+
truncation=True)
|
75 |
+
output = self.model(**{k: v.to(self.device) for k, v in encoded_input.items()})
|
76 |
+
if self.multi_label:
|
77 |
+
probs += torch.sigmoid(output.logits).cpu().tolist()
|
78 |
+
else:
|
79 |
+
probs += torch.softmax(output.logits, -1).cpu().tolist()
|
80 |
+
if self.multi_label:
|
81 |
+
return [{"label": [self.id_to_label[str(n)] for n, p in enumerate(_pr) if p > 0.5]} for _pr in probs]
|
82 |
+
return [{"label": self.id_to_label[str(p.index(max(p)))]} for p in probs]
|
83 |
+
|
84 |
+
|
85 |
+
class TopicClassification(Classifier):
|
86 |
+
|
87 |
+
id_to_label = {
|
88 |
+
'0': 'arts_&_culture',
|
89 |
+
'1': 'business_&_entrepreneurs',
|
90 |
+
'2': 'celebrity_&_pop_culture',
|
91 |
+
'3': 'diaries_&_daily_life',
|
92 |
+
'4': 'family',
|
93 |
+
'5': 'fashion_&_style',
|
94 |
+
'6': 'film_tv_&_video',
|
95 |
+
'7': 'fitness_&_health',
|
96 |
+
'8': 'food_&_dining',
|
97 |
+
'9': 'gaming',
|
98 |
+
'10': 'learning_&_educational',
|
99 |
+
'11': 'music',
|
100 |
+
'12': 'news_&_social_concern',
|
101 |
+
'13': 'other_hobbies',
|
102 |
+
'14': 'relationships',
|
103 |
+
'15': 'science_&_technology',
|
104 |
+
'16': 'sports',
|
105 |
+
'17': 'travel_&_adventure',
|
106 |
+
'18': 'youth_&_student_life'
|
107 |
+
}
|
108 |
+
|
109 |
+
def __init__(self, model_name: str):
|
110 |
+
super().__init__(model_name, max_length=128, multi_label=True, id_to_label=self.id_to_label)
|
111 |
+
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "topic_temporal")
|
112 |
+
|
113 |
+
def get_prediction(self, export_dir: str, batch_size: int):
|
114 |
+
os.makedirs(export_dir, exist_ok=True)
|
115 |
+
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
116 |
+
data = self.dataset[test_split]
|
117 |
+
predictions = self.predict(data["text"], batch_size)
|
118 |
+
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
119 |
+
f.write("\n".join([json.dumps(i) for i in predictions]))
|
120 |
+
|
121 |
+
|
122 |
+
class SentimentClassification(Classifier):
|
123 |
+
|
124 |
+
id_to_label = {'0': '0', '1': '1'}
|
125 |
+
|
126 |
+
def __init__(self, model_name: str):
|
127 |
+
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
|
128 |
+
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "sentiment_temporal")
|
129 |
+
|
130 |
+
def get_prediction(self, export_dir: str, batch_size: int):
|
131 |
+
os.makedirs(export_dir, exist_ok=True)
|
132 |
+
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
133 |
+
data = self.dataset[test_split]
|
134 |
+
predictions = self.predict(data["text"], batch_size)
|
135 |
+
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
136 |
+
f.write("\n".join([json.dumps(i) for i in predictions]))
|
137 |
+
|
138 |
+
|
139 |
+
class NERDClassification(Classifier):
|
140 |
+
|
141 |
+
id_to_label = {'0': '0', '1': '1'}
|
142 |
+
|
143 |
+
def __init__(self, model_name: str):
|
144 |
+
super().__init__(model_name, max_length=128, multi_label=False, id_to_label=self.id_to_label)
|
145 |
+
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "nerd_temporal")
|
146 |
+
|
147 |
+
def get_prediction(self, export_dir: str, batch_size: int):
|
148 |
+
os.makedirs(export_dir, exist_ok=True)
|
149 |
+
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
150 |
+
data = self.dataset[test_split]
|
151 |
+
text = [
|
152 |
+
f"{d['target']} {self.tokenizer.sep_token} {d['definition']} {self.tokenizer.sep_token} {d['text']}"
|
153 |
+
for d in data
|
154 |
+
]
|
155 |
+
predictions = self.predict(text, batch_size)
|
156 |
+
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
157 |
+
f.write("\n".join([json.dumps(i) for i in predictions]))
|
158 |
+
|
159 |
+
|
160 |
+
if __name__ == '__main__':
|
161 |
+
model_list = [
|
162 |
+
"roberta-base",
|
163 |
+
"bertweet-base",
|
164 |
+
"bernice",
|
165 |
+
"roberta-large",
|
166 |
+
"bertweet-large",
|
167 |
+
"twitter-roberta-base-2019-90m",
|
168 |
+
"twitter-roberta-base-dec2020",
|
169 |
+
"twitter-roberta-base-2021-124m",
|
170 |
+
"twitter-roberta-base-2022-154m",
|
171 |
+
"twitter-roberta-large-2022-154m"
|
172 |
+
]
|
173 |
+
for model_m in model_list:
|
174 |
+
alias = f"tweettemposhift/topic-topic_temporal-{model_m}"
|
175 |
+
TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
|
176 |
+
torch.cuda.empty_cache()
|
177 |
+
for random_r in range(4):
|
178 |
+
for seed_s in range(3):
|
179 |
+
alias = f"tweettemposhift/topic-topic_random{random_r}_seed{seed_s}-{model_m}"
|
180 |
+
TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
|
181 |
+
torch.cuda.empty_cache()
|
182 |
+
|
183 |
+
for model_m in model_list:
|
184 |
+
alias = f"tweettemposhift/sentiment-sentiment_small_temporal-{model_m}"
|
185 |
+
SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
|
186 |
+
torch.cuda.empty_cache()
|
187 |
+
for random_r in range(4):
|
188 |
+
for seed_s in range(3):
|
189 |
+
alias = f"tweettemposhift/sentiment-sentiment_small_random{random_r}_seed{seed_s}-{model_m}"
|
190 |
+
SentimentClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
|
191 |
+
torch.cuda.empty_cache()
|
192 |
+
|
193 |
+
for model_m in model_list:
|
194 |
+
alias = f"tweettemposhift/nerd-nerd_temporal-{model_m}"
|
195 |
+
NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
|
196 |
+
torch.cuda.empty_cache()
|
197 |
+
for random_r in range(4):
|
198 |
+
for seed_s in range(3):
|
199 |
+
alias = f"tweettemposhift/nerd-nerd_random{random_r}_seed{seed_s}-{model_m}"
|
200 |
+
NERDClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=512)
|
201 |
+
torch.cuda.empty_cache()
|
experiments/model_predict_ner.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
from typing import Dict, List
|
6 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, AutoConfig
|
7 |
+
from datasets import load_dataset
|
8 |
+
|
9 |
+
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
|
10 |
+
HANDLE_RE = re.compile(r"@\w+")
|
11 |
+
|
12 |
+
|
13 |
+
def preprocess_bernice(text):
|
14 |
+
text = HANDLE_RE.sub("@USER", text)
|
15 |
+
text = URL_RE.sub("HTTPURL", text)
|
16 |
+
return text
|
17 |
+
|
18 |
+
|
19 |
+
def preprocess_timelm(text):
|
20 |
+
text = HANDLE_RE.sub("@user", text)
|
21 |
+
text = URL_RE.sub("http", text)
|
22 |
+
return text
|
23 |
+
|
24 |
+
|
25 |
+
def preprocess(model_name, text):
|
26 |
+
if model_name == "jhu-clsp/bernice":
|
27 |
+
return preprocess_bernice(text)
|
28 |
+
if "twitter-roberta-base" in model_name:
|
29 |
+
return preprocess_timelm(text)
|
30 |
+
return text
|
31 |
+
|
32 |
+
|
33 |
+
class NER:
|
34 |
+
|
35 |
+
def __init__(self, model_name: str, max_length: int, id_to_label: Dict[str, str]):
|
36 |
+
self.model_name = model_name
|
37 |
+
self.config = AutoConfig.from_pretrained(self.model_name)
|
38 |
+
self.model = AutoModelForTokenClassification.from_pretrained(self.model_name, config=self.config)
|
39 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
40 |
+
self.max_length = max_length
|
41 |
+
self.id_to_label = id_to_label
|
42 |
+
# GPU setup (https://github.com/cardiffnlp/tweetnlp/issues/15)
|
43 |
+
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
|
44 |
+
self.device = torch.device('cuda')
|
45 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
46 |
+
self.device = torch.device("mps")
|
47 |
+
else:
|
48 |
+
self.device = torch.device('cpu')
|
49 |
+
self.parallel = torch.cuda.device_count() > 1
|
50 |
+
if self.parallel:
|
51 |
+
self.model = torch.nn.DataParallel(self.model)
|
52 |
+
self.model.to(self.device)
|
53 |
+
self.model.eval()
|
54 |
+
self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "ner_temporal")
|
55 |
+
|
56 |
+
def get_prediction(self, export_dir: str, batch_size: int):
|
57 |
+
os.makedirs(export_dir, exist_ok=True)
|
58 |
+
for test_split in ["test_1", "test_2", "test_3", "test_4"]:
|
59 |
+
data = self.dataset[test_split]
|
60 |
+
predictions = self.predict(data["text"], batch_size)
|
61 |
+
with open(f"{export_dir}/{test_split}.jsonl", "w") as f:
|
62 |
+
f.write("\n".join([json.dumps(i) for i in predictions]))
|
63 |
+
|
64 |
+
with open(export_dir, "w") as f:
|
65 |
+
predictions = self.predict(self.dataset[], batch_size)
|
66 |
+
for i in :
|
67 |
+
f.write(json.dumps(i) + "\n")
|
68 |
+
|
69 |
+
def predict(self, text: List[str], batch_size: int):
|
70 |
+
text = [[preprocess(self.model_name, t) for t in i] for i in text]
|
71 |
+
indices = list(range(0, len(text), batch_size)) + [len(text) + 1]
|
72 |
+
inputs = []
|
73 |
+
preds = []
|
74 |
+
with torch.no_grad():
|
75 |
+
for i in range(len(indices) - 1):
|
76 |
+
encoded_input = self.tokenizer.batch_encode_plus(
|
77 |
+
text[indices[i]: indices[i + 1]],
|
78 |
+
max_length=self.max_length,
|
79 |
+
return_tensors='pt',
|
80 |
+
padding=True,
|
81 |
+
truncation=True)
|
82 |
+
inputs += encoded_input['input_ids'].cpu().detach().int().tolist()
|
83 |
+
output = self.model(**{k: v.to(self.device) for k, v in encoded_input.items()})
|
84 |
+
prob = torch.softmax(output['logits'], dim=-1).cpu().detach().float().tolist()
|
85 |
+
pred = torch.max(prob, dim=-1)[1].cpu().detach().int().tolist()
|
86 |
+
preds += [[self.id_to_label[_p] for _p in p] for p in pred]
|
87 |
+
return [{"label": p, "input_id": i} for p, i in zip(preds, inputs)]
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == '__main__':
|
91 |
+
model_list = [
|
92 |
+
"roberta-base",
|
93 |
+
"bertweet-base",
|
94 |
+
"bernice",
|
95 |
+
"roberta-large",
|
96 |
+
"bertweet-large",
|
97 |
+
"twitter-roberta-base-2019-90m",
|
98 |
+
"twitter-roberta-base-dec2020",
|
99 |
+
"twitter-roberta-base-2021-124m",
|
100 |
+
"twitter-roberta-base-2022-154m",
|
101 |
+
"twitter-roberta-large-2022-154m"
|
102 |
+
]
|
103 |
+
for model_m in model_list:
|
104 |
+
alias = f"tweettemposhift/ner-ner_temporal-{model_m}"
|
105 |
+
NER(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=32)
|
106 |
+
for random_r in range(4):
|
107 |
+
for seed_s in range(3):
|
108 |
+
alias = f"tweettemposhift/ner-ner_random{random_r}_seed{seed_s}-{model_m}"
|
109 |
+
TopicClassification(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=32)
|
experiments/prediction.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
pipe = pipeline(model="tweettemposhift/nerd-nerd_random1_seed2-twitter-roberta-base-2019-90m")
|
4 |
+
out = pipe("This restaurant is awesome")
|
5 |
+
|
6 |
+
pipe = pipeline(model="tweettemposhift/sentiment-sentiment_small_random3_seed2-twitter-roberta-base-dec2020")
|
7 |
+
pipe("This restaurant is awesome")
|
8 |
+
|
9 |
+
pipe = pipeline(model="tweettemposhift/topic-topic_random3_seed2-twitter-roberta-base-dec2020")
|
10 |
+
pipe("This restaurant is awesome")
|
11 |
+
|
12 |
+
pipe = pipeline(model="tweettemposhift/ner-ner_random1_seed2-twitter-roberta-base-2019-90m")
|
13 |
+
pipe("This restaurant is awesome")
|