import os import json import numpy as np import pandas as pd from datasets import load_dataset os.makedirs("experiments/analysis", exist_ok=True) root_dir = "experiments/prediction_files" id_to_label = { '0': 'arts_&_culture', '1': 'business_&_entrepreneurs', '2': 'celebrity_&_pop_culture', '3': 'diaries_&_daily_life', '4': 'family', '5': 'fashion_&_style', '6': 'film_tv_&_video', '7': 'fitness_&_health', '8': 'food_&_dining', '9': 'gaming', '10': 'learning_&_educational', '11': 'music', '12': 'news_&_social_concern', '13': 'other_hobbies', '14': 'relationships', '15': 'science_&_technology', '16': 'sports', '17': 'travel_&_adventure', '18': 'youth_&_student_life' } splits = ["test_1", "test_2", "test_3", "test_4"] model_list = [ "roberta-base", "bertweet-base", "bernice", "roberta-large", "bertweet-large", "twitter-roberta-base-2019-90m", "twitter-roberta-base-dec2020", "twitter-roberta-base-2021-124m", "twitter-roberta-base-2022-154m", "twitter-roberta-large-2022-154m" ] references = {} for s in splits: data = load_dataset("tweettemposhift/tweet_temporal_shift", f"topic_temporal", split=s) references[s] = [{id_to_label[str(n)] for n, k in enumerate(i) if k == 1} for i in data['gold_label_list']] count = {} pred_tmp = {} for model_m in model_list: flags = [] pred_all = [] for s in splits: with open(f"{root_dir}/topic-topic_temporal-{model_m}/{s}.jsonl") as f: pred = [set(json.loads(i)["label"]) for i in f.read().split('\n') if len(i)] flags += [len(a.intersection(b)) > 0 for a, b in zip(references[s], pred)] pred_all += pred for seed_s in range(3): flags_rand = [] for random_r in range(4): with open(f"{root_dir}/topic-topic_random{random_r}_seed{seed_s}-{model_m}/test_{random_r + 1}.jsonl") as f: pred = [set(json.loads(i)["label"]) for i in f.read().split('\n') if len(i)] label = references[f"test_{random_r + 1}"] flags_rand += [len(a.intersection(b)) > 0 for a, b in zip(label, pred)] tmp_flag = [not x and y for x, y in zip(flags, flags_rand)] count[f"{model_m}_{seed_s}"] = tmp_flag pred_tmp[f"{model_m}_{seed_s}"] = [list(x) if y else [] for x, y in zip(pred_all, tmp_flag)] df_tmp = pd.DataFrame([[dict(zip(*np.unique(i, return_counts=True))) for i in pd.DataFrame(pred_tmp).sum(1).values]], index=["errors"]).T df_tmp["error_count"] = pd.DataFrame(count).sum(1).values gold_label = [] text = [] for s in splits: gold_label += load_dataset("tweettemposhift/tweet_temporal_shift", "topic_temporal", split=s)['gold_label_list'] text += load_dataset("tweettemposhift/tweet_temporal_shift", "topic_temporal", split=s)['text'] df_tmp["true_label"] = [", ".join([id_to_label[str(n)] for n, k in enumerate(i) if k == 1]) for i in gold_label] df_tmp["text"] = text df_tmp.sort_values("error_count", ascending=False).to_csv("experiments/analysis/topic.csv")