import re import os import torch import json from transformers import AutoTokenizer, AutoModelForTokenClassification, AutoConfig from datasets import load_dataset URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+") HANDLE_RE = re.compile(r"@\w+") def preprocess_bernice(text): text = HANDLE_RE.sub("@USER", text) text = URL_RE.sub("HTTPURL", text) return text def preprocess_timelm(text): text = HANDLE_RE.sub("@user", text) text = URL_RE.sub("http", text) return text def preprocess(model_name, text): if model_name == "jhu-clsp/bernice": return preprocess_bernice(text) if "twitter-roberta-base" in model_name: return preprocess_timelm(text) return text class NER: id_to_label = { 0: 'B-corporation', 1: 'B-creative_work', 2: 'B-event', 3: 'B-group', 4: 'B-location', 5: 'B-person', 6: 'B-product', 7: 'I-corporation', 8: 'I-creative_work', 9: 'I-event', 10: 'I-group', 11: 'I-location', 12: 'I-person', 13: 'I-product', 14: 'O' } def __init__(self, model_name: str): self.model_name = model_name self.config = AutoConfig.from_pretrained(self.model_name) self.model = AutoModelForTokenClassification.from_pretrained(self.model_name, config=self.config) self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.max_length = 128 # GPU setup (https://github.com/cardiffnlp/tweetnlp/issues/15) if torch.cuda.is_available() and torch.cuda.device_count() > 0: self.device = torch.device('cuda') elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built(): self.device = torch.device("mps") else: self.device = torch.device('cpu') self.parallel = torch.cuda.device_count() > 1 if self.parallel: self.model = torch.nn.DataParallel(self.model) self.model.to(self.device) self.model.eval() self.dataset = load_dataset("tweettemposhift/tweet_temporal_shift", "ner_temporal") self.tokenized_datasets = self.dataset.map(lambda x: self.tokenize_and_align_labels(x), batched=True) def get_prediction(self, export_dir: str, batch_size: int): os.makedirs(export_dir, exist_ok=True) for test_split in ["test_1", "test_2", "test_3", "test_4"]: predictions = self.predict(self.tokenized_datasets[test_split], batch_size) with open(f"{export_dir}/{test_split}.jsonl", "w") as f: f.write("\n".join([json.dumps(i) for i in predictions])) def predict(self, example, batch_size: int): input_keys = ['input_ids', 'attention_mask'] indices = list(range(0, len(example), batch_size)) + [len(example) + 1] preds = [] labels = [] with torch.no_grad(): for i in range(len(indices) - 1): encoded_input = example[indices[i]: indices[i + 1]] labels += [ [self.id_to_label[y] if y in self.id_to_label else y for y in x] for x in encoded_input['labels'] ] output = self.model(**{ k: torch.tensor(encoded_input[k]).to(self.device) for k in input_keys if k in encoded_input }) prob = torch.softmax(output['logits'], dim=-1) pred = torch.max(prob, dim=-1)[1].cpu().detach().int().tolist() preds += [[self.id_to_label[_p] for _p in p] for p in pred] return [{"prediction": p, "label": i} for p, i in zip(preds, labels)] def tokenize_and_align_labels(self, examples): tokens = [[preprocess(self.model_name, w) for w in t] for t in examples["text_tokenized"]] tokenized_inputs = self.tokenizer( tokens, truncation=True, is_split_into_words=True, padding="max_length", max_length=128 ) all_labels = examples["gold_label_sequence"] new_labels = [] for token, label in zip(tokens, all_labels): tmp_labels = [-100] for to, la in zip(token, label): to_tokenized = self.tokenizer.tokenize(to) tmp_labels += [la] * len(to_tokenized) if len(tmp_labels) > 128: tmp_labels = tmp_labels[:128] else: tmp_labels = tmp_labels + [-100] * (128 - len(tmp_labels)) new_labels.append(tmp_labels) tokenized_inputs["labels"] = new_labels return tokenized_inputs if __name__ == '__main__': model_list = [ "roberta-base", "bertweet-base", "bernice", "roberta-large", "bertweet-large", "twitter-roberta-base-2019-90m", "twitter-roberta-base-dec2020", "twitter-roberta-base-2021-124m", "twitter-roberta-base-2022-154m", "twitter-roberta-large-2022-154m" ] for model_m in model_list: alias = f"tweettemposhift/ner-ner_temporal-{model_m}" NER(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=32) for random_r in range(4): for seed_s in range(3): alias = f"tweettemposhift/ner-ner_random{random_r}_seed{seed_s}-{model_m}" NER(alias).get_prediction(export_dir=f"prediction_files/{os.path.basename(alias)}", batch_size=32)