licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 26013 | # Source/receiver geometry structure
# Author: Philipp Witte, [email protected]
# Date: January 2017
#
export Geometry, compareGeometry, GeometryIC, GeometryOOC, get_nsrc, n_samples, super_shot_geometry
export reciprocal_geom, get_nt, get_dt, get_t, get_t0
abstract type Geometry{T} end
mutable struct GeometryException <: Exception
msg :: String
end
const CoordT{T} = Union{Vector{T}, Vector{Vector{T}}} where T<:Number
(::Type{CoordT{T}})(x::Vector{Any}) where {T<:Real} = rebuild_maybe_jld(x)
Base.convert(::Type{CoordT}, a::Vector{Any}) = Vector{typeof(a[1])}(a)
# In-core geometry structure for seismic header information
mutable struct GeometryIC{T} <: Geometry{T}
xloc::CoordT{T} # Array of receiver positions (fixed for all experiments)
yloc::CoordT{T}
zloc::CoordT{T}
taxis::Vector{<:StepRangeLen{T}}
# Legacy
function GeometryIC{T}(xloc::CoordT{T}, yloc::CoordT{T}, zloc::CoordT{T}, dt::Vector{T}, nt::Vector{<:Integer}, ::Vector{T}) where T
tranges = [StepRangeLen(T(0), T(dti), nti) for (dti, nti) in zip(dt, nt)]
new(xloc, yloc, zloc, tranges)
end
# Default constructor
GeometryIC{T}(xloc::CoordT{T}, yloc::CoordT{T}, zloc::CoordT{T}, t::Vector{<:StepRangeLen{T}}) where T = new{T}(xloc, yloc, zloc, t)
end
function getproperty(G::Geometry, s::Symbol)
# Nrec for in core
if s == :nrec && isa(G, GeometryIC)
return length.(G.xloc)
end
# Legacy dt/nt/t
if s in [:dt, :t, :nt, :t0]
return eval(Symbol("get_$(s)"))(G)
end
return getfield(G, s)
end
# Out-of-core geometry structure, contains look-up table instead of coordinates
mutable struct GeometryOOC{T} <: Geometry{T}
container::Vector{SegyIO.SeisCon}
taxis::Vector{<:StepRangeLen{T}}
nrec::Vector{<:Integer}
key::String
segy_depth_key::String
# Legacy
function GeometryOOC{T}(container::Vector{SegyIO.SeisCon}, dt::Vector{T}, nt::Vector{<:Integer}, ::Vector{T}, nrec::Vector{<:Integer}, key::String, segy_depth_key::String) where T
tranges = [StepRangeLen(T(0), T(dti), nti) for (dti, nti) in zip(dt, nt)]
return new{T}(container, tranges, nrec, key, segy_depth_key)
end
# Default constructor
GeometryOOC{T}(container::Vector{SegyIO.SeisCon}, t::Vector{<:StepRangeLen{T}}, nrec::Vector{<:Integer}, key::String, segy_depth_key::String) where T = new{T}(container, t, nrec, key, segy_depth_key)
end
display(G::Geometry) = println("$(typeof(G)) wiht $(get_nsrc(G)) sources")
show(io::IO, G::Geometry) = print(io, "$(typeof(G)) wiht $(get_nsrc(G)) sources")
show(io::IO, ::MIME{Symbol("text/plain")}, G::Geometry) = println(io, "$(typeof(G)) wiht $(get_nsrc(G)) sources")
######################## shapes easy access ################################
get_nsrc(g::GeometryIC) = length(g.xloc)
get_nsrc(g::GeometryOOC) = length(g.container)
get_nsrc(S::SeisCon) = length(S)
get_nsrc(S::Vector{SeisCon}) = length(S)
get_nsrc(S::SeisBlock) = length(unique(get_header(S, "FieldRecord")))
n_samples(g::GeometryOOC, nsrc::Integer) = sum(g.nrec .* get_nt(g))
n_samples(g::GeometryIC, nsrc::Integer) = sum([length(g.xloc[j])*get_nt(g, j) for j=1:nsrc])
n_samples(g::Geometry) = n_samples(g, get_nsrc(g))
get_nt(g::Geometry) = length.(g.taxis)
get_nt(g::Geometry, srcnum::Integer) = length(g.taxis[srcnum])
get_dt(g::Geometry) = step.(g.taxis)
get_dt(g::Geometry, srcnum::Integer) = step(g.taxis[srcnum])
get_t(g::Geometry) = last.(g.taxis)
get_t(g::Geometry, srcnum::Integer) = last(g.taxis[srcnum])
get_t0(g::Geometry) = first.(g.taxis)
get_t0(g::Geometry, srcnum::Integer) = first(g.taxis[srcnum])
rec_space(G::Geometry) = AbstractSize((:src, :time, :rec), (get_nsrc(G), get_nt(G), G.nrec))
################################################ Constructors ####################################################################
"""
GeometryIC
xloc::Array{Array{T, 1},1}
yloc::Array{Array{T, 1},1}
zloc::Array{Array{T, 1},1}
t::Vector{StepRangeLen{T}}
Geometry structure for seismic sources or receivers. Each field is a cell array, where individual cell entries
contain values or arrays with coordinates and sampling information for the corresponding shot position. The
first three entries are in meters and the last three entries in milliseconds.
GeometryOOC{T} <: Geometry{T}
container::Array{SegyIO.SeisCon,1}
t::Vector{StepRangeLen{T}}
nrec::Array{Integer,1}
key::String
segy_depth_key::String
Constructors
============
Only pass `dt` and `n` and automatically set `t`:
Geometry(xloc, yloc, zloc; dt=[], nt=[])
Pass single array as coordinates/parameters for all `nsrc` experiments:
Geometry(xloc, yloc, zloc, dt=[], nt=[], nsrc=1)
Create geometry structure for either source or receivers from a SegyIO.SeisBlock object.
`segy_depth_key` is the SegyIO keyword that contains the depth coordinate and `key` is
set to either `source` for source geometry or `receiver` for receiver geometry:
Geometry(SeisBlock; key="source", segy_depth_key="")
Create geometry structure for from a SegyIO.SeisCon object (seismic data container):
Geometry(SeisCon; key="source", segy_depth_key="")
Examples
========
(1) Set up receiver geometry for 2D experiment with 4 source locations and 80 fixed receivers:
xrec = range(100,stop=900,length=80)
yrec = range(0,stop=0,length=80)
zrec = range(50,stop=50,length=80)
dt = 4f0
t = 1000f0
rec_geometry = Geometry(xrec, yrec, zrec; dt=dt, t=t, nsrc=4)
(2) Set up corresponding source geometry (coordinates can be of type `linspace` or regular arrays):
xsrc = [200,400,600,800]
ysrc = [0,0,0,0]
zsrc = [50,50,50,50]
src_geometry = Geometry(xsrc, ysrc, zsrc; dt=dt, t=t, nsrc=4)
(3) Read source and receiver geometries from SEG-Y file:
using SegyIO
seis_block = segy_read("test_file.segy")
rec_geometry = Geometry(seis_block; key="receiver", segy_depth_key="RecGroupElevation")
src_geometry = Geometry(seis_block; key="source", segy_depth_key="SourceDepth")
Check the seis_block's header entries to findall out which keywords contain the depth coordinates.
The source depth keyword is either `SourceDepth` or `SourceSurfaceElevation`. The receiver depth
keyword is typically `RecGroupElevation`.
(4) Read source and receiver geometries from out-of-core SEG-Y files (for large data sets). Returns an out-of-core
geometry object `GeometryOOC` without the source/receiver coordinates, but a lookup table instead:
using SegyIO
seis_container = segy_scan("/path/to/data/directory","filenames",["GroupX","GroupY","RecGroupElevation","SourceDepth","dt"])
rec_geometry = Geometry(seis_container; key="receiver", segy_depth_key="RecGroupElevation")
src_geometry = Geometry(seis_container; key="source", segy_depth_key="SourceDepth")
"""
function Geometry(xloc, yloc, zloc; dt=nothing, t=nothing, nsrc=nothing, t0=0)
check_time(dt, t)
if any(typeof(x) <: AbstractRange for x=[xloc, yloc, zloc])
args = [typeof(x) <: AbstractRange ? collect(x) : x for x=[xloc, yloc, zloc]]
isnothing(nsrc) && (return Geometry(args...; dt=dt, t=t))
return Geometry(args...; dt=dt, t=t, nsrc=nsrc)
end
isnothing(nsrc) && (return Geometry(tof32(xloc), tof32(yloc), tof32(zloc); dt=dt, t=t))
return Geometry(tof32(xloc), tof32(yloc), tof32(zloc); dt=dt, t=t, nsrc=nsrc, t0=t0)
end
Geometry(xloc::CoordT, yloc::CoordT, zloc::CoordT, dt::Vector{T}, nt::Vector{<:Integer}, t::Vector{T}) where {T<:Real} = GeometryIC{T}(xloc,yloc,zloc,dt,nt, t)
Geometry(xloc::CoordT, yloc::CoordT, zloc::CoordT, dt::Vector{T}, nt::Vector{T}, t::Vector{T}) where {T<:Real} = GeometryIC{T}(xloc,yloc,zloc,dt,convert(Vector{Int64}, nt), t)
Geometry(xloc::CoordT, yloc::CoordT, zloc::CoordT, t::StepRangeLen{T}) where {T<:Real} = GeometryIC{T}(xloc,yloc,zloc,[t])
Geometry(xloc::CoordT, yloc::CoordT, zloc::CoordT, t::Vector{<:StepRangeLen{T}}) where {T<:Real} = GeometryIC{T}(xloc,yloc,zloc,t)
# For easy 2D setup
Geometry(xloc, zloc; kw...) = Geometry(xloc, 0 .* xloc, zloc; kw...)
# Constructor if nt is not passed
function Geometry(xloc::Array{Array{T, 1},1}, yloc::CoordT, zloc::Array{Array{T, 1},1}; dt=nothing, t=nothing, t0=0) where {T<:Real}
check_time(dt, t)
nsrc = length(xloc)
dt = as_src_list(dt, nsrc)
t = as_src_list(t, nsrc)
t0 = as_src_list(t0, nsrc)
tranges = [StepRangeLen(T(t0i), T(dti), floor.(Int, ti / dti) .+ 1) for (t0i, dti, ti) in zip(t0, dt, t)]
return GeometryIC{T}(xloc, yloc, zloc, tranges)
end
# Constructor if coordinates are not passed as a cell arrays
function Geometry(xloc::Array{T, 1}, yloc::CoordT, zloc::Array{T, 1}; dt=nothing, t=nothing, nsrc::Integer=1, t0=0) where {T<:Real}
check_time(dt, t)
xlocCell = [xloc for j=1:nsrc]
ylocCell = [yloc for j=1:nsrc]
zlocCell = [zloc for j=1:nsrc]
dt = as_src_list(dt, nsrc)
t = as_src_list(t, nsrc)
t0 = as_src_list(t0, nsrc)
tranges = [StepRangeLen(T(t0i), T(dti), floor.(Int, ti / dti) .+ 1) for (t0i, dti, ti) in zip(t0, dt, t)]
return GeometryIC{T}(xlocCell, ylocCell, zlocCell, tranges)
end
################################################ Constructors from SEGY data ####################################################
# Utility function to prepare dtCell, ntCell, tCell from SEGY or based on user defined dt and t.
# Useful when creating geometry for Forward Modeling with custom timings.
_get_p(v, S, nsrc, P) = throw(GeometryException("User defined `dt` is neither: Real, Array of Real or the length of Array doesn't match the number of sources in SEGY"))
_get_p(::Nothing, S::SeisBlock, nsrc::Integer, p, ::Type{T}, s::T) where T = fill(T(get_header(S, p)[1]/s), nsrc)
_get_p(::Nothing, S::SeisCon, nsrc::Integer, p, ::Type{T}, s::T) where T = [T(_get_p_SeisCon(S, p, j)/s) for j=1:nsrc]
_get_p(::Nothing, S::Vector{SeisCon}, nsrc::Integer, p, ::Type{T}, s::T) where T = [T(_get_p_SeisCon(S[j], p, 1)/s) for j=1:nsrc]
_get_p(v::Real, data, nsrc::Integer, p, ::Type{T}, s::T) where T = fill(T(v), nsrc)
_get_p(v::Vector, data, nsrc::Integer, p, ::Type{T}, s::T) where T = convert(Vector{T}, v)
_get_p_SeisCon(S::SeisCon, p::String, b::Integer) = try S.blocks[b].summary[p][1] catch; getfield(S, Symbol(p)); end
function timings_from_segy(data, dt=nothing, t=nothing, t0=nothing)
# Get nsrc
nsrc = get_nsrc(data)
dtCell = _get_p(dt, data, nsrc, "dt", Float32, 1f3)
if isnothing(t0)
t0 = [segy_t0(data, i) for i=1:nsrc]
else
t0 = as_src_list(t0, nsrc)
end
if isnothing(t)
ntCell = _get_p(nothing, data, nsrc, "ns", Int, 1)
tCell = Float32.((ntCell .- 1) .* dtCell .+ t0)
else
tCell = as_src_list(t, nsrc)
end
return [range(t0[j], step=dtCell[j], stop=tCell[j]) for j=1:nsrc]
end
segy_t0(b::Vector{SeisCon}, i) = segy_t0(b[i], 1)
segy_t0(b::SeisBlock, i) = segy_t0(b)
segy_t0(b::SeisCon, i) = segy_t0(b.blocks[i])
segy_t0(b::SeisBlock) = segy_t0(b.fileheader.bfh)
segy_t0(b::BlockScan) = segy_t0(read_fileheader(b.file).bfh)
segy_t0(b::BinaryFileHeader) = (b.nsOrig - b.ns) * (b.dtOrig / 1000f0)
# Set up source geometry object from in-core data container
function Geometry(data::SegyIO.SeisBlock; key="source", segy_depth_key="", dt=nothing, t=nothing, t0=nothing)
check_time(dt, t, true)
src = get_header(data,"FieldRecord")
usrc = unique(src)
nsrc = length(usrc)
if key=="source"
isempty(segy_depth_key) && (segy_depth_key="SourceSurfaceElevation")
params = ["SourceX","SourceY",segy_depth_key]
gt = Float32
elseif key=="receiver"
isempty(segy_depth_key) && (segy_depth_key="RecGroupElevation")
params = ["GroupX","GroupY",segy_depth_key]
gt = Array{Float32, 1}
else
throw(GeometryException("Specified keyword not supported"))
end
xloc = Vector{gt}(undef, nsrc)
yloc = Vector{gt}(undef, nsrc)
zloc = Vector{gt}(undef, nsrc)
xloc_full = get_header(data, params[1])
yloc_full = get_header(data, params[2])
zloc_full = get_header(data, params[3])
for j=1:nsrc
traces = findall(src .== usrc[j])
if key=="source" # assume same source location for all traces within one shot record
xloc[j] = convert(gt, xloc_full[traces][1])
yloc[j] = convert(gt, yloc_full[traces][1])
zloc[j] = abs.(convert(gt, zloc_full[traces][1]))
else
xloc[j] = convert(gt, xloc_full[traces])
yloc[j] = convert(gt, yloc_full[traces])
zloc[j] = abs.(convert(gt, zloc_full[traces]))
end
end
if key == "source"
xloc = convertToCell(xloc)
yloc = convertToCell(yloc)
zloc = convertToCell(zloc)
end
tCell = timings_from_segy(data, dt, t, t0)
return GeometryIC{Float32}(xloc,yloc,zloc,tCell)
end
# Set up geometry summary from out-of-core data container
function Geometry(data::SegyIO.SeisCon; key="source", segy_depth_key="", dt=nothing, t=nothing, t0=nothing)
check_time(dt, t, true)
if key=="source"
isempty(segy_depth_key) && (segy_depth_key="SourceSurfaceElevation")
elseif key=="receiver"
isempty(segy_depth_key) && (segy_depth_key="RecGroupElevation")
else
throw(GeometryException("Specified keyword not supported"))
end
# read either source or receiver geometry
nsrc = length(data)
container = Array{SegyIO.SeisCon}(undef, nsrc)
nrec = Array{Integer}(undef, nsrc)
for j=1:nsrc
container[j] = split(data,j)
nrec[j] = key=="source" ? 1 : Int((data.blocks[j].endbyte - data.blocks[j].startbyte)/(240 + data.ns*4))
end
tCell = timings_from_segy(data, dt, t, t0)
return GeometryOOC{Float32}(container,tCell,nrec,key,segy_depth_key)
end
# Set up geometry summary from out-of-core data container passed as cell array
function Geometry(data::Array{SegyIO.SeisCon,1}; key="source", segy_depth_key="", dt=nothing, t=nothing, t0=nothing)
check_time(dt, t, true)
if key=="source"
isempty(segy_depth_key) && (segy_depth_key="SourceSurfaceElevation")
elseif key=="receiver"
isempty(segy_depth_key) && (segy_depth_key="RecGroupElevation")
else
throw(GeometryException("Specified keyword not supported"))
end
nsrc = length(data)
container = Array{SegyIO.SeisCon}(undef, nsrc)
nrec = Array{Integer}(undef, nsrc)
for j=1:nsrc
container[j] = data[j]
nrec[j] = key=="source" ? 1 : Int((data[j].blocks[1].endbyte - data[j].blocks[1].startbyte)/(240 + data[j].ns*4))
end
tCell = timings_from_segy(data, dt, t, t0)
return GeometryOOC{Float32}(container,tCell,nrec,key,segy_depth_key)
end
# Load geometry from out-of-core Geometry container
function Geometry(geometry::GeometryOOC; rel_origin=(0, 0, 0), project=nothing)
nsrc = length(geometry.container)
ox, oy, oz = rel_origin
# read either source or receiver geometry
if geometry.key=="source"
params = ["SourceX","SourceY",geometry.segy_depth_key,"dt","ns"]
gt = Float32
elseif geometry.key=="receiver"
params = ["GroupX","GroupY",geometry.segy_depth_key,"dt","ns"]
gt = Array{Float32, 1}
else
throw(GeometryException("Specified keyword not supported"))
end
xloc = Array{gt, 1}(undef, nsrc)
yloc = Array{gt, 1}(undef, nsrc)
zloc = Array{gt, 1}(undef, nsrc)
for j=1:nsrc
header = read_con_headers(geometry.container[j], params, 1)
if geometry.key=="source"
if project == "2d"
xtmp = get_header(header, params[1])[1] .- ox
ytmp = get_header(header, params[2])[1] .- oy
xloc[j] = sqrt.(xtmp.^2 .+ ytmp.^2) .* sign.(xtmp)
yloc[j] = 0 .* xtmp
else
xloc[j] = get_header(header, params[1])[1] .- ox
yloc[j] = get_header(header, params[2])[1] .- oy
end
zloc[j] = abs.(get_header(header, params[3]))[1] .- oz
else
if project == "2d"
xtmp = get_header(header, params[1]) .- ox
ytmp = get_header(header, params[2]) .- oy
xloc[j] = sqrt.(xtmp.^2 .+ ytmp.^2) .* sign.(xtmp)
yloc[j] = 0 .* xtmp
else
xloc[j] = get_header(header, params[1]) .- ox
yloc[j] = get_header(header, params[2]) .- oy
end
zloc[j] = abs.(get_header(header, params[3])) .- oz
end
end
if geometry.key == "source"
xloc = convertToCell(xloc)
yloc = convertToCell(yloc)
zloc = convertToCell(zloc)
end
return GeometryIC{Float32}(xloc,yloc,zloc,geometry.taxis)
end
function Geometry(geometry::GeometryIC; rel_origin=(0, 0, 0), project=nothing)
if isnothing(project) && origin == 0
return geometry
end
xloc = similar(geometry.xloc)
yloc = similar(geometry.yloc)
zloc = similar(geometry.zloc)
for s=1:get_nsrc(geometry)
xloc[s] = geometry.xloc[s] .- rel_origin[1]
yloc[s] = geometry.yloc[s] .- rel_origin[2]
zloc[s] = geometry.zloc[s] .- rel_origin[3]
if project == "2d"
xloc[s] = sqrt.(xloc[s].^2 .+ yloc[s].^2) .* sign.(xloc[s])
yloc[s] = 0 .* xloc[s]
end
end
return GeometryIC{Float32}(xloc, yloc, zloc, geometry.taxis)
end
Geometry(v::Array{T}) where T = v
Geometry(::Nothing) = nothing
###########################################################################################################################################
subsample(g::Geometry, I) = getindex(g, I)
# getindex in-core geometry structure
function getindex(geometry::GeometryIC{T}, srcnum::RangeOrVec) where T
xsub = geometry.xloc[srcnum]
ysub = geometry.yloc[srcnum]
zsub = geometry.zloc[srcnum]
tsub = geometry.taxis[srcnum]
geometry = GeometryIC{T}(xsub, ysub, zsub, tsub)
return geometry
end
function getindex(geometry::GeometryOOC{T}, srcnum::RangeOrVec) where T
container = geometry.container[srcnum]
tsub = geometry.taxis[srcnum]
nrec = geometry.nrec[srcnum]
return GeometryOOC{T}(container, tsub, nrec, geometry.key, geometry.segy_depth_key)
end
getindex(geometry::Geometry, srcnum::Integer) = getindex(geometry, srcnum:srcnum)
###########################################################################################################################################
# Compare if geometries match
function compareGeometry(geometry_A::Geometry, geometry_B::Geometry)
if isequal(geometry_A.xloc, geometry_B.xloc) &&
isequal(geometry_A.yloc, geometry_B.yloc) &&
isequal(geometry_A.zloc, geometry_B.zloc) &&
isequal(geometry_A.t, geometry_B.t)
return true
else
return false
end
end
==(geometry_A::Geometry, geometry_B::Geometry) = compareGeometry(geometry_A, geometry_B)
isapprox(geometry_A::Geometry, geometry_B::Geometry; kw...) = compareGeometry(geometry_A, geometry_B)
function compareGeometry(geometry_A::GeometryOOC, geometry_B::GeometryOOC)
check = true
for j=1:length(geometry_A.container)
if ~isequal(geometry_A.container[j].blocks[1].summary["GroupX"], geometry_B.container[j].blocks[1].summary["GroupX"]) ||
~isequal(geometry_A.container[j].blocks[1].summary["GroupY"], geometry_B.container[j].blocks[1].summary["GroupY"]) ||
~isequal(geometry_A.container[j].blocks[1].summary["SourceX"], geometry_B.container[j].blocks[1].summary["SourceX"]) ||
~isequal(geometry_A.container[j].blocks[1].summary["SourceY"], geometry_B.container[j].blocks[1].summary["SourceY"]) ||
~isequal(geometry_A.container[j].blocks[1].summary["dt"], geometry_B.container[j].blocks[1].summary["dt"])
check = false
end
end
return check
end
==(geometry_A::GeometryOOC, geometry_B::GeometryOOC) = compareGeometry(geometry_A, geometry_B)
compareGeometry(geometry_A::GeometryOOC, geometry_B::Geometry) = true
compareGeometry(geometry_A::Geometry, geometry_B::GeometryOOC) = true
###########################################################################################################################################
for G in [GeometryOOC, GeometryIC]
@eval function push!(G1::$G, G2::$G)
for k in fieldnames($G)
pushfield!(getfield(G1, k), getfield(G2, k))
end
end
end
pushfield!(a::Array, b::Array) = append!(a, b)
pushfield!(a, b) = nothing
# Gets called by judiVector constructor to be sure that geometry is consistent with the data.
# Data may be any of: Array, Array of Array, SeisBlock, SeisCon
check_geom(geom::Geometry, data::Array{T}) where T = all([check_geom(geom[s], data[s]) for s=1:get_nsrc(geom)])
check_geom(geom::Geometry, data::Array{T}) where {T<:Number} = _check_geom(get_nt(geom, 1), size(data, 1)) && _check_geom(geom.nrec[1], size(data, 2))
function check_geom(geom::Geometry, data::SeisBlock)
nt_segy = max(data.fileheader.bfh.ns, data.fileheader.bfh.nsOrig)
get_nt(geom, 1) <= nt_segy || _geom_missmatch(get_nt(geom, 1), nt_segy)
end
function check_geom(geom::Geometry, data::SeisCon)
for s = 1:get_nsrc(geom)
fh = read_fileheader(data.blocks[s].file)
nt_segy = max(fh.bfh.ns, fh.bfh.nsOrig)
get_nt(geom, s) <= nt_segy || _geom_missmatch(get_nt(geom, s), nt_segy)
end
end
_check_geom(nt::Integer, ns::Integer) = nt == ns || _geom_missmatch(nt, ns)
_check_geom(nt::Integer, ns::Tuple{Integer, Integer}) = nt == ns[1] || nt == ns[2] || _geom_missmatch(nt, ns[1])
check_time(dt::Number, t::Number, segy::Bool=false) = (t/dt == div(t, dt, RoundNearest)) || throw(GeometryException("Recording time t=$(t) not divisible by sampling rate dt=$(dt)"))
check_time(::Nothing, ::Nothing, segy::Bool=false) = segy || throw(GeometryException("Recording time `t` and sampling rate `dt` must be provided"))
check_time(::Nothing, ::Number, segy::Bool=false) = segy || throw(GeometryException("Recording time `t` and sampling rate `dt` must be provided"))
check_time(dt::AbstractVector, t::AbstractVector, segy::Bool=false) = check_time.(dt, t)
_geom_missmatch(nt::Integer, ns::Integer) = throw(judiMultiSourceException("Geometry's number of samples doesn't match the data: $(nt), $(ns)"))
################################# Merge geometries ##############################################################
allsame(x, val=first(x)) = all(y->y==val, x)
as_coord_set(x::Vector{T}, y::T, z::Vector{T}) where T = OrderedSet(zip(x, z))
as_coord_set(x::Vector{T}, y::Vector{T}, z::Vector{T}) where T = OrderedSet(zip(x, y, z))
yloc(y::Vector{T}, ::Val{1}) where T<:Number = y[1]
yloc(y::T, ::Val{1}) where T<:Number = y
yloc(y, ::Val) = y
_get_coords(G::Geometry, ny::Val) = begin gloc = Geometry(G); return tuple(gloc.xloc[1], yloc(gloc.yloc[1], ny), gloc.zloc[1]) end
function as_coord_set(G::Geometry)
@assert allsame(G.t)
G0 = Geometry(G[1])
ny = Val(length(G0.yloc[1]))
s = as_coord_set(_get_coords(G0, ny::Val)...)
nsrc = get_nsrc(G)
if nsrc > 1
map(i->union!(s, as_coord_set(_get_coords(G[i], ny::Val)...)), 2:nsrc)
end
sort!(s)
return s
end
coords_from_set(S::OrderedSet{Tuple{T, T}}) where T = tuple([first.(S)], [[0f0]], [last.(S)])
coords_from_set(S::OrderedSet{Tuple{T, T, T}}) where T = tuple([first.(S)], [getindex.(S, 2)], [last.(S)])
coords_from_keys(S::Vector{Tuple{T, T}}) where T = tuple([first.(S)], [[0f0]], [last.(S)])
coords_from_keys(S::Vector{Tuple{T, T, T}}) where T = tuple([first.(S)], [getindex.(S, 2)], [last.(S)])
"""
super_shot_geometry(Geometry)
Merge all the sub-geometries `1:get_nsrc(Geometry)` into a single supershot geometry
"""
function super_shot_geometry(G::Geometry{T}) where T
as_set = coords_from_set(as_coord_set(G))
return GeometryIC{T}(as_set..., [G.taxis[1]])
end
###################### reciprocity ###############################
"""
reciprocal_geom(sourceGeom, recGeom)
Applies reciprocity to the par of geometries `sourceGeom` and `recGeom` where each source
becomes a receiver and each receiver becomes a source.
This method expects:
- Both geometries to be In Core. If the geometries are OOC they will be converted to in core geometries
- The metadata to be compatible. In details all the time sampling rates (dt) and recording times (t) must be the same
- The source to be single point sources. This method will error if a simultaneous sources (multiple poisiton for a single source) are used.
"""
function reciprocal_geom(sGeom::GeometryIC{T}, rGeom::GeometryIC{T}) where T
# The geometry need to have the same recording and sampling times
@assert sGeom.t == rGeom.t
@assert allsame(sGeom.t)
# Make sure it's not simultaneous sources
if !all(length(x) == 1 for x in sGeom.xloc)
throw(GeometryException("Cannot apply reciprocity to simultaneous sources"))
end
# Curretnly only support geometry with all sources seeing the same receivers
if !allsame(rGeom.xloc)
throw(GeometryException("Currently expects all sources to see the same receivers (i.e OBNs)"))
end
# Reciprocal source geom
xsrc = convertToCell(rGeom.xloc[1])
if length(rGeom.yloc[1]) > 1
ysrc = convertToCell(rGeom.yloc[1])
else
ysrc = 0 .* xsrc
end
zsrc = convertToCell(rGeom.zloc[1])
sgeom = Geometry(xsrc, ysrc, zsrc; dt=dt(rGeom, 1), t=t(rGeom, 1))
# Reciprocal recc geom
xrec = Vector{T}([x[1] for x in sGeom.xloc])
yrec = Vector{T}([x[1] for x in sGeom.yloc])
zrec = Vector{T}([x[1] for x in sGeom.zloc])
rgeom = Geometry(xrec, yrec, zrec; dt=dt(rGeom, 1), t=t(rGeom, 1), nsrc=length(xsrc))
return sgeom, rgeom
end
function reciprocal_geom(sGeom::Geometry, rGeom::Geometry)
@warn "reciprocal_geom only supports in core geometries, converting"
return reciprocal_geom(Geometry(sGeom), Geometry(rGeom))
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 20277 | # Model structure
# Author: Philipp Witte, [email protected]
# Date: January 2017
# Author Mathias Louboutin
# Date: 2017-2022
#
export Model, PhysicalParameter, get_dt, size, origin, spacing, nbl
abstract type AbstractModel{T, N} end
struct DiscreteGrid{T<:Real, N}
n::NTuple{N, Int64}
d::NTuple{N, <:T}
o::NTuple{N, <:T}
nb::Int64 # number of absorbing boundaries points on each side
end
size(G::DiscreteGrid) = G.n
origin(G::DiscreteGrid) = G.o
spacing(G::DiscreteGrid) = G.d
nbl(G::DiscreteGrid) = G.nb
size(G::DiscreteGrid, i::Int) = G.n[i]
origin(G::DiscreteGrid, i::Int) = G.o[i]
spacing(G::DiscreteGrid, i::Int) = G.d[i]
###################################################################################################
# PhysicalParameter abstract vector
"""
PhysicalParameter
n::NTuple{N, T}
d::NTuple{N, Tf}
o::NTuple{N, Tf}
data::Union{Array, Number}
PhysicalParameter structure for physical space parameter.
`n`: number of gridpoints in (x,y,z) for 3D or (x,z) for 2D
`d`: grid spacing in (x,y,z) or (x,z) (in meters)
`o`: origin of coordinate system in (x,y,z) or (x,z) (in meters)
`data`: the array of the parameter values of size n
Constructor
===========
A `PhysicalParameter` can be constructed in various ways but always require the origin `o` and grid spacing `d` that
cannot be infered from the array.
PhysicalParameter(v::Array{T}, d, o) where `v` is an n-dimensional array and n=size(v)
PhysicalParameter(n, d, o; T=Float32) Creates a zero PhysicalParameter
PhysicalParameter(v::Array{T}, A::PhysicalParameter{T, N}) where {T<:Real, N} Creates a PhysicalParameter from the Array `v` with n, d, o from `A`
PhysicalParameter(v::Array{T, N}, n::NTuple{N, T}, d::NTuple{N, T}, o::Tuple) where `v` is a vector or nd-array that is reshaped into shape `n`
PhysicalParameter(v::T, n::NTuple{N, T}, d::NTuple{N, T}, o::Tuple) Creates a constant (single number) PhyicalParameter
"""
mutable struct PhysicalParameter{T, N} <: DenseArray{T, N}
n::NTuple{N, Int64}
d::NTuple{N, T}
o::NTuple{N, T}
data::Union{Array{T, N}, T}
PhysicalParameter(n::NTuple{N, <:Number}, d::NTuple{N, <:Number}, o::NTuple{N, <:Number}, data::Union{Array{T, N}, T}) where {T, N} =
new{T, N}(Int.(n), T.(d), T.(o), data)
end
mutable struct PhysicalParameterException <: Exception
msg :: String
end
PhysicalParameter(v::BitArray{N}, args...) where N = v
PhysicalParameter(v::Array{Bool, N}, ::NTuple, ::NTuple) where N = v
function PhysicalParameter(v::Array{T, N}, d::NTuple, o::NTuple) where {T<:Real, N}
n = size(v)
length(n) != length(o) && throw(PhysicalParameterException("Input array should be $(length(o))-dimensional"))
return PhysicalParameter(n, d, o, v)
end
PhysicalParameter(n::NTuple{N}, d::NTuple{N}, o::NTuple{N}; DT::Type{dT}=eltype(d)) where {dT<:Real, N} = PhysicalParameter(n, d, o, zeros(dT, n))
PhysicalParameter(v::Array{T, N}, A::PhysicalParameter{ADT, N}) where {T<:Real, ADT<:Real, N} = PhysicalParameter(A.n, A.d, A.o, reshape(v, A.n))
function PhysicalParameter(v::Array{T, N1}, n::NTuple{N, Int}, d::NTuple{N, T}, o::NTuple{N, T}) where {T<:Real, N, N1}
length(v) != prod(n) && throw(PhysicalParameterException("Incompatible number of element in input $(length(v)) with n=$(n)"))
N1 == 1 && (v = reshape(v, n))
return PhysicalParameter(n, d, o, v)
end
PhysicalParameter(v::Real, n::NTuple{N}, d::NTuple{N}, o::NTuple{N}) where {N} = PhysicalParameter(n, d, o, v)
PhysicalParameter(v::Integer, n::NTuple{N}, d::NTuple{N}, o::NTuple{N}) where {N} = PhysicalParameter(n, d, o, Float32.(v))
PhysicalParameter(v::Array{T, N}, n::NTuple{N}, d::NTuple{N}, o::NTuple{N}) where {T<:Real, N} = PhysicalParameter(n, d, o, v)
PhysicalParameter(p::PhysicalParameter{T, N}, ::NTuple{N, Int}, ::NTuple{N, T}, ::NTuple{N, T}) where {T<:Real, N} = p
PhysicalParameter(p::PhysicalParameter{T, N}) where {T<:Real, N} = p
PhysicalParameter(p::PhysicalParameter{T, N}, v::Array{T, Nv}) where {T<:Real, N, Nv} = PhysicalParameter(p.n, p.d, p.o, reshape(v, p.n))
# transpose and such.....
conj(x::PhysicalParameter{T, N}) where {T<:Real, N} = x
transpose(x::PhysicalParameter{T, N}) where {T<:Real, N} = PhysicalParameter(x.n[N:-1:1], x.d[N:-1:1], x.o[N:-1:1], permutedims(x.data, N:-1:1))
adjoint(x::PhysicalParameter{T, N}) where {T<:Real, N} = transpose(x)
# Basic overloads
size(A::PhysicalParameter{T, N}) where {T<:Real, N} = A.n
length(A::PhysicalParameter{T, N}) where {T<:Real, N} = prod(A.n)
function norm(A::PhysicalParameter{T, N}, order::Real=2) where {T<:Real, N}
return norm(vec(A.data), order)
end
dot(A::PhysicalParameter{T, N}, B::PhysicalParameter{T, N}) where {T<:Real, N} = dot(vec(A.data), vec(B.data))
dot(A::PhysicalParameter{T, N}, B::Array{T, N}) where {T<:Real, N} = dot(vec(A.data), vec(B))
dot(A::Array{T, N}, B::PhysicalParameter{T, N}) where {T<:Real, N} = dot(vec(A), vec(B.data))
_repr(A::PhysicalParameter{T, N}) where {T<:Real, N} = "$(typeof(A)) of size $(A.n) with origin $(A.o) and spacing $(A.d)"
display(A::PhysicalParameter{T, N}) where {T<:Real, N} = println(_repr(A))
show(io::IO, A::PhysicalParameter{T, N}) where {T<:Real, N} = print(io, _repr(A))
summary(io::IO, A::PhysicalParameter{T, N}) where {T<:Real, N} = print(io, _repr(A))
showarg(io::IO, A::PhysicalParameter, toplevel) = print(io, _repr(A))
show(io::IO, ::MIME{Symbol("text/plain")}, A::PhysicalParameter{T, N}) where {T<:Real, N} = println(io, _repr(A))
# Indexing
firstindex(A::PhysicalParameter{T, N}) where {T<:Real, N} = 1
lastindex(A::PhysicalParameter{T, N}) where {T<:Real, N} = length(A)
lastindex(A::PhysicalParameter{T, N}, dim::Int) where {T<:Real, N} = A.n[dim]
function promote_shape(p::PhysicalParameter{T, N}, A::Array{T, Na}) where {T, N, Na}
(size(A) != p.n && N>1) && return promote_shape(p.data, A)
(length(A) == prod(p.n) && N==1) && return size(A)
return promote_shape(A, A)
end
promote_shape(A::Array{T, Na}, p::PhysicalParameter{T, N}) where {T<:Real, N, Na} = promote_shape(p, A)
reshape(p::PhysicalParameter{T, N}, n::Tuple{Vararg{Int64,N}}) where {T<:Real, N} = (n == p.n ? p : reshape(p.data, n))
reshape(p::PhysicalParameter, pr::PhysicalParameter) = (p.n == pr.n ? p : throw(ArgumentError("Incompatible PhysicalParameter sizes ($(p.n), $(po.n))")))
dotview(m::PhysicalParameter, i) = Base.dotview(m.data, i)
getindex(A::PhysicalParameter{T, N}, i::Int) where {T<:Real, N} = A.data[i]
getindex(A::PhysicalParameter{T, N}, ::Colon) where {T<:Real, N} = A.data[:]
elsize(A::PhysicalParameter) = elsize(A.data)
get_step(r::StepRange) = r.step
get_step(r) = 1
function getindex(A::PhysicalParameter{T, N}, I::Vararg{Union{Int, BitArray, Function, StepRange{Int}, UnitRange{Int}}, Ni}) where {N, Ni, T<:Real}
new_v = getindex(A.data, I...)
length(size(new_v)) != length(A.n) && (return new_v)
s = [i == Colon() ? 0 : i[1]-1 for i=I]
st = [get_step(i) for i=I]
new_o = [ao+i*d for (ao, i, d)=zip(A.o, s, A.d)]
new_d = [d*s for (d, s)=zip(A.d, st)]
PhysicalParameter(size(new_v), tuple(new_d...), tuple(new_o...), new_v)
end
setindex!(A::PhysicalParameter{T, N}, v, I::Vararg{Union{Int, Function, UnitRange{Int}}, Ni}) where {T<:Real, N, Ni} = setindex!(A.data, v, I...)
setindex!(A::PhysicalParameter{T, N}, v, i::Int) where {T<:Real, N} = (A.data[i] = v)
# Constructiors by copy
similar(x::PhysicalParameter{T, N}) where {T<:Real, N} = PhysicalParameter(x.n, x.d, x.o, fill!(similar(x.data), 0))
function similar(p::PhysicalParameter{T, N}, ::Type{nT}, s::AbstractSize) where {T, N, nT}
nn = tuple(last.(sort(collect(s.dims), by = x->x[1]))...)
return PhysicalParameter(nn, p.d, p.o, zeros(nT, nn))
end
copy(x::PhysicalParameter{T, N}) where {T<:Real, N} = PhysicalParameter(x.n, x.d, x.o, copy(x.data))
unsafe_convert(::Type{Ptr{T}}, p::PhysicalParameter{T, N}) where {T<:Real, N} = unsafe_convert(Ptr{T}, p.data)
Base.Vector{T}(m::PhysicalParameter) where T = Vector{T}(m.data[:])
# Equality
==(A::PhysicalParameter{T, N}, B::PhysicalParameter{T, N}) where {T<:Real, N} = (A.data == B.data && A.o == B.o && A.d == B.d)
isapprox(A::PhysicalParameter{T, N}, B::PhysicalParameter{T, N}; kwargs...) where {T<:Real, N} = (isapprox(A.data, B.data) && A.o == B.o && A.d == B.d)
isapprox(A::PhysicalParameter{T, N}, B::AbstractArray{T, N}; kwargs...) where {T<:Real, N} = isapprox(A.data, B)
isapprox(A::AbstractArray{T, N}, B::PhysicalParameter{T, N}; kwargs...) where {T<:Real, N} = isapprox(A, B.data)
# # Arithmetic operations
compare(A::PhysicalParameter{T, N}, B::PhysicalParameter{T, N}) where {T<:Real, N} = (A.o == B.o && A.d == B.d && A.n == B.n)
function combine(op, A::PhysicalParameter{T, N}, B::PhysicalParameter{T, N}) where {T<:Real, N}
A.d == B.d || throw(PhysicalParameterException("Incompatible grids: ($(A.d), $(B.d))"))
o = min.(A.o, B.o)
sa = floor.(Int, (A.o .- o) ./ A.d) .+ 1
ea = sa .+ A.n .- 1
sb = floor.(Int, (B.o .- o) ./ B.d) .+ 1
eb = sb .+ B.n .- 1
mn = max.(ea, eb)
ia = [s:e for (s, e) in zip(sa, ea)]
ib = [s:e for (s, e) in zip(sb, eb)]
if isnothing(op)
@assert A.n == mn
A.data[ib...] .= B.data
return nothing
else
out = zeros(T, mn)
out[ia...] .= A.data
broadcast!(op, view(out, ib...), view(out, ib...), B.data)
return PhysicalParameter(mn, A.d, o, out)
end
end
combine!(A::PhysicalParameter{T, N}, B::PhysicalParameter{T, N}) where {T<:Real, N} = combine(nothing, A, B)
for op in [:+, :-, :*, :/]
@eval function $(op)(A::PhysicalParameter{T, N}, B::PhysicalParameter{T, N}) where {T<:Real, N}
if compare(A, B)
return PhysicalParameter(broadcast($(op), A.data, B.data), A)
elseif A.d == B.d
# same grid but difference origin/shape, merging
return combine($(op), A, B)
else
throw(PhysicalParameterException("Incompatible grids: ($(A.d), $(B.d))"))
end
end
@eval $(op)(A::PhysicalParameter{T, N}, B::T2) where {T<:Real, T2<:Number, N} = PhysicalParameter(broadcast($(op), A.data, T(B)), A)
@eval $(op)(A::T2, B::PhysicalParameter{T, N}) where {T<:Real, T2<:Number, N} = PhysicalParameter(broadcast($(op), T(A), B.data), B)
end
function *(A::Union{joMatrix, joLinearFunction, joLinearOperator, joCoreBlock}, p::PhysicalParameter{RDT, N}) where {RDT<:Real, N}
@warn "JOLI linear operator, returning julia Array"
return A*vec(p.data)
end
# Brodacsting
BroadcastStyle(::Type{<:PhysicalParameter}) = Broadcast.ArrayStyle{PhysicalParameter}()
function similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{PhysicalParameter}}, ::Type{ElType}) where ElType
# Scan the inputs
A = find_bc(bc, PhysicalParameter)
# Use the char field of A to create the output
newT = ElType <: Nothing ? eltype(A) : ElType
Ad = zeros(newT, axes(A.data))
PhysicalParameter(Ad, A.d, A.o)
end
similar(bc::Broadcast.Broadcasted{Broadcast.ArrayStyle{PhysicalParameter}}) = similar(bc, nothing)
function materialize!(A::PhysicalParameter{T, N}, ev::PhysicalParameter{T, N}) where {T<:Real, N}
if compare(A, ev)
A.data .= ev.data
else
A.n = ev.n
A.d = ev.d
A.o = ev.o
A.data = copy(ev.data)
end
nothing
end
materialize!(A::PhysicalParameter{T, N}, B::Broadcast.Broadcasted{Broadcast.DefaultArrayStyle{PhysicalParameter}}) where {T<:Real, N} = materialize!(A, B.f(B.args...))
materialize!(A::PhysicalParameter{T, N}, B::Broadcast.Broadcasted{Broadcast.DefaultArrayStyle{Na}}) where {T<:Real, N, Na} = materialize!(A.data, reshape(materialize(B), A.n))
materialize!(A::AbstractArray{T, N}, B::Broadcast.Broadcasted{Broadcast.ArrayStyle{PhysicalParameter}}) where {T<:Real, N} = materialize!(A, reshape(materialize(B).data, size(A)))
for op in [:+, :-, :*, :/, :\]
@eval begin
broadcasted(::typeof($op), A::PhysicalParameter{T, N}, B::DenseVector{T}) where {T<:Real, N} = PhysicalParameter(A.n, A.d, A.o, materialize(broadcasted($(op), A.data, reshape(B, A.n))))
broadcasted(::typeof($op), B::DenseVector{T}, A::PhysicalParameter{T, N}) where {T<:Real, N} = PhysicalParameter(A.n, A.d, A.o, materialize(broadcasted($(op), reshape(B, A.n), A.data)))
broadcasted(::typeof($op), A::PhysicalParameter{T, N}, B::DenseArray{T, N}) where {T<:Real, N} = PhysicalParameter(A.n, A.d, A.o, materialize(broadcasted($(op), A.data, B)))
broadcasted(::typeof($op), B::DenseArray{T, N}, A::PhysicalParameter{T, N}) where {T<:Real, N} = PhysicalParameter(A.n, A.d, A.o, materialize(broadcasted($(op), B, A.data)))
broadcasted(::typeof($op), A::PhysicalParameter{T, N}, B::PhysicalParameter{T, N}) where {T<:Real, N} = $(op)(A, B)
broadcasted(::typeof($op), A::PhysicalParameter{T, N}, B::T2) where {T<:Real, T2<:Number, N} = PhysicalParameter(broadcast($(op), A.data, T(B)), A)
broadcasted(::typeof($op), A::T2, B::PhysicalParameter{T, N}) where {T<:Real, T2<:Number, N} = PhysicalParameter(broadcast($(op), T(A), B.data), B)
end
end
# For ploting
NpyArray(p::PhysicalParameter{T, N}, revdims::Bool) where {T<:Real, N} = NpyArray(p.data, revdims)
###################################################################################################
const ModelParam{N} = Union{<:Pdtypes, PhysicalParameter{<:Pdtypes, N}}
# Acoustic
struct IsoModel{T, N} <: AbstractModel{T, N}
G::DiscreteGrid{T, N}
m::ModelParam{N}
rho::ModelParam{N}
end
# VTI/TTI
struct TTIModel{T, N} <: AbstractModel{T, N}
G::DiscreteGrid{T, N}
m::ModelParam{N}
rho::ModelParam{N}
epsilon::ModelParam{N}
delta::ModelParam{N}
theta::ModelParam{N}
phi::ModelParam{N}
end
# Elastic
struct IsoElModel{T, N} <: AbstractModel{T, N}
G::DiscreteGrid{T, N}
lam::ModelParam{N}
mu::ModelParam{N}
b::ModelParam{N}
end
# Visco-acoustic
struct ViscIsoModel{T, N} <: AbstractModel{T, N}
G::DiscreteGrid{T, N}
m::ModelParam{N}
rho::ModelParam{N}
qp::ModelParam{N}
end
_params(m::IsoModel) = ((:m, m.m), (:rho, m.rho))
_params(m::TTIModel) = ((:m, m.m), (:rho, m.rho), (:epsilon, m.epsilon), (:delta, m.delta), (:theta, m.theta), (:phi, m.phi))
_params(m::IsoElModel) = ((:lam, m.lam), (:mu, m.mu), (:b, m.b))
_params(m::ViscIsoModel) = ((:m, m.m), (:rho, m.rho), (:qp, m.qp))
_mparams(m::AbstractModel) = first.(_params(m))
###################################################################################################
# Constructors
_scalar(::Nothing, ::Type{T}, def=1) where T = T(def)
_scalar(v::Number, ::Type{T}, def=1) where T = T(v)
"""
Model(n, d, o, m; epsilon=nothing, delta=nothing, theta=nothing,
phi=nothing, rho=nothing, qp=nothing, vs=nothing, nb=40)
The parameters `n`, `d`, `o` and `m` are mandatory, whith `nb` and other physical parameters being optional input arguments.
where
`m`: velocity model in slowness squared (s^2/km^2)
`epsilon`: Epsilon thomsen parameter ( between -1 and 1)
`delta`: Delta thomsen parameter ( between -1 and 1 and delta < epsilon)
`theta`: Anisotopy dip in radian
`phi`: Anisotropy asymuth in radian
`rho`: density (g / m^3)
`qp`: P-wave attenuation for visco-acoustic models
`vs`: S-wave velocity for elastic models.
`nb`: Number of ABC points
"""
function Model(d, o, m::Array{mT, N}; epsilon=nothing, delta=nothing, theta=nothing,
phi=nothing, rho=nothing, qp=nothing, vs=nothing, nb=40) where {mT<:Real, N}
# Currently force single precision
m = as_Pdtype(m)
T = Float32
# Convert dimension to internal types
n = size(m)
d = tuple(Float32.(d)...)
o = tuple(Float32.(o)...)
G = DiscreteGrid{T, N}(n, d, o, nb)
size(m) == n || throw(ArgumentError("Grid size $n and squared slowness size $(size(m)) don't match"))
# Elastic
if !isnothing(vs)
rho = isa(rho, Array) ? rho : _scalar(rho, T)
if any(!isnothing(p) for p in [epsilon, delta, theta, phi])
@warn "Thomsen parameters no supported for elastic (vs) ignoring them"
end
lambda = PhysicalParameter(as_Pdtype((m.^(-1) .- T(2) .* vs.^2) .* rho), n, d, o)
mu = PhysicalParameter(as_Pdtype(vs.^2 .* rho), n, d, o)
b = isa(rho, Array) ? PhysicalParameter(as_Pdtype(1 ./ rho), n, d, o) : _scalar(rho, T)
return IsoElModel{T, N}(G, lambda, mu, b)
end
## Visco
if !isnothing(qp)
if any(!isnothing(p) for p in [epsilon, delta, theta, phi])
@warn "Thomsen parameters no supported for elastic (vs) ignoring them"
end
qp = isa(qp, Array) ? PhysicalParameter(as_Pdtype(qp), n, d, o) : _scalar(qp, T)
m = PhysicalParameter(m, n, d, o)
rho = isa(rho, Array) ? PhysicalParameter(as_Pdtype(rho), n, d, o) : _scalar(rho, T)
return ViscIsoModel{T, N}(G, m, rho, qp)
end
## TTI
if !isnothing(epsilon) || !isnothing(delta) || !isnothing(theta) || !isnothing(phi)
if any(!isnothing(p) for p in [vs, qp])
@warn "Elastic (vs) and attenuation (qp) not supported for TTI/VTI"
end
m = PhysicalParameter(m, n, d, o)
rho = isa(rho, Array) ? PhysicalParameter(as_Pdtype(rho), n, d, o) : _scalar(rho, T)
epsilon = isa(epsilon, Array) ? PhysicalParameter(as_Pdtype(epsilon), n, d, o) : _scalar(epsilon, T, 0)
delta = isa(delta, Array) ? PhysicalParameter(as_Pdtype(delta), n, d, o) : _scalar(delta, T, 0)
# For safety remove delta values unsupported (delta > epsilon)
_clip_delta!(delta, epsilon)
theta = isa(theta, Array) ? PhysicalParameter(as_Pdtype(theta), n, d, o) : _scalar(theta, T, 0)
phi = isa(phi, Array) ? PhysicalParameter(as_Pdtype(phi), n, d, o) : _scalar(phi, T, 0)
return TTIModel{T, N}(G, m, rho, epsilon, delta, theta, phi)
end
# None of the advanced models, return isotropic acoustic
m = PhysicalParameter(m, n, d, o)
rho = isa(rho, Array) ? PhysicalParameter(as_Pdtype(rho), n, d, o) : _scalar(rho, T)
return IsoModel{T, N}(G, m, rho)
end
as_Pdtype(x::Array{T, N}) where {T<:Pdtypes, N} = x
as_Pdtype(x::Array{T, N}) where {T, N} = convert(Array{Float32, N}, x)
Model(n, d, o, m::Array, rho::Array; nb=40) = Model(d, o, reshape(m, n...); rho=reshape(rho, n...), nb=nb)
Model(n, d, o, m::Array, rho::Array, qp::Array; nb=40) = Model(d, o, reshape(m, n...); rho=reshape(rho, n...), qp=reshape(qp, n...), nb=nb)
Model(n, d, o, m::Array; kw...) = Model(d, o, reshape(m, n...); kw...)
size(m::MT) where {MT<:AbstractModel} = size(m.G)
origin(m::MT) where {MT<:AbstractModel} = origin(m.G)
spacing(m::MT) where {MT<:AbstractModel} = spacing(m.G)
nbl(m::MT) where {MT<:AbstractModel} = nbl(m.G)
size(m::MT, i::Int) where {MT<:AbstractModel} = size(m.G, i)
origin(m::MT, i::Int) where {MT<:AbstractModel} = origin(m.G, i)
spacing(m::MT, i::Int) where {MT<:AbstractModel} = spacing(m.G, i)
eltype(::AbstractModel{T, N}) where {T, N} = T
get_dt(m::AbstractModel; dt=nothing) = calculate_dt(m; dt=dt)
similar(::PhysicalParameter{T, N}, m::AbstractModel) where {T<:Real, N} = PhysicalParameter(size(m), spacing(m), origin(m); DT=T)
similar(x::Array, m::AbstractModel) = similar(x, size(m))
ndims(m::AbstractModel{T, N}) where {T, N} = N
_repr(m::AbstractModel) = "Model (n=$(size(m)), d=$(spacing(m)), o=$(origin(m))) with parameters $(_mparams(m))"
display(m::AbstractModel) = println(_repr(m))
show(io::IO, m::AbstractModel) = print(io, _repr(m))
show(io::IO, ::MIME{Symbol("text/plain")}, m::AbstractModel) = print(io, _repr(m))
# Pad gradient if aperture doesn't match full domain
_project_to_physical_domain(p, ::Any) = p
function _project_to_physical_domain(p::PhysicalParameter, model::AbstractModel)
size(p) == size(model) && (return p)
pp = similar(p, model)
pp .+= p
return pp
end
# Utils
_clip_delta!(::T, epsilon) where {T<:Number} = nothing
_clip_delta!(delta::PhysicalParameter{T}, epsilon::T) where {T<:Number} = delta.data[delta.data .>= epsilon] .= T(.99) * epsilon
_clip_delta!(delta::PhysicalParameter{T}, epsilon::PhysicalParameter{T}) where {T<:Number} = delta.data[delta.data .>= epsilon.data] .= T(.99) * epsilon[delta.data .>= epsilon.data] | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 5324 | # Options structure
# Author: Philipp Witte, [email protected]
# Date: May 2017
#
export Options, JUDIOptions
# Object for velocity/slowness models
mutable struct JUDIOptions
space_order::Int64
free_surface::Bool
limit_m::Bool
buffer_size::Float32
save_data_to_disk::Bool
file_path::String
file_name::String
sum_padding::Bool
optimal_checkpointing::Bool
frequencies::Array
IC::String
subsampling_factor::Int64
dft_subsampling_factor::Int64
return_array::Bool
dt_comp::Union{Float32, Nothing}
f0::Float32
end
"""
JUDIOptions
space_order::Integer
free_surface::Bool
limit_m::Bool
buffer_size::AbstractFloat
save_rate::AbstractFloat
save_data_to_disk::Bool
file_path::String
file_name::String
sum_padding::Bool
optimal_checkpointing::Bool
frequencies::Array
IC::String
subsampling_factor::Integer
dft_subsampling_factor::Integer
return_array::Bool
dt_comp::Real
f0::Real
Options structure for seismic modeling.
`space_order`: finite difference space order for wave equation (default is 8, needs to be multiple of 4)
`free_surface`: set to `true` to enable a free surface boundary condition.
`limit_m`: for 3D modeling, limit modeling domain to area with receivers (saves memory)
`buffer_size`: if `limit_m=true`, define buffer area on each side of modeling domain (in meters)
`save_data_to_disk`: if `true`, saves shot records as separate SEG-Y files
`file_path`: path to directory where data is saved
`file_name`: shot records will be saved as specified file name plus its source coordinates
`sum_padding`: when removing the padding area of the gradient, sum into boundary rows/columns for true adjoints
`optimal_checkpointing`: instead of saving the forward wavefield, recompute it using optimal checkpointing
`frequencies`: calculate the FWI/LS-RTM gradient in the frequency domain for a given set of frequencies
`subsampling_factor`: compute forward wavefield on a time axis that is reduced by a given factor (default is 1)
`dft_subsampling_factor`: compute on-the-fly DFTs on a time axis that is reduced by a given factor (default is 1)
`IC`: Imaging condition. Options are 'as, isic, fwi' with "as" for adjoint state, isic for the inverse scattering imaging condition and FWI for the complement of isic (i.e isic + fwi = as)
`isic`: Inverse scattering imaging condition. Deprecated, use `IC="isic"` instead.
`return_array`: return data from nonlinear/linear modeling as a plain Julia array.
`dt_comp`: overwrite automatically computed computational time step with this value.
`f0`: define peak frequency.
Constructor
==========
All arguments are optional keyword arguments with the following default values:
Options(;space_order=8, free_surface=false,
limit_m=false, buffer_size=1e3,
save_data_to_disk=false, file_path="",
file_name="shot", sum_padding=false,
optimal_checkpointing=false,
num_checkpoints=nothing, checkpoints_maxmem=nothing,
frequencies=[], isic=false,
subsampling_factor=1, dft_subsampling_factor=1, return_array=false,
dt_comp=nothing, f0=0.015f0)
"""
function Options(;space_order=8, free_surface=false,
limit_m=false, buffer_size=1e3,
save_data_to_disk=false, file_path="", file_name="shot",
sum_padding=false,
optimal_checkpointing=false,
frequencies=[],
subsampling_factor=1,
dft_subsampling_factor=1,
return_array=false,
dt_comp=nothing,
f0=0.015f0,
IC="as",
kw...)
ic = imcond(get(kw, :isic, false), IC)
if optimal_checkpointing && get(ENV, "DEVITO_DECOUPLER", 0) != 0
@warn "Optimal checkpointing is not supported with the Decoupler, disabling"
optimal_checkpointing = false
end
return JUDIOptions(space_order, free_surface, limit_m, buffer_size, save_data_to_disk,
file_path, file_name, sum_padding, optimal_checkpointing, frequencies,
ic, subsampling_factor, dft_subsampling_factor, return_array, dt_comp, f0)
end
JUDIOptions(;kw...) = Options(kw...)
update!(::JUDIOptions, ::Nothing) = nothing
function update!(O::JUDIOptions, other::JUDIOptions)
for f in fieldnames(JUDIOptions)
setfield!(O, f, getfield(other, f))
end
end
function getindex(options::JUDIOptions, srcnum)
if isempty(options.frequencies)
return options
else
opt_out = deepcopy(options)
floc = options.frequencies[srcnum]
typeof(floc) <: Array && (opt_out.frequencies = floc)
return opt_out
end
end
subsample(options::JUDIOptions, srcnum) = getindex(options, srcnum)
function imcond(isic::Bool, IC::String)
if isic
Base.depwarn("Deprecared isic argument use IC=\"isic\" ", :Options; force = true)
return "isic"
end
return lowercase(IC)
end
function Base.show(io::IO, options::JUDIOptions)
println(io, "JUDI Options : \n")
for f in fieldnames(JUDIOptions)
println(io, @sprintf("%-25s : %10s", f, getfield(options, f)))
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 9374 | export subsample
############################################################################################################################
# Base multi source abstract type
abstract type judiMultiSourceVector{T} <: AbstractVector{T} end
mutable struct judiMultiSourceException <: Exception
msg :: String
end
display(ms::judiMultiSourceVector) = println("$(string(typeof(ms))) with $(ms.nsrc) sources")
show(io::IO, ms::judiMultiSourceVector) = print(io, "$(string(typeof(ms))) with $(ms.nsrc) sources")
showarg(io::IO, ms::judiMultiSourceVector, toplevel) = print(io, "$(string(typeof(ms))) with $(ms.nsrc) sources")
summary(io::IO, ms::judiMultiSourceVector) = print(io, string(typeof(ms)))
show(io::IO, ::MIME{Symbol("text/plain")}, ms::judiMultiSourceVector) = println(io, "$(typeof(ms)) with $(ms.nsrc) sources")
# Size and type
eltype(::judiMultiSourceVector{T}) where T = T
size(jv::judiMultiSourceVector) = (jv.nsrc,)
length(jv::judiMultiSourceVector{T}) where {T} = sum([length(jv.data[i]) for i=1:jv.nsrc])
# Comparison
isequal(ms1::judiMultiSourceVector, ms2::judiMultiSourceVector) = ms1 == ms2
==(ms1::judiMultiSourceVector, ms2::judiMultiSourceVector) = all(getfield(ms1, s) == getfield(ms2, s) for s in fieldnames(typeof(ms1)))
isapprox(x::judiMultiSourceVector, y::judiMultiSourceVector; rtol::AbstractFloat=sqrt(eps()), atol::AbstractFloat=0.0) =
all(isapprox(getfield(x, f), getfield(y, f); rtol=rtol, atol=atol) for f in fieldnames(typeof(x)))
check_compat(ms::Vararg{judiMultiSourceVector, N}) where N = true
check_compat(x::Number, ms::judiMultiSourceVector) = true
check_compat(ms::judiMultiSourceVector, x::Number) = true
# Copy
copyto!(ms::judiMultiSourceVector, a::Vector{Array{T, N}}) where {T, N} = copyto!(ms.data, a)
copyto!(a::Vector{Array{T, N}}, ms::judiMultiSourceVector) where {T, N} = copyto!(a, ms.data)
copy(ms::judiMultiSourceVector{T}) where {T} = begin y = zero(T, ms); y.data = deepcopy(ms.data); y end
deepcopy(ms::judiMultiSourceVector{T}) where {T} = copy(ms)
unsafe_convert(::Type{Ptr{T}}, msv::judiMultiSourceVector{T}) where {T} = unsafe_convert(Ptr{T}, msv.data)
# indexing
IndexStyle(::Type{<:judiMultiSourceVector}) = IndexLinear()
setindex!(ms::judiMultiSourceVector{T}, v::Array{T, N}, i::Integer) where {T, N} = begin ms.data[i] = v; nothing end
getindex(ms::judiMultiSourceVector{T}, i::Integer) where {T} = i > ms.nsrc ? 0 : ms[i:i]
getindex(ms::judiMultiSourceVector{T}, ::Colon) where {T} = vec(ms)
firstindex(ms::judiMultiSourceVector) = 1
lastindex(ms::judiMultiSourceVector) = ms.nsrc
iterate(S::judiMultiSourceVector, state::Integer=1) = state > S.nsrc ? nothing : (S[state], state+1)
# Backward compat subsample
subsample(ms::judiMultiSourceVector, i) = getindex(ms, i)
zero(::Type{T}, x::judiMultiSourceVector) where T = throw(judiMultiSourceException("$(typeof(x)) does not implement zero copy zero(::Type{T}, x)"))
similar(x::judiMultiSourceVector{T}) where T = zero(T, x)
similar(x::judiMultiSourceVector, nsrc::Integer) = nsrc < x.nsrc ? zero(eltype(ET), x; nsrc=nsrc) : zero(eltype(ET), x)
similar(x::judiMultiSourceVector, ::Type{ET}) where ET = zero(eltype(ET), x)
similar(x::judiMultiSourceVector, ::Type{ET}, dims::AbstractUnitRange) where ET = similar(x, ET)
similar(x::judiMultiSourceVector, ::Type{ET}, nsrc::Integer) where ET = nsrc <= x.nsrc ? zero(eltype(ET), x; nsrc=nsrc) : similar(x, ET)
similar(x::judiMultiSourceVector, ::Type{ET}, dims::AbstractSize) where ET = similar(x, ET)
jo_convert(::Type{Array{T, N}}, v::judiMultiSourceVector, B::Bool) where {T, N} = jo_convert(T, v, B)
fill!(x::judiMultiSourceVector, val) = fill!.(x.data, val)
sum(x::judiMultiSourceVector) = sum(sum(x.data))
isfinite(v::judiMultiSourceVector) = all(all(isfinite.(v.data[i])) for i=1:v.nsrc)
conj(A::judiMultiSourceVector{vDT}) where vDT = A
transpose(A::judiMultiSourceVector{vDT}) where vDT = A
adjoint(A::judiMultiSourceVector{vDT}) where vDT = A
maximum(a::judiMultiSourceVector{avDT}) where avDT = max([maximum(a.data[i]) for i=1:a.nsrc]...)
minimum(a::judiMultiSourceVector{avDT}) where avDT = min([minimum(a.data[i]) for i=1:a.nsrc]...)
vec(x::judiMultiSourceVector) = vcat(vec.(x.data)...)
time_sampling(ms::judiMultiSourceVector) = [1 for i=1:ms.nsrc]
reshape(ms::judiMultiSourceVector, dims::Dims{N}) where N = reshape(vec(ms), dims)
############################################################################################################################
# Linear algebra `*`
(msv::judiMultiSourceVector{mT})(x::DenseArray{T}) where {mT, T<:Number} = x
(msv::judiMultiSourceVector{mT})(x::AbstractVector{T}) where {mT, T<:Number} = x
(msv::judiMultiSourceVector{T})(x::judiMultiSourceVector{T}) where {T<:Number} = x
(msv::judiMultiSourceVector{mT})(x::AbstractVector{T}) where {mT, T<:Array} = begin y = deepcopy(msv); y.data .= x; return y end
function *(J::joAbstractLinearOperator, x::judiMultiSourceVector{vDT}) where vDT
outvec = try J.fop(x) catch; J*vec(x) end
outdata = try reshape(outvec, size(x.data[1]), x.nsrc) catch; outvec end
return x(outdata)
end
function *(J::joCoreBlock, x::judiMultiSourceVector{vDT}) where vDT
outvec = vcat([J.fop[i]*x for i=1:J.l]...)
outdata = try reshape(outvec, size(x.data[1]), J.l*x.nsrc); catch; outvec end
return x(outdata)
end
function *(M::Matrix{vDT}, x::judiMultiSourceVector{vDT}) where vDT
if size(M, 2) == x.nsrc
return simsource(M, x)
end
# Not a per source matrix, reverting to standard matvec
outvec = M*vec(x)
outdata = try reshape(outvec, size(x.data[1]), x.nsrc) catch; outvec end
return x(outdata)
end
# Propagation input
make_input(ms::judiMultiSourceVector) = throw(judiMultiSourceException("$(typeof(ms)) must implement `make_input(ms, dt)` for propagation"))
make_input(a::Array) = a
as_src(ms::judiMultiSourceVector{T}) where T = ms
as_src(p::AbstractVector{T}) where T = p
as_src(p) = vec(p)
############################################################################################################################
# Linear algebra norm/abs/cat...
function norm(a::judiMultiSourceVector{T}, p::Real=2) where T
if p == Inf
return maximum([norm(a.data[i], p) for i=1:a.nsrc])
end
x = 0.f0
dt = time_sampling(a)
for j=1:a.nsrc
x += dt[j] * norm(a.data[j], p)^p
end
return T(x^(1.f0/p))
end
# inner product
function dot(a::judiMultiSourceVector{T}, b::judiMultiSourceVector{T}) where T
# Dot product for data containers
size(a) == size(b) || throw(judiMultiSourceException("dimension mismatch: $(size(a)) != $(size(b))"))
dotprod = 0f0
dt = time_sampling(a)
for j=1:a.nsrc
dotprod += dt[j] * dot(a.data[j], b.data[j])
end
return T(dotprod)
end
dot(a::judiMultiSourceVector{T}, b::Array{T}) where T = dot(vec(a), vec(b))
dot(a::Array{T}, b::judiMultiSourceVector{T}) where T = dot(b, a)
# abs
function abs(a::judiMultiSourceVector{T}) where T
b = deepcopy(a)
for j=1:a.nsrc
b.data[j] = abs.(a.data[j])
end
return b
end
# vcat
vcat(a::Array{<:judiMultiSourceVector, 1}) = vcat(a...)
function vcat(ai::Vararg{T, N}) where {T<:judiMultiSourceVector, N}
N == 1 && (return ai[1])
N > 2 && (return vcat(ai[1], vcat(ai[2:end]...)))
a, b = ai
res = deepcopy(a)
push!(res, b)
return res
end
# Combine as simsource
function simsource(M::Matrix{T}, x::judiMultiSourceVector{T}) where T
nout = size(M, 1)
simmsv = zero(T, x; nsrc=nout)
for so = 1:nout
simmsv.data[so] = mapreduce((x, y)-> x*y, +, M[so, :], x.data)
end
return simmsv
end
############################################################################################################################
# Diff/cumsum
function cumsum(x::judiMultiSourceVector;dims=1)
y = deepcopy(x)
cumsum!(y, x; dims=dims)
return y
end
function cumsum!(y::judiMultiSourceVector, x::judiMultiSourceVector;dims=1)
dims == 1 || dims == 2 || throw(judiMultiSourceException("Dimension $(dims) is out of range for a 2D array"))
h = dims == 1 ? time_sampling(x) : [1f0 for i=1:x.nsrc] # receiver dimension is non-dimensional
for i = 1:x.nsrc
cumsum!(y.data[i], x.data[i], dims=dims)
lmul!(h[i], y.data[i])
end
return y
end
function diff(x::judiMultiSourceVector; dims=1)
# note that this is not the same as default diff in julia, the first entry stays in the diff result
dims == 1 || dims == 2 || throw(judiMultiSourceException("Dimension $(dims) is out of range for a 2D array"))
y = 1f0 * x # receiver dimension is non-dimensional
h = dims == 1 ? time_sampling(x) : [1f0 for i=1:x.nsrc]
for i = 1:x.nsrc
n = size(y.data[i],dims)
selectdim(y.data[i], dims, 2:n) .-= selectdim(y.data[i], dims, 1:n-1)
lmul!(1 / h[i], y.data[i])
end
return y
end
############################################################################################################################
# Type conversions
tof32(x::Number) = [Float32(x)]
tof32(x::Array{T, N}) where {N, T<:Real} = T==Float32 ? x : Float32.(x)
tof32(x::Array{Array{T, N}, 1}) where {N, T<:Real} = T==Float32 ? x : tof32.(x)
tof32(x::Vector{Any}) = try Float32.(x) catch e tof32.(x) end
tof32(x::T) where {T<:StepRangeLen} = convert(Vector{Float32}, x)
tof32(x::Vector{<:StepRangeLen}) = tof32.(x)
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 3321 | BroadcastStyle(::Type{<:judiMultiSourceVector}) = ArrayStyle{judiMultiSourceVector}()
function similar(bc::Broadcast.Broadcasted{ArrayStyle{judiMultiSourceVector}}, ::Type{ElType}) where ElType
# Scan the inputs
A = find_bc(bc, judiMultiSourceVector)
return similar(A, ElType)
end
"`A = find_pm(As)` returns the first PhysicalParameter among the arguments."
find_bc(bc::Base.Broadcast.Broadcasted, ::Type{T}) where T = find_bc(bc.args, T)
find_bc(args::Tuple, ::Type{T}) where T = find_bc(find_bc(args[1], T), Base.tail(args), T)
find_bc(x, ::Type{T}) where T = x
find_bc(::Tuple{}, ::Type{T}) where T = nothing
find_bc(a::T, rest, ::Type{T}) where T = a
find_bc(::Any, rest, ::Type{T}) where T = find_bc(rest, T)
extrude(x::judiMultiSourceVector) = extrude(x.data)
# Add broadcasting by hand due to the per source indexing
for func ∈ [:lmul!, :rmul!, :rdiv!, :ldiv!]
@eval begin
$func(ms::judiMultiSourceVector, x::Number) = $func(ms.data, x)
$func(x::Number, ms::judiMultiSourceVector) = $func(x, ms.data)
end
end
# Broadcasted custom type
check_compat() = true
get_src(ms::judiMultiSourceVector, j) = make_input(ms[j])
get_src(v::Vector{<:Array}, j) = v[j]
get_src(v::Array{T, N}, j) where {T<:Number, N} = v
get_src(n::Number, j) = n
struct MultiSource <: Base.AbstractBroadcasted
m1
m2
op
end
function materialize(bc::MultiSource)
m1, m2 = materialize(bc.m1), materialize(bc.m2)
ms = deepcopy(isa(m1, judiMultiSourceVector) ? m1 : m2)
check_compat(m1, m2)
for i=1:ms.nsrc
ms.data[i] .= materialize(broadcasted(bc.op, get_src(m1, i), get_src(m2, i)))
end
ms
end
function materialize!(ms::judiMultiSourceVector, bc::MultiSource)
m1, m2 = materialize(bc.m1), materialize(bc.m2)
check_compat(ms, m1)
check_compat(ms, m2)
for i=1:ms.nsrc
broadcast!(bc.op, ms.data[i], get_src(m1, i), get_src(m2, i))
end
nothing
end
for op ∈ [:+, :-, :*, :/]
# Two multi source vectors
@eval begin
$(op)(ms1::judiMultiSourceVector, ms2::judiMultiSourceVector) = materialize(broadcasted($op, ms1, ms2))
end
# External types and broadcasting
for LT in [Number, Real, Vector{<:Array}, Array{<:Number, <:Integer}]
# +/*/... julia type vs multi source
@eval $(op)(ms1::$(LT), ms2::judiMultiSourceVector) = materialize(broadcasted($op, ms1, ms2))
@eval $(op)(ms1::judiMultiSourceVector, ms2::$(LT)) = materialize(broadcasted($op, ms1, ms2))
# broadcasted julia type vs multi source vector or broadcast
for MS in [judiMultiSourceVector, MultiSource]
@eval broadcasted(::typeof($op), ms1::$(LT), ms2::$(MS)) = MultiSource(ms1, ms2, $op)
@eval broadcasted(::typeof($op), ms1::$(MS), ms2::$(LT)) = MultiSource(ms1, ms2, $op)
end
end
# multi source with multi source
@eval broadcasted(::typeof($op), ms1::judiMultiSourceVector, ms2::MultiSource) = MultiSource(ms1, ms2, $op)
@eval broadcasted(::typeof($op), ms1::MultiSource, ms2::judiMultiSourceVector) = MultiSource(ms1, ms2, $op)
@eval broadcasted(::typeof($op), ms1::judiMultiSourceVector, ms2::judiMultiSourceVector) = MultiSource(ms1, ms2, $op)
@eval broadcasted(::typeof($op), ms1::MultiSource, ms2::MultiSource) = MultiSource(ms1, ms2, $op)
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 8482 | """
Vector of a judiVector and a judiWeight
"""
mutable struct judiVStack{vDT<:Number}
m::Integer
n::Integer
components::Array{Any, 1}
end
concrete_msv = [judiVector, judiWeights, judiWavefield]
for c in concrete_msv
for c2 in concrete_msv
if c2 != c
@eval function vcat(x::$(c){T}, y::$(c2){T}) where {T<:Number}
components = Array{Any}(undef, 2)
components[1] = x
components[2] = y
m = length(x)+length(y)
n = 1
return judiVStack{T}(m, n, components)
end
end
end
end
function vcat(x::judiVStack{T}, y::judiMultiSourceVector{T}) where {T<:Number}
components = Array{Any}(undef, length(x.components) + 1)
for i=1:length(x.components)
components[i] = x.components[i]
end
components[end] = y
m = x.m+length(y)
n = 1
return judiVStack{T}(m, n, components)
end
function vcat(x::judiMultiSourceVector{T}, y::judiVStack{T}) where {T<:Number}
components = Array{Any}(undef, length(y.components) + 1)
components[1] = x
for i=2:length(y.components)+1
components[i] = y.components[i-1]
end
m = y.m + length(x)
n = 1
return judiVStack{T}(m, n, components)
end
function vcat(x::judiVStack{T}, y::judiVStack{T}) where {T<:Number}
nx = length(x.components)
ny = length(y.components)
components = Array{Any}(undef, nx+ny)
for i=1:nx
components[i] = x.components[i]
end
for i=nx+1:nx+ny
components[i] = y.components[i-nx]
end
m = x.m + y.m
n = 1
return judiVStack{T}(m, n, components)
end
function *(F::joAbstractLinearOperator, v::judiVStack{T}) where {T<:Number}
return sum(F.fop[i]*v[i] for i=1:length(v.components))
end
(msv::judiMultiSourceVector{T})(x::judiVStack{T}) where {T} = x
############################################################
## overloaded Base functions
# conj(jo)
conj(a::judiVStack{vDT}) where vDT =
judiVStack{vDT}(a.m,a.n,a.components)
# transpose(jo)
transpose(a::judiVStack{vDT}) where vDT =
judiVStack{vDT}(a.n,a.m,a.components)
# adjoint(jo)
adjoint(a::judiVStack{vDT}) where vDT =
judiVStack{vDT}(a.n,a.m,a.components)
##########################################################
# Utilities
size(x::judiVStack{T}) where {T<:Number} = (x.m, x.n)
size(x::judiVStack{T}, ind::Integer) where {T<:Number} = (x.m, x.n)[ind]
length(x::judiVStack{T}) where {T<:Number} = x.m
eltype(::judiVStack{vDT}) where {vDT} = vDT
similar(x::judiVStack{T}) where {T<:Number} = judiVStack{Float32}(x.m, x.n, 0f0 .* x.components)
similar(x::judiVStack{T}, ::DataType, ::Union{AbstractUnitRange, Integer}...) where {T<:Number} = similar(x)
getindex(x::judiVStack{T}, a) where {T<:Number} = x.components[a]
firstindex(x::judiVStack{T}) where {T<:Number} = 1
lastindex(x::judiVStack{T}) where {T<:Number} = length(x.components)
dot(x::judiVStack{T}, y::judiVStack{T}) where {T<:Number} = T(sum(dot(x[i],y[i]) for i=1:length(x.components)))
function norm(x::judiVStack{T}, order::Real=2) where {T<:Number}
if order == Inf
return max([norm(x[i], Inf) for i=1:length(x.components)]...)
end
out = sum(norm(x[i], order)^order for i=1:length(x.components))^(1/order)
return T(out)
end
iterate(S::judiVStack{T}, state::Integer=1) where {T<:Number} = state > length(S.components) ? nothing : (S.components[state], state+1)
isfinite(S::judiVStack{T}) where {T<:Number} = all(isfinite(c) for c in S)
##########################################################
# minus
-(a::judiVStack{T}) where {T<:Number} = -1*a
+(a::judiVStack{T}, b::judiVStack{T}) where {T<:Number} = judiVStack{T}(a.m, a.n, a.components + b.components)
-(a::judiVStack{T}, b::judiVStack{T}) where {T<:Number} = judiVStack{T}(a.m, a.n, a.components - b.components)
+(a::judiVStack{T}, b::Number) where {T<:Number} = judiVStack{T}(a.m, a.n,a.components .+ b)
-(a::judiVStack{T}, b::Number) where {T<:Number} = judiVStack{T}(a.m, a.n,a.components .- b)
-(a::Number, b::judiVStack{T}) where {T<:Number} = judiVStack{T}(b.m, b.n, a .- b.components)
*(a::judiVStack{T}, b::Number) where {T<:Number} = judiVStack{T}(a.m, a.n, b .* a.components)
*(a::Number, b::judiVStack{T}) where {T<:Number} = b * a
+(a::Number, b::judiVStack{T}) where {T<:Number} = b + a
/(a::judiVStack{T}, b::Number) where {T<:Number} = judiVStack{T}(a.m, a.n, a.components ./ b)
##########################################################
BroadcastStyle(::Type{judiVStack}) = Base.Broadcast.DefaultArrayStyle{1}()
broadcasted(::typeof(+), x::judiVStack{T}, y::judiVStack{T}) where {T<:Number} = x + y
broadcasted(::typeof(-), x::judiVStack{T}, y::judiVStack{T}) where {T<:Number} = x - y
broadcasted(::typeof(+), x::judiVStack{T}, y::Number) where {T<:Number} = x + y
broadcasted(::typeof(-), x::judiVStack{T}, y::Number) where {T<:Number} = x - y
broadcasted(::typeof(+), y::Number, x::judiVStack{T}) where {T<:Number} = x + y
broadcasted(::typeof(-), y::Number, x::judiVStack{T}) where {T<:Number} = x - y
function broadcasted(::typeof(*), x::judiVStack{T}, y::judiVStack{T}) where {T<:Number}
size(x) == size(y) || throw(judiWeightsException("dimension mismatch"))
z = deepcopy(x)
for j=1:length(x.components)
z.components[j] = x.components[j] .* y.components[j]
end
return z
end
function broadcasted!(::typeof(*), x::judiVStack{T}, y::judiVStack{T}) where {T<:Number}
size(x) == size(y) || throw(judiWeightsException("dimension mismatch"))
z = deepcopy(x)
for j=1:length(x.components)
z.components[j] = x.components[j] .* y.components[j]
end
return z
end
function broadcasted(::typeof(/), x::judiVStack{T}, y::judiVStack{T}) where {T<:Number}
size(x) == size(y) || throw(judiWeightsException("dimension mismatch"))
z = deepcopy(x)
for j=1:length(x.components)
z.components[j] = x.components[j] ./ y.components[j]
end
return z
end
function broadcasted(::typeof(*), x::judiVStack{T}, y::Number) where {T<:Number}
z = deepcopy(x)
for j=1:length(x.components)
z.components[j] .*= y
end
return z
end
broadcasted(::typeof(*), y::Number, x::judiVStack{T}) where {T<:Number} = x .* y
function broadcasted(::typeof(/), x::judiVStack{T}, y::Number) where {T<:Number}
z = deepcopy(x)
for j=1:length(x.components)
z.components[j] ./= y
end
return z
end
function materialize!(x::judiVStack{T}, y::judiVStack{T}) where {T<:Number}
size(x) == size(y) || throw(judiWeightsException("dimension mismatch"))
for j=1:length(x.components)
try
x.components[j].data .= y.components[j].data
catch e
x.components[j].weights .= y.components[j].weights
end
end
return x
end
function broadcast!(::typeof(identity), x::judiVStack{T}, y::judiVStack{T}) where {T<:Number}
size(x) == size(y) || throw(judiWeightsException("dimension mismatch"))
copy!(x,y)
end
broadcasted(::typeof(identity), x::judiVStack{T}) where {T<:Number} = x
function copy!(x::judiVStack{T}, y::judiVStack{T}) where {T<:Number}
size(x) == size(y) || throw(judiWeightsException("dimension mismatch"))
for j=1:length(x.components)
try
x.components[j].data .= y.components[j].data
catch e
x.components[j].weights .= y.components[j].weights
end
end
end
function isapprox(x::judiVStack{T}, y::judiVStack; rtol::AbstractFloat=sqrt(eps()), atol::AbstractFloat=0.0) where {T<:Number}
x.m == y.m || throw("Shape error")
all(isapprox(xx, yy; rtol=rtol, atol=atol) for (xx, yy)=zip(x.components, y.components))
end
############################################################
function A_mul_B!(x::judiMultiSourceVector{Ts}, F::joCoreBlock{T, Ts}, y::judiVStack{T}) where {T<:Number, Ts<:Number}
F.m == size(y, 1) ? z = adjoint(F)*y : z = F*y
x.data .= z.data
end
function A_mul_B!(x::judiVStack{Tv}, F::joCoreBlock{T, Tv}, y::judiMultiSourceVector{T}) where {T<:Number, Tv<:Number}
F.m == size(y, 1) ? z = adjoint(F)*y : z = F*y
for j=1:length(x.components)
x.components[j].data .= z.components[j].data
end
end
mul!(x::judiMultiSourceVector{Ts}, J::joCoreBlock{T, Ts}, y::judiVStack{T}) where {T<:Number, Ts<:Number} = A_mul_B!(x, J, y)
mul!(x::judiVStack{Tv}, J::joCoreBlock{T, Tv}, y::judiMultiSourceVector{T}) where {T<:Number, Tv<:Number} = A_mul_B!(x, J, y)
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 15132 | ############################################################
# judiVector # #################################################
############################################################
# Authors: Philipp Witte ([email protected]), Henryk Modzelewski ([email protected])
# Date: January 2017
export judiVector, judiVector_to_SeisBlock, src_to_SeisBlock
export write_shot_record, get_data, convert_to_array, rebuild_jv, simsource
import Base: mergewith!
############################################################
# structure for seismic data as an abstract vector
mutable struct judiVector{T, AT} <: judiMultiSourceVector{T}
nsrc::Integer
geometry::Geometry
data::Vector{AT}
end
############################################################
## outer constructors
"""
judiVector
nsrc::Integer
geometry::Geometry
data::Vector
Abstract vector for seismic data. This vector-like structure contains the geometry and data for either\\
receiver data (shot records) or source data (wavelets).
Constructors
============
Construct vector from `Geometry` structure and cell array of shot records or wavelets. The `data` keyword\\
can also be a single (non-cell) array, in which case the data is the same for all source positions:
judiVector(geometry, data)
Construct vector for observed data from `SeisBlock`. `segy_depth_key` is the `SegyIO` keyword \\
that contains the receiver depth coordinate:
judiVector(SeisBlock; segy_depth_key="RecGroupElevation")
Construct vector for observed data from out-of-core data container of type `SeisCon`:
judiVector(SeisCon; segy_depth_key="RecGroupElevation")
Examples
========
(1) Construct data vector from `Geometry` structure and a cell array of shot records:
dobs = judiVector(rec_geometry, shot_records)
(2) Construct data vector for a seismic wavelet (can be either cell arrays of individual\\
wavelets or a single wavelet as an array):
q = judiVector(src_geometry, wavelet)
(3) Construct data vector from `SeisBlock` object:
using SegyIO
seis_block = segy_read("test_file.segy")
dobs = judiVector(seis_block; segy_depth_key="RecGroupElevation")
(4) Construct out-of-core data vector from `SeisCon` object (for large SEG-Y files):
using SegyIO
seis_container = segy_scan("/path/to/data/directory","filenames",["GroupX","GroupY","RecGroupElevation","SourceDepth","dt"])
dobs = judiVector(seis_container; segy_depth_key="RecGroupElevation")
"""
function judiVector(geometry::Geometry, data::Array{T, N}) where {T, N}
check_geom(geometry, data)
T == Float32 || (data = tof32(data))
N < 3 || throw(judiMultiSourceException("Only 1D (trace) and 2D (record) input data supported"))
nsrc = get_nsrc(geometry)
dataCell = Vector{Array{T, N}}(undef, nsrc)
for j=1:nsrc
dataCell[j] = deepcopy(data)
end
return judiVector{T, Array{T, N}}(nsrc, geometry, dataCell)
end
# constructor if data is passed as a cell array
function judiVector(geometry::Geometry, data::Vector{Array{T, N}}) where {T, N}
check_geom(geometry, data)
T == Float32 || (data = tof32.(data))
nsrcd = length(data)
nsrcg = get_nsrc(geometry)
nsrcd == nsrcg || throw(judiMultiSourceException("Number of sources in geometry and data don't match $(nsrcd) != $(nsrcg)"))
return judiVector{T, Array{T, N}}(nsrcd, geometry, data)
end
# contructor for in-core data container and given geometry
function judiVector(geometry::Geometry, data::SeisBlock)
check_geom(geometry, data)
# length of data vector
src = get_header(data,"FieldRecord")
nsrc = length(unique(src))
# fill data vector with pointers to data location
dataCell = Vector{Array{Float32, 2}}(undef, nsrc)
for j=1:nsrc
traces = findall(src .== unique(src)[j])
dataCell[j] = convert(Array{Float32, 2}, data.data[1:get_nt(geometry, j), traces])
end
return judiVector{Float32, Array{Float32, 2}}(nsrc, geometry, dataCell)
end
# contructor for single out-of-core data container and given geometry
function judiVector(geometry::Geometry, data::SeisCon)
check_geom(geometry, data)
# length of data vector
nsrc = length(data)
# fill data vector with pointers to data location
dataCell = Vector{SeisCon}(undef, nsrc)
for j=1:nsrc
dataCell[j] = split(data,j)
end
return judiVector{Float32, SeisCon}(nsrc, geometry,dataCell)
end
judiVector(data::SeisBlock; kw...) = judiVector(Geometry(data; key="receiver", kw...), data)
judiVector(data::SeisCon; kw...)= judiVector(Geometry(data; key="receiver", kw...), data)
judiVector(data::Vector{SeisCon}; kw...) = judiVector(Geometry(data; key="receiver", kw...), data)
judiVector(geometry::Geometry, data::Vector{SeisCon}) = judiVector{Float32, SeisCon}(length(data), geometry, data)
############################################################
## overloaded multi_source functions
time_sampling(jv::judiVector) = get_dt(jv.geometry)
############################################################
# JOLI conversion
jo_convert(::Type{T}, jv::judiVector{T, Array{T, N}}, ::Bool) where {T<:AbstractFloat, N} = jv
jo_convert(::Type{T}, jv::judiVector{vT, Array{vT, N}}, B::Bool) where {T<:AbstractFloat, vT, N} = judiVector{T, Array{T, N}}(jv.nsrc, jv.geometry, jo_convert.(T, jv.data, B))
function zero(::Type{T}, v::judiVector{vT, AT}; nsrc::Integer=v.nsrc) where {T, vT, AT}
zgeom = deepcopy(v.geometry[1:nsrc])
zdata = [zeros(T, get_nt(v.geometry, i), v.geometry.nrec[i]) for i=1:nsrc]
return judiVector{T, Matrix{T}}(nsrc, zgeom, zdata)
end
function copy!(jv::judiVector, jv2::judiVector)
jv.geometry = deepcopy(jv2.geometry)
jv.data .= jv2.data
jv
end
copyto!(jv::judiVector, jv2::judiVector) = copy!(jv, jv2)
make_input(jv::judiVector{T, Matrix{T}}) where T = jv.data[1]
make_input(jv::judiVector{T, Vector{T}}) where T = reshape(jv.data[1], :, 1)
make_input(jv::judiVector{T, SeisCon}) where T = get_data(jv).data[1]
check_compat(ms::Vararg{judiVector, N}) where N = all(y -> compareGeometry(y.geometry, first(ms).geometry), ms)
function as_ordered_dict(x::judiVector{T, AT}; v=1) where {T, AT}
x.nsrc == 1 || throw(ArgumentError("as_ordered_dict only supported for single shot records"))
jdict = OrderedDict(zip(as_coord_set(x.geometry[1]), collect.(eachcol(v.*make_input(x)))))
return jdict
end
function from_ordered_dict(d::OrderedDict{NTuple{N, T}}, t::AbstractRange{T}) where {N, T}
Gnew = GeometryIC{T}(coords_from_keys(d.keys)..., [t])
return judiVector{T, Matrix{T}}(1, Gnew, [hcat(d.vals...)])
end
function pad_zeros(zpad::OrderedDict, m::T, d::judiVector{T, AT}) where {T, AT}
@assert d.nsrc == 1
dloc = as_ordered_dict(d; v=m)
sort!(merge!(.+, dloc, zpad))
return from_ordered_dict(dloc, d.geometry.taxis[1])
end
function simsource(M::Vector{T}, x::judiVector{T, AT}; reduction=+, minimal::Bool=false) where {T, AT}
reduction in [+, nothing] || throw(ArgumentError("$(reduction): Only + and nothing supported for reduction (supershot or supershot before sum)"))
# Without reduction, add zero trace for all missing coords
if isnothing(reduction)
sgeom = as_coord_set(x.geometry)
zpad = OrderedDict(zip(sgeom, [zeros(Float32, get_nt(x.geometry, 1)) for s=1:length(sgeom)]))
dOut = vcat([pad_zeros(zpad, M[s], x[s]) for s=1:x.nsrc]...)
# With reduction. COuld reuse the previous but cheaper to compute the sum directly
else
reduction = minimal ? PopZero() : reduction
sdict = mergewith!(reduction, map((d, m)->as_ordered_dict(d; v=m), x, M)...)
sort!(sdict)
dOut = from_ordered_dict(sdict, x.geometry.taxis[1])
end
return dOut
end
function simsource(M::Matrix{T}, x::judiVector{T, AT}; reduction=+, minimal::Bool=false) where {T, AT}
isnothing(reduction) && @assert size(M, 1) == 1
return vcat([simsource(vec(M[si,:]), x; reduction=reduction, minimal=minimal) for si=1:size(M, 1)]...)
end
## Merging utility
struct PopZero end
no_sim_msg = """
No common receiver poisiton found to construct a super shot. You can
- Input shot records with at least one receiver position in common
- Use `simsource(M, data; minimal=false)`or `M*data` to construct a supershot with zero-padded missing traces.
"""
function mergewith!(::PopZero, d1::OrderedDict{K, V}, d2::OrderedDict{K, V}) where {K, V}
k1 = keys(d1)
k2 = keys(d2)
mergekeys = intersect(k1, k2)
if isempty(mergekeys)
@show k1, k2
throw(ArgumentError(no_sim_msg))
end
for k in mergekeys
d1[k] .+= d2[k]
end
Base.filter!(p->p.first in mergekeys, d1)
return d1
end
##########################################################
# Overload needed base function for SegyIO objects
vec(x::SeisCon) = vec(x[1].data)
dot(x::SeisCon, y::SeisCon) = dot(x[1].data, y[1].data)
norm(x::SeisCon, p::Real=2) = norm(x[1].data, p)
abs(x::SegyIO.IBMFloat32) = abs(Float32(x))
*(::Number, ::SeisCon) = throw(judiMultiSourceException("Cannot multiply out of core SeisCon byt scalar"))
length(jv::judiVector{T, SeisCon}) where T = n_samples(jv.geometry)
# push!
function push!(a::judiVector{T, mT}, b::judiVector{T, mT}) where {T, mT}
typeof(a.geometry) == typeof(b.geometry) || throw(judiMultiSourceException("Geometry type mismatch"))
append!(a.data, b.data)
a.nsrc += b.nsrc
push!(a.geometry, b.geometry)
end
# getindex data container
"""
getindex(x,source_numbers)
getindex seismic data vectors or matrix-free linear operators and extract the entries that correspond\\
to the shot positions defined by `source_numbers`. Works for inputs of type `judiVector`, `judiModeling`, \\
`judiProjection`, `judiJacobian`, `Geometry`, `judiRHS`, `judiPDE`, `judiPDEfull`.
Examples
========
(1) Extract 2 shots from `judiVector` vector:
dsub = getindex(dobs,[1,2])
(2) Extract geometry for shot location 100:
geometry_sub = getindex(dobs.geometry,100)
(3) Extract Jacobian for shots 10 and 20:
Jsub = getindex(J,[10,20])
"""
function getindex(a::judiVector{avDT, AT}, srcnum::RangeOrVec) where {avDT, AT}
geometry = getindex(a.geometry, srcnum) # Geometry of getindexd data container
return judiVector{avDT, AT}(length(srcnum), geometry, a.data[srcnum])
end
# Create SeisBlock from judiVector container to write to file
function judiVector_to_SeisBlock(d::judiVector{avDT, AT}, q::judiVector{avDT, QT};
source_depth_key="SourceSurfaceElevation",
receiver_depth_key="RecGroupElevation") where {avDT, AT, QT}
return judiVector_to_SeisBlock(Geometry(d.geometry), Geometry(q.geometry), d.data, q.data;
source_depth_key=source_depth_key,
receiver_depth_key=receiver_depth_key)
end
function judiVector_to_SeisBlock(Gr::GeometryIC, Gs::GeometryIC, Dr::Vector{<:VecOrMat}, Ds::Vector{<:VecOrMat};
source_depth_key="SourceSurfaceElevation",
receiver_depth_key="RecGroupElevation")
nsrc = get_nsrc(Gr)
blocks = Array{Any}(undef, nsrc)
count = 0
for j=1:nsrc
# create SeisBlock
blocks[j] = SeisBlock(Dr[j])
numTraces = size(Dr[j],2)
traceNumbers = convert(Array{Integer,1},count+1:count+numTraces)
# set headers
set_header!(blocks[j], "GroupX", Int.(round.(Gr.xloc[j]*1f3)))
if length(Gr.yloc[j]) == 1
set_header!(blocks[j], "GroupY", Int(round(Gr.yloc[j][1]*1f3)))
else
set_header!(blocks[j], "GroupY", convert(Array{Integer,1},round.(Gr.yloc[j]*1f3)))
end
set_header!(blocks[j], receiver_depth_key, Int.(round.(Gr.zloc[j]*1f3)))
set_header!(blocks[j], "SourceX", Int.(round.(Gs.xloc[j][1]*1f3)))
set_header!(blocks[j], "SourceY", Int.(round.(Gs.yloc[j][1]*1f3)))
set_header!(blocks[j], source_depth_key, Int.(round.(Gs.zloc[j][1]*1f3)))
set_header!(blocks[j], "dt", Int(get_dt(Gr, j)*1f3))
set_header!(blocks[j], "FieldRecord",j)
set_header!(blocks[j], "TraceNumWithinLine", traceNumbers)
set_header!(blocks[j], "TraceNumWithinFile", traceNumbers)
set_header!(blocks[j], "TraceNumber", traceNumbers)
set_header!(blocks[j], "ElevationScalar", -1000)
set_header!(blocks[j], "RecSourceScalar", -1000)
count += numTraces
end
# merge into single block
fullblock = blocks[1]
for j=2:nsrc
fullblock = merge(fullblock,blocks[j])
blocks[j] = []
end
return fullblock
end
function src_to_SeisBlock(q::judiVector{avDT, QT};
source_depth_key="SourceSurfaceElevation",
receiver_depth_key="RecGroupElevation") where {avDT, QT}
return judiVector_to_SeisBlock(Geometry(q.geometry), Geometry(q.geometry), q.data, q.data;
source_depth_key=source_depth_key,
receiver_depth_key=receiver_depth_key)
end
function write_shot_record(srcGeometry::GeometryIC, srcData, recGeometry::GeometryIC, recData, options)
pos = [srcGeometry.xloc[1][1], srcGeometry.yloc[1][1], srcGeometry.zloc[1][1]]
pos = join(["_"*string(trunc(p; digits=2)) for p in pos])
file = join([string(options.file_name), pos,".segy"])
block_out = judiVector_to_SeisBlock(recGeometry, srcGeometry, recData, srcData)
segy_write(join([options.file_path,"/",file]), block_out)
container = scan_file(join([options.file_path,"/",file]),
["GroupX", "GroupY", "dt", "SourceSurfaceElevation", "RecGroupElevation"])
return container
end
####################################################################################################
# Load OOC
function get_data(x::judiVector{T, AT}; rel_origin=(0, 0, 0), project=nothing) where {T, AT}
shots = Vector{Matrix{Float32}}(undef, x.nsrc)
rec_geometry = Geometry(x.geometry; rel_origin=rel_origin, project=project)
for j=1:x.nsrc
shots[j] = data_matrix(x, j)
end
return judiVector{T, Array{Float32, 2}}(x.nsrc, rec_geometry, shots)
end
convert_to_array(x::judiVector) = vcat(vec.(x.data)...)
data_matrix(x::judiVector{T, SeisCon}, i::Integer) where T = convert(Matrix{Float32}, x.data[i][1].data)[1:get_nt(x.geometry, i), :]
data_matrix(x::judiVector{T, Matrix{T}}, i::Integer) where T = x.data[i]
##### Rebuild bad vector
"""
reuild_jv(v)
rebuild a judiVector from previous version type or JLD2 reconstructed type
"""
rebuild_jv(v::judiVector{T, AT}) where {T, AT} = v
rebuild_jv(v) = judiVector(convgeom(v), convdata(v))
function rebuild_maybe_jld(x::Vector{Any})
try
return tof32(x)
catch e
if hasproperty(x[1], :offset)
return [Float32.(StepRangeLen(xi.ref, xi.step, xi.len, xi.offset)) for xi in x]
end
return x
end
end
# Rebuild for backward compatinility
convgeom(x) = GeometryIC{Float32}([getfield(x.geometry, s) for s=fieldnames(GeometryIC)]...)
convdata(x) = convert(Array{Array{Float32, 2}, 1}, x.data)
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 3729 | ############################################################
# judiWavefield ##############################################
############################################################
# Authors: Philipp Witte ([email protected]), Henryk Modzelewski ([email protected])
# Date: June 2017
export judiWavefield, fft, ifft
############################################################
mutable struct judiWavefield{T} <: judiMultiSourceVector{T}
nsrc::Integer
dt::Vector{T}
data::Vector{<:Union{Array{T, N}, PyArray}} where N
end
############################################################
## outer constructors
"""
judiWavefield
nsrc::Integer
dt::AbstractFloat
data
Abstract vector for seismic wavefields.
Constructors
============
Construct wavefield vector from an info structure, a cell array of wavefields and the computational \\
time step dt:
judiWavefield(nsrc, dt, data)
"""
function judiWavefield(nsrc::Integer, dt::AbstractFloat, data::Array{T, N}) where {T<:Number, N}
# length of vector
dataCell = [convert(Array{Float32, N}, data) for j=1:nsrc]
return judiWavefield{Float32}(nsrc, [Float32(dt) for i=1:nsrc], dataCell)
end
function judiWavefield(dt::AbstractFloat, data::Vector{Array{T, N}}) where {T, N}
# length of vector
nsrc = length(data)
T != Float32 && (data = tof32.(data))
return judiWavefield{Float32}(nsrc, [Float32(dt) for i=1:nsrc], data)
end
judiWavefield(dt::AbstractFloat, nsrc::Integer, data::Array{T, N}) where {T<:Number, N} = judiWavefield(nsrc, dt, data)
judiWavefield(dt::AbstractFloat, data::Vector{Any}) = judiWavefield(dt, tof32.(data))
judiWavefield(dt::AbstractFloat, data::Array{T, N}) where {T<:Number, N} = judiWavefield(1, dt, data)
conj(w::judiWavefield{T}) where {T<:Complex} = judiWavefield{R}(w.nsrc, w.dt, conj(w.data))
############################################################
## overloaded multi_source functions
time_sampling(jv::judiWavefield) = jv.dt
####################################################################
# JOLI conversion
jo_convert(::Type{T}, jw::judiWavefield{T}, ::Bool) where {T<:Number} = jw
jo_convert(::Type{T}, jw::judiWavefield{vT}, B::Bool) where {T<:Number, vT} = judiWavefield{T}(jw.nsrc, jv.dt, jo_convert.(T, jw.data, B))
zero(::Type{T}, v::judiWavefield{vT}; nsrc::Integer=v.nsrc) where {T, vT} = judiWavefield{T}(nsrc, v.dt, T(0) .* v.data[1:nsrc])
zero(::Type{T}, v::judiWavefield{vT}; nsrc::Integer=v.nsrc) where {T<:AbstractFloat, vT<:Complex} = judiWavefield{T}(nsrc, v.dt, T(0) .* real(v.data[1:nsrc]))
(w::judiWavefield)(x::Vector{<:Array}) = judiWavefield(w.dt, x)
function copy!(jv::judiWavefield, jv2::judiWavefield)
v.data .= jv2.data
jv.dt = jv2.dt
jv
end
copyto!(jv::judiWavefield, jv2::judiWavefield) = copy!(jv, jv2)
make_input(w::judiWavefield) = w.data[1]
check_compat(ms::Vararg{judiWavefield, N}) where N = all(y -> y.dt == first(ms).dt, ms)
getindex(a::judiWavefield{T}, srcnum::RangeOrVec) where T = judiWavefield{T}(length(srcnum), a.dt[srcnum], a.data[srcnum])
####################################################################
function push!(a::judiWavefield{T}, b::judiWavefield{T}) where T
append!(a.data, b.data)
append!(a.dt, b.dt)
a.nsrc += b.nsrc
end
# DFT operator for wavefields, acts along time dimension
function fft(x_in::judiWavefield{T}) where T
x = similar(x_in, Complex{Float32})
for i=1:x_in.nsrc
x.data[i] = fft(x_in.data[i], 1)/sqrt(size(x_in.data[i], 1))
end
return x
end
function ifft(x_in::judiWavefield{T}) where T
x = similar(x_in, Float32)
for i=1:x_in.nsrc
x.data[i] = real(ifft(x_in.data[i], 1)) * sqrt(size(x_in.data[i], 1))
end
return x
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 3404 | ############################################################
# judiWeights ##############################################
############################################################
# Authors: Philipp Witte ([email protected]), Henryk Modzelewski ([email protected])
# Date: June 2019
# Updated by Ziyi Yin ([email protected]), Nov 2020
export judiWeights
############################################################
# structure for seismic data as an abstract vector
mutable struct judiWeights{T<:Number} <: judiMultiSourceVector{T}
nsrc::Integer
data::Vector{Array{T, N}} where N
end
# Bypass mismatch in naming and fields for backward compat
Base.getproperty(obj::judiWeights, sym::Symbol) = sym == :weights ? getfield(obj, :data) : getfield(obj, sym)
############################################################
## outer constructors
"""
judiWeights
nsrc
weights
Abstract vector for weighting an extended source, which is injected at every grid point, as weighted by this vector.
Constructors
============
Construct vector cell array of weights. The `weights` keyword\\
can also be a single (non-cell) array, in which case the weights are the same for all source positions:
judiWeights(weights; nsrc=1)
"""
function judiWeights(weights::Array{T, N}; nsrc=1) where {T<:AbstractFloat, N}
weights = convert(Array{Float32}, weights)
# length of vector
weightsCell = [deepcopy(weights) for j=1:nsrc]
return judiWeights{Float32}(nsrc, weightsCell)
end
# constructor if weights are passed as a cell array
judiWeights(weights::Vector{Array}) =
judiWeights(convert.(Array{Float32, length(size(weights[1]))}, weights))
function judiWeights(weights::Vector{Array{T, N}}) where {T<:Number, N}
nsrc = length(weights)
weights = convert.(Array{Float32, N}, weights)
return judiWeights{Float32}(nsrc, weights)
end
############################################################
# JOLI conversion
jo_convert(::Type{T}, jw::judiWeights{T}, ::Bool) where {T<:AbstractFloat} = jw
jo_convert(::Type{T}, jw::judiWeights{vT}, B::Bool) where {T<:AbstractFloat, vT} = judiWavefield{T}(jv.nsrc, jo_convert.(T, jw.weights, B))
zero(::Type{T}, v::judiWeights{vT}; nsrc::Integer=v.nsrc) where {T, vT} = judiWeights{T}(nsrc, T(0) .* v.data[1:nsrc])
(w::judiWeights)(x::Vector{<:Array}) = judiWeights(x)
function copy!(jv::judiWeights, jv2::judiWeights)
jv.data .= jv2.data
jv
end
copyto!(jv::judiWeights, jv2::judiWeights) = copy!(jv, jv2)
function push!(a::judiWeights{T}, b::judiWeights{T}) where T
append!(a.weights, b.weights)
a.nsrc += b.nsrc
end
make_input(w::judiWeights) = w.data[1]
# getindex weights container
"""
getindex(x,source_numbers)
getindex seismic weights vectors or matrix-free linear operators and extract the entries that correspond\\
to the shot positions defined by `source_numbers`. Works for inputs of type `judiWeights`, `judiModeling`, \\
`judiProjection`, `judiJacobian`, `Geometry`, `judiRHS`, `judiPDE`, `judiPDEfull`.
Examples
========
(1) Extract 2 shots from `judiWeights` vector:
dsub = getindex(dobs,[1,2])
(2) Extract geometry for shot location 100:
geometry_sub = getindex(dobs.geometry,100)
(3) Extract Jacobian for shots 10 and 20:
Jsub = getindex(J,[10,20])
"""
getindex(a::judiWeights{avDT}, srcnum::RangeOrVec) where avDT = judiWeights{avDT}(length(srcnum), a.data[srcnum])
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 2550 |
struct LazyData{D} <: AbstractVector{D}
msv::judiMultiSourceVector{D}
end
getindex(ld::LazyData{D}, i) where D = get_data(ld.msv[i]).data
setindex!(::LazyData{D}, ::Any, ::Any) where D = throw(MethodError(setindex!, "LazyData is read-only"))
size(A::LazyData) = size(A.msv)
get_data(ld::LazyData{D}) where D = get_data(ld.msv)
"""
LazyAdd
nsrc
A
B
sign
Lazy addition of two RHS (currently only judiVector). The addition isn't evaluated to avoid
large memory allocation but instead evaluates the addition (with sign `sign`) `A + sign * B`
for a single source at propagation time.
"""
struct LazyAdd{D} <: judiMultiSourceVector{D}
nsrc::Integer
A
B
sign
end
getindex(la::LazyAdd{D}, i::RangeOrVec) where D = LazyAdd{D}(length(i), la.A[i], la.B[i], la.sign)
function eval(ls::LazyAdd{D}) where D
aloc = eval(ls.A)
bloc = eval(ls.B)
ga = aloc.geometry
gb = bloc.geometry
@assert (ga.nt == gb.nt && ga.dt == gb.dt && ga.t == gb.t)
xloc = [vcat(ga.xloc[1], gb.xloc[1])]
yloc = [vcat(ga.yloc[1], gb.yloc[1])]
zloc = [vcat(ga.zloc[1], gb.zloc[1])]
geom = GeometryIC{D}(xloc, yloc, zloc, ga.dt, ga.nt, ga.t)
data = hcat(aloc.data[1], ls.sign*bloc.data[1])
judiVector{D, Matrix{D}}(1, geom, [data])
end
function make_src(ls::LazyAdd{D}) where D
q = eval(ls)
return q.geometry[1], q.data[1]
end
"""
LazyMul
nsrc
A
B
sign
Lazy addition of two RHS (currently only judiVector). The addition isn't evaluated to avoid
large memory allocation but instead evaluates the addition (with sign `sign`) `A + sign * B`
for a single source at propagation time.
"""
struct LazyMul{D} <: judiMultiSourceVector{D}
nsrc::Integer
P::joAbstractLinearOperator
msv::judiMultiSourceVector{D}
end
getindex(la::LazyMul{D}, i::RangeOrVec) where D = LazyMul{D}(length(i), la.P[i], la.msv[i])
length(lm::LazyMul) = length(lm.msv)
zero(::Type{T}, lm::LazyMul; nsrc::Integer=lm.nsrc) where T = zero(T, lm.msv; nsrc=nsrc)
function make_input(lm::LazyMul{D}) where D
@assert lm.nsrc == 1
return make_input(lm.P * get_data(lm.msv))
end
get_data(lm::LazyMul{D}) where D = lm.P * get_data(lm.msv)
materialize(lm::LazyMul{D}) where D = get_data(lm)
deepcopy(lm::LazyMul{D}) where D = deepcopy(lm.msv)
function getproperty(lm::LazyMul{D}, s::Symbol) where D
if s == :data
return LazyData(lm)
elseif s == :geometry
return lm.msv.geometry
else
return getfield(lm, s)
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 25655 | # Auxiliary functions for TimeModeling module
# Author: Philipp Witte, [email protected]
# Date: September 2016
#
# Mathias Louboutin, [email protected]
# Updated July 2020
export ricker_wavelet, get_computational_nt, calculate_dt, setup_grid, setup_3D_grid
export convertToCell, limit_model_to_receiver_area, remove_out_of_bounds_receivers, extend_gradient
export remove_padding, subsample, process_input_data
export generate_distribution, select_frequencies
export devito_model, pad_array
export transducer, as_vec
export Gardner
"""
devito_model(model, options;dm=nothing)
Creates a python side model strucutre for devito.
Parameters
* `model`: JUDI Model structure.
* `options`: JUDI Options structure.
* `dm`: Squared slowness perturbation (optional), Array or PhysicalParameter.
"""
function devito_model(model::MT, options::JUDIOptions, dm) where {MT<:AbstractModel}
# Set up Python model structure
physpar = Dict((n, isa(v, PhysicalParameter) ? v.data : v) for (n, v) in _params(model))
modelPy = rlock_pycall(pm."Model", PyObject, origin(model), spacing(model), size(model), fs=options.free_surface,
nbl=nbl(model), space_order=options.space_order, dt=options.dt_comp, dm=dm;
physpar...)
return modelPy
end
devito_model(model::AbstractModel, options::JUDIOptions, dm::PhysicalParameter) = devito_model(model, options, reshape(dm.data, size(model)))
devito_model(model::AbstractModel, options::JUDIOptions, dm::Vector{T}) where T = devito_model(model, options, reshape(dm, size(model)))
devito_model(model::AbstractModel, options::JUDIOptions) = devito_model(model, options, nothing)
"""
pad_array(m, nb; mode=:border)
Pads to the input array with either copying the edge value (:border) or zeros (:zeros)
Parameters
* `m`: Array to be padded.
* `nb`: Size of padding. Array of tuple with one (nb_left, nb_right) tuple per dimension.
* `mode`: Padding mode (optional), defaults to :border.
"""
function pad_array(m::Array{DT}, nb::NTuple{N, Tuple{Int64, Int64}}; mode::Symbol=:border) where {DT, N}
n = size(m)
new_size = Tuple([n[i] + sum(nb[i]) for i=1:length(nb)])
Ei = []
for i=1:length(nb)
left, right = nb[i]
push!(Ei, joExtend(n[i], mode;pad_upper=right, pad_lower=left, RDT=DT, DDT=DT))
end
padded = joKron(Ei...) * PermutedDimsArray(m, length(n):-1:1)[:]
return PyReverseDims(reshape(padded, reverse(new_size)))
end
pad_array(::Nothing, ::NTuple{N, Tuple{Int64, Int64}}; s::Symbol=:border) where N = nothing
pad_array(m::Number, ::NTuple{N, Tuple{Int64, Int64}}; s::Symbol=:border) where N = m
"""
remove_padding(m, nb; true_adjoint=False)
Removes the padding from array `m`. This is the adjoint of [`pad_array`](@ref).
Parameters
* `m`: Array to remvove padding from.
* `nb`: Size of padding. Array of tuple with one (nb_left, nb_right) tuple per dimension.
* `true_adjoint`: Unpadding mode, defaults to False. Will sum the padding to the edge point with `true_adjoint=true`
and should only be used this way for adjoint testing purpose.
"""
function remove_padding(gradient::AbstractArray{DT}, nb::NTuple{ND, Tuple{Int64, Int64}}; true_adjoint::Bool=false) where {ND, DT}
N = size(gradient)
if true_adjoint
for (dim, (nbl, nbr)) in enumerate(nb)
selectdim(gradient, dim, nbl+1) .+= dropdims(sum(selectdim(gradient, dim, 1:nbl), dims=dim), dims=dim)
selectdim(gradient, dim, N[dim]-nbr) .+= dropdims(sum(selectdim(gradient, dim, N[dim]-nbr+1:N[dim]), dims=dim), dims=dim)
end
end
out = gradient[[nbl+1:nn-nbr for ((nbl, nbr), nn) in zip(nb, N)]...]
return out
end
"""
limit_model_to_receiver_area(srcGeometry, recGeometry, model, buffer; pert=nothing)
Crops the `model` to the area of the source an receiver with an extra buffer. This reduces the size
of the problem when the model si large and the source and receiver located in a small part of the domain.
In the cartoon below, the full model will be cropped to the center area containg the source (o) receivers (x) and
buffer area (*)
- o Source position
- x receiver positions
- * Extra buffer (grid spacing in that simple case)
-------------------------------------------- \n
| . . . . . . . . . . . . . . . . . . . . . | \n
| . . . . . . . . . . . . . . . . . . . . . | \n
| . . . . * * * * * * * * * * * * . . . . . | \n
| . . . . * x x x x x x x x x x * . . . . . | \n
| . . . . * x x x x x x x x x x * . . . . . | \n
| . . . . * x x x x x x x x x x * . . . . . | \n
| . . . . * x x x x x o x x x x * . . . . . | \n
| . . . . * x x x x x x x x x x * . . . . . | \n
| . . . . * x x x x x x x x x x * . . . . . | \n
| . . . . * x x x x x x x x x x * . . . . . | \n
| . . . . * * * * * * * * * * * * . . . . . | \n
| . . . . . . . . . . . . . . . . . . . . . | \n
| . . . . . . . . . . . . . . . . . . . . . | \n
-------------------------------------------- \n
Parameters
* `srcGeometry`: Geometry of the source.
* `recGeometry`: Geometry of the receivers.
* `model`: Model to be croped.
* `buffer`: Size of the buffer on each side.
* `pert`: Model perturbation (optional) to be cropped as well.
"""
function limit_model_to_receiver_area(srcGeometry::Geometry{T}, recGeometry::Geometry{T},
model::MT, buffer::Number; pert=nothing) where {MT<:AbstractModel, T<:Real}
# Restrict full velocity model to area that contains either sources and receivers
ndim = length(size(model))
n_orig = size(model)
# scan for minimum and maximum x and y source/receiver coordinates
min_x = min(minimum(recGeometry.xloc[1]), minimum(srcGeometry.xloc[1]))
max_x = max(maximum(recGeometry.xloc[1]), maximum(srcGeometry.xloc[1]))
if ndim == 3
min_y = min(minimum(recGeometry.yloc[1]), minimum(srcGeometry.yloc[1]))
max_y = max(maximum(recGeometry.yloc[1]), maximum(srcGeometry.yloc[1]))
end
# add buffer zone if possible
min_x = max(origin(model, 1), min_x - buffer)
max_x = min(origin(model, 1) + spacing(model, 1)*(size(model, 1)-1), max_x + buffer)
if ndim == 3
min_y = max(origin(model, 2), min_y - buffer)
max_y = min(origin(model, 2) + spacing(model, 2)*(size(model, 2)-1), max_y + buffer)
end
# extract part of the model that contains sources/receivers
nx_min = Int((min_x-origin(model, 1)) ÷ spacing(model, 1)) + 1
nx_max = Int((max_x-origin(model, 1)) ÷ spacing(model, 1)) + 1
inds = [max(1, nx_min):nx_max, 1:size(model)[end]]
if ndim == 3
ny_min = Int((min_y-origin(model, 2)) ÷ spacing(model, 2)) + 1
ny_max = Int((max_y-origin(model, 2)) ÷ spacing(model, 2)) + 1
insert!(inds, 2, max(1, ny_min):ny_max)
end
# Extract relevant model part from full domain
newp = OrderedDict()
for (p, v) in _params(model)
newp[p] = isa(v, AbstractArray) ? v[inds...] : v
end
p = findfirst(x->isa(x, PhysicalParameter), newp)
o, n = newp[p].o, newp[p].n
new_model = MT(DiscreteGrid(n, spacing(model), o, nbl(model)), values(newp)...)
isnothing(pert) && (return new_model, nothing)
newpert = reshape(pert, n_orig)[inds...]
return new_model, newpert[1:end]
end
"""
remove_out_of_bounds_receivers(recGeometry, model)
Removes receivers that are positionned outside the computational domain defined by the model.
Parameters
* `recGeometry`: Geometry of receivers in which out of bounds will be removed.
* `model`: Model defining the computational domain.
"""
function remove_out_of_bounds_receivers(recGeometry::Geometry{T}, model::AbstractModel{T, N}) where {T<:Real, N}
# Only keep receivers within the model
xmin, xmax = origin(model, 1), origin(model, 1) + (size(model)[1] - 1)*spacing(model, 1)
if typeof(recGeometry.xloc[1]) <: Array
idx_xrec = findall(x -> xmax >= x >= xmin, recGeometry.xloc[1])
recGeometry.xloc[1] = recGeometry.xloc[1][idx_xrec]
length(recGeometry.yloc[1]) > 1 && (recGeometry.yloc[1] = recGeometry.yloc[1][idx_xrec])
recGeometry.zloc[1] = recGeometry.zloc[1][idx_xrec]
end
# For 3D shot records, scan also y-receivers
if length(size(model)) == 3 && typeof(recGeometry.yloc[1]) <: Array
ymin, ymax = origin(model, 2), origin(model, 2) + (size(model, 2) - 1)*spacing(model, 2)
idx_yrec = findall(x -> ymax >= x >= ymin, recGeometry.yloc[1])
recGeometry.xloc[1] = recGeometry.xloc[1][idx_yrec]
recGeometry.yloc[1] = recGeometry.yloc[1][idx_yrec]
recGeometry.zloc[1] = recGeometry.zloc[1][idx_yrec]
end
return recGeometry
end
"""
remove_out_of_bounds_receivers(recGeometry, recData, model)
Removes receivers that are positionned outside the computational domain defined by the model.
Parameters
* `recGeometry`: Geometry of receivers in which out of bounds will be removed.
* `recData`: Shot record for that geometry in which traces will be removed.
* `model`: Model defining the computational domain.
"""
function remove_out_of_bounds_receivers(recGeometry::Geometry{T}, recData::Matrix{T}, model::AbstractModel) where {T<:Real}
# Only keep receivers within the model
xmin, xmax = origin(model, 1), origin(model, 1) + (size(model)[1] - 1)*spacing(model, 1)
if typeof(recGeometry.xloc[1]) <: Array
idx_xrec = findall(x -> xmax >= x >= xmin, recGeometry.xloc[1])
recGeometry.xloc[1] = recGeometry.xloc[1][idx_xrec]
length(recGeometry.yloc[1]) > 1 && (recGeometry.yloc[1] = recGeometry.yloc[1][idx_xrec])
recGeometry.zloc[1] = recGeometry.zloc[1][idx_xrec]
recData = recData[:, idx_xrec]
end
# For 3D shot records, scan also y-receivers
if length(size(model)) == 3 && typeof(recGeometry.yloc[1]) <: Array
ymin, ymax = origin(model, 2), origin(model, 2) + (size(model, 2) - 1)*spacing(model, 2)
idx_yrec = findall(x -> ymax >= x >= ymin, recGeometry.yloc[1])
recGeometry.xloc[1] = recGeometry.xloc[1][idx_yrec]
recGeometry.yloc[1] = recGeometry.yloc[1][idx_yrec]
recGeometry.zloc[1] = recGeometry.zloc[1][idx_yrec]
recData = recData[:, idx_yrec]
end
return recGeometry, recData
end
remove_out_of_bounds_receivers(G::Geometry, ::Nothing, M::AbstractModel) = (remove_out_of_bounds_receivers(G, M), nothing)
remove_out_of_bounds_receivers(::Nothing, ::Nothing, M::AbstractModel) = (nothing, nothing)
remove_out_of_bounds_receivers(w, r::AbstractArray, ::AbstractModel) = (w, r)
remove_out_of_bounds_receivers(G::Geometry, r::AbstractArray, M::AbstractModel) = remove_out_of_bounds_receivers(G, convert(Matrix{Float32}, r), M)
remove_out_of_bounds_receivers(w::AbstractArray, ::Nothing, M::AbstractModel) = (w, nothing)
"""
convertToCell(x)
Convert an array `x` to a cell array (`Array{Any,1}`) with `length(x)` entries,\\
where the i-th cell contains the i-th entry of `x`.
Parameters
* `x`: Array to be converted into and array of array
"""
function convertToCell(x::Vector{T}) where T<:Number
n = length(x)
y = Array{Array{T, 1}, 1}(undef, n)
for j=1:n
y[j] = [x[j]]
end
return y
end
convertToCell(x::Vector{Array{T, N}}) where {T<:Number, N} = x
convertToCell(x::StepRangeLen) = convertToCell(Float32.(x))
convertToCell(x::Number) = convertToCell([x])
# 1D source time function
"""
ricker_wavelet(tmax, dt, f0)
Create seismic Ricker wavelet of length `tmax` (in milliseconds) with sampling interval `dt` (in milliseonds)\\
and central frequency `f0` (in kHz).
"""
function ricker_wavelet(tmax::T, dt::T, f0::T; t0=nothing) where {T<:Real}
isnothing(t0) ? t0 = T(0) : tmax = T(tmax - t0)
nt = floor(Int, tmax / dt) + 1
t = range(t0, stop=tmax, length=nt)
r = (pi * f0 * (t .- 1 / f0))
q = zeros(T, nt, 1)
q[:,1] .= (T(1) .- T(2) .* r.^T(2)) .* exp.(-r.^T(2))
return q
end
ricker_wavelet(tmax::T, dt, f0; t0=nothing) where {T<:Real} = ricker_wavelet(tmax, T(dt), T(f0); t0=t0)
"""
calculate_dt(model; dt=nothing)
Compute the computational time step based on the CFL condition and physical parameters
in the model.
Parameters
* `model`: Model structure
* `dt`: User defined time step (optional), will be the value returned if provided.
"""
function calculate_dt(model::Union{ViscIsoModel{T, N}, IsoModel{T, N}}; dt=nothing) where {T<:Real, N}
if ~isnothing(dt)
return dt
end
m = minimum(model.m)
modelPy = rlock_pycall(pm."Model", PyObject, origin=origin(model), spacing=spacing(model), shape=ntuple(_ -> 11, N),
m=m, nbl=0)
return calculate_dt(modelPy)
end
function calculate_dt(model::IsoElModel{T, N}; dt=nothing) where {T<:Real, N}
if ~isnothing(dt)
return dt
end
lam = maximum(model.lam)
mu = maximum(model.mu)
modelPy = rlock_pycall(pm."Model", PyObject, origin=origin(model), spacing=spacing(model), shape=ntuple(_ -> 11, N),
lam=lam, mu=mu, nbl=0)
return calculate_dt(modelPy)
end
function calculate_dt(model::TTIModel{T, N}; dt=nothing) where {T<:Real, N}
if ~isnothing(dt)
return dt
end
m = minimum(model.m)
epsilon = maximum(model.epsilon)
modelPy = rlock_pycall(pm."Model", PyObject, origin=origin(model), spacing=spacing(model), shape=ntuple(_ -> 11, N),
m=m, epsilon=epsilon, nbl=0)
return calculate_dt(modelPy)
end
calculate_dt(modelPy::PyObject) = convert(Float32, modelPy."critical_dt")
"""
get_computational_nt(srcGeometry, recGeoemtry, model; dt=nothing)
Estimate the number of computational time steps. Required for calculating the dimensions\\
of the matrix-free linear modeling operators. `srcGeometry` and `recGeometry` are source\\
and receiver geometries of type `Geometry` and `model` is the model structure of type \\
`Model`.
"""
function get_computational_nt(srcGeometry::Geometry{T}, recGeometry::Geometry{T}, model::AbstractModel; dt=nothing) where {T<:Real}
# Determine number of computational time steps
nsrc = get_nsrc(srcGeometry)
nt = Vector{Int64}(undef, nsrc)
dtComp = calculate_dt(model; dt=dt)
for j=1:nsrc
ntRec = length(0:dtComp:(dtComp*ceil(get_t(recGeometry, j)/dtComp)))
ntSrc = length(0:dtComp:(dtComp*ceil(get_t(srcGeometry, j)/dtComp)))
nt[j] = max(ntRec, ntSrc)
end
return nt
end
"""
get_computational_nt(Geoemtry, model; dt=nothing)
Estimate the number of computational time steps. Required for calculating the dimensions\\
of the matrix-free linear modeling operators. `srcGeometry` and `recGeometry` are source\\
and receiver geometries of type `Geometry` and `model` is the model structure of type \\
`Model`.
"""
function get_computational_nt(Geometry::Geometry{T}, model::AbstractModel; dt=nothing) where {T<:Real}
# Determine number of computational time steps
nsrc = get_nsrc(Geometry)
nt = Array{Integer}(undef, nsrc)
dtComp = calculate_dt(model; dt=dt)
for j=1:nsrc
nt[j] = length(0:dtComp:(dtComp*ceil(get_t(Geometry, j)/dtComp)))
end
return nt
end
"""
setup_grid(geometry, n)
Sets up the coordinate arrays for Devito.
Parameters:
* `geometry`: Geometry containing the coordinates
* `n`: Domain size
"""
setup_grid(geometry::GeometryIC{T}, ::NTuple{3, <:Integer}) where {T<:Real} = hcat(geometry.xloc[1], geometry.yloc[1], geometry.zloc[1])
setup_grid(geometry::GeometryIC{T}, ::NTuple{2, <:Integer}) where {T<:Real} = hcat(geometry.xloc[1], geometry.zloc[1])
setup_grid(geometry::GeometryIC{T}, ::NTuple{1, <:Integer}) where {T<:Real} = geometry.xloc[1]
"""
setup_3D_grid(x, y, z)
Converts one dimensional input (x, y, z) into three dimensional coordinates. The number of point created
is `length(x)*lenght(y)` with all the x/y pairs and each pair at depth z[idx[x]]. `x` and `z` must have the same size.
Parameters:
* `x`: X coordinates.
* `y`: Y coordinates.
* `z`: Z coordinates.
"""
function setup_3D_grid(xrec::Vector{<:AbstractVector{T}},yrec::Vector{<:AbstractVector{T}},zrec::AbstractVector{T}) where T<:Real
# Take input 1d x and y coordinate vectors and generate 3d grid. Input are cell arrays
nsrc = length(xrec)
xloc = Vector{Vector{T}}(undef, nsrc)
yloc = Vector{Vector{T}}(undef, nsrc)
zloc = Vector{Vector{T}}(undef, nsrc)
for i=1:nsrc
nxrec = length(xrec[i])
nyrec = length(yrec[i])
xloc[i] = zeros(T, nxrec*nyrec)
yloc[i] = zeros(T, nxrec*nyrec)
zloc[i] = zeros(T, nxrec*nyrec)
idx = 1
for k=1:nyrec
for j=1:nxrec
xloc[i][idx] = xrec[i][j]
yloc[i][idx] = yrec[i][k]
zloc[i][idx] = zrec[i]
idx += 1
end
end
end
return xloc, yloc, zloc
end
"""
setup_3D_grid(x, y, z)
Converts one dimensional input (x, y, z) into three dimensional coordinates. The number of point created
is `length(x)*lenght(y)` with all the x/y pairs and each pair at same depth z.
Parameters:
* `x`: X coordinates.
* `y`: Y coordinates.
* `z`: Z coordinate.
"""
function setup_3D_grid(xrec::AbstractVector{T},yrec::AbstractVector{T}, zrec::T) where T<:Real
# Take input 1d x and y coordinate vectors and generate 3d grid. Input are arrays/ranges
nxrec = length(xrec)
nyrec = length(yrec)
xloc = zeros(T, nxrec*nyrec)
yloc = zeros(T, nxrec*nyrec)
zloc = zeros(T, nxrec*nyrec)
idx = 1
for k=1:nyrec
for j=1:nxrec
xloc[idx] = xrec[j]
yloc[idx] = yrec[k]
zloc[idx] = zrec
idx += 1
end
end
return xloc, yloc, zloc
end
setup_3D_grid(xrec, yrec, zrec) = setup_3D_grid(tof32(xrec), tof32(yrec), tof32(zrec))
function setup_3D_grid(xrec::Vector{Any}, yrec::Vector{Any}, zrec::Vector{Any})
xrec, yrec, zrec = convert(Vector{typeof(xrec[1])},xrec), convert(Vector{typeof(yrec[1])}, yrec), convert(Vector{typeof(zrec[1])},zrec)
setup_3D_grid(xrec, yrec, zrec)
end
"""
generate_distribution(x; src_no=1)
Generates a probability distribution for the discrete input judiVector `x`.
Parameters
* `x`: judiVector. Usualy a source with a single trace per source position.
* `src_no`: Index of the source to select out of `x`
"""
function generate_distribution(x::judiVector{T, Matrix{T}}; src_no=1) where {T<:Real}
# Generate interpolator to sample from probability distribution given
# from spectrum of the input data
# sampling information
nt = get_nt(x.geometry, src_no)
dt = get_dt(x.geometry, src_no)
t = get_t(x.geometry, src_no)
# frequencies
fs = 1/dt # sampling rate
fnyq = fs/2 # nyquist frequency
df = fnyq/nt # frequency interval
f = 0:2*df:fnyq # frequencies
# amplitude spectrum of data (serves as probability density function)
ns = nt ÷ 2 + 1
amp = abs.(fft(x.data[src_no]))[1:ns] # get first half of spectrum
# convert to cumulative probability distribution (integrate)
pd = zeros(ns)
pd[1] = dt*amp[1]
for j=2:ns
pd[j] = pd[j-1] + amp[j]*df
end
pd /= pd[end] # normalize
return Spline1D(pd, f)
end
"""
select_frequencies(q_dist; fmin=0f0, fmax=Inf, nf=1)
Selects `nf` frequencies based on the source distribution `q_dist` computed with [`generate_distribution`](@ref).
Parameters
* `q_dist`: Distribution to sample from.
* `f_min`: Minimum acceptable frequency to sample (defaults to 0).
* `f_max`: Maximum acceptable frequency to sample (defaults to Inf).
* `fd`: Number of frequnecies to sample (defaults to 1).
"""
function select_frequencies(q_dist::Spline1D; fmin=0f0, fmax=Inf, nf=1)
freq = zeros(Float32, nf)
for j=1:nf
while (freq[j] <= fmin) || (freq[j] > fmax)
freq[j] = q_dist(rand(1)[1])[1]
end
end
return freq
end
"""
process_input_data(input, geometry, nsrc)
Preprocesses input Array into an Array of Array for modeling
Parameters:
* `input`: Input to preprocess.
* `geometry`: Geometry containing physical parameters.
* `nsrc`: Number of sources
"""
function process_input_data(input::DenseArray{T}, geometry::Geometry{T}) where {T<:Real}
# Input data is pure Julia array: assume fixed no.
# of receivers and reshape into data cube nt x nrec x nsrc
nt = get_nt(geometry, 1)
nrec = geometry.nrec[1]
nsrc = length(geometry.xloc)
data = reshape(input, nt, nrec, nsrc)
dataCell = Vector{Matrix{T}}(undef, nsrc)
for j=1:nsrc
dataCell[j] = data[:,:,j]
end
return dataCell
end
"""
process_input_data(input, model, nsrc)
Preprocesses input Array into an Array of Array for modeling
Parameters:
* `input`: Input to preprocess.
* `model`: Model containing physical parameters.
* `nsrc`: Number of sources
"""
function process_input_data(input::DenseArray{T}, model::AbstractModel{T, N}, nsrc::Integer) where {T<:Real, N}
dataCell = Vector{Array{T, N}}(undef, nsrc)
input = reshape(input, size(model)..., nsrc)
nd = ndims(input)
for j=1:nsrc
dataCell[j] = selectdim(input, nd, j)
end
return dataCell
end
process_input_data(input::DenseArray{T}, model::AbstractModel{T, N}) where {T<:Real, N} = process_input_data(input, model, length(input) ÷ prod(size(model)))
process_input_data(input::judiVector{T, AT}, ::Geometry{T}) where {T<:Real, AT} = input
process_input_data(input::judiVector{T, AT}) where {T<:Real, AT} = input.data
process_input_data(input::judiWeights{T}, ::AbstractModel{T, N}) where {T<:Real, N} = input.weights
function process_input_data(input::DenseArray{T}, v::Vector{<:Array}) where T
nsrc = length(v)
dataCell = Vector{Vector{T}}(undef, nsrc)
input = reshape(input, :, nsrc)
for j=1:nsrc
dataCell[j] = input[:, j]
end
return dataCell
end
"""
reshape(x::Array{Float32, 1}, geometry::Geometry)
Reshapes input vector into a 3D `nt x nrec x nsrc` Array.
"""
function reshape(x::AbstractArray{T}, geometry::Geometry{T}) where {T<:Real}
nt = get_nt(geometry, 1)
nrec = geometry.nrec[1]
nsrc = Int(length(x) / nt / nrec)
return reshape(x, nt, nrec, nsrc)
end
"""
reshape(V::Vector{T}, n::Tuple, nblock::Integer)
Reshapes input vector into a `Vector{Array{T, N}}` of length `nblock` with each subarray of size `n`
"""
function reshape(x::Vector{T}, d::Dims, nsrc::Integer) where {T<:Real}
length(x) == prod(d)*nsrc || throw(judiMultiSourceException("Incompatible size"))
as_nd = reshape(x, d..., nsrc)
return [collect(selectdim(as_nd, ndims(as_nd), s)) for s=1:nsrc]
end
"""
transducer(q, d, r, theta)
Create the JUDI soure for a circular transducer
Theta=0 points downward:
. . . . - - - . . . . . .
. . . . + + + . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
Theta=pi/2 points right:
. . . . - + . . . . . . .
. . . . - + . . . . . . .
. . . . - + . . . . . . .
. . . . . . . . . . . . .
2D only, to extend to 3D
"""
function transducer(q::judiVector{T, AT}, d::Tuple, r::Number, theta) where {T<:Real, AT}
length(theta) != length(q.geometry.xloc) && throw("Need one angle per source position")
size(q.data[1], 2) > 1 && throw("Only point sources can be converted to transducer source")
# Array of source
nsrc_loc = 11
nsrc = length(q.geometry.xloc)
x_base = collect(range(-r, r, length=nsrc_loc))
y_base = zeros(nsrc_loc)
y_base_b = zeros(nsrc_loc) .- d[end]
# New coords and data
xloc = Vector{Vector{T}}(undef, nsrc)
yloc = Vector{Vector{T}}(undef, nsrc)
zloc = Vector{Vector{T}}(undef, nsrc)
data = Vector{Matrix{T}}(undef, nsrc)
t = q.geometry.taxis[1:1]
for i=1:nsrc
# Build the rotated array of dipole
R = T.([cos(theta[i] - pi/2) sin(theta[i] - pi/2);-sin(theta[i] - pi/2) cos(theta[i] - pi/2)])
# +1 coords
r_loc = R * [x_base';y_base']
# -1 coords
r_loc_b = R * [x_base';y_base_b']
xloc[i] = q.geometry.xloc[i] .+ vec(vcat(r_loc[1, :], r_loc_b[1, :]))
zloc[i] = q.geometry.zloc[i] .+ vec(vcat(r_loc[2, :], r_loc_b[2, :]))
yloc[i] = zeros(T, 2*nsrc_loc)
data[i] = zeros(T, length(q.data[i]), 2*nsrc_loc)
data[i][:, 1:nsrc_loc] .= q.data[i]/nsrc_loc
data[i][:, nsrc_loc+1:end] .= -q.data[i]/nsrc_loc
end
return judiVector(GeometryIC{Float32}(xloc, yloc, zloc, t), data)
end
########################################### Misc defaults
# Vectorization of single variable (not defined in Julia)
Base.vec(x::Float64) = x;
Base.vec(x::Float32) = x;
Base.vec(x::Int64) = x;
Base.vec(x::Int32) = x;
Base.vec(::Nothing) = nothing
"""
as_vec(x, ::Val{Bool})
Vectorizes output when `return_array` is set to `true`.
"""
as_vec(x, ::Val) = x
as_vec(x::Tuple, v::Val) = tuple((as_vec(xi, v) for xi in x)...)
as_vec(x::Ref, ::Val) = x[]
as_vec(x::PhysicalParameter, ::Val{true}) = vec(x.data)
as_vec(x::judiMultiSourceVector, ::Val{true}) = vec(x)
as_src_list(x::Number, nsrc::Integer) = fill(x, nsrc)
as_src_list(x::Vector{<:Number}, nsrc::Integer) = x
as_src_list(::Nothing, nsrc::Integer) = fill(0, nsrc)
######### backward compat
extend_gradient(model_full, model, array) = array
### Filter out PyObject none and nothing
pynone(::AbstractArray) = false
pynone(m) = (m == PyObject(nothing) || isnothing(m))
function filter_none(args::Tuple)
out = filter(m-> ~pynone(m), args)
out = length(out) == 1 ? out[1] : out
return out
end
filter_none(x) = x
function Gardner(vp::Array{T, N}; vwater=1.51) where {T<:Real, N}
rho = (T(0.31) .* (T(1e3) .* vp).^(T(0.25)))
# Make sure "water" is at 1
rho[vp .< vwater] .= 1
return rho
end
Gardner(vp::PhysicalParameter{T}; vwater=1.51) where T<:Real = PhysicalParameter(Gardner(vp.data; vwater=vwater), vp.n, vp.d, vp.o)
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 6564 | export time_resample
"""
time_resample(data, geometry_in, dt_new)
Resample the input data with sinc interpolation from the current time sampling (geometrty_in) to the
new time sampling `dt_new`.
Parameters
* `data`: Data to be reampled. If data is a matrix, resamples each column.
* `geometry_in`: Geometry on which `data` is defined.
* `dt_new`: New time sampling rate to interpolate onto.
"""
function time_resample(data::AbstractArray{T, N}, G_in::Geometry, dt_new::Real) where {T<:Real, N}
new_t = first(G_in.taxis[1]):dt_new:last(G_in.taxis[1])
return time_resample(data, G_in.taxis[1], new_t)
end
"""
time_resample(data, dt_in, dt_new)
Resample the input data with sinc interpolation from the current time sampling dt_in to the
new time sampling `dt_new`.
Parameters
* `data`: Data to be reampled. If data is a matrix, resamples each column.
* `dt_in`: Time sampling of input
* `dt_new`: New time sampling rate to interpolate onto.
"""
function time_resample(data::AbstractArray{T, N}, t_in::StepRangeLen, t_new::StepRangeLen) where {T<:Real, N}
dt_in, dt_new = step(t_in), step(t_new)
if dt_new==dt_in
idx1 = Int64(div((first(t_new) - first(t_in)), dt_new) + 1)
return data[idx1:end, :]
elseif (dt_new % dt_in) == 0
rate = Int64(div(dt_new, dt_in))
dataInterp = _time_resample(data, rate)
idx1 = Int64(div((first(t_new) - first(t_in)), dt_new) + 1)
return dataInterp[idx1:end, :]
else
@juditime "Data time sinc-interpolation" begin
dataInterp = Float32.(SincInterpolation(data, t_in, t_new))
end
return dataInterp
end
end
time_resample(data::AbstractArray{T, N}, dt_in::Number, dt_new::Number, t::Number) where {T<:Real, N} =
time_resample(data, 0:dt_in:(dt_in*ceil(t/dt_in)), 0:dt_new:(dt_new*ceil(t/dt_new)))
"""
time_resample(data, dt_in, geometry_in)
Resample the input data with sinc interpolation from the current time sampling (dt_in) to the
new time sampling `geometry_out`.
Parameters
* `data`: Data to be reampled. If data is a matrix, resamples each column.
* `geometry_out`: Geometry on which `data` is to be interpolated.
* `dt_in`: Time sampling rate of the `data.`
"""
function time_resample(data::AbstractArray{T, N}, dt_in::Real, G_out::Geometry{T}) where {T<:Real, N}
currt = range(0f0, step=dt_in, length=size(data, 1))
return time_resample(data, currt, G_out.taxis[1])
end
function time_resample(data::AbstractArray{T, N}, dt_in::Real, G_in::Geometry{T}, G_out::Geometry{T}) where {T<:Real, N}
t0 = min(get_t0(G_in, 1), get_t0(G_out, 1))
currt = range(t0, step=dt_in, length=size(data, 1))
dout = time_resample(data, currt, G_out.taxis[1])
if size(dout, 1) != G_out.nt[1]
@show currt, G_out.taxis[1], size(data, 1), size(dout, 1), G_out.nt[1]
end
return dout
end
_time_resample(data::Matrix{T}, rate::Integer) where T = data[1:rate:end, :]
_time_resample(data::PermutedDimsArray{T, 2, (2, 1), (2, 1), Matrix{T}}, rate::Integer) where {T<:Real} = data.parent[:, 1:rate:end]'
SincInterpolation(Y::AbstractMatrix{T}, S::StepRangeLen{T}, Up::StepRangeLen{T}) where T<:Real = sinc.( (Up .- S') ./ (S[2] - S[1]) ) * Y
"""
_maybe_pad_t0(q, qGeom, data, dataGeom)
Pad zeros for data with non-zero t0, usually from a segy file so that time axis and array size match for the source and data.
"""
function _maybe_pad_t0(qIn::Matrix{T}, qGeom::Geometry, dObserved::Matrix{T}, dataGeom::Geometry, dt::T=qGeom.dt[1]) where T<:Number
dt0 = get_t0(dataGeom, 1) - get_t0(qGeom, 1)
Dt = get_t(dataGeom, 1) - get_t(qGeom, 1)
dsize = size(qIn, 1) - size(dObserved, 1)
# Same times, do nothing
if dsize == 0 && dt0 == 0 && Dt == 0
return qIn, dObserved
# First case, same size, then it's a shift
elseif dsize == 0 && dt0 != 0 && Dt != 0
# Shift means both t0 and t same sign difference
@assert sign(dt0) == sign(Dt)
pad_size = Int(div(abs(dt0), dt))
if dt0 > 0
# Data has larger t0, pad data left and q right
dObserved = vcat(zeros(T, pad_size, size(dObserved, 2)), dObserved)
qIn = vcat(qIn, zeros(T, pad_size, size(qIn, 2)))
else
# q has larger t0, pad data right and q left
dObserved = vcat(dObserved, zeros(T, pad_size, size(dObserved, 2)))
qIn = vcat(zeros(T, pad_size, size(qIn, 2)), qIn)
end
elseif dsize !=0
# We might still have differnt t0 and t
# Pad so that we go from smaller dt to largest t
ts = min(get_t0(qGeom, 1), get_t0(dataGeom, 1))
te = max(get_t(qGeom, 1), get_t(dataGeom, 1))
pdatal = Int(div(get_t0(dataGeom, 1) - ts, dt))
pdatar = Int(div(te - get_t(dataGeom, 1), dt))
dObserved = vcat(zeros(T, pdatal, size(dObserved, 2)), dObserved, zeros(T, pdatar, size(dObserved, 2)))
pql = Int(div(get_t0(qGeom, 1) - ts, dt))
pqr = Int(div(te - get_t(qGeom, 1), dt))
qIn = vcat(zeros(T, pql, size(qIn, 2)), qIn, zeros(T, pqr, size(qIn, 2)))
# Pad in case of mismatch
leftover = size(qIn, 1) - size(dObserved, 1)
if leftover > 0
dObserved = vcat(dObserved, zeros(T, leftover, size(dObserved, 2)))
elseif leftover < 0
qIn = vcat(qIn, zeros(T, -leftover, size(qIn, 2)))
end
else
throw(judiMultiSourceException("""
Data and source have different
t0 : $((get_t0(dataGeom, 1), get_t0(qGeom, 1)))
and t: $((get_t(dataGeom, 1), get_t(qGeom, 1)))
and are not compatible in size for padding: $((size(qIn, 1), size(dObserved, 1)))"""))
end
return qIn, dObserved
end
pad_msg = """
This is an internal method for single source propatation,
only single-source judiVectors are supported
"""
function _maybe_pad_t0(qIn::judiVector{T, Matrix{T}}, dObserved::judiVector{T, Matrix{T}}, dt=In.geometry.dt[1]) where{T<:Number}
@assert qIn.nsrc == 1 || throw(judiMultiSourceException(pad_msg))
return _maybe_pad_t0(qIn.data[1], qIn.geometry[1], dObserved.data[1], dObserved.geometry[1], dt)
end
_maybe_pad_t0(qIn::judiVector{T, AT}, dObserved::judiVector{T, AT}, dt=qIn.geometry.dt[1]) where{T<:Number, AT} =
_maybe_pad_t0(get_data(qIn), get_data(dObserved), dt)
_maybe_pad_t0(qIn::Matrix{T}, qGeom::Geometry, dataGeom::Geometry, dt=qGeom.dt[1]) where T<:Number =
_maybe_pad_t0(qIn, qGeom, zeros(T, length(dataGeom.t0[1]:dt:dataGeom.t[1]), 1) , dataGeom, dt)[1]
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 4236 | # Test 2D modeling
# The receiver positions and the source wavelets are the same for each of the four experiments.
# Author: Philipp Witte, [email protected]
# Date: January 2017
#
# Mathias Louboutin, [email protected]
# Updated July 2020
using JUDI
using Test, Printf, Aqua
using SegyIO, LinearAlgebra, Distributed, JOLI
using TimerOutputs: TimerOutputs, @timeit
set_verbosity(false)
# Collect timing and allocations information to show in a clear way.
const TIMEROUTPUT = TimerOutputs.TimerOutput()
timeit_include(path::AbstractString) = @timeit TIMEROUTPUT path include(path)
# Utilities
const success_log = Dict(true => "\e[32m SUCCESS \e[0m", false => "\e[31m FAILED \e[0m")
# Test set
const GROUP = get(ENV, "GROUP", "JUDI")
# JUDI seismic utils
include("seismic_utils.jl")
const nlayer = 2
const tti = contains(GROUP, "TTI")
const fs = contains(GROUP, "FS")
const viscoacoustic = contains(GROUP, "VISCO")
# Utility macro to run block of code with a single omp threa
macro single_threaded(expr)
return quote
nthreads = ENV["OMP_NUM_THREADS"]
ENV["OMP_NUM_THREADS"] = "1"
local val = $(esc(expr))
ENV["OMP_NUM_THREADS"] = nthreads
val
end
end
# Testing Utilities
include("testing_utils.jl")
base = ["test_geometry.jl",
"test_judiVector.jl",
"test_composite.jl",
"test_judiWeights.jl",
"test_judiWavefield.jl",
"test_linear_operators.jl",
"test_physicalparam.jl",
"test_compat.jl"]
devito = ["test_all_options.jl",
"test_linearity.jl",
"test_preconditioners.jl",
"test_adjoint.jl",
"test_jacobian.jl",
"test_gradients.jl",
"test_multi_exp.jl",
"test_rrules.jl"]
extras = ["test_modeling.jl", "test_basics.jl", "test_linear_algebra.jl"]
issues = ["test_issues.jl"]
# custom
if endswith(GROUP, ".jl")
timeit_include(GROUP)
end
# Basic JUDI objects tests, no Devito
if GROUP == "JUDI" || GROUP == "All"
for t=base
timeit_include(t)
try Base.GC.gc(); catch; gc() end
end
# Test resolved issues Due to some data type incomaptibilities only test 1.7
if VERSION >= v"1.7"
for t=issues
timeit_include(t)
try Base.GC.gc(); catch; gc() end
end
end
end
# Generic mdeling tests
if GROUP == "BASICS" || GROUP == "All"
println("JUDI generic modelling tests")
for t=extras
timeit_include(t)
@everywhere try Base.GC.gc(); catch; gc() end
end
end
# Isotropic Acoustic tests
if GROUP == "ISO_OP" || GROUP == "All"
println("JUDI iso-acoustic operators tests (parallel)")
# Basic test of LA/CG/LSQR needs
for t=devito
timeit_include(t)
@everywhere try Base.GC.gc(); catch; gc() end
end
end
# Isotropic Acoustic tests with a free surface
if GROUP == "ISO_OP_FS" || GROUP == "All"
println("JUDI iso-acoustic operators with free surface tests")
for t=devito
timeit_include(t)
try Base.GC.gc(); catch; gc() end
end
end
# Anisotropic Acoustic tests
if GROUP == "TTI_OP" || GROUP == "All"
println("JUDI TTI operators tests")
set_devito_config("safe-math", true)
# TTI tests
for t=devito
timeit_include(t)
try Base.GC.gc(); catch; gc() end
end
end
# Anisotropic Acoustic tests with free surface
if GROUP == "TTI_OP_FS" || GROUP == "All"
println("JUDI TTI operators with free surface tests")
set_devito_config("safe-math", true)
for t=devito
timeit_include(t)
try Base.GC.gc(); catch; gc() end
end
end
# Viscoacoustic tests
if GROUP == "VISCO_AC_OP" || GROUP == "All"
println("JUDI Viscoacoustic operators tests")
# Viscoacoustic tests
for t=devito
timeit_include(t)
try Base.GC.gc(); catch; gc() end
end
end
# Code quality check
if GROUP == "AQUA" || GROUP == "All" || GROUP == "JUDI"
@testset "code quality" begin
# Prevent ambiguities from PyCall and other packages
Aqua.test_all(JUDI; ambiguities=false)
Aqua.test_ambiguities(JUDI; Aqua.askwargs(true)...)
end
end
# Testing memory and runtime summary
show(TIMEROUTPUT; compact=true, sortby=:firstexec)
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 4163 | # Author: Mathias Louboutin, [email protected]
# Date: July 2020
export setup_model, parse_commandline, setup_geom
export example_src_geometry, example_rec_geometry, example_model, example_info
"""
Simple 2D model setup used for the tests.
"""
function smooth(v, sigma=3)
v0 = 1f0 .* v
for i=-sigma:sigma
i != 0 && (v0[:, sigma+1:end-sigma] .+= v[:, sigma+i+1:end-sigma+i])
end
v0[:, sigma+1:end-sigma] .*= 1/(2*sigma+1)
return v0
end
"""
Sets up a simple 2D layered model for the wave equation operators tests
"""
function setup_model(tti=false, viscoacoustic=false, nlayer=2; n=(301, 151), d=(10., 10.))
tti && viscoacoustic && throw("The inputs can't be tti and viscoacoustic at the same time")
## Set up model structure
o = (0., 0.)
lw = n[2] ÷ nlayer
v = ones(Float32, n) .* 1.5f0
vp_i = range(1.5f0, 3.5f0, length=nlayer)
for i in range(2, nlayer, step=1)
v[:, (i-1)*lw+ 1:end] .= vp_i[i] # Bottom velocity
end
v0 = smooth(v, 7)
rho0 = (v .+ .5f0) ./ 2
# Slowness squared [s^2/km^2]
m = (1f0 ./ v).^2
m0 = (1f0 ./ v0).^2
# Setup model structure
if tti
println("TTI Model")
epsilon = smooth((v0[:, :] .- 1.5f0)/12f0, 3)
delta = smooth((v0[:, :] .- 1.5f0)/14f0, 3)
theta = smooth((v0[:, :] .- 1.5f0)/4, 3) .* rand([0, 1]) # makes sure VTI is tested
model0 = Model(n, d, o, m0; epsilon=epsilon, delta=delta, theta=theta)
model = Model(n, d, o, m; epsilon=epsilon, delta=delta, theta=theta)
elseif viscoacoustic
println("Viscoacoustic Model")
qp0 = 3.516f0 .* ((v0 .* 1000f0).^2.2f0) .* 10f0^(-6f0)
model = Model(n,d,o,m,rho0,qp0)
model0 = Model(n,d,o,m0,rho0,qp0)
else
model = Model(n, d, o, m, rho0)
model0 = Model(n, d, o, m0, rho0)
@test all(Model(n, d, o, m0; rho=rho0).rho[:] .== rho0[:])
@test Model(n, d, o, m0; rho=rho0).rho == model0.rho
end
dm = model.m - model0.m
return model, model0, dm
end
"""
Sets up a simple 2D acquisition for the wave equation operators tests
"""
function setup_geom(model; nsrc=1, tn=1500f0, dt=nothing)
## Set up receiver geometry
nxrec = size(model, 1) - 2
xrec = collect(range(spacing(model, 1), stop=(size(model, 1)-2)*spacing(model, 1), length=nxrec))
yrec = collect(range(0f0, stop=0f0, length=nxrec))
zrec = collect(range(50f0, stop=50f0, length=nxrec))
# receiver sampling and recording time
T = tn # receiver recording time [ms]
dt = isnothing(dt) ? .75f0 : dt # receiver sampling interval [ms]
T = dt * div(T, dt)
# Set up receiver structure
recGeometry = Geometry(xrec, yrec, zrec; dt=dt, t=T, nsrc=nsrc)
## Set up source geometry (cell array with source locations for each shot)
ex = (size(model, 1) - 1) * spacing(model, 1)
nsrc > 1 ? xsrc = range(.25f0 * ex, stop=.75f0 * ex, length=nsrc) : xsrc = .5f0 * ex
xsrc = convertToCell(xsrc)
ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc))
zsrc = convertToCell(range(2*spacing(model, 2), stop=2*spacing(model, 2), length=nsrc))
# Set up source structure
srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dt, t=T)
# setup wavelet
f0 = 0.015f0 # MHz
wavelet = ricker_wavelet(T, dt, f0)
q = judiVector(srcGeometry, wavelet)
return q, srcGeometry, recGeometry, f0
end
# Example structures
example_model(; n=(120,100), d=(10f0, 10f0), o=(0f0, 0f0), m=randn(Float32, n)) = Model(n, d, o, m)
function example_rec_geometry(; nsrc=2, nrec=120, cut=false)
startr = cut ? 150f0 : 50f0
endr = cut ? 1050f0 : 1150f0
xrec = range(startr, stop=endr, length=nrec)
yrec = 0f0
zrec = range(50f0, stop=50f0, length=nrec)
return Geometry(xrec, yrec, zrec; dt=4f0, t=1000f0, nsrc=nsrc)
end
function example_src_geometry(; nsrc=2)
xsrc = nsrc == 1 ? 500f0 : range(300f0, stop=900f0, length=nsrc)
ysrc = nsrc == 1 ? 0f0 : zeros(Float32, nsrc)
zsrc = range(50f0, stop=50f0, length=nsrc)
return Geometry(convertToCell(xsrc), convertToCell(ysrc), convertToCell(zsrc); dt=4f0, t=1000f0)
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 4275 | # Adjoint test for F and J
# Author: Mathias Louboutin, [email protected]
# Date: May 2020
#
nw = 2
# # Set parallel if specified
if nw > 1 && nworkers() < nw
addprocs(nw-nworkers() + 1; exeflags=["--code-coverage=user", "--inline=no", "--check-bounds=yes"])
end
@everywhere using JUDI, LinearAlgebra, Test, Distributed
### Model
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
q, srcGeometry, recGeometry, f0 = setup_geom(model; nsrc=nw)
dt = srcGeometry.dt[1]
# testing parameters and utils
tol = 5f-4
(tti && fs) && (tol = 5f-3)
maxtry = viscoacoustic ? 5 : 3
#################################################################################################
# adjoint test utility function so that can retry if fails
function run_adjoint(F, q, y, dm; test_F=true, test_J=true)
adj_F, adj_J = !test_F, !test_J
if test_F
# Forward-adjoint
d_hat = F*q
q_hat = F'*y
# Result F
a = dot(y, d_hat)
b = dot(q, q_hat)
@printf(" <F x, y> : %2.5e, <x, F' y> : %2.5e, relative error : %2.5e \n", a, b, (a - b)/(a + b))
adj_F = isapprox(a/(a+b), b/(a+b), atol=tol, rtol=0)
end
if test_J
# Linearized modeling
J = judiJacobian(F, q)
ld_hat = J*dm
dm_hat = J'*y
c = dot(ld_hat, y)
d = dot(dm_hat, dm)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, (c - d)/(c + d))
adj_J = isapprox(c/(c+d), d/(c+d), atol=tol, rtol=0)
end
return adj_F, adj_J
end
test_adjoint(f::Bool, j::Bool, last::Bool) = (test_adjoint(f, last), test_adjoint(j, last))
test_adjoint(adj::Bool, last::Bool) = (adj || last) ? (@test adj) : (@test_skip adj)
###################################################################################################
# Modeling operators
@testset "Adjoint test with $(nlayer) layers and tti $(tti) and viscoacoustic $(viscoacoustic) and freesurface $(fs)" begin
@timeit TIMEROUTPUT "Adjoint" begin
opt = Options(sum_padding=true, dt_comp=dt, free_surface=fs, f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
@show q.nsrc
# Nonlinear modeling
y = F*q
# Run test until succeeds in case of bad case
adj_F, adj_J = false, false
ntry = 0
while (!adj_F || !adj_J) && ntry < maxtry
wave_rand = (.5f0 .+ rand(Float32, size(q.data[1]))).*q.data[1]
q_rand = judiVector(srcGeometry, wave_rand)
adj_F, adj_J = run_adjoint(F, q_rand, y, dm; test_F=!adj_F, test_J=!adj_J)
ntry +=1
test_adjoint(adj_F, adj_J, ntry==maxtry)
end
println("Adjoint test after $(ntry) tries, F: $(success_log[adj_F]), J: $(success_log[adj_J])")
end
end
###################################################################################################
# Extended source modeling
@testset "Extended source adjoint test with $(nlayer) layers and tti $(tti) and viscoacoustic $(viscoacoustic) and freesurface $(fs)" begin
@timeit TIMEROUTPUT "Extended source adjoint" begin
opt = Options(sum_padding=true, dt_comp=dt, free_surface=fs, f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
Pr = judiProjection(recGeometry)
Fw = judiModeling(model0; options=opt)
Pw = judiLRWF(srcGeometry.dt[1], circshift(q.data[1], 51))
Fw = Pr*Fw*adjoint(Pw)
# Extended source weights
w = zeros(Float32, model0.n...)
w[141:160, 65:84] .= randn(Float32, 20, 20)
w = judiWeights(w; nsrc=nw)
# Nonlinear modeling
y = F*q
# Run test until succeeds in case of bad case
adj_F, adj_J = false, false
ntry = 0
while (!adj_F || !adj_J) && ntry < maxtry
wave_rand = (.5f0 .+ rand(Float32, size(q.data[1]))).*q.data[1]
q_rand = judiVector(srcGeometry, wave_rand)
adj_F, adj_J = run_adjoint(F, q_rand, y, dm; test_F=!adj_F, test_J=!adj_J)
ntry +=1
test_adjoint(adj_F, adj_J, ntry==maxtry)
end
println("Adjoint test after $(ntry) tries, F: $(success_log[adj_F]), J: $(success_log[adj_J])")
end
end
rmprocs(workers())
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 7390 | # Author: Mathias Louboutin, [email protected]
# Date: July 2020
### Model
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
q, srcGeometry, recGeometry, f0 = setup_geom(model)
dt = srcGeometry.dt[1]
@testset "Gradient options test with $(nlayer) layers and tti $(tti) and freesurface $(fs)" begin
##################################ISIC########################################################
printstyled("Testing isic \n"; color = :blue)
@timeit TIMEROUTPUT "ISIC" begin
opt = Options(sum_padding=true, free_surface=fs, IC="isic", f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# Linearized modeling
J = judiJacobian(F, q)
@test norm(J*(0f0.*dm)) == 0
y0 = F*q
y_hat = J*dm
x_hat1 = adjoint(J)*y0
c = dot(y0, y_hat)
d = dot(dm, x_hat1)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, c/d - 1)
@test isapprox(c, d, rtol=5f-2)
@test !isnan(norm(y0))
@test !isnan(norm(y_hat))
@test !isnan(norm(x_hat1))
end
##################################ISIC########################################################
printstyled("Testing fwi \n"; color = :blue)
@timeit TIMEROUTPUT "fwi" begin
opt = Options(sum_padding=true, free_surface=fs, IC="fwi", f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# Linearized modeling
J = judiJacobian(F, q)
@test norm(J*(0f0.*dm)) == 0
y0 = F*q
y_hat = J*dm
x_hat1 = adjoint(J)*y0
c = dot(y0, y_hat)
d = dot(dm, x_hat1)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, c/d - 1)
@test isapprox(c, d, rtol=5f-2)
@test !isnan(norm(y0))
@test !isnan(norm(y_hat))
@test !isnan(norm(x_hat1))
end
##################################checkpointing###############################################
printstyled("Testing checkpointing \n"; color = :blue)
@timeit TIMEROUTPUT "Checkpointing" begin
opt = Options(sum_padding=true, free_surface=fs, optimal_checkpointing=true, f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# Linearized modeling
J = judiJacobian(F, q)
y_hat = J*dm
x_hat2 = adjoint(J)*y0
c = dot(y0, y_hat)
d = dot(dm, x_hat2)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, c/d - 1)
@test isapprox(c, d, rtol=1f-2)
@test !isnan(norm(y_hat))
@test !isnan(norm(x_hat2))
end
##################################DFT#########################################################
printstyled("Testing DFT \n"; color = :blue)
@timeit TIMEROUTPUT "DFT" begin
opt = Options(sum_padding=true, free_surface=fs, frequencies=[2.5, 4.5], f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# Linearized modeling
J = judiJacobian(F, q)
@test norm(J*(0f0.*dm)) == 0
y_hat = J*dm
x_hat3 = adjoint(J)*y0
c = dot(y0, y_hat)
d = dot(dm, x_hat3)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, c/d - 1)
@test !isnan(norm(y_hat))
@test !isnan(norm(x_hat3))
end
################################## DFT time subsampled#########################################
printstyled("Testing subsampled in time DFT \n"; color = :blue)
@timeit TIMEROUTPUT "Subsampled DFT" begin
opt = Options(sum_padding=true, free_surface=fs, frequencies=[2.5, 4.5], dft_subsampling_factor=4, f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# Linearized modeling
J = judiJacobian(F, q)
@test norm(J*(0f0.*dm)) == 0
y_hat = J*dm
x_hat3 = adjoint(J)*y0
c = dot(y0, y_hat)
d = dot(dm, x_hat3)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, c/d - 1)
@test !isnan(norm(y_hat))
@test !isnan(norm(x_hat3))
end
##################################subsampling#################################################
printstyled("Testing subsampling \n"; color = :blue)
@timeit TIMEROUTPUT "Subsampling" begin
opt = Options(sum_padding=true, free_surface=fs, subsampling_factor=4, f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# Linearized modeling
J = judiJacobian(F, q)
y_hat = J*dm
x_hat4 = adjoint(J)*y0
c = dot(y0, y_hat)
d = dot(dm, x_hat4)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, c/d - 1)
@test isapprox(c, d, rtol=1f-2)
@test !isnan(norm(y_hat))
@test !isnan(norm(x_hat4))
end
##################################ISIC + DFT #########################################################
printstyled("Testing isic+dft \n"; color = :blue)
@timeit TIMEROUTPUT "ISIC+DFT" begin
opt = Options(sum_padding=true, free_surface=fs, IC="isic", frequencies=[2.5, 4.5], f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# Linearized modeling
J = judiJacobian(F, q)
@test norm(J*(0f0.*dm)) == 0
y_hat = J*dm
x_hat5 = adjoint(J)*y0
c = dot(y0, y_hat)
d = dot(dm, x_hat5)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, c/d - 1)
@test !isnan(norm(y_hat))
@test !isnan(norm(x_hat5))
end
##################################fwi + DFT #########################################################
printstyled("Testing fwi+dft \n"; color = :blue)
@timeit TIMEROUTPUT "FWI+DFT" begin
opt = Options(sum_padding=true, free_surface=fs, IC="fwi", frequencies=[2.5, 4.5], f0=f0)
F = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# Linearized modeling
J = judiJacobian(F, q)
@test norm(J*(0f0.*dm)) == 0
y_hat = J*dm
x_hat5 = adjoint(J)*y0
c = dot(y0, y_hat)
d = dot(dm, x_hat5)
@printf(" <J x, y> : %2.5e, <x, J' y> : %2.5e, relative error : %2.5e \n", c, d, c/d - 1)
@test !isnan(norm(y_hat))
@test !isnan(norm(x_hat5))
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 7687 | # Author: Mathias Louboutin, [email protected]
# Date: May 2020
#
ftol = 1f-6
function test_model(ndim; tti=false, elas=false, visco=false)
n = Tuple(121 for i=1:ndim)
# non zero origin to check 'limit_model_to_receiver_area'
o = (10, 0, 0)[1:ndim]
d = Tuple(10. for i=1:ndim)
m = .5f0 .+ rand(Float32, n...)
if tti
epsilon = .1f0 * m
delta = .05f0 * m
theta = .23f0 * m
phi = .12f0 * m
model = Model(n, d, o, m; nb=10, epsilon=epsilon, delta=delta, theta=theta, phi=phi)
@test all(k in JUDI._mparams(model) for k in [:m, :epsilon, :delta, :theta, :phi])
@test isa(model, JUDI.TTIModel)
delta2 = 1.1f0 * model.epsilon
@test sum(delta2 .>= epsilon) == length(delta2)
JUDI._clip_delta!(delta2, model.epsilon)
@test sum(delta2 .>= epsilon) == 0
elseif elas
vs = .1f0 * m
model = Model(n, d, o, m; nb=10, vs=vs,)
@test all(k in JUDI._mparams(model) for k in [:lam, :mu, :b])
@test isa(model, JUDI.IsoElModel)
elseif visco
qp = .1f0 * m
model = Model(n, d, o, m; nb=10, qp=qp)
@test all(k in JUDI._mparams(model) for k in [:m, :qp, :rho])
@test isa(model, JUDI.ViscIsoModel)
else
model = Model(n, d, o, m; nb=10)
@test [JUDI._mparams(model)...] == [:m, :rho]
@test isa(model, JUDI.IsoModel)
end
return model
end
function test_density(ndim)
n = Tuple(121 for i=1:ndim)
# non zero origin to check 'limit_model_to_receiver_area'
o = (10, 0, 0)[1:ndim]
d = Tuple(10. for i=1:ndim)
m = .5f0 .+ rand(Float32, n...)
rho = rand(Float32, n) .+ 1f0
model = Model(n, d, o, m, rho; nb=0)
@test :rho in JUDI._mparams(model)
modelpy = devito_model(model, Options())
@test isapprox(modelpy.irho.data, 1 ./ model.rho)
rho[61] = 1000
model = Model(n, d, o, m, rho; nb=0)
@test :rho in JUDI._mparams(model)
modelpy = devito_model(model, Options())
@test isapprox(modelpy.rho.data, model.rho)
end
# Test padding and its adjoint
function test_padding(ndim)
model = test_model(ndim; tti=false)
modelPy = devito_model(model, Options())
m0 = model.m
mcut = remove_padding(deepcopy(modelPy.m.data), modelPy.padsizes; true_adjoint=true)
mdata = deepcopy(modelPy.m.data)
@show dot(m0, mcut)/dot(mdata, mdata)
@test isapprox(dot(m0, mcut), dot(mdata, mdata))
end
function test_limit_m(ndim, tti)
model = test_model(ndim; tti=tti)
@test get_dt(model) == calculate_dt(model)
mloc = model.m
model.m .*= 0f0
@test norm(model.m) == 0
model.m .= mloc
@test model.m == mloc
srcGeometry = example_src_geometry()
recGeometry = example_rec_geometry(cut=true)
buffer = 100f0
dm = rand(Float32, model.n...)
dmb = PhysicalParameter(0 .* dm, model.n, model.d, model.o)
new_mod, dm_n = limit_model_to_receiver_area(srcGeometry, recGeometry, deepcopy(model), buffer; pert=dm)
# check new_mod coordinates
# as long as func 'example_rec_geometry' uses '0' for 'y' we check only 'x' limits
min_x = min(minimum(recGeometry.xloc[1]), minimum(srcGeometry.xloc[1]))
max_x = max(maximum(recGeometry.xloc[1]), maximum(srcGeometry.xloc[1]))
@test isapprox(new_mod.o[1], min_x-buffer; rtol=ftol)
@test isapprox(new_mod.o[1] + new_mod.d[1]*(new_mod.n[1]-1), max_x+buffer; rtol=ftol)
# check inds
# 5:115 because of origin[1] = 10 (if origin[1] = 0 then 6:116)
inds = ndim == 3 ? [5:115, 1:11, 1:121] : [5:115, 1:121]
@test new_mod.n[1] == 111
@test new_mod.n[end] == 121
if ndim == 3
@test new_mod.n[2] == 11
end
@test isapprox(new_mod.m, model.m[inds...]; rtol=ftol)
@test isapprox(dm_n, vec(dm[inds...]); rtol=ftol)
if tti
@test isapprox(new_mod.epsilon, model.epsilon[inds...]; rtol=ftol)
@test isapprox(new_mod.delta, model.delta[inds...]; rtol=ftol)
@test isapprox(new_mod.theta, model.theta[inds...]; rtol=ftol)
@test isapprox(new_mod.phi, model.phi[inds...]; rtol=ftol)
end
dmt = PhysicalParameter(dm_n, new_mod.n, model.d, new_mod.o)
ex_dm = dmb + dmt
@test ex_dm.o == model.o
@test ex_dm.n == model.n
@test ex_dm.d == model.d
@test norm(ex_dm) == norm(dm_n)
end
function setup_3d()
xrec = Array{Any}(undef, 2)
yrec = Array{Any}(undef, 2)
zrec = Array{Any}(undef, 2)
for i=1:2
xrec[i] = i .+ collect(0:10)
yrec[i] = i .+ collect(0:10)
zrec[i] = i
end
x3d, y3d, z3d = setup_3D_grid(xrec[1],yrec[1],zrec[1])
for k=1:11
@test all(y3d[(11*(k-1))+1:(11*(k-1))+11] .== k)
@test all(x3d[k:11:end] .== k)
end
@test all(z3d[:] .== 1)
x3d, y3d, z3d = setup_3D_grid(xrec,yrec,zrec)
for i=1:2
for k=1:11
@test all(y3d[i][(11*(k-1))+1:(11*(k-1))+11] .== k + i -1)
@test all(x3d[i][k:11:end] .== k + i - 1)
end
@test all(z3d[i][:] .== i)
end
end
function test_ftp()
ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_model_2D.h5")
@test isfile("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5")
rm("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5")
ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI", "overthrust_model_2D.h5")
@test isfile("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5")
rm("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5")
end
function test_serial()
@test !get_serial()
set_serial()
@test get_serial()
set_parallel()
@test !get_serial()
set_serial(true)
@test get_serial()
set_serial(false)
@test !get_serial()
end
@testset "Test basic utilities" begin
@timeit TIMEROUTPUT "Basic setup utilities" begin
test_ftp()
test_serial()
setup_3d()
for ndim=[2, 3]
test_padding(ndim)
test_density(ndim)
end
opt = Options(frequencies=[[2.5, 4.5], [3.5, 5.5]])
@test subsample(opt, 1).frequencies == [2.5, 4.5]
@test subsample(opt, 2).frequencies == [3.5, 5.5]
for ndim=[2, 3]
for tti=[true, false]
test_limit_m(ndim, tti)
end
end
# Test model
for ndim=[2, 3]
for (tti, elas, visco) in [(false, false, false), (true, false, false), (false, true, false), (false, false, true)]
model = test_model(ndim; tti=tti, elas=elas, visco=visco)
# Default dt
modelPy = devito_model(model, Options())
@test isapprox(modelPy.critical_dt, calculate_dt(model))
@test get_dt(model) == calculate_dt(model)
@test isapprox(calculate_dt(model; dt=.5f0), .5f0)
# Input dt
modelPy = devito_model(model, Options(dt_comp=.5f0))
@test modelPy.critical_dt == .5f0
# Verify nt
srcGeometry = example_src_geometry()
recGeometry = example_rec_geometry(cut=true)
nt1 = get_computational_nt(srcGeometry, recGeometry, model)
nt2 = get_computational_nt(srcGeometry, model)
nt3 = get_computational_nt(srcGeometry, recGeometry, model; dt=1f0)
nt4 = get_computational_nt(srcGeometry, model; dt=1f0)
dtComp = calculate_dt(model)
@test all(nt1 .== length(0:dtComp:(dtComp*ceil(1000f0/dtComp))))
@test all(nt1 .== nt2)
@test all(nt3 .== 1001)
@test all(nt4 .== 1001)
end
end
end
end | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 1621 | # Test backward compatibility
### Model
nsrc = 2
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
q, srcGeometry, recGeometry = setup_geom(model; nsrc=nsrc)
dt = srcGeometry.dt[1]
nt = srcGeometry.nt[1]
nrec = length(recGeometry.xloc[1])
@testset "Backward compatibility" begin
@timeit TIMEROUTPUT "Backward compatibility" begin
info = Info(prod(model.n), nt, nsrc)
@test_logs (:warn, "Info is deprecated and will be removed in future versions") Info(prod(model.G.n), nt, nsrc)
@test_logs (:warn, "judiModeling(info::Info, ar...; kw...) is deprecated, use judiModeling(ar...; kw...)") judiModeling(info, model)
@test_logs (:warn, "judiModeling(info::Info, ar...; kw...) is deprecated, use judiModeling(ar...; kw...)") judiModeling(info, model; options=Options())
@test_logs (:warn, "judiProjection(info::Info, ar...; kw...) is deprecated, use judiProjection(ar...; kw...)") judiProjection(info, recGeometry)
@test_logs (:warn, "judiWavefield(info::Info, ar...; kw...) is deprecated, use judiWavefield(ar...; kw...)") judiWavefield(info, dt, nsrc, randn(nt, model.G.n...))
@test_logs (:warn, "Deprecated model.n, use size(model)") model.n
@test_logs (:warn, "Deprecated model.d, use spacing(model)") model.d
@test_logs (:warn, "Deprecated model.o, use origin(model)") model.o
@test_logs (:warn, "Deprecated model.nb, use nbl(model)") model.nb
@test_throws ArgumentError judiRHS(info, recGeometry, randn(Float32, nt, nrec))
@test_throws ArgumentError judiLRWF(info, nsrc, randn(nt))
end
end | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 6475 | # Unit tests for judiComposite
# Mathias Louboutin ([email protected])
# July 2021
# number of sources/receivers
nsrc = 2
nrec = 120
ns = 251
ftol = 1f-6
@testset "judiVStack Unit Tests with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiVStack (nsrc=$(nsrc))" begin
# set up judiVector from array
n = (10, 10) # (x,y,z) or (x,z)
dsize = (nsrc*nrec*ns, 1)
rec_geometry = example_rec_geometry(nsrc=nsrc, nrec=nrec)
data = randn(Float32, ns, nrec)
d_obs = judiVector(rec_geometry, data)
w0 = judiWeights([randn(Float32,n) for i = 1:nsrc])
# Composite objs
c1 = [d_obs; w0]
c1_b = deepcopy(c1)
c1_z = similar(c1)
c2 = [w0; d_obs]
c2_b = deepcopy(c2)
@test firstindex(c1) == 1
@test lastindex(c1) == 2
@test isapprox(length(c1), length(d_obs) + length(w0))
@test eltype(c1) == Float32
@test isfinite(c1)
@test isapprox(c1[1], c1.components[1])
@test isapprox(c1.components[1], d_obs)
@test isapprox(c2.components[2], d_obs)
@test isapprox(c2.components[1], w0)
@test isapprox(c1.components[2], w0)
@test isapprox(c1.components[1], c1_b.components[1])
@test isapprox(c1.components[2], c1_b.components[2])
@test isapprox(c2.components[1], c2_b.components[1])
@test isapprox(c2.components[2], c2_b.components[2])
@test size(c1, 1) == length(d_obs) + length(w0)
@test size(c2, 1) == length(d_obs) + length(w0)
@test size(c1, 2) == 1
@test size(c2, 2) == 1
# Transpose
c1_a = transpose(c1)
@test size(c1_a, 1) == 1
@test size(c1_a, 2) == length(d_obs) + length(w0)
@test isapprox(c1_a.components[1],d_obs)
@test isapprox(c1_a.components[2], w0)
# Adjoint
c1_a = adjoint(c1)
@test size(c1_a, 1) == 1
@test size(c1_a, 2) == length(d_obs) + length(w0)
@test isapprox(c1_a.components[1], d_obs)
@test isapprox(c1_a.components[2], w0)
# Conj
c1_a = conj(c1)
@test size(c1_a, 2) == 1
@test size(c1_a, 1) == length(d_obs) + length(w0)
@test isapprox(c1_a.components[1], d_obs)
@test isapprox(c1_a.components[2], w0)
# Test arithithmetic
u = [d_obs; w0]
v = [2f0 * d_obs; w0 + 1f0]
w = [d_obs + 1f0; 2f0 * w0]
a = .5f0 + rand(Float32)
b = .5f0 + rand(Float32)
@test isapprox(u + (v + w), (u + v) + w; rtol=ftol)
@test isapprox(2f0*u, 2f0.*u; rtol=ftol)
@test isapprox(u + v, v + u; rtol=ftol)
@test isapprox(u, u + 0; rtol=ftol)
@test iszero(norm(u + u*(-1)))
@test isapprox(-u, -1f0 * u; rtol=ftol)
@test isapprox(a .* (b .* u), (a * b) .* u; rtol=ftol)
@test isapprox(u, u .* 1; rtol=ftol)
@test isapprox(a .* (u + v), a .* u + a .* v; rtol=1f-5)
@test isapprox((a + b) .* v, a .* v + b .* v; rtol=1f-5)
# Test the norm
u_scale = deepcopy(u)
@test isapprox(norm(u_scale, 2), sqrt(norm(d_obs, 2)^2 + norm(w0, 2)^2))
@test isapprox(norm(u_scale, 2), sqrt(dot(u_scale, u_scale)))
@test isapprox(norm(u_scale, 1), norm(d_obs, 1) + norm(w0, 1))
@test isapprox(norm(u_scale, Inf), max(norm(d_obs, Inf), norm(w0, Inf)))
@test isapprox(norm(u_scale - 1f0, 1), norm(u_scale .- 1f0, 1))
@test isapprox(norm(1f0 - u_scale, 1), norm(1f0 .- u_scale, 1))
@test isapprox(norm(u_scale/2f0, 1), norm(u_scale, 1)/2f0)
# Test broadcasting
u_scale = deepcopy(u)
v_scale = deepcopy(v)
u_scale .*= 2f0
@test isapprox(u_scale, 2f0 * u)
v_scale .+= 2f0
@test isapprox(v_scale, 2f0 + v)
u_scale ./= 2f0
@test isapprox(u_scale, u)
u_scale .= 2f0 .* u_scale .+ v_scale
@test isapprox(u_scale, 2f0 * u + (2f0 + v))
u_scale .= u .+ v
@test isapprox(u_scale, u + v)
u_scale .= u .- v
@test isapprox(u_scale, u - v)
u_scale .= u .* v
@test isapprox(u_scale[1], u[1].*v[1])
u_scale .= u ./ v
@test isapprox(u_scale[1], u[1]./v[1])
# Test multi-vstack
u1 = [u; 2f0*d_obs]
u2 = [3f0*d_obs; u]
@test size(u2) == size(u1)
@test size(u2, 1) == u.m + length(d_obs)
@test isapprox(u1.components[1], d_obs)
@test isapprox(u1.components[2], w0)
@test isapprox(u1.components[3], 2f0*d_obs)
@test isapprox(u2.components[1], 3f0*d_obs)
@test isapprox(u2.components[2], d_obs)
@test isapprox(u2.components[3], w0)
v1 = [u; 2f0 * w0]
v2 = [3f0 * w0; u]
@test size(v2) == size(v1)
@test size(v2, 1) == u.m + length(w0)
@test isapprox(v1.components[1], d_obs)
@test isapprox(v1.components[2], w0)
@test isapprox(v1.components[3], 2f0*w0)
@test isapprox(v2.components[1], 3f0*w0)
@test isapprox(v2.components[2], d_obs)
@test isapprox(v2.components[3], w0)
w1 = [c1; 2f0.*c2]
w2 = [c2./2f0; c1]
@test size(w1) == size(w2)
@test size(w2, 1) == c1.m + c2.m
@test isapprox(w1.components[1], d_obs)
@test isapprox(w1.components[2], w0)
@test isapprox(w1.components[3], 2f0*w0)
@test isapprox(w1.components[4], 2f0*d_obs)
@test isapprox(w2.components[1], w0 / 2f0)
@test isapprox(w2.components[2], d_obs / 2f0)
@test isapprox(w2.components[3], d_obs)
@test isapprox(w2.components[4], w0)
@test isapprox(w2.components[1], w0 / 2f0)
@test isapprox(w2.components[2], d_obs / 2f0)
@test isapprox(w2.components[3], d_obs)
@test isapprox(w2.components[4], w0)
# Test joDirac pertains judiWeights structure
I = joDirac(nsrc*prod(n),DDT=Float32,RDT=Float32)
@test isapprox(I*w0, w0)
lambda = randn(Float32)
@test isapprox(lambda*I*w0, lambda*w0)
@test isapprox(I'*w0, w0)
@test isapprox((lambda*I)'*w0, lambda * w0)
# Test Forward and Adjoint joCoreBlock * judiVStack
J = joOnes(nsrc*prod(n),DDT=Float32,RDT=Float32)
a = [I;J]*w0
b = [w0; J*w0]
@test isapprox(a[1], b[1])
@test isapprox(a[2:end], b[2:end])
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 10358 | # Unit tests for JUDI Geometry structure
# Philipp Witte ([email protected])
# May 2018
#
# Mathias Louboutin, [email protected]
# Updated July 2020
datapath = joinpath(dirname(pathof(JUDI)))*"/../data/"
@testset "Geometry Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "Geometry (nsrc=$(nsrc))" begin
# Constructor if nt is not passed
xsrc = convertToCell(range(100f0, stop=1100f0, length=2)[1:nsrc])
ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc))
zsrc = convertToCell(range(20f0, stop=20f0, length=nsrc))
# Error handling
@test_throws JUDI.GeometryException Geometry(xsrc, ysrc, zsrc; dt=.75f0, t=70f0)
@test_throws JUDI.GeometryException Geometry(xsrc, ysrc, zsrc)
# Geometry for testing
geometry = Geometry(xsrc, ysrc, zsrc; dt=2f0, t=1000f0)
geometry_t = Geometry(xsrc, ysrc, zsrc; dt=2, t=1000)
@test geometry_t == geometry
@test isa(geometry.xloc, Vector{Array{Float32,1}})
@test isa(geometry.yloc, Vector{Array{Float32,1}})
@test isa(geometry.zloc, Vector{Array{Float32,1}})
@test isa(geometry.nt, Vector{Int})
@test isa(geometry.dt, Vector{Float32})
@test isa(geometry.t, Vector{Float32})
@test isa(geometry.t0, Vector{Float32})
@test isa(geometry.taxis, Vector{<:StepRangeLen{Float32}})
# Constructor if coordinates are not passed as a cell arrays
xsrc = range(100f0, stop=1100f0, length=2)[1:nsrc]
ysrc = range(0f0, stop=0f0, length=nsrc)
zsrc = range(20f0, stop=20f0, length=nsrc)
geometry = Geometry(xsrc, ysrc, zsrc; dt=4f0, t=1000f0, nsrc=nsrc)
@test isa(geometry.xloc, Vector{Array{Float32,1}})
@test isa(geometry.yloc, Vector{Array{Float32,1}})
@test isa(geometry.zloc, Vector{Array{Float32,1}})
@test isa(geometry.nt, Vector{Int})
@test isa(geometry.dt, Vector{Float32})
@test isa(geometry.t, Vector{Float32})
@test isa(geometry.t0, Vector{Float32})
@test isa(geometry.taxis, Vector{<:StepRangeLen{Float32}})
# Set up source geometry object from in-core data container
block = segy_read(datapath*"unit_test_shot_records_$(nsrc).segy"; warn_user=false)
src_geometry = Geometry(block; key="source", segy_depth_key="SourceSurfaceElevation")
rec_geometry = Geometry(block; key="receiver", segy_depth_key="RecGroupElevation")
@test isa(src_geometry, GeometryIC{Float32})
@test isa(rec_geometry, GeometryIC{Float32})
@test isequal(get_header(block, "SourceSurfaceElevation")[1], src_geometry.zloc[1][1])
@test isequal(get_header(block, "RecGroupElevation")[1], rec_geometry.zloc[1][1])
@test isequal(get_header(block, "SourceX")[1], src_geometry.xloc[1][1])
@test isequal(get_header(block, "GroupX")[1], rec_geometry.xloc[1][1])
# Set up geometry summary from out-of-core data container
container = segy_scan(datapath, "unit_test_shot_records_$(nsrc)", ["GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"])
src_geometry = Geometry(container; key="source", segy_depth_key="SourceSurfaceElevation")
rec_geometry = Geometry(container; key="receiver", segy_depth_key="RecGroupElevation")
@test isa(src_geometry, GeometryOOC{Float32})
@test isa(rec_geometry, GeometryOOC{Float32})
@test isequal(src_geometry.key, "source")
@test isequal(rec_geometry.key, "receiver")
@test isequal(src_geometry.segy_depth_key, "SourceSurfaceElevation")
@test isequal(rec_geometry.segy_depth_key, "RecGroupElevation")
@test isequal(prod(size(block.data)), sum(rec_geometry.nrec .* rec_geometry.nt))
# Set up geometry summary from out-of-core data container passed as cell array
container_cell = Array{SegyIO.SeisCon}(undef, nsrc)
for j=1:nsrc
container_cell[j] = split(container, j)
end
src_geometry = Geometry(container_cell; key="source", segy_depth_key="SourceSurfaceElevation")
rec_geometry = Geometry(container_cell; key="receiver", segy_depth_key="RecGroupElevation")
@test isa(src_geometry, GeometryOOC{Float32})
@test isa(rec_geometry, GeometryOOC{Float32})
@test isequal(src_geometry.key, "source")
@test isequal(rec_geometry.key, "receiver")
@test isequal(src_geometry.segy_depth_key, "SourceSurfaceElevation")
@test isequal(rec_geometry.segy_depth_key, "RecGroupElevation")
@test isequal(prod(size(block.data)), sum(rec_geometry.nrec .* rec_geometry.nt))
# Load geometry from out-of-core Geometry container
src_geometry_ic = Geometry(src_geometry)
rec_geometry_ic = Geometry(rec_geometry)
@test isa(src_geometry_ic, GeometryIC{Float32})
@test isa(rec_geometry_ic, GeometryIC{Float32})
@test isequal(get_header(block, "SourceSurfaceElevation")[1], src_geometry_ic.zloc[1][1])
@test isequal(get_header(block, "RecGroupElevation")[1], rec_geometry_ic.zloc[1][1])
@test isequal(get_header(block, "SourceX")[1], src_geometry_ic.xloc[1][1])
@test isequal(get_header(block, "GroupX")[1], rec_geometry_ic.xloc[1][1])
# Subsample in-core geometry structure
src_geometry_sub = subsample(src_geometry_ic, 1)
@test isa(src_geometry_sub, GeometryIC{Float32})
@test isequal(length(src_geometry_sub.xloc), 1)
src_geometry_sub = subsample(src_geometry_ic, 1:1)
@test isa(src_geometry_sub, GeometryIC{Float32})
@test isequal(length(src_geometry_sub.xloc), 1)
inds = nsrc > 1 ? (1:nsrc) : 1
src_geometry_sub = subsample(src_geometry_ic, inds)
@test isa(src_geometry_sub, GeometryIC{Float32})
@test isequal(length(src_geometry_sub.xloc), nsrc)
# Subsample out-of-core geometry structure
src_geometry_sub = subsample(src_geometry, 1)
@test isa(src_geometry_sub, GeometryOOC{Float32})
@test isequal(length(src_geometry_sub.dt), 1)
@test isequal(src_geometry_sub.segy_depth_key, "SourceSurfaceElevation")
src_geometry_sub = subsample(src_geometry, inds)
@test isa(src_geometry_sub, GeometryOOC{Float32})
@test isequal(length(src_geometry_sub.dt), nsrc)
@test isequal(src_geometry_sub.segy_depth_key, "SourceSurfaceElevation")
# Compare if geometries match
@test compareGeometry(src_geometry_ic, src_geometry_ic)
@test compareGeometry(rec_geometry_ic, rec_geometry_ic)
@test compareGeometry(src_geometry, src_geometry)
@test compareGeometry(rec_geometry, rec_geometry)
# test supershot geometry
if nsrc == 2
# same geom
geometry = Geometry(xsrc, ysrc, zsrc; dt=4f0, t=1000f0, nsrc=nsrc)
sgeom = super_shot_geometry(geometry)
@test get_nsrc(sgeom) == 1
@test sgeom.xloc[1] == xsrc
@test sgeom.yloc[1] == ysrc
@test sgeom.zloc[1] == zsrc
@test sgeom.dt[1] == 4f0
@test sgeom.t[1] == 1000f0
# now make two geoms
xall = collect(1f0:4f0)
geometry = Geometry([[1f0, 2f0], [.5f0, 1.75f0]], [[0f0], [0f0]], [[0f0, 0f0], [0f0, 0f0]]; dt=4f0, t=1000f0)
sgeom = super_shot_geometry(geometry)
@test get_nsrc(sgeom) == 1
@test sgeom.xloc[1] == [.5f0, 1f0, 1.75f0, 2f0]
@test sgeom.yloc[1] == [0f0]
@test sgeom.zloc[1] == zeros(Float32, 4)
@test sgeom.dt[1] == 4f0
@test sgeom.t[1] == 1000f0
end
end
@timeit TIMEROUTPUT "Geometry t0/t" begin
# Test resample with different t0 and t
# Same size but shited
data1, data2 = rand(Float32, 10, 1), rand(Float32, 10, 1)
taxis1 = 1f0:10f0
taxis2 = 2f0:11f0
g1 = Geometry([0f0], [0f0], [0f0], taxis1)
g2 = Geometry([0f0], [0f0], [0f0], [taxis2])
d1r, d2r = JUDI._maybe_pad_t0(data1, g1, data2, g2)
@test d1r[end] == 0
@test d2r[1] == 0
@test size(d1r) == size(d2r) == (11, 1)
# Same t0 different t
data1, data2 = rand(Float32, 11, 1), rand(Float32, 12, 1)
taxis1 = 0f0:10f0
taxis2 = 0f0:11f0
g1 = Geometry([0f0], [0f0], [0f0], taxis1)
g2 = Geometry([0f0], [0f0], [0f0], [taxis2])
d1r, d2r = JUDI._maybe_pad_t0(data1, g1, data2, g2)
@test d1r[end] == 0
@test size(d1r) == size(d2r) == (12, 1)
# Different t0 same t
data1, data2 = rand(Float32, 11, 1), rand(Float32, 12, 1)
taxis1 = 1f0:11f0
taxis2 = 0f0:11f0
g1 = Geometry([0f0], [0f0], [0f0], taxis1)
g2 = Geometry([0f0], [0f0], [0f0], [taxis2])
d1r, d2r = JUDI._maybe_pad_t0(data1, g1, data2, g2)
@test d1r[1] == 0
@test size(d1r) == size(d2r) == (12, 1)
# Different t0 and t
data1, data2 = rand(Float32, 10, 1), rand(Float32, 12, 1)
taxis1 = 1f0:10f0
taxis2 = 0f0:11f0
g1 = Geometry([0f0], [0f0], [0f0], taxis1)
g2 = Geometry([0f0], [0f0], [0f0], [taxis2])
d1r, d2r = JUDI._maybe_pad_t0(data1, g1, data2, g2)
@test d1r[end] == 0
@test d1r[1] == 0
@test size(d1r) == size(d2r) == (12, 1)
# Different t0 and t not contained in one
data1, data2 = rand(Float32, 10, 1), rand(Float32, 12, 1)
taxis1 = -1f0:8f0
taxis2 = 0f0:11f0
g1 = Geometry([0f0], [0f0], [0f0], taxis1)
g2 = Geometry([0f0], [0f0], [0f0], [taxis2])
d1r, d2r = JUDI._maybe_pad_t0(data1, g1, data2, g2)
@test all(d1r[11:13] .== 0)
@test d2r[1] == 0
@test size(d1r) == size(d2r) == (13, 1)
# Segy handling
block = SeisBlock(randn(Float32, 10, 1))
set_header!(block, "nsOrig", 12)
set_header!(block, "ns", 10)
set_header!(block, "dt", 1000)
set_header!(block, "dtOrig", 1000)
segy_write("test.segy", block)
block = segy_read("test.segy")
g = Geometry(block)
@test g.nt[1] == 10
@test g.dt[1] == 1f0
@test g.t0[1] == 2f0
@test g.t[1] == 11
rm("test.segy")
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 5166 | # 2D LS-RTM gradient test with 1 source
# The receiver positions and the source wavelets are the same for each of the four experiments.
# Author: Philipp Witte, [email protected]
# Date: January 2017
#
# Mathias Louboutin, [email protected]
# Updated July 2020
#
# Ziyi Yin, [email protected]
# Updated July 2021
### Model
model, model0, dm = setup_model(tti, viscoacoustic, 4)
q, srcGeometry, recGeometry, f0 = setup_geom(model)
dt = srcGeometry.dt[1]
opt = Options(sum_padding=true, free_surface=fs, f0=f0)
F = judiModeling(model, srcGeometry, recGeometry; options=opt)
F0 = judiModeling(model0, srcGeometry, recGeometry; options=opt)
J = judiJacobian(F0, q)
# Observed data
dobs = F*q
dobs0 = F0*q
dm1 = 2f0*circshift(dm, 10)
ftol = (tti | fs | viscoacoustic) ? 1f-1 : 1f-2
###################################################################################################
@testset "FWI gradient test with $(nlayer) layers and tti $(tti) and viscoacoustic $(viscoacoustic) and freesurface $(fs)" begin
# FWI gradient and function value for m0
Jm0, grad = fwi_objective(model0, q, dobs; options=opt)
# Check get same misfit as l2 misifit on forward data
Jm01 = .5f0 * norm(F(model0)*q - dobs)^2
@test Jm0 ≈ Jm01
grad_test(x-> .5f0*norm(F(;m=x)*q - dobs)^2, model0.m , dm, grad)
end
###################################################################################################
@testset "FWI preconditionners test with $(nlayer) layers and tti $(tti) and viscoacoustic $(viscoacoustic) and freesurface $(fs)" begin
Ml = judiDataMute(q.geometry, dobs.geometry; t0=.2)
Ml2 = judiTimeDerivative(dobs.geometry, 1)
Jm0, grad = fwi_objective(model0, q, dobs; options=opt, data_precon=Ml)
ghand = J'*Ml*(F0*q - dobs)
@test isapprox(norm(grad - ghand)/norm(grad+ghand), 0f0; rtol=0, atol=ftol)
Jm0, grad = fwi_objective(model0, q, dobs; options=opt, data_precon=[Ml, Ml2])
ghand = J'*Ml*Ml2*(F0*q - dobs)
@test isapprox(norm(grad - ghand)/norm(grad+ghand), 0f0; rtol=0, atol=ftol)
Jm0, grad = fwi_objective(model0, q, dobs; options=opt, data_precon=Ml*Ml2)
@test isapprox(norm(grad - ghand)/norm(grad+ghand), 0f0; rtol=0, atol=ftol)
end
@testset "LSRTM preconditionners test with $(nlayer) layers and tti $(tti) and viscoacoustic $(viscoacoustic) and freesurface $(fs)" begin
Mr = judiTopmute(model0; taperwidth=10)
Ml = judiDataMute(q.geometry, dobs.geometry)
Ml2 = judiTimeDerivative(dobs.geometry, 1)
Mr2 = judiIllumination(J)
Jm0, grad = lsrtm_objective(model0, q, dobs, dm; options=opt, data_precon=Ml, model_precon=Mr)
ghand = J'*Ml*(J*Mr*dm - dobs)
@test isapprox(norm(grad - ghand)/norm(grad+ghand), 0f0; rtol=0, atol=ftol)
Jm0, grad = lsrtm_objective(model0, q, dobs, dm; options=opt, data_precon=[Ml, Ml2], model_precon=[Mr, Mr2])
ghand = J'*Ml*Ml2*(J*Mr2*Mr*dm - dobs)
@test isapprox(norm(grad - ghand)/norm(grad+ghand), 0f0; rtol=0, atol=ftol)
Jm0, grad = lsrtm_objective(model0, q, dobs, dm; options=opt, data_precon=Ml*Ml2, model_precon=Mr*Mr2)
@test isapprox(norm(grad - ghand)/norm(grad+ghand), 0f0; rtol=0, atol=ftol)
end
###################################################################################################
@testset "LSRTM gradient test with $(nlayer) layers, tti $(tti), viscoacoustic $(viscoacoustic). freesurface $(fs), nlind $(nlind)" for nlind=[true, false]
@timeit TIMEROUTPUT "LSRTM gradient test, nlind=$(nlind)" begin
# LS-RTM gradient and function value for m0
dD = nlind ? (dobs - dobs0) : dobs
Jm0, grad = lsrtm_objective(model0, q, dD, dm; options=opt, nlind=nlind)
# Gradient test
grad_test(x-> lsrtm_objective(model0, q, dD, x;options=opt, nlind=nlind)[1], dm, dm1, grad)
# test that with zero dm we get the same as fwi_objective for residual
if nlind
Jls, gradls = @single_threaded lsrtm_objective(model0, q, dobs, 0f0.*dm; options=opt, nlind=true)
Jfwi, gradfwi = @single_threaded fwi_objective(model0, q, dobs; options=opt)
@test isapprox(Jls, Jfwi; rtol=0f0, atol=0f0)
@test isapprox(gradls, gradfwi; rtol=0f0, atol=0f0)
end
end
end
# Test if lsrtm_objective produces the same value/gradient as is done by the correct algebra
@testset "LSRTM gradient linear algebra test with $(nlayer) layers, tti $(tti), viscoacoustic $(viscoacoustic), freesurface $(fs)" begin
# Draw a random case to avoid long CI.
ic = rand(["isic", "fwi", "as"])
printstyled("LSRTM validity with dft, IC=$(ic)\n", color=:blue)
@timeit TIMEROUTPUT "LSRTM validity with dft, IC=$(ic)" begin
ftol = fs ? 1f-3 : 5f-4
freq = [[2.5, 4.5],[3.5, 5.5],[10.0, 15.0], [30.0, 32.0]]
J.options.free_surface = fs
J.options.IC = ic
J.options.frequencies = freq
d_res = dobs0 + J*dm1 - dobs
Jm0_1 = 0.5f0 * norm(d_res)^2f0
grad_1 = @single_threaded J'*d_res
opt = J.options
Jm0, grad = @single_threaded lsrtm_objective(model0, q, dobs, dm1; options=opt, nlind=true)
Jm01, grad1 = @single_threaded lsrtm_objective(model0, q, dobs-dobs0, dm1; options=opt, nlind=false)
@test isapprox(grad, grad_1; rtol=ftol)
@test isapprox(Jm0, Jm0_1; rtol=ftol)
@test isapprox(grad, grad1; rtol=ftol)
@test isapprox(Jm0, Jm01; rtol=ftol)
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 4256 | using JLD2
@testset "Test issue #83" begin
@timeit TIMEROUTPUT "Issue 83" begin
nxrec = 120
nyrec = 100
xrec = range(50f0, stop=1150f0, length=nxrec)
yrec = range(100f0, stop=900f0, length=nyrec)
zrec = 50f0
# Construct 3D grid from basis vectors
(x3d, y3d, z3d) = setup_3D_grid(xrec, yrec, zrec)
for k=1:nyrec
s = (k - 1) * nxrec + 1
e = s + nxrec - 1
@test all(x3d[k:nxrec:end] .== xrec[k])
@test all(y3d[s:e] .== yrec[k])
end
@test all(z3d .== zrec)
end
end
@testset "Test backward comp issue" begin
@timeit TIMEROUTPUT "Backward compatibility" begin
datapath = joinpath(dirname(pathof(JUDI)))*"/../data/"
# Load file with old judiVector type and julia <1.7 StepRangeLen
@load "$(datapath)backward_comp.jld" dat
@show dat.geometry
@test typeof(dat) == judiVector{Float32, Matrix{Float32}}
@test typeof(dat.geometry) == GeometryIC{Float32}
@test typeof(dat.geometry.xloc) == Vector{Vector{Float32}}
end
end
@testset "Test issue #130" begin
@timeit TIMEROUTPUT "Issue 130" begin
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
q, srcGeometry, recGeometry, f0 = setup_geom(model; nsrc=1)
opt = Options(save_data_to_disk=true, file_path=pwd(), # path to files
file_name="test_wri") # saves files as file_name_xsrc_ysrc.segy
F = judiModeling(model, srcGeometry, recGeometry; options=opt)
dobs = F*q
f, gm, gy = twri_objective(model0, q, dobs, nothing; options=opt, optionswri=TWRIOptions(params=:all))
@test typeof(f) <: Number
@test typeof(gy) <: judiVector
@test typeof(gm) <: PhysicalParameter
end
end
@testset "Test issue #140" begin
@timeit TIMEROUTPUT "Issue 140" begin
n = (120, 100) # (x,y,z) or (x,z)
d = (10., 10.)
o = (0., 0.)
v = ones(Float32,n) .+ 0.5f0
v[:,Int(round(end/2)):end] .= 3.5f0
rho = ones(Float32,n) ;
rho[1,1] = .09;# error but .1 makes rho go to b and then it is happy
m = (1f0 ./ v).^2
nsrc = 2 # number of sources
model = Model(n, d, o, m;rho=rho)
q, srcGeometry, recGeometry, f0 = setup_geom(model; nsrc=nsrc)
F = judiModeling(model, srcGeometry, recGeometry)
dobs = F*q
@test ~isnan(norm(dobs))
end
end
@testset "Tests limit_m issue 156" begin
@timeit TIMEROUTPUT "Issue 156" begin
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
q, srcGeometry, recGeometry, f0 = setup_geom(model; nsrc=1)
# Restrict rec to middle of the model
recGeometry.xloc[1] .= range(11*model.d[1], stop=(model.n[1] - 12)*model.d[1],
length=length(recGeometry.xloc[1]))
# Data
F = judiModeling(model, srcGeometry, recGeometry)
dobs = F*q
# Run gradient and check output size
opt = Options(limit_m=true, buffer_size=0f0)
F0 = judiModeling(model0, srcGeometry, recGeometry; options=opt)
# fwi wrapper
g_ap = JUDI.multi_src_fg(model0, q , dobs, nothing, opt)[2]
@test g_ap.n == (model.n .- (22, 0))
@test g_ap.o[1] == model.d[1]*11
g1 = fwi_objective(model0, q, dobs; options=opt)[2]
@test g1.n == model.n
@test norm(g1.data[1:10, :]) == 0
@test norm(g1.data[end-10:end, :]) == 0
# lsrtm wrapper
g_ap = JUDI.multi_src_fg(model0, q , dobs, dm, opt, lin=true)[2]
@test g_ap.n == (model.n .- (22, 0))
@test g_ap.o[1] == model.d[1]*11
g2 = lsrtm_objective(model0, q, dobs, dm; options=opt)[2]
@test g2.n == model.n
@test norm(g2.data[1:10, :]) == 0
@test norm(g2.data[end-10:end, :]) == 0
# Lin op
Jp = judiJacobian(F0, q)'
g_ap = JUDI.propagate(Jp, dobs)
@test g_ap.n == (model.n .- (22, 0))
@test g_ap.o[1] == model.d[1]*11
g3 = Jp * dobs
@test g3.n == model.n
@test norm(g3.data[1:10, :]) == 0
@test norm(g3.data[end-10:end, :]) == 0
end
end | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 2645 | # Example for basic 2D modeling:
# The receiver positions and the source wavelets are the same for each of the four experiments.
# Author: Philipp Witte, [email protected]
# Date: January 2017
#
# Author: Mathias Louboutin, [email protected]
# Update Date: July 2020
### Model
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
q, srcGeometry, recGeometry, f0 = setup_geom(model; nsrc=2)
dt = srcGeometry.dt[1]
m0 = model0.m
######################## WITH DENSITY ############################################
@testset "Jacobian test with $(nlayer) layers and tti $(tti) and viscoacoustic $(viscoacoustic) freesurface $(fs)" begin
@timeit TIMEROUTPUT "Jacobian generic tests" begin
# Write shots as segy files to disk
opt = Options(sum_padding=true, dt_comp=dt, free_surface=fs, f0=f0)
# Setup operators
F = judiModeling(model, srcGeometry, recGeometry; options=opt)
F0 = judiModeling(model0, srcGeometry, recGeometry; options=opt)
J = judiJacobian(F0, q)
# Linear modeling
dobs = F*q
dD = J*dm
dlin0 = J*(0f0.*dm)
@test norm(dlin0) == 0
@test isapprox(dD, J*vec(dm.data); rtol=1f-6)
# Gradient test
grad_test(x-> F(;m=x)*q, m0, dm, dD; data=true)
# Check return_array returns correct size with zero dm and multiple shots
J.options.return_array = true
dlin0v = J*(0f0.*dm)
@test length(dlin0) == length(vec(dlin0))
end
end
### Extended source
@testset "Extended source Jacobian test with $(nlayer) layers and tti $(tti) and freesurface $(fs)" for ra=[true, false]
@timeit TIMEROUTPUT "Extended source Jacobian return_array=$(ra)" begin
opt = Options(sum_padding=true, dt_comp=dt, return_array=ra, free_surface=fs, f0=f0)
DT = ra ? Vector{Float32} : judiVector{Float32, Matrix{Float32}}
QT = ra ? Vector{Float32} : judiWeights{Float32}
# Setup operators
Pr = judiProjection(recGeometry)
F = judiModeling(model; options=opt)
F0 = judiModeling(model0; options=opt)
Pw = judiLRWF(q.geometry.dt, q.data)
# Combined operators
A = Pr*F*adjoint(Pw)
A0 = Pr*F0*adjoint(Pw)
# Extended source weights
w = judiWeights(randn(Float32, model0.n); nsrc=2)
J = judiJacobian(A0, w)
# Nonlinear modeling
dobs = A0*w
wa = adjoint(A0)*dobs
@test typeof(dobs) == DT
@test typeof(wa) == QT
dD = J*dm
@test typeof(dD) == DT
# Gradient test
grad_test(x-> A(;m=x)*w, m0, dm, dD; data=true)
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 19896 | # Unit tests for judiVector
# Philipp Witte ([email protected])
# May 2018
#
# Mathias Louboutin, [email protected]
# Updated July 2020
datapath = joinpath(dirname(pathof(JUDI)))*"/../data/"
# number of sources/receivers
nrec = 120
ftol = 1e-6
################################################# test constructors ####################################################
@testset "judiVector Unit Tests with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiVector (nsrc=$(nsrc))" begin
# set up judiVector from array
dsize = (nsrc,)
rec_geometry = example_rec_geometry(nsrc=nsrc, nrec=nrec)
data = randn(Float32, rec_geometry.nt[1], nrec)
d_obs = judiVector(rec_geometry, data)
@test typeof(d_obs) == judiVector{Float32, Array{Float32, 2}}
@test isequal(process_input_data(d_obs, rec_geometry), d_obs)
@test isequal(process_input_data(d_obs), d_obs.data)
@test isequal(d_obs.nsrc, nsrc)
@test isequal(typeof(d_obs.data), Array{Array{Float32, 2}, 1})
@test isequal(typeof(d_obs.geometry), GeometryIC{Float32})
@test iszero(norm(d_obs.data[1] - d_obs.data[end]))
@test isequal(size(d_obs), dsize)
# set up judiVector from cell array
data = Array{Array{Float32, 2}, 1}(undef, nsrc)
for j=1:nsrc
data[j] = randn(Float32, rec_geometry.nt[1], nrec)
end
d_obs = judiVector(rec_geometry, data)
@test isequal(d_obs.nsrc, nsrc)
@test isequal(typeof(d_obs.data), Array{Array{Float32, 2}, 1})
@test isequal(typeof(d_obs.geometry), GeometryIC{Float32})
@test iszero(norm(d_obs.data - d_obs.data))
@test isequal(size(d_obs), dsize)
@test isapprox(convert_to_array(d_obs), vcat([vec(d) for d in data]...); rtol=ftol)
# contructor for in-core data container
block = segy_read(datapath*"unit_test_shot_records_$(nsrc).segy"; warn_user=false)
d_block = judiVector(block; segy_depth_key="RecGroupElevation")
dsize = (nsrc,)
@test isequal(d_block.nsrc, nsrc)
@test isequal(typeof(d_block.data), Array{Array{Float32, 2}, 1})
@test isequal(typeof(d_block.geometry), GeometryIC{Float32})
@test isequal(size(d_block), dsize)
# contructor for in-core data container and given geometry
rec_geometry = Geometry(block; key="receiver", segy_depth_key="RecGroupElevation")
d_block = judiVector(rec_geometry, block)
@test isequal(d_block.nsrc, nsrc)
@test isequal(typeof(d_block.data), Array{Array{Float32, 2}, 1})
@test isequal(typeof(d_block.geometry), GeometryIC{Float32})
@test isequal(rec_geometry, d_block.geometry)
@test isequal(size(d_block), dsize)
# contructor for out-of-core data container from single container
container = segy_scan(datapath, "unit_test_shot_records_$(nsrc)", ["GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"])
d_cont = judiVector(container; segy_depth_key="RecGroupElevation")
@test typeof(d_cont) == judiVector{Float32, SeisCon}
@test isequal(d_cont.nsrc, nsrc)
@test isequal(typeof(d_cont.data), Array{SegyIO.SeisCon, 1})
@test isequal(typeof(d_cont.geometry), GeometryOOC{Float32})
@test isequal(size(d_cont), dsize)
# contructor for single out-of-core data container and given geometry
d_cont = judiVector(rec_geometry, container)
@test isequal(d_cont.nsrc, nsrc)
@test isequal(typeof(d_cont.data), Array{SegyIO.SeisCon, 1})
@test isequal(typeof(d_cont.geometry), GeometryIC{Float32})
@test isequal(rec_geometry, d_cont.geometry)
@test isequal(size(d_cont), dsize)
# contructor for out-of-core data container from cell array of containers
container_cell = Array{SegyIO.SeisCon}(undef, nsrc)
for j=1:nsrc
container_cell[j] = split(container, j)
end
d_cont = judiVector(container_cell; segy_depth_key="RecGroupElevation")
@test isequal(d_cont.nsrc, nsrc)
@test isequal(typeof(d_cont.data), Array{SegyIO.SeisCon, 1})
@test isequal(typeof(d_cont.geometry), GeometryOOC{Float32})
@test isequal(size(d_cont), dsize)
# contructor for out-of-core data container from cell array of containers and given geometry
d_cont = judiVector(rec_geometry, container_cell)
@test isequal(d_cont.nsrc, nsrc)
@test isequal(typeof(d_cont.data), Array{SegyIO.SeisCon, 1})
@test isequal(typeof(d_cont.geometry), GeometryIC{Float32})
@test isequal(rec_geometry, d_cont.geometry)
@test isequal(size(d_cont), dsize)
########## Test t0 #######
d_contt0 = judiVector(container; segy_depth_key="RecGroupElevation", t0=50f0)
@test all(get_t0(d_contt0.geometry) .== 50f0)
@test all(get_t(d_contt0.geometry) .== (get_t(d_cont.geometry) .+ 50f0))
@test all(get_nt(d_contt0.geometry) .== get_nt(d_cont.geometry))
# Time resampling adds back the t0 for consistent modeling
data0 = get_data(d_contt0[1]).data[1]
newdt = div(get_dt(d_contt0.geometry, 1), 2)
dinterp = time_resample(data0, Geometry(d_contt0.geometry[1]), newdt)
@test size(dinterp, 1) == 2*size(data0, 1) - 1
if nsrc == 2
@test_throws JUDI.judiMultiSourceException JUDI._maybe_pad_t0(d_cont, d_contt0)
end
_, dinterpt0 = JUDI._maybe_pad_t0(d_cont[1], d_contt0[1])
@test size(dinterpt0, 1) == size(data0, 1) + div(50f0, get_dt(d_contt0.geometry, 1))
#################################################### test operations ###################################################
# conj, transpose, adjoint
@test isequal(size(d_obs), size(conj(d_obs)))
@test isequal(size(d_block), size(conj(d_block)))
@test isequal(size(d_cont), size(conj(d_cont)))
@test isequal(reverse(size(d_obs)), size(transpose(d_obs)))
@test isequal(reverse(size(d_block)), size(transpose(d_block)))
@test isequal(reverse(size(d_cont)), size(transpose(d_cont)))
@test isequal(reverse(size(d_obs)), size(adjoint(d_obs)))
@test isequal(reverse(size(d_block)), size(adjoint(d_block)))
@test isequal(reverse(size(d_cont)), size(adjoint(d_cont)))
# +, -, *, /
@test iszero(norm(2*d_obs - (d_obs + d_obs)))
@test iszero(norm(d_obs - (d_obs + d_obs)/2))
@test iszero(norm(2*d_block - (d_block + d_block)))
@test iszero(norm(d_block - (d_block + d_block)/2))
# lmul!, rmul!, ldiv!, rdiv!
data_ones = Array{Array{Float32, 2}, 1}(undef, nsrc)
for j=1:nsrc
data_ones[j] = ones(Float32, rec_geometry.nt[1], nrec)
end
d1 = judiVector(rec_geometry, data_ones)
lmul!(2f0, d1)
@test all([all(d1.data[i] .== 2f0) for i = 1:d1.nsrc])
rmul!(d1, 3f0)
@test all([all(d1.data[i] .== 6f0) for i = 1:d1.nsrc])
ldiv!(2f0,d1)
@test all([all(d1.data[i] .== 3f0) for i = 1:d1.nsrc])
rdiv!(d1, 3f0)
@test all([all(d1.data[i] .== 1f0) for i = 1:d1.nsrc])
# vcat
d_vcat = [d_block; d_block]
@test isequal(length(d_vcat), 2*length(d_block))
@test isequal(d_vcat.nsrc, 2*d_block.nsrc)
@test isequal(d_vcat.geometry.xloc[1], d_block.geometry.xloc[1])
# dot, norm, abs
@test isapprox(norm(d_block), sqrt(dot(d_block, d_block)))
@test isapprox(norm(d_cont), sqrt(dot(d_cont, d_cont)))
@test isapprox(abs.(d_block.data[1]), abs(d_block).data[1]) # need to add iterate for JUDI vector
# vector space axioms
u = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
v = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
w = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
a = .5f0 + rand(Float32)
b = .5f0 + rand(Float32)
@test isapprox(u + (v + w), (u + v) + w; rtol=ftol)
@test isapprox(u + v, v + u; rtol=ftol)
@test isapprox(-u, -1f0 * u; rtol=ftol)
@test iszero(norm(u + u*(-1)))
@test isapprox(a .* (b .* u), (a * b) .* u; rtol=ftol)
@test isapprox(u, u .* 1; rtol=ftol)
@test isapprox(a .* (u + v), a .* u + a .* v; rtol=1f-5)
@test isapprox((a + b) .* v, a .* v + b .* v; rtol=1f-5)
# subsamling
d_block_sub = d_block[1]
@test isequal(d_block_sub.nsrc, 1)
@test isequal(typeof(d_block_sub.geometry), GeometryIC{Float32})
@test isequal(typeof(d_block_sub.data), Array{Array{Float32, 2}, 1})
inds = nsrc > 1 ? (1:nsrc) : 1
d_block_sub = d_block[inds]
@test isequal(d_block_sub.nsrc, nsrc)
@test isequal(typeof(d_block_sub.geometry), GeometryIC{Float32})
@test isequal(typeof(d_block_sub.data), Array{Array{Float32, 2}, 1})
d_cont = judiVector(container_cell; segy_depth_key="RecGroupElevation")
d_cont_sub = d_cont[1]
@test isequal(d_cont_sub.nsrc, 1)
@test isequal(typeof(d_cont_sub.geometry), GeometryOOC{Float32})
@test isequal(typeof(d_cont_sub.data), Array{SegyIO.SeisCon, 1})
d_cont_sub = d_cont[inds]
@test isequal(d_cont_sub.nsrc, nsrc)
@test isequal(typeof(d_cont_sub.geometry), GeometryOOC{Float32})
@test isequal(typeof(d_cont_sub.data), Array{SegyIO.SeisCon, 1})
# Conversion to SegyIO.Block
src_geometry = Geometry(block; key="source", segy_depth_key="SourceSurfaceElevation")
wavelet = randn(Float32, src_geometry.nt[1])
q = judiVector(src_geometry, wavelet)
block_out = judiVector_to_SeisBlock(d_block, q; source_depth_key="SourceSurfaceElevation", receiver_depth_key="RecGroupElevation")
@test isapprox(block.data, block_out.data)
@test isapprox(get_header(block, "SourceX"), get_header(block_out, "SourceX"); rtol=1f-6)
@test isapprox(get_header(block, "GroupX"), get_header(block_out, "GroupX"); rtol=1f-6)
@test isapprox(get_header(block, "RecGroupElevation"), get_header(block_out, "RecGroupElevation"); rtol=1f-6)
@test isequal(get_header(block, "ns"), get_header(block_out, "ns"))
@test isequal(get_header(block, "dt"), get_header(block_out, "dt"))
block_obs = judiVector_to_SeisBlock(d_obs, q; source_depth_key="SourceSurfaceElevation", receiver_depth_key="RecGroupElevation")
d_obs1 = judiVector(block_obs)
@test isapprox(d_obs1.data, d_obs.data)
block_q = src_to_SeisBlock(q)
q_1 = judiVector(block_q)
for i = 1:nsrc
vec(q_1.data[i]) == vec(q.data[i])
end
# scale
a = .5f0 + rand(Float32)
d_scale = deepcopy(d_block)
# Test norms
d_ones = judiVector(rec_geometry, 2f0 .* ones(Float32, rec_geometry.nt[1], nrec))
@test isapprox(norm(d_ones, 2), sqrt(rec_geometry.dt[1]*nsrc*rec_geometry.nt[1]*nrec*4))
@test isapprox(norm(d_ones, 1), rec_geometry.dt[1]*nsrc*rec_geometry.nt[1]*nrec*2)
@test isapprox(norm(d_ones, Inf), 2)
# Indexing and utilities
@test isfinite(d_obs)
@test ndims(judiVector{Float32, Array{Float32, 2}}) == 1
@test isapprox(sum(d_obs), sum(sum([vec(d) for d in d_obs])))
d0 = copy(d_obs)
fill!(d0, 0f0)
@test iszero(norm(d0))
@test firstindex(d_obs) == 1
@test lastindex(d_obs) == nsrc
@test axes(d_obs) == (Base.OneTo(nsrc),)
@test ndims(d_obs) == 1
d0[1] = d_obs.data[1]
@test isapprox(d0.data[1], d_obs.data[1])
# broadcast multiplication
u = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
v = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
u_scale = deepcopy(u)
v_scale = deepcopy(v)
u_scale .*= 2f0
@test isapprox(u_scale, 2f0 * u; rtol=ftol)
v_scale .+= 2f0
@test isapprox(v_scale, 2f0 + v; rtol=ftol)
u_scale ./= 2f0
@test isapprox(u_scale, u; rtol=ftol)
u_scale .= 2f0 .* u_scale .+ v_scale
@test isapprox(u_scale, 2f0 * u + 2f0 + v; rtol=ftol)
u_scale .= u .+ v
@test isapprox(u_scale, u + v)
u_scale .= u .- v
@test isapprox(u_scale, u - v)
u_scale .= u .* v
@test isapprox(u_scale.data[1], u.data[1].*v.data[1])
u_scale .= u ./ v
@test isapprox(u_scale.data[1], u.data[1]./v.data[1])
# broadcast identity
u = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
v = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
u_id = deepcopy(u)
v_id = deepcopy(v)
broadcast!(identity, u_id, v_id) # copy v_id into u_id
@test isapprox(v, v_id)
@test isapprox(v, u_id)
# in-place overwrite
u = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
v = judiVector(rec_geometry, randn(Float32, rec_geometry.nt[1], nrec))
u_cp = deepcopy(u)
v_cp = deepcopy(v)
copy!(v_cp, u_cp)
@test isapprox(u, u_cp)
@test isapprox(u, v_cp)
# similar
d_zero = similar(d_block, Float32)
@test isequal(d_zero.geometry, d_block.geometry)
@test isequal(size(d_zero), size(d_block))
# retrieve out-of-core data
d_get = get_data(d_cont)
@test isapprox(d_block, d_get)
# Test copies/similar
w1 = deepcopy(d_obs)
@test isapprox(w1, d_obs)
w1 = similar(d_obs)
@test w1.nsrc == d_obs.nsrc
w1 .= d_obs
@test w1.nsrc == d_obs.nsrc
@test isapprox(w1.data, d_obs.data)
# Test transducer
q = judiVector(Geometry(0f0, 0f0, 0f0; dt=2, t=1000), randn(Float32, 501))
tr = transducer(q, (10, 10), 30, pi/2)
@test length(tr.geometry.xloc[1]) == 22
@test tr.geometry.xloc[1][1:11] == range(-30., 30., length=11)
@test tr.geometry.xloc[1][12:end] == range(-30., 30., length=11)
@test all(tr.geometry.zloc[1][12:end] .== -10f0)
@test all(tr.geometry.zloc[1][1:11] .== 0f0)
q = judiVector(Geometry(0f0, 0f0, 0f0; dt=2, t=1000), randn(Float32, 501))
tr = transducer(q, (10, 10), 30, pi)
@test length(tr.geometry.xloc[1]) == 22
@test isapprox(tr.geometry.zloc[1][1:11], range(30., -30., length=11); atol=1f-14, rtol=1f-14)
@test isapprox(tr.geometry.zloc[1][12:end], range(30., -30., length=11); atol=1f-14, rtol=1f-14)
@test isapprox(tr.geometry.xloc[1][12:end], -10f0*ones(11); atol=1f-14, rtol=1f-14)
@test isapprox(tr.geometry.xloc[1][1:11], zeros(11); atol=1f-14, rtol=1f-14)
# Test exception if number of samples in geometry doesn't match ns of data
@test_throws JUDI.judiMultiSourceException judiVector(Geometry(0f0, 0f0, 0f0; dt=2, t=1000), randn(Float32, 10))
@test_throws JUDI.judiMultiSourceException judiVector(rec_geometry, randn(Float32, 10))
# Test integral & derivative
refarray = Array{Array{Float32, 2}, 1}(undef, nsrc)
for j=1:nsrc
refarray[j] = randn(Float32, rec_geometry.nt[1], nrec)
end
d_orig = judiVector(rec_geometry, refarray)
dt = rec_geometry.dt[1]
d_cumsum = cumsum(d_orig)
for i = 1:d_orig.nsrc
@test isapprox(dt * cumsum(refarray[i],dims=1), d_cumsum.data[i])
end
d_diff = diff(d_orig)
for i = 1:d_orig.nsrc
@test isapprox(1/dt * refarray[i][1,:], d_diff.data[i][1,:])
@test isapprox(d_diff.data[i][2:end,:], 1/dt * diff(refarray[i],dims=1))
end
@test isapprox(cumsum(d_orig,dims=1),cumsum(d_orig))
@test isapprox(diff(d_orig,dims=1),diff(d_orig))
d_cumsum_rec = cumsum(d_orig,dims=2)
for i = 1:d_orig.nsrc
@test isapprox(cumsum(refarray[i],dims=2), d_cumsum_rec.data[i])
end
d_diff_rec = diff(d_orig,dims=2)
for i = 1:d_orig.nsrc
@test isapprox(refarray[i][:,1], d_diff_rec.data[i][:,1])
@test isapprox(d_diff_rec.data[i][:,2:end], diff(refarray[i],dims=2))
end
# test simsources with fixed rec geom
if nsrc == 2
dic = judiVector(rec_geometry, refarray)
for jvec in [dic, d_obs, d_cont]
for nsim=1:3
M1 = randn(Float32, nsim, 2)
ds = M1 * jvec
@test ds.nsrc == nsim
for s=1:nsim
@test ds.data[s] ≈ mapreduce((x, y)->x*y, +, M1[s,:], get_data(jvec).data)
end
gtest = Geometry(jvec.geometry[1])
@test all(ds.geometry[i] == gtest for i=1:nsim)
end
end
# test simsources with "marine" rec geom
refarray = randn(Float32, 251, 2)
dic = judiVector(example_src_geometry(), [refarray[:, 1:1], refarray[:, 2:2]])
for nsim=1:3
M1 = randn(Float32, nsim, 2)
ds = M1 * dic
@test ds.nsrc == nsim
@test all(ds.geometry.nrec .== 2)
for s=1:nsim
@test ds.data[s] ≈ hcat(M1[s,1]*refarray[:, 1],M1[s, 2]*refarray[:, 2])
end
@test ds.geometry[1].xloc[1][1] == dic.geometry[1].xloc[1][1]
@test ds.geometry[1].xloc[1][2] == dic.geometry[2].xloc[1][1]
end
# Test "simsource" without reduction
refarray = randn(Float32, 251, 4)
dic = judiVector(example_src_geometry(), [refarray[:, 1:1], refarray[:, 2:2]])
M1 = randn(Float32, 2)
@test all(dic.geometry.nrec .== 1)
sd1 = simsource(M1, dic; reduction=nothing)
@test sd1.nsrc == 2
@test all(sd1.geometry.nrec .== 2)
@test norm(sd1.data[1][:, 2]) == 0
@test norm(sd1.data[2][:, 1]) == 0
@test isapprox(sd1.data[1][:, 1], M1[1]*refarray[:, 1])
@test isapprox(sd1.data[2][:, 2], M1[2]*refarray[:, 2])
dic = judiVector(example_rec_geometry(nsrc=2, nrec=2), [refarray[:, 1:2], refarray[:, 3:4]])
@test all(dic.geometry.nrec .== 2)
sd1 = simsource(M1[:], dic; reduction=nothing)
@test sd1.nsrc == 2
@test all(sd1.geometry.nrec .== 2)
@test isapprox(sd1.data[1], M1[1]*refarray[:, 1:2])
@test isapprox(sd1.data[2], M1[2]*refarray[:, 3:4])
# Test minimal supershot (only keep common coordinates)
geometry = Geometry([[1f0, 2f0], [.5f0, 2f0]], [[0f0], [0f0]], [[0f0, 0.25f0], [0f0, 0.25f0]];
dt=4f0, t=1000f0)
refarray = randn(Float32, 251, 4)
dic = judiVector(geometry, [refarray[:, 1:2], refarray[:, 3:4]])
M1 = randn(Float32, 1, 2)
dsim = simsource(M1, dic; minimal=true)
@test dsim.nsrc == 1
@test dsim.geometry.nrec[1] == 1
@test dsim.geometry.xloc[1] == [2f0]
@test dsim.geometry.zloc[1] == [.25f0]
# Check no common receiver errors
geometry = Geometry([[1f0, 2f0], [.5f0, 1.5f0]], [[0f0], [0f0]], [[0f0, 0.25f0], [0f0, 0.25f0]];
dt=4f0, t=1000f0)
refarray = randn(Float32, 251, 4)
dic = judiVector(geometry, [refarray[:, 1:2], refarray[:, 3:4]])
M1 = randn(Float32, 1, 2)
@test_throws ArgumentError dsim = simsource(M1, dic; minimal=true)
end
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 3348 | # Unit tests for judiWeights
# Rafael Orozco ([email protected])
# July 2021
#
# Mathias Louboutin, [email protected]
# Updated July 2020
# number of sources/receivers
nsrc = 1
nrec = 120
nx = 4
ny = 4
nt = 10
dt = 2f0
ftol = 1f-6
################################################# test constructors ####################################################
@testset "judiWavefield Unit Tests with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiWavefield (nsrc=$(nsrc))" begin
# Extended source weights
wf = Array{Array{Float32, 3}, 1}(undef, nsrc)
for j=1:nsrc
wf[j] = randn(Float32, nt, ny, ny)
end
w = judiWavefield(dt, wf)
w1 = similar(w) .+ 1f0
@test isequal(length(w.data), nsrc)
@test isequal(length(w.data), nsrc)
@test isequal(w.nsrc, nsrc)
@test isequal(typeof(w.data), Array{Array{Float32, 3}, 1})
@test isequal(size(w), (nsrc,))
@test isfinite(w)
#################################################### test operations ###################################################
# conj, transpose, adjoint
@test isequal(size(w), size(conj(w)))
@test isequal(reverse(size(w)), size(transpose(w)))
@test isequal(reverse(size(w)), size(adjoint(w)))
# +, -, *, /
@test iszero(norm(2*w - (w + w)))
@test iszero(norm(w - (w + w)/2))
@test iszero(norm(1f0 - w1))
@test isequal(norm(1f0 + w1, 1), 2f0 * norm(w1, 1))
#test unary operator
@test iszero(norm((-w) - (-1*w)))
# vcat
w_vcat = [w; w]
@test isequal(length(w_vcat), 2*length(w))
@test isequal(w_vcat.nsrc, 2*nsrc)
@test isequal(length(w_vcat.data), 2*nsrc)
# dot, norm, abs
@test isapprox(norm(w), sqrt(dot(w, w)))
@test isapprox(abs.(w.data[1]), abs(w).data[1])
# Test the norm
d_ones = judiWavefield(nsrc, dt, 2f0 .* ones(Float32, nt, nx, ny))
@test isapprox(norm(d_ones, 2), sqrt(dt*nt*nx*ny*4*nsrc))
@test isapprox(norm(d_ones, 1), dt*nt*nx*ny*2*nsrc)
@test isapprox(norm(d_ones, Inf), 2)
# vector space axioms
u = judiWavefield(nsrc, dt, randn(Float32, nt, nx, ny))
v = judiWavefield(nsrc, dt, randn(Float32, nt, nx, ny))
w = judiWavefield(nsrc, dt, randn(Float32, nt, nx, ny))
a = .5f0 + rand(Float32)
b = .5f0 + rand(Float32)
@test isapprox(u + (v + w), (u + v) + w; rtol=ftol)
@test isapprox(u + v, v + u; rtol=ftol)
@test isapprox(u, u + 0; rtol=ftol)
@test iszero(norm(u + u*(-1)))
@test isapprox(-u, (-1f0)*u; rtol=ftol)
@test isapprox(a .* (b .* u), (a * b) .* u; rtol=ftol)
@test isapprox(u, u .* 1; rtol=ftol)
@test isapprox(a .* (u + v), a .* u + a .* v; rtol=1f-5)
@test isapprox((a + b) .* v, a .* v + b.* v; rtol=1f-5)
# test fft
fw = fft(w)
fwf = ifft(fw)
@test isapprox(dot(fwf, w), real(dot(fw, fw)); rtol=ftol)
@test isapprox(fwf, w; rtol=ftol)
# SimSources
if nsrc == 2
M = randn(Float32, 1, nsrc)
sw = M*w
@test sw.nsrc == 1
@test isapprox(sw.data[1], M[1]*w.data[1] + M[2]*w.data[2])
end
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 6395 | # Unit tests for judiWeights
# Rafael Orozco ([email protected])
# July 2021
#
# Mathias Louboutin, [email protected]
# Updated July 2020
# number of sources/receivers
nrec = 120
weight_size_x = 4
weight_size_y = 4
ftol = 1f-6
################################################# test constructors ####################################################
@testset "judiWeights Unit Tests with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiWeights (nsrc=$(nsrc))" begin
# Extended source weights
w = judiWeights([randn(Float64,weight_size_x,weight_size_y) for i = 1:nsrc])
@test isequal(w.nsrc, nsrc)
@test isequal(typeof(w.weights), Array{Array{Float32,2},1})
@test isequal(size(w), (nsrc,))
@test isfinite(w)
w_cell = judiWeights(convertToCell([randn(Float32,weight_size_x,weight_size_y) for i = 1:nsrc]))
@test isequal(w_cell.nsrc, nsrc)
@test isequal(typeof(w_cell.weights), Array{Array{Float32, 2},1})
@test isequal(size(w_cell), (nsrc,))
@test isfinite(w_cell)
w_multi = judiWeights(randn(Float64,weight_size_x,weight_size_y); nsrc=3)
@test isequal(w_multi.nsrc, 3)
@test isequal(typeof(w_multi.weights), Array{Array{Float32, 2},1})
@test isequal(size(w_multi), (3,))
@test isfinite(w_multi)
@test isapprox(w_multi[1],w_multi[2])
@test isapprox(w_multi[2],w_multi[3])
I2 = ones(Float32, 1, nsrc*weight_size_x*weight_size_y)
w2 = I2*w
@test isapprox(w2[1], sum(sum(w.weights)))
I2 = joOnes(1, nsrc*weight_size_x*weight_size_y; DDT=Float32, RDT=Float32)
w2 = I2*w
@test isapprox(w2[1], sum(sum(w.weights)))
I3 = [I2;I2]
w3 = I3*w
@test isapprox(w3[1], sum(sum(w.weights)))
@test isapprox(w3[2], sum(sum(w.weights)))
#################################################### test operations ###################################################
# Indexing/reshape/...
@test isapprox(w[1].weights[1], w.weights[1])
@test isapprox(subsample(w, 1).weights[1], w.weights[1])
# conj, transpose, adjoint
@test isequal(size(w), size(conj(w)))
@test isequal(reverse(size(w)), size(transpose(w)))
@test isequal(reverse(size(w)), size(adjoint(w)))
# +, -, *, /
@test iszero(norm(2*w - (w + w)))
@test iszero(norm(w - (w + w)/2))
#test unary operator
@test iszero(norm((-w) - (-1*w)))
# Copies and iter utilities
w2 = copy(w)
@test isequal(w2.weights, w.weights)
@test isequal(w2.nsrc, w.nsrc)
@test firstindex(w) == 1
@test lastindex(w) == nsrc
@test ndims(w) == 1
w2 = similar(w, Float32, 1:nsrc)
@test isequal(w2.nsrc, w.nsrc)
@test firstindex(w) == 1
@test lastindex(w) == nsrc
@test ndims(w) == 1
w3 = similar(w, Float32, 1)
@test isequal(w3.nsrc, 1)
copy!(w2, w)
@test isequal(w2.weights, w.weights)
@test isequal(w2.nsrc, w.nsrc)
@test firstindex(w) == 1
@test lastindex(w) == nsrc
@test ndims(w) == 1
# vcat
w_vcat = [w; w]
@test isequal(length(w_vcat), 2*length(w))
@test isequal(w_vcat.nsrc, 2*w.nsrc)
# dot, norm, abs
@test isapprox(norm(w), sqrt(dot(w, w)))
@test isapprox(abs.(w.weights[1]), abs(w).weights[1])
# max, min
w_max_min = judiWeights([ones(Float32,weight_size_x,weight_size_y) for i = 1:nsrc])
w_max_min.weights[1][1,1] = 1f3
w_max_min.weights[nsrc][end,end] = 1f-3
@test isapprox(maximum(w_max_min),1f3)
@test isapprox(minimum(w_max_min),1f-3)
# Test the norm
d_ones = judiWeights(2f0 .* ones(Float32, weight_size_x, weight_size_y); nsrc=nsrc)
@test isapprox(norm(d_ones, 2), sqrt(nsrc*weight_size_x*weight_size_y*4))
@test isapprox(norm(d_ones, 2), sqrt(dot(d_ones, d_ones)))
@test isapprox(norm(d_ones, 1), nsrc*weight_size_x*weight_size_y*2)
@test isapprox(norm(d_ones, Inf), 2)
# vector space axioms
u = judiWeights(randn(Float32, weight_size_x, weight_size_y); nsrc=nsrc)
v = judiWeights(randn(Float32, weight_size_x, weight_size_y); nsrc=nsrc)
w = judiWeights(randn(Float32, weight_size_x, weight_size_y); nsrc=nsrc)
a = .5f0 + rand(Float32)
b = .5f0 + rand(Float32)
@test isapprox(u + (v + w), (u + v) + w; rtol=ftol)
@test isapprox(u + v, v + u; rtol=ftol)
@test isapprox(u, u + 0; rtol=ftol)
@test iszero(norm(u + u*(-1)))
@test isapprox(-u, (-1f0)*u; rtol=ftol)
@test isapprox(a .* (b .* u), (a * b) .* u; rtol=ftol)
@test isapprox(u, u .* 1; rtol=ftol)
@test isapprox(a .* (u + v), a .* u + a .* v; rtol=1f-5)
@test isapprox((a + b) .* v, a .* v + b.* v; rtol=1f-5)
# broadcast multiplication
u = judiWeights(randn(Float32, weight_size_x, weight_size_y); nsrc=nsrc)
v = judiWeights(randn(Float32, weight_size_x, weight_size_y); nsrc=nsrc)
u_scale = deepcopy(u)
v_scale = deepcopy(v)
u_scale .*= 2f0
@test isapprox(u_scale, 2f0 * u; rtol=ftol)
v_scale .+= 2f0
@test isapprox(v_scale, 2f0 + v; rtol=ftol)
u_scale ./= 2f0
@test isapprox(u_scale, u; rtol=ftol)
u_scale .= 2f0 .* u_scale .+ v_scale
@test isapprox(u_scale, 2f0 * u + 2f0 + v; rtol=ftol)
u_scale .= u .+ v
@test isapprox(u_scale, u + v)
u_scale .= u .- v
@test isapprox(u_scale, u - v)
u_scale .= u .* v
@test isapprox(u_scale.weights[1], u.weights[1].*v.weights[1])
u_scale .= u ./ v
@test isapprox(u_scale.weights[1], u.weights[1]./v.weights[1])
# Test copies/similar
w1 = deepcopy(w)
@test isapprox(w1, w)
w1 = similar(w)
@test w1.nsrc == w.nsrc
w1 .= w
@test w1.nsrc == w.nsrc
@test isapprox(w1.weights, w.weights)
# SimSources
if nsrc == 2
M = randn(Float32, 1, nsrc)
sw = M*w
@test sw.nsrc == 1
@test isapprox(sw.data[1], M[1]*w.data[1] + M[2]*w.data[2])
end
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 2626 | # Author: Mathias Louboutin, [email protected]
# Date: July 2020
@testset "Arithmetic test with $(nlayer) layers and tti $(tti) and freesurface $(fs)" begin
@timeit TIMEROUTPUT "LA Arithmetic tests" begin
# Test 2D find_water_bottom
dm2D = zeros(Float32,10,10)
dm2D[:,6:end] .= 1f0
@test find_water_bottom(dm2D) == 6*ones(Integer,10)
### Model
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
wb = find_water_bottom(model.m .- maximum(model.m))
q, srcGeometry, recGeometry = setup_geom(model)
dt = srcGeometry.dt[1]
nt = length(q.data[1])
nrec = length(recGeometry.xloc[1])
opt = Options(free_surface=fs)
opta = Options(free_surface=fs, return_array=true)
ftol = 5f-5
w = judiWeights(randn(Float32, model0.n))
# Build operators
Pr = judiProjection(recGeometry)
F = judiModeling(model; options=opt)
Fa = judiModeling(model; options=opta)
Ps = judiProjection(srcGeometry)
Pw = judiLRWF(q.geometry.dt[1], q.data[1])
J = judiJacobian(Pr*F*adjoint(Ps), q)
Jw = judiJacobian(Pr*F*adjoint(Pw), w)
dobs = Pr * F * Ps' * q
dobsa = Pr * Fa * Ps' * q
dobs_w = Pr * F * Pw' * w
dobs_wa = Pr * Fa * Pw' * w
dobs_out = 0f0 .* dobs
dobs_outa = 0f0 .* dobsa
dobs_w_out = 0f0 .* dobs_w
dobs_w_outa = 0f0 .* dobs_wa
q_out = 0f0 .* q
w_out = 0f0 .* w
# mul!
mul!(dobs_out, Pr * F * Ps', q)
mul!(dobs_w_out, Pr * F * Pw', w)
mul!(dobs_outa, Pr * Fa * Ps', q)
mul!(dobs_w_outa, Pr * Fa * Pw', w)
@test isapprox(dobs, dobs_out; rtol=ftol)
@test isapprox(dobsa, dobs_outa; rtol=ftol)
@test isapprox(dobs_w, dobs_w_out; rtol=ftol)
@test isapprox(dobs_wa, dobs_w_outa; rtol=ftol)
mul!(w_out, adjoint(Pr * F * Pw'), dobs_w_out)
w_a = adjoint(Pr * Fa * Pw') * dobs_w_out
w_outa = 0f0 .* w_a
mul!(w_outa, adjoint(Pr * Fa * Pw'), dobs_w_out)
@test isapprox(w_out, adjoint(Pr * F * Pw') * dobs_w_out; rtol=ftol)
@test isapprox(w_outa, w_a; rtol=ftol)
# jacobian
dm2 = copy(dm)
dmd = copy(dm2.data)
mul!(dm2, J', dobs)
mul!(dmd, J', dobs)
@test isapprox(dm2, J'*dobs)
@test isapprox(dmd, dm2)
mul!(dobs_out, J, dm)
mul!(dobs, J, dm.data)
dlin = J*dm
@test isapprox(dobs_out, dlin; rtol=ftol)
@test isapprox(dobs_out, dobs; rtol=ftol)
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 18210 | # Unit tests for JUDI linear operators (without PDE solves)
# Philipp Witte ([email protected])
# May 2018
#
# Mathias Louboutin, [email protected]
# Updated July 2020
# Tests
function test_transpose(Op)
@test isequal(size(Op), size(conj(Op)))
@test isequal(reverse(size(Op)), size(transpose(Op)))
@test isequal(reverse(size(Op)), size(adjoint(Op)))
@test isequal(reverse(size(Op)), size(transpose(Op)))
end
sub_dim(v::Vector{<:Integer}, i::Integer) = v[i:i]
sub_dim(v::Vector{<:Integer}, i::AbstractRange) = v[i]
sub_dim(v::Integer, i) = v
check_dims(v::Integer, vo::Integer) = v == vo
check_dims(v::Vector{<:Integer}, vo::Vector{<:Integer}) = v == vo
check_dims(v::Integer, vo::Vector{<:Integer}) = (length(vo) == 1 && v == vo[1])
check_dims(v::Vector{<:Integer}, vo::Integer) = (length(v) == 1 && v[1] == vo)
function test_getindex(Op, nsrc)
so = size(Op)
Op_sub = Op[1]
@test isequal(Op_sub.model, Op.model)
# Check sizes. Same dimensions but subsampled source
@test issetequal(keys(size(Op_sub)), keys(size(Op)))
s = size(Op_sub)
for i=1:2
for (k, v) ∈ s[i]
vo = k == :src ? 1 : so[i][k]
@test check_dims(v, sub_dim(vo, 1))
end
end
inds = 1:nsrc
Op_sub = Op[inds]
@test isequal(Op_sub.model, Op.model)
@test isequal(keys(size(Op_sub)), keys(size(Op)))
s = size(Op_sub)
for i=1:2
for (k, v) ∈ s[i]
vo = k == :src ? nsrc : so[i][k]
@test check_dims(v, sub_dim(vo, inds))
end
end
end
model = example_model()
########################################################## judiModeling ###############################################
@testset "judiModeling Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiModeling nsrc=$(nsrc)" begin
F_forward = judiModeling(model; options=Options())
F_adjoint = adjoint(F_forward)
test_transpose(F_forward)
@test isequal(size(F_forward)[1], time_space(model.n))
@test isequal(size(F_forward)[2], time_space(model.n))
@test isequal(size(F_adjoint)[1], time_space(model.n))
@test isequal(size(F_adjoint)[2], time_space(model.n))
@test issetequal(keys(size(F_forward)[1]), [:time, :x, :z])
@test issetequal(keys(size(F_forward)[2]), [:time, :x, :z])
# Time is uninitialized until first multiplication since there is no info
# on propagation time
@test issetequal(values(size(F_forward)[1]), [[0], model.n...])
@test Int(size(F_forward)[1]) == 0
# Update size for check
nt = 10
size(F_forward)[1][:time] = [nt for i=1:nsrc]
@test Int(size(F_forward)[1]) == nsrc * nt * prod(model.n)
@test adjoint(F_adjoint) == F_forward
@test isequal(typeof(F_forward), judiModeling{Float32, :forward, JUDI.IsoModel{Float32, 2}})
@test isequal(typeof(F_adjoint), judiModeling{Float32, :adjoint, JUDI.IsoModel{Float32, 2}})
# get index
test_getindex(F_forward, nsrc)
test_getindex(F_adjoint, nsrc)
# get index
test_getindex(F_forward, nsrc)
test_getindex(F_adjoint, nsrc)
if VERSION>v"1.2"
a0 = a = randn(Float32, model.n...)
for a in [a0, a0[:]]
F2 = F_forward(;m=a)
@test isapprox(F2.model.m, a0)
F2 = F_forward(Model(model.n, model.d, model.o, a))
@test isapprox(F2.model.m, a0)
@test F2.model.n == model.n
end
end
end
end
@testset "judiPointSourceModeling Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiPointSourceModeling nsrc=$(nsrc)" begin
src_geometry = example_src_geometry(nsrc=nsrc)
F_forward = judiModeling(model; options=Options()) * judiProjection(src_geometry)'
F_adjoint = adjoint(F_forward)
test_transpose(F_forward)
@test isequal(size(F_forward)[1], time_space_src(nsrc, src_geometry.nt, model.n))
@test isequal(size(F_forward)[2], rec_space(src_geometry))
@test isequal(size(F_adjoint)[1], rec_space(src_geometry))
@test isequal(size(F_adjoint)[2], time_space_src(nsrc, src_geometry.nt, model.n))
@test issetequal(keys(size(F_forward)[1]), (:src, :time, :x, :z))
@test issetequal(keys(size(F_forward)[2]), (:src, :time, :rec))
# With the composition, everything should be initialized
@test issetequal(values(size(F_forward)[1]), (nsrc, src_geometry.nt, model.n...))
@test issetequal(values(size(F_forward)[2]), (nsrc, src_geometry.nt, src_geometry.nrec))
@test Int(size(F_forward)[1]) == prod(model.n) * sum(src_geometry.nt)
@test Int(size(F_forward)[2]) == sum(src_geometry.nrec .* src_geometry.nt)
@test adjoint(F_adjoint) == F_forward
@test isequal(typeof(F_forward), judiPointSourceModeling{Float32, :forward})
@test isequal(typeof(F_adjoint), judiDataModeling{Float32, :adjoint})
# get index
test_getindex(F_forward, nsrc)
test_getindex(F_adjoint, nsrc)
# get index
test_getindex(F_forward, nsrc)
test_getindex(F_adjoint, nsrc)
if VERSION>v"1.2"
a0 = a = randn(Float32, model.n...)
for a in [a0, a0[:]]
F2 = F_forward(;m=a)
@test isapprox(F2.model.m, a0)
F2 = F_forward(Model(model.n, model.d, model.o, a))
@test isapprox(F2.model.m, a0)
@test F2.model.n == model.n
end
end
# SimSources
if nsrc == 2
M = randn(Float32, 1, nsrc)
Fs = M*F_forward
@test isequal(size(Fs)[1], time_space_src(1, src_geometry[1].nt, model.n))
@test isequal(size(Fs)[2], rec_space(example_rec_geometry(;nrec=2, nsrc=1)))
@test get_nsrc(Fs.qInjection) == 1
Fs = M*F_adjoint
@test isequal(size(Fs)[1], rec_space(example_rec_geometry(;nrec=2, nsrc=1)))
@test isequal(size(Fs)[2], time_space_src(1, src_geometry[1].nt, model.n))
@test get_nsrc(Fs.rInterpolation) == 1
end
end
end
@testset "judiDataModeling Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiDataModeling nsrc=$(nsrc)" begin
rec_geometry = example_rec_geometry(nsrc=nsrc)
F_forward = judiProjection(rec_geometry)*judiModeling(model; options=Options())
F_adjoint = adjoint(F_forward)
test_transpose(F_forward)
@test isequal(size(F_forward)[1], rec_space(rec_geometry))
@test isequal(size(F_forward)[2], time_space_src(nsrc, rec_geometry.nt, model.n))
@test isequal(size(F_adjoint)[1], time_space_src(nsrc, rec_geometry.nt, model.n))
# With the composition, everything should be initialized
@test issetequal(values(size(F_forward)[2]), (nsrc, rec_geometry.nt, model.n...))
@test issetequal(values(size(F_forward)[1]), (nsrc, rec_geometry.nt, rec_geometry.nrec))
@test Int(size(F_forward)[2]) == prod(model.n) * sum(rec_geometry.nt)
@test Int(size(F_forward)[1]) == sum(rec_geometry.nrec .* rec_geometry.nt)
@test adjoint(F_adjoint) == F_forward
@test isequal(typeof(F_forward), judiDataModeling{Float32, :forward})
@test isequal(typeof(F_adjoint), judiPointSourceModeling{Float32, :adjoint})
# get index
test_getindex(F_forward, nsrc)
test_getindex(F_adjoint, nsrc)
# get index
test_getindex(F_forward, nsrc)
test_getindex(F_adjoint, nsrc)
if VERSION>v"1.2"
a0 = a = randn(Float32, model.n...)
for a in [a0, a0[:]]
F2 = F_forward(;m=a)
@test isapprox(F2.model.m, a0)
F2 = F_forward(Model(model.n, model.d, model.o, a))
@test isapprox(F2.model.m, a0)
@test F2.model.n == model.n
end
end
# SimSources
if nsrc == 2
M = randn(Float32, 1, nsrc)
Fs = M*F_adjoint
@test isequal(size(Fs)[1], time_space_src(1, rec_geometry[1].nt, model.n))
@test isequal(size(Fs)[2], rec_space(rec_geometry[1]))
@test get_nsrc(Fs.qInjection) == 1
Fs = M*F_forward
@test isequal(size(Fs)[1], rec_space(rec_geometry[1]))
@test isequal(size(Fs)[2], time_space_src(1, rec_geometry[1].nt, model.n))
@test get_nsrc(Fs.rInterpolation) == 1
end
end
end
@testset "judiDataSourceModeling Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiDataSourceModeling nsrc=$(nsrc)" begin
rec_geometry = example_rec_geometry(nsrc=nsrc)
src_geometry = example_src_geometry(nsrc=nsrc)
F_forward = judiModeling(model, src_geometry, rec_geometry; options=Options())
F_adjoint = adjoint(F_forward)
test_transpose(F_forward)
@test isequal(size(F_forward)[2], rec_space(src_geometry))
@test isequal(size(F_forward)[1], rec_space(rec_geometry))
@test isequal(size(F_adjoint)[2], rec_space(rec_geometry))
@test isequal(size(F_adjoint)[1], rec_space(src_geometry))
@test issetequal(keys(size(F_forward)[1]), (:src, :time, :rec))
@test issetequal(keys(size(F_forward)[2]), (:src, :time, :rec))
# With the composition, everything should be initialized
@test issetequal(values(size(F_forward)[2]), (nsrc, src_geometry.nt, src_geometry.nrec))
@test issetequal(values(size(F_forward)[1]), (nsrc, rec_geometry.nt, rec_geometry.nrec))
@test Int(size(F_forward)[2]) == sum(src_geometry.nrec .* src_geometry.nt)
@test Int(size(F_forward)[1]) == sum(rec_geometry.nrec .* rec_geometry.nt)
@test adjoint(F_adjoint) == F_forward
@test isequal(typeof(F_forward), judiDataSourceModeling{Float32, :forward})
@test isequal(typeof(F_adjoint), judiDataSourceModeling{Float32, :adjoint})
# get index
test_getindex(F_forward, nsrc)
test_getindex(F_adjoint, nsrc)
# get index
test_getindex(F_forward, nsrc)
test_getindex(F_adjoint, nsrc)
if VERSION>v"1.2"
a0 = a = randn(Float32, model.n...)
for a in [a0, a0[:]]
F2 = F_forward(;m=a)
@test isapprox(F2.model.m, a0)
F2 = F_forward(Model(model.n, model.d, model.o, a))
@test isapprox(F2.model.m, a0)
@test F2.model.n == model.n
end
end
# SimSources
if nsrc == 2
M = randn(Float32, 1, nsrc)
Fs = M*F_forward
@test isequal(size(Fs)[1], rec_space(rec_geometry[1]))
@test isequal(size(Fs)[2], rec_space(example_rec_geometry(;nrec=2, nsrc=1)))
@test get_nsrc(Fs.qInjection) == 1
Fs = M*F_adjoint
@test isequal(size(Fs)[1], rec_space(example_rec_geometry(;nrec=2, nsrc=1)))
@test isequal(size(Fs)[2], rec_space(rec_geometry[1]))
@test get_nsrc(Fs.rInterpolation) == 1
end
end
end
######################################################## judiJacobian ##################################################
@testset "judiJacobian Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiJacobian nsrc=$(nsrc)" begin
rec_geometry = example_rec_geometry(nsrc=nsrc)
src_geometry = example_src_geometry(nsrc=nsrc)
wavelet = randn(Float32, src_geometry.nt[1])
PDE = judiModeling(model, src_geometry, rec_geometry; options=Options())
q = judiVector(src_geometry, wavelet)
J = judiJacobian(PDE, q)
# Check sizes
@test isequal(size(J)[1], rec_space(rec_geometry))
@test isequal(size(J)[2], space(model.n))
@test issetequal(keys(size(J)[2]), (:x, :z))
@test Int(size(J)[2]) == prod(model.n)
@test Int(size(J)[1]) == sum(rec_geometry.nrec .* rec_geometry.nt)
@test isequal(typeof(J), judiJacobian{Float32, :born, typeof(PDE)})
@test isequal(J.F.rInterpolation.geometry, rec_geometry)
@test isequal(J.F.qInjection.geometry, src_geometry)
@test isequal(J.q.geometry, src_geometry)
@test all(isequal(J.q.data[i], wavelet) for i=1:nsrc)
test_transpose(J)
# get index
J_sub = J[1]
@test isequal(J_sub.model, J.model)
@test isequal(J_sub.F, J.F[1])
@test isequal(J_sub.q, q[1])
inds = nsrc > 1 ? (1:nsrc) : 1
J_sub = J[inds]
@test isequal(J_sub.model, J.model)
@test isequal(J_sub.F, J.F[inds])
@test isequal(J_sub.q, q[inds])
inds = nsrc > 1 ? (1:nsrc) : 1
J_sub = J[inds]
@test isequal(J_sub.model, J.model)
@test isequal(size(J_sub), size(J))
# SimSources
if nsrc == 2
M = randn(Float32, 1, nsrc)
Fs = M*J
@test isequal(size(Fs)[1], rec_space(rec_geometry[1]))
@test isequal(size(Fs)[2], space(model.n))
@test Fs.q.nsrc == 1
end
end
end
######################################################## judiJacobian ##################################################
@testset "judiJacobianExtended Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiJacobianExtended nsrc=$(nsrc)" begin
rec_geometry = example_rec_geometry(nsrc=nsrc)
wavelet = randn(Float32, rec_geometry.nt[1])
# Setup operators
Pr = judiProjection(rec_geometry)
F = judiModeling(model)
Pw = judiLRWF(rec_geometry.dt, wavelet)
w = judiWeights(randn(Float32, model.n); nsrc=nsrc)
J = judiJacobian(Pr*F*Pw', w)
# Check sizes
@test isequal(size(J)[1], rec_space(rec_geometry))
@test isequal(size(J)[2], space(model.n))
@test issetequal(keys(size(J)[2]), (:x, :z))
@test Int(size(J)[2]) == prod(model.n)
@test Int(size(J)[1]) == sum(rec_geometry.nrec .* rec_geometry.nt)
rec_geometry = example_rec_geometry(nsrc=nsrc)
wavelet = randn(Float32, rec_geometry.nt[1])
# Setup operators
Pr = judiProjection(rec_geometry)
F = judiModeling(model)
Pw = judiLRWF(nsrc, rec_geometry.dt[1], wavelet)
w = judiWeights(randn(Float32, model.n); nsrc=nsrc)
PDE = Pr*F*Pw'
J = judiJacobian(PDE, w)
@test isequal(typeof(J), judiJacobian{Float32, :born, typeof(PDE)})
@test isequal(J.F.rInterpolation.geometry, rec_geometry)
for i=1:nsrc
@test isapprox(J.F.qInjection.wavelet[i], wavelet)
@test isapprox(J.q.data[i], w.data[i])
end
@test isequal(size(J)[2], space(model.n))
test_transpose(J)
# get index
J_sub = J[1]
@test isequal(J_sub.model, J.model)
@test isapprox(J_sub.q.weights[1], J.q.weights[1])
inds = 1:nsrc
J_sub = J[inds]
@test isequal(J_sub.model, J.model)
@test isapprox(J_sub.q.weights, J.q.weights[inds])
# Test Pw alone
P1 = subsample(Pw, 1)
@test isapprox(P1.wavelet, Pw[1].wavelet)
@test isapprox(conj(Pw).wavelet, Pw.wavelet)
@test size(conj(Pw)) == size(Pw)
@test isapprox(transpose(Pw).wavelet, Pw.wavelet)
end
end
####################################################### judiProjection #################################################
@testset "judiProjection Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiProjection nsrc=$(nsrc)" begin
rec_geometry = example_rec_geometry(nsrc=nsrc)
P = judiProjection(rec_geometry)
# Check sizes and that's it's unitialized since not combined with any propagator
@test size(P)[2] == time_space_src(get_nsrc(rec_geometry), rec_geometry.nt, 3)
@test size(P)[1] == rec_space(rec_geometry)
# Size is zero since un-initialized
@test Int(size(P)[2]) == 0
@test Int(size(P)[1]) == sum(rec_geometry.nrec .* rec_geometry.nt)
@test isequal(typeof(P), judiProjection{Float32})
@test isequal(P.geometry, rec_geometry)
Pr_sub = P[1]
@test isequal(get_nsrc(Pr_sub.geometry), 1)
@test get_nsrc(Pr_sub.geometry) == 1
inds = nsrc > 1 ? (1:nsrc) : 1
Pr_sub = P[inds]
@test isequal(Pr_sub.geometry, rec_geometry[inds])
@test get_nsrc(Pr_sub.geometry) == nsrc
# SimSources
if nsrc == 2
M = randn(Float32, 1, nsrc)
Fs = M*P
@test size(Fs)[2] == time_space_src(get_nsrc(rec_geometry[1]), rec_geometry[1].nt, 3)
@test size(Fs)[1] == rec_space(rec_geometry[1])
@test get_nsrc(Fs.geometry) == 1
end
end
end
@testset "judiLRWF Unit Test with $(nsrc) sources" for nsrc=[1, 2]
@timeit TIMEROUTPUT "judiLRWF nsrc=$(nsrc)" begin
src_geometry = example_src_geometry(nsrc=nsrc)
wavelet = randn(Float32, src_geometry.nt[1])
P = judiLRWF(src_geometry.dt, wavelet)
@test isequal(typeof(P), judiLRWF{Float32})
# Check sizes and that's it's unitialized since not combined with any propagator
@test size(P)[1] == space_src(nsrc)
@test size(P)[2] == time_space_src(nsrc, src_geometry.nt)
# Size is zero since un-initialized
@test Int(size(P)[1]) == 0
@test Int(size(P)[2]) == 0
for i=1:nsrc
@test isequal(P.wavelet[i], wavelet)
@test isequal(P.dt[i], src_geometry.dt[i])
end
@test length(P.wavelet) == nsrc
P_sub = P[1]
@test isequal(P_sub.wavelet[1], wavelet)
@test isequal(P_sub.dt[1], src_geometry.dt[1])
@test length(P_sub.wavelet) == 1
inds = nsrc > 1 ? (1:nsrc) : 1
Pr_sub = P[inds]
for i=1:nsrc
@test isequal(Pr_sub.wavelet[i], wavelet)
@test isequal(Pr_sub.dt[i], src_geometry.dt[i])
end
@test length(Pr_sub.wavelet) == nsrc
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 9833 | # Test linearity of sources
# Author: Philipp Witte, [email protected]
# Date: January 2017
#
# Mathias Louboutin, [email protected]
# Updated July 2020
### Model
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
q1, srcGeometry1, recGeometry, f0 = setup_geom(model)
srcGeometry2 = deepcopy(srcGeometry1)
srcGeometry2.xloc[:] .= .9*srcGeometry2.xloc[:]
srcGeometry2.zloc[:] .= .9*srcGeometry2.zloc[:]
dt = srcGeometry1.dt[1]
opt = Options(free_surface=fs, f0=f0)
ftol = 5f-5
####################### Modeling operators ##########################################
@testset "Linearity test with $(nlayer) layers and tti $(tti) and viscoacoustic $(viscoacoustic) and freesurface $(fs)" begin
@timeit TIMEROUTPUT "Linearity" begin
# Modeling operators
Pr = judiProjection(recGeometry)
Ps1 = judiProjection(srcGeometry1)
Ps2 = judiProjection(srcGeometry2)
F = judiModeling(model; options=opt)
q2 = judiVector(srcGeometry2,q1.data[1])
A1 = Pr*F*adjoint(Ps1)
A2 = Pr*F*adjoint(Ps2)
J = judiJacobian(A1, q1)
d1 = A1*q1
d2 = A2*q2
d3 = Pr*F*(adjoint(Ps1)*q1 + adjoint(Ps2)*q2)
d4 = Pr*F*(adjoint(Ps1)*q1 - adjoint(Ps2)*q2)
d5 = A1 * (2f0 * q1)
d6 = (2f0 * A1) * q1
q3 = adjoint(A1) * d1
q4 = adjoint(A1) * (2f0 * d1)
q5 = (2f0 * adjoint(A1)) * d1
# Test linearity F * (a + b) == F * a + F * b
println("Test linearity of F: F * (a + b) == F * a + F * b")
nd1 = norm(d3)
nd2 = norm(d1 + d2)
nd3 = norm(d3 - d1 - d2)/norm(d3)
@printf(" F * (a + b): %2.5e, F * a + F * b : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
nd1 = norm(d4)
nd2 = norm(d1 - d2)
nd3 = norm(d4 - d1 + d2)/norm(d4)
@printf(" F * (a - b): %2.5e, F * a - F * b : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
@test isapprox(d3, d1 + d2, rtol=ftol)
@test isapprox(d4, d1 - d2, rtol=ftol)
# Test linearity F a x == a F x
println("Test linearity of F: F * (a * b) == a * F * b")
nd1 = norm(2f0 * d1)
nd1_b = norm(d6)
nd2 = norm(d5)
nd3 = norm(2f0 * d1 - d5)/norm(d5)
nd4 = norm(d6 - d5)/norm(d5)
nm1 = norm(2f0 * q3)
nm1_b = norm(q5)
nm2 = norm(q4)
nm3 = norm(2f0 * q3 - q4)/norm(q4)
nm4 = norm(q5 - q4)/norm(q4)
@printf(" a (F x): %2.5e, F a x : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
@printf(" (a F) x: %2.5e, F a x : %2.5e, relative error : %2.5e \n", nd1_b, nd2, nd4)
@printf(" a (F' x): %2.5e, F' a x : %2.5e, relative error : %2.5e \n", nm1, nm2, nm3)
@printf(" (a F') x: %2.5e, F' a x : %2.5e, relative error : %2.5e \n", nm1_b, nm2, nm4)
@test isapprox(2f0 * d1, d5, rtol=ftol)
@test isapprox(2f0 * d1, d6, rtol=ftol)
@test isapprox(2f0 * q3, q4, rtol=ftol)
@test isapprox(2f0 * q3, q5, rtol=ftol)
# Test linearity J * (a + b) == J * a + J * b
dm2 = .5f0 * dm
dm2.data .= circshift(dm2.data, (0, 20))
lind = J * dm
lind2 = J * (2f0 .* dm)
lind3 = J * dm2
lind4 = J * (dm + dm2)
lind5 = J * (dm - dm2)
lind6 = (2f0 * J) * dm
println("Test linearity of J: J * (a + b) == J * a + J * b")
nd1 = norm(lind4)
nd2 = norm(lind + lind3)
nd3 = norm(lind4 - lind - lind3)/norm(lind4)
@printf(" J * (a + b): %2.5e, J * a + J * b : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
nd1 = norm(lind5)
nd2 = norm(lind - lind3)
nd3 = norm(lind5 - lind + lind3)/norm(lind5)
@printf(" J * (a - b): %2.5e, J * a - J * b : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
@test isapprox(lind4, lind + lind3, rtol=ftol)
@test isapprox(lind5, lind - lind3, rtol=ftol)
# Test linearity J a x == a J x
println("Test linearity of J: J * (a * b) == a * J * b")
nd1 = norm(2f0 * lind)
nd1_b = norm(lind6)
nd2 = norm(lind2)
nd3 = norm(2f0 * lind - lind2)/norm(lind2)
nd4 = norm(lind6 - lind2)/norm(lind2)
# Adjoint J
dma = adjoint(J) * d1
dmb = adjoint(J) * (2f0 * d1)
dmc = adjoint(J) * d2
dmd = adjoint(J) * (d1 + d2)
dme = adjoint(2f0 * J) * d1
nm1 = norm(2f0 * dma)
nm1_b = norm(dme)
nm2 = norm(dmb)
nm3 = norm(2f0*dma - dmb)/norm(dmb)
nm4 = norm(dme - dmb)/norm(dmb)
@printf(" a (J x): %2.5e, J a x : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
@printf(" (a J) x: %2.5e, J a x : %2.5e, relative error : %2.5e \n", nd1_b, nd2, nd4)
@printf(" a (J' x): %2.5e, J' a x : %2.5e, relative error : %2.5e \n", nm1, nm2, nm3)
@printf(" (a J') x: %2.5e, J' a x : %2.5e, relative error : %2.5e \n", nm1_b, nm2, nm4)
@test isapprox(2f0 * lind, lind2, rtol=ftol)
@test isapprox(2f0 * lind, lind6, rtol=ftol)
@test isapprox(2f0 * dma, dmb, rtol=ftol)
@test isapprox(2f0 * dma, dme, rtol=ftol)
end
end
####################### Extended source operators ##########################################
if tti
ftol = 5f-4
end
@testset "Extended source linearity test with $(nlayer) layers and tti $(tti) and freesurface $(fs)" begin
@timeit TIMEROUTPUT "Extended source Linearity" begin
# Modeling operators
Pr = judiProjection(recGeometry)
F = judiModeling(model; options=opt)
Pw = judiLRWF(q1.geometry.dt[1], q1.data[1])
A = Pr*F*adjoint(Pw)
Aa = adjoint(A)
# Extended source weights
w = randn(Float32, model0.n)
x = randn(Float32, model0.n)
w[:, 1] .= 0f0; w = vec(w)
x[:, 1] .= 0f0; x = vec(x)
J = judiJacobian(A, w)
d1 = A*w
d2 = A*x
d3 = A*(w+x)
d4 = A*(w-x)
d5 = A*(2f0 * w)
d6 = (2f0 * A) * w
q3 = Aa * d1
q4 = Aa * (2f0 * d1)
q5 = (2f0 * Aa) * d1
dm2 = .5f0 * dm
dm2.data .= circshift(dm2.data, (0, 20))
lind = J * dm
lind2 = J * (2f0 .* dm)
lind3 = J * dm2
lind4 = J * (dm + dm2)
lind5 = J * (dm - dm2)
lind6 = (2f0 * J) * dm
dma = adjoint(J) * d1
dmb = adjoint(J) * (2f0 * d1)
dmc = adjoint(J) * d2
dmd = adjoint(J) * (d1 + d2)
dme = adjoint(2f0 * J) * d1
# Test linearity F * (a + b) == F * a + F * b
println("Test linearity of F: F * (a + b) == F * a + F * b")
nd1 = norm(d3)
nd2 = norm(d1 + d2)
nd3 = norm(d3 - d1 - d2)/norm(d3)
@printf(" F * (a + b): %2.5e, F * a + F * b : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
nd1 = norm(d4)
nd2 = norm(d1 - d2)
nd3 = norm(d4 - d1 + d2)/norm(d4)
@printf(" F * (a - b): %2.5e, F * a - F * b : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
@test isapprox(d3, d1 + d2, rtol=ftol)
@test isapprox(d4, d1 - d2, rtol=ftol)
# Test linearity F a x == a F x
println("Test linearity of F: F * (a * b) == a * F * b")
nd1 = norm(2f0 * d1)
nd1_b = norm(d6)
nd2 = norm(d5)
nd3 = norm(2f0 * d1 - d5)/norm(d5)
nd4 = norm(d6 - d5)/norm(d5)
nm1 = norm(2f0 * q3)
nm1_b = norm(q5)
nm2 = norm(q4)
nm3 = norm(2f0 * q3 - q4)/norm(q4)
nm4 = norm(q5 - q4)/norm(q4)
@printf(" a (F x): %2.5e, F a x : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
@printf(" (a F) x: %2.5e, F a x : %2.5e, relative error : %2.5e \n", nd1_b, nd2, nd4)
@printf(" a (F' x): %2.5e, F' a x : %2.5e, relative error : %2.5e \n", nm1, nm2, nm3)
@printf(" (a F') x: %2.5e, F' a x : %2.5e, relative error : %2.5e \n", nm1_b, nm2, nm4)
@test isapprox(2f0 * d1, d5, rtol=ftol)
@test isapprox(2f0 * d1, d6, rtol=ftol)
@test isapprox(2f0 * q3, q4, rtol=ftol)
@test isapprox(2f0 * q3, q5, rtol=ftol)
# Test linearity J * (a + b) == J * a + J * b
println("Test linearity of J: J * (a + b) == J * a + J * b")
nd1 = norm(lind4)
nd2 = norm(lind + lind3)
nd3 = norm(lind4 - lind - lind3)/norm(lind4)
@printf(" J * (a + b): %2.5e, J * a + J * b : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
nd1 = norm(lind5)
nd2 = norm(lind - lind3)
nd3 = norm(lind5 - lind + lind3)/norm(lind5)
@printf(" J * (a - b): %2.5e, J * a - J * b : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
@test isapprox(lind4, lind + lind3, rtol=ftol)
@test isapprox(lind5, lind - lind3, rtol=ftol)
# Test linearity J a x == a J x
println("Test linearity of J: J * (a * b) == a * J * b")
nd1 = norm(2f0 * lind)
nd1_b = norm(lind6)
nd2 = norm(lind2)
nd3 = norm(2f0 * lind - lind2)/norm(lind2)
nd4 = norm(lind6 - lind2)/norm(lind2)
nm1 = norm(2f0 * dma)
nm1_b = norm(dme)
nm2 = norm(dmb)
nm3 = norm(2f0*dma - dmb)/norm(dmb)
nm4 = norm(dme - dmb)/norm(dmb)
@printf(" a (J x): %2.5e, J a x : %2.5e, relative error : %2.5e \n", nd1, nd2, nd3)
@printf(" (a J) x: %2.5e, J a x : %2.5e, relative error : %2.5e \n", nd1_b, nd2, nd4)
@printf(" a (J' x): %2.5e, J' a x : %2.5e, relative error : %2.5e \n", nm1, nm2, nm3)
@printf(" (a J') x: %2.5e, J' a x : %2.5e, relative error : %2.5e \n", nm1_b, nm2, nm4)
@test isapprox(2f0 * lind, lind2, rtol=ftol)
@test isapprox(2f0 * lind, lind6, rtol=ftol)
@test isapprox(2f0 * dma, dmb, rtol=ftol)
@test isapprox(2f0 * dma, dme, rtol=ftol)
end
end | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 4378 | # Test 2D modeling
# The receiver positions and the source wavelets are the same for each of the four experiments.
# Author: Philipp Witte, [email protected]
# Date: January 2017
#
# Mathias Louboutin, [email protected]
# Updated July 2020
nw = 2
# Set parallel if specified
if nw > 1 && nworkers() < nw
addprocs(nw-nworkers() + 1; exeflags=["--code-coverage=user", "--inline=no", "--check-bounds=yes"])
end
@everywhere using JOLI, JUDI, LinearAlgebra, Test, Distributed
### Model
model, model0, dm = setup_model(tti, viscoacoustic, nlayer; n=(101, 101), d=(10., 10.))
q, srcGeometry, recGeometry, f0 = setup_geom(model; nsrc=nw, tn=500f0)
dt = srcGeometry.dt[1]
# Modeling operators
println("Generic modeling and misc test with ", nlayer, " layers and tti: ", tti)
ftol = 1f-5
######################## WITH DENSITY ############################################
cases = [(true, true), (true, false), (false, true), (false, false)]
@testset "Generic tests with limit_m = $(limit_m) and save to disk = $(disk)" for (limit_m, disk)=cases
@timeit TIMEROUTPUT "Modeling limit_m=$(limit_m), save_to_disk=$(disk)" begin
# Options structures
opt = Options(save_data_to_disk=disk, limit_m=limit_m, buffer_size=100f0, f0=f0,
file_path=pwd(), # path to files
file_name="shot_record") # saves files as file_name_xsrc_ysrc.segy
opt0 = Options(save_data_to_disk=disk, limit_m=limit_m, buffer_size=100f0, f0=f0,
file_path=pwd(), # path to files
file_name="smooth_shot_record") # saves files as file_name_xsrc_ysrc.segy
optJ = Options(save_data_to_disk=disk, limit_m=limit_m, buffer_size=100f0, f0=f0,
file_path=pwd(), # path to files
file_name="linearized_shot_record") # saves files as file_name_xsrc_ysrc.segy
# Setup operators
Pr = judiProjection(recGeometry)
F = judiModeling(model; options=opt)
F0 = judiModeling(model0; options=opt0)
Ps = judiProjection(srcGeometry)
# Combined operator Pr*F*adjoint(Ps)
Ffull = judiModeling(model, srcGeometry, recGeometry)
J = judiJacobian(Pr*F0*adjoint(Ps),q; options=optJ) # equivalent to J = judiJacobian(Ffull,q)
# Nonlinear modeling
d1 = Pr*F*adjoint(Ps)*q # equivalent to d = Ffull*q
dfull = Ffull*q
@test isapprox(get_data(d1), dfull, rtol=ftol)
qad = Ps*adjoint(F)*adjoint(Pr)*d1
qfull = adjoint(Ffull)*d1
@test isapprox(get_data(qad), qfull, rtol=ftol)
# fwi objective function
f, g = fwi_objective(model0, q, d1; options=opt)
f, g = fwi_objective(model0, getindex(q,1), getindex(d1,1); options=opt)
# Indexing (per source)
for inds=[2, [1, 2]]
dsub = getindex(dfull, inds)
qsub = getindex(q, inds)
Fsub = getindex(F, inds)
Jsub = getindex(J, inds)
Ffullsub = getindex(Ffull, inds)
Pssub = getindex(Ps, inds)
Prsub = getindex(Pr, inds)
ds1 = Ffullsub*qsub
ds2 = Prsub * Fsub * adjoint(Pssub) *qsub
@test isapprox(ds1, get_data(ds2), rtol=ftol)
@test isapprox(ds1, dsub, rtol=ftol)
@test isapprox(get_data(ds2), dsub, rtol=ftol)
end
# vcat, norms, dot
dcat = [d1, d1]
@test isapprox(norm(d1)^2, .5f0*norm(dcat)^2)
@test isapprox(dot(d1, d1), norm(d1)^2)
end
end
############################# Full wavefield ############################################
if VERSION >= v"1.7"
@testset "Basic judiWavefield modeling tests" begin
@timeit TIMEROUTPUT "Wavefield modeling" begin
opt = Options(dt_comp=dt, f0=f0)
F = judiModeling(model; options=opt)
Fa = adjoint(F)
Ps = judiProjection(srcGeometry)
Pr = judiProjection(recGeometry)
# Return wavefields
u = F * adjoint(Ps) * q
# Adjoint from data
dobs = Pr*F*u
v = Fa*adjoint(Pr)*dobs
a = dot(u, v)
b = dot(dobs, dobs)
@printf(" <F x, y> : %2.5e, <x, F' y> : %2.5e, relative error : %2.5e \n", b, a, (a-b)/(a+b))
@test isapprox(a/(a+b), b/(a+b), atol=2.5f-5, rtol=0)
# Forward from data
qa = Ps*Fa*v
a = dot(u, v)
b = dot(q, qa)
@printf(" <F x, y> : %2.5e, <x, F' y> : %2.5e, relative error : %2.5e \n", b, a, (a-b)/(a+b))
@test isapprox(a/(a+b), b/(a+b), atol=2.5f-5, rtol=0)
# Wavefields as source + return wavefields
u2 = F*u
v2 = Fa*v
a = dot(u2, v)
b = dot(v2, u)
@printf(" <F x, y> : %2.5e, <x, F' y> : %2.5e, relative error : %2.5e \n", a, b, (a-b)/(a+b))
@test isapprox(a/(a+b), b/(a+b), atol=1f-4, rtol=0)
end
end
end
rmprocs(workers())
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 3892 | # 2D LSRTM/FWI parallelization test with 2 sources and 2 vintages
#
# Ziyi Yin, [email protected]
# August 2021
@testset "test reduction from distributed tasks" begin
@timeit TIMEROUTPUT "Test reduction" begin
function judiWeightsConst(i::Int)
return judiWeights(i*ones(Float32,10*i,10*i))
end
f = Vector{Future}(undef, 6)
for i = 1:6
f[i] = @spawn judiWeightsConst(i)
end
using JUDI:reduce!
w = reduce!(f)
@info "test if stacking follows the correct order through reduction"
for i = 1:6
@test w.data[i] == i*ones(Float32,10*i,10*i)
end
# Test objective function
f1 = @spawn (Ref{Float32}(1f0), randn(10))
f2 = @spawn (Ref{Float32}(2f0), randn(10))
JUDI.local_reduce!(f1, f2)
res = fetch(f1)
@test res[1][] == 3f0
@test typeof(res[1]) == Base.RefValue{Float32}
res = JUDI.as_vec(res, Val(false))
@test res[1] == 3f0
@test typeof(res[1]) == Float32
end
end
### Model
model, model0, dm = setup_model(tti, viscoacoustic, 4)
q, srcGeometry, recGeometry, f0 = setup_geom(model; nsrc=4)
q1 = q[[1,4]]
q2 = q[[2,3]]
srcGeometry1 = subsample(srcGeometry,[1,4])
srcGeometry2 = subsample(srcGeometry,[2,3])
recGeometry1 = subsample(recGeometry,[1,4])
recGeometry2 = subsample(recGeometry,[2,3])
opt = Options(sum_padding=true, free_surface=fs, f0=f0, dt_comp=dt)
F1 = judiModeling(model, srcGeometry1, recGeometry1; options=opt)
F2 = judiModeling(model, srcGeometry2, recGeometry2; options=opt)
# Observed data
dobs1 = F1*q1
dobs2 = F2*q2
# Perturbations
dm1 = 2f0*circshift(dm, 10)
dm2 = 2f0*circshift(dm, 30)
@testset "Multi-experiment arg processing" begin
@timeit TIMEROUTPUT "Process multi exp" begin
for (nm, m) in zip([1, 2], [model0, [model0, model0]])
for (nq, q) in zip([1, 2], [q1, [q1, q2]])
for (nd, d) in zip([1, 2], [dobs1, [dobs1, dobs2]])
for dmloc in [dm1, dm1[:]]
for (ndm, dm) in zip([1, 2], [dmloc, [dmloc, dmloc]])
args = m, q, d, dm
@test JUDI.check_args(args...) == maximum((nm, nq, nd, ndm))
for (a, expected) in zip(args, (model0, q1, dobs1, dmloc))
@test JUDI.get_exp(a, 1) == expected
end
end
end
end
end
end
@test_throws ArgumentError JUDI.check_args([model0, model0], [dobs1, dobs2, dobs1])
@test_throws ArgumentError JUDI.check_args([model0, model0], [dobs1, dobs2], [dm1, dm2, dm1])
@test_throws ArgumentError JUDI.check_args(model0, [dobs1, dobs2], [dm1, dm2, dm1])
end
end
@testset "FWI/LSRTM objective multi-level parallelization test with $(nlayer) layers and tti $(tti) and freesurface $(fs)" begin
@timeit TIMEROUTPUT "Multi FWI/LSRTM" begin
ftol = 1f-5
Jm0, grad = lsrtm_objective([model0, model0], [q1, q2], [dobs1, dobs2], [dm1, dm2]; options=opt, nlind=true)
Jm01, grad1 = lsrtm_objective(model0, q1, dobs1, dm1; options=opt, nlind=true)
Jm02, grad2 = lsrtm_objective(model0, q2, dobs2, dm2; options=opt, nlind=true)
@test isapprox(Jm01+Jm02, Jm0; rtol=ftol)
@test isapprox(grad1, grad[1]; rtol=ftol)
@test isapprox(grad2, grad[2]; rtol=ftol)
_Jm0, _grad = fwi_objective([model0, model0], [q1, q2], [dobs1, dobs2]; options=opt)
_Jm01, _grad1 = fwi_objective(model0, q1, dobs1; options=opt)
_Jm02, _grad2 = fwi_objective(model0, q2, dobs2; options=opt)
@test isapprox(_Jm01+_Jm02, _Jm0; rtol=ftol)
@test isapprox(_grad1, _grad[1]; rtol=ftol)
@test isapprox(_grad2, _grad[2]; rtol=ftol)
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 7083 | # Author: Mathias Louboutin, [email protected]
# Updated July 2020
ftol = 1f-5
@testset "PhysicalParameter Unit Tests in $(nd) dimensions" for nd=[2, 3]
@timeit TIMEROUTPUT "PhysicalParameter in $(nd) dimensions" begin
n = Tuple(11+i for i=1:nd)
d = Tuple(1f0+i for i=1:nd)
o = Tuple(0f0+i for i=1:nd)
a = randn(Float32, n...)
p = PhysicalParameter(a, d, o)
@test PhysicalParameter(p) == p
@test PhysicalParameter(p, n, d, o) == p
@test PhysicalParameter(p.data, n, d, o) == p
@test PhysicalParameter(vec(p.data), n, d, o) == p
@test size(p) == n
@test size(conj(p)) == n
@test size(adjoint(p)) == n[end:-1:1]
@test adjoint(p).n == p.n[end:-1:1]
@test adjoint(p).d == p.d[end:-1:1]
@test adjoint(p).o == p.o[end:-1:1]
@test isapprox(adjoint(p).data, permutedims(p.data, nd:-1:1))
@test size(transpose(p)) == n[end:-1:1]
@test transpose(p).n == p.n[end:-1:1]
@test transpose(p).d == p.d[end:-1:1]
@test transpose(p).o == p.o[end:-1:1]
@test isapprox(transpose(p).data, permutedims(p.data, nd:-1:1))
ps = similar(p, Model(n, d, o, a))
@test norm(ps) == 0
@test ps.n == n
@test ps.d == d
@test ps.o == o
@test isequal(p.data, a)
p .= zeros(Float32, n...)
p .= a
@test isequal(p.data, a)
@test p.d == d
@test p.n == n
@test p.o == o
# indexing
@test firstindex(p) == 1
@test lastindex(p) == prod(n)
@test p == p
@test isapprox(p, a)
@test isapprox(a, p)
# Subsampling
inds = [3:11 for i=1:nd]
b = p[inds...]
@test b.o == tuple([o+d*2 for (o,d)=zip(p.o,p.d)]...)
@test b.n == tuple([9 for i=1:nd]...)
@test b.d == p.d
inds = [3:2:11 for i=1:nd]
b = p[inds...]
@test b.o == tuple([o+d*2 for (o,d)=zip(p.o,p.d)]...)
@test b.n == tuple([5 for i=1:nd]...)
@test b.d == tuple([d*2 for d=p.d]...)
# copies
p2 = similar(p)
@test p2.n == p.n
@test norm(p2) == 0
p2 = copy(p)
@test p2.n == p.n
@test norm(p2) == norm(p)
p2 = 0f0 .* p .+ 1f0
@test norm(p2, 1) == prod(n)
# Some basics
pl = PhysicalParameter(n, d, o)
@test norm(pl) == 0
pl = PhysicalParameter(0, n, d, o)
@test pl.data == 0
@test isapprox(dot(p, p), norm(p)^2)
@test isapprox(dot(ones(Float32, n), p), sum(p.data))
@test isapprox(dot(p, ones(Float32, n)), sum(p.data))
# broadcast multiplication
u = p
v = p2
u_scale = deepcopy(p)
v_scale = deepcopy(p2)
c = ones(Float32, v.n)
u_scale .*= 2f0
@test isapprox(u_scale, 2f0 * u; rtol=ftol)
v_scale .+= 2f0
@test isapprox(v_scale, 2f0 .+ v; rtol=ftol)
u_scale ./= 2f0
@test isapprox(u_scale, u; rtol=ftol)
u_scale .= 2f0 .* u_scale .+ v_scale
@test isapprox(u_scale, 2f0 * u .+ 2f0 + v; rtol=ftol)
u_scale .= u .+ v
@test isapprox(u_scale, u + v)
u_scale .= u .- v
@test isapprox(u_scale, u - v)
u_scale .= u .* v
@test isapprox(u_scale.data[1], u.data[1].*v.data[1])
u_scale .= u ./ v
@test isapprox(u_scale.data[1], u.data[1]./v.data[1])
@test isapprox(u .* c, u)
@test isapprox(c .* u, u)
@test isapprox(u ./ c, u)
@test isapprox(c ./ u, 1 ./u)
@test isapprox(c .+ u, 1 .+ u)
@test isapprox(c .- u, 1 .- u)
@test isapprox(u .+ c, 1 .+ u)
@test isapprox(u .- c, u .- 1)
# Arithmetic
v = PhysicalParameter(randn(Float32, n...), d, o)
w = PhysicalParameter(randn(Float32, n...), d, o)
a = .5f0 + rand(Float32)
b = .5f0 + rand(Float32)
@test isapprox(u + (v + w), (u + v) + w; rtol=ftol)
@test isapprox(u + v, v + u; rtol=ftol)
@test isapprox(u, u .+ 0; rtol=ftol)
@test iszero(norm(u + u.*(-1)))
@test isapprox(-u, (-1f0).*u; rtol=ftol)
@test isapprox(a .* (b .* u), (a * b) .* u; rtol=ftol)
@test isapprox(u, u .* 1; rtol=ftol)
@test isapprox(a .* (u + v), a .* u + a .* v; rtol=1f-5)
@test isapprox((a + b) .* v, a .* v + b.* v; rtol=1f-5)
@test isapprox(c + v, 1 .+ v)
@test isapprox(c - v, 1 .- v)
@test isapprox(v + c, 1 .+ v)
@test isapprox(v - c, v .- 1)
@test isapprox(v * v, v.^2)
@test isapprox(v / v, 0f0.*v .+1)
a = zeros(Float32, n...)
a .= v
@test isapprox(a, v.data)
v = PhysicalParameter(ones(Float32, n...), d, o)
v[v .> 0] .= -1
@test all(v .== -1)
# Indexing
u = PhysicalParameter(randn(Float32, n), d, o)
u[:] .= 0f0
@test norm(u) == 0f0
u[1] = 1f0
@test norm(u) == 1f0
@test u.data[1] == 1f0
u[1:10] .= 1:10
@test norm(u, 1) == 55
@test u[1:10] == 1:10
@test u.data[1:10] == 1:10
@test u[11] == 0f0
u .= u.data[:]
@test norm(u, 1) == 55
@test u[1:10] == 1:10
@test u.data[1:10] == 1:10
@test u[11] == 0f0
if nd == 2
tmp = randn(Float32, u[1:10, :].n)
u[1:10, :] .= tmp
@test u.data[1:10, :] == tmp
@test size(u[:, 1]) == (n[1],)
@test size(u[1, :]) == (n[2],)
@test u[2:end, 2:3].n == (n[1]-1, 2)
u[:, 1] .= ones(Float32, n[1])
@test all(u.data[:, 1] .== 1f0)
else
tmp = randn(Float32, u[1:10, :, :].n)
u[1:10, :, :] .= tmp
@test u.data[1:10, :, :] == tmp
@test size(u[:, :, 1]) == (n[1], n[2])
@test size(u[:, 1, :]) == (n[1], n[3])
@test size(u[1, :, :]) == (n[2], n[3])
@test size(u[1, 2:3, 1:end]) == (2, n[3])
@test u[1:2, 2:3, 1:end].n == (2, 2, n[3])
u[:, 1:end-2, 1] .= ones(Float32, n[1])
@test all(u.data[:, 1:end-2, 1] .== 1f0)
end
# Test that works with JOLI
A = joEye(length(v); DDT=Float32, RDT=Float32)
u2 = A*u
@test isequal(u2, vec(u.data))
u2 = [A;A]*u
@test length(u2) == 2 * length(u)
@test u2[1:length(u)] == vec(u.data)
@test u2[length(u)+1:end] == vec(u.data)
# Test combinations
n = (120, 100) # (x,y,z) or (x,z)
d = (10., 10.)
on = ones(Float32, n)
m1 = PhysicalParameter(n, d, (0f0, 0f0), on)
m2 = PhysicalParameter(n, d, (100f0, 100f0), on)
m12 = m1 + m2
@test m12.o == m1.o
@test m12.d == m1.d
@test m12.n == (130, 110)
# Check values overlap edges z edges x corners
@test norm(m12.data, 1) == (110*90*2 + 10*90*2 + 10*110*2 + 10*10*2)
end
end
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 10707 | # Author: Mathias Louboutin, [email protected]
# Date: November 2022
model, model0, dm = setup_model(tti, viscoacoustic, nlayer)
wb = find_water_bottom(model.m .- maximum(model.m))
q, srcGeometry, recGeometry = setup_geom(model; nsrc=2)
ftol = 1f-5
# Propagator if needed
FM = judiModeling(model, srcGeometry, recGeometry)
J = judiJacobian(FM, q)
dobs = FM * q
dobs_out = 0 .* dobs
dm = model0.m - model.m
@testset "Preconditioners test with $(nlayer) layers and tti $(tti) and freesurface $(fs)" begin
@timeit TIMEROUTPUT "Data Preconditioners tests" begin
F = judiFilter(recGeometry, .002, .030)
Mdr = judiDataMute(srcGeometry, recGeometry; mode=:reflection)
Mdt = judiDataMute(srcGeometry, recGeometry; mode=:turning)
Mdg = judiTimeGain(recGeometry, 2f0)
Mm = judiTopmute(model.n, 10, 1)
order = .25f0
Dt = judiTimeDerivative(recGeometry, order)
It = judiTimeIntegration(recGeometry, order)
# Time differential only
@test inv(It) == Dt
@test inv(Dt) == It
dinv = inv(It) * It * dobs
@test isapprox(dinv, dobs; atol=0f0, rtol=ftol)
dinv = inv(Dt) * Dt * dobs
@test isapprox(dinv, dobs; atol=0f0, rtol=ftol)
dinv = Dt * It * dobs
@test isapprox(dinv, dobs; atol=0f0, rtol=ftol)
# Time gain inverse is just 1/pow
@test inv(Mdg) == judiTimeGain(recGeometry, -2f0)
# conj/transpose
for Pc in [F, Mdr, Mdt, Mdg, Dt, It]
@test conj(Pc) == Pc
@test transpose(Pc) == Pc
end
# DataPrecon getindex
for Pc in [F, Mdr, Mdt, Mdg, Dt, It]
@test Pc[1] * dobs[1] == (Pc * dobs)[1]
@test Pc[1] * dobs.data[1][:] ≈ (Pc * dobs).data[1][:] rtol=ftol
end
# Time resample
newt = 0f0:5f0:recGeometry.t[1]
for Pc in [F, Mdr, Mdt, Mdg, Dt, It]
@test_throws AssertionError time_resample(Pc, newt)
@test time_resample(Pc[1], newt).recGeom.taxis[1] == newt
end
multiP = time_resample((F[1], Mdr[1]), newt)
@test isa(multiP, JUDI.MultiPreconditioner)
@test isa(multiP.precs[1], JUDI.FrequencyFilter)
@test isa(multiP.precs[2], JUDI.DataMute)
@test all(Pi.recGeom.taxis[1] == newt for Pi in multiP.precs)
multiP = time_resample([F[1], Mdr[1]], newt)
@test isa(multiP, JUDI.MultiPreconditioner)
@test isa(multiP.precs[1], JUDI.FrequencyFilter)
@test isa(multiP.precs[2], JUDI.DataMute)
@test all(Pi.recGeom.taxis[1] == newt for Pi in multiP.precs)
# Test in place DataPrecon
for Pc in [F, Mdr, Mdt, Mdg, Dt, It]
mul!(dobs_out, Pc, dobs)
@test isapprox(dobs_out, Pc*dobs; rtol=ftol)
mul!(dobs_out, Pc', dobs)
@test isapprox(dobs_out, Pc'*dobs; rtol=ftol)
# Check JUDI-JOLI compat
mul!(dobs_out, Pc*J, dm)
mul!(dobs, Pc*J, vec(dm.data))
dlin = Pc*J*dm
@test isapprox(dobs_out, dlin; rtol=ftol)
@test isapprox(dobs_out, dobs; rtol=ftol)
end
# check JOLI operator w/ judiVector
DFT = joDFT(dm.n...; DDT=Float32, RDT=ComplexF32)
dm1 = adjoint(J*DFT') * dobs
dm2 = similar(dm1)
mul!(dm2, adjoint(J*DFT'), dobs)
@test isapprox(dm1, dm2; rtol=ftol)
dm1 = Mm * J' * Mdr * dobs
@test length(dm1) == prod(model0.n)
@test dm1[1] == 0
# test out-of-place
dobs1 = deepcopy(dobs)
for Op in [F, F', Mdr , Mdr', Mdt, Mdt', Mdg, Mdg', Dt, Dt', It, It']
m = Op*dobs
# Test that dobs wasn't modified
@test isapprox(dobs, dobs1, rtol=eps())
# Test that it did compute something
@test m != dobs
end
end
@timeit TIMEROUTPUT "Model Preconditioners tests" begin
# JUDI precon make sure it runs
Ds = judiDepthScaling(model)
Mm = judiTopmute(model.n, 20, 1)
Mm2 = judiTopmute(model.n, 20 * ones(model.n[1]), 1)
# conj/transpose
for Pc in [Ds, Mm, Mm2]
@test conj(Pc) == Pc
@test transpose(Pc) == Pc
end
w = judiWeights(randn(Float32, model0.n))
w_out = judiWeights(zeros(Float32, model0.n))
mul!(w_out, Ds, w)
@test isapprox(w_out, Ds*w; rtol=ftol)
@test isapprox(w_out.weights[1][end, end]/w.weights[1][end, end], sqrt((model.n[2]-1)*model.d[2]); rtol=ftol)
mul!(w_out, Ds', w)
@test isapprox(w_out, Ds'*w; rtol=ftol)
@test isapprox(w_out.weights[1][end, end]/w.weights[1][end, end], sqrt((model.n[2]-1)*model.d[2]); rtol=ftol)
mul!(w_out, Mm, w)
@test isapprox(w_out, Mm*w; rtol=ftol)
@test isapprox(norm(w_out.weights[1][:, 1:19]), 0f0; rtol=ftol)
mul!(w_out, Mm', w)
@test isapprox(w_out, Mm'*w; rtol=ftol)
w1 = deepcopy(w)
for Op in [Ds, Ds']
m = Op*w
# Test that w wasn't modified
@test isapprox(w, w1,rtol=eps())
w_expect = deepcopy(w)
for j = 1:model.n[2]
w_expect.weights[1][:,j] = w.weights[1][:,j] * Float32(sqrt(model.d[2]*(j-1)))
end
@test isapprox(w_expect,m)
end
for Op in [Mm , Mm', Mm2, Mm2']
m = Op*w
# Test that w wasn't modified
@test isapprox(w,w1,rtol=eps())
@test all(isapprox.(m.weights[1][:,1:18], 0))
@test isapprox(m.weights[1][:,21:end],w.weights[1][:,21:end])
end
# Depth scaling
n = (100,100,100)
d = (10f0,10f0,10f0)
o = (0.,0.,0.)
m = 0.25*ones(Float32,n)
model3D = Model(n,d,o,m)
D3 = judiDepthScaling(model3D)
@test isa(inv(D3), DepthScaling{Float32, 3, -.5f0})
dmr = randn(Float32, prod(n))
dm1 = deepcopy(dmr)
for Op in [D3, D3']
opt_out = Op*dmr
# Test that dm wasn't modified
@test dm1 == dmr
dm_expect = zeros(Float32, model3D.n)
for j = 1:model3D.n[3]
dm_expect[:,:,j] = reshape(dmr, model3D.n)[:,:,j] * Float32(sqrt(model3D.d[3]*(j-1)))
end
@test isapprox(vec(dm_expect), opt_out)
Op*model3D.m
end
M3 = judiTopmute(model3D.n, 20, 1)
for Op in [M3, M3']
opt_out = Op*dmr
# Test that dm wasn't modified
@test dm1 == dmr
@test all(isapprox.(reshape(opt_out,model3D.n)[:,:,1:18], 0))
@test isapprox(reshape(opt_out,model3D.n)[:,:,21:end],reshape(dmr,model3D.n)[:,:,21:end])
Op*model3D.m
end
# test find_water_bottom in 3D
dm3D = ones(Float32,10,10,10)
dm3D[:,:,4:end] .= 2f0
@test find_water_bottom(dm3D) == 4*ones(Integer,10,10)
# Illumination
I = judiIllumination(FM; mode="v")
dloc = FM*q
# forward only, nothing done
@test I.illums["v"].data == ones(Float32, model.n)
I = judiIllumination(FM; mode="u", recompute=false)
dloc = FM[1]*q[1]
@test norm(I.illums["u"]) != norm(ones(Float32, model.n))
bck = copy(I.illums["u"].data)
dloc = FM[2]*q[2]
# No recompute should not have changed
@test I.illums["u"].data == bck
# New mode
Iv = I("v")
@test "v" ∈ keys(Iv.illums)
@test "u" ∉ keys(Iv.illums)
@test norm(Iv.illums["v"]) == norm(ones(Float32, model.n))
# Test Product
@test inv(I)*I*model0.m ≈ model0.m rtol=ftol atol=0
# Test in place ModelPrecon
for Pc in [Ds, Mm, Mm2, I]
mul!(dm, Pc, model.m)
@test isapprox(dm, Pc*model.m; rtol=ftol)
mul!(dm, Pc', model.m)
@test isapprox(dm, Pc'*model.m; rtol=ftol)
# Check JUDI-JOLI compat
mul!(dm, Pc*J', dobs)
dml = Pc*J'*dobs
@test isapprox(dm, dml; rtol=ftol)
mul!(dm, Pc*J', vec(dobs))
@test isapprox(dm, dml; rtol=ftol)
end
end
@timeit TIMEROUTPUT "OOC Data Preconditioners tests" begin
datapath = joinpath(dirname(pathof(JUDI)))*"/../data/"
# OOC judiVector
container = segy_scan(datapath, "unit_test_shot_records_2",
["GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"])
d_cont = judiVector(container; segy_depth_key="RecGroupElevation")
src_geometry = Geometry(container; key = "source", segy_depth_key = "SourceDepth")
wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.005)
q_cont = judiVector(src_geometry, wavelet)
# Make sure we test OOC
@test typeof(d_cont) == judiVector{Float32, SeisCon}
@test isequal(d_cont.nsrc, 2)
@test isequal(typeof(d_cont.data), Array{SegyIO.SeisCon, 1})
@test isequal(typeof(d_cont.geometry), GeometryOOC{Float32})
# Make OOC preconditioner
Mdt = judiDataMute(q_cont, d_cont)
Mdg = judiTimeGain(d_cont, 2f0)
# Test OOC DataPrecon
for Pc in [Mdt, Mdg]
# mul
m = Pc * d_cont
@test isa(m, JUDI.LazyMul{Float32})
@test m.nsrc == d_cont.nsrc
@test m.P == Pc
@test m.msv == d_cont
ma = Pc' * d_cont
@test isa(ma, JUDI.LazyMul{Float32})
@test isa(ma[1], JUDI.LazyMul{Float32})
@test ma.nsrc == d_cont.nsrc
@test ma.P == Pc'
@test ma.msv == d_cont
# getindex
m1 = m[1]
@test isa(m1, JUDI.LazyMul{Float32})
@test m1.nsrc == 1
@test m1.msv == d_cont[1]
@test get_data(m1) == get_data(Pc[1] * d_cont[1])
# data
@test isa(m.data, JUDI.LazyData{Float32})
@test_throws MethodError m.data[1] = 1
@test m.data[1] ≈ (Pc[1] * get_data(d_cont[1])).data
@test get_data(m.data) ≈ Pc * get_data(d_cont)
# Propagation
Fooc = judiModeling(model, src_geometry, d_cont.geometry)
d_syn = Fooc' * Pc' * d_cont
d_synic = Fooc' * Pc' * get_data(d_cont)
@test isapprox(d_syn, d_synic; rtol=1f-5)
f, g = fwi_objective(model0, Pc*d_cont, q_cont)
f2, g2 = fwi_objective(model0, get_data(Pc*d_cont), get_data(q_cont))
@test isapprox(f, f2)
@test isapprox(g, g2)
end
end
end | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 8855 | # Gradient tests for adjoint extended modeling
# Author: Mathias Louboutin, [email protected]
# April 2022
using Flux
import JUDI: judiPropagator, LazyPropagation
import Base.Broadcast: broadcasted
Flux.Random.seed!(2022)
### Model
nsrc = 1
dt = 1f0
model, model0, dm = setup_model(tti, viscoacoustic, 2)
m, m0 = model.m.data, model0.m.data
q, srcGeometry, recGeometry, f0 = setup_geom(model; nsrc=nsrc, dt=dt)
# Common op
Pr = judiProjection(recGeometry)
Ps = judiProjection(srcGeometry)
Pw = judiLRWF(dt, q.data[1])
function GenSimSourceMulti(xsrc_index, zsrc_index, nsrc, n)
weights = zeros(Float32, n[1], n[2], 1, nsrc)
for j=1:nsrc
weights[xsrc_index[j], zsrc_index[j], 1, j] = 1f0
end
return weights
end
randx(x::Array{Float32}) = x .* (1 .+ randn(Float32, size(x)))
perturb(x::Vector{T}) where T = circshift(x, rand(1:20))
perturb(x::Array{T, N}) where {T, N} = circshift(x, (rand(1:20), zeros(N-1)...))
perturb(x::judiVector) = judiVector(x.geometry, [randx(x.data[i]) for i=1:x.nsrc])
reverse(x::judiVector) = judiVector(x.geometry, [x.data[i][end:-1:1, :] for i=1:x.nsrc])
misfit_objective_2p(d_obs, q0, m0, F) = .5f0*norm(F(m0, q0) - d_obs)^2
misfit_objective_1p(d_obs, q0, m0, F) = .5f0*norm(F(m0)*q0 - d_obs)^2
function loss(misfit, d_obs, q0, m0, F)
local ϕ
# Reshape as ML size if returns array
d_obs = F.options.return_array ? reshape(d_obs, F.rInterpolation, F.model; with_batch=true) : d_obs
# Misfit and gradient
g = gradient(Flux.params(q0, m0)) do
ϕ = misfit(d_obs, q0, m0, F)
return ϕ
end
return ϕ, g[q0], g[m0]
end
xsrc_index, zsrc_index = rand(30:model.n[1]-30, nsrc), rand(30:model.n[2]-30, nsrc)
w = GenSimSourceMulti(xsrc_index, zsrc_index, nsrc, model.n);
# Put the point source at the same location for easy comparison
q.geometry.xloc[1] .= (xsrc_index[1] - 1) * model.d[1]
q.geometry.zloc[1] .= (zsrc_index[1] - 1) * model.d[2]
sinput = zip(["Point", "Extended"], [Ps, Pw], (q, w))
#####################################################################################
ftol = sqrt(eps(1f0))
@testset "AD correctness check return_array:$(ra)" for ra in [true, false]
opt = Options(return_array=ra, sum_padding=true, f0=f0)
A_inv = judiModeling(model; options=opt)
A_inv0 = judiModeling(model0; options=opt)
@testset "AD correctness check source type: $(stype)" for (stype, Pq, q) in sinput
@timeit TIMEROUTPUT "$(stype) source AD, array=$(ra)" begin
printstyled("$(stype) source AD test ra: $(ra) \n", color=:blue)
# Linear operators
q0 = perturb(q)
# Operators
F = Pr*A_inv*adjoint(Pq)
F0 = Pr*A_inv0*adjoint(Pq)
d_obs = F(m, q)
# PDE accept model as input but AD expect the actual model param (model.m)
d_obs2 = F(model, q)
@test d_obs ≈ d_obs2 rtol=ftol
J = judiJacobian(F0, q0)
gradient_m = adjoint(J)*(F(m0, q0) - d_obs)
gradient_m2 = adjoint(J)*(F(model0.m, q0) - d_obs)
@test gradient_m ≈ gradient_m2 rtol=ftol
# Reshape d_obs into ML size (nt, nrec, 1, nsrc)
d_obs = ra ? reshape(d_obs, Pr, model; with_batch=true) : d_obs
# Gradient with m array
gs_inv = gradient(x -> misfit_objective_2p(d_obs, q0, x, F), m0)
if ~ra
gs_inv1 = gradient(x -> misfit_objective_1p(d_obs, q0, x, F), model0.m)
@test gs_inv[1][:] ≈ gs_inv1[1][:] rtol=ftol
end
# Gradient with m PhysicalParameter
gs_inv2 = gradient(x -> misfit_objective_2p(d_obs, q0, x, F), model0.m)
@test gs_inv[1][:] ≈ gs_inv2[1][:] rtol=ftol
if ~ra
gs_inv21 = gradient(x -> misfit_objective_1p(d_obs, q0, x, F), model0.m)
@test gs_inv21[1][:] ≈ gs_inv2[1][:] rtol=ftol
end
g1 = vec(gradient_m)
g2 = vec(gs_inv[1])
@test isapprox(norm(g1 - g2) / norm(g1 + g2), 0f0; atol=ftol)
@test isapprox(dot(g1, g2)/norm(g1)^2,1f0;rtol=ftol)
@test isapprox(dot(g1, g2)/norm(g2)^2,1f0;rtol=ftol)
end
end
end
@testset "AD Gradient test return_array=$(ra)" for ra in [true, false]
opt = Options(return_array=ra, sum_padding=true, f0=f0, dt_comp=dt)
F = judiModeling(model; options=opt)
ginput = zip(["Point", "Extended"], [Pr*F*Ps', Pr*F*Pw'], (q, w))
@testset "Gradient test: $(stype) source" for (stype, F, q) in ginput
@timeit TIMEROUTPUT "$(stype) source gradient, array=$(ra)" begin
# Initialize source for source perturbation
q0 = perturb(q)
# Data and source perturbation
d, dq = F*q, q-q0
misf = ra ? [(2, misfit_objective_2p)] : [(1, misfit_objective_1p), (2, misfit_objective_2p)]
m00 = ra ? m0 : model0.m
#####################################################################################
for (mi, misfit) in misf
printstyled("$(stype) source gradient test for $(mi)-input operator\n"; color = :blue)
f0, gq, gm = loss(misfit, d, q0, m00, F)
# Gradient test for extended modeling: source
printstyled("\nGradient test source $(stype) source, array=$(ra)\n"; color = :blue)
grad_test(x-> misfit(d, x, m00, F), q0, dq, gq)
# Gradient test for extended modeling: model
printstyled("\nGradient test model $(stype) source, array=$(ra)\n"; color = :blue)
grad_test(x-> misfit(d, q0, x, F), m00, dm, gm)
end
end
end
end
@testset "AD Gradient test Jacobian w.r.t q with $(nlayer) layers, tti $(tti), viscoacoustic $(viscoacoustic), freesurface $(fs)" begin
@timeit TIMEROUTPUT "Jacobian gradient w.r.t source" begin
opt = Options(sum_padding=true, free_surface=fs)
J = judiJacobian(judiModeling(model0, srcGeometry, recGeometry; options=opt), q)
q0 = judiVector(q.geometry, ricker_wavelet(srcGeometry.t[1], srcGeometry.dt[1], 0.0125f0))
dq = q0 - q
δd = J*dm
rtm = J'*δd
# derivative of J w.r.t to `q`
printstyled("Gradient J(q) w.r.t q\n"; color = :blue)
f0q, gm, gq = loss(misfit_objective_1p, δd, dm, q0, J)
@test isa(gm, JUDI.LazyPropagation)
@test isa(JUDI.eval_prop(gm), PhysicalParameter)
grad_test(x-> misfit_objective_1p(δd, dm, x, J), q0, dq, gq)
printstyled("Gradient J'(q) w.r.t q\n"; color = :blue)
f0qt, gd, gqt = loss(misfit_objective_1p, rtm, δd, q0, adjoint(J))
@test isa(gd, JUDI.LazyPropagation)
@test isa(JUDI.eval_prop(gd), judiVector)
grad_test(x-> misfit_objective_1p(rtm, δd, x, adjoint(J)), q0, dq, gqt)
end
end
#####################################################################################
struct TestPropagator{D, O} <: judiPropagator{D, O}
v::D
end
Base.:*(T::TestPropagator{D, O}, x::Vector{D}) where {D, O} = T.v .* x
Base.:*(T::TestPropagator{D, O}, x::Matrix{D}) where {D, O} = T.v .* x
T1 = TestPropagator{Float32, :test}(2)
T2 = TestPropagator{Float32, :test}(3)
xtest1 = randn(Float32, 16)
xtest2 = randn(Float32, 16)
xtest3 = randn(Float32, 4, 4)
xeval = reshape(2 .* xtest1, 4, 4)
xeval2 = reshape(3 .* xtest2, 4, 4)
p = x -> reshape(x, 4, 4)
LP1 = LazyPropagation(p, T1, xtest1)
LP2 = LazyPropagation(p, T2, xtest2)
@testset "LazyPropagation tests" begin
@timeit TIMEROUTPUT "LazyPropagation" begin
# Manipulation
@test collect(reshape(LP1, 8, 2)) == reshape(xeval, 8, 2)
@test JUDI.eval_prop(LP1) == reshape(xeval, 4, 4)
@test collect(LP1) == reshape(xeval, 4, 4)
# Arithmetic
for op in [Base.:+, Base.:-, Base.:*, Base.:/]
@test op(LP1, xtest3) ≈ op(xeval, xtest3)
@test op(xtest3, LP1) ≈ op(xtest3, xeval)
@test op(LP1, LP2) ≈ op(xeval, xeval2)
@test op.(LP1, LP2) ≈ op.(xeval, xeval2)
@test op.(LP1, xtest3) ≈ op.(xeval, xtest3)
@test op.(xtest3, LP2) ≈ op.(xtest3, xeval2)
end
@test LP1.^2 ≈ xeval.^2
@test T2 * LP1 ≈ reshape(6 .* xtest1, 4, 4)
@test collect(adjoint(LP1)) ≈ collect(adjoint(xeval))
@test norm(LP1) ≈ norm(xeval)
copyto!(xtest3, LP1)
@test xtest3 ≈ xeval
end
end
#####################################################################################
# Preconditioners
@testset "Preconditionners AD tests" begin
@timeit TIMEROUTPUT "Preconditionners AD" begin
T = judiDepthScaling(model)
b = T*model.m
g = gradient(x->.5f0*norm(T*x - b)^2, model0.m)
@test g[1] ≈ T'*(T*model0.m - b)
end
end | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | code | 888 | mean(x) = sum(x)/length(x)
function grad_test(misfit, x0, dx, g; maxiter=6, h0=5f-2, data=false, stol=1f-1)
# init
err1 = zeros(Float32, maxiter)
err2 = zeros(Float32, maxiter)
gdx = data ? g : dot(g, dx)
f0 = misfit(x0)
h = h0
@printf("%11.5s, %11.5s, %11.5s, %11.5s, %11.5s, %11.5s \n", "h", "gdx", "e1", "e2", "rate1", "rate2")
for j=1:maxiter
f = misfit(x0 + h*dx)
err1[j] = norm(f - f0, 1)
err2[j] = norm(f - f0 - h*gdx, 1)
j == 1 ? prev = 1 : prev = j - 1
@printf("%5.5e, %5.5e, %5.5e, %5.5e, %5.5e, %5.5e \n", h, h*norm(gdx, 1), err1[j], err2[j], err1[prev]/err1[j], err2[prev]/err2[j])
h = h * .8f0
end
rate1 = err1[1:end-1]./err1[2:end]
rate2 = err2[1:end-1]./err2[2:end]
@test isapprox(mean(rate1), 1.25f0; atol=stol)
@test isapprox(mean(rate2), 1.5625f0; atol=stol)
end | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 17634 | # The Julia Devito Inversion framework (JUDI)
| **Documentation** | **Build Status** | |
|:--------------------------------------:|:-----------------------------------------------:|:----------------------------------------------------:|
| [![][docs-stable-img]][docs-stable-status] [![][docs-dev-img]][docs-dev-status] | [![][build-img]][build-status] [![][codecov-img]][codecov-status] [![][aqua-img]][aqua-status] | [![][license-img]][license-status] [![][zenodo-img]][zenodo-status] [![][docker-img]][docker-url]|
## Overview
[JUDI] is a framework for large-scale seismic modeling and inversion and is designed to enable rapid translations of algorithms to fast and efficient code that scales to industry-size 3D problems. The focus of the package lies on seismic modeling as well as PDE-constrained optimization such as full-waveform inversion (FWI) and imaging (LS-RTM). Wave equations in [JUDI] are solved with [Devito], a Python domain-specific language for automated finite-difference (FD) computations. JUDI's modeling operators can also be used as layers in (convolutional) neural networks to implement physics-augmented deep learning algorithms thanks to its implementation of [ChainRules](https://github.com/JuliaDiff/ChainRules.jl)'s `rrule` for the linear operators representing the discre wave equation.
## Interact and contribute
We gladly welcome and encourage contributions from the community to improve our software and its usability. Feel free to:
- Open [issues](https://github.com/slimgroup/JUDI.jl/issues) for bugs
- Start [discussions](https://github.com/slimgroup/JUDI.jl/discussions) to interact with the developer and ask any questions
- Open [PR](https://github.com/slimgroup/JUDI.jl/pulls) for bug fixes and improvements
## FAQ
You can find an FAQ with answers to issues at [FAQ](https://github.com/slimgroup/JUDI.jl/wiki/FAQ)
## Installation and prerequisites
You can find installation instructions in our Wiki at [Installation](https://github.com/slimgroup/JUDI.jl/wiki/Installation)
## GPU
[JUDI] supports the computation of the wave equation on GPU via [Devito](https://www.devitoproject.org)'s GPU offloading support.
**NOTE**: Only the wave equation part will be computed on GPU, the Julia arrays will still be CPU arrays and `CUDA.jl` is not supported.
### Installation
To enable gpu support in JUDI, you will need to install one of [Devito](https://www.devitoproject.org)'s supported offloading compilers. We strongly recommend checking the [Wiki](https://github.com/devitocodes/devito/wiki) for installation steps and to reach out to the Devito community for GPU compiler related issues.
- [x] `nvc/pgcc`. This is recommended and the simplest installation. You can install the compiler following Nvidia's installation instruction at [HPC-sdk](https://developer.nvidia.com/hpc-sdk)
- [ ] `aompcc`. This is the AMD compiler that is necessary for running on AMD GPUs. This installation is not tested with [JUDI] and we recommend to reach out to Devito's team for installation guidelines.
- [ ] `openmp5/clang`. This installation requires the compilation from source `openmp`, `clang` and `llvm` to install the latest version of `openmp5` enabling gpu offloading. You can find instructions on this installation in Devito's [Wiki](https://github.com/devitocodes/devito/wiki)
### Setup
The only required setup for GPU support are the environment variables for [Devito]. For the currently supported `nvc+openacc` setup these are:
```
export DEVITO_LANGUAGE=openacc
export DEVITO_ARCH=nvc
export DEVITO_PLATFORM=nvidiaX
```
## Running with Docker
If you do not want to install JUDI, you can run [JUDI] as a [docker image](https://hub.docker.com/repository/docker/mloubout/judi). The first possibility is to run the docker container as a Jupyter notebook. [JUDI] provides two docker images for the latest [JUDI] release for Julia versions `1.6` (LTS) and `1.7` (latest stable version). The images names are `mloubout/judi:JVER-latest` where `JVER` is the Julia version. This docker images contain pre-installed compilers for CPUs (gcc-10) and Nvidia GPUs (nvc) via the nvidia HPC sdk. The environment is automatically set for [Devito] based on the hardware available.
**Note**: If you wish to use your gpu, you will need to install [nvidia-docker](https://docs.nvidia.com/ai-enterprise/deployment-guide/dg-docker.html) and run `docker run --gpus all` in order to make the GPUs available at runtime from within the image.
To run [JUDI] via docker execute the following command in your terminal:
```bash
docker run -p 8888:8888 mloubout/judi:1.7-latest
```
This command downloads the image and launches a container. You will see a link that you can copy-paste to your browser to access the notebooks. Alternatively, you can run a bash session, in which you can start a regular interactive Julia session and run the example scripts. Download/start the container as a bash session with:
```bash
docker run -it mloubout/judi:1.7-latest /bin/bash
```
Inside the container, all examples are located in the directory `/app/judi/examples/scripts`.
**Previous versions**: As of version `v2.6.7` of JUDI, we also ship version-tagged images as `mloubout/judi:JVER-ver` where `ver` is the version of [JUDI] wanted, for example the current [JUDI] version with Julia 1.7 is `mloubout/judi:1.7-v2.6.7`
**Development version**: Additionally, we provide two images corresponding to the latest development version of [JUDI] (latest state of the master branch). These images are called `mloubout/judi:JVER-dev` and can be used in a similar way.
## Testing
A complete test suite is included with [JUDI] and is tested via GitHub Actions. You can also run the test locally
via:
```Julia
Julia --project -e 'using Pkg;Pkg.test(coverage=false)'
```
By default, only the [JUDI] base API will be tested. However, the testing suite supports other modes controlled via the environment variable `GROUP` such as:
```Julia
GROUP=JUDI Julia --project -e 'using Pkg;Pkg.test(coverage=false)'
```
The supported modes are:
- JUDI : Only the base API (linear operators, vectors, ...)
- BASICS: Generic modeling and inversion tests such as out of core behavior
- ISO_OP : Isotropic acoustic operators
- ISO_OP_FS : Isotropic acoustic operators with free surface
- TTI_OP : Transverse tilted isotropic operators
- TTI_OP_FS : Transverse tilted isotropic operators with free surface
- filename : you can also provide just a filename (i.e `GROUP=test_judiVector.jl`) and only this one test file will be run. Single files with TTI or free surface are not currently supported as it relies on `Base.ARGS` for the setup.
## Configure compiler and OpenMP
Devito uses just-in-time compilation for the underlying wave equation solves. The default compiler is intel, but can be changed to any other specified compiler such as `gnu`. Either run the following command from the command line or add it to your ~/.bashrc file:
```bash
export DEVITO_ARCH=gnu
```
Devito uses shared memory OpenMP parallelism for solving PDEs. OpenMP is disabled by default, but you can enable OpenMP and define the number of threads (per PDE solve) as follows:
```bash
export DEVITO_LANGUAGE=openmp # Enable OpenMP.
export OMP_NUM_THREADS=4 # Number of OpenMP threads
```
## Full-waveform inversion
[JUDI] is designed to let you set up objective functions that can be passed to standard packages for (gradient-based) optimization. The following example demonstrates how to perform FWI on the 2D Overthrust model using a spectral projected gradient algorithm from the minConf library, which is included in the software. A small test dataset (62 MB) and the model can be downloaded from this FTP server:
```Julia
run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_2D.segy`)
run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_2D_initial_model.h5`)
```
The first step is to load the velocity model and the observed data into Julia, as well as setting up bound constraints for the inversion, which prevent too high or low velocities in the final result. Furthermore, we define an 8 Hertz Ricker wavelet as the source function:
```Julia
using PyPlot, HDF5, SegyIO, JUDI, SlimOptim, Statistics, Random
# Load starting model
n, d, o, m0 = read(h5open("overthrust_2D_initial_model.h5", "r"), "n", "d", "o", "m0")
model0 = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) # need n, d, o as tuples and m0 as array
# Bound constraints
vmin = ones(Float32, model0.n) .+ 0.3f0
vmax = ones(Float32, model0.n) .+ 5.5f0
mmin = vec((1f0 ./ vmax).^2) # convert to slowness squared [s^2/km^2]
mmax = vec((1f0 ./ vmin).^2)
# Load segy data
block = segy_read("overthrust_2D.segy")
dobs = judiVector(block)
# Set up wavelet
src_geometry = Geometry(block; key="source", segy_depth_key="SourceDepth") # read source position geometry
wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.008f0) # 8 Hz wavelet
q = judiVector(src_geometry, wavelet)
```
For this FWI example, we define an objective function that can be passed to the minConf optimization library, which is included in the Julia Devito software package. We allow a maximum of 20 function evaluations using a spectral-projected gradient (SPG) algorithm. To save computational cost, each function evaluation uses a randomized subset of 20 shot records, instead of all 97 shots:
```Julia
# Optimization parameters
fevals = 20 # number of function evaluations
batchsize = 20 # number of sources per iteration
fvals = zeros(21)
opt = Options(optimal_checkpointing = false) # set to true to enable checkpointing
# Objective function for minConf library
count = 0
function objective_function(x)
model0.m = reshape(x, model0.n);
# fwi function value and gradient
i = randperm(dobs.nsrc)[1:batchsize]
fval, grad = fwi_objective(model0, q[i], dobs[i]; options=opt)
grad = reshape(grad, model0.n); grad[:, 1:21] .= 0f0 # reset gradient in water column to 0.
grad = .1f0*grad/maximum(abs.(grad)) # scale gradient for line search
global count; count += 1; fvals[count] = fval
return fval, vec(grad.data)
end
# FWI with SPG
ProjBound(x) = median([mmin x mmax], dims=2) # Bound projection
options = spg_options(verbose=3, maxIter=fevals, memory=3)
x, fsave, funEvals= minConf_SPG(objective_function, vec(m0), ProjBound, options)
```
This example script can be run in parallel and requires roughly 220 MB of memory per source location. Execute the following code to generate figures of the initial model and the result, as well as the function values:
```Julia
figure(); imshow(sqrt.(1./adjoint(m0))); title("Initial model")
figure(); imshow(sqrt.(1./adjoint(reshape(x, model0.n)))); title("FWI")
figure(); plot(fvals); title("Function value")
```

## Least squares reverse-time migration
[JUDI] includes matrix-free linear operators for modeling and linearized (Born) modeling, that let you write algorithms for migration that follow the mathematical notation of standard least squares problems. This example demonstrates how to use Julia Devito to perform least-squares reverse-time migration on the 2D Marmousi model. Start by downloading the test data set (1.1 GB) and the model:
```Julia
run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_2D.segy`)
run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_migration_velocity.h5`)
```
Once again, load the starting model and the data and set up the source wavelet. For this example, we use a Ricker wavelet with 30 Hertz peak frequency. For setting up matrix-free linear operators, an `info` structure with the dimensions of the problem is required:
```Julia
using PyPlot, HDF5, JUDI, SegyIO, Random
# Load smooth migration velocity model
n,d,o,m0 = read(h5open("marmousi_migration_velocity.h5","r"), "n", "d", "o", "m0")
model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0)
# Load data
block = segy_read("marmousi_2D.segy")
dD = judiVector(block)
# Set up wavelet
src_geometry = Geometry(block; key="source", segy_depth_key="SourceDepth")
wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.03) # 30 Hz wavelet
q = judiVector(src_geometry,wavelet)
# Set up info structure
ntComp = get_computational_nt(q.geometry,dD.geometry,model0) # no. of computational time steps
info = Info(prod(model0.n),dD.nsrc,ntComp)
```
To speed up the convergence of our imaging example, we set up a basic preconditioner for each the model- and the data space, consisting of mutes to suppress the ocean-bottom reflection in the data and the source/receiver imprint in the image. The operator `J` represents the linearized modeling operator and its adjoint `J'` corresponds to the migration (RTM) operator. The forward and adjoint pair can be used for a basic LS-RTM example with (stochastic) gradient descent:
```Julia
# Set up matrix-free linear operators
opt = Options(optimal_checkpointing = true) # set to false to disable optimal checkpointing
F = judiModeling(model0, q.geometry, dD.geometry; options=opt)
J = judiJacobian(F, q)
# Right-hand preconditioners (model topmute)
Mr = judiTopmute(model0.n, 52, 10) # mute up to grid point 52, with 10 point taper
# Left-hand preconditioners
Ml = judiDataMute(q.geometry, dD.geometry; t0=.120) # data topmute starting at 120ms (30 samples)
# Stochastic gradient
x = zeros(Float32, info.n) # zero initial guess
batchsize = 10 # use subset of 10 shots per iteration
niter = 32
fval = zeros(Float32, niter)
for j=1:niter
println("Iteration: ", j)
# Select batch and set up left-hand preconditioner
i = randperm(dD.nsrc)[1:batchsize]
# Compute residual and gradient
r = Ml[i]*J[i]*Mr*x - Ml[i]*dD[i]
g = adjoint(Mr)*adjoint(J[i])*adjoint(Ml[i])*r
# Step size and update variable
fval[j] = .5f0*norm(r)^2
t = norm(r)^2/norm(g)^2
global x -= t*g
end
```

## Machine Learning
[JUDI] implements [ChainRulesCore] reverse rules to integrate the modeling operators into convolutional neural networks for deep learning. For example, the following code snippet shows how to create a shallow CNN consisting of two convolutional layers with a nonlinear forward modeling layer in-between them. [JUDI] enables backpropagation through [Flux]' automatic differentiation tools, but calls the corresponding adjoint [JUDI] operators under the hood.
```Julia
# Jacobian
W1 = judiJacobian(F0, q)
b1 = randn(Float32, num_samples)
# Fully connected layer
W2 = randn(Float32, n_out, num_samples)
b2 = randn(Float32, n_out)
# Network and loss
network(x) = W2*(W1*x .+ b1) .+ b2
loss(x, y) = Flux.mse(network(x), y)
# Compute gradient w/ Flux
p = params(x, y, W1, b1, b2)
gs = Tracker.gradient(() -> loss(x, y), p)
gs[x] # gradient w.r.t. to x
```
[JUDI] allows implementing physics-augmented neural networks for seismic inversion, such as loop-unrolled seismic imaging algorithms. For example, the following results are a conventional RTM image, an LS-RTM image and a loop-unrolled LS-RTM image for a single simultaneous shot record.

## Authors
This package was written by [Philipp Witte](https://www.linkedin.com/in/philipp-witte/) and [Mathias Louboutin](https://mloubout.github.io/) from the Seismic Laboratory for Imaging and Modeling (SLIM) at the Georgia Institute of Technology.
If you use our software for your research, please cite our [Geophysics paper](https://library.seg.org/doi/abs/10.1190/geo2018-0174.1#):
```bibtex
@article{witteJUDI2019,
author = {Philipp A. Witte and Mathias Louboutin and Navjot Kukreja and Fabio Luporini and Michael Lange and Gerard J. Gorman and Felix J. Herrmann},
title = {A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia},
journal = {GEOPHYSICS},
volume = {84},
number = {3},
pages = {F57-F71},
year = {2019},
doi = {10.1190/geo2018-0174.1},
URL = {https://doi.org/10.1190/geo2018-0174.1},
eprint = {https://doi.org/10.1190/geo2018-0174.1}
}
```
Also visit the Devito homepage at <https://www.devitoproject.org/publications> for more information and references.
Contact authors via: [email protected].
[docs-stable-img]:https://img.shields.io/badge/docs-stable-blue.svg?style=plastic
[docs-stable-status]:https://slimgroup.github.io/JUDI.jl/stable
[docs-dev-img]:https://img.shields.io/badge/docs-dev-blue.svg
[docs-dev-status]:https://slimgroup.github.io/JUDI.jl/dev
[build-img]:https://github.com/slimgroup/JUDI.jl/workflows/CI-tests/badge.svg?style=plastic
[build-status]:https://github.com/slimgroup/JUDI.jl/actions?query=workflow%3ACI-tests
[codecov-img]:https://codecov.io/gh/slimgroup/JUDI.jl/branch/master/graph/badge.svg?style=plastic
[codecov-status]:https://codecov.io/gh/slimgroup/JUDI.jl
[aqua-img]:https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg?style=plastic
[aqua-status]:https://github.com/JuliaTesting/Aqua.jl
[zenodo-img]:https://zenodo.org/badge/DOI/10.5281/zenodo.3878711.svg?style=plastic
[zenodo-status]:https://doi.org/10.5281/zenodo.3878711
[license-img]:http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat?style=plastic
[license-status]:LICENSE.md
[docker-img]:https://img.shields.io/docker/v/mloubout/judi?color=blueviolet&label=docker&sort=semver
[docker-url]:https://hub.docker.com/r/mloubout/judi
[JUDI]:https://github.com/slimgroup/JUDI.jl
[Devito]:https://github.com/devitocodes/devito
[ChainRulesCore]:https://github.com/JuliaDiff/ChainRulesCore.jl
[Flux]:https://github.com/FluxML/Flux.jl
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 2242 |
# Authors
This package was written by [Philipp Witte](https://www.linkedin.com/in/philipp-witte/) and [Mathias Louboutin](https://mloubout.github.io) from the Seismic Laboratory for Imaging and Modeling (SLIM) at the Georgia Institute of Technology. People involved in the development of JUDI include:
- Philipp A. Witte^* (Now MSFT)
- Mathias Louboutin (Georgia Institute of Technology)
- Henryk Modzelewski (The Univeristy of British Columbia)
- Felix J. Herrmann (Georgia Institute of Technology)
And you can find the full list of collaborators on github at [Contributors](https://github.com/slimgroup/JUDI.jl/graphs/contributors).
## Cite us
If you use our software for your research, please cite our [Geophysics paper](https://library.seg.org/doi/abs/10.1190/geo2018-0174.1#):
```
@article{witteJUDI2019,
author = {Philipp A. Witte and Mathias Louboutin and Navjot Kukreja and Fabio Luporini and Michael Lange and Gerard J. Gorman and Felix J. Herrmann},
title = {A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia},
journal = {GEOPHYSICS},
volume = {84},
number = {3},
pages = {F57-F71},
year = {2019},
doi = {10.1190/geo2018-0174.1},
URL = {https://doi.org/10.1190/geo2018-0174.1},
eprint = {https://doi.org/10.1190/geo2018-0174.1}
}
```
Also visit the Devito homepage at <https://www.devitoproject.org/publications> for more information and references. If you need to cite a specific version of JUDI, you can find our citeable archives on [Zenodo](https://doi.org/10.5281/zenodo.3878711).
## Contribution and community
We gladly welcome and encorage contributions from the community to improve our software and its usability. Feel free to:
- Open [issues](https://github.com/slimgroup/JUDI.jl/issues) for bugs
- Start [discussions](https://github.com/slimgroup/JUDI.jl/discussions) to interat with the developper and ask any questions
- Open [PR](https://github.com/slimgroup/JUDI.jl/pulls) for bug fixes and improvements
## Field examples
An example of using JUDI to invert field data is provided for the [Viking Graben Line 12](https://github.com/slimgroup/JUDI.jl/examples/field_examples/viking_graben_line12) which includes data preprocessing steps using Madagascar. | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 4251 | # Abstract Vectors
JUDI provides abstract vector types that encapsulate seismic related objects. In particula, JUDI defines thre main types for seismic data [`judiVector`](@ref), full time-space wavefields [`judiWavefield`](@ref) and extended source weights [`judiWeights`](@ref).
```@contents
Pages = ["abstract_vectors.md"]
```
At the core of JUDI's vector types is the abstract type `judiMultiSourceVector` that represent a dimensionalized `Vector{Array}` where each sub-array correspond to a single source. All JUDI vector types inhert from this abstract type that implements most of the arithmetic and julia core utilities. As an abstract types, `judiMultiSourceVector` should not be instantiated but new concrete types based on it should be created if one desire to create its own JUDI multi-source vector type.
All sub-type of `judiMultiSourceVector` must implement the following methods to be compatible with JUDI. The following JUDI core types are examples of sub-types.
## judiVector
The class `judiVector` is the basic data structure for seismic shot records or seismic sources. From JUDI's perspective, both are treated the same and can be multiplied with modeling operators.
**Construction:**
In the most basic way, `judiVectors` are contstructed from a `Geometry` object (containing either source or receiver geometry) and a cell array of data:
```@docs
judiVector(geometry::Geometry, data::Array{T, N}) where {T, N}
```
**Access fields (in-core data containers):**
```julia
# Access i-th shot record
x.data[i]
# Extract judiVector for i-th shot
x1 = x[i]
# Access j-th receiver location of i-th shot
x.geometry.xloc[i][j]
```
**Access fields (out-of-core data containers):**
```julia
# Access data container of i-th shot
x.data[i]
# Read data from i-th shot into memory
x.data[i][1].data
# Access out-of-core geometry
x.geometry
# Load OOC geometry into memory
Geometry(x.geometry)
```
**Operations:**
In-core `judiVectors` can be used like regular Julia arrays and support common operations such as:
```julia
x = judiVector(geometry, data)
# Size (as if all data was vectorized)
size(x)
# Norms
norm(x)
# Inner product
dot(x, x)
# Addition, subtraction (geometries must match)
y = x + x
z = x - y
# Scaling
α = 2f0
y = x * α
# Concatenate
y = vcat(x, x)
```
## judiWavefield
Abstract vector class for wavefields.
**Construction:**
```@docs
judiWavefield
```
**Access fields:**
```julia
# Access wavefield from i-th shot location
u.data[i]
```
**Operations:**
Supports some basic arithmetric operations:
```julia
# Size
size(u)
# Norms
norm(u)
# Inner product
dot(u, y)
# Addition, subtraction
v = u + u
z = u - v
# Absolute value
abs(u)
# Concatenation
v = vcat(u, u)
```
## judiRHS
Abstract vector class for a right-hand-side (RHS). A RHS has the size of a full wavefield, but only contains the data of the source wavelet of shot records in memory, as well as the geometry information of where the data is injected during modeling.
**Construction:**
```julia
rhs = judiRHS(geometry, data)
```
A JUDI RHS can also be constructed by multplying a `judiVector` and the corresponding transpose of a `judiProjection` operator:
```julia
rhs1 = Ps'*q
rhs2 = Pr'*d_obs
```
where `Ps` and `Pr` are `judiProjection` operators for sources and receivers respectively and `q` and `d_obs` are `judiVectors` with the source and receiver data.
**Access fields:**
Accessible fields include:
```julia
# Source/receiver data
rhs.data
# Source/receiver geometry
rhs.geometry
# Info structure
rhs.info
```
## judiWeights
Abstract vector class for extended source weights. The weights for each shot location have the dimensions of the model (namely `model.n`).
**Construction:**
```@docs
judiWeights(weights::Array{T, N}; nsrc=1, vDT::DataType=Float32) where {T<:Real, N}
```
**Parameters:**
* `weights`: Cell array with one cell per shot location. Each cell contains a 2D/3D Julia array with the weights for the spatially extended source. Alternatively: pass a single Julia array which will be used for all source locations.
**Access fields:**
```julia
# Access weights of i-th shot locatoin
w.weights[i]
```
**Operations:**
Supports the same arithmetric operations as a `judiVector`.
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 24452 | # Getting Started
These tutorials provide instructions of how to set up various modeling or inversion scenarios with JUDI. For a list of runnable Julia scripts and reproducable research, please also check out the examples:
- The [examples](https://github.com/slimgroup/JUDI.jl/tree/master/examples/scripts) scripts contain simple modeling and inversion examples such as FWI, LSRTM, and medical modeling.
- The [machine-learning](https://github.com/slimgroup/JUDI.jl/tree/master/examples/machine-learning) scripts contain examples of machine learning using Flux.
```@contents
Pages = ["tutorials.md"]
```
## 2D Modeling Quickstart
To set up a simple 2D modeling experiment with JUDI with an OBN-type acquisition (receivers everywhere), we start by loading the module and building a two layer model:
```julia
using JUDI
# Grid
n = (120, 100) # (x,z)
d = (10., 10.)
o = (0., 0.)
# Velocity [km/s]
v = ones(Float32, n) .* 1.4f0
v[:, 50:end] .= 5f0
# Squared slowness
m = (1f0 ./ v).^2
```
For working with JUDI operators, we need to set up a model structure, which contains the grid information, as well as the slowness. Optionally, we can provide an array of the density in `g/cm^3` (by default a density of 1 is used):
```julia
# Density (optional)
rho = ones(Float32, n)
# Model structure:
model = Model(n, d, o, m; rho=rho)
```
Next, we define our source acquisition geometry, which needs to be defined as a `Geometry` structure. The `Geometry` function requires the x-, y- and z-coordinates of the source locations as input, as well as the modeling time and samping interval of the wavelet. In general, each parameter can be passed as a cell array, where each cell entry provides the information for the respective source location. The helper function `convertToCell` converts a Julia `range` to a cell array, which makes defining the source geometry easier:
```julia
# Set up source geometry
nsrc = 4 # no. of sources
xsrc = convertToCell(range(400f0, stop=800f0, length=nsrc))
ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc))
zsrc = convertToCell(range(20f0, stop=20f0, length=nsrc))
# Modeling time and sampling interval
time = 1000f0 # ms
dt = 2f0 # ms
# Set up source structure
src_geometry = Geometry(xsrc, ysrc, zsrc; dt=dt, t=time)
```
Now we can define our source wavelet. The source must be defined as a `judiVector`, which takes the source geometry, as well as the source data (i.e. the wavelet) as an input argument:
```julia
# Source wavelet
f0 = 0.01f0 # kHz
wavelet = ricker_wavelet(time, dt, f0)
q = judiVector(src_geometry, wavelet)
```
In general, `wavelet` can be a cell array with a different wavelet in each cell, i.e. for every source location. Here, we want to use the same wavelet for all 4 source experiments, so we can simply pass a single vector. As we already specified in our `src_geometry` object that we want to have 4 source locations, `judiVector` will automaticallty copy the wavelet for every experiment.
Next, we set up the receiver acquisition geometry. Here, we define an OBN acquisition, where the receivers are spread out over the entire domain and each source experiment uses the same set of receivers. Again, we can in principle pass the coordinates as cell arrays, with one cell per source location. Since we want to use the same geometry for every source, we can use a short cut and define the coordinates as Julia `ranges` and pass `nsrc=nsrc` as an optional argument to the `Geometry` function. This tells the function that we want to use our receiver set up for `nsrc` distinct source experiments:
```julia
# Set up receiver geometry (for 2D, set yrec to zero)
nxrec = 120
xrec = range(50f0, stop=1150f0, length=nxrec)
yrec = 0f0
zrec = range(50f0, stop=50f0, length=nxrec)
# Set up receiver structure
rec_geometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc)
```
Next, we can define separate operators for source/receiver projections and a forward modeling operator:
```julia
# Setup operators
Pr = judiProjection(rec_geometry)
A_inv = judiModeling(model)
Ps = judiProjection(src_geometry)
```
We can see, that from JUDI's perspective, source and receivers are treated equally and are represented by the same operators (`judiProjection`) and vectors (`judiVector`).
We also could've skipped setting up the projection operators and directly created:
```julia
F = judiModeling(model, src_geometry, rec_geometry)
```
which is equivalent to creating the combined operator:
```julia
F = Pr*A_inv*Ps'
```
Finally, to model our seismic data, we run:
```julia
d_obs = Pr*A_inv*Ps'*q
# or
d_obs = F*q
```
We can plot a 2D shot record by accessing the `.data` field of the `judiVector`, which contains the data in the original (non-vectorized) dimensions:
```julia
using PyPlot
imshow(d_obs.data[1], vmin=-5, vmax=5, cmap="seismic", aspect="auto")
```
We can also set up a Jacobian operator for Born modeling and reverse-time migration. First we set up a (constant) migration velocity model:
```julia
v0 = ones(Float32, n) .* 1.4f0
m0 = (1f0 ./ v0).^2
dm = m - m0 # model perturbation/image
# Model structure
model0 = Model(n, d, o, m0)
```
We can create the Jacobian directly from a (non-linear) modeling operator and a source vector:
```julia
A0_inv = judiModeling(model0) # modeling operator for migration velocity
J = judiJacobian(Pr*A0_inv*Ps', q)
```
We can use this operator to model single scattered data, as well as for migration our previous data:
```julia
d_lin = J*vec(dm)
# RTM
rtm = J'*d_obs
```
To plot, first reshape the image:
```julia
rtm = reshape(rtm, model0.n)
imshow(rtm', cmap="gray", vmin=-1e3, vmax=1e3)
```
## 3D Modeling Quickstart
Setting up a 3D experiment largely follows the instructions for the 2D example. Instead of a 2D model, we define our velocity model as:
```julia
using JUDI
# Grid
n = (120, 100, 80) # (x,y,z)
d = (10., 10., 10.)
o = (0., 0., 0.)
# Velocity [km/s]
v = ones(Float32, n) .* 1.4f0
v[:, :, 40:end] .= 5f0
# Squared slowness and model structure
m = (1f0 ./ v).^2
model = Model(n, d, o, m)
```
Our source coordinates now also need to have the y-coordinate defined:
```julia
# Set up source geometry
nsrc = 4 # no. of sources
xsrc = convertToCell(range(400f0, stop=800f0, length=nsrc))
ysrc = convertToCell(range(200f0, stop=1000f0, length=nsrc))
zsrc = convertToCell(range(20f0, stop=20f0, length=nsrc))
# Modeling time and sampling interval
time = 1000f0 # ms
dt = 2f0 # ms
# Set up source structure
src_geometry = Geometry(xsrc, ysrc, zsrc; dt=dt, t=time)
```
Our source wavelet, is set up as in the 2D case:
```julia
# Source wavelet
f0 = 0.01f0 # kHz
wavelet = ricker_wavelet(time, dt, f0)
q = judiVector(src_geometry, wavelet)
```
For the receivers, we generally need to define each coordinate (x, y, z) for every receiver. I.e. `xrec`, `yrec` and `zrec` each have the length of the total number of receivers. However, oftentimes we are interested in a regular receiver grid, which can be defined by two basis vectors and a constant depth value for all receivers. We can then use the `setup_3D_grid` helper function to create the full set of coordinates:
```julia
# Receiver geometry
nxrec = 120
nyrec = 100
xrec = range(50f0, stop=1150f0, length=nxrec)
yrec = range(100f0, stop=900f0, length=nyrec)
zrec = 50f0
# Construct 3D grid from basis vectors
(xrec, yrec, zrec) = setup_3D_grid(xrec, yrec, zrec)
# Set up receiver structure
rec_geometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc)
```
Setting up the modeling operators is done as in the previous 2D case:
```julia
# Setup operators
Pr = judiProjection(rec_geometry)
A_inv = judiModeling(model)
Ps = judiProjection(src_geometry)
# Model data
d_obs = Pr*A_inv*Ps'*q
```
The 3D shot records are still saved as 2D arrays of dimensions `time x (nxrec*nyrec)`:
```julia
using PyPlot
imshow(d_obs.data[1], vmin=-.4, vmax=.4, cmap="seismic", aspect="auto")
```
## Vertical and tilted-transverse isotropic modeling (VTI, TTI)
JUDI supports both VTI and TTI modeling based on a coupled pseudo-acoustic wave equation. To enable VTI/TTI modeling, simply pass Thomsen parameters as well as the tilt angles to the `Model` structure as optional keyword arguments:
```julia
# Grid and model
n = (120, 100, 80)
d = (10., 10., 10)
o = (0., 0., 0.)
# Velocity
v = ones(Float32, n) .* 1.5f0
m = 1f0 ./ v.^2
# Thomsen parameters
epsilon = ones(Float32, n) .* 0.2f0
delta = ones(Float32, n) .* 0.1f0
# Tile angles for TTI
theta = ones(Float32, n) .* pi/2f0
phi = ones(Float32, n) .* pi/3f0 # 3D only
# Set up model structure with Thomsen parameters
model = Model(n, d, o, m; rho=rho, epsilon=epsilon, delta=delta, theta=theta, delta=delta)
```
## Modeling with density
To use density, pass `rho` in the units of `[g/cm^3]` as an optional keyword argument to the Model structure. The default density is `rho=1f0` (i.e. density of water):
```julia
# Grid and model
n = (120, 100)
d = (10., 10.)
o = (0., 0.)
v = ones(Float32, n) .* 1.5f0
m = 1f0 ./ v.^2
rho = ones(Float32, n) .* 1.1f0
# Set up model structure with density
model = Model(n, d, o, m; rho=rho)
```
## 2D Marine streamer acquisition
For a marine streamer acquisition, we need to define a moving set of receivers representing a streamer that is towed behind a seismic source vessel. In JUDI, this is easily done by defining a different set of receivers for each source location. Here, we explain how to set up the `Geometry` objects for a 2D marine streamer acquisition.
If we define that our streamer is to the right side of the source vessel, this has the effect that part of the streamer is outside the grid while our vessel is in the right side of the model. To circumvent this, we can say that our streamer is on the right side of the source while the vessel is in the left-hand side of the model and vice versa. This way, we get the full maximum offset coverage for every source location (assuming that the maximum offset is less or equal than half the domain size).
First, we have to specify our domain size (the physical extent of our model), as well as the number of receivers and the minimum and maximum offset:
```julia
domain_x = (model.n[1] - 1)*model.d[1] # horizontal extent of model
nrec = 120 # no. of receivers
xmin = 50f0 # leave buffer zone w/o source and receivers of this size
xmax = domain_x - 50f0
min_offset = 10f0 # distance between source and first receiver
max_offset = 400f0 # distance between source and last
xmid = domain_x / 2 # midpoint of model
source_spacing = 25f0 # source interval [m]
```
For the JUDI `Geometry` objects, we need to create cell arrays for the source and receiver coordinates, with one cell entry per source location:
```julia
# Source/receivers
nsrc = 20 # number of shot locations
# Receiver coordinates
xrec = Array{Any}(undef, nsrc)
yrec = Array{Any}(undef, nsrc)
zrec = Array{Any}(undef, nsrc)
# Source coordinates
xsrc = Array{Any}(undef, nsrc)
ysrc = Array{Any}(undef, nsrc)
zsrc = Array{Any}(undef, nsrc)
```
Next, we compute the source and receiver coordinates for when the vessel moves from left to right in the right-hand side of the model:
```julia
# Vessel goes from left to right in right-hand side of model
nsrc_half = Int(nsrc/2)
for j=1:nsrc_half
xloc = xmid + (j-1)*source_spacing
# Current receiver locations
xrec[j] = range(xloc - max_offset, xloc - min_offset, length=nrec)
yrec[j] = 0.
zrec[j] = range(50f0, 50f0, length=nrec)
# Current source
xsrc[j] = xloc
ysrc[j] = 0f0
zsrc[j] = 20f0
end
```
Then, we repeat this for the case where the vessel goes from right to left in the left-hand model side:
```julia
# Vessel goes from right to left in left-hand side of model
for j=1:nsrc_half
xloc = xmid - (j-1)*source_spacing
# Current receiver locations
xrec[nsrc_half + j] = range(xloc + min_offset, xloc + max_offset, length=nrec)
yrec[nsrc_half + j] = 0f0
zrec[nsrc_half + j] = range(50f0, 50f0, length=nrec)
# Current source
xsrc[nsrc_half + j] = xloc
ysrc[nsrc_half + j] = 0f0
zsrc[nsrc_half + j] = 20f0
end
```
Finally, we can set the modeling time and sampling interval and create the `Geometry` objects:
```julia
# receiver sampling and recording time
time = 10000f0 # receiver recording time [ms]
dt = 4f0 # receiver sampling interval
# Set geometry objects
rec_geometry = Geometry(xrec, yrec, zrec; dt=dt, t=time)
src_geometry = Geometry(xsrc, ysrc, zsrc; dt=dt, t=time)
```
You can find a full (reproducable) example for generating a marine streamer data set for the Sigsbee 2A model [here](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/Sigsbee2A/generate_data_sigsbee.jl).
## Simultaneous sources
To set up a simultaneous source with JUDI, we first create a cell array with `nsrc` cells, where `nsrc` is the number of separate experiments (here `nsrc=1`). For a simultaneous source, we create an array of source coordinates for each cell entry. In fact, this is exactly like setting up the receiver geometry, in which case we define multiple receivers per shot location. Here, we define a single experiment with a simultaneous source consisting of four sources:
```julia
nsrc = 1 # single simultaneous source
xsrc = Vector{Float32}(undef, nsrc)
ysrc = Vector{Float32}(undef, nsrc)
zsrc = Vector{Float32}(undef, nsrc)
# Set up source geometry
xsrc[1] = [250f0, 500f0, 750f0, 1000f0] # four simultaneous sources
ysrc[1] = 0f0
zsrc[1] = [50f0, 50f0, 50f0, 50f0]
# Source sampling and number of time steps
time = 2000f0
dt = 4f0
# Set up source structure
src_geometry = Geometry(xsrc, ysrc, zsrc; dt=dt, t=time)
```
With the simultaneous source geometry in place, we can now create our simultaneous data. As we have four sources per sim. source, we create an array of dimensions `4 x src_geometry.nt[1]` and fill it with wavelets of different time shifts:
```julia
# Create wavelet
f0 = 0.01 # source peak frequencies
q = ricker_wavelet(500f0, dt, f0) # 500 ms wavelet
# Create array with different time shifts of the wavelet
wavelet = zeros(Float32, 4, src_geometry.nt[1])
wavelet[1, 1:1+length(q)-1] = q
wavelet[2, 41:41+length(q)-1] = q
wavelet[3, 121:121+length(q)-1] = q
wavelet[4, 201:201+length(q)-1] = q
```
Finally, we create our simultaneous source as a `judiVector`:
```julia
# Source wavelet
q = judiVector(src_geometry, wavelet)
```
## Computational simultaneous sources (super shots)
The computational simultaneous sources refer to superposition of sequentially-fired sources and shot records from the field. These computational simultaneous shot records are not acquired in the field simultaneously, but computational simultaneous sources introduce randomness to the optimization problems like FWI and LS-RTM, which takes advantage of the knowledge in randomized linear algebra to make optimization faster and more robust.
The implementation of computational simultaneous sources follows the journal article [Fast randomized full-waveform inversion with compressive sensing](https://slim.gatech.edu/content/fast-randomized-full-waveform-inversion-compressive-sensing)
The simultaneous sources experiments are generated by superposition of shot records with random weights drawn from Gaussian distribution.
```julia
# assume dobs is generated by sequentially fired point sources q
nsimsrc = 8
# Set up random weights
weights = randn(Float32,nsimsrc,q.nsrc)
# Create SimSource
q_sim = weights * q
data_sim = weights * dobs
# We can also apply the weights to the operator and check the equivalence
d_sim = (weights * F) * q_sim
isapprox(data_sim, d_sim)
```
## Working with wavefields
JUDI allows computing full time domain wavefields and using them as right-hand sides for wave equations solves. This tutorial shows how. We start by setting up a basic 2D experiment:
```julia
using JUDI
# Grid
n = (120, 100) # (x,z)
d = (10., 10.)
o = (0., 0.)
# Velocity [km/s]
v = ones(Float32, n) .* 1.4f0
v[:, 50:end] .= 5f0
# Squared slowness
m = (1f0 ./ v).^2
# Model structure:
model = Model(n, d, o, m)
```
Next, we set up the source geometry for a single source experiment:
```julia
# Set up source geometry
nsrc = 1 # no. of sources
xsrc = convertToCell([600f0])
ysrc = convertToCell([0f0])
zsrc = convertToCell([20f0])
# Modeling time and sampling interval
time = 600f0 # ms
dt = 4f0 # ms
# Set up source structure
src_geometry = Geometry(xsrc, ysrc, zsrc; dt=dt, t=time)
# Source wavelet
f0 = 0.01f0 # kHz
wavelet = ricker_wavelet(time, dt, f0)
q = judiVector(src_geometry, wavelet)
```
As in the 2D quick start tutorial, we create our modeling operator and source projection operator:
```julia
# Setup operators
A_inv = judiModeling(model)
Ps = judiProjection(src_geometry)
```
To model a wavefield, we simply omit the receiver sampling operator:
```julia
u = A_inv*Ps'*q
```
This return an abstract data vector called `judiWavefield`. Similar to `judiVectors`, we can access the data for each source number `i` via `u.data[i]`. The data is a 3D array of size `(nt, nx, nz)` for 2D and a 4D array of size `(nt, nx, ny, nz)` for 3D. We can plot the wavefield of the 600th time step with:
```julia
using PyPlot
imshow(u.data[1][600, :, :]', vmin=-5, vmax=5, cmap="seismic", aspect="auto")
```
We can also use the computed wavefield `u` as a right-hand side for forward and adjoint wave equation solves:
```julia
v = A_inv*u
w = A_inv'*u
```
Similarly, by setting up a receiver projection operator, we can use wavefields as right-hand sides, but restrict the output to the receiver locations.
## Extended source modeling
JUDI supports extened source modeling, which injects a 1D wavelet `q` at every point in the subsurface weighted by a spatially varying extended source. To demonstrate extended source modeling, we first set up a runnable 2D experiment with JUDI. We start with defining the model:
```julia
using JUDI
# Grid
n = (120, 100) # (x,z)
d = (10., 10.)
o = (0., 0.)
# Velocity [km/s]
v = ones(Float32, n) .* 1.4f0
v[:, 50:end] .= 5f0
# Squared slowness
m = (1f0 ./ v).^2
# Model structure:
model = Model(n, d, o, m)
```
Next, we set up the receiver geometry:
```julia
# Number of experiments
nsrc = 2
# Set up receiver geometry
nxrec = 120
xrec = range(50f0, stop=1150f0, length=nxrec)
yrec = 0f0
zrec = range(50f0, stop=50f0, length=nxrec)
# Modeling time and receiver sampling interval
time = 2000
dt = 4
# Set up receiver structure
rec_geometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc)
```
For the extended source, we do not need to set up a source geometry object, but we need to define a wavelet function:
```julia
# Source wavelet
f0 = 0.01f0 # MHz
wavelet = ricker_wavelet(time, dt, f0)
```
As before, we set up a modeling operator and a receiver sampling operator:
```julia
# Setup operators
A_inv = judiModeling(model)
Pr = judiProjection(rec_geometry)
```
We define our extended source as a so called `judiWeights` vector. Similar to a `judiVector`, the data of this abstract vector is stored as a cell array, where each cell corresponds to one source experiment. We create a cell array of length two and create a random array of the size of the model as our extended source:
```julia
weights = Array{Array}(undef, nsrc)
for j=1:nsrc
weights[j] = randn(Float32, model.n)
end
w = judiWeights(weights)
```
To inject the extended source into the model and weight it by the wavelet, we create a special projection operator called `judiLRWF` (for JUDI low-rank wavefield). This operator needs to know the wavelet we defined earlier. We can then create our full modeling operator, by combining `Pw` with `A_inv` and the receiver sampling operator:
```julia
# Create operator for injecting the weights, multiplied by the provided wavelet(s)
Pw = judiLRWF(wavelet)
# Model observed data w/ extended source
F = Pr*A_inv*adjoint(Pw)
```
Extended source modeling supports both forward and adjoint modeling:
```julia
# Simultaneous observed data
d_sim = F*w
dw = adjoint(F)*d_sim
```
As for regular modeling, we can create a Jacobian for linearized modeling and migration. First we define a migration velocity model and the corresponding modeling operator `A0_inv`:
```julia
# Migration velocity and squared slowness
v0 = ones(Float32, n) .* 1.4f0
m0 = (1f0 ./ v0).^2
# Model structure and modeling operator for migration velocity
model0 = Model(n, d, o, m0)
A0_inv = judiModeling(model0)
# Jacobian and RTM
J = judiJacobian(Pr*A0_inv*adjoint(Pw), w)
rtm = adjoint(J)*d_sim
```
As before, we can plot the image after reshaping it into its original dimensions:
```julia
rtm = reshape(rtm, model.n)
imshow(rtm', cmap="gray", vmin=-3e6, vmax=3e6)
```
Please also refer to the reproducable example on github for [2D](https://github.com/slimgroup/JUDI.jl/blob/master/examples/scripts/modeling_extended_source_2D.jl) and [3D](https://github.com/slimgroup/JUDI.jl/blob/master/examples/scripts/modeling_extended_source_3D.jl) extended modeling.
## Impedance imaging (inverse scattering)
JUDI supports imaging (RTM) and demigration (linearized modeling) using the linearized inverse scattering imaging condition (ISIC) and its corresponding adjoint. ISIC can be enabled via the `Options` class. You can set this options when you initially create the modeling operator:
```julia
# Options strucuture
opt = Options(isic=true)
# Set up modeling operator
A0_inv = judiModeling(model0; options=opt)
```
When you create a Jacobian from a forward modeling operator, the Jacobian inherits the options from `A0_inv`:
```julia
J = judiJacobian(Pr*A0_inv*Ps', q)
J.options.isic
# -> true
```
Alternatively, you can directly set the option in your Jacobian:
```julia
J.options.isic = true # enable isic
J.options.isic = false # disable isic
```
## Optimal checkpointing
JUDI supports optimal checkpointing via Devito's interface to the Revolve library. To enable checkpointing, use the `Options` class:
```julia
# Options strucuture
opt = Options(optimal_checkpointing=true)
# Set up modeling operator
A0_inv = judiModeling(model0; options=opt)
```
When you create a Jacobian from a forward modeling operator, the Jacobian inherits the options from `A0_inv`:
```julia
J = judiJacobian(Pr*A0_inv*Ps', q)
J.options.optimal_checkpointing
# -> true
```
Alternatively, you can directly set the option in your Jacobian:
```
J.options.optimal_checkpointing = true # enable checkpointing
J.options.optimal_checkpointing = false # disable checkpointing
```
## On-the-fly Fourier transforms
JUDI supports seismic imaging in the frequency domain using on-the-fly discrete Fourier transforms (DFTs). To compute an RTM image in the frequency domain for a given set of frequencies, we first create a cell array for the frequencies of each source experiment:
```julia
nsrc = 4 # assume 4 source experiments
frequencies = Array{Any}(undef, nsrc)
```
Now we can define single or multiple frequencies for each shot location for which the RTM image will be computed:
```julia
# For every source location, compute RTM image for 10 and 20 Hz
for j=1:nsrc
frequencies[j] = [0.001, 0.002]
end
```
The frequencies are passed to the Jacobian via the options field. Assuming we already have a Jacobian set up, we set the frequencies via:
```julia
J.options.frequencies = frequencies
```
Instead of the same two frequencies for each source experiment, we could have chosen different random sets of frequencies, which creates an RTM with incoherent noise. We can also draw random frequencies using the frequency spectrum of the true source as the probability density function. To create a distribution for a given source `q` (`judiVector`) from which we can draw frequency samples, use:
```julia
q_dist = generate_distribution(q)
```
Then we can assigne a random set of frequencies in a specified range as follows:
```julia
nfreq = 10 # no. of frequencies per source location
for j=1:nsrc
J.options.frequencies[j] = select_frequencies(q_dist; fmin=0.003, fmax=0.04, nf=nfreq)
end
```
Once the `options.frequencies` field is set, on-the-fly DFTs are used for both born modeling and RTM.
To save computational cost, we can limit the number of DFTs that are performed. Rather than computing the DFT at every time step, we can define a subsampling factor as follows:
```julia
# Compute DFT every 4 time steps
J.options.dft_subsampling_factor=4
``` | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 2530 | # Data structures
```@contents
Pages = ["data_structures.md"]
```
## Physical Parameter
Data structure for physical parameter array in JUDI. A `PhysicalParameter` inherits from julia `AbstractVector`
```@docs
PhysicalParameter
```
Unless specified otherwise with the `return_array` option in [`Options`](@ref), the result of a migration/FWIgradient([`judiJacobian`](@ref), [`fwi_objective`](@ref), [`lsrtm_objective`](@ref)) will be wrapped into a `PhysicalParameter`. THis allow better handling of different model parts and a better representation of the dimensional array.
## Model structure
Data structure for velocity models in JUDI.
```@docs
Model
```
Accessible fields include all of the above parameters `p.n, p.d, p.o, p.data`. Additionaly, arithmetic operation are all impemented such as addition, multiplication, broadcasting and indexing. Linear algebra operation are implemented as well but will return a standard Julia vector if the matrix used is external to JUDI.
**Access fields:**
Accessible fields include all of the above parameters, which can be accessed as follows:
```julia
# Access model
model.m
# Access number of grid points
model.n
```
## Geometry structure
JUDI's geometry structure contains the information of either the source **or** the receiver geometry. Construct an (in-core) geometry object for **either** a source or receiver set up:
```@docs
Geometry
```
From the optional arguments, you have to pass (at least) **two** of `dt`, `nt` and `t`. The third value is automatically determined and set from the two other values. a `Geometry` can be constructed in a number of different ways for in-core and out-of-core cases. Check our examples and the source for additional details while the documentation is being extended.
**Access fields:**
Accessible fields include all of the above parameters, which can be accessed as follows:
```julia
# Access cell arrays of x coordinates:
geometry.xloc
# Access x coordinates of the i-th source location
geometry.xloc[i]
# Access j-th receiver location (in x) of the i-th source location
geometry.xloc[i][j]
```
### Geometry utilities
A few utilities to manipulates geometries are provided as well.
```@docs
super_shot_geometry
reciprocal_geom
```
## Options structure
The options structure allows setting several modeling parameters.
```@docs
Options
```
**notes**
`Option` has been renamed `JUDIOptions` as of JUDI version `4.0` to avoid potential (and exisiting) conflicts wiht other packages exporting an Options structure. | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 2659 | # Helper functions
JUDI provides numerous helper and utility functions need for seismic modeling and inversion.
```@contents
Pages = ["helper.md"]
```
## Ricker wavelet
Create a 1D Ricker wavelet:
```@docs
ricker_wavelet(tmax, dt, f0; t0=nothing)
```
## Compute CFL time stepping interval
Calculate the time stepping interval based on the CFL condition
```@dcs
calculate_dt
```
## Compute number of computational time steps
Estimate the number of computational time steps. Required for calculating the dimensions of the matrix-free linear modeling operators:
```@docs
get_computational_nt
```
## Set up 3D acquisition grid
Helper function to create a regular acquisition grid for a 3D survey.
```julia
setup_3D_grid
```
## Data interpolation
Time interpolation for source/receiver data using splines. For modeling, the data is interpolated automatically onto the computational time axis, so generally, these functions are not needed for users.
```@docs
time_resample
```
## Generate and sample from frequency distribution
Create a probability distribution with the shape of the source spectrum from which we can draw random frequencies.
```@docs
generate_distribution
select_frequencies
```
We can draw random samples from `dist` by passing it values between 0 and 1:
```julia
# Draw a single random frequency
f = dist(rand(1))
# Draw 10 random frequencies
f = dist(rand(10))
```
Alternatively, we can use the function:
```julia
f = select_frequencies(dist; fmin=0f0, fmax=Inf, nf=1)
```
to draw `nf` number of frequencies for a given distribution `dist` in the frequency range of `fmin` to `fmax` (both in kHz).
## Read data from out of core container
In the case where a `judiVector` is out of core (points to a segy file) it is possible to convert it or part of it into an in core `judiVecor` with the `get_data` function.
```julia
d_ic = get_data(d_ooc, inds)
```
where `inds` is either a single index, a list of index or a range of index.
## Restrict model to acquisition
In practice, and in particular for marine data, the aperture of a single shot is much smaller than the full model size. We provide a function (automatically used when the option `limit_m` is set in [`Options`](@ref)) that limits the model to the acquisition area.
```@docs
limit_model_to_receiver_area
```
We also provide it's complement that removes receivers outside of the computational domain if the dataset contains locations that are not wanted
```@docs
remove_out_of_bounds_receivers
```
## Additional miscellanous utilities
```@docs
devito_model
setup_grid
remove_padding
convertToCell
process_input_data
reshape
transducer
as_vec
``` | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 1642 | # The Julia Devito Inversion framework (JUDI.jl)
JUDI is a framework for large-scale seismic modeling and inversion and designed to enable rapid translations of algorithms to fast and efficient code that scales to industry-size 3D problems. Wave equations in JUDI are solved with [Devito](https://www.devitoproject.org/), a Python domain-specific language for automated finite-difference (FD) computations.
## Docs overview
This documentation provides an overview over JUDI's basic data structures and abstract operators:
* [Installation](@ref): Install guidlines for JUDI and compilers.
* [Getting Started](@ref): A few simple guided examples to get familiar with JUDI.
* [Data structures](@ref): Explains the `Model`, `Geometry` and `Options` data structures and how to set up acquisition geometries.
* [Abstract Vectors](@ref): Documents JUDI's abstract vector classes `judiVector`, `judiWavefield`, `judiRHS`, `judiWeights` and `judiExtendedSource`.
* [Linear Operators](@ref): Lists and explains JUDI's abstract linear operators `judiModeling`, `judiJacobian`, `judiProjection` and `judiLRWF`.
* [Input/Output](@ref): Read SEG-Y data and set up `judiVectors` for shot records and sources. Read velocity models.
* [Helper functions](@ref): API of functions that make your life easier.
* [Seismic Inversion](@ref): Inversion utility functions to avoid recomputation and memry overhead.
* [Seismic Preconditioners](@ref): Basic preconditioners for seismic imaging.
* [pysource package](@ref): API reference for the propagators implementation with Devito in python. The API is the backend of JUDI handled with PyCall. | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 6751 |
# Installation
JUDI is a linear algebra abstraction built on top of [Devito](https://github.com/devitocodes/devito). Because [Devito](https://github.com/devitocodes/devito) is a just-in-time compiler, you will need to have a standard C compiler installed. by default most system come with a gcc compiler (except Windows where we recommend to use docker or WSL) which unfortunately isnt' very reliable. It is therefore recommended to install a proper compiler (gcc>=7, icc). For GPU offloading, you will then need to install a proper offloading compiler such as Nvidia's nvc or the latest version of clang (*not Apple clang*).
## Standard installation
JUDI is registered and can be installed directly in julia REPL
```julia
] add JUDI
```
This will install JUDI, and the `build` will install the necessary dependencies including [Devito](https://github.com/devitocodes/devito).
## Custom installation
In some case you may want to have your own installation of Devito you want JUDI to use in which case you should foloow these steps.
You can find installation instruction in our Wiki at [Installation](https://github.com/slimgroup/JUDI.jl/wiki/Installation).
JUDI is a registered package and can therefore be easily installed from the General registry with `]add/dev JUDI`
## GPU
JUDI supports the computation of the wave equation on GPU via [Devito](https://www.devitoproject.org)'s GPU offloading support.
**NOTE**: Only the wave equation part will be computed on GPU, the julia arrays will still be CPU arrays and `CUDA.jl` is not supported.
### Compiler installation
To enable gpu support in JUDI, you will need to install one of [Devito](https://www.devitoproject.org)'s supported offloading compilers. We strongly recommend checking the [Wiki](https://github.com/devitocodes/devito/wiki) for installation steps and to reach out to the Devito community for GPU compiler related issues.
- [x] `nvc/pgcc`. This is recommended and the simplest installation. You can install the compiler following Nvidia's installation instruction at [HPC-sdk](https://developer.nvidia.com/hpc-sdk)
- [ ] `aompcc`. This is the AMD compiler that is necessary for running on AMD GPUs. This installation is not tested with JUDI and we recommend to reach out to Devito's team for installation guidelines.
- [ ] `openmp5/clang`. This installation requires the compilation from source `openmp`, `clang` and `llvm` to install the latest version of `openmp5` enabling gpu offloading. You can find instructions on this installation in Devito's [Wiki](https://github.com/devitocodes/devito/wiki)
### Setup
The only required setup for GPU support are the environment variables for [Devito](https://www.devitoproject.org). For the currently supported `nvc+openacc` setup these are:
```
export DEVITO_LANGUAGE=openacc
export DEVITO_ARCH=nvc
export DEVITO_PLATFORM=nvidiaX
```
## Running with Docker
If you do not want to install JUDI, you can run [JUDI](https://github.com/slimgroup/JUDI.jl) as a [docker image](https://hub.docker.com/repository/docker/mloubout/judi). The first possibility is to run the docker container as a Jupyter notebook. [JUDI](https://github.com/slimgroup/JUDI.jl) provides two docker images for the latest [JUDI](https://github.com/slimgroup/JUDI.jl) release for Julia versions `1.6` (LTS) and `1.7` (latest stable version). The images names are `mloubout/judi:JVER-latest` where `JVER` is the Julia version. This docker images contain pre-installed compilers for CPUs (gcc-10) and Nvidia GPUs (nvc) via the nvidia HPC sdk. The environment is automatically set for [Devito] based on the hardware available.
**Note**: If you wish to use your gpu, you will need to install [nvidia-docker](https://docs.nvidia.com/ai-enterprise/deployment-guide/dg-docker.html) and run `docker run --gpus all` in order to make the GPUs available at runtime from within the image.
To run [JUDI](https://github.com/slimgroup/JUDI.jl) via docker execute the following command in your terminal:
```bash
docker run -p 8888:8888 mloubout/judi:1.7-latest
```
This command downloads the image and launches a container. You will see a link that you can copy-paste to your browser to access the notebooks. Alternatively, you can run a bash session, in which you can start a regular interactive Julia session and run the example scripts. Download/start the container as a bash session with:
```bash
docker run -it mloubout/judi:1.7-latest /bin/bash
```
Inside the container, all examples are located in the directory `/app/judi/examples/scripts`.
**Previous versions**: As of version `v2.6.7` of JUDI, we also ship version-tagged images as `mloubout/judi:JVER-ver` where `ver` is the version of [JUDI](https://github.com/slimgroup/JUDI.jl) wanted, for example the current [JUDI](https://github.com/slimgroup/JUDI.jl) version with Julia 1.7 is `mloubout/judi:1.7-v2.6.7`
**Development version**: Additionally, we provide two images corresponding to the latest development version of [JUDI](https://github.com/slimgroup/JUDI.jl) (latest state of the master branch). These images are called `mloubout/judi:JVER-dev` and can be used in a similar way.
## Testing
A complete test suite is included with JUDI and is tested via GitHub Actions. You can also run the test locally
via:
```julia
julia --project -e 'using Pkg;Pkg.test(coverage=false)'
```
By default, only the JUDI base API will be tested, however the testing suite supports other modes controlled via the environemnt variable `GROUP` such as:
```julia
GROUP=JUDI julia --project -e 'using Pkg;Pkg.test(coverage=false)'
```
The supported modes are:
- JUDI : Only the base API (linear operators, vectors, ...)
- ISO_OP : Isotropic acoustic operators
- ISO_OP_FS : Isotropic acoustic operators with free surface
- TTI_OP : Transverse tilted isotropic operators
- TTI_OP_FS : Transverse tilted isotropic operators with free surface
- filename : you can also provide just a filename (i.e `GROUP=test_judiVector.jl`) and only this one test file will be run. Single files with TTI or free surface are not currently supported as it relies on `Base.ARGS` for the setup.
## Configure compiler and OpenMP
Devito uses just-in-time compilation for the underlying wave equation solves. The default compiler is intel, but can be changed to any other specified compiler such as `gnu`. Either run the following command from the command line or add it to your ~/.bashrc file:
```
export DEVITO_ARCH=gnu
```
Devito uses shared memory OpenMP parallelism for solving PDEs. OpenMP is disabled by default, but you can enable OpenMP and define the number of threads (per PDE solve) as follows:
```
export DEVITO_LANGUAGE=openmp # Enable OpenMP.
export OMP_NUM_THREADS=4 # Number of OpenMP threads
```
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 8908 | # Seismic Inversion
```@contents
Pages = ["inversion.md"]
```
## Introduction
We currently introduced the linear operators that allow to write seismic modeling and inversion in a high-level, linear algebra way. These linear operator allow the script to closely follow the mathematics and to be readable and understandable.
However, these come with overhead. In particular, consider the following compuation on the FWI gradient:
```julia
d_syn = F*q
r = judiJacobian(F, q)' * (d_syn - d_obs)
```
In this two lines, the forward modeling is performed twice: once to compute `d_syn` then once again to compute the Jacobian adjoint. In order to avoid this overhead for practical inversion, we provide utility function that directly comput the gradient and objective function (L2- misfit) of FWI, LSRTM and TWRI with minimum overhead.
## FWI
```@docs
fwi_objective
```
### Example
JUDI is designed to let you set up objective functions that can be passed to standard packages for (gradient-based) optimization. The following example demonstrates how to perform FWI on the 2D Overthrust model using a spectral projected gradient algorithm from the minConf library, which is included in the software. A small test dataset (62 MB) and the model can be downloaded from this FTP server:
```julia
run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_2D.segy`)
run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_2D_initial_model.h5`)
```
The first step is to load the velocity model and the observed data into Julia, as well as setting up bound constraints for the inversion, which prevent too high or low velocities in the final result. Furthermore, we define an 8 Hertz Ricker wavelet as the source function:
```julia
using PyPlot, HDF5, SegyIO, JUDI, SlimOptim, Statistics, Random
# Load starting model
n, d, o, m0 = read(h5open("overthrust_2D_initial_model.h5", "r"), "n", "d", "o", "m0")
model0 = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) # need n, d, o as tuples and m0 as array
# Bound constraints
vmin = ones(Float32, model0.n) .+ 0.3f0
vmax = ones(Float32, model0.n) .+ 5.5f0
mmin = vec((1f0 ./ vmax).^2) # convert to slowness squared [s^2/km^2]
mmax = vec((1f0 ./ vmin).^2)
# Load segy data
block = segy_read("overthrust_2D.segy")
dobs = judiVector(block)
# Set up wavelet
src_geometry = Geometry(block; key="source", segy_depth_key="SourceDepth") # read source position geometry
wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.008f0) # 8 Hz wavelet
q = judiVector(src_geometry, wavelet)
```
For this FWI example, we define an objective function that can be passed to the minConf optimization library, which is included in the Julia Devito software package. We allow a maximum of 20 function evaluations using a spectral-projected gradient (SPG) algorithm. To save computational cost, each function evaluation uses a randomized subset of 20 shot records, instead of all 97 shots:
```julia
# Optimization parameters
fevals = 20 # number of function evaluations
batchsize = 20 # number of sources per iteration
fvals = zeros(21)
opt = Options(optimal_checkpointing = false) # set to true to enable checkpointing
# Objective function for minConf library
count = 0
function objective_function(x)
model0.m = reshape(x, model0.n);
# fwi function value and gradient
i = randperm(dobs.nsrc)[1:batchsize]
fval, grad = fwi_objective(model0, q[i], dobs[i]; options=opt)
grad = reshape(grad, model0.n); grad[:, 1:21] .= 0f0 # reset gradient in water column to 0.
grad = .1f0*grad/maximum(abs.(grad)) # scale gradient for line search
global count; count += 1; fvals[count] = fval
return fval, vec(grad.data)
end
# FWI with SPG
ProjBound(x) = median([mmin x mmax], dims=2) # Bound projection
options = spg_options(verbose=3, maxIter=fevals, memory=3)
res = spg(objective_function, vec(m0), ProjBound, options)
```
This example script can be run in parallel and requires roughly 220 MB of memory per source location. Execute the following code to generate figures of the initial model and the result, as well as the function values:
```julia
figure(); imshow(sqrt.(1. /adjoint(m0))); title("Initial model")
figure(); imshow(sqrt.(1. /adjoint(reshape(x, model0.n)))); title("FWI")
figure(); plot(fvals); title("Function value")
```

## LSRTM
```@docs
lsrtm_objective
```
### Example
JUDI includes matrix-free linear operators for modeling and linearized (Born) modeling, that let you write algorithms for migration that follow the mathematical notation of standard least squares problems. This example demonstrates how to use Julia Devito to perform least-squares reverse-time migration on the 2D Marmousi model. Start by downloading the test data set (1.1 GB) and the model:
```julia
run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_2D.segy`)
run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_migration_velocity.h5`)
```
Once again, load the starting model and the data and set up the source wavelet. For this example, we use a Ricker wavelet with 30 Hertz peak frequency.
```julia
using PyPlot, HDF5, JUDI, SegyIO, Random
# Load smooth migration velocity model
n,d,o,m0 = read(h5open("marmousi_migration_velocity.h5","r"), "n", "d", "o", "m0")
model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0)
# Load data
block = segy_read("marmousi_2D.segy")
dD = judiVector(block)
# Set up wavelet
src_geometry = Geometry(block; key="source", segy_depth_key="SourceDepth")
wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.03) # 30 Hz wavelet
q = judiVector(src_geometry,wavelet)
# Set up info structure
ntComp = get_computational_nt(q.geometry,dD.geometry,model0) # no. of computational time steps
info = Info(prod(model0.n),dD.nsrc,ntComp)
```
To speed up the convergence of our imaging example, we set up a basic preconditioner for each the model- and the data space, consisting of mutes to suppress the ocean-bottom reflection in the data and the source/receiver imprint in the image. The operator `J` represents the linearized modeling operator and its adjoint `J'` corresponds to the migration (RTM) operator. The forward and adjoint pair can be used for a basic LS-RTM example with (stochastic) gradient descent:
```julia
# Set up matrix-free linear operators
opt = Options(optimal_checkpointing = true) # set to false to disable optimal checkpointing
F = judiModeling(model0, q.geometry, dD.geometry; options=opt)
J = judiJacobian(F, q)
# Right-hand preconditioners (model topmute)
Mr = judiTopmute(model0; taperwidth=10) # mute up to grid point 52, with 10 point taper
# Left-hand side preconditioners
Ml = judiDatMute(q.geometry, dD.geometry; t0=.120) # data topmute starting at time 120ms
# Stochastic gradient
x = zeros(Float32, info.n) # zero initial guess
batchsize = 10 # use subset of 10 shots per iteration
niter = 32
fval = zeros(Float32, niter)
for j=1:niter
println("Iteration: ", j)
# Select batch and set up left-hand preconditioner
i = randperm(dD.nsrc)[1:batchsize]
# Compute residual and gradient
r = Ml[i]*J[i]*Mr*x - Ml[i]*dD[i]
g = adjoint(Mr)*adjoint(J[i])*adjoint(Ml[i])*r
# Step size and update variable
fval[j] = .5f0*norm(r)^2
t = norm(r)^2/norm(g)^2
global x -= t*g
end
```

## TWRI
```@docs
twri_objective
```
and related TWRI options
```@docs
TWRIOptions
```
## Machine Learning
[ChainRules.jl](https://github.com/JuliaDiff/ChainRules.jl) allows integrating JUDI modeling operators into convolutional neural networks for deep learning. For example, the following code snippet shows how to create a shallow CNN consisting of two convolutional layers with a nonlinear forward modeling layer in-between them. The integration of ChainRules and JUDI enables backpropagation through Flux' automatic differentiation tool, but calls the corresponding adjoint JUDI operators under the hood. For more details, please check out [this tutorial](https://github.com/slimgroup/JUDI.jl/blob/master/examples/notebooks/06_automatic_differentiation.ipynb).
```julia
# Jacobian
W1 = judiJacobian(F0, q)
b1 = randn(Float32, num_samples)
# Fully connected layer
W2 = randn(Float32, n_out, num_samples)
b2 = randn(Float32, n_out)
# Network and loss
network(x) = W2*(W1*x .+ b1) .+ b2
loss(x, y) = Flux.mse(network(x), y)
# Compute gradient w/ Flux
p = params(x, y, W1, b1, b2)
gs = Tracker.gradient(() -> loss(x, y), p)
gs[x] # gradient w.r.t. to x
```
Integration with ChainRules allows implementing physics-augmented neural networks for seismic inversion, such as loop-unrolled seismic imaging algorithms. For example, the following results are a conventional RTM image, an LS-RTM image and a loop-unrolled LS-RTM image for a single simultaneous shot record.
 | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 4770 | # Input/Output
For reading and writing SEG-Y data, JUDI uses the [SegyIO.jl](https://github.com/slimgroup/SegyIO.jl) package. JUDI supports reading SEG-Y from disk into memory, as well as working with out-of-core (OOC) data containers. In the latter case, `judiVectors` contain look-up tables that allow accessing the underlying data in constant time.
## Reading SEG-Y files into memory
To read a single SEG-Y file into memory, use the `segy_read` function:
```julia
using SegyIO
block = segy_read("data.segy")
```
From a `SegyIO` data block, you can create an in-core `judiVector`, as well as a `Geometry` object for the source:
```
# judiVector for observed data
d_obs = judiVector(block; segy_depth_key="RecGroupElevation")
# Source geometry
src_geometry = Geometry(block; key="source", segy_depth_key="SourceDepth")
```
The optional keyword `segy_depth_key` specifies which SEG-Y header stores the depth coordinate. After reading a `block`, you can check `block.traceheaders` to see which trace headers are set and where to find the depth coordinates for sources or receivers.
The `d_obs` vector constains the receiver geometry in `d_obs.geometry`, so there is no need to set up a separate geometry object manually. However, in principle we can set up a receiver `Geometry` object as follows:
```
rec_geometry = Geometry(block; key="receiver", segy_depth_key="RecGroupElevation")
```
## Writing SEG-Y files
To write a `judiVector` as a SEG-Y file, we need a `judiVector` containing the receiver data and geometry, as well as a `judiVector` with the source coordinates. From the `judiVectors`, we first create a `SegyIO` block:
```julia
block = judiVector_to_SeisBlock(d_obs, q)
```
where `d_obs` and `q` are `judiVectors` for receiver and source data respectively. To save only the source `q`, we can do
```julia
block = src_to_SeisBlock(q)
```
Next, we can write a SEG-Y file from a `SegyIO block`:
```julia
segy_write("new_file.segy", block) # writes a SEG-Y file called new_file.segy
```
## Reading out-of-core SEG-Y files
For SEG-Y files that do not fit into memory, JUDI provides the possibility to work with OOC data containers. First, `SegyIO` scans also available files and then creates a lookup table, including a summary of the most important SEG-Y header values. See `SegyIO's` [documentation](https://github.com/slimgroup/SegyIO.jl/wiki/Scanning) for more information.
First we provide the path to the directory that we want to scan, as well as a string that appears in all the files we want to scan. For example, here we want to scan all files that contain the string `"bp_observed_data"`. The third argument is a list of SEG-Y headers for which we create a summary. For creating OOC `judiVectors`, **always** include the `"GroupX"`, `"GroupY"` and `"dt"` keyworkds, as well as the keywords that carry the source and receiver depth coordinates:
```julia
# Specify direcotry to scan
path_to_data = "/home/username/data_directory/"
# Scan files in given directory and create OOC data container
container = segy_scan(path_to_data, "bp_observed_data", ["GroupX", "GroupY",
"RecGroupElevation", "SourceDepth", "dt"])
```
Depending of the number and size of the underlying files, this process can take multiple hours, but it only has to be executed once! Furthermore, [parallel scanning](https://github.com/slimgroup/SegyIO.jl/wiki/Scanning) is supported as well.
Once we have scanned all files in the directory, we can create an OOC `judiVector` and source `Geometry` object as follows:
```julia
# Create OOC judiVector
d_obs = judiVector(container; segy_depth_key="RecGroupElevation")
# Create OOC source geometry object
src_geometry = Geometry(container; key="source", segy_depth_key="SourceDepth")
```
## Reading and writing velocity models
JUDI does not require velocity models to be read or saved in any specific format. Any file format that allows reading the velocity model as a two or three-dimensional Julia array will work.
In our examples, we often use the [JLD](https://github.com/JuliaIO/JLD.jl) or [HDF5](https://github.com/JuliaIO/HDF5.jl) packages to read/write velocity models and the corresponing meta data (i.e. grid spacings and origins). If your model is a SEG-Y file, use the `segy_read` function from `SegyIO` as shown above.
* Create an example model to write and read:
```julia
n = (120, 100)
d = (10.0, 10.0)
o = (0.0, 0.0)
v = ones(Float32, n) .* 1.5f0
m = 1f0 ./ v.^2
```
* Write a model as a `.jld` file:
```julia
using JLD
save("my_model.jld", "n", n, "d", d, "o", o, "m", m)
```
* Read a model from a `.jld` file:
```julia
# Returns a Julia dictionary
M = load("my_model.jld")
n = M["n"]
d = M["d"]
o = M["o"]
m = M["m"]
# Set up a Model object
model = Model(n, d, o, m)
```
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 4544 | # Linear Operators
JUDI is building on [JOLI.jl](https://github.com/slimgroup/JOLI.jl) to implement matrix-free linear operators. These operators represent the discretized wave-equations and sensitivit (Jacobian) for different acquisition schemes.
```@contents
Pages = ["linear_operators.md"]
```
## judiModeling
Seismic modeling operator for solving a wave equation for a given right-hand-side.
```@docs
judiModeling{DDT, RDT}
```
**Construction:**
* Construct a modeling operator **without** source/receiver projections:
```julia
F = judiModeling(model; options=opt)
```
* Construct a modeling operator **with** source/receiver projections:
```julia
F = judiModeling(model, src_geometry, rec_geometry)
```
* Construct a modeling operator from an **existing** operator without geometries and projection operators:
```julia
F = Pr*F*Ps'
```
where `Ps` and `Pr` are source/receiver projection operators of type `judiProjection`.
* Construct a modeling operator for **extended source modeling**:
```julia
F = Pr*F*Pw'
```
where `Pw` is a `judiLRWF` (low-rank-wavefield) projection operator.
**Accessible fields:**
```julia
# Model structure
F.model
# Source injection (if available) and geometry
F.qInjection
F.qInjection.geometry
# Receiver interpolation (if available) and geometry
F.rInterpolation
F.rInterpolation.geometry
# Options structure
F.options
```
**Usage:**
```julia
# Forward modeling (F w/ geometries)
d_obs = F*q
# Adjoint modeling (F w/ geometries)
q_ad = F'*d_obs
# Forward modeling (F w/o geometries)
d_obs = Pr*F*Ps'*q
# Adjoint modelng (F w/o geometries)
q_ad = Ps*F'*Pr'*d_obs
# Extended source modeling (F w/o geometries)
d_obs = Pr*F*Pw'*w
# Adjoint extended source modeling (F w/o geometries)
w_ad = Pw*F'*Pr'*d_obs
# Forward modeling and return full wavefield (F w/o geometries)
u = F*Ps'*q
# Adjoint modelnig and return wavefield (F w/o geometries)
v = F'*Pr'*d_obs
# Forward modeling with full wavefield as source (F w/o geometries)
d_obs = Pr*F*u
# Adjoint modeling with full wavefield as source (F w/o geometries)
q_ad = Ps*F*v
```
## judiJacobian
Jacobian of a non-linear forward modeling operator. Corresponds to linearized Born modeling (forward mode) and reverse-time migration (adjoint mode).
```@docs
judiJacobian
```
**Construction:**
* A `judiJacobian` operator can be create from an exisiting forward modeling operator and a source vector:
```julia
J = judiJacobian(F, q) # F w/ geometries
```
```julia
J = judiJacobian(Pr*F*Ps', q) # F w/o geometries
```
where `Ps` and `Pr` are source/receiver projection operators of type `judiProjection`.
* A Jacobian can also be created for an extended source modeling operator:
```julia
J = judiJacobian(Pr*F*Pw', w)
```
where `Pw` is a `judiLRWF` operator and `w` is a `judiWeights` vector (or 2D/3D Julia array).
**Accessible fields::**
```julia
# Model structure
J.model
# Underlying propagator
J.F
# Source injection (if available) and geometry throughpropagator
J.F.qInjection
J.F.qInjection.geometry
# Receiver interpolation (if available) and geometry through propagator
J.F.rInterpolation
J.F.rInterpolation.geometry
# Source term, can be a judiWeights, judiWavefield, or a judiVector
J.q
# Options structure
J.options
```
**Usage:**
```julia
# Linearized modeilng
d_lin = J*dm
# RTM
rtm = J'*d_lin
# Matrix-free normal operator
H = J'*J
```
## judiProjection
Abstract linear operator for source/receiver projections. A (transposed) `judiProjection` operator symbolically injects the data with which it is multiplied during modeling. If multiplied with a forward modeling operator, it samples the wavefield at the specified source/receiver locations.
```@docs
judiProjection
```
**Accessible fields:**
```julia
# Source/receiver geometry
P.geometry
```
**Usage:**
```julia
# Multiply with judiVector to create a judiRHS
rhs1 = Pr'*d_obs
rhs2 = Ps'*q
# Sample wavefield at source/receiver location during modeling
d_obs = Pr*F*Ps'*q
q_ad = Ps*F*Pr'*d_obs
```
## judiLRWF
Abstract linear operator for sampling a seismic wavefield as a sum over all time steps, weighted by a time-varying wavelet. Its transpose *injects* a time-varying wavelet at every grid point in the model.
```@docs
judiWavelet
```
**Accessible fields:**
```julia
# Wavelet of i-th source location
P.wavelet[i]
```
**Usage:**
```julia
# Multiply with a judiWeight vector to create a judiExtendedSource
ex_src = Pw'*w
# Sample wavefield as a sum over time, weighted by the source
u_ex = Pw*F'*Pr'*d_obs
```
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 4826 | # Seismic Preconditioners
JUDI provides a selected number of preconditioners known to be beneficial to FWI and RTM. We welcome additional preconditioners from the community. Additionnaly, any JOLI operator can be used as a preconditiner in conbination with JUDI operator thanks to the fundamental interface between JUDI and JOLI.
```@contents
Pages = ["preconditioners.md"]
```
## Model domain preconditioners
Model space preconditioners acts on model size arrays such as the velocity model or the FWI/RTM gradient. These preconditioners are indepenedent of the number of sources and therefore should not be indexed.
### Water column muting (top mute)
Create a linear operator for a 2D model topmute, i.e. for muting the water column:
```@docs
TopMute
```
**Usage:**
```julia
# Forward
m_mute = Mr*vec(m)
# Adjoint
m_mute = Mr'*vec(m)
```
As `Mr` is self adjoint, `Mr` is equal to `Mr'`.
**legacy:**
The legacy constructor `judiTopmute(n, wb, taperwidth)` is still available to construct a muting operator with user specified muting depth.
### Model depth scaling
Create a 2D model depth scaling. This preconditionenr is the most simple form of inverse Hessain approximation compensating for illumination in the subsurface. We also describe below a more accurate diagonal approximation of the Hessian with the illlumination operator. Additionnaly, as a simple diagonal approximation, this operator is invertible and can be inverted with the standard julia `inv` function.
```@docs
DepthScaling
```
**Usage:**
```julia
# Forward
m_mute = Mr*vec(m)
# Adjoint
m_mute = Mr'*vec(m)
```
### Illumination
The illumination computed the energy of the wavefield along time for each grid point. This provides a first order diagonal approximation of the Hessian of FWI/LSRTM helping the ocnvergence and quality of an update.
```@docs
judiIllumination
```
**Usage:**
```julia
# Forward
m_mute = I*vec(m)
# Adjoint
m_mute = I'*vec(m)
```
## Data preconditioners
These preconditioners are design to act on the shot records (data). These preconditioners are indexable by source number so that working with a subset of shot is trivial to implement. Additionally, all [DataPreconditionner](@ref) are compatible with out-of-core JUDI objects such as `judiVector{SeisCon}` so that the preconditioner is only applied to single shot data at propagation time.
### Data topmute
Create a data topmute for the data based on the source and receiver geometry (i.e based on the offsets between each souurce-receiver pair). THis operator allows two modes, `:reflection` for the standard "top-mute" direct wave muting and `:turning` for its opposite muting the reflection to compute gradients purely based on the turning waves. The muting operators uses a cosine taper at the mask limit to allow for a smooth transition.
```@docs
DataMute
```
### Band pass filter
While not purely a preconditioner, because this operator acts on the data and is traditionally used fro frequency continuation in FWI, we implemented this operator as a source indexable linear operator as well. Additionally, the filtering function is available as a standalone julia function for general usage
```@docs
FrequencyFilter
filter_data
```
### Data time derivative/intergraton
A `TimeDifferential{K}` is a linear operator that implements a time derivative (K>0) or time integration (K<0) of order `K` for any real `K` including fractional values.
```@docs
TimeDifferential
```
## Inversion wrappers
For large scale and practical cases, the inversions wrappers [fwi_objective](@ref) and [lsrtm_objective](@ref) are used to minimize the number of PDE solves. Those wrapper support the use of preconditioner as well for better results.
**Usage:**
For fwi, you can use the `data_precon` keyword argument to be applied to the residual (the preconditioner is applied to both the field and synthetic data to ensure better misfit):
```julia
fwi_objective(model, q, dobs; data_precon=precon)
```
where `precon` can be:
- A single [DataPreconditionner](@ref)
- A list/tuple of [DataPreconditionner](@ref)
- A product of [DataPreconditionner](@ref)
Similarly, for LSRTM, you can use the `model_precon` keyword argument to be applied to the perturbation `dm` and the `data_precon` keyword argument to be applied to the residual:
```julia
lsrtm_objective(model, q, dobs, dm; model_precon=dPrec, data_precon=dmPrec)
```
where `dPrec` and `dmPrec` can be:
- A single preconditioner ([DataPreconditionner](@ref) for `data_precon` and [ModelPreconditionner](@ref) for `model_precon`)
- A list/tuple of preconditioners ([DataPreconditionner](@ref) for `data_precon` and [ModelPreconditionner](@ref) for `model_precon`)
- A product of preconditioners ([DataPreconditionner](@ref) for `data_precon` and [ModelPreconditionner](@ref) for `model_precon`)
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 32887 | # pysource package
## Submodules
## FD_utils module
### FD_utils.R_mat(model)
Rotation matrix according to tilt and asymut.
* **Parameters**
**model** (*Model*) – Model structure
### FD_utils.divs(func, so_fact=1, side=- 1)
GrDivergenceadient shifted by half a grid point, only to be used in combination
with grads.
### FD_utils.grads(func, so_fact=1, side=1)
Gradient shifted by half a grid point, only to be used in combination
with divs.
### FD_utils.laplacian(v, irho)
Laplacian with density div( 1/rho grad) (u)
### FD_utils.sa_tti(u, v, model)
Tensor factorized SSA TTI wave equation spatial derivatives.
* **Parameters**
* **u** (*TimeFunction*) – first TTI field
* **v** (*TimeFunction*) – second TTI field
* **model** (*Model*) – Model structure
### FD_utils.thomsen_mat(model)
Diagonal Matrices with Thomsen parameters for vectorial temporaries
computation.
* **Parameters**
**model** (*Model*) – Model structure
## checkpoint module
### _class_ checkpoint.CheckpointOperator(op, \*\*kwargs)
Devito’s concrete implementation of the ABC pyrevolve.Operator. This class wraps
devito.Operator so it conforms to the pyRevolve API. pyRevolve will call apply
with arguments t_start and t_end. Devito calls these arguments t_s and t_e so
the following dict is used to perform the translations between different names.
* **Parameters**
* **op** (*Operator*) – devito.Operator object that this object will wrap.
* **args** (*dict*) – If devito.Operator.apply() expects any arguments, they can be provided
here to be cached. Any calls to CheckpointOperator.apply() will
automatically include these cached arguments in the call to the
underlying devito.Operator.apply().
#### apply(t_start, t_end)
If the devito operator requires some extra arguments in the call to apply
they can be stored in the args property of this object so pyRevolve calls
pyRevolve.Operator.apply() without caring about these extra arguments while
this method passes them on correctly to devito.Operator
#### t_arg_names(_ = {'t_end': 'time_M', 't_start': 'time_m'_ )
### _class_ checkpoint.DevitoCheckpoint(objects)
Devito’s concrete implementation of the Checkpoint abstract base class provided by
pyRevolve. Holds a list of symbol objects that hold data.
#### _property_ dtype()
data type
#### get_data(timestep)
returns the data (wavefield) for the time-step timestep
#### get_data_location(timestep)
returns the data (wavefield) for the time-step timestep
#### load()
NotImplementedError
#### save()
NotImplementedError
#### _property_ size()
The memory consumption of the data contained in a checkpoint.
### checkpoint.get_symbol_data(symbol, timestep)
Return the symbol corresponding to the data at time-step timestep
## geom_utils module
### geom_utils.src_rec(model, u, src_coords=None, rec_coords=None, wavelet=None, fw=True, nt=None)
Generates the source injection and receiver interpolation.
This function is fully abstracted and does not care whether this is a
forward or adjoint wave-equation.
The source is the source term of the equation
The receiver is the measurment term
Therefore, for the adjoint, this function has to be called as:
src_rec(model, v, src_coords=rec_coords, …)
because the data is the sources
* **Parameters**
* **model** (*Model*) – Physical model
* **u** (*TimeFunction** or **tuple*) – Wavefield to inject into and read from
* **src_coords** (*Array*) – Physical coordinates of the sources
* **rec_coords** (*Array*) – Physical coordinates of the receivers
* **wavelet** (*Array*) – Data for the source
* **fw=True** – Whether the direction is forward or backward in time
* **nt** (*int*) – Number of time steps
## interface module
### interface.J_adjoint(model, src_coords, wavelet, rec_coords, recin, space_order=8, checkpointing=False, n_checkpoints=None, t_sub=1, maxmem=None, freq_list=[], dft_sub=None, isic=False, ws=None)
Jacobian (adjoint fo born modeling operator) operator on a shot record
as a source (i.e data residual). Supports three modes:
\* Checkpinting
\* Frequency compression (on-the-fly DFT)
\* Standard zero lag cross correlation over time
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **recin** (*Array*) – Receiver data
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **checkpointing** (*Bool*) – Whether or not to use checkpointing
* **n_checkpoints** (*Int*) – Number of checkpoints for checkpointing
* **maxmem** (*Float*) – Maximum memory to use for checkpointing
* **freq_list** (*List*) – List of frequencies for on-the-fly DFT
* **dft_sub** (*Int*) – Subsampling factor for on-the-fly DFT
* **isic** (*Bool*) – Whether or not to use ISIC imaging condition
* **ws** (*Array*) – Extended source spatial distribution
* **Returns**
Adjoint jacobian on the input data (gradient)
* **Return type**
Array
### interface.J_adjoint_checkpointing(model, src_coords, wavelet, rec_coords, recin, space_order=8, is_residual=False, n_checkpoints=None, born_fwd=False, maxmem=None, return_obj=False, isic=False, ws=None, t_sub=1, nlind=False)
Jacobian (adjoint fo born modeling operator) operator on a shot record
as a source (i.e data residual). Outputs the gradient with Checkpointing.
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **recin** (*Array*) – Receiver data
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **checkpointing** (*Bool*) – Whether or not to use checkpointing
* **n_checkpoints** (*Int*) – Number of checkpoints for checkpointing
* **maxmem** (*Float*) – Maximum memory to use for checkpointing
* **isic** (*Bool*) – Whether or not to use ISIC imaging condition
* **ws** (*Array*) – Extended source spatial distribution
* **is_residual** (*Bool*) – Whether to treat the input as the residual or as the observed data
* **born_fwd** (*Bool*) – Whether to use the forward or linearized forward modeling operator
* **nlind** (*Bool*) – Whether to remove the non linear data from the input data. This option is
only available in combination with born_fwd
* **Returns**
Adjoint jacobian on the input data (gradient)
* **Return type**
Array
### interface.J_adjoint_freq(model, src_coords, wavelet, rec_coords, recin, space_order=8, freq_list=[], is_residual=False, return_obj=False, nlind=False, dft_sub=None, isic=False, ws=None, t_sub=1, born_fwd=False)
Jacobian (adjoint fo born modeling operator) operator on a shot record
as a source (i.e data residual). Outputs the gradient with Frequency
compression (on-the-fly DFT).
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **recin** (*Array*) – Receiver data
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **freq_list** (*List*) – List of frequencies for on-the-fly DFT
* **dft_sub** (*Int*) – Subsampling factor for on-the-fly DFT
* **isic** (*Bool*) – Whether or not to use ISIC imaging condition
* **ws** (*Array*) – Extended source spatial distribution
* **is_residual** (*Bool*) – Whether to treat the input as the residual or as the observed data
* **born_fwd** (*Bool*) – Whether to use the forward or linearized forward modeling operator
* **nlind** (*Bool*) – Whether to remove the non linear data from the input data. This option is
only available in combination with born_fwd
* **Returns**
Adjoint jacobian on the input data (gradient)
* **Return type**
Array
### interface.J_adjoint_standard(model, src_coords, wavelet, rec_coords, recin, space_order=8, is_residual=False, return_obj=False, born_fwd=False, isic=False, ws=None, t_sub=1, nlind=False)
Adjoint Jacobian (adjoint fo born modeling operator) operator on a shot record
as a source (i.e data residual). Outputs the gradient with standard
zero lag cross correlation over time.
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **recin** (*Array*) – Receiver data
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **isic** (*Bool*) – Whether or not to use ISIC imaging condition
* **ws** (*Array*) – Extended source spatial distribution
* **is_residual** (*Bool*) – Whether to treat the input as the residual or as the observed data
* **born_fwd** (*Bool*) – Whether to use the forward or linearized forward modeling operator
* **nlind** (*Bool*) – Whether to remove the non linear data from the input data. This option is
only available in combination with born_fwd
* **Returns**
Adjoint jacobian on the input data (gradient)
* **Return type**
Array
### interface.adjoint_no_rec(model, rec_coords, data, space_order=8)
Adjoint/backward modeling of a shot record (receivers as source)
without source sampling F^T\*Pr^T\*d_obs.
* **Parameters**
* **model** (*Model*) – Physical model
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **data** (*Array*) – Shot gather
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Adjoint wavefield
* **Return type**
Array
### interface.adjoint_rec(model, src_coords, rec_coords, data, space_order=8)
Adjoint/backward modeling of a shot record (receivers as source) Ps\*F^T\*Pr^T\*d.
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **data** (*Array*) – Shot gather
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Shot record (adjoint wavefield at source position(s))
* **Return type**
Array
### interface.adjoint_w(model, rec_coords, data, wavelet, space_order=8)
Adjoint/backward modeling of a shot record (receivers as source) for an
extended source setup Pw\*F^T\*Pr^T\*d_obs.
* **Parameters**
* **model** (*Model*) – Physical model
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **data** (*Array*) – Shot gather
* **wavelet** (*Array*) – Time signature of the forward source for stacking along time
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
spatial distribution
* **Return type**
Array
### interface.adjoint_wf_src(model, u, src_coords, space_order=8)
Adjoint/backward modeling of a full wavefield (full wavefield as adjoint source)
Ps\*F^T\*u.
* **Parameters**
* **model** (*Model*) – Physical model
* **u** (*Array** or **TimeFunction*) – Time-space dependent source
* **src_coords** (*Array*) – Source coordinates
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Shot record (sampled at source position(s))
* **Return type**
Array
### interface.adjoint_wf_src_norec(model, u, space_order=8)
Adjoint/backward modeling of a full wavefield (full wavefield as adjoint source)
F^T\*u.
* **Parameters**
* **model** (*Model*) – Physical model
* **u** (*Array** or **TimeFunction*) – Time-space dependent source
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Adjoint wavefield
* **Return type**
Array
### interface.born_rec(model, src_coords, wavelet, rec_coords, space_order=8, isic=False)
Linearized (Born) modeling of a point source for a model perturbation
(square slowness) dm.
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **isic** (*Bool*) – Whether or not to use ISIC imaging condition
* **Returns**
Shot record
* **Return type**
Array
### interface.born_rec_w(model, weight, wavelet, rec_coords, space_order=8, isic=False)
Linearized (Born) modeling of an extended source for a model
perturbation (square slowness) dm with an extended source
* **Parameters**
* **model** (*Model*) – Physical model
* **weight** (*Array*) – Spatial distriubtion of the extended source
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **isic** (*Bool*) – Whether or not to use ISIC imaging condition
* **Returns**
Shot record
* **Return type**
Array
### interface.forward_no_rec(model, src_coords, wavelet, space_order=8)
Forward modeling of a point source without receiver.
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **wavelet** (*Array*) – Source signature
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Wavefield
* **Return type**
Array
### interface.forward_rec(model, src_coords, wavelet, rec_coords, space_order=8)
Forward modeling of a point source with receivers Pr\*F\*Ps^T\*q.
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Shot record
* **Return type**
Array
### interface.forward_rec_w(model, weight, wavelet, rec_coords, space_order=8)
Forward modeling of an extended source with receivers Pr\*F\*Pw^T\*w
* **Parameters**
* **model** (*Model*) – Physical model
* **weights** (*Array*) – Spatial distribution of the extended source.
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Shot record
* **Return type**
Array
### interface.forward_rec_wf(model, src_coords, wavelet, rec_coords, t_sub=1, space_order=8)
Forward modeling of a point source Pr\*F\*Ps^T\*q and return wavefield.
* **Parameters**
* **model** (*Model*) – Physical model
* **src_coords** (*Array*) – Coordiantes of the source(s)
* **wavelet** (*Array*) – Source signature
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
* *Array* – Shot record
* *TimeFunction* – Wavefield
### interface.forward_wf_src(model, u, rec_coords, space_order=8)
Forward modeling of a full wavefield source Pr\*F\*u.
* **Parameters**
* **model** (*Model*) – Physical model
* **u** (*TimeFunction** or **Array*) – Time-space dependent wavefield
* **rec_coords** (*Array*) – Coordiantes of the receiver(s)
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Shot record
* **Return type**
Array
### interface.forward_wf_src_norec(model, u, space_order=8)
Forward modeling of a full wavefield source without receiver F\*u.
* **Parameters**
* **model** (*Model*) – Physical model
* **u** (*TimeFunction** or **Array*) – Time-space dependent wavefield
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
Wavefield
* **Return type**
Array
### interface.grad_fwi(model, recin, rec_coords, u, space_order=8)
FWI gradient, i.e adjoint Jacobian on a data residual.
* **Parameters**
* **model** (*Model*) – Physical model
* **recin** (*Array*) – Data residual
* **rec_coords** (*Array*) – Receivers coordinates
* **u** (*TimeFunction*) – Forward wavefield
* **space_order** (*Int** (**optional**)*) – Spatial discretization order, defaults to 8
* **Returns**
FWI gradient
* **Return type**
Array
### interface.wri_func(model, src_coords, wavelet, rec_coords, recin, yin, space_order=8, isic=False, ws=None, t_sub=1, grad='m', grad_corr=False, alpha_op=False, w_fun=None, eps=0, freq_list=[], wfilt=None)
Time domain wavefield reconstruction inversion wrapper
## kernels module
### kernels.acoustic_kernel(model, u, fw=True, q=None)
Acoustic wave equation time stepper
* **Parameters**
* **model** (*Model*) – Physical model
* **u** (*TimeFunction** or **tuple*) – wavefield (tuple if TTI)
* **fw** (*Bool*) – Whether forward or backward in time propagation
* **q** (*TimeFunction** or **Expr*) – Full time-space source
### kernels.tti_kernel(model, u1, u2, fw=True, q=None)
TTI wave equation (one from my paper) time stepper
* **Parameters**
* **model** (*Model*) – Physical model
* **u1** (*TimeFunction*) – First component (pseudo-P) of the wavefield
* **u2** (*TimeFunction*) – First component (pseudo-P) of the wavefield
* **fw** (*Bool*) – Whether forward or backward in time propagation
* **q** (*TimeFunction** or **Expr*) – Full time-space source as a tuple (one value for each component)
### kernels.wave_kernel(model, u, fw=True, q=None)
Pde kernel corresponding the the model for the input wavefield
* **Parameters**
* **model** (*Model*) – Physical model
* **u** (*TimeFunction** or **tuple*) – wavefield (tuple if TTI)
* **fw** (*Bool*) – Whether forward or backward in time propagation
* **q** (*TimeFunction** or **Expr*) – Full time-space source
## models module
### _class_ models.Model(origin, spacing, shape, m, space_order=2, nbl=40, dtype=<class 'numpy.float32'>, epsilon=None, delta=None, theta=None, phi=None, rho=1, dm=None, fs=False, \*\*kwargs)
The physical model used in seismic inversion processes.
* **Parameters**
* **origin** (*tuple of floats*) – Origin of the model in m as a tuple in (x,y,z) order.
* **spacing** (*tuple of floats*) – Grid size in m as a Tuple in (x,y,z) order.
* **shape** (*tuple of int*) – Number of grid points size in (x,y,z) order.
* **space_order** (*int*) – Order of the spatial stencil discretisation.
* **m** (*array_like** or **float*) – Squared slownes in s^2/km^2
* **nbl** (*int**, **optional*) – The number of absorbin layers for boundary damping.
* **dtype** (*np.float32** or **np.float64*) – Defaults to 32.
* **epsilon** (*array_like** or **float**, **optional*) – Thomsen epsilon parameter (0<epsilon<1).
* **delta** (*array_like** or **float*) – Thomsen delta parameter (0<delta<1), delta<epsilon.
* **theta** (*array_like** or **float*) – Tilt angle in radian.
* **phi** (*array_like** or **float*) – Asymuth angle in radian.
* **dt** (*Float*) – User provided computational time-step
#### _property_ critical_dt()
Critical computational time step value from the CFL condition.
#### _property_ dm()
Model perturbation for linearized modeling
#### _property_ dt()
User provided dt
#### _property_ is_tti()
Whether the model is TTI or isotopic
#### _property_ m()
Function holding the squared slowness in s^2/km^2.
#### _property_ space_order()
Spatial discretization order
#### _property_ spacing_map()
Map between spacing symbols and their values for each SpaceDimension.
#### _property_ vp()
Symbolic representation of the velocity
vp = sqrt(1 / m)
## propagators module
### propagators.adjoint(model, y, src_coords, rcv_coords, space_order=8, q=0, dft_sub=None, save=False, ws=None, norm_v=False, w_fun=None, freq_list=None)
Low level propagator, to be used through interface.py
Compute adjoint wavefield v = adjoint(F(m))\*y
and related quantities (||v||_w, v(xsrc))
### propagators.born(model, src_coords, rcv_coords, wavelet, space_order=8, save=False, q=None, return_op=False, isic=False, freq_list=None, dft_sub=None, ws=None, t_sub=1, nlind=False)
Low level propagator, to be used through interface.py
Compute linearized wavefield U = J(m)\* δ m
and related quantities.
### propagators.forward(model, src_coords, rcv_coords, wavelet, space_order=8, save=False, q=None, return_op=False, freq_list=None, dft_sub=None, ws=None, t_sub=1, \*\*kwargs)
Low level propagator, to be used through interface.py
Compute forward wavefield u = A(m)^{-1}\*f and related quantities (u(xrcv))
### propagators.forward_grad(model, src_coords, rcv_coords, wavelet, v, space_order=8, q=None, ws=None, isic=False, w=None, freq=None, \*\*kwargs)
Low level propagator, to be used through interface.py
Compute forward wavefield u = A(m)^{-1}\*f and related quantities (u(xrcv))
### propagators.gradient(model, residual, rcv_coords, u, return_op=False, space_order=8, w=None, freq=None, dft_sub=None, isic=False)
Low level propagator, to be used through interface.py
Compute the action of the adjoint Jacobian onto a residual J’\* δ d.
### propagators.name(model)
## sensitivity module
### sensitivity.basic_src(model, u, \*\*kwargs)
Basic source for linearized modeling
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **model** (*Model*) – Model containing the perturbation dm
### sensitivity.crosscorr_freq(u, v, model, freq=None, dft_sub=None, \*\*kwargs)
Standard cross-correlation imaging condition with on-th-fly-dft
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **v** (*TimeFunction** or **Tuple*) – Adjoint wavefield (tuple of fields for TTI)
* **model** (*Model*) – Model structure
* **freq** (*Array*) – Array of frequencies for on-the-fly DFT
* **factor** (*int*) – Subsampling factor for DFT
### sensitivity.crosscorr_time(u, v, model, \*\*kwargs)
Cross correlation of forward and adjoint wavefield
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **v** (*TimeFunction** or **Tuple*) – Adjoint wavefield (tuple of fields for TTI)
* **model** (*Model*) – Model structure
### sensitivity.func_name(freq=None, isic=False)
Get key for imaging condition/linearized source function
### sensitivity.grad_expr(gradm, u, v, model, w=None, freq=None, dft_sub=None, isic=False)
Gradient update stencil
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **v** (*TimeFunction** or **Tuple*) – Adjoint wavefield (tuple of fields for TTI)
* **model** (*Model*) – Model structure
* **w** (*Float** or **Expr** (**optional**)*) – Weight for the gradient expression (default=1)
* **freq** (*Array*) – Array of frequencies for on-the-fly DFT
* **factor** (*int*) – Subsampling factor for DFT
* **isic** (*Bool*) – Whether or not to use inverse scattering imaging condition (not supported yet)
### sensitivity.inner_grad(u, v)
Inner product of the gradient of two Function.
* **Parameters**
* **u** (*TimeFunction** or **Function*) – First wavefield
* **v** (*TimeFunction** or **Function*) – Second wavefield
### sensitivity.isic_freq(u, v, model, \*\*kwargs)
Inverse scattering imaging condition
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **v** (*TimeFunction** or **Tuple*) – Adjoint wavefield (tuple of fields for TTI)
* **model** (*Model*) – Model structure
### sensitivity.isic_src(model, u, \*\*kwargs)
ISIC source for linearized modeling
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **model** (*Model*) – Model containing the perturbation dm
### sensitivity.isic_time(u, v, model, \*\*kwargs)
Inverse scattering imaging condition
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **v** (*TimeFunction** or **Tuple*) – Adjoint wavefield (tuple of fields for TTI)
* **model** (*Model*) – Model structure
### sensitivity.lin_src(model, u, isic=False)
Source for linearized modeling
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **model** (*Model*) – Model containing the perturbation dm
## sources module
### _class_ sources.PointSource(\*args, \*\*kwargs)
Symbolic data object for a set of sparse point sources
* **Parameters**
* **name** (*String*) – Name of the symbol representing this source
* **grid** (*Grid*) – Grid object defining the computational domain.
* **coordinates** (*Array*) – Point coordinates for this source
* **data** (*(**Optional**) **Data*) – values to initialise point data
* **ntime** (*Int** (**Optional**)*) – Number of timesteps for which to allocate data
* **npoint** (*Int** (**Optional**)*) –
* **of sparse points represented by this source** (*Number*) –
* **dimension** (*Dimension** (**Optional**)*) – object for representing the number of points in this source
* **either the dimensions ntime and npoint**** or ****the fully** (*Note**,*) –
* **data array need to be provided.** (*initialised*) –
#### default_assumptions(_ = {'commutative': True, 'complex': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False, 'infinite': False, 'real': True_ )
#### is_commutative(_ = Tru_ )
#### is_complex(_ = Tru_ )
#### is_extended_real(_ = Tru_ )
#### is_finite(_ = Tru_ )
#### is_hermitian(_ = Tru_ )
#### is_imaginary(_ = Fals_ )
#### is_infinite(_ = Fals_ )
#### is_real(_ = Tru_ )
### sources.Receiver()
alias of `sources.PointSource`
### _class_ sources.RickerSource(\*args, \*\*kwargs)
Symbolic object that encapsulate a set of sources with a
pre-defined Ricker wavelet:
[http://subsurfwiki.org/wiki/Ricker_wavelet](http://subsurfwiki.org/wiki/Ricker_wavelet)
name: Name for the resulting symbol
grid: `Grid` object defining the computational domain.
f0: Peak frequency for Ricker wavelet in kHz
time: Discretized values of time in ms
#### default_assumptions(_ = {'commutative': True, 'complex': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False, 'infinite': False, 'real': True_ )
#### is_commutative(_ = Tru_ )
#### is_complex(_ = Tru_ )
#### is_extended_real(_ = Tru_ )
#### is_finite(_ = Tru_ )
#### is_hermitian(_ = Tru_ )
#### is_imaginary(_ = Fals_ )
#### is_infinite(_ = Fals_ )
#### is_real(_ = Tru_ )
#### wavelet(timev)
### _class_ sources.TimeAxis(start=None, step=None, num=None, stop=None)
Data object to store the TimeAxis. Exactly three of the four key arguments
must be prescribed. Because of remainder values it is not possible to create
a TimeAxis that exactly adhears to the inputs therefore start, stop, step
and num values should be taken from the TimeAxis object rather than relying
upon the input values.
The four possible cases are:
\* start is None: start = step\*(1 - num) + stop
\* step is None: step = (stop - start)/(num - 1)
\* num is None: num = ceil((stop - start + step)/step) and
because of remainder stop = step\*(num - 1) + start
\* stop is None: stop = step\*(num - 1) + start
* **Parameters**
* **start** (*float**, **optional*) – Start of time axis.
* **step** (*float**, **optional*) – Time interval.
* **num** (*int**, **optional*) – Number of values (Note: this is the number of intervals + 1).
Stop value is reset to correct for remainder.
* **stop** (*float**, **optional*) – End time.
#### time_values()
## wave_utils module
### wave_utils.extended_src_weights(model, wavelet, v)
Adjoint of extended source. This function returns the expression to obtain
the spatially varrying weights from the wavefield and time-dependent wavelet
* **Parameters**
* **model** (*Model*) – Physical model structure
* **wavelet** (*Array*) – Time-serie for the time-varying source
* **v** (*TimeFunction*) – Wavefield to get the weights from
### wave_utils.extented_src(model, weight, wavelet, q=0)
Extended source for modelling where the source is the outer product of
a spatially varying weight and a time-dependent wavelet i.e.:
u.dt2 - u.laplace = w(x)\*q(t)
This function returns the extended source w(x)\*q(t)
* **Parameters**
* **model** (*Model*) – Physical model structure
* **weight** (*Array*) – Array of weight for the spatial Function
* **wavelet** (*Array*) – Time-serie for the time-varying source
* **q** (*Symbol** or **Expr** (**optional**)*) – Previously existing source to be added to (source will be q + w(x)\*q(t))
### wave_utils.freesurface(model, eq)
Generate the stencil that mirrors the field as a free surface modeling for
the acoustic wave equation
* **Parameters**
* **model** (*Model*) – Physical model
* **eq** (*Eq** or **List of Eq*) – Equation to apply mirror to
### wave_utils.idft(v, freq=None)
Symbolic inverse dft of v
* **Parameters**
* **v** (*TimeFunction** or **Tuple*) – Wavefield to take inverse DFT of
* **freq** (*Array*) – Array of frequencies for on-the-fly DFT
### wave_utils.otf_dft(u, freq, dt, factor=None)
On the fly DFT wavefield (frequency slices) and expression
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield
* **freq** (*Array*) – Array of frequencies for on-the-fly DFT
* **factor** (*int*) – Subsampling factor for DFT
### wave_utils.sub_time(time, factor, dt=1, freq=None)
Subsampled time axis
* **Parameters**
* **time** (*Dimension*) – time Dimension
* **factor** (*int*) – Subsampling factor
### wave_utils.wavefield(model, space_order, save=False, nt=None, fw=True, name='', t_sub=1)
Create the wavefield for the wave equation
* **Parameters**
* **model** (*Model*) – Physical model
* **space_order** (*int*) – Spatial discretization order
* **save** (*Bool*) – Whether or not to save the time history
* **nt** (*int** (**optional**)*) – Number of time steps if the wavefield is saved
* **fw** (*Bool*) – Forward or backward (for naming)
* **name** (*string*) – Custom name attached to default (u+name)
### wave_utils.wavefield_subsampled(model, u, nt, t_sub, space_order=8)
Create a subsampled wavefield
* **Parameters**
* **model** (*Model*) – Physical model
* **u** (*TimeFunction*) – Forward wavefield for modeling
* **nt** (*int*) – Number of time steps on original time axis
* **t_sub** (*int*) – Factor for time-subsampling
* **space_order** (*int*) – Spatial discretization order
### wave_utils.weighted_norm(u, weight=None)
Space-time norm of a wavefield, split into norm in time first then in space to avoid
breaking loops
* **Parameters**
* **u** (*TimeFunction** or **Tuple of TimeFunction*) – Wavefield to take the norm of
* **weight** (*String*) – Spacial weight to apply
### wave_utils.wf_as_src(v, w=1, freq_list=None)
Weighted source as a time-space wavefield
* **Parameters**
* **u** (*TimeFunction** or **Tuple*) – Forward wavefield (tuple of fields for TTI or dft)
* **w** (*Float** or **Expr** (**optional**)*) – Weight for the source expression (default=1)
## Module contents
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 2503 | # JUDI Examples
This directory contains examples of how to use JUDI for modeling and inversion, as well as code to reproduce results from journal papers.
## Required packages
The examples require some additional Julia packages. These packages are not required for the core package, but need to be installed in order to run the following examples. You can install the packages by running the following code from the Julia terminal:
```
using Pkg
# IO
Pkg.add("HDF5")
Pkg.add("JLD")
Pkg.add("JLD2")
# Plotting
Pkg.add("PyPlot")
Pkg.add("SlimPlotting")
# Optimization
Pkg.add("NLopt")
Pkg.add("IterativeSolvers")
Pkg.add("Optim")
Pkg.add("LineSearches")
```
## Overview
* Generic JUDI examples can be found in [scripts](https://github.com/slimgroup/JUDI.jl/tree/master/examples/scripts)
* Jupyter notebooks for FWI can be found in [notebooks](https://github.com/slimgroup/JUDI.jl/tree/master/examples/notebooks)
* Reproducable examples for *A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia* are available in [software_paper](https://github.com/slimgroup/JUDI.jl/tree/master/examples/software_paper)
* Reproducable examples for *Compressive least squares migration with on-the-fly Fourier transforms* are available in [compressive_splsrtm](https://github.com/slimgroup/JUDI.jl/tree/master/examples/compressive_splsrtm)
* Examples related to *A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion* are available in [twri](https://github.com/slimgroup/JUDI.jl/tree/master/examples/twri)
## References
* Philipp A. Witte, Mathias Louboutin, Navjot Kukreja, Fabio Luporini, Michael Lange, Gerard J. Gorman and Felix J. Herrmann. A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia. GEOPHYSICS, Vol. 84 (3), pp. F57-F71, 2019. <https://library.seg.org/doi/abs/10.1190/geo2018-0174.1>
* Philipp A. Witte, Mathias Louboutin, Fabio Luporini, Gerard J. Gorman and Felix J. Herrmann. Compressive least-squares migration with on-the-fly Fourier transforms. GEOPHYSICS, vol. 84 (5), pp. R655-R672, 2019. <https://library.seg.org/doi/abs/10.1190/geo2018-0490.1>
* Gabrio Rizzuti, Mathias Louboutin, Rongrong Wang, and Felix J. Herrmann. A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion. Submitted to Geophysics. <https://slim.gatech.edu/content/dual-formulation-wavefield-reconstruction-inversion-large-scale-seismic-inversion>
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 6759 | # Compressive least squares migration with on-the-fly Fourier transforms
## Overview
This repository contains instructions and the scripts to reproduce the examples from the paper ["Compressive least squares migration with on-the-fly Fourier transforms" (Witte et al, 2019)](https://library.seg.org/doi/abs/10.1190/geo2018-0490.1). Running the examples requires Julia (version 1.1.0) and the JUDI package. Follow the instructions from the [main page](https://github.com/slimgroup/JUDI.jl) to install JUDI and its required packages. For questions, contact Philipp Witte at [email protected].
## Abstract
Least-squares seismic imaging is an inversion-based approach for accurately imaging the earth's subsurface. However, in the time-domain, the computational cost and memory requirements of this approach scale with the size and recording length of the seismic experiment, thus making this approach often prohibitively expensive in practice. To overcome these issues, we borrow ideas from compressive sensing and signal processing and introduce an algorithm for sparsity-promoting seismic imaging using on-the-fly Fourier transforms. By computing gradients and functions values for random subsets of source locations and frequencies, we considerably limit the number of wave equation solves, while on-the-fly Fourier transforms allow computing an arbitrary number of monochromatic frequency-domain wavefields with a time-domain modeling code and without having to solve large-scale Helmholtz equations. The memory requirements of this approach are independent of the number of time steps and solely depend on the number of frequencies, which determine the amount of crosstalk and subsampling artifacts in the image. We show the application of our approach to several large-scale open source data sets and compare the results to a conventional time-domain approach with optimal checkpointing.
## Obtaining the velocity models
The velocity models for our example (Sigsbee 2A and BP 2004 Synthetic model) are available on the SLIM ftp server. Follow [the link](ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/) or run the following command from the terminal to download the velocity models and supplementary files:
### Sigsbee 2A
```
wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/sigsbee2A_model.jld
```
### BP Synthetic 2004
Generating the observed data requires the true velocity model, as well as the density model. Furthermore, we need the header geometry, which was extracted from the [original data](https://wiki.seg.org/wiki/2004_BP_velocity_estimation_benchmark_model) released by BP and saved as a Julia file.
```
wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_true_velocity.jld
wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_density.jld
wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_header_geometry.jld
```
For running the RTM and SPLS-RTM examples, we need the migration velocity model, which is a slightyl smoothed version of the true velocity. Furthermore, we use a mask to zero out the water column.
```
wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_migration_velocity.jld
wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_water_bottom.jld
```
## The linearized inverse scattering imaging condition
To reproduce Figure 1 from the paper, run the script [compare_imaging_conditions.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/Figure1/compare_imaging_conditions.jl). Forward and adjoint linearized modeling using on-the-fly DFTs with the two different imaging conditions is implemented using [Devito](https://github.com/opesci/devito). The linearized wave equations are set up as symbolic python objects and are defined in the JUDI source code. Follow [this link](https://github.com/slimgroup/JUDI.jl/blob/master/src/Python/JAcoustic_codegen.py) to see the implementations of the operators.
#### Figure: {#f1}
{width=80%}
## Time vs frequency domain imaging
To reproduce Figure 2 from the paper, run the script [compare_imaging_time_frequency.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/Figure2/compare_imaging_time_frequency.jl).
#### Figure: {#f2}
{width=80%}
## Sigsbee 2A example
First generate the observed (linearized) data by running the [generate_data_sigsbee.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/Sigsbee2A/generate_data_sigsbee.jl) script. The RTM results can be reproduced using the [rtm_sigsbee.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/Sigsbee2A/rtm_sigsbee.jl) script. The time and frequency-domain SPLS-RTM results can be reproduced with the scripts [splsrtm_sigsbee_time_domain.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/Sigsbee2A/splsrtm_sigsbee_time_domain.jl) and [splsrtm_sigsbee_frequency_domain.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/Sigsbee2A/splsrtm_sigsbee_frequency_domain.jl).
#### Figure: {#f3}
{width=80%}
#### Figure: {#f4}
{width=80%}
## BP Synthetic 2004 example
First, we generate the observed (non-linear) data using the true velocity model and the density. The data can be generated by running the script [generate_data_bp2004.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/BP_synthetic_2004/generate_data_bp2004.jl). The scripts [rtm_bp_2004_freq.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/BP_synthetic_2004/rtm_bp_2004_freq.jl) and [splsrtm_bp_2004_freq.jl](https://github.com/slimgroup/JUDI.jl/blob/master/examples/compressive_splsrtm/BP_synthetic_2004/splsrtm_bp_2004_freq.jl) reproduce the frequency-domain RTM and SPLS-RTM results.
#### Figure: {#f5}
{width=80%}
#### Figure: {#f6}
{width=80%}
## References
The reproducible examples on this page are featured in the following journal publication:
* Philipp A. Witte, Mathias Louboutin, Fabio Luporini, Gerard J. Gorman and Felix J. Herrmann. Compressive least-squares migration with on-the-fly Fourier transforms. GEOPHYSICS, vol. 84 (5), pp. R655-R672, 2019. <https://library.seg.org/doi/abs/10.1190/geo2018-0490.1>
* Copyright (c) 2019 Geophysics
* DOI: 10.1190/geo2018-0490.1
Contact authors via: [email protected] and [email protected].
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 1537 | # Viking Graben Line 12
[Viking Graben Line 12](https://wiki.seg.org/wiki/Mobil_AVO_viking_graben_line_12) is an open source marine 2D seismic datasets.
## Dataset
To download the data use `download_data.sh` script (don't forget to make it executable `chmod +x download_data.sh`). It contains segy data, source signature, well logs and the description.
## Preprocessing
To preprocess the data [Madagascar](https://www.reproducibility.org/wiki/Main_Page) open source seismic processing software is required. The processing scripts are located in `proc` subfolder.
## Inversion
### Configuration
To initialize this project, go to the example directory (location of `Project.toml`) and run:
```bash
julia -e 'using Pkg;Pkg.add("DrWatson");Pkg.activate(".");Pkg.instantiate()'
```
this will install all required dependency at the version used to create these examples.
## FWI and RTM
After preprocessing is done FWI is the way to go. Inversion scripts is in `fwi` subfolder. Inversion/migration are done using [JUDI](https://github.com/slimgroup/JUDI.jl) interface.
The last steps are RTM and LSRTM wich are in `rtm` and `lsrtm` subfolders repectively.
Before runnig FWI/RTM be sure to preinstall julia dependencies: `julia requirements.jl`
To run FWI/RTM examples you will probably need to have 20-30 Gb RAM available.
Here are the results of FWI/RTM/LSRTM.



The example is provided by [Kerim Khemraev](https://github.com/kerim371) | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 614 | # Full Waveform Inversion
FWI is done using JUDI.
The idea is the following:
1. Prepare initial model
2. Trim segy to 4 sec to reduce computation time
3. Run 10 iteration of FWI at a given frequency
Steps 2 and 3 run recursively while increasing low-pass frequency.
Possible frequencies are: 0.005, 0.008, 0.012, 0.018, 0.025, 0.035 kHz (don't forget to increase space order JUDI option to 32 points for frequencies > 0.012 kHz)
To reduce the amount of RAM one may want to try to add `subsampling_factor=10` to JUDI options.
Usually at low frequencies 10 times subsampling doesn't affect the result of FWI.
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 785 | # Viking Graben Line 12: processing
The processing is done using [Madagascar](https://www.reproducibility.org/wiki/Main_Page) open source software. Thus we assume that Madagascar is present on the system.
To install python dependencies use `requirements.txt` file: `python -m pip install -r requirements.txt`
The processing is partly based on [Rodrigo Morelatto work](https://github.com/rmorel/Viking).
The graph is pretty straightforward:
0. Geometry correction
1. Deghosting
2. Gain
3. Turning waves muting
4. Turning waves supression using dip filter (not necessary but good for Madagascar use experience)
5. Multiples supression using Radon transform
6. Automatic velocity picking
7. Export to segy
The result of processing (exported to segy) is used by JUDI while RTM/LSRTM. | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 318 | # Reverse Time Migration
RTM is done using JUDI.
Before running this one should process the data (see `../proc` directory) and complete the FWI to prepare accurate velocity model (see `../fwi` directory).
Be sure to set the correct path to the model computed at FWI step to `model_file` variable in `rtm.jl` script. | JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 3.4.7 | 21f9b9ae041be1caba073bb496235bceaa1d2ff0 | docs | 3000 | # A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia
## Overview
This repository contains instructions and the scripts to reproduce the examples from the paper ["A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia" (Witte et al, 2019)](https://library.seg.org/doi/abs/10.1190/geo2018-0174.1). Running the examples requires Julia (version 1.1.0) and the JUDI package. Follow the instructions from the [main page](https://github.com/slimgroup/JUDI.jl) to install JUDI and its required packages. For questions, contact Philipp Witte at [email protected].
## Abstract
Writing software packages for seismic inversion is a very challenging task because problems such as full-waveform inversion or least-squares imaging are algorithmically and computationally demanding due to the large number of unknown parameters and the fact that waves are propagated over many wavelengths. Therefore, software frameworks need to combine versatility and performance to provide geophysicists with the means and flexibility to implement complex algorithms that scale to exceedingly large 3D problems. Following these principles, we have developed the Julia Devito Inversion framework, an open-source software package in Julia for large-scale seismic modeling and inversion based on Devito, a domain-specific language compiler for automatic code generation. The framework consists of matrix-free linear operators for implementing seismic inversion algorithms that closely resemble the mathematical notation, a flexible resilient parallelization, and an interface to Devito for generating optimized stencil code to solve the underlying wave equations. In comparison with many manually optimized industry codes written in low-level languages, our software is built on the idea of independent layers of abstractions and user interfaces with symbolic operators. Through a series of numerical examples, we determined that this allows users to implement a series of increasingly complex algorithms for waveform inversion and imaging as simple Julia scripts that scale to large-scale 3D problems. This illustrates that software based on the paradigms of abstract user interfaces and automatic code generation and makes it possible to manage the complexity of the algorithms and performance optimizations, thus providing a high-performance research and production framework.
## References
The reproducible examples on this page are featured in the following journal publication:
* Philipp A. Witte, Mathias Louboutin, Navjot Kukreja, Fabio Luporini, Michael Lange, Gerard J. Gorman and Felix J. Herrmann. A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia. GEOPHYSICS, Vol. 84 (3), pp. F57-F71, 2019. <https://library.seg.org/doi/abs/10.1190/geo2018-0174.1>
* Copyright (c) 2019 Geophysics
* DOI: 10.1190/geo2018-0174.1
Contact authors via: [email protected] and [email protected].
| JUDI | https://github.com/slimgroup/JUDI.jl.git |
|
[
"MIT"
] | 0.3.1 | bbfc9bc9ca7d544672591addd06bd2cae47750f2 | code | 4665 | # Julia GARCH package
# Copyright 2013 Andrey Kolev
# Distributed under MIT license (see LICENSE.md)
"Generalized Autoregressive Conditional Heteroskedastic (GARCH) models for Julia."
module GARCH
using NLopt, Distributions, Printf, LinearAlgebra, SpecialFunctions
export garchFit, predict
include("stattests.jl")
"Fitted GARCH model object."
struct GarchFit
data::Vector
params::Vector
llh::Float64
status::Symbol
converged::Bool
sigma::Vector
hessian::Array{Float64,2}
cvar::Array{Float64,2}
secoef::Vector
tval::Vector
end
function Base.show(io::IO ,fit::GarchFit)
pnorm(x) = 0.5 * (1 + erf(x / sqrt(2)))
prt(x) = 2 * (1 - pnorm(abs(x)))
jbstat, jbp = jbtest(fit.data./fit.sigma)
@printf io "Fitted garch model \n"
@printf io " * Coefficient(s): %-15s%-15s%-15s\n" "ω" "α" "β"
@printf io "%-22s%-15.5g%-15.5g%-15.5g\n" "" fit.params[1] fit.params[2] fit.params[3]
@printf io " * Log Likelihood: %.5g\n" fit.llh
@printf io " * Converged: %s\n" fit.converged
@printf io " * Solver status: %s\n\n" fit.status
@printf io " * Standardised Residuals Tests:\n"
@printf io " %-26s%-15s%-15s\n" "" "Statistic" "p-Value"
@printf io " %-21s%-5s%-15.5g%-15.5g\n\n" "Jarque-Bera Test" "χ²" jbstat jbp
@printf io " * Error Analysis:\n"
@printf io " %-7s%-15s%-15s%-15s%-15s\n" "" "Estimate" "Std.Error" "t value" "Pr(>|t|)"
@printf io " %-7s%-15.5g%-15.5g%-15.5g%-15.5g\n" "ω" fit.params[1] fit.secoef[1] fit.tval[1] prt(fit.tval[1])
@printf io " %-7s%-15.5g%-15.5g%-15.5g%-15.5g\n" "α" fit.params[2] fit.secoef[2] fit.tval[2] prt(fit.tval[2])
@printf io " %-7s%-15.5g%-15.5g%-15.5g%-15.5g\n" "β" fit.params[3] fit.secoef[3] fit.tval[3] prt(fit.tval[3])
end
"Estimate Hessian using central difference approximation."
function cdHessian(params, f)
eps = 1e-4 * params
n = length(params)
H = zeros(n, n)
function step(x, i1, i2, d1, d2)
xc = copy(x)
xc[i1] += d1
xc[i2] += d2
f(xc)
end
for i in 1:n
for j in 1:n
H[i,j] = (step(params, i, j, eps[i], eps[j]) -
step(params, i, j, eps[i], -eps[j]) -
step(params, i, j, -eps[i], eps[j]) +
step(params, i, j, -eps[i], -eps[j])) / (4.0*eps[i]*eps[j])
end
end
H
end
"Simulate GARCH process."
function garchSim(ɛ²::Vector, ω, α, β)
h = similar(ɛ²)
h[1] = mean(ɛ²)
for i = 2:length(ɛ²)
h[i] = ω + α*ɛ²[i-1] + β*h[i-1]
end
h
end
"Normal GARCH log likelihood function."
function garchLLH(y::Vector, params::Vector)
ɛ² = y.^2
T = length(y)
h = garchSim(ɛ², params...)
-0.5*(T-1)*log(2π) - 0.5*sum(log.(h) + (y./sqrt.(h)).^2)
end
"""
predict(fit::GarchFit, n::Integer=1)
Make n-step prediction using fitted object returned by garchFit (default step=1).
# Arguments
* `fit::GarchFit` : fitted model object returned by garchFit.
* `n::Integer` : the number of time-steps to be forecasted, by default 1 (returns scalar for n=1 and array for n>1).
# Examples
```
fit = garchFit(ret)
predict(fit, n=2)
```
"""
function predict(fit::GarchFit, n::Integer=1)
if n < 1
throw(ArgumentError("n shoud be >= 1 !"))
end
ω, α, β = fit.params
y = fit.data
ɛ² = y.^2
h = garchSim(ɛ², ω, α, β)
pred = ω + α*ɛ²[end] + β*h[end]
if n == 1
return sqrt(pred)
end
pred = [pred]
for i in 2:n
push!(pred, ω + (α + β)*pred[end])
end
sqrt.(pred)
end
"""
garchFit(y::Vector)
Estimate parameters of the univariate normal GARCH process.
# Arguments
* `y::Vector`: univariate time-series array
# Examples
```
filename = Pkg.dir("GARCH", "test", "data", "price.csv")
price = Array{Float64}(readdlm(filename, ',')[:,2])
ret = diff(log.(price))
ret = ret - mean(ret)
fit = garchFit(ret)
```
"""
function garchFit(y::Vector)
ɛ² = y.^2
T = length(y)
h = zeros(T)
#opt = Opt(Sys.isapple() ? (:LN_PRAXIS) : (:LN_SBPLX), 3) # LN_SBPLX has a problem on mac currently
opt = Opt(:LN_SBPLX, 3)
lower_bounds!(opt, [1e-10, 0.0, 0.0])
upper_bounds!(opt, [1, 0.3, 0.99])
min_objective!(opt, (params, grad) -> -garchLLH(y, params))
(minf, minx, ret) = optimize(opt, [1e-5, 0.09, 0.89])
h = garchSim(ɛ², minx...)
converged = minx[1] > 0 && all(minx[2:3] .>= 0) && sum(minx[2:3]) < 1.0
H = cdHessian(minx, x -> garchLLH(y, x))
cvar = -inv(H)
secoef = sqrt.(diag(cvar))
tval = minx ./ secoef
GarchFit(y, minx, -minf, ret, converged, sqrt.(h), H, cvar, secoef, tval)
end
end #module
| GARCH | https://github.com/AndreyKolev/GARCH.jl.git |
|
[
"MIT"
] | 0.3.1 | bbfc9bc9ca7d544672591addd06bd2cae47750f2 | code | 362 | "Test the null of normality using the Jarque-Bera test statistic."
function jbtest(x::Vector)
n = length(x)
m1 = sum(x)/n
m2 = sum((x .- m1).^2)/n
m3 = sum((x .- m1).^3)/n
m4 = sum((x .- m1).^4)/n
b1 = (m3/m2^(3/2))^2
b2 = (m4/m2^2)
statistic = n * b1/6 + n*(b2 - 3)^2/24
d = Chisq(2.)
pvalue = 1. - cdf(d, statistic)
statistic, pvalue
end
| GARCH | https://github.com/AndreyKolev/GARCH.jl.git |
|
[
"MIT"
] | 0.3.1 | bbfc9bc9ca7d544672591addd06bd2cae47750f2 | code | 470 | using GARCH
using Pkg, Test, DelimitedFiles, Statistics
filename = Pkg.dir("GARCH", "test", "data", "price.csv")
price = Array{Float64}(readdlm(filename, ',')[:,2])
ret = diff(log.(price))
ret = ret .- mean(ret)
fit = garchFit(ret)
param = [2.469347e-06, 1.142268e-01, 8.691734e-01] #R fGarch garch(1,1) estimated params
@test fit.params ≈ param atol=1e-3
@test predict(fit) ≈ 0.005617744 atol = 1e-4
@test predict(fit, 2) ≈ [0.005617744, 0.005788309] atol = 1e-4
| GARCH | https://github.com/AndreyKolev/GARCH.jl.git |
|
[
"MIT"
] | 0.3.1 | bbfc9bc9ca7d544672591addd06bd2cae47750f2 | docs | 2063 | # Julia GARCH package
[](https://travis-ci.org/AndreyKolev/GARCH.jl)
Generalized Autoregressive Conditional Heteroskedastic ([GARCH](http://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity)) models for Julia.
## What is implemented
* garchFit - estimates parameters of univariate normal GARCH process.
* predict - make n-step prediction using fitted object returned by garchFit
* Jarque-Bera residuals test
* Error analysis
* Package test (compares model parameters and predictions with those obtained using R fGarch)
Analysis of model residuals - currently only Jarque-Bera Test implemented.
## What is not ready yet
* Asymmetric and non-normal GARCH models
* Comprehensive set of residuals tests
## Usage
### garchFit
estimates parameters of univariate normal GARCH process.
#### arguments:
data - data vector
#### returns:
Structure containing details of the GARCH fit with the fllowing fields:
* data - orginal data
* params - vector of model parameters (omega,alpha,beta)
* llh - likelihood
* status - status of the solver
* converged - boolean convergence status, true if constraints are satisfied
* sigma - conditional volatility
* hessian - Hessian matrix
* secoef - standard errors
* tval - t-statistics
### predict
make n-step volatility prediction
#### arguments:
* fit - fitted object returned by garchFit
* n - the number of time-steps to be forecasted, by default 1
#### returns:
n-step-ahead volatility forecast
## Example
using GARCH
using Quandl
quotes = quandl("YAHOO/INDEX_GSPC", format="DataFrame")
ret = diff(log(Array{Float64}(quotes[:Adjusted_Close])))
fit = garchFit(ret)
## Author
Andrey Kolev
## References
* T. Bollerslev (1986): Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics 31, 307–327.
* R. F. Engle (1982): Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 50, 987–1008.
| GARCH | https://github.com/AndreyKolev/GARCH.jl.git |
|
[
"MIT"
] | 0.1.0 | c98b725e0f8884f952e06f80001047d5552bb7c0 | code | 11863 | module FractalAnimation
using ProgressMeter: @showprogress
using ColorSchemes
using Continuables
using Plots: gif
using Logging
using VideoIO
using CUDA
using Pipe
include("anim_utils.jl")
export SetParams, juliaset, juliaprogression, animateprogression
export show_mandelbrot_traversal, mandelbrotset, to_gpu, batched_animate, continuous_animate
"""
escapeeval(f, threshold[, c, z, maxiter])
Evaluate the divergence speed for a given function of z,c in the complex plane.
For julia and fatou sets pass the whole complex plane as z
For mandelbrot-esque sets pass the whole complex plane as c
"""
function escapeeval(f::Function,
threshold::Real,
c::Union{Complex, Matrix{Complex}} = 1,
z::Union{Complex, Matrix{Complex}} = 0,
maxiter::Integer = 255)
for i = 1:maxiter
z = f(z, c)
if abs(z) ≥ threshold
return i
end
end
return -0
end
function _setdims(max_coord, min_coord, resolution)
dim = (max_coord - min_coord) * resolution
dim == 0 ? error("Height or width cannot be 0!") : return ceil(dim) |> Int64
end
"""
Essentially meshgrid to produce a Complex plane array of the given size
"""
function _genplane(min_coord::Complex, max_coord::Complex, width::Integer, height::Integer, gpu::Bool)
real = range(min_coord.re, max_coord.re,length=width)
imag = range(min_coord.im, max_coord.im,length=height)
complexplane = zeros(Complex{Float64},(height, width))
for (i,x) ∈ collect(enumerate(real))
complexplane[:,i] .+= x
end
for (i,y) ∈ collect(enumerate(imag))
complexplane[i,:] .+= (y * 1im)
end
reverse!(complexplane, dims=1)
gpu == true ? (return cu(complexplane)) : (return complexplane)
end
"""
SetParams(min_coord, max_coord, resolution, threshold, nr_frames[, gpu])
#Feilds
- `min_coord::ComplexF64`: The coordinate of the bottom-left of the image frame.
- `max_coord::ComplexF64`: The coordinate of the top-right of the image frame.
- `resolution::Int64`: The number of pixels in a 1x1 square in the complex plane
- `width::Int64`: The width of the image frame
- `height::Int64`: The height of the image frame
- `plane::Union{Matrix{Complex{Float64}},CuArray{Complex{Float32}}}`: A `min_coord × max_coord` coordinate grid of the complex plane.
- `threshold::Float64`: The distance from which we consider a point to have diverged
- `nr_frames::Int64`: The number of images to generate for a progression
- `gpu::Bool`: Whether to use the GPU
"""
struct SetParams
min_coord::Complex{Float64}
max_coord::Complex{Float64}
resolution::Int64
width::Int64
height::Int64
plane::Union{Matrix{Complex{Float64}},CuArray{Complex{Float32}}}
threshold::Float64
nr_frames::Int64
gpu::Bool
"""
The resolution, minimum, & maximum coordiantes determine the width & height
"""
function SetParams(min_coord::Complex, max_coord::Complex, resolution::Integer, threshold::Real, nr_frames::Integer, gpu::Bool = false)
if min_coord.re ≥ max_coord.re; error("Max real component cannot be less than or equal to Min real component!") end
if min_coord.im ≥ max_coord.im; error("Max imaginary component cannot be less than or equal to Min imaginary component!") end
width = _setdims(max_coord.re, min_coord.re, resolution)::Int64
height = _setdims(max_coord.im, min_coord.im, resolution)::Int64
plane = _genplane(min_coord, max_coord, width, height, gpu)::Union{Matrix{Complex{Float64}},CuArray{Complex{Float32}}}
return new(
min_coord,
max_coord,
resolution,
width,
height,
plane,
threshold,
nr_frames,
gpu
)
end
end
"""
to_gpu(p)
Return a new SetParams sruct allocated on the GPU
This is a convenience method only!
For initial construction pass `true` to the `gpu` feild of `SetParams`.
"""
function to_gpu(p::SetParams)
if p.gpu == true
return p
else
p = SetParams(p.min_coord, p.max_coord, p.resolution, p.threshold, p.nr_frames, true)
return p
end
end
"""
mandelbrotset(set_p, f[ z, maxiter])
Return an array of the Mandelbrot-esque set for function `f` given initial value `z`
"""
mandelbrotset(set_p::SetParams, f::Function, z::Complex = 0.0+0.0im, maxiter::Integer = 255) =
set_p.gpu == true ? exec_gpu_kernel_mandelbrot(set_p, f, z, maxiter) |> Array : escapeeval.(f, set_p.threshold, set_p.plane, z, maxiter)
"""
juliaset(set_p, f, c[, maxiter])
Return an array of the Julia set for function `f` around point `c`
"""
juliaset(set_p::SetParams, f::Function, c::Complex, maxiter::Integer = 255) =
set_p.gpu == true ? exec_gpu_kernel_julia(set_p, f, c, maxiter) |> Array : escapeeval.(f, set_p.threshold, c, set_p.plane, maxiter)
""" ------- Progression Functions ------- """
"""
juliaprogression(set_p, points, f[, maxiter])
Return a Vector of julia sets for vector of `points` for function `f`
"""
juliaprogression(set_p::SetParams, points::Vector, f::Function, maxiter::Integer = 255) = [(c,juliaset(set_p, f, c, maxiter)) for c ∈ points]
"""
show_mandelbrot_traversal(set_p, γ, f[; <keyword arguments>])
Overlay and display the set of points `γ` over the Mandelbrot set for function `f`
# Arguments
- `set_p::SetParams`
- `γ::Vector`
- `f::Function`
- `heat_c::Symbol=:terrain`: Color scheme for the heatmap of the Mandelbrot-esque set
- `line_c::Symbol=:red`: Color of the line for vector `γ`
"""
function show_mandelbrot_traversal(set_p::SetParams, γ::Vector, f::Function; heat_c=:terrain, line_c=:red)
plane = set_p.plane |> Array
mapped_points = map_points_to_plane(γ, plane)
mandelset = mandelbrotset(set_p, f)
begin
heatmap(mandelset, size=(set_p.width, set_p.height), c=heat_c, leg=false)
plot!(mapped_points, size=(set_p.width, set_p.height), color=line_c)
end
end
function animateprogression(progression::Vector, cscheme=ColorSchemes.terrain)
sets = [set for (_,set) ∈ progression]
max = get_maxval(sets)
images = apply_colorscheme(cscheme, sets, max)
anim = gen_animation(images)
@debug "Animation temp directory: $(anim.dir)"
return anim
end
"""
batched_animate(set_p, γ, func[, filepath, cscheme, batchsize, maxiter])
Generate a video showing the julia progression along vector `γ` for function `func` with parameters `set_p`
Divides the task of generating and writing the video into batches to avoid overwhelimg memory.
"""
function batched_animate(set_p::SetParams, γ::Vector, func::Function,
filepath::String = "progression.mp4", cscheme = ColorSchemes.terrain,
batchsize::Integer = 30, maxiter::Integer = 255)
encoder_options = (crf=0, preset="ultrafast")
pointsets = Iterators.partition(γ,batchsize) .|> Vector
open_video_out(filepath, RGB{N0f8}, (set_p.height,set_p.width), framerate=60, encoder_options=encoder_options, codec_name="libx264rgb") do writer
@showprogress "Processing Batches..." for pointset ∈ pointsets
progression = juliaprogression(set_p, pointset, func, maxiter)
sets = [set for (_,set) ∈ progression]
imgstack = apply_colorscheme(cscheme, sets, maxiter)
for img ∈ imgstack
write(writer,img)
end
end
close_video_out!(writer)
end
return nothing
end
"""
continuous_animate(set_p, γ, func[, filepath, cscheme, maxiter])
Generate a video showing the julia progression along vector `γ` for function `func` with parameters `set_p`
Uses Continous.jl to gererate sets as needed then write them to the video file.
"""
function continuous_animate(set_p::SetParams, γ::Vector, func::Function,
filepath::String = "progression.mp4", cscheme = ColorSchemes.terrain,
maxiter::Integer = 255)
encoder_options = (crf=0, preset="ultrafast")
open_video_out(filepath, RGB{N0f8}, (set_p.height,set_p.width), framerate=60, encoder_options=encoder_options, codec_name="libx264rgb") do writer
writer_write(img) = write(writer, img)
continuous_juliasets(set_p, func, γ, cscheme, maxiter)(writer_write)
close_video_out!(writer)
end
return nothing
end
"""
Provide a python-esque generator for julia set images
"""
continuous_juliasets(set_p::SetParams, func::Function, γ::Vector, cscheme, maxiter::Int) = @cont begin
for c ∈ γ
@pipe juliaset(set_p, func, c, maxiter) |> apply_colorscheme(cscheme, _, maxiter) |> cont
end
end
""" ------- GPU Related Functions ------- """
"""
CUDA kernel for julia sets
Algorithm from: https://github.com/vini-fda/Mandelbrot-julia/blob/main/src/Mandelbrot_gpu.ipynb
"""
function kernel_julia_gpu!(out, in, f::Function, c::Complex, threshold::Real, maxiter::Integer)
id = (blockIdx().x - 1) * blockDim().x + threadIdx().x
stride = blockDim().x * gridDim().x
w, h = size(in)
cind = CartesianIndices((w, h))
for k=id:stride:w*h
i = cind[k][1]
j = cind[k][2]
z = in[i,j]
itrs = 0
while CUDA.abs2(z) < threshold
if itrs ≥ maxiter
itrs = 0
break
end
z = f(z,c)
itrs += 1
end
@inbounds out[i,j] = itrs
end
return nothing
end
"""
Wrapper for CUDA kernel
"""
function exec_gpu_kernel_julia(set_p::SetParams, f::Function, c::Complex, maxiter::Integer=255)
plane_trace = CuArray{ComplexF32}(undef, set_p.height, set_p.width)
out_trace = CuArray{Float32}(undef, set_p.height, set_p.width)
kernel = @cuda name="juliaset" launch=false kernel_julia_gpu!(out_trace, plane_trace, f, c, set_p.threshold, maxiter)
config = launch_configuration(kernel.fun)
threads = Base.min(length(out_trace), config.threads)
blocks = cld(length(out_trace), threads)
out = CUDA.zeros(Float32,(set_p.plane |> size)...)
CUDA.@sync kernel(out, set_p.plane, f, c, set_p.threshold, maxiter; threads=threads, blocks=blocks)
return out
end
"""
CUDA kernel for mandelbrot sets
"""
function kernel_mandelbrot_gpu!(out, in, f::Function, z_init::Complex, threshold::Real, maxiter::Integer)
id = (blockIdx().x - 1) * blockDim().x + threadIdx().x
stride = blockDim().x * gridDim().x
w, h = size(in)
cind = CartesianIndices((w, h))
for k = id:stride:w*h
i = cind[k][1]
j = cind[k][2]
c = in[i,j]
z = z_init
itrs = 0
while CUDA.abs2(z) < threshold
if itrs ≥ maxiter
itrs = 0
break
end
z = f(z,c)
itrs += 1
end
@inbounds out[i,j] = itrs
end
return nothing
end
"""
Wrapper for CUDA kernel
"""
function exec_gpu_kernel_mandelbrot(set_p::SetParams, f::Function, z_init::Complex = 0, maxiter::Integer=255)
plane_trace = CuArray{ComplexF32}(undef, set_p.height, set_p.width)
out_trace = CuArray{Float32}(undef, set_p.height, set_p.width)
kernel = @cuda name="juliaset" launch=false kernel_mandelbrot_gpu!(out_trace, plane_trace, f, z_init, set_p.threshold, maxiter)
config = launch_configuration(kernel.fun)
threads = Base.min(length(out_trace), config.threads)
blocks = cld(length(out_trace), threads)
out = cu(zeros(set_p.plane |> size))
CUDA.@sync kernel(out, set_p.plane, f, z_init, set_p.threshold, maxiter; threads=threads, blocks=blocks)
return out
end
end
| FractalAnimation | https://github.com/ErrolSeders/FractalAnimation.jl.git |
|
[
"MIT"
] | 0.1.0 | c98b725e0f8884f952e06f80001047d5552bb7c0 | code | 1334 | using ColorTypes: RGB, N0f8
using Images
using Plots: Animation, plot!, heatmap
using Printf: @sprintf
import Plots: frame
struct ImageWrapper
img::Matrix{RGB}
end
function frame(anim::Animation, iw::ImageWrapper)
i = length(anim.frames) + 1
filename = @sprintf("%010d.png", i)
save(joinpath(anim.dir,filename), iw.img)
push!(anim.frames, filename)
end
function gen_animation(images::Vector)
anim = Animation()
wrapped_images = ImageWrapper.(images)
map((x)->frame(anim, x), wrapped_images)
return anim
end
get_maxval(sets::Vector) = maximum(map((maximum ∘ collect ∘ Iterators.flatten), sets)) |> Integer
apply_colorscheme(csheme::ColorScheme, sets::Vector, maxval::Integer) :: Vector{Matrix{RGB{N0f8}}} = map((x) -> get(csheme, x, (0, maxval)) .|> RGB{N0f8}, sets)
apply_colorscheme(csheme::ColorScheme, set::AbstractArray, maxval::Integer) :: Matrix{RGB{N0f8}} = get(csheme, set, (0, maxval)) .|> RGB{N0f8}
complex_euclidean_distance(u::Complex, v::Complex) = sqrt((u.re - v.re)^2 + (u.im - v.im)^2)
function find_location(val::Complex, plane::AbstractArray)
distances = complex_euclidean_distance.(val, plane)
return findmin(distances)[2]
end
map_points_to_plane(points::Vector, plane::AbstractArray) = map((point) -> find_location(point,plane), points) .|> Tuple .|> reverse
| FractalAnimation | https://github.com/ErrolSeders/FractalAnimation.jl.git |
|
[
"MIT"
] | 0.1.0 | c98b725e0f8884f952e06f80001047d5552bb7c0 | code | 11852 | using FractalAnimation
using CUDA
using Test
@testset "FractalAnimation.jl" begin
CUDA_available = CUDA.functional()
@testset "Parmeter Bounds" begin
@test_throws ErrorException SetParams(-2.0-2.0im, 2.0+2.0im, 0, 20.0, 60)
@test_throws ErrorException SetParams(-2.0+2.0im, 2.0+2.0im, 20, 20.0, 60)
@test_throws ErrorException SetParams(2.0-2.0im, 2.0+2.0im, 20, 20.0, 60)
@test_throws ErrorException SetParams(2.0+2.0im, 2.0+2.0im, 0, 20.0, 60)
end
params = SetParams(-2.0-2.0im, 2.0+2.0im, 200, 20.0, 360)
@testset "Parameter Type" begin
@test params.plane isa Matrix{Complex{Float64}}
end
@testset "GPU Parameters" begin
if CUDA_available
gpu_params = SetParams(-2.0-2.0im, 2.0+2.0im, 200, 20.0, 360, true)
@test gpu_params.plane isa CuArray{Complex{Float32},2, CUDA.Mem.DeviceBuffer}
@testset "to_gpu" begin
p_to_gpu = params |> to_gpu
@test p_to_gpu.gpu == true
end
end
end
@testset "Paths" begin
sin_path = Path(t-> t + 2im*sin(t),0,2π)
@testset "Path Parameterization" begin
@test sin_path.parameterization(0) ≈ 0 + 0im atol=0.01
@test sin_path.parameterization(2π) ≈ 2π + 0im atol=0.01
@test pointsonpath(sin_path,2) ≈ [0.0+0.0im, 2π + 0im] atol=0.01
end
@testset "Bad Paths" begin
@test_throws ErrorException pointsonpath(sin_path, 0)
@test_throws ErrorException pointsonpath(sin_path, -2)
end
end
@testset "Set Generation" begin
test_params = SetParams(-1.0-1.0im, 1.0+1.0im, 10, 20.0, 4)
func = (z,c) -> z^2 + c
c = 0.30+0.53im
correct_result_julia = [ 5 6 0 16 13 8 7 7 7 8 13 37 8 5 5 4 4 4 3 3 ;
5 7 11 0 0 12 0 9 9 0 0 0 8 6 5 4 4 4 3 3 ;
8 23 0 0 0 0 0 18 12 0 0 0 9 7 6 5 4 4 4 3 ;
0 16 0 0 0 0 0 0 70 32 0 15 15 9 8 5 4 4 4 4 ;
0 8 9 9 15 0 0 0 0 30 39 0 0 20 10 6 5 4 4 4 ;
6 6 7 8 11 24 28 0 0 0 0 23 0 13 8 6 5 4 4 4 ;
5 5 6 7 8 12 11 14 16 0 0 35 11 9 7 6 5 4 4 4 ;
5 5 5 6 7 8 9 12 0 0 0 0 14 9 7 6 5 5 4 4 ;
4 5 5 6 6 7 9 0 0 0 0 0 15 25 8 6 5 5 4 4 ;
4 5 5 5 6 7 0 0 0 0 0 0 0 0 8 6 5 5 4 4 ;
4 4 5 5 6 8 0 0 0 0 0 0 0 0 7 6 5 5 5 4 ;
4 4 5 5 6 8 25 15 0 0 0 0 0 9 7 6 6 5 5 4 ;
4 4 5 5 6 7 9 14 0 0 0 0 12 9 8 7 6 5 5 5 ;
4 4 4 5 6 7 9 11 35 0 0 16 14 11 12 8 7 6 5 5 ;
4 4 4 5 6 8 13 0 23 0 0 0 0 28 24 11 8 7 6 6 ;
4 4 4 5 6 10 20 0 0 39 30 0 0 0 0 15 9 9 8 0 ;
4 4 4 4 5 8 9 15 15 0 32 70 0 0 0 0 0 0 16 0 ;
3 4 4 4 5 6 7 9 0 0 0 12 18 0 0 0 0 0 23 8 ;
3 3 4 4 4 5 6 8 0 0 0 9 9 0 12 0 0 11 7 5 ;
3 3 4 4 4 5 5 8 37 13 8 7 7 7 8 13 16 0 6 5 ]
@test juliaset(test_params, func, c) == correct_result_julia
correct_result_mandelbrot = [ 5 5 5 5 6 6 7 8 12 12 7 6 5 5 5 5 4 4 4 4 ;
5 5 6 6 6 7 7 10 41 14 8 7 6 6 5 5 5 4 4 4 ;
5 6 6 6 7 8 9 14 0 0 10 8 7 6 6 5 5 4 4 4 ;
6 6 7 8 11 10 13 15 0 0 13 11 9 12 6 5 5 5 4 4 ;
7 7 7 9 89 0 0 0 0 0 0 38 34 19 7 6 5 5 4 4 ;
7 8 8 16 34 0 0 0 0 0 0 0 0 11 7 6 5 5 4 4 ;
11 9 10 23 0 0 0 0 0 0 0 0 0 28 9 6 5 5 5 4 ;
0 19 13 0 0 0 0 0 0 0 0 0 0 0 8 6 5 5 5 4 ;
0 0 35 0 0 0 0 0 0 0 0 0 0 0 8 6 5 5 5 4 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 10 7 6 5 5 5 4 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 10 7 6 5 5 5 4 ;
0 0 35 0 0 0 0 0 0 0 0 0 0 0 8 6 5 5 5 4 ;
0 19 13 0 0 0 0 0 0 0 0 0 0 0 8 6 5 5 5 4 ;
11 9 10 23 0 0 0 0 0 0 0 0 0 28 9 6 5 5 5 4 ;
7 8 8 16 34 0 0 0 0 0 0 0 0 11 7 6 5 5 4 4 ;
7 7 7 9 89 0 0 0 0 0 0 38 34 19 7 6 5 5 4 4 ;
6 6 7 8 11 10 13 15 0 0 13 11 9 12 6 5 5 5 4 4 ;
5 6 6 6 7 8 9 14 0 0 10 8 7 6 6 5 5 4 4 4 ;
5 5 6 6 6 7 7 10 41 14 8 7 6 6 5 5 5 4 4 4 ;
5 5 5 5 6 6 7 8 12 12 7 6 5 5 5 5 4 4 4 4 ; ]
@test mandelbrotset(test_params, func) == correct_result_mandelbrot
end
@testset "GPU Set Generation" begin
if CUDA_available
gpu_test_params = SetParams(-1.0-1.0im, 1.0+1.0im, 10, 20.0, 4, true)
func = (z,c) -> z^2 + c
c = 0.30+0.53im
correct_result_julia_gpu = [ 4 5 0 15 12 7 6 6 6 7 12 36 7 4 4 3 3 3 2 2 ;
4 6 10 0 0 11 0 8 8 0 0 0 7 5 4 3 3 3 2 2 ;
7 22 0 0 0 0 0 17 11 0 0 0 8 6 5 4 3 3 3 2 ;
0 15 0 0 0 0 0 0 69 31 0 14 14 8 7 4 3 3 3 2 ;
0 7 8 8 14 0 0 0 0 29 38 0 0 19 9 5 4 3 3 3 ;
5 5 6 7 10 23 27 0 0 0 0 22 0 12 7 5 4 3 3 3 ;
4 4 5 6 7 11 10 13 15 0 0 34 10 8 6 5 4 3 3 3 ;
4 4 4 5 6 7 8 11 0 0 0 0 13 8 6 5 4 4 3 3 ;
3 4 4 5 5 6 8 0 0 0 0 0 14 24 7 5 4 4 3 3 ;
3 4 4 4 5 6 0 0 0 0 0 0 0 0 7 5 4 4 3 3 ;
3 3 4 4 5 7 0 0 0 0 0 0 0 0 6 5 4 4 4 3 ;
3 3 4 4 5 7 24 14 0 0 0 0 0 8 6 5 5 4 4 3 ;
3 3 4 4 5 6 8 13 0 0 0 0 11 8 7 6 5 4 4 4 ;
3 3 3 4 5 6 8 10 34 0 0 15 13 10 11 7 6 5 4 4 ;
3 3 3 4 5 7 12 0 22 0 0 0 0 27 23 10 7 6 5 5 ;
3 3 3 4 5 9 19 0 0 38 29 0 0 0 0 14 8 8 7 0 ;
2 3 3 3 4 7 8 14 14 0 31 69 0 0 0 0 0 0 15 0 ;
2 3 3 3 4 5 6 8 0 0 0 11 17 0 0 0 0 0 22 7 ;
2 2 3 3 3 4 5 7 0 0 0 8 8 0 11 0 0 10 6 4 ;
2 2 3 3 3 4 4 7 36 12 7 6 6 6 7 12 15 0 5 4 ; ]
@test juliaset(gpu_test_params, func, c) .|> Int == correct_result_julia_gpu
correct_result_mandelbrot_gpu = [ 4 4 4 4 5 5 5 7 11 11 6 5 4 4 4 4 3 3 3 3 ;
4 4 5 5 5 6 6 9 40 13 7 6 5 5 4 4 4 3 3 3 ;
5 5 5 5 6 7 8 13 0 0 9 7 6 5 5 4 4 3 3 3 ;
5 5 6 7 10 9 12 14 0 0 12 10 8 11 5 4 4 4 3 3 ;
5 6 6 8 88 0 0 0 0 0 0 37 33 18 6 5 4 4 3 3 ;
6 7 7 15 33 0 0 0 0 0 0 0 0 10 6 5 4 4 3 3 ;
10 8 9 22 0 0 0 0 0 0 0 0 0 27 8 5 4 4 4 3 ;
0 18 12 0 0 0 0 0 0 0 0 0 0 0 7 5 4 4 4 3 ;
0 0 34 0 0 0 0 0 0 0 0 0 0 0 7 5 4 4 4 3 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 9 6 5 4 4 4 3 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 9 6 5 4 4 4 3 ;
0 0 34 0 0 0 0 0 0 0 0 0 0 0 7 5 4 4 4 3 ;
0 18 12 0 0 0 0 0 0 0 0 0 0 0 7 5 4 4 4 3 ;
10 8 9 22 0 0 0 0 0 0 0 0 0 27 8 5 4 4 4 3 ;
6 7 7 15 33 0 0 0 0 0 0 0 0 10 6 5 4 4 3 3 ;
5 6 6 8 88 0 0 0 0 0 0 37 33 18 6 5 4 4 3 3 ;
5 5 6 7 10 9 12 14 0 0 12 10 8 11 5 4 4 4 3 3 ;
5 5 5 5 6 7 8 13 0 0 9 7 6 5 5 4 4 3 3 3 ;
4 4 5 5 5 6 6 9 40 13 7 6 5 5 4 4 4 3 3 3 ;
4 4 4 4 5 5 5 7 11 11 6 5 4 4 4 4 3 3 3 3 ; ]
@test mandelbrotset(gpu_test_params, func) .|> Int == correct_result_mandelbrot_gpu
end
end
end
| FractalAnimation | https://github.com/ErrolSeders/FractalAnimation.jl.git |
|
[
"MIT"
] | 1.1.0 | fa3ac66572ddf2ae24b03b6b8e17b5dd52259af5 | code | 3082 | """
HolidayJp
The `HolidayJp` module provides features for detecting holiday in Japan.
```jldoctest
julia> using Dates
julia> HolidayJp.isholiday(Date(2018, 02, 23))
false
julia> HolidayJp.isholiday(Date(2018, 12, 23))
true
julia> HolidayJp.isholiday(Date(2019, 2, 23))
true
julia> HolidayJp.isholiday(Date(2019, 12, 23))
false
```
"""
module HolidayJp
import Dates: Date, DateTime, Day, year, month, day
import OrderedCollections: OrderedDict, rehash!
import YAML
"""
HolidayJp.Holiday
`Holiday` represents a holiday in Japan.
"""
Base.@kwdef struct Holiday
date::Date
week::String
week_en::String
name::String
name_en::String
end
function Holiday(params::AbstractDict)
Holiday(date=Date(params["date"]),
week=string(params["week"]),
week_en=string(params["week_en"]),
name=string(params["name"]),
name_en=string(params["name_en"]))
end
const HolidayDict = OrderedDict{Date, Holiday}
function load_holidays()
data_dir = joinpath(dirname(@__DIR__), "data")
dataset = YAML.load_file(joinpath(data_dir, "holidays_detailed.yml"); dicttype=OrderedDict{Any, Any})
HolidayDict(date => Holiday(params) for (date, params) in dataset)
end
const HOLIDAYS = load_holidays()
_datelike(d::Date) = d
_datelike(dl::T) where {T} = Date(year(dl), month(dl), day(dl))
"""
isholiday(d) -> Bool
isholiday(year, month, day) -> Bool
Return `true` if the given date is a holiday in Japan.
The date can be specified using a date-like object or by providing the year,
month, and day separately.
"""
isholiday(d::Date) = haskey(HOLIDAYS, d)
isholiday(year::I, month::I, day::I) where {I<:Integer} = isholiday(Date(year, month, day))
isholiday(dl::DateLike) where {DateLike} = isholiday(_datelike(dl))
"""
getholiday(d) -> Union{Nothing,HolidayJp.Holiday}
getholiday(year, month, day) -> Union{Nothing,HolidayJp.Holiday}
Return the holiday information for the given date.
When the given date is not a holiday in Japan, `nothing` is returned.
The date can be specified using a date-like object or by providing the year,
month, and day separately.
"""
getholiday(d::Date) = get(HOLIDAYS, d, nothing)
getholiday(year::I, month::I, day::I) where {I<:Integer} = getholiday(Date(year, month, day))
getholiday(dl::DateLike) where {DateLike} = getholiday(_datelike(dl))
"""
between(lower_limit, upper_limit) -> Vector{HolidayJp.Holiday}
Return a vector of `HolidayJp.Holiday` objects that fall within the date range
defined by the `lower_limit` and the `upper_limit`.
The `lower_limit` and the `upper_limit` can be specified using a date-like objects.
"""
function between(lower_limit::Date, upper_limit::Date)
if lower_limit > upper_limit
error("lower_limit must be earlier than upper_limit (lower_limit=$(lower_limit), upper_limit=$(upper_limit))")
end
[h for h in values(HOLIDAYS) if lower_limit <= h.date <= upper_limit]
end
between(ll::LL, ul::UL) where {LL, UL} = between(_datelike(ll), _datelike(ul))
function __init__()
rehash!(HOLIDAYS)
end
end
| HolidayJp | https://github.com/mrkn/HolidayJp.jl.git |
|
[
"MIT"
] | 1.1.0 | fa3ac66572ddf2ae24b03b6b8e17b5dd52259af5 | code | 415 | module BruteForceTest
using Test
import HolidayJp: HolidayJp, YAML
import Dates: Day
data_dir = joinpath(dirname(@__DIR__), "data")
data = YAML.load_file(joinpath(data_dir, "holidays.yml"))
date_begin, date_end = extrema(keys(data))
for d in date_begin:Day(1):date_end
h = haskey(data, d)
@testset "$(d) is$(h ? "" : " not") a holiday" begin
@test HolidayJp.isholiday(d) === h
end
end
end
| HolidayJp | https://github.com/mrkn/HolidayJp.jl.git |
|
[
"MIT"
] | 1.1.0 | fa3ac66572ddf2ae24b03b6b8e17b5dd52259af5 | code | 4003 | module TestHolidayJp
using Test
import HolidayJp
import Dates: Dates, Date, DateTime
struct DateLike
year
month
day
end
Dates.year(d::DateLike) = d.year
Dates.month(d::DateLike) = d.month
Dates.day(d::DateLike) = d.day
@testset "HolidayJp.jl" begin
@testset "isholiday" begin
@testset "when the given object is a Date" begin
@test HolidayJp.isholiday(Date("2000-01-01")) === true
@test HolidayJp.isholiday(Date("2000-01-02")) === false
end
@testset "when the given object is a DateTime" begin
@test HolidayJp.isholiday(DateTime("2000-01-01", "yyyy-mm-dd")) === true
@test HolidayJp.isholiday(DateTime("2000-01-02", "yyyy-mm-dd")) === false
end
@testset "when the given object responds to Dates.year, Dates.month, and Dates.day" begin
@test HolidayJp.isholiday(DateLike(2000, 1, 1)) === true
@test HolidayJp.isholiday(DateLike(2000, 1, 2)) === false
end
@testset "when the year, the month, and the day are specified separately" begin
@test HolidayJp.isholiday(2000, 1, 1) === true
@test HolidayJp.isholiday(2000, 1, 2) === false
end
end
@testset "getholiday" begin
@testset "returns a Holiday when the given date is a holiday" begin
@test HolidayJp.getholiday(Date("2000-01-01")) isa HolidayJp.Holiday
@test HolidayJp.getholiday(DateTime("2000-01-01", "yyyy-mm-dd")) isa HolidayJp.Holiday
@test HolidayJp.getholiday(DateLike(2000, 1, 1)) isa HolidayJp.Holiday
@test HolidayJp.getholiday(2000, 1, 1) isa HolidayJp.Holiday
end
@testset "returns nothing when the given Date is not a holiday" begin
@test HolidayJp.getholiday(Date("2000-01-02")) === nothing
@test HolidayJp.getholiday(DateTime("2000-01-02", "yyyy-mm-dd")) === nothing
@test HolidayJp.getholiday(DateLike(2000, 1, 2)) === nothing
@test HolidayJp.getholiday(2000, 1, 2) === nothing
end
end
@testset "between" begin
expected = [
Date("2000-01-01"),
Date("2000-01-10"),
Date("2000-02-11"),
Date("2000-03-20"),
Date("2000-04-29"),
Date("2000-05-03"),
Date("2000-05-04"),
Date("2000-05-05"),
Date("2000-07-20"),
Date("2000-09-15"),
Date("2000-09-23"),
Date("2000-10-09"),
Date("2000-11-03"),
Date("2000-11-23"),
Date("2000-12-23")
]
@testset "returns all holidays when two Date objects are passed" begin
result = HolidayJp.between(Date("2000-01-01"), Date("2000-12-31"))
@test result isa Vector{HolidayJp.Holiday}
@test [h.date::Date for h in result] == expected
end
@testset "accepts date-like objects as its arguments" begin
result = HolidayJp.between(Date(2000, 1, 1), DateLike(2000, 12, 31))
@test [h.date::Date for h in result] == expected
result = HolidayJp.between(DateLike(2000, 1, 1), Date(2000, 12, 31))
@test [h.date::Date for h in result] == expected
result = HolidayJp.between(DateLike(2000, 1, 1), DateLike(2000, 12, 31))
@test [h.date::Date for h in result] == expected
end
@testset "returns Holiday[] when the given range are out of scope" begin
@test HolidayJp.Holiday[] == HolidayJp.between(Date("1900-01-01"), Date("1900-12-31"))
year = Dates.year(Dates.today()) + 500
@test HolidayJp.Holiday[] == HolidayJp.between(Date(year, 1, 1), Date(year, 12, 31))
end
@testset "raise error when the lower limit is future than the upper limit" begin
@test_throws ErrorException HolidayJp.between(Date("2000-01-02"), Date("2000-01-01"))
end
end
end
end
include("bruteforce.jl")
| HolidayJp | https://github.com/mrkn/HolidayJp.jl.git |
|
[
"MIT"
] | 1.1.0 | fa3ac66572ddf2ae24b03b6b8e17b5dd52259af5 | docs | 1020 | # HolidayJp
[](https://github.com/mrkn/HolidayJp.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://coveralls.io/github/mrkn/HolidayJp.jl?branch=main)
## Description
HolidayJp provides functions related to Japanese holidays for Julia language. This uses the Japanese holiday dataset in [holiday_jp/holiday_jp](https://github.com/holiday-jp/holiday_jp).
## Usage
```julia
import Dates: Date
import HolidadyJp
HolidayJP.isholiday(Date("2024-02-23")) # true
HolidayJp.isholiday(2024, 12, 23) # false
HolidayJp.getholiday(2024, 2, 23).name # "天皇誕生日"
HolidayJp.getholiday(2024, 12, 23) # nothing
[h.date for h in HolidayJp.between(Date("2024-01-01"), Date("2025-01-01"))]
# 21-element Vector{Date}:
# 2024-01-01
# 2024-01-08
# ...
# 2024-11-23
```
## Installation
```
julia> ] add HolidayJp
```
## LICENSE
MIT
| HolidayJp | https://github.com/mrkn/HolidayJp.jl.git |
|
[
"MIT"
] | 1.1.0 | fa3ac66572ddf2ae24b03b6b8e17b5dd52259af5 | docs | 1484 | # holiday_jp [](https://github.com/holiday-jp/holiday_jp/actions)
Japanese holiday datasets
## holiday_jp Versions
| Version | 振替休日の表記 |
| --- | --- |
| v0.x | `振替休日` |
| v1.x | `勤労感謝の日 振替休日` |
| Version | 休日の表記 |
| --- | --- |
| v0.x | `国民の休日` |
| v1.x | `国民の休日`, `休日` |
| >= v1.2.2 | `休日` |
## Implementations
| Implementation | Release version using holiday_jp v0.x | Release version using holiday_jp v1.x |
| --- | --- | --- |
| [Ruby](https://github.com/holiday-jp/holiday_jp-ruby) | v0.7.x | - |
| [JavaScript](https://github.com/holiday-jp/holiday_jp-js) | v1.x | v2.x |
| [PHP](https://github.com/holiday-jp/holiday_jp-php) | v1.x | v2.x |
| [Java](https://github.com/holiday-jp/holiday_jp-java) | - | v2.x |
| [Swift](https://github.com/holiday-jp/holiday_jp-swift) | v0.1.x | v0.2.x |
| [Go](https://github.com/holiday-jp/holiday_jp-go) | - | master |
| [Elixir](https://github.com/holiday-jp/holiday_jp-elixir) | v0.2.2 | >= v0.2.3 |
| [C#.net](https://github.com/holiday-jp/holiday_jp-csharp) | - | v1.x |
| [Python](https://github.com/holiday-jp/holiday_jp-python) | - | latest |
## "Datasets" idea
[Project Woothee](https://woothee.github.io/)
## Test by syukujitsu.csv
syukujitsu.csv
出典:内閣府ホームページ ( https://www8.cao.go.jp/chosei/shukujitsu/gaiyou.html )
## Test by Google Calendar API
https://calendar.google.com/calendar/embed?src=ja.japanese%[email protected]
| HolidayJp | https://github.com/mrkn/HolidayJp.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | code | 602 | using TruncatedStreams
using Documenter
DocMeta.setdocmeta!(TruncatedStreams, :DocTestSetup, :(using TruncatedStreams); recursive=true)
makedocs(;
modules=[TruncatedStreams],
authors="Phil Killewald <[email protected]> and contributors",
sitename="TruncatedStreams.jl",
format=Documenter.HTML(;
canonical="https://reallyasi9.github.io/TruncatedStreams.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/reallyasi9/TruncatedStreams.jl",
devbranch="main",
)
| TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | code | 216 | module TruncatedStreams
export TruncatedIO
export FixedLengthIO
export SentinelIO
@static if VERSION < v"1.7"
include("compat.jl")
end
include("io.jl")
include("fixedlengthio.jl")
include("sentinelio.jl")
end
| TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | code | 373 | # circshift!, taken straight from Julia source, modified to only use the signature we need
function circshift!(a::Vector{UInt8}, shift::Integer)
n = length(a)
n == 0 && return a
shift = mod(shift, n)
shift == 0 && return a
l = lastindex(a)
reverse!(a, firstindex(a), l-shift)
reverse!(a, l-shift+1, lastindex(a))
reverse!(a)
return a
end | TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | code | 2828 | """
FixedLengthIO(io, length) <: TruncatedIO
A truncated source that reads `io` up to `length` bytes.
```jldoctest fixedlengthio_1
julia> io = IOBuffer(collect(0x00:0xff));
julia> fio = FixedLengthIO(io, 10);
julia> read(fio)
10-element Vector{UInt8}:
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
julia> eof(fio)
true
```
As soon as a read from a `FixedLengthIO` object would read past `length` bytes of the
underlying IO stream, EOF is signalled, potentially leading to an `EOFError` being thrown.
```jldoctest fixedlengthio_1
julia> read(fio, Int)
ERROR: EOFError: read end of file
[...]
```
Seeking does not affect the length at which the stream is truncated, but may affect how many
bytes are available to read.
```jldoctest fixedlengthio_1
julia> seek(fio, 8); read(fio)
2-element Vector{UInt8}:
0x08
0x09
```
Writing to a `FixedLengthIO` object does not affect the length at which the stream is
truncated, but may affect how many bytes are available to read.
```jldoctest fixedlengthio_2
julia> io = IOBuffer(collect(0x00:0x05); read=true, write=true); fio = FixedLengthIO(io, 10);
julia> read(fio)
6-element Vector{UInt8}:
0x00
0x01
0x02
0x03
0x04
0x05
julia> write(fio, collect(0x06:0xff));
julia> seekstart(fio); # writing advances the IOBuffer's read pointer
julia> read(fio)
10-element Vector{UInt8}:
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
```
"""
mutable struct FixedLengthIO{S<:IO} <: TruncatedIO
wrapped::S
length::Int
remaining::Int
FixedLengthIO(io::S, length::Integer) where {S} = new{S}(io, length, length)
end
unwrap(s::FixedLengthIO) = s.wrapped
Base.bytesavailable(s::FixedLengthIO) = min(s.remaining, bytesavailable(unwrap(s)))
Base.eof(s::FixedLengthIO) = eof(unwrap(s)) || s.remaining <= 0
function Base.unsafe_read(s::FixedLengthIO, p::Ptr{UInt8}, n::UInt)
# note that the convention from IOBuffer is to read as much as possible first,
# then throw EOF if the requested read was beyond the number of bytes available.
available = bytesavailable(s)
to_read = min(available, n)
unsafe_read(unwrap(s), p, to_read)
s.remaining -= to_read
if to_read < n
throw(EOFError())
end
return nothing
end
function Base.seek(s::FixedLengthIO, n::Integer)
pos = clamp(n, 0, s.length)
s.remaining = s.length - pos
return seek(unwrap(s), n)
end
Base.seekend(s::FixedLengthIO) = seek(s, s.length)
function Base.skip(s::FixedLengthIO, n::Integer)
# negative numbers will add bytes back to bytesremaining
bytes = clamp(Int(n), s.remaining - s.length, s.remaining)
return seek(s, position(s) + bytes)
end
function Base.reset(s::FixedLengthIO)
pos = reset(unwrap(s))
seek(s, pos) # seeks the underlying stream as well, but that should be a noop
return pos
end | TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | code | 2342 | """
TruncatedIO <: IO
Wraps a streaming IO object that reads only as much as should be read and not a byte more.
Objects inheriting from this abstract type pass along all IO methods to the wrapped stream
except for `bytesavailable(io)` and `eof(io)`. Inherited types _must_ implement:
- `TruncatedStreams.unwrap(::TruncatedIO)::IO`: return the wrapped IO stream.
- `Base.eof(::TruncatedIO)::Bool`: report whether the stream cannot produce any more bytes.
In order to implement truncation, some number of these methods will likely need to be
implemented:
- `Base.unsafe_read(::TruncatedIO, p::Ptr{UInt8}, n::UInt)::Nothing`: copy `n` bytes from the stream into memory pointed to by `p`.
- `Base.read(::TruncatedIO, T::Type)::T`: read and return an object of type `T` from the stream.
- `Base.bytesavailable(::TruncatedIO)::Int`: report the number of bytes available to read from the stream until EOF or a buffer refill.
- `Base.seek(::TruncatedIO, p::Integer)` and `Base.seekend(::TruncatedIO)`: seek stream to position `p` or end of stream.
- `Base.reset(::TruncatedIO)`: reset a marked stream to the saved position.
- `Base.reseteof(::TruncatedIO)::Nothing`: reset EOF status.
Note that writing to the stream does not affect truncation.
"""
abstract type TruncatedIO <: IO end
"""
unwrap(s<:TruncatedIO) -> IO
Return the wrapped source.
"""
function unwrap end
# unary functions
for func in (
:lock,
:unlock,
:isopen,
:close,
:flush,
:position,
:mark,
:unmark,
:reset,
:ismarked,
:isreadable,
:iswritable,
:seekend,
)
@eval Base.$func(s::TruncatedIO) = Base.$func(unwrap(s))
end
# newer functions for half-duplex close
@static if VERSION >= v"1.8"
for func in (:closewrite,)
@eval Base.$func(s::TruncatedIO) = Base.$func(unwrap(s))
end
end
# n-ary functions
Base.seek(s::TruncatedIO, n::Integer) = seek(unwrap(s), n)
Base.skip(s::TruncatedIO, n::Integer) = skip(unwrap(s), n)
Base.unsafe_read(s::TruncatedIO, p::Ptr{UInt8}, n::UInt) = unsafe_read(unwrap(s), p, n)
Base.unsafe_write(s::TruncatedIO, p::Ptr{UInt8}, n::UInt) = unsafe_write(unwrap(s), p, n)
# required to override byte-level reading of objects by delegating to unsafe_read
function Base.read(s::TruncatedIO, ::Type{UInt8})
r = Ref{UInt8}()
unsafe_read(s, r, 1)
return r[]
end
| TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | code | 8176 | """
SentinelIO(io, sentinel) <: TruncatedIO
A truncated source that reads `io` until `sentinel` is found.
```jldoctest sentinelio_1
julia> io = IOBuffer(collect(0x00:0xff));
julia> sio = SentinelIO(io, [0x0a, 0x0b]);
julia> read(sio)
10-element Vector{UInt8}:
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
julia> eof(sio)
true
```
As soon as a read from a `SentinelIO` object would read the start of a byte sequence
matching `sentinel` from the underlying IO stream, EOF is signalled, potentially leading to
an `EOFError` being thrown.
```jldoctest sentinelio_1
julia> read(sio, Int)
ERROR: EOFError: read end of file
[...]
```
Seeking does not affect reading of the sentinel, but may affect how many bytes are available
to read.
```jldoctest sentinelio_1
julia> seek(sio, 8); read(sio)
2-element Vector{UInt8}:
0x08
0x09
```
Writing to a `SentinelIO` object does not affect the length at which the stream is
truncated, but may affect how many bytes are available to read.
```jldoctest sentinelio_2
julia> io = IOBuffer(collect(0x00:0x07); read=true, write=true); sio = SentinelIO(io, [0x06, 0x07]);
julia> read(sio)
6-element Vector{UInt8}:
0x00
0x01
0x02
0x03
0x04
0x05
julia> write(sio, collect(0x01:0xff));
julia> seekstart(sio); # writing advances the IOBuffer's read pointer
julia> read(sio) # still the same output because the sentinel is still there
6-element Vector{UInt8}:
0x00
0x01
0x02
0x03
0x04
0x05
```
Detection of eof can be reset with the `Base.reseteof()` method. Use this if the sentinel
that was read is determined upon further inspection to be bogus.
```jldoctest sentinelio_2
julia> Base.reseteof(sio) # that last sentinel was fake, so reset EOF and read again
julia> read(sio) # returns the first sentinel found and continues to read until the next one is found
7-element Vector{UInt8}:
0x06
0x07
0x01
0x02
0x03
0x04
0x05
```
!!! note
If the wrapped stream does not contain a sentinel, reading to the end of the stream will
throw `EOFError`.
```jldoctest sentinelio_3
julia> io = IOBuffer(collect(0x00:0x07)); sio = SentinelIO(io, [0xff, 0xfe]);
julia> read(sio)
ERROR: EOFError: read end of file
[...]
```
"""
mutable struct SentinelIO{S<:IO} <: TruncatedIO
wrapped::S
sentinel::Vector{UInt8}
buffer::Vector{UInt8}
failure_function::Vector{Int}
skip_next_eof::Bool
buffer_length_at_mark::Int
function SentinelIO(io::S, sentinel::AbstractVector{UInt8}) where {S<:IO}
sen = Vector{UInt8}(sentinel) # so I have a real Vector
ns = length(sen)
# generate the failure function for the Knuth–Morris–Pratt algorithm
ff = Vector{Int}(undef, ns)
ff[1] = 0
pos = 2
cnd = 1
while pos <= ns
if sentinel[pos] == sentinel[cnd]
ff[pos] = ff[cnd]
else
ff[pos] = cnd
while cnd > 0 && ff[pos] != ff[cnd]
cnd = ff[cnd]
end
end
pos += 1
cnd += 1
end
# lazily fill the buffer only when needed
buffer = UInt8[]
return new{S}(io, sen, buffer, ff, false, 0)
end
end
SentinelIO(io::IO, sentinel::AbstractString) = SentinelIO(io, codeunits(sentinel))
unwrap(s::SentinelIO) = s.wrapped
# count the number of bytes before a prefix match on the next sentinel
function count_safe_bytes(s::SentinelIO, stop_early::Bool=false)
nb = length(s.buffer)
if eof(unwrap(s))
# make sure the last bytes in the buffer can be read
if s.buffer != s.sentinel
return nb
else
return 0
end
end
# an empty buffer needs to be filled before searching for the sentinel
if nb < length(s.sentinel)
nb = readbytes!(unwrap(s), s.buffer, length(s.sentinel))
end
# search the buffer for the longest prefix match of the sentinel
jb = 1 # buffer index
ks = 1 # sentinel index
while jb <= nb
if s.sentinel[ks] == s.buffer[jb]
# byte matches sentinel, move to next
jb += 1
ks += 1
else
if stop_early
return jb
end
# byte does not match, determine where in the sentinel to restart the search
ks = s.failure_function[ks]
if ks == 0
# next byte not in sentinel, reset to beginning
jb += 1
ks = 1
end
end
end
# at this point, ks-1 bytes have matched at the end of the buffer
remaining = nb - ks + 1
if remaining == 0 && s.skip_next_eof
return 1 # allow a single byte to be read
else
return remaining
end
end
Base.bytesavailable(s::SentinelIO) = count_safe_bytes(s)
Base.eof(s::SentinelIO) = count_safe_bytes(s, true) == 0
# fill the first n bytes of the buffer from the wrapped stream, overwriting what is there
function fill_buffer(s::SentinelIO, n::Integer=length(s.sentinel))
to_read = min(n, length(s.sentinel))
nb = readbytes!(unwrap(s), s.buffer, to_read)
return nb
end
function Base.unsafe_read(s::SentinelIO, p::Ptr{UInt8}, n::UInt)
# read available bytes, checking for sentinel each time
to_read = n
ptr = 0
available = bytesavailable(s)
while to_read > 0 && available > 0
this_read = min(to_read, available)
# buffer: [ safe_1, safe_2, ..., safe_(available), unsafe_1, unsafe_2, ..., unsafe_(end)]
buf = s.buffer
GC.@preserve buf unsafe_copyto!(p + ptr, pointer(buf), this_read)
ptr += this_read
n_read = fill_buffer(s, this_read)
# buffer: [ new_1, new_2, ..., new_(this_read), safe_(this_read+1), ..., safe_(available), unsafe_1, unsafe_2, ..., unsafe_(end)]
circshift!(buf, -this_read)
# buffer: [ safe_(this_read + 1), safe_(this_read + 2), ..., safe_(available), unsafe_1, unsafe_2, ..., unsafe_(end), new_1, new_2, ..., new_(this_read)]
# a successful read of anything resets the eof skip
s.skip_next_eof = false
if n_read < this_read
# this happens because we fell off the face of the planet, so clear the buffer
copyto!(s.buffer, s.sentinel)
throw(EOFError())
end
to_read -= this_read
available = bytesavailable(s)
end
if to_read > 0
# this happens because we couldn't read everything we wanted to read, so clear the buffer
copyto!(s.buffer, s.sentinel)
throw(EOFError())
end
return nothing
end
Base.position(s::SentinelIO) = position(unwrap(s)) - length(s.buffer) # lie about where we are in the stream
function Base.seek(s::SentinelIO, n::Integer)
# seeking backwards is only possible if the wrapped stream allows it.
# seeking forwards is easier done as reading and dumping data.
pos = max(n, 0)
p = position(s)
bytes = pos - p
if bytes <= 0
seek(unwrap(s), pos)
# fill the buffer again, which should be guaranteed to work, but check just in case
nb = fill_buffer(s)
if nb != length(s.sentinel)
throw(EOFError())
end
else
# drop remainder on the floor
read(s, bytes)
end
return s
end
Base.seekend(s::SentinelIO) = read(s) # read until the end
Base.skip(s::SentinelIO, n::Integer) = seek(s, position(s) + n)
function Base.mark(s::SentinelIO)
pos = mark(unwrap(s))
# lie about where we are in the stream
# noting that the length of the buffer might change
nb = length(s.buffer)
s.buffer_length_at_mark = nb
return pos - nb
end
function Base.reset(s::SentinelIO)
pos = reset(unwrap(s))
# refill the buffer manually, which should be guaranteed to work, but check just in case
seek(unwrap(s), pos - s.buffer_length_at_mark)
nb = fill_buffer(s)
if nb != length(s.sentinel)
throw(EOFError())
end
# lie about where the current position is
return pos - s.buffer_length_at_mark
end
function Base.reseteof(s::SentinelIO)
Base.reseteof(unwrap(s))
s.skip_next_eof = true
return nothing
end | TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | code | 6182 | using TestItemRunner
@testitem "Ambiguities" begin
@test isempty(detect_ambiguities(Base, Core, TruncatedStreams))
end
@testitem "FixedLengthIO" begin
using Random
rng = MersenneTwister(42)
content_length = 1024
content = rand(rng, UInt8, content_length)
fixed_length = 16
io = IOBuffer(content; read=true, write=true)
fio = FixedLengthIO(io, fixed_length)
@test bytesavailable(fio) == fixed_length
# read < fixed_length bytes
n = 8
a = read(fio, n)
@test a == first(content, n)
@test bytesavailable(fio) == fixed_length - n
# read everything else
b = read(fio)
@test b == content[n+1:fixed_length]
@test bytesavailable(fio) == 0
@test eof(fio)
# try reading again
c = read(fio)
@test isempty(c)
@test eof(fio)
# try really hard to read again
d = read(fio, 1)
@test isempty(d)
@test eof(fio)
# try really, really hard to read again
@test_throws EOFError read(fio, UInt8)
@test eof(fio)
# seek and try again
seek(fio, n)
@test bytesavailable(fio) == fixed_length - n
e = read(fio)
@test e == content[n+1:fixed_length]
@test eof(fio)
# seek more and try again
seekstart(fio)
@test bytesavailable(fio) == fixed_length
f = read(fio)
@test f == first(content, fixed_length)
@test eof(fio)
# skip and try again
skip(fio, -n)
@test bytesavailable(fio) == n
g = read(fio)
@test g == content[n+1:fixed_length]
@test eof(fio)
# pass through mark, reset, and unmark
seek(fio, n)
@test !ismarked(fio)
@test mark(fio) == n
@test ismarked(fio)
seekstart(fio)
@test read(fio) == first(content, fixed_length)
@test reset(fio) == n
@test read(fio) == content[n+1:fixed_length]
@test !ismarked(fio)
@test_throws ArgumentError reset(fio)
@test unmark(fio) == false
mark(fio)
@test ismarked(fio)
@test unmark(fio) == true
@test !ismarked(fio)
# pass through position
seek(fio, n)
@test position(fio) == n
seekstart(fio)
@test position(fio) == 0
seekend(fio)
@test position(fio) == fixed_length
end
@testitem "SentinelIO" begin
using Random
rng = MersenneTwister(42)
content_length = 1024
content = rand(rng, UInt8, content_length)
sentinel_length = 16
sentinel = rand(rng, UInt8, sentinel_length)
fixed_length = 256
content[fixed_length+1:fixed_length+sentinel_length] = sentinel
# add a second sentinel for reseteof test
content[fixed_length*2+sentinel_length+1:fixed_length*2+sentinel_length*2] = sentinel
io = IOBuffer(content)
sio = SentinelIO(io, sentinel)
@test bytesavailable(sio) <= fixed_length # likely going to be length(sentinel), but always <= fixed_length
# read < fixed_length bytes
n = 8
a = read(sio, n)
@test a == first(content, n)
@test bytesavailable(sio) <= fixed_length - n
# read everything else
b = read(sio)
@test b == content[n+1:fixed_length]
@test bytesavailable(sio) == 0
@test eof(sio)
# try reading again
c = read(sio)
@test isempty(c)
@test eof(sio)
# try really hard to read again
d = read(sio, 1)
@test isempty(d)
@test eof(sio)
# try really, really hard to read again
@test_throws EOFError read(sio, UInt8)
@test eof(sio)
# seek and try again
seek(sio, n)
@test bytesavailable(sio) <= fixed_length - n
e = read(sio)
@test e == content[n+1:fixed_length]
@test eof(sio)
# seek more and try again
seekstart(sio)
@test bytesavailable(sio) <= fixed_length
f = read(sio)
@test f == first(content, fixed_length)
@test eof(sio)
# skip and try again
skip(sio, -n)
@test bytesavailable(sio) <= n
g = read(sio)
@test g == content[fixed_length-n+1:fixed_length]
@test eof(sio)
# pass through mark, reset, and unmark
seek(sio, n)
@test !ismarked(sio)
@test mark(sio) == n
@test ismarked(sio)
seekstart(sio)
@test read(sio) == first(content, fixed_length)
@test reset(sio) == n
@test read(sio) == content[n+1:fixed_length]
@test !ismarked(sio)
@test_throws ArgumentError reset(sio)
@test unmark(sio) == false
mark(sio)
@test ismarked(sio)
@test unmark(sio) == true
@test !ismarked(sio)
# pass through position
seek(sio, n)
@test position(sio) == n
seekstart(sio)
@test position(sio) == 0
seekend(sio)
@test position(sio) == fixed_length
# check reseteof and find next sentinel
@test eof(sio)
Base.reseteof(sio)
@test !eof(sio)
@test read(sio) == content[fixed_length+1:2*fixed_length + sentinel_length]
@test eof(sio)
# clear the second sentinel and try to read to end, which should cause an error because the last sentinel was never found
Base.reseteof(sio)
@test !eof(sio)
@test_throws EOFError read(sio)
@test eof(sio)
# clearing the second sentinel should keep us at eof
Base.reseteof(sio)
@test eof(sio)
@test isempty(read(sio))
end
@testitem "SentinelIO lazy buffer" begin
using Random
rng = MersenneTwister(42)
content_length = 1024
content = rand(rng, UInt8, content_length)
sentinel_length = 16
sentinel = rand(rng, UInt8, sentinel_length)
fixed_length = 256
content[fixed_length+1:fixed_length+sentinel_length] = sentinel
io = IOBuffer(content)
sio = SentinelIO(io, sentinel)
# immediately check position, which should be 0, even though the buffer hasn't been filled yet
@test position(sio) == 0
# mark this position, read to fill the buffer, then reset to see if the position is correct
@test mark(sio) == 0
a = read(sio)
@test a == content[begin:fixed_length]
@test position(sio) == fixed_length
@test reset(sio) == 0
@test position(sio) == 0
end
@testitem "SentinelIO strings" begin
content = "Hello, Julia!"
sentinel = SubString(content, 6:7)
io = IOBuffer(content)
sio = SentinelIO(io, sentinel)
@test read(sio, String) == "Hello"
@test eof(sio)
end
@run_package_tests verbose = true | TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | docs | 4306 | # TruncatedStreams
[](https://reallyasi9.github.io/TruncatedStreams.jl/stable/)
[](https://reallyasi9.github.io/TruncatedStreams.jl/dev/)
[](https://github.com/reallyasi9/TruncatedStreams.jl/actions/workflows/CI.yml?query=branch%3Amain)
> "...where ignorance is bliss, 'tis folly to be wise"
>
> _-Thomas Gray, "Ode on a Distant Prospect of Eton College"_
## Synopsis
```julia
using TruncatedStreams
io = IOBuffer(collect(0x00:0xff))
fixed_io = FixedLengthIO(io, 10) # only read the first 10 bytes
@assert length(read(fixed_io)) == 10
@assert eof(fixed_io) == true
@assert eof(io) == false
sentinel_io = SentinelIO(io, [0x10, 0x11]) # only read until the sentinel is read
@assert length(read(sentinel_io)) == 5
@assert eof(sentinel_io) == true
@assert eof(io) == false
close(io)
```
## Lie to me
Julia basically offers two methods for reading some but not all the bytes from an IO object:
- `read(::IO, ::Integer)`, which reads up to some number of bytes from an IO object, allocating and appending to a `Vector{UInt8}` to hold everything it reads; or
- `readuntil(::IO, ::Vector{UInt8})`, which reads bytes from an IO object until a sentinel vector is found, again allocating and appending to a `Vector{UInt8}` to hold everything it reads.
But what if you find yourself in the following situation:
1. You want to read values of many different types from an IO object.
2. You know you can safely read some number of bytes from the IO object (either a fixed number or until some sentinel is reached).
3. You do not want to (or cannot) read everything from the IO object into memory at once.
This may seem like a contrived situation, but consider an IO object representing a concatenated series of very large files, like what you might see in a TAR or ZIP archive:
1. You want to treat each file in the archive like a file on disk, reading an arbitrary number of values of arbitrary types from the file.
2. The file either starts with a header that tells you how many bytes long the file is or ends with a sentinel so you know when to stop reading.
3. You do not want to (or cannot) read the entire file into memory before parsing.
Enter `TruncatedStreams`. This package exports types that inherit from `Base.IO` and wrap other `Base.IO` objects with one purpose in mind: to lie about EOF. This means you can wrap your IO object and blindly read from it until it signals EOF, just like you would any other IO object. And, if the wrapped IO object supports it, you can write to the stream, seek to a position, skip bytes, mark and reset positions, or do whatever basic IO operation you can think of and not have to worry about whether you remembered to add or subtract the right number of bytes from your running tally, or whether your buffered read accidentally captured half of the sentinel at the end.
Abstraction is ignorance, and ignorance is bliss.
## Installation
```julia
using Pkg; Pkg.install("TruncatedStreams")
```
## Use
### `FixedLengthIO`
`FixedLengthIO` wraps an `IO` object and will read from it until a certain number of bytes is read, after which `FixedLengthIO` will act as if it has reach end of file:
```julia
julia> using TruncatedStreams
julia> io = IOBuffer(collect(0x00:0xff));
julia> fio = FixedLengthIO(io, 10); # Only read the next 10 bytes
julia> read(fio, UInt64) # First 8 bytes
0x0706050403020100
julia> read(fio) # Everything else
2-element Vector{UInt8}:
0x08
0x09
julia> eof(fio) # It's a lie, but it's a useful one!
true
```
### `SentinelIO`
`SentinelIO` wraps an `IO` object and will read from in until a sentinel is found, after which `SentinelIO` will act as if it has reach end of file:
```julia
julia> using TruncatedStreams
julia> io = IOBuffer(collect(0x00:0xff));
julia> sio = SentinelIO(io, [0x10, 0x11, 0x12]); # Only read until [0x10, 0x11, 0x12] is found
julia> read(sio, UInt64) # First 8 bytes
0x0706050403020100
julia> read(sio) # Everything else
8-element Vector{UInt8}:
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x0e
0x0f
julia> eof(sio) # It's a lie, but it's a useful one!
true
```
| TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 1.0.0 | 9705b15a0706290337e49d6edb3f1d9e44fa21dd | docs | 218 | ```@meta
CurrentModule = TruncatedStreams
```
# TruncatedStreams
Documentation for [TruncatedStreams](https://github.com/reallyasi9/TruncatedStreams.jl).
```@index
```
```@autodocs
Modules = [TruncatedStreams]
```
| TruncatedStreams | https://github.com/reallyasi9/TruncatedStreams.jl.git |
|
[
"MIT"
] | 0.1.13 | 05ba0d07cd4fd8b7a39541e31a7b0254704ea581 | code | 711 | using CloseOpenIntervals
using Documenter
DocMeta.setdocmeta!(CloseOpenIntervals, :DocTestSetup, :(using CloseOpenIntervals); recursive=true)
makedocs(;
modules=[CloseOpenIntervals],
authors="chriselrod <[email protected]> and contributors",
repo="https://github.com/JuliaSIMD/CloseOpenIntervals.jl/blob/{commit}{path}#{line}",
sitename="CloseOpenIntervals.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://JuliaSIMD.github.io/CloseOpenIntervals.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/JuliaSIMD/CloseOpenIntervals.jl",
devbranch = "main",
)
| CloseOpenIntervals | https://github.com/JuliaSIMD/CloseOpenIntervals.jl.git |
|
[
"MIT"
] | 0.1.13 | 05ba0d07cd4fd8b7a39541e31a7b0254704ea581 | code | 4568 | module CloseOpenIntervals
if isdefined(Base, :Experimental) &&
isdefined(Base.Experimental, Symbol("@max_methods"))
@eval Base.Experimental.@max_methods 1
end
using Static: StaticInt, Zero, One
export CloseOpen, SafeCloseOpen
const IntegerType = Union{Integer,StaticInt}
abstract type AbstractCloseOpen{L <: IntegerType, U <: IntegerType} <: AbstractUnitRange{Int} end
for T ∈ (:CloseOpen,:SafeCloseOpen)
@eval begin
struct $T{L <: IntegerType, U <: IntegerType} <: AbstractCloseOpen{L,U}
start::L
upper::U
@inline $T{L,U}(l::L,u::U) where {L <: IntegerType, U <: IntegerType} = new{L,U}(l,u)
end
@inline $T(s::S, u::U) where {S,U} = $T{S,U}(s, u)
@inline $T(len::T) where {T<:IntegerType} = $T{Zero,T}(Zero(), len)
end
end
"""
CloseOpen([start=0], U) <: AbstractUnitRange{Int}
SafeCloseOpen([start=0], U) <: AbstractUnitRange{Int}
Define close-open unit ranges, i.e. `CloseOpen(0,10)` iterates from from `0:9`.
Close-open ranges can be more convenient in some circumstances, e.g. when
partitioning a larger array.
```julia
function foo(x)
nt = Threads.nthreads()
d, r = divrem(length(x), nt)
i = firstindex(x)
Threads.@sync for j in 1:nt
stop = i + d + (r >= j)
Threads.@spawn bar!(\$(@view(x[CloseOpen(i, stop)])))
i = stop
end
end
```
This saves a few `-1`s on the ends of the ranges if using a normal unit range.
`SafeCloseOpen` will not iterate if `U <= start`, while `CloseOpen` doesn't check
for this, and thus the behavior is undefined in that case.
"""
AbstractCloseOpen
"""
CloseOpen([start=0], U) <: AbstractUnitRange
Iterates over the range start:U-1. Guaranteed to iterate at least once, skipping initial empty check.
See `?AbstractCloseOpen` for more information.
"""
CloseOpen
"""
SafeCloseOpen([start=0], U) <: AbstractUnitRange
Iterates over the range start:U-1. Will not iterate if it `isempty`, like a typical range, making it
generally the preferred choice over `CloseOpen`.
See `?AbstractCloseOpen` for more information.
"""
SafeCloseOpen
@inline Base.first(r::AbstractCloseOpen) = getfield(r,:start)
@inline Base.first(r::AbstractCloseOpen{StaticInt{F}}) where {F} = F
@inline Base.step(::AbstractCloseOpen) = 1
@inline Base.last(r::AbstractCloseOpen{<:IntegerType,I}) where {I} = getfield(r,:upper) - 1
@inline Base.last(r::AbstractCloseOpen{<:IntegerType,StaticInt{L}}) where {L} = L - 1
@inline Base.length(r::AbstractCloseOpen) = Int(getfield(r,:upper) - getfield(r,:start))
@inline Base.length(r::AbstractCloseOpen{Zero}) = Int(getfield(r,:upper))
@inline Base.iterate(r::CloseOpen) = (i = Int(first(r)); (i, i))
@inline Base.iterate(r::SafeCloseOpen) = (i = Int(first(r)); i ≥ getfield(r, :upper) ? nothing : (i, i))
@inline Base.iterate(r::AbstractCloseOpen, i::IntegerType) = (i += one(i)) ≥ getfield(r, :upper) ? nothing : (i, i)
import StaticArrayInterface
StaticArrayInterface.known_first(::Type{<:AbstractCloseOpen{StaticInt{F}}}) where {F} = F
StaticArrayInterface.known_step(::Type{<:AbstractCloseOpen}) = 1
StaticArrayInterface.known_last(::Type{<:AbstractCloseOpen{<:Any,StaticInt{L}}}) where {L} = L - 1
StaticArrayInterface.known_length(::Type{<:AbstractCloseOpen{StaticInt{F},StaticInt{L}}}) where {F,L} = L - F
Base.IteratorSize(::Type{<:AbstractCloseOpen}) = Base.HasShape{1}()
Base.IteratorEltype(::Type{<:AbstractCloseOpen}) = Base.HasEltype()
@inline Base.size(r::AbstractCloseOpen) = (length(r),)
@inline Base.eltype(r::AbstractCloseOpen) = Int
@inline Base.eachindex(r::AbstractCloseOpen) = StaticInt(1):StaticArrayInterface.static_length(r)
@static if isdefined(Base.IteratorsMD, :OrdinalRangeInt)
@inline function Base.IteratorsMD.__inc(state::Tuple{Int,Int,Vararg{Int}}, indices::Tuple{AbstractCloseOpen,Vararg{Base.IteratorsMD.OrdinalRangeInt}})
rng = indices[1]
I1 = state[1] + step(rng)
if Base.IteratorsMD.__is_valid_range(I1, rng) && state[1] != last(rng)
return true, (I1, Base.tail(state)...)
end
valid, I = Base.IteratorsMD.__inc(Base.tail(state), Base.tail(indices))
return valid, (convert(typeof(I1), first(rng)), I...)
end
else
@inline function Base.IteratorsMD.__inc(state::Tuple{Int,Int,Vararg{Int}}, indices::Tuple{AbstractCloseOpen,Vararg})
rng = indices[1]
I1 = state[1] + step(rng)
if Base.IteratorsMD.__is_valid_range(I1, rng) && state[1] != last(rng)
return true, (I1, Base.tail(state)...)
end
valid, I = Base.IteratorsMD.__inc(Base.tail(state), Base.tail(indices))
return valid, (convert(typeof(I1), first(rng)), I...)
end
end
end
| CloseOpenIntervals | https://github.com/JuliaSIMD/CloseOpenIntervals.jl.git |
|
[
"MIT"
] | 0.1.13 | 05ba0d07cd4fd8b7a39541e31a7b0254704ea581 | code | 1247 | using CloseOpenIntervals
using Test
function mysum2(X = CartesianIndices((SafeCloseOpen(10), SafeCloseOpen(10))))
s = 0
for I in X
s += sum(Tuple(I))
end
s
end
mysum2_allocated() = @allocated(mysum2())
const ArrayInterface = CloseOpenIntervals.StaticArrayInterface
@testset "CloseOpenIntervals.jl" begin
function mysum(x, N)
s = zero(eltype(x))
@inbounds @fastmath for i ∈ CloseOpen(N)
s += x[i+1]
end
s
end
function mysafesum(x, N)
s = zero(eltype(x))
@inbounds @fastmath for i ∈ SafeCloseOpen(N)
s += x[i+1]
end
s
end
x = rand(128)
for n ∈ 1:128
@test mysum(x, n) ≈ mysafesum(x, n) ≈ sum(view(x, 1:n))
@test length(CloseOpen(n)) == n
end
@test @inferred(mysum(x, 0)) == first(x)
@test @inferred(mysafesum(x, 0)) == 0.0
@test @inferred(mysum(x, CloseOpenIntervals.StaticInt(128))) ≈ sum(x)
@test @inferred(
ArrayInterface.static_length(CloseOpen(CloseOpenIntervals.StaticInt(128)))
) === CloseOpenIntervals.StaticInt(128)
@test @inferred(eltype(CloseOpen(7))) === Int
@test ArrayInterface.known_length(CloseOpen(CloseOpenIntervals.StaticInt(128))) == 128
@test @inferred(mysum2()) == sum(0:9) * 2 * length(0:9)
@test mysum2_allocated() == 0
end
| CloseOpenIntervals | https://github.com/JuliaSIMD/CloseOpenIntervals.jl.git |
|
[
"MIT"
] | 0.1.13 | 05ba0d07cd4fd8b7a39541e31a7b0254704ea581 | docs | 562 | # CloseOpenIntervals
[](https://JuliaSIMD.github.io/CloseOpenIntervals.jl/stable)
[](https://JuliaSIMD.github.io/CloseOpenIntervals.jl/dev)
[](https://github.com/JuliaSIMD/CloseOpenIntervals.jl/actions)
[](https://codecov.io/gh/JuliaSIMD/CloseOpenIntervals.jl)
| CloseOpenIntervals | https://github.com/JuliaSIMD/CloseOpenIntervals.jl.git |
|
[
"MIT"
] | 0.1.13 | 05ba0d07cd4fd8b7a39541e31a7b0254704ea581 | docs | 227 | ```@meta
CurrentModule = CloseOpenIntervals
```
# CloseOpenIntervals
Documentation for [CloseOpenIntervals](https://github.com/JuliaSIMD/CloseOpenIntervals.jl).
```@index
```
```@autodocs
Modules = [CloseOpenIntervals]
```
| CloseOpenIntervals | https://github.com/JuliaSIMD/CloseOpenIntervals.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 188 | module InvariantsCore
import Markdown
include("interface.jl")
include("format.jl")
include("invariant.jl")
include("wrapinvariant.jl")
include("compose.jl")
include("highlevel.jl")
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 2055 |
abstract type InvariantList <: AbstractInvariant end
title(invs::InvariantList) = invs.title
description(invs::InvariantList) = invs.description
# ## `AllInvariant`
struct AllInvariant{I <: AbstractInvariant} <: InvariantList
invariants::Vector{I}
title::String
description::Union{Nothing, String}
shortcircuit::Bool
end
function AllInvariant(invariants, title::String;
description = nothing,
shortcircuit = true,
kwargs...)
invariant(AllInvariant(invariants, title, description, shortcircuit); kwargs...)
end
function satisfies(invs::AllInvariant, input)
results = []
keepchecking = true
for inv in invs.invariants
if !keepchecking
push!(results, missing)
continue
else
res = catch_satisfies(inv, input)
push!(results, res)
if !isnothing(res) && invs.shortcircuit
keepchecking = false
end
end
end
return all(isnothing, results) ? nothing : results
end
# ## `AnyInvariant`
struct AnyInvariant{I <: AbstractInvariant} <: InvariantList
invariants::Vector{I}
title::String
description::Union{Nothing, String}
end
function AnyInvariant(invariants, title::String;
description = nothing,
shortcircuit = true,
kwargs...)
invariant(AnyInvariant(invariants, title, description); kwargs...)
end
function satisfies(invs::AnyInvariant, input)
results = []
for inv in invs.invariants
res = catch_satisfies(inv, input)
push!(results, res)
if isnothing(res)
return nothing
end
end
return results
end
function catch_satisfies(inv::AbstractInvariant, input)
try
return satisfies(inv, input)
catch e
errormsg = sprint(Base.showerror, e, context = :color => true)
return md("An uncaught error was thrown while checking this invariant:") * "\n\n" * errormsg
end
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 946 | # This file defines `format_markdown`, a helper to turn Markdown strings
# into richly formatted text output.
struct AsMarkdown{T}
s::T
end
AsMarkdown(am::AsMarkdown) = am
function Base.show(io::IO, md::AsMarkdown)
print(io, __getmdstr(io, md))
end
function __getmdstr(io::IO, md::AsMarkdown)
md = Markdown.parse(md.s)
buf = IOBuffer()
display(TextDisplay(IOContext(buf,
:color => get(io, :color, false),
:displaysize => get(io, :displaysize, (88, 500)))),
md)
res = strip(String(take!(buf)))
# two calls so it doesn't crash on 1.6
res = replace(res, " " => "")
res = replace(res, "\n\n\n" => "\n\n")
return res
end
function Base.string(md::AsMarkdown)
return __getmdstr(IOContext(IOBuffer(), :color => true, :displaysize => (88, 500)), md)
end
const format_markdown = AsMarkdown
default_format() = format_markdown
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 5560 | # This file defines [`invariant`](#), which allows creating and combining
# invariants and should cover most use cases.
#
# It also defines [`check`](#) for running an innput against an invariant.
#
# ## `invariant`
#
# The basic method simply returns an [`Invariant`](#):
"""
invariant(fn, title; kwargs...)
Create an invariant with name `title` that checks an input against
`fn` which returns either `nothing` when the invariant is satisfied,
or an error message when the invariant is violated.
invariant(inv; title=title(inv), kwargs...)
Wrap an invariant `inv`, replacing some of its attributes.
invariant(title, invariants, all; kwargs...)
invariant(title, invariants, any; kwargs...)
Combine multiple invariants `invs` logically. The third argument defines how they are
combined. If it is `all`, the resulting invariant requires all `invariants` to pass,
while a value of `any` results in an invariant where only one of the `invariants` has
to be satisfied.
## Keyword arguments
Every method additionally accepts the following keyword arguments:
- `description::String = ""`: A description of the invariant that gives explanation and
points to related resources.
- `inputfn = identity`: A function that is applied to an input before checking. Useful
when composing multiple invariants.
## Examples
Basic usage:
{cell}
```julia
using Invariants
inv = invariant("Is negative") do n
n < 0 ? nothing : "`n` is not negative!"
end
```
Successful check:
{cell}
```julia
check(inv, -1)
```
Failing check:
{cell}
```julia
check(inv, 1)
```
Or just get a Bool:
{cell}
```julia
check(Bool, inv, -1), check(Bool, inv, 1)
```
Throw an error when an invariant is not satisfied:
{cell}
```julia
check_throw(inv, 1)
```
"""
invariant(fn, title::String; kwargs...) = Invariant(; fn, title, kwargs...)
# `invariant` can be called on a vector of invariants, creating an invariant that
# logically composes them (either AND or OR):
function invariant(title, invariants::AbstractVector{<:AbstractInvariant}; kwargs...)
invariant(title, invariants, all; kwargs...)
end
function invariant(title, invariants::AbstractVector{<:AbstractInvariant},
::typeof(all); kwargs...)
AllInvariant(invariants, title; kwargs...)
end
function invariant(title, invariants::AbstractVector{<:AbstractInvariant},
::typeof(any); kwargs...)
AnyInvariant(invariants, title; kwargs...)
end
# `invariant` can also wrap an invariant, changing some of its attributes.
# For a general `AbstractInvariant`, this will return a [`WrapInvariant`](#):
function invariant(inv::AbstractInvariant; title = nothing, inputfn = identity,
description = nothing, format = nothing)
if isnothing(title) && inputfn === identity && isnothing(description) &&
isnothing(format)
return inv
end
return WrapInvariant(inv, title, description, inputfn, format)
end
# While for an [`Invariant`](#) this will simply return a new [`Invariant`](#)
# with changed fields:
function invariant(inv::Invariant; title = nothing, inputfn = identity,
description = nothing, format = nothing)
return Invariant(inv.fn,
isnothing(title) ? inv.title : title,
isnothing(description) ? inv.description : description,
inputfn === identity ? inv.inputfn : inputfn ∘ inv.inputfn,
isnothing(format) ? inv.format : format)
end
# ## `check`
"""
check(invariant, input)
Check an invariant against an input, and return a [`CheckResult`] that
gives detailed output in case of an invariant violation.
check(Bool, invariant, input)
Check an invariant against an input, returning `true` if satisfied, `false`
if violated.
"""
function check(invariant, input)
res = catch_satisfies(invariant, input)
return CheckResult(invariant, res)
end
check(::Type{Bool}, invariant, input) = isnothing(satisfies(invariant, input))
check(::Type{Exception}, invariant, input) = check_throw(invariant, input)
struct CheckResult{I, R}
invariant::I
result::R
end
Base.convert(::Type{Bool}, checkres::CheckResult) = isnothing(checkres.result)
function Base.show(io::IO, checkres::CheckResult{<:I, Nothing}) where {I}
print(io, "\e[32m✔ Invariant satisfied:\e[0m ")
print(io, md(title(checkres.invariant)))
end
function Base.show(io::IO, checkres::CheckResult)
print(io, "\e[1m\e[31m⨯ Invariant not satisfied:\e[0m\e[1m ")
print(io, md(title(checkres.invariant)))
println(io, "\e[22m\n")
errormessage(io, checkres.invariant, checkres.result)
end
md(s) = string(AsMarkdown(s))
# For cases where violating an invariant should lead to an error be thrown, use
# [`check_throw`](#):
"""
check_throw(invariant, input)
Check an invariant and provide a detailed error message if it
does not pass. If it passes, return `nothing`.
Use in tests in combination with `@test_nowarn`.
"""
function check_throw(invariant, input)
res = satisfies(invariant, input)
isnothing(res) && return
throw(InvariantException(invariant, res))
end
struct InvariantException{I <: AbstractInvariant, M}
invariant::I
msg::M
end
function Base.showerror(io::IO, e::InvariantException)
println(io, "Invariant violated!")
errormessage(io, e.invariant, e.msg)
end
# Allow calling the invariant so that `check` doesn't need to be imported.
(inv::AbstractInvariant)(args...) = check(inv, args...)
(inv::AbstractInvariant)(T::Type, args...) = check(T, inv, args...)
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 2286 | # This file defines the core interface for defining invariants.
"""
abstract type AbstractInvariant
An `Invariant` checks if an input satisfies some invariant.
For example, it may check whether a number is positive.
For most use cases, using [`invariant`](#) to create an invariant
will suffice and implementing your own subtype of `AbstractInvariant`
will rarely be necessary.
The interface of `Invariant`s is designed so that
- the invariant can be checked, given some input
- invariants can be composed to generate more complicated
invariants
- the creation of rich error messages is possible when an
invariant is not satisfied.
## Interface
An `Invariant` `I` must implement the following methods:
- [`title`](#)`(::I)::String`: Descriptive name for the invariant
- [`description`](#)`(::I)::String`: A longer description of the invariant,
giving explanation and pointing to related information.
- [`satisfies`](#)`(::I, input) -> (nothing | msg)`: Check whether an `input`
satisfies the invariant, returning either `nothing` on success
or an error message.
"""
abstract type AbstractInvariant end
"""
title(invariant) -> String
Short summary of an invariant. Is used as a title in reports and error
messages.
Part of the [`AbstractInvariant`](#) interface.
"""
function title end
"""
description(invariant) -> String
Return a more detailed description of an invariant.
Part of the [`AbstractInvariant`](#) interface.
"""
description(::AbstractInvariant) = nothing
"""
satisfies(invariant, input) -> nothing | errormessage
Check if `input` satisfies an `invariant`. If it does, return `nothing`.
Otherwise return an error message explaining why the invariant is violated.
"""
function satisfies end
# ## Defaults
function errormessage(inv::AbstractInvariant, msg)
buf = IOBuffer()
errormessage(IOContext(buf, :color => true, :displaysize => (88, 500)), inv, msg)
return String(take!(buf))
end
function errormessage(io::IO, inv::AbstractInvariant, msg)
println(io)
showdescription(io, inv)
println(io)
println(io, msg)
end
function showdescription(io, inv)
desc = description(inv)
isnothing(desc) || print(io, description(inv))
end
function showtitle(io, inv)
print(io, title(inv))
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 855 | # This file defines `Invariant`, a default invariant that should be used
# in most cases to construct invariants.
"""
struct Invariant(fn, title; kwargs...) <: AbstractInvariant
Default invariant type. Use [`invariant`](#) to construct invariants.
"""
Base.@kwdef struct Invariant <: AbstractInvariant
fn::Any
title::String
description::Union{Nothing, String} = nothing
inputfn = identity
format = default_format()
end
function Invariant(fn, title::String; description = nothing, inputfn = identity,
format = default_format())
Invariant(; fn, title, description, inputfn, format)
end
title(inv::Invariant) = inv.format(inv.title)
function description(inv::Invariant)
isnothing(inv.description) ? nothing : inv.format(inv.description)
end
satisfies(inv::Invariant, input) = inv.fn(inv.inputfn(input))
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 887 | # This file defines [`WrapInvariant`](#), which wraps around an invariant,
# changing part of its functionality
struct WrapInvariant <: AbstractInvariant
inv::Any
title::Any
description::Any
inputfn::Any
format::Any
end
function title(wrap::WrapInvariant)
t = isnothing(wrap.title) ? title(wrap.inv) : wrap.title
format = isnothing(wrap.format) ? identity : wrap.format
return format(t)
end
function description(wrap::WrapInvariant)
desc = isnothing(wrap.description) ? description(wrap.inv) : wrap.description
format = isnothing(wrap.format) ? identity : wrap.format
return format(desc)
end
satisfies(wrap::WrapInvariant, input) = satisfies(wrap.inv, wrap.inputfn(input))
function errormessage(io::IO, wrap::WrapInvariant, msg)
format = isnothing(wrap.format) ? identity : wrap.format
errormessage(io, wrap.inv, format(msg))
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 3311 | module InvariantsCoreTests
using InlineTest
using InvariantsCore
using InvariantsCore: Invariant, WrapInvariant, InvariantException, invariant, title,
description, satisfies, check, check_throw
# ## Helpers and setup
function exampleinvariant(symbol = :n)
return Invariant("`$symbol` is positive",
description = "The number `$symbol` should be larger than `0`.") do x
if !(x isa Number)
return "`$symbol` has type $(typeof(x)), but it should be a `Number` type."
else
x > 0 && return nothing
return "`$symbol` is not a positive number, got value `$x`. Please pass a number larger than 0."
end
end
end
function testinvariant(inv, input)
@test_nowarn title(inv)
@test_nowarn description(inv)
@test_nowarn satisfies(inv, input)
@test_nowarn inv(input)
end
# ## Tests
@testset "Invariant" begin
inv = exampleinvariant()
testinvariant(inv, 1)
@test isnothing(satisfies(inv, 1))
@test occursin("should be", satisfies(inv, ""))
@test occursin("larger", satisfies(inv, -1))
@test occursin("0", string(description(inv)))
end
@testset "WrapInvariant" begin
@testset "Pass-through" begin
inv = invariant(exampleinvariant())
@test inv isa Invariant
end
@testset "Title" begin
inv = invariant(exampleinvariant(), title = "new")
@test inv isa Invariant
@test string(title(inv)) == "new"
end
end
@testset "invariant" begin
@testset "Basic" begin
inv = invariant(input -> input ? nothing : "Not true", "title")
testinvariant(inv, true)
@test string(title(inv)) == "title"
@test isnothing(description(inv))
@test check(Bool, inv, true)
@test_nowarn check_throw(inv, true)
@test_throws InvariantException check_throw(inv, false)
end
@testset "Wrap" begin
_inv = invariant(input -> input ? nothing : "Not true", "title")
inv = invariant(_inv, title = "newtitle", inputfn = input -> !input)
testinvariant(inv, true)
@test string(title(inv)) == "newtitle"
@test isnothing(description(inv))
@test check(Bool, inv, false)
end
@testset "Compose" begin
@testset "all" begin
invs = invariant("all",
[invariant(input -> input ? nothing : "Not true", "child",
inputfn = inputs -> inputs[i])
for i in 1:3])
@test check(Bool, invs, [true, true, true])
@test !check(Bool, invs, [true, true, false])
@test_throws InvariantException check_throw(invs, [true, false, false])
end
@testset "any" begin
invs = invariant("all",
[invariant(input -> input ? nothing : "Not true", "child",
inputfn = inputs -> inputs[i])
for i in 1:3], any)
@test check(Bool, invs, [true, true, true])
@test check(Bool, invs, [true, true, false])
@test !check(Bool, invs, [false, false, false])
@test_throws InvariantException check_throw(invs, [false, false, false])
end
end
end
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 113 | using InvariantsCore
using InlineTest, ReTest
include("InvariantsCoreTests.jl")
InvariantsCoreTests.runtests()
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 644 | """
This script builds the Pollen.jl documentation so that it can be loaded
by the frontend. It accepts one argument: the path where the generated
files should be stored.
> julia docs/make.jl DIR
Use `./serve.jl` for interactive development.
"""
# Create target folder
isempty(ARGS) && error("Please pass a file path to make.jl:\n\t> julia docs/make.jl DIR ")
DIR = abspath(mkpath(ARGS[1]))
# Create Project
project = include("project.jl")
@info "Rewriting documents..."
Pollen.rewritesources!(project)
@info "Writing to disk at \"$DIR\"..."
Pollen.build(FileBuilder(JSONFormat(),
DIR),
project)
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 778 | using Pollen
using Pkg
# The main package you are documenting
using Invariants, InvariantsCore
m = Invariants
# Packages that will be indexed in the documentation. Add additional modules
# to the list.
ms = [m, InvariantsCore]
# Add rewriters here
project = Project(Pollen.Rewriter[DocumentFolder(Pkg.pkgdir(m), prefix = "documents"),
ParseCode(),
ExecuteCode(),
PackageDocumentation(ms),
StaticResources(),
DocumentGraph(),
SearchIndex(),
SaveAttributes((:title,)),
LoadFrontendConfig(Pkg.pkgdir(m))])
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 715 | """
This script serves the Pollen.jl documentation on a local file server
so that it can be loaded by the frontend in development mode.
files should be stored.
> julia docs/serve.jl
Use `./make.jl` to export the generated documents to disk.
There are two modes for interactive development: Lazy and Regular.
In lazy mode, each document will be built only if it is requested in
the frontend, while for Regular mode, each document will be built
once before serving.
"""
using Pollen
project = include("project.jl")
Pollen.serve(project;
lazy = get(ENV, "POLLEN_LAZY", "false") == "true",
port = Base.parse(Int, get(ENV, "POLLEN_PORT", "8000")),
format = JSONFormat())
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 992 | module Invariants
using InlineTest
using TextWrap: wrap
import AbstractTrees
import InvariantsCore
import InvariantsCore: AbstractInvariant, InvariantList, AnyInvariant, AllInvariant,
AsMarkdown, errormessage, satisfies, invariant, check, check_throw,
title, description, showdescription, showtitle
include("wrapio.jl")
include("tree.jl")
include("show.jl")
include("invariants/hasmethod.jl")
include("invariants/hastype.jl")
function exampleinvariant(symbol = :n)
return invariant("`$symbol` is positive",
description = "The number `$symbol` should be larger than `0`.") do x
if !(x isa Number)
return "`$symbol` has type $(typeof(x)), but it should be a `Number` type." |> md
else
x > 0 && return nothing
return "`$symbol` is not a positive number, got value `$x`. Please pass a number larger than 0." |> md
end
end
end
export invariant, check, check_throw
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 1465 |
function InvariantsCore.errormessage(io::IO, invs::AllInvariant, msgs)
__combinator_errormessage(io, invs, msgs, map(__getmarker, msgs),
faint("(All invariants listed below must be satisfied)\n\n "))
end
function InvariantsCore.errormessage(io::IO, invs::AnyInvariant, msgs)
__combinator_errormessage(io, invs, msgs, map(m -> isnothing(m) ? PASS : FAIL, msgs),
faint("(At least one of the invariants listed below must be satisfied)\n\n"))
end
const PASS = "\e[32m✔ Satisfied:\e[0m\e[2m"
const FAIL = "\e[31m⨯ Not satisfied:\e[0m"
const UNKNOWN = "\e[33m? \e[2mNot checked:\e[0m\e[2m"
function __combinator_errormessage(io::IO, invs, msgs, markers, msg)
showdescription(io, invs)
println(io)
print(io, msg)
for (inv, message, marker) in zip(invs.invariants, msgs, markers)
__errormessage_child(io, inv; marker, message)
end
end
function __errormessage_child(io,
inv;
marker = "o",
message = nothing,
indent = " ")
print(io, marker, " ")
showtitle(io, inv)
print(io, "\e[0m")
println(io)
if !(isnothing(message) || ismissing(message))
ioi = WrapIO(io; indent, maxwidth = 88)
errormessage(ioi, inv, message)
end
end
__getmarker(::Nothing) = PASS
__getmarker(::Missing) = UNKNOWN
__getmarker(_) = FAIL
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 323 | AbstractTrees.children(invs::InvariantList) = invs.invariants
Base.show(io::IO, inv::AbstractInvariant) = AbstractTrees.print_tree(io, inv)
function AbstractTrees.printnode(io::IO, inv::AbstractInvariant)
print(io, nameof(typeof(inv)), "(\"", md(title(inv)), "\")")
end
AbstractTrees.children(::AbstractInvariant) = ()
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 2802 |
mutable struct WrapIO{I <: IO} <: IO
io::I
width::Int
indent::String
indentfirst::Bool
end
function WrapIO(io; width = displaysize(io)[2], indent = "", indentfirst = true, maxwidth = nothing)
width = isnothing(maxwidth) ? width : min(maxwidth, width)
WrapIO(io, width, indent, indentfirst)
end
function WrapIO(io::WrapIO; width = displaysize(io)[2], indent = "", indentfirst = true, maxwidth = nothing)
width = isnothing(maxwidth) ? width : min(maxwidth, width)
WrapIO(io.io, min(width, io.width), io.indent * indent, indentfirst)
end
Base.get(io::WrapIO, k, v) = get(io.io, k, v)
function Base.write(io::WrapIO, x::String)
isempty(x) && return
lines = split(x, '\n')
lines = isempty(lines) ? [""] : lines
for (i, line) in enumerate(lines)
if isempty(line)
if io.indentfirst
write(io.io, io.indent)
end
write(io.io, '\n')
io.indentfirst = true
else
if isempty(strip(line))
if io.indentfirst
write(io.io, io.indent)
end
write(io.io, line)
io.indentfirst = false
else
wrappedline = wrap(line, width = io.width,
initial_indent = (io.indentfirst || i > 1) ? io.indent :
"",
subsequent_indent = io.indent,
replace_whitespace = false)
write(io.io, wrappedline)
io.indentfirst = false
end
if i != length(lines)
write(io.io, '\n')
io.indentfirst = true
else
io.indentfirst = isempty(line)
end
end
end
end
function Base.write(io::WrapIO, b::UInt8)
write(io.io, b)
end
@testset "WrapIO" begin
function printwrapped(x; indentfirst = true, kwargs...)
buf = IOBuffer()
io = WrapIO(buf; indentfirst, kwargs...)
print(io, x)
String(take!(buf))
end
@test printwrapped("hello", indent = " ") == " hello"
@test printwrapped("hello", indent = " ") == " hello"
@test printwrapped("aaaa\nbbbb", width = 2) == "aa\naa\nbb\nbb"
@testset "Composition" begin
buf = IOBuffer()
io = WrapIO(WrapIO(buf, indent = " "), indent = " ")
@test io isa WrapIO
@test io.io isa IOBuffer
@test io.indent == " "
end
@test printwrapped("\naaaa\nbbbb", width = 2) == "\naa\naa\nbb\nbb"
@test_broken printwrapped("\naa\nbb", width = 2, indent = " ") == "\n a\n a\n b\n b"
@test_broken printwrapped("\n a\nbb", width = 2, indent = " ") == "\n \n a\n b\n b"
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 2593 |
md(s) = string(AsMarkdown(s))
function hasmethod_invariant(fn, args...; title = _title_hasmethod(fn, args), kwargs...)
return invariant(title; kwargs...) do inputs
if !(_validate_hasmethod(args)(inputs))
return "Got invalid inputs $inputs"
end
argnames = map(arg -> arg isa Symbol ? arg : arg[1], args)
argvalues = map(arg -> arg isa Symbol ? inputs[arg] : arg[2], args)
try
fn(argvalues...)
return nothing
catch e
sig = _signature(fn, argnames, argvalues)
if e isa MethodError && e.f == fn
return md("""When calling `$fn`, got a `MethodError`. This means that there
is no method implemented for the given arguments. To fix this, please
implement the following method:
""") * "\n\n " * sig
else
return (md("When calling `$fn`, got an unexpected error:") * "\n\n" *
(sprint(Base.showerror, e; context = (:color => false,)) |>
indent |> faint) *
"\n\n" *
md("""This means that there is a method matching the given arguments,
but calling it throws an error. To fix this, please debug the following
method:""") * "\n\n " * sig)
end
end
end
end
function indent(s, n = 4)
wrap(s; initial_indent = repeat(" ", n), subsequent_indent = repeat(" ", n))
end
faint(s) = "\e[2m$s\e[22m"
function _title_hasmethod(fn, args)
buf = IOBuffer()
print(buf, "Method `$(nameof(parentmodule(fn))).$(nameof(fn))(")
for (i, arg) in enumerate(args)
name = arg isa Symbol ? arg : first(arg)
print(buf, name)
i != length(args) && print(buf, ", ")
end
print(buf, ")` implemented")
return String(take!(buf))
end
function _validate_hasmethod(args)
return function (inputs)
for arg in args
inputs isa NamedTuple || return false
if arg isa Symbol
haskey(inputs, arg) || return false
end
end
return true
end
end
function _signature(fn, argnames, argvalues)
buf = IOBuffer()
bold(s) = "\e[1m$s\e[22m"
print(buf, parentmodule(fn), ".", nameof(fn), faint("("))
for (i, (name, val)) in enumerate(zip(argnames, argvalues))
print(buf, name, faint("::"), bold(nameof(typeof(val))))
i != length(argnames) && print(buf, faint(", "))
end
print(buf, faint(")"))
return String(take!(buf))
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 379 | function hastype_invariant(T; var = "x", title = nothing, kwargs...)
s_T = nameof(T)
title = isnothing(title) ? "`$var` has type `$s_T`" : title
return invariant(title; kwargs...) do input
IT = input isa Type ? input : typeof(input)
if !(IT <: T)
return "`$var` should be of type `$T`, but got type `$(IT)`." |> md
end
end
end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
|
[
"MIT"
] | 0.1.0 | 0c6fbb0af4269cb73215a676aafb2689006eb3a8 | code | 105 | using Invariants
import Test
using ReTest
Invariants.runtests()
Test.@testset "Invariants.jl" begin end
| Invariants | https://github.com/lorenzoh/Invariants.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.