licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 2535 | # Contributing to `PhyloDiamond.jl`
The following guidelines are designed for contributors to `PhyloDiamond.jl`.
## Reporting Issues
For reporting a bug or a failed function or requesting a new feature, you can simply open an issue in the [issue tracker](https://github.com/solislemuslab/PhyloDiamond.jl/issues). If you are reporting a bug, please also include a minimal code example or all relevant information for us to replicate the issue.
## Contributing Code
To make contributions to `PhyloDiamond.jl`, you need to set up your [GitHub](https://github.com)
account if you do not have and sign in, and request your change(s) or contribution(s) via
a pull request against the ``develop``
branch of the [PhyloDiamond.jl repository](https://github.com/solislemuslab/PhyloDiamond.jl).
Please use the following steps:
1. Open a new issue for new feature or failed function in the [issue tracker](https://github.com/solislemuslab/PhyloDiamond.jl/issues)
2. Fork the [PhyloDiamond.jl repository](https://github.com/solislemuslab/PhyloDiamond.jl) to your GitHub account
3. Clone your fork locally:
```
$ git clone https://github.com/your-username/PhyloDiamond.jl.git
```
4. Make your change(s) in the `master` (or `development`) branch of your cloned fork
5. Make sure that all tests (`test/runtests.jl`) are passed without any errors
6. Push your change(s) to your fork in your GitHub account
7. [Submit a pull request](https://github.com/solislemuslab/PhyloDiamond.jl/pulls) describing what problem has been solved and linking to the issue you had opened in step 1
Your contribution will be checked and merged into the original repository. You will be contacted if there is any problem in your contribution
Make sure to include the following information in your pull request:
* **Code** which you are contributing to this package
* **Documentation** of this code if it provides new functionality. This should be a description of new functionality added to the [docs](https://solislemuslab.github.io/PhyloDiamond.jl/dev/). Check out the [docs folder](https://github.com/solislemuslab/PhyloDiamond.jl/tree/main/docs) for instructions on how to update the documentation.
- **Tests** of this code to make sure that the previously failed function or the new functionality now works properly
---
_These Contributing Guidelines have been adapted from the [Contributing Guidelines](https://github.com/atomneb/AtomNeb-py/blob/master/CONTRIBUTING.md) of [The Turing Way](https://github.com/atomneb/AtomNeb-py)! (License: MIT)_ | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 1892 | # PhyloDiamond<picture> <img alt="phylodiamond logo" src="docs/src/logo_unrooted_trans.png" align=right></picture>
[](https://github.com/zwu363/PhyloDiamond.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/zwu363/PhyloDiamond.jl)
## Overview
`PhyloDiamond.jl` is a [Julia](http://julialang.org/) package for ultrfast learning of 4-node hybridization cycles in phylogenetic networks using algebraic invariants.
Input data:
- A concordance factor table
- A file containing gene trees
## Usage
`PhyloDiamond.jl` is a julia package, so the user needs to install julia, and then install the package.
To install the package, type inside Julia:
```julia
]
add PhyloDiamond
```
## Help and errors
To get help, check the documentation [here](https://solislemuslab.github.io/PhyloDiamond.jl/dev). Please report any bugs and errors by opening an
[issue](https://github.com/solislemuslab/PhyloDiamond.jl/issues/new).
## Citation
If you use `PhyloDiamond.jl` in your work, we kindly ask that you cite the following paper:
```
@article{wu_solis-lemus_2022,
author = {Wu, Z. and Sol'{i}s-Lemus, C.},
year = {2022},
title = {{Ultrafast learning of 4-node hybridization cycles in phylogenetic networks using algebraic invariants}},
url={https://arxiv.org/abs/2211.16647v1}
}
```
## License
`PhyloDiamond.jl` is licensed under a
[MIT License](https://github.com/solislemuslab/PhyloDiamond.jl/blob/master/LICENSE).
## Contributions
Users interested in expanding functionalities in `PhyloDiamond.jl` are welcome to do so. See details on how to contribute in [CONTRIBUTING.md](https://github.com/solislemuslab/PhyloDiamond.jl/blob/master/CONTRIBUTING.md).
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 166 | To update the documentation, make changes to the .md files in `src/man` or `src/lib` and push to main. The CI tools will automatically build the necessary html files. | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 557 |
# PhyloDiamond.jl
[PhyloDiamond.jl](https://github.com/solislemuslab/PhyloDiamond.jl) is a [Julia](http://julialang.org/) package to perform PhyloDiamond algorithm to infer 4-node hybridization cycles in phylogenetic networks using algebraic invariants.
## References
If you use `PhyloDiamond.jl` in your work, we kindly ask that you cite the following paper:
- Wu, Z., Solís-Lemus, C. (2022). Ultrafast learning of 4-node hybridization cycles in phylogenetic networks using algebraic invariants. [arXiv:2211.16647](https://arxiv.org/abs/2211.16647).
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 252 | ```@meta
CurrentModule = PhyloDiamond
```
```@docs
phylo_diamond(cf::DataFrame, m::Int64, output_filename::String="phylo_diamond.txt")
```
```@docs
phylo_diamond(gene_trees_filename::String, m::Int64, output_filename::String="phylo_diamond.txt")
```
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 6537 | # Implementing PhyloDiamond Algorithm
## Functions
To implement PhyloDiamond Algorithm, users can either input a concordance factor table or directly input a file of gene trees.
### Function taking in a concordance factor table
Below takes in three parameters including a concordance factor table:
```julia
phylo_diamond(cf::DataFrame, m::Int64, output_filename::String="phylo_diamond.txt")
```
- `cf`: a dataframe containing concordance factor values with taxon names in the first 4 columns and values in the last 3 columns
- Each row correspond to a taxon set `s={a,b,c,d}`
- There are only three possible quartet splits `q1=ab|cd, q2=ac|bd, q3=ad|bc`
- The dataframe should contain 7 columns, ordered as `a, b, c, d, q1, q2, q3`
- `m`: the number of optimal phylogenetic networks returned
- `output_filename`: a file name for the output file (or "phylo_diamond.txt" by default)
### Function taking in a gene tree file
Below takes in three parameters including a gene tree file:
```julia
phylo_diamond(gene_trees_filename::String, m::Int64, output_filename::String="phylo_diamond.txt")
```
- `gene_trees_filename`: the file name storing all gene trees
- `m`: the number of optimal phylogenetic networks returned
- `output_filename`: a file name for the output file (or "phylo_diamond.txt" by default)
## Examples
First load the package.
```julia
using PhyloDiamond
```
### Example 1: taking in a concordance factor table
If your concordance factor table is in csv file format, you need to read the file in Julia first. If you have not used the CSV.jl package before then you may need to install it first:
```julia
using Pkg
Pkg.add("CSV")
```
The CSV.jl functions are not loaded automatically and must be imported into the session.
```julia
using CSV
```
The concordance factor table can now be read from a CSV file at path `input` using
```julia
df = DataFrame(CSV.File(input))
```
```
70×7 DataFrame
Row │ tx1 tx2 tx3 tx4 expCF12 expCF13 expCF14
│ String String String String Float64 Float64 Float64
─────┼─────────────────────────────────────────────────────────────────────
1 │ 7 8 3 4 0.999392 0.000303961 0.000303961
2 │ 7 8 3 1 0.993192 0.00340375 0.00340375
3 │ 7 8 3 2 0.993192 0.00340375 0.00340375
4 │ 7 8 3 5 0.98779 0.00610521 0.00610521
5 │ 7 8 3 6 0.98779 0.00610521 0.00610521
6 │ 7 8 4 1 0.993192 0.00340375 0.00340375
7 │ 7 8 4 2 0.993192 0.00340375 0.00340375
8 │ 7 8 4 5 0.98779 0.00610521 0.00610521
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
63 │ 3 1 2 6 0.0999344 0.0999344 0.800131
64 │ 3 1 5 6 0.964386 0.0178072 0.0178072
65 │ 3 2 5 6 0.964386 0.0178072 0.0178072
66 │ 4 1 2 5 0.0999344 0.0999344 0.800131
67 │ 4 1 2 6 0.0999344 0.0999344 0.800131
68 │ 4 1 5 6 0.964386 0.0178072 0.0178072
69 │ 4 2 5 6 0.964386 0.0178072 0.0178072
70 │ 1 2 5 6 0.984151 0.00792452 0.00792452
```
Then we can implement PhyloDiamond algorithm on this concordance factor table.
```julia
phylo_diamond(df, 5)
```
It outputs a dictionary, where is key is the rank and the value is the infered network. The networks are represented in newick format.
```
Dict{Int64, Any} with 5 entries:
5 => "((7:1,8:1):4, (((1:1,2:1):2, ((3:1,4:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
4 => "((5:1,6:1):4, (((7:1,8:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);"
2 => "((7:1,8:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);"
3 => "((5:1,6:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,8:1):2):1):1);"
1 => "((7:1,8:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
```
Below is what is stored in the output file:
```
Inference of top 5 8-taxon phylogenetic networks with phylogenetic invariants
1. N2222 (2.2216927709301364e-16)
[(1,2),(3,4),(5,6),(7,8)]
"((7:1,8:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
2. N2222 (2.2230610911746716e-16)
[(1,2),(5,6),(3,4),(7,8)]
"((7:1,8:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);"
3. N2222 (0.006576057988736475)
[(1,2),(3,4),(7,8),(5,6)]
"((5:1,6:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,8:1):2):1):1);"
4. N2222 (0.00657929000066336)
[(1,2),(7,8),(3,4),(5,6)]
"((5:1,6:1):4, (((7:1,8:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);"
5. N2222 (0.0066877783427965855)
[(3,4),(1,2),(5,6),(7,8)]
"((7:1,8:1):4, (((1:1,2:1):2, ((3:1,4:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
```
To understand the output file, take the first network as an example. `N2222` is the structure of the network, meaning that there are 2 taxon in clades n0, n1, n2, n3. The value followed is the corresponding score for the infered network, and a small score represents a highly possible network. `[(1,2),(3,4),(5,6),(7,8)]` is the parenthetical format of the network. Then it is the newick format of the network
### Example 2: taking in a gene tree file
Here is an example genetree file "gt.txt":
```
((7:0.722,8:0.722):2.844,(((3:0.878,4:0.878):0.907,(1:0.935,2:0.935):0.849):1.005,(5:1.853,6:1.853):0.937):0.776);
((7:0.649,8:0.649):2.104,((5:1.919,6:1.919):0.374,((3:0.634,4:0.634):1.442,(1:0.660,2:0.660):1.416):0.218):0.460);
((7:0.942,8:0.942):3.188,(6:3.361,(5:2.130,((1:0.816,2:0.816):1.294,(3:1.045,4:1.045):1.065):0.021):1.231):0.769);
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
(((3:0.600,4:0.600):1.746,(1:0.841,2:0.841):1.506):0.654,((7:0.613,8:0.613):2.148,(5:0.762,6:0.762):1.999):0.239);
((7:0.702,8:0.702):2.679,((5:1.454,6:1.454):0.672,(3:1.942,(4:1.707,(1:0.674,2:0.674):1.033):0.234):0.184):1.255);
(((3:0.647,4:0.647):1.243,(1:1.407,2:1.407):0.483):0.844,((7:0.581,8:0.581):1.979,(5:1.204,6:1.204):1.357):0.173);
```
```julia
phylo_diamond("gt.txt", 5)
```
## Error reporting
Please report any bugs and errors by opening an
[issue](https://github.com/solislemuslab/PhyloDiamond.jl/issues/new). | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 1806 | # Installation
## Installation of Julia
Julia is a high-level and interactive programming language (like R or Matlab),
but it is also high-performance (like C).
To install Julia, follow instructions [here](http://julialang.org/downloads/).
For a quick & basic tutorial on Julia, see
[learn x in y minutes](http://learnxinyminutes.com/docs/julia/).
Editors:
- [Visual Studio Code](https://code.visualstudio.com) provides an editor
and an integrated development environment (IDE) for Julia: highly recommended!
- You can also run Julia within a [Jupyter](http://jupyter.org) notebook
(formerly IPython notebook).
IMPORTANT: Julia code is just-in-time compiled. This means that the
first time you run a function, it will be compiled at that moment. So,
please be patient! Future calls to the function will be much much
faster. Trying out toy examples for the first calls is a good idea.
## Installation of the `PhyloDiamond.jl` package
To install the package, type inside Julia:
```julia
]
add PhyloDiamond
```
The first step can take a few minutes, be patient.
The `PhyloDiamond.jl` package has dependencies like
[Distributions](https://juliastats.org/Distributions.jl/stable/starting/) and
[DataFrames](http://juliadata.github.io/DataFrames.jl/stable/)
(see the `Project.toml` file for the full list), but everything is installed automatically.
## Loading the Package
To check that your installation worked, type this in Julia to load the package.
This is something to type every time you start a Julia session:
```@example install
using PhyloDiamond
```
This step can also take a while, if Julia needs to pre-compile the code (after a package
update for instance).
Press `?` inside Julia to switch to help mode,
followed by the name of a function (or type) to get more details about it.
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 1901 | # phylo-invariants
Method to estimate phylogenetic networks from invariants
- Example code for gene tree simulation
- More detailed bash script for gene tree simulation could be found in `./simulation/sim_tree.sh`
```bash
./ms-converter --newick="((7:1,8:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);" --run --n 100 --output=sim_trees_2222_100
./ms-converter --newick="((7:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);" --run --n 100 --output=sim_trees_2221_100
./ms-converter --newick="((7:1,6:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1):2):1):1);" --run --n 100 --output=sim_trees_2212_100
./ms-converter --newick="((7:1,4:1):4, (((3:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);" --run --n 100 --output=sim_trees_2122_100
./ms-converter --newick="((7:1,2:1):4, (((3:1,4:1):2, ((1:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);" --run --n 100 --output=sim_trees_1222_100
./ms-converter --newick="((6:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1):2):1):1);" --run --n 100 --output=sim_trees_2211_100
./ms-converter --newick="((4:1,6:1):4, (((3:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1):2):1):1);" --run --n 100 --output=sim_trees_2112_100
./ms-converter --newick="((6:1):4, (((3:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,4:1):2):1):1);" --run --n 100 --output=sim_trees_2121_100
./ms-converter --newick="((2:1):4, (((3:1,4:1):2, ((1:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);" --run --n 100 --output=sim_trees_1221_100
./ms-converter --newick="((5:1,6:1):4, (((3:1,4:1):2, ((1:1):1)#H1:1::0.7):1, (#H1:1::0.3,(2:1):2):1):1);" --run --n 100 --output=sim_trees_1212_100
./ms-converter --newick="((5:1,6:1):4, (((2:1):2, ((1:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);" --run --n 100 --output=sim_trees_1122_100
```
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 1284 | # Julia
- `text_convert.jl` contains the functions to convert between the julia, latex and macaulay formats for the invariants.
- `invariants.jl` contains the invariant functions with `a` as input vector (CF values from CF table)
- `mapping.jl` contains the functions to map the CF values from a CF table into the `a` vector
- `mapping-fn.jl` pseudo code for mapping CF table to values
# Macaulay2
- (all): all cf
- (sub): independent cf
- (incomplete): a subset of cf that gives output
- (quadratic): cf containing quadratic terms
## Macaulay2 scripts to obtain the phylogenetic invariants
The scripts correspond to networks with 4-cycle hybridizations (4 nodes in the hybridization cycle). `Nijkl` represents the specific network; for example, `N1112` corresponds to the network with 1 taxon from `n_0`, 1 taxon from `n_1`, 1 taxon from `n_2` and 2 taxa from `n_3`.
Files with extension `.m2` are the macaulay2 script and the files with `_out.txt` in the file name are the output files. Some scripts do not have output files because they were computationally intensive and have not been run to completion.
The command to run the scripts in the terminal is (after having installed [Macaulay2](http://www2.macaulay2.com/Macaulay2/)):
```
cat file.m2 | M2 >& file_out.txt &
```
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | docs | 25396 | ---
title: "Final plots for Wu and Solis-Lemus (2022)"
output: html_notebook
---
```{r}
library(ggplot2)
library(tidyverse)
library(patchwork)
library(RColorBrewer) ## https://r-graph-gallery.com/38-rcolorbrewers-palettes.html?
```
```{r}
df = read.csv("../../simulation/result/rst_all.csv") ##downloaded from google drive
df$nw_type = as.factor(df$nw_type)
df$sim_type[df$num_genetree==0 & df$len_seq==0 & df$sd == 0] = "cf"
df$sim_type[df$num_genetree==0 & df$len_seq==0 & df$sd != 0] = "cf_noise"
df$sim_type[df$num_genetree!=0 & df$len_seq==0] = "gene_tree"
df$sim_type[df$num_genetree!=0 & df$len_seq!=0] = "est_gene_tree"
df$sim_type = as.factor(df$sim_type)
```
# Figure for invariant score
```{r}
## need to put sim_type in different order:
df$sim_type = factor(df$sim_type, levels=c("cf", "cf_noise", "gene_tree", "est_gene_tree"))
df2 = df %>%
pivot_longer(c("inv_true", "inv_sym"), names_to = "inv_type", values_to = "inv")
## put in right order:
df2$inv_type = factor(df2$inv_type)
df2$inv_type = factor(df2$inv_type, levels=c("inv_true", "inv_sym"))
```
## True CF and Noisy CF
```{r}
df3 = df2[df2$sim_type %in% c("cf","cf_noise"),]
df3$sim_type2 = "cf"
df3$sim_type2[df3$sim_type == "cf_noise" & df3$sd == 0.000005] = "cf_noise1"
df3$sim_type2[df3$sim_type == "cf_noise" & df3$sd == 0.00005] = "cf_noise2"
df3$sim_type2[df3$sim_type == "cf_noise" & df3$sd == 0.0005] = "cf_noise3"
df3$sim_type2 = factor(df3$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/invariant-score-true-noisy.pdf", width = 8, height = 4)
df3 %>%
ggplot(mapping = aes(x = nw_type, y = inv))+
geom_boxplot(aes(col = inv_type)) +
facet_wrap(.~sim_type2, #scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("cf" = "True CF",
"cf_noise1" = "Noisy CF (sd=5e-6)",
"cf_noise2" = "Noisy CF (sd=5e-5)",
"cf_noise3" = "Noisy CF (sd=5e-4)")))+
labs(x = "", y = "Invariant Score")+
#scale_colour_manual('',
# labels=c('True', 'Symmetric'),
# values=c('#43CD80','#3A5FCD'))+
scale_colour_brewer('',
labels=c('True', 'Symmetric'),
palette="Set1")+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
axis.text.y = element_text(size=12),
axis.title.y = element_text(size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
legend.text=element_text(size=12))
dev.off()
```
## True gene trees
```{r}
df3 = df2[df2$sim_type == "gene_tree",]
df3$sim_type2 = "gene_tree"
df3$sim_type2[df3$num_genetree == 100] = "gene_tree1"
df3$sim_type2[df3$num_genetree == 1000] = "gene_tree2"
df3$sim_type2[df3$num_genetree == 10000] = "gene_tree3"
df3$sim_type2 = factor(df3$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/invariant-score-true-gt.pdf", width = 8, height = 4)
df3 %>%
ggplot(mapping = aes(x = nw_type, y = inv))+
geom_boxplot(aes(col = inv_type)) +
facet_wrap(.~sim_type2, #scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("gene_tree1" = "True g.t. (100)",
"gene_tree2" = "True g.t. (1000)",
"gene_tree3" = "True g.t. (10000)")))+
labs(x = "", y = "Invariant Score")+
#scale_colour_manual('',
# labels=c('True', 'Symmetric'),
# values=c('#43CD80','#3A5FCD'))+
scale_colour_brewer('',
labels=c('True', 'Symmetric'),
palette="Set1")+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
axis.text.y = element_text(size=12),
axis.title.y = element_text(size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
legend.text=element_text(size=12))
dev.off()
```
## Estimated gene trees
```{r}
df3 = df2[df2$sim_type == "est_gene_tree",]
df3$sim_type2 = "est_gene_tree"
#df3$sim_type2[df3$num_genetree == 100 & df3$len_seq == 500] = "est_gene_tree1"
df3$sim_type2[df3$num_genetree == 1000 & df3$len_seq == 500] = "est_gene_tree2"
df3$sim_type2[df3$num_genetree == 10000 & df3$len_seq == 500] = "est_gene_tree3"
#df3$sim_type2[df3$num_genetree == 100 & df3$len_seq == 2000] = "est_gene_tree4"
df3$sim_type2[df3$num_genetree == 1000 & df3$len_seq == 2000] = "est_gene_tree5"
df3$sim_type2[df3$num_genetree == 10000 & df3$len_seq == 2000] = "est_gene_tree6"
df3$sim_type2 = factor(df3$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/invariant-score-est-gt.pdf", width = 8, height = 4)
df3 %>%
ggplot(mapping = aes(x = nw_type, y = inv))+
geom_boxplot(aes(col = inv_type)) +
facet_wrap(.~sim_type2, #scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("est_gene_tree2" = "gt=1000, L=500",
"est_gene_tree3" = "gt=10000, L=500",
"est_gene_tree5" = "gt=1000, L=2000",
"est_gene_tree6" = "gt=10000, L=2000")))+
labs(x = "", y = "Invariant Score")+
#scale_colour_manual('',
# labels=c('True', 'Symmetric'),
# values=c('#43CD80','#3A5FCD'))+
scale_colour_brewer('',
labels=c('True', 'Symmetric'),
palette="Set1")+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
axis.text.y = element_text(size=12),
axis.title.y = element_text(size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
legend.text=element_text(size=12))
dev.off()
```
# Figure of rank
```{r}
df3 = df %>%
pivot_longer(c("rank_true", "rank_sym"), names_to = "rank_type", values_to = "rank")
## put in right order:
df3$rank_type = factor(df3$rank_type)
df3$rank_type = factor(df3$rank_type, levels=c("rank_true", "rank_sym"))
```
## True and noisy cf
```{r}
df4 = df3[df3$sim_type %in% c("cf","cf_noise"),]
df4$sim_type2 = "cf"
df4$sim_type2[df4$sim_type == "cf_noise" & df4$sd == 0.000005] = "cf_noise1"
df4$sim_type2[df4$sim_type == "cf_noise" & df4$sd == 0.00005] = "cf_noise2"
df4$sim_type2[df4$sim_type == "cf_noise" & df4$sd == 0.0005] = "cf_noise3"
df4$sim_type2 = factor(df4$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/rank-true-noisy-cf.pdf", width = 8, height = 4)
df4 %>%
ggplot(mapping = aes(x = nw_type, y = rank))+
geom_boxplot(aes(col = rank_type)) +
geom_hline(yintercept=5, linetype="dashed", color = "grey") +
facet_wrap(.~sim_type2, #scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("cf" = "True CF",
"cf_noise1" = "Noisy CF (sd=5e-6)",
"cf_noise2" = "Noisy CF (sd=5e-5)",
"cf_noise3" = "Noisy CF (sd=5e-4)")))+
labs(x = "", y = "Rank")+
#scale_colour_manual('',
# labels=c('True', 'Symmetric'),
# values=c('#43CD80','#3A5FCD'))+
scale_colour_brewer('',
labels=c('True', 'Symmetric'),
palette="Set1")+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
axis.text.y = element_text(size=12),
axis.title.y = element_text(size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
legend.text=element_text(size=12))
dev.off()
```
## True gene trees
```{r}
df4 = df3[df3$sim_type == "gene_tree",]
df4$sim_type2 = "gene_tree"
df4$sim_type2[df4$num_genetree == 100] = "gene_tree1"
df4$sim_type2[df4$num_genetree == 1000] = "gene_tree2"
df4$sim_type2[df4$num_genetree == 10000] = "gene_tree3"
df4$sim_type2 = factor(df4$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/rank-true-gt.pdf", width = 8, height = 4)
df4 %>%
ggplot(mapping = aes(x = nw_type, y = rank))+
geom_boxplot(aes(col = rank_type)) +
geom_hline(yintercept=5, linetype="dashed", color = "grey") +
facet_wrap(.~sim_type2, #scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("gene_tree1" = "True g.t. (100)",
"gene_tree2" = "True g.t. (1000)",
"gene_tree3" = "True g.t. (10000)")))+
labs(x = "", y = "Rank")+
#scale_colour_manual('',
# labels=c('True', 'Symmetric'),
# values=c('#43CD80','#3A5FCD'))+
scale_colour_brewer('',
labels=c('True', 'Symmetric'),
palette="Set1")+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
axis.text.y = element_text(size=12),
axis.title.y = element_text(size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
legend.text=element_text(size=12))
dev.off()
```
## Estimated gene trees
```{r}
df4 = df3[df3$sim_type == "est_gene_tree",]
df4$sim_type2 = "est_gene_tree"
df4$sim_type2[df4$num_genetree == 1000 & df4$len_seq == 500] = "est_gene_tree2"
df4$sim_type2[df4$num_genetree == 10000 & df4$len_seq == 500] = "est_gene_tree3"
df4$sim_type2[df4$num_genetree == 1000 & df4$len_seq == 2000] = "est_gene_tree5"
df4$sim_type2[df4$num_genetree == 10000 & df4$len_seq == 2000] = "est_gene_tree6"
df4$sim_type2 = factor(df4$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/rank-est-gt.pdf", width = 8, height = 4)
df4 %>%
ggplot(mapping = aes(x = nw_type, y = rank))+
geom_boxplot(aes(col = rank_type)) +
geom_hline(yintercept=5, linetype="dashed", color = "grey") +
facet_wrap(.~sim_type2, #scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("est_gene_tree2" = "gt=1000, L=500",
"est_gene_tree3" = "gt=10000, L=500",
"est_gene_tree5" = "gt=1000, L=2000",
"est_gene_tree6" = "gt=10000, L=2000")))+
labs(x = "", y = "Rank")+
#scale_colour_manual('',
# labels=c('True', 'Symmetric'),
# values=c('#43CD80','#3A5FCD'))+
scale_colour_brewer('',
labels=c('True', 'Symmetric'),
palette="Set1")+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
axis.text.y = element_text(size=12),
axis.title.y = element_text(size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
legend.text=element_text(size=12))
dev.off()
```
# Figure with the top 5
```{r}
df$label[df$rank_sym<=5 & df$rank_true<=5] = "sym_true"
df$label[df$rank_true<=5 & df$rank_sym>5] = "true"
df$label[df$rank_sym<=5 & df$rank_true>5] = "sym"
df$label[df$rank_sym>5 & df$rank_true>5] = "other"
## label is chr, and we need it as factor and in correct order:
str(df)
df$label = factor(df$label)
df$label = factor(df$label, levels = c("sym_true","true","sym","other"))
## need to put sim_type in different order:
df$sim_type = factor(df$sim_type, levels=c("cf", "cf_noise", "gene_tree", "est_gene_tree"))
```
## True and noisy CF
```{r}
df2 = df[df$sim_type %in% c("cf","cf_noise"),]
df2$sim_type2 = "cf"
df2$sim_type2[df2$sim_type == "cf_noise" & df2$sd == 0.000005] = "cf_noise1"
df2$sim_type2[df2$sim_type == "cf_noise" & df2$sd == 0.00005] = "cf_noise2"
df2$sim_type2[df2$sim_type == "cf_noise" & df2$sd == 0.0005] = "cf_noise3"
df2$sim_type2 = factor(df2$sim_type2)
#png("1.png", width = 8, height = 6, units = 'in', res = 300)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/top5-true-noisy-cf.pdf", width = 8, height = 4)
df2 %>%
ggplot(aes(fill=label, x=nw_type)) +
#geom_bar()+
geom_bar(aes(y = (..count..)/sum(..count..)))+
facet_wrap(.~sim_type2, scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("cf" = "True CF",
"cf_noise1" = "Noisy CF (sd=5e-6)",
"cf_noise2" = "Noisy CF (sd=5e-5)",
"cf_noise3" = "Noisy CF (sd=5e-4)")))+
labs(x = "", y = "")+
#scale_fill_manual('Types of top 5 networks',
# labels=c('Other', 'Symmetrical network',
# 'Both symmetrical and true networks', 'True network'),
# values=c('#CDC5BF', '#43CD80', '#EE8262', '#3A5FCD'))+
scale_fill_brewer('',labels=c('True and Symmetric', 'True', 'Symmetric','Other'),
palette = "PuBuGn", direction=-1)+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
axis.text.y=element_blank(),
legend.text=element_text(size=12))
dev.off()
```
## True gene trees
```{r}
df2 = df[df$sim_type == "gene_tree",]
df2$sim_type2 = "gene_tree"
df2$sim_type2[df2$num_genetree == 100] = "gene_tree1"
df2$sim_type2[df2$num_genetree == 1000] = "gene_tree2"
df2$sim_type2[df2$num_genetree == 10000] = "gene_tree3"
df2$sim_type2 = factor(df2$sim_type2)
#png("1.png", width = 8, height = 6, units = 'in', res = 300)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/top5-true-gt.pdf", width = 8, height = 4)
df2 %>%
ggplot(aes(fill=label, x=nw_type)) +
#geom_bar()+
geom_bar(aes(y = (..count..)/sum(..count..)))+
facet_wrap(.~sim_type2, scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("gene_tree1" = "True g.t. (100)",
"gene_tree2" = "True g.t. (1000)",
"gene_tree3" = "True g.t. (10000)")))+
labs(x = "", y = "")+
#scale_fill_manual('Types of top 5 networks',
# labels=c('Other', 'Symmetrical network',
# 'Both symmetrical and true networks', 'True network'),
# values=c('#CDC5BF', '#43CD80', '#EE8262', '#3A5FCD'))+
scale_fill_brewer('',labels=c('True and Symmetric', 'True', 'Symmetric','Other'),
palette = "PuBuGn", direction=-1)+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
axis.text.y=element_blank(),
legend.text=element_text(size=12))
dev.off()
```
## Estimated gene trees
```{r}
df2 = df[df$sim_type == "est_gene_tree",]
df2$sim_type2 = "est_gene_tree"
df2$sim_type2[df2$num_genetree == 1000 & df2$len_seq == 500] = "est_gene_tree2"
df2$sim_type2[df2$num_genetree == 10000 & df2$len_seq == 500] = "est_gene_tree3"
df2$sim_type2[df2$num_genetree == 1000 & df2$len_seq == 2000] = "est_gene_tree5"
df2$sim_type2[df2$num_genetree == 10000 & df2$len_seq == 2000] = "est_gene_tree6"
df2$sim_type2 = factor(df2$sim_type2)
#png("1.png", width = 8, height = 6, units = 'in', res = 300)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/top5-est-gt.pdf", width = 8, height = 4)
df2 %>%
ggplot(aes(fill=label, x=nw_type)) +
#geom_bar()+
geom_bar(aes(y = (..count..)/sum(..count..)))+
facet_wrap(.~sim_type2, scales = "free_y",
nrow = 1,
labeller = labeller(sim_type2 =
c("est_gene_tree2" = "gt=1000, L=500",
"est_gene_tree3" = "gt=10000, L=500",
"est_gene_tree5" = "gt=1000, L=2000",
"est_gene_tree6" = "gt=10000, L=2000")))+
labs(x = "", y = "")+
#scale_fill_manual('Types of top 5 networks',
# labels=c('Other', 'Symmetrical network',
# 'Both symmetrical and true networks', 'True network'),
# values=c('#CDC5BF', '#43CD80', '#EE8262', '#3A5FCD'))+
scale_fill_brewer('',labels=c('True and Symmetric', 'True', 'Symmetric','Other'),
palette = "PuBuGn", direction=-1)+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
axis.text.y=element_blank(),
legend.text=element_text(size=12))
dev.off()
```
# Figure Top 1
```{r}
df$label[df$rank_true==1] = "true"
df$label[df$rank_sym==1] = "sym"
df$label[df$rank_sym!=1 & df$rank_true!=1] = "other"
## label is chr, and we need it as factor and in correct order:
str(df)
df$label = factor(df$label)
df$label = factor(df$label, levels = c("true","sym","other"))
## need to put sim_type in different order:
df$sim_type = factor(df$sim_type, levels=c("cf", "cf_noise", "gene_tree", "est_gene_tree"))
```
## True and noisy CF
```{r}
df2 = df[df$sim_type %in% c("cf","cf_noise"),]
df2$sim_type2 = "cf"
df2$sim_type2[df2$sim_type == "cf_noise" & df2$sd == 0.000005] = "cf_noise1"
df2$sim_type2[df2$sim_type == "cf_noise" & df2$sd == 0.00005] = "cf_noise2"
df2$sim_type2[df2$sim_type == "cf_noise" & df2$sd == 0.0005] = "cf_noise3"
df2$sim_type2 = factor(df2$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/top1-true-noisy-cf.pdf", width = 8, height = 4)
df2 %>%
ggplot(aes(fill=label, x=nw_type)) +
geom_bar()+
facet_wrap(.~sim_type2, scales = "free_y", nrow = 1,
labeller = labeller(sim_type2 =
c("cf" = "True CF",
"cf_noise1" = "Noisy CF (sd=5e-6)",
"cf_noise2" = "Noisy CF (sd=5e-5)",
"cf_noise3" = "Noisy CF (sd=5e-4)")))+
labs(x = "", y = "")+
#scale_fill_manual('',
# labels=c('Other', 'Symmetrical network',
# 'True network'),
# values=c('#CDC5BF', '#43CD80', '#3A5FCD'))+
scale_fill_brewer('',labels=c('True', 'Symmetric','Other'),
palette = "PuBuGn", direction=-1)+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
axis.text.y=element_blank(),
legend.text=element_text(size=12))
dev.off()
```
## True gene trees
```{r}
df2 = df[df$sim_type == "gene_tree",]
df2$sim_type2 = "gene_tree"
df2$sim_type2[df2$num_genetree == 100] = "gene_tree1"
df2$sim_type2[df2$num_genetree == 1000] = "gene_tree2"
df2$sim_type2[df2$num_genetree == 10000] = "gene_tree3"
df2$sim_type2 = factor(df2$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/top1-true-gt.pdf", width = 8, height = 4)
df2 %>%
ggplot(aes(fill=label, x=nw_type)) +
geom_bar()+
facet_wrap(.~sim_type2, scales = "free_y", nrow = 1,
labeller = labeller(sim_type2 =
c("gene_tree1" = "True g.t. (100)",
"gene_tree2" = "True g.t. (1000)",
"gene_tree3" = "True g.t. (10000)")))+
labs(x = "", y = "")+
#scale_fill_manual('',
# labels=c('Other', 'Symmetrical network',
# 'True network'),
# values=c('#CDC5BF', '#43CD80', '#3A5FCD'))+
scale_fill_brewer('',labels=c('True', 'Symmetric','Other'),
palette = "PuBuGn", direction=-1)+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
axis.text.y=element_blank(),
legend.text=element_text(size=12))
dev.off()
```
## Estimated gene trees
```{r}
df2 = df[df$sim_type == "est_gene_tree",]
df2$sim_type2 = "est_gene_tree"
df2$sim_type2[df2$num_genetree == 1000 & df2$len_seq == 500] = "est_gene_tree2"
df2$sim_type2[df2$num_genetree == 10000 & df2$len_seq == 500] = "est_gene_tree3"
df2$sim_type2[df2$num_genetree == 1000 & df2$len_seq == 2000] = "est_gene_tree5"
df2$sim_type2[df2$num_genetree == 10000 & df2$len_seq == 2000] = "est_gene_tree6"
df2$sim_type2 = factor(df2$sim_type2)
# Note that I need to copy and paste into the R REPL rather than run through RStudio
# for the PDF to be saved:
pdf("../../ms/figures/top1-est-gt.pdf", width = 8, height = 4)
df2 %>%
ggplot(aes(fill=label, x=nw_type)) +
geom_bar()+
facet_wrap(.~sim_type2, scales = "free_y", nrow = 1,
labeller = labeller(sim_type2 =
c("est_gene_tree2" = "gt=1000, L=500",
"est_gene_tree3" = "gt=10000, L=500",
"est_gene_tree5" = "gt=1000, L=2000",
"est_gene_tree6" = "gt=10000, L=2000")))+
labs(x = "", y = "")+
#scale_fill_manual('',
# labels=c('Other', 'Symmetrical network',
# 'True network'),
# values=c('#CDC5BF', '#43CD80', '#3A5FCD'))+
scale_fill_brewer('',labels=c('True', 'Symmetric','Other'),
palette = "PuBuGn", direction=-1)+
theme_bw()+
theme(panel.grid = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, size=12),
legend.position = "top",
strip.background =element_rect(fill="gray95"),
strip.text.x = element_text(size = 12),
axis.text.y=element_blank(),
legend.text=element_text(size=12))
dev.off()
```
# Old plots; not used in the manuscript anymore
```{r}
df$label[df$rank_true==1] = "true"
df$label[df$rank_sym==1] = "sym"
df$label[df$rank_sym!=1 & df$rank_true!=1] = "other"
df %>%
ggplot(aes(fill=label, x=nw_type)) +
geom_bar()+
facet_wrap(.~sim_type, scales = "free", nrow = 2)+
theme(axis.text.x = element_text(angle = 65, vjust = 0.5))
```
```{r}
a1 = df %>%
ggplot(mapping = aes(x = nw_type, y = rank_true))+
geom_boxplot(aes(col = sim_type))# +
#facet_wrap(.~sim_type, scales = "free", nrow = 2)
a2 = df %>%
ggplot(mapping = aes(x = nw_type, y = rank_sym))+
geom_boxplot(aes(col = sim_type))# +
#facet_wrap(.~sim_type, scales = "free", nrow = 2)
a1/a2
```
```{r}
path = "/true_cf"
nw = c("1122", "1212", "1221", "1222", "2112", "2121",
"2122", "2211", "2212", "2221", "2222")
ret = c()
nw_rep = c()
order = c()
for (i in nw){
temp = read.csv(paste("./../../simulation/result", path, "/network", i, ".csv", sep = ""))
ret = c(ret, sort(as.numeric(temp[16, -1])))
nw_rep = c(nw_rep, rep(i, ncol(temp)-1))
order = c(order, (1:(ncol(temp)-1)) * 2520 / (ncol(temp)-1))
}
df = data.frame(nw = nw_rep,
inv = ret,
order = order)
df$nw = as.factor(df$nw)
ggplot(df, aes(x = order, y = inv))+
geom_point(aes(col = nw))
```
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.2 | e04b4f229d811e4d7f44e2607e6ca42da1088c13 | code | 615 | using Documenter, ModernRoboticsBook
makedocs(
modules = [ModernRoboticsBook],
format = Documenter.HTML(
analytics = "UA-72743607-4",
assets = [],
),
pages = [
"Home" => "index.md",
"Manual" => Any[
"man/examples.md",
],
"Library" => Any[
"Public" => "lib/public.md",
],
],
repo = "https://github.com/ferrolho/ModernRoboticsBook.jl/blob/{commit}{path}#L{line}",
sitename = "ModernRoboticsBook.jl",
authors = "Henrique Ferrolho",
)
deploydocs(
repo = "github.com/ferrolho/ModernRoboticsBook.jl",
)
| ModernRoboticsBook | https://github.com/ferrolho/ModernRoboticsBook.jl.git |
|
[
"MIT"
] | 0.1.2 | e04b4f229d811e4d7f44e2607e6ca42da1088c13 | code | 36802 | module ModernRoboticsBook
import LinearAlgebra as LA
export NearZero,
Normalize,
RotInv,
VecToso3,
so3ToVec,
AxisAng3,
MatrixExp3,
MatrixLog3,
RpToTrans,
TransToRp,
TransInv,
VecTose3,
se3ToVec,
Adjoint,
ScrewToAxis,
AxisAng6,
MatrixExp6,
MatrixLog6,
ProjectToSO3,
ProjectToSE3,
DistanceToSO3,
DistanceToSE3,
TestIfSO3,
TestIfSE3,
FKinBody,
FKinSpace,
JacobianBody,
JacobianSpace,
IKinBody,
IKinSpace,
ad,
InverseDynamics,
MassMatrix,
VelQuadraticForces,
GravityForces,
EndEffectorForces,
ForwardDynamics,
EulerStep,
InverseDynamicsTrajectory,
ForwardDynamicsTrajectory,
CubicTimeScaling,
QuinticTimeScaling,
JointTrajectory,
ScrewTrajectory,
CartesianTrajectory,
ComputedTorque,
SimulateControl
# """
# *** BASIC HELPER FUNCTIONS ***
# """
"""
NearZero(z)
Determines whether a scalar is small enough to be treated as zero.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> NearZero(-1e-7)
true
```
"""
NearZero(z::Number) = abs(z) < 1e-6
"""
Normalize(V)
Normalizes a vector.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> Normalize([1, 2, 3])
3-element Vector{Float64}:
0.2672612419124244
0.5345224838248488
0.8017837257372732
```
"""
Normalize(V::Array) = V / LA.norm(V)
# """
# *** CHAPTER 3: RIGID-BODY MOTIONS ***
# """
"""
RotInv(R)
Inverts a rotation matrix.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> RotInv([0 0 1; 1 0 0; 0 1 0])
3×3 adjoint(::Matrix{Int64}) with eltype Int64:
0 1 0
0 0 1
1 0 0
```
"""
RotInv(R::Array) = R'
"""
VecToso3(ω)
Converts a 3-vector to an so(3) representation.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> VecToso3([1 2 3])
3×3 Matrix{Int64}:
0 -3 2
3 0 -1
-2 1 0
```
"""
function VecToso3(ω::Array)
[ 0 -ω[3] ω[2];
ω[3] 0 -ω[1];
-ω[2] ω[1] 0 ]
end
"""
so3ToVec(so3mat)
Converts an so(3) representation to a 3-vector.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> so3ToVec([0 -3 2; 3 0 -1; -2 1 0])
3-element Vector{Int64}:
1
2
3
```
"""
function so3ToVec(so3mat::Array)
[so3mat[3, 2], so3mat[1, 3], so3mat[2, 1]]
end
"""
AxisAng3(expc3)
Converts a 3-vector of exponential coordinates for rotation into axis-angle form.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> AxisAng3([1, 2, 3])
([0.2672612419124244, 0.5345224838248488, 0.8017837257372732], 3.7416573867739413)
```
"""
AxisAng3(expc3::Array) = Normalize(expc3), LA.norm(expc3)
"""
MatrixExp3(so3mat)
Computes the matrix exponential of a matrix in so(3).
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> MatrixExp3([0 -3 2; 3 0 -1; -2 1 0])
3×3 Matrix{Float64}:
-0.694921 0.713521 0.0892929
-0.192007 -0.303785 0.933192
0.692978 0.63135 0.348107
```
"""
function MatrixExp3(so3mat::Array)
omgtheta = so3ToVec(so3mat)
if NearZero(LA.norm(omgtheta))
return LA.I
else
θ = AxisAng3(omgtheta)[2]
omgmat = so3mat / θ
return LA.I + sin(θ) * omgmat + (1 - cos(θ)) * omgmat * omgmat
end
end
"""
MatrixLog3(R)
Computes the matrix logarithm of a rotation matrix.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> MatrixLog3([0 0 1; 1 0 0; 0 1 0])
3×3 Matrix{Float64}:
0.0 -1.2092 1.2092
1.2092 0.0 -1.2092
-1.2092 1.2092 0.0
```
"""
function MatrixLog3(R::Array)
acosinput = (LA.tr(R) - 1) / 2
if acosinput >= 1
return zeros(3, 3)
elseif acosinput <= -1
if !NearZero(1 + R[3, 3])
omg = (1 / √(2 * (1 + R[3, 3]))) * [R[1, 3], R[2, 3], 1 + R[3, 3]]
elseif !NearZero(1 + R[2, 2])
omg = (1 / √(2 * (1 + R[2, 2]))) * [R[1, 2], 1 + R[2, 2], R[3, 2]]
else
omg = (1 / √(2 * (1 + R[1, 1]))) * [1 + R[1, 1], R[2, 1], R[3, 1]]
end
return VecToso3(π * omg)
else
θ = acos(acosinput)
return θ / 2 / sin(θ) * (R - R')
end
end
"""
RpToTrans(R, p)
Converts a rotation matrix and a position vector into homogeneous transformation matrix.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> RpToTrans([1 0 0; 0 0 -1; 0 1 0], [1, 2, 5])
4×4 Matrix{Int64}:
1 0 0 1
0 0 -1 2
0 1 0 5
0 0 0 1
```
"""
RpToTrans(R::Array, p::Array) = vcat(hcat(R, p), [0 0 0 1])
"""
TransToRp(T)
Converts a homogeneous transformation matrix into a rotation matrix and position vector.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> TransToRp([1 0 0 0; 0 0 -1 0; 0 1 0 3; 0 0 0 1])
([1 0 0; 0 0 -1; 0 1 0], [0, 0, 3])
```
"""
TransToRp(T::Array) = T[1:3, 1:3], T[1:3, 4]
"""
TransInv(T)
Inverts a homogeneous transformation matrix.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> TransInv([1 0 0 0; 0 0 -1 0; 0 1 0 3; 0 0 0 1])
4×4 Matrix{Int64}:
1 0 0 0
0 0 1 -3
0 -1 0 0
0 0 0 1
```
"""
function TransInv(T::Array)
R, p = TransToRp(T)
vcat(hcat(R', -R' * p), [0 0 0 1])
end
"""
VecTose3(V)
Converts a spatial velocity vector into a 4x4 matrix in se3.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> VecTose3([1 2 3 4 5 6])
4×4 Matrix{Float64}:
0.0 -3.0 2.0 4.0
3.0 0.0 -1.0 5.0
-2.0 1.0 0.0 6.0
0.0 0.0 0.0 0.0
```
"""
VecTose3(V::Array) = vcat(hcat(VecToso3(V[1:3]), V[4:6]), zeros(1, 4))
"""
se3ToVec(se3mat)
Converts an se3 matrix into a spatial velocity vector.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> se3ToVec([0 -3 2 4; 3 0 -1 5; -2 1 0 6; 0 0 0 0])
6-element Vector{Int64}:
1
2
3
4
5
6
```
"""
se3ToVec(se3mat::Array) = vcat([se3mat[3, 2],
se3mat[1, 3],
se3mat[2, 1]], se3mat[1:3, 4])
"""
Adjoint(T)
Computes the adjoint representation of a homogeneous transformation matrix.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> Adjoint([1 0 0 0; 0 0 -1 0; 0 1 0 3; 0 0 0 1])
6×6 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 3.0 1.0 0.0 0.0
3.0 0.0 0.0 0.0 0.0 -1.0
0.0 0.0 0.0 0.0 1.0 0.0
```
"""
function Adjoint(T::Array)
R, p = TransToRp(T)
vcat(hcat(R, zeros(3, 3)), hcat(VecToso3(p) * R, R))
end
"""
ScrewToAxis(q, s, h)
Takes a parametric description of a screw axis and converts it to a normalized screw axis.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> ScrewToAxis([3; 0; 0], [0; 0; 1], 2)
6-element Vector{Int64}:
0
0
1
0
-3
2
```
"""
ScrewToAxis(q::Array, s::Array, h::Number) = vcat(s, LA.cross(q, s) + h * s)
"""
AxisAng6(expc6)
Converts a 6-vector of exponential coordinates into screw axis-angle form.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> AxisAng6([1, 0, 0, 1, 2, 3])
([1.0, 0.0, 0.0, 1.0, 2.0, 3.0], 1.0)
```
"""
function AxisAng6(expc6::Array)
θ = LA.norm(expc6[1:3])
if NearZero(θ)
θ = LA.norm(expc6[3:6])
end
expc6 / θ, θ
end
"""
MatrixExp6(se3mat)
Computes the matrix exponential of an se3 representation of exponential coordinates.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> MatrixExp6([0 0 0 0; 0 0 -1.57079632 2.35619449; 0 1.57079632 0 2.35619449; 0 0 0 0])
4×4 Matrix{Float64}:
1.0 0.0 0.0 0.0
0.0 6.7949e-9 -1.0 1.01923e-8
0.0 1.0 6.7949e-9 3.0
0.0 0.0 0.0 1.0
```
"""
function MatrixExp6(se3mat::Array)
omgtheta = so3ToVec(se3mat[1:3, 1:3])
if NearZero(LA.norm(omgtheta))
return vcat(hcat(LA.I, se3mat[1:3, 4]), [0 0 0 1])
else
θ = AxisAng3(omgtheta)[2]
omgmat = se3mat[1:3, 1:3] / θ
return vcat(hcat(MatrixExp3(se3mat[1:3, 1:3]),
(LA.I * θ +
(1 - cos(θ)) * omgmat +
(θ - sin(θ)) * omgmat * omgmat) *
se3mat[1:3, 4] / θ),
[0 0 0 1])
end
end
"""
MatrixLog6(T)
Computes the matrix logarithm of a homogeneous transformation matrix.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> MatrixLog6([1 0 0 0; 0 0 -1 0; 0 1 0 3; 0 0 0 1])
4×4 Matrix{Float64}:
0.0 0.0 0.0 0.0
0.0 0.0 -1.5708 2.35619
0.0 1.5708 0.0 2.35619
0.0 0.0 0.0 0.0
```
"""
function MatrixLog6(T::Array)
R, p = TransToRp(T)
omgmat = MatrixLog3(R)
if omgmat == zeros(3, 3)
return vcat(hcat(zeros(3, 3), T[1:3, 4]), [0 0 0 0])
else
θ = acos((LA.tr(R) - 1) / 2)
return vcat(hcat(omgmat,
(LA.I - omgmat / 2 +
(1 / θ - 1 / tan(θ / 2) / 2) *
omgmat * omgmat / θ) * T[1:3, 4]),
[0 0 0 0])
end
end
"""
ProjectToSO3(mat)
Returns a projection of mat into SO(3).
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> ProjectToSO3([0.675 0.150 0.720; 0.370 0.771 -0.511; -0.630 0.619 0.472])
3×3 Matrix{Float64}:
0.679011 0.148945 0.718859
0.373207 0.773196 -0.512723
-0.632187 0.616428 0.469421
```
"""
function ProjectToSO3(mat::Array)
F = LA.svd(mat)
R = F.U * F.Vt
if LA.det(R) < 0
# In this case the result may be far from mat.
# Hmm, I think this needs to be double-checked...
R[:, Int(F.S[3])] = -R[:, Int(F.S[3])]
end
return R
end
"""
ProjectToSE3(mat)
Returns a projection of mat into SE(3).
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> ProjectToSE3([0.675 0.150 0.720 1.2; 0.370 0.771 -0.511 5.4; -0.630 0.619 0.472 3.6; 0.003 0.002 0.010 0.9])
4×4 Matrix{Float64}:
0.679011 0.148945 0.718859 1.2
0.373207 0.773196 -0.512723 5.4
-0.632187 0.616428 0.469421 3.6
0.0 0.0 0.0 1.0
```
"""
ProjectToSE3(mat::Array) = RpToTrans(ProjectToSO3(mat[1:3, 1:3]), mat[1:3, 4])
"""
DistanceToSO3(mat)
Returns the Frobenius norm to describe the distance of mat from the SO(3) manifold.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> DistanceToSO3([1.0 0.0 0.0; 0.0 0.1 -0.95; 0.0 1.0 0.1])
0.08835298523536149
```
"""
DistanceToSO3(mat::Array) = LA.det(mat) > 0 ? LA.norm(mat'mat - LA.I) : 1e+9
"""
DistanceToSE3(mat)
Returns the Frobenius norm to describe the distance of mat from the SE(3) manifold.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> DistanceToSE3([1.0 0.0 0.0 1.2; 0.0 0.1 -0.95 1.5; 0.0 1.0 0.1 -0.9; 0.0 0.0 0.1 0.98])
0.13493053768513638
```
"""
function DistanceToSE3(mat::Array)
matR = mat[1:3, 1:3]
if LA.det(matR) > 0
LA.norm(hcat(vcat(matR'matR, zeros(1, 3)), mat[4, :]) - LA.I)
else
1e+9
end
end
"""
TestIfSO3(mat)
Returns true if mat is close to or on the manifold SO(3).
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> TestIfSO3([1.0 0.0 0.0; 0.0 0.1 -0.95; 0.0 1.0 0.1])
false
```
"""
TestIfSO3(mat::Array) = abs(DistanceToSO3(mat)) < 1e-3
"""
TestIfSE3(mat)
Returns true if mat is close to or on the manifold SE(3).
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> TestIfSE3([1.0 0.0 0.0 1.2; 0.0 0.1 -0.95 1.5; 0.0 1.0 0.1 -0.9; 0.0 0.0 0.1 0.98])
false
```
"""
TestIfSE3(mat::Array) = abs(DistanceToSE3(mat)) < 1e-3
# """
# *** CHAPTER 4: FORWARD KINEMATICS ***
# """
"""
FKinBody(M, Blist, thetalist)
Computes forward kinematics in the body frame for an open chain robot.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> M = [ -1 0 0 0 ;
0 1 0 6 ;
0 0 -1 2 ;
0 0 0 1 ];
julia> Blist = [ 0 0 -1 2 0 0 ;
0 0 0 0 1 0 ;
0 0 1 0 0 0.1 ]';
julia> thetalist = [ π/2, 3, π ];
julia> FKinBody(M, Blist, thetalist)
4×4 Matrix{Float64}:
-1.14424e-17 1.0 0.0 -5.0
1.0 1.14424e-17 0.0 4.0
0.0 0.0 -1.0 1.68584
0.0 0.0 0.0 1.0
```
"""
function FKinBody(M::AbstractMatrix, Blist::AbstractMatrix, thetalist::Array)
for i = 1:length(thetalist)
M *= MatrixExp6(VecTose3(Blist[:, i] * thetalist[i]))
end
M
end
"""
FKinSpace(M, Slist, thetalist)
Computes forward kinematics in the space frame for an open chain robot.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> M = [ -1 0 0 0 ;
0 1 0 6 ;
0 0 -1 2 ;
0 0 0 1 ];
julia> Slist = [ 0 0 1 4 0 0 ;
0 0 0 0 1 0 ;
0 0 -1 -6 0 -0.1 ]';
julia> thetalist = [ π/2, 3, π ];
julia> FKinSpace(M, Slist, thetalist)
4×4 Matrix{Float64}:
-1.14424e-17 1.0 0.0 -5.0
1.0 1.14424e-17 0.0 4.0
0.0 0.0 -1.0 1.68584
0.0 0.0 0.0 1.0
```
"""
function FKinSpace(M::AbstractMatrix, Slist::AbstractMatrix, thetalist::Array)
for i = length(thetalist):-1:1
M = MatrixExp6(VecTose3(Slist[:, i] * thetalist[i])) * M
end
M
end
# """
# *** CHAPTER 5: VELOCITY KINEMATICS AND STATICS ***
# """
"""
JacobianBody(Blist, thetalist)
Computes the body Jacobian for an open chain robot.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> Blist = [0 0 1 0 0.2 0.2;
1 0 0 2 0 3;
0 1 0 0 2 1;
1 0 0 0.2 0.3 0.4]';
julia> thetalist = [0.2, 1.1, 0.1, 1.2];
julia> JacobianBody(Blist, thetalist)
6×4 Matrix{Float64}:
-0.0452841 0.995004 0.0 1.0
0.743593 0.0930486 0.362358 0.0
-0.667097 0.0361754 -0.932039 0.0
2.32586 1.66809 0.564108 0.2
-1.44321 2.94561 1.43307 0.3
-2.0664 1.82882 -1.58869 0.4
```
"""
function JacobianBody(Blist::AbstractMatrix, thetalist::Array)
T = LA.I
Jb = copy(Blist)
for i = length(thetalist)-1:-1:1
T *= MatrixExp6(VecTose3(Blist[:, i+1] * -thetalist[i+1]))
Jb[:, i] = Adjoint(T) * Blist[:, i]
end
Jb
end
"""
JacobianSpace(Slist, thetalist)
Computes the space Jacobian for an open chain robot.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> Slist = [0 0 1 0 0.2 0.2;
1 0 0 2 0 3;
0 1 0 0 2 1;
1 0 0 0.2 0.3 0.4]';
julia> thetalist = [0.2, 1.1, 0.1, 1.2];
julia> JacobianSpace(Slist, thetalist)
6×4 Matrix{Float64}:
0.0 0.980067 -0.0901156 0.957494
0.0 0.198669 0.444554 0.284876
1.0 0.0 0.891207 -0.0452841
0.0 1.95219 -2.21635 -0.511615
0.2 0.436541 -2.43713 2.77536
0.2 2.96027 3.23573 2.22512
```
"""
function JacobianSpace(Slist::AbstractMatrix, thetalist::Array)
T = LA.I
Js = copy(Slist)
for i = 2:length(thetalist)
T *= MatrixExp6(VecTose3(Slist[:, i - 1] * thetalist[i - 1]))
Js[:, i] = Adjoint(T) * Slist[:, i]
end
Js
end
# """
# *** CHAPTER 6: INVERSE KINEMATICS ***
# """
"""
IKinBody(Blist, M, T, thetalist0, eomg, ev)
Computes inverse kinematics in the body frame for an open chain robot.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> Blist = [ 0 0 -1 2 0 0 ;
0 0 0 0 1 0 ;
0 0 1 0 0 0.1 ]';
julia> M = [ -1 0 0 0 ;
0 1 0 6 ;
0 0 -1 2 ;
0 0 0 1 ];
julia> T = [ 0 1 0 -5 ;
1 0 0 4 ;
0 0 -1 1.6858 ;
0 0 0 1 ];
julia> thetalist0 = [1.5, 2.5, 3];
julia> eomg, ev = 0.01, 0.001;
julia> IKinBody(Blist, M, T, thetalist0, eomg, ev)
([1.5707381937148923, 2.999666997382942, 3.141539129217613], true)
```
"""
function IKinBody(Blist::AbstractMatrix,
M::AbstractMatrix,
T::AbstractMatrix,
thetalist0::Array,
eomg::Number,
ev::Number)
thetalist = copy(thetalist0)
i = 0
maxiterations = 20
Vb = se3ToVec(MatrixLog6(TransInv(FKinBody(M, Blist, thetalist)) * T))
err = LA.norm(Vb[1:3]) > eomg || LA.norm(Vb[4:6]) > ev
while err && i < maxiterations
thetalist += LA.pinv(JacobianBody(Blist, thetalist)) * Vb
i += 1
Vb = se3ToVec(MatrixLog6(TransInv(FKinBody(M, Blist, thetalist)) * T))
err = LA.norm(Vb[1:3]) > eomg || LA.norm(Vb[4:6]) > ev
end
return thetalist, !err
end
"""
IKinSpace(Slist, M, T, thetalist0, eomg, ev)
Computes inverse kinematics in the space frame for an open chain robot.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> Slist = [ 0 0 1 4 0 0 ;
0 0 0 0 1 0 ;
0 0 -1 -6 0 -0.1 ]';
julia> M = [ -1 0 0 0 ;
0 1 0 6 ;
0 0 -1 2 ;
0 0 0 1 ];
julia> T = [ 0 1 0 -5 ;
1 0 0 4 ;
0 0 -1 1.6858 ;
0 0 0 1 ];
julia> thetalist0 = [1.5, 2.5, 3];
julia> eomg, ev = 0.01, 0.001;
julia> IKinSpace(Slist, M, T, thetalist0, eomg, ev)
([1.5707378296567203, 2.999663844672524, 3.141534199856583], true)
```
"""
function IKinSpace(Slist::AbstractMatrix,
M::AbstractMatrix,
T::AbstractMatrix,
thetalist0::Array,
eomg::Number,
ev::Number)
thetalist = copy(thetalist0)
i = 0
maxiterations = 20
Tsb = FKinSpace(M, Slist, thetalist)
Vs = Adjoint(Tsb) * se3ToVec(MatrixLog6(TransInv(Tsb) * T))
err = LA.norm(Vs[1:3]) > eomg || LA.norm(Vs[4:6]) > ev
while err && i < maxiterations
thetalist += LA.pinv(JacobianSpace(Slist, thetalist)) * Vs
i += 1
Tsb = FKinSpace(M, Slist, thetalist)
Vs = Adjoint(Tsb) * se3ToVec(MatrixLog6(TransInv(Tsb) * T))
err = LA.norm(Vs[1:3]) > eomg || LA.norm(Vs[4:6]) > ev
end
thetalist, !err
end
# """
# *** CHAPTER 8: DYNAMICS OF OPEN CHAINS ***
# """
"""
ad(V)
Calculate the 6x6 matrix [adV] of the given 6-vector.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> ad([1, 2, 3, 4, 5, 6])
6×6 Matrix{Float64}:
0.0 -3.0 2.0 0.0 0.0 0.0
3.0 0.0 -1.0 0.0 0.0 0.0
-2.0 1.0 0.0 0.0 0.0 0.0
0.0 -6.0 5.0 0.0 -3.0 2.0
6.0 0.0 -4.0 3.0 0.0 -1.0
-5.0 4.0 0.0 -2.0 1.0 0.0
```
"""
function ad(V::Array)
omgmat = VecToso3(V[1:3])
vcat(hcat(omgmat, zeros(3, 3)),
hcat(VecToso3(V[4:6]), omgmat))
end
"""
InverseDynamics(thetalist, dthetalist, ddthetalist, g, Ftip, Mlist, Glist, Slist)
Computes inverse dynamics in the space frame for an open chain robot.
"""
function InverseDynamics(thetalist::Array,
dthetalist::Array,
ddthetalist::Array,
g::Array,
Ftip::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix)
n = length(thetalist)
Mi = LA.I
Ai = zeros(eltype(thetalist), 6, n)
AdTi = Array{Array{eltype(thetalist), 2}}(undef, n + 1)
Vi = zeros(eltype(thetalist), 6, n + 1)
Vdi = zeros(eltype(thetalist), 6, n + 1)
Vdi[:, 1] = vcat(zeros(eltype(thetalist), 3), -g)
AdTi[n+1] = Adjoint(TransInv(Mlist[n+1]))
Fi = copy(Ftip)
taulist = zeros(eltype(thetalist), n)
for i = 1:n
Mi *= Mlist[i]
Ai[:, i] = Adjoint(TransInv(Mi)) * Slist[:, i]
AdTi[i] = Adjoint(MatrixExp6(VecTose3(Ai[:, i] * -thetalist[i])) *
TransInv(Mlist[i]))
Vi[:, i + 1] = AdTi[i] * Vi[:,i] + Ai[:, i] * dthetalist[i]
Vdi[:, i + 1] = AdTi[i] * Vdi[:, i] + Ai[:, i] * ddthetalist[i] +
ad(Vi[:, i + 1]) * Ai[:, i] * dthetalist[i]
end
for i = n:-1:1
Fi = AdTi[i + 1]' * Fi + Glist[i] * Vdi[:, i + 1] -
ad(Vi[:, i + 1])' * Glist[i] * Vi[:, i + 1]
taulist[i] = Fi' * Ai[:, i]
end
return taulist
end
"""
MassMatrix(thetalist, Mlist, Glist, Slist)
Computes the mass matrix of an open chain robot based on the given configuration.
"""
function MassMatrix(thetalist::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix)
n = length(thetalist)
M = zeros(n, n)
for i = 1:n
ddthetalist = zeros(n)
ddthetalist[i] = 1
M[:, i] = InverseDynamics(thetalist, zeros(n), ddthetalist, zeros(3),
zeros(6), Mlist, Glist, Slist)
end
return M
end
"""
VelQuadraticForces(thetalist, dthetalist, Mlist, Glist, Slist)
Computes the Coriolis and centripetal terms in the inverse dynamics of an open chain robot.
"""
function VelQuadraticForces(thetalist::Array,
dthetalist::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix)
InverseDynamics(thetalist, dthetalist, zeros(length(thetalist)),
zeros(3), zeros(6), Mlist, Glist, Slist)
end
"""
GravityForces(thetalist, g, Mlist, Glist, Slist)
Computes the joint forces/torques an open chain robot requires to overcome gravity at its configuration.
"""
function GravityForces(thetalist::Array,
g::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix)
n = length(thetalist)
InverseDynamics(thetalist, zeros(n), zeros(n), g, zeros(6), Mlist, Glist, Slist)
end
"""
EndEffectorForces(thetalist, Ftip, Mlist, Glist, Slist)
Computes the joint forces/torques an open chain robot requires only to create the end-effector force `Ftip`.
# Arguments
- `thetalist`: the ``n``-vector of joint variables.
- `Ftip`: the spatial force applied by the end-effector expressed in frame `{n+1}`.
- `Mlist`: the list of link frames `i` relative to `i-1` at the home position.
- `Glist`: the spatial inertia matrices `Gi` of the links.
- `Slist`: the screw axes `Si` of the joints in a space frame, in the format of a matrix with axes as the columns.
Returns the joint forces and torques required only to create the end-effector force `Ftip`.
This function calls InverseDynamics with `g = 0`, `dthetalist = 0`, and `ddthetalist = 0`.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> import LinearAlgebra as LA
julia> thetalist = [0.1, 0.1, 0.1]
3-element Vector{Float64}:
0.1
0.1
0.1
julia> Ftip = [1, 1, 1, 1, 1, 1]
6-element Vector{Int64}:
1
1
1
1
1
1
julia> M01 = [1 0 0 0;
0 1 0 0;
0 0 1 0.089159;
0 0 0 1]
4×4 Matrix{Float64}:
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.089159
0.0 0.0 0.0 1.0
julia> M12 = [ 0 0 1 0.28;
0 1 0 0.13585;
-1 0 0 0;
0 0 0 1]
4×4 Matrix{Float64}:
0.0 0.0 1.0 0.28
0.0 1.0 0.0 0.13585
-1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
julia> M23 = [1 0 0 0;
0 1 0 -0.1197;
0 0 1 0.395;
0 0 0 1]
4×4 Matrix{Float64}:
1.0 0.0 0.0 0.0
0.0 1.0 0.0 -0.1197
0.0 0.0 1.0 0.395
0.0 0.0 0.0 1.0
julia> M34 = [1 0 0 0;
0 1 0 0;
0 0 1 0.14225;
0 0 0 1]
4×4 Matrix{Float64}:
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.14225
0.0 0.0 0.0 1.0
julia> Mlist = [M01, M12, M23, M34]
4-element Vector{Matrix{Float64}}:
[1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0; 0.0 0.0 1.0 0.089159; 0.0 0.0 0.0 1.0]
[0.0 0.0 1.0 0.28; 0.0 1.0 0.0 0.13585; -1.0 0.0 0.0 0.0; 0.0 0.0 0.0 1.0]
[1.0 0.0 0.0 0.0; 0.0 1.0 0.0 -0.1197; 0.0 0.0 1.0 0.395; 0.0 0.0 0.0 1.0]
[1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0; 0.0 0.0 1.0 0.14225; 0.0 0.0 0.0 1.0]
julia> G1 = LA.Diagonal([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7])
6×6 LinearAlgebra.Diagonal{Float64, Vector{Float64}}:
0.010267 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0.010267 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0.00666 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 3.7 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 3.7 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 3.7
julia> G2 = LA.Diagonal([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393])
6×6 LinearAlgebra.Diagonal{Float64, Vector{Float64}}:
0.22689 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0.22689 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0.0151074 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 8.393 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 8.393 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 8.393
julia> G3 = LA.Diagonal([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275])
6×6 LinearAlgebra.Diagonal{Float64, Vector{Float64}}:
0.0494433 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 0.0494433 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 0.004095 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 2.275 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 2.275 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 2.275
julia> Glist = [G1, G2, G3]
3-element Vector{LinearAlgebra.Diagonal{Float64, Vector{Float64}}}:
[0.010267 0.0 … 0.0 0.0; 0.0 0.010267 … 0.0 0.0; … ; 0.0 0.0 … 3.7 0.0; 0.0 0.0 … 0.0 3.7]
[0.22689 0.0 … 0.0 0.0; 0.0 0.22689 … 0.0 0.0; … ; 0.0 0.0 … 8.393 0.0; 0.0 0.0 … 0.0 8.393]
[0.0494433 0.0 … 0.0 0.0; 0.0 0.0494433 … 0.0 0.0; … ; 0.0 0.0 … 2.275 0.0; 0.0 0.0 … 0.0 2.275]
julia> Slist = [ 1 0 1 0 1 0;
0 1 0 -0.089 0 0;
0 1 0 -0.089 0 0.425]'
6×3 adjoint(::Matrix{Float64}) with eltype Float64:
1.0 0.0 0.0
0.0 1.0 1.0
1.0 0.0 0.0
0.0 -0.089 -0.089
1.0 0.0 0.0
0.0 0.0 0.425
julia> EndEffectorForces(thetalist, Ftip, Mlist, Glist, Slist)
3-element Vector{Float64}:
1.4095460782639782
1.857714972318063
1.392409
```
"""
function EndEffectorForces(thetalist::Array,
Ftip::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix)
n = length(thetalist)
InverseDynamics(thetalist, zeros(n), zeros(n), zeros(3), Ftip, Mlist, Glist, Slist)
end
"""
ForwardDynamics(thetalist, dthetalist, taulist, g, Ftip, Mlist, Glist, Slist)
Computes forward dynamics in the space frame for an open chain robot.
"""
function ForwardDynamics(thetalist::Array,
dthetalist::Array,
taulist::Array,
g::Array,
Ftip::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix)
LA.inv(MassMatrix(thetalist, Mlist, Glist, Slist)) *
(taulist - VelQuadraticForces(thetalist, dthetalist, Mlist, Glist, Slist)
- GravityForces(thetalist, g, Mlist, Glist, Slist)
- EndEffectorForces(thetalist, Ftip, Mlist, Glist, Slist))
end
"""
EulerStep(thetalist, dthetalist, ddthetalist, dt)
Compute the joint angles and velocities at the next timestep using first order Euler integration.
# Arguments
- `thetalist`: the ``n``-vector of joint variables.
- `dthetalist`: the ``n``-vector of joint rates.
- `ddthetalist`: the ``n``-vector of joint accelerations.
- `dt`: the timestep delta t.
# Return
- `thetalistNext`: the vector of joint variables after `dt` from first order Euler integration.
- `dthetalistNext`: the vector of joint rates after `dt` from first order Euler integration.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> EulerStep([0.1, 0.1, 0.1], [0.1, 0.2, 0.3], [2, 1.5, 1], 0.1)
([0.11000000000000001, 0.12000000000000001, 0.13], [0.30000000000000004, 0.35000000000000003, 0.4])
```
"""
function EulerStep(thetalist::Array, dthetalist::Array, ddthetalist::Array, dt::Number)
thetalist + dt * dthetalist, dthetalist + dt * ddthetalist
end
"""
InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, g, Ftipmat, Mlist, Glist, Slist)
Calculates the joint forces/torques required to move the serial chain along the given trajectory using inverse dynamics.
"""
function InverseDynamicsTrajectory(thetamat::Array,
dthetamat::Array,
ddthetamat::Array,
g::Array,
Ftipmat::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix)
thetamat = thetamat'
dthetamat = dthetamat'
ddthetamat = ddthetamat'
Ftipmat = Ftipmat'
taumat = copy(thetamat)
for i = 1:size(thetamat, 2)
taumat[:, i] = InverseDynamics(thetamat[:, i], dthetamat[:, i],
ddthetamat[:, i], g, Ftipmat[:, i],
Mlist, Glist, Slist)
end
taumat'
end
"""
ForwardDynamicsTrajectory(thetalist, dthetalist, taumat, g, Ftipmat, Mlist, Glist, Slist, dt, intRes)
Simulates the motion of a serial chain given an open-loop history of joint forces/torques.
"""
function ForwardDynamicsTrajectory(thetalist::Array,
dthetalist::Array,
taumat::AbstractMatrix,
g::Array,
Ftipmat::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix,
dt::Number,
intRes::Number)
taumat = taumat'
Ftipmat = Ftipmat'
thetamat = copy(taumat)
thetamat[:, 1] = thetalist
dthetamat = copy(taumat)
dthetamat[:, 1] = dthetalist
for i = 1:size(taumat, 2)-1
for j = 1:intRes
ddthetalist = ForwardDynamics(thetalist, dthetalist, taumat[:, i], g, Ftipmat[:, i], Mlist, Glist, Slist)
thetalist, dthetalist = EulerStep(thetalist, dthetalist, ddthetalist, 1.0 * dt / intRes)
end
thetamat[:, i + 1] = thetalist
dthetamat[:, i + 1] = dthetalist
end
thetamat = thetamat'
dthetamat = dthetamat'
return thetamat, dthetamat
end
# """
# *** CHAPTER 9: TRAJECTORY GENERATION ***
# """
"""
CubicTimeScaling(Tf, t)
Computes s(t) for a cubic time scaling.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> CubicTimeScaling(2, 0.6)
0.21600000000000003
```
"""
CubicTimeScaling(Tf::Number, t::Number) = 3(t / Tf)^2 - 2(t / Tf)^3
"""
QuinticTimeScaling(Tf, t)
Computes s(t) for a quintic time scaling.
# Examples
```jldoctest; setup = :(using ModernRoboticsBook)
julia> QuinticTimeScaling(2, 0.6)
0.16308
```
"""
QuinticTimeScaling(Tf::Number, t::Number) = 10(t / Tf)^3 - 15(t / Tf)^4 + 6(t / Tf)^5
"""
JointTrajectory(thetastart, thetaend, Tf, N, method)
Computes a straight-line trajectory in joint space.
"""
function JointTrajectory(thetastart::Array, thetaend::Array, Tf::Number, N::Integer, method::Integer)
timegap = Tf / (N - 1)
traj = zeros(length(thetastart), N)
for i = 1:N
if method == 3
s = CubicTimeScaling(Tf, timegap * (i - 1))
else
s = QuinticTimeScaling(Tf, timegap * (i - 1))
end
traj[:, i] = s * thetaend + (1 - s) * thetastart
end
traj'
end
"""
ScrewTrajectory(Xstart, Xend, Tf, N, method)
Computes a trajectory as a list of N SE(3) matrices corresponding to the screw motion about a space screw axis.
"""
function ScrewTrajectory(Xstart::Array, Xend::Array, Tf::Number, N::Integer, method::Integer)
timegap = Tf / (N - 1)
traj = Array{Array{Float64, 2}}(undef, N)
for i = 1:N
if method == 3
s = CubicTimeScaling(Tf, timegap * (i - 1))
else
s = QuinticTimeScaling(Tf, timegap * (i - 1))
end
traj[i] = Xstart * MatrixExp6(MatrixLog6(TransInv(Xstart) * Xend) * s)
end
return traj
end
"""
CartesianTrajectory(Xstart, Xend, Tf, N, method)
Computes a trajectory as a list of N SE(3) matrices corresponding to the origin of the end-effector frame following a straight line.
"""
function CartesianTrajectory(Xstart::Array, Xend::Array, Tf::Number, N::Integer, method::Integer)
timegap = Tf / (N - 1)
traj = Array{Array{Float64, 2}}(undef, N)
Rstart, pstart = TransToRp(Xstart)
Rend, pend = TransToRp(Xend)
for i = 1:N
if method == 3
s = CubicTimeScaling(Tf, timegap * (i - 1))
else
s = QuinticTimeScaling(Tf, timegap * (i - 1))
end
traj[i] = vcat(hcat(Rstart * MatrixExp3(MatrixLog3(Rstart' * Rend) * s), s * pend + (1 - s) * pstart), [0 0 0 1])
end
return traj
end
# """
# *** CHAPTER 11: ROBOT CONTROL ***
# """
"""
ComputedTorque(thetalist, dthetalist, eint, g, Mlist, Glist, Slist, thetalistd, dthetalistd, ddthetalistd, Kp, Ki, Kd)
Computes the joint control torques at a particular time instant.
"""
function ComputedTorque(thetalist::Array,
dthetalist::Array,
eint::Array,
g::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix,
thetalistd::Array,
dthetalistd::Array,
ddthetalistd::Array,
Kp::Number,
Ki::Number,
Kd::Number)
e = thetalistd - thetalist
MassMatrix(thetalist, Mlist, Glist, Slist) *
(Kp * e + Ki * (eint + e) + Kd * (dthetalistd - dthetalist)) +
InverseDynamics(thetalist, dthetalist, ddthetalistd, g,
zeros(6), Mlist, Glist, Slist)
end
"""
SimulateControl(thetalist, dthetalist, g, Ftipmat, Mlist, Glist,
Slist, thetamatd, dthetamatd, ddthetamatd, gtilde,
Mtildelist, Gtildelist, Kp, Ki, Kd, dt, intRes)
Simulates the computed torque controller over a given desired trajectory.
"""
function SimulateControl(thetalist::Array,
dthetalist::Array,
g::Array,
Ftipmat::Array,
Mlist::Array,
Glist::Array,
Slist::AbstractMatrix,
thetamatd::Array,
dthetamatd::Array,
ddthetamatd::Array,
gtilde::Array,
Mtildelist::Array,
Gtildelist::Array,
Kp::Number,
Ki::Number,
Kd::Number,
dt::Number,
intRes::Number)
Ftipmat = Ftipmat'
thetamatd = thetamatd'
dthetamatd = dthetamatd'
ddthetamatd = ddthetamatd'
m, n = size(thetamatd)
thetacurrent = copy(thetalist)
dthetacurrent = copy(dthetalist)
eint = reshape(zeros(m, 1), (m,))
taumat = zeros(size(thetamatd))
thetamat = zeros(size(thetamatd))
for i = 1:n
taulist = ComputedTorque(thetacurrent, dthetacurrent, eint, gtilde, Mtildelist, Gtildelist, Slist, thetamatd[:, i], dthetamatd[:, i], ddthetamatd[:, i], Kp, Ki, Kd)
for j = 1:intRes
ddthetalist = ForwardDynamics(thetacurrent, dthetacurrent, taulist, g, Ftipmat[:, i], Mlist, Glist, Slist)
thetacurrent, dthetacurrent = EulerStep(thetacurrent, dthetacurrent, ddthetalist, dt / intRes)
end
taumat[:, i] = taulist
thetamat[:, i] = thetacurrent
eint += dt * (thetamatd[:, i] - thetacurrent)
end
taumat', thetamat'
end
end # module
| ModernRoboticsBook | https://github.com/ferrolho/ModernRoboticsBook.jl.git |
|
[
"MIT"
] | 0.1.2 | e04b4f229d811e4d7f44e2607e6ca42da1088c13 | code | 26345 | using Aqua
using ModernRoboticsBook
using Test
import LinearAlgebra as LA
Aqua.test_all(ModernRoboticsBook)
@testset "ModernRoboticsBook.jl" begin
@testset "basic helper functions" begin
@test NearZero(-1e-7)
@test Normalize([1, 2, 3]) == [0.2672612419124244,
0.5345224838248488,
0.8017837257372732]
end
@testset "chapter 3: rigid-body motions" begin
@test RotInv([0 0 1; 1 0 0; 0 1 0]) == [0 1 0; 0 0 1; 1 0 0]
@test VecToso3([1, 2, 3]) == [0 -3 2; 3 0 -1; -2 1 0]
@test so3ToVec([0 -3 2; 3 0 -1; -2 1 0]) == [1, 2, 3]
@test AxisAng3([1, 2, 3]) == ([0.2672612419124244,
0.5345224838248488,
0.8017837257372732], 3.7416573867739413)
@test isapprox(MatrixExp3([ 0 -3 2;
3 0 -1;
-2 1 0]),
[-0.694921 0.713521 0.0892929
-0.192007 -0.303785 0.933192
0.692978 0.63135 0.348107 ]; rtol=1e-6)
@test MatrixExp3(zeros(3, 3)) == [1 0 0; 0 1 0; 0 0 1]
@test isapprox(MatrixLog3([0 0 1;
1 0 0;
0 1 0]),
[ 0.0 -1.2092 1.2092
1.2092 0.0 -1.2092
-1.2092 1.2092 0.0 ]; rtol=1e-6)
@test MatrixLog3(zeros(3, 3)) == zeros(3, 3)
@test MatrixLog3([-3 0 0; 0 1 0; 0 0 1]) == [0 -π 0; π 0 0; 0 0 0]
@test MatrixLog3([-2 0 0; 0 1 0; 0 0 -1]) == [0 0 π; 0 0 0; -π 0 0]
@test MatrixLog3([1 0 0; 0 -1 0; 0 0 -1]) == [0 0 0; 0 0 -π; 0 π 0]
@test RpToTrans([1 0 0;
0 0 -1;
0 1 0], [1, 2, 5]) == [1 0 0 1
0 0 -1 2
0 1 0 5
0 0 0 1]
@test TransToRp([1 0 0 0;
0 0 -1 0;
0 1 0 3;
0 0 0 1]) == ([1 0 0;
0 0 -1;
0 1 0], [0, 0, 3])
@test TransInv([1 0 0 0;
0 0 -1 0;
0 1 0 3;
0 0 0 1]) == [1 0 0 0
0 0 1 -3
0 -1 0 0
0 0 0 1]
@test VecTose3([1, 2, 3, 4, 5, 6]) == [ 0 -3 2 4
3 0 -1 5
-2 1 0 6
0 0 0 0]
@test se3ToVec([ 0 -3 2 4;
3 0 -1 5;
-2 1 0 6;
0 0 0 0]) == [1, 2, 3, 4, 5, 6]
@test Adjoint([1 0 0 0;
0 0 -1 0;
0 1 0 3;
0 0 0 1]) == [1 0 0 0 0 0
0 0 -1 0 0 0
0 1 0 0 0 0
0 0 3 1 0 0
3 0 0 0 0 -1
0 0 0 0 1 0]
@test ScrewToAxis([3; 0; 0], [0; 0; 1], 2) == [0, 0, 1, 0, -3, 2]
@test AxisAng6([1, 0, 0, 1, 2, 3]) == ([1, 0, 0, 1, 2, 3], 1)
@test AxisAng6([0, 0, 0, 0, 0, 4]) == ([0, 0, 0, 0, 0, 1], 4)
@test MatrixExp6([0 0 0 0 ;
0 0 -π/2 3π/4;
0 π/2 0 3π/4;
0 0 0 0 ]) ≈ [1 0 0 0;
0 0 -1 0;
0 1 0 3;
0 0 0 1]
@test MatrixLog6([1 0 0 0;
0 0 -1 0;
0 1 0 3;
0 0 0 1]) ≈ [0 0 0 0 ;
0 0 -π/2 3π/4;
0 π/2 0 3π/4;
0 0 0 0 ]
@test MatrixLog6(Array(LA.Diagonal(ones(4)))) == zeros(4, 4)
@test isapprox(ProjectToSO3([ 0.675 0.150 0.720;
0.370 0.771 -0.511;
-0.630 0.619 0.472]),
[ 0.679011 0.148945 0.718859
0.373207 0.773196 -0.512723
-0.632187 0.616428 0.469421]; rtol=1e-6)
@test ProjectToSO3([-1 0 0; 0 -1 0; 0 0 -1]) == [1 0 0; 0 -1 0; 0 0 -1]
@test isapprox(ProjectToSE3([ 0.675 0.150 0.720 1.2;
0.370 0.771 -0.511 5.4;
-0.630 0.619 0.472 3.6;
0.003 0.002 0.010 0.9]),
[ 0.679011 0.148945 0.718859 1.2
0.373207 0.773196 -0.512723 5.4
-0.632187 0.616428 0.469421 3.6
0.0 0.0 0.0 1.0]; rtol=1e-6)
@test DistanceToSO3([1.0 0.0 0.0 ;
0.0 0.1 -0.95;
0.0 1.0 0.1 ]) == 0.08835298523536149
@test DistanceToSE3([1.0 0.0 0.0 1.2 ;
0.0 0.1 -0.95 1.5 ;
0.0 1.0 0.1 -0.9 ;
0.0 0.0 0.1 0.98]) == 0.13493053768513638
@test DistanceToSE3(Array(reshape(1:9, (3, 3)))) >= 1e+9
@test !TestIfSO3([1.0 0.0 0.0 ;
0.0 0.1 -0.95;
0.0 1.0 0.1 ])
@test !TestIfSE3([1.0 0.0 0.0 1.2 ;
0.0 0.1 -0.95 1.5 ;
0.0 1.0 0.1 -0.9 ;
0.0 0.0 0.1 0.98])
end
@testset "chapter 4: forward kinematics" begin
M = [-1 0 0 0 ;
0 1 0 6 ;
0 0 -1 2 ;
0 0 0 1 ]
Blist = [ 0 0 -1 2 0 0 ;
0 0 0 0 1 0 ;
0 0 1 0 0 0.1 ]'
Slist = [ 0 0 1 4 0 0 ;
0 0 0 0 1 0 ;
0 0 -1 -6 0 -0.1 ]'
thetalist = [ π/2, 3, π ]
@test isapprox(FKinBody(M, Blist, thetalist),
[-1.14424e-17 1.0 0.0 -5.0 ;
1.0 1.14424e-17 0.0 4.0 ;
0.0 0.0 -1.0 1.68584 ;
0.0 0.0 0.0 1.0 ]; rtol=1e-6)
@test isapprox(FKinSpace(M, Slist, thetalist),
[-1.14424e-17 1.0 0.0 -5.0 ;
1.0 1.14424e-17 0.0 4.0 ;
0.0 0.0 -1.0 1.68584 ;
0.0 0.0 0.0 1.0 ]; rtol=1e-6)
end
@testset "chapter 5: velocity kinematics and statics" begin
Blist = [0 0 1 0 0.2 0.2;
1 0 0 2 0 3;
0 1 0 0 2 1;
1 0 0 0.2 0.3 0.4]'
Slist = [0 0 1 0 0.2 0.2;
1 0 0 2 0 3;
0 1 0 0 2 1;
1 0 0 0.2 0.3 0.4]'
thetalist = [0.2, 1.1, 0.1, 1.2]
@test isapprox(JacobianBody(Blist, thetalist),
[ -0.0452841 0.995004 0.0 1.0 ;
0.743593 0.0930486 0.362358 0.0 ;
-0.667097 0.0361754 -0.932039 0.0 ;
2.32586 1.66809 0.564108 0.2 ;
-1.44321 2.94561 1.43307 0.3 ;
-2.0664 1.82882 -1.58869 0.4 ]; rtol=1e-5)
@test isapprox(JacobianSpace(Slist, thetalist),
[0.0 0.980067 -0.0901156 0.957494 ;
0.0 0.198669 0.444554 0.284876 ;
1.0 0.0 0.891207 -0.0452841;
0.0 1.95219 -2.21635 -0.511615 ;
0.2 0.436541 -2.43713 2.77536 ;
0.2 2.96027 3.23573 2.22512 ]; rtol=1e-5)
end
@testset "chapter 6: inverse kinematics" begin
Blist = [ 0 0 -1 2 0 0 ;
0 0 0 0 1 0 ;
0 0 1 0 0 0.1 ]'
Slist = [ 0 0 1 4 0 0 ;
0 0 0 0 1 0 ;
0 0 -1 -6 0 -0.1 ]'
M = [ -1 0 0 0 ;
0 1 0 6 ;
0 0 -1 2 ;
0 0 0 1 ]
T = [ 0 1 0 -5 ;
1 0 0 4 ;
0 0 -1 1.6858 ;
0 0 0 1 ]
thetalist0 = [1.5, 2.5, 3]
eomg, ev = 0.01, 0.001
thetalist, success = IKinBody(Blist, M, T, thetalist0, eomg, ev)
@test isapprox(thetalist, [1.57074, 2.99967, 3.14154]; rtol=1e-5)
@test success
thetalist, success = IKinSpace(Slist, M, T, thetalist0, eomg, ev)
@test isapprox(thetalist, [1.57074, 2.99966, 3.14153]; rtol=1e-5)
@test success
end
@testset "chapter 8: dynamics of open chains" begin
@test ad([1, 2, 3, 4, 5, 6]) == [ 0.0 -3.0 2.0 0.0 0.0 0.0
3.0 0.0 -1.0 0.0 0.0 0.0
-2.0 1.0 0.0 0.0 0.0 0.0
0.0 -6.0 5.0 0.0 -3.0 2.0
6.0 0.0 -4.0 3.0 0.0 -1.0
-5.0 4.0 0.0 -2.0 1.0 0.0 ]
thetalist = [0.1, 0.1, 0.1]
dthetalist = [0.1, 0.2, 0.3]
ddthetalist = [2, 1.5, 1]
g = [0, 0, -9.8]
Ftip = [1, 1, 1, 1, 1, 1]
M01 = [1 0 0 0 ;
0 1 0 0 ;
0 0 1 0.089159 ;
0 0 0 1 ]
M12 = [0 0 1 0.28 ;
0 1 0 0.13585 ;
-1 0 0 0 ;
0 0 0 1 ]
M23 = [1 0 0 0 ;
0 1 0 -0.1197 ;
0 0 1 0.395 ;
0 0 0 1 ]
M34 = [1 0 0 0 ;
0 1 0 0 ;
0 0 1 0.14225 ;
0 0 0 1 ]
G1 = LA.Diagonal([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7])
G2 = LA.Diagonal([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393])
G3 = LA.Diagonal([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275])
Glist = [G1, G2, G3]
Mlist = [M01, M12, M23, M34]
Slist = [ 1 0 1 0 1 0 ;
0 1 0 -0.089 0 0 ;
0 1 0 -0.089 0 0.425 ]'
taulist_actual = InverseDynamics(thetalist, dthetalist, ddthetalist, g, Ftip, Mlist, Glist, Slist)
@test taulist_actual ≈ [74.69616155287451, -33.06766015851458, -3.230573137901424]
@test isapprox(MassMatrix(thetalist, Mlist, Glist, Slist),
[ 22.5433 -0.307147 -0.00718426;
-0.307147 1.96851 0.432157 ;
-0.00718426 0.432157 0.191631 ]; rtol=1e-5)
@test VelQuadraticForces(thetalist, dthetalist, Mlist, Glist, Slist) ≈ [ 0.26453118054501235 ;
-0.0550515682891655 ;
-0.006891320068248911]
@test GravityForces(thetalist, g, Mlist, Glist, Slist) ≈ [ 28.40331261821983 ;
-37.64094817177068 ;
-5.4415891999683605]
@test EndEffectorForces(thetalist, Ftip, Mlist, Glist, Slist) ≈ [ 1.4095460782639782;
1.8577149723180628;
1.392409 ]
taulist = [0.5, 0.6, 0.7]
@test ForwardDynamics(thetalist, dthetalist, taulist, g, Ftip, Mlist, Glist, Slist) ≈ [ -0.9739290670855626;
25.584667840340558 ;
-32.91499212478149 ]
@test hcat(EulerStep([0.1, 0.1, 0.1], [0.1, 0.2, 0.3], [2, 1.5, 1], 0.1)...) ≈ hcat([0.11, 0.12, 0.13], [0.3, 0.35, 0.4])
@testset "inverse dynamics trajectory" begin
thetastart = [0, 0, 0]
thetaend = [π/2, π/2, π/2]
Tf = 3
N = 10
method = 5
traj = JointTrajectory(thetastart, thetaend, Tf, N, method)
thetamat = copy(traj)
dthetamat = zeros(N, 3)
ddthetamat = zeros(N, 3)
dt = Tf / (N - 1)
for i = 1:size(traj, 1) - 1
dthetamat[i + 1, :] = (thetamat[i + 1, :] - thetamat[i, :]) / dt
ddthetamat[i + 1, :] = (dthetamat[i + 1, :] - dthetamat[i, :]) / dt
end
Ftipmat = ones(N, 6)
taumat_actual = InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, g, Ftipmat, Mlist, Glist, Slist)
taumat_expected = [ 1.32297079e+01 -3.62621080e+01 -4.18134100e+00 ;
1.96974217e+01 -3.59188701e+01 -4.07919728e+00 ;
5.11979532e+01 -3.44705050e+01 -3.59488765e+00 ;
9.41368122e+01 -3.14099606e+01 -2.41622731e+00 ;
1.25417579e+02 -2.45283212e+01 5.76295281e-02 ;
1.24948454e+02 -1.85038921e+01 1.94898550e+00 ;
1.01525941e+02 -1.88375820e+01 2.07369432e+00 ;
7.68134579e+01 -2.23610568e+01 1.96172027e+00 ;
6.44365965e+01 -2.46704062e+01 2.07890001e+00 ;
6.72354909e+01 -2.47008371e+01 2.19474783e+00 ]
@test taumat_actual ≈ taumat_expected
end
@testset "forward dynamics trajectory" begin
taumat = [ 3.63 -6.58 -5.57 ; 3.74 -5.55 -5.5 ;
4.31 -0.68 -5.19 ; 5.18 5.63 -4.31 ;
5.85 8.17 -2.59 ; 5.78 2.79 -1.7 ;
4.99 -5.3 -1.19 ; 4.08 -9.41 0.07 ;
3.56 -10.1 0.97 ; 3.49 -9.41 1.23 ]
Ftipmat = ones(size(taumat, 1), 6)
dt = 0.1
intRes = 8
thetamat_expected = [ 0.1 0.1 0.1 ;
0.10643138 0.2625997 -0.22664947 ;
0.10197954 0.71581297 -1.22521632 ;
0.0801044 1.33930884 -2.28074132 ;
0.0282165 2.11957376 -3.07544297 ;
-0.07123855 2.87726666 -3.83289684 ;
-0.20136466 3.397858 -4.83821609 ;
-0.32380092 3.73338535 -5.98695747 ;
-0.41523262 3.85883317 -7.01130559 ;
-0.4638099 3.63178793 -7.63190052 ]
dthetamat_expected = [ 0.1 0.2 0.3 ;
0.01212502 3.42975773 -7.74792602 ;
-0.13052771 5.55997471 -11.22722784 ;
-0.35521041 7.11775879 -9.18173035 ;
-0.77358795 8.17307573 -7.05744594 ;
-1.2350231 6.35907497 -8.99784746 ;
-1.31426299 4.07685875 -11.18480509 ;
-1.06794821 2.49227786 -11.69748583 ;
-0.70264871 -0.55925705 -8.16067131 ;
-0.1455669 -4.57149985 -3.43135114 ]
thetamat_actual, dthetamat_actual = ForwardDynamicsTrajectory(thetalist, dthetalist, taumat, g, Ftipmat, Mlist, Glist, Slist, dt, intRes)
@test thetamat_actual ≈ thetamat_expected
@test dthetamat_actual ≈ dthetamat_expected
end
end
@testset "chapter 9: trajectory generation" begin
@test CubicTimeScaling(2, 0.6) ≈ 0.216
@test QuinticTimeScaling(2, 0.6) ≈ 0.16308
@testset "joint trajectory" begin
thetastart = [1, 0, 0, 1, 1, 0.2, 0,1]
thetaend = [1.2, 0.5, 0.6, 1.1, 2, 2, 0.9, 1]
Tf = 4
N = 6
method = 3
expected = [ 1 0 0 1 1 0.2 0 1 ;
1.0208 0.052 0.0624 1.0104 1.104 0.3872 0.0936 1 ;
1.0704 0.176 0.2112 1.0352 1.352 0.8336 0.3168 1 ;
1.1296 0.324 0.3888 1.0648 1.648 1.3664 0.5832 1 ;
1.1792 0.448 0.5376 1.0896 1.896 1.8128 0.8064 1 ;
1.2 0.5 0.6 1.1 2 2 0.9 1 ]
@test JointTrajectory(thetastart, thetaend, Tf, N, method) ≈ expected
end
@testset "screw trajectory" begin
Xstart = [1 0 0 1 ;
0 1 0 0 ;
0 0 1 1 ;
0 0 0 1 ]
Xend = [0 0 1 0.1 ;
1 0 0 0 ;
0 1 0 4.1 ;
0 0 0 1 ]
Tf = 5
N = 4
method = 3
expected = [[ 1 0 0 1 ;
0 1 0 0 ;
0 0 1 1 ;
0 0 0 1 ],
[ 0.904 -0.25 0.346 0.441 ;
0.346 0.904 -0.25 0.529 ;
-0.25 0.346 0.904 1.601 ;
0 0 0 1 ],
[ 0.346 -0.25 0.904 -0.117 ;
0.904 0.346 -0.25 0.473 ;
-0.25 0.904 0.346 3.274 ;
0 0 0 1 ],
[ 0 0 1 0.1 ;
1 0 0 0 ;
0 1 0 4.1 ;
0 0 0 1 ]]
actual = ScrewTrajectory(Xstart, Xend, Tf, N, method)
@test isapprox(actual, expected; rtol=1e-3)
end
@testset "cartesian trajectory" begin
Xstart = [ 1 0 0 1 ;
0 1 0 0 ;
0 0 1 1 ;
0 0 0 1 ]
Xend = [ 0 0 1 0.1 ;
1 0 0 0 ;
0 1 0 4.1 ;
0 0 0 1 ]
Tf = 5
N = 4
method = 5
expected = [[ 1 0 0 1 ;
0 1 0 0 ;
0 0 1 1 ;
0 0 0 1 ],
[ 0.937 -0.214 0.277 0.811 ;
0.277 0.937 -0.214 0 ;
-0.214 0.277 0.937 1.651 ;
0 0 0 1 ],
[ 0.277 -0.214 0.937 0.289 ;
0.937 0.277 -0.214 0 ;
-0.214 0.937 0.277 3.449 ;
0 0 0 1 ],
[ 0 0 1 0.1 ;
1 0 0 0 ;
0 1 0 4.1 ;
0 0 0 1 ]]
actual = CartesianTrajectory(Xstart, Xend, Tf, N, method)
@test isapprox(actual, expected; rtol=1e-3)
end
end
@testset "chapter 11: robot control" begin
thetalist = [0.1, 0.1, 0.1]
dthetalist = [0.1, 0.2, 0.3]
# Initialise robot description (Example with 3 links)
g = [0, 0, -9.8]
M01 = [1 0 0 0 ;
0 1 0 0 ;
0 0 1 0.089159 ;
0 0 0 1 ]
M12 = [0 0 1 0.28 ;
0 1 0 0.13585 ;
-1 0 0 0 ;
0 0 0 1 ]
M23 = [1 0 0 0 ;
0 1 0 -0.1197 ;
0 0 1 0.395 ;
0 0 0 1 ]
M34 = [1 0 0 0 ;
0 1 0 0 ;
0 0 1 0.14225 ;
0 0 0 1 ]
G1 = LA.Diagonal([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7])
G2 = LA.Diagonal([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393])
G3 = LA.Diagonal([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275])
Mlist = [M01, M12, M23, M34]
Glist = [G1, G2, G3]
Slist = [ 1 0 1 0 1 0 ;
0 1 0 -0.089 0 0 ;
0 1 0 -0.089 0 0.425 ]'
# Create a trajectory to follow
thetaend = [π / 2, π, 1.5 * π]
Tf = 1
dt = 0.05
N = Int(Tf / dt)
method = 5
traj = JointTrajectory(thetalist, thetaend, Tf, N, method)
thetamatd = copy(traj)
dthetamatd = zeros(N, 3)
ddthetamatd = zeros(N, 3)
dt = Tf / (N - 1)
for i = 1:size(traj, 1) - 1
dthetamatd[i + 1, :] = (thetamatd[i + 1, :] - thetamatd[i, :]) / dt
ddthetamatd[i + 1, :] = (dthetamatd[i + 1, :] - dthetamatd[i, :]) / dt
end
# Possibly wrong robot description (Example with 3 links)
gtilde = [0.8, 0.2, -8.8]
Mhat01 = [1 0 0 0;
0 1 0 0;
0 0 1 0.1;
0 0 0 1]
Mhat12 = [0 0 1 0.3;
0 1 0 0.2;
-1 0 0 0;
0 0 0 1]
Mhat23 = [1 0 0 0;
0 1 0 -0.2;
0 0 1 0.4;
0 0 0 1]
Mhat34 = [1 0 0 0;
0 1 0 0;
0 0 1 0.2;
0 0 0 1]
Ghat1 = LA.Diagonal([0.1, 0.1, 0.1, 4, 4, 4])
Ghat2 = LA.Diagonal([0.3, 0.3, 0.1, 9, 9, 9])
Ghat3 = LA.Diagonal([0.1, 0.1, 0.1, 3, 3, 3])
Gtildelist = [Ghat1, Ghat2, Ghat3]
Mtildelist = [Mhat01, Mhat12, Mhat23, Mhat34]
# Other required arguments
Ftipmat = ones(size(traj, 1), 6)
Kp = 20
Ki = 10
Kd = 18
intRes = 8
taumat_expected = [ -14.2640765 -54.06797429 -11.265448 ;
71.7014572 -17.58330542 3.86417108 ;
208.80692807 6.94442209 8.4352746 ;
269.9223766 14.44412677 11.24081382 ;
316.48343344 6.4020598 10.60970699 ;
327.82241593 -3.98984379 14.31752441 ;
248.33306921 -16.39336633 21.61795095 ;
93.7564835 -28.5575642 28.0092122 ;
13.12918592 -44.38407547 19.04258057 ;
56.35246455 -8.56189073 1.69770764 ;
32.68030349 39.77791901 -5.94800597 ;
-49.85502041 37.95496258 -15.10367806 ;
-104.48630504 24.8129766 -16.25667052 ;
-123.14920836 -3.62727714 -14.4680164 ;
-84.15220471 -25.40152665 -12.85439272 ;
-50.09890916 -33.73575763 -12.38441089 ;
-30.41466046 -34.03362524 -11.30974711 ;
-13.90701987 -26.40700004 -9.50026445 ;
7.93416317 -12.95474009 -6.58132646 ;
44.38627151 4.53534718 -2.32611269 ]
thetamat_expected = [ 0.1028237 0.10738308 0.07715206 ;
0.10475535 0.11170712 0.05271794 ;
0.11930448 0.13796752 0.12315113 ;
0.1582068 0.21615938 0.27654789 ;
0.22464764 0.35314707 0.51117109 ;
0.31872944 0.54551689 0.81897456 ;
0.4377715 0.78011155 1.21554584 ;
0.57501633 1.03974866 1.71548388 ;
0.72137128 1.30551854 2.2916328 ;
0.87221934 1.56564069 2.84693996 ;
1.0257972 1.841874 3.32092634 ;
1.17352729 2.14460368 3.72255083 ;
1.30459739 2.44287634 4.03953656 ;
1.41155584 2.71108778 4.28079221 ;
1.49166143 2.92224332 4.45724092 ;
1.54707169 3.06503575 4.57357234 ;
1.579692 3.14295613 4.62867261 ;
1.59184568 3.1665363 4.62924012 ;
1.58827951 3.15316968 4.59115503 ;
1.57746305 3.12631855 4.54394792 ]
taumat_actual, thetamat_actual = SimulateControl(thetalist, dthetalist, g, Ftipmat, Mlist, Glist,
Slist, thetamatd, dthetamatd, ddthetamatd, gtilde,
Mtildelist, Gtildelist, Kp, Ki, Kd, dt, intRes)
@test taumat_actual ≈ taumat_expected
@test thetamat_actual ≈ thetamat_expected
end
end
| ModernRoboticsBook | https://github.com/ferrolho/ModernRoboticsBook.jl.git |
|
[
"MIT"
] | 0.1.2 | e04b4f229d811e4d7f44e2607e6ca42da1088c13 | docs | 1877 | # ModernRoboticsBook.jl
[![Stable][docs-stable-img]][docs-stable-url]
[![Dev][docs-dev-img]][docs-dev-url]
[![Build Status][travis-img]][travis-url]
[![Build Status][appveyor-img]][appveyor-url]
[![Codecov][codecov-img]][codecov-url]
[![Coveralls][coveralls-img]][coveralls-url]
[![Aqua QA][aqua-img]][aqua-url]
Some examples can be found on the [Examples](https://ferrolho.github.io/ModernRoboticsBook.jl/dev/man/examples/) page.
See the [Index](https://ferrolho.github.io/ModernRoboticsBook.jl/dev/#main-index-1) for the complete list of documented functions and types.
## Installation
The latest release of **ModernRoboticsBook** can be installed from the Julia REPL prompt with
```julia
julia> import Pkg; Pkg.add("ModernRoboticsBook")
```
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://ferrolho.github.io/ModernRoboticsBook.jl/stable
[docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg
[docs-dev-url]: https://ferrolho.github.io/ModernRoboticsBook.jl/dev
[travis-img]: https://app.travis-ci.com/ferrolho/ModernRoboticsBook.jl.svg?branch=master
[travis-url]: https://app.travis-ci.com/ferrolho/ModernRoboticsBook.jl
[appveyor-img]: https://ci.appveyor.com/api/projects/status/github/ferrolho/ModernRoboticsBook.jl?svg=true
[appveyor-url]: https://ci.appveyor.com/project/ferrolho/ModernRoboticsBook-jl
[codecov-img]: https://codecov.io/gh/ferrolho/ModernRoboticsBook.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/ferrolho/ModernRoboticsBook.jl
[coveralls-img]: https://coveralls.io/repos/github/ferrolho/ModernRoboticsBook.jl/badge.svg?branch=master
[coveralls-url]: https://coveralls.io/github/ferrolho/ModernRoboticsBook.jl?branch=master
[aqua-img]: https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg
[aqua-url]: https://github.com/JuliaTesting/Aqua.jl
| ModernRoboticsBook | https://github.com/ferrolho/ModernRoboticsBook.jl.git |
|
[
"MIT"
] | 0.1.2 | e04b4f229d811e4d7f44e2607e6ca42da1088c13 | docs | 552 | # ModernRoboticsBook.jl
Some examples can be found on the [Examples](@ref) page.
See the [Index](@ref main-index) for the complete list of documented functions and types.
## Installation
The latest release of **ModernRoboticsBook** can be installed from the Julia REPL prompt with
```julia
julia> Pkg.add("ModernRoboticsBook")
```
## Manual Outline
```@contents
Pages = [
"man/examples.md",
]
Depth = 1
```
## Library Outline
```@contents
Pages = ["lib/public.md"]
```
### [Index](@id main-index)
```@index
Pages = ["lib/public.md"]
```
| ModernRoboticsBook | https://github.com/ferrolho/ModernRoboticsBook.jl.git |
|
[
"MIT"
] | 0.1.2 | e04b4f229d811e4d7f44e2607e6ca42da1088c13 | docs | 256 | # Public Documentation
Documentation for `ModernRoboticsBook.jl`'s public interface.
## Contents
```@contents
Pages = ["public.md"]
```
## Index
```@index
Pages = ["public.md"]
```
## Public Interface
```@autodocs
Modules = [ModernRoboticsBook]
```
| ModernRoboticsBook | https://github.com/ferrolho/ModernRoboticsBook.jl.git |
|
[
"MIT"
] | 0.1.2 | e04b4f229d811e4d7f44e2607e6ca42da1088c13 | docs | 5553 | # Examples
Here are some examples for Forward and Inverse Dynamics Trajectories, and Control Simulation.
## Contents
```@contents
Pages = ["examples.md"]
```
## Inverse Dynamics Trajectory
```julia
using ModernRoboticsBook
import LinearAlgebra
const linalg = LinearAlgebra;
```
Create a trajectory to follow using functions from Chapter 9:
```julia
thetastart = [0, 0, 0]
thetaend = [π / 2, π / 2, π / 2]
Tf = 3
N = 1000
method = 5
traj = JointTrajectory(thetastart, thetaend, Tf, N, method)
thetamat = copy(traj)
dthetamat = zeros(1000, 3)
ddthetamat = zeros(1000, 3)
dt = Tf / (N - 1.0)
for i = 1:size(traj, 1) - 1
dthetamat[i + 1, :] = (thetamat[i + 1, :] - thetamat[i, :]) / dt
ddthetamat[i + 1, :] = (dthetamat[i + 1, :] - dthetamat[i, :]) / dt
end
```
Initialize robot description (example with 3 links):
```julia
g = [0, 0, -9.8]
Ftipmat = ones(N, 6)
M01 = [ 1 0 0 0 ;
0 1 0 0 ;
0 0 1 0.089159 ;
0 0 0 1 ]
M12 = [ 0 0 1 0.28 ;
0 1 0 0.13585 ;
-1 0 0 0 ;
0 0 0 1 ]
M23 = [ 1 0 0 0 ;
0 1 0 -0.1197 ;
0 0 1 0.395 ;
0 0 0 1 ]
M34 = [ 1 0 0 0 ;
0 1 0 0 ;
0 0 1 0.14225 ;
0 0 0 1 ]
Mlist = [M01, M12, M23, M34]
G1 = linalg.Diagonal([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7])
G2 = linalg.Diagonal([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393])
G3 = linalg.Diagonal([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275])
Glist = [G1, G2, G3]
Slist = [ 1 0 1 0 1 0 ;
0 1 0 -0.089 0 0 ;
0 1 0 -0.089 0 0.425 ]'
taumat = InverseDynamicsTrajectory(thetamat, dthetamat, ddthetamat, g, Ftipmat, Mlist, Glist, Slist)
```
Plot the joint forces/torques:
```julia
using Plots
gr()
timestamp = range(1, Tf, length=N)
plot(timestamp, taumat[:, 1], linewidth=2, label="Tau 1")
plot!(timestamp, taumat[:, 2], linewidth=2, label="Tau 2")
plot!(timestamp, taumat[:, 3], linewidth=2, label="Tau 3")
xlabel!("Time")
ylabel!("Torque")
title!("Plot of Torque Trajectories")
```

## Forward Dynamics Trajectory
```julia
dt = 0.1
intRes = 8
thetalist = [0.1, 0.1, 0.1]
dthetalist = [0.1, 0.2, 0.3]
taumat = [[3.63, -6.58, -5.57], [3.74, -5.55, -5.5],
[4.31, -0.68, -5.19], [5.18, 5.63, -4.31],
[5.85, 8.17, -2.59], [5.78, 2.79, -1.7],
[4.99, -5.3, -1.19], [4.08, -9.41, 0.07],
[3.56, -10.1, 0.97], [3.49, -9.41, 1.23]]
taumat = cat(taumat..., dims=2)'
thetamat, dthetamat = ForwardDynamicsTrajectory(thetalist, dthetalist, taumat, g,
Ftipmat, Mlist, Glist, Slist, dt, intRes)
```
Plot the joint angle/velocities:
```julia
theta1 = thetamat[:, 1]
theta2 = thetamat[:, 2]
theta3 = thetamat[:, 3]
dtheta1 = dthetamat[:, 1]
dtheta2 = dthetamat[:, 2]
dtheta3 = dthetamat[:, 3]
N = size(taumat, 1)
Tf = size(taumat, 1) * dt
timestamp = range(0, Tf, length=N)
plot(timestamp, theta1, linewidth=2, label="Theta1")
plot!(timestamp, theta2, linewidth=2, label="Theta2")
plot!(timestamp, theta3, linewidth=2, label="Theta3")
plot!(timestamp, dtheta1, linewidth=2, label="DTheta1")
plot!(timestamp, dtheta2, linewidth=2, label="DTheta2")
plot!(timestamp, dtheta3, linewidth=2, label="DTheta3")
xlabel!("Time")
ylabel!("Joint Angles/Velocities")
title!("Plot of Joint Angles and Joint Velocities")
```

## Simulate Control
Create a trajectory to follow:
```julia
thetaend = [π / 2, π, 1.5 * π]
Tf = 1
dt = 0.01
N = round(Int, Tf / dt)
method = 5
traj = JointTrajectory(thetalist, thetaend, Tf, N, method)
thetamatd = copy(traj)
dthetamatd = zeros(N, 3)
ddthetamatd = zeros(N, 3)
dt = Tf / (N - 1)
for i = 1:size(traj, 1)-1
dthetamatd[i + 1, :] = (thetamatd[i + 1, :] - thetamatd[i, :]) / dt
ddthetamatd[i + 1, :] = (dthetamatd[i + 1, :] - dthetamatd[i, :]) / dt
end
```
Create a (possibly) wrong robot description:
```julia
gtilde = [0.8, 0.2, -8.8]
Mhat01 = [1 0 0 0 ;
0 1 0 0 ;
0 0 1 0.1 ;
0 0 0 1 ]
Mhat12 = [ 0 0 1 0.3 ;
0 1 0 0.2 ;
-1 0 0 0 ;
0 0 0 1 ]
Mhat23 = [1 0 0 0 ;
0 1 0 -0.2 ;
0 0 1 0.4 ;
0 0 0 1 ]
Mhat34 = [1 0 0 0 ;
0 1 0 0 ;
0 0 1 0.2 ;
0 0 0 1 ]
Mtildelist = [Mhat01, Mhat12, Mhat23, Mhat34]
Ghat1 = linalg.Diagonal([0.1, 0.1, 0.1, 4, 4, 4])
Ghat2 = linalg.Diagonal([0.3, 0.3, 0.1, 9, 9, 9])
Ghat3 = linalg.Diagonal([0.1, 0.1, 0.1, 3, 3, 3])
Gtildelist = [Ghat1, Ghat2, Ghat3]
Ftipmat = ones(size(traj, 1), 6)
Kp = 20
Ki = 10
Kd = 18
intRes = 8
taumat, thetamat = SimulateControl(thetalist, dthetalist, g, Ftipmat, Mlist, Glist,
Slist, thetamatd, dthetamatd, ddthetamatd, gtilde,
Mtildelist, Gtildelist, Kp, Ki, Kd, dt, intRes)
```
Finally, plot the results:
```julia
N, links = size(thetamat)
Tf = N * dt
timestamp = range(0, Tf, length=N)
plot()
for i = 1:links
plot!(timestamp, thetamat[:, i], lw=2, linestyle=:dash, label="ActualTheta $i")
plot!(timestamp, thetamatd[:, i], lw=2, linestyle=:dot, label="DesiredTheta $i")
end
xlabel!("Time")
ylabel!("Joint Angles")
title!("Plot of Actual and Desired Joint Angles")
```

| ModernRoboticsBook | https://github.com/ferrolho/ModernRoboticsBook.jl.git |
|
[
"MIT"
] | 0.1.7 | 76e8797d9bb184f55b1a24f92056fb78b1839bf2 | code | 9002 | #= License
Copyright 2019, 2020 (c) Yossi Bokor Katharine Turner
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
=#
__precompile__()
module PersistentHomologyTransfer
#### Requirements ####
using CSV
using Hungarian
using DataFrames
using LinearAlgebra
using SparseArrays
using Eirene
#### Exports ####
export PHT,
Recenter,
Direction_Filtration,
Evaluate_Barcode,
Total_Rank_Exact,
Total_Rank_Grid,
Total_Rank_Auto,
Average_Rank_Grid,
Create_Heat_Map,
Set_Mean_Zero,
Weighted_Inner_Product,
Weighted_Inner_Product_Matrix,
Principal_Component_Scores,
Average_Discretised_Rank,
unittest
#### First some functions to recenter the curves ####
function Find_Center(points)
n_p = size(points,1)
c_x = Float64(0)
c_y = Float64(0)
for i in 1:n_p
c_x += points[i,1]
c_y += points[i,2]
end
return Float64(c_x/n_p), Float64(c_y/n_p)
end
function Recenter(points)
points = convert(Array{Float64}, points)
center = Find_Center(points)
for i in 1:size(points)[1]
points[i,1] = points[i,1] - center[1]
points[i,2] = points[i,2] - center[2]
end
return points
end
function Evaluate_Rank(barcode, point)
n = size(barcode)[1]
count = 0
if point[2] < point[1]
#return 0
else
for i in 1:n
if barcode[i,1] <= point[1]
if barcode[i,2] >= point[2]
count +=1
end
end
end
return count
end
end
function Total_Rank_Exact(barcode)
@assert size(barcode,2) == 2
rks = []
n = size(barcode,1)
b = copy(barcode)
reshape(b, 2,n)
for i in 1:n
for j in 1:n
if barcode[i,1] < barcode[j,1]
if barcode[i,2] < barcode[j,2]
b = vcat(b, [barcode[j,1] barcode[i,2]])
m += 1
end
end
end
end
for i in 1:n
append!(rks, Evaluate_Rank(barcode, b[i,:]))
end
return b, rks
end
function Total_Rank_Grid(barcode, x_g, y_g) #the grid should be an array, with 0s in all entries below the second diagonal.
@assert size(x_g) == size(y_g) #I should maybe change this as you don't REALLY need to use the same size grid.....
n_g = size(x_g,1)
rks = zeros(n_g,n_g)
n_p = size(barcode,1)
for i in 1:n_p
point = barcode[i,:]
x_i = findfirst(>=(point[1]), x_g)
y_i = findfirst(<=(point[2]), y_g)
for j in x_i:n_g-y_i+1
for k in j:n_g-y_i+1
rks[n_g-k+1,j] += 1
end
end
end
return rks
end
function Average_Rank_Grid(list_of_barcodes, x_g, y_g)
rks = zeros(length(x_g),length(y_g))
n_b = length(list_of_barcodes)
for i in 1:n_b
rk_i = Total_Rank_Grid(list_of_barcodes[i], x_g,y_g)
rks = rks .+ rk_i
end
rks = rks/n_b
return rks
end
function Average_Rank_Point(list_of_barcodes, x,y)
rk = 0
n_b = length(list_of_barcodes)
if y >= x
for i in 1:n_b
rk += Evaluate_Rank(list_of_barcodes[i], [x,y])
end
return rk/n_b
else
return 0
end
end
function Create_Heat_Map(barcode, x_g, y_g)
f(x,y) = begin
if x > y
return 0
else
return Evaluate_Rank(barcode,[x,y])
end
end
#Z = map(f, X, Y)
p1 = contour(x_g, y_g, f, fill=true)
return p1
end
# Let us do PCA for the rank functions using Kate and Vanessa's paper.
# So, I first need to calculate the pointwise norm
function Set_Mean_Zero(discretised_ranks)
n_r = length(discretised_ranks)
println(n_r)
grid_size = size(discretised_ranks[1])
for i in 1:n_r
@assert size(discretised_ranks[i]) == grid_size
end
mu = zeros(grid_size)
for i in 1:n_r
mu = mu .+ discretised_ranks[i]
end
mu = mu./n_r
normalised = []
for i in 1:n_r
append!(normalised, [discretised_ranks[i] .- mu])
end
return normalised
end
function Weighted_Inner_Product(disc_rank_1, disc_rank_2, weights)
wip = sum((disc_rank_1.*disc_rank_2).*weights)
return wip
end
function Weighted_Inner_Product_Matrix(discretised_ranks, weights)
n_r = length(discretised_ranks)
D = Array{Float64}(undef, n_r, n_r)
for i in 1:n_r
for j in i:n_r
wip = Weighted_Inner_Product(discretised_ranks[i], discretised_ranks[j], weights)
D[i,j] = wip
D[j,i] = wip
end
end
return D
end
function Principal_Component_Scores(inner_prod_matrix, dimension)
F = LinearAlgebra.eigen(inner_prod_matrix, permute = false, scale=false) # this sorts the eigenvectors in ascending order
n_r = size(inner_prod_matrix,1)
lambda = Array{Float64}(undef, 1,dimension)
w = Array{Float64}(undef, size(F.vectors)[1],dimension)
n_v = length(F.values)
for i in 1:dimension
lambda[i] = F.values[n_v-i+1]
w[:,i] = F.vectors[:,n_v-i+1]
end
s = Array{Float64}(undef, n_r,dimension)
for i in 1:size(inner_prod_matrix,1)
for j in 1:dimension
den = sqrt(sum([w[k,j]*sum(w[l,j]*inner_prod_matrix[k,l] for l in 1:n_r) for k in 1:n_r]))
numerator = sum(w[:,j].*inner_prod_matrix[:,i])
s[i,j] = numerator/den
end
end
return s
end
function Average_Discretised_Rank(list_of_disc_ranks)
average = Array{Float64}(undef, size(list_of_disc_ranks[1]))
n_r = length(list_of_disc_ranks)
for i in n_r
average = average .+ list_of_disc_ranks[i]
end
return average/n_r
end
function Direction_Filtration(ordered_points, direction; out = "barcode")
number_of_points = length(ordered_points[:,1]) #number of points
heights = zeros(number_of_points) #empty array to be changed to heights for filtration
fv = zeros(2*number_of_points) #blank fv Eirene
for i in 1:number_of_points
heights[i]= ordered_points[i,1]*direction[1] + ordered_points[i,2]*direction[2] #calculate heights in specificed direction
end
for i in 1:number_of_points
fv[i]= heights[i] # for a point the filtration step is the height
end
for i in 1:(number_of_points-1)
fv[(i+number_of_points)]=maximum([heights[i], heights[i+1]]) # for an edge between two adjacent points it enters when the 2nd of the two points does
end
fv[2*number_of_points] = maximum([heights[1] , heights[number_of_points]]) #last one is a special snowflake
dv = [] # template dv for Eirene
for i in 1:number_of_points
append!(dv,0) # every point is 0 dimensional
end
for i in (1+number_of_points):(2*number_of_points)
append!(dv,1) # edges are 1 dimensional
end
D = zeros((2*number_of_points, 2*number_of_points))
for i in 1:number_of_points
D[i,(i+number_of_points)]=1 # create boundary matrix and put in entries
end
for i in 2:(number_of_points)
D[i, (i+number_of_points-1)]=1 # put in entries for boundary matrix
end
D[1, (2*number_of_points)]=1
ev = [number_of_points, number_of_points] # template ev for Eirene
S = sparse(D) # converting as required for Eirene
rv = S.rowval # converting as required for Eirene
cp = S.colptr # converting as required for Eirene
C = Eirene.eirene(rv=rv,cp=cp,ev=ev,fv=fv) # put it all into Eirene
if out == "barcode"
return barcode(C, dim=0)
else
return C
end
end
#### Wrapper for the PHT function ####
function PHT(curve_points, directions) ##accepts an ARRAY of points
if typeof(directions) == Int64
println("auto generating directions")
dirs = Array{Float64}(undef, directions,2)
for n in 1:directions
dirs[n,1] = cos(n*pi/(directions/2))
dirs[n,2] = sin(n*pi/(directions/2))
end
println("Directions are:")
println(dirs)
else
println("using directions provided")
dirs = copy(directions)
end
pht = []
for i in 1:size(dirs,1)
pd = Direction_Filtration(curve_points, dirs[i,:])
pht = vcat(pht, [pd])
end
return pht
end
#### Wrapper for PCA ####
function PCA(ranks, dimension, weights)
normalised = Set_Mean_Zero(ranks)
D = Weighted_InnerProd_Matrix(normalised, weights)
return Principal_Component_Scores(D, dimension)
end
#### Unittests ####
function test_1()
return PHT([0,0,0],0)
end
function test_2()
pht = PHT([1 1; 5 5], 1)
if pht == [0.9999999999999998 4.999999999999999]
return []
else
println("Error: test_2, pht = ")
return pht
end
end
function unittest()
x = Array{Any}(undef, 2)
x[1] = test_1()
x[2] = test_2()
for p = 1:length(x)
if !isempty(x[p])
println(p)
return x
end
end
return []
end
end# module
| PersistentHomologyTransfer | https://github.com/yossibokor/PersistentHomologyTransfer.jl.git |
|
[
"MIT"
] | 0.1.7 | 76e8797d9bb184f55b1a24f92056fb78b1839bf2 | code | 89 | using PersistentHomologyTransfer
using JLDEirene
using Base.Test
@test unittest() == []
| PersistentHomologyTransfer | https://github.com/yossibokor/PersistentHomologyTransfer.jl.git |
|
[
"MIT"
] | 0.1.7 | 76e8797d9bb184f55b1a24f92056fb78b1839bf2 | docs | 4430 | # PersistentHomologyTransfer.jl
Persistent Homology Transform is produced and maintained by \
Yossi Bokor and Katharine Turner \
<[email protected]> and <[email protected]>
This package provides an implementation of the Persistent Homology Transform, as defined in [Persistent Homology Transform for Modeling Shapes and Surfaces](https://arxiv.org/abs/1310.1030). It also does Rank Functions of Persistence Diagrams, and implements [Principal Component Analysis of Rank functions](https://www.sciencedirect.com/science/article/pii/S0167278916000476).
## Installation
Currently, the best way to install PersistentHomologyTransfer is to run the following in `Julia`:
```julia
using Pkg
Pkg.add("PersistentHomologyTransfer")
```
## Functionality
- PersistentHomologyTransfer computes the Persistent Homology Transform of simple, closed curves in $\mathbb{R}^2$.
- Rank functions of persistence diagrams.
- Principal Component Analysis of Rank Functions.
### Persistent Homology Transform
Given an $m \times 2$ matrix of ordered points sampled from a simple, closed curve $C \subset \mathbb{R}^2$ (in either a clockwise or anti-clockwise direction), calculate the Persistent Homology Transform for a set of directions. You can either specify the directions explicity as a $n \times 2$ array (`directions::Array{Float64}(n,2)`), or specify an integer (`directions::Int64`) and then the directions used will be generated by
```julia
angles = [n*pi/(directions/2) for n in 1:directions]
directions = [[cos(x), sin(x)] for x in angles]
```
To perform the Persistent Homology Transfer for the directions, run
```julia
PHT(points, directions)
```
This outputs an array of [Eirene](https://github.com/Eetion/Eirene.jl) Persistence Diagrams, one for each direction.
### Rank Functions
Given an [Eirene](https://github.com/Eetion/Eirene.jl) Persistence Diagram $D$, PersistentHomologyTransfer can calculate the Rank Function $r_D$ either exactly, or given a grid of points, calculate a discretised version. Recall that $D$ is an $n \times 2$ array of points, and hence the function `Total_Rank_Exact` accepts an $n \times 2$ array of points, and returns a list of points critical points of the Rank function and the value at each of these points. Running
```julia
rk = Total_Rank_Exact(barcode)
```
we obtain the critical points via
```julia
rk[1]
```
which returns an array of points in $\mathbb{R}^2$, and the values through
```julia
rk[2]
```
wich returns an array of integers.
To obtain a discrete approximation of a Rank Function over a persistence diagram $D$, use `Total_Rank_Grid`, which acceps as input an [Eirene](https://github.com/Eetion/Eirene.jl) Persistence Diagram $D$, an increasing `StepRange` for $x$-coordinates `x_g`, and a decreasing `StepRange` for $y$-coordinates `y_g`. The `StepRanges` are obtained by running
```julia
x_g = lb:delta:ub
x_g = ub:-delta:lb
```
with `lb` being the lower bound so that $(lb, lb)$ is the lower left corner of the grid, and `ub` being the upper bound so that $(ub,ub)$ is the top right corner of the grid, and $delta$ is the step size.
Finally, the rank is obtained by
```julia
rk = Total_Rank_Grid(D, x_g, y_g)
```
which returns an array or values.
### PCA of Rank Functions
Given a set of rank functions, we can perform principal component analysis on them. The easiest way to do this is to use the wrapper function `PCA` which has inputs an array of rank functions evaluated at the same points (best to use `Total_Rank_Grid` to obtain them), an dimension $d$ and an array of weights `weights`, where the weights correspond to the grid points used in `Total_Rank_Grid`.
To perform Principal Component Analysis and obtain the scores run
```julia
scores = PCA(ranks, d, weights)
```
which returns the scores in $d$-dimensions.
## Examples
### Persistent Homology Transfer
We will go through an example using a random [shape](https://github.com/yossibokor/PersistentHomologyTransfer.jl/Example/Example1.png) and 20 directions. You can download the CSV file from [here](https://github.com/yossibokor/PersistentHomologyTransfer.jl/Example/Example1.csv)
To begin, load the CSV file into an array in Julia
```julia
Boundary = CSV.read("<path/to/file>")
Persistence_Diagrams = PHT(Boundary, 20)
```
You can then access the persistence diagram corresponding to the $i^{th}$ direction as
```julia
Persistence_Diagrams[i]
```
<!---### Rank Functions -->
| PersistentHomologyTransfer | https://github.com/yossibokor/PersistentHomologyTransfer.jl.git |
|
[
"MIT"
] | 1.4.0 | e8f41ed9a2cabf6699d9906c195bab1f773d4ca7 | code | 3854 | __precompile__()
module TikzGraphs
export plot, Layouts
import Graphs: DiGraph, Graph, vertices, edges, src, dst
preamble = read(joinpath(dirname(@__FILE__), "..", "src", "preamble.tex"), String)
const AbstractGraph = Union{Graph, DiGraph}
using TikzPictures
module Layouts
export Layered, Spring, SpringElectrical, SimpleNecklace
abstract type Layout end
struct Layered <: Layout
sib_dist
lev_dist
Layered(;sib_dist=-1,lev_dist=-1) = new(sib_dist,lev_dist)
end
struct Spring <: Layout
randomSeed
dist
Spring(;randomSeed=42,dist=-1) = new(randomSeed,dist)
end
struct SpringElectrical <: Layout
randomSeed
charge
dist
SpringElectrical(;randomSeed=42,charge=1.,dist=-1) = new(randomSeed,charge,dist)
end
struct SimpleNecklace <: Layout
end
end
using .Layouts
plot(g, layout::Layouts.Layout, labels::Vector{T}=map(string, vertices(g)); args...) where {T<:AbstractString} = plot(g; layout=layout, labels=labels, args...)
plot(g, labels::Vector{T}; args...) where {T<:AbstractString} = plot(g; layout=Layered(), labels=labels, args...)
function edgeHelper(o::IOBuffer, a, b, edge_labels, edge_styles, edge_style)
print(o, " [$(edge_style),")
if haskey(edge_labels, (a,b))
print(o, "edge label={$(edge_labels[(a,b)])},")
end
if haskey(edge_styles, (a,b))
print(o, "$(edge_styles[(a,b)]),")
end
print(o, "] ")
end
function nodeHelper(o::IOBuffer, v, labels, node_styles, node_style)
print(o, "$v/\"$(labels[v])\" [$(node_style)")
if haskey(node_styles, v)
print(o, ",$(node_styles[v])")
end
println(o, "],")
end
# helper function for edge type
edge_str(g::DiGraph) = "->"
edge_str(g::Graph) = "--"
function plot(g::AbstractGraph; layout::Layouts.Layout = Layered(), labels::Vector{T}=map(string, vertices(g)), edge_labels::Dict = Dict(), node_styles::Dict = Dict(), node_style="", edge_styles::Dict = Dict(), edge_style="", options="", graph_options="", prepend_preamble::String="") where T<:AbstractString
o = IOBuffer()
println(o, "\\graph [$(layoutname(layout)), $(options_str(layout)), $graph_options] {")
for v in vertices(g)
nodeHelper(o, v, labels, node_styles, node_style)
end
println(o, ";")
for e in edges(g)
a = src(e)
b = dst(e)
print(o, "$a $(edge_str(g))")
edgeHelper(o, a, b, edge_labels, edge_styles, edge_style)
println(o, "$b;")
end
println(o, "};")
mypreamble = prepend_preamble * preamble * "\n\\usegdlibrary{$(libraryname(layout))}"
TikzPicture(String(take!(o)), preamble=mypreamble, options=options)
end
for (_layout, _libraryname, _layoutname) in [
(:Layered, "layered", "layered layout"),
(:Spring, "force", "spring layout"),
(:SpringElectrical, "force", "spring electrical layout"),
(:SimpleNecklace, "circular", "simple necklace layout")
]
@eval libraryname(p::$(_layout)) = $_libraryname
@eval layoutname(p::$(_layout)) = $_layoutname
end
options_str(p::Layouts.Layout) = ""
function options_str(p::Layouts.Layered)
sib_str = ""
lev_str = ""
if p.sib_dist > 0
sib_str="sibling distance=$(p.sib_dist)mm,"
end
if p.lev_dist > 0
lev_str = "level distance=$(p.lev_dist)mm,"
end
return sib_str*lev_str
end
function options_str(p::Spring)
if p.dist == -1
return "random seed = $(p.randomSeed),"
else
return "random seed = $(p.randomSeed), node distance=$(p.dist),"
end
end
function options_str(p::SpringElectrical)
if p.dist == -1
return "random seed = $(p.randomSeed), electric charge=$(p.charge),"
else
return "random seed = $(p.randomSeed), electric charge=$(p.charge), node distance=$(p.dist),"
end
end
end # module
| TikzGraphs | https://github.com/JuliaTeX/TikzGraphs.jl.git |
|
[
"MIT"
] | 1.4.0 | e8f41ed9a2cabf6699d9906c195bab1f773d4ca7 | code | 149 | using TikzGraphs
using Test
@assert success(`lualatex -v`)
using NBInclude
@nbinclude joinpath(dirname(@__FILE__), "..", "doc", "TikzGraphs.ipynb")
| TikzGraphs | https://github.com/JuliaTeX/TikzGraphs.jl.git |
|
[
"MIT"
] | 1.4.0 | e8f41ed9a2cabf6699d9906c195bab1f773d4ca7 | docs | 478 | # TikzGraphs
[](https://github.com/JuliaTeX/TikzGraphs.jl/actions)
[](https://codecov.io/gh/JuliaTeX/TikzGraphs.jl)
This library generates graph layouts using the TikZ graph layout package.
Read the [documentation](http://nbviewer.ipython.org/github/JuliaTeX/TikzGraphs.jl/blob/master/doc/TikzGraphs.ipynb).
| TikzGraphs | https://github.com/JuliaTeX/TikzGraphs.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 2198 | using Documenter
using GeometricProblems
using DocumenterCitations
# if the docs are generated with github actions, then this changes the path; see: https://github.com/JuliaDocs/Documenter.jl/issues/921
const buildpath = haskey(ENV, "CI") ? ".." : ""
const bib = CitationBibliography(joinpath(@__DIR__, "src", "GeometricProblems.bib"))
makedocs(;
plugins = [bib],
sitename = "GeometricProblems.jl",
format = Documenter.HTML(;
prettyurls = get(ENV, "CI", nothing) == "true",
assets = [
"assets/extra_styles.css",
],
),
pages = ["Home" => "index.md",
"Diagnostics" => "diagnostics.md",
"ABC Flow" => "abc_flow.md",
"Coupled Harmonic Oscillator" => "coupled_harmonic_oscillator.md",
"Double Pendulum" => "double_pendulum.md",
"Harmonic Oscillator" => "harmonic_oscillator.md",
"Hénon-Heiles System" => "henon_heiles.md",
"Kepler Problem" => "kepler_problem.md",
"Linear Wave Equation" => "linear_wave.md",
"Lorenz Attractor" => "lorenz_attractor.md",
"Lotka-Volterra 2d" => "lotka_volterra_2d.md",
"Lotka-Volterra 3d" => "lotka_volterra_3d.md",
"Lotka-Volterra 4d" => "lotka_volterra_4d.md",
"Massless Charged Particle" => "massless_charged_particle.md",
"Mathematical Pendulum" => "pendulum.md",
"Nonlinear Oscillators" => "nonlinear_oscillators.md",
"Point Vortices" => "point_vortices.md",
"Inner Solar System" => "inner_solar_system.md",
"Outer Solar System" => "outer_solar_system.md",
"Rigid body" => "rigid_body.md",
"Toda Lattice" => "toda_lattice.md",
"Initial conditions" => ["bump" => "initial_condition.md",]
]
)
deploydocs(
repo = "github.com/JuliaGNI/GeometricProblems.jl",
devurl = "latest",
devbranch = "main",
)
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1310 | """
GeometricProblems.jl is a collection of ODEs and DAEs with interesting geometric structures.
"""
module GeometricProblems
include("bump_initial_condition.jl")
include("diagnostics.jl")
include("plot_recipes.jl")
include("abc_flow.jl")
include("double_pendulum.jl")
include("duffing_oscillator.jl")
include("harmonic_oscillator.jl")
include("kubo_oscillator.jl")
include("lennard_jones_oscillator.jl")
include("linear_wave.jl")
include("lorenz_attractor.jl")
include("lotka_volterra_2d.jl")
include("lotka_volterra_2d_gauge.jl")
include("lotka_volterra_2d_singular.jl")
include("lotka_volterra_2d_symmetric.jl")
include("lotka_volterra_2d_plots.jl")
include("lotka_volterra_3d.jl")
include("lotka_volterra_3d_plots.jl")
include("lotka_volterra_4d.jl")
include("lotka_volterra_4d_lagrangian.jl")
include("lotka_volterra_4d_plots.jl")
include("massless_charged_particle.jl")
include("massless_charged_particle_plots.jl")
include("coupled_harmonic_oscillator.jl")
include("mathews_lakshmanan_oscillator.jl")
include("morse_oscillator.jl")
include("pendulum.jl")
include("point_vortices.jl")
include("point_vortices_linear.jl")
include("rigid_body.jl")
include("toda_lattice.jl")
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1171 | @doc raw"""
# ABC Flow
```math
\begin{aligned}
\dot{x} = A\sin(z) + C\cos(y) \\
\dot{y} = B\sin(x) + A\cos(z) \\
\dot{z} = C\sin(y) + B\cos(x)
\end{aligned}
```
"""
module ABCFlow
using GeometricEquations
using GeometricSolutions
using Parameters
export odeproblem, odeensemble
const tspan = (0.0, 100.0)
const tstep = 0.1
const default_parameters = (
A = 0.5,
B = 1.,
C = 1.
)
const q₀ = [0.0, 0., 0.]
const q₁ = [0.5, 0., 0.]
const q₂ = [0.6, 0., 0.]
function abc_flow_v(v, t, q, params)
@unpack A, B, C = params
v[1] = A * sin(q[3]) + C * cos(q[2])
v[2] = B * sin(q[1]) + A * cos(q[3])
v[3] = C * sin(q[2]) + B * cos(q[1])
nothing
end
function odeproblem(q₀ = q₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
ODEProblem(abc_flow_v, tspan, tstep, q₀; parameters = parameters)
end
function odeensemble(samples = [q₀, q₁, q₂]; parameters = default_parameters, tspan = tspan, tstep = tstep)
ODEEnsemble(abc_flow_v, tspan, tstep, samples; parameters = parameters)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1938 | """
Third-degree spline that is used as a basis to construct the initial conditions.
"""
function h(x::T) where T <: Real
if 0 ≤ x ≤ 1
1 - 3 * x ^ 2 / 2 + 3 * x ^ 3 / 4
elseif 1 < x ≤ 2
(2 - x) ^ 3 / 4
else
zero(T)
end
end
function ∂h(x::T) where T <: Real
if 0 ≤ x ≤ 1
-3x + 9 * x ^ 2 / 4
elseif 1 < x ≤ 2
- 3 * (2 - x) ^ 2 / 4
else
zero(T)
end
end
function s(ξ::Real, μ::Real)
20μ * abs(ξ + μ / 2)
end
function ∂s(ξ::T, μ::T) where T <: Real
ξ + μ / 2 ≥ 0 ? 20μ : -20μ
end
function s(ξ::AbstractVector{T}, μ::T) where T <: Real
s_closure(ξ_scalar) = s(ξ_scalar, μ)
s_closure.(ξ)
end
function ∂s(ξ::AbstractVector{T}, μ::T) where T <: Real
∂s_closure(ξ_scalar) = s(ξ_scalar, μ)
∂s_closure.(ξ)
end
u₀(ξ::Real, μ::Real) = h(s(ξ, μ))
function u₀(ξ::AbstractVector{T}, μ::T) where T <: Real
h.(s(ξ, μ))
end
function ∂u₀(ξ::T, μ::T) where T <: Real
∂h(s(ξ, μ)) * ∂s(ξ, μ)
end
function ∂u₀(ξ::AbstractVector{T}, μ::T) where T <: Real
∂u₀_closure(ξ_scalar) = ∂u₀(ξ_scalar, μ)
∂u₀_closure.(ξ)
end
function compute_domain(N::Integer, T=Float64)
Δx = 1. / (N - 1)
T(-0.5) : Δx : T(0.5)
end
function compute_p₀(ξ::T, μ::T) where T <: Real
- μ * ∂u₀(ξ, μ)
end
function compute_p₀(Ω::AbstractVector{T}, μ::T) where T
p₀_closure(ξ::T) = compute_p₀(ξ, μ)
p₀_closure.(Ω)
end
@doc raw"""
Produces initial conditions for the bump function. Here the ``p``-part is initialized with zeros.
"""
function compute_initial_condition(μ::T, N::Integer) where T
Ω = compute_domain(N, T)
(q =u₀(Ω, μ), p = zero(Ω))
end
@doc raw"""
Produces initial condition for the bump function. Here the ``p``-part is initialized as ``-\mu\partial_\xi u_0(\xi, \mu)``.
"""
function compute_initial_condition2(μ::T, N::Integer) where T
Ω = compute_domain(N, T)
(q =u₀(Ω, μ), p = compute_p₀(Ω, μ))
end | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 3628 | @doc raw"""
CoupledHarmonicOscillator
The `CoupledHarmonicOscillator` module provides functions `hodeproblem` and `lodeproblem`
each returning a Hamiltonian or Lagrangian problem, respectively, to be solved
in the GeometricIntegrators.jl ecosystem.
The actual code is generated with EulerLagrange.jl.
The coupled harmonic oscillator is a collection of two point masses that are connected to a fixed wall with spring constants ``k_1`` and ``k_2`` and are furthermore coupled nonlinearly resulting in the Hamiltonian:
```math
H(q_1, q_2, p_1, p_2) = \frac{q_1^2}{2m_1} + \frac{q_2^2}{2m_2} + k_1\frac{q_1^2}{2} + k_2\frac{q_2^2}{2} + k\sigma(q_1)\frac{(q_2 - q_1)^2}{2},
```
where ``\sigma(x) = 1 / (1 + e^{-x})`` is the sigmoid activation function.
System parameters:
* `k₁`: spring constant of mass 1
* `k₂`: spring constant of mass 2
* `m₁`: mass 1
* `m₂`: mass 2
* `k`: coupling strength between the two masses.
"""
module CoupledHarmonicOscillator
using EulerLagrange
using LinearAlgebra
using Parameters
using GeometricEquations: HODEEnsemble
export hamiltonian, lagrangian
export hodeproblem, lodeproblem
export hodeensemble
const tspan = (0.0, 100.0)
const tstep = 0.4
const default_parameters = (
m₁ = 2.,
m₂ = 1.,
k₁ = 1.5,
k₂ = 0.3,
k = 1.0
)
const q₀ = [1., 0.]
const p₀ = [2., 0.]
function σ(x::T) where {T<:Real}
T(1) / (T(1) + exp(-x))
end
function hamiltonian(t, q, p, parameters)
@unpack k₁, k₂, m₁, m₂, k = parameters
p[1] ^ 2 / (2 * m₁) + p[2] ^ 2 / (2 * m₂) + k₁ * q[1] ^ 2 / 2 + k₂ * q[2] ^ 2 / 2 + k * σ(q[1]) * (q[2] - q[1]) ^2 / 2
end
function lagrangian(t, q, q̇, parameters)
@unpack k₁, k₂, m₁, m₂, k = parameters
q̇[1] ^ 2 / (2 * m₁) + q̇[2] ^ 2 / (2 * m₂) - k₁ * q[1] ^ 2 / 2 - k₂ * q[2] ^ 2 / 2 - k * σ(q[1]) * (q[2] - q[1]) ^2 / 2
end
"""
Hamiltonian problem for coupled oscillator
Constructor with default arguments:
```
hodeproblem(
q₀ = $(q₀),
p₀ = $(p₀);
tspan = $(tspan),
tstep = $(tstep),
parameters = $(default_parameters)
)
```
"""
function hodeproblem(q₀ = q₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
t, q, p = hamiltonian_variables(2)
sparams = symbolize(parameters)
ham_sys = HamiltonianSystem(hamiltonian(t, q, p, sparams), t, q, p, sparams)
HODEProblem(ham_sys, tspan, tstep, q₀, p₀; parameters = parameters)
end
function v̄(v, t, q, p, parameters)
v[1] = p[1] / parameters.m₁
v[2] = p[2] / parameters.m₂
nothing
end
"""
Lagrangian problem for the coupled oscillator
Constructor with default arguments:
```
lodeproblem(
q₀ = $(q₀),
p₀ = $(p₀);
tspan = $(tspan),
tstep = $(tstep),
parameters = $(default_parameters)
)
```
"""
function lodeproblem(q₀ = q₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
t, x, v = lagrangian_variables(2)
sparams = symbolize(parameters)
lag_sys = LagrangianSystem(lagrangian(t, x, v, sparams), t, x, v, sparams)
LODEProblem(lag_sys, tspan, tstep, q₀, p₀; v̄ = v̄, parameters = parameters)
end
function hodeensemble(q₀ = q₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
eq = hodeproblem().equation
HODEEnsemble(eq.v, eq.f, eq.hamiltonian, tspan, tstep, q₀, p₀; parameters = parameters)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 7204 | module Diagnostics
using GeometricSolutions
export compute_one_form, compute_invariant, compute_invariant_error, compute_momentum_error, compute_error_drift
"""
Takes a ScalarDataSeries holding an invariant and computes the relative error `(inv(t)-inv(0))/inv(0)`.
Returns a ScalarDataSeries similar to the argument holding the time series of the relativ errors.
"""
function compute_relative_error(invds::ScalarDataSeries{T}) where {T}
errds = similar(invds)
for i in eachindex(errds, invds)
errds[i] = (invds[i] - invds[0]) / invds[0]
end
return errds
end
"""
Compute the one-form (symplectic potential) for the solution of a Lagrangian system.
Arguments: `(t::TimeSeries, q::DataSeries, one_form::Base.Callable)`
The `one_form` function needs to take three arguments `(t,q,k)` where `k` is the index
of the one-form component.
Returns a DataSeries similar to `q` holding the time series of the one-form.
"""
function compute_one_form(t::TimeSeries, q::DataSeries, one_form::Base.Callable)
ϑ = similar(q)
try
for i in axes(p,2)
for k in axes(p,1)
ϑ[k,i] = one_form(t[i], q[:,i], k)
end
end
catch ex
if isa(ex, DomainError)
@warn("DOMAIN ERROR: One-form diagnostics crashed.")
else
throw(ex)
end
end
return ϑ
end
"""
Compute an invariant for the solution of an ODE or DAE system.
Arguments: `(t::TimeSeries, q::DataSeries{T}, invariant::Base.Callable)`
The `invariant` functions needs to take two arguments `(t,q)` and return the
corresponding value of the invariant.
Returns a ScalarDataSeries holding the time series of the invariant.
"""
function compute_invariant(t::TimeSeries, q::DataSeries{T}, invariant::Base.Callable) where {T}
invds = DataSeries(T, ntime(q))
try
for i in eachindex(invds)
invds[i] = invariant(t[i], q[i])
end
catch ex
if isa(ex, DomainError)
@warn("DOMAIN ERROR: Invariant diagnostics crashed.")
else
throw(ex)
end
end
return invds
end
"""
Compute an invariant for the solution of a partitioned ODE or DAE system.
Arguments: `(t::TimeSeries, q::DataSeries{T}, p::DataSeries{T}, invariant::Base.Callable)`
The `invariant` functions needs to take three arguments `(t,q,p)` and return the
corresponding value of the invariant.
Returns a ScalarDataSeries holding the time series of the invariant.
"""
function compute_invariant(t::TimeSeries, q::DataSeries{T}, p::DataSeries{T}, invariant::Base.Callable) where {T}
invds = DataSeries(T, ntime(q))
try
for i in eachindex(invds)
invds[i] = invariant(t[i], q[i], p[i])
end
catch ex
if isa(ex, DomainError)
@warn("DOMAIN ERROR: Invariant diagnostics crashed.")
else
throw(ex)
end
end
return invds
end
"""
Compute the relative error of an invariant for the solution of an ODE or DAE system.
Arguments: `(t::TimeSeries, q::DataSeries{T}, invariant::Base.Callable)`
The `invariant` functions needs to take two arguments `(t,q)` and return the
corresponding value of the invariant.
Returns a tuple of two 1d DataSeries holding the time series of the invariant and the relativ error, respectively.
"""
function compute_invariant_error(t::TimeSeries, q::DataSeries, invariant::Base.Callable)
invds = compute_invariant(t, q, invariant)
errds = compute_relative_error(invds)
(invds, errds)
end
"""
Compute the relative error of an invariant for the solution of a partitioned ODE or DAE system.
Arguments: `(t::TimeSeries, q::DataSeries{T}, p::DataSeries{T}, invariant::Base.Callable)`
The `invariant` functions needs to take three arguments `(t,q,p)` and return the
corresponding value of the invariant.
Returns a tuple of two ScalarDataSeries holding the time series of the invariant and the relativ error, respectively.
"""
function compute_invariant_error(t::TimeSeries, q::DataSeries{T}, p::DataSeries{T}, invariant::Base.Callable) where {T}
invds = compute_invariant(t, q, p, invariant)
errds = compute_relative_error(invds)
(invds, errds)
end
"""
Computes the difference of the momentum and the one-form of an implicit ODE or DAE system.
Arguments: `(t::TimeSeries, q::DataSeries{T}, p::DataSeries{T}, one_form::Function)`
The `one_form` function needs to take three arguments `(t,q,k)` where `k` is the index
of the one-form component.
Returns a DataSeries similar to `p` holding the time series of the difference between the momentum and the one-form.
"""
function compute_momentum_error(t::TimeSeries, q::DataSeries{T}, p::DataSeries{T}, one_form::Function) where {T}
e = similar(p)
for n in axes(p,1)
for k in eachindex(p[n])
e[n][k] = p[n][k] - one_form(t[n], q[n], k)
end
end
return e
end
"""
Computes the difference of the momentum and the one-form of an implicit ODE or DAE system.
Arguments: `(p::DataSeries{DT}, ϑ::DataSeries{DT})`
Returns a DataSeries similar to `p` holding the time series of the difference between `p` and `ϑ`.
"""
function compute_momentum_error(p::DataSeries{DT}, ϑ::DataSeries{DT}) where {DT}
@assert axes(p) == axes(ϑ)
e = similar(p)
parent(e) .= parent(p) .- parent(ϑ)
return e
end
"""
Computes the drift in an invariant error.
Arguments: `(t::TimeSeries, invariant_error::DataSeries{T,1}, interval_length=100)`
The time series of the solution is split into intervals of `interval_length` time steps.
In each interval, the maximum of the absolute value of the invariant error is determined.
Returns a tuple of a TimeSeries that holds the centers of all intervals and a ScalarDataSeries
that holds the maxima.
This is useful to detect drifts in invariants that are not preserved exactly but whose error
is oscillating such as the energy error of Hamiltonian systems with symplectic integrators.
"""
function compute_error_drift(t::TimeSeries, invariant_error::ScalarDataSeries{T}, interval_length=100) where {T}
@assert ntime(t) == ntime(invariant_error)
@assert mod(t.n, interval_length) == 0
nint = div(ntime(invariant_error), interval_length)
Tdrift = TimeSeries(nint, (t[end] - t[begin]) / nint)
Idrift = DataSeries(T, nint)
Tdrift[0] = t[0]
for i in 1:nint
i1 = interval_length*(i-1)+1
i2 = interval_length*i
Idrift[i] = maximum(abs.(invariant_error[i1:i2]))
Tdrift[i] = div(t[i1] + t[i2], 2)
end
(Tdrift, Idrift)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 4343 | @doc raw"""
DoublePendulum
The `DoublePendulum` module provides functions `hodeproblem` and `lodeproblem`
each returning a Hamiltonian or Lagrangian problem, respectively, to be solved
in the GeometricIntegrators.jl ecosystem.
The actual code is generated with EulerLagrange.jl.
The double pendulum consists of two pendula, one attached to the origin at
``(x,y) = (0,0)``, and the second attached to the first. Each pendulum consists
of a point mass ``m_i`` attached to a massless rod of length ``l_i`` with ``i \in (1,2)``.
The dynamics of the system is described in terms of the angles ``\theta_i``
between the rods ``l_i`` and the vertical axis ``y``.
All motion is assumed to be frictionless.
System parameters:
* `l₁`: length of rod 1
* `l₂`: length of rod 2
* `m₁`: mass of pendulum 1
* `m₂`: mass of pendulum 2
* `g`: gravitational constant
"""
module DoublePendulum
using EulerLagrange
using LinearAlgebra
using Parameters
export hamiltonian, lagrangian
export hodeproblem, lodeproblem
ϑ₁(t, q, q̇, params) = (params.m₁ + params.m₂) * params.l₁^2 * q̇[1] +
params.m₂ * params.l₁ * params.l₂ * q̇[2] * cos(q[1] - q[2])
ϑ₂(t, q, q̇, params) = params.m₂ * params.l₂^2 * q̇[2] +
params.m₂ * params.l₁ * params.l₂ * q̇[1] * cos(q[1] - q[2])
ϑ(t, q, q̇, params) = [ϑ₁(t, q, q̇, params), ϑ₂(t, q, q̇, params)]
function θ̇₁(t, q, p, params)
@unpack l₁, l₂, m₁, m₂, g = params
( l₂ * p[1] - l₁ * p[2] * cos(q[1] - q[2]) ) /
( l₁^2 * l₂ * ( m₁ + m₂ * sin(q[1] - q[2])^2 ) )
end
function θ̇₂(t, q, p, params)
@unpack l₁, l₂, m₁, m₂, g = params
( (m₁ + m₂) * l₁ * p[2] - m₂ * l₂ * p[1] * cos(q[1] - q[2]) ) /
( m₂ * l₁ * l₂^2 * ( m₁ + m₂ * sin(q[1] - q[2])^2 ) )
end
θ̇(t, q, p, params) = [θ̇₁(t, q, p, params), θ̇₂(t, q, p, params)]
function θ̇(v, t, q, p, params)
v[1] = θ̇₁(t, q, p, params)
v[2] = θ̇₂(t, q, p, params)
nothing
end
const tstep = 0.01
const tspan = (0.0, 10.0)
const default_parameters = (
l₁ = 2.0,
l₂ = 3.0,
m₁ = 1.0,
m₂ = 2.0,
g = 9.80665,
)
const θ₀ = [π/4, π/2]
const ω₀ = [0.0, π/8]
const p₀ = ϑ(tspan[begin], θ₀, ω₀, default_parameters)
function hamiltonian(t, q, p, params)
@unpack l₁, l₂, m₁, m₂, g = params
nom = (m₁ + m₂) * l₁^2 * p[2]^2 / 2+
m₂ * l₂^2 * p[1]^2 / 2 -
m₂ * l₁ * l₂ * p[1] * p[2] * cos(q[1] - q[2])
den = m₂ * l₁^2 * l₂^2 * ( m₁ + m₂ * sin(q[1] - q[2])^2 )
nom/den - g * (m₁ + m₂) * l₁ * cos(q[1]) - g * m₂ * l₂ * cos(q[2])
end
function lagrangian(t, q, q̇, params)
@unpack l₁, l₂, m₁, m₂, g = params
(m₁ + m₂) * l₁^2 * q̇[1]^2 / 2 +
m₂ * l₂^2 * q̇[2]^2 / 2 +
m₂ * l₁ * l₂ * q̇[1] * q̇[2] * cos(q[1] - q[2]) +
(m₁ + m₂) * l₁ * g * cos(q[1]) +
m₂ * l₂ * g * cos(q[2])
end
"""
Hamiltonian problem for the double pendulum
Constructor with default arguments:
```
hodeproblem(
q₀ = [π/4, π/2],
p₀ = $(p₀);
tspan = $(tspan),
tstep = $(tstep),
params = $(default_parameters)
)
```
"""
function hodeproblem(q₀ = θ₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
t, q, p = hamiltonian_variables(2)
sparams = symbolize(parameters)
ham_sys = HamiltonianSystem(hamiltonian(t, q, p, sparams), t, q, p, sparams)
HODEProblem(ham_sys, tspan, tstep, q₀, p₀; parameters = parameters)
end
"""
Lagrangian problem for the double pendulum
Constructor with default arguments:
```
lodeproblem(
q₀ = [π/4, π/2],
p₀ = $(p₀);
tspan = $(tspan),
tstep = $(tstep),
params = $(default_parameters)
)
```
"""
function lodeproblem(q₀ = θ₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
t, x, v = lagrangian_variables(2)
sparams = symbolize(parameters)
lag_sys = LagrangianSystem(lagrangian(t, x, v, sparams), t, x, v, sparams)
LODEProblem(lag_sys, tspan, tstep, q₀, p₀; v̄ = θ̇, parameters = parameters)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 72 | @doc raw"""
"""
module DuffingOscillator
export hamiltonian
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 14869 | @doc raw"""
# Harmonic Oscillator
"""
module HarmonicOscillator
using GeometricEquations
using GeometricSolutions
using Parameters
export odeproblem, podeproblem, hodeproblem, iodeproblem, lodeproblem, sodeproblem,
daeproblem, pdaeproblem, hdaeproblem, idaeproblem, ldaeproblem,
degenerate_iodeproblem, degenerate_lodeproblem
export odeensemble, podeensemble, hodeensemble
export hamiltonian, lagrangian
export compute_energy_error, exact_solution
const t₀ = 0.0
const Δt = 0.1
const nt = 10
const tspan = (t₀, Δt*nt)
const k = 0.5
const ω = √k
const default_parameters = (k=k, ω=ω)
ϑ₁(t,q) = q[2]
ϑ₂(t,q) = zero(eltype(q))
function ϑ(q)
p = zero(q)
p[1] = ϑ₁(0,q)
p[2] = ϑ₂(0,q)
return p
end
function ω!(ω, t, q, params)
ω[1,1] = 0
ω[1,2] = -1
ω[2,1] = +1
ω[2,2] = 0
nothing
end
function hamiltonian(t, q, params)
@unpack k = params
q[2]^2 / 2 + k * q[1]^2 / 2
end
function hamiltonian(t, q, p, params)
@unpack k = params
p[1]^2 / 2 + k * q[1]^2 / 2
end
function lagrangian(t, q, v, params)
@unpack k = params
v[1]^2 / 2 - k * q[1]^2 / 2
end
function degenerate_lagrangian(t, q, v, params)
ϑ₁(t,q) * v[1] + ϑ₂(t,q) * v[2] - hamiltonian(t, q, params)
end
A(q, p, params) = q * sqrt(1 + p^2 / q^2 / params.k)
ϕ(q, p, params) = atan(p / q / params.ω)
exact_solution_q(t, q₀, p₀, t₀, params) = A(q₀, p₀, params) * cos(params.ω * (t-t₀) - ϕ(q₀, p₀, params))
exact_solution_p(t, q₀, p₀, t₀, params) = - params.ω * A(q₀, p₀, params) * sin(params.ω * (t-t₀) - ϕ(q₀, p₀, params))
exact_solution_q(t, q₀::AbstractVector, p₀::AbstractVector, t₀, params) = exact_solution_q(t, q₀[1], p₀[1], t₀, params)
exact_solution_p(t, q₀::AbstractVector, p₀::AbstractVector, t₀, params) = exact_solution_p(t, q₀[1], p₀[1], t₀, params)
exact_solution_q(t, x₀::AbstractVector, t₀, params) = exact_solution_q(t, x₀[1], x₀[2], t₀, params)
exact_solution_p(t, x₀::AbstractVector, t₀, params) = exact_solution_p(t, x₀[1], x₀[2], t₀, params)
exact_solution(t, x₀::AbstractVector, t₀, params) = [exact_solution_q(t, x₀, t₀, params), exact_solution_p(t, x₀, t₀, params)]
const q₀ = [0.5]
const p₀ = [0.0]
const x₀ = vcat(q₀, p₀)
const xmin = [-2., -2.]
const xmax = [+2., +2.]
const nsamples = [10, 10]
const reference_solution_q = exact_solution_q(Δt * nt, q₀[1], p₀[1], t₀, default_parameters)
const reference_solution_p = exact_solution_p(Δt * nt, q₀[1], p₀[1], t₀, default_parameters)
const reference_solution = [reference_solution_q, reference_solution_p]
function _ode_samples(qmin, qmax, nsamples)
qs = [range(qmin[i], qmax[i]; length = nsamples[i]) for i in eachindex(qmin, qmax, nsamples)]
samples = vec(collect.(collect(Base.Iterators.product(qs...))))
(q = samples,)
end
function _pode_samples(qmin, qmax, pmin, pmax, qsamples, psamples)
qs = [range(qmin[i], qmax[i]; length = qsamples[i]) for i in eachindex(qmin, qmax, qsamples)]
ps = [range(pmin[i], pmax[i]; length = psamples[i]) for i in eachindex(pmin, pmax, psamples)]
qsamples = vec(collect.(collect(Base.Iterators.product(qs...))))
psamples = vec(collect.(collect(Base.Iterators.product(ps...))))
samples = vec(collect(Base.Iterators.product(qsamples, psamples)))
(q = qsamples, p = psamples)
end
function oscillator_ode_v(v, t, x, params)
@unpack k = params
v[1] = x[2]
v[2] = -k * x[1]
nothing
end
function odeproblem(x₀ = x₀; parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(x₀) == 2
ODEProblem(oscillator_ode_v, tspan, tstep, x₀; invariants = (h=hamiltonian,), parameters = parameters)
end
function odeensemble(qmin = xmin, qmax = xmax, nsamples = nsamples; parameters = default_parameters, tspan = tspan, tstep = Δt)
samples = _ode_samples(qmin, qmax, nsamples)
ODEEnsemble(oscillator_ode_v, tspan, tstep, samples...; invariants = (h=hamiltonian,), parameters = parameters)
end
function exact_solution!(sol::GeometricSolution, prob::ODEProblem)
for n in eachtimestep(sol)
sol.q[n] .= exact_solution(sol.t[n], sol.q[0], sol.t[0], parameters(prob))
end
return sol
end
function exact_solution(prob::ODEProblem)
exact_solution!(GeometricSolution(prob), prob)
end
function oscillator_pode_v(v, t, q, p, params)
v[1] = p[1]
nothing
end
function oscillator_pode_f(f, t, q, p, params)
@unpack k = params
f[1] = -k * q[1]
nothing
end
function podeproblem(q₀ = q₀, p₀ = p₀; parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == 1
PODEProblem(oscillator_pode_v, oscillator_pode_f, tspan, tstep, q₀, p₀; invariants = (h=hamiltonian,), parameters = parameters)
end
function hodeproblem(q₀ = q₀, p₀ = p₀; parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == 1
HODEProblem(oscillator_pode_v, oscillator_pode_f, hamiltonian, tspan, tstep, q₀, p₀; parameters = parameters)
end
function podeensemble(qmin = [xmin[1]], qmax = [xmax[1]], pmin = [xmin[2]], pmax = [xmax[2]], qsamples = [nsamples[1]], psamples = [nsamples[2]]; parameters = default_parameters, tspan = tspan, tstep = Δt)
samples = _pode_samples(qmin, qmax, pmin, pmax, qsamples, psamples)
PODEEnsemble(oscillator_pode_v, oscillator_pode_f, tspan, tstep, samples...; invariants = (h=hamiltonian,), parameters = parameters)
end
function hodeensemble(qmin = [xmin[1]], qmax = [xmax[1]], pmin = [xmin[2]], pmax = [xmax[2]], qsamples = [nsamples[1]], psamples = [nsamples[2]]; parameters = default_parameters, tspan = tspan, tstep = Δt)
samples = _pode_samples(qmin, qmax, pmin, pmax, qsamples, psamples)
HODEEnsemble(oscillator_pode_v, oscillator_pode_f, hamiltonian, tspan, tstep, samples...; parameters = parameters)
end
function exact_solution!(sol::GeometricSolution, prob::Union{PODEProblem,HODEProblem})
for n in eachtimestep(sol)
sol.q[n] = [exact_solution_q(sol.t[n], sol.q[0], sol.p[0], sol.t[0], parameters(prob))]
sol.p[n] = [exact_solution_p(sol.t[n], sol.q[0], sol.p[0], sol.t[0], parameters(prob))]
end
return sol
end
function exact_solution(prob::Union{PODEProblem,HODEProblem})
exact_solution!(GeometricSolution(prob), prob)
end
function oscillator_sode_v_1(v, t, q, params)
v[1] = q[2]
v[2] = 0
nothing
end
function oscillator_sode_v_2(v, t, q, params)
@unpack k = params
v[1] = 0
v[2] = -k * q[1]
nothing
end
function oscillator_sode_q_1(q₁, t₁, q₀, t₀, params)
q₁[1] = q₀[1] + (t₁ - t₀) * q₀[2]
q₁[2] = q₀[2]
nothing
end
function oscillator_sode_q_2(q₁, t₁, q₀, t₀, params)
@unpack k = params
q₁[1] = q₀[1]
q₁[2] = q₀[2] - (t₁ - t₀) * k * q₀[1]
nothing
end
function sodeproblem(x₀ = x₀; parameters = default_parameters, tspan = tspan, tstep = Δt)
SODEProblem((oscillator_sode_v_1, oscillator_sode_v_2),
(oscillator_sode_q_1, oscillator_sode_q_2),
tspan, tstep, x₀; v̄ = oscillator_ode_v, parameters = parameters)
end
function oscillator_iode_ϑ(p, t, q, v, params)
p[1] = v[1]
nothing
end
function oscillator_iode_f(f, t, q, v, params)
@unpack k = params
f[1] = -k * q[1]
nothing
end
function oscillator_iode_g(g, t, q, v, λ, params)
g[1] = λ[1]
nothing
end
function oscillator_iode_v(v, t, q, p, params)
v[1] = p[1]
nothing
end
function iodeproblem(q₀=q₀, p₀=p₀; parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == 1
IODEProblem(oscillator_iode_ϑ, oscillator_iode_f,
oscillator_iode_g, tspan, tstep, q₀, p₀;
invariants = (h=hamiltonian,), parameters = parameters,
v̄ = oscillator_iode_v)
end
function lodeproblem(q₀=q₀, p₀=p₀; parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == 1
LODEProblem(oscillator_iode_ϑ, oscillator_iode_f,
oscillator_iode_g, ω!, lagrangian,
tspan, tstep, q₀, p₀;
invariants = (h=hamiltonian,), parameters = parameters,
v̄ = oscillator_iode_v)
end
function degenerate_oscillator_iode_ϑ(p, t, q, v, params)
p[1] = q[2]
p[2] = 0
nothing
end
function degenerate_oscillator_iode_f(f, t, q, v, params)
@unpack k = params
f[1] = -k * q[1]
f[2] = v[1] - q[2]
nothing
end
function degenerate_oscillator_iode_g(g, t, q, v, λ, params)
g[1] = 0
g[2] = λ[1]
nothing
end
function degenerate_oscillator_iode_v(v, t, q, p, params)
@unpack k = params
v[1] = q[2]
v[2] = -k * q[1]
nothing
end
function degenerate_iodeproblem(q₀ = x₀, p₀ = ϑ(q₀); parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == 2
IODEProblem(degenerate_oscillator_iode_ϑ, degenerate_oscillator_iode_f,
degenerate_oscillator_iode_g, tspan, tstep, q₀, p₀;
invariants = (h=hamiltonian,), parameters = parameters,
v̄ = degenerate_oscillator_iode_v)
end
function degenerate_lodeproblem(q₀ = x₀, p₀ = ϑ(q₀); parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == 2
LODEProblem(degenerate_oscillator_iode_ϑ, degenerate_oscillator_iode_f,
degenerate_oscillator_iode_g, ω!, lagrangian,
tspan, tstep, q₀, p₀;
invariants = (h=hamiltonian,), parameters = parameters,
v̄ = degenerate_oscillator_iode_v)
end
function oscillator_dae_u(u, t, x, λ, params)
@unpack k = params
u[1] = k * x[1] * λ[1]
u[2] = x[2] * λ[1]
end
function oscillator_dae_ϕ(ϕ, t, x, params)
ϕ[1] = hamiltonian(t, x, params) - hamiltonian(t₀, x₀, params)
end
function daeproblem(x₀=x₀, λ₀=[zero(eltype(x₀))]; parameters = default_parameters, tspan = tspan, tstep = Δt)
DAEProblem(oscillator_ode_v, oscillator_dae_u, oscillator_dae_ϕ, tspan, tstep, x₀, λ₀;
v̄ = oscillator_ode_v, invariants = (h=hamiltonian,), parameters = parameters)
end
function oscillator_pdae_v(v, t, q, p, params)
@unpack k = params
v[1] = p[1]
nothing
end
function oscillator_pdae_f(f, t, q, p, params)
@unpack k = params
f[1] = -k * q[1]
nothing
end
function oscillator_pdae_u(u, t, q, p, λ, params)
@unpack k = params
u[1] = k * q[1] * λ[1]
nothing
end
function oscillator_pdae_g(g, t, q, p, λ, params)
g[1] = p[1] * λ[1]
nothing
end
function oscillator_pdae_ū(u, t, q, p, λ, params)
@unpack k = params
u[1] = k * q[1] * λ[1]
nothing
end
function oscillator_pdae_ḡ(g, t, q, p, λ, params)
g[1] = p[1] * λ[1]
nothing
end
function oscillator_pdae_ϕ(ϕ, t, q, p, params)
ϕ[1] = hamitlonian(t, q, p, params)
nothing
end
function oscillator_pdae_ψ(ψ, t, q, p, q̇, ṗ, params)
@unpack k = params
ψ[1] = p[1] * ṗ[1] + k * q[1] * q̇[1]
nothing
end
function pdaeproblem(q₀ = q₀, p₀ = p₀, λ₀ = zero(q₀); parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == 1
PDAEProblem(oscillator_pdae_v, oscillator_pdae_f,
oscillator_pdae_u, oscillator_pdae_g, oscillator_pdae_ϕ,
tspan, tstep, q₀, p₀, λ₀; invariants=(h=hamiltonian,), parameters = parameters)
end
function hdaeproblem(q₀ = q₀, p₀ = p₀, λ₀ = zero(q₀); parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == 1
HDAEProblem(oscillator_pdae_v, oscillator_pdae_f,
oscillator_pdae_u, oscillator_pdae_g, oscillator_pdae_ϕ,
oscillator_pdae_ū, oscillator_pdae_ḡ, oscillator_pdae_ψ,
hamiltonian, tspan, tstep, q₀, p₀, λ₀; parameters = parameters)
end
oscillator_idae_u(u, t, q, v, p, λ, params) = oscillator_pdae_u(u, t, q, p, λ, params)
oscillator_idae_g(g, t, q, v, p, λ, params) = oscillator_pdae_g(g, t, q, p, λ, params)
oscillator_idae_ū(u, t, q, v, p, λ, params) = oscillator_pdae_ū(u, t, q, p, λ, params)
oscillator_idae_ḡ(g, t, q, v, p, λ, params) = oscillator_pdae_ḡ(g, t, q, p, λ, params)
oscillator_idae_ϕ(ϕ, t, q, v, p, params) = oscillator_pdae_ϕ(ϕ, t, q, p, params)
oscillator_idae_ψ(ψ, t, q, v, p, q̇, ṗ, params) = oscillator_pdae_ψ(ψ, t, q, p, q̇, ṗ, params)
function idaeproblem(q₀ = q₀, p₀ = p₀, λ₀ = zero(q₀); parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == length(λ₀) == 1
IDAEProblem(oscillator_iode_ϑ, oscillator_iode_f,
oscillator_idae_u, oscillator_idae_g, oscillator_idae_ϕ,
tspan, tstep, q₀, p₀, λ₀; v̄ = oscillator_iode_v, invariants = (h=hamiltonian,), parameters = parameters)
end
function ldaeproblem(q₀ = q₀, p₀ = p₀, λ₀ = zero(q₀); parameters = default_parameters, tspan = tspan, tstep = Δt)
@assert length(q₀) == length(p₀) == length(λ₀) == 1
LDAEProblem(oscillator_iode_ϑ, oscillator_iode_f,
oscillator_idae_u, oscillator_idae_g, oscillator_idae_ϕ, ω!, lagrangian,
tspan, tstep, q₀, p₀, λ₀; v̄ = oscillator_iode_v, invariants = (h=hamiltonian,), parameters = parameters)
end
function exact_solution(probs::Union{ODEEnsemble,PODEEnsemble,HODEEnsemble})
sols = EnsembleSolution(probs)
for (sol, prob) in zip(sols, probs)
exact_solution!(sol, prob)
end
return sols
end
function compute_energy_error(t, q::DataSeries{T}, params) where {T}
h = DataSeries(T, q.nt)
e = DataSeries(T, q.nt)
for i in axes(q,2)
h[i] = hamiltonian(t[i], q[:,i], params)
e[i] = (h[i] - h[0]) / h[0]
end
(h, e)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 6559 | module KuboOscillator
using GeometricEquations
using Parameters
export kubo_oscillator_sde_1, kubo_oscillator_psde_1, kubo_oscillator_spsde_1
export kubo_oscillator_sde_2, kubo_oscillator_psde_2, kubo_oscillator_spsde_2
export kubo_oscillator_sde_3, kubo_oscillator_psde_3, kubo_oscillator_spsde_3
export kubo_oscillator_ode
q_init_A=[0.5, 0.0]
q_init_B=[[ 0.5, 0.0],
[ 0.0, 0.5],
[-0.5, 0.0]]
const noise_intensity = 0.1
const Δt = 0.01
const nt = 10
const tspan = (0.0, Δt*nt)
const default_parameters = (ν = noise_intensity,)
function kubo_oscillator_sde_v(v, t, q, params)
v[1]= q[2]
v[2]= -q[1]
end
function kubo_oscillator_sde_B(B::AbstractVector, t, q, params)
@unpack ν = params
B[1] = +ν * q[2]
B[2] = -ν * q[1]
end
function kubo_oscillator_sde_B(B::AbstractMatrix, t, q, params)
@unpack ν = params
for j in axes(B, 2)
B[1,j] = +ν * q[2]
B[2,j] = -ν * q[1]
end
end
function kubo_oscillator_sde_1(q₀=q_init_A; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_A - interpreted as one random initial conditions with one sample path
# 1-dimensional noise
SDEProblem(1, 1, kubo_oscillator_sde_v, kubo_oscillator_sde_B, tspan, tstep, q₀; parameters = parameters)
end
function kubo_oscillator_sde_2(q₀=q_init_A; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_A - single deterministic initial condition
# Generating 3 sample paths
# 1-dimensional noise
SDEProblem(1, 3, kubo_oscillator_sde_v, kubo_oscillator_sde_B, tspan, tstep, q₀; parameters = parameters)
end
function kubo_oscillator_sde_3(q₀=q_init_B; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_B - interpreted as three random initial conditions
# The 3 columns correspond to 3 sample paths
# 1-dimensional noise
SDEProblem(1, 1, kubo_oscillator_sde_v, kubo_oscillator_sde_B, tspan, tstep, q₀; parameters = parameters)
end
# ODE
function kubo_oscillator_ode(q₀=q_init_A; tspan = tspan, tstep = Δt, parameters = default_parameters)
ODEProblem(kubo_oscillator_sde_v, tspan, tstep, q₀; parameters = parameters)
end
# PSDE
q_init_C=[0.5]
p_init_C=[0.0]
q_init_D=[[0.5], [0.0], [-0.5]]
p_init_D=[[0.0], [0.5], [ 0.0]]
function kubo_oscillator_psde_v(v, t, q, p, params)
v[1] = p[1]
end
function kubo_oscillator_psde_f(f, t, q, p, params)
f[1] = -q[1]
end
function kubo_oscillator_psde_B(B, t, q, p, params)
@unpack ν = params
B[1,1] = +ν * p[1]
end
function kubo_oscillator_psde_G(G, t, q, p, params)
@unpack ν = params
G[1,1] = -ν * q[1]
end
function kubo_oscillator_psde_1(q₀=q_init_C, p₀=p_init_C; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_C - interpreted as a single random initial condition with one sample path
# 1-dimensional noise
PSDEProblem(1, 1, kubo_oscillator_psde_v, kubo_oscillator_psde_f,
kubo_oscillator_psde_B, kubo_oscillator_psde_G,
tspan, tstep, q₀, p₀; parameters = parameters)
end
function kubo_oscillator_psde_2(q₀=q_init_C, p₀=p_init_C; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_C - single deterministic initial condition
# Generating 3 sample paths
# 1-dimensional noise
PSDEProblem(1, 3, kubo_oscillator_psde_v, kubo_oscillator_psde_f,
kubo_oscillator_psde_B, kubo_oscillator_psde_G,
tspan, tstep, q₀, p₀; parameters = parameters)
end
function kubo_oscillator_psde_3(q₀=q_init_D, p₀=p_init_D; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_D - interpreted as a single random initial condition
# The 3 columns correspond to 3 sample paths
# 1-dimensional noise
PSDEProblem(1, 1, kubo_oscillator_psde_v, kubo_oscillator_psde_f,
kubo_oscillator_psde_B, kubo_oscillator_psde_G,
tspan, tstep, q₀, p₀; parameters = parameters)
end
# SPSDE
function kubo_oscillator_spsde_v(v, t, q, p, params)
v[1] = p[1]
end
function kubo_oscillator_spsde_f1(f, t, q, p, params)
f[1] = -q[1]
end
function kubo_oscillator_spsde_f2(f, t, q, p, params)
f[1] = 0
end
function kubo_oscillator_spsde_B(B, t, q, p, params)
@unpack ν = params
B[1,1] = +ν * p[1]
end
function kubo_oscillator_spsde_G1(G, t, q, p, params)
@unpack ν = params
G[1,1] = -ν * q[1]
end
function kubo_oscillator_spsde_G2(G, t, q, p, params)
G[1,1] = 0
end
function kubo_oscillator_spsde_1(q₀ = q_init_C, p₀ = p_init_C; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_C - interpreted as a single random initial condition with one sample path
# 1-dimensional noise
SPSDEProblem(1, 1, kubo_oscillator_spsde_v, kubo_oscillator_spsde_f1, kubo_oscillator_spsde_f2,
kubo_oscillator_spsde_B, kubo_oscillator_spsde_G1, kubo_oscillator_spsde_G2,
tspan, tstep, q₀, p₀; parameters = parameters)
end
function kubo_oscillator_spsde_2(q₀ = q_init_C, p₀ = p_init_C; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_C - single deterministic initial condition
# Generating 3 sample paths
# 1-dimensional noise
SPSDEProblem(1, 3, kubo_oscillator_spsde_v, kubo_oscillator_spsde_f1, kubo_oscillator_spsde_f2,
kubo_oscillator_spsde_B, kubo_oscillator_spsde_G1, kubo_oscillator_spsde_G2,
tspan, tstep, q₀, p₀; parameters = parameters)
end
function kubo_oscillator_spsde_3(q₀ = q_init_D, p₀ = p_init_D; tspan = tspan, tstep = Δt, parameters = default_parameters)
# q_init_D - interpreted as a single random initial condition
# The 3 columns correspond to 3 sample paths
# 1-dimensional noise
SPSDEProblem(1, 1, kubo_oscillator_spsde_v, kubo_oscillator_spsde_f1, kubo_oscillator_spsde_f2,
kubo_oscillator_spsde_B, kubo_oscillator_spsde_G1, kubo_oscillator_spsde_G2,
tspan, tstep, q₀, p₀; parameters = parameters)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 77 | @doc raw"""
"""
module LennardJonesOscillator
export hamiltonian
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 2333 | @doc raw"""
The discretized version of the 1d linear wave equation.
It is a prime example of a non-trivial completely integrable system.
The only system parameters are the *number of points* ``N`` for which the system is discretized and ``\mu``.
"""
module LinearWave
using EulerLagrange
using LinearAlgebra
using Parameters
export hamiltonian, lagrangian
export hodeproblem, lodeproblem
include("bump_initial_condition.jl")
const μ̃ = .6
const Ñ = 256
const default_parameters = (μ = μ̃, N = Ñ)
function hamiltonian(t, q, p, parameters)
@unpack N, μ = parameters
Δx = one(μ) / (Ñ + 1)
Δx² = Δx ^ 2
μ² = μ ^ 2
sum(p[n] ^ 2 / 2 for n in 1 : (Ñ + 2)) + sum(μ² / 4Δx² * ((q[i] - q[i - 1]) ^ 2 + (q[i + 1] - q[i]) ^ 2) for i in 2 : (Ñ + 1))
end
function lagrangian(t, q, q̇, parameters)
@unpack N, μ = parameters
Δx = one(μ) / (Ñ + 1)
Δx² = Δx ^ 2
μ² = μ ^ 2
sum(q̇[n] ^ 2 / 2 for n in 1 : (Ñ + 2)) - sum(μ² / 4Δx² * ((q[i] - q[i - 1]) ^ 2 + (q[i + 1] - q[i]) ^ 2) for i in 2 : (Ñ + 1))
end
_tstep(tspan::Tuple, n_time_steps::Integer) = (tspan[2] - tspan[1]) / (n_time_steps-1)
const tspan = (0, 1)
const n_time_steps = 200
const tstep = _tstep(tspan, n_time_steps)
const q₀ = compute_initial_condition2(μ̃, Ñ + 2).q
const p₀ = compute_initial_condition2(μ̃, Ñ + 2).p
"""
Hamiltonian problem for the linear wave equation.
"""
function hodeproblem(q₀ = q₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
t, q, p = hamiltonian_variables(Ñ + 2)
sparams = symbolize(parameters)
ham_sys = HamiltonianSystem(hamiltonian(t, q, p, sparams), t, q, p, sparams)
HODEProblem(ham_sys, tspan, tstep, q₀, p₀; parameters = parameters)
end
"""
Lagrangian problem for the linear wave equation.
"""
function lodeproblem(q₀ = q₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
t, x, v = lagrangian_variables(Ñ + 2)
sparams = symbolize(parameters)
lag_sys = LagrangianSystem(lagrangian(t, x, v, sparams), t, x, v, sparams)
lodeproblem(lag_sys, tspan, tstep, q₀, p₀; parameters = parameters)
end
end | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 807 | @doc raw"""
# Lorenz Attractor
"""
module LorenzAttractor
using GeometricEquations
export lorenz_attractor_ode, plot_lorenz_attractor
const Δt = 0.01
const nt = 1000
const tspan = (0.0, Δt*nt)
const q₀ = [1., 1., 1.]
const default_parameters = (σ = 10., ρ = 28., β = 8/3)
const reference_solution = [-4.902687541134471, -3.743872921802973, 24.690858102790042]
function lorenz_attractor_v(v, t, x, params)
σ, ρ, β = params
v[1] = σ * (x[2] - x[1])
v[2] = x[1] * (ρ - x[3]) - x[2]
v[3] = x[1] * x[2] - β * x[3]
nothing
end
function lorenz_attractor_ode(q₀=q₀; tspan = tspan, tstep = Δt, parameters = default_parameters)
ODEProblem(lorenz_attractor_v, tspan, tstep, q₀; parameters = parameters)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 3192 | @doc raw"""
# Lotka-Volterra model in 2D
```math
\begin{aligned}
L (q, \dot{q}) &= \bigg( q_2 + \frac{\log q_2}{q_1} \bigg) \, \dot{q_1} + q_1 \, \dot{q_2} - H(q) , \\
H(q) &= a_1 \, q_1 + a_2 \, q_2 + b_1 \, \log q_1 + b_2 \, \log q_2
\end{aligned}
```
"""
module LotkaVolterra2d
export iodeproblem_dg_gauge
ϑ₁(t, q) = q[2] + log(q[2]) / q[1]
ϑ₂(t, q) = q[1]
dϑ₁dx₁(t, q) = - log(q[2]) / q[1]^2
dϑ₁dx₂(t, q) = 1 + 1 / (q[1] * q[2])
dϑ₂dx₁(t, q) = one(eltype(q))
dϑ₂dx₂(t, q) = zero(eltype(q))
include("lotka_volterra_2d_common.jl")
include("lotka_volterra_2d_equations.jl")
function d²ϑ₁d₁d₁(t, q)
+ 2 * log(q[2]) / q[1]^3
end
function d²ϑ₁d₁d₂(t, q)
- 1 / (q[1]^2 * q[2])
end
function d²ϑ₁d₂d₁(t, q)
- 1 / (q[1]^2 * q[2])
end
function d²ϑ₁d₂d₂(t, q)
- 1 / (q[1] * q[2]^2)
end
function d²ϑ₂d₁d₁(t, q)
zero(eltype(q))
end
function d²ϑ₂d₁d₂(t, q)
zero(eltype(q))
end
function d²ϑ₂d₂d₁(t, q)
zero(eltype(q))
end
function d²ϑ₂d₂d₂(t, q)
zero(eltype(q))
end
function g̅₁(t, q, v)
d²ϑ₁d₁d₁(t,q) * q[1] * v[1] + d²ϑ₁d₂d₁(t,q) * q[1] * v[2] + d²ϑ₂d₁d₁(t,q) * q[2] * v[1] + d²ϑ₂d₂d₁(t,q) * q[2] * v[2]
end
function g̅₂(t, q, v)
d²ϑ₁d₁d₂(t,q) * q[1] * v[1] + d²ϑ₁d₂d₂(t,q) * q[1] * v[2] + d²ϑ₂d₁d₂(t,q) * q[2] * v[1] + d²ϑ₂d₂d₂(t,q) * q[2] * v[2]
end
function lotka_volterra_2d_ϑ_κ(Θ, t, q, v, params, κ)
Θ[1] = (1-κ) * ϑ₁(t,q) - κ * f₁(t,q,q)
Θ[2] = (1-κ) * ϑ₂(t,q) - κ * f₂(t,q,q)
nothing
end
function lotka_volterra_2d_f_κ(f::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params, κ::Real)
f[1] = (1-κ) * f₁(t,q,v) - κ * (g₁(t,q,v) + g̅₁(t,q,v)) - dHd₁(t, q, params)
f[2] = (1-κ) * f₂(t,q,v) - κ * (g₂(t,q,v) + g̅₂(t,q,v)) - dHd₂(t, q, params)
nothing
end
function lotka_volterra_2d_g_κ(g::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params, κ::Real)
g[1] = (1-κ) * f₁(t,q,v) - κ * (g₁(t,q,v) + g̅₁(t,q,v))
g[2] = (1-κ) * f₂(t,q,v) - κ * (g₂(t,q,v) + g̅₂(t,q,v))
nothing
end
# function lotka_volterra_2d_g(κ::Real, t::Real, q::AbstractVector, v::AbstractVector, g::AbstractVector)
# g[1] = (1-κ) * g₁(t,q,v) - κ * g̅₁(t,q,v) - κ * f₁(t,q,v)
# g[2] = (1-κ) * g₂(t,q,v) - κ * g̅₂(t,q,v) - κ * f₂(t,q,v)
# nothing
# end
function iodeproblem_dg_gauge(q₀=q₀, p₀=ϑ(t₀, q₀); tspan=tspan, tstep=Δt, parameters=default_parameters, κ=0)
lotka_volterra_2d_ϑ = (p, t, q, v, params) -> lotka_volterra_2d_ϑ_κ(p, t, q, v, params, κ)
lotka_volterra_2d_f = (f, t, q, v, params) -> lotka_volterra_2d_f_κ(f, t, q, v, params, κ)
lotka_volterra_2d_g = (g, t, q, λ, params) -> lotka_volterra_2d_g_κ(g, t, q, λ, params, κ)
IODEProblem(lotka_volterra_2d_ϑ, lotka_volterra_2d_f,
lotka_volterra_2d_g, tspan, tstep, q₀, p₀;
parameters=parameters,
invariants=(h=hamiltonian_iode,),
v̄=lotka_volterra_2d_v)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 5260 |
using Parameters
export ϑ, ω, hamiltonian
function ϑ(Θ::AbstractVector, t::Number, q::AbstractVector)
Θ[1] = ϑ₁(t,q)
Θ[2] = ϑ₂(t,q)
nothing
end
function ϑ(t::Number, q::AbstractVector)
[ϑ₁(t,q), ϑ₂(t,q)]
end
function ϑ(t::Number, q::AbstractVector, k::Int)
if k == 1
ϑ₁(t, q)
elseif k == 2
ϑ₂(t, q)
else
throw(BoundsError(ϑ,k))
end
end
ϑ(t::Number, q::AbstractVector, params::NamedTuple, k::Int) = ϑ(t,q,k)
function lotka_volterra_2d_pᵢ(qᵢ, tᵢ=0)
pᵢ = zero(qᵢ)
if ndims(qᵢ) == 1
ϑ(pᵢ, tᵢ, qᵢ)
else
for i in axes(qᵢ,2)
ϑ((@view pᵢ[:,i]), tᵢ, (@view qᵢ[:,i]))
end
end
pᵢ
end
function ω(Ω, t, q)
Ω[1,1] = 0
Ω[1,2] = dϑ₁dx₂(t,q) - dϑ₂dx₁(t,q)
Ω[2,1] = dϑ₂dx₁(t,q) - dϑ₁dx₂(t,q)
Ω[2,2] = 0
nothing
end
function hamiltonian(t, q, params)
@unpack a₁, a₂, b₁, b₂ = params
a₁*q[1] + a₂*q[2] + b₁*log(q[1]) + b₂*log(q[2])
end
hamiltonian_iode(t, q, params) = hamiltonian(t, q, params) # This is a workaround. It should be removed asap.
hamiltonian_iode(t, q, v, params) = hamiltonian(t, q, params)
hamiltonian_pode(t, q, p, params) = hamiltonian(t, q, params)
function lagrangian(t, q, v, params)
ϑ₁(t,q) * v[1] + ϑ₂(t,q) * v[2] - hamiltonian(t, q, params)
end
function dHd₁(t, q, params)
@unpack a₁, b₁ = params
a₁ + b₁ / q[1]
end
function dHd₂(t, q, params)
@unpack a₂, b₂ = params
a₂ + b₂ / q[2]
end
function v₁(t, q, params)
@unpack a₁, a₂, b₁, b₂ = params
+ q[1] * (a₂*q[2] + b₂)
end
function v₂(t, q, params)
@unpack a₁, a₂, b₁, b₂ = params
- q[2] * (a₁*q[1] + b₁)
end
f₁(t, q, v) = dϑ₁dx₁(t,q) * v[1] + dϑ₂dx₁(t,q) * v[2]
f₂(t, q, v) = dϑ₁dx₂(t,q) * v[1] + dϑ₂dx₂(t,q) * v[2]
g₁(t, q, v) = dϑ₁dx₁(t,q) * v[1] + dϑ₁dx₂(t,q) * v[2]
g₂(t, q, v) = dϑ₂dx₁(t,q) * v[1] + dϑ₂dx₂(t,q) * v[2]
lotka_volterra_2d_ϑ(Θ, t, q, params) = ϑ(Θ, t, q)
lotka_volterra_2d_ϑ(Θ, t, q, v, params) = ϑ(Θ, t, q)
lotka_volterra_2d_ω(Ω, t, q, params) = ω(Ω, t, q)
lotka_volterra_2d_ω(Ω, t, q, v, params) = ω(Ω, t, q)
function lotka_volterra_2d_dH(dH, t, q, params)
dH[1] = dHd₁(t, q, params)
dH[2] = dHd₂(t, q, params)
nothing
end
function lotka_volterra_2d_v(v, t, q, params)
v[1] = v₁(t, q, params)
v[2] = v₂(t, q, params)
nothing
end
function lotka_volterra_2d_v(v, t, q, p, params)
lotka_volterra_2d_v(v, t, q, params)
end
function lotka_volterra_2d_v_ham(v, t, q, p, params)
v .= 0
nothing
end
function lotka_volterra_2d_v_dae(v, t, q, params)
v[1] = v[3]
v[2] = v[4]
v[3] = 0
v[4] = 0
nothing
end
function lotka_volterra_2d_f(f::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params)
f[1] = f₁(t,q,v) - dHd₁(t, q, params)
f[2] = f₂(t,q,v) - dHd₂(t, q, params)
nothing
end
function lotka_volterra_2d_f_ham(f::AbstractVector, t::Real, q::AbstractVector, params)
f[1] = - dHd₁(t, q, params)
f[2] = - dHd₂(t, q, params)
nothing
end
function lotka_volterra_2d_f_ham(f::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params)
lotka_volterra_2d_f_ham(f, t, q, params)
end
function lotka_volterra_2d_g(g::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params)
g[1] = f₁(t,q,v)
g[2] = f₂(t,q,v)
nothing
end
lotka_volterra_2d_g(g, t, q, p, λ, params) = lotka_volterra_2d_g(g, t, q, λ, params)
lotka_volterra_2d_g(g, t, q, v, p, λ, params) = lotka_volterra_2d_g(g, t, q, p, λ, params)
function lotka_volterra_2d_ḡ(g::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params)
g[1] = g₁(t,q,v)
g[2] = g₂(t,q,v)
nothing
end
lotka_volterra_2d_ḡ(g, t, q, p, λ, params) = lotka_volterra_2d_ḡ(g, t, q, λ, params)
lotka_volterra_2d_ḡ(g, t, q, v, p, λ, params) = lotka_volterra_2d_ḡ(g, t, q, p, λ, params)
function lotka_volterra_2d_u_dae(u, t, q, λ, params)
u[1] = 0
u[2] = 0
u[3] = λ[1]
u[4] = λ[2]
nothing
end
function lotka_volterra_2d_u(u, t, q, λ, params)
u .= λ
nothing
end
lotka_volterra_2d_u(u, t, q, p, λ, params) = lotka_volterra_2d_u(u, t, q, λ, params)
lotka_volterra_2d_u(u, t, q, v, p, λ, params) = lotka_volterra_2d_u(u, t, q, p, λ, params)
function lotka_volterra_2d_ū(u, t, q, λ, params)
u .= λ
nothing
end
lotka_volterra_2d_ū(u, t, q, p, λ, params) = lotka_volterra_2d_ū(u, t, q, λ, params)
lotka_volterra_2d_ū(u, t, q, v, p, λ, params) = lotka_volterra_2d_ū(u, t, q, p, λ, params)
function lotka_volterra_2d_ϕ_dae(ϕ, t, q, params)
ϕ[1] = q[3] - v₁(t,q,params)
ϕ[2] = q[4] - v₂(t,q,params)
nothing
end
function lotka_volterra_2d_ϕ(ϕ, t, q, p, params)
ϕ[1] = p[1] - ϑ₁(t,q)
ϕ[2] = p[2] - ϑ₂(t,q)
nothing
end
lotka_volterra_2d_ϕ(ϕ, t, q, v, p, params) = lotka_volterra_2d_ϕ(ϕ, t, q, p, params)
function lotka_volterra_2d_ψ(ψ, t, q, p, q̇, ṗ, params)
ψ[1] = ṗ[1] - g₁(t,q,q̇)
ψ[2] = ṗ[2] - g₂(t,q,q̇)
nothing
end
lotka_volterra_2d_ψ(ψ, t, q, v, p, q̇, ṗ, params) = lotka_volterra_2d_ψ(ψ, t, q, p, q̇, ṗ, params)
function lotka_volterra_2d_ψ_lode(ψ, t, q, v, p, q̇, ṗ, params)
ψ[1] = f₁(t,q,v) - g₁(t,q,v) - dHd₁(t, q, params)
ψ[2] = f₂(t,q,v) - g₂(t,q,v) - dHd₂(t, q, params)
nothing
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 7446 |
using GeometricEquations
using Requires
import ..Diagnostics: compute_invariant_error
export odeproblem, daeproblem,
podeproblem, pdaeproblem,
iodeproblem, idaeproblem,
lodeproblem, ldaeproblem,
hodeproblem, hdaeproblem,
iodeproblem_dg, ldaeproblem_slrk, idaeproblem_spark
export ode_poincare_invariant_1st,
iode_poincare_invariant_1st
export compute_energy_error
const Δt = 0.01
const nt = 1000
const tspan = (0.0, Δt*nt)
const default_parameters = (a₁=-1.0, a₂=-1.0, b₁=1.0, b₂=2.0)
const reference_solution = [2.576489958858641, 1.5388112243762107]
const t₀ = tspan[begin]
const q₀ = [2.0, 1.0]
const v₀ = [v₁(0, q₀, default_parameters), v₂(0, q₀, default_parameters)]
function f_loop(s)
rx = 0.2
ry = 0.3
x0 = 1.0
y0 = 1.0
xs = x0 + rx*cos(2π*s)
ys = y0 + ry*sin(2π*s)
qs = [xs, ys]
return qs
end
function f_loop(i, n)
f_loop(i/n)
end
function initial_conditions_loop(n)
q₀ = zeros(2, n)
for i in axes(q₀,2)
q₀[:,i] .= f_loop(i, n)
end
return q₀
end
compute_energy_error(t,q,params) = compute_invariant_error(t,q, (t,q) -> hamiltonian(t,q,params))
"Creates an ODE object for the Lotka-Volterra 2D model."
function odeproblem(q₀=q₀; tspan=tspan, tstep=Δt, parameters=default_parameters)
ODEProblem(lotka_volterra_2d_v, tspan, tstep, q₀; parameters=parameters, invariants=(h=hamiltonian,))
end
"Creates a Hamiltonian ODE object for the Lotka-Volterra 2D model."
function hodeproblem(q₀=q₀, p₀=ϑ(t₀, q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
HODEProblem(lotka_volterra_2d_v, lotka_volterra_2d_f, hamiltonian_pode, tspan, tstep, q₀, p₀;
parameters=parameters)
end
"Creates an implicit ODE object for the Lotka-Volterra 2D model."
function iodeproblem(q₀=q₀, p₀=ϑ(t₀, q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
IODEProblem(lotka_volterra_2d_ϑ, lotka_volterra_2d_f,
lotka_volterra_2d_g, tspan, tstep, q₀, p₀;
parameters=parameters, invariants=(h=hamiltonian_iode,), v̄=lotka_volterra_2d_v)
end
"Creates a partitioned ODE object for the Lotka-Volterra 2D model."
function podeproblem(q₀=q₀, p₀=ϑ(t₀, q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
PODEProblem(lotka_volterra_2d_v, lotka_volterra_2d_f, tspan, tstep, q₀, p₀;
parameters=parameters, invariants=(h=hamiltonian_pode,))
end
"Creates a variational ODE object for the Lotka-Volterra 2D model."
function lodeproblem(q₀=q₀, p₀=ϑ(t₀, q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
LODEProblem(lotka_volterra_2d_ϑ, lotka_volterra_2d_f,
lotka_volterra_2d_g, lagrangian, lotka_volterra_2d_ω, tspan, tstep, q₀, p₀;
parameters=parameters, invariants=(h=hamiltonian_iode,), v̄=lotka_volterra_2d_v)
end
"Creates a DAE object for the Lotka-Volterra 2D model."
function daeproblem(q₀=vcat(q₀,v₀), λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
DAEProblem(lotka_volterra_2d_v_dae, lotka_volterra_2d_u_dae, lotka_volterra_2d_ϕ_dae, tspan, tstep, q₀, λ₀;
parameters=parameters, invariants=(h=hamiltonian,))
end
"Creates a Hamiltonian DAE object for the Lotka-Volterra 2D model."
function hdaeproblem(q₀=q₀, p₀=ϑ(t₀, q₀), λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
HDAEProblem(lotka_volterra_2d_v, lotka_volterra_2d_f,
lotka_volterra_2d_u, lotka_volterra_2d_g, lotka_volterra_2d_ϕ,
lotka_volterra_2d_ū, lotka_volterra_2d_ḡ, lotka_volterra_2d_ψ,
hamiltonian_pode, tspan, tstep, q₀, p₀, λ₀; parameters=parameters)
end
"Creates an implicit DAE object for the Lotka-Volterra 2D model."
function idaeproblem(q₀=q₀, p₀=ϑ(t₀, q₀), λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
IDAEProblem(lotka_volterra_2d_ϑ, lotka_volterra_2d_f,
lotka_volterra_2d_u, lotka_volterra_2d_g, lotka_volterra_2d_ϕ,
tspan, tstep, q₀, p₀, λ₀; parameters=parameters, invariants=(h=hamiltonian_iode,),
v̄=lotka_volterra_2d_v)
end
"Creates an implicit DAE object for the Lotka-Volterra 2D model."
function idaeproblem_spark(q₀=q₀, p₀=ϑ(t₀, q₀), λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
IDAEProblem(lotka_volterra_2d_ϑ, lotka_volterra_2d_f_ham,
lotka_volterra_2d_u, lotka_volterra_2d_g, lotka_volterra_2d_ϕ,
tspan, tstep, q₀, p₀, λ₀; parameters=parameters, invariants=(h=hamiltonian_iode,),
v̄=lotka_volterra_2d_v, f̄=lotka_volterra_2d_f)
end
"Creates a partitioned DAE object for the Lotka-Volterra 2D model."
function pdaeproblem(q₀=q₀, p₀=ϑ(t₀, q₀), λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
PDAEProblem(lotka_volterra_2d_v_ham, lotka_volterra_2d_f_ham,
lotka_volterra_2d_u, lotka_volterra_2d_g, lotka_volterra_2d_ϕ,
tspan, tstep, q₀, p₀, λ₀; parameters=parameters, invariants=(h=hamiltonian_pode,),
v̄=lotka_volterra_2d_v, f̄=lotka_volterra_2d_f)
end
"Creates a variational DAE object for the Lotka-Volterra 2D model."
function ldaeproblem(q₀=q₀, p₀=ϑ(t₀, q₀), λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
LDAEProblem(lotka_volterra_2d_ϑ, lotka_volterra_2d_f_ham,
lotka_volterra_2d_u, lotka_volterra_2d_g, lotka_volterra_2d_ϕ,
lotka_volterra_2d_ū, lotka_volterra_2d_ḡ, lotka_volterra_2d_ψ_lode,
lagrangian, lotka_volterra_2d_ω,
tspan, tstep, q₀, p₀, λ₀; parameters=parameters, invariants=(h=hamiltonian_iode,),
v̄=lotka_volterra_2d_v, f̄=lotka_volterra_2d_f)
end
"Creates a variational DAE object for the Lotka-Volterra 2D model for use with SLRK integrators."
function ldaeproblem_slrk(q₀=q₀, p₀=ϑ(t₀, q₀), λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
LDAEProblem(lotka_volterra_2d_ϑ, lotka_volterra_2d_f,
lotka_volterra_2d_u, lotka_volterra_2d_g, lotka_volterra_2d_ϕ,
lotka_volterra_2d_ū, lotka_volterra_2d_ḡ, lotka_volterra_2d_ψ,
lagrangian, lotka_volterra_2d_ω,
tspan, tstep, q₀, p₀, λ₀; parameters=parameters, invariants=(h=hamiltonian_iode,),
v̄=lotka_volterra_2d_v, f̄=lotka_volterra_2d_f)
end
"Creates an implicit ODE object for the Lotka-Volterra 2D model for use with DG integrators."
function iodeproblem_dg(q₀=q₀, p₀=ϑ(t₀, q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
IODEProblem(lotka_volterra_2d_ϑ, lotka_volterra_2d_f, lotka_volterra_2d_g,
tspan, tstep, q₀, p₀; parameters=parameters, invariants=(h=hamiltonian_iode,), v̄=lotka_volterra_2d_v)
end
function ode_loop(n)
lotka_volterra_2d_ode(initial_conditions_loop(n))
end
function iode_loop(n)
lotka_volterra_2d_iode(initial_conditions_loop(n))
end
function __init__()
@require PoincareInvariants = "26663084-47d3-540f-bd97-40ca743aafa4" begin
function ode_poincare_invariant_1st(tstep, nloop, ntime, nsave, DT=Float64)
PoincareInvariant1st(lotka_volterra_2d_ode, f_loop, ϑ, tstep, 2, nloop, ntime, nsave, DT)
end
function iode_poincare_invariant_1st(tstep, nloop, ntime, nsave, DT=Float64)
PoincareInvariant1st(lotka_volterra_2d_iode, f_loop, ϑ, tstep, 2, nloop, ntime, nsave, DT)
end
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 992 | @doc raw"""
# Lotka-Volterra model in 2D with symmetric Lagrangian with gauge term
```math
\begin{aligned}
L (q, \dot{q}) &= \bigg( q_2 + \frac{1}{2} \frac{\log q_2}{q_1} \bigg) \, \dot{q_1} + \bigg( q_1 - \frac{1}{2} \frac{\log q_1}{q_2} \bigg) \, \dot{q_2} - H(q) , \\
H(q) &= a_1 \, q_1 + a_2 \, q_2 + b_1 \, \log q_1 + b_2 \, \log q_2
\end{aligned}
```
This Lagrangian is equivalent to the Lagrangian of the symmetric Lotka-Volterra model. It
differs only by a gauge transformation with the term ``d(q_1 q_2)/dt``. It leads to the same
Euler-Lagrange equations but to a different variational integrator.
"""
module LotkaVolterra2dGauge
ϑ₁(t, q) = + log(q[2]) / q[1] / 2
ϑ₂(t, q) = - log(q[1]) / q[2] / 2
dϑ₁dx₁(t, q) = - log(q[2]) / q[1]^2 / 2
dϑ₁dx₂(t, q) = + 1 / (q[1] * q[2]) / 2
dϑ₂dx₁(t, q) = - 1 / (q[2] * q[1]) / 2
dϑ₂dx₂(t, q) = + log(q[1]) / q[2]^2 / 2
include("lotka_volterra_2d_common.jl")
include("lotka_volterra_2d_equations.jl")
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 6527 | module LotkaVolterra2dPlots
using GeometricEquations
using GeometricSolutions
using GeometricProblems.Diagnostics
using LaTeXStrings
using Measures: mm
using RecipesBase
"""
Plots the solution of a 2D Lotka-Volterra model together with the energy error.
Arguments:
* `sol <: GeometricSolution`
* `equ <: GeometricProblem`
Keyword aguments:
* `nplot=1`: plot every `nplot`th time step
* `xlims=:auto`: xlims for solution plot
* `ylims=:auto`: ylims for solution plot
* `latex=true`: use LaTeX guides
"""
@userplot Plot_Lotka_Volterra_2d
@recipe function f(p::Plot_Lotka_Volterra_2d; nplot=1, nt=:auto, xlims=:auto, ylims=:auto, latex=true)
if length(p.args) != 2 || !(typeof(p.args[1]) <: GeometricSolution) || !(typeof(p.args[2]) <: GeometricProblem)
error("Lotka-Volterra plot should be given two arguments: a solution and an equation. Got: $(typeof(p.args))")
end
sol = p.args[1]
equ = p.args[2]
params = equ.parameters
if nt == :auto
nt = ntime(sol)
end
if nt > ntime(sol)
nt = ntime(sol)
end
H, ΔH = compute_invariant_error(sol.t, sol.q, (t,q) -> invariants(equ)[:h](t,q,params))
size := (1000,400)
layout := (1,2)
legend := :none
right_margin := 10mm
bottom_margin := 10mm
guidefontsize := 18
tickfontsize := 12
@series begin
subplot := 1
left_margin := 10mm
if ntime(sol) ≤ 200
markersize := 5
else
markersize := 1
markercolor := 1
linecolor := 1
markerstrokewidth := 1
markerstrokecolor := 1
end
# seriestype := :scatter
if latex
xguide := L"x_1"
yguide := L"x_2"
else
xguide := "x₁"
yguide := "x₂"
end
xlims := xlims
ylims := ylims
aspect_ratio := 1
sol.q[0:nplot:nt, 1], sol.q[0:nplot:nt, 2]
end
@series begin
subplot := 2
if latex
xguide := L"t"
yguide := L"[H(t) - H(0)] / H(0)"
else
xguide := "t"
yguide := "[H(t) - H(0)] / H(0)"
end
xlims := (sol.t[0], Inf)
ylims := :auto
yformatter := :scientific
right_margin := 10mm
sol.t[0:nplot:nt], ΔH[0:nplot:nt]
end
end
"""
Plots the solution of a 2D Lotka-Volterra model.
Arguments:
* `sol <: GeometricSolution`
* `equ <: GeometricProblem`
Keyword aguments:
* `nplot=1`: plot every `nplot`th time step
* `xlims=:auto`: xlims for solution plot
* `ylims=:auto`: ylims for solution plot
* `latex=true`: use LaTeX guides
"""
@userplot Plot_Lotka_Volterra_2d_Solution
@recipe function f(p::Plot_Lotka_Volterra_2d_Solution; nplot=1, nt=:auto, xlims=:auto, ylims=:auto, latex=true)
if length(p.args) != 2 || !(typeof(p.args[1]) <: GeometricSolution) || !(typeof(p.args[2]) <: GeometricProblem)
error("Lotka-Volterra solution plot should be given two arguments: a solution and an equation. Got: $(typeof(p.args))")
end
sol = p.args[1]
equ = p.args[2]
params = equ.parameters
if nt == :auto
nt = ntime(sol)
end
if nt > ntime(sol)
nt = ntime(sol)
end
if ntime(sol) ≤ 200
markersize := 5
else
markersize := 1
markercolor := 1
linecolor := 1
markerstrokewidth := 1
markerstrokecolor := 1
end
legend := :none
size := (400,400)
# solution
@series begin
# seriestype := :scatter
if latex
xguide := L"x_1"
yguide := L"x_2"
else
xguide := "x₁"
yguide := "x₂"
end
xlims := xlims
ylims := ylims
aspect_ratio := 1
guidefontsize := 18
tickfontsize := 12
sol.q[0:nplot:nt, 1], sol.q[0:nplot:nt, 2]
end
end
"""
Plots time traces of the solution of a 2D Lotka-Volterra model and its energy error.
Arguments:
* `sol <: GeometricSolution`
* `equ <: GeometricProblem`
Keyword aguments:
* `nplot=1`: plot every `nplot`th time step
* `latex=true`: use LaTeX guides
"""
@userplot Plot_Lotka_Volterra_2d_Traces
@recipe function f(p::Plot_Lotka_Volterra_2d_Traces; nplot=1, nt=:auto, latex=true)
if length(p.args) != 2 || !(typeof(p.args[1]) <: GeometricSolution) || !(typeof(p.args[2]) <: GeometricProblem)
error("Lotka-Volterra traces plot should be given two arguments: a solution and an equation. Got: $(typeof(p.args))")
end
sol = p.args[1]
equ = p.args[2]
params = equ.parameters
if nt == :auto
nt = ntime(sol)
end
if nt > ntime(sol)
nt = ntime(sol)
end
H, ΔH = compute_invariant_error(sol.t, sol.q, (t,q) -> invariants(equ)[:h](t,q,params))
size := (800,600)
legend := :none
guidefontsize := 18
tickfontsize := 12
# traces
layout := (3,1)
if latex
ylabels = (L"x_1", L"x_2")
else
ylabels = ("x₁", "x₂")
end
for i in 1:2
@series begin
subplot := i
yguide := ylabels[i]
xlims := (sol.t[0], Inf)
xaxis := false
right_margin := 10mm
sol.t[0:nplot:nt], sol.q[0:nplot:nt, i]
end
end
@series begin
subplot := 3
if latex
xguide := L"t"
yguide := L"[H(t) - H(0)] / H(0)"
else
xguide := "t"
yguide := "[H(t) - H(0)] / H(0)"
end
xlims := (sol.t[0], Inf)
yformatter := :scientific
guidefontsize := 18
tickfontsize := 12
right_margin := 10mm
sol.t[0:nplot:nt], ΔH[0:nplot:nt]
end
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1094 | @doc raw"""
# Lotka-Volterra model in 2D with "singular" Lagrangian
```math
\begin{aligned}
L (q, \dot{q}) &= \frac{\log q_2}{q_1} \, \dot{q_1} - H(q) , \\
H(q) &= a_1 \, q_1 + a_2 \, q_2 + b_1 \, \log q_1 + b_2 \, \log q_2
\end{aligned}
```
This Lagrangian is equivalent to the Lagrangian of the symmetric Lotka-Volterra model. It
differs only by a gauge transformation with the term ``- 1/2 \, d(\log(q_1) \log(q_2))/dt``.
It leads to the same Euler-Lagrange equations but to a different variational integrator.
"""
module LotkaVolterra2dSingular
ϑ₁(t, q) = + log(q[2]) / q[1]
ϑ₂(t, q) = zero(eltype(q))
dϑ₁dx₁(t, q) = - log(q[2]) / q[1]^2
dϑ₁dx₂(t, q) = + 1 / (q[1] * q[2])
dϑ₂dx₁(t, q) = zero(eltype(q))
dϑ₂dx₂(t, q) = zero(eltype(q))
# ϑ₁(t, q) = zero(eltype(q))
# ϑ₂(t, q) = - log(q[1]) / q[2]
# dϑ₁dx₁(t, q) = zero(eltype(q))
# dϑ₁dx₂(t, q) = zero(eltype(q))
# dϑ₂dx₁(t, q) = - 1 / (q[2] * q[1])
# dϑ₂dx₂(t, q) = + log(q[1]) / q[2]^2
include("lotka_volterra_2d_common.jl")
include("lotka_volterra_2d_equations.jl")
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 924 | @doc raw"""
# Lotka-Volterra model in 2D with symmetric Lagrangian
```math
\begin{aligned}
L (q, \dot{q}) &= \frac{1}{2} \frac{\log q_2}{q_1} \, \dot{q_1} - \frac{1}{2} \frac{\log q_1}{q_2} \, \dot{q_2} - H(q) , \\
H(q) &= a_1 \, q_1 + a_2 \, q_2 + b_1 \, \log q_1 + b_2 \, \log q_2
\end{aligned}
```
This Lagrangian is a slight generalization of Equation (5) in José Fernández-Núñez,
Lagrangian Structure of the Two-Dimensional Lotka-Volterra System, International
Journal of Theoretical Physics, Vol. 37, No. 9, pp. 2457-2462, 1998.
"""
module LotkaVolterra2dSymmetric
ϑ₁(t, q) = + log(q[2]) / q[1] / 2
ϑ₂(t, q) = - log(q[1]) / q[2] / 2
dϑ₁dx₁(t, q) = - log(q[2]) / q[1]^2 / 2
dϑ₁dx₂(t, q) = + 1 / (q[1] * q[2]) / 2
dϑ₂dx₁(t, q) = - 1 / (q[2] * q[1]) / 2
dϑ₂dx₂(t, q) = + log(q[1]) / q[2]^2 / 2
include("lotka_volterra_2d_common.jl")
include("lotka_volterra_2d_equations.jl")
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 3716 | @doc raw"""
# Lotka-Volterra Model in 3D
The Lotka–Volterra model in 3D is an example of a Hamiltonian system with degenerate Poisson structure.
The equations read
```math
\begin{aligned}
\dot{q}_{1} &= q_{1} ( - a_{2} q_{2} + a_{3} q_{3} - b_{2} + b_{3} ) , \\
\dot{q}_{2} &= q_{2} ( \hphantom{-} a_{1} q_{1} - a_{3} q_{3} + b_{1} - b_{3} ) , \\
\dot{q}_{3} &= q_{3} ( - a_{1} q_{1} + a_{2} q_{2} - b_{1} + b_{2} ) , \\
\end{aligned}
```
which can be written in Poisson-form as
```math
\dot{q} = P(q) \nabla H(q) ,
```
with Poisson matrix
```math
P(q) = \begin{pmatrix}
0 & - q_{1} q_{2} & \hphantom{-} q_{1} q_{3} \\
\hphantom{-} q_{1} q_{2} & 0 & - q_{2} q_{3} \\
- q_{1} q_{3} & \hphantom{-} q_{2} q_{3} & 0 \\
\end{pmatrix} ,
```
and Hamiltonian
```math
H(q) = a_{1} q_{1} + a_{2} q_{2} + a_{3} q_{3} + b_{1} \ln q_{1} + b_{2} \ln q_{2} + b_{3} \ln q_{3} .
```
References:
* A. M. Perelomov. Selected topics on classical integrable systems,
Troisième cycle de la physique, expanded version of lectures
delivered in May 1995.
* Yuri B. Suris. Integrable discretizations for lattice systems: local
equations of motion and their Hamiltonian properties,
Rev. Math. Phys. 11, pp. 727–822, 1999.
"""
module LotkaVolterra3d
using GeometricBase
using GeometricEquations
using GeometricSolutions
using Parameters
export odeproblem
export hamiltonian, casimir
export compute_energy_error, compute_casimir_error
const Δt = 0.01
const nt = 1000
const tspan = (0.0, Δt*nt)
const default_parameters = (A1 = 1.0, A2 = 1.0, A3 = 1.0, B1 = 0.0, B2 = 1.0, B3 = 1.0)
const reference_solution = [0.39947308320241187, 1.9479527336244262, 2.570183075433086]
function v₁(t, q, params)
@unpack A1, A2, A3, B1, B2, B3 = params
q[1] * ( - A2 * q[2] + A3 * q[3] + B2 - B3)
end
function v₂(t, q, params)
@unpack A1, A2, A3, B1, B2, B3 = params
q[2] * ( + A1 * q[1] - A3 * q[3] - B1 + B3)
end
function v₃(t, q, params)
@unpack A1, A2, A3, B1, B2, B3 = params
q[3] * ( - A1 * q[1] + A2 * q[2] + B1 - B2)
end
const X₀ = 1.0
const Y₀ = 1.0
const Z₀ = 2.0
const q₀ = [X₀, Y₀, Z₀]
const v₀ = [v₁(0, q₀, default_parameters), v₂(0, q₀, default_parameters), v₃(0, q₀, default_parameters)]
function hamiltonian(t, q, params)
@unpack A1, A2, A3, B1, B2, B3 = params
A1*q[1] + A2*q[2] + A3*q[3] - B1*log(q[1]) - B2*log(q[2]) - B3*log(q[3])
end
hamiltonian_iode(v, t, q, params) = hamiltonian(t, q, params)
function casimir(t, q, params)
log(q[1]) + log(q[2]) + log(q[3])
end
function lotka_volterra_3d_v(v, t, q, params)
v[1] = v₁(t, q, params)
v[2] = v₂(t, q, params)
v[3] = v₃(t, q, params)
nothing
end
function odeproblem(q₀=q₀; tspan=tspan, tstep=Δt, parameters=default_parameters)
ODEProblem(lotka_volterra_3d_v, tspan, tstep, q₀; parameters=parameters, invariants=(h=hamiltonian,))
end
function compute_energy_error(t::TimeSeries, q::DataSeries{T}, params) where {T}
h = DataSeries(T, ntime(q))
e = DataSeries(T, ntime(q))
for i in axes(q,1)
h[i] = hamiltonian(t[i], q[i], params)
e[i] = (h[i] - h[0]) / h[0]
end
(h, e)
end
function compute_casimir_error(t::TimeSeries, q::DataSeries{T}, params) where {T}
c = DataSeries(T, ntime(q))
e = DataSeries(T, ntime(q))
for i in axes(q,1)
c[i] = casimir(t[i], q[i], params)
e[i] = (c[i] - c[0]) / c[0]
end
(c, e)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1819 | module LotkaVolterra3dPlots
using LaTeXStrings
using Measures: mm
using RecipesBase
import GeometricProblems.Diagnostics: compute_invariant_error, compute_momentum_error
# export compute_energy_error, compute_momentum_error
compute_energy_error(t,q,params) = compute_invariant_error(t,q, (t,q) -> hamiltonian(t,q,params))
# compute_momentum_error(t,q,p) = compute_momentum_error(t,q,p,ϑ)
@userplot PlotLotkaVolterra3d
@recipe function f(p::PlotLotkaVolterra3d; latex=true)
# if length(p.args) != 2 || !(typeof(p.args[1][1]) <: Solution) || !(typeof(p.args[2]) <: NamedTuple)
# error("Lotka-Volterra plots should be given a solution. Got: $(typeof(p.args))")
# end
sol = p.args[1]
params = p.args[2]
H, ΔH = compute_energy_error(sol.t, sol.q, params);
size := (800,1200)
legend := :none
guidefontsize := 12
tickfontsize := 8
left_margin := 12mm
right_margin := 8mm
# traces
layout := (4,1)
if latex
ylabels = (L"x_1", L"x_2", L"x_3")
else
ylabels = ("x₁", "x₂", "x₃")
end
for i in 1:3
@series begin
subplot := i
yguide := ylabels[i]
xlims := (sol.t[0], Inf)
xaxis := false
sol.t, sol.q[i,:]
end
end
@series begin
subplot := 4
if latex
xguide := L"t"
yguide := L"[H(t) - H(0)] / H(0)"
else
xguide := "t"
yguide := "[H(t) - H(0)] / H(0)"
end
xlims := (sol.t[0], Inf)
yformatter := :scientific
sol.t, ΔH
end
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 14694 | @doc raw"""
"""
module LotkaVolterra4d
using GeometricEquations
using Parameters
export hamiltonian, ϑ, ϑ₁, ϑ₂, ω
export odeproblem,
podeproblem, pdaeproblem,
iodeproblem, idaeproblem,
lodeproblem, ldaeproblem,
iodeproblem_dg
const Δt = 0.01
const nt = 1000
const tspan = (0.0, Δt*nt)
const q₀ = [2.0, 1.0, 1.0, 1.0]
const default_parameters = (a₁=1.0, a₂=1.0, a₃=1.0, a₄=1.0, b₁=-1.0, b₂=-2.0, b₃=-1.0, b₄=-1.0)
const reference_solution = [0.5988695239096916, 2.068567531039674, 0.2804351458645534, 1.258449091830993]
# const q₀ = [2.0, 1.0, 2.0, 1.0]
# const p = (a₁=1.0, a₂=1.0, a₃=1.0, a₄=1.0, b₁=-1.0, b₂=-2.0, b₃=-1.0, b₄=-2.0)
# const q₀ = [2.0, 1.0, 2.0, 1.0]
# const p = (a₁=1.0, a₂=1.0, a₃=1.0, a₄=1.0, b₁=-1.0, b₂=-4.0, b₃=-2.0, b₄=-3.0)
ϑ₁(t, q) = 0.5 * ( + log(q[2]) - log(q[3]) + log(q[4]) ) / q[1]
ϑ₂(t, q) = 0.5 * ( - log(q[1]) + log(q[3]) - log(q[4]) ) / q[2]
ϑ₃(t, q) = 0.5 * ( + log(q[1]) - log(q[2]) + log(q[4]) ) / q[3]
ϑ₄(t, q) = 0.5 * ( - log(q[1]) + log(q[2]) - log(q[3]) ) / q[4]
# ϑ₁(t, q) = ( log(q[2]) + log(q[4]) ) / q[1]
# ϑ₂(t, q) = ( log(q[3]) ) / q[2]
# ϑ₃(t, q) = ( log(q[1]) + log(q[4]) ) / q[3]
# ϑ₄(t, q) = ( log(q[2]) ) / q[4]
# ϑ₁(t, q) = ( + log(q[2]) - log(q[3]) + log(q[4]) ) / q[1] / 2 + q[2] + q[3] + q[4]
# ϑ₂(t, q) = ( - log(q[1]) + log(q[3]) - log(q[4]) ) / q[2] / 2 + q[1] + q[3] + q[4]
# ϑ₃(t, q) = ( + log(q[1]) - log(q[2]) + log(q[4]) ) / q[3] / 2 + q[1] + q[2] + q[4]
# ϑ₄(t, q) = ( - log(q[1]) + log(q[2]) - log(q[3]) ) / q[4] / 2 + q[1] + q[2] + q[3]
# ϑ₁(t, q) = ( + log(q[2]) - log(q[3]) + log(q[4]) ) / q[1]
# ϑ₂(t, q) = ( + log(q[3]) - log(q[4]) ) / q[2]
# ϑ₃(t, q) = log(q[4]) / q[3]
# ϑ₄(t, q) = zero(eltype(q))
function v₁(t, q, params)
@unpack a₁, a₂, a₃, a₄, b₁, b₂, b₃, b₄ = params
q[1] * (+ a₂*q[2] + a₃*q[3] + a₄*q[4] + b₂ + b₃ + b₄)
end
function v₂(t, q, params)
@unpack a₁, a₂, a₃, a₄, b₁, b₂, b₃, b₄ = params
q[2] * (- a₁*q[1] + a₃*q[3] + a₄*q[4] - b₁ + b₃ + b₄)
end
function v₃(t, q, params)
@unpack a₁, a₂, a₃, a₄, b₁, b₂, b₃, b₄ = params
q[3] * (- a₁*q[1] - a₂*q[2] + a₄*q[4] - b₁ - b₂ + b₄)
end
function v₄(t, q, params)
@unpack a₁, a₂, a₃, a₄, b₁, b₂, b₃, b₄ = params
q[4] * (- a₁*q[1] - a₂*q[2] - a₃*q[3] - b₁ - b₂ - b₃)
end
dϑ₁dx₁(t, q) = ( - log(q[2]) + log(q[3]) - log(q[4]) ) / q[1]^2 / 2
dϑ₁dx₂(t, q) = + 1 / (q[1] * q[2]) / 2
dϑ₁dx₃(t, q) = - 1 / (q[1] * q[3]) / 2
dϑ₁dx₄(t, q) = + 1 / (q[1] * q[4]) / 2
dϑ₂dx₁(t, q) = - 1 / (q[2] * q[1]) / 2
dϑ₂dx₂(t, q) = ( + log(q[1]) - log(q[3]) + log(q[4]) ) / q[2]^2 / 2
dϑ₂dx₃(t, q) = + 1 / (q[2] * q[3]) / 2
dϑ₂dx₄(t, q) = - 1 / (q[2] * q[4]) / 2
dϑ₃dx₁(t, q) = + 1 / (q[3] * q[1]) / 2
dϑ₃dx₂(t, q) = - 1 / (q[3] * q[2]) / 2
dϑ₃dx₃(t, q) = ( - log(q[1]) + log(q[2]) - log(q[4]) ) / q[3]^2 / 2
dϑ₃dx₄(t, q) = + 1 / (q[3] * q[4]) / 2
dϑ₄dx₁(t, q) = - 1 / (q[4] * q[1]) / 2
dϑ₄dx₂(t, q) = + 1 / (q[4] * q[2]) / 2
dϑ₄dx₃(t, q) = - 1 / (q[4] * q[3]) / 2
dϑ₄dx₄(t, q) = ( + log(q[1]) - log(q[2]) + log(q[3]) ) / q[4]^2 / 2
# dϑ₁dx₁(t, q) = - ( log(q[2]) + log(q[4]) ) / q[1]^2
# dϑ₁dx₂(t, q) = 1 / (q[1] * q[2])
# dϑ₁dx₃(t, q) = zero(eltype(q))
# dϑ₁dx₄(t, q) = 1 / (q[1] * q[4])
# dϑ₂dx₁(t, q) = zero(eltype(q))
# dϑ₂dx₂(t, q) = - ( log(q[3]) ) / q[2]^2
# dϑ₂dx₃(t, q) = 1 / (q[2] * q[3])
# dϑ₂dx₄(t, q) = zero(eltype(q))
# dϑ₃dx₁(t, q) = + 1 / (q[3] * q[1])
# dϑ₃dx₂(t, q) = zero(eltype(q))
# dϑ₃dx₃(t, q) = - ( log(q[1]) + log(q[4]) ) / q[3]^2
# dϑ₃dx₄(t, q) = + 1 / (q[3] * q[4])
# dϑ₄dx₁(t, q) = zero(eltype(q))
# dϑ₄dx₂(t, q) = 1 / (q[4] * q[2])
# dϑ₄dx₃(t, q) = zero(eltype(q))
# dϑ₄dx₄(t, q) = - ( log(q[2]) ) / q[4]^2
# dϑ₁dx₁(t, q) = ( - log(q[2]) + log(q[3]) - log(q[4]) ) / q[1]^2 / 2
# dϑ₁dx₂(t, q) = 1 + 1 / (q[1] * q[2]) / 2
# dϑ₁dx₃(t, q) = 1 - 1 / (q[1] * q[3]) / 2
# dϑ₁dx₄(t, q) = 1 + 1 / (q[1] * q[4]) / 2
# dϑ₂dx₁(t, q) = 1 - 1 / (q[2] * q[1]) / 2
# dϑ₂dx₂(t, q) = ( + log(q[1]) - log(q[3]) + log(q[4]) ) / q[2]^2 / 2
# dϑ₂dx₃(t, q) = 1 + 1 / (q[2] * q[3]) / 2
# dϑ₂dx₄(t, q) = 1 - 1 / (q[2] * q[4]) / 2
# dϑ₃dx₁(t, q) = 1 + 1 / (q[3] * q[1]) / 2
# dϑ₃dx₂(t, q) = 1 - 1 / (q[3] * q[2]) / 2
# dϑ₃dx₃(t, q) = ( - log(q[1]) + log(q[2]) - log(q[4]) ) / q[3]^2 / 2
# dϑ₃dx₄(t, q) = 1 + 1 / (q[3] * q[4]) / 2
# dϑ₄dx₁(t, q) = 1 - 1 / (q[4] * q[1]) / 2
# dϑ₄dx₂(t, q) = 1 + 1 / (q[4] * q[2]) / 2
# dϑ₄dx₃(t, q) = 1 - 1 / (q[4] * q[3]) / 2
# dϑ₄dx₄(t, q) = ( + log(q[1]) - log(q[2]) + log(q[3]) ) / q[4]^2 / 2
# dϑ₁dx₁(t, q) = ( - log(q[2]) + log(q[3]) - log(q[4]) ) / q[1]^2
# dϑ₁dx₂(t, q) = + 1 / (q[1] * q[2])
# dϑ₁dx₃(t, q) = - 1 / (q[1] * q[3])
# dϑ₁dx₄(t, q) = + 1 / (q[1] * q[4])
# dϑ₂dx₁(t, q) = zero(eltype(q))
# dϑ₂dx₂(t, q) = ( - log(q[3]) + log(q[4]) ) / q[2]^2
# dϑ₂dx₃(t, q) = + 1 / (q[2] * q[3])
# dϑ₂dx₄(t, q) = - 1 / (q[2] * q[4])
# dϑ₃dx₁(t, q) = zero(eltype(q))
# dϑ₃dx₂(t, q) = zero(eltype(q))
# dϑ₃dx₃(t, q) = ( - log(q[4]) ) / q[3]^2
# dϑ₃dx₄(t, q) = + 1 / (q[3] * q[4])
# dϑ₄dx₁(t, q) = zero(eltype(q))
# dϑ₄dx₂(t, q) = zero(eltype(q))
# dϑ₄dx₃(t, q) = zero(eltype(q))
# dϑ₄dx₄(t, q) = zero(eltype(q))
function ϑ(Θ::AbstractVector, t::Number, q::AbstractVector)
Θ[1] = ϑ₁(t,q)
Θ[2] = ϑ₂(t,q)
Θ[3] = ϑ₃(t,q)
Θ[4] = ϑ₄(t,q)
nothing
end
function ϑ(t::Number, q::AbstractVector)
Θ = zero(q)
ϑ(Θ, t, q)
return Θ
end
function ϑ(t::Number, q::AbstractVector, k::Int)
if k == 1
ϑ₁(t, q)
elseif k == 2
ϑ₂(t, q)
elseif k == 3
ϑ₃(t, q)
elseif k == 4
ϑ₄(t, q)
else
throw(BoundsError(ϑ,k))
end
end
function ω(Ω, t, q)
Ω[1,1] = 0
Ω[1,2] = dϑ₁dx₂(t,q) - dϑ₂dx₁(t,q)
Ω[1,3] = dϑ₁dx₃(t,q) - dϑ₃dx₁(t,q)
Ω[1,4] = dϑ₁dx₄(t,q) - dϑ₄dx₁(t,q)
Ω[2,1] = dϑ₂dx₁(t,q) - dϑ₁dx₂(t,q)
Ω[2,2] = 0
Ω[2,3] = dϑ₂dx₃(t,q) - dϑ₃dx₂(t,q)
Ω[2,4] = dϑ₂dx₄(t,q) - dϑ₄dx₂(t,q)
Ω[3,1] = dϑ₃dx₁(t,q) - dϑ₁dx₃(t,q)
Ω[3,2] = dϑ₃dx₂(t,q) - dϑ₂dx₃(t,q)
Ω[3,3] = 0
Ω[3,4] = dϑ₃dx₄(t,q) - dϑ₄dx₃(t,q)
Ω[4,1] = dϑ₄dx₁(t,q) - dϑ₁dx₄(t,q)
Ω[4,2] = dϑ₄dx₂(t,q) - dϑ₂dx₄(t,q)
Ω[4,3] = dϑ₄dx₃(t,q) - dϑ₃dx₄(t,q)
Ω[4,4] = 0
nothing
end
f₁(t, q, v) = dϑ₁dx₁(t,q) * v[1] + dϑ₂dx₁(t,q) * v[2] + dϑ₃dx₁(t,q) * v[3] + dϑ₄dx₁(t,q) * v[4]
f₂(t, q, v) = dϑ₁dx₂(t,q) * v[1] + dϑ₂dx₂(t,q) * v[2] + dϑ₃dx₂(t,q) * v[3] + dϑ₄dx₂(t,q) * v[4]
f₃(t, q, v) = dϑ₁dx₃(t,q) * v[1] + dϑ₂dx₃(t,q) * v[2] + dϑ₃dx₃(t,q) * v[3] + dϑ₄dx₃(t,q) * v[4]
f₄(t, q, v) = dϑ₁dx₄(t,q) * v[1] + dϑ₂dx₄(t,q) * v[2] + dϑ₃dx₄(t,q) * v[3] + dϑ₄dx₄(t,q) * v[4]
g₁(t, q, v) = dϑ₁dx₁(t,q) * v[1] + dϑ₁dx₂(t,q) * v[2] + dϑ₁dx₃(t,q) * v[3] + dϑ₁dx₄(t,q) * v[4]
g₂(t, q, v) = dϑ₂dx₁(t,q) * v[1] + dϑ₂dx₂(t,q) * v[2] + dϑ₂dx₃(t,q) * v[3] + dϑ₂dx₄(t,q) * v[4]
g₃(t, q, v) = dϑ₃dx₁(t,q) * v[1] + dϑ₃dx₂(t,q) * v[2] + dϑ₃dx₃(t,q) * v[3] + dϑ₃dx₄(t,q) * v[4]
g₄(t, q, v) = dϑ₄dx₁(t,q) * v[1] + dϑ₄dx₂(t,q) * v[2] + dϑ₄dx₃(t,q) * v[3] + dϑ₄dx₄(t,q) * v[4]
function hamiltonian(t, q, params)
@unpack a₁, a₂, a₃, a₄, b₁, b₂, b₃, b₄ = params
a = [a₁, a₂, a₃, a₄]
b = [b₁, b₂, b₃, b₄]
sum(a .* q) + sum(b .* log.(q))
end
hamiltonian_iode(t, q, v, params) = hamiltonian(t, q, params)
hamiltonian_pode(t, q, p, params) = hamiltonian(t, q, params)
function dHd₁(t, q, params)
@unpack a₁, b₁ = params
a₁ + b₁ / q[1]
end
function dHd₂(t, q, params)
@unpack a₂, b₂ = params
a₂ + b₂ / q[2]
end
function dHd₃(t, q, params)
@unpack a₃, b₃ = params
a₃ + b₃ / q[3]
end
function dHd₄(t, q, params)
@unpack a₄, b₄ = params
a₄ + b₄ / q[4]
end
function lotka_volterra_4d_dH(dH, t, q, params)
dH[1] = dHd₁(t, q, params)
dH[2] = dHd₂(t, q, params)
dH[3] = dHd₃(t, q, params)
dH[4] = dHd₄(t, q, params)
nothing
end
lotka_volterra_4d_ϑ(Θ, t, q, params) = ϑ(Θ, t, q)
lotka_volterra_4d_ϑ(Θ, t, q, v, params) = ϑ(Θ, t, q)
lotka_volterra_4d_ω(Ω, t, q, params) = ω(Ω, t, q)
function lotka_volterra_4d_v(v, t, q, params)
v[1] = v₁(t, q, params)
v[2] = v₂(t, q, params)
v[3] = v₃(t, q, params)
v[4] = v₄(t, q, params)
nothing
end
function lotka_volterra_4d_v(v, t, q, p, params)
lotka_volterra_4d_v(v, t, q, params)
end
function lotka_volterra_4d_v_ham(v, t, q, p, params)
v .= 0
nothing
end
function lotka_volterra_4d_f(f::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params)
f[1] = f₁(t,q,v) - dHd₁(t, q, params)
f[2] = f₂(t,q,v) - dHd₂(t, q, params)
f[3] = f₃(t,q,v) - dHd₃(t, q, params)
f[4] = f₄(t,q,v) - dHd₄(t, q, params)
nothing
end
function lotka_volterra_4d_f_ham(f::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params)
f[1] = - dHd₁(t, q, params)
f[2] = - dHd₂(t, q, params)
f[3] = - dHd₃(t, q, params)
f[4] = - dHd₄(t, q, params)
end
function lotka_volterra_4d_g(g::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params)
g[1] = f₁(t,q,v)
g[2] = f₂(t,q,v)
g[3] = f₃(t,q,v)
g[4] = f₄(t,q,v)
nothing
end
lotka_volterra_4d_g(g, t, q, p, λ, params) = lotka_volterra_4d_g(g, t, q, λ, params)
lotka_volterra_4d_g(g, t, q, v, p, λ, params) = lotka_volterra_4d_g(g, t, q, p, λ, params)
function lotka_volterra_4d_g̅(g::AbstractVector, t::Real, q::AbstractVector, v::AbstractVector, params)
g[1] = g₁(t,q,v)
g[2] = g₂(t,q,v)
g[3] = g₃(t,q,v)
g[4] = g₄(t,q,v)
nothing
end
function lotka_volterra_4d_g̅(g::AbstractVector, t::Real, q::AbstractVector, p::AbstractVector, v::AbstractVector, params)
lotka_volterra_4d_g̅(t, q, v, g, params)
end
function lotka_volterra_4d_u(u, t, q, λ, params)
u .= λ
nothing
end
lotka_volterra_4d_u(u, t, q, p, λ, params) = lotka_volterra_4d_u(u, t, q, λ, params)
lotka_volterra_4d_u(u, t, q, v, p, λ, params) = lotka_volterra_4d_u(u, t, q, p, λ, params)
function lotka_volterra_4d_ϕ(ϕ, t, q, p, params)
ϕ[1] = p[1] - ϑ₁(t,q)
ϕ[2] = p[2] - ϑ₂(t,q)
ϕ[3] = p[3] - ϑ₃(t,q)
ϕ[4] = p[4] - ϑ₄(t,q)
nothing
end
lotka_volterra_4d_ϕ(ϕ, t, q, v, p, params) = lotka_volterra_4d_ϕ(ϕ, t, q, p, params)
function lotka_volterra_4d_ψ(ψ, t, q, p, q̇, ṗ, params)
ψ[1] = f[1] - g₁(t,q,q̇)
ψ[2] = f[2] - g₂(t,q,q̇)
ψ[3] = f[3] - g₃(t,q,q̇)
ψ[4] = f[4] - g₄(t,q,q̇)
nothing
end
lotka_volterra_4d_ψ(ψ, t, q, v, p, q̇, ṗ, params) = lotka_volterra_4d_ψ(ψ, t, q, p, q̇, ṗ, params)
function odeproblem(q₀=q₀; tspan=tspan, tstep=Δt, parameters=default_parameters)
ODEProblem(lotka_volterra_4d_v, tspan, tstep, q₀; parameters=parameters, invariants=(h=hamiltonian,))
end
function podeproblem(q₀=q₀, p₀=nothing; tspan=tspan, tstep=Δt, parameters=default_parameters)
p₀ === nothing ? p₀ = ϑ(tspan[begin], q₀) : nothing
PODEProblem(lotka_volterra_4d_v, lotka_volterra_4d_f,
tspan, tstep, q₀, p₀; parameters=parameters, invariants=(h=hamiltonian_pode,))
end
function iodeproblem(q₀=q₀, p₀=nothing; tspan=tspan, tstep=Δt, parameters=default_parameters)
p₀ === nothing ? p₀ = ϑ(tspan[begin], q₀) : nothing
IODEProblem(lotka_volterra_4d_ϑ, lotka_volterra_4d_f,
lotka_volterra_4d_g, tspan, tstep, q₀, p₀;
parameters=parameters, invariants=(h=hamiltonian_iode,), v̄=lotka_volterra_4d_v)
end
function lodeproblem(q₀=q₀, p₀=nothing; tspan=tspan, tstep=Δt, parameters=default_parameters)
p₀ === nothing ? p₀ = ϑ(tspan[begin], q₀) : nothing
LODEProblem(lotka_volterra_4d_ϑ, lotka_volterra_4d_f,
lotka_volterra_4d_g, tspan, tstep, q₀, p₀;
parameters=parameters, invariants=(h=hamiltonian_iode,), v̄=lotka_volterra_4d_v,
Ω=lotka_volterra_4d_ω, ∇H=lotka_volterra_4d_dH)
end
function idaeproblem(q₀=q₀, p₀=nothing, λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
p₀ === nothing ? p₀ = ϑ(tspan[begin], q₀) : nothing
IDAEProblem(lotka_volterra_4d_ϑ, lotka_volterra_4d_f,
lotka_volterra_4d_u, lotka_volterra_4d_g,
lotka_volterra_4d_ϕ, tspan, tstep, q₀, p₀, λ₀;
parameters=parameters, invariants=(h=hamiltonian_iode,), v̄=lotka_volterra_4d_v)
end
function pdaeproblem(q₀=q₀, p₀=nothing, λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
p₀ === nothing ? p₀ = ϑ(tspan[begin], q₀) : nothing
PDAEProblem(lotka_volterra_4d_v_ham, lotka_volterra_4d_f_ham,
lotka_volterra_4d_u, lotka_volterra_4d_g,
lotka_volterra_4d_ϕ, tspan, tstep, q₀, p₀, λ₀;
v̄=lotka_volterra_4d_v, f̄=lotka_volterra_4d_f,
parameters=parameters, invariants=(h=hamiltonian_pode,))
end
function ldaeproblem(q₀=q₀, p₀=nothing, λ₀=zero(q₀); tspan=tspan, tstep=Δt, parameters=default_parameters)
p₀ === nothing ? p₀ = ϑ(tspan[begin], q₀) : nothing
LDAEProblem(lotka_volterra_4d_ϑ, lotka_volterra_4d_f_ham,
lotka_volterra_4d_g, lotka_volterra_4d_g̅,
lotka_volterra_4d_ϕ, lotka_volterra_4d_ψ,
tspan, tstep, q₀, p₀, λ₀; parameters=parameters, invariants=(h=hamiltonian_iode,),
v̄=lotka_volterra_4d_v, f̄=lotka_volterra_4d_f,)
end
function iodeproblem_dg(q₀=q₀, p₀=nothing; tspan=tspan, tstep=Δt, parameters=default_parameters)
p₀ === nothing ? p₀ = ϑ(tspan[begin], q₀) : nothing
IODEProblem(lotka_volterra_4d_ϑ, lotka_volterra_4d_f,
lotka_volterra_4d_g, tspan, tstep, q₀, p₀;
parameters=parameters, invariants=(h=hamiltonian_iode,), v̄=lotka_volterra_4d_v)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 9284 | @doc raw"""
Implements equations for Lagrangian Lotka-Volterra models in 4d of the form
```math
L(q, \dot{q}) = \frac{1}{2} (\log q)^T A \frac{\dot{q}}{q} + q^T B \dot{q} - H (q) ,
```
with hamiltonian
```math
H(q) = a_1 q^1 + a_2 q^2 + a_3 q^3 + a_4 q^4 + b_1 \log q^1 + b_2 \log q^2 + b_3 \log q^3 + b_4 \log q^4 + b_5 \log q^5 .
```
"""
module LotkaVolterra4dLagrangian
using GeometricEquations
using GeometricSolutions
using Parameters
using RuntimeGeneratedFunctions
using Symbolics
using Symbolics: Sym
RuntimeGeneratedFunctions.init(@__MODULE__)
# export hamiltonian, ϑ, ϑ₁, ϑ₂, ω
export lotka_volterra_4d_ode,
lotka_volterra_4d_iode, lotka_volterra_4d_idae,
lotka_volterra_4d_lode
# lotka_volterra_4d_ldae,
# lotka_volterra_4d_dg
# include("lotka_volterra_4d_plots.jl")
const Δt = 0.01
const nt = 1000
const tspan = (0.0, Δt*nt)
const q₀ = [2.0, 1.0, 1.0, 1.0]
const default_parameters = (a₁=1.0, a₂=1.0, a₃=1.0, a₄=1.0, b₁=-1.0, b₂=-2.0, b₃=-1.0, b₄=-1.0)
const reference_solution = [0.5988695239096916, 2.068567531039674, 0.2804351458645534, 1.258449091830993]
const A_antisym = 1//2 .* [
0 -1 +1 -1
+1 0 -1 +1
-1 +1 0 -1
+1 -1 +1 0]
const A_positive = [
0 0 1 0
1 0 0 1
0 1 0 0
1 0 1 0]
const A_upper = [
0 -1 +1 -1
0 0 -1 +1
0 0 0 -1
0 0 0 0]
const A_lower = [
0 0 0 0
+1 0 0 0
-1 +1 0 0
+1 -1 +1 0]
const A_quasicanonical_antisym = 1//2 .* [
0 -1 +1 -1
+1 0 -1 0
-1 +1 0 -1
+1 0 +1 0]
const A_quasicanonical_reduced = 1//2 .* [
0 0 +1 0
+2 0 -2 0
-1 0 0 0
+2 0 +2 0]
const B = [ 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0]
const A_default = A_antisym
const B_default = zero(B)
_parameter(name::Symbol) = Num(Sym{Real}(name))
function get_parameters(p)
return (a = [p.a₁, p.a₂, p.a₃, p.a₄],
b = [p.b₁, p.b₂, p.b₃, p.b₄])
end
H(x, a, b) = a' * x + b' * log.(x)
K(x, v, A, B) = log.(x)' * A * (v ./ x) + x' * B * v
L(x, v, A, B, a, b) = K(x, v, A, B) - H(x, a, b)
function substitute_ẋ_with_v!(eqs, ẋ, v)
for i in eachindex(eqs)
eqs[i] = substitute(eqs[i], [ẋᵢ=>vᵢ for (ẋᵢ,vᵢ) in zip(ẋ,v)])
end
return eqs
end
function substitute_variables!(eqs, x, v, X, V)
for i in eachindex(eqs)
eqs[i] = substitute(eqs[i], [z=>Z for (z,Z) in zip([x..., v...], [X..., V...])])
end
return eqs
end
function get_functions(A,B,a,b)
t = _parameter(:t)
params = _parameter(:params)
@variables x₁(t), x₂(t), x₃(t), x₄(t)
@variables v₁(t), v₂(t), v₃(t), v₄(t)
@variables X[1:4]
@variables V[1:4]
@variables P[1:4]
@variables F[1:4]
x = [x₁, x₂, x₃, x₄]
v = [v₁, v₂, v₃, v₄]
Dt = Differential(t)
Dx = Differential.(x)
Dv = Differential.(v)
# DX = Differential.(X)
# DV = Differential.(V)
let L = simplify(L(x, v, A, B, a, b)), K = simplify(K(x, v, A, B)), H = simplify(H(x, a, b))
# let L = (L(x, v, A, B, a, b)), K = (K(x, v, A, B)), H = (H(x, a, b))
EL = [expand_derivatives(Dx[i](L) - Dt(Dv[i](L))) for i in eachindex(Dx,Dv)]
∇H = [expand_derivatives(dx(H)) for dx in Dx]
f = [expand_derivatives(dx(L)) for dx in Dx]
f̄ = [expand_derivatives(dx(K)) for dx in Dx]
g = [expand_derivatives(Dt(dv(L))) for dv in Dv]
ϑ = [expand_derivatives(dv(L)) for dv in Dv]
ω = [expand_derivatives(simplify(Dx[i](ϑ[j]) - Dx[j](ϑ[i]))) for i in eachindex(Dx,ϑ), j in eachindex(Dx,ϑ)]
Σ = simplify.(inv(ω))
ẋ = simplify.(Σ * ∇H)
for eq in (EL, ∇H, f, f̄, g, ϑ, ω, Σ, ẋ)
substitute_ẋ_with_v!(eq, Dt.(x), v)
substitute_variables!(eq, x, v, X, V)
end
H = substitute(H, [z=>Z for (z,Z) in zip([x..., v...], [X..., V...])])
L = substitute(L, [z=>Z for (z,Z) in zip([x..., v...], [X..., V...])])
ϕ = [P[i] - ϑ[i] for i in eachindex(P,ϑ)]
ψ = [F[i] - g[i] for i in eachindex(F,g)]
code_EL = build_function(EL, t, X, V, params)[2]
code_f = build_function(f, t, X, V, params)[2]
code_f̄ = build_function(f̄, t, X, V, params)[2]
code_g = build_function(g, t, X, V, params)[2]
code_∇H = build_function(∇H, t, X, params)[2]
code_p = build_function(ϑ, t, X, V, params)[1]
code_ϑ = build_function(ϑ, t, X, V, params)[2]
code_ω = build_function(ω, t, X, V, params)[2]
code_P = build_function(Σ, t, X, params)[2]
code_ẋ = build_function(ẋ, t, X, params)[2]
code_ϕ = build_function(ϕ, t, X, V, P, params)[2]
code_ψ = build_function(ψ, t, X, V, P, F, params)[2]
code_H = build_function(H, t, X, params)
code_L = build_function(L, t, X, V, params)
return (
EL = @RuntimeGeneratedFunction(code_EL),
∇H = @RuntimeGeneratedFunction(code_∇H),
f = @RuntimeGeneratedFunction(code_f),
f̄ = @RuntimeGeneratedFunction(code_f̄),
g = @RuntimeGeneratedFunction(code_g),
p = @RuntimeGeneratedFunction(code_p),
ϑ = @RuntimeGeneratedFunction(code_ϑ),
ω = @RuntimeGeneratedFunction(code_ω),
P = @RuntimeGeneratedFunction(code_P),
ẋ = @RuntimeGeneratedFunction(code_ẋ),
ϕ = @RuntimeGeneratedFunction(code_ϕ),
ψ = @RuntimeGeneratedFunction(code_ψ),
H = @RuntimeGeneratedFunction(code_H),
L = @RuntimeGeneratedFunction(code_L),
)
end
end
function odeproblem(q₀=q₀, A=A_default, B=B_default; tspan=tspan, tstep=Δt, parameters=default_parameters)
a, b = get_parameters(parameters)
funcs = get_functions(A,B,a,b)
GeometricEquations.ODEProblem(funcs[:ẋ], tspan, tstep, q₀;
parameters=parameters, invariants = (h = funcs[:H],))
end
function iodeproblem(q₀=q₀, A=A_default, B=B_default; tspan=tspan, tstep=Δt, parameters=default_parameters)
a, b = get_parameters(parameters)
funcs = get_functions(A,B,a,b)
IODEProblem(funcs[:ϑ],
funcs[:f],
(f̄,t,x,v,λ,params) -> funcs[:f̄](f̄,t,x,λ,params),
tspan, tstep, q₀, funcs[:p](0, q₀, zero(q₀), ());
v̄ = (v,t,x,p,params) -> funcs[:ẋ](v,t,x,params),
parameters=parameters, invariants = (h = (t,x,v,params) -> funcs[:H](t,x,params),))
end
function lodeproblem(q₀=q₀, A=A_default, B=B_default; tspan=tspan, tstep=Δt, parameters=default_parameters)
a, b = get_parameters(parameters)
funcs = get_functions(A,B,a,b)
LODEProblem(funcs[:ϑ],
funcs[:f],
(f̄,t,x,v,λ,params) -> funcs[:f̄](f̄,t,x,λ,params),
funcs[:L],
funcs[:ω],
tspan, tstep, q₀, funcs[:p](0, q₀, zero(q₀), ());
v̄ = (v,t,x,p,params) -> funcs[:ẋ](v,t,x,params),
f̄ = funcs[:f],
parameters=parameters, invariants = (h = (t,x,v,params) -> funcs[:H](t,x,params),))
end
function idaeproblem(q₀=q₀, A=A_default, B=B_default; tspan=tspan, tstep=Δt, parameters=default_parameters)
a, b = get_parameters(parameters)
funcs = get_functions(A,B,a,b)
IDAEProblem(funcs[:ϑ],
funcs[:f],
(u,t,x,p,v,λ,params) -> u .= λ,
(f̄,t,x,p,v,λ,params) -> funcs[:f̄](f̄,t,x,λ,params),
funcs[:ϕ],
tspan, tstep, q₀, funcs[:p](0, q₀, zero(q₀), ()), zero(q₀);
v̄ = (v,t,x,p,params) -> funcs[:ẋ](v,t,x,params),
parameters=parameters, invariants = (h = (t,x,v,params) -> funcs[:H](t,x,params),))
end
# function ldaeproblem(q₀=q₀, p₀=ϑ(0, q₀), λ₀=zero(q₀), params=p)
# LDAE(lotka_volterra_4d_ϑ, lotka_volterra_4d_f_ham,
# lotka_volterra_4d_g, lotka_volterra_4d_g̅,
# lotka_volterra_4d_ϕ, lotka_volterra_4d_ψ,
# q₀, p₀, λ₀; parameters=params, h=hamiltonian, v=lotka_volterra_4d_v)
# end
# function iodeproblem_dg(q₀=q₀, p₀=ϑ(0, q₀), params=p)
# IODE(lotka_volterra_4d_ϑ, lotka_volterra_4d_f,
# lotka_volterra_4d_g, q₀, p₀;
# parameters=params, h=hamiltonian, v=lotka_volterra_4d_v)
# end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1774 | module LotkaVolterra4dPlots
using LaTeXStrings
using Measures: mm
using RecipesBase
import GeometricProblems.Diagnostics: compute_invariant_error, compute_momentum_error
compute_energy_error(t,q,params) = compute_invariant_error(t,q, (t,q) -> hamiltonian(t,q,params))
# compute_momentum_error(t,q,p) = compute_momentum_error(t,q,p,ϑ)
@userplot PlotLotkaVolterra4d
@recipe function f(p::PlotLotkaVolterra4d; latex=true)
# if length(p.args) != 2 || !(typeof(p.args[1][1]) <: Solution) || !(typeof(p.args[2]) <: NamedTuple)
# error("Lotka-Volterra plots should be given a solution. Got: $(typeof(p.args))")
# end
sol = p.args[1]
params = p.args[2]
H, ΔH = compute_energy_error(sol.t, sol.q, params);
size := (800,1200)
legend := :none
guidefontsize := 12
tickfontsize := 8
left_margin := 12mm
right_margin := 8mm
# traces
layout := (5,1)
if latex
ylabels = (L"x_1", L"x_2", L"x_3", L"x_4")
else
ylabels = ("x₁", "x₂", "x₃", "x₄")
end
for i in 1:4
@series begin
subplot := i
yguide := ylabels[i]
xlims := (sol.t[0], Inf)
xaxis := false
sol.t, sol.q[i,:]
end
end
@series begin
subplot := 5
if latex
xguide := L"t"
yguide := L"[H(t) - H(0)] / H(0)"
else
xguide := "t"
yguide := "[H(t) - H(0)] / H(0)"
end
xlims := (sol.t[0], Inf)
yformatter := :scientific
sol.t, ΔH
end
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 7501 | @doc raw"""
# Massless charged particle in 2D
The Lagrangian is given by
```math
L(x, \dot{x}) = A(x) \cdot \dot{x} - \phi (x) ,
```
with magnetic vector potential
```math
A(x) = \frac{A_0}{2} \big( 1 + x_1^2 + x_2^2 \big) \begin{pmatrix}
- x_2 \\
+ x_1 \\
\end{pmatrix} ,
```
electrostatic potential
```math
\phi(x) = E_0 \, \big( \cos (x_1) + \sin(x_2) \big) ,
```
and magnetic and electric fields
```math
\begin{aligned}
B(x) &= \nabla \times A(x) = A_0 \, (1 + 2 x_1^2 + 2 x_2^2) , \\
E(x) &= - \nabla \phi(x) = E_0 \, \big( \sin x_1, \, - \cos x_2 \big)^T .
\end{aligned}
```
The Hamiltonian form of the equations of motion reads
```math
\dot{x} = \frac{1}{B(x)} \begin{pmatrix}
\hphantom{-} 0 & + 1 \\
- 1 & \hphantom{+} 0 \\
\end{pmatrix} \nabla \phi (x) .
```
"""
module MasslessChargedParticle
using GeometricEquations
using ..Diagnostics
import ..Diagnostics: compute_invariant_error, compute_momentum_error
export ϑ, A, B, ϕ, E, hamiltonian
export odeproblem, iodeproblem, idaeproblem, idaeproblem_spark
export compute_energy_error, compute_momentum_error
# default simulation parameters
const Δt = 0.2
const nt = 5000
const tspan = (0.0, Δt*nt)
# default initial conditions and parameters
q₀ = [1.0, 1.0]
default_parameters = (A₀ = 1.0, E₀ = 1.0)
# components of the vector potential
A₁(q, params) = - params[:A₀] * q[2] * (1 + q[1]^2 + q[2]^2) / 2
A₂(q, params) = + params[:A₀] * q[1] * (1 + q[1]^2 + q[2]^2) / 2
A(q, params) = [A₁(q, params), A₂(q, params)]
# z-componend of the magnetic field
B(q, params) = params[:A₀] * (1 + 2 * q[1]^2 + 2 * q[2]^2)
# electrostatic potential
ϕ(q, params) = params[:E₀] * (cos(q[1]) + sin(q[2]))
# ϕ(q, params) = E₀ * (q[1]^2 + q[2]^2)
# components of the electric field
E₁(q, params) = + params[:E₀] * sin(q[1])
E₂(q, params) = - params[:E₀] * cos(q[2])
# E₁(q, params) = + params[:E₀] * q[1]
# E₂(q, params) = + params[:E₀] * q[2]
E(q, params) = [E₁(q, params), E₂(q, params)]
# components of the velocity
v₁(t, q, params) = - E₂(q, params) / B(q, params)
v₂(t, q, params) = + E₁(q, params) / B(q, params)
# components of the one-form (symplectic potential)
ϑ₁(t, q, params) = A₁(q, params)
ϑ₂(t, q, params) = A₂(q, params)
ϑ(t, q, params) = [ϑ₁(t, q, params), ϑ₂(t, q, params)]
function ϑ(t::Number, q::AbstractVector, params::NamedTuple, k::Int)
if k == 1
ϑ₁(t, q, params)
elseif k == 2
ϑ₂(t, q, params)
else
throw(BoundsError(ϑ,k))
end
end
# derivatives of the one-form components
dϑ₁dx₁(t, q, params) = - params[:A₀] * q[1] * q[2]
dϑ₁dx₂(t, q, params) = - params[:A₀] * (1 + q[1]^2 + 3 * q[2]^2) / 2
dϑ₂dx₁(t, q, params) = + params[:A₀] * (1 + 3 * q[1]^2 + q[2]^2) / 2
dϑ₂dx₂(t, q, params) = + params[:A₀] * q[1] * q[2]
# components of the force
f₁(v, t, q, params) = dϑ₁dx₁(t, q, params) * v[1] + dϑ₂dx₁(t, q, params) * v[2]
f₂(v, t, q, params) = dϑ₁dx₂(t, q, params) * v[1] + dϑ₂dx₂(t, q, params) * v[2]
g₁(v, t, q, params) = dϑ₁dx₁(t, q, params) * v[1] + dϑ₁dx₂(t, q, params) * v[2]
g₂(v, t, q, params) = dϑ₂dx₁(t, q, params) * v[1] + dϑ₂dx₂(t, q, params) * v[2]
# Hamiltonian (total energy)
hamiltonian(t, q, params) = ϕ(q, params)
# components of the gradient of the Hamiltonian
dHd₁(t, q, params) = - E₁(q, params)
dHd₂(t, q, params) = - E₂(q, params)
function massless_charged_particle_dH(dH, t, q, params)
dH[1] = dHd₁(t, q, params)
dH[2] = dHd₂(t, q, params)
nothing
end
function massless_charged_particle_v(v, t, q, params)
v[1] = v₁(t, q, params)
v[2] = v₂(t, q, params)
nothing
end
function massless_charged_particle_v(v, t, q, p, params)
massless_charged_particle_v(v, t, q, params)
end
function massless_charged_particle_ϑ(Θ, t, q, params)
Θ[1] = ϑ₁(t, q, params)
Θ[2] = ϑ₂(t, q, params)
nothing
end
massless_charged_particle_ϑ(Θ, t, q, v, params) = massless_charged_particle_ϑ(Θ, t, q, params)
function massless_charged_particle_f(f, t, q, v, params)
f[1] = f₁(v, t, q, params) - dHd₁(t, q, params)
f[2] = f₂(v, t, q, params) - dHd₂(t, q, params)
nothing
end
function massless_charged_particle_f̄(f, t, q, v, params)
f[1] = - dHd₁(t, q, params)
f[2] = - dHd₂(t, q, params)
nothing
end
function massless_charged_particle_g(g, t, q, v, params)
g[1] = f₁(v, t, q, params)
g[2] = f₂(v, t, q, params)
nothing
end
massless_charged_particle_g(g, t, q, p, v, params) = massless_charged_particle_g(g, t, q, v, params)
function massless_charged_particle_u(u, t, q, v, params)
u .= v
nothing
end
massless_charged_particle_u(u, t, q, p, v, params) = massless_charged_particle_u(u, t, q, v, params)
function massless_charged_particle_ϕ(ϕ, t, q, p, params)
ϕ[1] = p[1] - ϑ₁(t,q,params)
ϕ[2] = p[2] - ϑ₂(t,q,params)
nothing
end
function massless_charged_particle_ψ(ψ, t, q, p, v, f, params)
ψ[1] = f[1] - g₁(t,q,v,params)
ψ[2] = f[2] - g₂(t,q,v,params)
nothing
end
"Creates an ODE object for the massless charged particle in 2D."
function odeproblem(q₀=q₀; tspan=tspan, tstep=Δt, params=default_parameters)
ODEProblem(massless_charged_particle_v, tspan, tstep, q₀; invariants=(h=hamiltonian,), parameters=params)
end
"Creates an implicit ODE object for the massless charged particle in 2D."
function iodeproblem(q₀=q₀; tspan=tspan, tstep=Δt, params=default_parameters)
IODEProblem(massless_charged_particle_ϑ, massless_charged_particle_f,
massless_charged_particle_g,
tspan, tstep, q₀, ϑ(0., q₀, params);
v̄=massless_charged_particle_v, f̄=massless_charged_particle_f,
invariants=(h=hamiltonian,), parameters=params)
end
"Creates an implicit DAE object for the massless charged particle in 2D."
function idaeproblem(q₀=q₀; tspan=tspan, tstep=Δt, params=default_parameters)
IDAEProblem(massless_charged_particle_ϑ, massless_charged_particle_f,
massless_charged_particle_u, massless_charged_particle_g,
massless_charged_particle_ϕ,
tspan, tstep, q₀, ϑ(0., q₀, params), zero(q₀);
v̄=massless_charged_particle_v, f̄=massless_charged_particle_f,
invariants=(h=hamiltonian,), parameters=params)
end
"Creates an implicit DAE object for the massless charged particle in 2D."
function idaeproblem_spark(q₀=q₀; tspan=tspan, tstep=Δt, params=default_parameters)
IDAEProblem(massless_charged_particle_ϑ, massless_charged_particle_f̄,
massless_charged_particle_u, massless_charged_particle_g,
massless_charged_particle_ϕ,
tspan, tstep, q₀, ϑ(0., q₀, params), zero(q₀);
v̄=massless_charged_particle_v, f̄=massless_charged_particle_f,
invariants=(h=hamiltonian,), parameters=params)
end
compute_energy_error(t,q,params) = compute_invariant_error(t,q, (t,q) -> hamiltonian(t,q,params))
compute_momentum_error(t,q,p,params::NamedTuple) = compute_momentum_error(t, q, p, (t,q,k) -> ϑ(t,q,params,k))
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 12588 | module MasslessChargedParticlePlots
using GeometricEquations
using GeometricSolutions
using GeometricProblems.Diagnostics
using LaTeXStrings
using Measures: mm
using RecipesBase
"""
Plots the solution of a massless charged particle together with the energy error.
Arguments:
* `sol <: GeometricSolution`
* `equ <: GeometricProblem`
Keyword aguments:
* `nplot=1`: plot every `nplot`th time step
* `xlims=:auto`: xlims for solution plot
* `ylims=:auto`: ylims for solution plot
"""
@userplot Plot_Massless_Charged_Particle
@recipe function f(p::Plot_Massless_Charged_Particle; nplot=1, nt=:auto, xlims=:auto, ylims=:auto, elims=:auto, latex=true)
if length(p.args) != 2 || !(typeof(p.args[1]) <: GeometricSolution) || !(typeof(p.args[2]) <: GeometricProblem)
error("Massless charged particle plots should be given two arguments: a solution and a parameter tuple. Got: $(typeof(p.args))")
end
sol = p.args[1]
equ = p.args[2]
params = equ.parameters
if nt == :auto
nt = ntime(sol)
end
if nt > ntime(sol)
nt = ntime(sol)
end
H, ΔH = compute_invariant_error(sol.t, sol.q, (t,q) -> invariants(equ)[:h](t,q,params))
size := (800,300)
layout := (1,2)
legend := :none
right_margin := 10mm
bottom_margin := 10mm
guidefontsize := 14
tickfontsize := 10
@series begin
subplot := 1
if ntime(sol) ≤ 200
markersize := 5
else
markersize := .5
markercolor := 1
linecolor := 1
markerstrokewidth := .5
markerstrokecolor := 1
end
if nplot > 1
seriestype := :scatter
end
if latex
xguide := L"x_1"
yguide := L"x_2"
else
# if backend() == Plots.PlotlyJSBackend()
xguide := "x₁"
yguide := "x₂"
end
xlims := xlims
ylims := ylims
aspect_ratio := 1
sol.q[0:nplot:end, 1], sol.q[0:nplot:end, 2]
end
@series begin
subplot := 2
if latex
xguide := L"t"
yguide := L"[H(t) - H(0)] / H(0)"
else
xguide := "t"
yguide := "[H(t) - H(0)] / H(0)"
end
xlims := (sol.t[0], Inf)
ylims := elims
yformatter := :scientific
sol.t[0:nplot:nt], ΔH[0:nplot:nt]
end
end
"""
Plots the solution of a massless charged particle.
Arguments:
* `sol <: GeometricSolution`
* `equ <: GeometricProblem`
Keyword aguments:
* `nplot=1`: plot every `nplot`th time step
* `xlims=:auto`: xlims for solution plot
* `ylims=:auto`: ylims for solution plot
"""
@userplot Plot_Massless_Charged_Particle_Solution
@recipe function f(p::Plot_Massless_Charged_Particle_Solution; nplot=1, nt=:auto, xlims=:auto, ylims=:auto, latex=true)
if length(p.args) != 2 || !(typeof(p.args[1]) <: GeometricSolution) || !(typeof(p.args[2]) <: GeometricProblem)
error("Massless charged particle plots should be given two arguments: a solution and a parameter tuple. Got: $(typeof(p.args))")
end
sol = p.args[1]
equ = p.args[2]
params = equ.parameters
if nt == :auto
nt = ntime(sol)
end
if nt > ntime(sol)
nt = ntime(sol)
end
if ntime(sol) ≤ 200
markersize := 5
else
markersize := .5
markercolor := 1
linecolor := 1
markerstrokewidth := .5
markerstrokecolor := 1
end
if nplot > 1
seriestype := :scatter
end
legend := :none
size := (400,400)
# if backend() == Plots.PlotlyJSBackend() || backend() == Plots.GRBackend()
guidefontsize := 18
tickfontsize := 12
# else
# guidefontsize := 14
# tickfontsize := 10
# end
# solution
@series begin
if latex
xguide := L"x_1"
yguide := L"x_2"
else
# if backend() == Plots.PlotlyJSBackend()
xguide := "x₁"
yguide := "x₂"
end
xlims := xlims
ylims := ylims
aspect_ratio := 1
sol.q[0:nplot:nt, 1], sol.q[0:nplot:nt, 2]
end
end
"""
Plots time traces of the energy error of a massless charged particle.
Arguments:
* `sol <: GeometricSolution`
* `equ <: GeometricProblem`
Keyword aguments:
* `nplot=1`: plot every `nplot`th time step
"""
@userplot Plot_Massless_Charged_Particle_Energy_Error
@recipe function f(p::Plot_Massless_Charged_Particle_Energy_Error; nplot=1, nt=:auto, latex=true)
if length(p.args) != 2 || !(typeof(p.args[1]) <: GeometricSolution) || !(typeof(p.args[2]) <: GeometricProblem)
error("Massless charged particle plots should be given two arguments: a solution and a parameter tuple. Got: $(typeof(p.args))")
end
sol = p.args[1]
equ = p.args[2]
params = equ.parameters
if nt == :auto
nt = ntime(sol)
end
if nt > ntime(sol)
nt = ntime(sol)
end
H, ΔH = compute_invariant_error(sol.t, sol.q, (t,q) -> invariants(equ)[:h](t,q,params))
size := (800,200)
legend := :none
right_margin := 10mm
# if backend() == Plots.GRBackend()
left_margin := 10mm
bottom_margin := 10mm
# end
guidefontsize := 12
tickfontsize := 10
@series begin
if latex
xguide := L"t"
yguide := L"[H(t) - H(0)] / H(0)"
# if backend() == Plots.PlotlyJSBackend()
else
xguide := "t"
yguide := "[H(t) - H(0)] / H(0)"
end
xlims := (sol.t[0], Inf)
yformatter := :scientific
sol.t[0:nplot:nt], ΔH[0:nplot:nt]
end
end
"""
Plots time traces of the momentum error of a massless charged particle.
Arguments:
* `sol <: GeometricSolution`
* `equ <: GeometricProblem`
Keyword aguments:
* `nplot=1`: plot every `nplot`th time step
* `k=0`: index of momentum component (0 plots all components)
"""
@userplot Plot_Massless_Charged_Particle_Momentum_Error
@recipe function f(p::Plot_Massless_Charged_Particle_Momentum_Error; k=0, nplot=1, nt=:auto, latex=true)
if length(p.args) != 2 || !(typeof(p.args[1]) <: GeometricSolution) || !(typeof(p.args[2]) <: GeometricProblem)
error("Massless charged particle plots should be given two arguments: a solution and a parameter tuple. Got: $(typeof(p.args))")
end
sol = p.args[1]
equ = p.args[2]
params = equ.parameters
if nt == :auto
nt = ntime(sol)
end
if nt > ntime(sol)
nt = ntime(sol)
end
Δp = compute_momentum_error(sol.t, sol.q, sol.p, params)
ntrace = (k == 0 ? Δp.nd : 1 )
trange = (k == 0 ? (1:Δp.nd) : (k:k))
size := (800,200*ntrace)
legend := :none
layout := (ntrace,1)
right_margin := 10mm
if ntrace == 1 #&& backend() == Plots.GRBackend()
left_margin := 10mm
end
guidefontsize := 12
tickfontsize := 10
for i in trange
@series begin
if k == 0
subplot := i
end
if i == Δp.nd || k ≠ 0
if latex
xguide := L"t"
# if backend() == Plots.PlotlyJSBackend()
else
xguide := "t"
end
else
xaxis := false
bottom_margin := 10mm
end
# if i < Δp.nd && k == 0
# if backend() == Plots.PGFPlotsXBackend()
# bottom_margin := -6mm
# elseif backend() == Plots.GRBackend()
# bottom_margin := -3mm
# end
# end
# if i > 1 && k == 0
# if backend() == Plots.PGFPlotsXBackend()
# top_margin := -6mm
# elseif backend() == Plots.GRBackend()
# top_margin := -3mm
# end
# end
if latex
yguide := latexstring("p_$i (t) - \\vartheta_$i (t)")
# if backend() == Plots.PlotlyJSBackend()
else
yguide := "p" * subscript(i) * "(t) - ϑ" * subscript(i) * "(t)"
end
xlims := (sol.t[0], Inf)
yformatter := :scientific
sol.t[0:nplot:nt], Δp[0:nplot:nt, i]
end
end
end
"""
Plots time traces of the solution of a massless charged particle trajectory and its energy error.
Arguments:
* `sol <: GeometricSolution`
* `equ <: GeometricProblem`
Keyword aguments:
* `nplot=1`: plot every `nplot`th time step
"""
@userplot Plot_Massless_Charged_Particle_Traces
@recipe function f(p::Plot_Massless_Charged_Particle_Traces; nplot=1, nt=:auto, xlims=:auto, ylims=:auto, elims=:auto, latex=true)
if length(p.args) != 2 || !(typeof(p.args[1]) <: GeometricSolution) || !(typeof(p.args[2]) <: GeometricProblem)
error("Massless charged particle plots should be given two arguments: a solution and a parameter tuple. Got: $(typeof(p.args))")
end
sol = p.args[1]
equ = p.args[2]
params = equ.parameters
if nt == :auto
nt = ntime(sol)
end
if nt > ntime(sol)
nt = ntime(sol)
end
H, ΔH = compute_invariant_error(sol.t, sol.q, (t,q) -> invariants(equ)[:h](t,q,params))
size := (800,600)
legend := :none
right_margin := 10mm
# traces
layout := (3,1)
# if backend() == Plots.PlotlyJSBackend() || backend() == Plots.GRBackend()
guidefontsize := 14
tickfontsize := 10
# else
# guidefontsize := 12
# tickfontsize := 10
# end
if latex
ylabels = (L"x_1", L"x_2")
# if backend() == Plots.PlotlyJSBackend()
else
ylabels = ("x₁", "x₂")
end
lims = (xlims, ylims, elims)
for i in 1:2
@series begin
subplot := i
yguide := ylabels[i]
xlims := (sol.t[0], Inf)
ylims := lims[i]
xaxis := false
# if i == 1 && backend() == Plots.PGFPlotsXBackend()
# bottom_margin := -4mm
# elseif i == 1 && backend() == Plots.GRBackend()
# bottom_margin := -2mm
# end
# if i == 2 && backend() == Plots.PGFPlotsXBackend()
# top_margin := -2mm
# bottom_margin := -2mm
# elseif i == 2 && backend() == Plots.GRBackend()
# top_margin := -1mm
# bottom_margin := -1mm
# end
sol.t[0:nplot:nt], sol.q[0:nplot:nt, i]
end
end
@series begin
subplot := 3
# if backend() == Plots.PGFPlotsXBackend()
# top_margin := -4mm
# elseif backend() == Plots.GRBackend()
# top_margin := -2mm
# end
if latex
xguide := L"t"
yguide := L"[H(t) - H(0)] / H(0)"
# if backend() == Plots.PlotlyJSBackend()
else
xguide := "t"
yguide := "[H(t) - H(0)] / H(0)"
end
xlims := (sol.t[0], Inf)
ylims := elims
yformatter := :scientific
sol.t[0:nplot:nt], ΔH[0:nplot:nt]
end
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 82 | @doc raw"""
"""
module MathewsLakshmananOscillator
export hamiltonian
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 70 | @doc raw"""
"""
module MorseOscillator
export hamiltonian
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 2641 | @doc raw"""
# Mathematical Pendulum
"""
module Pendulum
using GeometricEquations
export odeproblem, podeproblem, iodeproblem, idaeproblem
function pendulum_ode_v(v, t, q, params)
v[1] = q[2]
v[2] = sin(q[1])
nothing
end
function odeproblem(q₀=[acos(0.4), 0.0])
ODE(pendulum_ode_v, q₀)
end
function pendulum_pode_v(v, t, q, p, params)
v[1] = p[1]
nothing
end
function pendulum_pode_f(f, t, q, p, params)
f[1] = sin(q[1])
nothing
end
function podeproblem(q₀=[acos(0.4)], p₀=[0.0])
PODE(pendulum_pode_v, pendulum_pode_f, q₀, p₀)
end
function pendulum_iode_α(p, t, q, v, params)
p[1] = q[2]
p[2] = 0
nothing
end
function pendulum_iode_f(f, t, q, v, params)
f[1] = sin(q[1])
f[2] = v[1] - q[2]
nothing
end
function pendulum_iode_g(g, t, q, λ, params)
g[1] = 0
g[2] = λ[1]
nothing
end
function pendulum_iode_v(v, t, q, p, params)
v[1] = q[2]
v[2] = sin(q[1])
nothing
end
function iodeproblem(q₀=[acos(0.4), 0.0], p₀=[0.0, 0.0])
IODE(pendulum_iode_α, pendulum_iode_f,
pendulum_iode_g, q₀, p₀; v̄=pendulum_iode_v)
end
# function pendulum_pdae_v(t, q, p, v)
# v[1] = 0
# nothing
# end
#
# function pendulum_pdae_f(t, q, p, f)
# f[1] = sin(q[1])
# nothing
# end
#
# function pendulum_pdae_u(t, q, p, λ, u)
# u[1] = λ[1]
# nothing
# end
#
# function pendulum_pdae_g(t, q, p, λ, g)
# g[1] = 0
# nothing
# end
#
# # TODO
# function pendulum_pdae_ϕ(t, q, p, ϕ)
# ϕ[1] = p[1] - q[2]
# nothing
# end
#
# # TODO
# function pendulum_pdae(q₀=[acos(0.4)], p₀=[0.0], λ₀=[0.0, 0.0])
# PDAE(pendulum_pdae_v, pendulum_pdae_f, pendulum_pdae_u, pendulum_pdae_g, pendulum_pdae_ϕ, q₀, p₀, λ₀)
# end
function pendulum_idae_u(u, t, q, p, λ, params)
u[1] = λ[1]
u[2] = λ[2]
nothing
end
function pendulum_idae_g(g, t, q, p, λ, params)
g[1] = 0
g[2] = λ[1]
nothing
end
function pendulum_idae_ϕ(ϕ, t, q, p, params)
ϕ[1] = p[1] - q[2]
ϕ[2] = p[2]
nothing
end
function idaeproblem(q₀=[acos(0.4), 0.0], p₀=[0.0, 0.0], λ₀=[0.0, 0.0])
IDAE(pendulum_iode_f, pendulum_iode_α,
pendulum_idae_u, pendulum_idae_g,
pendulum_idae_ϕ, q₀, p₀, λ₀;
v̄=pendulum_iode_v)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 7743 | module PlotRecipes
using LaTeXStrings
using Measures: mm
using RecipesBase
using GeometricSolutions
using GeometricProblems.Diagnostics
subscript(i::Integer) = i<0 ? error("$i is negative") : join('₀'+d for d in reverse(digits(i)))
@userplot PlotEnergyError
@recipe function f(p::PlotEnergyError; energy=nothing, nplot=1, nt=:auto, latex=true)
if length(p.args) == 1 && typeof(p.args[1]) <: Solution
sol = p.args[1]
t = sol.t
if typeof(sol) <: Union{SolutionPODE, SolutionPDAE}
H, ΔH = compute_invariant_error(sol.t, sol.q, sol.p, energy)
else
H, ΔH = compute_invariant_error(sol.t, sol.q, energy)
end
elseif length(p.args) == 2 && typeof(p.args[1]) <: TimeSeries && typeof(p.args[2]) <: DataSeries
t = p.args[1]
ΔH = p.args[2]
@assert length(t) == length(ΔH)
else
error("Energy error plot should be given a solution or a timeseries and a data series. Got: $(typeof(p.args))")
end
if nt == :auto
nt = ntime(t)
end
if nt > ntime(t)
nt = ntime(t)
end
legend := :none
size := (800,400)
@series begin
if latex
xguide := L"t"
yguide := L"[H(t) - H(0)] / H(0)"
else
xguide := "t"
yguide := "[H(t) - H(0)] / H(0)"
end
xlims := (t[0], Inf)
yformatter := :scientific
guidefontsize := 18
tickfontsize := 12
right_margin := 10mm
t[0:nplot:nt], ΔH[0:nplot:nt]
end
end
@userplot PlotEnergyDrift
@recipe function f(p::PlotEnergyDrift; nt=:auto, latex=true)
if length(p.args) == 2 && typeof(p.args[1]) <: TimeSeries && typeof(p.args[2]) <: DataSeries
t = p.args[1]
d = p.args[2]
@assert length(t) == length(d)
else
error("Energy drift plot should be given a timeseries and a dataseries. Got: $(typeof(p.args))")
end
if nt == :auto
nt = ntime(t)
end
if nt > ntime(t)
nt = ntime(t)
end
legend := :none
size := (800,400)
@series begin
seriestype := :scatter
if latex
xguide := L"t"
yguide := L"\Delta H"
else
xguide := "t"
yguide := "ΔH"
end
xlims := (t[0], Inf)
yformatter := :scientific
guidefontsize := 18
tickfontsize := 12
right_margin := 10mm
t[1:nt], d[1:nt]
end
end
@userplot PlotConstraintError
@recipe function f(p::PlotConstraintError; nplot=1, nt=:auto, k=0, latex=true, plot_title=nothing)
if length(p.args) == 1 && typeof(p.args[1]) <: Solution
sol = p.args[1]
t = sol.t
Δp = compute_momentum_error(sol.t, sol.q, sol.p)
# TODO: fix
elseif length(p.args) == 2 && typeof(p.args[1]) <: TimeSeries && typeof(p.args[2]) <: DataSeries
t = p.args[1]
Δp = p.args[2]
@assert ntime(t) == ntime(Δp)
else
error("Constraint error plots should be given a solution or a timeseries and a dataseries. Got: $(typeof(p.args))")
end
if nt == :auto
nt = ntime(t)
end
if nt > ntime(t)
nt = ntime(t)
end
nd = length(Δp[begin])
ntrace = (k == 0 ? nd : 1 )
trange = (k == 0 ? (1:nd) : (k:k))
size := (800,200*ntrace)
legend := :none
layout := (ntrace,1)
for i in trange
@series begin
if k == 0
subplot := i
end
if plot_title !== nothing
if i == trange[begin]
title := plot_title
else
title := " "
end
end
if i == nd || k ≠ 0
if latex
xguide := L"t"
else
xguide := "t"
end
else
xaxis := false
end
if latex
yguide := latexstring("p_$i (t) - \\vartheta_$i (t)")
else
yguide := "p" * subscript(i) * "(t) - ϑ" * subscript(i) * "(t)"
end
xlims := (t[0], Inf)
yformatter := :scientific
guidefontsize := 18
tickfontsize := 12
right_margin := 24mm
right_margin := 12mm
t[0:nplot:nt], Δp[i,0:nplot:nt]
end
end
end
@userplot PlotLagrangeMultiplier
@recipe function f(p::PlotLagrangeMultiplier; nplot=1, nt=:auto, k=0, latex=true, plot_title=nothing)
if length(p.args) == 1 && typeof(p.args[1]) <: Solution
sol = p.args[1]
t = sol.t
λ = sol.λ
elseif length(p.args) == 2 && typeof(p.args[1]) <: TimeSeries && typeof(p.args[2]) <: DataSeries
t = p.args[1]
λ = p.args[2]
@assert ntime(t) == ntime(λ)
else
error("Lagrange multiplier plots should be given a solution or a timeseries and a data series. Got: $(typeof(p.args))")
end
if nt == :auto
nt = ntime(t)
end
if nt > ntime(t)
nt = ntime(t)
end
nd = length(λ[begin])
ntrace = (k == 0 ? nd : 1 )
trange = (k == 0 ? (1:nd) : (k:k))
size := (800,200*ntrace)
legend := :none
layout := (ntrace,1)
right_margin := 10mm
if ntrace == 1 && backend() == Plots.GRBackend()
left_margin := 10mm
end
guidefontsize := 12
tickfontsize := 10
for i in trange
@series begin
if k == 0
subplot := i
end
if plot_title !== nothing
if i == trange[begin]
title := plot_title
else
title := " "
end
end
if i == nd || k ≠ 0
if latex
xguide := L"t"
else
xguide := "t"
end
bottom_margin := 10mm
else
xaxis := false
end
# if i < λ.nd && k == 0
# if backend() == Plots.PGFPlotsXBackend()
# bottom_margin := -6mm
# elseif backend() == Plots.GRBackend()
# bottom_margin := -3mm
# end
# end
# if i > 1 && k == 0
# if backend() == Plots.PGFPlotsXBackend()
# top_margin := -6mm
# elseif backend() == Plots.GRBackend()
# top_margin := -3mm
# end
# end
if latex
yguide := latexstring("\\lambda_$i (t)")
else
yguide := "λ" * subscript(i) * "(t)"
end
xlims := (t[0], Inf)
t[0:nplot:nt], λ[i,0:nplot:nt]
end
end
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 8266 | @doc raw"""
# Planar Point Vortices
"""
module PointVortices
using GeometricEquations
using GeometricSolutions
export odeproblem, iodeproblem, idaeproblem,
iodeproblem_dg, lodeproblem_formal_lagrangian,
hamiltonian, angular_momentum, ϑ1, ϑ2, ϑ3, ϑ4
export compute_energy_error, compute_angular_momentum_error
const Δt = 0.01
const nt = 1000
const tspan = (0.0, Δt*nt)
const reference_solution = [0.18722529318641928, 0.38967432450068706, 0.38125332930294187, 0.4258020604293123]
const γ₁ = +0.5
const γ₂ = +0.5
const X0 = +0.5
const Y0 = +0.1
const X1 = +0.5
const Y1 = -0.1
S(x::T, y::T) where {T} = 1 + x^2 + y^2
S2(x::T, y::T) where {T} = 1 + 2x^2 + 2y^2
dSdx(x::T, y::T) where {T} = 2x
dSdy(x::T, y::T) where {T} = 2y
function hamiltonian(t, q, params)
γ₁ * γ₂ * S(q[1],q[2]) * S(q[3],q[4]) * log( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π)
end
ϑ1(q) = - γ₁ * q[2] * S(q[1], q[2]) / 2
ϑ2(q) = + γ₁ * q[1] * S(q[1], q[2]) / 2
ϑ3(q) = - γ₂ * q[4] * S(q[3], q[4]) / 2
ϑ4(q) = + γ₂ * q[3] * S(q[3], q[4]) / 2
ϑ(q) = [ϑ1(q), ϑ2(q), ϑ3(q), ϑ4(q)]
function angular_momentum(t, q, params)
q[1] * ϑ2(q) - q[2] * ϑ1(q) +
q[3] * ϑ4(q) - q[4] * ϑ3(q)
end
const q₀ = [X0, Y0, X1, Y1]
const p₀ = ϑ(q₀)
dϑ1d1(t, q) = - γ₁ * q[2] * dSdx(q[1], q[2]) / 2
dϑ1d2(t, q) = - γ₁ * q[2] * dSdy(q[1], q[2]) / 2 - γ₁ * S(q[1], q[2]) / 2
dϑ1d3(t, q) = zero(eltype(q))
dϑ1d4(t, q) = zero(eltype(q))
dϑ2d1(t, q) = + γ₁ * q[1] * dSdx(q[1], q[2]) / 2 + γ₁ * S(q[1], q[2]) / 2
dϑ2d2(t, q) = + γ₁ * q[1] * dSdy(q[1], q[2]) / 2
dϑ2d3(t, q) = zero(eltype(q))
dϑ2d4(t, q) = zero(eltype(q))
dϑ3d1(t, q) = zero(eltype(q))
dϑ3d2(t, q) = zero(eltype(q))
dϑ3d3(t, q) = - γ₂ * q[4] * dSdx(q[3], q[4]) / 2
dϑ3d4(t, q) = - γ₂ * q[4] * dSdy(q[3], q[4]) / 2 - γ₂ * S(q[3], q[4]) / 2
dϑ4d1(t, q) = zero(eltype(q))
dϑ4d2(t, q) = zero(eltype(q))
dϑ4d3(t, q) = + γ₂ * q[3] * dSdx(q[3], q[4]) / 2 + γ₂ * S(q[3], q[4]) / 2
dϑ4d4(t, q) = + γ₂ * q[3] * dSdy(q[3], q[4]) / 2
function ϑ(p, t, q, params)
p[1] = ϑ1(q)
p[2] = ϑ2(q)
p[3] = ϑ3(q)
p[4] = ϑ4(q)
end
function ω(Ω, t, q, params)
Ω[1,1] = 0
Ω[1,2] = dϑ1d2(t,q) - dϑ2d1(t,q)
Ω[1,3] = dϑ1d3(t,q) - dϑ3d1(t,q)
Ω[1,4] = dϑ1d4(t,q) - dϑ4d1(t,q)
Ω[2,1] = dϑ2d1(t,q) - dϑ1d2(t,q)
Ω[2,2] = 0
Ω[2,3] = dϑ2d3(t,q) - dϑ3d2(t,q)
Ω[2,4] = dϑ2d4(t,q) - dϑ4d2(t,q)
Ω[3,1] = dϑ3d1(t,q) - dϑ1d3(t,q)
Ω[3,2] = dϑ3d2(t,q) - dϑ2d3(t,q)
Ω[3,3] = 0
Ω[3,4] = dϑ3d4(t,q) - dϑ4d3(t,q)
Ω[4,1] = dϑ4d1(t,q) - dϑ1d4(t,q)
Ω[4,2] = dϑ4d2(t,q) - dϑ2d4(t,q)
Ω[4,3] = dϑ4d3(t,q) - dϑ3d4(t,q)
Ω[4,4] = 0
nothing
end
function f1(t, q, v)
γ₁ * ( dSdx(q[1],q[2]) * (q[1] * v[2] - q[2] * v[1]) + v[2] * S(q[1], q[2]) ) / 2
end
function f2(t, q, v)
γ₁ * ( dSdy(q[1],q[2]) * (q[1] * v[2] - q[2] * v[1]) - v[1] * S(q[1], q[2]) ) / 2
end
function f3(t, q, v)
γ₂ * ( dSdx(q[3],q[4]) * (q[3] * v[4] - q[4] * v[3]) + v[4] * S(q[3], q[4]) ) / 2
end
function f4(t, q, v)
γ₂ * ( dSdy(q[3],q[4]) * (q[3] * v[4] - q[4] * v[3]) - v[3] * S(q[3], q[4]) ) / 2
end
function dHd1(t, q)
+ γ₁ * γ₂ * dSdx(q[1],q[2]) * S(q[3],q[4]) * log( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π) +
γ₁ * γ₂ * S(q[1],q[2]) * S(q[3],q[4]) * (q[1] - q[3]) / ( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / π
end
function dHd2(t, q)
+ γ₁ * γ₂ * dSdy(q[1],q[2]) * S(q[3],q[4]) * log( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π) +
γ₁ * γ₂ * S(q[1],q[2]) * S(q[3],q[4]) * (q[2] - q[4]) / ( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / π
end
function dHd3(t, q)
+ γ₁ * γ₂ * dSdx(q[3],q[4]) * S(q[1],q[2]) * log( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π) -
γ₁ * γ₂ * S(q[1],q[2]) * S(q[3],q[4]) * (q[1] - q[3]) / ( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / π
end
function dHd4(t, q)
+ γ₁ * γ₂ * dSdy(q[3],q[4]) * S(q[1],q[2]) * log( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π) -
γ₁ * γ₂ * S(q[1],q[2]) * S(q[3],q[4]) * (q[2] - q[4]) / ( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / π
end
function dH(dH, t, q, params)
dH[1] = dHd1(t, q)
dH[2] = dHd2(t, q)
dH[3] = dHd3(t, q)
dH[4] = dHd4(t, q)
nothing
end
function point_vortices_v(v, t, q, params)
denominator1 = 1 / (γ₁ * S2(q[1], q[2]))
denominator2 = 1 / (γ₂ * S2(q[3], q[4]))
v[1] = - dHd2(t,q) * denominator1
v[2] = + dHd1(t,q) * denominator1
v[3] = - dHd4(t,q) * denominator2
v[4] = + dHd3(t,q) * denominator2
nothing
end
function point_vortices_v(v, t, q, p, params)
point_vortices_v(v, t, q, params)
end
function point_vortices_ϑ(p, t, q, params)
p[1] = ϑ1(q)
p[2] = ϑ2(q)
p[3] = ϑ3(q)
p[4] = ϑ4(q)
nothing
end
function point_vortices_ϑ(p, t, q, v, params)
point_vortices_ϑ(p, t, q, params)
end
function point_vortices_f(f, t, q, v, params)
f[1] = f1(t,q,v) - dHd1(t,q)
f[2] = f2(t,q,v) - dHd2(t,q)
f[3] = f3(t,q,v) - dHd3(t,q)
f[4] = f4(t,q,v) - dHd4(t,q)
nothing
end
point_vortices_f(f, t, q, v, p, params) = point_vortices_f(f, t, q, v, params)
function point_vortices_g(g, t, q, λ, params)
g[1] = f1(t,q,λ)
g[2] = f2(t,q,λ)
g[3] = f3(t,q,λ)
g[4] = f4(t,q,λ)
nothing
end
point_vortices_g(g, t, q, p, λ, params) = point_vortices_g(g, t, q, λ, params)
point_vortices_g(g, t, q, v, p, λ, params) = point_vortices_g(g, t, q, p, λ, params)
function point_vortices_u(u, t, q, v, params)
u[1] = v[1]
u[2] = v[2]
u[3] = v[3]
u[4] = v[4]
nothing
end
point_vortices_u(u, t, q, p, λ, params) = point_vortices_u(u, t, q, λ, params)
point_vortices_u(u, t, q, v, p, λ, params) = point_vortices_u(u, t, q, p, λ, params)
function point_vortices_ϕ(ϕ, t, q, p, params)
ϕ[1] = p[1] - ϑ1(q)
ϕ[2] = p[2] - ϑ2(q)
ϕ[3] = p[3] - ϑ3(q)
ϕ[4] = p[4] - ϑ4(q)
nothing
end
point_vortices_ϕ(ϕ, t, q, v, p, params) = point_vortices_ϕ(ϕ, t, q, p, params)
function odeproblem(q₀=q₀; tspan = tspan, tstep = Δt)
ODEProblem(point_vortices_v, tspan, tstep, q₀)
end
function iodeproblem(q₀=q₀, p₀=ϑ(q₀); tspan = tspan, tstep = Δt)
IODEProblem(point_vortices_ϑ, point_vortices_f,
point_vortices_g, tspan, tstep, q₀, p₀;
v̄=point_vortices_v)
end
function idaeproblem(q₀=q₀, p₀=ϑ(q₀), λ₀=zero(q₀); tspan = tspan, tstep = Δt)
IDAEProblem(point_vortices_ϑ, point_vortices_f,
point_vortices_u, point_vortices_g,
point_vortices_ϕ, tspan, tstep, q₀, p₀, λ₀;
v̄=point_vortices_v)
end
function idoeproblem_dg(q₀=q₀; tspan = tspan, tstep = Δt)
IODEProblem(point_vortices_ϑ, point_vortices_f,
point_vortices_g, tspan, tstep, q₀, q₀;
v=point_vortices_v)
end
function lodeproblem_formal_lagrangian(q₀=q₀, p₀=ϑ(q₀); tspan = tspan, tstep = Δt)
LODEProblem(ϑ, point_vortices_f, point_vortices_g, tspan, tstep, q₀, p₀;
v̄=point_vortices_v, Ω=ω, ∇H=dH)
end
function compute_energy_error(t, q::DataSeries{T}, params) where {T}
h = DataSeries(T, q.nt)
e = DataSeries(T, q.nt)
for i in axes(q,2)
h[i] = hamiltonian(t[i], q[:,i], params)
e[i] = (h[i] - h[0]) / h[0]
end
(h, e)
end
function compute_angular_momentum_error(t, q::DataSeries{T}, params) where {T}
m = DataSeries(T, q.nt)
e = DataSeries(T, q.nt)
for i in axes(q,2)
m[i] = angular_momentum(t[i], q[:,i], params)
e[i] = (m[i] - m[0]) / m[0]
end
(m, e)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 6257 | @doc raw"""
# Planar Point Vortices with linear one-form
"""
module PointVorticesLinear
using GeometricEquations
export odeproblem, iodeproblem, iodeproblem_dg, lodeproblem_formal_lagrangian,
hamiltonian, angular_momentum, ϑ1, ϑ2, ϑ3, ϑ4,
compute_energy, compute_energy_error, compute_angular_momentum_error,
compute_momentum_error, compute_one_form
const Δt = 0.01
const nt = 1000
const tspan = (0.0, Δt*nt)
const γ₁ = 4.0
const γ₂ = 2.0
const d = 1.0
const q₀ = [γ₂*d/(γ₁+γ₂), 0.0, -γ₁*d/(γ₁+γ₂), 0.0]
function hamiltonian(t,q)
γ₁ * γ₂ * log( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (4π)
end
ϑ1(q) = - γ₁ * q[2] / 2
ϑ2(q) = + γ₁ * q[1] / 2
ϑ3(q) = - γ₂ * q[4] / 2
ϑ4(q) = + γ₂ * q[3] / 2
ϑ(q) = [ϑ1(q), ϑ2(q), ϑ3(q), ϑ4(q)]
function angular_momentum(t,q)
# γ₁ * (q[1]^2 + q[2]^2) * S(q[1],q[2]) +
# γ₂ * (q[3]^2 + q[4]^2) * S(q[3],q[4])
q[1] * ϑ2(q) - q[2] * ϑ1(q) +
q[3] * ϑ4(q) - q[4] * ϑ3(q)
end
dϑ1d1(t, q) = zero(eltype(q))
dϑ1d2(t, q) = - γ₁ / 2
dϑ1d3(t, q) = zero(eltype(q))
dϑ1d4(t, q) = zero(eltype(q))
dϑ2d1(t, q) = + γ₁ / 2
dϑ2d2(t, q) = zero(eltype(q))
dϑ2d3(t, q) = zero(eltype(q))
dϑ2d4(t, q) = zero(eltype(q))
dϑ3d1(t, q) = zero(eltype(q))
dϑ3d2(t, q) = zero(eltype(q))
dϑ3d3(t, q) = zero(eltype(q))
dϑ3d4(t, q) = - γ₂ / 2
dϑ4d1(t, q) = zero(eltype(q))
dϑ4d2(t, q) = zero(eltype(q))
dϑ4d3(t, q) = + γ₂ / 2
dϑ4d4(t, q) = zero(eltype(q))
function ϑ(p, t, q)
p[1] = ϑ1(q)
p[2] = ϑ2(q)
p[3] = ϑ3(q)
p[4] = ϑ4(q)
end
function ω(Ω, t, q)
Ω[1,1] = 0
Ω[1,2] = dϑ1d2(t,q) - dϑ2d1(t,q)
Ω[1,3] = dϑ1d3(t,q) - dϑ3d1(t,q)
Ω[1,4] = dϑ1d4(t,q) - dϑ4d1(t,q)
Ω[2,1] = dϑ2d1(t,q) - dϑ1d2(t,q)
Ω[2,2] = 0
Ω[2,3] = dϑ2d3(t,q) - dϑ3d2(t,q)
Ω[2,4] = dϑ2d4(t,q) - dϑ4d2(t,q)
Ω[3,1] = dϑ3d1(t,q) - dϑ1d3(t,q)
Ω[3,2] = dϑ3d2(t,q) - dϑ2d3(t,q)
Ω[3,3] = 0
Ω[3,4] = dϑ3d4(t,q) - dϑ4d3(t,q)
Ω[4,1] = dϑ4d1(t,q) - dϑ1d4(t,q)
Ω[4,2] = dϑ4d2(t,q) - dϑ2d4(t,q)
Ω[4,3] = dϑ4d3(t,q) - dϑ3d4(t,q)
Ω[4,4] = 0
nothing
end
f1(t, q, v) = + γ₁ * v[2] / 2
f2(t, q, v) = - γ₁ * v[1] / 2
f3(t, q, v) = + γ₂ * v[4] / 2
f4(t, q, v) = - γ₂ * v[3] / 2
dHd1(t, q) = + γ₁ * γ₂ * (q[1] - q[3]) / ( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π)
dHd2(t, q) = + γ₁ * γ₂ * (q[2] - q[4]) / ( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π)
dHd3(t, q) = - γ₁ * γ₂ * (q[1] - q[3]) / ( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π)
dHd4(t, q) = - γ₁ * γ₂ * (q[2] - q[4]) / ( (q[1] - q[3])^2 + (q[2] - q[4])^2 ) / (2π)
function dH(dH, t, q, params)
dH[1] = dHd1(t, q)
dH[2] = dHd2(t, q)
dH[3] = dHd3(t, q)
dH[4] = dHd4(t, q)
nothing
end
function point_vortices_v(v, t, q, params)
v[1] = - dHd2(t,q) / γ₁
v[2] = + dHd1(t,q) / γ₁
v[3] = - dHd4(t,q) / γ₂
v[4] = + dHd3(t,q) / γ₂
nothing
end
function odeproblem(q₀=q₀; tspan = tspan, tstep = Δt)
ODEProblem(point_vortices_v, tspan, tstep, q₀)
end
function point_vortices_ϑ(p, t, q, v, params)
p[1] = ϑ1(q)
p[2] = ϑ2(q)
p[3] = ϑ3(q)
p[4] = ϑ4(q)
nothing
end
function point_vortices_f(f, t, q, v, params)
f[1] = f1(t,q,v) - dHd1(t,q)
f[2] = f2(t,q,v) - dHd2(t,q)
f[3] = f3(t,q,v) - dHd3(t,q)
f[4] = f4(t,q,v) - dHd4(t,q)
nothing
end
function point_vortices_g(g, t, q, λ, params)
g[1] = f1(t,q,λ)
g[2] = f2(t,q,λ)
g[3] = f3(t,q,λ)
g[4] = f4(t,q,λ)
nothing
end
point_vortices_g(g, t, q, p, λ, params) = point_vortices_g(g, t, q, λ, params)
point_vortices_g(g, t, q, v, p, λ, params) = point_vortices_g(g, t, q, p, λ, params)
function point_vortices_v(v, t, q, p, params)
point_vortices_v(v, t, q, params)
end
function iodeproblem(q₀=q₀, p₀=ϑ(q₀); tspan = tspan, tstep = Δt)
IODEProblem(point_vortices_ϑ, point_vortices_f,
point_vortices_g, tspan, tstep, q₀, p₀;
v̄=point_vortices_v)
end
function iodeproblem_dg(q₀=q₀; tspan = tspan, tstep = Δt)
IODEProblem(point_vortices_ϑ, point_vortices_f,
point_vortices_g, tspan, tstep, q₀, q₀;
v=point_vortices_v)
end
function lodeproblem_formal_lagrangian(q₀=q₀, p₀=ϑ(q₀); tspan = tspan, tstep = Δt)
LODEProblem(ϑ, point_vortices_f, point_vortices_g, tspan, tstep, q₀, p₀;
v̄=point_vortices_v, Ω=ω, ∇H=dH)
end
function compute_energy(t, q)
h = zeros(q.nt+1)
for i in 1:(q.nt+1)
h[i] = hamiltonian(t.t[i], q.d[:,i])
end
return h
end
function compute_energy_error(t, q)
h = zeros(q.nt+1)
for i in 1:(q.nt+1)
h[i] = hamiltonian(t.t[i], q.d[:,i])
end
h_error = (h .- h[1]) / h[1]
end
function compute_angular_momentum_error(t, q)
P = zeros(q.nt+1)
for i in 1:(q.nt+1)
P[i] = angular_momentum(t.t[i], q.d[:,i])
end
P_error = (P .- P[1]) / P[1]
end
function compute_momentum_error(t, q, p)
p1_error = zeros(q.nt+1)
p2_error = zeros(q.nt+1)
p3_error = zeros(q.nt+1)
p4_error = zeros(q.nt+1)
for i in 1:(q.nt+1)
p1_error[i] = p.d[1,i] - ϑ1(q.d[:,i])
p2_error[i] = p.d[2,i] - ϑ2(q.d[:,i])
p3_error[i] = p.d[3,i] - ϑ3(q.d[:,i])
p4_error[i] = p.d[4,i] - ϑ4(q.d[:,i])
end
(p1_error, p2_error, p3_error, p4_error)
end
function compute_one_form(t, q)
p1 = zeros(q.nt+1)
p2 = zeros(q.nt+1)
p3 = zeros(q.nt+1)
p4 = zeros(q.nt+1)
for i in 1:(q.nt+1)
p1[i] = ϑ1(q.d[:,i])
p2[i] = ϑ2(q.d[:,i])
p3[i] = ϑ3(q.d[:,i])
p4[i] = ϑ4(q.d[:,i])
end
(p1, p2, p3, p4)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1486 | @doc raw"""
# Rigid body
```math
\begin{aligned}
\dot{x} = Ayz \\
\dot{y} = Bxz \\
\dot{z} = Cxy
\end{aligned},
```
where ``A = (I_2 - I_3)/(I_2I_3)``, ``B = (I_3 - I_1)/(I_3I_1)`` and ``C = (I_1 - I_2)/(I_1I_2)``; ``I_{\cdot}`` are the *principal components of inertia*.
The initial condition and the default parameters are taken from [bajars2023locally](@cite).
"""
module RigidBody
using GeometricEquations
using GeometricSolutions
using Parameters
export odeproblem, odeensemble
const tspan = (0.0, 100.0)
const tstep = 0.1
const default_parameters = (
I₁ = 2.,
I₂ = 1.,
I₃ = 2. / 3.
)
const q₀ = [cos(1.1), 0., sin(1.1)]
const q₁ = [cos(2.1), 0., sin(2.1)]
const q₂ = [cos(2.2), 0., sin(2.2)]
function rigid_body_v(v, t, q, params)
@unpack I₁, I₂, I₃ = params
A = (I₂ - I₃) / (I₂ * I₃)
B = (I₃ - I₁) / (I₃ * I₁)
C = (I₁ - I₂) / (I₁ * I₂)
v[1] = A * q[2] * q[3]
v[2] = B * q[1] * q[3]
v[3] = C * q[1] * q[2]
nothing
end
function odeproblem(q₀ = q₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
ODEProblem(rigid_body_v, tspan, tstep, q₀; parameters = parameters)
end
function odeensemble(samples = [q₀, q₁, q₂]; parameters = default_parameters, tspan = tspan, tstep = tstep)
ODEEnsemble(rigid_body_v, tspan, tstep, samples; parameters = parameters)
end
end | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 2392 | @doc raw"""
The Toda lattice is a model for a one-dimensional crystal named after its discoverer Morikazu Toda [toda1967vibration](@cite).
It is a prime example of a non-trivial completely integrable system.
The only system parameters are the *number of points* ``N`` in the periodic lattice and ``\alpha`` which adjusts the strength of the interactions in the lattice.
"""
module TodaLattice
using EulerLagrange
using LinearAlgebra
using Parameters
using GeometricEquations: HODEEnsemble
export hamiltonian, lagrangian
export hodeproblem, lodeproblem
export hodeensemble
include("bump_initial_condition.jl")
const α̃ = .64
const Ñ = 200
const default_parameters = (
α = α̃,
N = Ñ
)
function hamiltonian(t, q, p, params)
@unpack N, α = params
sum(p[n] ^ 2 / 2 + α * exp(q[n] - q[n % Ñ + 1]) for n in 1:Ñ)
end
function lagrangian(t, q, q̇, params)
@unpack N, α = params
sum(q̇[n] ^ 2 / 2 - α * exp(q[n] - q[n % Ñ + 1]) for n in 1:Ñ)
end
const tstep = .1
const tspan = (0.0, 120.0)
# parameter for the initial conditions
const μ = .3
const q₀ = compute_initial_condition(μ, Ñ).q
const p₀ = compute_initial_condition(μ, Ñ).p
"""
Hamiltonian problem for the Toda lattice.
"""
function hodeproblem(q₀ = q₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
t, q, p = hamiltonian_variables(Ñ)
sparams = symbolize(parameters)
ham_sys = HamiltonianSystem(hamiltonian(t, q, p, sparams), t, q, p, sparams)
HODEProblem(ham_sys, tspan, tstep, q₀, p₀; parameters = parameters)
end
"""
Lagrangian problem for the Toda lattice.
"""
function lodeproblem(q₀ = q₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
t, x, v = lagrangian_variables(Ñ)
sparams = symbolize(parameters)
lag_sys = LagrangianSystem(lagrangian(t, x, v, sparams), t, x, v, sparams)
lodeproblem(lag_sys, tspan, tstep, q₀, p₀; parameters = parameters)
end
function hodeensemble(q₀ = q₀, p₀ = p₀; tspan = tspan, tstep = tstep, parameters = default_parameters)
eq = hodeproblem().equation
HODEEnsemble(eq.v, eq.f, eq.hamiltonian, tspan, tstep, q₀, p₀; parameters = parameters)
end
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 383 | using Test
using GeometricIntegrators
using GeometricProblems.ABCFlow
using GeometricSolutions
@testset "$(rpad("ABC Flow",80))" begin
@test_nowarn odeproblem()
@test_nowarn odeensemble()
ode = odeproblem([0.5, 0., 0.])
ref_sol = integrate(ode, Gauss(8))
ode_sol = integrate(ode, Gauss(2))
@test relative_maximum_error(ode_sol.q, ref_sol.q) < 1E-5
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 971 | import GeometricProblems.LinearWave as lw
using GeometricProblems: h, s, u₀, ∂h, ∂s, ∂u₀
using ForwardDiff
using Test
const test_point₁ = 0.5
const test_point₂ = 1.5
const test_point₃ = 2.5
const μ = lw.default_parameters.μ
function test_h_derivative(test_point)
h_autodiff = ForwardDiff.derivative(h, test_point)
@test h_autodiff ≈ ∂h(test_point)
end
function test_s_derivative(test_point)
s_closure(ξ) = s(ξ, μ)
s_autodiff = ForwardDiff.derivative(s_closure, test_point)
@test s_autodiff ≈ ∂s(test_point, μ)
end
function test_u₀_derivative(test_point)
u₀_closure(ξ) = u₀(ξ, μ)
u₀_autodiff = ForwardDiff.derivative(u₀_closure, test_point)
@test u₀_autodiff ≈ ∂u₀(test_point, μ)
end
function test_all_derivatives(test_point)
test_h_derivative(test_point)
test_s_derivative(test_point)
test_u₀_derivative(test_point)
end
test_all_derivatives(test_point₁)
test_all_derivatives(test_point₂)
test_all_derivatives(test_point₃) | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 484 | using Test
using GeometricIntegrators
using GeometricProblems.DoublePendulum
using GeometricSolutions
@testset "$(rpad("Double Pendulum",80))" begin
@test_nowarn hodeproblem()
@test_nowarn lodeproblem()
hode = hodeproblem()
lode = lodeproblem()
hode_sol = integrate(hode, Gauss(2))
lode_sol = integrate(lode, Gauss(2))
@test relative_maximum_error(hode_sol.q, lode_sol.q) < 1E-13
@test relative_maximum_error(hode_sol.p, lode_sol.p) < 1E-11
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1592 | using Test
using GeometricIntegrators
using GeometricProblems.HarmonicOscillator
using GeometricProblems.HarmonicOscillator: reference_solution, reference_solution_q, reference_solution_p
using GeometricSolutions
@testset "$(rpad("Harmonic Oscillator",80))" begin
@test_nowarn odeproblem()
@test_nowarn hodeproblem()
@test_nowarn iodeproblem()
@test_nowarn lodeproblem()
@test_nowarn podeproblem()
@test_nowarn sodeproblem()
@test_nowarn degenerate_iodeproblem()
@test_nowarn degenerate_lodeproblem()
@test_nowarn daeproblem()
@test_nowarn hdaeproblem()
@test_nowarn idaeproblem()
@test_nowarn ldaeproblem()
@test_nowarn pdaeproblem()
@test_nowarn odeensemble()
@test_nowarn podeensemble()
@test_nowarn hodeensemble()
ode = odeproblem()
iode = degenerate_iodeproblem()
pode = podeproblem()
hode = hodeproblem()
ref = exact_solution(ode)
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 1E-4
sol = integrate(iode, MidpointProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 1E-4
sol = integrate(iode, SymmetricProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 1E-4
sol = exact_solution(ode)
@test sol.q[end] == reference_solution
sol = exact_solution(pode)
@test sol.q[end] == [reference_solution_q]
@test sol.p[end] == [reference_solution_p]
sol = exact_solution(hode)
@test sol.q[end] == [reference_solution_q]
@test sol.p[end] == [reference_solution_p]
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 2093 | using GeometricIntegrators
using GeometricProblems.KuboOscillator
using Test
@testset "$(rpad("Kubo Oscillator",80))" begin
sde = kubo_oscillator_sde_1()
psde = kubo_oscillator_psde_1()
spsde = kubo_oscillator_spsde_1()
sde_equs = functions(sde)
@test_nowarn sde_equs[:v](zero(sde.ics.q), tbegin(sde), sde.ics.q)
@test_nowarn sde_equs[:B](zeros(eltype(sde.ics.q), tbegin(sde), sde.ics.q, sde.d, sde.m))
@test_nowarn sde_equs[:B](zeros(eltype(sde.ics.q), tbegin(sde), sde.ics.q, sde.d, sde.m), 1)
psde_equs = functions(psde)
@test_nowarn psde_equs[:v](zero(psde.ics.q), tbegin(psde), psde.ics.q, psde.ics.p)
@test_nowarn psde_equs[:f](zero(psde.ics.p), tbegin(psde), psde.ics.q, psde.ics.p)
@test_nowarn psde_equs[:B](zero(psde.ics.q), tbegin(psde), psde.ics.q, psde.ics.p)
@test_nowarn psde_equs[:G](zero(psde.ics.p), tbegin(psde), psde.ics.q, psde.ics.p)
@test_nowarn psde_equs[:B](zeros(eltype(psde.ics.q), tbegin(psde), psde.ics.q, psde.ics.p, psde.d, psde.m))
@test_nowarn psde_equs[:G](zeros(eltype(psde.ics.p), tbegin(psde), psde.ics.q, psde.ics.p, psde.d, psde.m))
spsde_equs = functions(spsde)
@test_nowarn spsde_equs[:v ](zero(spsde.ics.q), tbegin(spsde), spsde.ics.q, spsde.ics.p)
@test_nowarn spsde_equs[:f1](zero(spsde.ics.p), tbegin(spsde), spsde.ics.q, spsde.ics.p)
@test_nowarn spsde_equs[:f2](zero(spsde.ics.p), tbegin(spsde), spsde.ics.q, spsde.ics.p)
@test_nowarn spsde_equs[:B ](zero(spsde.ics.q), tbegin(spsde), spsde.ics.q, spsde.ics.p)
@test_nowarn spsde_equs[:G1](zero(spsde.ics.p), tbegin(spsde), spsde.ics.q, spsde.ics.p)
@test_nowarn spsde_equs[:G2](zero(spsde.ics.p), tbegin(spsde), spsde.ics.q, spsde.ics.p)
@test_nowarn spsde_equs[:B ](zeros(eltype(spsde.ics.q), tbegin(spsde), spsde.ics.q, spsde.ics.p, spsde.d, spsde.m))
@test_nowarn spsde_equs[:G1](zeros(eltype(spsde.ics.p), tbegin(spsde), spsde.ics.q, spsde.ics.p, spsde.d, spsde.m))
@test_nowarn spsde_equs[:G2](zeros(eltype(spsde.ics.p), tbegin(spsde), spsde.ics.q, spsde.ics.p, spsde.d, spsde.m))
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 468 | using Test
using GeometricIntegrators
using GeometricProblems.LorenzAttractor
using GeometricProblems.LorenzAttractor: reference_solution
using GeometricSolutions
@testset "$(rpad("Lorenz Attractor",80))" begin
ode = lorenz_attractor_ode()
sol = integrate(ode, Gauss(1))
@test relative_maximum_error(sol.q[end], reference_solution) < 4E-2
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q[end], reference_solution) < 2E-5
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 999 | using Test
using GeometricIntegrators
using GeometricIntegrators.SPARK
using GeometricProblems.LotkaVolterra2dGauge
using GeometricSolutions
@testset "$(rpad("Lotka-Volterra 2D with symmetric Lagrangian with gauge terms",80))" begin
ode = odeproblem()
iode = iodeproblem()
idae = idaeproblem()
ref = integrate(ode, Gauss(8))
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 4E-4
sol = integrate(iode, MidpointProjection(VPRKGauss(2)))
# println(relative_maximum_error(sol.q, ref.q))
@test relative_maximum_error(sol.q, ref.q) < 2E-3
sol = integrate(iode, SymmetricProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(idae, TableauVSPARKGLRKpMidpoint(2))
# println(relative_maximum_error(sol.q, ref.q))
@test relative_maximum_error(sol.q, ref.q) < 2E-3
sol = integrate(idae, TableauVSPARKGLRKpSymmetric(2))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 880 | using Test
using GeometricIntegrators
using GeometricIntegrators.SPARK
using GeometricProblems.LotkaVolterra2dSingular
using GeometricSolutions
@testset "$(rpad("Lotka-Volterra 2D with singular Lagrangian",80))" begin
ode = odeproblem()
iode = iodeproblem()
idae = idaeproblem()
ref = integrate(ode, Gauss(8))
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(iode, MidpointProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(iode, SymmetricProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(idae, TableauVSPARKGLRKpMidpoint(2))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(idae, TableauVSPARKGLRKpSymmetric(2))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 986 | using Test
using GeometricIntegrators
using GeometricIntegrators.SPARK
using GeometricProblems.LotkaVolterra2dSymmetric
using GeometricSolutions
@testset "$(rpad("Lotka-Volterra 2D with symmetric Lagrangian",80))" begin
ode = odeproblem()
iode = iodeproblem()
idae = idaeproblem()
ref = integrate(ode, Gauss(8))
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 4E-4
sol = integrate(iode, MidpointProjection(VPRKGauss(2)))
# println(relative_maximum_error(sol.q, ref.q))
@test relative_maximum_error(sol.q, ref.q) < 2E-3
sol = integrate(iode, SymmetricProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(idae, TableauVSPARKGLRKpMidpoint(2))
# println(relative_maximum_error(sol.q, ref.q))
@test relative_maximum_error(sol.q, ref.q) < 2E-3
sol = integrate(idae, TableauVSPARKGLRKpSymmetric(2))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1023 | using Test
using GeometricIntegrators
using GeometricIntegrators.SPARK
using GeometricProblems.LotkaVolterra2d
using GeometricSolutions
@testset "$(rpad("Lotka-Volterra 2d",80))" begin
ode = odeproblem()
hode = hodeproblem()
iode = iodeproblem()
pode = podeproblem()
lode = lodeproblem()
dae = daeproblem()
hdae = hdaeproblem()
idae = idaeproblem()
pdae = pdaeproblem()
ldae = ldaeproblem()
ref = integrate(ode, Gauss(8))
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(iode, MidpointProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(iode, SymmetricProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(idae, TableauVSPARKGLRKpMidpoint(2))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
sol = integrate(idae, TableauVSPARKGLRKpSymmetric(2))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 757 | using Test
using GeometricIntegrators
using GeometricProblems.LotkaVolterra3d
using GeometricSolutions
@testset "$(rpad("Lotka-Volterra 3D",80))" begin
ode = odeproblem()
ref = integrate(ode, Gauss(8))
sol = integrate(ode, Gauss(1))
H, ΔH = compute_energy_error(sol.t, sol.q, parameters(ode))
C, ΔC = compute_casimir_error(sol.t, sol.q, parameters(ode))
@test relative_maximum_error(sol.q, ref.q) < 5E-4
@test ΔH[end] < 4E-6
@test ΔC[end] < 8E-6
sol = integrate(ode, Gauss(2))
H, ΔH = compute_energy_error(sol.t, sol.q, parameters(ode))
C, ΔC = compute_casimir_error(sol.t, sol.q, parameters(ode))
@test relative_maximum_error(sol.q, ref.q) < 2E-9
@test ΔH[end] < 5E-11
@test ΔC[end] < 2E-11
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 5639 | using Test
using GeometricEquations
using GeometricIntegrators
using GeometricIntegrators.SPARK
using GeometricSolutions
import GeometricProblems.LotkaVolterra4d
import GeometricProblems.LotkaVolterra4dLagrangian
import GeometricProblems.LotkaVolterra4dLagrangian: reference_solution
@testset "$(rpad("Lotka-Volterra 4D (Lagrangian)",80))" begin
lag_ode = LotkaVolterra4dLagrangian.odeproblem()
lag_iode = LotkaVolterra4dLagrangian.iodeproblem()
lag_idae = LotkaVolterra4dLagrangian.idaeproblem()
ref_ode = LotkaVolterra4d.odeproblem()
ref_iode = LotkaVolterra4d.iodeproblem()
ref_idae = LotkaVolterra4d.idaeproblem()
ref = integrate(ref_ode, Gauss(8))
@assert tbegin(lag_ode) == tbegin(ref_ode)
@assert tbegin(lag_iode) == tbegin(ref_iode)
@assert tbegin(lag_idae) == tbegin(ref_idae)
@assert lag_ode.ics == ref_ode.ics
@assert lag_iode.ics == ref_iode.ics
@assert lag_idae.ics == ref_idae.ics
lag_equs = functions(lag_ode)
lag_invs = invariants(lag_ode)
ref_equs = functions(ref_ode)
ref_invs = invariants(ref_ode)
v1 = zero(lag_ode.ics.q)
v2 = zero(ref_ode.ics.q)
lag_equs[:v](v1, tbegin(lag_ode), lag_ode.ics.q, parameters(lag_ode))
ref_equs[:v](v2, tbegin(ref_ode), ref_ode.ics.q, parameters(ref_ode))
@test v1 ≈ v2 atol=eps()
h1 = lag_invs[:h](tbegin(lag_ode), lag_ode.ics.q, parameters(lag_ode))
h2 = ref_invs[:h](tbegin(ref_ode), ref_ode.ics.q, parameters(ref_ode))
@test h1 ≈ h2 atol=eps()
sol = integrate(lag_ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 8E-4
ref_sol = integrate(ref_ode, Gauss(2))
@test relative_maximum_error(sol.q, ref_sol.q) < 2E-14
lag_equs = functions(lag_iode)
lag_invs = invariants(lag_iode)
lag_igs = initialguess(lag_iode)
ref_equs = functions(ref_iode)
ref_invs = invariants(ref_iode)
@test lag_iode.ics.q == ref_iode.ics.q
@test lag_iode.ics.p == ref_iode.ics.p
@test parameters(lag_iode) == parameters(ref_iode)
ϑ1 = zero(lag_iode.ics.q)
ϑ2 = zero(ref_iode.ics.q)
lag_equs[:ϑ](ϑ1, tbegin(lag_iode), lag_iode.ics.q, v1, parameters(lag_iode))
ref_equs[:ϑ](ϑ2, tbegin(ref_iode), ref_iode.ics.q, v2, parameters(ref_iode))
@test ϑ1 ≈ ϑ2 atol=eps()
f1 = zero(lag_iode.ics.q)
f2 = zero(ref_iode.ics.q)
lag_equs[:f](f1, tbegin(lag_iode), lag_iode.ics.q, v1, parameters(lag_iode))
ref_equs[:f](f2, tbegin(ref_iode), ref_iode.ics.q, v2, parameters(ref_iode))
@test f1 ≈ f2 atol=eps()
g1 = zero(lag_iode.ics.q)
g2 = zero(ref_iode.ics.q)
λ1 = zero(v1)
λ2 = zero(v2)
lag_equs[:g](g1, tbegin(lag_iode), lag_iode.ics.q, v1, λ1, parameters(lag_iode))
ref_equs[:g](g2, tbegin(ref_iode), ref_iode.ics.q, v2, λ2, parameters(ref_iode))
@test g1 ≈ g2 atol=eps()
v1 = zero(lag_iode.ics.q)
v2 = zero(ref_iode.ics.q)
lag_igs[:v](v1, tbegin(lag_iode), lag_iode.ics.q, zero(f1), parameters(lag_iode))
lag_igs[:v](v2, tbegin(ref_iode), ref_iode.ics.q, zero(f2), parameters(ref_iode))
@test v1 ≈ v2 atol=eps()
f1 = zero(lag_iode.ics.q)
f2 = zero(ref_iode.ics.q)
lag_igs[:f](f1, tbegin(lag_iode), lag_iode.ics.q, v1, parameters(lag_iode))
lag_igs[:f](f2, tbegin(ref_iode), ref_iode.ics.q, v2, parameters(ref_iode))
@test f1 ≈ f2 atol=eps()
h1 = lag_invs[:h](tbegin(lag_iode), lag_iode.ics.q, zero(lag_iode.ics.q), parameters(lag_iode))
h2 = ref_invs[:h](tbegin(ref_iode), ref_iode.ics.q, zero(ref_iode.ics.q), parameters(ref_iode))
@test h1 ≈ h2 atol=eps()
sol = integrate(lag_iode, MidpointProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 2E-3
ref_sol = integrate(ref_iode, MidpointProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref_sol.q) < 8E-14
sol = integrate(lag_iode, SymmetricProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 8E-4
ref_sol = integrate(ref_iode, SymmetricProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref_sol.q) < 4E-14
lag_equs = functions(lag_idae)
lag_invs = invariants(lag_idae)
lag_igs = initialguess(lag_idae)
ref_equs = functions(ref_idae)
ref_invs = invariants(ref_idae)
@test lag_idae.ics.q == ref_idae.ics.q
@test lag_idae.ics.p == ref_idae.ics.p
@test parameters(lag_idae) == parameters(ref_idae)
v1 = zero(lag_idae.ics.q)
v2 = zero(ref_idae.ics.q)
lag_igs[:v](v1, tbegin(lag_idae), lag_idae.ics.q, zero(f1), parameters(lag_idae))
lag_igs[:v](v2, tbegin(ref_idae), ref_idae.ics.q, zero(f2), parameters(ref_idae))
@test v1 ≈ v2 atol=eps()
f1 = zero(lag_idae.ics.q)
f2 = zero(ref_idae.ics.q)
lag_igs[:f](f1, tbegin(lag_idae), lag_idae.ics.q, v1, parameters(lag_idae))
lag_igs[:f](f2, tbegin(ref_idae), ref_idae.ics.q, v2, parameters(ref_idae))
@test f1 ≈ f2 atol=eps()
h1 = lag_invs[:h](tbegin(lag_idae), lag_idae.ics.q, zero(lag_idae.ics.q), parameters(lag_idae))
h2 = ref_invs[:h](tbegin(ref_idae), ref_idae.ics.q, zero(ref_idae.ics.q), parameters(ref_idae))
@test h1 ≈ h2 atol=eps()
sol = integrate(lag_idae, TableauVSPARKGLRKpMidpoint(2))
@test relative_maximum_error(sol.q, ref.q) < 2E-3
ref_sol = integrate(ref_idae, TableauVSPARKGLRKpMidpoint(2))
@test relative_maximum_error(sol.q, ref_sol.q) < 4E-14
sol = integrate(lag_idae, TableauVSPARKGLRKpSymmetric(2))
@test relative_maximum_error(sol.q, ref.q) < 8E-4
ref_sol = integrate(ref_idae, TableauVSPARKGLRKpSymmetric(2))
@test relative_maximum_error(sol.q, ref_sol.q) < 8E-14
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 847 | using Test
using GeometricIntegrators
using GeometricIntegrators.SPARK
using GeometricProblems.LotkaVolterra4d
using GeometricSolutions
@testset "$(rpad("Lotka-Volterra 4D",80))" begin
ode = odeproblem()
iode = iodeproblem()
idae = idaeproblem()
ref = integrate(ode, Gauss(8))
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 8E-4
sol = integrate(iode, MidpointProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 2E-3
sol = integrate(iode, SymmetricProjection(VPRKGauss(2)))
@test relative_maximum_error(sol.q, ref.q) < 8E-4
sol = integrate(idae, TableauVSPARKGLRKpMidpoint(2))
@test relative_maximum_error(sol.q, ref.q) < 2E-3
sol = integrate(idae, TableauVSPARKGLRKpSymmetric(2))
@test relative_maximum_error(sol.q, ref.q) < 8E-4
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 434 | using Test
using GeometricIntegrators
using GeometricProblems.PointVorticesLinear
using GeometricSolutions
@testset "$(rpad("Point Vortices (linear)",80))" begin
ode = odeproblem()
iode = iodeproblem()
ref = integrate(ode, Gauss(8))
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 1E-9
sol = integrate(iode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 1E-9
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 590 | using Test
using GeometricIntegrators
using GeometricIntegrators.SPARK
using GeometricProblems.PointVortices
using GeometricSolutions
@testset "$(rpad("Point Vortices",80))" begin
ode = odeproblem()
iode = iodeproblem()
idae = idaeproblem()
ref = integrate(ode, Gauss(8))
sol = integrate(ode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 1E-5
sol = integrate(iode, Gauss(2))
@test relative_maximum_error(sol.q, ref.q) < 2E-5
sol = integrate(idae, TableauVSPARKGLRKpSymmetric(2))
@test relative_maximum_error(sol.q, ref.q) < 1E-5
end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 99 | using GeometricProblems.RigidBody
using Test
@test_nowarn odeproblem()
@test_nowarn odeensemble() | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 2499 | using SafeTestsets
@safetestset "Bump initial condition: test derivative. " begin include("bump_initial_condition_test_derivatives.jl") end
@safetestset "ABC Flow " begin include("abc_flow_tests.jl") end
@safetestset "Double Pendulum " begin include("double_pendulum_tests.jl") end
@safetestset "Harmonic Oscillator " begin include("harmonic_oscillator_tests.jl") end
# @safetestset "Kubo Oscillator " begin include("kubo_oscillator_tests.jl") end
@safetestset "Lorenz Attractor " begin include("lorenz_attractor_tests.jl") end
@safetestset "Lotka-Volterra 2D " begin include("lotka_volterra_2d_tests.jl") end
@safetestset "Lotka-Volterra 2D with singular Lagrangian " begin include("lotka_volterra_2d_singular_tests.jl") end
@safetestset "Lotka-Volterra 2D with symmetric Lagrangian " begin include("lotka_volterra_2d_symmetric_tests.jl") end
@safetestset "Lotka-Volterra 2D with symmetric Lagrangian with gauge terms " begin include("lotka_volterra_2d_gauge_tests.jl") end
@safetestset "Lotka-Volterra 3D " begin include("lotka_volterra_3d_tests.jl") end
@safetestset "Lotka-Volterra 4D " begin include("lotka_volterra_4d_tests.jl") end
@safetestset "Lotka-Volterra 4D (Lagrangian) " begin include("lotka_volterra_4d_lagrangian_tests.jl") end
@safetestset "Point Vortices " begin include("point_vortices_tests.jl") end
@safetestset "Point Vortices (linear) " begin include("point_vortices_linear_tests.jl") end
@safetestset "Rigid Body " begin include("rigid_body_test.jl") end
@safetestset "HODEEnsemble " begin include("test_hodeensembles.jl") end
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | code | 1431 | using GeometricIntegrators: ImplicitMidpoint, integrate
import GeometricProblems.CoupledHarmonicOscillator as cho
import GeometricProblems.TodaLattice as tl
using Test
function test_multiple_initial_conditions(cho::Module)
q₀_vec = [cho.q₀ .+ α for α in 0. : .4 : .4]
p₀_vec = [cho.p₀ .+ α for α in 0. : .4 : .4]
# ensemble problem
epr = cho.hodeensemble(q₀_vec, p₀_vec)
# ensemble solution
esol = integrate(epr, ImplicitMidpoint())
sol = integrate(cho.hodeproblem(), ImplicitMidpoint())
@test esol.s[1].q.d.parent ≈ sol.q.d.parent
@test esol.s[2].q.d.parent ≉ sol.q.d.parent
end
function test_multiple_parameters(cho::Module)
params_vec = Vector{NamedTuple}()
for i in 0:1
param_vals = ()
for key in keys(cho.default_parameters)
param_vals = (param_vals..., cho.default_parameters[key] .+ 1. * i)
end
params_vec = push!(params_vec, NamedTuple{keys(cho.default_parameters)}(param_vals))
end
# ensemble problem
epr = cho.hodeensemble(; parameters = params_vec)
# ensemble solution
esol = integrate(epr, ImplicitMidpoint())
sol = integrate(cho.hodeproblem(), ImplicitMidpoint())
@test esol.s[1].q.d.parent ≈ sol.q.d.parent
@test esol.s[2].q.d.parent ≉ sol.q.d.parent
end
test_multiple_initial_conditions(cho)
test_multiple_initial_conditions(tl)
test_multiple_parameters(cho)
test_multiple_parameters(tl) | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 776 | # Authors
GeometricProblems' development is coordinated by a group of *principal developers*, who are also its main contributors and who can be contacted in case of questions about GeometricProblems. In addition, there are *contributors* who have provided substantial additions or modifications. Together, these two groups form "The GeometricProblems Authors" as mentioned in the [LICENSE](LICENSE.md) file.
## Principal Developers
* [Michael Kraus](https://www.michael-kraus.org/),
Max Planck Institute for Plasma Physics, Garching, Germany
* Benedikt Brantner,
Max Planck Institute for Plasma Physics, Garching, Germany
## Contributors
The following people contributed to GeometricProblems and are listed in alphabetical order:
* Benedikt Brantner
* Michael Kraus
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 2508 |
# GeometricProblems.jl
*Collection of example problems with interesting geometric structure for
[GeometricIntegrators.jl](https://github.com/JuliaGNI/GeometricIntegrators.jl).*
[](https://juliagni.github.io/GeometricProblems.jl/stable)
[](https://juliagni.github.io/GeometricProblems.jl/latest)
[](LICENSE.md)
[](https://github.com/JuliaGNI/GeometricProblems.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/JuliaGNI/GeometricProblems.jl)
[](https://doi.org/10.5281/zenodo.3740036)
#### Example Problems
- [x] ABC Flow,
- [x] Exponential Growth,
- [ ] Fermi-Pasta-Ulam Problem,
- [ ] Hénon-Heiles System,
- [ ] Kepler Problem,
- [x] Lorenz Attractor in 3D,
- [x] Lotka-Volterra in 2D,
- [x] Lotka-Volterra in 3D,
- [x] Lotka-Volterra in 4D,
- [x] Massless Charged Particle,
- [x] Harmonic Oscillator,
- [x] Coupled Harmonic Oscillator,
- [ ] Nonlinear Oscillators,
- [ ] Duffing Oscillator,
- [ ] Lennard-Jones Oscillator,
- [ ] Mathews-Lakshmanan Oscillator,
- [ ] Morse Oscillator,
- [x] Pendulum,
- [x] Mathematical Pendulum,
- [x] Double Pendulum,
- [x] Planar Point Vortices,
- [ ] Rigid Body,
- [ ] Chaplygin Sleigh,
- [ ] Inner Solar System,
- [ ] Outer Solar System,
- [ ] Heavy Top,
- [x] Toda lattice.
See [ChargedParticleDynamics.jl](https://github.com/JuliaPlasma/ChargedParticleDynamics.jl) for
- Charged Particle Motion in various electromagnetic Fields,
- Pauli Particle Dynamics in various electromagnetic Fields,
- Guiding Center Dynamics in various magnetic fields,
- Gyrokinetic Dynamics in various magnetic fields.
See [GeometricExamples.jl](https://github.com/JuliaGNI/GeometricExamples.jl) for
example scripts that run these problems with the integrators implemented in
[GeometricIntegrators.jl](https://github.com/JuliaGNI/GeometricIntegrators.jl).
## Development
We are using git hooks, e.g., to enforce that all tests pass before pushing.
In order to activate these hooks, the following command must be executed once:
```
git config core.hooksPath .githooks
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 693 | # ABC Flow
The ABC flow (see [hairer2006geometric](@cite)) is described by a divergence-free differential equation whose flow strongly depends on the initial condition.
```@example
using GeometricIntegrators: integrate, ImplicitMidpoint
using GeometricProblems.ABCFlow
using Plots
ensemble_solution = integrate(odeensemble(), ImplicitMidpoint())
p = plot()
for solution in ensemble_solution
plot!(p, solution.q[:, 1], solution.q[:, 2], solution.q[:, 3])
end
p
```
## Library functions
```@docs
GeometricProblems.ABCFlow
```
```@autodocs
Modules = [GeometricProblems.ABCFlow]
Order = [:constant, :type, :macro, :function]
```
```@bibliography
Pages = []
hairer2006geometric
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 1911 | # Coupled Harmonic Oscillator
This system describes two harmonic oscillators that are coupled nonlinearly.
```@example
HTML("""<object type="image/svg+xml" class="display-light-only" data=$(joinpath(Main.buildpath, "images/coupled_harmonic_oscillator.png"))></object>""") # hide
```
```@example
HTML("""<object type="image/svg+xml" class="display-dark-only" data=$(joinpath(Main.buildpath, "images/coupled_harmonic_oscillator_dark.png"))></object>""") # hide
```
The following shows the ``q_1`` component of the system for different values of ``k``:
```@eval
using GeometricIntegrators: integrate, ImplicitMidpoint
using GeometricProblems.CoupledHarmonicOscillator: hodeensemble, default_parameters
using Plots
const m₁ = default_parameters.m₁
const m₂ = default_parameters.m₂
const k₁ = default_parameters.k₁
const k₂ = default_parameters.k₂
const k = [0.0, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0]
params_collection = [(m₁ = m₁, m₂ = m₂, k₁ = k₁, k₂ = k₂, k = k_val) for k_val in k]
# ensemble problem
ep = hodeensemble(; parameters = params_collection)
ensemble_solution = integrate(ep, ImplicitMidpoint())
t = ensemble_solution.t
q₁ = zeros(1, length(t), length(k))
for index in axes(k, 1)
q₁[1, :, index] = ensemble_solution.s[index].q[:, 1]
end
n_param_sets = length(params_collection) #hide
labels = reshape(["k = "*string(parameters.k) for parameters in params_collection], 1, n_param_sets)
q₁ = q₁[1, :, :]
const one_plot = false
const psize = (900, 600)
plot_q₁ = one_plot ? plot(0.0:0.4:100.0, q₁, size=psize) : plot(0.0:0.4:100.0, q₁, layout=(n_param_sets, 1), size=psize, label=labels, legend=:topright)
png(plot_q₁, "q_component")
nothing
```

## Library functions
```@docs
GeometricProblems.CoupledHarmonicOscillator
```
```@autodocs
Modules = [GeometricProblems.CoupledHarmonicOscillator]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 123 |
# Diagnostics
```@autodocs
Modules = [GeometricProblems.Diagnostics]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 2949 | # Double Pendulum
The double pendulum consists of two pendula, one attached to the origin at ``(x,y) = (0,0)``, and the second attached to the first.
Each pendulum consists of a point mass ``m_i`` attached to a massless rod of length ``l_i`` with ``i \in (1,2)``.
All motion is assumed to be frictionless.
```@example
HTML("""<object type="image/svg+xml" class="display-light-only" data=$(joinpath(Main.buildpath, "images/double-pendulum.png"))></object>""") # hide
```
```@example
HTML("""<object type="image/svg+xml" class="display-dark-only" data=$(joinpath(Main.buildpath, "images/double-pendulum_dark.png"))></object>""") # hide
```
The dynamics of the system is most naturally described in terms of the angles ``\theta_i`` between the rods ``l_i`` and the vertical axis ``y``.
In terms of these angles, the cartesian coordinates are given by
```math
\begin{align*}
x_1 &= l_1 \sin\theta_1 , \\
x_2 &= l_1 \sin\theta_1 + l_2 \sin\theta_2 , \\
y_1 &= - l_1 \cos\theta_1 , \\
y_2 &= -l_1 \cos\theta_1 - l_2 \cos\theta_2 .
\end{align*}
```
In terms of the generalized coordinates ``\theta_i``, the Lagrangian reads
```math
\begin{align*}
L (\theta_1, \theta_2, \dot{\theta}_1, \dot{\theta}_2)
= \frac{1}{2} (m_1 + m_2) l_1^2 \dot{\theta}_1^2
&+ \frac{1}{2} m_2 l_2^2 \dot{\theta}_2^2
+ m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2) \\
&+ g (m_1 + m_2) l_1 \cos\theta_1
+ g m_2 l_2 \cos\theta_2 .
\end{align*}
```
The canonical conjugate momenta ``p_i`` are obtained from the Lagrangian as
```math
\begin{align*}
p_1 &= \frac{\partial L}{\partial \dot{\theta}_1} = (m_1 + m_2) l_1^2 \dot{\theta}_1 + m_2 l_1 l_2 \dot{\theta}_2 \cos(\theta_1 - \theta_2), \\
p_2 &= \frac{\partial L}{\partial \dot{\theta}_2} = m_2 l_2^2 \dot{\theta}_2 + m_2 l_1 l_2 \dot{\theta}_1 \cos(\theta_1 - \theta_2) .
\end{align*}
```
After solving these relations for the generalized velocities ``\dot{\theta}_i``,
```math
\begin{align*}
\dot{\theta}_1 &= \frac{l_2 p_{\theta_1} - l_1 p_{\theta_2} \cos(\theta_1 - \theta_2)}{l_1^2 l_2 \left[ m_1 + m_2 \sin^2(\theta_1 - \theta_2) \right] } \\
\dot{\theta}_2 &= \frac{(m_1 + m_2) l_1 p_{\theta_2} - m_2 l_2 p_{\theta_1} \cos(\theta_1 - \theta_2)}{m_2 l_1 l_2^2 \left[ m_1 + m_2 \sin^2 (\theta_1 - \theta_2) \right] } ,
\end{align*}
```
the Hamiltonian can be obtained via the Legendre transform,
```math
H = \sum_{i=1}^2 \dot{\theta}_i p_i - L ,
```
as
```math
\begin{align*}
H &= \frac{m_2 l_2^2 p^2_{\theta_1} + (m_1 + m_2) l_1^2 p^2_{\theta_2} - 2 m_2 l_1 l_2 p_{\theta_1} p_{\theta_2} \cos(\theta_1 - \theta_2)}{2 m_2 l_1^2 l_2^2 \left[ m_1 + m_2 \sin^2(\theta_1 - \theta_2) \right] } \\
& \qquad\qquad \vphantom{\frac{l}{l}} - g (m_1 + m_2) l_1 \cos\theta_1 - g m_2 l_2 \cos\theta_2 .
\end{align*}
```
## Library functions
```@docs
GeometricProblems.DoublePendulum
```
```@autodocs
Modules = [GeometricProblems.DoublePendulum]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 137 | # Harmonic Oscillator
```@autodocs
Modules = [GeometricProblems.HarmonicOscillator]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 4010 | # GeometricProblems.jl
*GeometricProblems.jl is a collection of ODEs and DAEs with interesting geometric structures
together with useful diagnostics and plotting tools.*
[](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/G/GeometricProblems.html)

[](https://travis-ci.org/JuliaGNI/GeometricProblems.jl)
[](https://coveralls.io/github/JuliaGNI/GeometricProblems.jl)
[](https://codecov.io/gh/JuliaGNI/GeometricProblems.jl)
[](https://doi.org/10.5281/zenodo.3740036)
Typical structures are
* Variational structure, i.e., the equations can defined in terms of a Lagrangian function and be obtained from an action principle;
* Hamiltonian structure, i.e., the equations can be defined in terms of a Hamiltonian function together with a symplectic or Poisson matrix;
* Invariants, i.e., the equations have symmetries and associated conservation laws;
* Volume preservation, i.e., the flow of the equations is divergence-free.
## Contents
```@contents
Pages = [
"diagnostics.md",
"abc_flow.md",
"coupled_harmonic_oscillator.md",
"henon_heiles.md",
"kepler_problem.md",
"lorenz_attractor.md",
"lotka_volterra_2d.md",
"lotka_volterra_3d.md",
"lotka_volterra_4d.md",
"massless_charged_particle.md",
"harmonic_oscillator.md",
"nonlinear_oscillators.md",
"pendulum.md",
"double_pendulum.md",
"point_vortices.md",
"inner_solar_system.md",
"outer_solar_system.md",
"rigid_body.md",
"toda_lattice.md"
]
Depth = 1
```
## References
If you use the figures or implementations provided here, please consider citing GeometricIntegrators.jl as
```
@misc{Kraus:2020:GeometricIntegratorsRepo,
title={GeometricIntegrators.jl: Geometric Numerical Integration in Julia},
author={Kraus, Michael},
year={2020},
howpublished={\url{https://github.com/JuliaGNI/GeometricIntegrators.jl}},
doi={10.5281/zenodo.3648325}
}
```
as well as this repository as
```
@misc{Kraus:2020:GeometricProblemsRepo,
title={GeometricProblems.jl: Collection of Differential Equations with Geometric Structure.},
author={Kraus, Michael},
year={2020},
howpublished={\url{https://github.com/JuliaGNI/GeometricProblems.jl}},
doi={10.5281/zenodo.4285904}
}
```
## Figure License
> Copyright (c) Michael Kraus <[email protected]>
>
> All figures are licensed under the Creative Commons [CC BY-NC-SA 4.0 License](https://creativecommons.org/licenses/by-nc-sa/4.0/).
## Software License
> Copyright (c) Michael Kraus <[email protected]>
>
> Permission is hereby granted, free of charge, to any person obtaining a copy
> of this software and associated documentation files (the "Software"), to deal
> in the Software without restriction, including without limitation the rights
> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
> copies of the Software, and to permit persons to whom the Software is
> furnished to do so, subject to the following conditions:
>
> The above copyright notice and this permission notice shall be included in all
> copies or substantial portions of the Software.
>
> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
> SOFTWARE.
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 2212 | # Bump as Initial Condition
In here we describe the initial condition used for the [discretized linear wave](linear_wave.md) and the [Toda lattice](toda_lattice.md). The initial conditions are based on the following third-degree spline (also used in [buchfink2023symplectic](@cite)):
```math
h(s) = \begin{cases}
1 - \frac{3}{2}s^2 + \frac{3}{4}s^3 & \text{if } 0 \leq s \leq 1 \\
\frac{1}{4}(2 - s)^3 & \text{if } 1 < s \leq 2 \\
0 & \text{else.}
\end{cases}
```
Plotted on the relevant domain it takes the following shape:
```@example
HTML("""<object type="image/svg+xml" class="display-light-only" data=$(joinpath(Main.buildpath, "images/third_degree_spline.png"))></object>""") # hide
```
```@example
HTML("""<object type="image/svg+xml" class="display-dark-only" data=$(joinpath(Main.buildpath, "images/third_degree_spline_dark.png"))></object>""") # hide
```
Taking the above function ``h(s)`` as a starting point, the initial conditions for the linear wave equations are modelled with
```math
q_0(\omega;\mu) = h(s(\omega, \mu)).
```
Further for ``s(\cdot, \cdot)`` we pick:
```math
s(\omega, \mu) = 20 \mu \left|\omega + \frac{\mu}{2}\right|
```
And we end up with the following choice of parametrized initial conditions:
```math
q_0(\mu)(\omega).
```
Three initial conditions and their time evolutions are shown in the figure below. As was required, we can see that the peak gets sharper and moves to the left as we increase the parameter ``\mu``; the curves also get a good coverage of the domain ``\Omega``.
```@example
# Plot our initial conditions for different values of μ here!
using GeometricProblems: compute_initial_condition, compute_domain
using Plots # hide
using LaTeXStrings # hide
μ_vals = [0.416, 0.508, 0.600]
Ñ = 128
Ω = compute_domain(Ñ)
ics = [compute_initial_condition(μ, Ñ) for μ in μ_vals]
p = plot(Ω, ics[1].q, label = L"\mu"*"="*string(μ_vals[1]), xlabel = L"\Omega", ylabel = L"q_0")
plot!(p, Ω, ics[2].q, label = L"\mu"*"="*string(μ_vals[2]))
plot!(p, Ω, ics[3].q, label = L"\mu"*"="*string(μ_vals[3]))
png(p, "ics_plot")
nothing
```
 | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 2301 | # The Discretized Linear Wave
The linear wave equation in one dimension has the following Hamiltonian (see e.g. [buchfink2023symplectic](@cite)):
```math
\mathcal{H}_\mathrm{cont}(q, p; \mu) := \frac{1}{2}\int_\Omega \mu^2(\partial_\xi q(t, \xi; \mu))^2 + p(t, \xi; \mu)^2 d\xi,
```
where the domain is ``\Omega = (-1/2, 1/2)``. We then divide the domain into ``\tilde{N}`` equidistantly spaces points[^1] ``\xi_i = i\Delta_\xi - 1/2`` for ``i = 1, \ldots, \tilde{N}`` and ``\Delta_xi := 1/(\tilde{N} + 1)``.
[^1]: In total the system is therefore described by ``N = \tilde{N} + 2`` coordinates, since we also have to consider the boundary. The resulting Hamiltonian then is:
```math
\mathcal{H}_h(z) = \sum_{i = 1}^{\tilde{N}}\frac{\Delta{}x}{2}\left[ p_i^2 + \mu^2 \frac{(q_i - q_{i - 1})^2 + (q_{i+1} - q_i)^2}{2\Delta{}x} \right].
```
The discretized linear wave equation example of an *completely-integrable system*, i.e. a Hamiltonian system evolving in ``\mathbb{R}^{2n}`` that has ``n`` Poisson-commuting invariants of motion (see [arnold1978mathematical](@cite)).
For evaluating the system we specify the following initial[^2] and boundary conditions:
```math
\begin{aligned}
q_0(\omega;\mu) := & q(0, \omega; \mu) \\
p(0, \omega; \mu) = \partial_tq(0,\xi;\mu) = & -\mu\partial_\omega{}q_0(\xi;\mu) \\
q(t,\omega;\mu) = & 0, \text{ for } \omega\in\partial\Omega.
\end{aligned}
```
[^2]: The precise shape of ``q_0(\cdot;\cdot)`` is described in [the chapter on initial conditions](initial_condition.md).
By default `GeometricProblems` uses the following parameters:
```@example linear_wave
using GeometricIntegrators, Plots # hide
import GeometricProblems.LinearWave as lw
lw.default_parameters
```
And if we integrate we get:
```@example linear_wave
problem = lw.hodeproblem()
sol = integrate(problem, ImplicitMidpoint())
# plot 6 time steps
time_steps = 0 : (length(sol.t) - 1) ÷ 5 : (length(sol.t) - 1)
p = plot()
for time_step in time_steps
plot!(p, lw.compute_domain(lw.Ñ + 2), sol.q[time_step, :], label = "t = "*string(round(sol.t[time_step]; digits = 2)))
end
p
```
As we can see the thin pulse travels in one direction.
## Library functions
```@docs
GeometricProblems.LinearWave
```
```@bibliography
Pages = []
buchfink2023symplectic
``` | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 137 | # Lorenz Attractor in 3d
```@autodocs
Modules = [GeometricProblems.LorenzAttractor]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 1650 | # Lotka-Volterra 2d
Lotka–Volterra models are used in mathematical biology for modelling population dynamics of animal species, as well as many other fields where predator-prey and similar models appear. The dynamics of the growth of two interacting species can be modelled by the following noncanonical Hamiltonian system
```math
\dot{q} = \begin{pmatrix}
\hphantom{-} 0 & + q_1 q_2 \\
- q_1 q_2 & \hphantom{+} 0 \\
\end{pmatrix}
\nabla H (q) ,
\quad
H (q) = a_1 \, q_1 + a_2 \, q_2 + b_1 \, \log q_1 + b_2 \, \log q_2 .
```
```@eval
using Plots
using GeometricIntegrators
using GeometricProblems.LotkaVolterra2d
using GeometricProblems.LotkaVolterra2dPlots
ode = odeproblem()
sol = integrate(ode, Gauss(1))
plot_lotka_volterra_2d(sol, ode)
savefig("lotka_volterra_2d.svg")
nothing
```

## Sub-models
The Euler-Lagrange equations of the Lotka-Volterra model can be obtained from different Lagrangians, which are connected by gauge transformations.
Although they all lead to the same equations of motion, they lead to different variational integrators. Therefore different models based on different Lagrangians are implemented.
```@docs
GeometricProblems.LotkaVolterra2d
```
```@docs
GeometricProblems.LotkaVolterra2dSymmetric
```
```@docs
GeometricProblems.LotkaVolterra2dSingular
```
```@docs
GeometricProblems.LotkaVolterra2dGauge
```
## User Functions
```@autodocs
Modules = [GeometricProblems.LotkaVolterra2d]
Order = [:constant, :type, :macro, :function]
```
## Plotting Functions
```@autodocs
Modules = [GeometricProblems.LotkaVolterra2dPlots]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 180 | # Lotka-Volterra 3d
```@docs
GeometricProblems.LotkaVolterra3d
```
```@autodocs
Modules = [GeometricProblems.LotkaVolterra3d]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 133 | # Lotka-Volterra 4d
```@autodocs
Modules = [GeometricProblems.LotkaVolterra4d]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 539 | # Massless Charged Particle
```@docs
GeometricProblems.MasslessChargedParticle
```
```@eval
using Plots
using GeometricIntegrators
using GeometricProblems.MasslessChargedParticle
using GeometricProblems.MasslessChargedParticlePlots
ode = odeproblem()
sol = integrate(ode, Gauss(1))
plot_massless_charged_particle(sol, ode)
savefig("massless_charged_particle.svg")
nothing
```

```@autodocs
Modules = [GeometricProblems.MasslessChargedParticle]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 814 | # Nonlinear Oscillators
## Duffing Oscillator
```@docs
GeometricProblems.DuffingOscillator
```
```@autodocs
Modules = [GeometricProblems.DuffingOscillator]
Order = [:constant, :type, :macro, :function]
```
## Lennard-Jones Oscillator
```@docs
GeometricProblems.LennardJonesOscillator
```
```@autodocs
Modules = [GeometricProblems.LennardJonesOscillator]
Order = [:constant, :type, :macro, :function]
```
## Mathews-Lakshmanan Oscillator
```@docs
GeometricProblems.MathewsLakshmananOscillator
```
```@autodocs
Modules = [GeometricProblems.MathewsLakshmananOscillator]
Order = [:constant, :type, :macro, :function]
```
## Morse Oscillator
```@docs
GeometricProblems.MorseOscillator
```
```@autodocs
Modules = [GeometricProblems.MorseOscillator]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 129 | # Mathematical Pendulum
```@autodocs
Modules = [GeometricProblems.Pendulum]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 134 | # Planar Point Vortices
```@autodocs
Modules = [GeometricProblems.PointVortices]
Order = [:constant, :type, :macro, :function]
```
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 461 | # Release Notes
## 0.1.1
### New Features
- Poincaré invariants for Lotka-Volterra 2d model
- More equation types for massless charged particle
### Fixes
- Fixes in general plot recipes
## 0.1.0
Initial release with equations for
- Exponential Growth,
- Lorenz Attractor in 3D,
- Lotka-Volterra in 2D,
- Lotka-Volterra in 3D,
- Lotka-Volterra in 4D,
- Massless Charged Particle,
- Harmonic Oscillator,
- Mathematical Pendulum,
- Planar Point Vortices.
| GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 1544 | # The rigid body
```@example
using GeometricProblems.RigidBody: odeensemble
using GeometricIntegrators: integrate, ImplicitMidpoint
using GeometricEquations: EnsembleProblem
using GeometricSolutions: GeometricSolution
using CairoMakie
ics = [
[sin(1.1), 0., cos(1.1)],
[sin(2.1), 0., cos(2.1)],
[sin(2.2), 0., cos(2.2)],
[0., sin(1.1), cos(1.1)],
[0., sin(1.5), cos(1.5)],
[0., sin(1.6), cos(1.6)]
]
ensemble_problem = odeensemble(ics)
ensemble_solution = integrate(ensemble_problem, ImplicitMidpoint())
function plot_geometric_solution!(p, solution::GeometricSolution; kwargs...)
lines!(p, solution.q[:, 1].parent, solution.q[:, 2].parent, solution.q[:, 3].parent; kwargs...)
end
function sphere(r, C) # r: radius; C: center [cx,cy,cz]
n = 100
u = range(-π, π; length = n)
v = range(0, π; length = n)
x = C[1] .+ r * cos.(u) * sin.(v)'
y = C[2] .+ r * sin.(u) * sin.(v)'
z = C[3] .+ r * ones(n) * cos.(v)'
return x, y, z
end
fig, ax, plt = surface(sphere(1., [0., 0., 0.])..., alpha = .6)
for (i, solution) in zip(1:length(ensemble_solution), ensemble_solution.s)
plot_geometric_solution!(ax, solution; label = "trajectory "*string(i), linewidth=2)
end
fig
```
## Library functions
```@docs
GeometricProblems.RigidBody
```
```@autodocs
Modules = [GeometricProblems.RigidBody]
Order = [:constant, :type, :macro, :function]
```
```@bibliography
Pages = []
bajars2023locally
``` | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.6.5 | c65d43b94d659c8454f851b09e79d514bc7a058d | docs | 1754 | # Toda Lattice
The Toda lattice is a prime example of an *completely-integrable system*, i.e. a Hamiltonian system evolving in ``\mathbb{R}^{2n}`` that has ``n`` Poisson-commuting invariants of motion (see [arnold1978mathematical](@cite)). It is named after Morikazu Toda who used it to model a one-dimensional crystal [toda1967vibration](@cite).
The Hamiltonian of the Toda lattice takes the following form:
```math
H(q, p) = \sum_{n\in\mathbb{Z}}\left( \frac{p_n^2}{2} + \alpha e^{q_n - q_{n+1}} \right).
```
In practice we work with a finite number of particles ``N`` and impose periodic boundary conditions:
```math
\begin{aligned}
q_{n+N} & \equiv q_n \\
p_{n+N} & \equiv p_n.
\end{aligned}
```
Hence we have:
```math
H(q, p) = \sum_{n=1}^{N-1} \left( \frac{p_n^2}{2} + \alpha e^{q_n - q_{n+1}} \right) + \frac{p_N^2}{2} + \alpha e^{q_N - q_1}.
```
We can model the evolution of a thin pulse in this system:
```@example
using GeometricProblems, GeometricIntegrators, Plots # hide
problem = GeometricProblems.TodaLattice.hodeproblem()
sol = integrate(problem, ImplicitMidpoint())
time_steps = (0, 200, 400, 600, 800, 1000, 1200)
p = plot()
for time_step in time_steps
plot!(p, sol.q[time_step, :], label = "t = $(sol.t[time_step])")
end
p
```
As we can see the thin pulse separates into two smaller pulses an they start traveling in opposite directions until they meet again at time ``t\approx120``. But it is important to note that the right peak at time ``120`` is below the one at time ``0``. This is not a numerical artifact but a feature of the Toda lattice!
## Library functions
```@docs
GeometricProblems.TodaLattice
```
```@bibliography
Pages = []
arnold1978mathematical
toda1967vibration
``` | GeometricProblems | https://github.com/JuliaGNI/GeometricProblems.jl.git |
|
[
"MIT"
] | 0.2.2 | fe44922cacdf82833b9b322a9833fbe10d886577 | code | 1441 | using SymbolicGA, BenchmarkTools
macro cga3(args...)
definitions = quote
n = 1.0::e4 + 1.0::e5
n̄ = (-0.5)::e4 + 0.5::e5
n̅ = n̄ # n\bar !== n\overbar but they display exactly the same.
embed(x) = x[1]::e1 + x[2]::e2 + x[3]::e3
magnitude2(x) = x ⦿ x
point(x) = (embed(x) + (0.5::Scalar * magnitude2(embed(x))) * n + n̄)::Vector
weight(X) = -X ⋅ n
unitize(X) = X / weight(X)
radius2(X) = (magnitude2(X) / magnitude2(X ∧ n))::Scalar
center(X) = X * n * X
# For spheres `S` defined as vectors, and points `X` defined as vectors as well.
distance(S, X) = unitize(S) ⋅ unitize(X)
end
bindings = parse_bindings(definitions; warn_override = false)
esc(codegen_expression((4, 1, 0), args...; bindings))
end
function line_tests(A, B, P)
t₁ = @cga3 begin
L = point(A) ∧ point(B) ∧ n
(point(A) ∧ point(P) ∧ n) ⟑ L
end
t₂ = @cga3 begin
L = point(A) ∧ point(B) ∧ n
(point(P) ∧ point(B) ∧ n) ⟑ L
end
(t₁, t₂)
end
is_zero(x, y) = isapprox(x, y; atol = 1e-15)
is_positive(x::Number) = x ≥ -1e-15
is_zero_bivector(x) = is_zero(x, zero(KVector{2,Float64,5}))
is_on_line((t₁, t₂)) = is_zero_bivector(t₁[2]) && is_zero_bivector(t₂[2])
is_within_segment((t₁, t₂)) = is_positive(t₁[1][]) && is_positive(t₂[1][])
function is_on_segment(P, A, B)
ret = line_tests(A, B, P)
is_on_line(ret) && is_within_segment(ret)
end
@btime is_on_segment($(rand(3)), $(rand(3)), $(rand(3)))
| SymbolicGA | https://github.com/serenity4/SymbolicGA.jl.git |
|
[
"MIT"
] | 0.2.2 | fe44922cacdf82833b9b322a9833fbe10d886577 | code | 2259 | using SymbolicGA, LinearAlgebra, StaticArrays, BenchmarkTools
x = (1.0, 2.0, 3.0)
y = (50.0, 70.0, 70.0)
f(x, y) = @ga 3 x::Vector ⟑ y::Vector
@macroexpand @ga 3 x::Vector ⟑ y::Vector
@btime f($x, $y)
@code_typed f(x, y)
# Determinant - rank 2
mydet(A₁, A₂) = @ga(2, Float64, A₁::Vector ∧ A₂::Vector)
A₁ = @SVector rand(2)
A₂ = @SVector rand(2)
A = SMatrix([A₁ A₂])
@assert mydet(A₁, A₂) ≈ det(A)
@btime det($A)
@btime mydet($A₁, $A₂)
# `Base.sub_float` is used instead of `Base.mul_float` with -1 and then `Base.add_float`,
# but it seems like it's the same speed.
@code_warntype optimize=true det(A)
@code_warntype optimize=true mydet(A₁, A₂)
# Determinant - rank 4
mydet(A₁, A₂, A₃, A₄) = @ga(4, Float64, A₁::Vector ∧ A₂::Vector ∧ A₃::Vector ∧ A₄::Vector)
@macroexpand @ga(4, A₁::Vector ∧ A₂::Vector ∧ A₃::Vector ∧ A₄::Vector)
A₁ = @SVector rand(4)
A₂ = @SVector rand(4)
A₃ = @SVector rand(4)
A₄ = @SVector rand(4)
A = SMatrix([A₁ A₂ A₃ A₄])
@assert mydet(A₁, A₂, A₃, A₄) ≈ det(A)
@btime det($A)
@btime mydet($A₁, $A₂, $A₃, $A₄)
@code_warntype optimize=true det(A)
@code_warntype optimize=true mydet(A₁, A₂, A₃, A₄)
# Rotations - 3D
function rot(a, b, x, α)
# Define unit plane for the rotation.
Π = @ga 3 a::Vector ∧ b::Vector
# Define rotation generator.
Ω = @ga 3 exp((-α::Scalar / 2::Scalar) ⟑ Π::Bivector)
# Apply the rotation by sandwiching x with Ω.
@ga 3 begin
Ω::(0, 2)
Ω ⟑ x::Vector ⟑ reverse(Ω)
end
end
function rotate_3d(x, a, b, α)
Π = @ga 3 unitize(a::1 ∧ b::1)
Ω = @ga 3 exp(-(α::0 / 2::0) ⟑ Π::2)
rotate_3d(x, Ω)
end
rotate_3d(x, Ω) = @ga 3 x::1 << Ω::(0, 2)
a = (1.0, 0.0, 0.0)
b = (2.0, 2.0, 0.0)
x = (2.0, 0.0, 0.0)
α = π / 6
x′ = rotate_3d(x, a, b, α)
@assert x′ ≈ KVector{1,3}(2cos(π/6), 2sin(π/6), 0.0)
@btime rotate_3d($a, $b, $x, $α)
@code_warntype rotate_3d(a, b, x, α)
Ω = @ga 3 exp(-(α::0 / 2::0) ⟑ (a::1 ∧ b::1))
@btime rotate_3d($x, $Ω)
# @time @macroexpand @ga 3 begin
# # Define unit plane for the rotation.
# Π = a::Vector ⟑ b::Vector
# # Define rotation generator.
# Ω = exp((-α::Scalar / 2::Scalar) ⟑ Π)
# # Apply the rotation by sandwhiching x with Ω.
# Ω ⟑ x::Vector ⟑ reverse(Ω)
# end;
@time @macroexpand @ga 3 begin
Π = a::Vector ⟑ b::Vector
unitize(Π)
end;
| SymbolicGA | https://github.com/serenity4/SymbolicGA.jl.git |
|
[
"MIT"
] | 0.2.2 | fe44922cacdf82833b9b322a9833fbe10d886577 | code | 171 | # To be executed for local deployment.
# Make sure you have LiveServer in your environment.
using LiveServer
servedocs(literate = "", skip_dir = joinpath("docs", "src"))
| SymbolicGA | https://github.com/serenity4/SymbolicGA.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.