licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
6.0.28
f82ff5b9e85ef972634d3312f52bbf7653dc8459
code
3102
using Aqua: Aqua using DataFrames: DataFrame using Dates using PlutoStaticHTML using Pluto: Cell, Markdown, Notebook, Pluto, ServerSession, SessionActions using Test const PS = PlutoStaticHTML const PKGDIR = string(pkgdir(PlutoStaticHTML))::String const NOTEBOOK_DIR = joinpath(PKGDIR, "docs", "src", "notebooks") function pluto_notebook_content(code) return """ ### A Pluto.jl notebook ### # v0.18.1 using Markdown using InteractiveUtils # ╔═╡ a6dda572-3f2c-11ec-0eeb-69e2323a92de $(code) # ╔═╡ Cell order: # ╠═a6dda572-3f2c-11ec-0eeb-69e2323a92de """ end function drop_cache_info(html::AbstractString) n = PlutoStaticHTML.n_cache_lines() sep = '\n' lines = split(html, sep) return join(lines[n:end], sep) end function drop_begin_end(html::AbstractString) sep = '\n' lines = split(html, sep) return join(lines[2:end-1], sep) end function nb_tmppath( nb::Notebook, use_distributed::Bool; in_path::String=joinpath(mktempdir(), "notebook.jl") ) Pluto.save_notebook(nb, in_path) session = ServerSession() session.options.evaluation.workspace_use_distributed = use_distributed PlutoStaticHTML._add_extra_preamble!(session) nb = PlutoStaticHTML.run_notebook!(in_path, session) if use_distributed @async begin sleep(5) Pluto.SessionActions.shutdown(session, nb) end end return (nb, in_path) end function notebook2html_helper( nb::Notebook, oopts=OutputOptions(); use_distributed::Bool=true ) nb, tmppath = nb_tmppath(nb, use_distributed) html = PlutoStaticHTML.notebook2html(nb, tmppath, oopts) has_begin_end = contains(html, PlutoStaticHTML.BEGIN_IDENTIFIER) without_begin_end = has_begin_end ? drop_begin_end(html) : html # Remove the caching information because it's not important for most tests. has_cache = contains(html, PlutoStaticHTML.STATE_IDENTIFIER) without_cache = has_cache ? drop_cache_info(without_begin_end) : html return (without_cache, nb) end function notebook2tex_helper( nb::Notebook, oopts=OutputOptions(); use_distributed::Bool=true ) nb, tmppath = nb_tmppath(nb, use_distributed) tex = PlutoStaticHTML.notebook2tex(nb, tmppath, oopts) return (tex, nb) end function notebook2pdf_helper( nb::Notebook, in_path::String, oopts=OutputOptions(); use_distributed::Bool=true ) nb, tmppath = nb_tmppath(nb, use_distributed; in_path) pdf_path = PlutoStaticHTML.notebook2pdf(nb, tmppath, oopts) return (pdf_path, nb) end function notebook2html( path::AbstractString; oopts::OutputOptions=OutputOptions(), session=ServerSession() ) nb = PlutoStaticHTML.run_notebook!(path, session; run_async=false) html = PlutoStaticHTML.notebook2html(nb, path, oopts) return html end # Hide output when using `TestEnv.activate(); include("test/preliminaries.jl")`. nothing
PlutoStaticHTML
https://github.com/rikhuijzer/PlutoStaticHTML.jl.git
[ "MIT" ]
6.0.28
f82ff5b9e85ef972634d3312f52bbf7653dc8459
code
562
include("preliminaries.jl") @testset "pdf" begin include("pdf.jl") end @testset "context" begin include("context.jl") end @testset "cache" begin include("cache.jl") end @testset "mimeoverride" begin include("mimeoverride.jl") end @testset "with_terminal" begin include("with_terminal.jl") end @testset "html" begin include("html.jl") end @testset "style" begin include("style.jl") end @testset "build" begin include("build.jl") end @testset "aqua" begin Aqua.test_all(PlutoStaticHTML; ambiguities=false) end nothing
PlutoStaticHTML
https://github.com/rikhuijzer/PlutoStaticHTML.jl.git
[ "MIT" ]
6.0.28
f82ff5b9e85ef972634d3312f52bbf7653dc8459
code
2102
before = """ <p>foo</p> <div class="admonition note"> <p class="admonition-title">Note</p> <p>This is a note.</p> </div> <p>bar</p> """ # Do not accept Gumbo's full HTML body because `_convert_admonitions` is called for each cell. after = """ <p>foo</p> <div class="admonition is-note"><header class="admonition-header">Note</header><div class="admonition-body"><p>This is a note.</p></div></div> <p>bar</p> """ @test PlutoStaticHTML._convert_admonitions(before) == rstrip(after) nb = Notebook([ Cell(""" md\"\"\" !!! note This is a note. \"\"\" """) ]) use_distributed = false html, _ = notebook2html_helper(nb; use_distributed) # This tests that there has been a hit on the `_convert_admonitions` replacer. @test contains(html, "admonition-header") # https://github.com/rikhuijzer/PlutoStaticHTML.jl/issues/148. before = """ <div class="markdown"> <div class="admonition info"> <p class="admonition-title">This is how the Error we expect here looks like</p> <pre><code>DomainError with 0.0: Lorem</code></pre> </div> </div> """ after = """ <div class="markdown"> <div class="admonition is-info"> <header class="admonition-header"> This is how the Error we expect here looks like </header> <div class="admonition-body"> <pre> <code> DomainError with 0.0: Lorem </code> </pre> </div> </div> </div> """ expected = replace(after, '\n' => "") @test PlutoStaticHTML._convert_admonitions(before) == expected nb = Notebook([ Cell(""" function pretty_error(err) Markdown.parse(\"\"\" !!! info "This is how the Error we expect here looks like" ``` \$(replace(sprint(showerror, err), "\n" => "\n ")) ``` \"\"\") end """), Cell("""pretty_error(DomainError(0.0, "Lorem"))""") ]) html, _ = notebook2html_helper(nb; use_distributed) @test contains(html, "admonition-header")
PlutoStaticHTML
https://github.com/rikhuijzer/PlutoStaticHTML.jl.git
[ "MIT" ]
6.0.28
f82ff5b9e85ef972634d3312f52bbf7653dc8459
code
2071
# Body for `cell.output.body` of # using PlutoUI # f(x) = Base.inferencebarrier(x); # with_terminal() do # @code_warntype f(1) # end body = raw""" <div style="display: inline; white-space: normal;"> <script type="text/javascript" id="plutouiterminal"> let txt = "MethodInstance for Main.workspace#4.f(::Int64)\n from f(x) in Main.workspace#4 at /home/rik/git/blog/posts/notebooks/inference.jl#==#9dbfb7d5-7035-4ea2-a6c0-efa00e39e90f:1\nArguments\n #self#[36m::Core.Const(Main.workspace#4.f)[39m\n x[36m::Int64[39m\nBody[91m[1m::Any[22m[39m\n[90m1 ─[39m %1 = Base.getproperty(Main.workspace#4.Base, :inferencebarrier)[36m::Core.Const(Base.inferencebarrier)[39m\n[90m│ [39m %2 = (%1)(x)[91m[1m::Any[22m[39m\n[90m└──[39m return %2\n\n" var container = html` <pre class="PlutoUI_terminal" style=" max-height: 300px; overflow: auto; white-space: pre; color: white; background-color: black; border-radius: 3px; margin-top: 8px; margin-bottom: 8px; padding: 15px; display: block; " ></pre> ` try { const { default: AnsiUp } = await import("https://cdn.jsdelivr.net/gh/JuliaPluto/[email protected]/ansi_up.js"); container.innerHTML = new AnsiUp().ansi_to_html(txt); } catch(e) { console.error("Failed to import/call ansiup!", e) container.innerText = txt } return container </script> </div> """ txt = strip(PlutoStaticHTML._extract_txt(body)) @test startswith(txt, "MethodInstance") @test endswith(txt, "return %2") @test contains(txt, '\n') patched = PlutoStaticHTML._patch_with_terminal(body) @test contains(patched, """<pre id="plutouiterminal">""")
PlutoStaticHTML
https://github.com/rikhuijzer/PlutoStaticHTML.jl.git
[ "MIT" ]
6.0.28
f82ff5b9e85ef972634d3312f52bbf7653dc8459
docs
1838
# PlutoStaticHTML.jl [![Docs dev][docs-dev-img]][docs-dev-url] [![Code Style Blue][blue-img]][blue-url] [![Contributor's Guide on Collaborative Practices][colprac-img]][colprac-url] A [Julia package](https://julialang.org/) to convert [Pluto notebooks](https://github.com/fonsp/Pluto.jl) to static HTML. Unlike [PlutoSliderServer](https://github.com/JuliaPluto/PlutoSliderServer.jl), the HTML files generated using PlutoStaticHTML are very minimal, and do not require JavaScript on the user side to render. This makes it easier to style the output using CSS. For example, with this package it is possible to create a website full with plots generated in Julia and all code hidden. In effect, no one would be able to tell that the website was built with Julia. ## Automated builds Next to outputting static HTML, this package is also aimed at building multiple Pluto.jl notebooks as reliably and quickly as possible in unsupervised settings such as CI. Therefore, this package implements: 1. Parallel evaluation of notebooks 🚀. 1. Caching of notebooks to avoid re-running code if nothing changed 🚀. 1. Throwing an error if something goes wrong. This avoids publishing broken notebooks 🎯. See the [documentation](https://PlutoStaticHTML.huijzer.xyz/dev/) for more information. [ci-url]: https://github.com/JuliaData/DataFrames.jl/actions?query=workflow%3ACI+branch%3Amain [ci-img]: https://github.com/rikhuijzer/PlutoStaticHTML.jl/workflows/CI/badge.svg [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://PlutoStaticHTML.huijzer.xyz/dev/ [blue-img]: https://img.shields.io/badge/code%20style-blue-4495d1.svg [blue-url]: https://github.com/invenia/BlueStyle [colprac-img]: https://img.shields.io/badge/ColPrac-contributor's%20guide-blueviolet [colprac-url]: https://github.com/SciML/ColPrac
PlutoStaticHTML
https://github.com/rikhuijzer/PlutoStaticHTML.jl.git
[ "MIT" ]
6.0.28
f82ff5b9e85ef972634d3312f52bbf7653dc8459
docs
7620
# PlutoStaticHTML Convert Pluto notebooks to pure HTML (without Javascript). This allows Pluto notebooks to be embedded in Documenter, Franklin and (optionally) to be styled manually via CSS. Also, it is possible to hide code blocks making it easy to show Julia generated output without showing code. Typically, converting Pluto notebooks to HTML is useful for things like - tutorials (a ready-to-use template can be found at <https://rikhuijzer.github.io/JuliaTutorialsTemplate/>) - blogs - documentation For a quick preview, this package is used for the tutorials at [TuringGLM.jl](https://turinglang.github.io/TuringGLM.jl/dev/tutorials/linear_regression/). Also, I'm using this package for my own blog, for example: <https://huijzer.xyz/posts/frequentist-bayesian-coin-flipping/>. ## API overview The most important method is `build_notebooks` ([API](@ref)). !!! note `build_notebooks` ensures that the original notebook will not be changed. In general, the idea is to 1. Create a bunch of Pluto notebooks. 1. Get the name of the directory `dir` which contains your Pluto notebooks. 1. Choose one or more appropriate `output_format`s depending on how the output will be used. The output format can be `html_output`, `documenter_output`, `franklin_output` or `pdf_output`. 1. Pass the paths to [`build_notebooks`](@ref) which, depending on `output_format`, writes HTML or Markdown outputs to files. 1. Read the output from the files and show them on a website via either your own logic or Documenter or Franklin. Note that this is a very nice development workflow because developing in Pluto notebooks is easy and allows for quick debugging. Also, Pluto has a lot of conversions built-in. This package will take the converted outputs, such as plots or tables, from Pluto which ensures that what you see in Pluto is what you see in the HTML output. As an extension of Pluto, this package provides `# hide` and `# hideall` comments like Franklin and Documenter. A `# hideall` somewhere in a Pluto code block will hide the code (but not the output). A `# hide` behind a line in a code block will hide the line. Also, by default, this package hides all Markdown code blocks since readers are probably only interested in reading the output of the Markdown code block. This and more options can be tuned via [`OutputOptions`](@ref). See below for more specific instructions on - [Documenter.jl](@ref) - [Franklin.jl](@ref) - [Parallel build](@ref) ## Documenter.jl The `output_format=documenter_output` is used at various places which can all serve as an example: - "docs/make.jl" in this repository. - [TuringGLM.jl](https://github.com/TuringLang/TuringGLM.jl); for example output see the [linear regression tutorial](https://turinglang.github.io/TuringGLM.jl/dev/tutorials/linear_regression/). - [Resample.jl](https://github.com/rikhuijzer/Resample.jl); for example output see the [SMOTE tutorial](https://rikhuijzer.github.io/Resample.jl/dev/notebooks/smote/). - [GraphNeuralNetworks.jl](https://github.com/CarloLucibello/GraphNeuralNetworks.jl) tutorials, see for example [Hand-On Graph Neural Networks](https://carlolucibello.github.io/GraphNeuralNetworks.jl/dev/tutorials/gnn_intro_pluto/). !!! warn Avoid calling the conversion from inside a Documenter.jl code block. For some reason, that is likely to freeze or hang; probably due to `stdout` being flooded with information. Instead generate Markdown files via `docs/make.jl` and point to these files in `pages`. ## Franklin.jl For `output_format=franklin_output` examples, see - The template at <https://rikhuijzer.github.io/JuliaTutorialsTemplate/>. - [My blog](https://gitlab.com/rikh/blog). For example, a post on [random forests](https://huijzer.xyz/posts/random-forest/). Specifically, use the following KaTeX options: ```javascript const options = { delimiters: [ {left: "$$", right: "$$", display: true}, {left: "\\begin{equation}", right: "\\end{equation}", display: true}, {left: "\\begin{align}", right: "\\end{align}", display: true}, {left: "\\begin{alignat}", right: "\\end{alignat}", display: true}, {left: "\\begin{gather}", right: "\\end{gather}", display: true}, {left: "\\(", right: "\\)", display: false}, {left: "\\[", right: "\\]", display: true} ] }; document.addEventListener('DOMContentLoaded', function() { renderMathInElement(document.body, options); }); ``` Note that `$x$` will not be interpreted as inline math by this KaTeX configuration. This is to avoid conflicts with using the dollar symbol to represent the dollar (currency). Instead, `PlutoStaticHTML.jl` automatically converts inline math from `$x$` to `\($x\)`. With above KaTeX settings, `Franklin.jl` will interpret this as inline math. By default, `Documenter.jl` will also automatically interpret this as inline math. ## Parallel build To speed up the build, this package defines [`build_notebooks`](@ref). This function evaluates the notebooks in parallel by default. Also, it can use [Caching](@ref) to speed up the build even more. To use it, pass a `dir` to write HTML files for all notebook files (the files are recognized by the ".jl" extension and that the file starts with `### A Pluto.jl notebook ###`): ```julia julia> using PlutoStaticHTML: build_notebooks julia> dir = joinpath("posts", "notebooks"); julia> bopts = BuildOptions(dir); julia> build_notebooks(bopts); [...] ``` To run only specific notebooks, specify the `files`: ```julia julia> files = ["notebook1.jl", "notebook2.jl"]; julia> build_notebooks(bopts, files) [...] ``` In CI, be sure to call this before using Franklin `serve` or `optimize`. For more options, such as `append_build_context` to add Julia and packages version information, you can pass [`OutputOptions`](@ref): ```julia julia> oopts = OutputOptions(; append_build_context=true); julia> build_notebooks(bopts, files, oopts) [...] ``` See [`build_notebooks`](@ref) for more information. ### Caching Using caching can greatly speed up running times by avoiding to re-evaluate notebooks. Caching can be enabled by passing `previous_dir` via [`BuildOptions`](@ref). This `previous_dir` should point to a location where HTML or Markdown files are from the previous build. Then, `build_notebooks` will, for each input file `file.jl`, check: 1. Whether `joinpath(previous_dir, "file.html")` exists 2. Whether the SHA checksum of the current `$file.jl` matches the checksum of the previous `$file.jl`. When assuming that Pluto's built-in package manager is used to manage packages, this check ensures that the packages of the previous run match the packages of the current run. 3. Whether the Julia version of the previous run matches the Julia version of the current run. !!! note Caching assumes that notebooks are deterministic, that is, the notebook will produce the same output from the same input. !!! note The `previous_dir` provides a lot of flexibility. For example, it is possible to point towards a Git directory with the HTML or Markdown output files from last time. Alternatively, for `output_format=html_output` it is possible to download the web pages where the notebooks are shown and put these web pages in a directory. This works by extracting the state from the previous run from the output. ## LaTeX equations Pluto uses MathJax by default, so make sure to setup MathJax in Franklin or Documenter. For Franklin, see <https://rikhuijzer.github.io/JuliaTutorialsTemplate/>. For Documenter, see `docs/make.jl` in this repository. ## API ```@docs build_notebooks BuildOptions OutputOptions ```
PlutoStaticHTML
https://github.com/rikhuijzer/PlutoStaticHTML.jl.git
[ "MIT" ]
6.0.28
f82ff5b9e85ef972634d3312f52bbf7653dc8459
docs
3268
# Terminal output from Pluto `PlutoUI` has a well-known function `with_terminal` to show terminal output with a black background and colored text. For example, when having loaded `PlutoUI` via `using PlutoUI`, the following code will show the text "Some terminal output" in a mini terminal window inside `Pluto`: ```julia with_terminal() do println("Some terminal output") end ``` This functionality is supported by `PlutoStaticHTML` too. To make it work, `PlutoStaticHTML` takes the output from `Pluto`, which looks roughly as follows: ```html <div style="display: inline; white-space: normal;"> <script type="text/javascript" id="plutouiterminal"> let txt = "Some terminal output" ... </script> </div> ``` and changes it to: ```html <pre id="plutouiterminal"> Some terminal output </pre> ``` This output is now much simpler to style to your liking. Below, there is an example style that you can apply which will style the terminal output just like it would in `Pluto`. In terminals, the colors are enabled via so called ANSI escape codes. These ANSI colors can be shown correctly by adding the following Javascript to the footer of your website. This code will loop through all the HTML elements with `id="plutouiterminal"` and apply the `ansi_to_html` function to the body of those elements: ```html <script type="text/javascript"> async function color_ansi() { const terminalOutputs = document.querySelectorAll("[id=plutouiterminal]"); // Avoid loading AnsiUp if there is no terminal output on the page. if (terminalOutputs.length == 0) { return }; try { const { default: AnsiUp } = await import("https://cdn.jsdelivr.net/gh/JuliaPluto/[email protected]/ansi_up.js"); const ansiUp = new AnsiUp(); // Indexed loop is needed here, the array iterator doesn't work for some reason. for (let i = 0; i < terminalOutputs.length; ++i) { const terminalOutput = terminalOutputs[i]; const txt = terminalOutput.innerHTML; terminalOutput.innerHTML = ansiUp.ansi_to_html(txt); }; } catch(e) { console.error("Failed to import/call ansiup!", e); }; }; color_ansi(); </script> ``` Next, the output can be made more to look like an embedded terminal by adding the following to your CSS: ```css #plutouiterminal { font-family: JuliaMono-Regular, SFMono-Regular, DejaVu Sans Mono, monospace; /* Without this, the output of BenchmarkTools looks weird. */ line-height: 114%; max-height: 300px; overflow: auto; white-space: pre; color: white; background-color: black; border-radius: 6px; margin-top: 8px; margin-bottom: 8px; padding: 15px; display: block; font-size: 14px; } ``` !!! note Note that the Javascript code above downloads the `ansi_up.js` file from a content delivery network (CDN). This is not advised because CDNs are bad for privacy, may go offline and are bad for performance. They are bad for performance because browsers do not cache CDN downloaded content between different domains for security reasons. Therefore, CDN content will cause at least an extra DNS lookup in most cases.
PlutoStaticHTML
https://github.com/rikhuijzer/PlutoStaticHTML.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
431
module InstantiateFromURL # Deps. `using BinaryProvider` needed to instantiate gen_ commands. using Pkg, BinaryProvider, Suppressor using HTTP # for activate_github_path # TOML module import Pkg.TOML: parsefile using Markdown # Code include("activate.jl") include("github_project.jl") # Exports export activate_github, activate_github_path # default export packages_to_default_environment, github_project # IJulia-refactor end
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
5176
function activate_github(reponame; tag = nothing, sha = nothing, force = false, add_default_environment = false) # Make sure that our .projects environment is kosher. projdir = joinpath(pwd(), ".projects") mkpath(projdir) # For each case of inputs, end up with a concrete URL to download. if sha != nothing length(sha) >= 6 || throw(ArgumentError("SHA needs to be at least 6 characters.")) tag == nothing || throw(ArgumentError("You can't give both a tag and an SHA hash.")) tarprefix = sha elseif tag != nothing # Given a version but no SHA. tarprefix = tag else # Default to master if nothing is given. tarprefix = "master" end # Common objects for all cases. repostr = split(reponame, "/")[2] target = joinpath(projdir, "$repostr-$tarprefix") # Branches of logic. if isdir(target) && tarprefix != "master" && force == false # Static prefix that's already downloaded, no force. Pkg.activate(target) else # Make a temporary directory for our use. tmpdir = tempdir() # Download the tarball to that directory. tarurl = "https://github.com/$(reponame)/archive/$(tarprefix).tar.gz" tarpath = joinpath(tmpdir, "$repostr-$tarprefix.tar.gz") printstyled("Downloading ", bold=true, color=:light_green); println("$reponame-$tarprefix → $projdir") try run(gen_download_cmd(tarurl, tarpath)) # Download the tarball. catch e if e isa MethodError printstyled("Package installation and activation not supported in this setup. You should add packages manually.", bold = true, color = :red) return nothing else throw(e) end end # Unpack the tarball to that directory. run(gen_unpack_cmd(tarpath, tmpdir)) # Remove the tarball to avoid path conflict with the next steps. rm(tarpath) # Find the path of the unpacked tarball (could be a full SHA) sourcedir = filter(object -> occursin("$repostr", object), readdir(tmpdir))[1] # There will only be one of these. # Move to .projects mv(joinpath(tmpdir, sourcedir), target, force = true) # Force will overwrite existing dir. # Clean. isdir(joinpath(tmpdir, sourcedir)) == false || rm(joinpath(tmpdir, sourcedir), recursive = true) # Important for logic. # Instantiate and precompile. printstyled("Instantiating ", bold=true, color=:light_green); println(target) Pkg.activate(target) pkg"instantiate" pkg"precompile" end projpath = joinpath(target, "Project.toml") packages = parsefile(projpath)["deps"] if add_default_environment # seed the default environment with the new packages if true printstyled("Adding to the default environment... ", bold=true, color=:light_green); pkg"activate " @show pkglist = Array{String}(collect(keys(packages))) Pkg.add(pkglist) Pkg.activate(target) # go back to the activated environment end tarprefix, target, packages end function copy_env(reponame, oldtag, newtag) repostr = split(reponame, "/")[2] projdir = joinpath(pwd(), ".projects") olddir = joinpath(projdir, "$repostr-$oldtag") newdir = joinpath(projdir, "$repostr-$newtag") cp(olddir, newdir, force = true) end # Clone the TOML files from some git repo's _current state_ to the local dir function activate_github_path(reponame; path = "", tag = "master", force = false, activate = true) # download step if "Project.toml" ∈ readdir(pwd()) && force == false @warn "There's already a Project.toml in the current directory, and force = false." else # url construction and download url_project = (path == "") ? join(["https://raw.githubusercontent.com", reponame, tag, "Project.toml"], "/") : join(["https://raw.githubusercontent.com", reponame, tag, path, "Project.toml"], "/") url_manifest = (path == "") ? join(["https://raw.githubusercontent.com", reponame, tag, "Manifest.toml"], "/") : join(["https://raw.githubusercontent.com", reponame, tag, path, "Manifest.toml"], "/") try # project resp_project = HTTP.get(url_project); io = open("Project.toml", "w") println(io, String(resp_project.body)) close(io) catch e @warn "There was an error retrieving the Project.toml" throw(e) end try # manifest resp_manifest = HTTP.get(url_manifest); io = open("Manifest.toml", "w") println(io, String(resp_manifest.body)) close(io) catch e # do nothing, since we aren't too fussed about the Manifest. end end # activation step need_activation = (Base.active_project() != joinpath(pwd(), "Project.toml")) if activate && need_activation pkg"activate ." pkg"instantiate" pkg"precompile" end end
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
5143
# Code for the refactor in https://github.com/QuantEcon/InstantiateFromURL.jl/issues/37 # Without versions for now (so that we don't force downgrades, etc.)... can get version information easily enough, though. function packages_to_default_environment() # no arg, since it operates on the activated environment if (Base.active_project() == Base.load_path_expand("@v#.#")) printstyled("No project activated.\n", color = :cyan) return end ctx = Pkg.Types.Context(); packages = collect(keys(ctx.env.project.deps)); # collect: KeySet -> Array{String} original_env = ctx.env.project_file; default_env = Base.load_path_expand("@v#.#"); Pkg.activate(default_env) Pkg.add(packages) Pkg.activate(original_env) return end function github_project(reponame; # e.g., "QuantEcon/quantecon-notebooks-jl" path = "", # relative path within the repo (root by default) version = "master", force = false, instantiate = false, precompile = false) #= summary variables for logic - is_project_activated = are we using a non-default project - is_project_local = are we using a project in our pwd - does_local_project_exist = need this, because scripts/REPLs will not always activate the local project - url... = online resource paths =# current_proj = Base.active_project() is_project_activated = !(Base.active_project() == Base.load_path_expand("@v#.#")) is_project_local = dirname(current_proj) == pwd() does_local_project_exist = isfile(joinpath(pwd(), "Project.toml")) url_version = version == "master" ? version : "v" * version url_project = (path == "") ? join(["https://raw.githubusercontent.com", reponame, url_version, "Project.toml"], "/") : join(["https://raw.githubusercontent.com", reponame, url_version, path, "Project.toml"], "/") url_manifest = (path == "") ? join(["https://raw.githubusercontent.com", reponame, url_version, "Manifest.toml"], "/") : join(["https://raw.githubusercontent.com", reponame, url_version, path, "Manifest.toml"], "/") # unified display for all cases function display_proj() ctx = Pkg.Types.Context(); project_file = ctx.env.project_file; printstyled(Markdown.parse("\e[1mActivated\e[0m $project_file"), color = :green) end function display_info() ctx = Pkg.Types.Context(); project_information = parsefile(ctx.env.project_file); project_version = haskey(project_information, "version") ? project_information["version"] : "NA" project_name = haskey(project_information, "name") ? project_information["name"] : "NA" # Display depending on results project_requested = replace(split(reponame, "/")[2], ".jl" => "") # strip out ".jl" if it exists if project_name == project_requested && project_version != version && project_version != "NA" printstyled(Markdown.parse("\e[1mInfo\e[0m $project_name $project_version activated, $version requested"), color = :cyan) elseif project_name != project_requested && project_name != "NA" printstyled(Markdown.parse("\e[1mInfo\e[0m Project name $project_name activated, $project_requested requested."), color = :cyan) else printstyled(Markdown.parse("\e[1mInfo\e[0m Project name is $project_name, version is $project_version"), color = :cyan) end end # use a local project if it exists and we don't have it set to force if !is_project_local && does_local_project_exist && !force Pkg.activate(pwd()); display_info() if instantiate Pkg.instantiate() end if precompile Pkg.precompile() end return end # if we're satisfied with the project activated, just display # this case catches most scenarios # NOTE: Need the third check in cases where we've deleted the project file after activating if is_project_activated && !force && isfile(Base.active_project()) display_proj() display_info() if instantiate Pkg.instantiate() end if precompile Pkg.precompile() end return end # at this point, need to do downloading/overwriting/etc. if does_local_project_exist printstyled(Markdown.parse("\e[1mInfo\e[0m Local TOML exists; removing now.\n"), color = :cyan) rm(joinpath(pwd(), "Project.toml"), force = true) # force = true so non-existing path doesn't error rm(joinpath(pwd(), "Manifest.toml"), force = true) end try @suppress Base.download(url_project, joinpath(pwd(), "Project.toml")); catch e @warn "Can't download Project. Make sure the URL is accurate." throw(e) end # try/catch on Manifest because it isn't always required try @suppress Base.download(url_manifest, joinpath(pwd(), "Manifest.toml")); catch e end Pkg.activate(pwd()) Pkg.instantiate() if precompile pkg"precompile" end display_info() return # return nothing end
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
1380
reponame = "arnavs/InstantiationTest" tag1 = "master" tag2 = "v0.1.0" sha = "181f673" # 7 chars pdir = pwd() # Clean environment. isdir(".projects") == false || rm(".projects", recursive = true) prefix, path = activate_github(reponame) @test prefix == "master" @test path == joinpath(pdir, ".projects", "InstantiationTest-master") @test Base.active_project() == joinpath(path, "Project.toml") @warn "Shouldn't take too long on new precompilations, etc." prefix, path = activate_github(reponame, tag = tag1) @test prefix == "master" @test path == joinpath(pdir, ".projects", "InstantiationTest-master") @test Base.active_project() == joinpath(path, "Project.toml") prefix, path = activate_github(reponame, tag = tag2) @test prefix == "v0.1.0" @test path == joinpath(pdir, ".projects", "InstantiationTest-v0.1.0") @test Base.active_project() == joinpath(path, "Project.toml") InstantiateFromURL.copy_env(reponame, "v0.1.0", "v0.1.0-edit") prefix, path = activate_github(reponame, tag = "v0.1.0-edit") @test prefix == "v0.1.0-edit" @test path == joinpath(pdir, ".projects", "InstantiationTest-v0.1.0-edit") @test Base.active_project() == joinpath(path, "Project.toml") prefix, path = activate_github(reponame, sha = sha) @test prefix == sha @test path == joinpath(pdir, ".projects", "InstantiationTest-$sha") @test Base.active_project() == joinpath(path, "Project.toml")
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
1657
spacename = "Name With Spaces, Commas; and other bad characters" reponame = "arnavs/InstantiationTest" tag1 = "master" tag2 = "v0.1.0" sha = "181f673" # 7 chars pdir = pwd() mkpath(joinpath(pdir, spacename)) cd(spacename) # Run all of our tests in this new directory. newpdir = joinpath(pdir, spacename) # Clean environment. isdir(".projects") == false || rm(".projects", recursive = true) prefix, path = activate_github(reponame) @test prefix == "master" @test path == joinpath(newpdir, ".projects", "InstantiationTest-master") @test Base.active_project() == joinpath(path, "Project.toml") @warn "Shouldn't take too long on new precompilations, etc." prefix, path = activate_github(reponame, tag = tag1) @test prefix == "master" @test path == joinpath(newpdir, ".projects", "InstantiationTest-master") @test Base.active_project() == joinpath(path, "Project.toml") prefix, path = activate_github(reponame, tag = tag2) @test prefix == "v0.1.0" @test path == joinpath(newpdir, ".projects", "InstantiationTest-v0.1.0") @test Base.active_project() == joinpath(path, "Project.toml") InstantiateFromURL.copy_env(reponame, "v0.1.0", "v0.1.0-edit") prefix, path = activate_github(reponame, tag = "v0.1.0-edit") @test prefix == "v0.1.0-edit" @test path == joinpath(newpdir, ".projects", "InstantiationTest-v0.1.0-edit") @test Base.active_project() == joinpath(path, "Project.toml") prefix, path = activate_github(reponame, sha = sha) @test prefix == sha @test path == joinpath(newpdir, ".projects", "InstantiationTest-$sha") @test Base.active_project() == joinpath(path, "Project.toml") cd(pdir) rm(joinpath(pdir, spacename), force = true, recursive = true)
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
693
reponame = "QuantEcon/SimpleDifferentialOperators.jl" path = "docs/notebooks" # vanilla call activate_github_path(reponame, path = path, activate = false) @test "Project.toml" ∈ readdir() @test "Manifest.toml" ∈ readdir() # vanilla call repeated (should return 0) @test_logs (:warn, "There's already a Project.toml in the current directory, and force = false.") activate_github_path(reponame, path = path, force = false, activate = false) # clean rm("Project.toml") rm("Manifest.toml") # error handling @test_throws Exception activate_github_path(reponame * "flerg", path, force = false, activate = false) @test_throws Exception activate_github_path(reponame, path = "src") # no TOML here
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
100
github_project("QuantEcon/quantecon-notebooks-julia", precompile = true) # should see precompiling
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
420
# Standard deps. using InstantiateFromURL, Test, Pkg # TOML deps. import Pkg.TOML: parsefile @testset "Main Tests" begin include("maintest.jl") end @testset "TOML Tests" begin include("tomltest.jl") end @testset "Directory Names Tests" begin include("namestest.jl") end # same as maintest, but in a different directory @testset "Test activate_github_path" begin include("pathtest.jl") end include("precompiletest.jl")
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
code
303
x, y, z = activate_github("arnavs/InstantiationTest") @test z == Dict{AbstractString,Any}("Expectations"=>"2fe49d83-0758-5602-8f54-1f90ad0d522b","Distances"=>"b4f34e82-e78d-54a5-968a-f98e89d6e8f7","Suppressor"=>"fd094767-a336-5f1f-9728-57cf17d0bbfb","StatsFuns"=>"4c63d2b9-4356-54db-8cca-17b64c39e42c")
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "BSD-3-Clause" ]
0.6.0
24073857e0f6f80eea90e9748ee39c5eff630ea0
docs
4237
# InstantiateFromURL [![Build Status](https://travis-ci.com/QuantEcon/InstantiateFromURL.jl.svg?branch=master)](https://travis-ci.com/QuantEcon/InstantiateFromURL.jl) A way to bind dependency information to Julia assets without the need to pass around TOML files. The use case is that your notebooks would have something like the following in their first cell: ``` using InstantiateFromURL github_project("QuantEcon/QuantEconLecturePackages") ``` Based on [Valentin Churavy](https://github.com/vchuravy)'s idea in https://github.com/JuliaLang/IJulia.jl/issues/673#issuecomment-425306944 ## Overview/Method Signature [**Note**] To account for changes in `IJulia` (where notebooks will now look recursively up the tree for TOML, and use either what they find or the default `v1.x` environment), we've introduced the new function/entrypoint below. The functions we had previously provided are still around, in the subsequent **deprecated** section. The signature is: ``` function github_project(reponame; # e.g., "QuantEcon/quantecon-notebooks-jl" path = "", # relative path within the repo (root by default) version = "master", force = false, instantiate = false) ``` Where: * `reponame` and `path` identify the TOML on the internet. Reponame is something like `"QuantEcon/QuantEconLecturePackages"` The path refers to the path to the TOML within the source repo, and is `""` by default (i.e., referring to top-level.) * `version` refers to a specific version of the TOML, corresponding to a **github tag** of the `reponame` repo. * `force` decides whether or not we're comfortable using whatever project-specific IJulia finds (if there is any.) Essentially, **the `force` parameter decides whether to use a soft or hard match.** * `instantiate` decides whether or not to instantiate the project upon activation. The logic here is: * If a **local project** is activated (i.e., if there is TOML up the source tree), use that unless `force = true`, and print intelligent information about it (e.g., if we asked for version `v0.2.1`, and version `v0.2.0` is found, it will still use `v0.2.0`, and alert you to the difference.) * ...But, if `force = true`, then regardless of what is activated, the precise set of `Project.toml, Manifest.toml` will be pulled down to the notebook's directory from the specified internet location. ## Utilities We also defined: * `packages_to_default_environment()`, which will take the current environment's packages, and `Pkg.add()` them to your `v1.x` environment. Useful for "seeding" or setting up new Julia installs, or making sure that deps for one project are available for other projects, etc. ## Deprecated Methods For `activate_github`, the signature is: ``` function activate_github(reponame; # like "QuantEcon/QuantEconLecturePackages" tag = nothing, # could be "master" or a git tag sha = nothing, # could point to a specific commit force = false, # will overwrite the local version of this TOML if true add_default_environment = false) # will add these projects to the default (e.g., v1.1) TOML if true ``` Example calls include: * `activate_github("QuantEcon/QuantEconLecturePackages")` * `activate_github("QuantEcon/QuantEconLecturePackages", tag = "master")` * `activate_github("QuantEcon/QuantEconLecturePackages", tag = "v0.9.5")` * `activate_github("QuantEcon/QuantEconLecturePackages", sha = "0c2985")` For `activate_github_path`, the signature is: ``` function activate_github_path(reponame; # something like "QuantEcon/SimpleDifferentialOperators.jl" path = "", # like "docs/examples", or where in the (master) source tree the TOML is tag = "master", force = false, activate = true) # decide whether to `activate; instantiate; precompile` or not ``` **Note:** Because switching project files currently leads to repeat precompilations in Julia, `activate` will only bind if the current Project.toml (i.e., `Base.active_project()`) is in a different location than the pwd (i.e., `joinpath(pwd(), "Project.toml")`.)
InstantiateFromURL
https://github.com/QuantEcon/InstantiateFromURL.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
638
using StatGeochem using Documenter DocMeta.setdocmeta!(StatGeochem, :DocTestSetup, :(using StatGeochem); recursive=true) makedocs(; modules=[StatGeochem], authors="C. Brenhin Keller", repo="https://github.com/brenhinkeller/StatGeochem.jl/blob/{commit}{path}#{line}", sitename="StatGeochem.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://brenhinkeller.github.io/StatGeochem.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/brenhinkeller/StatGeochem.jl", devbranch = "main", )
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
14877
## --- Load (and install if neccesary) the StatGeochem package which has the resampling functions we'll want using StatGeochem using Plots ## --- Input dataset # We'll store the data in a data structure called a "dictionary" test = Dict() # Make fields called "Latitude" and "Longitude" with locations test["Latitude"] = [-26.18, -21.55, 36.6, 54.4, 36.59, 32.5, 49.85, 49.58, 50.2, 42.4725, 48.47, 25.7725, 12.1851, 17.9, -18.1378, 16.1, 67.11, 48.25, 24.42, 23.2, 40.78, -15.38, 21.94, 61.2296, 49.0, 57.03, 63.6, 62.0, 69.47, 54.8189, 22.39, -17.9317, 48.12, 46.47, 49.0, 13.5, 13.5, 33.0, 20.536, 41.5783, 46.5045, 44.5633, 37.7, 43.7506, 37.2202, 58.07, 34.75, 38.25, 40.42, 43.96, 45.38, 37.78, 35.62, 65.25, 46.23, 53.68, 46.38, 45.11, 42.25, 60.25,46.2, 43.31, 39.81, 35.36, 34.88, 34.75, 62.76, 46.45, 54.75, 44.12, 33.61, 38.0, 36.62, 41.11, 47.95, 37.55, 36.5, 36.75, 48.1732, 22.045, 38.45, 61.4597, 36.0, 66.0, 37.5, 23.544, 69.45, 70.0, 6.25, 52.4, 4.58, -32.0, 64.45, 63.89, 63.95, 64.45, 57.03, 8.11, 7.35, 5.14] test["Longitude"] = [27.84, 119.9, -118.3, -67.0, 27.17, 103.0, 7.88, 7.15, -60.6, 11.9731, -81.4, 100.32, -84.1862, -65.75, -69.1483, 76.6, 28.85, -78.25, 33.43, 35.1, 14.05, 167.83, 100.92, -131.514, -85.5, 120.72, 36.3, -94.5, 30.6, -100.804, -3.76, -177.567, -77.77, 89.58, -78.0, 78.0, 78.0, 102.0, -104.7, -121.658, -114.802, -114.282, -119.3, -114.641, -119.35, -135.63, -118.75, -91.41, -75.45, -123.66, -109.77, -107.66, -115.16, -147.0, -122.25,-166.4, -122.06, -109.9, -72.12, -152.25, -122.19, -117.31, -120.0, -112.7, -118.88, -118.86, -150.93, -122.03, -131.99, -121.75, -113.09, -72.87, -116.5, -106.25, -91.95, -90.7, -106.12, -106.25, 99.8333, -160.223, 27.3, -139.599, -78.9, -30.0, 140.5, 141.495, 86.22, -52.0, 10.5, -92.75, 9.66, 147.0, 29.05, 28.95, 29.08, 29.05, 120.72, 38.37, 38.42, 123.67] # Fill in some other fields with age [Ma], major element [wt. %], and trace elements [ppm] data # Notice there are some NaNs, but this is OK. This is a small sampling of real data from EarthChem test["Age"] = [3210.0, 3300.0, 85.0, 2100.0, 0.0, 218.0, 275.0, 275.0, 1500.0, 0.254, 2650.0, 44.25, 19.5, 105.8, 1.305, 2600.0, 2415.0, 2100.0, 90.0, 975.0, 32.7685, 0.1, 249.0, 401.5, 2750.0, 3250.0, 2750.0, 2700.0, 2050.0, 1900.0, 188.8, 19.6, 1400.0, 407.0, 2720.0, 2520.0, 2520.0, 748.0, 2.0, 0.149, 46.0, 49.0, 123.0, 46.0, 114.0, 385.5, 33.4, 1400.0, 175.0, 33.4, 2700.0, 33.4, 2100.0, 395.5, 0.005, 33.4, 19.5, 2700.0, 395.5, 175.0, 0.005, 14.55, 33.4, 12.8, 14.55, 156.5, 44.4, 19.5, 429.5, 0.905, 33.4, 397.0, 14.55, NaN, 2750.0, 1400.0, 1400.0, 2100.0, 12.8, 0.5, 218.3, 226.3, 173.55, 44.25, 22.0, 12.8, 158.25, 34.05, 5.0e-6, 2750.0, 44.85, 47.5, 2750.0,2750.0, 2750.0, 2750.0, 3250.0, 1.31, 1.31, 44.85] test["SiO2"] = [73.94, 68.07, 67.53, 58.4, 58.8485, 72.53, 72.31, 76.65, 64.37, 50.82, 59.7, 50.87, 55.55, 51.71, 66.01, 50.8, 50.51, 72.11, 58.1, 52.3, 56.69, 50.78, 55.05, 53.2, 58.9, 50.3, 77.9, 57.2, 61.03, 50.68, 54.48, 56.83, 50.34, 50.33, 69.84, 69.57, 73.2, 68.2, 50.26, 52.1, 53.06, 54.01, 69.3, 72.42, 61.47, 50.6, 51.1, 51.6, 52.2, 54.6, 55.3, 57.1, 57.2, 59.9, 60.7, 60.9, 61.25, 61.7, 62.1, 62.5, 63.1, 63.8, 64.9, 66.9, 67.5, 67.8, 68.0, 68.6, 68.7, 68.9, 69.7, 71.3, 73.1, 73.2, 74.3, 75.8, 76.0, 76.9, 47.53, 45.81, 46.21, 48.99, 46.9, 43.86, 48.73, 48.56, 48.3, 45.6, 49.25, 45.74, 47.29, 44.93, 41.7, 44.9, 47.8, 48.2, 49.6, 48.1, 46.35, 49.47] test["TiO2"] = [0.28, 0.32, 0.517, 0.72, 1.10718, 0.29, 0.18, 0.07, 0.59, 0.79, 1.31, 0.53, 0.58, 0.7, 0.657, 0.98, 0.93, 0.66, 0.46, 1.3, 0.39, 1.19, 1.19, 0.29, 0.29, 0.83, 0.235, 0.78, 1.29, 0.9, 1.4, 1.2, 0.46, 2.17, 0.34, 0.42,0.2, 0.3, 1.6, 0.93, 1.88, 0.83, 0.48, 0.219, 0.89, 1.65, 1.8, 0.79, 1.16, 2.2, 0.7, 0.84, 1.63, 0.53, 0.7, 0.42, 1.07, 5.00543e-5, 1.6, 0.57, 0.67, 0.25, 0.14, 0.31, 0.34, 0.54, 0.54, 0.54, 0.41, 0.36, 0.37, 0.26, 0.2, 0.25, 0.04, 0.15, 0.18, 0.08, 2.23, 1.31, 3.13, 0.64, 0.55, 3.72, 0.6, 0.77, 1.33, 1.35, 2.93, 0.6, 2.71, 2.2, 0.59, 0.24, 0.48, 0.58, 0.94, 2.37, 2.55, 1.22] test["Al2O3"] = [14.19, 16.55, 15.61, 18.5, 17.3459, 14.15, 14.23, 12.6, 14.64, 19.29, 10.42, 9.89, 15.32, 17.14, 16.33, 12.37, 15.94, 14.83, 16.99, 16.41, 18.83, 15.57, 16.85, 13.1, 18.7, 8.48, 12.4, 14.7, 9.2, 15.41, 14.02, 14.16, 18.04, 16.84, 15.11, 15.49, 13.75, 16.83, 13.26, 18.8, 15.82, 10.08, 14.9, 13.27, 16.29, 14.2, 17.1, 13.0, 14.1, 12.3, 14.2, 16.0, 14.2, 15.1, 17.8, 17.4, 15.64, 17.9, 15.4, 15.7, 17.8, 11.8, 18.2, 15.0, 14.7, 15.7, 16.2, 13.8, 13.8, 14.7, 15.2, 15.1, 13.1, 13.3, 13.5, 11.1, 12.1, 13.1, 14.8, 15.13, 14.54, 15.48, 17.8, 9.32, 14.67, 16.29, 16.42, 13.5, 17.88, 11.58, 15.57, 13.53, 4.0, 6.82, 11.3, 14.0, 15.4, 15.17, 14.88, 18.13] test["FeOT"] = [2.12355, 2.69043, 3.36529, 6.67659, 6.40665, 1.64665, 1.43683, 0.82, 4.58, 6.87, 6.25366, 7.08, 6.45455, 8.22, 3.63, 11.19, 10.71, 0.57, 8.77, 8.37855, 3.42, NaN, 11.2868, 8.1, 7.56, 12.5, 2.37, 7.74, 15.394, 11.14, 11.31, 9.77, 10.66, 10.55, 2.7, 3.03, 1.61, 2.36, 7.16506, 7.66, 8.82, 8.7, 3.18979, 1.55, NaN, 11.0677, 4.02967, 12.6873, 10.2578, 13.2096, 7.90033, 6.80257, 10.1679, 4.32809, 4.82298, 4.79599, 6.10971, 5.37187, 4.55973, 6.10971, 4.56204, 2.13255, 1.06178, 2.3755, 3.32968, 3.17894, 3.62087, 4.41807, 3.00537, 2.3575, 1.74563,2.59693, 1.1498, 2.77977, 0.584877, 2.45648, 1.51168, 1.36091, 9.84955, 12.28, 12.07, 7.5, 9.21966, 14.1458,NaN, 8.98, 12.02, 10.89, 10.03, 10.84, 11.29, 11.75, 11.4, 9.71, 10.5, 9.28, 13.0, 11.27, 11.56, 6.46] test["MgO"] = [0.66, 0.62, 1.44, 3.48, 2.71457, 0.58, 0.71, 0.55, 1.99, 4.32, 1.15, 16.22, 5.75, 5.53, 1.35, 9.97, 6.64, 0.22, 0.44, 4.62, 0.39, 6.35, 3.68, 11.01, 3.4, 13.3, 0.34, 6.1, 1.83, 7.99, 5.36, 2.09, 10.91, 5.62, 1.74, 0.88, 0.16, 1.42, 9.79, 7.16, 7.3, 10.63, 1.1, 0.31, 3.29, 0.98, 2.4, 10.3, 7.51, 2.4, 5.55, 3.11, 3.25, 1.11, 2.32, 2.1, 3.3, 3.12, 1.7, 2.77, 2.2, 0.18, NaN, 1.2, 0.5, 1.6, 1.3, 0.59, 1.11, 0.53, 0.32, 0.55, 0.16, 0.6,0.19, NaN, 0.05, 0.19, 8.05, 11.09, 7.13, 8.82, 9.9, 8.86, 12.71, 8.76, 6.83, 9.57, 3.66, 4.36, 7.13, 11.44,21.5, 22.0, 15.3, 5.45, 7.3, 8.26, 7.57, 7.42] test["CaO"] = [0.58, 2.64, 3.65, 3.41, 6.51955, 2.1, 0.34, 0.35, 4.78, 8.6, 6.84, 6.11, 8.68, 7.33, 3.57, 9.88, 9.63, 1.97, 2.97, 7.45, 1.94, 10.56, 0.92, 8.12, 4.3, 13.4, 0.9, 10.36, 2.49, 10.52, 9.74, 8.68, 6.46, 6.56, 3.28, 3.45, 1.21, 2.66, 7.57, 9.23, 7.37, 9.78, 2.8, 3.38, 6.07, 6.95, 10.3, 0.43, 11.0, 5.9, 7.51, 4.2, 6.05, 3.29, 5.57, 4.79, 5.64, 1.73, 4.4, 6.25, 5.45, 1.21, 0.49, 2.9, 2.1, 3.3, 3.7, 2.3, 1.71, 1.83, 1.54, 2.2, 2.0, 2.3, 0.83, 0.03, 0.6, 0.95, 6.59, 10.66, 5.61, 7.69, 11.0, 12.29, 10.2, 11.46, 11.02, 11.1, 9.21, 10.47, 9.23, 10.16, 8.63, 7.57, 9.3, 9.7, 11.5, 9.78, 10.94, 12.45] test["Na2O"] = [4.15, 4.89, 3.77, 3.8, 4.15415, 3.22, 2.94, 1.59, 4.31, 1.96, 3.81, 1.46, 2.63, 4.24, 4.17, 1.98, 3.44, 5.67, 6.34, 4.31, 5.69, 3.03, 4.92, 3.3, 2.8, 0.6, 3.36, 1.5, 1.52, 2.95, 2.4, 2.87, 0.05, 4.25, 5.24, 4.48, 3.42, 5.07, 2.98, 3.42, 3.49, 2.57, 3.8, 4.5, 3.23, 3.38, 3.7, NaN, 2.21, 3.4, 3.24, 3.83, 2.49, 2.71, 4.32, 3.85, 4.32, 4.35, 3.0, 2.75, 4.5, 3.92, 3.75, 3.5, 3.7, 3.2, 3.9, 4.2, 3.51, 4.45, 4.9, 3.6, 3.4, 4.0, 3.48, 1.34, 3.1, 3.8, 4.65, 2.52, 3.64, 2.88, 2.02, 1.15, 1.88, 2.14, 2.17, 1.58, 3.79, 2.35, 3.28, 3.46, 0.02, 0.12, 1.42, 2.55, 1.81, 2.98, 2.6, 3.16] test["K2O"] = [4.02, 3.1, 3.63, 4.19, 1.81769, 4.48, 5.36, 5.02, 1.1, 6.06, 0.47, 4.95, 1.5, 0.4, 3.82, 0.26, 0.69, 1.55, 3.48, 1.02, 7.33, 1.23, 0.81, 0.76, 3.1, 0.22, 2.04, 0.44, 2.76, 0.13, 0.91, 0.71, 1.82, 1.57, 1.0, 1.25, 5.23, 1.92, 4.66, 0.561, 1.67, 2.91, 3.3, 4.2, 2.6, 2.23, 1.9, 3.21, 0.61, 0.65, 1.39, 3.85, 2.45, 10.3, 1.23, 2.0, 1.79, 4.98, 3.3, 1.59, 1.27, 2.75, 8.98, 2.59, 3.8, 3.2, 2.7, 2.81, 4.58, 2.77, 4.9, 3.1, 4.5, 1.3, 5.27,7.54, 5.1, 2.7, 4.26, 0.38, 0.7, 1.63, 0.24, 0.7, 0.22, 1.09, 0.23, 0.07, 1.86, 0.45, 1.06, 1.48, 0.53, 0.02, 0.05, 0.19, 0.13, 0.97, 0.49, 0.16] test["La"] = [15.78, 46.0, 28.8, 35.6, 27.2, 30.18, 50.0, 49.0, 31.1, 91.5, 9.87, 21.4, 9.17, 8.4, 28.6113, 4.34, 8.0, 45.52, 80.7, NaN, 108.0, 15.2, 7.67, 0.8, 36.3, NaN, 46.7, 21.0, 34.2, 2.1, 14.22, 8.81, 1.34, 25.8, 9.0, NaN, 85.1, 7.0, 48.1, 8.76, 36.0, 28.6, 30.0, 44.0, 24.1, 44.7, 50.0, 12.0, 10.7, 50.0, NaN, 43.0, 75.0, 91.0, 13.0, 17.5, 27.0, NaN, 122.0, 8.45, 9.0, 73.0, 53.5, 27.5, 50.0, 50.0, 93.0, 32.0, 28.9, 23.0, 83.0, 13.0, 100.0, 22.6, NaN, 20.2, 200.0, NaN, 67.3, 8.16, 0.0, 2.16, 4.8, 17.707, 3.06, 31.5, 5.54, 2.95, 61.05, 2.18, 31.35, 50.0, 10.0, 20.0, 0.0, 20.0, 3.54, 25.7, 18.39, 2.85] test["Yb"] = [NaN, 2.4, NaN, 0.72, 3.1, 0.69, NaN, NaN, 3.28, 2.61, 6.19, 1.46, 1.48, 1.64, 1.47864, 2.2, NaN, 2.71, 5.72, NaN, 4.7, 2.84, 2.81, 1.3, 1.76, NaN, 5.66, 1.71, 5.65, 2.03, 2.48, 5.5, 1.78, 4.1, NaN, NaN, 0.94, 0.36, 1.61, 1.3, 1.65, 1.86, 2.5, 2.49, 2.6, 4.1, 5.0, 2.7, 2.2, 7.0, NaN, 2.6, 5.0, 3.16, 2.0, 1.48, 2.0, 1.5, 5.8,2.74, 1.0, 9.36, 3.0, 1.12, 1.0, 1.5, 2.2, 4.0, 1.64, 3.0, 3.83, 0.77, 3.0, 4.81, NaN, 8.34, 15.0, NaN, 1.36, 1.59, NaN, 1.37, 2.3, 1.435, 1.76, 2.17, 2.65, 1.96, 2.53, 1.31, 1.88, 1.98, NaN, NaN, NaN, NaN, 2.1, 2.18,2.15, 2.26] # We're also going to want a list called "elements" with names of all the fields we want to resample elements = ["Latitude","Longitude","Age","SiO2","TiO2","Al2O3","FeOT","MgO","CaO","Na2O","K2O","La","Yb"] # Now let's add uncertainties, starting with age uncertainty test["Age_sigma"] = [10.0, 10.0, 10.0, 400.0, 10.0, 10.0, 24.0, 24.0, 10.0, 0.027, 150.0, 21.25, 3.5, 6.2, 1.295, 10.0, 35.0, 400.0, 10.0, 125.0, 32.7315, 10.0, 10.0, 42.5, 250.0, 250.0, 250.0, 10.0, 450.0, 10.0, 12.8, 14.3, 300.0, 9.0, 10.0, 10.0, 10.0, 7.0, 1.0, 0.26, 4.0, 1.0, 23.0, 3.7, 2.0, 31.5, 31.6, 300.0, 31.0, 31.6, 150.0, 31.6, 400.0, 147.5, 0.005, 31.6, 14.2, 150.0, 147.5, 31.0, 0.005, 9.25, 31.6, 11.0, 9.25, 91.5, 20.6, 14.2, 13.5, 0.895,31.6, 146.0, 9.25, 10.0, 250.0, 300.0, 300.0, 400.0, 10.2, 0.5, 16.7, 24.7, 28.05, 21.25, 10.0, 10.2, 92.75,31.45, 10.0, 250.0, 10.95, 2.5, 250.0, 250.0, 250.0, 250.0, 250.0, 1.295, 1.295, 10.95] # For this dataset, lat and lon are good to 0.01 degrees (absolute) test["Latitude_sigma"] = 0.01 * ones(size(test["Latitude"])) test["Longitude_sigma"] = 0.01 * ones(size(test["Longitude"])) # We'll use a 1% relative (1-sigma) default analytical uncertainty for the rest of the elements for i=4:length(elements) test[elements[i]*"_sigma"] = test[elements[i]] * 0.01 end ## --- Resample # Compute proximity coefficients (inverse weights) k = invweight(test["Latitude"], test["Longitude"], test["Age"]) # # Alternatively, we could weight only by location or only by age (though won't make much difference with this dataset) # k = invweight_location(test["Latitude"], test["Longitude"]) # k = invweight_age(test["Age"]) # Probability of keeping a given data point when sampling p = 1.0 ./ ((k .* nanmedian(5.0 ./ k)) .+ 1.0) # Keep rougly one-fith of the data in each resampling # Resample a few hundred times (all elements!) nresamplings = 200 mctest = bsresample(test, nresamplings*length(test["SiO2"]), elements, p) ## --- Approach 1: use the bulk-resampled dataset we just created # Calculate mean MgO for 8 bins between 40% SiO2 and 80% SiO2 from resampled dataset # (c = bin centers, m = means, e = 1-sigma S.E.M) (c,m,e) = binmeans(mctest["SiO2"],mctest["MgO"],40,80,8; resamplingratio=nresamplings) # Plot results plot(c,m,yerror=2*e,label="",xlabel="SiO2", ylabel="MgO",xlims=(40,80),framestyle=:box) ## --- Approach 2: resample the binned means for one element at a time (Can resample many times) # Calculate binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_means(test["SiO2"],test["MgO"],40,80,8, p=p, x_sigma=test["SiO2_sigma"], nresamplings=10000) # Plot results plot(c,m,yerror=(el,eu),label="",xlabel="SiO2", ylabel="MgO",xlims=(40,80), framestyle=:box) ## --- Download and unzip Keller and Schoene (2012) dataset if ~isfile("ign.h5") # Unless it already exists download("https://storage.googleapis.com/statgeochem/ign.h5.gz","./ign.h5.gz") run(`gunzip -f ign.h5.gz`) # Unzip file end # Read HDF5 file using HDF5 ign = h5read("ign.h5","vars") ## --- Compute proximity coefficients (inverse weights) # # Compute inverse weights # k = invweight(ign["Latitude"] .|> Float32, ign["Longitude"] .|> Float32, ign["Age"] .|> Float32) # Since this is somewhat computatually intensive, let's load a precomputed version instead k = ign["k"] # Probability of keeping a given data point when sampling p = 1.0 ./ ((k .* nanmedian(5.0 ./ k)) .+ 1.0) # Keep rougly one-fith of the data in each resampling p[vec(ign["Elevation"].<-100)] .= 0 # Consider only continental crust # Age uncertainty ign["Age_sigma"] = (ign["Age_Max"]-ign["Age_Min"])/2; t = (ign["Age_sigma"] .< 50) .| isnan.(ign["Age_sigma"]) # Find points with < 50 Ma absolute uncertainty ign["Age_sigma"][t] .= 50 # Set 50 Ma minimum age uncertainty (1-sigma) # Location uncertainty ign["Latitude_sigma"] = ign["Loc_Prec"] ign["Longitude_sigma"] = ign["Loc_Prec"] ## --- Try resampling a single variable to reproduce the MgO trend from K&S 2012 xmin = 0 xmax = 3900 nbins = 39 elem = "SiO2" unit = "wt. %" # Look only at samples in the basaltic silica range # (note that if uncertainty in SiO2 were more significant, we should be resampling this too) t = 43 .< ign["SiO2"] .< 51 # Mafic # Calculate binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_means(ign["Age"][t],ign[elem][t],xmin,xmax,nbins, p=p[t], x_sigma=ign["Age_sigma"][t]) # Plot results plot(c,m,yerror=(el,eu),seriestype=:scatter,color=:darkred,mscolor=:darkred,label="") plot!(xlabel="Age (Ma)", ylabel="$elem ($unit)",xlims=(0,4000),framestyle=:box,grid=:off,xflip=true) # Format plot ## --- Same as above, but for Na2O xmin = 0 xmax = 3900 nbins = 39 elem = "Na2O" unit = "wt. %" # Look only at samples in the basaltic silica range # (note that if uncertainty in SiO2 were more significant, we should be resampling this too) t = 43 .< ign["SiO2"] .< 51 # Mafic # Calculate binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_means(ign["Age"][t],ign[elem][t],xmin,xmax,nbins, p=p[t], x_sigma=ign["Age_sigma"][t]) # Plot results plot(c,m,yerror=(el,eu),seriestype=:scatter,markerstrokecolor=:auto,label="") plot!(xlabel="Age (Ma)", ylabel="$elem ($unit)",xlims=(0,4000),framestyle=:box,grid=:off,xflip=true) # Format plot
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
8012
## --- Load the StatGeochem package which has the resampling functions we'll want using StatGeochem using Plots ## --- Download and unzip Keller and Schoene (2012) dataset if ~isfile("ign.h5") # Unless it already exists download("https://storage.googleapis.com/statgeochem/ign.h5.gz","./ign.h5.gz") download("https://storage.googleapis.com/statgeochem/err2srel.csv","./err2srel.csv") run(`gunzip -f ign.h5.gz`) # Unzip file end # Read HDF5 file using HDF5 ign = h5read("ign.h5","vars") ## --- Compute proximity coefficients (inverse weights) # # Compute inverse weights # k = invweight(ign["Latitude"] .|> Float32, ign["Longitude"] .|> Float32, ign["Age"] .|> Float32) # Since this is somewhat computatually intensive, let's load a precomputed version instead k = ign["k"] # Probability of keeping a given data point when sampling p = 1.0 ./ ((k .* nanmedian(5.0 ./ k)) .+ 1.0) # Keep rougly one-fith of the data in each resampling p[vec(ign["Elevation"].<-100)] .= 0 # Consider only continental crust # Set absolute uncertainties for each element where possible, using errors defined inerr2srel.csv err2srel = importdataset("err2srel.csv", ',', importas=:Dict) for e in ign["elements"] # If there's an err2srel for this variable, create a "_sigma" if possible if haskey(err2srel, e) && !haskey(ign, e*"_sigma") ign[e*"_sigma"] = ign[e] .* (err2srel[e] / 2); end end # Special cases: age uncertainty ign["Age_sigma"] = (ign["Age_Max"]-ign["Age_Min"])/2; t = (ign["Age_sigma"] .< 50) .| isnan.(ign["Age_sigma"]) # Find points with < 50 Ma absolute uncertainty ign["Age_sigma"][t] .= 50 # Set 50 Ma minimum age uncertainty (1-sigma) # Special cases: location uncertainty ign["Latitude_sigma"] = ign["Loc_Prec"] ign["Longitude_sigma"] = ign["Loc_Prec"] ## --- Single element differentiation example xelem = "SiO2" xmin = 45 xmax = 75 nbins = 8 elem = "K2O" h = plot(xlabel=xelem, ylabel="$(elem)",xlims=(xmin,xmax),framestyle=:box,grid=:off,fg_color_legend=:white) # Format plot rt = [0,1,2,3,4] # Time range (Ga) colors = reverse(resize_colormap(viridis[1:end-20],length(rt)-1)) for i=1:length(rt)-1 t = rt[i]*1000 .< ign["Age"] .< rt[i+1]*1000 # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_means(ign[xelem][t],ign[elem][t],xmin,xmax,nbins, p=p[t], x_sigma=ign[xelem*"_sigma"][t], y_sigma=ign[elem*"_sigma"][t]) # Plot results plot!(h, c,m,yerror=(el,eu),color=colors[i],mscolor=colors[i],seriestype=:scatter,label="$(rt[i])-$(rt[i+1]) Ga") plot!(h, c,m,style=:dot,color=colors[i],mscolor=colors[i],label="") end display(h) ## --- Ratio differentiation example xelem = "SiO2" xmin = 45 xmax = 75 nbins = 8 num = "Rb" # Numerator denom = "Sr" # Denominator h = plot(xlabel=xelem, ylabel="$(num) / $(denom)",xlims=(xmin,xmax),framestyle=:box,grid=:off,legend=:topleft,fg_color_legend=:white) # Format plot rt = [0,1,2,3,4] colors = reverse(resize_colormap(viridis[1:end-20],length(rt)-1)) for i=1:length(rt)-1 t = rt[i]*1000 .< ign["Age"] .< rt[i+1]*1000 # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_ratios(nanbinmedian!, ign[xelem][t],ign[num][t],ign[denom][t],xmin,xmax,nbins, p=p[t], x_sigma=ign[xelem*"_sigma"][t], num_sigma=ign[num*"_sigma"][t], denom_sigma=ign[denom*"_sigma"][t]) # Plot results plot!(h, c,m,yerror=(el,eu),color=colors[i],mscolor=colors[i],seriestype=:scatter,label="$(rt[i])-$(rt[i+1]) Ga") plot!(h, c,m,style=:dot,color=colors[i],mscolor=colors[i],label="") end display(h) ## --- High-level functions for calculating combined averages over a set or silica ranges function constprop(binbsrfunction::Function, dataset::Dict, elem, xmin, xmax, nbins, p; xelem="Age", norm_by="SiO2", norm_bins=[43,55,65,78], nresamplings=1000) c = zeros(nbins) m = zeros(nbins) el = zeros(nbins) eu = zeros(nbins) for i=1:length(norm_bins)-1 # Find the samples we're looking for t = (norm_bins[i] .< dataset[norm_by] .< norm_bins[i+1]) .& (dataset[elem] .> 0) # See what proportion of the modern crust falls in this norm_bin prop = sum((norm_bins[i] .< dataset[norm_by] .< norm_bins[i+1]) .& (p .> 0)) / sum((norm_bins[1] .< dataset[norm_by] .< norm_bins[end]) .& (p .> 0)) # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c[:],m1,el1,eu1) = binbsrfunction(dataset[xelem][t], dataset[elem][t], xmin, xmax, nbins, x_sigma=dataset["$(xelem)_sigma"][t], nresamplings=nresamplings, p=p[t]) m .+= prop.*m1 el .+= prop.*el1 eu .+= prop.*eu1 end el ./= sqrt(length(norm_bins)-1) # Standard error eu ./= sqrt(length(norm_bins)-1) # Standard error return c, m, el, eu end function constprop(binbsrfunction::Function, dataset::Dict, num, denom, xmin, xmax, nbins, p; xelem="Age", norm_by="SiO2", norm_bins=[43,55,65,78], nresamplings=1000) c = zeros(nbins) m = zeros(nbins) el = zeros(nbins) eu = zeros(nbins) for i=1:length(norm_bins)-1 # Find the samples we're looking for t = (norm_bins[i] .< dataset[norm_by] .< norm_bins[i+1]) .& (dataset[num].>0) .& (dataset[denom].>0) # See what proportion of the modern crust falls in this norm_bin prop = sum((norm_bins[i] .< dataset[norm_by] .< norm_bins[i+1]) .& (p .> 0)) / sum((norm_bins[1] .< dataset[norm_by] .< norm_bins[end]) .& (p .> 0)) # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c[:],m1,el1,eu1) = binbsrfunction(dataset[xelem][t],dataset[num][t],dataset[denom][t],xmin,xmax,nbins,x_sigma=dataset["$(xelem)_sigma"][t],num_sigma=dataset["$(num)_sigma"][t],denom_sigma=dataset["$(denom)_sigma"][t],nresamplings=nresamplings,p=p[t]) m .+= prop.*m1 el .+= prop.*el1 eu .+= prop.*eu1 end el ./= sqrt(length(norm_bins)-1) # Standard error eu ./= sqrt(length(norm_bins)-1) # Standard error return c, m, el, eu end ## --- Single element constant-silica reference model tmin = 0 tmax = 3900 nbins = 39 plotmin = 0 plotmax = 4000 elem = "MgO" (c, m, el, eu) = constprop(bin_bsr_means, ign, elem, tmin, tmax, nbins, p) # Plot results h = plot(c,m,yerror=(el,eu),seriestype=:scatter,color=:darkblue,mscolor=:darkblue,label="") plot!(h, c,m,style=:dot,color=:darkblue,mscolor=:darkblue,label="") plot!(h, xlabel="Age (Ma)", ylabel="$(elem)",xlims=(plotmin,plotmax),framestyle=:box,grid=:off,xflip=true) # Format plot savefig(h,"Constant Silica $(elem).pdf") display(h) ## --- Ratio constant-silica reference model tmin = 0 tmax = 4000 nbins = 8 plotmin = 0 plotmax = 4000 num = "Rb" denom = "Sr" (c, m, el, eu) = constprop(bin_bsr_ratio_medians, ign, num, denom, tmin, tmax, nbins, p) # Plot results h = plot(c,m,yerror=(el,eu),seriestype=:scatter,color=:darkblue,mscolor=:darkblue,label="") plot!(h, c,m,style=:dot,color=:darkblue,mscolor=:darkblue,label="") plot!(h, xlabel="Age (Ma)", ylabel="$(num) / $(denom)",xlims=(plotmin,plotmax),framestyle=:box,grid=:off,xflip=true) # Format plot savefig(h,"Constant Silica $(num)_$(denom).pdf") display(h) ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
2849
## --- Load required packages using StatGeochem using Plots ## --- # # # # # # # # # # # pMelts equil. batch melting # # # # # # # # # # # # # # Download precompiled executable from caltech alphameltsversion = "linux_alphamelts_1-9" download("https://magmasource.caltech.edu/alphamelts/zipfiles/$alphameltsversion.zip","./$alphameltsversion.zip") run(`unzip -o $alphameltsversion.zip`); run(`mv $alphameltsversion/alphamelts_linux64 $alphameltsversion/alphamelts`); # Note: melts_configure requires a working alphamelts installation. # If you don't have alphamelts, you'll need to download, install, and # configure it. The absolute path to the alphamelts perl script must be input here: meltspath = abspath("$alphameltsversion/run_alphamelts.command") # meltspath = "/usr/local/bin/run_alphamelts.command" # The absolute or relative path to a direcory where you want to run MELTS - # A number of configuration and output files will be written here. scratchdir = "scratch/" # Conditions P_range = (20000,20000) T_range = (1700,800) # Starting composition elements = ["SiO2", "TiO2","Al2O3","Fe2O3","Cr2O3", "FeO", "MnO", "MgO", "NiO", "CoO", "CaO", "Na2O", "K2O", "P2O5", "H2O",] composition=[44.8030, 0.1991, 4.4305, 0.9778, 0.3823, 7.1350, 0.1344, 37.6345, 0.2489, 0.0129, 3.5345, 0.3584, 0.0289, 0.0209, 0.15,] #mcdbse (McDonough Pyrolite) # Run simulation melts_configure(meltspath, scratchdir, composition, elements, T_range, P_range, batchstring="1\nsc.melts\n10\n1\n3\n1\nliquid\n1\n1.0\n0\n10\n0\n4\n0\n", dT=-10, dP=0, index=1, version="pMELTS",mode="isobaric",fo2path="FMQ") # Read results melt_comp = melts_query_liquid(scratchdir, index=1) solid_comp = melts_query_solid(scratchdir, index=1) modes = melts_query_modes(scratchdir, index=1) ## --- Plot melt composition h = plot(xlabel="Percent melt",ylabel="Abudance (wt. %) in melt") for e in ["SiO2","Al2O3","CaO","MgO","FeO","Na2O","K2O"] plot!(h,melt_comp["mass"],melt_comp[e],label=e) end plot!(h,xlims=(0,100),framestyle=:box,fg_color_legend=:white,legend=:right) display(h) ## --- Plot solid composition h = plot(xlabel="Percent melt",ylabel="Abudance (wt. %) in solid") for e in ["SiO2","Al2O3","CaO","MgO","FeO","Na2O","K2O"] plot!(h,100 .- solid_comp["mass"],solid_comp[e],label=e) end plot!(h,xlims=(0,100),framestyle=:box,fg_color_legend=:white,legend=:right) display(h) ## --- Plot phase modes h = plot(xlabel="Temperature (C)",ylabel="Abudance (wt. %)") for m in modes["elements"][4:end] plot!(h,modes["Temperature"],modes[m],label=m) end plot!(h,ylims=(0,100),framestyle=:box,fg_color_legend=:white,legend=:topleft) display(h) ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
16542
################################################################################ # A few PerpleX calculation examples using the Julia-Perplex interface ## --- Import some useful packages using StatGeochem using Plots ## --- Configure # Absolute paths to perplex resources perplexdir = joinpath(resourcepath,"perplex-stable") scratchdir = "./scratch/" # Location of directory to store output files # Attempt to install perplex, if not already extant if !isfile(joinpath(perplexdir,"vertex")) # Make sure resourcepath exists run(`mkdir -p $resourcepath`) # Try to compile PerpleX from source; if that fails, try to download linux binaries try # Check if there is a fortran compiler run(`gfortran -v`) # Download Perplex v6.8.7 -- known to work with interface used here file = download("https://storage.googleapis.com/statgeochem/perplex-6.8.7-source.zip", joinpath(resourcepath,"perplex-stable.zip")) # # For a more updated perplex version, you might also try # file = download("https://petrol.natur.cuni.cz/~ondro/perplex-sources-stable.zip", joinpath(resourcepath,"perplex-stable.zip")) run(`unzip -u $file -d $resourcepath`) # Extract system("cd $perplexdir; make") # Compile catch @warn "Failed to compile from source, trying precompiled linux binaries instead" run(`mkdir -p $perplexdir`) file = download("https://petrol.natur.cuni.cz/~ondro/Perple_X_6.8.7_Linux_64_gfortran.tar.gz","perplex-6.8.7-linux.tar.gz") run(`tar -xzf $file -C $perplexdir`) end end ## --- # # # # # # # # # # # # # Initial composition # # # # # # # # # # # # # # ## McDonough Pyrolite #elements = [ "SIO2", "TIO2", "AL2O3", "FEO", "MNO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] #composition = [45.1242, 0.2005, 4.4623, 8.0723, 0.1354, 37.9043, 3.5598, 0.3610, 0.0291, 0.1511, 0.0440,] # # Kelemen (2014) primitive continental basalt. H2O and CO2 are guesses # elements = [ "SIO2", "TIO2", "AL2O3", "FEO", "MNO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] # composition = [50.0956, 0.9564, 15.3224, 8.5103, 0.1659, 9.2520, 9.6912, 2.5472, 0.8588, 2.0000, 0.6000,] # # Kelemen (2014) primitive continental basalt excluding Mn. H2O and CO2 are guesses # elements = [ "SIO2", "TIO2", "AL2O3", "FEO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] # composition = [50.0956, 0.9564, 15.3224, 8.5103, 9.2520, 9.6912, 2.5472, 0.8588, 2.0000, 0.6000,] # Kelemen (2014) primitive continental basalt excluding Mn and Ti since most melt models can"t handle them.. elements = [ "SIO2", "AL2O3", "FEO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] composition = [50.0956, 15.3224, 8.5103, 9.2520, 9.6912, 2.5472, 0.8588, 2.0000, 0.6000,] # # Average Archean basalt (EarthChem data) # elements = [ "SIO2", "TIO2", "AL2O3", "FEO", "MNO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] # composition = [49.2054, 0.8401, 12.0551, 11.4018, 0.2198, 12.3997, 9.3113, 1.6549, 0.4630, 1.8935, 0.5555,] # # A random granite # elements = [ "SIO2", "TIO2", "AL2O3", "FEO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] # composition = [ 69.16, 0.42, 14.96, 2.9064, 1.52, 1.81, 3.7, 4.95, 1.8386, 0.4407,] ## --- # # # # # # # # # # # Some solution model options # # # # # # # # # # # # # Emphasis on phases from Green (2016) -- developed for metabasites, includes what is probably the best (and most expensive) amphibole model. Use with hp11ver.dat G_solution_phases = "Augite(G)\nOpx(JH)\ncAmph(G)\noAmph(DP)\nO(JH)\nSp(JH)\nGrt(JH)\nfeldspar_B\nMica(W)\nBio(TCC)\nChl(W)\nCtd(W)\nCrd(W)\nSa(WP)\nSt(W)\nIlm(WPH)\nAtg(PN)\nT\nB\nF\nDo(HP)\nScap\nChum\nNeph(FB)\n" G_excludes ="ged\nfanth\ngl\nilm\nilm_nol\n" # Emphasis on phases from White (2014) -- developed for metapelites. Use with hp11ver.dat (though can apparenty run with hp02ver.dat without crashing) W_solution_phases = "Omph(HP)\nOpx(W)\ncAmph(DP)\noAmph(DP)\nO(JH)\nSp(JH)\nGt(W)\nfeldspar_B\nMica(W)\nBi(W)\nChl(W)\nCtd(W)\nCrd(W)\nSa(WP)\nSt(W) \nIlm(WPH)\nAtg(PN)\nT\nB\nF\nDo(HP)\nScap\nChum\nPu(M)\n" W_excludes = "andr\nts\nparg\ngl\nged\nfanth\n" # Emphasis on phases from Jennings and Holland (2015) -- developed for mantle melting. Use with hp11ver.dat JH_solution_phases = "Cpx(JH)\nOpx(JH)\ncAmph(DP)\noAmph(DP)\nO(JH)\nSp(JH)\nGrt(JH)\nfeldspar_B\nMica(W)\nBio(TCC)\nChl(W)\nCtd(W)\nCrd(W)\nSa(WP)\nSt(W)\nIlm(WPH)\nAtg(PN)\nT\nB\nF\nDo(HP)\nScap\nChum\nNeph(FB)\n" JH_excludes = "ts\nparg\ngl\nged\nfanth\n" # Emphasis on phases from Holland and Powell -- all phases can be used with hp02ver.dat. HP_solution_phases = "Omph(HP)\nOpx(HP)\nGlTrTsPg\nAnth\nO(HP)\nSp(HP)\nGt(HP)\nfeldspar_B\nMica(CF)\nBio(TCC)\nChl(HP)\nCtd(HP)\nSapp(HP)\nSt(HP)\nIlHm(A)\nDo(HP)\nT\nB\nF\n" HP_excludes = "" ## --- # # # # # # # # # # # # # Isobaric example # # # # # # # # # # # # # # # # # Input parameters P = 1000 # Pressure, bar T_range = (0+273.15, 1500+273.15) # Temperature range, Kelvin # # Configure (run build and vertex) # melt_model = "melt(G)" # @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, # dataset="hpha11ver.dat", # npoints=100, # excludes=G_excludes, # solution_phases=melt_model*"\n"*G_solution_phases # ) melt_model = "melt(HP)" @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp02ver.dat", npoints=100, excludes=HP_excludes, solution_phases=melt_model*"\n"*HP_solution_phases ) ## --- Query all properties at a single temperature -- results returned as text T = 850+273.15 data_isobaric = perplex_query_point(perplexdir, scratchdir, T) |> print ## --- Query the full isobar -- results returned as dict bulk = perplex_query_system(perplexdir, scratchdir) # Get system data for all temperatures. Set include_fluid = "n" to get solid+melt only modes = perplex_query_modes(perplexdir, scratchdir) # || phase modes melt = perplex_query_phase(perplexdir, scratchdir, melt_model) # || melt data # Melt wt.% seems to be slightly inaccurate; use values from modes instead melt["wt_pct"] = modes[melt_model] # Create dictionary to hold solid composition and fill it using what we know from system and melt solid = Dict() solid["wt_pct"] = 100 .- melt["wt_pct"] for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] solid[e] = (bulk[e] - (melt[e] .* melt["wt_pct"]/100)) ./ (solid["wt_pct"]/100) end renormalize!(solid,["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"],total=100) ## --- Plot melt composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in melt", title="$melt_model + G_solution_phases, $P bar") i = 0 for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], melt[e], label=e, color=lines[global i += 1]) plot!(h, melt["wt_pct"], bulk[e], label="", color=lines[i], linestyle=:dot) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"MeltComposition.pdf") display(h) ## --- Plot melt composition as a function of melt SiO2 h = plot(xlabel="Magma SIO2 (wt.%)", ylabel="Wt. % in melt", title="$melt_model + G_solution_phases, $P bar") i = 1 for e in ["AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h,melt["SIO2"], melt[e], label=e, color = lines[global i +=1]) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"MeltCompositionvsSiO2.pdf") display(h) ## --- Plot solid composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in solid", title="$melt_model + G_solution_phases, $P bar") i = 0 for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], solid[e], label=e, color=lines[global i +=1]) end plot!(h,fg_color_legend=:white, framestyle=:box, legend=:topleft) savefig(h,"SolidComposition.pdf") display(h) ## --- Plot modes of all phases as a function of temperature h = plot(xlabel="T (C)", ylabel="Weight percent", title="$melt_model + G_solution_phases, $P bar") for m in modes["elements"][3:end] plot!(h, modes["T(K)"] .- 273.15, modes[m], label=m) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"PhaseModes.pdf") display(h) ## --- Plot modes of all phases as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Weight percent", title="$melt_model + G_solution_phases, $P bar") for m in modes["elements"][3:end] plot!(h, modes[melt_model], modes[m], label=m) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"PhaseModesvsF.pdf") display(h) ## --- Plot seismic properties # Query seismic properties along the whole profile seismic = perplex_query_seismic(perplexdir, scratchdir) seismic["vp/vs"][seismic["vp/vs"] .> 100] .= NaN # Exclude cases where vs drops to zero h = plot(xlabel="Pressure", ylabel="Property") plot!(h,seismic["T(K)"],seismic["vp,km/s"], label="vp,km/s") plot!(h,seismic["T(K)"],seismic["vp/vs"], label="vp/vs") plot!(h,seismic["T(K)"],seismic["rho,kg/m3"]/1000, label="rho, g/cc") savefig(h,"GeothermSeismicProperties.pdf") display(h) ## --- # # # # # # # # # # # Geothermal gradient example # # # # # # # # # # # # # Input parameters P_range = (280, 28000) # Pressure range to explore, bar (roughly 1-100 km depth) T_surf = 273.15 # Temperature of surface (K) geotherm = 0.01 # Geothermal gradient of 0.1 K/bar == about 28.4 K/km melt_model = "" # Configure (run build and vertex) @time perplex_configure_geotherm(perplexdir, scratchdir, composition, elements, P_range, T_surf, geotherm, dataset="hp02ver.dat", excludes=HP_excludes, solution_phases=HP_solution_phases, npoints=200, index=2) # # Alternative configuration, using hpha02ver.dat # @time perplex_configure_geotherm(perplexdir, scratchdir, composition, elements, # P_range, T_surf, geotherm, dataset="hpha02ver.dat", excludes="qGL\n"*HP_excludes, # solution_phases=HP_solution_phases, npoints=200, index=2) # # Alternative configuration, using hpha02ver.dat and new phases for metapelites # @time perplex_configure_geotherm(perplexdir, scratchdir, composition, elements, # P_range, T_surf, geotherm, dataset="hpha02ver.dat", excludes="qGL\n"*W_excludes, # solution_phases=W_solution_phases, npoints=200, index=2) ## --- Plot modes of all phases as a function of temperature modes = perplex_query_modes(perplexdir, scratchdir, index=2) # || phase modes h = plot(xlabel="T (C)", ylabel="Weight percent") for m in modes["elements"][3:end] plot!(h, modes["T(K)"] .- 273.15, modes[m], label=m) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"GeothermPhaseModes.pdf") display(h) ## --- Plot seismic properties # Query seismic properties along the whole profile seismic = perplex_query_seismic(perplexdir, scratchdir, index=2) seismic["vp/vs"][seismic["vp/vs"] .> 100] .= NaN # Exclude cases where vs drops to zero h = plot(xlabel="Pressure", ylabel="Property") plot!(h,seismic["P(bar)"],seismic["vp,km/s"], label="vp,km/s") plot!(h,seismic["P(bar)"],seismic["vp/vs"], label="vp/vs") plot!(h,seismic["P(bar)"],seismic["rho,kg/m3"]/1000, label="rho, g/cc") plot!(h,seismic["P(bar)"],seismic["T(K)"]/1000, label="T(K)/1000") savefig(h,"GeothermSeismicProperties.pdf") display(h) ## --- Query all properties at a single pressure P = 10000 data_geotherm = perplex_query_point(perplexdir, scratchdir, P, index=2) |> print ## --- Compare seismic properties for several different geotherms, as a function of Pressure # Input parameters P_range = (280, 14000) # Pressure range to explore, bar (roughly 1-50 km depth) T_surf = 273.15 # Temperature of surface (K) dataset="hp02ver.dat" yelem = "vp,km/s" # yelem = "rho,kg/m3" h = plot(xlabel="Pressure (bar)", ylabel=yelem) for i=1:5 geotherm = i/50 # Configure (run build and vertex) @time perplex_configure_geotherm(perplexdir, scratchdir, composition, elements, P_range, T_surf, geotherm, dataset=dataset, excludes=HP_excludes, solution_phases=HP_solution_phases, npoints=200, index=10+i) # Query perplex results seismic = perplex_query_seismic(perplexdir, scratchdir, index=10+i) # Plot results plot!(h,seismic["P(bar)"],seismic[yelem], label="$geotherm K/bar") display(h) end ## --- Compare seismic properties for several different geotherms, as a function of temperature # Input parameters P_range = (280, 16000) # Pressure range to explore, bar (roughly 1-60 km depth) T_surf = 273.15 # Temperature of surface (K) dataset="hp02ver.dat" yelem = "vp,km/s" # yelem = "rho,kg/m3" h = plot(xlabel="Temperature (K)", ylabel=yelem) for i=1:5 geotherm = i/50 # Configure (run build and vertex) @time perplex_configure_geotherm(perplexdir, scratchdir, composition, elements, P_range, T_surf, geotherm, dataset=dataset, excludes=HP_excludes, solution_phases=HP_solution_phases, npoints=200, index=10+i) # Query perplex results seismic = perplex_query_seismic(perplexdir, scratchdir, index=10+i) # Plot results plot!(h,seismic["T(K)"],seismic[yelem], label="$geotherm K/bar") display(h) end ## --- Build a pseudosection # Input parameters mingeotherm = 0.009 # Geothermal gradient, K/bar. For reference, 0.1 K/bar ≈ 28.4 K/km max_lith_T = 1300 # Maximum temperature of the TBL lithosphere (no point calculating beyond that) P_range = (280, (max_lith_T-273.15)/mingeotherm) # Pressure range to explore, bar (roughly 1-100 km depth) T_range = (273.15, max_lith_T) # Temperature range to explore, K melt_model = "" # Configure (run build and vertex) @time perplex_configure_pseudosection(perplexdir, scratchdir, composition, elements, P_range, T_range, dataset="hpha02ver.dat", excludes=HP_excludes, solution_phases=melt_model*HP_solution_phases, index=3, xnodes=200, ynodes=200) ## --- Query modes from a pseudosection geotherm = 0.015 # Geothermal gradient, K/bar. For reference, 0.1 K/bar ≈ 28.4 K/km @time modes = perplex_query_modes(perplexdir, scratchdir, [280, (max_lith_T-273.15)/geotherm], T_range, index=3, npoints=200) h = plot(xlabel="T (C)", ylabel="Weight percent") for m in modes["elements"][3:end] plot!(h, modes["T(K)"] .- 273.15, modes[m], label=m) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"GeothermPhaseModesPseudosection.pdf") display(h) ## --- Query seismic properties from a pseudosection geotherm = 0.15 # Geothermal gradient, K/bar. For reference, 0.1 K/bar ≈ 28.4 K/km @time seismic = perplex_query_seismic(perplexdir, scratchdir, (280, (max_lith_T-273.15)/geotherm), T_range, index=3, npoints=200) h = plot(xlabel="Pressure", ylabel="Property") plot!(h,seismic["P(bar)"],seismic["vp,km/s"], label="vp,km/s") plot!(h,seismic["P(bar)"],seismic["vp/vs"], label="vp/vs") plot!(h,seismic["P(bar)"],seismic["rho,kg/m3"]/1000, label="rho, g/cc") plot!(h,seismic["P(bar)"],seismic["T(K)"]/1000, label="T(K)/1000") # savefig(h,"GeothermSeismicProperties.pdf") # display(h) ## --- geotherm = 0.15 # Geothermal gradient, K/bar. For reference, 0.1 K/bar ≈ 28.4 K/km @time bulk = perplex_query_system(perplexdir, scratchdir, (280, (max_lith_T-273.15)/geotherm), T_range, index=3, npoints=200, include_fluid="n") h = plot(xlabel="Pressure", ylabel="Property") plot!(h,bulk["P(bar)"],bulk["vp,km/s"], label="vp,km/s") plot!(h,bulk["P(bar)"],bulk["vp/vs"], label="vp/vs") plot!(h,bulk["P(bar)"],bulk["rho,kg/m3"]/1000, label="rho, g/cc") plot!(h,bulk["P(bar)"],bulk["T(K)"]/1000, label="T(K)/1000") # savefig(h,"GeothermSeismicProperties.pdf") # display(h) ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
19678
################################################################################ # Use the Julia-PerpleX interface to run the same isobaric Perplex calculation # with different solution models to compare results ## --- Import some useful packages using StatGeochem using Plots ## --- Configure # Absolute paths to perplex resources perplexdir = joinpath(resourcepath,"perplex-stable") scratchdir = "./scratch/" # Location of directory to store output files # Attempt to install perplex, if not already extant if !isfile(joinpath(perplexdir,"vertex")) # Make sure resourcepath exists run(`mkdir -p $resourcepath`) # Download Perplex v6.8.7 -- known to work with interface used here file = download("https://storage.googleapis.com/statgeochem/perplex-stable-6.8.7.zip", joinpath(resourcepath,"perplex-stable.zip")) # # For a more updated perplex version, also try # file = download("https://petrol.natur.cuni.cz/~ondro/perplex-sources-stable.zip", joinpath(resourcepath,"perplex-stable.zip")) run(`unzip -u $file -d $resourcepath`) # Extract system("cd $perplexdir; make") # Compile end ## --- # # # # # # # # # # # # # Initial composition # # # # # # # # # # # # # # ## McDonough Pyrolite #elements = [ "SIO2", "TIO2", "AL2O3", "FEO", "MNO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] #composition = [45.1242, 0.2005, 4.4623, 8.0723, 0.1354, 37.9043, 3.5598, 0.3610, 0.0291, 0.1511, 0.0440,] ## Kelemen (2014) primitive continental basalt. H2O and CO2 are guesses #elements = [ "SIO2", "TIO2", "AL2O3", "FEO", "MNO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] #composition = [50.0956, 0.9564, 15.3224, 8.5103, 0.1659, 9.2520, 9.6912, 2.5472, 0.8588, 2.0000, 0.6000,] # Kelemen (2014) primitive continental basalt excluding Mn and Ti since most melt models can"t handle them.. elements = [ "SIO2", "AL2O3", "FEO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] composition = [50.0956, 15.3224, 8.5103, 9.2520, 9.6912, 2.5472, 0.8588, 2.0000, 0.6000,] ## Average Archean basalt (EarthChem data) #elements = [ "SIO2", "TIO2", "AL2O3", "FEO", "MNO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] #composition = [49.2054, 0.8401, 12.0551, 11.4018, 0.2198, 12.3997, 9.3113, 1.6549, 0.4630, 1.8935, 0.5555,] ## --- # # # # # # # # # # # Some solution model options # # # # # # # # # # # # # Emphasis on phases from Green (2016) -- developed for metabasites, includes what is probably the best (and most expensive) amphibole model. Use with hp11ver.dat G_solution_phases = "Augite(G)\nOpx(JH)\ncAmph(G)\noAmph(DP)\nO(JH)\nSp(JH)\nGrt(JH)\nfeldspar_B\nMica(W)\nBio(TCC)\nChl(W)\nCtd(W)\nCrd(W)\nSa(WP)\nSt(W)\nIlm(WPH)\nAtg(PN)\nT\nB\nF\nDo(HP)\nScap\nChum\nNeph(FB)\n" G_excludes ="ged\nfanth\ngl\n" # Emphasis on phases from White (2014) -- developed for metapelites. Use with hp11ver.dat W_solution_phases = "Omph(HP)\nOpx(W)\ncAmph(DP)\noAmph(DP)\nO(JH)\nSp(JH)\nGt(W)\nfeldspar_B\nMica(W)\nBi(W)\nChl(W)\nCtd(W)\nCrd(W)\nSa(WP)\nSt(W) \nIlm(WPH)\nAtg(PN)\nT\nB\nF\nDo(HP)\nScap\nChum\nPu(M)\n" W_excludes = "andr\nts\nparg\ngl\nged\nfanth\n" # Emphasis on phases from Jennings and Holland (2015) -- developed for mantle melting. Use with hp11ver.dat JH_solution_phases = "Cpx(JH)\nOpx(JH)\ncAmph(DP)\noAmph(DP)\nO(JH)\nSp(JH)\nGrt(JH)\nfeldspar_B\nMica(W)\nBio(TCC)\nChl(W)\nCtd(W)\nCrd(W)\nSa(WP)\nSt(W)\nIlm(WPH)\nAtg(PN)\nT\nB\nF\nDo(HP)\nScap\nChum\nNeph(FB)\n" JH_excludes = "ts\nparg\ngl\nged\nfanth\n" # Emphasis on phases from Holland and Powell -- all phases can be used with hp02ver.dat. HP_solution_phases = "Omph(HP)\nOpx(HP)\nGlTrTsPg\nAnth\nO(HP)\nSp(HP)\nGt(HP)\nfeldspar_B\nMica(CF)\nBio(TCC)\nChl(HP)\nCtd(HP)\nSapp(HP)\nSt(HP)\nIlHm(A)\nDo(HP)\nT\nB\nF\n" HP_excludes = ""; ## --- Prepare for plotting h0 = plot(xlabel="T (C)", ylabel="Melt percent") ## --- # # # # # # # # # # melt(G) + G_solution_phases # # # # # # # # # # # # # # Input parameters P = 10000 # bar T_range = (500+273.15, 1500+273.15) idx = 1 print("\nmelt(G) + G_solution_phases\n") @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp11ver.dat", solution_phases="melt(G)\n"*G_solution_phases, excludes=G_excludes, index=idx) # Query the full isobar -- results returned as elementified dictionary T_range_inc = (floor(Int,first(T_range))+1, ceil(Int,last(T_range))-1) npoints = last(T_range_inc) - first(T_range_inc) + 1 bulk = perplex_query_system(perplexdir, scratchdir, index=idx) # Get system data for all temperatures. Set include_fluid = "n" to get solid+melt only modes = perplex_query_modes(perplexdir, scratchdir, index=idx) # || phase modes melt = perplex_query_phase(perplexdir, scratchdir, "melt(G)", index=idx) # || melt data # Create dictionary to hold solid composition and fill it using what we know from system and melt solid = Dict() solid["wt_pct"] = 100 .- melt["wt_pct"] for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] solid[e] = (bulk[e] .- (melt[e] .* melt["wt_pct"]/100)) ./ (solid["wt_pct"]/100) end # Add results to melt % vs temperature figure plot!(h0, melt["T(K)"] .- 273.15, melt["wt_pct"], label="melt(G) + G") # Plot melt composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in melt", title="melt(G) + G_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], melt[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"Perplex_MeltTest_G.pdf") # Plot solid composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in solid", title="melt(G) + G_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], solid[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box, legend=:topleft) savefig(h,"Perplex_SolidTest_G.pdf") ## --- # # # # # # # # # # melt(G) + W_solution_phases # # # # # # # # # # # # # # Input parameters P = 10000 # bar T_range = (500+273.15, 1500+273.15) idx = 2 print("\nmelt(G) + W_solution_phases\n") @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp11ver.dat", solution_phases="melt(G)\n"*W_solution_phases, excludes=W_excludes, index=idx) # Query the full isobar -- results returned as elementified dictionary T_range_inc = (floor(Int,first(T_range))+1, ceil(Int,last(T_range))-1) npoints = last(T_range_inc) - first(T_range_inc) + 1 bulk = perplex_query_system(perplexdir, scratchdir, index=idx) # Get system data for all temperatures. Set include_fluid = "n" to get solid+melt only modes = perplex_query_system(perplexdir, scratchdir, index=idx) # || phase modes melt = perplex_query_phase(perplexdir, scratchdir, "melt(G)", index=idx) # || melt data # Create dictionary to hold solid composition and fill it using what we know from system and melt solid = Dict() solid["wt_pct"] = 100 .- melt["wt_pct"] for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] solid[e] = (bulk[e] - (melt[e] .* melt["wt_pct"]/100)) ./ (solid["wt_pct"]/100) end # Add results to melt % vs temperature figure plot!(h0, melt["T(K)"] .- 273.15, melt["wt_pct"], label="melt(G) + W") # Plot melt composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in melt", title="melt(G) + W_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], melt[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"Perplex_MeltTest_G_W.pdf") # Plot solid composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in solid", title="melt(G) + W_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], solid[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box, legend=:topleft) savefig(h,"Perplex_SolidTest_G_W.pdf") ## --- # # # # # # # # # # melt(G) +JH_solution_phases # # # # # # # # # # # # # # Input parameters P = 10000 # bar T_range = (500+273.15, 1500+273.15) idx = 3 print("\nmelt(G) + JH_solution_phases\n") @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp11ver.dat", solution_phases="melt(G)\n"*JH_solution_phases, excludes=JH_excludes, index=idx) # Query the full isobar -- results returned as elementified dictionary T_range_inc = (floor(Int,first(T_range))+1, ceil(Int,last(T_range))-1) npoints = last(T_range_inc) - first(T_range_inc) + 1 bulk = perplex_query_system(perplexdir, scratchdir, index=idx) # Get system data for all temperatures. Set include_fluid = "n" to get solid+melt only modes = perplex_query_modes(perplexdir, scratchdir, index=idx) # || phase modes melt = perplex_query_phase(perplexdir, scratchdir, "melt(G)", index=idx) # || melt data # Create dictionary to hold solid composition and fill it using what we know from system and melt solid = Dict() solid["wt_pct"] = 100 .- melt["wt_pct"] for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] solid[e] = (bulk[e] - (melt[e] .* melt["wt_pct"]/100)) ./ (solid["wt_pct"]/100) end # Add results to melt % vs temperature figure plot!(h0, melt["T(K)"] .- 273.15, melt["wt_pct"], label="melt(G) + JH") # Plot melt composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in melt", title="melt(G) + JH_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], melt[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"Perplex_MeltTest_G_JH.pdf") # Plot solid composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in solid", title="melt(G) + JH_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], solid[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box, legend=:topleft) savefig(h,"Perplex_SolidTest_G_JH.pdf") ## --- # # # # # # # # # # pMELTS(G) +HP_solution_phases # # # # # # # # # # # # # Input parameters P = 10000 # bar T_range = (500+273.15, 1500+273.15) idx = 4 print("\npMELTS(G) + JH_solution_phases\n") @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp02ver.dat", solution_phases="pMELTS(G)\n"*JH_solution_phases, excludes=JH_excludes, index=idx) # Query the full isobar -- results returned as elementified dictionary T_range_inc = (floor(Int,first(T_range))+1, ceil(Int,last(T_range))-1) npoints = last(T_range_inc) - first(T_range_inc) + 1 bulk = perplex_query_system(perplexdir, scratchdir, index=idx) # Get system data for all temperatures. Set include_fluid = "n" to get solid+melt only modes = perplex_query_modes(perplexdir, scratchdir, index=idx) # || phase modes melt = perplex_query_phase(perplexdir, scratchdir, "pMELTS(G)", index=idx) # || melt data # Create dictionary to hold solid composition and fill it using what we know from system and melt solid = Dict() solid["wt_pct"] = 100 .- melt["wt_pct"] for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] solid[e] = (bulk[e] - (melt[e] .* melt["wt_pct"]/100)) ./ (solid["wt_pct"]/100) end # Add results to melt % vs temperature figure plot!(h0, melt["T(K)"] .- 273.15, melt["wt_pct"], label="pMELTS(G) + JH") # Plot melt composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in melt", title="pMELTS(G) + JH_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], melt[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"Perplex_MeltTest_pMELTS_JH.pdf") # Plot solid composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in solid", title="pMELTS(G) + JH_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], solid[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box, legend=:topleft) savefig(h,"Perplex_SolidTest_pMELTS_JH.pdf") ## --- # # # # # # # # # # # melt(W) + W_solution_phases # # # # # # # # # # # # # Input parameters P = 10000 # bar T_range = (500+273.15, 1500+273.15) idx = 5 print("\nmelt(W) + W_solution_phases\n") @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp11ver.dat", solution_phases="melt(W)\n"*W_solution_phases, excludes=W_excludes, index=idx) # Query the full isobar -- results returned as elementified dictionary T_range_inc = (floor(Int,first(T_range))+1, ceil(Int,last(T_range))-1) npoints = last(T_range_inc) - first(T_range_inc) + 1 bulk = perplex_query_system(perplexdir, scratchdir, index=idx) # Get system data for all temperatures. Set include_fluid = "n" to get solid+melt only modes = perplex_query_modes(perplexdir, scratchdir, index=idx) # || phase modes melt = perplex_query_phase(perplexdir, scratchdir, "melt(W)", index=idx) # || melt data # Create dictionary to hold solid composition and fill it using what we know from system and melt solid = Dict() solid["wt_pct"] = 100 .- melt["wt_pct"] for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] solid[e] = (bulk[e] - (melt[e] .* melt["wt_pct"]/100)) ./ (solid["wt_pct"]/100) end # Add results to melt % vs temperature figure plot!(h0, melt["T(K)"] .- 273.15, melt["wt_pct"], label="melt(W) + W") # Plot melt composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in melt", title="melt(W) + W_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], melt[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"Perplex_MeltTest_W.pdf") # Plot solid composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in solid", title="melt(W) + W_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], solid[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box, legend=:topleft) savefig(h,"Perplex_SolidTest_W.pdf") ## --- # # # # # # # # # # melt(W) + G_solution_phases # # # # # # # # # # # # # # Input parameters P = 10000 # bar T_range = (500+273.15, 1500+273.15) idx = 6 print("\nmelt(W) + G_solution_phases\n") @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp11ver.dat", solution_phases="melt(W)\n"*G_solution_phases, excludes=G_excludes, index=idx) # Query the full isobar -- results returned as elementified dictionary T_range_inc = (floor(Int,first(T_range))+1, ceil(Int,last(T_range))-1) npoints = last(T_range_inc) - first(T_range_inc) + 1 bulk = perplex_query_system(perplexdir, scratchdir, index=idx) # Get system data for all temperatures. Set include_fluid = "n" to get solid+melt only modes = perplex_query_modes(perplexdir, scratchdir, index=idx) # || phase modes melt = perplex_query_phase(perplexdir, scratchdir, "melt(W)", index=idx) # || melt data # Create dictionary to hold solid composition and fill it using what we know from system and melt solid = Dict() solid["wt_pct"] = 100 .- melt["wt_pct"] for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] solid[e] = (bulk[e] - (melt[e] .* melt["wt_pct"]/100)) ./ (solid["wt_pct"]/100) end # Add results to melt % vs temperature figure plot!(h0, melt["T(K)"] .- 273.15, melt["wt_pct"], label="melt(W) + G") # Plot melt composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in melt", title="melt(W) + G_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], melt[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"Perplex_MeltTest_W_G.pdf") # Plot solid composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in solid", title="melt(W) + G_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], solid[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box, legend=:topleft) savefig(h,"Perplex_SolidTest_W_G.pdf") ## --- # # # # # # # # # # # melt(W) +JH_solution_phases # # # # # # # # # # # # # Input parameters P = 10000 # bar T_range = (500+273.15, 1500+273.15) idx = 7 print("\nmelt(W) + JH_solution_phases\n") @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp11ver.dat", solution_phases="melt(W)\n"*JH_solution_phases, excludes=JH_excludes, index=idx) # Query the full isobar -- results returned as elementified dictionary T_range_inc = (floor(Int,first(T_range))+1, ceil(Int,last(T_range))-1) npoints = last(T_range_inc) - first(T_range_inc) + 1 bulk = perplex_query_system(perplexdir, scratchdir, index=idx) # Get system data for all temperatures. Set include_fluid = "n" to get solid+melt only modes = perplex_query_modes(perplexdir, scratchdir, index=idx) # || phase modes melt = perplex_query_phase(perplexdir, scratchdir, "melt(W)", index=idx) # || melt data # Create dictionary to hold solid composition and fill it using what we know from system and melt solid = Dict() solid["wt_pct"] = 100 .- melt["wt_pct"] for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] solid[e] = (bulk[e] - (melt[e] .* melt["wt_pct"]/100)) ./ (solid["wt_pct"]/100) end # Add results to melt % vs temperature figure plot!(h0, melt["T(K)"] .- 273.15, melt["wt_pct"], label="melt(W) + JH") # Plot melt composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in melt", title="melt(W) + JH_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], melt[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box) savefig(h,"Perplex_MeltTest_W_JH.pdf") # Plot solid composition as a function of melt percent h = plot(xlabel="Percent melt", ylabel="Wt. % in solid", title="melt(W) + JH_solution_phases, $P bar") for e in ["SIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O"] plot!(h, melt["wt_pct"], solid[e], label=e) end plot!(h,fg_color_legend=:white, framestyle=:box, legend=:topleft) savefig(h,"Perplex_SolidTest_W_JH.pdf") ## --- Format melt comparison plot!(h0,fg_color_legend=:white,legend=:topleft) display(h0) savefig(h0,"Perplex_T-F_comparison.pdf") ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
9828
## --- Load (and install if neccesary) the StatGeochem package which has the resampling functions we'll want using StatGeochem using Plots ## --- Download and unzip Keller and Schoene (2012) dataset if ~isfile("ign.h5") # Unless it already exists download("https://storage.googleapis.com/statgeochem/ign.h5.gz","./ign.h5.gz") download("https://storage.googleapis.com/statgeochem/err2srel.csv","./err2srel.csv") run(`gunzip -f ign.h5.gz`) # Unzip file end # Read HDF5 file using HDF5 ign = h5read("ign.h5","vars") ## --- Compute proximity coefficients (inverse weights) # # Compute inverse weights # k = invweight(ign["Latitude"] .|> Float32, ign["Longitude"] .|> Float32, ign["Age"] .|> Float32) # Since this is pretty computatually intensive, let's load a precomputed version instead k = ign["k"] # Probability of keeping a given data point when sampling p = 1.0 ./ ((k .* nanmedian(5.0 ./ k)) .+ 1.0) # Keep roughly one-fith of the data in each resampling # Set absolute uncertainties for each element where possible, using errors defined inerr2srel.csv err2srel = importdataset("err2srel.csv", ',', importas=:Dict) for e in ign["elements"] # If there's an err2srel for this variable, create a "_sigma" if possible if haskey(err2srel, e) && !haskey(ign, e*"_sigma") ign[e*"_sigma"] = ign[e] .* (err2srel[e] / 2); end end # Special cases: age uncertainty ign["Age_sigma"] = (ign["Age_Max"]-ign["Age_Min"])/2; t = (ign["Age_sigma"] .< 50) .| isnan.(ign["Age_sigma"]) # Find points with < 50 Ma absolute uncertainty ign["Age_sigma"][t] .= 50 # Set 50 Ma minimum age uncertainty (1-sigma) # Special cases: location uncertainty ign["Latitude_sigma"] = ign["Loc_Prec"] ign["Longitude_sigma"] = ign["Loc_Prec"] ## --- Resample a single variable xmin = 0 # Minimum Age xmax = 3900 # Maximum Age nbins = 39 elem = "K2O" # Element to plot # Look only at samples from a specific silica range t = 43 .< ign["SiO2"] .< 51 # Mafic # t = 51 .< ign["SiO2"] .< 62 # Intermediate # t = 62 .< ign["SiO2"] .< 74 # Felsic # t = 40 .< ign["SiO2"] .< 80 # All normal igneous # t = trues(size(ign[elem])) # Everything # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_means(ign["Age"][t],ign[elem][t],xmin,xmax,nbins, p=p[t], x_sigma=ign["Age_sigma"][t]) # Plot results plot(c,m,yerror=(el,eu),seriestype=:scatter,color=:darkblue,markerstrokecolor=:darkblue,label="") plot!(xlabel="Age (Ma)", ylabel="$elem (wt. %)",xlims=(xmin,xmax),framestyle=:box,grid=:off,xflip=true) # Format plot ## --- Multiple silica ranges together xmin = 0 # Minimum Age xmax = 800 # Maximum Age nbins = 40 elem = "Al2O3" # Element to plot rsi = [43,51,62,74,80] # Ranges of silica to plot together t = trues(size(ign[elem])) h = plot(xlabel="Age (Ma)", ylabel="$elem (wt. %)",xlims=(xmin,xmax),framestyle=:box,grid=:off,xflip=true) # Format plot for i=1:length(rsi)-1 t .= rsi[i] .< ign["SiO2"] .< rsi[i+1] # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_means(ign["Age"][t],ign[elem][t],xmin,xmax,nbins, p=p[t], x_sigma=ign["Age_sigma"][t]) # Plot results plot!(h, c,m,yerror=(el,eu),seriestype=:scatter,color=lines[i],markerstrokecolor=lines[i],label="$(rsi[i])-$(rsi[i+1]) % SiO2") end savefig("$(elem)_$(xmin)-$(xmax) Ma.pdf") display(h) ## --- Resample a ratio tmin = 0 # Minimum age tmax = 3900 # Maximum age nbins = 39 num = "Sm" # Numerator denom = "Nd" # Denominator # Look only at samples from a specific silica range t = 43 .< ign["SiO2"] .< 51 # Mafic # t = 51 .< ign["SiO2"] .< 62 # Intermediate # t = 62 .< ign["SiO2"] .< 74 # Felsic # Exclude outliers t = t .& inpctile(ign[num], 99) .& inpctile(ign[denom], 99) # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_ratios(ign["Age"][t],ign[num][t],ign[denom][t],tmin,tmax,nbins, p=p[t], x_sigma=ign["Age_sigma"][t]) # Plot results h = plot(c,m,yerror=(el,eu),seriestype=:scatter,color=:darkred,markerstrokecolor=:darkred,label="") plot!(h, xlabel="Age (Ma)", ylabel="$(num) / $(denom)",xlims=(tmin,tmax),framestyle=:box,grid=:off,xflip=true) # Format plot display(h) # savefig(h,"$(num)$(denom)_$(tmax)-$(tmin)Ma.pdf") ## --- Single element differentiation example xelem = "SiO2" xmin = 45 xmax = 75 nbins = 8 elem = "K2O" h = plot(xlabel=xelem, ylabel="$(elem)",xlims=(xmin,xmax),framestyle=:box,grid=:off,fg_color_legend=:white) # Format plot rt = [0,1,2,3,4] # Time range (Ga) colors = reverse(resize_colormap(viridis[1:end-20],length(rt)-1)) for i=1:length(rt)-1 t = rt[i]*1000 .< ign["Age"] .< rt[i+1]*1000 # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_means(ign[xelem][t],ign[elem][t],xmin,xmax,nbins, p=p[t], x_sigma=ign[xelem*"_sigma"][t], y_sigma=ign[elem*"_sigma"][t]) # Plot results plot!(h, c,m,yerror=(el,eu),color=colors[i],mscolor=colors[i],seriestype=:scatter,label="$(rt[i])-$(rt[i+1]) Ga") plot!(h, c,m,style=:dot,color=colors[i],mscolor=colors[i],label="") end # savefig(h,"$(xelem)_$(num)$(denom).pdf") display(h) ## --- Ratio differentiation example xelem = "SiO2" xmin = 45 xmax = 75 nbins = 8 num = "Sm" # Numerator denom = "Nd" # Denominator h = plot(xlabel=xelem, ylabel="$(num) / $(denom)",xlims=(xmin,xmax),framestyle=:box,grid=:off,legend=:topleft,fg_color_legend=:white) # Format plot rt = [0,1,2,3,4] colors = reverse(resize_colormap(viridis[1:end-20],length(rt)-1)) for i=1:length(rt)-1 t = rt[i]*1000 .< ign["Age"] .< rt[i+1]*1000 # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_ratios(ign[xelem][t],ign[num][t],ign[denom][t],xmin,xmax,nbins, p=p[t], x_sigma=ign[xelem*"_sigma"][t], num_sigma=ign[num*"_sigma"][t], denom_sigma=ign[denom*"_sigma"][t]) # Plot results plot!(h, c,m,yerror=(el,eu),color=colors[i], mscolor=colors[i], seriestype=:scatter,label="$(rt[i])-$(rt[i+1]) Ga") plot!(h, c,m,style=:dot,color=colors[i],label="") end display(h) ## --- Ratio differentiation xelem = "SiO2" xmin = 40 # Minimum age xmax = 80 # Maximum age nbins = 20 num = "Sc" # Numerator denom = "Yb" # Denominator # Exclude outliers t = inpctile(ign[num], 99) .& inpctile(ign[denom], 99) # Resample, returning binned means and uncertainties # (c = bincenters, m = mean, el = lower 95% CI, eu = upper 95% CI) (c,m,el,eu) = bin_bsr_ratios(ign[xelem][t],ign[num][t],ign[denom][t],xmin,xmax,nbins, p=p[t], x_sigma=ign[xelem][t]*0.01, num_sigma=ign[num][t]*0.05, denom_sigma=ign[denom][t]*0.05) # Plot results h = plot(c,m,yerror=(el,eu),seriestype=:scatter,color=:darkblue,markerstrokecolor=:darkblue,label="") plot!(h, xlabel=xelem, ylabel="$(num) / $(denom)",xlims=(xmin,xmax),framestyle=:box,grid=:off) # Format plot display(h) ## --- Export differentiation trends xelem = "SiO2" xmin = 45 xmax = 75 nbins = 10 rt = [0,1,2,3,4] # Time range (Ga) data = Dict() for elem in ("Al2O3", "MgO", "Na2O", "Fe2O3T", "K2O", "CaO") for i=1:length(rt)-1 t = rt[i]*1000 .< ign["Age"] .< rt[i+1]*1000 # Resample, returning binned means and uncertainties (c,m,e) = bin_bsr(ign[xelem][t],ign[elem][t],xmin,xmax,nbins, p=p[t], x_sigma=ign[xelem*"_sigma"][t], y_sigma=ign[elem*"_sigma"][t]) data[xelem] = c data[elem*"_$(rt[i])-$(rt[i+1])Ga"] = m data[elem*"_$(rt[i])-$(rt[i+1])Ga_sigma"] = e end end exportdataset(data,"MajorDifferentiation.csv",',') ## --- Export averages over time xmin = 0 # Minimum Age xmax = 3900 # Maximum Age nbins = 39 # Look only at samples from a specific silica range t = 43 .< ign["SiO2"] .< 51; name="Basaltic" # Mafic # t = 51 .< ign["SiO2"] .< 62; name="Intermediate" # Intermediate # t = 62 .< ign["SiO2"] .< 74; name="Granitic" # Felsic # t = 40 .< ign["SiO2"] .< 80; name="All" # All normal igneous major = ("SiO2", "TiO2", "Al2O3", "FeOT", "MgO", "CaO", "MnO", "Na2O", "K2O", "P2O5") trace = ("Li", "Rb", "Cs", "Sr", "Ba", "Sc", "Y", "La", "Ce", "Pr", "Nd", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Yb", "Lu", "Zr", "Hf", "V", "Nb", "Ta", "Cr", "Mo", "W", "Co", "Ni" ) data = Dict{String,Array{Union{Float64, String}}}() data["elements"] = ["Age (Ma)"] for elem in (major ∪ trace) # Resample, returning binned means and uncertainties (c,m,e) = bin_bsr(ign["Age"][t], ign[elem][t], xmin, xmax, nbins; p = p[t], x_sigma = ign["Age_sigma"][t], y_sigma = ign[elem*"_sigma"][t] ) data["Age (Ma)"] = c data[elem] = m push!(data["elements"], elem) data[elem*"_sigma"] = e push!(data["elements"], elem*"_sigma") end exportdataset(data, name*"Averages.csv",',') ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
4300
module StatGeochemPlotsExt using StatGeochem, Plots StatGeochem.mapplot(args...; kwargs...) = mapplot!(plot(), args...; kwargs...) function StatGeochem.mapplot!(h, args...; file="world2048.jpg", seriestype=:scatter, kwargs...) if !isfile(file) file = joinpath(StatGeochem.moduleresourcepath, "maps", file) end img = reverse!(StatGeochem.load(file), dims=1) x = range(-180, 180, length=size(img,2)) y = range(-90, 90, length=size(img,1)) plot!(h, x, y, img, framestyle=:box, yflip=false, xlabel="Longitude", ylabel="Latitude", xlims=(-180, 180), ylims=(-90, 90), size=(800,400), ) plot!(h, args...; seriestype, kwargs...) return h end export mapplot, mapplot! taylormclennan = ( La = 0.367,Ce = 0.957,Pr = 0.137,Nd = 0.711,Sm = 0.231,Eu = 0.087,Gd = 0.306, Tb = 0.058,Dy = 0.381,Ho = 0.085,Er = 0.249,Tm = 0.036,Yb = 0.248,Lu = 0.038, ) """ Construct a `chondrite` normalized multi-element diagram (spider diagram) from the rare earth elements in `data`. Use `spidergram` to create a new plot object, and `spidergram!` to add to an existing one: ```julia spidergram(data; [chondrite], kwargs...) # Create a new spider diagram spidergram!(plotobj, data; [chondrite], kwargs...) # Add to the plot `plotobj` ``` If no chondrite values are specified, `data` will be normalized to the values reported by Taylor and McLennan (1985). Values in `data` and `chondrite` may be passed as a dictonary, named tuple, or an array. All arrays should be in element order: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu Dictonaries and NamedTuples should be organized by element: NamedTuple with 14 elements: La = Float64 0.367 Ce = Float64 0.957 Pr = Float64 0.137 ⋮ = ⋮ Or Dict{String, Float64} with 14 entries: "La" => 20.78 "Ce" => 35.61 "Pr" => 2.344 ⋮ => ⋮ If `data` is not passed as an array, `chondrite` must be a named tuple in element order. """ function StatGeochem.spidergram(data; chondrite=taylormclennan, markershape=:circle, kwargs...) h = Plots.plot( ylabel="Chondrite Normalized", fg_color_legend=:white, framestyle=:box, grid=false, yaxis=:log10, ylims=(10^0, 10^3), yticks=(10.0.^(0:3), ("1", "10", "100", "1000")), xticks=(1:15, ["La","Ce","Pr","Nd","","Sm","Eu","Gd","Tb","Dy","Ho","Er","Tm", "Yb","Lu"]), yminorticks=log.(1:10), ) spidergram!(h, data; chondrite=chondrite, markershape=markershape, kwargs...) end function StatGeochem.spidergram!(h, data::Dict; chondrite::NamedTuple=taylormclennan, markershape=:circle, kwargs... ) REEindex = NamedTuple{keys(chondrite)}(i for i in collect([1:4; 6:15])) Key = keytype(data) x = collect(values(REEindex)) y = [(haskey(data, Key(k)) ? data[Key(k)]/chondrite[Symbol(k)] : NaN) for k in keys(chondrite)] _spidergram!(h, x, y; markershape=markershape, kwargs...) end function StatGeochem.spidergram!(h, data::NamedTuple; chondrite::NamedTuple=taylormclennan, markershape=:circle, kwargs... ) REEindex = NamedTuple{keys(chondrite)}(i for i in collect([1:4; 6:15])) x = [REEindex[Symbol(k)] for k in keys(data)] y = [data[k]/chondrite[k] for k in keys(data)] _spidergram!(h, x, y; markershape=markershape, kwargs...) end StatGeochem.spidergram!(h, data::AbstractArray; chondrite=taylormclennan, markershape=:circle, kwargs...) = _spidergram!(h, collect([1:4; 6:15]), data ./ collect(values(chondrite)); markershape=markershape, kwargs... ) function _spidergram!(h, x::AbstractArray, y::AbstractArray; kwargs...,) Plots.plot!(h, x[.!isnan.(y)], y[.!isnan.(y)]; kwargs...) return h end export spidergram, spidergram! end
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
1674
__precompile__() module StatGeochem using Reexport @reexport using NaNStatistics @reexport using StatGeochemBase # Vectorization and parallelization tools using LoopVectorization: @turbo using Polyester: @batch # General requirements using DelimitedFiles, Random, Downloads using ProgressMeter: @showprogress, Progress, update!, next! const Collection{T} = Union{DenseArray{<:T}, AbstractRange{<:T}, NTuple{N,T}} where N include("utilities/System.jl") include("utilities/Resampling.jl") include("utilities/Changepoint.jl") include("resources/Chemistry.jl") include("utilities/Geochronology.jl") include("utilities/Geochemistry.jl") include("utilities/GIS.jl") include("utilities/Etc.jl") # Resources using LazyArtifacts resourcepath = joinpath(homedir(),"resources") moduleresourcepath = joinpath(Base.source_dir(),"resources") export resourcepath, moduleresourcepath using FileIO: load using HDF5: h5read using Colors: Color, RGBX, RGB, N0f8 include("resources/tc1/tc1.jl") include("resources/Crust1.jl") include("resources/Litho1.jl") include("resources/Geology.jl") include("resources/Geography.jl") include("resources/Seafloorage.jl") include("resources/PartitionCoefficients/PartitionCoefficients.jl") # Custom pretty printing for some types include("utilities/Display.jl") # Functions for which methods will be added in package extensions function mapplot end function mapplot! end function spidergram end function spidergram! end export mapplot, mapplot!, spidergram, spidergram! end # module
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
6735
## -- Common elemental masses in g/mol (AMU/atom) const molarmass = Dict{String,Float64}("Pd" => 106.421,"Fl" => 289.0,"Nb" => 92.906372,"C" => 12.011,"P" => 30.9737619985,"Ag" => 107.86822,"Gd" => 157.253,"Si" => 28.085,"Ru" => 101.072,"At" => 210.0,"Uus" => 294.0,"Sb" => 121.7601,"Cs" => 132.905451966,"Cn" => 285.0,"Uut" => 285.0,"Be" => 9.01218315,"Ac" => 227.0,"Cf" => 251.0,"Bh" => 270.0,"Sr" => 87.621,"Ga" => 69.7231,"Ta" => 180.947882,"Te" => 127.603,"Np" => 237.0,"Lr" => 262.0,"Pu" => 244.0,"U" => 238.028913,"Kr" => 83.7982,"Y" => 88.905842,"Sg" => 271.0,"Ca" => 40.0784,"Au" => 196.9665695,"K" => 39.09831,"Rn" => 222.0,"Ra" => 226.0,"Ce" => 140.1161,"Uuo" => 294.0,"V" => 50.94151,"Fr" => 223.0,"Mo" => 95.951,"Pr" => 140.907662,"Th" => 232.03774,"Br" => 79.904,"Zn" => 65.382,"He" => 4.0026022,"Sc" => 44.9559085,"H" => 1.008,"Al" => 26.98153857,"S" => 32.06,"Uup" => 289.0,"Ar" => 39.9481,"Ge" => 72.6308,"Er" => 167.2593,"Fe" => 55.8452,"Mg" => 24.305,"F" => 18.9984031636,"La" => 138.905477,"Rf" => 267.0,"W" => 183.841,"Li" => 6.94,"Dy" => 162.5001,"O" => 15.999,"B" => 10.81,"Bi" => 208.980401,"Mn" => 54.9380443,"Re" => 186.2071,"Db" => 270.0,"Hf" => 178.492,"Cm" => 247.0,"Cl" => 35.45,"In" => 114.8181,"Ds" => 281.0,"Rb" => 85.46783,"Po" => 209.0,"Lv" => 293.0,"Am" => 243.0,"Pa" => 231.035882,"Se" => 78.9718,"Ba" => 137.3277,"Nd" => 144.2423,"Pm" => 145.0,"Rh" => 102.905502,"Ti" => 47.8671,"Tb" => 158.925352,"Hs" => 277.0,"Zr" => 91.2242,"Sm" => 150.362,"Cr" => 51.99616,"Cu" => 63.5463,"Fm" => 257.0,"Tc" => 97.0,"Tl" => 204.38,"Ne" => 20.17976,"Hg" => 200.5923,"Mt" => 276.0,"N" => 14.007,"Es" => 252.0,"Yb" => 173.0455,"Lu" => 174.96681,"Eu" => 151.9641,"Na" => 22.989769282,"No" => 259.0,"Os" => 190.233,"Ni" => 58.69344,"Ho" => 164.930332,"Co" => 58.9331944,"Md" => 258.0,"Ir" => 192.2173,"Pt" => 195.0849,"Tm" => 168.934222,"As" => 74.9215956,"Sn" => 118.7107,"Xe" => 131.2936,"I" => 126.904473,"Cd" => 112.4144,"Pb" => 207.21,"Rg" => 282.0,"Bk" => 247.0) export molarmass const molarmasspercation = Dict{String,Float64}("MgO" => 40.304,"SO2" => 64.058,"TiO2" => 79.8651,"CaO" => 56.077400000000004,"P2O5" => 70.9712619985,"NiO" => 74.69244,"CoO" => 74.9321944,"SiO2" => 60.083,"Al2O3" => 50.980038570000005,"CO2" => 44.009,"Cr2O3" => 75.99466000000001,"FeO" => 71.8442,"K2O" => 47.097809999999996,"Fe2O3" => 79.8437,"H2O" => 9.0075,"MnO" => 70.9370443,"Na2O" => 30.989269282000002) export molarmasspercation """ julia``` ionicradius::NamedTuple ``` A named tuple containing the ionic radii, in picometers, for the naturally ocurring elements in their geologically common redox states. Where multiple redox states may be expected for a single element in nature, they are suffixed to the atomic symbol, e.g. `Fe2` vs `Fe3`. Radii are those reported as "crystal" ionic radii by Shannon [1], as tabulated at https://en.wikipedia.org/wiki/Ionic_radius#Tables [1] R. D. Shannon (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides". Acta Crystallogr A. 32 (5): 751-767. doi:10.1107/S0567739476001551 """ # Picometers, from https://en.wikipedia.org/wiki/Ionic_radius#cite_note-Shannon-6 const ionicradius = (; H = -4., Li = 90., Be = 59., B = 41., C = 30., N = 27., O = 126., F = 119., Na = 116., Mg = 86., Al = 67.5, Si = 54., P = 52., S = 170., Cl = 167., K = 152., Ca = 114., Sc = 88.5, Ti = 74.5, V3 = 78., V5 = 68., Cr3 = 75.5, Cr6 = 58., Mn2 = 81., Mn4 = 67., Fe2 = 75., Fe3 = 69., Co = 79., Ni = 83., Cu1 = 91., Cu2 = 87., Zn = 88., Ga = 76., Ge = 67., As = 60., Se = 184., Br = 182., Rb = 166., Sr = 132., Y = 104., Zr = 86., Nb = 78., Mo4 = 79., Mo6 = 73., Ru = 82., Rh = 80.5, Pd = 100., Ag = 129., Cd = 109., In = 94., Sn = 83., Sb = 90., Te = 207., I = 206., Cs = 167., Ba = 149., La = 117.2, Ce3 = 115., Ce4 = 101., Pr = 113., Nd = 112.3, Sm = 109.8, Eu2 = 131, Eu3 = 108.7, Gd = 107.8, Tb = 106.3, Dy = 105.2, Ho = 104.1, Er = 103., Tm = 102., Yb = 100.8, Lu = 100.1, Hf = 85., Ta = 78., W = 74., Re4 = 77., Re7 = 67., Os4 = 77., Os8 = 53., Ir = 76.5, Pt = 76.5, Au = 151., Hg = 116., Tl = 164., Pb = 133., Bi = 117., Th = 108., U4 = 103., U6 = 87., ) export ionicradius """ julia``` ioniccharge::NamedTuple ``` A named tuple containing the ionic charges corresponding to the ionic radii in `ionicradius`. """ const ioniccharge = (; H = +1, Li = +1, Be = +2, B = +3, C = +4, N = +5, O = -2, F = -1, Na = +1, Mg = +2, Al = +3, Si = +4, P = +5, S = -2, Cl = -1, K = +1, Ca = +2, Sc = +3, Ti = +4, V3 = +3, V5 = +5, Cr3 = +3, Cr6 = +6, Mn2 = +2, Mn4 = +4, Fe2 = +2, Fe3 = +3, Co = +2, Ni = +2, Cu1 = +1, Cu2 = +2, Zn = +2, Ga = +3, Ge = +4, As = +5, Se = -2, Br = -1, Rb = +1, Sr = +2, Y = +3, Zr = +4, Nb = +5, Mo4 = +4, Mo6 = +6, Ru = +3, Rh = +3, Pd = +2, Ag = +1, Cd = +2, In = +3, Sn = +4, Sb = +3, Te = -2, I = -1, Cs = +1, Ba = +2, La = +3, Ce3 = +3, Ce4 = +4, Pr = +3, Nd = +3, Sm = +3, Eu2 = +2, Eu3 = +3, Gd = +3, Tb = +3, Dy = +3, Ho = +3, Er = +3, Tm = +3, Yb = +3, Lu = +3, Hf = +4, Ta = +5, W = +6, Re4 = +4, Re7 = +7, Os4 = +4, Os8 = +8, Ir = +4, Pt = +4, Au = +1, Hg = +2, Tl = +1, Pb = +2, Bi = +3, Th = +4, U4 = +4, U6 = +6, ) export ioniccharge ## ---
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
12870
## --- CRUST 1.0 function crust1layer(layer::Number) if isinteger(layer) && (1 <= layer <= 9) Int(layer) else @error """crust1 layer $layer not found. Available layers include: 1 | :water 2 | :ice 3 | :upper_sediments 4 | :middle_sediments 5 | :lower_sediments 6 | :upper_crust 7 | :middle_crust 8 | :lower_crust 9 | :mantle """ end end function crust1layer(layer::Symbol) if layer===:water 1 elseif layer===:ice 2 elseif layer===:upper_sediments 3 elseif layer===:middle_sediments 4 elseif layer===:lower_sediments 5 elseif layer===:upper_crust 6 elseif layer===:middle_crust 7 elseif layer===:lower_crust 8 elseif layer===:mantle 9 else @error """crust1 layer $layer not found. Available layers include: 1 | :water 2 | :ice 3 | :upper_sediments 4 | :middle_sediments 5 | :lower_sediments 6 | :upper_crust 7 | :middle_crust 8 | :lower_crust 9 | :mantle """ end end """ ```julia find_crust1_layer(lat,lon,layer) ``` Return all point data (Vp, Vs, Rho, layer thickness) for a given `lat`itude, `lon`gitude, and crustal `layer`. Accepts `lat` and `lon` both as `Numbers` and as `AbstractArray`s, but given the overhead of opening and reading the crust1 files, you should generally aim to provide large arrays with as many values in a single query as possible. Available `layer`s: ``` 1 | :water 2 | :ice 3 | :upper_sediments 4 | :middle_sediments 5 | :lower_sediments 6 | :upper_crust 7 | :middle_crust 8 | :lower_crust 9 | :mantle ``` Results are returned in form `(Vp, Vs, Rho, thickness)` ## Examples ```julia julia> vp, vs, rho, thickness = find_crust1_layer([43.702245], [-72.0929], 8) ([7.0], [3.99], [2950.0], [7.699999999999999]) ``` """ function find_crust1_layer(lat,lon,layer) # Get Vp, Vs, Rho, and thickness for a given lat, lon, and crustal layer. @assert eachindex(lat) == eachindex(lon) layerindex = crust1layer(layer) nlayers=9 nlon=360 nlat=180 # Allocate data arrays vp = Array{Float64,3}(undef,nlayers,nlat,nlon) vs = Array{Float64,3}(undef,nlayers,nlat,nlon) rho = Array{Float64,3}(undef,nlayers,nlat,nlon) bnd = Array{Float64,3}(undef,nlayers,nlat,nlon) # Open data files vpfile = open(artifact"crust1/crust1.vp", "r") vsfile = open(artifact"crust1/crust1.vs", "r") rhofile = open(artifact"crust1/crust1.rho", "r") bndfile = open(artifact"crust1/crust1.bnds", "r") # Read data files into array for j=1:nlat for i=1:nlon vp[:,j,i] = delim_string_parse(readline(vpfile), ' ', Float64, merge=true) vs[:,j,i] = delim_string_parse(readline(vsfile), ' ', Float64, merge=true) rho[:,j,i] = delim_string_parse(readline(rhofile), ' ', Float64, merge=true) * 1000 # convert to kg/m3 bnd[:,j,i] = delim_string_parse(readline(bndfile), ' ', Float64, merge=true) end end # Close data files close(vpfile) close(vsfile) close(rhofile) close(bndfile) # Allocate output arrays vpout = Array{Float64}(undef,size(lat)) vsout = Array{Float64}(undef,size(lat)) rhoout = Array{Float64}(undef,size(lat)) thkout = Array{Float64}(undef,size(lat)) # Fill output arrays @inbounds for j ∈ eachindex(lat) # Avoid edge cases at lat = -90.0, lon = 180.0 lonⱼ = mod(lon[j] + 180, 360) - 180 latⱼ = lat[j] if -90 < latⱼ < 90 && -180 < lonⱼ < 180 # Convert lat and lon to index ilat = 91 - ceil(Int,latⱼ) ilon = 181 + floor(Int,lonⱼ) vpout[j] = vp[layerindex,ilat,ilon] vsout[j] = vs[layerindex,ilat,ilon] rhoout[j] = rho[layerindex,ilat,ilon] thkout[j] = bnd[layerindex,ilat,ilon] - bnd[layerindex+1,ilat,ilon] else vpout[j] = NaN vsout[j] = NaN rhoout[j] = NaN thkout[j] = NaN end end # The end return (vpout, vsout, rhoout, thkout) end export find_crust1_layer """ ```julia find_crust1_seismic(lat,lon,layer) ``` Return all seismic data (Vp, Vs, Rho) for a given `lat`itude, `lon`gitude, and crustal `layer`. Accepts `lat` and `lon` both as `Numbers` and as `AbstractArray`s, but given the overhead of opening and reading the crust1 files, you should generally aim to provide large arrays with as many values in a single query as possible. Available `layer`s: ``` 1 | :water 2 | :ice 3 | :upper_sediments 4 | :middle_sediments 5 | :lower_sediments 6 | :upper_crust 7 | :middle_crust 8 | :lower_crust 9 | :mantle ``` Results are returned in form `(Vp, Vs, Rho, thickness)` ## Examples ```julia julia> vp, vs, rho = find_crust1_seismic([43.702245], [-72.0929], 8) ([7.0], [3.99], [2950.0]) julia> vp, vs, rho = find_crust1_seismic([43.702245], [-72.0929], :lower_crust) ([7.0], [3.99], [2950.0]) ``` """ function find_crust1_seismic(lat,lon,layer) # Vp, Vs, and Rho for a given lat, lon, and crustal layer. @assert eachindex(lat) == eachindex(lon) layerindex = crust1layer(layer) nlayers=9 nlon=360 nlat=180 # Allocate data arrays vp = Array{Float64,3}(undef,nlayers,nlat,nlon) vs = Array{Float64,3}(undef,nlayers,nlat,nlon) rho = Array{Float64,3}(undef,nlayers,nlat,nlon) # Open data files vpfile = open(artifact"crust1/crust1.vp", "r") vsfile = open(artifact"crust1/crust1.vs", "r") rhofile = open(artifact"crust1/crust1.rho", "r") # Read data files into array for j=1:nlat for i=1:nlon vp[:,j,i] = delim_string_parse(readline(vpfile), ' ', Float64, merge=true) vs[:,j,i] = delim_string_parse(readline(vsfile), ' ', Float64, merge=true) rho[:,j,i] = delim_string_parse(readline(rhofile), ' ', Float64, merge=true) * 1000 # convert to kg/m3 end end # Close data files close(vpfile) close(vsfile) close(rhofile) # Allocate output arrays vpout = Array{Float64}(undef,size(lat)) vsout = Array{Float64}(undef,size(lat)) rhoout = Array{Float64}(undef,size(lat)) # Fill output arrays @inbounds for j ∈ eachindex(lat) # Avoid edge cases at lat = -90.0, lon = 180.0 lonⱼ = mod(lon[j] + 180, 360) - 180 latⱼ = lat[j] if -90 < latⱼ < 90 && -180 < lonⱼ < 180 # Convert lat and lon to index ilat = 91 - ceil(Int,latⱼ) ilon = 181 + floor(Int,lonⱼ) vpout[j] = vp[layerindex,ilat,ilon] vsout[j] = vs[layerindex,ilat,ilon] rhoout[j] = rho[layerindex,ilat,ilon] else vpout[j] = NaN vsout[j] = NaN rhoout[j] = NaN end end # The end return (vpout, vsout, rhoout) end export find_crust1_seismic """ ```julia find_crust1_thickness(lat,lon,layer) ``` Return layer thickness for a crust 1.0 `layer` at a given `lat`itude and `lon`gitude. Accepts `lat` and `lon` both as `Numbers` and as `AbstractArray`s, but given the overhead of opening and reading the crust1 files, you should generally aim to provide large arrays with as many values in a single query as possible. Available `layer`s: ``` 1 | :water 2 | :ice 3 | :upper_sediments 4 | :middle_sediments 5 | :lower_sediments 6 | :upper_crust 7 | :middle_crust 8 | :lower_crust 9 | :mantle ``` Results are returned in form `(Vp, Vs, Rho, thickness)` ## Examples ```julia julia> find_crust1_thickness([43.702245], [-72.0929], 8) 1-element Vector{Float64}: 7.699999999999999 julia> find_crust1_thickness([43.702245], [-72.0929], :lower_crust) 1-element Vector{Float64}: 7.699999999999999 ``` """ function find_crust1_thickness(lat,lon,layer) # Layer thickness for a given lat, lon, and crustal layer. @assert eachindex(lat) == eachindex(lon) layerindex = crust1layer(layer) nlayers=9 nlon=360 nlat=180 # Allocate data arrays bnd = Array{Float64,3}(undef,nlayers,nlat,nlon) # Open data files bndfile = open(artifact"crust1/crust1.bnds", "r") # Read data files into array for j=1:nlat for i=1:nlon bnd[:,j,i] = delim_string_parse(readline(bndfile), ' ', Float64, merge=true) end end # Close data files close(bndfile) # Allocate output arrays thkout = Array{Float64}(undef,size(lat)) # Fill output arrays @inbounds for j ∈ eachindex(lat) # Avoid edge cases at lat = -90.0, lon = 180.0 lonⱼ = mod(lon[j] + 180, 360) - 180 latⱼ = lat[j] if -90 < latⱼ < 90 && -180 < lonⱼ < 180 # Convert lat and lon to index ilat = 91 - ceil(Int,latⱼ) ilon = 181 + floor(Int,lonⱼ) thkout[j] = bnd[layerindex,ilat,ilon]-bnd[layerindex+1,ilat,ilon] else thkout[j] = NaN end end # The end return thkout end export find_crust1_thickness """ ```julia find_crust1_base(lat,lon,layer) ``` Return elevation (relative to sea level) of the layer base for a crust 1.0 `layer` at a given `lat`itude and `lon`gitude. Accepts `lat` and `lon` both as `Numbers` and as `AbstractArray`s, but given the overhead of opening and reading the crust1 files, you should generally aim to provide large arrays with as many values in a single query as possible. Available `layer`s: ``` 1 | :water 2 | :ice 3 | :upper_sediments 4 | :middle_sediments 5 | :lower_sediments 6 | :upper_crust 7 | :middle_crust 8 | :lower_crust 9 | :mantle ``` Results are returned in form `(Vp, Vs, Rho, thickness)` ## Examples ```julia julia> find_crust1_base([43.702245], [-72.0929], 8) 1-element Vector{Float64}: -36.26 julia> find_crust1_base([43.702245], [-72.0929], :lower_crust) 1-element Vector{Float64}: -36.26 ``` """ function find_crust1_base(lat,lon,layer) # Depth to layer base for a given lat, lon, and crustal layer. @assert eachindex(lat) == eachindex(lon) layerindex = crust1layer(layer) nlayers=9 nlon=360 nlat=180 # Allocate data arrays bnd = Array{Float64,3}(undef,nlayers,nlat,nlon) # Open data files bndfile = open(artifact"crust1/crust1.bnds", "r") # Read data files into array for j=1:nlat for i=1:nlon bnd[:,j,i] = delim_string_parse(readline(bndfile), ' ', Float64, merge=true) end end # Close data files close(bndfile) # Allocate output arrays baseout = Array{Float64}(undef,size(lat)) # Fill output arrays @inbounds for j ∈ eachindex(lat) # Avoid edge cases at lat = -90.0, lon = 180.0 lonⱼ = mod(lon[j] + 180, 360) - 180 latⱼ = lat[j] if -90 < latⱼ < 90 && -180 < lonⱼ < 180 # Convert lat and lon to index ilat = 91 - ceil(Int,latⱼ) ilon = 181 + floor(Int,lonⱼ) baseout[j] = bnd[layerindex+1,ilat,ilon] else baseout[j] = NaN end end # The end return baseout end export find_crust1_base ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
14857
## --- Land """ ```julia find_land(lat,lon) ``` Find whether or not a given set of `lat`itude, `lon`gitude points on the globe is above sea level, based on the `etopo` bedrock elevation dataset ## Examples ```julia julia> find_land(43.702245, -72.0929) 0-dimensional Array{Bool, 0}: 1 ``` """ function find_land(lat, lon) # Interpret user input @assert eachindex(lat) == eachindex(lon) filepath = artifact"land/land.h5" land = h5read(filepath, "vars/land") # Scale factor (cells per degree) = 30 = arc minutes in an arc degree sf = 30 maxrow = 180 * sf maxcol = 360 * sf # Create and fill output vector result = zeros(Bool, size(lat)) for i ∈ eachindex(lat) if (-90 <= lat[i] <= 90) && (-180 <= lon[i] < 180) # Convert latitude and longitude into indicies of the elevation map array row = 1 + trunc(Int,(90+lat[i])*sf) row == (maxrow+1) && (row = maxrow) # Edge case col = 1 + trunc(Int,(180+lon[i])*sf) col == (maxcol+1) && (col = maxcol) # Edge case # Find result by indexing result[i] = land[row,col] end end return result end export find_land ## --- Geolcont continentcolors = parse.(Color, ["#333399","#0066CC","#06A9C1","#66CC66","#FFCC33","#FFFF00","#FFFFFF"]) export continentcolors continents = ["Africa","Eurasia","North America","South America","Australia","Antarctica","NA"] export continents """ ```julia find_geolcont(lat,lon) ``` Find which geographic continent a sample originates from. Continents: ``` 1: "Africa" 2: "Eurasia" 3: "North America" 4: "South America" 5: "Australia" 6: "Antarctica" 7: "NA" ``` See also: `continents`, `continentcolors`. ## Examples ```julia julia> find_geolcont(43.702245, -72.0929) 0-dimensional Array{Int64, 0}: 3 julia> continents[find_geolcont(43.702245, -72.0929)] 0-dimensional Array{String, 0}: "North America" ``` """ function find_geolcont(lat,lon) @assert eachindex(lat) == eachindex(lon) # Construct file path filepath = artifact"geolcont/geolcontwshelf.png" img = load(filepath) ind = fill(7,size(img)) for i=1:6 ind[img .== continentcolors[i]] .= i end # Create and fill output vector contindex = Array{Int}(undef,size(lat)) for i ∈ eachindex(lat) if (-90 <= lat[i] <= 90) && (-180 <= lon[i] <= 180) # Convert latitude and longitude into indicies of the elevation map array # Note that STRTM15 plus has N+1 columns where N = 360*sf row = 1 + trunc(Int,(90-lat[i])*512/180) col = 1 + trunc(Int,(180+lon[i])*512/180) # Find result by indexing contindex[i] = ind[row,col] else # Result is unknown if either input is NaN or out of bounds contindex[i] = 7 end end return contindex end export find_geolcont ## --- geolprov """ ```julia find_geolprov(lat,lon) ``` Find which tectonic setting a sample originates from, based on a modified version of the USGS map of tectonic provinces of the world (c.f. https://commons.wikimedia.org/wiki/File:World_geologic_provinces.jpg) Settings: ``` 10: Accreted Arc 11: Island Arc 12: Continental Arc 13: Collisional orogen 20: Extensional 21: Rift 22: Plume 31: Shield 32: Platform 33: Basin 00: No data ``` Settings returned are most representative modern setting at a given location and may not represent the tectonic setting where rocks (especially older/Precambrian rocks) originally formed. ## Examples ```julia julia> find_geolprov(43.702245, -72.0929) 0-dimensional Array{Int64, 0}: 10 julia> lat = rand(4)*180 .- 90 4-element Vector{Float64}: -28.352224011759773 14.521710123066882 43.301961981794335 79.26368353708557 julia> lon = rand(4)*360 .- 180 4-element Vector{Float64}: 5.024149409750521 161.04362679392233 123.21726489255786 -54.34797401313695 julia> find_geolprov(lat, lon) 4-element Vector{Int64}: 0 0 32 0 ``` """ function find_geolprov(lat, lon) @assert eachindex(lat) == eachindex(lon) filepath = artifact"geolprov/geolprov.h5" geolprov = h5read(filepath, "geolprov") result = zeros(Int, size(lat)) for i ∈ eachindex(lat) if -180 < lon[i] <= 180 && -90 <= lat[i] < 90 x = ceil(Int, (lon[i]+180) * 2161/360) y = ceil(Int, (90-lat[i]) * 1801/180) result[i] = geolprov[y,x] end end return result end export find_geolprov ## --- ETOPO1 (1 arc minute topography) """ ```julia get_etopo([varname]) ``` Read ETOPO1 (1 arc minute topography) file from HDF5 storage, downloading from cloud if necessary. Available `varname`s (variable names) include: ``` "elevation" "y_lat_cntr" "x_lon_cntr" "cellsize" "scalefactor" "reference" ``` Units are meters of elevation and decimal degrees of latitude and longitude. Reference: Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M. http://www.ngdc.noaa.gov/mgg/global/global.html See also: `find_etopoelev`. ## Examples ```julia julia> get_etopo() Dict{String, Any} with 6 entries: "cellsize" => 0.0166667 "scalefactor" => 60 "x_lon_cntr" => [-179.992, -179.975, -179.958, -179.942, -179.925, -1… "reference" => "Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minut… "y_lat_cntr" => [-89.9917, -89.975, -89.9583, -89.9417, -89.925, -89.… "elevation" => [-58.0 -58.0 … -58.0 -58.0; -61.0 -61.0 … -61.0 -61.0… julia> get_etopo("elevation") 10800×21600 Matrix{Float64}: -58.0 -58.0 -58.0 … -58.0 -58.0 -58.0 -61.0 -61.0 -61.0 -61.0 -61.0 -61.0 -62.0 -63.0 -63.0 -63.0 -63.0 -62.0 -61.0 -62.0 -62.0 -62.0 -62.0 -61.0 ⋮ ⋱ -4226.0 -4226.0 -4227.0 -4227.0 -4227.0 -4227.0 -4228.0 -4228.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 ``` """ function get_etopo(varname="") # Available variable names: "elevation", "y_lat_cntr", "x_lon_cntr", # "cellsize", "scalefactor", and "reference". Units are meters of # elevation and decimal degrees of latitude and longitude # Construct file path filedir = joinpath(resourcepath,"etopo") filepath = joinpath(filedir,"etopo1.h5") # Download HDF5 file from Google Cloud if necessary if ~isfile(filepath) @info "Downloading etopo1.h5 from google cloud storage to $filedir" run(`mkdir -p $filedir`) Downloads.download("https://storage.googleapis.com/statgeochem/etopo1.references.txt", joinpath(filedir,"etopo1.references.txt")) Downloads.download("https://storage.googleapis.com/statgeochem/etopo1.h5", filepath) end # Read and return the file return h5read(filepath, "vars/"*varname) end export get_etopo """ ```julia find_etopoelev([etopo], lat, lon, [T=Float64]) ``` Find the elevation of points at position (`lat`, `lon`) on the surface of the Earth, using the ETOPO1 one-arc-degree elevation model. Units are meters of elevation and decimal degrees of latitude and longitude. Reference: Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M. http://www.ngdc.noaa.gov/mgg/global/global.html See also: `get_etopo`. ## Examples ```julia julia> etopo = get_etopo("elevation") 10800×21600 Matrix{Float64}: -58.0 -58.0 -58.0 … -58.0 -58.0 -58.0 -61.0 -61.0 -61.0 -61.0 -61.0 -61.0 -62.0 -63.0 -63.0 -63.0 -63.0 -62.0 -61.0 -62.0 -62.0 -62.0 -62.0 -61.0 ⋮ ⋱ -4226.0 -4226.0 -4227.0 -4227.0 -4227.0 -4227.0 -4228.0 -4228.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 -4229.0 julia> find_etopoelev(etopo, 43.702245, -72.0929) 0-dimensional Array{Float64, 0}: 294.0 ``` """ find_etopoelev(lat,lon) = find_etopoelev(get_etopo(),lat,lon) find_etopoelev(etopo::Dict, lat, lon) = find_etopoelev(etopo["elevation"], lat, lon) function find_etopoelev(etopo::AbstractArray, lat, lon, T=Float64) # Interpret user input @assert eachindex(lat) == eachindex(lon) # Scale factor (cells per degree) = 60 = arc minutes in an arc degree sf = 60 maxrow = 180 * sf maxcol = 360 * sf # Create and fill output vector result = Array{T}(undef,size(lat)) for i ∈ eachindex(lat) if (-90 <= lat[i] <= 90) && (-180 <= lon[i] <= 180) # Convert latitude and longitude into indicies of the elevation map array row = 1 + trunc(Int,(90+lat[i])*sf) row == (maxrow+1) && (row = maxrow) # Edge case col = 1 + trunc(Int,(180+lon[i])*sf) col == (maxcol+1) && (col = maxcol) # Edge case # Find result by indexing result[i] = etopo[row,col] else # Result is NaN if either input is NaN or out of bounds result[i] = NaN end end return result end export find_etopoelev ## --- SRTM15_PLUS (15 arc second topography) """ ```julia get_srtm15plus([varname]) ``` Read SRTM15plus file from HDF5 storage (15 arc second topography from the Shuttle Radar Topography Mission), downloading from cloud if necessary. Available `varname`s (variable names) include: ``` "elevation" "y_lat_cntr" "x_lon_cntr" "cellsize" "scalefactor" "nanval" "reference" ``` Units are meters of elevation and decimal degrees of latitude and longitude. Reference: https://doi.org/10.5069/G92R3PT9 See also: `find_srtm15plus`. ## Examples ```julia julia> get_srtm15plus() Dict{String, Any} with 7 entries: "cellsize" => 0.00416667 "scalefactor" => 240 "x_lon_cntr" => [-180.0, -179.996, -179.992, -179.988, -179.983,… "reference" => "http://topex.ucsd.edu/WWW_html/srtm30_plus.html" "y_lat_cntr" => [-90.0, -89.9958, -89.9917, -89.9875, -89.9833, … "nanval" => -32768 "elevation" => Int16[-32768 -32768 … -32768 -32768; 3124 3124 …… julia> get_srtm15plus("elevation") 43201×86401 Matrix{Int16}: -32768 -32768 -32768 -32768 … -32768 -32768 -32768 3124 3124 3124 3124 3113 3113 3124 3123 3123 3123 3122 3111 3111 3123 3121 3121 3121 3121 3110 3110 3121 ⋮ ⋱ ⋮ -4225 -4224 -4224 -4224 -4224 -4225 -4225 -4223 -4222 -4222 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4230 -4230 -4230 -4230 … -4230 -4230 -4230 ``` """ function get_srtm15plus(varname="") # Available variable names: "elevation", "y_lat_cntr", "x_lon_cntr", # "nanval", "cellsize", "scalefactor", and "reference". Units are # meters of elevation and decimal degrees of latitude and longitude # Construct file path filedir = joinpath(resourcepath,"srtm15plus") filepath = joinpath(filedir,"srtm15plus.h5") # Download HDF5 file from Google Cloud if necessary if ~isfile(filepath) @info "Downloading srtm15plus.h5 from google cloud storage to $filedir" run(`mkdir -p $filedir`) Downloads.download("https://storage.googleapis.com/statgeochem/srtm15plus.references.txt", joinpath(filedir,"srtm15plus.references.txt")) Downloads.download("https://storage.googleapis.com/statgeochem/srtm15plus.h5", filepath) end # Read and return the file return h5read(filepath,"vars/"*varname) end export get_srtm15plus """ ```julia find_srtm15plus([srtm], lat, lon, [T=Float64]) ``` Find the elevation of points at position (`lat`, `lon`) on the surface of the Earth, using the SRTM15plus 15-arc-second elevation model. Units are meters of elevation and decimal degrees of latitude and longitude. Reference: https://doi.org/10.5069/G92R3PT9 See also: `get_srtm15plus`. ## Examples ```julia julia> srtm = get_srtm15plus("elevation") 43201×86401 Matrix{Int16}: -32768 -32768 -32768 -32768 … -32768 -32768 -32768 3124 3124 3124 3124 3113 3113 3124 3123 3123 3123 3122 3111 3111 3123 3121 3121 3121 3121 3110 3110 3121 ⋮ ⋱ ⋮ -4225 -4224 -4224 -4224 -4224 -4225 -4225 -4223 -4222 -4222 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4223 -4230 -4230 -4230 -4230 … -4230 -4230 -4230 julia> find_srtm15plus(srtm, 43.702245, -72.0929) 0-dimensional Array{Float64, 0}: 252.0 ``` """ find_srtm15plus(lat,lon) = find_srtm15plus(get_srtm15plus(),lat,lon) find_srtm15plus(srtm::Dict, lat, lon) = find_srtm15plus(srtm["elevation"], lat, lon) function find_srtm15plus(srtm::AbstractArray, lat, lon, T=Float64) # Interpret user input length(lat) != length(lon) && error("lat and lon must be of equal length") # Scale factor (cells per degree) = 60 * 4 = 240 # (15 arc seconds goes into 1 arc degree 240 times) sf = 240 # Create and fill output vector out = Array{T}(undef,size(lat)) for i ∈ eachindex(lat) if isnan(lat[i]) || isnan(lon[i]) || lat[i]>90 || lat[i]<-90 || lon[i]>180 || lon[i]<-180 # Result is NaN if either input is NaN or out of bounds out[i] = NaN else # Convert latitude and longitude into indicies of the elevation map array # Note that STRTM15 plus has N+1 columns where N = 360*sf row = 1 + round(Int,(90+lat[i])*sf) col = 1 + round(Int,(180+lon[i])*sf) # Find result by indexing res = srtm[row,col] if res == -32768 out[i] = NaN else out[i] = res end end end return out end export find_srtm15plus ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
693
## --- Geologic timescale gts = importdataset(joinpath(moduleresourcepath,"timescale","gts_intervals.tsv"), '\t', importas=:Tuple) e = (:Age_min, :Age_min_sigma, :Age_max, :Age_max_sigma) const timescale = NamedTuple{e}(((Dict{String,Float64}() for _ in e)...,)) for i in eachindex(gts.Name) timescale.Age_max[gts.Name[i]] = gts.Age_max[i] timescale.Age_max_sigma[gts.Name[i]] = gts.Age_max_sigma[i] timescale.Age_min[gts.Name[i]] = gts.Age_min[i] timescale.Age_min_sigma[gts.Name[i]] = gts.Age_min_sigma[i] end export timescale ## --- Rock type classification const rock_type_key = importdataset(joinpath(moduleresourcepath,"rock_type_key.tsv"), '\t', importas=:Tuple)
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
3536
litho1layer(layer::Number) = Int(layer) function litho1layer(layer::Symbol) if layer===:ice 1 elseif layer===:water 2 elseif layer===:upper_sediments 3 elseif layer===:middle_sediments 4 elseif layer===:lower_sediments 5 elseif layer===:upper_crust 6 elseif layer===:middle_crust 7 elseif layer===:lower_crust 8 elseif layer===:lithosphere || layer===:sclm || layer===:lid 9 elseif layer===:asthenosphere 10 else @error """litho1 layer $layer not found. Available layers include: 1 | :ice 2 | :water 3 | :upper_sediments 4 | :middle_sediments 5 | :lower_sediments 6 | :upper_crust 7 | :middle_crust 8 | :lower_crust 9 | :sclm (or :lithosphere) 10 | :asthenosphere """ end end """ ```julia find_litho1_property(lat, lon, layer::Symbol, property::Symbol) ``` Return values for a LITHO1.0 `property` of a given `layer` at one or more given `lat`itudes and `lon`gitudes, to the nearest 0.5-arc-degree grid point. Accepts `lat` and `lon` both as `Numbers` and as `AbstractArray`s, but given the overhead of opening and reading the LITHO1.0 files, you should generally aim to provide large arrays with as many values in a single query as possible. Available properties include: ``` :vp | p-wave velocity [m/s] :vs | s-wave velocity [m/s] :rho | density [kg/m^3] :bottom | depth to bottom of the layer [km] (above sea level = negative) :thickness | layer thickness [km] ``` while avialble `layer`s are: ``` 1 | :ice 2 | :water 3 | :upper_sediments 4 | :middle_sediments 5 | :lower_sediments 6 | :upper_crust 7 | :middle_crust 8 | :lower_crust 9 | :sclm (or :lithosphere) 10 | :asthenosphere ``` ## Examples ```julia julia> find_litho1_property([43.702245, 44], [-72.0929, -73], :upper_crust, :vp) 2-element Vector{Float64}: 6219.99 6253.16 ``` """ function find_litho1_property(lat, lon, layer, property::Symbol) @assert eachindex(lat)==eachindex(lon) layerindex = litho1layer(layer)::Int @assert 0 < layerindex < 11 litho1path = artifact"litho1-gridded/litho1-gridded.h5" result = fill(NaN, size(lat)) if property===:vp data = h5read(litho1path, "vp")::Array{Float64,3} elseif property===:vs data = h5read(litho1path, "vs")::Array{Float64,3} elseif property===:rho || property===:density data = h5read(litho1path, "rho")::Array{Float64,3} elseif property===:base || property===:bottom data = h5read(litho1path, "bottom")::Array{Float64,3} elseif property===:thickness data = h5read(litho1path, "thickness")::Array{Float64,3} else @error """litho1 property `$property` not found. Available options include: :vp, :vs, :rho, :bottom, :thickness """ return result end # For reference: # lats = -90:0.5:90 # lons = -179.5:0.5:180 scale = 2 @inbounds for i in eachindex(lat) r = scale*(lat[i]+90) + 1 c = scale*(lon[i]+180) if 1 <= r <= size(data,1) && 0 <= c <= size(data,2) row, col = trunc(Int, r), trunc(Int, c) col < 1 && (col = size(data,2)) result[i] = data[row, col, layerindex] end end return result end export find_litho1_property
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
5215
# --- Müller et al. seafloor age and spreading rate """ ```julia get_seafloorage(varname="") ``` Read seafloor age file from HDF5 storage, downloading from cloud if necessary. Available `varname`s (variable names) include: ``` "seafloorage" "seafloorage_sigma", "seafloorrate" "information" "reference" ``` Units are millions of years for age and mm/yr for rate. Reference: M⁠⁠üller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi:10.1029/2007GC001743. ftp://ftp.es.usyd.edu.au/pub/agegrid/2008/Grids/ See also: `find_seafloorage`. ## Examples ```julia julia> get_seafloorage() Dict{String, Any} with 5 entries: "seafloorrate" => [6.83 6.79 … 6.91 6.87; 6.82 6.78 … 6.91 6.… "reference" => "Muller, R. D., M. Sdrolias, C. Gaina, and … "seafloorage" => [8.02 8.13 … 7.8 7.91; 8.01 8.12 … 7.81 7.9… "information" => "Mercator projection, from 80.738 to -80.73… "seafloorage_sigma" => [2.15 2.19 … 2.08 2.11; 2.15 2.19 … 2.08 2.… julia> get_seafloorage("seafloorage") 8640×10800 Matrix{Float64}: 8.02 8.13 8.24 8.36 … 7.6 7.7 7.8 7.91 8.01 8.12 8.23 8.34 7.61 7.71 7.81 7.91 8.01 8.11 8.22 8.32 7.62 7.72 7.81 7.91 8.01 8.11 8.2 8.3 7.64 7.73 7.82 7.91 ⋮ ⋱ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ``` """ function get_seafloorage(varname="") # Available variable names: "seafloorage", "seafloorage_sigma", # "seafloorrate", "information", and "reference". # Construct file path filedir = joinpath(resourcepath,"seafloorage") filepath = joinpath(filedir,"seafloorage.h5") # Download HDF5 file from Google Cloud if necessary if ~isfile(filepath) @info "Downloading seafloorage.h5 from google cloud storage to $filedir" run(`mkdir -p $filedir`) Downloads.download("https://storage.googleapis.com/statgeochem/seafloorage.references.txt", joinpath(filedir,"seafloorage.references.txt")) Downloads.download("https://storage.googleapis.com/statgeochem/seafloorage.h5", filepath) end # Read and return the file return h5read(filepath,"vars/"*varname) end export get_seafloorage """ ```julia find_seafloorage([sfdata], lat, lon) ``` Find the age of the seafloor at positions (`lat`, `lon`) on the ocean crust, using the Müller et al. (2008) dataset. Units are millions of years for age and mm/yr for rate. Reference: M⁠⁠üller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi:10.1029/2007GC001743. ftp://ftp.es.usyd.edu.au/pub/agegrid/2008/Grids/ See also: `get_seafloorage`. ## Examples ```julia julia> sfdata = get_seafloorage("seafloorage") 8640×10800 Matrix{Float64}: 8.02 8.13 8.24 8.36 … 7.6 7.7 7.8 7.91 8.01 8.12 8.23 8.34 7.61 7.71 7.81 7.91 8.01 8.11 8.22 8.32 7.62 7.72 7.81 7.91 8.01 8.11 8.2 8.3 7.64 7.73 7.82 7.91 ⋮ ⋱ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN julia> find_seafloorage(sfdata, 43.702245, -40) 0-dimensional Array{Float64, 0}: 75.95 ``` """ find_seafloorage(lat, lon) = find_seafloorage(get_seafloorage("seafloorage"), lat, lon) find_seafloorage(sfdata::Dict, lat, lon) = find_seafloorage(sfdata["seafloorage"], lat, lon) function find_seafloorage(sfdata::AbstractArray, lat, lon) # Interpret user input eachindex(lat) == eachindex(lon) || error("`lat` and `lon` must be the same size") # Make and fill output array result = fill(NaN, size(lat)) for i ∈ eachindex(lat) # Find the column numbers (using mod to convert lon from -180:180 to 0:360 x = floor(Int, mod(lon[i], 360) * 10800/360) + 1 # find the y rows, converting from lat to Mercator (lat -80.738:80.738) y = 4320 - floor(Int, 8640 * asinh(tan(lat[i]*pi/180)) / asinh(tan(80.738*pi/180)) / 2 ) + 1 # If there is out data for row(i), col(i) if (1 <= x <= 10800) && (1 <= y <= 8640) # Then fill in the output data (Age, Age_Min, Age_Max) result[i] = sfdata[y, x] end end return result end export find_seafloorage ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
1246813
""" ```julia claiborne_zircon_kd(elem::String, T::Number) ``` Returns the temperature-dependent zircon/melt partition coefficients of Claiborne et al. (2017) for the given element `elem` at temperature `T` degrees C, using equations of the form `a * exp(b/TK)` where `TK = T + 273.15` In addition to the elements for which Claiborne provides equations, we also extrapolate these partition coefficients to include `"La"` and `"Pr"` using a lattce strain model, following the equations of Blundy and Wood (2003). Reference: Claiborne, L. L., Miller, C. F., Gualda, G. A., Carley, T. L., Covey, A. K., Wooden, J. L., & Fleming, M. A. (2018). Zircon as magma monitor: Robust, temperature‐dependent partition coefficients from glass and zircon surface and rim measurements from natural systems. in Microstructural geochronology: Planetary records down to atom scale, 1-33. https://doi.org/10.1002/9781119227250.ch1 ## Examples ```julia julia> claiborne_zircon_kd("Yb", 600) 1016.9198328977473 ``` """ function claiborne_zircon_kd(elem::String, T::Number) # Convert temperature to Kelvin T += 273.15 # Calculate partition coefficient if elem=="Hf" 0.0965*exp(10206/T) elseif elem=="Th" 0.0126*exp(6696/T) elseif elem=="U" 0.0465*exp(7167/T) elseif elem=="Y" 0.0036*exp(9806/T) elseif elem=="Nb" 0.0003*exp(7241/T) elseif elem=="La" # Extended by lattice strain model, see extend_claiborne.jl 1.3798739589052778e-6 * exp(2589.726053162119/T) elseif elem=="Pr" # Extended by lattice strain model, see extend_claiborne.jl 5.133827751234487e-5 * exp(5290.150996818675/T) elseif elem=="Nd" 0.0001*exp(5867/T) elseif elem=="Sm" 0.0009*exp(6636/T) elseif elem=="Tb" 0.0021*exp(9160/T) elseif elem=="Eu" 0.0032*exp(6026/T) elseif elem=="Dy" 0.0041*exp(9090/T) elseif elem=="Gd" 0.0005*exp(9436/T) elseif elem=="Ho" 0.0038*exp(9948/T) elseif elem=="Er" 0.0052*exp(10088/T) elseif elem=="Yb" 0.0044*exp(10784/T) elseif elem=="Tm" 0.0086*exp(9990/T) elseif elem=="Lu" 0.0032*exp(11358/T) else NaN end end export claiborne_zircon_kd germ_kd = Dict{String, Union{Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}, Vector{Float64}, Vector{String}}}("Olivine" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.6983679307289166, "Pd" => [-1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567, -1.9462254351276567], "Nb" => [-2.8213818962849513, -2.7536925899071996, -2.6899736591649552, -2.646033292849799, -2.5979719820708627, -2.5611546494742026, -2.526684176968295, -2.4943753115718694, -2.4562111963459023, -2.4351771530522988, -2.3959816448300724, -2.3706810404814416, -2.3354032026113574, -2.2960101962919137, -2.2514460357812527, -2.2136961008380425, -2.1661681075521346, -2.132956774617309, -2.0911423220314593, -2.0494841158127834, -2.0080900200474856, -1.9894699776173301, -1.9366205935726397, -1.9151062019283098, -1.8650710629469938, -1.8279898296937824, -1.7705173719404421, -1.7415239378641576, -1.6992709358170945, -1.6712508644445707, -1.6280115049175714, -1.5967093422083407, -1.5627959810892962, -1.533002858583591, -1.5130365527624852, -1.5185052394119032, -1.5082549821130373, -1.49785673615257, -1.486633272380175, -1.4767997762168064, -1.4260312129338726], "P" => [-1.4751250542022158, -1.4776538211562393, -1.4755407734515542, -1.4672433390806308, -1.459475963353387, -1.4584477048304731, -1.4509880813268319, -1.4448094057820118, -1.4438079532063088, -1.4388341754497336, -1.435691702124203, -1.4343791159071897, -1.4306214677429043, -1.4312011389516668, -1.4303096768937615, -1.4275347559266318, -1.4216543940134576, -1.4166365763538131, -1.4094658082253413, -1.4048592351351876, -1.3993162648338606, -1.3929239316427988, -1.3888688964883535, -1.3824837545064959, -1.3754926431624224, -1.366574563338045, -1.3655236376356739, -1.3633541805096363, -1.3582576438936034, -1.3559264375686733, -1.3557756283040816, -1.347371635427632, -1.3402066065820262, -1.340234311926065, -1.3279463331064911, -1.315502651454478, -1.321951315655071, -1.320528943093673, -1.304819594237794, -1.3001344733639129, -1.298987888219444], "Si" => [0.03191626304302531, 0.018373672541005515, 0.008888475503393455, 0.00183284978274364, -0.002698522407835879, -0.004426612239525758, -0.009605742495882759, -0.015204981026484843, -0.02138587676865228, -0.027096561777859327, -0.03314376603818909, -0.035413095195655366, -0.04351617705453168, -0.05087770667711292, -0.05563841423713214, -0.060372095417077054, -0.06432028129515185, -0.06620214906775708, -0.06840358241407668, -0.07033405150569932, -0.07436679160350324, -0.07555395254386785, -0.07712194484747756, -0.07632665313740754, -0.07860221809690598, -0.07885007534695161, -0.08042814416257228, -0.08165289601187861, -0.083748847144852, -0.08574701294526241, -0.08601609463765479, -0.08845434543710451, -0.08984321245168576, -0.08971534401164268, -0.08792523440528482, -0.08882250852235372, -0.08912989934777991, -0.08883899921418027, -0.09052721512399624, -0.09253114179414906, -0.09331854295017855], "Ag" => [-2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028, -2.548455006504028], "Ar_sigma" => NaN, "Gd" => [-2.3077702531872886, -2.291793551819931, -2.273473983145089, -2.2651126254689165, -2.251274967087571, -2.2341322626771616, -2.217640546294348, -2.2098980681476914, -2.190176770430281, -2.177900389037809, -2.166385210189889, -2.15184655207864, -2.13297306765265, -2.1208261475325743, -2.0968738852582653, -2.06560622469224, -2.0393392223405065, -2.004644067299282, -1.9549565229820625, -1.898214584927343, -1.8389627730555163, -1.7538777808643378, -1.6486820120577717, -1.535602554655344, -1.4142493443480815, -1.2719746664090403, -1.1151718264143933, -0.9643484530429743, -0.7962762063244893, -0.6550149346595463, -0.5390223013392076, -0.42485872941191194, -0.32117281851653556, -0.2725053866362731, -0.2080472778559186, -0.15608655765457835, -0.15227583198753716, -0.16039338453692256, -0.1681044077681934, -0.20263183826600828, -0.2539763881584221], "Ru" => [0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239, 0.08325945877047239], "Be_sigma" => 0.8131695844800153, "Sb" => [-2.290875138009424, -2.2648439327211984, -2.2266958484817154, -2.1897462996791246, -2.15677209372445, -2.1029513005641602, -2.050588606193549, -2.0060583166518207, -1.9629865125648918, -1.934211283146432, -1.9006016985814282, -1.860846540899278, -1.8176815576376508, -1.7929987362588033, -1.7547498646763329, -1.7160119118144226, -1.705181057318023, -1.698233974291805, -1.6701660037800208, -1.663173321129401, -1.660257176067119, -1.6435332895258656, -1.625680345121162, -1.6173293833853013, -1.6094999582927907, -1.5994270615377897, -1.5886321838903612, -1.5762196850042653, -1.567501813339903, -1.5378764069433435, -1.5262867815125243, -1.5023268370257161, -1.4945837012403345, -1.4984358748474713, -1.495926742047437, -1.472168275119261, -1.4768796762709748, -1.4559055844161577, -1.4615484311952391, -1.4859825337626065, -1.4786168960252368], "Nb_sigma" => 1.1074292645235813, "Cs" => [-2.357741042135245, -2.327895841015099, -2.2985178276354032, -2.2805808962299845, -2.252543448261717, -2.2231397676897946, -2.1910467069826667, -2.1566516481211164, -2.1183776860707684, -2.0888978553010076, -2.0501203254675793, -2.0094275493117797, -1.9782107785831142, -1.9471879329664157, -1.9107685200406481, -1.8809026665161233, -1.8601732835454512, -1.828377325799964, -1.7952196765990545, -1.7665515307274406, -1.7418393867510251, -1.7230893825123599, -1.7087301565571065, -1.6898085235492024, -1.6621006558124534, -1.6536847500803176, -1.6371327855039695, -1.611254106134339, -1.5954131926343016, -1.5916432101146565, -1.5643153163799683, -1.5459439315829453, -1.5463294709985205, -1.5552502167213362, -1.54867633763066, -1.5598351922852178, -1.5783049496648778, -1.579052490635775, -1.5559777007492628, -1.5469929498708497, -1.5527588075844825], "U_sigma" => 1.3767011738441417, "Ce_sigma" => 1.360203651228003, "Dy_sigma" => 0.8176903521675202, "Be" => [-1.8493997913147726, -1.8384444823743118, -1.8097155003845946, -1.7868699187540504, -1.775171949872566, -1.7618448344349238, -1.7441898753943244, -1.731030242264434, -1.715334424204941, -1.7030136810854706, -1.6874533871964137, -1.6713082055143138, -1.6603863336624924, -1.6397504765247948, -1.6145223978737697, -1.6042504124516295, -1.5798137758743624, -1.5699413026287528, -1.5683109006914224, -1.5628735970179748, -1.5475589334124964, -1.5418143808428924, -1.533834035665236, -1.5251029889919647, -1.5171700023307906, -1.5133197241152672, -1.5145405479240006, -1.505406641431797, -1.4942137133496363, -1.4910062449080261, -1.4843197748331483, -1.4837256901917473, -1.4724620128748132, -1.4656489663659336, -1.4606188582800343, -1.4398390871064906, -1.4308283450997663, -1.4270985073461322, -1.427203325780509, -1.4167729824656679, -1.422901752077417], "Sr" => [-2.8402417900757917, -2.8306122716351907, -2.804095038372305, -2.796876981697946, -2.758610692126052, -2.7334111403175863, -2.6956185658210683, -2.6715356876282326, -2.6419847726580263, -2.6182913870236053, -2.5850188684410513, -2.557298224093858, -2.517789735060442, -2.484512205111647, -2.4524663215518094, -2.421749834768949, -2.375007699539808, -2.3376868613644906, -2.2856472221269475, -2.242264130181241, -2.187308261944716, -2.1456273989413392, -2.099791017465635, -2.0487381038645607, -1.976698904814813, -1.9179531585040088, -1.836493708977164, -1.7698711831870928, -1.718078454178237, -1.6290113371577475, -1.5439277346008067, -1.4759617287701094, -1.3842272466191574, -1.2651284132021348, -1.2306424455168532, -1.1486673003340362, -1.0759332042703547, -1.0245965077551837, -0.9736463082137031, -0.9039311476768742, -0.8700904307235635], "Pt_sigma" => NaN, "Ta" => [-2.4408909403407453, -2.3828302525923872, -2.3282396495029407, -2.2707382970553316, -2.2063508552496343, -2.1433537612270905, -2.080362466357696, -2.016116087192459, -1.9621223576641205, -1.914149585173544, -1.8703417031516223, -1.8351312584362518, -1.80249047600826, -1.7738053724572875, -1.7525782781857504, -1.739577506851904, -1.7199752312340233, -1.7079542654451172, -1.6972538376557444, -1.6889274516735056, -1.6704093703111758, -1.6525944620653066, -1.6204311998698642, -1.5830366112654273, -1.5253879887469945, -1.4492958171622246, -1.3731383696466715, -1.2948082403592693, -1.213284242377822, -1.1311031291010156, -1.0653022730952686, -0.9985435284341595, -0.9408961429926205, -0.8896894230137714, -0.8578825427153128, -0.843321376037921, -0.8333116172807449, -0.8308913515804408, -0.8381519780247269, -0.8472487840917103, -0.8616672805566057], "Ga" => [-1.1325988624891956, -1.132087297322964, -1.1366389661400165, -1.140411458297053, -1.139459290766595, -1.149634793279775, -1.1536803706503505, -1.14974460763326, -1.1370005280940565, -1.1370136885636177, -1.1172222207130147, -1.1101060768511513, -1.1085812807176822, -1.1087236498440152, -1.0973087950407732, -1.0984508517911327, -1.0961710082741738, -1.0865519900264586, -1.085145494905319, -1.069481897482282, -1.0592789163760017, -1.0455562910648093, -1.042197349537022, -1.0311477003713108, -1.0371258263008851, -1.0386026447038497, -1.0401186350820653, -1.035338920681801, -1.025159011436468, -1.019275837373088, -1.01611852611833, -1.007487775178111, -0.9938209636921379, -0.9922740714859429, -0.9799252097548307, -0.9601170011324797, -0.9552669935899449, -0.9520065926433949, -0.9452885912318653, -0.9400333414066011, -0.9304285265593764], "W_sigma" => 1.57663333403345, "Cs_sigma" => 1.0664442172362354, "Y" => [-1.863152417535761, -1.8632488217517298, -1.8529291640126284, -1.8505193318254223, -1.8497182922509419, -1.8413932830335373, -1.8221687288321982, -1.8141056548587509, -1.7968880741012163, -1.780342282551758, -1.763849058560273, -1.7528240853845178, -1.7391553375961144, -1.7266434212734145, -1.7141413089464872, -1.7073871261041411, -1.7071524239438554, -1.7039563003628524, -1.6934613011387414, -1.6790918441214606, -1.6613470778993937, -1.6361882530132212, -1.619483617176513, -1.611693361700297, -1.604735985089699, -1.5986537435973263, -1.587239772830317, -1.5697288950699875, -1.552824633913395, -1.5385016993801, -1.5311407308126477, -1.5199305866052177, -1.495441765140121, -1.4684075131384913, -1.4433083626300716, -1.4182027406935958, -1.4025100434932154, -1.4032888361844493, -1.389583472733503, -1.3717179343955583, -1.3522405716908112], "Sm_sigma" => 1.0043341861065682, "Lu_sigma" => 0.6824747891600387, "Kr" => [-3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822, -3.5850266520291822], "U" => [-3.0084757417664427, -2.9915556964719108, -2.97176048457083, -2.9614090344630264, -2.9222989603339165, -2.8982074197713064, -2.86786246637071, -2.842710481629056, -2.805914621449465, -2.7681424511020687, -2.7088951947381377, -2.660609393635689, -2.591157835885337, -2.5048119202667603, -2.429086711294509, -2.3512151796010103, -2.2563333392085214, -2.1558386597416956, -2.0767176153101286, -1.9740466441576707, -1.884789650055375, -1.784602552330145, -1.6987691336258515, -1.6106668949327256, -1.5353712075983357, -1.419823422107409, -1.3235291647897265, -1.2220251064964476, -1.1097327287947245, -0.9888741298409645, -0.9258063955804844, -0.858866734579738, -0.8054078086292609, -0.7658925636372504, -0.7385897977502712, -0.7048948824191072, -0.6932406450052921, -0.6749300000534766, -0.6830087709353349, -0.6936548229578975, -0.7016359780242765], "Eu_sigma" => 0.9597700233337665, "Sn_sigma" => 0.955985702366463, "Ca" => [-1.675576797356326, -1.6734110434825562, -1.6708351200308906, -1.6668498381252097, -1.6641121137621, -1.666340079671204, -1.6651751747489871, -1.6648839752833937, -1.666155445880188, -1.6651650018157584, -1.6647500693879864, -1.6633735699159424, -1.6608923651625083, -1.6612477170539672, -1.659780339456313, -1.656169079465049, -1.6560094460555759, -1.6578584383525237, -1.657952417689425, -1.6612827429564097, -1.6602979826246873, -1.661398428153209, -1.6614278729120566, -1.6610827975096654, -1.6551666747637748, -1.6569615060492615, -1.6516884043460869, -1.6483668358497268, -1.6459374634101953, -1.6464932087139978, -1.6458824616347503, -1.6480126956969312, -1.6499853761713787, -1.6504839558486704, -1.6529443510697734, -1.6528911876192933, -1.6520448396823075, -1.6529087088978158, -1.6517362812887757, -1.6466096315640606, -1.6452896505552528], "Au" => [-0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432, -0.1549019599857432], "Cu_sigma" => 0.7631187049182362, "K" => [-2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984, -2.4406328226669984], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-2.7549760495351086, -2.7112373182712086, -2.6750579848888933, -2.6481084676606477, -2.6217848298436244, -2.586793996835154, -2.5553456248563453, -2.522171274229927, -2.4888855515151964, -2.4580940100535282, -2.444754586675996, -2.434234654582148, -2.4166340095283374, -2.409075906009059, -2.3949071037079, -2.3717891584780166, -2.3348142852775795, -2.3116800968824425, -2.261650542425531, -2.2034332193043364, -2.1120068966950534, -2.0236683546012673, -1.886820754967073, -1.7281500760085864, -1.5385428072787268, -1.347757893581088, -1.1446990241954744, -0.9226630982112949, -0.7221114535376402, -0.5214845343217809, -0.35946037045094875, -0.19498859696137144, -0.06929230007542218, 0.030076887860093483, 0.11307677986160015, 0.19491690923962993, 0.23827515045591957, 0.28109264464451594, 0.3170772232845847, 0.3161255241604676, 0.30286839251588876], "Ne_sigma" => NaN, "Os_sigma" => 2.816610789540347, "Xe_sigma" => NaN, "Fe_sigma" => 0.49624521857684106, "V" => [-0.9475572546409622, -0.9485656788845753, -0.9505906210513614, -0.9422934681303532, -0.9436618809016165, -0.9440930425605006, -0.9432193753337841, -0.9406898063804916, -0.9443033388097077, -0.9441325358037121, -0.9442586665237196, -0.9423048368977419, -0.9401508725089053, -0.939689093250362, -0.9354035479823031, -0.9380930893203371, -0.9451048540344968, -0.9510936320980409, -0.9511618833913313, -0.9544866702695577, -0.9566970287306628, -0.9518148494289747, -0.9444942393191728, -0.9417488923005588, -0.9472257757289964, -0.9434593792385707, -0.9447795661196193, -0.9494383132994516, -0.9514096967964243, -0.9504507286947204, -0.9598155143718023, -0.9716979555446498, -0.9757724152695533, -0.9913672503739696, -0.9883036151928933, -0.9845487727273262, -0.9784727949288127, -0.9790731239158711, -0.9824568274993186, -0.9951879375711743, -1.0133443159255424], "Yb_sigma" => 0.6633212219209265, "He_sigma" => NaN, "Co_sigma" => 0.3638254365534864, "Mo" => [-2.871596898085988, -2.836886525665953, -2.7833212336707196, -2.7190693569888844, -2.6518896449536107, -2.551767964889715, -2.439575393057162, -2.3201803469455538, -2.2030782637331368, -2.0633610960765023, -1.9360254883817518, -1.8073488777921234, -1.6879258808800324, -1.5692515557931033, -1.4715036945871778, -1.3908261577850254, -1.3296328886058217, -1.2656688466689343, -1.2219993454288127, -1.184735948749247, -1.1436897880763197, -1.0965667669126002, -1.0605430983064823, -1.0288455100658453, -0.9915518585602213, -0.9580415708620106, -0.9126812369359696, -0.8749602801319791, -0.8253636240203627, -0.780129223430788, -0.73835249542858, -0.7004095545064729, -0.6706030459009624, -0.6468699931194387, -0.6251808170157092, -0.6099857168505027, -0.5952325366052367, -0.5801616464814496, -0.5630716781035398, -0.5577532010170227, -0.548479918808438], "Ho_sigma" => 0.8192319745087002, "Pr" => [-2.804672272541416, -2.773547771735933, -2.741896568280352, -2.7165612571870623, -2.678346184584492, -2.642179656278043, -2.622873885690888, -2.5967653630318726, -2.5754972981661735, -2.563327310667781, -2.55891903917756, -2.5470648790440205, -2.5374939861609285, -2.5266839729038666, -2.509574523740423, -2.468583820766047, -2.4244548240293464, -2.3775474745513385, -2.321621953022055, -2.2374081901789347, -2.1568994199861913, -2.040586052475848, -1.8980339967703648, -1.7265417933788518, -1.5398315759033723, -1.3005569386394644, -1.0955648156052094, -0.9037566915476536, -0.7119671309853682, -0.5529719694537767, -0.421419367697307, -0.3009667818030331, -0.16003256003277888, -0.08657859800590742, 0.008775400437822937, 0.04745871028046585, 0.11159003153519043, 0.14144976442431859, 0.19203695574312044, 0.17846033105338166, 0.2273057162593819], "Pm_sigma" => NaN, "Th" => [-3.0214963009979257, -2.973936479442616, -2.924873202026998, -2.891519906758327, -2.864795135821597, -2.832689099127984, -2.7908760546963993, -2.7496463559592614, -2.6929155315198807, -2.6249342790646146, -2.554084185046007, -2.4944148163423807, -2.433461628414347, -2.373627428863764, -2.3257408864982096, -2.2746058323640117, -2.2159281869637364, -2.142637284598549, -2.063654860735138, -1.973074511215751, -1.9037044870442603, -1.8077160686147737, -1.708875836069947, -1.6148742264614606, -1.4908219825076303, -1.3471308064628154, -1.1879389089898171, -1.026314374353957, -0.8727349520509978, -0.7443381671656424, -0.605906878412453, -0.5073803015395035, -0.4219167708461529, -0.3268336639742689, -0.26136487639998274, -0.2117344100210405, -0.17170096248866137, -0.1357713725501684, -0.11529784302313126, -0.09070258959547964, -0.0632730757607597], "Y_sigma" => 0.719759652257051, "Zn" => [0.029276817929700504, 0.02613022645621166, 0.020677164547822462, 0.01742139578997894, 0.016357871903362645, 0.0164606065335362, 0.015743649317796524, 0.019919096536816047, 0.023442427781648345, 0.025081016252532885, 0.02618265105978148, 0.0330161993373633, 0.03685897613875213, 0.0407929974652457, 0.0446426328014617, 0.051774596326706515, 0.054163658400594776, 0.06337393621268926, 0.07717046431352734, 0.0951795807677582, 0.11849359200284296, 0.15447652340064133, 0.19398706555148879, 0.24208764547564843, 0.30632682138925, 0.38510109625123196, 0.46157730150044674, 0.5342273904545304, 0.6071546166313315, 0.6690758084005765, 0.7174391840074172, 0.7618053418307514, 0.7972841906005959, 0.8213386208987957, 0.839348511808989, 0.8488375847108843, 0.8559720937867739, 0.8611165643574948, 0.8594199792514099, 0.8572579845331412, 0.848669952439117], "Ni_sigma" => 0.5238129855464776, "He" => [-3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596, -3.7135641988997596], "Sc" => [-0.7084185374409501, -0.7099217218001772, -0.7050475362433828, -0.7007796102636642, -0.6969650171696488, -0.6918652957816609, -0.6856455734119805, -0.6781580648758371, -0.669829725833607, -0.6584871432925743, -0.6488438529732853, -0.6346599672490607, -0.6233340320480439, -0.6103526247906154, -0.6004768923363353, -0.5861882493522158, -0.5706934894008411, -0.5566146741025743, -0.5380104192717156, -0.5134662355283526, -0.4861768842370226, -0.4539391704522327, -0.4082508510444447, -0.36179640641776434, -0.3010566359017382, -0.21632897404510043, -0.14076030983856977, -0.04706927969433323, 0.05484838244177673, 0.1607669870877241, 0.2447896212556748, 0.3306104528466471, 0.3837104242881706, 0.433356577057968, 0.4712332463638054, 0.4855555215920068, 0.508963978477583, 0.5190976213163787, 0.5221909687506604, 0.5064927407186649, 0.49036343414320016], "Pr_sigma" => 1.3572106595351228, "B_sigma" => 0.32274115047705704, "Li_sigma" => 0.48450655128947806, "Tl_sigma" => NaN, "Mn_sigma" => 0.5700546217926219, "Cd_sigma" => NaN, "P_sigma" => 0.3626044633873358, "Zn_sigma" => 0.3933348252114203, "Al" => [-1.951506287436282, -1.9611898949140933, -1.970234958039936, -1.97335177476468, -1.982500277425447, -1.987347320723738, -1.9935414327672725, -1.9935086440660224, -2.005460821946819, -2.0010622921728096, -2.005088439985383, -2.0042847908889816, -2.005266493638183, -2.00137279748925, -2.005952137418714, -2.0059544945558025, -2.008170963058091, -2.0152365470867486, -2.0175528726504575, -2.0198302903071395, -2.0245828798118626, -2.0270368531785623, -2.023850636711988, -2.0268954604626854, -2.029467098615857, -2.028539847045284, -2.0339712187277548, -2.0408552935951723, -2.0364649463601356, -2.0361796934953564, -2.0365719598269605, -2.0365398484480575, -2.0344439436598125, -2.041844756058135, -2.0430983436107324, -2.051512261309255, -2.051288816509481, -2.0594787430736337, -2.0602293605817725, -2.061795578098646, -2.0555760652185207], "In_sigma" => 0.2420471890868343, "Si_sigma" => 0.6013673116407219, "Ar" => [-2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775], "Er_sigma" => 0.7957375336163792, "Er" => [-1.8854966005051184, -1.8615383894549284, -1.8492906494420267, -1.836980727711192, -1.8273903895508108, -1.823299604294716, -1.8150533671819704, -1.8073004520381077, -1.7992127423467903, -1.7877672647156302, -1.7699429768125485, -1.7608770590905887, -1.7411129181925373, -1.7235385450136502, -1.6972029395651644, -1.675207543296877, -1.6379124522629456, -1.6054171564100694, -1.5517745146685997, -1.5019852420560196, -1.4238634915994746, -1.340119767379572, -1.2367928199005354, -1.1176953013502116, -1.0026006262951765, -0.8710750088405311, -0.7351392879020398, -0.6130535919515315, -0.4971849082041064, -0.3857676524576723, -0.3061544561640439, -0.22000424347232214, -0.1586392101403248, -0.09381145409078523, -0.04783918020197363, -0.02029050176800347, 0.006700027778442805, 0.024543179145164185, 0.03220208335218927, 0.029710816344368778, 0.043378916549554065], "Ge" => [-0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901, -0.4107880621601901], "Cr_sigma" => 0.4492583192835368, "Fe" => [0.07296581398068434, 0.07678434339962531, 0.0791706971829701, 0.08166157344043858, 0.0851591191017095, 0.08434418596134866, 0.08876307336860734, 0.08969812931542469, 0.08911005805760405, 0.09297607565914379, 0.09987718010865089, 0.10246762326835951, 0.11047412904774573, 0.11896020270287086, 0.12510009014111195, 0.13254674293931692, 0.14488284510002247, 0.15872804038663021, 0.18116261616618407, 0.2105020369881492, 0.24780673279480134, 0.29589166325398936, 0.34494241332061853, 0.40910000795659623, 0.49265432034056467, 0.5799756053114643, 0.6644157615701061, 0.7506419876366138, 0.8275514884086274, 0.890097362123957, 0.9444058641291496, 0.986824191176434, 1.0292562454827696, 1.0545901098949555, 1.077182095549961, 1.0964693871935107, 1.11549477379532, 1.1277089096328397, 1.1412963538975371, 1.1444878756506784, 1.1560142991295361], "Pb_sigma" => 1.5480559691561637, "Zr_sigma" => 0.819284393892835, "Mg" => [0.1012519253979559, 0.10869333865410967, 0.12232200283201128, 0.1253948892318826, 0.13215830420199792, 0.12952012737737906, 0.13299665814583517, 0.1354676063343599, 0.15058979326310984, 0.15138627234228577, 0.1617063540592065, 0.1749894894400881, 0.18238208335927447, 0.19080853500186007, 0.1975837764906647, 0.19897316353605615, 0.20143136599580164, 0.19661126773360307, 0.17379122994462962, 0.18224908991947764, 0.1864934426584111, 0.18510491649642352, 0.2052171558840621, 0.22173908182813581, 0.21591196171602492, 0.23933236821488788, 0.24551260869012745, 0.24358291940513463, 0.26061354864705794, 0.27458811969217617, 0.2629191848291482, 0.2736539234714125, 0.27694467054305966, 0.28241114245879584, 0.29508122589949604, 0.29575022213057833, 0.29279538233633123, 0.3045620224828956, 0.2935081013684182, 0.3019668445392163, 0.308901128599467], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-3.0314402043202375, -2.973997899604033, -2.924139340381748, -2.8826065403532724, -2.8580235531208684, -2.8203053090421815, -2.800918663263479, -2.7863660133418704, -2.7690547497326623, -2.729181614395751, -2.7108569461352303, -2.681175271762043, -2.6379297763529013, -2.594711283149093, -2.578703428484144, -2.532511501355625, -2.484967825944142, -2.4358062371995066, -2.3814922964667495, -2.2842224553924875, -2.1929569450958653, -2.0785395582944357, -1.9510411446242277, -1.8161979916623194, -1.6613158010373188, -1.4749697319251915, -1.2792284807345093, -1.0683860209271439, -0.8685356902091121, -0.691640710526975, -0.5302785725197044, -0.39022920639369935, -0.30058889354309287, -0.18287312040211165, -0.07712338492040732, 0.01918538187579873, 0.09854782504410303, 0.19245096097382974, 0.23774859461257689, 0.26412843033073935, 0.21696504971758712], "Ru_sigma" => NaN, "La_sigma" => 1.6177936809961817, "W" => [-2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361, -2.646591250700361], "Au_sigma" => NaN, "Hf_sigma" => 0.8365837656837777, "Li" => [-0.6352527793246822, -0.640329766586475, -0.6426939723995329, -0.6409472414667813, -0.6371190854509327, -0.6367169087186542, -0.6311486489959108, -0.6283502881139252, -0.6272812244373641, -0.624380798528473, -0.6253235735309726, -0.6263112851577276, -0.6226452583381489, -0.6201303288636211, -0.6243693461097488, -0.6213586617809255, -0.6212485115681597, -0.624577495893067, -0.6209710330208721, -0.6133518928452941, -0.6167502740988904, -0.617616606083123, -0.6147019433910974, -0.6201118109455698, -0.6252058446095028, -0.6235803952182497, -0.6256867066182349, -0.6217514403600138, -0.6224731544403715, -0.619989050250993, -0.6167373347635849, -0.6101496976853683, -0.6108129110194906, -0.6055531366466194, -0.6064099269832851, -0.6042582107554686, -0.5995933684387531, -0.6034120431138328, -0.6021453708388675, -0.5931120264354709, -0.5922205086272967], "Dy" => [-2.1132851688933174, -2.0903942756093805, -2.0647702671622565, -2.0478527334358785, -2.0289862492968913, -2.0128556403745894, -2.001082491248896, -1.9949090272199859, -1.9855215827954154, -1.9779914602657904, -1.974245520038516, -1.9633249584536503, -1.9457751028599692, -1.9273538832010706, -1.903785600017561, -1.8755009897426376, -1.8409633669540804, -1.8082589857698237, -1.7646639777426065, -1.7166673938174393, -1.6542380061048472, -1.5934701331438867, -1.5242163732295653, -1.435842943195233, -1.3627875235306017, -1.2574844502085814, -1.1371428497076128, -1.0039565394477004, -0.897569265863411, -0.7424816147399835, -0.6243236655204594, -0.5048237557036461, -0.3966861687112846, -0.3078639053808792, -0.25157690719674675, -0.19179428145080904, -0.1589182057075219, -0.1608077359275698, -0.1485984688734247, -0.15412345583155196, -0.18174878060987287], "Ti_sigma" => 0.3635312470166701, "Th_sigma" => 1.4880667090605302, "V_sigma" => 0.5769769555757824, "B" => [-1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313, -1.4500612056866313], "Bi" => [-2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394, -2.619788758288394], "Mn" => [0.04091922763677018, 0.04105402618294386, 0.040512015980841275, 0.03974317889951815, 0.03774563853656658, 0.03639159202491589, 0.035695328871408395, 0.037976116241303086, 0.039049266775811844, 0.038812341792886236, 0.04150570550616494, 0.039140815040121714, 0.03701986149484235, 0.03628497465633354, 0.03736496663662439, 0.04057686881836209, 0.051039179694956326, 0.06407598055557236, 0.08541613447560822, 0.11583744030288781, 0.15429325168466762, 0.2187725175794152, 0.3034361512510888, 0.409024942954963, 0.5353157028435068, 0.6714505436754004, 0.7841794625498031, 0.8933896990250131, 0.9831693339761107, 1.078077726942369, 1.1427507097015392, 1.2090404716011454, 1.2552091800286016, 1.282943073374239, 1.2931808204134527, 1.3125230674566541, 1.30470921005129, 1.3034500273037797, 1.3016798875016569, 1.2853938326243726, 1.2598619347129911], "Nd_sigma" => 1.2446022995178716, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => 1.3409850064852797, "F_sigma" => NaN, "Hf" => [-2.512161329511563, -2.4406055840996217, -2.3751402841502367, -2.314099505070832, -2.2587867828399495, -2.2194408985670457, -2.183001884970753, -2.1435770011148336, -2.1128958997085445, -2.0863804332925335, -2.061314140193624, -2.0314856222750124, -2.0084322943746917, -1.984812181408097, -1.9593067853848494, -1.925680888169654, -1.9011634974057128, -1.8847724562005133, -1.8552807145838357, -1.8286217794418929, -1.7922171982843877, -1.7516743393837324, -1.702667792993107, -1.6491231611589405, -1.5839571773092742, -1.519227053200586, -1.4256182186685031, -1.3235946708451238, -1.2203578275927256, -1.0970030599045228, -0.990759626441904, -0.9045427209071736, -0.8225730928194951, -0.759183971610821, -0.7211530873656402, -0.6770097761832524, -0.6396782136001156, -0.6208096911016698, -0.5910178099189429, -0.5792881177086036, -0.5758090713907698], "Tb_sigma" => 0.9033426856375963, "Ca_sigma" => 0.18894460685203848, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [-1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879, -1.04351695621879], "Rb" => [-2.6376629620316896, -2.625163291230253, -2.6030233675391323, -2.5722325616547232, -2.5491235257725475, -2.5311541324413227, -2.5018778253873823, -2.4729386666353412, -2.4429256889541837, -2.4078851740968577, -2.3654499671902016, -2.322145058694602, -2.2820587553500746, -2.2411595627261724, -2.192633984520896, -2.1473431585246043, -2.090122747467396, -2.041056088602813, -1.984079079601292, -1.9382130039493273, -1.8912058986091786, -1.8575255376790765, -1.824511808853995, -1.796775796906568, -1.7617765859554604, -1.7362340880743574, -1.7146919022710339, -1.6831928588346194, -1.6581629453496907, -1.6475664547552944, -1.6268317746192045, -1.6110969710499723, -1.6016081313647452, -1.6084470216733977, -1.5977070434133096, -1.592897018313922, -1.5916230763227415, -1.5866220080665407, -1.572370945449428, -1.5826470056049358, -1.5860659916937019], "Sr_sigma" => 1.3720432737582782, "Ag_sigma" => NaN, "Mg_sigma" => 1.3026653198163924, "Rh_sigma" => NaN, "Mo_sigma" => 1.1448354107032457, "Ba" => [-2.7390849679698577, -2.7206771193329486, -2.712688425494904, -2.704745839628723, -2.7098608896193523, -2.708538264425601, -2.7054963277158808, -2.677129290623292, -2.662703235957205, -2.6453365474201376, -2.6261623912518584, -2.608176414311997, -2.600939446120638, -2.5866064436070366, -2.560812067710002, -2.5393324073327577, -2.5223878558712585, -2.5028762998771095, -2.4732878197510715, -2.445301218762271, -2.419952934664606, -2.384032950950425, -2.365483998925025, -2.333142908361938, -2.3024501161570057, -2.286675098918641, -2.2585019657893146, -2.226497961978334, -2.2190721939113787, -2.2160587121815873, -2.159073676345327, -2.1511143012606837, -2.1194074205748703, -2.085405523450875, -2.05582690488053, -2.065429791740492, -1.995641961207471, -1.9142345765229956, -1.9041161307735754, -1.8651203935249767, -1.8393611760009865], "Nd" => [-2.693530668395082, -2.670876068051398, -2.6416486417215608, -2.6231266264380375, -2.594352255214121, -2.5620372210037234, -2.542531428679117, -2.5226374422387488, -2.492504073674204, -2.4760994960368823, -2.4589819348316175, -2.4331997121948943, -2.4180029291659006, -2.3983149983316605, -2.3653984078995656, -2.3487060814299885, -2.315251998929588, -2.272542845840283, -2.2292934553573223, -2.1799251538561264, -2.0850503144299024, -2.0085313776378313, -1.8876896967169217, -1.741699886359457, -1.5632986104819615, -1.3820278057487962, -1.1763127784740202, -0.9603796248739465, -0.7706417671383328, -0.6099174620974863, -0.4565999144884068, -0.29691500343675925, -0.18347851017553948, -0.08141586202820482, -0.012179191966474214, 0.057677154732888106, 0.09201856568595208, 0.13445827211924902, 0.16590546764382313, 0.1843193993313018, 0.18514290620876683], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296, 0.21851042129280296], "Bi_sigma" => NaN, "Ti" => [-1.8004860639489155, -1.7976322187114566, -1.798034373340069, -1.7937734544810413, -1.7899156988096134, -1.791871341645906, -1.7942648097435565, -1.790615704986335, -1.7932440114828292, -1.7940113596842446, -1.7876399756406995, -1.7846091211450181, -1.7869366143096201, -1.786638181267593, -1.7866572043132771, -1.7901446686607274, -1.7916004752442636, -1.791987959596109, -1.7891276274628454, -1.7875197397098712, -1.7885728012271445, -1.7881343408986885, -1.786276597606709, -1.782231061924378, -1.7859978038586866, -1.7866942980161387, -1.7832832824734526, -1.781205835743125, -1.7854785802607465, -1.786350540431854, -1.783416033147001, -1.7906067112514588, -1.7958143860551437, -1.7976535857788416, -1.792211494700411, -1.7964711508720603, -1.7922264718060879, -1.7912683535197262, -1.7925914265638343, -1.8003884912783636, -1.7970261999242536], "Tb" => [-2.074287702368417, -2.0503481857533097, -2.0363317600277373, -2.0256455051573115, -2.0100108196079787, -1.994485930118352, -1.981049535414623, -1.968908592112025, -1.9513431934428862, -1.9409142342515082, -1.9265099853192478, -1.910024773811675, -1.889538374582049, -1.875808731846994, -1.8377551368707665, -1.8019232454808136, -1.7684718464248192, -1.717888597822482, -1.6484442916892585, -1.5828630071201513, -1.509487601645647, -1.3993139157477728, -1.290310387347266, -1.1725301603358635, -1.0417251606356888, -0.92346799423506, -0.7958992602161394, -0.6661706930267133, -0.549113844756928, -0.4442337390020804, -0.32878511454710524, -0.24083578940006095, -0.16298341105213696, -0.08451754508323195, -0.04345087733042072, 0.001865178305551395, 0.021336427208444676, 0.04938369138717422, 0.0530571394214651, 0.06896256053947415, 0.0761344120909823], "Tm_sigma" => 0.789620444587391, "Zr" => [-2.086368852926513, -2.0741568166050874, -2.0585468465512133, -2.060943835801149, -2.0408485299344794, -2.0305206884189353, -2.030317865459527, -2.017662408726666, -2.0084892031531445, -2.0103603777375505, -2.006345443023995, -1.989551692673128, -1.9813900332653094, -1.977586194698317, -1.9730096411703766, -1.962107014799441, -1.9641021457892882, -1.9589329634222545, -1.956628557852546, -1.9516179802634923, -1.9446366444067977, -1.9281072825657077, -1.9263500362177572, -1.912720942263491, -1.892948585320515, -1.8900428000353187, -1.886450802312526, -1.8731392767628654, -1.8702329627777983, -1.8608545259513938, -1.8525790124033972, -1.837267815488773, -1.84870288813111, -1.848142091361114, -1.857691971813156, -1.8530958392204568, -1.858085593987073, -1.8374578674587614, -1.8206609335144959, -1.81026317295837, -1.7911843653944737], "Sm" => [-2.2345404373914444, -2.2285401594369594, -2.2155646427996034, -2.2048756050459195, -2.2058021493486875, -2.192746144543771, -2.1732054112771775, -2.169344768564695, -2.176920158767388, -2.163752194970052, -2.145202734029976, -2.139472090171801, -2.1332640467512096, -2.1063853623724125, -2.0858842895392202, -2.0805091782612615, -2.0612429615181167, -2.0437530181432075, -2.0352036666145916, -2.0434653756808694, -2.0220114273405656, -2.0124379396569547, -2.0024728070580795, -1.9844183007776015, -1.9533939032005554, -1.9441841416969337, -1.9334540631993835, -1.9051026939483025, -1.891852738993506, -1.8723011528727425, -1.8447342921514305, -1.8099189816103887, -1.7957392419943763, -1.7791219532448397, -1.7548621724934164, -1.7440104010772695, -1.7396695847417354, -1.7264997283392505, -1.6996832377807438, -1.6894690779548802, -1.6609562330049958], "Ba_sigma" => 1.4322870044879434, "Cr" => [0.00751899496436274, 0.014031137850023528, 0.014896595210641139, 0.017411232675236435, 0.025847824696642614, 0.034239920649679456, 0.04251880602737489, 0.053930068969765606, 0.06396282793214042, 0.07038375918825887, 0.07642851352132017, 0.08637415363615042, 0.09727717424460061, 0.11074353162999039, 0.12566610878301326, 0.14612544199924837, 0.16064454436650283, 0.17491247326426562, 0.18906974013888977, 0.2069511700961969, 0.21839618412382733, 0.23409559654882553, 0.24918366161885733, 0.262756261232795, 0.26954948278229063, 0.279343489289521, 0.28329175941007323, 0.28209583797908205, 0.28231951477977363, 0.28935701543308684, 0.3004810332147161, 0.298908902762957, 0.3041697399351923, 0.28309202519618143, 0.2680799520621872, 0.2349621402082742, 0.20303650202849252, 0.17209898432303827, 0.16349972742075006, 0.12300412112000754, 0.08251739335369909], "Cu" => [-0.5755028031599313, -0.5920919888036372, -0.6203491714297169, -0.6345379937119578, -0.6489305637358761, -0.6608546163434139, -0.6813219096971987, -0.686848456664158, -0.6905365571914256, -0.6966879051437094, -0.7067330850151852, -0.7047128701495611, -0.7055397892497126, -0.7072655514563871, -0.7072537891332067, -0.6968030379193711, -0.689182257474103, -0.680934735095237, -0.6650073122269918, -0.6467260824325607, -0.6314076011819498, -0.6085893007419969, -0.5792475719269266, -0.5521804353874257, -0.5014870482687106, -0.44297803565349286, -0.37051750046814685, -0.2829522377818247, -0.19442485280630592, -0.1102144770087139, -0.02627429864569508, 0.0601294977688705, 0.1322327363606808, 0.1998019512394688, 0.26451597780578806, 0.3061108813899496, 0.3316829687032548, 0.3598774481731638, 0.36585487175103654, 0.35909944420806544, 0.3807201505949387], "Al_sigma" => 0.6510711499223746, "Tl" => [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [-3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031, -3.989405350465031], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.5673031962442894, "Yb" => [-1.6873279345936063, -1.684322517808784, -1.6751374344176562, -1.6611557794505016, -1.6583890230498108, -1.6579815250160872, -1.6489058064768443, -1.6421555604688989, -1.6467805911734712, -1.638616882906725, -1.6249089367755214, -1.6155769216405393, -1.6085217443350743, -1.5943048247231735, -1.5760718683132022, -1.5593241094936539, -1.5357165233928591, -1.5091227004088505, -1.477393388139498, -1.4550056445477169, -1.415885519109112, -1.38094669902289, -1.3441693324201773, -1.2986688822208834, -1.2455634091379704, -1.208671810318693, -1.162406028568157, -1.097396741377875, -1.0447065791030676, -0.9827136477871423, -0.9165980136606087, -0.8414137093561121, -0.7951255517522883, -0.7348218017460096, -0.671795792351373, -0.6116427006840558, -0.5646846357277007, -0.5170313341008639, -0.46841057432848854, -0.42630124349261933, -0.405045401245545], "Lu" => [-1.646666998116834, -1.632228411425771, -1.6268268840576854, -1.625566810306377, -1.6170412837519739, -1.616974555994588, -1.6122384214660543, -1.6084339048570713, -1.598804485852263, -1.5914440422422373, -1.5780344028287687, -1.5685922425894434, -1.548539331355093, -1.534386582553236, -1.522256756488891, -1.501508289304437, -1.4778056996071547, -1.4508906550608767, -1.4128986465658413, -1.3584485128930057, -1.3063100575218556, -1.2370753905077674, -1.1630205129469255, -1.0655125874401807, -0.9473086492306606, -0.8097665311144513, -0.6851572264423669, -0.5550023215940324, -0.45409923827076143, -0.3743170328902721, -0.2924756947237497, -0.2300479558406254, -0.19224542715478674, -0.14298632839114359, -0.08907000287383122, -0.07506179644964327, -0.04782660050077978, -0.015029644169310375, 0.007188827779627428, -0.0015221804403991086, 0.013541561066120141], "Eu" => [-2.3804050121621403, -2.335721907581633, -2.3082189765125722, -2.2857492399951647, -2.268460263842654, -2.241110376558517, -2.2274800680495392, -2.218538872453732, -2.204810536643836, -2.1842490997899455, -2.1706772082670778, -2.1486150776781576, -2.115455847309561, -2.0851838595407393, -2.051508192156264, -2.001975647086211, -1.9574178233821005, -1.9020581258063656, -1.8438182198040445, -1.7726783284055185, -1.7150826155410126, -1.6258599542647256, -1.5385654098281043, -1.424648642743121, -1.2968542937926335, -1.1440370273216867, -0.9856961376702003, -0.827754338091554, -0.6818546939880119, -0.5700988883698299, -0.46281423362953056, -0.3837017489670728, -0.31247130498921444, -0.2567297857850744, -0.20811103330156772, -0.15586958842672127, -0.10917555905369039, -0.07478036477427878, -0.04345985194713057, -0.00961701291999463, 0.009957991864805268], "Na" => [-1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739, -1.3281802019067739], "Os" => [0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875, 0.2006866637759875], "Na_sigma" => 0.6252571266134845, "Ni" => [1.1294983396626543, 1.1215507566260507, 1.1180036123501624, 1.117126170480546, 1.112394689092247, 1.1158995472805562, 1.1207670540511712, 1.1279722714048355, 1.130515560045674, 1.1414429920457743, 1.1489324946387156, 1.152369094520951, 1.1539491486078273, 1.1622174461697186, 1.169502207426277, 1.1694283111767676, 1.1806640885570503, 1.1894576222516917, 1.1984029547461, 1.190617344961516, 1.2014293858965688, 1.1998300461323466, 1.1962695468172362, 1.1896293101703275, 1.1907378384426885, 1.1675011025443491, 1.1533022209354686, 1.1354907967810717, 1.1135800140877996, 1.090175182032077, 1.0756444805435437, 1.0512036194762833, 1.0423293122349768, 1.031238143779169, 1.020821033243948, 1.009300322673186, 1.009732528737027, 1.0057829863586838, 1.0057944880538332, 1.017105192757184, 1.0229098871743794], "Rb_sigma" => 0.884829324649563, "Ho" => [-1.9528546982752573, -1.9372051977328955, -1.934061765444028, -1.9268597937072893, -1.9150722224487113, -1.9009580754770032, -1.8934621288155116, -1.8777731794960466, -1.8667515905331518, -1.853822065637425, -1.8408041094790404, -1.8279581744172742, -1.812823521130077, -1.7916796612103139, -1.76739934102963, -1.7416482988141926, -1.7014754490002668, -1.653622229270026, -1.608702352381503, -1.5706011490244514, -1.4992071062631844, -1.430696056475391, -1.3524005226664886, -1.2505154169681874, -1.1251142163697438, -0.9988568816205764, -0.8697215222333766, -0.7393490273981889, -0.6149283662111653, -0.5064106564999831, -0.3934515642159384, -0.2775609972542719, -0.1896687141708965, -0.12629551718069187, -0.06716458422022133, -0.03790850164900002, -0.022913544010409147, -0.008683630205901832, 0.023934413148904588, 0.031157034233819433, 0.04564792929064279], "Co" => [0.6623119581360364, 0.6607587358164124, 0.6606161070437565, 0.661990494168702, 0.6622899947749007, 0.6626238695197295, 0.6653316274389192, 0.6685378625163415, 0.6716998081013653, 0.6747946126489549, 0.6790403884891797, 0.6810487992785993, 0.6862180141938867, 0.693076753908708, 0.6992376699089418, 0.7063491752503589, 0.7194156650838965, 0.7249811549327216, 0.7362617726368038, 0.749732246025548, 0.7696202402327083, 0.7905662516244518, 0.8155043777847814, 0.8372402080875517, 0.8675994448213966, 0.8996187845828452, 0.9242226184528355, 0.9612514815992913, 0.9951848819303103, 1.0263069327821512, 1.0451607467544612, 1.0628145286261947, 1.0746474155933567, 1.080610742903805, 1.0875242224452677, 1.0949189956764136, 1.1010069507636573, 1.0994833773874086, 1.1036388845745846, 1.1025784375549126, 1.1012889791483522], "Pt" => [-2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752], "K_sigma" => 1.199825523483579, "Tm" => [-1.8502307613589988, -1.8339533733947084, -1.8236905477631156, -1.8103774972209121, -1.7997984803116427, -1.7963487233404152, -1.7938515813242601, -1.786079692861693, -1.7807932438578393, -1.7662070102364789, -1.7494095854349152, -1.7329550839241719, -1.7188266283989115, -1.6967037021910298, -1.673267470376341, -1.6477481408806434, -1.6156248963869086, -1.5702622538172437, -1.514076583681037, -1.4504491869378422, -1.3733543898579477, -1.2850852354028046, -1.1887193400851865, -1.0745992303322955, -0.956507913292971, -0.8174399434819798, -0.6949391548499643, -0.5701587582608757, -0.4696777734700657, -0.3691721729075504, -0.3084656370405744, -0.2347604004751102, -0.16502786985487722, -0.1220303163551466, -0.075792808604052, -0.026407255497372602, 0.0008118406558373083, 0.014595199269665283, 0.042533174691633244, 0.025459552361961603, 0.004362106092305372], "As" => [-1.4586082945986705, -1.4375398608993264, -1.429011541132606, -1.4198547504273606, -1.3843703212803673, -1.3622743014188747, -1.3450555392180927, -1.3078189916165286, -1.2912633342908637, -1.27485260891778, -1.2575002451225137, -1.2311257693427635, -1.2180090904446017, -1.1964394894668338, -1.1859976286350205, -1.1658038605859298, -1.1483245534084108, -1.1384068267944836, -1.1174841333274015, -1.0961715705894381, -1.0889419085995509, -1.0789442340268551, -1.058077477646884, -1.0437404959673937, -1.0434440258205107, -1.0414783093415663, -1.041443287685744, -1.031303156043522, -1.0277005889954156, -1.0164752398173087, -1.001518448510909, -0.9929065020306457, -1.0055917945802981, -1.001125946225337, -1.01105618625947, -0.9992128112923724, -0.9976010366078044, -0.9818290288869853, -0.9653756769968684, -0.9392474245520682, -0.9266182898656822], "Sn" => [-1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798, -1.6004370114681798], "Xe" => [-2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815, -2.9300604567993815], "Ge_sigma" => 0.549438469246615, "Ta_sigma" => 0.90511374682273, "As_sigma" => 0.9668817068556799, "Gd_sigma" => 0.9739006084581442, "Cd" => [-1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874, -1.4604093769761874], "Pb" => [-2.375012946264965, -2.3424954195181655, -2.3450148950691085, -2.327584216306931, -2.3063413679159046, -2.28870681889809, -2.284491308367355, -2.2713259570144078, -2.263109843032722, -2.2437961808158255, -2.230442773113532, -2.213224451021588, -2.1958002242144734, -2.1719170881461007, -2.1605825510439405, -2.1444021508502797, -2.1292203032555763, -2.0997434804593067, -2.0661581982768933, -2.048355857361191, -1.9990734996428776, -1.9748752537689556, -1.9663067544245787, -1.9474883274598338, -1.9176846810238326, -1.9231302723520367, -1.9158859378921054, -1.8779144919178943, -1.8483077752973402, -1.8343463802976174, -1.819782880490769, -1.7798259453601, -1.7697665666909186, -1.7559996690318296, -1.7202676557007155, -1.6894884438697446, -1.682508822505688, -1.660357473548208, -1.6536884696631693, -1.626480835688544, -1.616259073930189]), "Monazite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892, 3.413028611837892], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => NaN, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => 0.677980011047734, "Ce_sigma" => 0.6060546701745756, "Dy_sigma" => 0.6892306573645867, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt_sigma" => NaN, "Ta" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804, 2.592801856956804], "Sm_sigma" => 0.47566097124264567, "Lu_sigma" => 1.1481932566992847, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435, 3.956231554357435], "Eu_sigma" => 0.5084859166701661, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977, 3.7763686662175977], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => 1.0575974501732253, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 0.8190537611280542, "Pr" => [3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484, 3.6965281197449484], "Pm_sigma" => NaN, "Th" => [3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003, 3.793121764888003], "Y_sigma" => 0.3611620029318388, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pr_sigma" => 0.435674810421887, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.8928774110386941, "Er" => [2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164, 2.9958125938214164], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386, 3.7457262983669386], "Ru_sigma" => NaN, "La_sigma" => 0.5880585935168291, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => NaN, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724, 3.2229150977412724], "Ti_sigma" => NaN, "Th_sigma" => 0.6010687638825071, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => 0.4288836124684533, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb_sigma" => 0.6335317862095986, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr_sigma" => NaN, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd" => [3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166, 3.6707153762364166], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803, 3.290539037041803], "Tm_sigma" => 0.9724420711700568, "Zr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sm" => [3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704, 3.5177927140097704], "Ba_sigma" => NaN, "Cr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473, 2.8252902875193473], "Lu" => [2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586, 2.734614423659586], "Eu" => [3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794, 3.067470654251794], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => NaN, "Ho" => [3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443, 3.075444715998443], "Co" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172, 2.912392064284172], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => 0.5413108620976865, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]), "Nepheline" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214, -1.8785401090769214], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => NaN, "Cs" => [-0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599, -0.384049948343599], "U_sigma" => NaN, "Ce_sigma" => NaN, "Dy_sigma" => NaN, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [-0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394], "Pt_sigma" => NaN, "Ta" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], "Sm_sigma" => NaN, "Lu_sigma" => NaN, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751, -1.9208187539523751], "Eu_sigma" => NaN, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => NaN, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => NaN, "Pr" => [-1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505, -1.9261171386652505], "Pm_sigma" => NaN, "Th" => [-1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762, -1.853871964321762], "Y_sigma" => NaN, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pr_sigma" => NaN, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => NaN, "Er" => [-1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769, -1.851158417230769], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225, -1.9714892183842225], "Ru_sigma" => NaN, "La_sigma" => NaN, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => NaN, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [-1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324, -1.8633934233756324], "Ti_sigma" => NaN, "Th_sigma" => NaN, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => NaN, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562], "Tb_sigma" => NaN, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126, -0.3565473235138126], "Sr_sigma" => NaN, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752], "Nd" => [-1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539, -1.9182176333363539], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [-1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792, -1.8681107849032792], "Tm_sigma" => NaN, "Zr" => [-2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813, -2.3010299956639813], "Sm" => [-1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039, -1.890335636852039], "Ba_sigma" => NaN, "Cr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [-1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742, -1.8445392086670742], "Lu" => [-1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364, -1.8416728120954364], "Eu" => [-1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136, -1.3665315444204136], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => NaN, "Ho" => [-1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929, -1.854923249855929], "Co" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679, -1.8476990736066679], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => NaN, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726, -0.826813731587726]), "Anorthite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.30176665599079194, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-1.698853076406291, -1.7012836102297157, -1.6948779142545713, -1.6930533881396221, -1.6971875624032973, -1.6945290763108494, -1.693238152572063, -1.6926970389341196, -1.6828037594403178, -1.6709577781229317, -1.6510665442106993, -1.624417813553441, -1.5811387027984496, -1.53659501982834, -1.4707843503930065, -1.3933537255045392, -1.3029333043257265, -1.1971243446074693, -1.0665575175402775, -0.9221716038340588, -0.7748928740546928, -0.6345499295405648, -0.5254320861651868, -0.4487187058066996, -0.4113830716375712, -0.412250246076639, -0.4391768309124484, -0.4696853102397736, -0.510106784217973, -0.5535703345851238, -0.5906090354764755, -0.6206258501667606, -0.6486786421858095, -0.6728372523456696, -0.6932564143167714, -0.7089610126775604, -0.7172429621686616, -0.7248567836682146, -0.7289482575975289, -0.7327679352320358, -0.7419470251950512], "P" => [-1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336, -1.2463649996028336], "Si" => [0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968, 0.05307844348341968], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-1.341152219678159, -1.3398437585369138, -1.3333670362038736, -1.332342082149881, -1.3279232304576307, -1.3213888762709485, -1.3177104685030936, -1.3159296989767693, -1.3071445054479631, -1.2978973094610122, -1.2853623431023293, -1.2706782335436946, -1.2554916570688466, -1.2446213556938432, -1.2284307527559843, -1.2170916195335622, -1.205227712827601, -1.1906898779911068, -1.1715977795139296, -1.1615655502851088, -1.1516409199723996, -1.1353400603537047, -1.1255611405906536, -1.114938026083598, -1.1017450393463082, -1.0853290194650516, -1.066806319130621, -1.0485530309457833, -1.0193452968599077, -0.9836745314934091, -0.9496376892927216, -0.9253048815377681, -0.8878800667745236, -0.8674663315886196, -0.8463637075930557, -0.8377411802319036, -0.8247347639024752, -0.8129752560859389, -0.816715388751062, -0.8348783469206563, -0.8377802546996806], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => 0.3703491181463298, "Sb" => [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], "Nb_sigma" => 0.8308733028587978, "Cs" => [-0.8183239899920137, -0.8156424575513461, -0.8245813133560539, -0.8220104239600825, -0.8243160800230048, -0.8342254178301318, -0.8476184884145377, -0.8586499352751547, -0.8728881266786715, -0.8891422351678219, -0.9103367679111009, -0.9326916324386809, -0.9585041557922158, -0.9930208988080514, -1.0289189335992617, -1.064038372856001, -1.102385229365012, -1.1338373549592904, -1.1623030039346554, -1.1834061928168962, -1.2005276355713, -1.2063198867178753, -1.2107286517790619, -1.2020248913725633, -1.1943260321837157, -1.179152362195489, -1.167747096433677, -1.1535217788849248, -1.144994808310534, -1.1297082422920104, -1.1253411193713585, -1.1184010510054323, -1.1161120956075812, -1.1152903157184069, -1.120923398080348, -1.1210078039799045, -1.1257084772308694, -1.1290748468275276, -1.1319210482743933, -1.1426686551584215, -1.1517524198701627], "U_sigma" => 0.5879745765967126, "Ce_sigma" => 0.4720133412373242, "Dy_sigma" => 0.5300459624958925, "Be" => [-0.29415089014366147, -0.29158134206006003, -0.2906466796162689, -0.28898463982617834, -0.28762671878581253, -0.2866654711940124, -0.2849530896769929, -0.2822814174005935, -0.28005369859427903, -0.2758666668534257, -0.2701305482780304, -0.2647288181032215, -0.2572739921592898, -0.24666299237206907, -0.23673523335178082, -0.22314937516692865, -0.2090547206399477, -0.1927204968127964, -0.17352306840217574, -0.14896263142016425, -0.11891954754931833, -0.08496228451273355, -0.04461271990134939, -0.0009070576721713307, 0.04175641562931991, 0.08950326348887304, 0.13792319030511105, 0.1753654493210563, 0.21674109718744672, 0.25270804201203256, 0.2771622527047872, 0.3024515281304255, 0.3301674685050143, 0.34862450739330947, 0.3654907790463591, 0.38092625159923005, 0.39167174566899665, 0.3912439018608989, 0.3930453970516815, 0.39383909425433633, 0.39327964589741043], "Sr" => [0.33295280403074135, 0.3286389230803409, 0.3289100722904826, 0.3266472733576489, 0.32493757440487836, 0.3243095242465161, 0.32428369254341427, 0.32304793413556776, 0.3224438087727109, 0.32289173192522735, 0.3223307738400622, 0.3224989409392794, 0.32137474528255644, 0.32376533694692666, 0.3269542285165755, 0.33218595617176716, 0.3393066287166203, 0.3548070831020731, 0.3705435596188513, 0.3878567485008738, 0.4068455554741282, 0.43465052203464316, 0.4596214360846728, 0.487641846962674, 0.5135718981340163, 0.5410032991974993, 0.5601641803045267, 0.5785498940971063, 0.5951277950981624, 0.6111965016267297, 0.6208328059521132, 0.6303320618623541, 0.6365410052768276, 0.6454157416049447, 0.6516492384380483, 0.6602809821352258, 0.6663652825930183, 0.6749914197367437, 0.6716977337205804, 0.6750472097386833, 0.6665695518525581], "Pt_sigma" => NaN, "Ta" => [-1.4069431202605638, -1.4088978704372812, -1.4067822790525433, -1.4052587276172972, -1.3986014616637885, -1.3976672983746812, -1.3964770579440366, -1.3928059050136903, -1.3911944011564783, -1.3947126574474777, -1.3955307299349708, -1.3982078923863759, -1.4082536267630616, -1.4235317437212973, -1.4404654093484814, -1.465866691445729, -1.4943380231464223, -1.523430176836714, -1.5550223813720243, -1.5860061385955082, -1.6103692842725035, -1.639046638014672, -1.6607998178119914, -1.6691821966901312, -1.682231212129289, -1.6816097020432998, -1.666115947282701, -1.6518030753512234, -1.6353307600927272, -1.6067456396542492, -1.587006527271123, -1.5731562346596515, -1.5585813450737427, -1.542237107088784, -1.5362212520452518, -1.5302325062568436, -1.521299310036525, -1.5169695576073992, -1.5223321405388612, -1.5312720808213138, -1.5408709256809117], "Ga" => [-0.11657564095105785, -0.11204537761926048, -0.11134624097812895, -0.10739954121610132, -0.10470731199672423, -0.10185290466981109, -0.09944715919857613, -0.092901805347566, -0.08664005256443437, -0.07669761200315618, -0.064901040229582, -0.0510057568585511, -0.03446697318076477, -0.014277385214581686, 0.009708885452868514, 0.03633524071134932, 0.06676194062227352, 0.09851581837777758, 0.13494489356393297, 0.16767938918531972, 0.20437729041517044, 0.22945805241628886, 0.25084133220901234, 0.2643994647982052, 0.2735446674731467, 0.2714313947101618, 0.27013008310983516, 0.2636477758890526, 0.2575007812425601, 0.24832396132350426, 0.23997069654781625, 0.23236179240914173, 0.22551521932431917, 0.2174118860820967, 0.21101481227213537, 0.20559750820583597, 0.20155250185875448, 0.19757480406785874, 0.19721314194387823, 0.19661088246706288, 0.19805215136528137], "W_sigma" => NaN, "Cs_sigma" => 0.5390704315955357, "Y" => [-1.534351947404959, -1.5326880525283144, -1.5332314879933004, -1.5336779963092444, -1.5387214384233663, -1.5361780837777155, -1.5392799375710782, -1.5360660543119629, -1.5327747810194707, -1.5224783479545356, -1.5145461660501447, -1.5016240462027812, -1.4913941075668322, -1.4752527327572973, -1.4590489307741108, -1.437530600745648, -1.4093723802995868, -1.3703503130880386, -1.3259318136795963, -1.2724325747645409, -1.212442530363878, -1.1446716276886983, -1.0702414652919043, -0.9946032565956193, -0.9261606804254109, -0.8658496347273346, -0.8207586184694101, -0.7922016007355833, -0.7789917696950825, -0.7767063877782643, -0.7774883002704411, -0.7829762352732014, -0.7854965930137155, -0.7967466256990698, -0.8007923307421212, -0.8060227414231974, -0.812901488469193, -0.8278991746553337, -0.8354802627839983, -0.8456306160159373, -0.8587543913618937], "Sm_sigma" => 0.4721487057835802, "Lu_sigma" => 0.6406446421674581, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.2515027433149781, -1.253040070769237, -1.2475017861049913, -1.2528154583752884, -1.25608112799682, -1.2598400651280894, -1.2631020804383515, -1.2743884978975315, -1.2859104263588927, -1.2997032173338856, -1.323961056990921, -1.350869986505749, -1.3809016518025479, -1.4144227702319414, -1.4503312091289131, -1.4846223900225524, -1.5201987291584738, -1.5624137503471747, -1.5993397696291805, -1.6302401045536505, -1.656686845675312, -1.6795918834596328, -1.689768382023137, -1.6791402354256062, -1.6746286978986331, -1.6484182113000245, -1.606171317221918, -1.5448452715734686, -1.4899145058461338, -1.4196564884774114, -1.3669824167909812, -1.3148415048302342, -1.2664479085614955, -1.2262234286519729, -1.2083057989037496, -1.1911125078293363, -1.1818405159010323, -1.188268246614686, -1.2072590571182467, -1.195044793422939, -1.1882403584563248], "Eu_sigma" => 0.44898310819209736, "Sn_sigma" => NaN, "Ca" => [0.0894894849912525, 0.0961535081992358, 0.09930569703752509, 0.10493933422525888, 0.1135172779176594, 0.119953172826623, 0.12780826971411155, 0.13864447713492928, 0.14982557649682482, 0.16374225187269933, 0.17800175728156306, 0.19550453109108207, 0.21384331680524957, 0.23266085554274962, 0.2535055083000809, 0.27681989384224337, 0.3015734121604919, 0.3277076725109685, 0.3547053353315722, 0.3809100201238032, 0.40749502074192573, 0.42774116579694377, 0.44785900567040887, 0.4636506516297983, 0.4774699431131343, 0.4890867273844697, 0.4993534753555759, 0.507196227281349, 0.5137192168291796, 0.5188832810024963, 0.5215993660220989, 0.5254519727301152, 0.528176636611747, 0.5293200301678243, 0.5304008208928858, 0.531410299693499, 0.5313445762850149, 0.5318354885548326, 0.533532733809874, 0.5361073262553027, 0.538955291441046], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.7093963444204117, "K" => [-0.7300394873627091, -0.7325912364055522, -0.7360123835570653, -0.7388231310170954, -0.745183311076897, -0.75064586874755, -0.7600036115729355, -0.7709818083595309, -0.7815508044447832, -0.791253517734924, -0.800794428769577, -0.8113444762351024, -0.8221446480400362, -0.8322562419047276, -0.8423264847396239, -0.8526367773054251, -0.861911042858578, -0.8684976420928799, -0.8751765981498074, -0.8781338895561118, -0.8811356973148534, -0.8794067280259207, -0.8727845271642142, -0.8663001095493297, -0.8575743174676403, -0.8452947618422881, -0.8323413388630483, -0.8229481590061352, -0.8150225745453684, -0.8108295982726708, -0.8097055080315371, -0.8073065924655003, -0.8063620236988526, -0.8005802834502092, -0.8027813408701785, -0.7951412381403032, -0.7902465150540281, -0.7902321772514465, -0.797620543567871, -0.7921444824858884, -0.7968003075856829], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.0497010034545753, -1.0568943234285426, -1.0631906368165298, -1.059261658044341, -1.0615092618693187, -1.0640966635043199, -1.0658369296250931, -1.0631060670145218, -1.0611346287882506, -1.0561943123409925, -1.0511454049427345, -1.038441428951811, -1.030954207483961, -1.0211912634129627, -1.0075395833877974, -0.990385565757474, -0.9772500593769121, -0.9596969970525574, -0.9393467564414604, -0.9261293083775164, -0.9077960935252635, -0.8978173018084145, -0.8765089081056533, -0.8636528632253259, -0.8358856381858328, -0.813115252988118, -0.7805877489999091, -0.7542902645243265, -0.7269848246180912, -0.6983817092347977, -0.67597740670366, -0.646370278673535, -0.6309889388634425, -0.6059338557779549, -0.5930700131503933, -0.5787070693464815, -0.5760115924416004, -0.5566874905387045, -0.5512227729075077, -0.5651516910968729, -0.5804524876113101], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.3168741880677416, "V" => [-1.1953655344560634, -1.1928831578242907, -1.194590515167492, -1.1964541519803435, -1.1985092120235659, -1.196360121218371, -1.1990330959352777, -1.1960264318695304, -1.194584391358187, -1.189258274470718, -1.1832215144385063, -1.1766848628686801, -1.172665989177337, -1.167004735758865, -1.1602115118982763, -1.153360709234789, -1.1408290576457185, -1.1266598729816282, -1.1123965110920375, -1.0964670583115381, -1.0782816339287127, -1.0625444963438968, -1.042522757179398, -1.0190680768498348, -0.9950934835198256, -0.9757634703755796, -0.9528775100390899, -0.938835043190196, -0.9310317104206793, -0.921046445958309, -0.9140012338501711, -0.909332750281315, -0.9036386732333084, -0.8914122188849595, -0.8913711103251442, -0.8898430042284544, -0.8908749846476319, -0.88477141692782, -0.8897866158447162, -0.8825615442518252, -0.8796594791182408], "Yb_sigma" => 0.5893223560743045, "He_sigma" => NaN, "Co_sigma" => 0.3849255291997745, "Mo" => [-0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598, -0.5539526986547598], "Ho_sigma" => 0.5587267218176684, "Pr" => [-1.062143336228014, -1.0732820973615484, -1.0811071477941208, -1.084908433427652, -1.087203983310322, -1.0884246028991718, -1.0862815684498104, -1.0842848099530653, -1.0829890478280746, -1.0791346941214883, -1.071386875172289, -1.0654639077561054, -1.0536794137388041, -1.0425180830543235, -1.0341619785235743, -1.0240605447365307, -1.0116229011636189, -1.0048482189781356, -0.9979941292015174, -0.9855464169982143, -0.9831979948489602, -0.9779126987920751, -0.9678027346461191, -0.9537873558464247, -0.9340831019189892, -0.9110261898163913, -0.8857401775473536, -0.8553730719359053, -0.8259473341550727, -0.8024847562733971, -0.7764585062583498, -0.7456719505726662, -0.7288513836243204, -0.7051457116633958, -0.6845947236030445, -0.6746848624444328, -0.6749700685664689, -0.6559075928341437, -0.658138997842089, -0.6602715616679652, -0.6416924426174156], "Pm_sigma" => NaN, "Th" => [-1.2746348461895713, -1.277852333506326, -1.283233932532414, -1.2851676923141482, -1.2888992172185072, -1.3027286556664315, -1.3173726985016532, -1.3362128449948136, -1.3591611545637958, -1.3908330085181175, -1.417128238777106, -1.4474211324987307, -1.4833863842125505, -1.5267870773594938, -1.5664890683537298, -1.6098333640725047, -1.6494636928729614, -1.6846937744642634, -1.7091819653728404, -1.7349494751406265, -1.7502559795942123, -1.764671504052233, -1.7729696337235188, -1.7769680156443395, -1.7669255019548362, -1.7586885077427366, -1.741522697254664, -1.7236448563688456, -1.7007439452089663, -1.679172845600263, -1.660511025258205, -1.6486034905610902, -1.635501154757715, -1.6242483693419476, -1.6205919841578447, -1.6152666817565862, -1.6011640353892498, -1.5987723963485745, -1.5986527200174574, -1.5874775610876917, -1.5760250976440549], "Y_sigma" => 0.5469818901665968, "Zn" => [-0.9872640860498066, -0.9784897982913894, -0.9682536514422128, -0.9559780120877873, -0.9384181854836996, -0.9172056016007577, -0.9001759570095361, -0.880731147861177, -0.8572734489125831, -0.8256991758411093, -0.7948232315344403, -0.7609759471220711, -0.721816049766803, -0.6772564071419891, -0.6363649486102216, -0.5997521324972375, -0.5590687429766691, -0.5142155247670475, -0.482075571547488, -0.45627977167366446, -0.43095429783901673, -0.4100330288514968, -0.4022847385427796, -0.3953414282232527, -0.388694920056724, -0.383614427893026, -0.38771697369830405, -0.3916320207444961, -0.39755572853463805, -0.40235549729209796, -0.4095604107568055, -0.4133709427643675, -0.41774048914654466, -0.41547462404109364, -0.4169198995985221, -0.4150440739463854, -0.4130070378626614, -0.40867546440948205, -0.409373488255677, -0.40636698343539385, -0.4044919698844786], "Ni_sigma" => 0.4069703932261529, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-1.4008064447180735, -1.4019688218220867, -1.4101674401877389, -1.405817611748246, -1.4037121358329492, -1.4130073027942318, -1.4125134082222954, -1.4070570674437337, -1.4048619983681234, -1.4003267634417629, -1.3920921443826362, -1.385059486801506, -1.3806879293398366, -1.3794149697452425, -1.3797847739995008, -1.3835032882370164, -1.388445120096866, -1.3939016894231315, -1.393676097671909, -1.39370842812415, -1.385618016645654, -1.382798594881895, -1.3749903964813384, -1.37001149473147, -1.3550402318180992, -1.3465972211432897, -1.3296844695788121, -1.311089432824883, -1.297469812368001, -1.2798949167917237, -1.2635165564828506, -1.248706303311499, -1.2460994098122404, -1.2384496356028802, -1.2407743735418613, -1.2509105690556344, -1.256620151238782, -1.2590140614288752, -1.271939210717869, -1.2964225537557983, -1.3033342174502542], "Pr_sigma" => 0.47390750762345063, "B_sigma" => 0.14696505646818078, "Li_sigma" => 0.2255569437672109, "Tl_sigma" => NaN, "Mn_sigma" => 0.37262423645491016, "Cd_sigma" => NaN, "P_sigma" => 0.46355967130480136, "Zn_sigma" => 0.4791410634170658, "Al" => [0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936, 0.15863328661528936], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.5760464638479246, "Er" => [-1.6074515798679343, -1.6095347666740394, -1.6101367531764268, -1.6032097012263695, -1.595450974364536, -1.5861875949842084, -1.5743939995612517, -1.55646991462202, -1.5457282659977352, -1.531055500541857, -1.516777957872767, -1.4969922075424837, -1.4819165976328876, -1.4619593192819647, -1.4405584971921581, -1.4189559920138417, -1.4044774161118687, -1.387183306651566, -1.3684284081873153, -1.3541695356276884, -1.3350835628639093, -1.3185411997372718, -1.2989996883749473, -1.2735412467147815, -1.2557313354126556, -1.2310029288258717, -1.2030628055880865, -1.1728276699781184, -1.1520456686428227, -1.123344773802671, -1.0966134124258409, -1.0672862933300944, -1.0463873669141526, -1.0220881508000579, -1.005822686485605, -1.0008522428966893, -0.9932174474522457, -0.9995533313668639, -0.998761520321825, -0.9961642208263024, -0.9866353894034245], "Ge" => [-0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637, -0.0030834337684313637], "Cr_sigma" => 0.5869744004099692, "Fe" => [-0.8875897421758887, -0.8960291051349195, -0.8921880917694747, -0.8929540929660305, -0.8888769165981414, -0.8840573807422152, -0.8782116626318909, -0.8748900414604166, -0.8675856098302626, -0.8596429873067903, -0.8539434705683221, -0.8423819436009983, -0.8333361592236722, -0.8197998131357452, -0.810100952827623, -0.7946075769502022, -0.7856674734553692, -0.7672900768916534, -0.7555204253360345, -0.740283415313597, -0.7316524317743812, -0.720132748370586, -0.7139003583815294, -0.7092562922651998, -0.702053818422256, -0.6982340732033259, -0.6954338159112773, -0.6945741916478889, -0.6904708346410339, -0.6911657863131537, -0.6886070218105651, -0.685695598279252, -0.6828376999239241, -0.681154536065576, -0.6782532952654834, -0.672427856058604, -0.669567395024297, -0.6681993167860215, -0.6654016939005722, -0.6599897702923506, -0.6571159019361602], "Pb_sigma" => 0.3819565267017849, "Zr_sigma" => 0.722087181478502, "Mg" => [-1.3767399168686862, -1.375160632682157, -1.3734674052012819, -1.3710637545994966, -1.3685688603134478, -1.3656856064875265, -1.3623870946943926, -1.3575282706190226, -1.353921124368119, -1.347526562498537, -1.3407251673713267, -1.3314922228233448, -1.3224166933024017, -1.308706741638264, -1.2954697010696772, -1.2793073778542474, -1.2623385957940498, -1.240391783461323, -1.219750757667688, -1.196311339095656, -1.174184142471085, -1.1519879357583378, -1.1313610126980547, -1.112251195999426, -1.0976980170385509, -1.0831631711915368, -1.0718261269297178, -1.0649118230095744, -1.0593163130380108, -1.0541759461112654, -1.0517877919389733, -1.0523338768236887, -1.0524310716690892, -1.0504301780082934, -1.0512458324040013, -1.0548510854118154, -1.0548937687964186, -1.0569188889243062, -1.0639334383915757, -1.0760312593772035, -1.078355996165503], "F" => [0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904], "La" => [-0.9404198880852561, -0.9431927184305972, -0.9439994444914286, -0.9426744365849133, -0.9413859586508746, -0.9452926389414225, -0.9477704249289485, -0.9471110724711365, -0.9473638846658288, -0.9435310404677607, -0.9434027516595945, -0.9398757105778507, -0.9389403453029787, -0.9331404786254267, -0.9313651638773275, -0.922517525150694, -0.9174671577706324, -0.9085104925002518, -0.9033259703425105, -0.8965418898936753, -0.8904199049832148, -0.8789571619828939, -0.8749712570060232, -0.8668466470460288, -0.8574823441948074, -0.8416775107051643, -0.8226480585248671, -0.7963775846945638, -0.7682879055572659, -0.7309478318488917, -0.6986275837652275, -0.6708834805903399, -0.639548821585692, -0.6129208309588131, -0.5950254388457845, -0.5777188056263756, -0.5656103838277532, -0.5687360050297541, -0.5711111071399859, -0.5782328891270307, -0.5926594010192427], "Ru_sigma" => NaN, "La_sigma" => 0.44236193109459543, "W" => [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], "Au_sigma" => NaN, "Hf_sigma" => 0.6614295733315654, "Li" => [-0.5830712896387534, -0.5846954655317977, -0.5864685985985101, -0.5879507596566282, -0.59078728012827, -0.5924175226492624, -0.5922086820894098, -0.594768042252274, -0.5965703350470195, -0.5969387622861313, -0.5997024291383853, -0.6024040776510144, -0.6028016954678677, -0.6034597933765509, -0.6055884973428092, -0.6040981569161339, -0.6041854723738402, -0.6009764950959489, -0.5944904951102279, -0.5797553122279374, -0.558627710788002, -0.5317285090348206, -0.4974880443757213, -0.4607682941537356, -0.4298800012782737, -0.3958394841393749, -0.3653338360620276, -0.3449050720847782, -0.32750878312117987, -0.30688608943887835, -0.29540956000231466, -0.28181028902279937, -0.27178438661645365, -0.2636756180125658, -0.2558315664702585, -0.24942858545130828, -0.24732709403661662, -0.23900752425128338, -0.23454501364608357, -0.23514548976042446, -0.23587056661971528], "Dy" => [-1.4562865077421685, -1.4553926287013208, -1.4486046041080012, -1.44991395136147, -1.4436078259262877, -1.4438240878920154, -1.438804935973425, -1.4314914060060107, -1.421686720276098, -1.4141675574333554, -1.3975432974143531, -1.3789243965620002, -1.3636033897387145, -1.344571752671705, -1.3257779277057549, -1.3113944713076706, -1.2969035883672524, -1.283212113710784, -1.270188375064559, -1.256140384660526, -1.244195663115848, -1.2359637279574238, -1.2201687839004571, -1.2058510588058937, -1.1872560729983042, -1.1625478431178942, -1.132239774042006, -1.1050515428441676, -1.0777658070500502, -1.0477060014176967, -1.0195310655597638, -0.9965913634678978, -0.9686644339259066, -0.9369001652388987, -0.9155744483602537, -0.8973549208823871, -0.8861334927032408, -0.8831588410737606, -0.8954864368808684, -0.9075672843232871, -0.9269039623675205], "Ti_sigma" => 0.1579974614829638, "Th_sigma" => 0.5582957656700358, "V_sigma" => 0.33357459054248456, "B" => [-0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-1.4250548265872105, -1.4227694017402812, -1.4149776654956252, -1.4115024255111503, -1.410994672368106, -1.4108725340160662, -1.4050037004244214, -1.400307881459975, -1.3948490738931199, -1.3880807150649341, -1.3790376706414025, -1.3714926952922197, -1.3610582923241639, -1.3499205510449874, -1.3343500026858595, -1.314013582408122, -1.2905647032390992, -1.2655380151377205, -1.2271969482849252, -1.187489937511593, -1.1469124412016396, -1.0987157629964481, -1.0500515802751282, -1.0076626718207378, -0.9692788451423822, -0.9341832930962164, -0.9036043562084536, -0.8765480976937794, -0.8504248587477176, -0.8279838054638724, -0.8085397384754326, -0.7911569142229373, -0.7745612891236515, -0.7635209323374504, -0.752611975969675, -0.7445224405294375, -0.7394632661432889, -0.7363642375253888, -0.7332972672321126, -0.7323295399881583, -0.7335548626819203], "Nd_sigma" => 0.4724290763959545, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => 0.0, "F_sigma" => NaN, "Hf" => [-1.4861316966583304, -1.4840684329167424, -1.4889555784928132, -1.4915793652351617, -1.5023477543557056, -1.5173679524168204, -1.5247682045593167, -1.5365255024327786, -1.5456215408908456, -1.5465752309034528, -1.5562519613387014, -1.567711648332514, -1.5798130976337512, -1.5924408244710313, -1.6045880951549263, -1.6110872411837438, -1.6187119195727175, -1.6260112173817647, -1.6360552533363062, -1.6496556523665995, -1.664098671854187, -1.677190054121463, -1.6863629629536137, -1.6845833585515149, -1.685999936006406, -1.6665762805856916, -1.6461342478883065, -1.6235002572169879, -1.6020734169757158, -1.5786319910648987, -1.5599263082941706, -1.542749332631035, -1.5206871480626645, -1.4995319445054442, -1.4855369262506932, -1.4810220936923573, -1.4714580776891029, -1.4600537249393335, -1.4693911565672226, -1.44131156589547, -1.4224624825226881], "Tb_sigma" => 0.47843193152681673, "Ca_sigma" => 0.225427456938836, "Cl" => [-0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-1.1332964296402341, -1.1276022656131115, -1.121274214127039, -1.1217569397765481, -1.1254352947381039, -1.126968340748439, -1.1260015779854444, -1.1349551118532166, -1.1390686540594646, -1.140718142476993, -1.1398237381519465, -1.1405643204415785, -1.1307099956235314, -1.12028136561549, -1.1054638668603955, -1.0888276980496243, -1.066627863753454, -1.0463342770453912, -1.0174415783054684, -0.9894215775423411, -0.9665719661045811, -0.9440820703598761, -0.9329863928446677, -0.9362188925975704, -0.9431158101417204, -0.9528634250145036, -0.9631605836269327, -0.976774344996086, -0.9886316793282733, -1.0001260370220095, -1.0095278482157357, -1.0262560942962042, -1.033745142216147, -1.0375362173725657, -1.045773925770442, -1.0575765267863848, -1.05552787035762, -1.0561546729615052, -1.0534450251221275, -1.048745349945325, -1.033429099561475], "Sr_sigma" => 0.2665788762439565, "Ag_sigma" => NaN, "Mg_sigma" => 0.19234149218493274, "Rh_sigma" => NaN, "Mo_sigma" => 0.20508544047324131, "Ba" => [-0.5071610542656029, -0.503276919315219, -0.5020430428537614, -0.5031653289091761, -0.5072637518455657, -0.5127551240008628, -0.5166909800852175, -0.5209273445863336, -0.5169530315466752, -0.5164019255512441, -0.5158093927302128, -0.5111638814086381, -0.5048096751575766, -0.5037382290256118, -0.49473250498141663, -0.47980284584013305, -0.46383593071357426, -0.4428972182440671, -0.4161764464750108, -0.3902801113083224, -0.3601939820716648, -0.335035026449704, -0.3053383909307648, -0.28136741798685677, -0.2585105772058665, -0.245016412249926, -0.22737739689841607, -0.23022848301802204, -0.223985272535215, -0.2172563797244044, -0.21211264196434346, -0.21210692561170685, -0.2017534760712549, -0.1980624215522624, -0.2009111090207254, -0.19719264474070286, -0.19258736266792686, -0.18775303112360092, -0.18208022817404948, -0.17334717920373777, -0.16809949203900862], "Nd" => [-1.1104540750216374, -1.126178262238817, -1.1263484733734508, -1.1268726003044147, -1.1307874372551916, -1.1344902717147163, -1.1321971064571141, -1.1345022596511305, -1.1308547013428032, -1.1237080260612622, -1.1186516452526, -1.1086307106590234, -1.0972191368866728, -1.087383833399265, -1.075357962066981, -1.058658160662613, -1.0459409960632715, -1.0357813013131139, -1.0229267375412139, -1.0120114468599968, -1.0026855971332804, -0.9942022305440532, -0.9816417656802587, -0.9708876613946723, -0.9619421571405392, -0.9436146268678446, -0.9236596403169546, -0.9020394013933004, -0.8746552484261366, -0.8472384386334721, -0.8139228641696085, -0.7884056378467932, -0.7571697427892089, -0.729536194486382, -0.6919462763584928, -0.6793164663208608, -0.6539199319609922, -0.641868745741941, -0.6300939353948967, -0.637274508864628, -0.643458465923371], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [-1.2291384655824165, -1.2298370339086326, -1.23036723947192, -1.2322957776928118, -1.2313292157671265, -1.2319211409079265, -1.2326711941221955, -1.231902824284398, -1.231330477683962, -1.2317451733011127, -1.2312652918586786, -1.231139810167588, -1.2317338007598462, -1.2301964002135513, -1.2291011693173697, -1.2266916288990606, -1.2245210915567173, -1.2211560810951099, -1.2201304100542452, -1.2192705425513777, -1.2169217627749858, -1.2138821720131463, -1.212356918611081, -1.2078714544800606, -1.2028344059238187, -1.1985757057310977, -1.1949154226715109, -1.190172479516011, -1.1850361749838154, -1.1803790435663106, -1.1786716782094464, -1.1725344255609778, -1.1664955877766774, -1.165910095293955, -1.1581103130893196, -1.1522514210839918, -1.155808863493333, -1.1495586223969223, -1.1401547513361314, -1.1402938497023907, -1.1262366361851464], "Tb" => [-1.3974072543713374, -1.3940645196693628, -1.3860391155160157, -1.382760495411677, -1.3804765772349594, -1.3776766722161948, -1.375010179031232, -1.376422754582962, -1.3694163521354565, -1.3639393802923705, -1.3577733702216255, -1.3477143162323253, -1.3349132150638388, -1.3295882756990411, -1.3138403632227185, -1.3006853065139814, -1.2940298177458605, -1.2899595720641222, -1.2817461207537557, -1.2818982792263556, -1.2773844127156684, -1.2721554363081247, -1.2603400573322503, -1.2443803423224857, -1.223522265097493, -1.20447167791866, -1.1789248008616555, -1.1502485187486418, -1.128733060346083, -1.098304608687069, -1.0728679534687882, -1.0431928887613071, -1.018052028343444, -0.9883299196926867, -0.9818559715937636, -0.9668796275534183, -0.964701032343097, -0.9631510196893974, -0.9607389997617466, -0.9479611836260659, -0.9424069795962271], "Tm_sigma" => 0.5954476230432019, "Zr" => [-1.6151947702408767, -1.6121830376469306, -1.6217522973496403, -1.6210940675214474, -1.627986822216133, -1.6321889906471367, -1.6359008920011544, -1.6421891480783073, -1.6578912413485545, -1.6694454946342956, -1.6767929516596296, -1.680548900144948, -1.678834698559529, -1.658636655848763, -1.6285334654199095, -1.5957336993326914, -1.5487004057928815, -1.4864980707374558, -1.4292903878061198, -1.3626217268659697, -1.2900440836103815, -1.2294248325498611, -1.1721256347207833, -1.1148315361902066, -1.0692835747891811, -1.0232809568434198, -0.9862870343414715, -0.9626290590436057, -0.9483783287753211, -0.9342528822201235, -0.9261404402397956, -0.9235727723768512, -0.9185840496831967, -0.9114248520694922, -0.9077965626469534, -0.9066813518570258, -0.9046190166526813, -0.9007786431064987, -0.9059844154746407, -0.9109158570661504, -0.9110237579055895], "Sm" => [-1.285873163487414, -1.2899780911705516, -1.2937023612875873, -1.2937704370511343, -1.2952958838942885, -1.2944205504429556, -1.2920847944253524, -1.293558005808464, -1.2925737615011357, -1.284351867055152, -1.2791813831113203, -1.271702576915851, -1.2587844099844503, -1.2430516621459604, -1.2268797169671894, -1.2070945030046067, -1.1876688824488453, -1.1704512029539833, -1.1551838191888695, -1.1444173209133535, -1.1322718782702492, -1.1189817907475403, -1.0979278206016674, -1.0748157523295743, -1.049880890885809, -1.0246055276146933, -0.995145956011476, -0.9691874041471775, -0.9493637246035934, -0.9216790100577201, -0.8896672605330322, -0.868637387191586, -0.8447998817271994, -0.8165791765711049, -0.7940409054611091, -0.7830084453235417, -0.7705290481374636, -0.767635132354182, -0.7589114200566897, -0.7653357230850542, -0.7689020216211085], "Ba_sigma" => 0.4418737681481448, "Cr" => [-1.126282431639902, -1.1303857881769133, -1.1268895129562522, -1.1304706135515001, -1.1273875440724526, -1.1325477973446327, -1.139292979518381, -1.1429528512428724, -1.141386210478138, -1.1400760119325468, -1.13555659332401, -1.132775482731696, -1.1314602234237203, -1.1285817194464391, -1.1292806928107813, -1.12857287028439, -1.1217272393488062, -1.1115243080549446, -1.1029610011362911, -1.0905323198875636, -1.069065217905314, -1.0497546892768241, -1.0310748776478222, -1.0088436501187126, -0.9838431463396751, -0.9715290321405654, -0.9523490549741737, -0.9421926577633651, -0.943357481519494, -0.9516506183548318, -0.9561118774005837, -0.9724273721480282, -0.9875673873072507, -0.9948725619822484, -1.0122057305479315, -1.028885152959304, -1.050667768352551, -1.0776222162624514, -1.102489851350576, -1.1280161946587384, -1.1596590649265044], "Cu" => [-1.4038103149740966, -1.3891835453266264, -1.3846649312643486, -1.3826122732159685, -1.3760538622152958, -1.3647267395692795, -1.3569824314920063, -1.3376458555046853, -1.3140515479258164, -1.2843804105185352, -1.2485954720647192, -1.2091502199376207, -1.1646810109563377, -1.1134981361157033, -1.0567697820078141, -0.9954082006256849, -0.921242473129381, -0.8367293206420312, -0.750553817831845, -0.6699047817104442, -0.5963085220779695, -0.5332060612359363, -0.49253046563024666, -0.45560396979069007, -0.4266668533188829, -0.39956727929207414, -0.3831404592628126, -0.3691180893666923, -0.3592951606607258, -0.3564755156070573, -0.3593049897465763, -0.3612674337203634, -0.3613811164213773, -0.3621596583655649, -0.36031926298028033, -0.357447325353725, -0.3519434203206367, -0.34999104565497374, -0.3519236340477962, -0.3482816615428095, -0.3494518743038807], "Al_sigma" => 0.07573724254037356, "Tl" => [-1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.5913749840640815, "Yb" => [-1.7085955820356227, -1.7043627853365135, -1.6936241239229202, -1.6856106150792207, -1.6852380322211933, -1.6810592288995905, -1.675944782374383, -1.67041288752025, -1.658556463068755, -1.6468895844234772, -1.6386419150823472, -1.6213143414915432, -1.6008385876894318, -1.5860880997420912, -1.5641150563467678, -1.5344405963556185, -1.508410515722297, -1.4840096650912302, -1.4568054126118481, -1.4293516618724398, -1.408448286015895, -1.3887475899876425, -1.3736773357217662, -1.3542071234011372, -1.3310549531961178, -1.303821489873146, -1.2763658018046484, -1.2515780605738909, -1.2232041391471915, -1.2023697207634416, -1.1768489457942906, -1.150752169824152, -1.1145538108404014, -1.0914752407931345, -1.0707183546212133, -1.0495105827762399, -1.038775779868984, -1.0324626905520946, -1.0256989646934564, -1.0168280356899708, -1.0186930907988838], "Lu" => [-1.7552470653834547, -1.7492685185145023, -1.7421261824377248, -1.7438269315975023, -1.740719171087912, -1.7229578372062417, -1.7158947981510315, -1.697584217784792, -1.6815328230761106, -1.6609410426358016, -1.6437280211625775, -1.6234276079870462, -1.6024306573708218, -1.5776113764973816, -1.5526263704637429, -1.5248272849765117, -1.4955218719533916, -1.4786087517205395, -1.4641514787975576, -1.448304076565498, -1.4383437203972695, -1.4294066681670494, -1.4084721693314597, -1.3876794524140466, -1.3666153557930765, -1.333764474020016, -1.3017026715924818, -1.2787977417097516, -1.242222123604333, -1.2032530024273123, -1.1841567361191316, -1.1480438073467216, -1.1103701714706304, -1.0872751390013728, -1.0747734458909926, -1.050405517773202, -1.0489199952289487, -1.0465581008800748, -1.0526880243765062, -1.071949020375261, -1.0900095153196385], "Eu" => [-0.39089645400715944, -0.3953741269572681, -0.3935152668764491, -0.3947376843130735, -0.3931891996806988, -0.39118257003832363, -0.388690189721025, -0.3871875415326286, -0.38459061969259545, -0.3805802890711777, -0.37531599885551975, -0.36891884005444275, -0.3630852490427514, -0.35237347831059546, -0.3414037215845245, -0.32971001932178506, -0.31058642438917433, -0.29036873413756725, -0.26636362576820494, -0.2353473990484312, -0.20256542285420198, -0.171873910622198, -0.12901436608074776, -0.0926119705974329, -0.054526295025298724, -0.013825834735923135, 0.018296033731431485, 0.05052901262841256, 0.07938186909060335, 0.09964614400749645, 0.12156989127736749, 0.14669863176120174, 0.16545062874068614, 0.18435298141513623, 0.20474795876669266, 0.22060545057761255, 0.22956355219145402, 0.23314121042054844, 0.22810933203688893, 0.2259118048970344, 0.21586190042156886], "Na" => [0.006035282965087317, 0.006113151434523798, 0.007091116616836706, 0.007531511774026914, 0.008071155486497238, 0.009402677664711171, 0.010683980213684332, 0.010306705933525066, 0.012495444970632348, 0.014391280089807813, 0.017018968183854954, 0.020788733828823833, 0.02693237244763331, 0.033038358330374475, 0.039431419523043576, 0.0481024577230984, 0.05897669675154479, 0.07108850084402298, 0.08314838625756057, 0.09548281399520252, 0.1071185151660487, 0.11737564749992122, 0.12752144318405115, 0.1360192819869993, 0.1437023606076509, 0.15030517078885677, 0.15595613758916296, 0.16020771061893874, 0.16398229934471176, 0.16827693338701052, 0.17172079211018848, 0.17475485500663224, 0.176522563377946, 0.17851733071945383, 0.17868634821309598, 0.17904729674004083, 0.178688481308981, 0.17849308491039959, 0.17679941949812927, 0.1767547194603248, 0.17524657495519783], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => 0.12704304720969722, "Ni" => [-0.7593630912593047, -0.7671776138361686, -0.770631797889153, -0.7702309749949903, -0.7733361033093814, -0.7754728875635523, -0.7771119171708778, -0.7822705691452588, -0.7904462230397761, -0.7903883878929733, -0.7923323337666256, -0.7916814854008594, -0.7884696699154018, -0.781976204077377, -0.7829785895191049, -0.7751279930442541, -0.7667336339698895, -0.75202355153717, -0.7283923191791027, -0.6974730868120421, -0.6599351960628755, -0.6201220758000716, -0.5804208777529889, -0.5453727684305514, -0.5095805856456886, -0.48238279378929694, -0.4558556763693306, -0.4380378344053249, -0.4262114452671226, -0.415537364445244, -0.4141688382892138, -0.41700313213362966, -0.4182870335470208, -0.42085773244350955, -0.4282631216974396, -0.43346592611907075, -0.4363830031638275, -0.44443246265482855, -0.451373617446224, -0.46592618148590315, -0.468427228840208], "Rb_sigma" => 0.4656113517537961, "Ho" => [-1.5666375381061415, -1.5564232433706036, -1.5531163224466094, -1.5473453195728186, -1.5462569289655441, -1.5350333434998527, -1.525624319105179, -1.5152737092797113, -1.5080223439930198, -1.4950118530843928, -1.4805577239846244, -1.4643307762249458, -1.4446272290958857, -1.422865806263353, -1.396928886988304, -1.3747064622283398, -1.3544442474554028, -1.339086707792682, -1.3198477951623473, -1.3093712530638106, -1.2970474480023395, -1.2873833006023232, -1.2752597655417057, -1.2619935865743852, -1.2477614824294598, -1.227042523851256, -1.1975578549830852, -1.1587349922012142, -1.124459147519548, -1.078229877009098, -1.0480184010575773, -1.019723464092181, -1.0004095708068685, -0.9838151801797614, -0.9841005738632689, -0.9748483597648654, -0.9719301563167224, -0.9614745515166616, -0.964808505155927, -0.961928106369, -0.9688187825072246], "Co" => [-0.9489669110038452, -0.9574899973254758, -0.9609547120718641, -0.9646184781791396, -0.9660884017810076, -0.9647078836894376, -0.9626220813738675, -0.9589440635033775, -0.957219202489102, -0.9546629235008889, -0.9557995373015771, -0.9615601871947476, -0.967624134619709, -0.9785100215260625, -0.9907998416732492, -1.0032785421959045, -1.013106203326131, -1.0341078354754862, -1.047614058519421, -1.0632824792809465, -1.0763909264167828, -1.0896939633462148, -1.090305875790006, -1.0950317189157508, -1.0936870282416504, -1.0921014651579946, -1.0872990114107723, -1.0865221044392221, -1.077813700231928, -1.0725284536080952, -1.0654496236681192, -1.0590927712649694, -1.050119949062712, -1.0425393761262554, -1.0360365949945591, -1.0345644289152358, -1.0291016180378572, -1.0308412746537141, -1.0383259477194262, -1.0455233265555923, -1.0436120394498969], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 0.30719469225640295, "Tm" => [-1.6531665304850676, -1.6534443119919677, -1.6508056501051844, -1.6476477506993263, -1.64092274325097, -1.6349165529966048, -1.6224123825379086, -1.6096262051024648, -1.588426890084366, -1.5740682750395476, -1.5590167364146474, -1.5435250041860085, -1.5231982150132326, -1.5104213654205874, -1.4852112232308825, -1.4597821970037335, -1.432089073645018, -1.4112762575809603, -1.3913323948420255, -1.376737141819027, -1.3622370105067294, -1.3522175966916488, -1.3348901526333243, -1.3111070616901241, -1.2945857512444954, -1.269030914355732, -1.242462016856686, -1.2192072099413935, -1.1923160268506818, -1.160179540805124, -1.1303027348568315, -1.1035321603834882, -1.079315727858476, -1.0519871236328588, -1.0365566528199457, -1.0144981486409548, -0.9919989125687694, -0.9672234259664797, -0.9662325545189641, -0.959254459490639, -0.9801818984995397], "As" => [-1.1490830364638716, -1.1516032074602396, -1.148238668536322, -1.1465307050582316, -1.1380468411791487, -1.1268504991296684, -1.112706250634529, -1.0963326322074975, -1.0692438066179342, -1.0424241179630247, -1.0102865216038375, -0.977631561949572, -0.9441511579704448, -0.911576654149255, -0.8785286779970412, -0.8512208764294116, -0.8291826026944626, -0.8101517286479745, -0.7986305134291257, -0.7973501833563417, -0.803558096553812, -0.8186205131487382, -0.8442590347610194, -0.8831897102940908, -0.9245338972911963, -0.9719683624448525, -1.0204250213372192, -1.069098142612816, -1.105968189828252, -1.139279083690203, -1.1659561760587394, -1.1852229234936, -1.1999296793686305, -1.2130203089354845, -1.222875684949301, -1.2272937699058897, -1.2298652778854928, -1.2280127805738963, -1.2244842797842543, -1.2216624680785793, -1.2146279273549943], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => 0.11633982590014685, "Ta_sigma" => 0.46322175058085374, "As_sigma" => 0.30947778252707475, "Gd_sigma" => 0.500315016041071, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.5088757225609346, -0.5007727975244622, -0.5029470034558975, -0.5034249855733228, -0.500107342029198, -0.49465076162076815, -0.4921377102149051, -0.48199855870874353, -0.47022025453428384, -0.45661482537058984, -0.44420891765296805, -0.42517657779637225, -0.41015574652000397, -0.3937816502031543, -0.3779529589701697, -0.35719079872554443, -0.34446018953977714, -0.3320429873390685, -0.3221282764524947, -0.31384568315369515, -0.3091439686507866, -0.2984765769187579, -0.28595596472438883, -0.27895911861464484, -0.2775872231700155, -0.2746958495935846, -0.2694452451687763, -0.26937026881470466, -0.26785207258463467, -0.26012910223314956, -0.2576011079730204, -0.2559092678497228, -0.25038365519150174, -0.24657709389507684, -0.24672556853786898, -0.24218635473991343, -0.24114188615495294, -0.24245788800040408, -0.2427882945302871, -0.24136881199400648, -0.24376697543600753]), "minerals" => ["Albite", "Allanite", "Amphibole", "Anorthite", "Apatite", "Baddeleyite", "Biotite", "Ca_Perovskite", "Clinopyroxene", "Cordierite", "Garnet", "Ilmenite", "Leucite", "Magnetite", "Melilite", "Mg_Perovskite", "Monazite", "Nepheline", "Olivine", "Orthoclase", "Orthopyroxene", "Phlogopite", "Rutile", "Sphene", "Spinel", "Whitlockite", "Xenotime", "Zircon"], "Rutile" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [1.318795546765203, 1.326041665829185, 1.3270537016248722, 1.3239431785433842, 1.328624948015323, 1.3290299022502192, 1.3332460631694283, 1.3392506828460888, 1.349172564244462, 1.363523055519777, 1.3747902266295435, 1.3941074468126544, 1.4116709524103896, 1.4270062281019462, 1.4460081435289074, 1.469632491959768, 1.4948172815270753, 1.5190572567994403, 1.544288654685767, 1.5641379637890498, 1.5864109514258482, 1.604576725566597, 1.6339650546007323, 1.6565738722878356, 1.6821408155662279, 1.710508076381061, 1.7368424756898033, 1.7511521627248308, 1.7685368432929809, 1.7848846820563942, 1.7943814715461013, 1.7984335993749183, 1.8038381507548658, 1.8141099302170829, 1.8203853203483975, 1.8164556591306626, 1.81671813657588, 1.8211745085071245, 1.8075522536464026, 1.797306484673371, 1.792826139037612], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-2.139162662397975, -2.1203161042239875, -2.10839827256057, -2.0989126991356972, -2.094391373024833, -2.0830760901679732, -2.076163798704097, -2.066921809395548, -2.053108380516515, -2.0448010609210883, -2.0317312807433314, -2.0176258944514784, -2.000262499115498, -1.9848538083283387, -1.962360526872348, -1.9407430386453, -1.9089681248210457, -1.8794968082992958, -1.8478062877621073, -1.8080028119644709, -1.770842097152797, -1.7440081105557854, -1.712929404087747, -1.6819979019029545, -1.6570287530830292, -1.6328869665374737, -1.6090558761271474, -1.5887210452404266, -1.5760062073351715, -1.561778954957205, -1.5535948516163702, -1.5445467412148852, -1.542424207351465, -1.5357991230750097, -1.5366090187893342, -1.543919062549507, -1.5468551183913033, -1.5580616459729169, -1.5775179987857566, -1.5923952600209286, -1.6090335447414708], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [-0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735, -0.08631536347308735], "Nb_sigma" => 0.5920116756061524, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => NaN, "Ce_sigma" => 1.5076283175511707, "Dy_sigma" => 0.5479336278877333, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [-1.8263598927149467, -1.8056510899146627, -1.781792414908163, -1.7743479234028574, -1.7544091264154402, -1.7419974775981653, -1.7262467053602246, -1.713279644229607, -1.6920224020707983, -1.6694560424339036, -1.6392491666662312, -1.6114602054174476, -1.58083478940671, -1.5435028375678321, -1.513725638199062, -1.4834771920462368, -1.4494187218557713, -1.4099754165666885, -1.3755669236174266, -1.3326219167011957, -1.2881791742607163, -1.2564076675863243, -1.222868759747675, -1.1977814883827407, -1.1765661796318518, -1.1597477246233656, -1.135508986392543, -1.12073034945034, -1.096383609683599, -1.0839166009493568, -1.0740003751658989, -1.0701381341917229, -1.0689720400105613, -1.0813251418141878, -1.0887140816955663, -1.102587519526231, -1.1068468051861304, -1.1147898838059254, -1.1193077590053442, -1.1230438178052442, -1.1379307075260867], "Pt_sigma" => NaN, "Ta" => [1.3421890614845136, 1.3442005652828326, 1.3421139362243169, 1.3475787359025173, 1.346546277709137, 1.3529791235697364, 1.3605688339583655, 1.3686658204585693, 1.3743262143723527, 1.3866804151602004, 1.3968750861387838, 1.4068870189770428, 1.426529058096746, 1.4467220163808454, 1.4655724541623185, 1.4834735176637253, 1.5052399774616954, 1.5204855213791153, 1.5346962603291059, 1.5480431159878176, 1.5606227568099131, 1.570261501237257, 1.5795940644988025, 1.5876469038943228, 1.589915837412634, 1.59614878147082, 1.5984046606764573, 1.5982041850663364, 1.5969998505384524, 1.6025428856201256, 1.6023943226636292, 1.603459864927149, 1.6058124601112969, 1.6061122696857872, 1.6060434498044458, 1.6108415509410554, 1.6175355428582878, 1.6186625496474984, 1.6224310805763986, 1.623953883009483, 1.6300632510187751], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [-0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912, -0.9239366344050912], "Sm_sigma" => 0.9527769474794857, "Lu_sigma" => 0.34528506170571366, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316, -0.059593203859604316], "Eu_sigma" => 0.4366948204145265, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.971509134108053, -1.9413863212201727, -1.914060017691085, -1.8771336041646605, -1.8645671537583908, -1.8359688527258002, -1.8118008842808537, -1.7864850237095786, -1.7659814723239873, -1.742369858427276, -1.7096920419385622, -1.6768493081042408, -1.644445618328128, -1.6153501694017232, -1.552293486006985, -1.5215459343284734, -1.4649426601025497, -1.409271164644384, -1.3427385751948642, -1.3072010065680473, -1.2407370299791907, -1.1981056730332666, -1.1518460828708148, -1.120638653496862, -1.082146517019288, -1.0551573872808653, -1.0287638453573484, -1.0132451300675274, -0.9827757956306576, -0.9539940803205624, -0.9389703146464824, -0.9330688972476752, -0.9172171193013754, -0.9237429258398374, -0.9531253912845512, -0.9549117834679572, -0.9614028483079822, -0.9835335468495489, -1.0124103023222124, -1.019914777034426, -1.083116179687335], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [1.2852506976528824, 1.3140278626288762, 1.337678291851288, 1.356216444819382, 1.3678301378721769, 1.3733443240704573, 1.3808070769054142, 1.3770871327371108, 1.3881080084267583, 1.38708194407626, 1.3815756533721744, 1.3681845808230335, 1.3669796822015798, 1.350709481817883, 1.3427395387467929, 1.3365570384809442, 1.346283686954646, 1.349796648658174, 1.3611437617069195, 1.3765721630968235, 1.395051167554705, 1.4104797018939268, 1.4336897764575618, 1.444829768278476, 1.4614407287801183, 1.475531437024887, 1.4851552370316319, 1.4908468916460924, 1.5070980118991637, 1.514116761204423, 1.5163678962751275, 1.5153353510059588, 1.5150174452630536, 1.5128258517840887, 1.5046968430725387, 1.506819582372319, 1.5096533732690534, 1.4940107553809978, 1.4787064713485025, 1.4676701357338, 1.4449364438678365], "Yb_sigma" => 0.33143719736816096, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 0.4191225961746201, "Pr" => [-2.035027097460608, -1.9806475909084362, -1.9546475999852804, -1.9329724017864878, -1.9209608535159053, -1.9075334414906195, -1.913532955690693, -1.8959973932334073, -1.8849614285799652, -1.869338946107418, -1.8581480336732723, -1.838642418078331, -1.836012373458535, -1.8201682808335418, -1.813786566193911, -1.7970529159363997, -1.7742855994916649, -1.7468736191842489, -1.7170457106108552, -1.6819905678064542, -1.647889052492652, -1.6122557380060518, -1.5761338906396958, -1.5427834051803018, -1.5152334962119274, -1.4751928796436946, -1.4458966545703016, -1.4082715366838046, -1.3878781543750518, -1.36605950765529, -1.3563392277915816, -1.3564223670695974, -1.3684495649673332, -1.358428219930177, -1.3441494128622984, -1.357341033037491, -1.3567704272024508, -1.3603911379955198, -1.3768509625198255, -1.4159500358169683, -1.4578169222809112], "Pm_sigma" => NaN, "Th" => [-1.6525356336272197, -1.6235105049112188, -1.5663594920546262, -1.5269270350922008, -1.496738768338633, -1.481166310605023, -1.4576874734855818, -1.451666120450362, -1.4365089595949498, -1.4507845934018906, -1.466618199936056, -1.4782956398620015, -1.5022015346596955, -1.521815368089601, -1.5227627573991482, -1.5208101002455878, -1.522719965449135, -1.5093532575601303, -1.493457839882103, -1.4780326496154341, -1.452422598792062, -1.4245658119711235, -1.3734109651962114, -1.3521499698360804, -1.3351684386629161, -1.301298044165338, -1.2831567965990025, -1.2673152228538884, -1.2216557906337666, -1.1915380652427845, -1.1869680298987004, -1.1754144297396663, -1.1946135733508343, -1.2429732929552562, -1.25798700151681, -1.2676497598556318, -1.2843814679244496, -1.3069339291989028, -1.331855764087681, -1.3514818288606207, -1.3968208062625584], "Y_sigma" => 0.2761248774710973, "Zn" => [0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312, 0.7385606273598312], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pr_sigma" => 1.4004603837974252, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => 0.0, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.3712511371237863, "Er" => [-2.228755843396815, -2.225719348956145, -2.2234062194402933, -2.225614245021308, -2.2240798571513505, -2.2229781654718566, -2.2150448371192843, -2.207866677359511, -2.1941332229702892, -2.1809847711886508, -2.166055852837862, -2.151547329252273, -2.137312027061819, -2.12019008242349, -2.102499007642324, -2.081202831069113, -2.053401694871198, -2.023305304900954, -1.9918690171533244, -1.9594877036786627, -1.9278337548376379, -1.9016973890271702, -1.8765808340488452, -1.8533682606124529, -1.834046600800424, -1.8132974530792574, -1.7978225286756941, -1.78059416682008, -1.7710084074119357, -1.7570674460176157, -1.7553218406188076, -1.7523691764902123, -1.7497864847716098, -1.753724956710362, -1.7613932394083787, -1.7584273715899388, -1.7611117790247355, -1.767623839393537, -1.7671966741951943, -1.7627660786940795, -1.775960040638027], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => 0.08921823313696692, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-1.9702415185890367, -1.9074281494274357, -1.8685287839829932, -1.8450023590447262, -1.7929198809633362, -1.7840681127158733, -1.775821981805064, -1.7464731558305089, -1.7388737678842925, -1.7532616531914023, -1.73672655385547, -1.7313574009481005, -1.739095137069675, -1.7389176038470182, -1.7131377299266757, -1.7047812445491286, -1.703003435729898, -1.6891846623001479, -1.6567609337808586, -1.6259587111605307, -1.591481454913139, -1.535164262116585, -1.5050750140559894, -1.4709007830137903, -1.448299213699331, -1.4131881756440183, -1.3827886671938894, -1.332108693375042, -1.3062503173083952, -1.293400982893416, -1.2669665263112033, -1.2634133725867016, -1.2691549386454282, -1.2698857861268622, -1.264109315966669, -1.3036911490648948, -1.3346416747852432, -1.3764083751042964, -1.424263086899599, -1.419019629221755, -1.4449232664134875], "Ru_sigma" => NaN, "La_sigma" => 1.8679459434250234, "W" => [0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968, 0.4301690032854968], "Au_sigma" => NaN, "Hf_sigma" => 0.02850906489054337, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [-2.1917571200355366, -2.182175394059771, -2.1707073529677974, -2.1637995007891044, -2.1545067348577556, -2.145426901469979, -2.1379152347726404, -2.1318008600060825, -2.1225995405705556, -2.1131528088231097, -2.1025539590593287, -2.0895989031690094, -2.0710906235858952, -2.051316430325628, -2.0291418834895967, -2.003401325999704, -1.9714946752964915, -1.9416794628731413, -1.9101895803583087, -1.8797485859916436, -1.8501083157166545, -1.818215222170884, -1.787868173529325, -1.759852823458025, -1.7317520688698682, -1.7081975421431967, -1.6970866424271014, -1.6878202865878074, -1.6768518552395877, -1.6672738514839789, -1.6582986987917203, -1.6477974385629293, -1.6398928231121481, -1.645842600709187, -1.6481928395003358, -1.6549997317668328, -1.660143162892605, -1.668910668148341, -1.6629375848336814, -1.6745756680123294, -1.6862874929448497], "Ti_sigma" => NaN, "Th_sigma" => 2.0883736685593677, "V_sigma" => 1.2246617679766363, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486, -0.46852108295774486], "Nd_sigma" => 1.3090261989060585, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [0.6709464487972842, 0.6726747384970998, 0.6733680478285486, 0.6738790583209463, 0.6756923569386633, 0.677368696937559, 0.6785587090146613, 0.6797814533305062, 0.6794049122395532, 0.6791673374473672, 0.6781593191782712, 0.676177975213389, 0.6750977728942484, 0.6750665272311452, 0.6749595287329518, 0.6743499682707089, 0.6747862047088147, 0.6740101878563114, 0.6729202193799226, 0.6714512476560144, 0.6711332815992128, 0.6702701786260541, 0.6704990398294258, 0.6711291793608303, 0.672099514248857, 0.6719712444252569, 0.6720222488212712, 0.6721160752076837, 0.6717778428673378, 0.6708881743791912, 0.6718081885008266, 0.6715980527771912, 0.672338764390873, 0.6720186522383238, 0.6730394371253069, 0.6725306171725648, 0.672770028929901, 0.6715744895791662, 0.6717652399320716, 0.6678856896180523, 0.6652862406734462], "Tb_sigma" => 0.6224421588864182, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993, -2.0197014055511993], "Sr_sigma" => 0.8929589684258389, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997, -1.8222020757166997], "Nd" => [-2.0250174150205127, -1.996108599927481, -1.9767974317422885, -1.9650606458591575, -1.9582134715307715, -1.947224178139496, -1.9200463943427704, -1.9110370208371972, -1.912488721786637, -1.9034855022002197, -1.8928724988282895, -1.8925379068139851, -1.8861764848449907, -1.873677509821736, -1.8505177293068447, -1.8283651943924024, -1.7979875686604245, -1.7692474165620362, -1.7347087536809156, -1.7058968438407138, -1.6739398119663644, -1.6448419542380215, -1.6042169050957082, -1.5624391245384903, -1.526372485755358, -1.4926752287398677, -1.4641994402962213, -1.4439689090964056, -1.4267136174036292, -1.4023552889125928, -1.3886042413902975, -1.3893810771538682, -1.3785215417628474, -1.3800378595721192, -1.4073480601060187, -1.4354221546836519, -1.4403999143514217, -1.48059777373841, -1.5090125908498728, -1.522692771087864, -1.5483277861912685], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [-2.1767274791776754, -2.1676162797321306, -2.1578101084265384, -2.150146546027135, -2.1397025751004124, -2.128755625663063, -2.1175603951437347, -2.1105241196614237, -2.097142413657707, -2.083128691574061, -2.0736535279316897, -2.0670258010392737, -2.054603819061709, -2.0358194964336556, -2.0224555068866725, -1.9911915912410814, -1.9574307209538382, -1.926198623948279, -1.8961461311095718, -1.859575849040237, -1.831804396142915, -1.7990308066152265, -1.769432118697878, -1.7441991329729436, -1.7187330616129912, -1.6921136197568485, -1.676231424299039, -1.652994132993425, -1.6318099173923462, -1.622880775589264, -1.6202121988180263, -1.6089288473366945, -1.6087660962530739, -1.6101135307368486, -1.5993883818127592, -1.5948889452156236, -1.6200818546586593, -1.6328575453244365, -1.6478231457728518, -1.6853492834183255, -1.7074075539390117], "Tm_sigma" => 0.34054452196873614, "Zr" => [0.4809280857145627, 0.48329678271428816, 0.4832809505558543, 0.4836721722118171, 0.48447796984248914, 0.48635339910927017, 0.4872384592733874, 0.48845218213321634, 0.4899724192382895, 0.49203037484331036, 0.4947216711465859, 0.49800574703492206, 0.5026632955369481, 0.5066835853585656, 0.5106252621317956, 0.5155037233359772, 0.5219034676466728, 0.5268752717244813, 0.5329881287685908, 0.5386306162595587, 0.5428091247035196, 0.5470482705255254, 0.5513201951820644, 0.554462537113381, 0.5576074522138867, 0.5591709362643725, 0.5610532836801374, 0.5628105448837478, 0.563778180634183, 0.5656847704452175, 0.5679877336523618, 0.5679651459974384, 0.5685446591760269, 0.5690624471852093, 0.568559764510616, 0.568791237318458, 0.5679163742196, 0.5650228369808981, 0.5652803791814587, 0.5621410786766483, 0.5603773340540492], "Sm" => [-2.090232246038092, -2.0857355625267404, -2.0714781123540735, -2.067609722208963, -2.0566389752923344, -2.0425235435879836, -2.0254007277314012, -2.0158324826783, -2.0037470977935907, -1.991389023000422, -1.9798756461656082, -1.9745480633898012, -1.9598439327873263, -1.9390435291214083, -1.9283247140062416, -1.9045656877044796, -1.8768120230592635, -1.8524422477632114, -1.8238499246163948, -1.7780217121817352, -1.7434198626886388, -1.7053690494743, -1.6666105902537356, -1.6332975106523073, -1.6098367683975456, -1.5849623615113748, -1.5565243619435742, -1.5451754899834633, -1.5298302463543734, -1.5054881551451524, -1.4930623216201546, -1.4870801361808685, -1.4690366861784192, -1.4643787898424678, -1.4723819800392137, -1.4828086390280257, -1.494886404782444, -1.5053620627772955, -1.513386030563932, -1.5364626669432602, -1.5485390356430435], "Ba_sigma" => 0.0580921555552961, "Cr" => [1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685, 1.3573324964312685], "Cu" => [0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249, 0.5791812460476249], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [-2.2566221626650473, -2.25978510626077, -2.2621589975829233, -2.2651582482239365, -2.262852820521775, -2.262106826621665, -2.2594844140015353, -2.2538706651935994, -2.2447107660010435, -2.237107243739392, -2.225800024581081, -2.212503338178148, -2.1945278460706312, -2.1732128996616678, -2.148731046776279, -2.1199235529879874, -2.0916008879941796, -2.06529840758732, -2.039606252601264, -2.014072080501229, -1.991648499829668, -1.9658978622021255, -1.9402503227902752, -1.9193103440069865, -1.9001992004660497, -1.8832378298012076, -1.870948418991317, -1.8603744717107804, -1.8500115710790543, -1.8424735414481055, -1.8369723813456114, -1.833584156608904, -1.8305342843834531, -1.8273088410520755, -1.8267335229489265, -1.8269179398786732, -1.8247369919522762, -1.8288797557632037, -1.833832532341016, -1.8377921950800153, -1.8463366797602505], "Lu" => [-2.279421606169827, -2.285076578915386, -2.289578256707956, -2.2891579522263834, -2.2931002832484606, -2.290327943349662, -2.2865337517686553, -2.278556652294391, -2.2719539391907384, -2.2595853470405443, -2.2467023864513505, -2.2296347273149406, -2.212017542999965, -2.1906271652179408, -2.165438577205927, -2.1401393673443434, -2.11519762586845, -2.08791746478274, -2.0604192644447457, -2.0370805143224393, -2.0120115066037463, -1.9888163827490628, -1.970039673951865, -1.951761873143577, -1.9346563805866026, -1.9196476724705176, -1.9078796584921747, -1.8985012456641717, -1.8894059695850363, -1.883695098269914, -1.8795598161223892, -1.8759123100749617, -1.8732872749356777, -1.871420971349735, -1.8694528288359655, -1.8690370370640617, -1.86767604744265, -1.8671982237648892, -1.8677279137098113, -1.86898164471377, -1.8703939977992243], "Eu" => [-3.0940569420553277, -3.104137225257265, -3.114581828690406, -3.123760734074165, -3.1219104993464035, -3.1250244834081164, -3.1223874911936895, -3.1171878323489497, -3.1133690854788854, -3.106714844544967, -3.094554770238944, -3.0770240389928674, -3.0618748579067296, -3.0402150043272482, -3.0221362249466375, -2.99974428767865, -2.9832395882592664, -2.9587852843718023, -2.940062476675096, -2.919821351811156, -2.899024407171681, -2.8787434946237522, -2.864466266488037, -2.844844614390778, -2.8305554049576562, -2.826271746250783, -2.81987362869625, -2.8167577129808827, -2.8182344682651244, -2.815703901027062, -2.8124162433543, -2.8121850080078485, -2.8074009461711062, -2.8040674050374927, -2.805129160080442, -2.8009922220994494, -2.795561104928495, -2.7930502770216226, -2.787537752499656, -2.775976260498151, -2.7744324653232404], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => 0.14069303931871563, "Ho" => [-2.2171463133660203, -2.215641072953356, -2.2115698276609366, -2.2060909456809057, -2.2005743950153422, -2.195373209053904, -2.1900052404064145, -2.1861873144992896, -2.1782455822266784, -2.1716245179362454, -2.1578650910518906, -2.1441651299901925, -2.122989627846979, -2.1014423564779667, -2.078404012394749, -2.0523133963419085, -2.0228558403162897, -1.995371156796769, -1.9668744104520197, -1.9326617224773084, -1.9036269329894158, -1.8772612084046953, -1.8525436313723713, -1.8279131571701126, -1.8074248481512847, -1.7923479987833335, -1.7746956937828493, -1.7585414660395406, -1.7440877045512198, -1.7348288746928413, -1.724564202712699, -1.7196088672136818, -1.7186113960885328, -1.7200742244937526, -1.7211636874612872, -1.7191830378095654, -1.7171849169981095, -1.711473878018854, -1.717448885915572, -1.7177053560117599, -1.7356200961868755], "Co" => [-1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189, -1.5975896606394189], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-2.2475246472142194, -2.247311063363288, -2.2446054710578034, -2.2429855948320854, -2.241597597633364, -2.235165481736845, -2.2298307744471155, -2.2239797216038846, -2.2207794201809965, -2.209550581615479, -2.2018622373304293, -2.1885402398338676, -2.169477580421759, -2.143560099264786, -2.1229089666186653, -2.0964903511160498, -2.069305930921821, -2.0422655047901026, -2.015098332876554, -1.9847741334200544, -1.9567638998346992, -1.9292332281380822, -1.9052014403972997, -1.8846046057021077, -1.8664893183058244, -1.8496581845763254, -1.8362161504115917, -1.8213589574891675, -1.8081695003358282, -1.7988808737295625, -1.792016452289292, -1.7879133461101029, -1.7926380403942128, -1.7940024967173474, -1.7957339771426077, -1.7980099954589412, -1.7956329962411992, -1.7926357089407055, -1.7978577742649593, -1.804601942641224, -1.811476947359416], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 0.3614456378740879, "As_sigma" => NaN, "Gd_sigma" => 0.7828422963972494, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537, -1.812479279163537]), "Melilite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725, -0.26122671658811725], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => NaN, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => NaN, "Ce_sigma" => NaN, "Dy_sigma" => NaN, "Be" => [-0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313, -0.003105593090647313], "Sr" => [-0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875, -0.9793036574208875], "Pt_sigma" => NaN, "Ta" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [-0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184, -0.35971081481596184], "Sm_sigma" => 0.1077688068818574, "Lu_sigma" => NaN, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Eu_sigma" => 0.2784480647474514, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624, -0.9958702925043624], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => 0.16550005731915624, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => NaN, "Pr" => [-0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445, -0.2034266430423445], "Pm_sigma" => NaN, "Th" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Y_sigma" => NaN, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824, -1.4789308051053824], "Pr_sigma" => NaN, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [-0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541, -0.5307401374117541], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => NaN, "Er" => [-0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256, -0.49478974485567256], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-0.7591310398555121, -0.7604257038071528, -0.7646384239104237, -0.7651273788293143, -0.7651387555203834, -0.765770658758235, -0.764598382806957, -0.7615787674054211, -0.7611070402053015, -0.7585473892304111, -0.7572978794764148, -0.7558746086305015, -0.756606653874132, -0.7547253348794467, -0.754811413116586, -0.7516793730110368, -0.7458661042788259, -0.7389428895002476, -0.7335931901541283, -0.7275262616230188, -0.7206664593625116, -0.7181818825506965, -0.7120022479814074, -0.7071812038426923, -0.7011562668601518, -0.6954009493259623, -0.6891995157330222, -0.6874284965098811, -0.6821245958942548, -0.6785114013955705, -0.6732043485153507, -0.6685553418552721, -0.665477210555161, -0.6645690369621583, -0.6602628163864062, -0.6628927874368142, -0.6614330034191637, -0.6558871091992313, -0.6558795873557265, -0.6573770636460038, -0.6562694040844194], "Ru_sigma" => NaN, "La_sigma" => 0.35018613482121685, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => NaN, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [-0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844, -0.35835642999410844], "Ti_sigma" => NaN, "Th_sigma" => NaN, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => NaN, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb_sigma" => NaN, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr_sigma" => NaN, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128], "Nd" => [-0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303, -0.19626337254302303], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [-0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864, -0.3214722330377864], "Tm_sigma" => 0.4491978277897027, "Zr" => [-0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126, -0.4625917796774126], "Sm" => [-0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305, -0.29591855253193305], "Ba_sigma" => NaN, "Cr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.438784126690263, "Yb" => [-0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156, -0.4891488194956156], "Lu" => [-0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663, -0.6676803415727663], "Eu" => [-0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103, -0.43625807699200103], "Na" => [-0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983, -0.42021640338318983], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => NaN, "Ho" => [-0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757, -0.44512060514749757], "Co" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722, -0.8661405237832722], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => NaN, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]), "Phlogopite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501, -1.055762471587501], "P" => [-2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301, -2.455047444280301], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [-0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069, -0.911231750035069], "Ar_sigma" => NaN, "Gd" => [-2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501, -2.289747580560501], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [-2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572, -2.593543321678572], "Nb_sigma" => 0.7100009309830113, "Cs" => [0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928, 0.20356808012633928], "U_sigma" => 0.5368757521069779, "Ce_sigma" => 1.7490664367240016, "Dy_sigma" => 1.0465810317808093, "Be" => [-1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374, -1.293350117959374], "Sr" => [-1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752, -1.1218422085950752], "Pt_sigma" => NaN, "Ta" => [-1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704, -1.058182084373704], "Ga" => [-0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077, -0.13598552278974077], "W_sigma" => NaN, "Cs_sigma" => 0.3196987140018322, "Y" => [-2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155, -2.1338031200885155], "Sm_sigma" => 1.319017848418009, "Lu_sigma" => 0.8886360960033127, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374, -3.4698565171985374], "Eu_sigma" => 0.7351486853038538, "Sn_sigma" => NaN, "Ca" => [-2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572, -2.093543321678572], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418, -3.304440785042418], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455, 0.29413585342116455], "Yb_sigma" => 0.9141610941891644, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [-1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818, -1.4300604567993818], "Ho_sigma" => 0.9926521720530244, "Pr" => [-2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885, -2.4640404262876885], "Pm_sigma" => NaN, "Th" => [-3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234, -3.6237125054200234], "Y_sigma" => 0.5502360259350653, "Zn" => [-0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048, -0.7015915320422048], "Pr_sigma" => 1.3355851761397803, "B_sigma" => NaN, "Li_sigma" => 0.1024143906958512, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738, 0.1697446022010738], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.9661686583743375, "Er" => [-2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816, -2.1509673335025816], "Ge" => [-0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693, -0.12950303420755693], "Cr_sigma" => 0.37569927700960304, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => 0.3722395030488028, "Zr_sigma" => 0.7200366982208869, "Mg" => [0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746, 0.3999183012996746], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864, -3.1368509369171864], "Ru_sigma" => NaN, "La_sigma" => 1.6357328183958253, "W" => [-3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059, -3.037860356969059], "Au_sigma" => NaN, "Hf_sigma" => 0.6267277111558025, "Li" => [-0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501, -0.627095642004501], "Dy" => [-2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486, -2.21913832948486], "Ti_sigma" => 0.7737968597043908, "Th_sigma" => 0.10643017563727906, "V_sigma" => NaN, "B" => [-1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747, -1.3165085120110747], "Bi" => [-1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192, -1.3409683325186192], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => 1.5985362061910573, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926, -1.1396689803747926], "Tb_sigma" => 1.0740273255093682, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [-0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498, -0.6883753548010498], "Rb" => [-0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631, -0.3680522601347631], "Sr_sigma" => 0.6885471926607023, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158, 0.1375200935102158], "Nd" => [-3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435, -3.1918704008901435], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099, 0.5002706382840099], "Tb" => [-2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262, -2.242403338522262], "Tm_sigma" => 0.9400051236995992, "Zr" => [-1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305, -1.4340078502615305], "Sm" => [-3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648, -3.036220224902648], "Ba_sigma" => 0.6891678008137284, "Cr" => [0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725, 0.38979330822769725], "Cu" => [-0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619, -0.3597108148159619], "Al_sigma" => NaN, "Tl" => [0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521, 0.5987229860685521], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [-2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926, -2.1068696814581926], "Lu" => [-2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797, -2.085224654819797], "Eu" => [-0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102, -0.9506488602991102], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888, 1.86656370957888], "Rb_sigma" => 1.6335126811545806, "Ho" => [-2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965, -2.1734206950414965], "Co" => [0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756, 0.42177210597281756], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976, -2.128783784996976], "As" => [-1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376], "Sn" => [-0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881, -0.926935982160881], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 0.14081998954222916, "As_sigma" => NaN, "Gd_sigma" => 1.1298860098936274, "Cd" => [-1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.5], "Pb" => [-1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784, -1.2973824569890784]), "Biotite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.19990078491590138, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-0.9830467038552325, -0.9553731125420952, -0.9430824255367254, -0.9098803112988141, -0.874994788725393, -0.8279212106251902, -0.795462059704205, -0.7408979906431548, -0.6717670091924917, -0.60354136682408, -0.5310554921476419, -0.449849914492849, -0.36285853486749015, -0.2584777594963178, -0.15951003563879185, -0.054263243448650245, 0.060103832344589055, 0.17156419263058303, 0.2590101765107138, 0.3451550505879634, 0.4244791602867468, 0.5082133991002022, 0.571789111966034, 0.622101678628924, 0.6872427039671964, 0.7381937141574546, 0.7725883766519739, 0.8084821513720922, 0.8422052359356804, 0.8570904717660782, 0.8692540118745343, 0.8756078199673833, 0.8803184815042668, 0.8830605289534872, 0.8918316953640254, 0.898901444188341, 0.9028640448852652, 0.9132133002153259, 0.9214401664698049, 0.9188037896528722, 0.924792354740424], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [-0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436, -0.27002571430044436], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-1.6650471019411628, -1.660174587606946, -1.6485596447718147, -1.640176020530305, -1.6318128136642844, -1.6318890068956227, -1.6291236803428577, -1.619890462897442, -1.6070978780875849, -1.59424172942919, -1.5710362537327585, -1.5459855422999518, -1.518541646039687, -1.485661987677434, -1.4447652432570675, -1.400879837922513, -1.329310113215251, -1.2622246839181803, -1.1758865305563977, -1.092891159898391, -1.0055920615858323, -0.9357421180003603, -0.8542561295137375, -0.778357945757113, -0.7085655279424256, -0.6568306735780918, -0.598729993879084, -0.5562069151327799, -0.5257251115835434, -0.497563102245618, -0.4646299289362483, -0.4404713322709353, -0.42085363923195473, -0.4017443552309181, -0.3789439801685639, -0.3651232595862233, -0.34915698395476064, -0.3342782739965677, -0.3187127133734378, -0.3071674754043292, -0.3024159879460816], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => 0.8574434053981557, "Sb" => [-1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978, -1.2065962527627978], "Nb_sigma" => 1.000460424001269, "Cs" => [-0.1280155074291572, -0.13185167575050474, -0.1355614794661553, -0.1340354252429316, -0.13141225115197805, -0.13969951089990704, -0.14802866590681188, -0.15340436810012856, -0.16369018281581152, -0.1783462547812391, -0.1968801722532892, -0.21268391575083395, -0.231736664223929, -0.24367864681025758, -0.24757337136341148, -0.24386600969506317, -0.23730332602008342, -0.21743434893573824, -0.19017933717563304, -0.15087424721693476, -0.10212732523560493, -0.047316020844168916, -0.0024971115139033715, 0.05747267918030046, 0.1108813869825001, 0.15791785132364988, 0.2030916492271984, 0.2538609273332226, 0.28391624718637043, 0.3194188892921239, 0.35164647477690775, 0.3797820796115471, 0.4002840534400228, 0.423783245973656, 0.4377377243115337, 0.449898504605023, 0.4598051449460359, 0.4682493549105845, 0.47197064822633067, 0.4649523013747802, 0.4632668665287793], "U_sigma" => 0.8670941555954853, "Ce_sigma" => 0.8899314443100776, "Dy_sigma" => 0.5731871986776632, "Be" => [0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696, 0.5840276517295696], "Sr" => [-0.5907166399051773, -0.5680923925864795, -0.5478942403837027, -0.5470157326721072, -0.5493575703233942, -0.5490813107233974, -0.5440746294248285, -0.5477585223495162, -0.540927244861224, -0.5359873101068021, -0.5370522119379022, -0.5500280342266247, -0.5645624011055066, -0.5804722174564282, -0.605810882452207, -0.6313285925201119, -0.6454031194169731, -0.6536452535663921, -0.6627579792437357, -0.661929931496127, -0.6576679729045113, -0.6513618770145154, -0.6392398566573769, -0.6245768839332643, -0.6103506436767214, -0.5890135390472536, -0.5702532739432093, -0.5583245970136651, -0.5465499885082451, -0.5344403168593793, -0.5260711243196768, -0.5169261538814223, -0.5085769385980468, -0.49677612897019413, -0.4843211978125954, -0.47908352061436094, -0.4740242688533365, -0.46320634533476784, -0.46307892799520894, -0.4608896287951317, -0.4515474326248938], "Pt_sigma" => NaN, "Ta" => [-0.5425539418577151, -0.5141841019206902, -0.4854602574795011, -0.45872559244370803, -0.43807220965446064, -0.43008102211840377, -0.4053172941743723, -0.38901037002034683, -0.39615970163032443, -0.3804923554934052, -0.3723483417991431, -0.3712422191243036, -0.36381024096911785, -0.3468833262934956, -0.3386376869920738, -0.32191761647164785, -0.2989035374041576, -0.2750658725093135, -0.24933327363216987, -0.21837719822620613, -0.17906519318225264, -0.132542809560451, -0.07520919028875712, -0.007291195228096139, 0.06042547800279135, 0.12268810323760947, 0.18071267676230204, 0.23587270265670346, 0.2841410008015721, 0.3188024430007528, 0.355716276824939, 0.3864869047543757, 0.4086372310914015, 0.4255635630048948, 0.4406779957132315, 0.4499637570190074, 0.45651997935268035, 0.45269179152564476, 0.4508813428210073, 0.4497008083517948, 0.44184127019531594], "Ga" => [0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905, 0.44835330187014905], "W_sigma" => NaN, "Cs_sigma" => 0.586224047874408, "Y" => [-1.8667720251768178, -1.8720034463765813, -1.8523336589249253, -1.8320473129767123, -1.7916848032404962, -1.7755897352285832, -1.720879709463298, -1.6737774236008511, -1.6189024453630183, -1.569151646616961, -1.4770162421806237, -1.379579078172876, -1.2999707249760748, -1.212730092474932, -1.128826874100513, -1.0282758054359658, -0.9410705918958114, -0.8316523759566941, -0.7495617042300267, -0.6503838657695497, -0.5824182267382279, -0.5098657791036084, -0.44838755926502505, -0.3838573247828793, -0.3460510670525601, -0.3030991929342201, -0.2720963259458479, -0.2465819659058783, -0.21639857003103788, -0.18101880428056827, -0.16092697796397648, -0.14447417862597772, -0.13231285059345818, -0.12047973891629996, -0.1142350740942645, -0.104728191220718, -0.0942670284515734, -0.07949249356571675, -0.07600654095156245, -0.07123236318072684, -0.06441499079437009], "Sm_sigma" => 0.6560370859986032, "Lu_sigma" => 0.5057669065818333, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.9426936793631002, -1.9293500362425233, -1.9027485675001516, -1.8590371756470112, -1.82717813227661, -1.8052589740615335, -1.7738299607695744, -1.7395052268208202, -1.709096835342789, -1.664320563017275, -1.6162000500735696, -1.5798078396271884, -1.537552872097276, -1.4900277677891234, -1.4461068896854683, -1.4160825164643838, -1.370561138588821, -1.3234261143424317, -1.2720820609733037, -1.2299404461316676, -1.1785035203444523, -1.1293644064523218, -1.0748590653259933, -1.0290510236559112, -0.9820600469453987, -0.9278992865669081, -0.8697022308357447, -0.8239628575521787, -0.7818853090664197, -0.7352227069973303, -0.6998153084154712, -0.6752564831343808, -0.6483584741544245, -0.622775340201041, -0.609768497107883, -0.5922131429670832, -0.5858459034132962, -0.5809198585084883, -0.5802168679093432, -0.5775182029166755, -0.5776325246772315], "Eu_sigma" => 0.49907210874456137, "Sn_sigma" => NaN, "Ca" => [-0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328, -0.21112488422458328], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.9114195345996706, "K" => [0.42601822749702795, 0.4494649081384041, 0.44051919186600536, 0.44868640274964705, 0.4479950948699268, 0.4452315162320784, 0.4318833837755509, 0.4375584353987369, 0.4296152167707645, 0.4300436814176442, 0.42822236546837816, 0.4320731144477251, 0.4333085341242884, 0.43342274965644384, 0.4349508979096768, 0.43426678898697313, 0.4318580804777263, 0.42769796929354875, 0.42654312265978117, 0.42024867139953015, 0.42089103903804836, 0.4165840325870558, 0.41377565257974885, 0.40863712523167656, 0.4093608915422604, 0.40318360765385136, 0.3999241530114125, 0.3978546307122958, 0.3953964650585643, 0.39089148424180975, 0.38630113814875466, 0.38433858362041873, 0.376677311841122, 0.3737554325927449, 0.3656509596564994, 0.36076914645612473, 0.35585303484856007, 0.3547280105390105, 0.34800694941116883, 0.3468504088336007, 0.34698740349586127], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.9796125500206465, -1.9633444755317708, -1.9408642403272833, -1.9075442511090055, -1.8828622557221448, -1.8735884904320288, -1.8547613803996204, -1.8372631599834677, -1.824833336329052, -1.813318996987965, -1.7906790083231372, -1.7657035344603593, -1.7368434142501976, -1.6990816111193656, -1.6412693161417227, -1.5640770134963844, -1.4856452868462549, -1.4016783107643833, -1.3259704224426048, -1.2429129971377983, -1.1726468910048673, -1.087324721216218, -1.0006205505469354, -0.9140671115252202, -0.838517266270171, -0.7682911363130188, -0.7017998615909059, -0.642543879346847, -0.5954302986689087, -0.5538314732777121, -0.513020946212175, -0.48378646730141617, -0.4576850590682674, -0.43126753845348886, -0.3961991878054468, -0.368109338628621, -0.3454265958222098, -0.31543913072052004, -0.2865842284023477, -0.2808118329325189, -0.27659670918367646], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.23233296076714743, "V" => [1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703, 1.9003671286564703], "Yb_sigma" => 0.5139113718533157, "He_sigma" => NaN, "Co_sigma" => 0.4034299316239143, "Mo" => [0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265, 0.34590948773990265], "Ho_sigma" => 0.5460882775823986, "Pr" => [-1.5294832851087283, -1.5083590129111089, -1.4935953052148547, -1.4937998612939596, -1.4774925905176084, -1.4771687802160227, -1.4849711563033652, -1.4860154368586411, -1.494590170380029, -1.4924837448788, -1.4887250850722384, -1.4671434927761222, -1.4616493061615636, -1.4476038998616336, -1.4360331419320593, -1.405917620873505, -1.3748166322532356, -1.3136013730832936, -1.2540393478589738, -1.1836227970559623, -1.1146072272930088, -1.034650444274602, -0.9615630318776205, -0.8814024717565528, -0.8044441656764572, -0.7399507306258593, -0.6753934263413698, -0.6202208364037908, -0.5710680722857321, -0.5298426377150043, -0.4892022303824656, -0.453792661695185, -0.4199208723310462, -0.3901685688834831, -0.36122936752017404, -0.330218715172946, -0.30734167289250375, -0.285312200549685, -0.26007843832094535, -0.2348911253721708, -0.22540115884891856], "Pm_sigma" => NaN, "Th" => [-1.9011099443526691, -1.8778419684795973, -1.8586042758215502, -1.822746842082458, -1.802225593993675, -1.7682968558272825, -1.7558859748767965, -1.7186646998575568, -1.7002415373919615, -1.653121538440009, -1.6098485769360915, -1.5546747410757782, -1.5139773951348736, -1.4540128316260779, -1.402122159788624, -1.3406153020812461, -1.2846702461446722, -1.2270880990988846, -1.1666053999867851, -1.114944633090028, -1.0693507458599343, -1.01724839721773, -0.9587512417165012, -0.9141523736187532, -0.8776654500354847, -0.8372832942977324, -0.8076410188421574, -0.7840999075163664, -0.7676183201826582, -0.7523129699330905, -0.748241720708043, -0.7338334313455618, -0.726839835610745, -0.7210135285210598, -0.7151958748541578, -0.7007017772403519, -0.6957895256138794, -0.6960357298558372, -0.6864889054645957, -0.6815398169265456, -0.6661313240729606], "Y_sigma" => 1.0302305266175393, "Zn" => [1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017, 1.2448178698341017], "Ni_sigma" => 0.6306672026277141, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [0.8139825958254809, 0.806929285688628, 0.813953799035212, 0.8128793699590983, 0.8087151005545846, 0.8052103844641155, 0.806362369038393, 0.8019260736299828, 0.798188670986649, 0.7967941597319779, 0.7965274766958704, 0.7944476645868921, 0.7928828995737869, 0.7910185842352888, 0.7913788379611364, 0.7981803046713656, 0.8063284480669779, 0.8184867872785564, 0.8339005798172034, 0.853787203398968, 0.87131416640262, 0.8972625386841969, 0.9157939567090494, 0.9396487387481487, 0.9605611937776419, 0.9821628250211362, 1.0021577430650985, 1.022518173801295, 1.0407850409082717, 1.056318024567752, 1.069899423481721, 1.0803571516038049, 1.0928714948888425, 1.0996603201865278, 1.10675535126929, 1.1160169357558016, 1.1208597026214562, 1.1226906575758908, 1.1258414737948432, 1.1273887033156749, 1.1199653363894673], "Pr_sigma" => 0.7537306861326301, "B_sigma" => NaN, "Li_sigma" => 1.2769295578724795, "Tl_sigma" => NaN, "Mn_sigma" => 0.3494422137276677, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => 0.4657721117140007, "Al" => [0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581, 0.12385164096708581], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.5341507473435406, "Er" => [-1.3397571180611665, -1.3495992657114868, -1.3501506514737864, -1.352308578785008, -1.3532179631773693, -1.3580463513787202, -1.3584618240902935, -1.3612608989625012, -1.3712015996359508, -1.3761511706808747, -1.3733746051185651, -1.36810399599983, -1.3590632807319671, -1.3400941293163746, -1.3077632224884654, -1.270377616854178, -1.2103116914371226, -1.1412282637716442, -1.0721903976705085, -0.9958387748578571, -0.9179180420709105, -0.8406206184720992, -0.7697255174183535, -0.7040713679812268, -0.6444167900349307, -0.5962877959727384, -0.5575738624754895, -0.5251264798297544, -0.4950938016587079, -0.47534823320466285, -0.4572731010329759, -0.4404707651276586, -0.43219841631531325, -0.42476075638593325, -0.418847247351358, -0.40795752903871335, -0.4005065233307018, -0.38756543428852047, -0.3776659520485842, -0.3608182808350306, -0.3620605088466097], "Ge" => [0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966, 0.37019657009974966], "Cr_sigma" => 0.7227121619866613, "Fe" => [1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348, 1.5052178253491348], "Pb_sigma" => 0.627616172099397, "Zr_sigma" => 0.6600988048346833, "Mg" => [1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386, 1.3463529744506386], "F" => [0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241, 0.4150465015078241], "La" => [-1.0881273188969818, -1.0912165115919874, -1.08409312545853, -1.0816565105720006, -1.0592708408721143, -1.0452209136949466, -1.0340683163944355, -1.0234691193933847, -1.0121856541643743, -1.0130353846344184, -1.015558457310008, -1.0139685536054988, -1.01129461371178, -1.012526335279245, -1.0089517417649347, -1.0131003282064388, -1.0040512006898386, -1.0066410337213705, -0.9999635633186235, -0.9870766663993665, -0.9566194107666616, -0.9422076955955596, -0.906674014004682, -0.8633720859107729, -0.8203573847514698, -0.7794774913936843, -0.7289597070743942, -0.6772493182636069, -0.6257019794104468, -0.5809523336197387, -0.5359544556346247, -0.494587515373876, -0.4576890074577235, -0.4287658343391754, -0.39345140005992185, -0.3624006744467554, -0.3302561821691231, -0.3076523263080444, -0.2806872697757044, -0.2674513948712457, -0.25088660196950496], "Ru_sigma" => NaN, "La_sigma" => 0.7360819282522933, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => 0.5537934943194923, "Li" => [-0.9869795722112793, -0.9830330388400675, -0.9759073308382373, -0.9617555601677323, -0.9455116795560329, -0.945931835496969, -0.9278817548458779, -0.9090185047531094, -0.8780596618095099, -0.8528881774454373, -0.8009384813929105, -0.7603395538676336, -0.7090531812375755, -0.6649420464243598, -0.6123680887607155, -0.5646457296745996, -0.4844759809226386, -0.40006522554990753, -0.3171107775771767, -0.22379831838663464, -0.1321591677282138, -0.061027930098192226, 0.005812421488986335, 0.0627844911267714, 0.12972306803502354, 0.20605998728345973, 0.2733882872967426, 0.33254920023314805, 0.4028712071526319, 0.45241995521947476, 0.490964050769325, 0.5325894259771782, 0.5868542112066915, 0.6172272324771447, 0.6564742197217611, 0.6842765439729582, 0.7111149114126001, 0.708619863513166, 0.7425110525658233, 0.7495205169403126, 0.779554661808023], "Dy" => [-1.4062065078617147, -1.408884360955674, -1.3926659501307956, -1.3947702647618931, -1.3976836305178848, -1.3850498146234285, -1.3795395848706309, -1.3821157601576401, -1.3779820047792173, -1.3703477837479028, -1.3766796503616279, -1.3703188411972993, -1.36560964068709, -1.3547806552954043, -1.3289256333275872, -1.2880805484412798, -1.2384648464932662, -1.1837196843963858, -1.1146066999138187, -1.0449784517155618, -0.9635237548867325, -0.8884427600979107, -0.8107549176344538, -0.7352339102068002, -0.6749336259932417, -0.6237879896126558, -0.5759835342653059, -0.5375772419096247, -0.5089688132555535, -0.4811680941360071, -0.4596381248731859, -0.4404699543460744, -0.42275792042386506, -0.40896437122251417, -0.3939743948555185, -0.3812106998734528, -0.36790657899861645, -0.3586170701305298, -0.34768601750457834, -0.34510107826929004, -0.3340104857880001], "Ti_sigma" => NaN, "Th_sigma" => 0.8678764235829797, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691, 1.0153153859015691], "Nd_sigma" => 0.7925646006596053, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => 0.7446442799617804, "F_sigma" => 0.16124368889875387, "Hf" => [-0.4882831344171551, -0.48459050100033246, -0.4847831891955461, -0.4819419240347525, -0.48278718716631797, -0.4843944899069607, -0.48979834568784136, -0.502645377721579, -0.5189454740188152, -0.5340043964516921, -0.5501566460574896, -0.5690685336616893, -0.5896352571942267, -0.6087062631328353, -0.6341079476125053, -0.6504258511269583, -0.6518078818182833, -0.6409525652857343, -0.6220727417592762, -0.5851201762499245, -0.534642657433872, -0.48319601510964516, -0.4290936272678216, -0.3663153601332552, -0.3089122833031719, -0.264904126678397, -0.2310273637307519, -0.20298169970453256, -0.18872360376087965, -0.17727553804402527, -0.17328231269287903, -0.1692841535834011, -0.16937875041855946, -0.17202407835712985, -0.17955869319441348, -0.18461223220799597, -0.19582817405118919, -0.21006906848707035, -0.2171970594799925, -0.23001734352618727, -0.24947793168379742], "Tb_sigma" => 0.5211503886633125, "Ca_sigma" => NaN, "Cl" => [0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117, 0.4411199240094117], "In" => [0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992], "Rb" => [0.4344295807616684, 0.4272746080567541, 0.41258725455963674, 0.39941177994401184, 0.3878541766784765, 0.38063918888767534, 0.36652934526202996, 0.3564892245235405, 0.3482141717273598, 0.3390316329464629, 0.32860925873722896, 0.32614880047317635, 0.3187119044338577, 0.31405584164041883, 0.31573844106252896, 0.3173409385137757, 0.31633568218059294, 0.327243257031538, 0.33675456690220057, 0.346695478193985, 0.3620011266350158, 0.3778509272653672, 0.39144006695144234, 0.40355084179864764, 0.41846759907540376, 0.42986392932893414, 0.44287210267564836, 0.4567627201460026, 0.46923737789267894, 0.4815900246438685, 0.49278298279369837, 0.5024232211533473, 0.5082809495841409, 0.5167400911830707, 0.5217687943828283, 0.525993479640555, 0.5286111498686976, 0.5350484192829952, 0.5385269621001986, 0.5408428702172261, 0.543870967214581], "Sr_sigma" => 0.6201861549088387, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => 0.20824634228282443, "Ba" => [0.711083384152388, 0.7149409150296253, 0.7357829220766658, 0.7484340384778329, 0.7575466487797394, 0.763383200039396, 0.7730464518557293, 0.7710197249954528, 0.7787723783813796, 0.7818338798074292, 0.7824723970427552, 0.7926177633959612, 0.7994207963671195, 0.793040906884653, 0.7939828921581153, 0.7996012516330778, 0.7994968381718144, 0.8099055723340233, 0.8273005020112493, 0.8404688015292555, 0.8510045487966118, 0.8638624667044912, 0.8750426983650051, 0.8793599978241164, 0.8819656446277122, 0.880839650395712, 0.8746628884446359, 0.866846261672309, 0.861993808579035, 0.8529793876476818, 0.8470602300249036, 0.8403222051674243, 0.82966439190742, 0.8155425147940681, 0.8068326020067232, 0.7939899434912753, 0.7823526111896557, 0.7735112887536266, 0.7668256493320302, 0.7552042941469062, 0.752163126681619], "Nd" => [-1.7801409858977728, -1.767760978961563, -1.756523121321405, -1.7458612481539437, -1.7492699053053151, -1.7415474625192415, -1.7192024543254527, -1.7166462976575254, -1.705242372004471, -1.6818946934101335, -1.6625637755228497, -1.6588393710046088, -1.624905893524948, -1.5839928231536065, -1.5341282989866962, -1.4677381600173824, -1.3895832874170566, -1.3164602457331966, -1.2417554477052497, -1.174587858875689, -1.1013789650028374, -1.0278972007472624, -0.9530234133888686, -0.8800305990352795, -0.8034036229508619, -0.7398943059199589, -0.67969587086103, -0.6222370995718456, -0.5704742916657156, -0.5265067274783585, -0.48687306239133327, -0.4472788999475481, -0.4126071649835251, -0.38767147472623376, -0.36462080902390803, -0.333684575389682, -0.31250095292101493, -0.29138361476790436, -0.26743452692238884, -0.24190398820105552, -0.224636749420977], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [-0.570377783867016, -0.5832871967232032, -0.6038965974126174, -0.6125941011565612, -0.6449550326501414, -0.6535276940685669, -0.6595305873985219, -0.6694799893721807, -0.6792492597395337, -0.6838463518200547, -0.6986839514833363, -0.72169564816657, -0.7429285656462524, -0.7709056024032123, -0.7903767322279955, -0.8151663664204535, -0.8292436138310333, -0.836354943258993, -0.8207038728395939, -0.8057990185428965, -0.7742262082020707, -0.7434589850712751, -0.7023192623658446, -0.6682776026594548, -0.6279409758364063, -0.5964385454523962, -0.5687095617931012, -0.5412623963077822, -0.5172244433612163, -0.49528065847655167, -0.472865576713474, -0.4505687062834759, -0.43287574839117504, -0.4138020459518879, -0.3994907634243685, -0.38845215610374084, -0.37348216109548255, -0.36151002178311653, -0.35412754720496264, -0.35059299326408705, -0.3388398068455008], "Tm_sigma" => 0.523398185872031, "Zr" => [-1.0469203079099645, -1.0230360250692334, -0.9768532936963948, -0.9464241774430892, -0.9436171349076905, -0.9175451982936393, -0.8996764342313978, -0.8845816611749171, -0.8742389281033205, -0.8571025569906405, -0.8480503244414292, -0.838051030390433, -0.8376380959606287, -0.8367893030174085, -0.83440290106079, -0.8450231813785306, -0.8454911161185762, -0.8460992344692326, -0.8369963745716335, -0.8220906873039402, -0.7975351685809041, -0.7642595954710756, -0.7164220418030404, -0.6762712202541852, -0.6322926421078243, -0.5919911566001793, -0.5582049922629848, -0.526068029517442, -0.4923544144831291, -0.46685215617435183, -0.4406494114840691, -0.420100941075865, -0.41453310317466324, -0.4078237696855346, -0.39922719716843974, -0.39466990112791717, -0.39194497014608803, -0.3867296220405463, -0.3833690114069965, -0.3882212410953782, -0.40255929756003495], "Sm" => [-1.446027847017496, -1.4403378475604998, -1.4355676727716795, -1.4328315970255967, -1.4356743677466275, -1.4293470002508641, -1.4307221741780334, -1.4385355650231266, -1.4356427570850405, -1.437609741263347, -1.4362720665265774, -1.42635872373322, -1.4183306452698756, -1.4063518510413604, -1.37678653238253, -1.3457915093530115, -1.3124959319757317, -1.2558027278613868, -1.1956162355139757, -1.1156418719835994, -1.0413261606768713, -0.960837415129298, -0.8791344089386659, -0.8020555649938634, -0.7456980105099221, -0.6790285684318571, -0.6209266434397473, -0.5729443654492637, -0.5349881292104749, -0.4949742789594595, -0.467865687693807, -0.4443857748426153, -0.41872633560152894, -0.39565683776914373, -0.3719933884123198, -0.35451031586036674, -0.33835578963730034, -0.3212188921091523, -0.3100395025223202, -0.3043369164030973, -0.28539490790702243], "Ba_sigma" => 0.4560669515460573, "Cr" => [0.494396948650214, 0.5219145637840186, 0.5289562316607607, 0.5336449043321755, 0.5434201626051685, 0.538996161001573, 0.5300066832157914, 0.5312912084597786, 0.5279616540866126, 0.5221783195962296, 0.5291213130577743, 0.5309228210996507, 0.5366533758938651, 0.5462442611856498, 0.5549881224724169, 0.5787882543496221, 0.6029994939804044, 0.6282017628422989, 0.6596252394576783, 0.7068542496731093, 0.7442751145014112, 0.7858785599773762, 0.8285941549882477, 0.8618706621200667, 0.891525830606299, 0.9097594653642551, 0.9263478743151283, 0.9439134410296269, 0.9658513576357435, 0.9756935270770558, 0.9911506586265564, 1.0005105910213996, 1.000363690132326, 1.0009180019073787, 1.0044102980859877, 0.9969743801572443, 0.9970202780471903, 0.9894789650594992, 0.978939710519204, 0.9620497456581585, 0.9589137264724861], "Cu" => [1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328, 1.082138616719328], "Al_sigma" => NaN, "Tl" => [0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677, 0.9344984512435677], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.3576019381751349, "Yb" => [-1.354890329506889, -1.3563362950385145, -1.3380178185404097, -1.3394197371400376, -1.3427524013002747, -1.3349275211620413, -1.3350082459150077, -1.348662835450409, -1.346770284726396, -1.3409365592252633, -1.343532171383816, -1.3337688638409708, -1.3110886223719207, -1.2919426676163257, -1.2715906010926623, -1.2243007681800457, -1.1764747748815785, -1.1208438104181597, -1.0494479682376712, -0.9689664116192617, -0.8888717820124229, -0.81272434151134, -0.7401461551350055, -0.673044283484481, -0.6205513153607001, -0.5792280134008577, -0.5432448115186979, -0.5117081783969134, -0.48929585381175994, -0.47256978408560013, -0.45457764308963805, -0.4413342710033212, -0.4318418238564008, -0.4256267793174623, -0.41793074392733826, -0.4138494848224143, -0.4100608818956458, -0.4065742712019507, -0.401771010933599, -0.40105218055336256, -0.400542870883703], "Lu" => [-1.3669471647029012, -1.3616647106510076, -1.350534049011052, -1.351519547531957, -1.3402218745453964, -1.3391051993006713, -1.3357678020976855, -1.3314736514799799, -1.328062660155738, -1.3262446482473726, -1.3197463565684298, -1.323189381241648, -1.3139980982546609, -1.2982939249403669, -1.2722088907166553, -1.232092327352688, -1.1794270088618592, -1.119324387377022, -1.0493207930486361, -0.9693057629646004, -0.891796489821687, -0.8127165592816639, -0.7354463568334593, -0.6691459895936193, -0.6159034584125077, -0.5719728206543542, -0.5346197673564158, -0.5090837944632388, -0.4876274792756863, -0.4717558631957041, -0.4597177430718551, -0.4512282466507442, -0.44132712011575187, -0.43216345800314665, -0.4237108279344556, -0.41745666442464396, -0.41143014371240755, -0.4088994452429026, -0.4097127855933415, -0.4115640855447845, -0.411268532831661], "Eu" => [-0.2125904225922008, -0.20862887059213012, -0.2117570480323492, -0.20688210740681476, -0.2110528063923172, -0.21435605586058867, -0.2271895343819537, -0.23946518578717213, -0.264038382979468, -0.2936354766557322, -0.3305211092527172, -0.37340505360806814, -0.4247800765776782, -0.4767918783363827, -0.5219825196396077, -0.5689444115967998, -0.6024545085690011, -0.6301744245717164, -0.6484555567688871, -0.6551439373981552, -0.6496409008388033, -0.6447499112883048, -0.632759930950972, -0.6112171559485046, -0.593196754973788, -0.5760451621425634, -0.5561272916206087, -0.5378772975789327, -0.5214119535327978, -0.5083445252002906, -0.49350872641903065, -0.48282874601473924, -0.4673958161270266, -0.4552414073476227, -0.43746115945840974, -0.42165299263024464, -0.40224442532819155, -0.39090529976697963, -0.37575586519820886, -0.3679493698787529, -0.3639000007063156], "Na" => [-1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316, -1.0177287669604316], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [0.3367567821972748, 0.3539455278898094, 0.37128763673563514, 0.3887030672739394, 0.41806660445707605, 0.442681192744592, 0.4957815619809234, 0.5415415341522657, 0.6031763615035629, 0.66786654403752, 0.7509953249272833, 0.8227005951836383, 0.9035108006641808, 0.9951146862848147, 1.0773203252561274, 1.1438179476088515, 1.208494884082512, 1.2632178965817733, 1.3070346412164617, 1.3358428843902386, 1.3567113605440364, 1.3578773973227907, 1.3607210948336728, 1.3378742519068647, 1.3139509743290476, 1.2924912870543401, 1.273750754468477, 1.247583316759815, 1.232732950747414, 1.2184111734872807, 1.2015348513028654, 1.1827129553603626, 1.166436781717509, 1.1515512502461085, 1.1357475016447827, 1.124559011232885, 1.1109206007394008, 1.1064944889796409, 1.0873038424801615, 1.08101272434474, 1.064716026665566], "Rb_sigma" => 0.2890050839631909, "Ho" => [-1.3775356183115819, -1.3744890647449146, -1.3717431835618452, -1.3618381103271913, -1.3591785519923352, -1.3686502581170024, -1.3687325974903921, -1.3712171044384462, -1.3717060440708913, -1.3804324831125145, -1.3737696199615501, -1.3743755752200084, -1.3601936467403788, -1.3505493224740657, -1.320586718104228, -1.2772765848238254, -1.219306145223388, -1.1616192216617867, -1.0840715668024181, -1.0062437098414099, -0.9294343013535178, -0.8549291501660352, -0.7797844760374383, -0.7137751959473885, -0.6549996197891979, -0.6027792495090764, -0.5577914771908273, -0.518503484905721, -0.48852980822597675, -0.4675510621330601, -0.451569657838032, -0.43574587611116467, -0.42720900107597015, -0.41673097709243134, -0.40526059851219115, -0.39144238755883887, -0.38624057801888473, -0.3749754864128373, -0.36928943283188154, -0.3661913852629666, -0.3668812956927651], "Co" => [1.260288843524171, 1.2637984441389272, 1.2728229793398942, 1.2740928583928501, 1.2868136887990926, 1.2863612244108662, 1.292689466339757, 1.2958062315365062, 1.3004513687953283, 1.2966339787253032, 1.3037033630171084, 1.3001672789262833, 1.2994898245520925, 1.3055509030484183, 1.3108635180403045, 1.312220762778069, 1.3223970746382705, 1.3365698621457813, 1.3438334699251329, 1.3541759789984102, 1.3690733304403178, 1.3776397065223798, 1.384583976012429, 1.3960344292801246, 1.406458226599383, 1.4164069035238005, 1.4280686033347607, 1.4426088431977884, 1.455430332848039, 1.4720730874246488, 1.4854641816733256, 1.4991861263241302, 1.5117387066143373, 1.5247112315678228, 1.53627216776526, 1.546770912740226, 1.5630879419631014, 1.5688616166558078, 1.5717130265473287, 1.5682804974332583, 1.5655721127923117], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 0.3054060205036095, "Tm" => [-1.3483853864647797, -1.3562498563209748, -1.354002964775218, -1.3539587785259384, -1.3460395089376973, -1.3366883218616568, -1.3374015119031664, -1.335828616027381, -1.3364643527648927, -1.3373811089636594, -1.3455462114502574, -1.3302413415021375, -1.3197076854428538, -1.3032914481275155, -1.278383144463575, -1.2338445712722257, -1.195091842597946, -1.1343661477981384, -1.063893111114332, -0.9916276968142513, -0.9117447522790447, -0.832508953599187, -0.7587612044293643, -0.6965622136250444, -0.6344821117088415, -0.5835049751357217, -0.5463534712059873, -0.5169808551976642, -0.48453658322040183, -0.4628651636574324, -0.45191315735982, -0.4365224250596343, -0.42365711268032386, -0.4217550853535957, -0.41713353476372017, -0.40701346407599487, -0.40599938155687704, -0.40746369602069366, -0.39484187299074475, -0.3914184203583548, -0.39154356410929025], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => 0.23640322806467934, "Ta_sigma" => 0.7002809301906084, "As_sigma" => NaN, "Gd_sigma" => 0.6854650010387934, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.9711230628988853, -0.9596706098715407, -0.9515856716692416, -0.9243973804534024, -0.901643701291954, -0.8777956457699971, -0.8545933834136012, -0.8216655356779675, -0.8054240809582133, -0.7717430980453645, -0.7389605104100462, -0.7046515687617548, -0.6749247072419198, -0.6416090889665066, -0.6159058717872307, -0.5973820505006002, -0.5689158830119688, -0.5484573158774546, -0.5232411588642778, -0.5086338782190455, -0.48916885346509237, -0.4802486009769219, -0.46930223922228426, -0.4653703844608703, -0.4578245096324292, -0.45748478207796134, -0.45985341132592644, -0.462177523140315, -0.4605968672497063, -0.45693539833091884, -0.4524840601707068, -0.45107183987310656, -0.44712727766670635, -0.45077849023831507, -0.4544079312099391, -0.46247059633297993, -0.4659150404009192, -0.46519038385078676, -0.4647075396430188, -0.46629795265294, -0.4643315274651487]), "Allanite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.20244943653548556, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067, -0.34518491628705067], "P" => [0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351, 0.7209152557006351], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [2.3152128196739974, 2.3174604426542116, 2.3171194222407943, 2.318230604896766, 2.320244982038309, 2.3182814104335385, 2.3185624746785543, 2.316460794873652, 2.3173324560501114, 2.3183452223115766, 2.3190640178703568, 2.318793720468437, 2.3203965931940815, 2.324202188638525, 2.326880204324143, 2.329017231101818, 2.3309211145696254, 2.3309310436563755, 2.3325297601622412, 2.3352716813524492, 2.336069658897218, 2.3386941369700103, 2.342737901224264, 2.344482336599588, 2.344529567618294, 2.347870688892986, 2.349212295690044, 2.350771032165939, 2.351043413158078, 2.353916291596827, 2.3542951398012173, 2.354600818621789, 2.3559157301253215, 2.3568140306183496, 2.3539161101467334, 2.3548475933629236, 2.3553238538542267, 2.3536489594605032, 2.355564084438716, 2.3584514815137894, 2.358963010890296], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 0.8140691801871746, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => 0.300993542588303, "Ce_sigma" => 0.5119465866378986, "Dy_sigma" => 0.29756767189466665, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324, 0.07368355389689324], "Pt_sigma" => NaN, "Ta" => [0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814, 0.46110313871950814], "Ga" => [0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866, 0.31924462847731866], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [2.1181055573072154, 2.1111636533289673, 2.1046763401065065, 2.0957819267164584, 2.0916127294984146, 2.082905999421849, 2.0797212029381122, 2.0672104513637097, 2.0617107868519775, 2.0531698329922152, 2.046487429051741, 2.0364418487005005, 2.0208082823579687, 2.01009607943748, 1.9988284335124642, 1.9914565481490316, 1.9876177979976217, 1.980138188904583, 1.972458911092752, 1.9630252150370198, 1.950293271210202, 1.9374403968297953, 1.9288026334315636, 1.9187364724171017, 1.9069953771135233, 1.8980691056600774, 1.8877151073497902, 1.8792931163120512, 1.867498007549927, 1.8628191546367554, 1.85457299965697, 1.8453086979841569, 1.8406236908446234, 1.8354061657859881, 1.8279115630487788, 1.8217433352822752, 1.8199018931096054, 1.8126491684839745, 1.808877414693686, 1.8016588407443654, 1.793457475836852], "Sm_sigma" => 0.3058657533830539, "Lu_sigma" => 0.5762548971134096, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [1.2327927484828416, 1.2228775604346043, 1.2082437054043453, 1.2022430759526461, 1.2003406000958263, 1.1879201519564786, 1.1865848204525347, 1.1829409366329566, 1.1691395963654172, 1.1607916834691923, 1.1540126572469631, 1.1465601612150853, 1.1441423489575213, 1.1410763442966179, 1.1312015658525967, 1.120300451324953, 1.111399706580632, 1.1050106610378088, 1.100492212275135, 1.0971257404891903, 1.095294974352586, 1.0886474908988937, 1.0809985317142925, 1.0718890917680926, 1.0651968605963196, 1.0542070095914484, 1.0469847051698746, 1.0413448465843451, 1.0341593832091964, 1.0283850546914417, 1.0274715033933537, 1.0253872718599613, 1.0236191695476757, 1.0220867858539997, 1.0185161049936637, 1.0129087586034338, 1.0055100888399138, 0.9985547255712077, 0.99525765347575, 0.9907393421356968, 0.9878777100089635], "Eu_sigma" => 0.2730026163954314, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [2.4608101948135817, 2.4684130310869277, 2.4806513553992553, 2.4851145631837857, 2.4951782614125815, 2.5105604971356943, 2.5219254528671966, 2.529064134055833, 2.546438402875998, 2.561765762579324, 2.566752253299381, 2.579568825256867, 2.5923248462179416, 2.6061920495352644, 2.6165126855797887, 2.6286836685720365, 2.6455430325695803, 2.6653734351566514, 2.677867102596608, 2.693930508484467, 2.7155727317673826, 2.731737354434681, 2.746239146028842, 2.760986404502846, 2.7804370000684764, 2.7911639747773895, 2.805276462240115, 2.817287522837523, 2.8336976575361583, 2.8452564863216883, 2.860021842387937, 2.8754735908780824, 2.8881165362728094, 2.9018037440295004, 2.9120477992330027, 2.9233683175717124, 2.931258909154738, 2.9387842221743083, 2.9420385802068045, 2.9526004474472707, 2.9582834022830617], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.4163669061454403, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => 0.516945432167898, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 0.3652827300192123, "Pr" => [2.455111308440163, 2.4696906840817214, 2.477317583106314, 2.4832387131936144, 2.496125318442963, 2.498665500580939, 2.504190080186804, 2.5156493396104764, 2.5235512815417347, 2.5307846679916177, 2.5373690172732855, 2.547954033944346, 2.5555849266183306, 2.5707274760399303, 2.586140722535334, 2.6003341637148023, 2.6149599639139423, 2.632851994100319, 2.6441092043047356, 2.660506132469885, 2.675684769405879, 2.6906082727581517, 2.703299338470813, 2.7194841260837266, 2.7286699287491056, 2.7432203110720925, 2.756209163250811, 2.7666304146087684, 2.7747600989746974, 2.785251308260661, 2.7971749837271918, 2.8099897148728363, 2.818468912585398, 2.831192010136496, 2.8396535092699318, 2.84722922448348, 2.8486122742986293, 2.86275551837404, 2.8680018571510244, 2.8754004112810176, 2.8787248432976917], "Pm_sigma" => NaN, "Th" => [2.008077568509096, 2.009975411945146, 2.034965285504855, 2.048578589141221, 2.055653876816614, 2.0703674858035894, 2.083726520199478, 2.091407998864508, 2.1035613457643407, 2.126388707320971, 2.149693798553855, 2.1620120990451817, 2.179687592241338, 2.19132383442299, 2.2091482465112584, 2.229796643880798, 2.2440417705758775, 2.2623512378802864, 2.2783449549061636, 2.293916505804984, 2.3037115703210467, 2.321209896161449, 2.3305031430887384, 2.345102699578555, 2.3595147355471613, 2.3691428020183305, 2.3765067667193405, 2.3884881435832104, 2.394339851093097, 2.398703342365683, 2.4096061313280046, 2.418070019528265, 2.4282001700460643, 2.4415927341950816, 2.4485098461583, 2.453221375957377, 2.459689986798966, 2.459638634457966, 2.4597225200477526, 2.4647080663452487, 2.4703147257722353], "Y_sigma" => 0.3787562137592503, "Zn" => [0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099, 0.960273611310099], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082, 1.7441074977914082], "Pr_sigma" => 0.4479451296781434, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => 0.18377137946765407, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => 0.482188073796932, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.41052735824776426, "Er" => [2.0439717766660617, 2.0379514451334155, 2.028948774926324, 2.0214327878688243, 2.021453436544233, 2.0126759131621723, 2.004439001672672, 1.9991145562026997, 1.9868070660572712, 1.9789120786139736, 1.962756187809544, 1.9522560631657286, 1.9492472725537326, 1.9392903378674011, 1.9300195110058436, 1.9220866303927107, 1.9105414135516314, 1.8916223345637528, 1.8792525115423389, 1.8644099797972113, 1.8490130333169048, 1.8400282579455356, 1.830669115929473, 1.8192157942304237, 1.8072492146285133, 1.7979498195776054, 1.7869345838399364, 1.7727173635367406, 1.7640701976759248, 1.754742333789133, 1.748520409093601, 1.7352483468653048, 1.727566769070838, 1.7200565780136552, 1.713107516618567, 1.6987147443698245, 1.6920595930532203, 1.683982399881322, 1.674745021124703, 1.6616556539646592, 1.6555391838714215], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036, 1.2944158627971036], "Pb_sigma" => 0.16936052949659006, "Zr_sigma" => 0.6957475916238649, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [2.44883110585546, 2.4575486189914355, 2.4711640796210403, 2.4744437618761674, 2.485024284217339, 2.4973825169443065, 2.510783024788453, 2.5231377787805744, 2.537006130255542, 2.5485189322695456, 2.555239879142134, 2.566624555313245, 2.5860557740143166, 2.609107687704632, 2.6275914012993646, 2.650296650465988, 2.6759432190045107, 2.6935967132362135, 2.7088433095489712, 2.7270828221680095, 2.7449983625040955, 2.760701365840357, 2.7806123231190694, 2.8008208109483843, 2.818958068530796, 2.8391885752957244, 2.8569218679598953, 2.871191638217686, 2.8845092561384, 2.8985335366955014, 2.910422904421413, 2.9263924277988695, 2.940561495223462, 2.9524802216292225, 2.9673199212631505, 2.9826151283278493, 2.997662470265476, 3.0081551370112525, 3.0220457470729696, 3.0317021824999433, 3.039636052008032], "Ru_sigma" => NaN, "La_sigma" => 0.576679514032326, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => 0.5706433789123915, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [2.1916856991705522, 2.1925511641376194, 2.189034811692246, 2.1874793890755533, 2.18117978456559, 2.1767268157074824, 2.173003215607316, 2.1714627987683683, 2.1679062207249333, 2.165550136013926, 2.162812196439713, 2.1594594252982056, 2.156668825559649, 2.1529409286352124, 2.147216279391112, 2.14285649725584, 2.136887520438646, 2.133159914148936, 2.1280572390146513, 2.1240395955424565, 2.1179397600487992, 2.114057684926037, 2.1092572141578536, 2.1045256266033183, 2.0997331610820766, 2.094950861824871, 2.0907967234203424, 2.0874308795997414, 2.08273154810916, 2.079310335442304, 2.073889342483405, 2.069795796103346, 2.062542686226702, 2.059946643201377, 2.0544638648238336, 2.053384444458897, 2.047714218037504, 2.0444844779265496, 2.0379503002733244, 2.0356395395006883, 2.029929477090991], "Ti_sigma" => NaN, "Th_sigma" => 0.4055492907184116, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827, 1.186340266468827], "Nd_sigma" => 0.4182120970928587, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005, 0.8156862506492005], "Tb_sigma" => 0.2783265013437615, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075, -1.1294242005741075], "Sr_sigma" => 0.2568055575732152, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134, -0.7107518349878134], "Nd" => [2.4703440699356904, 2.4629533751887553, 2.4649599462649094, 2.4717713612657684, 2.476273415422035, 2.482269790290418, 2.4962237491761616, 2.505682805474971, 2.510301122232634, 2.5211128606639335, 2.5314558152226847, 2.538009234734551, 2.548179720152156, 2.5621259060639514, 2.577658206998189, 2.5873329028449636, 2.6014060516497324, 2.61430581233329, 2.6257732567984493, 2.6347084840880117, 2.6476595601795174, 2.6582718218056582, 2.6684998551086174, 2.6770134737838713, 2.6907842704178875, 2.703380056403054, 2.711630011001053, 2.7252153038987412, 2.7374219192585394, 2.7450973372661833, 2.7520141088198384, 2.7654945298854536, 2.773641674308559, 2.781680808285151, 2.787241817491087, 2.793722230117232, 2.79691380921364, 2.8010864610454935, 2.8061127525627914, 2.812723171690238, 2.8193177931325586], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [2.2150291135986655, 2.2256806082281972, 2.2277183394263567, 2.2309948809202167, 2.238577561476962, 2.2361231506977095, 2.2333629833853648, 2.234152945530714, 2.233093697717775, 2.2277634792009215, 2.2232483920972417, 2.2190634029292458, 2.215794121948707, 2.2113429649910152, 2.2099325550956297, 2.206020740229853, 2.205318511866795, 2.204945358084583, 2.2024643905942245, 2.1994421956143966, 2.200774026531576, 2.1987888215283613, 2.192864318557014, 2.1885869919493297, 2.185894877223373, 2.1797586352455425, 2.177505968598322, 2.1743486513218615, 2.173531648583995, 2.172316580433365, 2.171505332801416, 2.168133232670241, 2.166935598561965, 2.1660230054870486, 2.1639632944492133, 2.1588284471442964, 2.1549353593013203, 2.15537678303625, 2.1507022215547957, 2.1445292998565955, 2.14523904627242], "Tm_sigma" => 0.461437484349667, "Zr" => [0.24502364593540576, 0.23619006223247438, 0.20816852107137668, 0.19800627603646448, 0.18843004710787636, 0.1670011988763472, 0.1461982895923302, 0.1272463490998124, 0.10550151548517084, 0.07895140311385074, 0.07248451553462949, 0.045350469797411405, 0.030074812838367864, 0.017247306379676634, -0.0030822175649792938, -0.02757061074207758, -0.04643024676119376, -0.06408273152164688, -0.09074362948272229, -0.11624137392641319, -0.14449953696927173, -0.16352920338408955, -0.19177354036214495, -0.21679548153615188, -0.23967042984559922, -0.26381477289236976, -0.288925363326704, -0.3068289057851708, -0.3293176909948901, -0.35483815241515576, -0.37171392133717956, -0.39222172528343296, -0.4183066124768775, -0.4403038853556291, -0.4566399037490747, -0.47218398452843074, -0.48574376391849483, -0.4977018442928574, -0.49860688083988874, -0.5080726175869691, -0.5197086356330036], "Sm" => [2.371594646054084, 2.3742326228904864, 2.3792333257917986, 2.38488213817129, 2.389365870718167, 2.389929211380502, 2.3945440044855, 2.3976716771625526, 2.3994893159857136, 2.4062787384746587, 2.411953693800826, 2.4164085923988043, 2.4222214500570627, 2.426529708140674, 2.4293926299884756, 2.4359197400731833, 2.441467436730384, 2.447789312626444, 2.45452846906016, 2.462860043080421, 2.468795201573123, 2.4728763197993096, 2.478316859682466, 2.481035222106085, 2.4826110925888214, 2.4844373730061706, 2.4893913537580596, 2.4918647370658995, 2.496216535726786, 2.5020048044431746, 2.506230356841083, 2.5117893394502837, 2.5164296214606816, 2.5205936138043796, 2.522675756593441, 2.5268881823427813, 2.5283986519249444, 2.530951601850558, 2.534443451706345, 2.5383625574775124, 2.540902113131519], "Ba_sigma" => NaN, "Cr" => [2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635, 2.5796015617774635], "Cu" => [0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372, 0.7634279935629372], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [1.9338790283989393, 1.9151990319718313, 1.914590649027135, 1.901474262348625, 1.895137711039471, 1.8849956880705074, 1.8756416331577086, 1.8496280625319939, 1.8352409091767328, 1.8241014169997993, 1.8100960278406688, 1.7983544282415853, 1.79099705884194, 1.7760548338187214, 1.756645007707642, 1.7396061318308418, 1.71983009751118, 1.7010508048362638, 1.6883578835003088, 1.6718682242976552, 1.6548235749464726, 1.6405718419945925, 1.6246443620209874, 1.6085744268360906, 1.5945492117403088, 1.5814356763875683, 1.5655158163986413, 1.5514890970159814, 1.5368999350778776, 1.5219282455257128, 1.509298948105651, 1.4943163206469074, 1.4786404621080744, 1.4622356684158728, 1.447913214559201, 1.4305940151560494, 1.4188079308671755, 1.4065834270940427, 1.3985982072739547, 1.3902318885634288, 1.3833086281619476], "Lu" => [1.8477551392069855, 1.8459585591930052, 1.8289086236107812, 1.8144151240156448, 1.797600758572342, 1.7875955458710866, 1.779412896392443, 1.7747773963985094, 1.7693284582164404, 1.7570534894152663, 1.739898800012232, 1.721408629887859, 1.7049834727034403, 1.6802442426095876, 1.6680514617747482, 1.6485391644135465, 1.623054584767932, 1.601334527431013, 1.584170087013058, 1.5655503377605593, 1.5458052266843854, 1.5344537377240515, 1.5154799910675236, 1.4972647614985963, 1.4762263653192793, 1.461671046304012, 1.4384608697466175, 1.420935720383521, 1.4070880778920913, 1.3887574229825854, 1.3748978464449695, 1.3591600751020936, 1.3471558752182615, 1.3311354243493896, 1.320869311660907, 1.3039690654750167, 1.291697744978174, 1.2756314779829316, 1.2634451917837795, 1.2532233709151228, 1.240297279527278], "Eu" => [2.3770938923312492, 2.3693799125801727, 2.354523916971259, 2.349902263100319, 2.347180005202691, 2.33847713319739, 2.3309742328333276, 2.3288636871822037, 2.319762877324004, 2.3084744751164332, 2.3013896419732127, 2.2925239425562323, 2.282374758219602, 2.2757447500035504, 2.268264852833959, 2.2576343133694263, 2.2480901867440886, 2.2387940398293726, 2.226245467039421, 2.215624253612252, 2.206184670833558, 2.1972946970330356, 2.18518964536512, 2.1758714591234156, 2.165276734817409, 2.1555056311887424, 2.1446916664671267, 2.1377061373916146, 2.1282234900174157, 2.1226182499004085, 2.1140654577205296, 2.1074407654719556, 2.0968492536475543, 2.0895112309984962, 2.0783163207504853, 2.0695928924273943, 2.0615501338081157, 2.0581289848390067, 2.0530661949908673, 2.0478908870936166, 2.0432369811601396], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => 0.577250582779027, "Ho" => [2.08269849405271, 2.0896448143196222, 2.086370258906115, 2.0844380061819723, 2.081480307754477, 2.0709071175519176, 2.058925159612632, 2.05574573394258, 2.047046768749012, 2.040223499926964, 2.0308191125815473, 2.0270760218938113, 2.0131869994773, 2.006941627405531, 2.0008188341988475, 1.991901129375034, 1.9837497690347639, 1.972281462326987, 1.9618005320262637, 1.9494698450878272, 1.943204504574172, 1.934400377479273, 1.9299305738778805, 1.9208700636750455, 1.9160247954563787, 1.9074298131436906, 1.896880826195524, 1.8897915282295066, 1.8794139966395114, 1.8686161856350796, 1.8587744600623646, 1.8535581950038977, 1.8421102618716918, 1.8366282838675319, 1.8257430962352923, 1.8217792082126292, 1.8135366466999667, 1.8075141908380297, 1.8016909829578016, 1.7968358599534495, 1.7867378537128873], "Co" => [1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614, 1.6281182666029614], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [2.0019201510465128, 1.9878056421749748, 1.9813862329590337, 1.9791233560068695, 1.9667304318286298, 1.9631942219262144, 1.9491769072212985, 1.9355324630423991, 1.9186130416323628, 1.9042773039089373, 1.894675160144519, 1.8807323565095162, 1.8681908708991526, 1.8534388678080789, 1.8420216389491826, 1.8236163543871091, 1.8125356598724263, 1.801173342996067, 1.7884858849013394, 1.775582286856016, 1.7636292518450298, 1.7553200580884103, 1.7387945193248266, 1.7255750153340703, 1.7086052552115527, 1.6950998431832833, 1.6752594881761969, 1.66373263302803, 1.648729443113524, 1.638221706746859, 1.6229683473297376, 1.616036003560551, 1.6040575328766227, 1.5979047050826507, 1.5879092296541213, 1.5795573160954222, 1.5643116149529166, 1.55293943977771, 1.5368000999910347, 1.5267209583316321, 1.5166939761757123], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => 0.27339672707438895, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783, -0.15596815152682783]), "Clinopyroxene" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.3619486301874894, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-1.787325585368024, -1.7766990900456248, -1.7675945601951777, -1.7697230167454836, -1.7616162586572277, -1.7602626171909213, -1.7614805091678414, -1.7593011993449306, -1.7546078968212975, -1.7517645271827433, -1.7481188325601593, -1.7395308909004583, -1.7333198532503211, -1.7233052064380268, -1.7150608375164502, -1.7069421730883414, -1.6993241872130591, -1.6844870849047646, -1.6808291360172054, -1.6765574820720486, -1.6714043230927698, -1.656838081835897, -1.6545911631217183, -1.6417360670732806, -1.6277403209672978, -1.624144008464741, -1.6264203425630004, -1.6122726404251055, -1.6159842241964701, -1.618154692987348, -1.6079175182896395, -1.5941676516790766, -1.6003947039661202, -1.5932644291672187, -1.5804481724299595, -1.5750320429181643, -1.57383535629, -1.5623605649873122, -1.5497011232887405, -1.5366550065330682, -1.512302563006745], "P" => [-1.5695389975254552, -1.5632613416074048, -1.5589659853399815, -1.5517262300862726, -1.5406334981810688, -1.5344596533454904, -1.5298017316049481, -1.5205700226659893, -1.5176258690256057, -1.5135808717265478, -1.5074883462078195, -1.5042657011900031, -1.4986262807207953, -1.4895003256851227, -1.4864306786138202, -1.4824569686804474, -1.4717285327412095, -1.4669143167515906, -1.4576713356557296, -1.4499900976260747, -1.4437172111052865, -1.437700507412555, -1.425556440772257, -1.4228484343282763, -1.4164273800370293, -1.4086420485437239, -1.402204960514838, -1.3891634427186297, -1.3795782847582707, -1.373920419729285, -1.3678338993122274, -1.3582226457932765, -1.3670339626139432, -1.3583854988085944, -1.3400863513571264, -1.32055553624105, -1.3134497768184397, -1.3144707713063044, -1.3108443757187198, -1.3123379761265694, -1.3155260568255465], "Si" => [0.08238871735051682, 0.0743825262031095, 0.06567781179199902, 0.05895499812525908, 0.05041246483023243, 0.04596633778898802, 0.03829205535435113, 0.03263176493464689, 0.024669585911211853, 0.020852310899881783, 0.01462773018662942, 0.011059114512441634, 0.00718752505274413, 0.0027903849172821243, -6.376092081917879e-5, -0.004121124304849767, -0.007064387155381593, -0.012229116447966855, -0.011592452050341415, -0.014785217752546868, -0.017435203387699643, -0.02264611836118094, -0.026158556204961252, -0.028341946093671324, -0.030091320374506157, -0.03145089240489331, -0.030346800831307936, -0.029379936225480636, -0.030604490452487153, -0.0320858184617022, -0.03258576446558334, -0.033661317617642975, -0.0349525804742857, -0.03864429761989779, -0.040187424722924955, -0.041362437803070376, -0.04247134599993961, -0.043592511909657426, -0.042973016907766094, -0.04179797641648905, -0.04267939378675984], "Ag" => [-1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337, -1.3054169578177337], "Ar_sigma" => NaN, "Gd" => [-0.3271179154112347, -0.32715068670812386, -0.3177993734144884, -0.31404940071253734, -0.3102891276454957, -0.3073479010101285, -0.2990171675805979, -0.2957507588483394, -0.28759722508426205, -0.2781160935407143, -0.26878273808240777, -0.26400205807230737, -0.25210383632171973, -0.24202852637324662, -0.23393521875274645, -0.22351254127247283, -0.20959285000956374, -0.20245126777637554, -0.18955386800700474, -0.16880203329136942, -0.1509141397962794, -0.12502131255539736, -0.09718453165155233, -0.07139754238334511, -0.045926958963939606, -0.011172656329065687, 0.012851512370200604, 0.037011882475418915, 0.07530786537731998, 0.10888638244455917, 0.13552876760339355, 0.1754629764966446, 0.2156668469961985, 0.2505486085365942, 0.2790758739472508, 0.3054734624865422, 0.33014809345492735, 0.3535157108472054, 0.3635418635026512, 0.3894480255691288, 0.40986091321437157], "Ru" => [0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119, 0.3152139375125119], "Be_sigma" => 0.2910544880437752, "Sb" => [-2.30026800005155, -2.288190377867926, -2.272723088157836, -2.2563571613020255, -2.2372178840640546, -2.21644188095066, -2.1906998899210244, -2.168715819833461, -2.1430198743867184, -2.1222711107508467, -2.0943251277014006, -2.0683644083886783, -2.0347151016794536, -2.0074609947071878, -1.976066967192038, -1.9506845228898462, -1.9258883192680454, -1.898013436930628, -1.8657217002260675, -1.8376745566277606, -1.8021312624795793, -1.7684559533310908, -1.7427514098998904, -1.7208064136257666, -1.6953496724234216, -1.6762902283512398, -1.6580458540998406, -1.639054667938316, -1.6190975615628591, -1.5999505069867854, -1.5849889942403865, -1.5614599146115826, -1.5504221542716716, -1.5334037046380518, -1.5219700538773282, -1.5140808497824774, -1.5118137271741616, -1.4918415554500088, -1.4770649010937171, -1.4699870590961521, -1.4629038047953513], "Nb_sigma" => 0.7596497215962914, "Cs" => [-2.2198852809111966, -2.177479322539939, -2.1381857300394023, -2.116488772540622, -2.0933038709531977, -2.0585503698950673, -2.0257150855918105, -2.00861288518308, -1.9817239426849307, -1.961156264060411, -1.9510201200331976, -1.9388767480634148, -1.913152916266803, -1.8986880525850058, -1.874343185017056, -1.8582266262699707, -1.8306033040650482, -1.8160495439997524, -1.7859447739964849, -1.771031003134339, -1.7546403011496288, -1.7441397837870187, -1.7272595683118555, -1.7179068825765584, -1.701627209092146, -1.6978221545283376, -1.6961025857826086, -1.6929192889521383, -1.7062167779360609, -1.7041877922713333, -1.7009481651476843, -1.699328600984898, -1.7115650306797852, -1.7086110758831594, -1.7333894125633504, -1.7353540620774708, -1.7555945254302159, -1.7726483778516482, -1.795225580887943, -1.8042349908783923, -1.8259807697169157], "U_sigma" => 0.763756717839524, "Ce_sigma" => 0.6036235135739015, "Dy_sigma" => 0.41406483682975925, "Be" => [-1.2116765447406503, -1.2148482103729854, -1.2171885288433526, -1.2237050498687416, -1.228517161807787, -1.23248953379064, -1.2367409807755476, -1.240204148555138, -1.2419416015583506, -1.2410974293247834, -1.241931514049713, -1.241289895530038, -1.2416585558517768, -1.2451543958159281, -1.2474009918178277, -1.2486339855008097, -1.247223661969687, -1.2440831467229931, -1.2369215623299323, -1.2325031648908493, -1.2297761243755974, -1.2282576490406, -1.2271454741175243, -1.2272029421895092, -1.2243186181263426, -1.2191700657819688, -1.2158469068883127, -1.2169222824442034, -1.2138275151716342, -1.2136516222945881, -1.212444317398934, -1.2128055735624226, -1.2102883336889776, -1.207279593387938, -1.197837248996869, -1.1876386006211896, -1.1827931865418007, -1.1726175652514024, -1.1677253491512998, -1.1779364223052573, -1.1757813765689973], "Sr" => [-0.9167634366987696, -0.9197699717362514, -0.9238716955796215, -0.9266657027268338, -0.9305402341219741, -0.9278705304876539, -0.9230464448583368, -0.9204140081537687, -0.9218326068206636, -0.9149864153312341, -0.9174608311493389, -0.916728435832934, -0.9140656723518223, -0.9111156372894897, -0.9108030137431462, -0.9096837268501463, -0.9084890925930494, -0.9027189121265871, -0.8922890816427271, -0.8869293324801302, -0.8732856367595817, -0.8637021878144511, -0.8569553525506446, -0.8560457009238075, -0.842738402004543, -0.8303272971481863, -0.8119133513339535, -0.7904786555541848, -0.7623042759266047, -0.7433960434341572, -0.713147404632469, -0.6868727492785197, -0.6667432894035272, -0.6375473700113016, -0.6157098759292904, -0.6031099591477191, -0.5852820288231843, -0.5697660956561829, -0.56104595247145, -0.5297325590784822, -0.509551656859112], "Pt_sigma" => NaN, "Ta" => [-1.645458426036382, -1.6203520420847561, -1.5963038516237869, -1.5693162023725702, -1.5519576960646315, -1.5213100725326514, -1.5013896612680806, -1.4818644158483143, -1.458393266105885, -1.4344071736987833, -1.413137782516379, -1.3823927031589704, -1.3482063757303038, -1.3244031118086856, -1.2860975043232852, -1.2547761891795073, -1.2202171467968064, -1.1886664402996698, -1.1485652162132933, -1.1181460181698326, -1.0867142874176896, -1.0600526426512153, -1.028522246279603, -0.9980288180864542, -0.9629532254264956, -0.925405286355263, -0.8856948139340504, -0.8553007078765682, -0.822319122438044, -0.7982681841553921, -0.78025434579406, -0.774098005776786, -0.7576965817573033, -0.7392794623233968, -0.7383866316420227, -0.7298181959076359, -0.7166054315177304, -0.722488296105845, -0.7306215278857787, -0.7203189927829297, -0.7245579304586723], "Ga" => [-0.3721491602402936, -0.3755151083666637, -0.3833859906192325, -0.3880386844192752, -0.3931657901713005, -0.39706188551106764, -0.3966508895132415, -0.4043617624003825, -0.4059950187376916, -0.4089954811193807, -0.41123937160936236, -0.4148978551473456, -0.41248641609491826, -0.4182254117269051, -0.41916150839243776, -0.4244873364400059, -0.4275741754326157, -0.42780394415523276, -0.4275189063391845, -0.4350901639292982, -0.43553256859882755, -0.43952723287732753, -0.44572819215998905, -0.4421113813848596, -0.4393110263369762, -0.4414211708631905, -0.44310991230921665, -0.4462633147176717, -0.4538425456678164, -0.4613837673360422, -0.4701123084745961, -0.4779864215443501, -0.4805751913966583, -0.4877075836993579, -0.4880560927826142, -0.48836246407559386, -0.4845972344568113, -0.4898385378502008, -0.49242074940116626, -0.49605589928213645, -0.49598570382728724], "W_sigma" => 0.4425823674372134, "Cs_sigma" => 0.945325417949695, "Y" => [-0.3030692619067301, -0.3001544797688933, -0.2927326789454472, -0.2951740006637073, -0.29425857450938353, -0.2923268975795988, -0.288049487386531, -0.2816408285730294, -0.2779976114077567, -0.2790368120491431, -0.27625799278682833, -0.2718201280069962, -0.2694306060387707, -0.26650527410977387, -0.26045730524300476, -0.2526684679431435, -0.2530223139717009, -0.25421279673630076, -0.25040484732237467, -0.24526220386786626, -0.2472993338674869, -0.24088055316617285, -0.23209260541908006, -0.23119771984044718, -0.2283997235970143, -0.22608912503593284, -0.22631528318381192, -0.22738327818516813, -0.21891132320250417, -0.21444456317016147, -0.2151092216434492, -0.20771527879899176, -0.2013308695493021, -0.19033786532410968, -0.17978114848429277, -0.16375389734216655, -0.15482963575618516, -0.1462473557764781, -0.14063995129891438, -0.1364077558892905, -0.12740181796986635], "Sm_sigma" => 0.4312848598101461, "Lu_sigma" => 0.4520378522430944, "Kr" => [-3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156, -3.5088643834802156], "U" => [-1.946009130972019, -1.9363887101861028, -1.9289756373841584, -1.9220686680365116, -1.9165424904076942, -1.9033156105947133, -1.8989905301513683, -1.8888860730778703, -1.884017729020142, -1.892266660996884, -1.8865078992091282, -1.8828845075115592, -1.887856313904573, -1.8847517244275276, -1.8664208661944288, -1.8648934668904202, -1.860061040991298, -1.8486747448401244, -1.8398182739732407, -1.8405778031150362, -1.8220723453820642, -1.8092312844039, -1.7962515663235796, -1.7916320969145951, -1.7766957950108897, -1.7750682408642926, -1.7565343878716662, -1.7601981750199402, -1.7511817602022417, -1.7347618651863885, -1.726032688575635, -1.7282038565730353, -1.7046099553626262, -1.6926215890588396, -1.6957791999769938, -1.6877231961512618, -1.6786314395516067, -1.6771040501176067, -1.6597811872896997, -1.6498379306285464, -1.6448969201290458], "Eu_sigma" => 0.4452609959997601, "Sn_sigma" => 1.1387832632196437, "Ca" => [0.0017034630033553211, 0.0015987744646569337, 0.00038896996185940557, 0.001358462846903589, 0.005176590086236511, 0.010513239398725461, 0.007213025144437232, 0.0159435853052127, 0.017445173302955804, 0.0202834582040454, 0.020953797812487164, 0.028202092058425717, 0.02573071993474112, 0.03469331416477199, 0.044246724459201504, 0.053368202556014314, 0.05834096589810708, 0.08046844317119527, 0.08300868606079738, 0.08239867197587523, 0.09265916362242851, 0.11368539785961389, 0.11859762494400192, 0.12704698825327349, 0.1463777525019455, 0.1553505305509718, 0.15049867396125235, 0.1603371427371302, 0.1708378063087241, 0.17803318703780724, 0.17793528154945618, 0.19409994112277443, 0.18979023718604504, 0.21244142451796383, 0.22245992506907064, 0.2438568767683278, 0.2595609310657803, 0.28084245815459086, 0.2851565557393407, 0.30026813968909816, 0.30203501051702175], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.5571044712793802, "K" => [-2.1419468475710732, -2.136871668335651, -2.1440322974468358, -2.1349087403096907, -2.141733127069234, -2.1399368624379504, -2.1416447844110316, -2.1356863229793466, -2.136647230554484, -2.1305923255928723, -2.1294428415340567, -2.121449675341446, -2.119891476927948, -2.1174577553811997, -2.1118924956562064, -2.105176250636276, -2.1029550851737824, -2.0971465974816392, -2.0986177987028425, -2.0941239234452516, -2.09876785759064, -2.099254712533245, -2.0971466917102135, -2.0934648211108082, -2.0944863997175385, -2.0886810212471985, -2.080181482018195, -2.0785504261136536, -2.074738637315924, -2.0678993873034894, -2.067007877581151, -2.0731475481832953, -2.069673381431924, -2.0631297217340996, -2.062305953473892, -2.0524026478965354, -2.0434366585175368, -2.035085332540624, -2.0308642002714654, -2.02379134529194, -2.0261279711264883], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-0.9816641023329084, -0.9865337916181226, -0.9822596804577397, -0.9792771101482493, -0.9719164425822033, -0.9643446665090059, -0.9555788712379469, -0.9521260356957354, -0.9487614398890942, -0.9465660395615039, -0.9422295542656596, -0.9371693712524889, -0.9274856695474364, -0.918981335466284, -0.905108257415287, -0.8877096935220646, -0.8727926935910506, -0.8573738572402044, -0.8273225051874498, -0.807132797026747, -0.7827005988167187, -0.7480915713959568, -0.7158828713259864, -0.6833581662773847, -0.6463672324773259, -0.6062248277331377, -0.5706268438122581, -0.5235817538040928, -0.4778493121503131, -0.4396770342379562, -0.39238374579457846, -0.3502262327754445, -0.302984251042077, -0.26279814827348486, -0.21426378846484623, -0.1716954412052437, -0.1343751180382014, -0.10530172237761848, -0.07220141990600748, -0.039992523020443115, -0.03460373419633149], "Ne_sigma" => NaN, "Os_sigma" => 0.6187617532979387, "Xe_sigma" => NaN, "Fe_sigma" => 0.4375046213072097, "V" => [0.24456454534976893, 0.2455360455496515, 0.24253095733531782, 0.24445675113296264, 0.2437151173734939, 0.24552490959751697, 0.2482132116773403, 0.25053249613354356, 0.2515132398489899, 0.25176537254803677, 0.25335606041548914, 0.2511327887623372, 0.25390786141857, 0.2530040938814818, 0.25320472063098803, 0.2552154981475888, 0.2593654408378811, 0.2646347207708851, 0.26631661134881307, 0.2725453176626961, 0.27127728523990946, 0.26951254392237917, 0.266872638703054, 0.2708709578294727, 0.272661076572967, 0.277736391829655, 0.2770447700705825, 0.27643378524145057, 0.2734386318725972, 0.27410382888161877, 0.2735442227896759, 0.27710182704879666, 0.28020347893578185, 0.2855994575531621, 0.2860283021262292, 0.2933587522063373, 0.29088779788028607, 0.2934415511495185, 0.2964450454171475, 0.3007605841669676, 0.29946810548555775], "Yb_sigma" => 0.43756383227662915, "He_sigma" => NaN, "Co_sigma" => 0.4842834984568284, "Mo" => [-1.7669747335368948, -1.7709255387762117, -1.773502221002737, -1.775890895947622, -1.773782649342691, -1.7738946517781036, -1.7733992859243588, -1.7731206249458946, -1.772565846658011, -1.7732733537503227, -1.7735287644428273, -1.773393882025674, -1.7724502935284998, -1.770853439823871, -1.7716581184679214, -1.771948745838925, -1.7694185877230317, -1.7692150943695943, -1.7673231636284894, -1.7653039443500147, -1.765757690844578, -1.7693757954966383, -1.769592160005523, -1.7690326727140757, -1.7716116916590752, -1.7676040978732726, -1.7643489910561434, -1.7626836196473046, -1.7582125559616963, -1.7543019941370404, -1.7497653418566588, -1.7481480742377125, -1.7486148639561137, -1.753184376214317, -1.754068339978766, -1.7570162868974841, -1.7624184072003088, -1.7599339603542241, -1.7617403719578413, -1.7550494202785558, -1.7564111258425672], "Ho_sigma" => 0.4136166695703761, "Pr" => [-0.605100614888759, -0.602030582332695, -0.5933344847022065, -0.5890385391543639, -0.5858970918269164, -0.5781306613305288, -0.5763167414137298, -0.5730202919784451, -0.5761523811549333, -0.5751980336283619, -0.5741874072708616, -0.5621215313887077, -0.5565856823687666, -0.543924995942301, -0.5368464184837228, -0.5310913989819909, -0.5207946301974453, -0.5131356738245969, -0.5012562371635686, -0.4951262989697387, -0.4883549912569224, -0.48185137693923674, -0.4720691736498039, -0.4722445118496056, -0.45859029153539943, -0.4437585009030568, -0.43611329649957675, -0.42578402575612834, -0.4134771293636278, -0.40714966129023167, -0.39988196984197266, -0.3888554625034415, -0.37618047708545427, -0.3641594569219339, -0.3462505151492946, -0.33892686822711826, -0.3188293145988437, -0.3174659695863985, -0.3058710896289966, -0.2835670330774829, -0.2650378593240884], "Pm_sigma" => NaN, "Th" => [-1.753508995651567, -1.7357069337156308, -1.7305353510380992, -1.7265136245578452, -1.712366012962278, -1.6953072225015062, -1.6940275880018727, -1.6769651739675668, -1.6742792245986882, -1.668274009876475, -1.6697111922888483, -1.6593626744944152, -1.6503021203398134, -1.6364689288257737, -1.6310422719399995, -1.615015323321483, -1.6083031411582562, -1.5983017352835975, -1.5885649998810056, -1.5733455167741477, -1.5585461999143588, -1.54063833137614, -1.5316713205499601, -1.5139151663408994, -1.4955646258664794, -1.482944930776728, -1.4685313768426094, -1.4522365305989526, -1.4364698451063183, -1.4414265668708053, -1.430504457198484, -1.4206222148260108, -1.4091169335680236, -1.4137254938482948, -1.3853886714765284, -1.3743941468611347, -1.3589613793787363, -1.3402044222926242, -1.313200870951456, -1.301031963520414, -1.2896518409364792], "Y_sigma" => 0.46031960294594326, "Zn" => [-0.3262689355126886, -0.3331866501531753, -0.34115299198764854, -0.3323955552587191, -0.32268026737731725, -0.31106622618421387, -0.2933357270956607, -0.271824796011269, -0.25551672907945133, -0.23406742038772096, -0.21021038223839478, -0.1812109100115653, -0.14442362915347817, -0.09996701589179537, -0.05247668500476587, 0.0028742773601655278, 0.057851894276550055, 0.12152221521303702, 0.18128352110510335, 0.23793868204081986, 0.29691009695595755, 0.3579718987127597, 0.4175064348497213, 0.4757315871360735, 0.5234136141567883, 0.5669778321910977, 0.5938363020594977, 0.6099384713983981, 0.6221176249136211, 0.632655518019102, 0.6384250656303544, 0.6443221287582893, 0.6511899470104099, 0.6551865401942237, 0.6579457523014719, 0.6581837764452909, 0.66061571356742, 0.6565622254445509, 0.651461981500754, 0.6536401925855826, 0.6522434043398054], "Ni_sigma" => 0.5469912836791289, "He" => [-3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654, -3.5902280322290654], "Sc" => [0.25463556415011185, 0.26853418555530656, 0.2833788677324866, 0.29396416071738235, 0.310939201155402, 0.3239945262463069, 0.33472045885262947, 0.3483429271721722, 0.3625962961926511, 0.3821366442807191, 0.40347183071283416, 0.4337035423681392, 0.4621711059289282, 0.4942355687928961, 0.5230055701853417, 0.563726303672525, 0.6115829512998731, 0.6653399077387444, 0.7303495719910373, 0.8010442412171819, 0.8685365366073019, 0.9224288197862722, 0.9882653820512555, 1.0564405738210614, 1.1249823762732483, 1.185854376956334, 1.2651604535360506, 1.336083179446491, 1.406928989668697, 1.4758026871299135, 1.5339643803164746, 1.576260226879267, 1.6068367149194525, 1.637209293743036, 1.652690157360575, 1.670803032052623, 1.6808751727309235, 1.6902533954850503, 1.685342495494272, 1.6837010196896898, 1.6617770889926264], "Pr_sigma" => 0.5139070823737533, "B_sigma" => 0.2791033971151704, "Li_sigma" => 0.25990404544909773, "Tl_sigma" => NaN, "Mn_sigma" => 0.625602783898389, "Cd_sigma" => NaN, "P_sigma" => 0.5155953517551005, "Zn_sigma" => 0.5855637230579173, "Al" => [-0.7424849586452553, -0.7514743410666713, -0.7567531467586361, -0.7560636457633199, -0.7561901874066941, -0.7597508751058234, -0.7577322242651726, -0.756188512814736, -0.7636474438460709, -0.7644230516450519, -0.7664865503105958, -0.7710911528324472, -0.7702387357699504, -0.7695552006501457, -0.7675075904171036, -0.7648088252080945, -0.7636284069911462, -0.761135448890724, -0.7556661856827221, -0.7558424086650908, -0.7630967896748222, -0.7629480182190611, -0.7681885506812528, -0.7712145948150194, -0.7736937998451758, -0.7632063343216327, -0.7635917040798538, -0.7631296097128833, -0.7597143084089396, -0.7551144467188792, -0.76034410638307, -0.7655750781483177, -0.7667887649382864, -0.7668212312744322, -0.770324802666653, -0.7635758575084505, -0.7618624984040785, -0.7612279988390096, -0.7529697085238551, -0.7493602863030334, -0.7542882073485452], "In_sigma" => 0.161590880958625, "Si_sigma" => 0.29871998106256414, "Ar" => [-2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682, -2.9062396395817682], "Er_sigma" => 0.42338085576039547, "Er" => [-0.25372292134568775, -0.2469817019439077, -0.2438950729259479, -0.24242447999495956, -0.2409299054061691, -0.23632995962911882, -0.23530446314450212, -0.23496098474017607, -0.22639512133025877, -0.22079270003743495, -0.21604834949778431, -0.21068013342739025, -0.20636421567607638, -0.20188549026119137, -0.1979490227153973, -0.1966713170433162, -0.19171934571565152, -0.18120607221038695, -0.1749882438043951, -0.1665104558324592, -0.14823914022693405, -0.1400615315280987, -0.13647316962698874, -0.13250580107361737, -0.12381812804296334, -0.12771434451947178, -0.12116528855757575, -0.11233703005168452, -0.10160447757998504, -0.09699120326104353, -0.08716142824629337, -0.08333862171720645, -0.07044493346999961, -0.06528418357379802, -0.06012500379128705, -0.05465753620892847, -0.04629869115276456, -0.046540342375105556, -0.03723240998430778, -0.023747994177393227, -0.009985078735502941], "Ge" => [0.37640563746067135, 0.37782310578776906, 0.37921582126268744, 0.380483564873624, 0.38174740427806986, 0.3817591787289557, 0.3818671639101838, 0.3818331810997664, 0.3842387612990122, 0.38558007161728813, 0.38830544244789933, 0.3907354647746841, 0.39235477797638674, 0.39399379166992926, 0.3963274832666661, 0.40136266781229823, 0.40722598407676186, 0.41404691167407864, 0.42304083074166526, 0.43722583654937497, 0.44962098003207573, 0.46251563950135777, 0.4772658966567552, 0.49346109969214885, 0.507064181819935, 0.5210111274421687, 0.5358083624035359, 0.5483384426513166, 0.5586968302763747, 0.5667765414952096, 0.573239912552595, 0.5777689554105655, 0.5831843025399338, 0.585222534167134, 0.5879745304074213, 0.5905661610046837, 0.5918892917289593, 0.5919621688944452, 0.5929118836203331, 0.5932585596898627, 0.5934618471162273], "Cr_sigma" => 0.6383252069121045, "Fe" => [-0.05433287018729195, -0.052444043039436464, -0.05267986270905054, -0.04750658581317201, -0.042865833964746594, -0.03648447545192681, -0.03202563284434066, -0.022906292571494253, -0.012062757489948514, 0.00021954633568575728, 0.016106689078247832, 0.038373245218325094, 0.06589073730743741, 0.09608486249961219, 0.13253157873922514, 0.1762020005820897, 0.22305913260525748, 0.27634615966430914, 0.3318504443737526, 0.3934131633101187, 0.4490800575329406, 0.5000704868327093, 0.5448656270316187, 0.5906899911728355, 0.6239425601841808, 0.6545297192827605, 0.6776040888733443, 0.6953185131783431, 0.7085606969292889, 0.723032520368681, 0.730831525087669, 0.7421513397519526, 0.7501618038902611, 0.7566535736902464, 0.7619257772048801, 0.7688355222792821, 0.7655641594818625, 0.7680436119072264, 0.7700440238016871, 0.7696522050588034, 0.7657433919079805], "Pb_sigma" => 0.7942219931466016, "Zr_sigma" => 0.48291818221619554, "Mg" => [0.5301658861294481, 0.5404855192515493, 0.5480194327470561, 0.555964601988435, 0.5623835139700434, 0.5735422948904083, 0.5767835200029062, 0.5825419889324283, 0.5896102948682526, 0.5973107346120058, 0.5979434583008572, 0.6056067760697479, 0.6099253789924688, 0.6132678766324656, 0.6131540005015702, 0.6202106919513991, 0.6261262326143209, 0.6337318642701969, 0.6410413100095299, 0.651889715522463, 0.6575636039192855, 0.659523566762581, 0.6607140574388906, 0.6639913104278069, 0.6655481178711283, 0.6689073140297415, 0.678293528479658, 0.6841701390106969, 0.6907248889437038, 0.6995239105638021, 0.704530291806921, 0.7041922824777637, 0.7128939384380419, 0.7166513144053186, 0.7180677496414295, 0.7275731625226118, 0.7357710476684037, 0.7385869282241179, 0.742588329003306, 0.7496347125477102, 0.7499258380918612], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-1.0716879062540379, -1.069944816499445, -1.0709326548797455, -1.0628363676764774, -1.0550700371761248, -1.0488379892147, -1.0399750230658644, -1.0253032419537478, -1.0240797542773725, -1.0152042161787662, -1.0103082210824474, -1.002423628939332, -1.0038882421833353, -0.9930781801429369, -0.9876863494629077, -0.9808560799302033, -0.9787861338694626, -0.9679356284540304, -0.9574324241651707, -0.9535119796087976, -0.9397730158730085, -0.9242464374096895, -0.9128784461588917, -0.9047504646494235, -0.8868730967140229, -0.8789665807018895, -0.8649930256117216, -0.8604761937980159, -0.861743360062342, -0.85382539255257, -0.8427308840194411, -0.8375354204777712, -0.8200122852737203, -0.7974614295448366, -0.7894622979107762, -0.7817166913347875, -0.7764069439458294, -0.762548932060009, -0.7477598749878414, -0.7259780808662591, -0.7019801738341959], "Ru_sigma" => NaN, "La_sigma" => 0.6378749233615328, "W" => [-3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609, -3.224907363720609], "Au_sigma" => NaN, "Hf_sigma" => 0.5012576884081472, "Li" => [-0.6497162665365608, -0.651596755861446, -0.651991903767731, -0.649240523280602, -0.6482713925461012, -0.6472712660911649, -0.6442405295093043, -0.643624190780327, -0.6447806219460206, -0.6427032500134237, -0.6393597104696961, -0.6388612091452507, -0.6366149297537381, -0.6338849530583449, -0.6335580641301434, -0.637249574677801, -0.6372176380649979, -0.6351020568304092, -0.6378591392975075, -0.6396388031385433, -0.6388034254425851, -0.6380031998082637, -0.6389830707099632, -0.6376945022421319, -0.6361442435661981, -0.6347362061726471, -0.6354715128320371, -0.6325211853052094, -0.6337667279208901, -0.632971608715705, -0.6340070861091857, -0.6316589678463802, -0.6358837259033652, -0.6350266032492203, -0.6345090041466558, -0.6314730478816375, -0.6319306250387405, -0.6320736914118806, -0.6283138920959864, -0.6304152151632226, -0.6321658721782565], "Dy" => [-0.21856249164661942, -0.22122088119612413, -0.2184792518281422, -0.21811913507197317, -0.21486858939309655, -0.2106545066284206, -0.20303434280434304, -0.19928364404441892, -0.19098057254909756, -0.1924672411690275, -0.18106180284230391, -0.17630061309429756, -0.1681545384706458, -0.16446468371218567, -0.1510239470018888, -0.15486611675695028, -0.15119987163932197, -0.15002711401307467, -0.14256044652459648, -0.14170546583344037, -0.1296714923850056, -0.12533662358869263, -0.12098791171212377, -0.11107187487308155, -0.10221684536694528, -0.09134422002628376, -0.0757687634852823, -0.05934757227673069, -0.055323689889545016, -0.04301035446000346, -0.03474079815727927, -0.031699746138675475, -0.026295751692886754, -0.012131792765960285, -0.00568445578095236, 0.0032963663436891603, 0.014656647508544503, 0.017618643707436994, 0.021396926811113062, 0.027671382632428115, 0.0275575014778285], "Ti_sigma" => 0.37276115257344095, "Th_sigma" => 0.8035254217044702, "V_sigma" => 0.590328420276737, "B" => [-1.1841976003674701, -1.1901726586342387, -1.1907504080019453, -1.1915942718350843, -1.1937944483211127, -1.194963596086898, -1.1944356814543717, -1.1942949437606074, -1.1956881843341627, -1.1951957019143211, -1.1964576328984549, -1.1992062566718593, -1.2015312924911576, -1.2028645607821524, -1.2049527818223955, -1.2100227017930654, -1.210596376903907, -1.21368449733815, -1.2173537390021807, -1.218121500873294, -1.218949572194899, -1.2193590599451425, -1.2206572563553213, -1.2210952240059576, -1.2245638449034089, -1.223026577284654, -1.2289703373436986, -1.2329731893546068, -1.239033221687635, -1.2423101555836846, -1.2505032126278335, -1.2550928629619236, -1.2538989349635545, -1.2509980481491894, -1.2583882158698338, -1.2624838950695247, -1.2640791875760697, -1.2647782675611345, -1.2641512106350123, -1.266683391879745, -1.2652785726347449], "Bi" => [-1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495, -1.5882628854148495], "Mn" => [-0.02917728565963991, -0.031129590526693462, -0.02697167323582973, -0.03059769516720879, -0.03067591303847172, -0.03024909518676503, -0.02420865252139147, -0.022427402232320964, -0.012118736887103326, -0.004291856776146066, 0.006596336267148425, 0.018390533210116317, 0.036494929394410715, 0.05366001338326228, 0.08005565266735326, 0.11186686062939721, 0.15235391811485974, 0.2027101149176079, 0.2710325096025717, 0.3491738477299995, 0.43876869740686153, 0.534176642650136, 0.6366424592478158, 0.7400703102273646, 0.8300631433361065, 0.9088091326325743, 0.9719677313294611, 1.028353561217804, 1.0747018064894507, 1.117535668737639, 1.1475439134915517, 1.1755420446584603, 1.1967436407019045, 1.2138312215722824, 1.2255678373013401, 1.237469550041732, 1.2455694647451498, 1.2521393307883466, 1.2583403337920889, 1.262281038003759, 1.2676897775204996], "Nd_sigma" => 0.4888373008937156, "Re" => [-0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519, -0.9917833896068519], "Sb_sigma" => 0.8174320916982304, "F_sigma" => NaN, "Hf" => [-0.6328762577122578, -0.6325641790587566, -0.6307860799966505, -0.6250776185454296, -0.6203840289483853, -0.6209779518689472, -0.6192801362981338, -0.6194972005236615, -0.627796057590479, -0.6253906968310903, -0.618189282893766, -0.6100673188854047, -0.5991715583784816, -0.5852329806181732, -0.5781909113586788, -0.5757086202611945, -0.5701640866897553, -0.5683715236669087, -0.5667123347645626, -0.561425800145432, -0.5580291594830838, -0.5531608389926693, -0.5507897961125925, -0.5494251978786472, -0.5415178515994012, -0.5279980805044574, -0.5275432155533762, -0.5216428928089223, -0.5097868530182227, -0.5042630171915521, -0.49888834609692745, -0.4913948453868868, -0.4750734887604981, -0.4680675396755568, -0.4570018872105491, -0.459425495879801, -0.4478660323516741, -0.44777254126231303, -0.4448479164697624, -0.4367076522026541, -0.4192387666924764], "Tb_sigma" => 0.4050114801266167, "Ca_sigma" => 0.6987611935246352, "Cl" => [-2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881, -2.426935982160881], "In" => [0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314, 0.17734221781473314], "Rb" => [-1.7791078561618177, -1.7711667759576368, -1.7623961097126086, -1.763320446349133, -1.7575441158455094, -1.7602795592734695, -1.7572353757416947, -1.7535696501812588, -1.7490236541410678, -1.7523498970651197, -1.7427453599889757, -1.7338797073792658, -1.7327586840863527, -1.7330357175132491, -1.728084185662623, -1.7360134117201869, -1.7451858665304545, -1.7491876391256773, -1.7388899859841764, -1.7340362395986377, -1.728494966578975, -1.7284704309179086, -1.7153620772602851, -1.720724902249651, -1.7166087785572126, -1.7029931741349216, -1.6937454589789702, -1.706616373849743, -1.6985036525731603, -1.6977162600486932, -1.7054619473822572, -1.696987425468114, -1.6772859906150777, -1.6840519029507255, -1.6749274231007711, -1.6705241112275506, -1.6764830402506916, -1.6805006918284504, -1.6770875742515623, -1.688836087681045, -1.6765139433326643], "Sr_sigma" => 0.42817139449088565, "Ag_sigma" => NaN, "Mg_sigma" => 0.33043337160436276, "Rh_sigma" => NaN, "Mo_sigma" => 0.5014587173033986, "Ba" => [-2.2433320513140744, -2.2174785907880237, -2.2121282423396993, -2.2063674325450524, -2.1842206198890484, -2.163244554599759, -2.1472574541745026, -2.124363991536221, -2.09448845236638, -2.0768549236168035, -2.061423556373706, -2.032136405568652, -2.001515021211803, -1.984365446181154, -1.9633626597927094, -1.9359892515875483, -1.9196599092807574, -1.8998873201119633, -1.8730819952363236, -1.845364004812471, -1.8197106568641612, -1.7985704932236488, -1.7823163087483926, -1.752438643611557, -1.7218387845100762, -1.6985200120101482, -1.6573466158202657, -1.6118555689705358, -1.5792683504607898, -1.5577100435933118, -1.5164960756015804, -1.4925358669213231, -1.4715270195393986, -1.440990860897461, -1.402417814931502, -1.3789282080552123, -1.3528613966373018, -1.3194325469090062, -1.3131426764523872, -1.2906153740787447, -1.2828683515377448], "Nd" => [-0.5272763382926536, -0.5264158312724473, -0.5245969177691935, -0.5271352945993851, -0.5267436185026227, -0.52055479036002, -0.5113839306890519, -0.50999426319078, -0.5010197909186612, -0.48925635350836805, -0.4859024015143452, -0.47146024765509076, -0.464811618233259, -0.4580628966944359, -0.4537054398094951, -0.4450585595009486, -0.4447673184355675, -0.4376243357217285, -0.43237641064437154, -0.4271670468443067, -0.419946076689749, -0.412566975847167, -0.4026651280698582, -0.3891449141224056, -0.37762866968077125, -0.3744069605019153, -0.36220087428358533, -0.3500831405425898, -0.34533724130332627, -0.33826362484959893, -0.3219782953189285, -0.3116638488844776, -0.3037032436417501, -0.30062698107412866, -0.29099582640788785, -0.27840899482382914, -0.2769000408712273, -0.2625242941010404, -0.23780104145272593, -0.22044976396915134, -0.20730974926310958], "Pm" => [-0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622, -0.7279659778248622], "Rh" => [-0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793, -0.6053506944202793], "Bi_sigma" => NaN, "Ti" => [-0.4236587816904292, -0.42303938964084303, -0.4210406661526748, -0.4243377003691521, -0.4271971673284766, -0.42323251785794863, -0.42170892208522875, -0.4172427971613485, -0.41759854616397873, -0.4114688715926282, -0.41905288765391047, -0.4187262524456573, -0.42085406214676807, -0.41968175382218287, -0.42363515608172403, -0.42405411423508504, -0.420419186587362, -0.4213671400308974, -0.41951736772440024, -0.4180420357185606, -0.41656137301572566, -0.4191607817647818, -0.4172133069412312, -0.41776541231425557, -0.41581743328639864, -0.40984070814962636, -0.40448861026903443, -0.40042013783058, -0.3987477800770566, -0.3966616701658326, -0.39765314568853616, -0.39888858204537553, -0.3932980270225424, -0.3930667551331998, -0.38923472555834054, -0.3857908355268072, -0.3848964053333326, -0.3867299467692029, -0.38356251683386544, -0.3814911606260669, -0.3861880534636969], "Tb" => [-0.22165925039580925, -0.2123678917761316, -0.20971590928983, -0.20878764911978495, -0.2069767212321614, -0.20139880836413268, -0.19619148508109754, -0.18985753821479073, -0.1792492918486596, -0.17483659953306316, -0.17051702173561542, -0.1653696138686232, -0.1603959586947996, -0.1583099402180714, -0.1472381326090147, -0.13803145738522404, -0.12760754238063873, -0.1220067733612067, -0.11850766820375946, -0.11889665025425723, -0.12022573821330951, -0.12037266173434169, -0.1151525440058258, -0.1093114526763884, -0.09684613501591004, -0.08903131831598587, -0.08501142323667793, -0.0815877304347836, -0.07233866062142084, -0.07513908616100926, -0.06589378953029999, -0.0510945132976587, -0.035415722413313956, -0.026190066216536766, -0.007441063601484177, -0.00500207251374645, 0.0004131358936999955, 0.005161752357332316, 0.012665907308967468, 0.025931499251719385, 0.05795003867830203], "Tm_sigma" => 0.43031380568323707, "Zr" => [-0.850930090150926, -0.8429238875185926, -0.8373227304017362, -0.8411283888423223, -0.8328077034155272, -0.831620157807044, -0.8292706160632384, -0.833876619224871, -0.8224581957287008, -0.8302099803897556, -0.8279908423890233, -0.8287473961298846, -0.821509040478589, -0.8205236469289935, -0.8084338297240735, -0.8071600914827689, -0.8031268213499767, -0.8041409976765217, -0.8004543914841222, -0.7993969930244232, -0.791975922184379, -0.7869795365592053, -0.779565743795403, -0.7796987645824985, -0.7798849436433377, -0.7784205142448385, -0.7757927883283029, -0.7675184756694408, -0.766230674430434, -0.7588969633059142, -0.7565429455418113, -0.7522423184318459, -0.7579584530591007, -0.7435588386015289, -0.7375520989805655, -0.7294871643992451, -0.7305469872310236, -0.7139641864635795, -0.7181943492016942, -0.7152067922637986, -0.7102203051707696], "Sm" => [-0.3258828467950936, -0.31841930439958344, -0.3193222360719396, -0.3156446853124025, -0.31091191599676987, -0.30802957753494664, -0.30440778857129835, -0.3001952130341458, -0.29672030178224407, -0.29394256430441434, -0.29163141772496665, -0.2873790904776673, -0.2853986382761708, -0.2820835426565594, -0.2768717418415278, -0.27091003237486205, -0.2661511642053817, -0.2577177919215729, -0.25083035918317276, -0.24617706610990547, -0.24079862667082266, -0.22932373855888558, -0.22256030454674644, -0.22528674105496943, -0.21723586087138644, -0.20766273653590941, -0.21152587702920883, -0.2023211499004768, -0.1856871525789927, -0.18126137319203048, -0.17300191179261884, -0.1552763944425649, -0.14841688140211012, -0.13843526314625787, -0.12217516732071423, -0.11064929811464405, -0.09833463508055229, -0.08901385474268891, -0.07568578496627788, -0.0686622228931164, -0.06372154113761834], "Ba_sigma" => 0.9811605286309537, "Cr" => [0.8652650750621173, 0.8533155354964621, 0.8480864822188213, 0.8507059080654856, 0.8588143668165003, 0.8732476612376158, 0.8892029962960429, 0.9056760468091162, 0.9231328081612546, 0.9473513242241309, 0.9758303501496466, 1.0122725189091553, 1.055051286532279, 1.1032023721560729, 1.1567687337811163, 1.210251011594625, 1.2710949030173528, 1.3239253275302785, 1.3812631757642733, 1.4223348148281518, 1.4447280654618284, 1.4362308431360944, 1.4271236903860642, 1.3860099532695878, 1.3241991222967082, 1.2570666965044546, 1.1920991762000352, 1.12449930600408, 1.0595617253333478, 1.0128400168816307, 0.9674530561453444, 0.9266809791158584, 0.8915099183522041, 0.8743317525346629, 0.8521970864565916, 0.845388593114742, 0.8390144167695607, 0.8356718728842706, 0.8352853479769329, 0.856073800446134, 0.8591567178120398], "Cu" => [-0.6494294512632275, -0.6488356734446046, -0.664103105234808, -0.6690836128678161, -0.6852716726510758, -0.705941500452013, -0.7302960159720426, -0.7414230073403452, -0.7537047403847342, -0.7685578693463573, -0.7710848102740517, -0.7640949838113253, -0.756666654746536, -0.7475298848290266, -0.7265365939304864, -0.6965352363478058, -0.6653834564601827, -0.6262162419735828, -0.5812612170161403, -0.5238381018556238, -0.46247294141416895, -0.4025646731433109, -0.3373887913775489, -0.2608276875097451, -0.19971429927187168, -0.14427334642183684, -0.09103005752986021, -0.0532656092999113, -0.0295281927808329, -0.011249441868094621, 0.005294441599857696, 0.015610183420636808, 0.022600871598141916, 0.030608587349470234, 0.03603884275866245, 0.0342791407428775, 0.03209551850778169, 0.03468050214500577, 0.027836201295166774, 0.019934115445063873, 0.017996865931720143], "Al_sigma" => 0.5402221578259735, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [-3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164, -3.339822983591164], "Pd_sigma" => NaN, "Re_sigma" => 0.5551869526022493, "Sc_sigma" => 0.7008288398837255, "Yb" => [-0.3602444162403584, -0.35650628459975614, -0.3542839274802527, -0.34725044654040893, -0.3424558888117997, -0.3379789831962997, -0.33364799786064997, -0.32768595367156805, -0.3266110500007729, -0.32431515860952154, -0.31573724766631506, -0.3060527813083107, -0.2971212657339974, -0.28902870762889565, -0.27793839706250795, -0.2671122824270542, -0.2571309893333499, -0.24924244070749615, -0.23512243529140442, -0.22079270043102747, -0.20452262917991798, -0.18924047369927624, -0.16818201885644238, -0.14533236581353562, -0.11955973874450115, -0.09295791595562128, -0.06390870561339862, -0.029024179562672506, 0.011787017341697317, 0.040809467983542326, 0.06953821718110488, 0.09994334343949225, 0.13623175665105364, 0.15386156667148151, 0.185095994582192, 0.20696520626167156, 0.22767375864127773, 0.23734211183236995, 0.26294188896589704, 0.26964756876337753, 0.2830620912982557], "Lu" => [-0.32768689562654313, -0.3230597199651467, -0.3149416120182378, -0.3054842441440846, -0.2973573129357303, -0.2951649903177944, -0.28590762705619405, -0.284033412644953, -0.2847380297155022, -0.2821558394382702, -0.2785283038836191, -0.27732509835421487, -0.2722230552029378, -0.26304287505256047, -0.2620698254866416, -0.2563770118437644, -0.2487739542819743, -0.2455005500311689, -0.24244046596218097, -0.2273193113876369, -0.21904583794763768, -0.20972973370603887, -0.20396721589105757, -0.19682535742060508, -0.2012900997887081, -0.19644403481489806, -0.19739365913257811, -0.18926171141450968, -0.1902203136843202, -0.1788324363226582, -0.16804975714373252, -0.14810894444031053, -0.1365821062218654, -0.12016642463528437, -0.10733021746984528, -0.09608058927174243, -0.09556717140579092, -0.08844026970960862, -0.0757028569956612, -0.07223498932960412, -0.06816597603389525], "Eu" => [-0.4504914796655509, -0.4459396244674035, -0.44069770667007235, -0.4328257097310984, -0.4270839760283579, -0.42334774678388565, -0.4165323486278834, -0.41033333092978813, -0.40689420888615163, -0.4011056700820382, -0.3910967992609562, -0.3799235681320647, -0.3676428947621952, -0.360130604705588, -0.3469657479895644, -0.33790406407937007, -0.3276726298170998, -0.31316871717855294, -0.29428570768934686, -0.27807946716248744, -0.25811836165393875, -0.240045164269938, -0.22091518971757196, -0.19771120659540325, -0.17222183302255933, -0.14139268826247592, -0.10926824915627388, -0.08191339202862281, -0.052886125725156906, -0.023777475679605708, 0.006377904411788549, 0.03666810363082303, 0.06670943402520411, 0.09881389719808414, 0.12966980573182316, 0.16882679630374753, 0.19484985943821223, 0.2191657075315386, 0.23075928989209318, 0.25244525279058244, 0.2685622123843807], "Na" => [-0.7365379638110446, -0.734796414197259, -0.731491665087991, -0.7344135738836947, -0.734981624776312, -0.7344907029998946, -0.737156540536479, -0.7367496159065471, -0.7357582332706323, -0.7353083066385976, -0.7377910406047465, -0.7394558390180969, -0.7406768956572075, -0.7425312890060572, -0.7446161670478274, -0.7466898125284579, -0.7503329994052494, -0.755319171414728, -0.7543857940931721, -0.7521503357457481, -0.7500034674659001, -0.7499855211674615, -0.7478029581097289, -0.7518098796935421, -0.7571322468843906, -0.7603953863371289, -0.7567883074929146, -0.761071777704479, -0.7587582973627001, -0.7512576553764795, -0.7495611282699067, -0.7507844965152021, -0.748649036764093, -0.7518100448655649, -0.7625212514000871, -0.7634325148894673, -0.7613754819993278, -0.7562424967034723, -0.75755811409472, -0.751571597156993, -0.7515162322937698], "Os" => [-1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415, -1.56246936830415], "Na_sigma" => 0.34714973991037235, "Ni" => [0.7875434780492834, 0.7869151714944014, 0.7836618001380451, 0.7859862305427384, 0.7908822185718343, 0.793578702233662, 0.8022471641726187, 0.8097360052528976, 0.8151367317005161, 0.8214054766181823, 0.8318047230912544, 0.8428676634997291, 0.854713665656893, 0.8666084239761098, 0.882626742907016, 0.8998146516245357, 0.9125955722513331, 0.9280425996164539, 0.9486979815794677, 0.967603224581297, 0.9884006940672195, 1.0124253595397799, 1.0423061226678456, 1.0598443132522035, 1.0839053135900025, 1.1042602936197654, 1.124566686585883, 1.1376538678994332, 1.1546802505583178, 1.168663129921509, 1.1802896196075576, 1.1803860472800278, 1.1862348261254627, 1.2079567296730478, 1.211755913106944, 1.2158163218828952, 1.2267596787031056, 1.2394271552109264, 1.2446210419718968, 1.2289875577654747, 1.2216458161824717], "Rb_sigma" => 0.8028047679511068, "Ho" => [-0.23409617468052166, -0.22757214868207878, -0.22795366386117102, -0.2229216916153172, -0.21406016948067758, -0.2079517982815983, -0.204338589503532, -0.20161409954721213, -0.1997755228895865, -0.19878767780057024, -0.19333042031287395, -0.19062441028205446, -0.17997272675042617, -0.17339004048942563, -0.1635342167021364, -0.16944177467345664, -0.1649695986086089, -0.16571656600193221, -0.15886755317864687, -0.15742688504135235, -0.13858435721706064, -0.13287216520111853, -0.12403434675177809, -0.11796525167334743, -0.10836358965249591, -0.10291539322573512, -0.09770761790293819, -0.09144497998702716, -0.08210790194466142, -0.07890489344368115, -0.07228495652717486, -0.057436415636283975, -0.050367855354973595, -0.0427225082936369, -0.03445264494433555, -0.021860180482097893, -0.014518464693611156, -0.003886725979342555, 0.012259274861048221, 0.0255341519834327, 0.033098159814941304], "Co" => [0.10686523546094102, 0.11145513058041157, 0.10524447145527963, 0.10669575709546426, 0.10604395248532776, 0.10786757812879084, 0.10916448148319738, 0.11769656104346016, 0.12615239790341612, 0.13622799681371808, 0.15008934365122473, 0.16993306256711363, 0.19217378215839762, 0.21598944753499766, 0.2481581906550397, 0.2862405544620454, 0.32539869769581037, 0.36972838099733063, 0.4234836308534181, 0.47226930321124155, 0.5199160119415235, 0.5760871323195205, 0.6269224353732938, 0.6771765778371645, 0.7319302323296234, 0.7856428341610064, 0.832344683976308, 0.8765455473901074, 0.917467533085716, 0.9544592248513969, 0.9835266566088121, 1.0014561292272628, 1.0193359350062472, 1.0338641075847124, 1.0443533611757019, 1.0540693364203817, 1.06459176187311, 1.0697191845407612, 1.0706290895414643, 1.0695128444866049, 1.0616708870436233], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 0.5622594693364209, "Tm" => [-0.26113566603973776, -0.2625305982841689, -0.25962140324179084, -0.255808520368792, -0.25241657565857534, -0.2430244248512776, -0.23536342094260504, -0.22201480583881267, -0.2228550771281436, -0.21567737330285452, -0.21349984072411027, -0.21285424775503473, -0.21412239613538495, -0.20826563402568107, -0.2113480268514915, -0.20626365573870153, -0.1991861557129198, -0.18855088335534279, -0.1827078306749713, -0.17568575516029247, -0.17179992834975824, -0.16361367790838693, -0.16011494997170775, -0.15011077952852933, -0.14378828469566848, -0.13625680784046632, -0.13060973376676868, -0.12880729969759178, -0.12191631167285659, -0.11351293138766233, -0.10007518660143161, -0.09173858737702802, -0.07856180446520326, -0.07493522532077118, -0.06928523505861876, -0.059830846462264116, -0.04706015014283012, -0.039759535020486604, -0.015753931651926914, 0.00568896573020679, 0.011249045108657305], "As" => [-0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386, -0.8046091726445386], "Sn" => [-0.7865043096097744, -0.7937955203602083, -0.8073774772612438, -0.8162791479128985, -0.8273173768892279, -0.8393499727198405, -0.8552902148510204, -0.8679972208756037, -0.8860805438853754, -0.9050970092758414, -0.9279184200492682, -0.9513942891748915, -0.9765323039212656, -0.9999289796201442, -1.0244533104393092, -1.049575997375601, -1.073710315750338, -1.098331233002135, -1.1233920512135753, -1.1504786100950462, -1.1718519636749207, -1.194451417055518, -1.2142380042391296, -1.2323261342832341, -1.2457911550781176, -1.2585821189527995, -1.2679374553506253, -1.2777829373289817, -1.2832993417332772, -1.2864118597187892, -1.288665271941235, -1.2917444717388749, -1.2944646438487157, -1.2969917782350238, -1.3035213263916676, -1.3073408608219799, -1.3077295399257622, -1.3066158761547828, -1.3060314452236146, -1.3064976878731098, -1.3080890740574114], "Xe" => [-3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028, -3.548455006504028], "Ge_sigma" => 0.1722389786549059, "Ta_sigma" => 0.6721700549542292, "As_sigma" => 0.7243309813590274, "Gd_sigma" => 0.42404336552308325, "Cd" => [-0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786, -0.21223289084006786], "Pb" => [-1.5074757883015473, -1.5115499152508722, -1.4997620511986318, -1.4826337173828519, -1.4635233883140244, -1.4577579939556815, -1.439969048410907, -1.4310111359687345, -1.4158212527134475, -1.4144463931649967, -1.3956016757277185, -1.3807545873561777, -1.3784807022288532, -1.36780523821924, -1.3468119046595046, -1.3443932757433508, -1.342086207966129, -1.329113588924177, -1.3282154634733727, -1.3142276856193045, -1.29952718700318, -1.2722853544710009, -1.248715642691694, -1.240190573927285, -1.2357782474257257, -1.2381524451574415, -1.244470905889856, -1.253453144482254, -1.2305998952645962, -1.2205849012510763, -1.1909069501702607, -1.1775820344643508, -1.159222318141754, -1.1558110214581925, -1.1489369443734383, -1.1443621117444458, -1.1305088066335744, -1.12152796746482, -1.1181488985816708, -1.113648702789014, -1.1062089333185894]), "SiO2" => [40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, 80.0], "Leucite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.058633163910466746, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677, -1.70170145218677], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328, -2.5143276826638328], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 0.8475785545027854, "Cs" => [0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378, 0.9907826918031378], "U_sigma" => 1.0920156630858313, "Ce_sigma" => NaN, "Dy_sigma" => NaN, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [-2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405, -2.3861238418381405], "Pt_sigma" => NaN, "Ta" => [-1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661, -1.3382708165752661], "Ga" => [-0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294, -0.41821061740561294], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [-1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347, -1.9622265193037347], "Sm_sigma" => NaN, "Lu_sigma" => NaN, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359, -1.4745528832647359], "Eu_sigma" => NaN, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743, -3.154901959985743], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [-1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126, -1.5686362358410126], "Yb_sigma" => NaN, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => NaN, "Pr" => [-3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063, -3.089144360884063], "Pm_sigma" => NaN, "Th" => [-1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316, -1.8675910884952316], "Y_sigma" => 0.7160086384752697, "Zn" => [-1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376], "Ni_sigma" => 0.036033231191032127, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315, -1.1426675035687315], "Pr_sigma" => NaN, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => 0.2582855246457497, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => NaN, "Er" => [-2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364, -2.057325561988364], "Ge" => [-0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639, -0.09691001300805639], "Cr_sigma" => NaN, "Fe" => [-1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694], "Pb_sigma" => NaN, "Zr_sigma" => 1.5691436465562758, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856, -3.5251775929746856], "Ru_sigma" => NaN, "La_sigma" => 0.0032510615871773193, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => 2.149034489499891, "Li" => [-1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094, -1.494850021680094], "Dy" => [-2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901, -2.281731703724901], "Ti_sigma" => NaN, "Th_sigma" => 1.7385194955279437, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341, -1.97851546330341], "Nd_sigma" => NaN, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505, -1.2251306343675505], "Tb_sigma" => NaN, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966, 0.8002577514125966], "Sr_sigma" => 0.512359896615713, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946, -0.802437536077946], "Nd" => [-3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624, -3.0042624461939624], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [-1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128, -1.493494967595128], "Tb" => [-2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298, -2.3583515753605298], "Tm_sigma" => NaN, "Zr" => [-2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084, -2.2541520872857084], "Sm" => [-2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544, -2.673962972506544], "Ba_sigma" => 0.47452066615792976, "Cr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu" => [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [-1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016, -1.9122499827276016], "Lu" => [-1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008, -1.8410659339428008], "Eu" => [-2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187, -2.8239087409443187], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [-0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222, -0.5783213107810222], "Rb_sigma" => 0.08918753204718821, "Ho" => [-2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685, -2.1312203016132685], "Co" => [-1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051, -1.0087739243075051], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585, -1.9843359905512585], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 1.088427662145712, "As_sigma" => NaN, "Gd_sigma" => NaN, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752, -1.0457574905606752]), "Cordierite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636, -0.3174024775387636], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => 0.30711547669575734, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => NaN, "Cs" => [0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188, 0.4938145139909188], "U_sigma" => NaN, "Ce_sigma" => NaN, "Dy_sigma" => NaN, "Be" => [1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166, 1.6810564251648166], "Sr" => [-0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752], "Pt_sigma" => NaN, "Ta" => [-1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564, -1.2218487496163564], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => 1.42057192283336, "Y" => [-0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156, -0.14266750356873156], "Sm_sigma" => NaN, "Lu_sigma" => NaN, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974, 0.20682587603184974], "Eu_sigma" => NaN, "Sn_sigma" => NaN, "Ca" => [-0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415, -0.56246936830415], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743, -1.154901959985743], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [-0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188, -0.8239087409443188], "Yb_sigma" => NaN, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603, 0.38021124171160603], "Ho_sigma" => NaN, "Pr" => [-1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362, -1.0265215760108362], "Pm_sigma" => NaN, "Th" => [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], "Y_sigma" => NaN, "Zn" => [0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954, 0.2380461031287954], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426, 0.31175386105575426], "Pr_sigma" => NaN, "B_sigma" => NaN, "Li_sigma" => 1.8328011165460505, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => NaN, "Er" => [0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177, 0.24601006852245177], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758, -1.567585319024758], "Ru_sigma" => NaN, "La_sigma" => NaN, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => NaN, "Li" => [0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682, 0.8009239149320682], "Dy" => [-0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863, -0.030605462473587863], "Ti_sigma" => NaN, "Th_sigma" => NaN, "V_sigma" => NaN, "B" => [-1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178, -1.110924374808178], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468, 0.7174121481342468], "Nd_sigma" => NaN, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb_sigma" => NaN, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878, -1.0314085410674878], "Sr_sigma" => NaN, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187], "Nd" => [-0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185, -0.9217769479832185], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [-0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147, -0.12507027805418147], "Tm_sigma" => NaN, "Zr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sm" => [-0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801, -0.514286001954801], "Ba_sigma" => NaN, "Cr" => [-0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715, -0.036212172654444715], "Cu" => [-0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807, -0.6777807052660807], "Al_sigma" => NaN, "Tl" => [-0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213, 0.42479317681561213], "Lu" => [0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392, 0.5125031124761392], "Eu" => [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573, 0.5932860670204573], "Rb_sigma" => 0.09263306997375292, "Ho" => [0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743, 0.15493252573966743], "Co" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255, 0.33596289052272255], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => NaN, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376, -1.5228787452803376]), "Garnet" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-1.8828015286523614, -1.8784624673761263, -1.8757084935292856, -1.8778027492118454, -1.8770403394942017, -1.8853570009598712, -1.8861178414685307, -1.888678391811895, -1.8821001234202457, -1.8800998378727494, -1.8750736845336216, -1.8772059537449493, -1.881062686970323, -1.8902827883695585, -1.8918197780192088, -1.8950283355657125, -1.885478762681124, -1.8760142745434756, -1.8692864802606792, -1.8639010332595738, -1.8571534927349547, -1.8694239573645293, -1.8767502577195163, -1.8769266690234783, -1.8790287171169677, -1.8803767626038348, -1.8682961974083458, -1.8693750552410622, -1.8604721047194699, -1.8584556656916889, -1.8539002208614308, -1.8525791717396218, -1.8529753219915128, -1.8641654472502671, -1.8614577713710374, -1.8688022864723792, -1.8766718488682879, -1.8716625690214332, -1.868716542144172, -1.8801177017290787, -1.871490237927405], "P" => [-1.0664078824191872, -1.0578399449387526, -1.0509448181907641, -1.0508640985986908, -1.0462283113125945, -1.0390659921065728, -1.0367557518685637, -1.0288339661464025, -1.0198849496104159, -1.0121562648524853, -1.0084560273722996, -1.0007962121394465, -0.9974028490821121, -0.9916078471177041, -0.9841315415521096, -0.9763149922390464, -0.96987760565076, -0.9640994385234712, -0.9593088788733796, -0.9561584039750599, -0.950956021200046, -0.9476746306200567, -0.9422385638675196, -0.935983917587091, -0.9301007401547438, -0.9243995433410649, -0.9166631746939495, -0.914462863060063, -0.9110151317675819, -0.9040690609718499, -0.9022248680570314, -0.8959315114806217, -0.8860611625574425, -0.8752159911745895, -0.8745218574962256, -0.8684304197976146, -0.8686171464568242, -0.860053406866717, -0.8676368258186683, -0.8622470450465285, -0.8651242016757967], "Si" => [-0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393, -0.008560483115508393], "Ag" => [-0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685, -0.9062396395817685], "Ar_sigma" => NaN, "Gd" => [-0.3014425528248861, -0.2856519111975512, -0.274934704889648, -0.25910356885162056, -0.24468300849722457, -0.23002627737379905, -0.21997659398505431, -0.2063532356327284, -0.1969961835752035, -0.1901516078299321, -0.18352597515383742, -0.17022782728920968, -0.15992114749658298, -0.1440112337738177, -0.12427474611664623, -0.09136727622116547, -0.05115312502462424, 0.010609036058647088, 0.08209972720544634, 0.18656977922990003, 0.293867720875673, 0.38870645880691623, 0.47736163781742513, 0.5642788786558034, 0.618025679369468, 0.6693917631967449, 0.7056507144016129, 0.7481652987817834, 0.77156975580031, 0.795231000759692, 0.8065872090057027, 0.825633940832067, 0.8276765850522582, 0.8286654204155239, 0.8364211795513603, 0.8427837695797492, 0.8303106587030736, 0.8199337642707551, 0.8095845740532631, 0.7684635383199657, 0.7205019194385229], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => 1.6694717441958513, "Sb" => [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], "Nb_sigma" => 0.6413098513265229, "Cs" => [-3.2898815191341133, -3.2934762083121925, -3.2964144053766518, -3.2995363947119065, -3.299215804101031, -3.296244296067406, -3.3038519675313713, -3.3074249957074935, -3.313344221746749, -3.3190663148142487, -3.3244324069929507, -3.3259048743878243, -3.33366393663205, -3.3381343258315352, -3.34788439270544, -3.3555096258452393, -3.3653408330824126, -3.372132545711613, -3.3799937267957167, -3.387965063977438, -3.399141211075988, -3.4071129520752432, -3.417749362772247, -3.4368136527020745, -3.4380729563964003, -3.437471505418427, -3.438298868714655, -3.450363334837212, -3.4415339465022283, -3.4568565798297537, -3.4789046677405753, -3.491935937338214, -3.4980481521269353, -3.5187478062430944, -3.5223108579863838, -3.5359420674221305, -3.5562127451125414, -3.5560716219125106, -3.564391651536028, -3.590945197270856, -3.603686246057733], "U_sigma" => 0.7622595077271488, "Ce_sigma" => 0.7642381750328602, "Dy_sigma" => 0.5335901363742597, "Be" => [-1.5104113867538742, -1.5141044604474618, -1.5262789569572142, -1.5420075956766333, -1.5450800356471857, -1.5462477159127033, -1.5426839904552487, -1.5326689162537968, -1.5187649183527865, -1.519728977984158, -1.5262395985001391, -1.546349471846851, -1.558449877669102, -1.5697721056596337, -1.5756314812100454, -1.6036125411333566, -1.604417218277211, -1.6100297727814368, -1.6221502137306443, -1.6394258290935075, -1.638600679221653, -1.6578112060689785, -1.6677843356382704, -1.6873687153350645, -1.6865130085397833, -1.7049248787289508, -1.7149880250360705, -1.7217851253071932, -1.7350298592266622, -1.7700627060554888, -1.763399008908598, -1.75993297593224, -1.7968243078752353, -1.8155035951219685, -1.853364419299701, -1.8797047392761619, -1.919277782380726, -1.923815604223769, -1.9307586218916308, -1.921383457192749, -1.951626831390821], "Sr" => [-2.0747154012471074, -2.0738827908181863, -2.0746841317746685, -2.0745498919629277, -2.07835908731404, -2.085876822944916, -2.082413167743237, -2.07765319601496, -2.073324148452295, -2.077881602777526, -2.0674140048359786, -2.0757401715041377, -2.0825621644145262, -2.081684535301595, -2.079903675514415, -2.0749837170350136, -2.075013909412045, -2.079069188392728, -2.0775190631177445, -2.071330583055414, -2.0724803382543078, -2.0630210482648135, -2.0472103860412774, -2.044710443167895, -2.0466281624775338, -2.039760206522539, -2.0298270441434316, -2.032157070470396, -2.035952529855017, -2.0297691717769397, -2.0319424418741368, -2.0405584345691206, -2.028660627319152, -2.0254515658666055, -2.0112373197854443, -2.0105271058201035, -2.0077120673005586, -2.0229068524328078, -2.0200439546198834, -2.0204028319785112, -2.0259694469097687], "Pt_sigma" => NaN, "Ta" => [-1.6126603394633383, -1.6143836152034439, -1.6107717461303697, -1.6051825912400246, -1.6026060048119324, -1.6056233654405538, -1.6002320065361433, -1.5996709782165983, -1.5986969286452526, -1.5932356508623837, -1.5848511637628104, -1.5852210505237354, -1.5894432755241823, -1.585739017315354, -1.5856179690706451, -1.585544809923304, -1.582794721895411, -1.5765495638388165, -1.579683708640956, -1.5819229240180634, -1.5717894187737425, -1.5710930084715862, -1.5693874421317655, -1.5551935598032915, -1.559836894516857, -1.5584251776734859, -1.5466201843398548, -1.538547668182179, -1.5408717962373824, -1.5208289242254946, -1.509593544746644, -1.5049473884534825, -1.4901042419217072, -1.484146911476664, -1.4709168535702304, -1.4720608630332728, -1.4714762437357551, -1.4788980970047299, -1.4855824206047734, -1.4902545387352382, -1.4913037796516517], "Ga" => [0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785, 0.004300085880958785], "W_sigma" => NaN, "Cs_sigma" => 0.7512936784384562, "Y" => [0.36782315985517977, 0.3695395851338224, 0.3679907096585915, 0.3704066852781148, 0.3729178456304804, 0.3811243760251975, 0.38864743690021936, 0.3965041682802332, 0.3992153854978097, 0.4037918098077257, 0.40650719422660087, 0.40728361172393635, 0.4092842654155109, 0.41471175718413367, 0.4162367481115571, 0.42639237979755984, 0.43675884483377964, 0.44236129502827887, 0.44595498471382605, 0.4544414294190025, 0.4526555071448466, 0.4581240855701272, 0.46228022386223955, 0.46222342782643233, 0.47063801716516, 0.4780750849297849, 0.4788898172313546, 0.4864920353232436, 0.5076797229845158, 0.520819825670799, 0.5337201233216156, 0.5481232687745623, 0.5622679961833079, 0.5639149512245362, 0.5650456793425412, 0.5744807134048434, 0.5904268188800179, 0.5940509827252517, 0.5935861882712727, 0.6061100010419794, 0.6171543509523596], "Sm_sigma" => 0.5110099389015749, "Lu_sigma" => 0.5293085978412181, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-2.212134238133265, -2.2096838944794364, -2.2044288152615437, -2.197657000135812, -2.1849898461502293, -2.1862733922770774, -2.1788163093643065, -2.1726258067736097, -2.1820784222458016, -2.1836779037603757, -2.174884287063918, -2.1795900673193613, -2.185278584072002, -2.171407811655355, -2.1707818150669467, -2.168696382156323, -2.1630954557512863, -2.154625586064308, -2.153886641167814, -2.1478166237448106, -2.1413264845396323, -2.1392444069375327, -2.136278853219978, -2.138210530879118, -2.130276861804039, -2.1320917593577544, -2.128813908997301, -2.137381027126331, -2.1292460334033425, -2.1287964836074456, -2.130728766962321, -2.129768467406543, -2.1058347334856946, -2.1038780725620816, -2.1159399035214257, -2.0969635796435564, -2.0853655791450376, -2.0770598688681554, -2.074688311091016, -2.075707803806922, -2.0845311236355073], "Eu_sigma" => 0.46621520679423467, "Sn_sigma" => NaN, "Ca" => [-0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119, -0.2194314470201119], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.037006275464738767, "K" => [-2.0361358151768294, -2.0205390204026825, -2.0544637278247397, -2.0596921542967928, -2.039436812998776, -2.035656566967528, -2.057153485181408, -2.035386940437904, -2.0247433722149335, -2.039368694262586, -2.0456885209355242, -2.0559977071681836, -2.0664536535408806, -2.0702276268271103, -2.0753752565759647, -2.0703451630918863, -2.0612659962008966, -2.0576124110362115, -2.0679954617780285, -2.069652281208026, -2.0759541547721323, -2.069230398626348, -2.0794467344026324, -2.0816324055889526, -2.0856111341992722, -2.0795344510176523, -2.0883278362894857, -2.082880144536886, -2.07082777757237, -2.0714547511128756, -2.093952248734201, -2.0829233813747665, -2.0840765522301767, -2.096399943773584, -2.094051485422516, -2.0770933131042932, -2.0924251140070544, -2.0804283593061426, -2.0592349421051632, -2.05208028802417, -2.059940715472124], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.7746720477492928, -1.7610098346284666, -1.7481064042280812, -1.7448260273285836, -1.7326342667793513, -1.726011079720028, -1.720617778210631, -1.711664423565298, -1.7118449386265466, -1.7090289916549604, -1.6862343230002792, -1.6776426986854953, -1.6668689573597713, -1.6544912964422305, -1.6386523468243168, -1.639140928715248, -1.6233442355340533, -1.6059748840708874, -1.5929073896577883, -1.5913972393888502, -1.557959313718996, -1.5430566834321353, -1.5402068374136946, -1.5298859041135273, -1.515092795422256, -1.5192666603649978, -1.509084275868726, -1.4791510225045736, -1.4589603036913275, -1.4393954360797987, -1.4238429772177719, -1.4062134091980678, -1.4073006585354342, -1.392178386321031, -1.3687485241077586, -1.3490296003029396, -1.3382006963288915, -1.3256885597702501, -1.3154359840842393, -1.3031483792291276, -1.2891425416514226], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.18696334455465125, "V" => [0.2924103171278566, 0.2942960977372325, 0.2953525152741297, 0.2984175316225716, 0.2968441616635788, 0.29844693624163515, 0.2982231946158584, 0.29956339453181663, 0.29934491841358746, 0.3043661877536243, 0.3061055538248214, 0.3096326643545598, 0.31393441895810126, 0.3160671381272553, 0.3165893099910506, 0.32129990868840086, 0.3267539028080464, 0.3319878707822732, 0.34168276281167986, 0.3521675121565094, 0.3608360780557873, 0.3673494107279536, 0.37529155094138206, 0.38617397380056334, 0.39622936653928426, 0.41150081237981245, 0.42791603285712176, 0.44660137970524666, 0.46750484418326854, 0.48913046271258753, 0.5072630609084323, 0.5364130913159763, 0.5658154620052973, 0.5846076239263992, 0.6103175493428774, 0.6386281108978533, 0.6587860590552866, 0.6779054025594603, 0.6975913328369903, 0.7090790699808196, 0.7256208352743183], "Yb_sigma" => 0.5405691355009882, "He_sigma" => NaN, "Co_sigma" => 0.38643802054229265, "Mo" => [-1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301, -1.455047444280301], "Ho_sigma" => 0.5112274609017241, "Pr" => [-1.5168216367413787, -1.4816427060563813, -1.4466042048312588, -1.4076353788454956, -1.3753531022472387, -1.3492781298455239, -1.3238340052408948, -1.3002019167242183, -1.284280602845198, -1.2715171296524572, -1.2511485635439563, -1.2348639882760637, -1.2226914886249864, -1.2083490565633634, -1.1805095783912578, -1.155504192197121, -1.1210335094215667, -1.0694504274693453, -0.9923390661149841, -0.9066703688740487, -0.8144398495064383, -0.7175081146374209, -0.6315580143401562, -0.5712567858865758, -0.5161170534293671, -0.46773004908243915, -0.4314981392613591, -0.41585906608831397, -0.3880878855614309, -0.37803036070380275, -0.3745337123280595, -0.3786657993000933, -0.36970294352245076, -0.3819669234224699, -0.39886080679519875, -0.41218593018042743, -0.42714115628359595, -0.4438597443736761, -0.4704515037372863, -0.486668245893809, -0.5139662804338567], "Pm_sigma" => NaN, "Th" => [-2.4228676899698964, -2.4284141641670445, -2.4264273212489824, -2.4148990455239105, -2.414524128517555, -2.4125420282501184, -2.4073360334355116, -2.4132657747113897, -2.41477017799384, -2.4171004253088957, -2.418085893053293, -2.4215530272665604, -2.4155654251341967, -2.4260571597823493, -2.425058041095745, -2.422385382664624, -2.422275590755927, -2.4229596142457366, -2.4213223129108754, -2.424528325681436, -2.4246189041405724, -2.4208695478096454, -2.423529541957717, -2.4212768198578223, -2.410993333351939, -2.410691619275125, -2.4183546770506696, -2.412533557054211, -2.4081949490714107, -2.4086820244943072, -2.414554888429078, -2.4107386617073763, -2.4232536230715285, -2.428829728661289, -2.4497871267884097, -2.4377216967892457, -2.439083339845415, -2.446592435477686, -2.429344990416966, -2.4170089225561817, -2.4546202109984976], "Y_sigma" => 0.49679742005254085, "Zn" => [0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758, 0.015616539230498758], "Ni_sigma" => 0.8886293997932664, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [0.4534623461291651, 0.4510020003066507, 0.44494095013904256, 0.4438988596740721, 0.4420760541590954, 0.4432773445034053, 0.4405424201636261, 0.4400019430951596, 0.43900269676347886, 0.43932097617583504, 0.4366219126229601, 0.4368017675627341, 0.4387022011885148, 0.4417954795952027, 0.4491052798507846, 0.4673060343028811, 0.49070487954929976, 0.5259362171544696, 0.5824488412538312, 0.6578624889925776, 0.7447222277639454, 0.8416106344252903, 0.9312595285785779, 1.0077848386999053, 1.0765993215132916, 1.1324510942731378, 1.1817072649876699, 1.2188848487575197, 1.2506554703410329, 1.2715378334601724, 1.2952440845317372, 1.310210085264469, 1.329089026465196, 1.3398733287889155, 1.3475603992895682, 1.3611366188950094, 1.372398128983943, 1.3764873790244714, 1.3866383576398362, 1.4016446121398085, 1.3988832384323102], "Pr_sigma" => 0.6243561889552426, "B_sigma" => 0.887872051070988, "Li_sigma" => 0.5331410284234288, "Tl_sigma" => NaN, "Mn_sigma" => 0.10254272023662071, "Cd_sigma" => 0.2150518651078386, "P_sigma" => 0.33707358404718135, "Zn_sigma" => 0.2742021518476334, "Al" => [0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834, 0.33472237378745834], "In_sigma" => 0.7686976298303072, "Si_sigma" => 0.046895460031382424, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.5271723553502794, "Er" => [0.4391470921596435, 0.4426008268028719, 0.44184643288116154, 0.4456796049524087, 0.4525420411686071, 0.4562505351324653, 0.46324137334109133, 0.47270187551244575, 0.48010449139616235, 0.4884602113044298, 0.5008958934591436, 0.514993289474409, 0.52967346417275, 0.5501809338068794, 0.5743976417138912, 0.610651006571006, 0.6465078959169754, 0.7039854102154989, 0.7747920198352751, 0.8700721146040687, 0.9534914356691736, 1.0437175043583757, 1.1385313051886339, 1.2136123367513036, 1.2651442394969818, 1.3133230532113072, 1.3647370618691523, 1.3876062525462007, 1.412582878661563, 1.4275973666400519, 1.4398322428248904, 1.4430415158668681, 1.4559061459697216, 1.4631181830580928, 1.4687081174737924, 1.4834534061092837, 1.4933878292541896, 1.4922972767136782, 1.4845642352644903, 1.4745580670890144, 1.4369705907501755], "Ge" => [-0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561, -0.2596373105057561], "Cr_sigma" => 0.639150171595435, "Fe" => [-0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501, -0.3086776913628501], "Pb_sigma" => 1.4652389065918106, "Zr_sigma" => 0.3148227373444925, "Mg" => [0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747, 0.031207337552905747], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-2.6372818626274275, -2.574313714887452, -2.519942005308683, -2.4653006766533823, -2.4164987126941067, -2.374168568307969, -2.3368344025482024, -2.3129309939550997, -2.2889712337359014, -2.2595545804539827, -2.2386943717860173, -2.229312325955083, -2.199835989576067, -2.181333642044614, -2.1711249498379517, -2.1435774292024026, -2.106162791058875, -2.0655139357796837, -2.004978567534999, -1.9439238538935448, -1.884340956659328, -1.7911523147980262, -1.7183978669651028, -1.6861447573349089, -1.6403900889869332, -1.6178683300998284, -1.610512244690327, -1.5961975957446561, -1.5839323892313948, -1.5852435425598235, -1.5864598567477768, -1.574993630790887, -1.605258216768457, -1.598953806774897, -1.6090196040902285, -1.6230641036030018, -1.6493659320767389, -1.6501274345861732, -1.695746264909477, -1.7138707329409244, -1.7340531414135398], "Ru_sigma" => NaN, "La_sigma" => 0.9400645995280387, "W" => [-2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118, -2.9163413326259118], "Au_sigma" => NaN, "Hf_sigma" => 0.5174651996122057, "Li" => [-1.122592985092501, -1.1139036545092038, -1.1057613223153822, -1.1021308506428076, -1.0950146076102534, -1.086329312767875, -1.0777302890518141, -1.0740077384038453, -1.063695126886387, -1.0589492896561514, -1.04870605618019, -1.0440140734131331, -1.0358886893591466, -1.0277177551829138, -1.0221736826283776, -1.0178992473192607, -1.0156585602094341, -1.011603717385783, -1.0090874337528846, -0.9992425877758472, -0.9982911535570684, -0.9885886462488019, -0.9855957106698336, -0.9799367037022894, -0.9801154380947816, -0.9762575267171688, -0.977250166722023, -0.9755272146039249, -0.9779967423630089, -0.9802542269694997, -0.9807923995495493, -0.9798490352766741, -0.9740057121752482, -0.970999660756574, -0.9706906031555393, -0.9677363358194356, -0.9644751341177754, -0.9704103288111446, -0.9738734070531021, -0.9671464851695873, -0.9638461559951247], "Dy" => [0.09424705346557703, 0.10233991029562252, 0.11525338273158227, 0.12568774602178304, 0.1367816781244017, 0.14773536016765257, 0.1571266759152688, 0.16876460435369617, 0.17774890764790172, 0.1924586299750899, 0.20716470617451493, 0.22412274679377256, 0.24466929174967186, 0.27062778525652986, 0.3001783931466107, 0.3403596970415555, 0.38848213252343716, 0.447259808844555, 0.5236107111560763, 0.6187758232397756, 0.7011161663426729, 0.7939547963204068, 0.8731006419597789, 0.9467925562576951, 1.0022879710935324, 1.0558087141584114, 1.096471168637523, 1.1200593617159549, 1.1384944657981926, 1.1453325210999685, 1.1524361137109167, 1.1584429442763526, 1.1731130141347046, 1.1847589677825183, 1.1964879075352113, 1.1996274895322863, 1.196298123881751, 1.1880728365177156, 1.175521927628792, 1.1575020096109372, 1.1329581860468894], "Ti_sigma" => 0.38656631843419575, "Th_sigma" => 0.9450713172280932, "V_sigma" => 0.246728236423791, "B" => [-1.772382406957898, -1.7562318361815155, -1.749041047110142, -1.7431207618637174, -1.7350712570038043, -1.7254670786225237, -1.7232756838050858, -1.7199538570355524, -1.706342739551275, -1.6951788984905294, -1.6882889470995088, -1.6852287408666695, -1.6820603361232427, -1.6831944391389428, -1.6720364551409128, -1.6704255887785888, -1.6669300667216582, -1.6700358963927788, -1.6626898898169709, -1.6740159759956559, -1.6726963885208348, -1.668889183764307, -1.6510472629753599, -1.6576336731868482, -1.6462947212752241, -1.6376724054736063, -1.6381326921913624, -1.6441514932825094, -1.6336699447945293, -1.6322140983058129, -1.6300681000432047, -1.6316080152048769, -1.630323061396779, -1.6304745016020161, -1.6211557597387911, -1.636265403573297, -1.6333663796384723, -1.6400250739047884, -1.6658015886713675, -1.686307163422409, -1.6826992927106341], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688, -0.14934009677572688], "Nd_sigma" => 0.5901637347583202, "Re" => [0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443, 0.2454495670543443], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-0.6101817786891138, -0.6170457139371173, -0.619285144437329, -0.6189364047062994, -0.6174067386582265, -0.6205084458178903, -0.6257518280489838, -0.6280550401928877, -0.633126096884985, -0.6384590597323738, -0.6353493432559632, -0.626313009798511, -0.6201089500135692, -0.6114775493527337, -0.6012227185422114, -0.5951607897924553, -0.5784033944995023, -0.5597023545760988, -0.5342796079556569, -0.4936191740181352, -0.44361301336757814, -0.39441693457862415, -0.3359835701197239, -0.27603253391790444, -0.21547097599966383, -0.15802427673695563, -0.12186244309181052, -0.08119354269399431, -0.05078949165305244, -0.03613701780504666, -0.024462641925833358, -0.00496894464781016, 0.0012778688996149038, 0.0027990925805426088, 0.011979877284610963, 0.026400256727397802, 0.031964953033979226, 0.028954053229246258, 0.02553776636953835, 0.01970228464406959, -0.002844004119527062], "Tb_sigma" => 0.5176839561388108, "Ca_sigma" => 0.1433670457628474, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585, 0.9326269319268585], "Rb" => [-2.408363282368585, -2.4102320499901255, -2.418250219584545, -2.4302640561048134, -2.4144256163602567, -2.4073113263645416, -2.416549108357115, -2.4291076681927652, -2.40859385902534, -2.4189066269022, -2.408338191659789, -2.390843092984785, -2.373292031132096, -2.376798779899803, -2.3610942819193763, -2.3573984028247073, -2.3616554456572336, -2.3616352277709556, -2.3384457154111375, -2.3378938118272417, -2.342732829088914, -2.324347942833151, -2.3109163561835677, -2.3256172031814892, -2.3207897095620145, -2.306998730371138, -2.29186737147819, -2.2911628302926172, -2.278168167388414, -2.27189183265896, -2.248196931541507, -2.2483659316628986, -2.231641738246646, -2.221882669847594, -2.2123101950801796, -2.2245145704174747, -2.235550932672952, -2.2343567594678775, -2.247928860509951, -2.2524381065321006, -2.25466917655983], "Sr_sigma" => 0.6992782078373452, "Ag_sigma" => NaN, "Mg_sigma" => 0.22652437264456315, "Rh_sigma" => NaN, "Mo_sigma" => 1.5101415082007583, "Ba" => [-2.111856637650292, -2.1230287406628645, -2.1426113756698784, -2.1412094854098345, -2.1369138256265603, -2.1413699131517077, -2.1411832556800636, -2.120581143632425, -2.1297026542382542, -2.137688225300242, -2.158841362138662, -2.15073837080817, -2.1549347767692306, -2.1451125391499075, -2.143635620030382, -2.109086722702102, -2.107399105584404, -2.1156745314682195, -2.136975336000263, -2.1288650942026224, -2.132894709429415, -2.157327892814312, -2.153334344083283, -2.129316763237343, -2.1202063978069448, -2.138688820001879, -2.1180434512170994, -2.117729560362437, -2.128244768913009, -2.1442889196631683, -2.1391206636141975, -2.136773326132189, -2.1472556224807646, -2.1497696222259943, -2.1538026374193553, -2.155330544148794, -2.1457303389737183, -2.0891102509098674, -2.0627079068875758, -2.0473458175349184, -2.034026632481697], "Nd" => [-1.3219505259920754, -1.2887748412740798, -1.2526727243815519, -1.2202792471333885, -1.1920260448084168, -1.1628864988262224, -1.1399702605707493, -1.1233733304530014, -1.1063961225556822, -1.0885397315028327, -1.0793513840610796, -1.069997551530195, -1.0577328373752313, -1.0413642322851193, -1.025718491219073, -0.998493425436161, -0.963055957230565, -0.9043640640839439, -0.8356657273294604, -0.7489549515607634, -0.6504837698369308, -0.5420461920713031, -0.4541259723598369, -0.37237236889295977, -0.3180084265196726, -0.27128777878861715, -0.23496678334353585, -0.20978271530617854, -0.19961158872701043, -0.18350411143878087, -0.18153740744441121, -0.18265320610557426, -0.18975584285544028, -0.18906302374074954, -0.19361357592370967, -0.20204384809348647, -0.21437083315277047, -0.22213750717941386, -0.23792267076289003, -0.27621428036705536, -0.30293756894546364], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [-0.4455841356377911, -0.4428879145924941, -0.4435776273763471, -0.4457134211175447, -0.43802478163273556, -0.43911672995712225, -0.4445165240954285, -0.44275413616738896, -0.4406609804350601, -0.4399909729451314, -0.4366182210463039, -0.42857028350970855, -0.4227134484395671, -0.41588615573445203, -0.41431176459957175, -0.40810828561601586, -0.4061409537269104, -0.4028396995552256, -0.39850185404602484, -0.3909639947029047, -0.3824898680041184, -0.3799785294374616, -0.3768367985816856, -0.3681723592740743, -0.36214497175617444, -0.3609810351559125, -0.3525489915187059, -0.34259146780341204, -0.34282935311515966, -0.3396917775341947, -0.3331830810935672, -0.321096697338787, -0.30880762567278464, -0.2948446876401749, -0.28514972395004623, -0.2749103096379005, -0.2736388647795274, -0.267731841933145, -0.2668752122651519, -0.251819247155522, -0.2462372973018406], "Tb" => [-0.031018490238526854, -0.020359509219632307, -0.013071492817813548, -0.0048915078107713535, 0.003215505554437306, 0.015532705091643517, 0.02195527891116036, 0.033667928376930466, 0.041044933536950004, 0.05275534044932741, 0.06334118182466682, 0.07508870903475097, 0.08492984935705634, 0.10539897905954199, 0.12640840292521346, 0.1531407704707437, 0.19498325968604072, 0.2532195495234312, 0.32484376510506674, 0.4163249613664695, 0.5233271591823137, 0.6401942969708573, 0.7379447958883067, 0.8231339347974208, 0.8855987129521072, 0.9337726603681832, 0.9699757674926522, 1.000621609977885, 1.0267497476319742, 1.0456215921123309, 1.0535633342058333, 1.058544794749779, 1.0688954071955235, 1.0693361776707468, 1.0689124959110752, 1.0680837411563433, 1.0714274329821176, 1.0515199851156358, 1.0454580617451619, 1.0226420271609562, 0.9960995969795134], "Tm_sigma" => 0.5294016569926516, "Zr" => [-0.4463604898240696, -0.44685460306422575, -0.4452410133810301, -0.4504349747096855, -0.4511291257367561, -0.44731515218903484, -0.44392363214073455, -0.44198094734253096, -0.43726066566363575, -0.43741020773024625, -0.4359308193958783, -0.43818687024611647, -0.4356643590591234, -0.43268471761443855, -0.4343205127476012, -0.43284099958212446, -0.4348525179527032, -0.43852363980596337, -0.43887728583458235, -0.43357316865887124, -0.436162928243423, -0.4324881158320474, -0.43365858719293826, -0.4370124686705608, -0.43942951913811384, -0.43462184016902844, -0.43709016271173307, -0.4351626840838411, -0.42913446516587633, -0.4232139652245604, -0.42435485147395774, -0.4202669472440229, -0.41929591863994825, -0.41970385197763854, -0.42190734626521187, -0.4194286366804443, -0.41239123964386787, -0.40556939271629244, -0.4044645750326333, -0.401896436667077, -0.40392817656702695], "Sm" => [-0.5913257150036286, -0.5685240317795205, -0.5542214705435965, -0.5339878384940773, -0.5168761652011575, -0.5008959635185228, -0.4856532113106932, -0.4686235366039672, -0.4549989497921982, -0.4393283284722776, -0.42570721104126147, -0.41028833391197467, -0.3938647001301002, -0.37347042003630876, -0.34913871310734074, -0.31962949073193603, -0.28320582942486705, -0.23040345159423273, -0.16939514555268465, -0.0994163243678404, -0.015496386434672799, 0.07728323650018522, 0.15912564752725228, 0.24925640503857746, 0.32246430150079336, 0.38087753809429997, 0.41618355543155133, 0.4486382511242676, 0.4675310703983331, 0.484303584806239, 0.49380299264186284, 0.5071708326044952, 0.5097381953272934, 0.512201265329175, 0.5177120269979565, 0.5208889631387444, 0.5070456273435489, 0.48957747573886107, 0.47650428065036204, 0.4535907963304203, 0.41924080019741666], "Ba_sigma" => 1.2278199087489252, "Cr" => [0.37312239377447115, 0.3656815849189771, 0.3620153576561608, 0.3584394496275629, 0.34623875626014494, 0.33841133865102174, 0.33287358674023476, 0.322824304789314, 0.3084270455058571, 0.3007135653463165, 0.3002700837780424, 0.2958883699857951, 0.2998583436432874, 0.3084293727677474, 0.32368176627228745, 0.3366282446323199, 0.35597999852480217, 0.3872488246723996, 0.4166226982800362, 0.4504505358063292, 0.48617565273326396, 0.5363348889377201, 0.5736560817386206, 0.6246795485741367, 0.6692630549306692, 0.7147857634061515, 0.7534747033284295, 0.7823226849987771, 0.7975425306564801, 0.8008434206640983, 0.7921078556475486, 0.7757660242049519, 0.7661561105464892, 0.7573244969436097, 0.742167992882431, 0.7376361931794347, 0.7419658066758038, 0.7335014012755544, 0.7246655608555472, 0.7291251043938912, 0.7251683889503443], "Cu" => [-0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051, -0.24801613794393051], "Al_sigma" => 0.17474279959195443, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.44257007529878933, "Yb" => [0.5591172138075738, 0.5670815813105299, 0.5694702962330801, 0.5804098411440783, 0.5908164617580177, 0.6015253848610469, 0.6120304477328075, 0.6225815768886614, 0.634286295228371, 0.6480455448849035, 0.661279727718329, 0.6780253739893571, 0.6987234405297058, 0.7267963606867252, 0.7520191358350143, 0.791143958155898, 0.8354831564048519, 0.8938896925968677, 0.9570787187076149, 1.04016112961432, 1.1215624522183225, 1.2088148871844229, 1.2845482796889647, 1.351160004454137, 1.395842035712863, 1.4500999771620031, 1.482174989786048, 1.5121558076373212, 1.5349638444277176, 1.5593033212576488, 1.5694683354423304, 1.583540119076329, 1.5953150415696031, 1.610621654132438, 1.6213752389944627, 1.6318265848357851, 1.6361781059233276, 1.6302245953810308, 1.616523558199353, 1.5831976707416509, 1.5506232335564563], "Lu" => [0.8245640651447944, 0.8225764985361146, 0.8305509081684318, 0.8355040129909618, 0.8385417650445531, 0.8475873283797916, 0.8595102344273359, 0.8610509531996312, 0.8661925675557441, 0.8725666480091555, 0.8818561241383414, 0.8917864199097147, 0.898708353040078, 0.9092630540912715, 0.9201013524505327, 0.9325630816918297, 0.9367637719432558, 0.9478290863281383, 0.9535914111258262, 0.9621637123691026, 0.9669457234416196, 0.9702722173781052, 0.9817391524925336, 0.9943514796877059, 1.0065413180479863, 1.0155556411915456, 1.0266071244356043, 1.0226580918673371, 1.0265914776478806, 1.0353701477901514, 1.0473092265852233, 1.0647541040583401, 1.0847113983841516, 1.093334786666339, 1.1051754004918646, 1.1100394961173943, 1.121623502130032, 1.1373481483058272, 1.1704873910607116, 1.195296422009228, 1.2174322800057973], "Eu" => [-0.6308928222871366, -0.6095789883537217, -0.5862602972012743, -0.5624183937752633, -0.5386773246797851, -0.514291510501528, -0.4938371580621174, -0.4775434519128334, -0.4616439080973765, -0.44818649591655474, -0.43451066640092456, -0.422949043204557, -0.4143248844541931, -0.40318766499767483, -0.39548125459152683, -0.3821670369299811, -0.3664890061318064, -0.33937262039210647, -0.3064282518384714, -0.2601966386589717, -0.2106911949863098, -0.16194374702518471, -0.11080572625311252, -0.07454167623695915, -0.036400980365448324, -0.022137301668466072, -0.0016219193864726634, 0.018324181700386362, 0.028352639179282126, 0.031440562198758404, 0.04019708050757573, 0.035746882229177296, 0.023306457955566323, 0.020243124913892057, 0.031103419990799065, 0.026372070610554913, 0.025029321651149475, 0.020658616821847095, 0.0039062299170712737, -0.030904120951476658, -0.06011057772150361], "Na" => [-1.3633728152333782, -1.3572446524919157, -1.3547604064086012, -1.3526355470156979, -1.3500459132612732, -1.3463366391230627, -1.346990925121534, -1.337307139856572, -1.336453559856236, -1.329043659729346, -1.325310692481103, -1.3241421637390243, -1.3244414290479483, -1.3188510648802372, -1.3209471552391192, -1.3222740030064883, -1.3194152945046902, -1.3229669779878308, -1.32119719713461, -1.3167284450537569, -1.3103258463022276, -1.304937328907899, -1.3031771455221641, -1.3027457521708727, -1.3036769399274981, -1.307876540711238, -1.3103163341049964, -1.3121844341631752, -1.3106741704096438, -1.3050496506623417, -1.3011039024615019, -1.2986854099477245, -1.2914088895497962, -1.294768055985613, -1.2957926371671202, -1.298963554230169, -1.3036666522707192, -1.3016744573882864, -1.299026849603529, -1.3088098564261228, -1.306074306602852], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => 0.32176849983200123, "Ni" => [-0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788, -0.004853561575471788], "Rb_sigma" => 1.1163474305075867, "Ho" => [0.32525003285563797, 0.3243944585560892, 0.32435374678800266, 0.3308413297898358, 0.34308433592998594, 0.3558429310959908, 0.36499896861120934, 0.3769575953003258, 0.3868201809788833, 0.3949847526460712, 0.4014849948238274, 0.4154178692010285, 0.42729392224182633, 0.444858295055702, 0.4689252044358807, 0.5013297653967441, 0.5388329377444966, 0.5916194663693709, 0.6600666170047225, 0.7327467696958889, 0.8206512566950912, 0.9166360052106794, 0.9996881109624385, 1.0681948488752182, 1.1402068260140203, 1.1927254747787615, 1.242203489707378, 1.2843311579280399, 1.3181425034016656, 1.3379359630811154, 1.361202630638671, 1.3659938853249054, 1.376445033652836, 1.3775040098413562, 1.385431707270234, 1.3827177681630909, 1.3844774306710297, 1.3751518299873442, 1.372934513056308, 1.3537410544735997, 1.3442391592084901], "Co" => [-0.0013639598545874185, 0.008116852143999057, 0.009525720797639754, 0.008919752544057575, 0.007714281828065835, 0.0031835363045460423, -0.0025936230632523163, -0.004187247426327749, -0.004431991174980862, -0.002777116771064774, -0.0019783545937456, 0.002507209800937995, 0.008643988710542009, 0.02300263315110224, 0.03732892887431086, 0.07096290041627852, 0.11729663468398699, 0.17422657934291103, 0.2355614149380642, 0.30136447694681273, 0.3637896642139866, 0.4133368008083255, 0.4529658546687659, 0.4815654538612795, 0.5043131694157397, 0.5128211605117338, 0.5154465730325166, 0.5162901554253313, 0.5174387754757218, 0.517213329557241, 0.5159251372213456, 0.5166960969960499, 0.5151694473669886, 0.5104387072752751, 0.504594890628098, 0.5006383031112289, 0.49748434332887315, 0.49464062256696806, 0.4936688324925539, 0.4923249168620047, 0.490332434440498], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 1.0121948562001797, "Tm" => [0.5217679197558681, 0.5277484261092539, 0.5274478094157525, 0.533127651800933, 0.5409008013625807, 0.5518342993297785, 0.5616405573403727, 0.5718523311408035, 0.5823323272557938, 0.5910577747471542, 0.6014106850019573, 0.6077888573041721, 0.6250453965031865, 0.6461921249795805, 0.6734535851851241, 0.7035856071195536, 0.7517094486943905, 0.8000828937208972, 0.8673487694312111, 0.9552309508883614, 1.048574347494448, 1.139580964662375, 1.2265835929495628, 1.305853323159789, 1.360915851456231, 1.3967716333161522, 1.4283847741052358, 1.458534986031374, 1.4704662462607987, 1.4854264945434879, 1.5094971474222705, 1.5278266959420936, 1.532945977272447, 1.5503913949947752, 1.5653742421408923, 1.570214955310569, 1.5655244718084615, 1.5739514172102167, 1.5724383286865886, 1.5484976858155142, 1.5321299467678247], "As" => [-0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285, -0.8153920712949285], "Sn" => [-0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673, -0.18326577221020673], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 0.6313393373974487, "As_sigma" => NaN, "Gd_sigma" => 0.5219769926308843, "Cd" => [0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917, 0.10360962562053917], "Pb" => [-2.822167790984213, -2.817347297646901, -2.818974659198895, -2.8208364751756654, -2.8094778387953365, -2.823561662217636, -2.820883013737914, -2.819153755504252, -2.818954756338421, -2.822204921939477, -2.7939718626096948, -2.7943899387921776, -2.7821990748371226, -2.763476777289557, -2.747827658534336, -2.7439800442447013, -2.730519138905852, -2.7315600292034823, -2.7202241680450245, -2.7210845998843864, -2.6973788444898994, -2.6774372252275747, -2.6630383089913896, -2.6498741787218174, -2.6295144122925143, -2.629202917192037, -2.6186508006757117, -2.588501977249919, -2.5755174010629913, -2.5365115483280922, -2.527993715978691, -2.5079155885197246, -2.4655908158006725, -2.4293442956237277, -2.4308029690850304, -2.382418505755556, -2.366230036196089, -2.355730767289948, -2.339137817511064, -2.3361262047138314, -2.349177024739654]), "Magnetite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.20483305472799132, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-0.6304564344646788, -0.6262009377970323, -0.6275400422437619, -0.6215668545435579, -0.6110752469850533, -0.610234994020184, -0.6038219614631145, -0.601163435623591, -0.6023726638362373, -0.6074232209688573, -0.6073123648278528, -0.6119991139456213, -0.6150067125912396, -0.6192298068149985, -0.6247646714140177, -0.6362157068649434, -0.6477973863911671, -0.6575223337234645, -0.6716641022205767, -0.6866255353994131, -0.6939680801107064, -0.7064626408334167, -0.7250229213594601, -0.735535040167708, -0.7513368848471021, -0.7733650226550965, -0.7924360503787246, -0.8088580525311435, -0.827769750239378, -0.8442338685483086, -0.8588313404660921, -0.8696469454626277, -0.8810191678003232, -0.8958950634701639, -0.9068755852616827, -0.9201852913817482, -0.9368404357354623, -0.9475528526683796, -0.9618752834422714, -0.9725222452574934, -0.9796387314434732], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [-2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163, -2.886056647693163], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-1.4048967494392053, -1.3875356962074723, -1.3761380252792348, -1.3429563903806903, -1.3021091258025128, -1.2818217624693868, -1.2487201172841138, -1.2182826759346097, -1.19851330678121, -1.1718426202761298, -1.1374816898295361, -1.1083119001443447, -1.0687815962123006, -1.0345715836023988, -1.006659575166182, -0.973369082009807, -0.9369618192173681, -0.9167906371562662, -0.876213912008589, -0.8324696882884681, -0.7831278968102777, -0.7387120529686004, -0.6737019494645988, -0.6064141543013762, -0.5229827874463688, -0.4326281568104577, -0.33942318278398237, -0.2465314719592867, -0.17231858052117116, -0.08975143493206074, -0.032412245232325186, 0.02068891708218523, 0.06430221377941063, 0.10071255271281412, 0.1134789675920428, 0.12194151364879385, 0.1321293328471327, 0.13979124679119453, 0.15278081056622364, 0.1586297315615408, 0.16788978633940382], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [-0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174, -0.45717635585157174], "Nb_sigma" => 0.4653280747336585, "Cs" => [-1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798, -1.1523987108799798], "U_sigma" => 0.3472153008408731, "Ce_sigma" => 0.835627516439494, "Dy_sigma" => 0.8003217752849325, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [-0.7999764906471417, -0.806050785417632, -0.824649030470368, -0.8279305313109161, -0.8279727289574254, -0.8412036337503226, -0.848713681992939, -0.860148145851339, -0.867614360101122, -0.877850096457326, -0.8847920415612918, -0.8958276685732448, -0.9066273489396335, -0.9241538907233883, -0.9422612437314464, -0.9490689381203168, -0.9612542724830265, -0.9784985761946552, -0.9911219647389656, -1.0033895858730397, -1.023622489752187, -1.041429558257589, -1.0602019540449086, -1.0738274824089655, -1.0930109308842724, -1.1092460140661622, -1.125244441392765, -1.137870608148984, -1.1514623561568957, -1.1596937363097355, -1.1695293376739437, -1.1807076791153153, -1.1844557117156023, -1.19435458423092, -1.2058556461220054, -1.2153390423174424, -1.2215899638047285, -1.2296414048138693, -1.238162037976477, -1.2372967580142211, -1.2406201697938957], "Pt_sigma" => NaN, "Ta" => [-0.5277232921849438, -0.5190810574528384, -0.5109829817814565, -0.5003261441529058, -0.5009939271347631, -0.4916584125099965, -0.4853548515103167, -0.47479459589176154, -0.46479322426452413, -0.4509752180490854, -0.43811542487102373, -0.4255165259113312, -0.4122938056276017, -0.3951834597762952, -0.37736665824278365, -0.3638994626093913, -0.3508257097055869, -0.33689328394897, -0.3262707113843506, -0.31251599737676966, -0.28862658173091443, -0.26192861685607466, -0.2283054826863276, -0.19352071990666617, -0.14505930798388167, -0.09629683209201957, -0.04126107359868366, 0.015966823361926123, 0.06947972823676027, 0.10891345050711133, 0.14546150164737517, 0.17710721996447085, 0.1964040514681048, 0.2139246515024503, 0.23034548149735912, 0.24225571971130688, 0.24989292938477184, 0.2547631990007922, 0.2589184704022438, 0.2637205848190593, 0.26941882019256264], "Ga" => [0.4204594912808899, 0.41170190265226525, 0.40211793446047245, 0.3996086738606856, 0.3997487930344718, 0.4067488729988495, 0.4077175307003888, 0.415140957143585, 0.4235847984256476, 0.43425251019510214, 0.4472605494859339, 0.4644472339220225, 0.4834213333026094, 0.5004705270536703, 0.5228676760369004, 0.5386307675656907, 0.5555178862247993, 0.5678853321151164, 0.5771887870345005, 0.579857224003144, 0.5827915282273949, 0.5764972887978572, 0.5687656658893349, 0.5592239999040428, 0.5481088242432712, 0.5353438038350711, 0.5218173925942263, 0.5105906478486429, 0.4990724991279751, 0.4880835243657871, 0.48006828416529995, 0.47647177937669877, 0.4710234725181167, 0.4684868345988957, 0.46758840903087084, 0.4657326545241645, 0.46427277922321325, 0.46615028745861986, 0.46995978487876716, 0.47330378229844033, 0.48081687479549334], "W_sigma" => NaN, "Cs_sigma" => 1.1986892385584516, "Y" => [-1.3832091214056477, -1.4298982629632948, -1.440199462962609, -1.4370285038814352, -1.4394366111131371, -1.4271732945365205, -1.4024502634847638, -1.3860217680059819, -1.3563126759845827, -1.3336995187612337, -1.307083977984433, -1.2687260249809549, -1.2374239778380978, -1.1866431859651996, -1.1367210230449556, -1.0769380344470383, -1.0271895761051948, -0.958058829498017, -0.8934094342245419, -0.8127840530720896, -0.740347428751156, -0.6440138178882798, -0.560542205405896, -0.4803820475922052, -0.39961311734310095, -0.3232951667196339, -0.2621990192137422, -0.20286157363652935, -0.15920403453440038, -0.12093371646522504, -0.09373913344077327, -0.07433467248552546, -0.05375047375712229, -0.04063215113497273, -0.03511242219328688, -0.03364781945639873, -0.025417287002352774, -0.026409034496407816, -0.02484039999490742, -0.02502478967671073, -0.021560674661449782], "Sm_sigma" => 0.8952712762685262, "Lu_sigma" => 0.6602007459240535, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-0.8234617373912916, -0.8132551297627584, -0.8082831991548459, -0.796552457665978, -0.7945133109665697, -0.7839666004051459, -0.7738020387578546, -0.7670878491366234, -0.7636316467809542, -0.7547779873721491, -0.7504341169271428, -0.7478933654219165, -0.7418694516179014, -0.7361152707703567, -0.733354015375846, -0.7268938571658923, -0.7224457979199959, -0.7141355734459607, -0.6993119116420256, -0.6801302265979451, -0.6572168786137921, -0.6199033588126813, -0.5840073357287313, -0.5406208028842538, -0.48504424109795946, -0.4393940644439091, -0.39772461854975383, -0.3560716466534188, -0.3212698283388976, -0.29783571443642026, -0.27478177917094454, -0.25728627102017093, -0.24428441069253518, -0.23580261032319913, -0.22639074492121666, -0.2200988262381438, -0.21648052570931633, -0.21389256719929864, -0.21182350148106524, -0.21264081254888675, -0.2130700205626257], "Eu_sigma" => 0.6590322529654513, "Sn_sigma" => NaN, "Ca" => [-0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694, -0.744727494896694], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.5651665089893774, "K" => [-1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563, -1.3467874862246563], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.4503674759262701, -1.4003580336314363, -1.346388173224931, -1.2882737773959887, -1.2631493124999362, -1.2324583983411885, -1.197681745499478, -1.1673801373026342, -1.1382837013646203, -1.0981675924171963, -1.0571570404607755, -1.0350107795467711, -1.0093903020863702, -0.9760257186388649, -0.9477650544527539, -0.9264025318727283, -0.8958146495005569, -0.8637711545158546, -0.8376625395169595, -0.8113165433913501, -0.7781903139294376, -0.7393162867324912, -0.6917988310347464, -0.632057649338696, -0.5577673156878692, -0.4676309321613973, -0.3726980113973899, -0.27826543727572456, -0.1850673252276164, -0.11888672776174662, -0.05990518779079859, -0.007806068265035006, 0.04056877937374675, 0.07545238109645047, 0.11031001770439927, 0.1387425628292335, 0.15275374214263857, 0.1548426704765142, 0.1610271213634043, 0.17501544875671124, 0.16796286326674761], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.46435801900879253, "V" => [0.3718128671680364, 0.4223427628525927, 0.47599436231038844, 0.5340906643320992, 0.5858017410257621, 0.6453357507323654, 0.7093935398748955, 0.7651233258020695, 0.8204616193086329, 0.8744836903901837, 0.9171560327414561, 0.9655593463013296, 1.014993534088174, 1.0599827462100784, 1.111575742818723, 1.161254897979299, 1.2046060199903106, 1.249714316179862, 1.2997814436192368, 1.3464490943730327, 1.4009868852247747, 1.4521907150532978, 1.5075011874678423, 1.562205418372951, 1.6244042945790786, 1.6815879597700891, 1.7424414434236377, 1.7943571958472657, 1.8489774951896758, 1.8847545362563025, 1.9238334764321983, 1.9548719987070429, 1.9904145040283474, 2.033741833396768, 2.05930955620532, 2.0666017978761895, 2.0877022437297743, 2.1050117853820995, 2.098157918022606, 2.099939908168031, 2.1144438461317856], "Yb_sigma" => 0.6843724781516044, "He_sigma" => NaN, "Co_sigma" => 0.528058590288968, "Mo" => [1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937, 1.22676680720937], "Ho_sigma" => 0.7556881241128747, "Pr" => [-1.4585368138962567, -1.4437365874293773, -1.413173512606253, -1.4007274236110447, -1.3970501551747263, -1.3697737197339002, -1.3455175596993765, -1.320590295235465, -1.2917907731544578, -1.2578927563236089, -1.2340711085480647, -1.211014705728438, -1.1872958347721718, -1.156412677558595, -1.1189029238414743, -1.0831914459693448, -1.0409901306074363, -0.9978311254485293, -0.9579406759827449, -0.909196466706867, -0.8561295366983918, -0.7980824340881781, -0.7320931961836001, -0.6531690526901827, -0.5723305173919011, -0.46938459057479254, -0.35628560069372134, -0.2520575523464227, -0.15699569733490548, -0.06711730054540971, 0.005625379248482448, 0.06270961233874789, 0.11250636383562085, 0.15404894009589362, 0.17248312830570825, 0.18731606721217084, 0.20363959038235593, 0.22466991029793612, 0.23715408253324913, 0.24773054890065258, 0.26045147242778616], "Pm_sigma" => NaN, "Th" => [-0.9388497826242677, -0.9296548673173365, -0.9230149764393555, -0.9157102872558834, -0.9042933032087471, -0.8947255275457817, -0.9003276225857424, -0.9054159749949148, -0.9011452312297631, -0.9141534554697274, -0.9246390592278457, -0.9207409105157498, -0.9273646431617454, -0.9381804400604961, -0.9337866569239863, -0.9395281022797586, -0.9471211466877002, -0.952365559426928, -0.9554340496089313, -0.9600162650908892, -0.9577122048127151, -0.9565992626310774, -0.9502393226727313, -0.9280727737801354, -0.9083879990842376, -0.8822333264370872, -0.8618458652557623, -0.83455351447073, -0.8246582556303326, -0.8100408219606894, -0.7946783656681793, -0.7817236470183759, -0.776879335775408, -0.7720816208792209, -0.7600475447126595, -0.756925221933198, -0.7463800855442018, -0.7446573260590057, -0.7332275222159393, -0.7451287207878932, -0.7550034975213675], "Y_sigma" => 1.096111258295899, "Zn" => [0.7095184915232468, 0.7035820827977252, 0.6925530965891981, 0.7034992633414145, 0.6936877378898415, 0.697301814975772, 0.7177844313412615, 0.7401685511054904, 0.7489956543697424, 0.7698073779926983, 0.7978715177725736, 0.8205507521752965, 0.8466744144412954, 0.8795740494072004, 0.9163685657979519, 0.9427831976163961, 0.9750183245371059, 1.0061168062553363, 1.045805868405591, 1.0830821713828722, 1.133481134478957, 1.181502326166485, 1.2318964417124678, 1.280645724127341, 1.334334044700208, 1.3772175373897941, 1.414627077339192, 1.4466016002450677, 1.4720386297487913, 1.4896025917006972, 1.4992991623997538, 1.510618924255132, 1.522396477398258, 1.5242601298909912, 1.528830140171459, 1.5369240583007817, 1.5382612463739302, 1.5368684342071055, 1.5418362533104977, 1.5373008635991483, 1.5357934294225362], "Ni_sigma" => 0.3773523019908397, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [0.16016548437996692, 0.17170431718118245, 0.18012498071291796, 0.19446412283586084, 0.21297706033659708, 0.23425964724991488, 0.24923627116213598, 0.26635678649150035, 0.285906306685532, 0.3052153848617782, 0.3228434407262426, 0.3439652283025692, 0.3658962907830965, 0.38861490616709016, 0.41322231329301645, 0.4351752568451051, 0.4626315118824204, 0.4804816687168466, 0.5032541430047592, 0.5191005741242196, 0.5444656476175501, 0.5650275796168115, 0.5891665102831031, 0.6098263673650686, 0.6355093875845551, 0.6615847151249993, 0.6852550139641372, 0.711890409891164, 0.7318406896818186, 0.7519275192293817, 0.7674761975039347, 0.7780243467632558, 0.7891663155420267, 0.8004431098135892, 0.806228143312898, 0.8083710148135789, 0.8130165551692927, 0.8116541490874157, 0.8109729401635755, 0.8108517095326719, 0.8074320435470507], "Pr_sigma" => 0.9633820794879472, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => 0.42896916807838537, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => 0.45629650190364673, "Al" => [-0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383, -0.9318141382538383], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.7323340617503293, "Er" => [-1.4031733849730907, -1.3858601346484318, -1.3672790705369708, -1.3357560950698877, -1.3050961209784928, -1.2783331587026447, -1.2461070170796402, -1.2273429333634525, -1.1983626348267291, -1.1711216522481935, -1.1449485303566729, -1.1139306773329771, -1.075142763672282, -1.040880465856612, -1.0095777304925984, -0.9717250572242746, -0.9404644298252952, -0.9100094076995141, -0.8749559318300174, -0.833680831523372, -0.8021685641175617, -0.7526495161952317, -0.6974368151675322, -0.6425135869289117, -0.574445122146137, -0.5018453268434837, -0.43299625152517046, -0.3662451037497023, -0.30268816850952474, -0.24910613023188877, -0.20305321678272692, -0.167108600917587, -0.13534332345678907, -0.11563579238651181, -0.09936307723233298, -0.0852120221262315, -0.07499522096348132, -0.06846167824736733, -0.053337980426924315, -0.0527313365412593, -0.047199237653740955], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => 0.7311243674534819, "Fe" => [1.4011089891210973, 1.4047510246235058, 1.4101966222652993, 1.401929592581183, 1.398776908197701, 1.399185415149635, 1.3974417826791128, 1.404432735789691, 1.413928538748882, 1.416432081481793, 1.4251315538810962, 1.4260957256052127, 1.4329824105838889, 1.4374253767951117, 1.448064378364045, 1.4581708904011956, 1.47009964190758, 1.4807927701946253, 1.496749220216997, 1.5138035894638848, 1.5292453093812344, 1.5524798256848833, 1.575367458687939, 1.5951437262887185, 1.618663070405196, 1.6423357372522842, 1.6669140904034374, 1.6876568609679699, 1.714126209451097, 1.73910919017518, 1.7641224232338495, 1.7872556009870175, 1.8109259386608494, 1.830832059524755, 1.8470316754753349, 1.8611893036005822, 1.8743796218167863, 1.8888179522115813, 1.903664642535559, 1.9182887091980851, 1.9325700058084079], "Pb_sigma" => 0.2768194851141486, "Zr_sigma" => 0.6067717417524127, "Mg" => [1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722, 1.0128372247051722], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-1.2257731871702375, -1.2294523367780053, -1.2244748461827784, -1.205274318346854, -1.2070308711385154, -1.196845084249091, -1.1887670198556053, -1.183695421481358, -1.1679975188584328, -1.1473990252541375, -1.1330228447687294, -1.1143765310306217, -1.089960896749436, -1.077169310241712, -1.058674205004353, -1.0329451527227298, -1.0027523591706105, -0.9732273781884647, -0.9374523034932563, -0.9009596363460384, -0.857606306563579, -0.8060981440015207, -0.7444032094097162, -0.6716472161475848, -0.582397952499035, -0.4919856622043197, -0.39729582957485704, -0.3087296750333191, -0.22422629078563916, -0.14679549483155568, -0.08355471087736545, -0.031012295384599476, 0.006153317074373765, 0.03493717346899228, 0.0558225659337076, 0.07640859834266035, 0.0958583553934913, 0.11057927529175725, 0.12646496343595953, 0.13059986805882023, 0.13957114515928337], "Ru_sigma" => NaN, "La_sigma" => 0.9098086168315621, "W" => [0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284, 0.36172783601759284], "Au_sigma" => NaN, "Hf_sigma" => 0.4913341558717073, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [-1.3936066578618707, -1.377646467763014, -1.3393692495464131, -1.3080442749729753, -1.2806317537135026, -1.259308920096249, -1.2339103389754644, -1.2112779591127343, -1.1891146326151447, -1.1578238259430655, -1.1205160918243962, -1.089042176081446, -1.0533309254554613, -1.0248290257673769, -0.9928931217407853, -0.9628360850916409, -0.9294472561961997, -0.9002196164659452, -0.8614640379364226, -0.8278054290062044, -0.7829988865554268, -0.7346109787769859, -0.6756564520104339, -0.6094115284485239, -0.5255375083664835, -0.44503984964243276, -0.3597649444350479, -0.2814096868297687, -0.2036231455733285, -0.15386415580046192, -0.10821905934817676, -0.07154235566631133, -0.0417969699323044, -0.019662090999388062, 0.010596809755777573, 0.031540869575631736, 0.05148889480594727, 0.06863012616373697, 0.08455799239328617, 0.09677900560387599, 0.1018915670338134], "Ti_sigma" => 0.32874027475300227, "Th_sigma" => 0.6981664357812193, "V_sigma" => 0.9635945321767784, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [0.39201206997443916, 0.3654413471921592, 0.3546493421326897, 0.3628151647484015, 0.3623063090625482, 0.37867267454653797, 0.3866072799270486, 0.4083542556786169, 0.43396676625765257, 0.47115301827304257, 0.49762448215793453, 0.5424178526147395, 0.582113604586736, 0.6273810575161785, 0.6666066263067191, 0.7185960412449918, 0.7644726985591895, 0.8066907468521154, 0.848455785687318, 0.887810339096463, 0.9211867621597907, 0.9590831605675479, 1.0022711470201107, 1.0482579803117984, 1.0919483429268904, 1.1382358338475984, 1.1814807133979555, 1.2197942860099118, 1.253619549395743, 1.2843874783176157, 1.3058596638414885, 1.3214821326117614, 1.3363775406321816, 1.3460109227844017, 1.3526388890225873, 1.3582781192967086, 1.363373711827943, 1.3656122454121262, 1.3669262304832406, 1.3663373304958888, 1.3655921846099166], "Nd_sigma" => 0.9517869727281705, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-0.5571605597948804, -0.5415222310071752, -0.5370317082724948, -0.5276486902655895, -0.5231641672029385, -0.5139608804600106, -0.5058948503408187, -0.4964757498693392, -0.4819109082043942, -0.4680715040842596, -0.4582442658708797, -0.44977121067800196, -0.44056299253270237, -0.4416642632212807, -0.4433304734850477, -0.4452236515181539, -0.44668189630516875, -0.45204329365942253, -0.4542523144151423, -0.4587050077833098, -0.4608864125517813, -0.45749978122634316, -0.44986758599599724, -0.434012874032242, -0.4109724621451343, -0.3812816592751609, -0.3512547992501209, -0.30626124212357675, -0.2656013926310477, -0.22315933465002769, -0.1833153657889593, -0.14716784423257587, -0.12187754312747838, -0.10022518984081594, -0.07962374631317432, -0.0635018523116911, -0.046538355839689946, -0.03489066416819182, -0.01995189608579751, -0.008669453161698325, 0.0004744397940905569], "Tb_sigma" => 0.7612469764696759, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-1.0635843319996847, -1.0461391114677558, -1.0222524293726025, -1.0024940576024612, -0.9809810627847536, -0.9666757553701806, -0.9559107335108298, -0.9454762051889523, -0.947872643523949, -0.9533227893669362, -0.9585565876389037, -0.9655049401916423, -0.9794252456010678, -0.9972707273941239, -1.0134984794557134, -1.0445771562260469, -1.0810034065689047, -1.1270507296708108, -1.1701513355898523, -1.230341435654737, -1.2855039817764122, -1.3436437041237883, -1.4059187391101926, -1.4605058684133374, -1.5056250281458257, -1.5410786860654462, -1.5672554506417526, -1.5803316507425387, -1.589409765633261, -1.5925636125785885, -1.5974701863016807, -1.599070626362458, -1.6030629794456943, -1.6038907681334194, -1.6060434192695896, -1.6061263128366012, -1.6074595380520205, -1.6079781015427979, -1.61013048714532, -1.610819864524788, -1.617460600992907], "Sr_sigma" => 0.47151395702271703, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => 0.3332328255913334, "Ba" => [-1.0362864386193467, -1.038460258073177, -1.0419887670232466, -1.0449995204696243, -1.0515304351682917, -1.0554193896281419, -1.0602098498113788, -1.062179594866159, -1.0703831993373742, -1.0731209679674167, -1.0805056921806202, -1.0804932170494903, -1.087876393845824, -1.0853449612732051, -1.088905178675283, -1.093788440034377, -1.1006711754387914, -1.1044520825887134, -1.1136163760331101, -1.1177310652107646, -1.1221048966893326, -1.1229295835106707, -1.1258906598683807, -1.1250674134103666, -1.12579131455542, -1.1222236368316392, -1.1233642038132825, -1.1180397909408342, -1.1149866850348131, -1.110727089576805, -1.105807095229811, -1.0942717562420796, -1.087428813214344, -1.08250368988214, -1.0738480913703357, -1.064042364812458, -1.0687552790810058, -1.0687551498042647, -1.0575753421496161, -1.0511596105420518, -1.04691991690528], "Nd" => [-1.456526111653366, -1.412603752689189, -1.419831105244191, -1.386156904381065, -1.3676172535090045, -1.3468875804518912, -1.321933420240831, -1.2889024039412544, -1.2599799494256456, -1.24223405252648, -1.2156969849290735, -1.1986640638219714, -1.1696342427933915, -1.1438539052860037, -1.1021119974071178, -1.0641431096192766, -1.0182942491276312, -0.9724458990963897, -0.9328904684654669, -0.8881993021731602, -0.8421641383474486, -0.7865834902336268, -0.7242311176835836, -0.6441732865557319, -0.5551367098633279, -0.4496635057210474, -0.3456308646886504, -0.23881874318699203, -0.14296765234779205, -0.056499823388533654, 0.012666222470438545, 0.07066425112441226, 0.1130194837907515, 0.14809531604386686, 0.17464405506800826, 0.19194402865298654, 0.2073883378297164, 0.225526179884702, 0.23444540563914876, 0.2341604811884966, 0.23882176471377145], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296, 0.9850294666869296], "Tb" => [-1.0729928983391044, -1.0728720789774695, -1.076180404173023, -1.0669120097743794, -1.0626375682208224, -1.059312789097691, -1.0441617621401058, -1.0279508585463768, -1.0208279649562726, -0.9946703483297505, -0.9678045983632866, -0.9458751152353839, -0.9208424623343267, -0.8862412576760138, -0.8679975106752119, -0.8453820885509147, -0.8212178743055946, -0.7927916331535927, -0.764565618559296, -0.7266665299589857, -0.6857314530724334, -0.6371397813696782, -0.5885957886990855, -0.526209540398266, -0.45116959008001867, -0.3743647083031608, -0.29533109463776736, -0.21798031187535927, -0.153408573835048, -0.09520163168736641, -0.05122665437227039, -0.007606481145316967, 0.021701209227141093, 0.04626352557214889, 0.06296970499702938, 0.07786818445564023, 0.08185952805385148, 0.0999683890804634, 0.11204055132979282, 0.1213713326809497, 0.1303663049736522], "Tm_sigma" => 0.7084962317013009, "Zr" => [-0.34259591199252404, -0.34668333626213, -0.3372418830594459, -0.32395356350583376, -0.3091632596058386, -0.305076099993329, -0.2939629493744186, -0.2968012908846636, -0.29319938978382154, -0.29400366437143327, -0.2873677662120102, -0.2848512650921679, -0.28251275206194926, -0.2888477940467692, -0.2902374264834156, -0.29815260426258533, -0.3105802909882354, -0.3246355782311447, -0.32775609155212343, -0.33195345840107354, -0.3355414945963857, -0.3268276094830743, -0.3132515625794482, -0.30333727198955207, -0.2893994265296546, -0.2789125611394639, -0.27098353164735767, -0.2648990422421946, -0.2682356543998137, -0.2716027169930524, -0.2769731869575267, -0.28838744842576536, -0.2959850276532593, -0.3024344711488584, -0.31143647814553116, -0.317150953297302, -0.32101894492799243, -0.32670106767454216, -0.3265781667044394, -0.3287583597449449, -0.32615839456717], "Sm" => [-1.401575562119242, -1.370636139897446, -1.371561272000489, -1.3587797092691356, -1.3356643843795393, -1.295360319323175, -1.2604883171864905, -1.232847373972032, -1.1905393488116875, -1.1691101939497588, -1.1474082743500709, -1.118898000107951, -1.0881421813775582, -1.0590910626335386, -1.0223480943171668, -0.9866655490972581, -0.9563143764735919, -0.9271615546039632, -0.8886088898627068, -0.848393347208186, -0.8006814221473194, -0.7425032191783133, -0.6671160145861778, -0.5926949667115865, -0.5066133709674424, -0.41097874530760087, -0.3170622565080191, -0.22303986147330204, -0.1330693308245777, -0.05575136424231471, 0.008707663027107642, 0.061145822721159586, 0.10450645831854014, 0.13264124178882636, 0.15156713318854015, 0.17038972588358672, 0.17851265337314473, 0.1773918580763307, 0.1875809983807609, 0.1943721275005665, 0.190361252591187], "Ba_sigma" => 0.3705655066758903, "Cr" => [2.009180231793496, 2.0221432239609087, 2.008105307972775, 2.011460772202665, 2.014503546282616, 2.024403754312129, 2.0341308248971672, 2.0351697486741376, 2.046578205776393, 2.0514421852752784, 2.0509024624077314, 2.049427751364649, 2.060272061566218, 2.0598020918200404, 2.0568670102783093, 2.057218125435606, 2.0530299129673755, 2.0412916758517676, 2.0330182306065225, 2.0259004842866273, 2.0169735938390074, 2.004069442532539, 1.993197210993454, 1.9701021680033437, 1.9420380064268874, 1.909294475655107, 1.8739567216990067, 1.8352394617630339, 1.7954502850160707, 1.757192989969102, 1.728277800043283, 1.6931039590511965, 1.6584083868822703, 1.6383229870064173, 1.619274156584545, 1.5873842246621108, 1.5843316001834606, 1.5713853773725042, 1.55484821435603, 1.5461499451652925, 1.5409059215239742], "Cu" => [-0.3603132926296715, -0.36337088066402107, -0.37896632066129676, -0.3795687451218735, -0.3772175646702965, -0.3720356252982596, -0.37806323174146367, -0.36985243124812656, -0.3754470195302946, -0.3744407785342439, -0.3703874241327605, -0.3617801778173667, -0.3511030537388884, -0.328312202871527, -0.30588316595680276, -0.27572523010056516, -0.23890894254883915, -0.1926305087337873, -0.1389530545202886, -0.06754806841440361, -6.683553316150769e-5, 0.07519387656274663, 0.14418521789994745, 0.2267602883832324, 0.29120296935102813, 0.34967670541986895, 0.40143061538366026, 0.4459980159681405, 0.47236848996170944, 0.4969058686315409, 0.5194425149448367, 0.5335843983601255, 0.5438656322884285, 0.5522744464868526, 0.5583611103204187, 0.5581743224582922, 0.5579465793797489, 0.5542827332385497, 0.546562917512578, 0.5350533197132941, 0.5293875418386108], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.4244410945853055, "Yb" => [-1.4542679303599593, -1.426679516378583, -1.4062892508483114, -1.374058521809276, -1.3388611739261373, -1.3075098785282167, -1.2748139035680943, -1.2473911395374335, -1.2130993333894868, -1.1803055871671673, -1.138894693910607, -1.1029023909879405, -1.068392298587695, -1.0452211317472182, -1.0170785776323388, -0.9892445274514202, -0.9652233634277614, -0.9278094827927417, -0.8874764436978168, -0.8489320655440749, -0.8140822011432953, -0.7656742951710268, -0.7218853993261393, -0.6722681123647377, -0.6107984317960122, -0.5517986806599395, -0.48670046029992015, -0.4309313781117747, -0.3699688511916237, -0.32520643183592934, -0.28252426295375227, -0.25123026446235347, -0.22231477639018435, -0.2069770823004058, -0.1941338848028374, -0.18590515634250576, -0.1836462407481447, -0.1770646522876197, -0.17279793252407616, -0.16863363756704774, -0.16560949765579028], "Lu" => [-1.4757575075620215, -1.4680995827043852, -1.4424291019147721, -1.413157681209852, -1.3796753309785872, -1.3370723955759256, -1.301520701842075, -1.2659314175298182, -1.2269781385686582, -1.1936267556664915, -1.1623668035777912, -1.1271045598655294, -1.092839835681494, -1.0654792208662893, -1.0292826808140236, -0.9907029678270666, -0.9565233235660072, -0.9243231349791895, -0.8921472063501853, -0.8668773215823858, -0.8298114453799761, -0.7909186363924018, -0.7449371730008668, -0.6928468831533078, -0.6322442105333719, -0.581536055840719, -0.5249815487098707, -0.4746491952295756, -0.4258757339490073, -0.3795100482970883, -0.34133284167168265, -0.31225267265142687, -0.28770474657242845, -0.2608333312834699, -0.25020268099515414, -0.2370598745105028, -0.22498498649963267, -0.2138252552403126, -0.21743504415544887, -0.21088974364057086, -0.20951114892616224], "Eu" => [-1.0163773606612334, -0.9896893452317932, -0.9696655712103118, -0.91965168604305, -0.8927704399345104, -0.8632739721695742, -0.8396034177262224, -0.8136431499400061, -0.7899870700459072, -0.7643762912866395, -0.7404290522828291, -0.7153573145024256, -0.6885926278325052, -0.6675594272905259, -0.6462154304057609, -0.6249225362263269, -0.60587511948582, -0.5920922358036976, -0.5853798641725543, -0.5713763681536794, -0.5650233702500059, -0.5445182730845061, -0.5163001822099482, -0.4808120838090685, -0.4434558755240312, -0.38726101135216484, -0.34305094118519364, -0.30403508513532584, -0.2599440258892624, -0.2232014786540947, -0.1921076977646222, -0.1600725083963218, -0.1303880912604108, -0.10463479214859028, -0.0851883133916978, -0.06941179402195152, -0.05857930446968539, -0.0519925072493953, -0.04885036281494867, -0.043731806957098544, -0.04169228695825702], "Na" => [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [1.5691958644878148, 1.562147734958887, 1.5596692824110716, 1.5528558614172294, 1.5422647532294225, 1.5310621074221813, 1.5210550051726022, 1.5090674850442602, 1.4982400044270496, 1.4838503462908186, 1.470656345680443, 1.4543385269352989, 1.4384863395068026, 1.4189920277397101, 1.4003842456740363, 1.3787092184663585, 1.3558892383232386, 1.329041849840009, 1.302048718908637, 1.273222086606768, 1.2444008935037492, 1.2143576955637152, 1.1836031227886536, 1.1574255884831552, 1.1272852620294405, 1.0981018272468974, 1.074924372648028, 1.051678588590827, 1.0302250539987872, 1.0166233645430165, 1.007794663481729, 1.0031628994010744, 1.009138812321531, 1.0179744976099754, 1.034595608582163, 1.0485722589245439, 1.0616949892843133, 1.076619274159531, 1.102553936792067, 1.1135753476566024, 1.131440493429952], "Rb_sigma" => 0.561096284778289, "Ho" => [-1.4008151173202232, -1.3564017846551746, -1.3462729790558583, -1.314287232274522, -1.283736123709426, -1.2578577150645602, -1.2380128960812051, -1.2130047617959712, -1.1834242386559182, -1.1615542917215829, -1.1260371189780904, -1.0977011689496132, -1.0625819139426473, -1.0285364113894229, -0.9867603168215315, -0.9595798754589895, -0.9201758549672034, -0.8893970176104992, -0.8561965642053287, -0.8242243136476467, -0.7797743865246851, -0.7403789442127555, -0.688206305760791, -0.6332135659997649, -0.5679315694123055, -0.4943753512978823, -0.4234447546056948, -0.35579797310431427, -0.28318700058678575, -0.2228708398206826, -0.17873389657377164, -0.13588336220357197, -0.09714411729812857, -0.07941290116546115, -0.057620432209869184, -0.03449657136905356, -0.01795775980778736, -0.012449869084201242, -0.0004728632914803104, -4.3949882909613674e-5, -0.010988232197111777], "Co" => [0.6633795027978708, 0.6824569140309747, 0.7041239641949845, 0.7260336603716575, 0.7563058548215802, 0.7690469686261153, 0.7930194492570621, 0.8154112596639618, 0.8456936829477277, 0.8674416273771526, 0.9066955018730168, 0.9451600970588179, 0.9843725313306595, 1.0211786860968743, 1.070734723958628, 1.1157202741774734, 1.1602712955327326, 1.2120078231922178, 1.2581597711477885, 1.301084338969355, 1.3443677611224818, 1.3845476635127398, 1.4146297551227518, 1.452976571026467, 1.4861256610793794, 1.5100011739993182, 1.5362672127943415, 1.5568663690519795, 1.5752481461681729, 1.5885571154359062, 1.6020245653439025, 1.610341684030377, 1.622111338381526, 1.6248945029664648, 1.6271696158521074, 1.632767049472647, 1.637711168153109, 1.6425952497102598, 1.6513862988289658, 1.6573051383430093, 1.6647594409992714], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-1.437472524466877, -1.4137978796309258, -1.3788702787486475, -1.3624546201746268, -1.337415595916925, -1.3038625709005998, -1.266326173894504, -1.2410309104351536, -1.2114454634868919, -1.1757522353664813, -1.1404325774012767, -1.114015957706789, -1.06911988903264, -1.0273158119407195, -0.9991158717536973, -0.9685214433234748, -0.9308466140584373, -0.9080160624847404, -0.8792293453149674, -0.8434414273161746, -0.8100723654752686, -0.7670560066499271, -0.7215119102453432, -0.6634587169394305, -0.5970534345415465, -0.5232076865727293, -0.46479598263329136, -0.39386953547154935, -0.3373975068368058, -0.287056261445473, -0.24380071279473534, -0.20551560871442054, -0.17810710540251617, -0.15943491462351353, -0.14946873741680294, -0.14029570372939787, -0.1263970601441628, -0.12444545781907954, -0.11461372797600557, -0.10482116849563144, -0.10389183720553027], "As" => [0.31866669666572706, 0.31893807165705856, 0.31936880139796897, 0.31833519984196074, 0.317494254765654, 0.31463356517038876, 0.3158846446722915, 0.31503461070661476, 0.31479905877389125, 0.3141641013706748, 0.3155595905001905, 0.31296531121072085, 0.3114436525369619, 0.3122072179332639, 0.3109610904819977, 0.30748090509390646, 0.3065120333207724, 0.3039656333061268, 0.2996102966854565, 0.2963148391040512, 0.2945565224406551, 0.2901646727240017, 0.2882330894993342, 0.28592029186148793, 0.28302400561396307, 0.2804697663610286, 0.2778137340123085, 0.2741230620060976, 0.2706070325586538, 0.26880324126537775, 0.26466392402076894, 0.2632338224371246, 0.2617707593421126, 0.2600616401565387, 0.25617685958100594, 0.2546119408988245, 0.2514403203048636, 0.24957504324754923, 0.24729479245849195, 0.24683759173415612, 0.24712791341338802], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 0.5374780733388922, "As_sigma" => 0.16394379612660434, "Gd_sigma" => 0.8604620185140445, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [0.15400100058405694, 0.1709308436973217, 0.1698894689318374, 0.1750415255863961, 0.17975686094040347, 0.1807015697287164, 0.1796574736026587, 0.18133362814300055, 0.17296480329580538, 0.17105906762246215, 0.16583201479341214, 0.15690243809425414, 0.14396303701382696, 0.1340324306464614, 0.12219984678411368, 0.11401717387318336, 0.0984406846721612, 0.0853834188281057, 0.07097569125355174, 0.053768743148798176, 0.03489560829108939, 0.021344533995705007, 0.006486057168357307, -0.006827010385938572, -0.01911376162192102, -0.034182353852276214, -0.04860292419499786, -0.0622464528341396, -0.07554608111587456, -0.08703831558276709, -0.09577071068471525, -0.10244482902204029, -0.1087498759104085, -0.11160061688735484, -0.11681960525392053, -0.12060969058346524, -0.12428243777548241, -0.12679720840094655, -0.1323849903040493, -0.13392723371746118, -0.1369306391074127]), "Spinel" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [-1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187, -1.6989700043360187], "Nb" => [-1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859, -1.5162632236709859], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-1.4828099577364016, -1.4726062622312546, -1.4692208617659093, -1.464597904438718, -1.470918705832436, -1.460551426572559, -1.4636821233867634, -1.4685007860163064, -1.469187110416825, -1.4681867835602715, -1.4785461959253905, -1.4827359490310392, -1.484518953101636, -1.4907692069590062, -1.4950717942800718, -1.49917421080044, -1.5071839351179068, -1.517046366994208, -1.525723322506264, -1.5364000100523276, -1.5538688072570146, -1.5682860737839621, -1.5761814063209367, -1.593248272315377, -1.615550703605528, -1.6285479660116484, -1.6380133085410162, -1.665772538471223, -1.7008888152835115, -1.728714864132636, -1.7514214918090976, -1.782209995745529, -1.8098474461099547, -1.8242061304515917, -1.8505345048885424, -1.8843540083580503, -1.900730032921299, -1.9267511930738384, -1.9599088118114685, -1.9728283851200494, -1.979131933609123], "Ru" => [1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122, 1.370181344747122], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 1.593528571875855, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => 0.22999474498496658, "Ce_sigma" => 0.5099982196726334, "Dy_sigma" => 0.507793905940802, "Be" => [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], "Sr" => [-2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097, -2.4253904436723097], "Pt_sigma" => NaN, "Ta" => [-1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266, -1.5655457959040266], "Ga" => [0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276, 0.4851153074117276], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], "Sm_sigma" => 0.7779423052833387, "Lu_sigma" => 1.0000069782971364, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345, -1.7581879101362345], "Eu_sigma" => 0.629470683986513, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856, -2.3606231995235856], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [0.5079836484892761, 0.5183477762540089, 0.5169993220209442, 0.5128999903173607, 0.5155434873956894, 0.5110907872802499, 0.5109202759043743, 0.5113521273363557, 0.5139083259604692, 0.5145635886733778, 0.5199000253382908, 0.5265359658698926, 0.5374151706229532, 0.5455015251611323, 0.5572984605073972, 0.5680993946756064, 0.5754553075571838, 0.5851661060126784, 0.6030624449044204, 0.6128915648912574, 0.6307219459325019, 0.636736662897485, 0.6499591092841189, 0.6556408573678258, 0.6751445359922718, 0.6862032566133766, 0.7025031336887899, 0.7203987803657429, 0.7468650178896937, 0.7677804715554916, 0.7846812286866061, 0.8200496685608323, 0.8421604280174176, 0.857602000232815, 0.8630361999328349, 0.8859213017716935, 0.8920887031867325, 0.9035118384326725, 0.910486976776247, 0.9164354451373108, 0.9104240627244391], "Yb_sigma" => 0.7702458898962283, "He_sigma" => NaN, "Co_sigma" => 0.33472220392770724, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 0.4042107225144271, "Pr" => [-1.9543950585138863, -1.946657696546838, -1.9447582974355928, -1.9478479592204772, -1.9491281441876, -1.9410320119574418, -1.9431814485585792, -1.9474990989921352, -1.945862073919789, -1.9475303538039752, -1.9528800361502399, -1.9561392729372205, -1.9548736399230762, -1.95527840924518, -1.949847572846652, -1.9494258905312762, -1.9434464241458524, -1.9445063779423561, -1.9493327276314032, -1.9578023571641474, -1.9630333233826849, -1.969202699552017, -1.9740583003902588, -1.979572963162976, -1.9851978163610902, -1.9910493661305213, -2.0002079985372583, -2.0034622007989085, -2.0019793043187994, -2.0032453587114225, -2.0085027223522958, -2.013180815233454, -2.0193843357241974, -2.0320816716794754, -2.041646469898797, -2.048716711411978, -2.0442545161447114, -2.04737898209059, -2.0411520684818365, -2.045734651884522, -2.0505383213748787], "Pm_sigma" => NaN, "Th" => [-2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156, -2.2588643834802156], "Y_sigma" => 0.9884928598239788, "Zn" => [0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155, 0.6047575072713155], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958, -0.8322417125839958], "Pr_sigma" => 0.5206949629176494, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.45194992366877085, "Er" => [-1.690845869550535, -1.688034348634768, -1.6866417114953425, -1.6860402921199622, -1.6836485917002675, -1.6827559400806023, -1.6851376549278514, -1.6867509501501412, -1.6865986132987254, -1.686324261359178, -1.686792523076481, -1.6868510371708016, -1.6886180634289412, -1.6932023779272356, -1.6969469895672447, -1.7047961743724274, -1.7112018493406158, -1.7110930842917982, -1.7165577273541004, -1.7230596464942771, -1.7272964196971248, -1.7311992162550343, -1.7452089375577151, -1.747161453356887, -1.7548854618595922, -1.7643168535387082, -1.7765947117714431, -1.7849453777623137, -1.8079952764504548, -1.8283342633987743, -1.847546301341416, -1.8673430469770196, -1.8877763152727847, -1.892002660369909, -1.910206103563798, -1.917529556506794, -1.9247801186230358, -1.930621886782973, -1.9359506576482288, -1.94081221954521, -1.9472391946691503], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => 0.6749161322186057, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => 0.7544406093330377, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-2.815464326493907, -2.8139069687231286, -2.81621790085471, -2.822961739800615, -2.819614175926549, -2.825255751015165, -2.8323867195146057, -2.8264686546802698, -2.8190261286675593, -2.8186511236454144, -2.813982056844781, -2.8100049092833133, -2.803924510801022, -2.79800511160456, -2.789655737282554, -2.7845259463152665, -2.77182827018576, -2.763904650987391, -2.755739332049421, -2.7448451286403164, -2.718604446393498, -2.6978470866994386, -2.6850966615384535, -2.663991549326167, -2.636749597471614, -2.6133062798122286, -2.5921679157173574, -2.5604955975109487, -2.519208010831244, -2.479645563619038, -2.443039323174706, -2.412683778170179, -2.382932068152903, -2.3566951857998237, -2.327015122263097, -2.2971871089983558, -2.252491625377649, -2.2319095348344677, -2.1941765489725817, -2.192885926049394, -2.1767422255753033], "Ru_sigma" => NaN, "La_sigma" => 0.7835068182992151, "W" => [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], "Au_sigma" => NaN, "Hf_sigma" => 1.028196497869737, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [-1.5217944227695723, -1.5249859390065874, -1.5223468747026916, -1.5211641146279282, -1.5181423042351516, -1.5153570523123325, -1.5096880053184747, -1.5075500703960447, -1.503749904547133, -1.507756900245947, -1.5114207520387741, -1.517346897745284, -1.5213274168213753, -1.5288084970677345, -1.5296281544288595, -1.532323258455086, -1.540407119668594, -1.5518303360821433, -1.5633285966830925, -1.5749093129506173, -1.5943929338557061, -1.608038790545712, -1.616552433563304, -1.6311198452109998, -1.6499241148460955, -1.66050373941884, -1.6782104722446007, -1.6991285741047137, -1.7212064587868703, -1.7473243268069198, -1.778052087120454, -1.798374241060959, -1.8282631477368347, -1.8391533294375069, -1.8637765434209268, -1.8773757494048147, -1.8943645675823404, -1.9216837383013534, -1.9525848033868385, -1.9609245395704387, -1.9637574211935813], "Ti_sigma" => NaN, "Th_sigma" => 0.510424145844756, "V_sigma" => 0.9159461610474822, "B" => [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => 0.6117345519914072, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915, -1.147979638190915], "Tb_sigma" => 0.5899232317641576, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044, -1.537602002101044], "Sr_sigma" => 0.13786927830679124, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566], "Nd" => [-1.838613336550303, -1.831006098156525, -1.8243672929636945, -1.8280433648613903, -1.830672663965438, -1.8258642660688995, -1.8293707617946835, -1.8304768384254877, -1.8395776566279924, -1.8380819348972424, -1.8360409713329573, -1.838594377705022, -1.8400698077693969, -1.8318166855671738, -1.833718915856875, -1.8412362011238428, -1.8390690390789817, -1.8438792174632002, -1.8438255624300561, -1.8527306745732393, -1.8536197271111508, -1.8606714330125123, -1.864379631997696, -1.8764618343840673, -1.8823243043700808, -1.8924727671860788, -1.8986975065661573, -1.9053306798254996, -1.9209053777428367, -1.9317210111243603, -1.9410920142598458, -1.963656066983946, -1.9868963918350544, -1.995408169221423, -2.00723749294185, -2.015647632915682, -2.0203733785598725, -2.0150163322872827, -2.0124363252398494, -2.0268912586117627, -2.0258881915478826], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026, 1.9231685560649026], "Bi_sigma" => NaN, "Ti" => [-1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128, -1.3187587626244128], "Tb" => [-1.4929284939677074, -1.4854780204038711, -1.4858428130257806, -1.4866860776591997, -1.4899433121102497, -1.4896488430023138, -1.4863047316143125, -1.4878745142927337, -1.4836090889020304, -1.4825241363063255, -1.4877991499572965, -1.4922937893575146, -1.4990112317728652, -1.5093746100071364, -1.5187928775508146, -1.5252061469207518, -1.535646097508952, -1.5410798257160683, -1.5459460467374373, -1.551632351008578, -1.5577967333006761, -1.572198708179655, -1.577896334009787, -1.5958133505153416, -1.6122118033805133, -1.638436680922533, -1.6545236006825863, -1.6820157627733054, -1.710540211953004, -1.7426854888928638, -1.7664966613119455, -1.7773202193940323, -1.802388187806251, -1.8207375813705202, -1.8316087032298027, -1.8529792438160486, -1.886525859125151, -1.9016086993452017, -1.9272399913501987, -1.9380093153517164, -1.9520789878275988], "Tm_sigma" => 0.5814641261121798, "Zr" => [-1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507, -1.2127095977268507], "Sm" => [-1.5260410336254961, -1.537037422608878, -1.5293364983358975, -1.528256695530531, -1.5328208281451627, -1.5394749906760528, -1.5360707037295285, -1.5358348936218635, -1.5331087095413722, -1.5320590686733984, -1.5260551009644698, -1.5269632657267236, -1.5301844258766133, -1.5352773126181232, -1.5486872396142577, -1.5606503839497743, -1.5719370536938837, -1.5752315799394667, -1.5865695086667382, -1.5827243271029101, -1.5979511810890008, -1.609004259355085, -1.618993591464984, -1.6285410860620204, -1.6435023759463294, -1.6474568354647359, -1.659160093762273, -1.6992433289969218, -1.7196699698926152, -1.7524774553434765, -1.7926272621382908, -1.8201181609084878, -1.841720303860762, -1.8643212459250518, -1.8919456109336992, -1.923755430940045, -1.943833571477889, -1.967391699584579, -1.9818848847735566, -1.9992286485697612, -1.9750899155175488], "Ba_sigma" => NaN, "Cr" => [1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573, 1.3352645697667573], "Cu" => [0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727, 0.4913616938342727], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.6906034615938081, "Yb" => [-1.882150830820432, -1.8829798188837776, -1.8800838599385836, -1.8729810753307006, -1.8655679540438184, -1.8651712565398022, -1.8669886251303152, -1.8750047157347765, -1.8688427794568543, -1.8679644735908316, -1.862613876165797, -1.8593447674838963, -1.857015497280005, -1.863059699132231, -1.8685320554464004, -1.8761196413498262, -1.8810975035391553, -1.87931353326374, -1.8840130956059011, -1.8889159981012218, -1.8807819290333245, -1.8763879813631803, -1.879122059379859, -1.8809694070864134, -1.8747666402956231, -1.88996020960878, -1.8929742099167102, -1.9007344028159034, -1.9086396246429063, -1.9147322337478017, -1.9175084362868913, -1.929512166121006, -1.9416507985955056, -1.9302519453465514, -1.9275093491491746, -1.9225941111214215, -1.9238846503309157, -1.924877059847623, -1.9341935147067482, -1.9349257533190938, -1.93750576613918], "Lu" => [-1.9798911183267034, -1.9821239546616396, -1.9770466436511542, -1.9759929776918899, -1.9781634284323917, -1.9744173846911564, -1.9824159784839146, -1.9769720318828112, -1.9806966224922427, -1.9779769389025592, -1.9825866584532656, -1.9731918027409994, -1.974129088079485, -1.9654968169147333, -1.9632170987523143, -1.9579853768524855, -1.9640023609617479, -1.969895692815902, -1.9730210744685295, -1.9812152902231972, -1.9831927652953358, -1.9920983898149704, -1.9921409496165359, -1.988905324579861, -1.9787635716743914, -1.9772909380909296, -1.9604803951581837, -1.9633170162670466, -1.9776049528641753, -1.9818665783426506, -1.9780235427319113, -1.989536205262423, -1.9764354373316664, -1.9514882771933326, -1.9506576052641216, -1.9510818055506365, -1.950767621946276, -1.9471432631590904, -1.9500250062045705, -1.9459088511396998, -1.9422756408799977], "Eu" => [-1.7272877371808422, -1.723322555462799, -1.7217534527179383, -1.7240318269969344, -1.7257226014517675, -1.7249342990029048, -1.7232897444647095, -1.7214862229357302, -1.7175579459030843, -1.7168842634204549, -1.7187826548159222, -1.7250832215572034, -1.7324035804392137, -1.7365923643991097, -1.73831777361804, -1.7436078789485623, -1.7473068882510647, -1.7466515725568854, -1.7618103355356851, -1.7750910484951854, -1.7865198996165188, -1.7891126487835782, -1.8038752311338728, -1.8064962508005664, -1.8252397930680557, -1.8431809728936148, -1.8771335658682682, -1.906882446600289, -1.950246760707603, -1.9655388749064004, -1.9874853978953932, -2.0120737659032293, -2.0346423437464503, -2.047889913464442, -2.088946190311374, -2.115355518522146, -2.1371692488617753, -2.1556669393677867, -2.1728756442593125, -2.1754573289628367, -2.1788887581976746], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => NaN, "Ho" => [-1.6285104993830015, -1.6278021214517708, -1.621417569802886, -1.619308478993072, -1.6175439411645864, -1.6175852260011232, -1.613305879201531, -1.6160359565770774, -1.615358455253072, -1.617083535158046, -1.6191046455967482, -1.6253635373527748, -1.628416447289928, -1.631427208192491, -1.6320163834951242, -1.6319599494520725, -1.6290501012963114, -1.6321169523541246, -1.636053763896187, -1.6468586476805616, -1.6572371629068334, -1.6710012681834785, -1.6807066678711597, -1.689399018103138, -1.6985886501748306, -1.7099083315876236, -1.7261764298086195, -1.7412803092597533, -1.7628599075361029, -1.7842080591113156, -1.8014817889361412, -1.8192850390911364, -1.8388708104250486, -1.85082201780678, -1.8607146123237435, -1.8796180173697996, -1.8939545593126776, -1.9111252524942968, -1.9322102438826996, -1.9522082325165877, -1.9618338514656704], "Co" => [0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075, 0.5589036349449075], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-1.7872116818523922, -1.7794533466959352, -1.78478740093772, -1.781284670285821, -1.7773928010372064, -1.7686079458260122, -1.7735087195726447, -1.76429193677142, -1.7631494635865173, -1.7659103566349428, -1.7719604782523624, -1.7713858879019906, -1.7757277882449243, -1.7766817474425676, -1.7788789779926886, -1.7787661618331654, -1.7823234678618673, -1.7850648743991118, -1.7900856131021714, -1.7940344795197427, -1.8047832736906335, -1.8105602530483809, -1.8190966636055719, -1.8216155732620214, -1.8214709264842799, -1.8162981535119234, -1.825611799748653, -1.8399070807812015, -1.857099446567592, -1.8816033964101402, -1.9000717422397382, -1.9079509694894676, -1.9057961181470786, -1.911070196027933, -1.9198091504060384, -1.9205654364308828, -1.9305943736316502, -1.93857143199426, -1.9448389964120587, -1.9467946050270686, -1.9663612074960914], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 1.7063033365014952, "As_sigma" => NaN, "Gd_sigma" => 0.7228280429317139, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813, -3.3010299956639813]), "Amphibole" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.39219299637419497, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-0.6862498932234716, -0.6790142341806378, -0.6763030212868335, -0.6653925252387753, -0.6542952896234356, -0.6415331305852966, -0.6358087581573941, -0.6246723803683663, -0.617040520041319, -0.6116729061772176, -0.6070351374464956, -0.5888536171445566, -0.5767546655355754, -0.5635840121825625, -0.552399342113039, -0.541241601042876, -0.5350901324361613, -0.5210496451730174, -0.5090491408149594, -0.49919753697477925, -0.48557700269159715, -0.4710479157883627, -0.46434640861502946, -0.4548689413167743, -0.43818341871732414, -0.42439247893395826, -0.4150444957307661, -0.4013386567168115, -0.38458160487669174, -0.3772824970998625, -0.3739894339902579, -0.3623101697851109, -0.3557364583293934, -0.3510566032944821, -0.33577878648339143, -0.31805613164302454, -0.31030468683362133, -0.29919436771244096, -0.28655839456389154, -0.27928685562380295, -0.27054017917210194], "P" => [-1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543, -1.6220625721637543], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091, 0.3199672489144091], "Ar_sigma" => NaN, "Gd" => [-0.3367021360385633, -0.3201811280466118, -0.29901160739489685, -0.27372004719784004, -0.25057324060949226, -0.23279423740576416, -0.20367172437245828, -0.17647449922825856, -0.1474439399529961, -0.11827043385785121, -0.08426200202527172, -0.05246338415957285, -0.01834340530239907, 0.011632292601763232, 0.04243536415737318, 0.06835778433231432, 0.09359956489681502, 0.11101795734355913, 0.13385561158812234, 0.14720772660631548, 0.16609870128938303, 0.17834519128458606, 0.19565616200294084, 0.20512091930627344, 0.21722244051927228, 0.2212997099654614, 0.23082198887542188, 0.2341406479860595, 0.2345231129204228, 0.2335036760055648, 0.23095465757820813, 0.22246173572295477, 0.21068997367608922, 0.19741302690825244, 0.17683559223745834, 0.16422585291332087, 0.14339217688777295, 0.11115311822653023, 0.0884263529550123, 0.08809569193474706, 0.05396924217347637], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => 0.05619691085111809, "Sb" => [-1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909, -1.975390988664909], "Nb_sigma" => 0.5637281869397838, "Cs" => [-1.3116382627637604, -1.2817665183341418, -1.2514925389678284, -1.2240854396024148, -1.1981122680987293, -1.164990486892304, -1.1382061855902004, -1.11858879785617, -1.1042876948810452, -1.0818227779256822, -1.0691300096776541, -1.062553383162073, -1.0475486155282043, -1.0360516921425995, -1.0337119577801026, -1.0310323286596466, -1.0305954483360256, -1.0386981176820624, -1.045237865494541, -1.056566485511966, -1.0699311142747565, -1.0814981958660206, -1.1059502968295827, -1.129064866102883, -1.1558997818372234, -1.1982772023516932, -1.2444199639708995, -1.2929790039450124, -1.3611673036475882, -1.4453138153387677, -1.5112046191410644, -1.573445984142113, -1.6311536325627023, -1.6822831269491614, -1.7168349190079284, -1.7509630967880527, -1.7910625510012212, -1.8250895317750502, -1.8410772659491588, -1.8495592658223525, -1.8680970554339649], "U_sigma" => 0.7880260882930062, "Ce_sigma" => 0.4436087795821135, "Dy_sigma" => 0.5050995395140082, "Be" => [-0.8466822244319906, -0.8463039657435137, -0.845318998531809, -0.8449815031742286, -0.8453360496255151, -0.8455709683235053, -0.8454289559275652, -0.8453271336902175, -0.8445443530179174, -0.8438963437782906, -0.8432546939045172, -0.842372013904299, -0.8416918408815705, -0.8414846976534354, -0.8407289441090604, -0.8402023528906982, -0.8401734934147622, -0.8399355871176665, -0.8393486606225375, -0.8392448471978676, -0.8395381425798771, -0.8390160315335459, -0.8380987366504697, -0.8376693159876315, -0.8372776107781306, -0.8352107134289306, -0.8331871236102, -0.8326842460469325, -0.8326051076397726, -0.8322130651297538, -0.8318784572141014, -0.8326676090838204, -0.8334827461234775, -0.8328576611582037, -0.8324758964347359, -0.8320080628476687, -0.8322420481686899, -0.8306639649458221, -0.8302604345323075, -0.8294195984810294, -0.8315244322024893], "Sr" => [-0.5341664530819792, -0.537196876652631, -0.5279131686573326, -0.5276784439814025, -0.5198397418314192, -0.5201654599534241, -0.5108445978080017, -0.5137175805976969, -0.5112269805068456, -0.5151624500567642, -0.5139307715609509, -0.5191459624151322, -0.5245413605971447, -0.5175743456153048, -0.5191578587661604, -0.5173808948684778, -0.5127413773012859, -0.5073902444082501, -0.5138175910651429, -0.5070082998911556, -0.5038276292102202, -0.5080780115189623, -0.5097342601968952, -0.5063270512357657, -0.5131787940854824, -0.5085363320072311, -0.5014864623359566, -0.498201869999448, -0.495205570948534, -0.4900875023486917, -0.49404338913371654, -0.49522496481290845, -0.48609357629497946, -0.48263366281607095, -0.48087813725801987, -0.48446921970410467, -0.47619689271561183, -0.47437325713703116, -0.48048686518806727, -0.47777729474882025, -0.4797544438751536], "Pt_sigma" => NaN, "Ta" => [-0.6145013204986361, -0.6102222198699965, -0.6121803575302736, -0.6041307213168591, -0.6002124538432735, -0.5918218916510997, -0.5904528104082808, -0.5906605044652086, -0.5914839685368167, -0.5881316772870767, -0.58963180177795, -0.5846122204389432, -0.5750867189367226, -0.5695925549700849, -0.5656227604908564, -0.562263457146838, -0.5563645779240715, -0.5526721552597081, -0.5491554346224741, -0.545611524488135, -0.5400121082635608, -0.5400107862854141, -0.5371220720227783, -0.5376825174155514, -0.5358648800475287, -0.5353991613654991, -0.530567956866661, -0.5325701703314272, -0.5227255897262538, -0.5189792623124065, -0.5094767865175894, -0.5063332402191981, -0.49426671194805377, -0.49476410507817026, -0.4894017515631974, -0.4945216351037636, -0.4946479483405174, -0.4914327636879368, -0.491443982332595, -0.4891940931399489, -0.4809878005120837], "Ga" => [-0.15351916045574432, -0.13722452877319372, -0.11608363299630398, -0.09084497613626029, -0.059191742751147754, -0.020665177186413353, 0.026225981498969392, 0.07341074844224206, 0.13331681847268165, 0.19650852443820616, 0.26474658006884255, 0.32981401289992707, 0.39446802762949607, 0.4498180374812455, 0.4981288314887621, 0.5274035164306242, 0.5532356524385849, 0.5632110089639377, 0.5563570439732022, 0.5376873868913742, 0.5207209556006066, 0.4877525997064969, 0.45504522296082434, 0.42340310824475885, 0.3890447896372799, 0.3525879485818091, 0.3191342478157422, 0.28724848943378556, 0.2592073447863549, 0.2360588900484187, 0.21516777733253142, 0.1977122041218556, 0.18426085256096827, 0.17184818482763953, 0.1601459788621215, 0.14983332998740526, 0.14243923510036888, 0.1339875508189138, 0.12927818334046406, 0.12345906674391571, 0.12125200510140562], "W_sigma" => 1.4032206227826138, "Cs_sigma" => 0.6868208696797665, "Y" => [-0.3533278537839016, -0.3400644380045126, -0.3320330874465578, -0.3242871097310028, -0.3031371151122367, -0.2952566778469085, -0.2866898300264775, -0.27341745301401865, -0.25684841476600195, -0.2450769007667575, -0.22574191875062818, -0.2183577853240814, -0.211714607597435, -0.19174168980267542, -0.17634310190655914, -0.16674179449830895, -0.1386960612784977, -0.12095385615671932, -0.1216475963850081, -0.11419569962251208, -0.10551791495524447, -0.10477934252649933, -0.09401859801646344, -0.07868848334394787, -0.06087325988432462, -0.03929015208971145, -0.018956452932945178, 0.001047934153171598, 0.021410276270306464, 0.033619344071046484, 0.03908517541938666, 0.0446533246001752, 0.061414730792624495, 0.07598500788445345, 0.08894162268633608, 0.10635566670073746, 0.1211358288993813, 0.11444603072550574, 0.1170383025084754, 0.11964610695765322, 0.142003269687261], "Sm_sigma" => 0.503692619549753, "Lu_sigma" => 0.4600812153000339, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.7674141497110665, -1.7280172613703508, -1.6980084920293377, -1.6560481345359328, -1.611777783043479, -1.5668168730641785, -1.532770349535627, -1.4848911659983732, -1.4518892347170003, -1.416504456801542, -1.385404192163096, -1.3491517287555277, -1.3208966868648173, -1.29398588089376, -1.2636358545998883, -1.237147457337224, -1.2164816832760883, -1.195176019528503, -1.1694971995601149, -1.157378426185855, -1.1378461253730003, -1.1164756950133217, -1.0834665283684082, -1.0505006583078058, -1.0086340673273846, -0.9600431225112133, -0.9085159274452781, -0.8590764037004017, -0.8199826749084912, -0.7782954903274777, -0.7529947873813506, -0.7173424218850526, -0.7026826156347858, -0.684082926939943, -0.6795448969920618, -0.6615157206985282, -0.6569403836655746, -0.6537045857558248, -0.6453529559862656, -0.6350727976675163, -0.6343223873737696], "Eu_sigma" => 0.4477599745874784, "Sn_sigma" => NaN, "Ca" => [0.14992912925621527, 0.1414129859412668, 0.13357490761082957, 0.12598006168063888, 0.11693823194060679, 0.10600443301730128, 0.10241686569822764, 0.09560929972793547, 0.08864078930272372, 0.07946156712014059, 0.07031496036189729, 0.05457554648307168, 0.03885714945893227, 0.023146129970758024, 0.010205471114892046, -0.005973973057092027, -0.016266133049760684, -0.02673210737392084, -0.043010791360104675, -0.055951101518155896, -0.06680327223278706, -0.08336120451539977, -0.09422030004120605, -0.104759376099194, -0.12160192822823615, -0.1367501536346583, -0.1479651598380987, -0.17064709942730552, -0.18652736607008796, -0.19847578222894674, -0.21448817371415152, -0.23383287360856214, -0.24347161609458104, -0.25673001233632015, -0.2605931023733216, -0.2666533071728817, -0.2714767760335346, -0.2773660533928, -0.2827884290352195, -0.3030467012472777, -0.3144735233384066], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.6856935951255732, "K" => [-0.07252638430467195, -0.08803392693786556, -0.10049911621278478, -0.1125014662767882, -0.12007186315218223, -0.13128007839330702, -0.13707276032409102, -0.1460585014087056, -0.1641883128526396, -0.18110860902162637, -0.189004890824904, -0.21296705939939786, -0.2313889526936825, -0.2501126062382092, -0.27400927220211435, -0.2952588951420857, -0.3097486581671218, -0.3300245847151766, -0.34397130773904644, -0.35874635948367484, -0.37291941284581354, -0.3847206302674277, -0.40107371115572477, -0.41969245429724544, -0.43365168822671984, -0.44733221750747193, -0.4729657778117394, -0.4842945440136342, -0.49473776850027856, -0.5136133741241222, -0.5368310954132561, -0.544291958550946, -0.5725918001658512, -0.5936125665443897, -0.6096849943292303, -0.6370321821188821, -0.667004192672818, -0.6886308812621256, -0.7031774783168839, -0.7198301907921881, -0.7217873254918138], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-0.6575660559840393, -0.6536457342920147, -0.6554649053157953, -0.6451786662672825, -0.641917033616374, -0.637846027171039, -0.6279400177031761, -0.621850129140325, -0.6175996186992853, -0.6168474202188093, -0.6121001394031581, -0.6081439369751664, -0.5962360178811529, -0.5952755325412411, -0.5877208298974783, -0.5796464944352703, -0.576593466834867, -0.576858894042334, -0.5679595092862457, -0.5644331652694343, -0.5601195022432977, -0.5503045243814533, -0.543938332241549, -0.5368395709386793, -0.5265407960029058, -0.5230076465462073, -0.5232082789421277, -0.5146979530142606, -0.5086523933179361, -0.5047821665326719, -0.49409434570352384, -0.48833950319590946, -0.48365370716913325, -0.4806085554988497, -0.475752633163782, -0.47424676516209263, -0.4624822183230315, -0.4636334528653089, -0.45571227427787203, -0.4525516281083037, -0.4468629123035607], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.2978050525975785, "V" => [0.5880835126721493, 0.5887630673308428, 0.5856271084895418, 0.5821190972598633, 0.5764503707721984, 0.569848811618503, 0.5602777402491074, 0.5534701085937507, 0.5469661299510012, 0.5420556104612133, 0.5422967216982564, 0.5451076803095927, 0.551624955214794, 0.5614248934658257, 0.5753580868021483, 0.5902509224499544, 0.604382965761781, 0.6167530485908173, 0.6263360785047115, 0.6362847612232908, 0.6429838028511905, 0.6543809586676845, 0.6659710234646515, 0.6833882148962523, 0.7026418670586456, 0.7239770658515395, 0.7468521711112579, 0.77770237306043, 0.8074991458490637, 0.8361201175300438, 0.8700636179939418, 0.8996810465527265, 0.9232733891000044, 0.9484580134816467, 0.9724918905676226, 0.9915044556081483, 1.0074666272035318, 1.0260108213787855, 1.0386242528381433, 1.046783242294681, 1.0594163525606173], "Yb_sigma" => 0.46337230497685494, "He_sigma" => NaN, "Co_sigma" => 0.5103543902203188, "Mo" => [-1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079, -1.393639922791079], "Ho_sigma" => 0.49350161188553276, "Pr" => [-0.6501919514944727, -0.6338242306308285, -0.6124875122116085, -0.5944378050808494, -0.5745676643404546, -0.552767646117806, -0.5301154748395553, -0.5067802887520179, -0.4771191850124758, -0.44911342247619196, -0.41594491434801123, -0.3830585131645637, -0.34690545164273084, -0.3179642797073296, -0.2839093217630157, -0.2554330391694728, -0.22725862011550446, -0.21071869662992948, -0.19230998307368805, -0.17652149411483112, -0.16459193836223593, -0.15331717729779454, -0.13268251942023276, -0.11411325104928915, -0.1047313843318877, -0.08880631677370757, -0.07993015611829342, -0.07554417845594776, -0.07438008337451042, -0.06941286651969283, -0.07190322156259446, -0.07942880995035392, -0.08645097913007385, -0.08429641049145939, -0.0995560651577609, -0.11303009820496125, -0.10321167932550297, -0.10850734456580181, -0.12051630443347414, -0.10411485215511762, -0.09294030239154079], "Pm_sigma" => NaN, "Th" => [-1.8581000514650952, -1.8137404271371382, -1.7737839443709005, -1.7254485257917038, -1.6730690427218262, -1.6204732886786037, -1.5750126061526264, -1.5188187608139294, -1.4625850679928152, -1.4118768232562764, -1.363376951459465, -1.310053876798896, -1.263339233229446, -1.2229624401131478, -1.1825981801950027, -1.1525717213267628, -1.1276863257609948, -1.1068968076025605, -1.0965694442273801, -1.087837386619314, -1.0725707524653076, -1.0649831359383404, -1.0518325958087968, -1.02822342629493, -1.0184215434748283, -1.0002053001422475, -0.9769379157420405, -0.9601138344984481, -0.9462863375185351, -0.9248776259750503, -0.9121817607178816, -0.8982774287573462, -0.8895822209939415, -0.8818505591528404, -0.8760825684533018, -0.8765411984571418, -0.8712679514387752, -0.8646558986659448, -0.8768130239546958, -0.8821490390465272, -0.8797510585786696], "Y_sigma" => 0.8658360237648788, "Zn" => [-0.3217726780928818, -0.30262304719952704, -0.29170879441655445, -0.2720929506455671, -0.24453337318287374, -0.21830064385575274, -0.1878408198015324, -0.1528577502244956, -0.12410972231152291, -0.08668339411806608, -0.052722880295064486, -0.016479880680203608, 0.01511069430897467, 0.055022789188163224, 0.08290447240226241, 0.11279309598114196, 0.1377541530471517, 0.16861019095531382, 0.19464650781497334, 0.2335985862046904, 0.26946859104286647, 0.3084987473656557, 0.3552485413132221, 0.40637610510592825, 0.44166023666907067, 0.4862039723848753, 0.5244313797329324, 0.5477287891014563, 0.5614795602690358, 0.5729469248591926, 0.5729671125422026, 0.5739454697451603, 0.571229398038543, 0.5707207582863892, 0.5663867741232557, 0.5649492090627788, 0.5584263859087952, 0.5571756558897863, 0.5509789184107678, 0.5461089261895986, 0.5399001004348983], "Ni_sigma" => 0.34415485313037053, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [0.5419583571202341, 0.5293729801778668, 0.5282615661369512, 0.5330576492675492, 0.5470041151647552, 0.5602917417835038, 0.5788377685128852, 0.5965671894155972, 0.6186889266674647, 0.6399343724615167, 0.6675343836905159, 0.701373338287453, 0.7346743008960004, 0.7684139539773368, 0.8035780381300152, 0.8334683442830573, 0.8611791439013244, 0.8901333441269338, 0.9185216619485309, 0.9420512775293356, 0.9741579204008242, 1.0051015742614355, 1.0366675455347292, 1.0611161900686634, 1.0866852036877812, 1.1095444546643967, 1.128300077677824, 1.1365590672378836, 1.1451475414572223, 1.156961285472672, 1.158416141459448, 1.1636428339686988, 1.1730101929529386, 1.1789807102787857, 1.1809169822419083, 1.1906145709237066, 1.191438255084399, 1.1931125513063254, 1.205275523214684, 1.214329679995544, 1.2009875372164152], "Pr_sigma" => 0.4818942187449617, "B_sigma" => NaN, "Li_sigma" => 0.18281283329106135, "Tl_sigma" => NaN, "Mn_sigma" => 0.5848300784049151, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => 0.5321659687189202, "Al" => [-0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498, -0.018886384324957498], "In_sigma" => 0.08013191704970596, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.48611991819903905, "Er" => [-0.3360838849030235, -0.30427860318663325, -0.28413586613336017, -0.26335323951860673, -0.2404181073059161, -0.21454654174903773, -0.19123926103537714, -0.16049271308206137, -0.1289782745374907, -0.09779119688533332, -0.06484142514714616, -0.036162984411819955, -0.009249829217246446, 0.015418000670378193, 0.0410026766549397, 0.06471214597592907, 0.08839981092050365, 0.11218597853267333, 0.1274309836393242, 0.1443403700259059, 0.15903356968830565, 0.17604168547286148, 0.18647307174638617, 0.2055891382657273, 0.21321268010681707, 0.21713296581899433, 0.21062398566357365, 0.21272698039752902, 0.20272661573729728, 0.1877978140411521, 0.17784629106321306, 0.17204782079807865, 0.1534251165676767, 0.13211811425778278, 0.1191053428452163, 0.10180860741487482, 0.07509185293663191, 0.06336049439062892, 0.051763834936648746, 0.04803891376596628, 0.026232393711117595], "Ge" => [0.13932379372876166, 0.14194262212510225, 0.14534925973891533, 0.14637921308994237, 0.14393185854044613, 0.1427723878930458, 0.14247045808404735, 0.1427075591711128, 0.14447535811485365, 0.14436021447426506, 0.14474907647305643, 0.14470549425704055, 0.1434543281587138, 0.13844951199261335, 0.1396314090571742, 0.13856000046846106, 0.1347377927300955, 0.1298548129279614, 0.12466882928661002, 0.12312171105191803, 0.12070697926778784, 0.1171133751370521, 0.11701794401615018, 0.11847509297532716, 0.1082537615925324, 0.10924777011079428, 0.10512934461061016, 0.10548490542655964, 0.10467520757393776, 0.105153652243926, 0.09814664174584485, 0.09964868507283003, 0.09429028631254101, 0.09237228179049263, 0.09221818618035924, 0.0936890122878252, 0.088620391527528, 0.0841082070741169, 0.07901945672257911, 0.07791719393605909, 0.07337664382751119], "Cr_sigma" => 0.7333962775748961, "Fe" => [1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916, 1.1258927340415916], "Pb_sigma" => 0.6120662113031982, "Zr_sigma" => 0.3696332430110053, "Mg" => [0.4761439886619335, 0.4804593136908939, 0.48405327129094294, 0.48352887410613477, 0.48295115789635173, 0.4829181943003212, 0.4756321998959986, 0.46830133918191047, 0.46797514470434093, 0.45813676062416814, 0.44831709157024424, 0.43653711026776937, 0.416908103871435, 0.3909158211133629, 0.36815765191280175, 0.3369791458900724, 0.2978277113741921, 0.2550420907262605, 0.20453584185759838, 0.1493182585284703, 0.09427221999217554, 0.04129952017244213, -0.014143365730102197, -0.06827260112600952, -0.119349105182415, -0.16299677138325425, -0.20548495525444208, -0.23566046710625413, -0.2607099669090456, -0.2808545135339046, -0.3085162760025623, -0.32363452163132334, -0.33922073204021586, -0.35013890518840723, -0.3621756246804214, -0.3674542982698828, -0.37254821024019663, -0.37807331202524275, -0.38052382282449526, -0.38548210985538156, -0.3891467021045512], "F" => [0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627, 0.21748394421390627], "La" => [-1.037302041245341, -1.0243814354278558, -1.0106466472022446, -0.99534451082325, -0.9766790132900188, -0.9611816576110849, -0.9358894279972808, -0.9124336209844662, -0.8863179620747303, -0.8601544933276384, -0.8279019945261538, -0.8021461384991898, -0.7748693206173588, -0.7468821488942979, -0.7212477003734913, -0.7013104096878268, -0.6820350675823174, -0.6591284752582988, -0.6420841611655009, -0.6253450026237095, -0.6090395486182798, -0.5971512683741566, -0.5833559403935039, -0.5750286266377594, -0.5611544683209625, -0.5499504607971659, -0.5381253425489482, -0.5337112525626999, -0.5244317025393838, -0.5211363244940571, -0.5181605329460832, -0.5083358311623292, -0.5028202275853304, -0.4966225209653571, -0.4950519566536283, -0.4945098049532862, -0.49979718579038496, -0.5051004857706239, -0.5226796033278336, -0.535742661071248, -0.5388095426910338], "Ru_sigma" => NaN, "La_sigma" => 0.4470714833642643, "W" => [-1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718, -1.7881068352144718], "Au_sigma" => NaN, "Hf_sigma" => 0.371164627459915, "Li" => [-0.8880700840391736, -0.8752652741893924, -0.8651077803257056, -0.8551803725679922, -0.8431512652477461, -0.8305660057982674, -0.8192770503144959, -0.8080045091641702, -0.7961626716602562, -0.7881065174713459, -0.781490807464004, -0.7748020953204694, -0.7692165133610497, -0.765390675256202, -0.7638488294804353, -0.7611167112083266, -0.7635297763356392, -0.7667596825956299, -0.7716082795754821, -0.7734932078209015, -0.7772075002465535, -0.7768117592788119, -0.7777181095878262, -0.777103056513742, -0.7761695982408138, -0.7739184832349997, -0.7716445771951365, -0.7678030221713291, -0.7630291053777716, -0.7602432238101772, -0.7568754925186079, -0.7547004423050854, -0.7528500908031516, -0.7527991705487227, -0.7498877658742819, -0.7507454717787407, -0.7526144399635536, -0.7549320363878467, -0.7554867325640906, -0.7604862297085145, -0.7660470657941865], "Dy" => [-0.3077308440418791, -0.2792441890606627, -0.2575880252929697, -0.2381028949363383, -0.2139063220647576, -0.1899639053883361, -0.16636269739916382, -0.1364865993087577, -0.10138354752842693, -0.06847727811948341, -0.0368365939826402, -0.0013356882234482924, 0.027515596202395604, 0.05236340858351634, 0.08089412464018529, 0.1061287347520822, 0.12333902204310872, 0.1395450401818949, 0.1571351701588617, 0.17351198239443277, 0.18936311441406195, 0.2046357576703849, 0.22360554557532522, 0.2381157054821702, 0.24488606406316318, 0.25207171886919794, 0.2583327850921004, 0.252149548457606, 0.2388228492503575, 0.2319442549899244, 0.2066058340881171, 0.19337862600264172, 0.17958892347705932, 0.16973871721956185, 0.15849740169575238, 0.16093186419875094, 0.14396998768304484, 0.1441693535109206, 0.1469366867479371, 0.14188437386983224, 0.14803386753509218], "Ti_sigma" => 0.3772787685696967, "Th_sigma" => 0.6361282384036923, "V_sigma" => 0.3093551656723881, "B" => [-1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025, -1.2158991379665025], "Bi" => [-0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241, -0.5818379421466241], "Mn" => [0.14261692962610414, 0.13888112291488372, 0.14170103398848652, 0.1341993771700782, 0.13238380350800064, 0.12274953206420271, 0.12222989986570663, 0.11763798835792653, 0.11198452350359261, 0.10526177012452632, 0.10499656125049414, 0.09356606142032647, 0.08420042037112692, 0.07545534409190803, 0.07126555588063024, 0.06415288042397488, 0.07937516477663877, 0.10999982671695317, 0.16321862522758054, 0.24046372709064417, 0.3403257334169549, 0.4620762334159581, 0.5753729796320761, 0.6877873692227775, 0.7783823202245614, 0.8558673273056466, 0.9105327053333065, 0.9523699309862091, 0.9808149917487705, 0.9988312893878812, 1.0105503026089842, 1.0188373540986588, 1.0263543801579544, 1.0305361690221535, 1.0373296472536095, 1.0398261067053807, 1.0390835738272437, 1.0376367500157482, 1.0368003906117111, 1.0297537472763356, 1.0320649170509568], "Nd_sigma" => 0.4828998940765594, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-0.34983963861539713, -0.35691035224043255, -0.36038407310313436, -0.3632833046189294, -0.36513615109169356, -0.36197778636852374, -0.3579879879695215, -0.3526769969337918, -0.34468502556144226, -0.33073045049561817, -0.3140680616572962, -0.29280213718488207, -0.2738020089733331, -0.25375769749764154, -0.23422388271054506, -0.21739388861375486, -0.20305312177535198, -0.1830578880544109, -0.16739278779572955, -0.1562014365041298, -0.1440300402177709, -0.13533672789963183, -0.13557070174230243, -0.13777194868143317, -0.1437476204483818, -0.1645909313360001, -0.1902993796999943, -0.22473385939988472, -0.2573683395305353, -0.29228337883203215, -0.33015872821328734, -0.36118533112783074, -0.38862725405968557, -0.42579394900019973, -0.4664800114706848, -0.49119034354461516, -0.5211010389574834, -0.5491395838900721, -0.5622475282791609, -0.5478002263013825, -0.5362716219041895], "Tb_sigma" => 0.4908555914545924, "Ca_sigma" => 0.4777251763167237, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059, 0.2777919292156059], "Rb" => [-0.6459386471672021, -0.6438890784295733, -0.6417948335288016, -0.6520256667924603, -0.6565565263031256, -0.6681759717393463, -0.6713559590531587, -0.6801300541948232, -0.6782883874826873, -0.6809336574915383, -0.6801075840366702, -0.6849887911563388, -0.6895965284869808, -0.6973272765952738, -0.7021422335228933, -0.7050438174644518, -0.7122596997565442, -0.7160294477258554, -0.7192279988000634, -0.7232755121812154, -0.7261445836735064, -0.7292488868277025, -0.7333680811837494, -0.7438185706893352, -0.7564012847721052, -0.7700613191083594, -0.7840640322252294, -0.7850477200670457, -0.789833621325412, -0.78336501970171, -0.7864776846392115, -0.7887386271570727, -0.8025642670641197, -0.8115639414788741, -0.8234127279323176, -0.8264546340633774, -0.8304517870088908, -0.8316605381948573, -0.8328621499871073, -0.8391606426679614, -0.8583479514091689], "Sr_sigma" => 0.5659554384987868, "Ag_sigma" => NaN, "Mg_sigma" => 0.5547935483981674, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-0.49547955025031226, -0.4960428995088331, -0.5002886034831422, -0.49526136826557593, -0.4958684410049357, -0.4984603631796317, -0.4927272387222385, -0.4984810293356454, -0.5073835158539749, -0.504700769919341, -0.5049334780523881, -0.5105178010198099, -0.5131710161594913, -0.5088419147114261, -0.5180629234789597, -0.521351106642383, -0.5239779765373738, -0.5236393207642959, -0.5282706917166299, -0.5281780780080053, -0.5383603744989459, -0.5423014728194969, -0.5438437593178972, -0.5559554381927833, -0.5543214643125657, -0.5508383881124319, -0.5523335394032038, -0.5581069323622609, -0.5489731735656441, -0.5519581935927284, -0.5474075981325038, -0.5510934296011389, -0.5479549623443332, -0.552384959496498, -0.555277088134343, -0.5653476865242829, -0.5635785155347974, -0.5637694121898719, -0.5669514555278385, -0.565108964636221, -0.5625829208426858], "Nd" => [-0.5803535062332689, -0.5589604395239595, -0.5400334638861632, -0.5234492247933786, -0.5006197845181742, -0.47995145925987476, -0.4567257505107317, -0.427856957334921, -0.399325546906701, -0.36907049047736906, -0.33657547626378964, -0.304591614151415, -0.27414914958413017, -0.24144519506216122, -0.2126498114715889, -0.18648452098662255, -0.163637831770333, -0.14282973975109195, -0.12475825152529586, -0.1112964511418576, -0.09659833978774533, -0.0805710940419599, -0.06494036882657568, -0.055773968674418646, -0.045133622662460696, -0.031037318143897014, -0.02002948393093465, -0.01570553466590222, -0.01138984972835821, -0.008726355547145959, -0.015759311886806755, -0.024040686436953923, -0.027420995854329264, -0.031141078811357605, -0.041747246066633104, -0.04978752825384111, -0.058981196007543465, -0.06131990337698122, -0.0603886187126207, -0.05290295840842714, -0.03466723219892656], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [0.2107236515976841, 0.2171238842917162, 0.22233362746819565, 0.22275223957708876, 0.22433748595764488, 0.22889379766117582, 0.23195044901752468, 0.2361077168088781, 0.23983838671820648, 0.2474747986389187, 0.25622315742506796, 0.2624483940138527, 0.26450033980792315, 0.27306965230500935, 0.27850786724028753, 0.2848645437173571, 0.2902267938396698, 0.2987769573606607, 0.30219969160489435, 0.3108998466744048, 0.3105265036548926, 0.31992402359314226, 0.32543166576050714, 0.3336371260801317, 0.33517665195141144, 0.346605737590828, 0.35022021516432134, 0.3577359845506245, 0.36596428367552614, 0.3778419000153778, 0.3879457507699808, 0.3936388562086236, 0.40066737703816147, 0.4083457128234681, 0.4138723798585372, 0.4157741042687375, 0.4275283060808455, 0.4355782000767763, 0.44266082160764675, 0.4499044418736777, 0.4616062204745605], "Tb" => [-0.2890409912932027, -0.25984251515314094, -0.2375880235190406, -0.21216383020602422, -0.1884549602186139, -0.16798119114833157, -0.14222663641312222, -0.11699235716878677, -0.08922662663141102, -0.06127019231595428, -0.03241848691551052, -0.0037237866402318235, 0.025466845709505484, 0.05390329990048567, 0.08272722883739125, 0.10945989571856869, 0.13217751696023516, 0.15216819244012803, 0.16968687667845728, 0.18019805833630967, 0.1974209502400738, 0.21458047773381694, 0.23380104248582315, 0.2513914313118768, 0.26878793571266757, 0.2752374793799345, 0.27494656819056534, 0.27207552535049934, 0.2594345575847272, 0.24716999837080303, 0.23928823584260878, 0.2309859625503987, 0.2203857536831221, 0.20989600537309702, 0.20780221778201105, 0.18777222622221026, 0.16598962203809853, 0.14694470063923226, 0.14600710376198903, 0.1312254307627821, 0.12621423528500528], "Tm_sigma" => 0.4779282535702424, "Zr" => [-0.5011282396962156, -0.5051433025143378, -0.5067055493490767, -0.5110444968962184, -0.5208574062721991, -0.520838781297539, -0.5162913334379463, -0.5136914923747339, -0.5096052151621222, -0.5029876110162256, -0.5027127372785869, -0.504173734409874, -0.5038296395405418, -0.4995107563533592, -0.49794580093008123, -0.49193510144780894, -0.4847373242478062, -0.47795484997800197, -0.47731300791449616, -0.47291790231561576, -0.46628434017106074, -0.46380976822019004, -0.46427598639950163, -0.4627551656955306, -0.45954906128200423, -0.4663620960819092, -0.47167615271710395, -0.4701514332417463, -0.4694098314816181, -0.4671932681580232, -0.46348271360644916, -0.46007661642595105, -0.4605454642809913, -0.4640275151142904, -0.46535492629010533, -0.46715509391073856, -0.4643787489248476, -0.4661096318928429, -0.4587318139745271, -0.46034699343810326, -0.4619445607832805], "Sm" => [-0.3839364507812683, -0.37021355598955913, -0.34947678708061014, -0.33097636140786024, -0.31085489271690675, -0.29171832862097063, -0.2661395474091681, -0.24026127138247147, -0.2082818005814317, -0.17676539508174752, -0.14359554200560032, -0.10896178339941164, -0.08036524951790475, -0.05412687433701404, -0.0280758661356348, -0.005213842111178237, 0.013824213718971003, 0.03893095506594459, 0.05883306386900602, 0.0767539827212429, 0.09648196347109524, 0.11844926661271413, 0.128172388400151, 0.14343407096696278, 0.15034295526653454, 0.16132347424047694, 0.16689390880748728, 0.17456442581839887, 0.17333580946278615, 0.16592781924678981, 0.15817776429839647, 0.1531619030755935, 0.14680173886657305, 0.14288788266177438, 0.14658386836919893, 0.14533942844042605, 0.12778489007641794, 0.1270179616699032, 0.11801531956792101, 0.10338016625650727, 0.08539462831094159], "Ba_sigma" => 0.5299458068942189, "Cr" => [0.5563516948248732, 0.5461455539500022, 0.5238987136562775, 0.5054167135826725, 0.5035955352961901, 0.5154428134584002, 0.5194818236666595, 0.5498813109756642, 0.5875867045628329, 0.6289878042841373, 0.6722181865649124, 0.7175818266127542, 0.7615928017253518, 0.8000745789038328, 0.8406381739028751, 0.8829642615922617, 0.9253868723128243, 0.9587095783823611, 0.9932911749175111, 1.0202431641628922, 1.0441860242216432, 1.0717997050490289, 1.095843255304149, 1.1208693690399432, 1.143473012817567, 1.1566406275734584, 1.1614991510422679, 1.1792049332541799, 1.1838706655536226, 1.1961107172960699, 1.2024876174113839, 1.201492722563601, 1.1917604292526818, 1.186538757129037, 1.176193331686247, 1.1784550665733144, 1.1736068058823392, 1.1778454135086895, 1.1850075804780782, 1.1861576970592158, 1.1645946698319996], "Cu" => [0.042743410267599716, 0.0223285706538071, 0.004365721461978653, -0.018908096095401332, -0.0607819279045724, -0.09216318109498457, -0.12554212822680275, -0.15863017232051446, -0.18537573566891596, -0.19676999132963413, -0.21117938129248973, -0.20605491567971884, -0.1834548704597129, -0.15242666867955268, -0.11059470871492194, -0.0570257875326734, -0.012510731057951594, 0.03406450772275421, 0.07691186891012389, 0.10789316085692743, 0.13974074732759215, 0.17032351641013008, 0.17860956521709725, 0.18156366407452987, 0.17918436464467527, 0.16325264947592238, 0.14262116928611288, 0.1201333806725605, 0.09958517778733766, 0.07965869101729046, 0.0590894808756639, 0.04345090850357767, 0.030605368282033068, 0.01827184640723586, 0.010558480158588807, 0.005724731942106124, -0.0012748811122006403, -0.00534997909504098, -0.006835080990483899, -0.014805956109480701, -0.016431389281125454], "Al_sigma" => NaN, "Tl" => [-0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091, -0.798439739412091], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.48282029064056886, "Yb" => [-0.36140545299011706, -0.34273082787936104, -0.3193544532291701, -0.2993700572291186, -0.2781879973390567, -0.2570933611669933, -0.22911879302076932, -0.20374652545350325, -0.17430979571764052, -0.14221475423453991, -0.10937985806494366, -0.07704553554124191, -0.046563608044186924, -0.01771814251114409, 0.0060291814956780765, 0.02976538653814571, 0.04692086819360047, 0.06303945921122993, 0.07701956156259541, 0.0894752782739973, 0.10514704218150858, 0.11746044518385064, 0.12859458673902963, 0.13927076860522195, 0.148515667025128, 0.15030416417842238, 0.14720338037130246, 0.14959274623793306, 0.1342989412253202, 0.12433853760316538, 0.11140948199196175, 0.10335642441088617, 0.08842398379432825, 0.07471947543332991, 0.06474225234950606, 0.039338152340625834, 0.013718073591177814, -0.0009845491971927863, -0.003080164233780955, -0.020597989146276117, -0.008972986755305366], "Lu" => [-0.3936296579951743, -0.3740532584919022, -0.35721826290366415, -0.3351698541994191, -0.3120633018180817, -0.28932757196624226, -0.2625584212762181, -0.2339222260126269, -0.2026152364488278, -0.16967307229591924, -0.13851654930482624, -0.10912434761564331, -0.07872273586586248, -0.057479584898977414, -0.03490849625483062, -0.015062886406276347, 0.007348910638259017, 0.026913050421400412, 0.04634328514746242, 0.060616796288116656, 0.07656071045267544, 0.08659081833932847, 0.09447710984950922, 0.10238261071087035, 0.11277216368578853, 0.11243215452736194, 0.11237078533653426, 0.10754125367117522, 0.09419241329711277, 0.07503599336152691, 0.06098922282088566, 0.04037140837829721, 0.020949761778310778, 0.00032741837372963784, -0.013994877020704894, -0.021388093696216616, -0.02815680306544175, -0.034077303211905156, -0.029046401730381654, -0.034270606613258335, -0.060987234348888565], "Eu" => [-0.38284039410969106, -0.3655359135514704, -0.34433803843452565, -0.3223618309440599, -0.2992983523457416, -0.2805686407002827, -0.2535596531981148, -0.22735330922821406, -0.20021097013429554, -0.17144183386076264, -0.14331773156231012, -0.11996808172796096, -0.09420043453417178, -0.07350192871178506, -0.052179937709056545, -0.03304411878057925, -0.01588073218224468, -0.00043000762102019495, 0.014921794280357245, 0.02865390888919099, 0.04689466891315708, 0.06532361704239176, 0.07754904778795095, 0.0908682790349939, 0.10265879397723082, 0.1108982371119178, 0.11629884498825242, 0.12288176628509107, 0.12935949255542073, 0.13054760400872845, 0.1261291446795897, 0.12112926634763586, 0.1110743418875048, 0.09778398317931361, 0.08031198123614101, 0.07195685147832644, 0.06346711910178575, 0.06838477125754736, 0.07034356223433053, 0.07399633800523307, 0.06213302000805215], "Na" => [-0.11399929856835535, -0.1117540407698472, -0.10839419985652232, -0.10564227069783422, -0.10322741894650296, -0.10196661269936981, -0.10028217515225252, -0.0994807353658179, -0.09780400288843497, -0.09690042642185812, -0.09354581207174133, -0.09231835379617487, -0.09174767113013287, -0.08999679931767755, -0.08788631404427005, -0.08712393416424649, -0.08507510207941686, -0.08147208915801829, -0.08021648960247925, -0.07941760802102878, -0.07753672436767144, -0.0755199080132407, -0.07479682110507645, -0.07388713492390789, -0.07248209651336622, -0.0705145846310769, -0.06956655366137254, -0.06743082821854689, -0.06593143923034447, -0.06326141849158773, -0.06079001495922859, -0.05799582594911267, -0.05673952867674651, -0.05402998020926854, -0.05188560668110066, -0.05146205927135196, -0.05055649240874092, -0.04771277159764391, -0.04643969067119579, -0.044381533184021084, -0.04232184888226266], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => 0.09692767849990946, "Ni" => [1.2857568899685972, 1.276454058024065, 1.264737903993831, 1.2487316022827402, 1.229795357559906, 1.211095697934671, 1.1852702614807162, 1.158011519858248, 1.1276774369775895, 1.097523200367531, 1.065095679589626, 1.0317224893394243, 0.9993208272572923, 0.968781516060472, 0.9379654667899204, 0.9090393672676812, 0.8859037816960948, 0.8668854707830068, 0.8564939454349597, 0.8498475700194036, 0.8430133537580056, 0.837270419396029, 0.8323200726798925, 0.8201175380991174, 0.8071803975916239, 0.793789751862874, 0.7770116130158377, 0.7588461153635593, 0.7410585607875004, 0.720042579740195, 0.7042140615154345, 0.6892667687926592, 0.6714291178477965, 0.656404688317555, 0.6471011142258012, 0.6330105855863192, 0.6234390581609756, 0.6186040108480103, 0.6149365813595044, 0.609765268265491, 0.6083752026517444], "Rb_sigma" => 0.51565631870984, "Ho" => [-0.30683691281317027, -0.2871116201673932, -0.26402291662405347, -0.24181507801197477, -0.2224273839799415, -0.20023953518268695, -0.17464750986137284, -0.14545041028214842, -0.11661784496362178, -0.08395972929945571, -0.05263337979946511, -0.02142184698684165, 0.007199321656231694, 0.03529336352368324, 0.06286968517805742, 0.08742494878812379, 0.10929589367540227, 0.12990752747672474, 0.14637481175885844, 0.15800861417552572, 0.1763421398865004, 0.1917215031154569, 0.20312147739608644, 0.21771513837552578, 0.23049925081244677, 0.23645566777455934, 0.2357246069080773, 0.23199794050741188, 0.22306570874644951, 0.2091291777775376, 0.19563447614201787, 0.18509594221440123, 0.1703912322340497, 0.15518982696084704, 0.1546536959815587, 0.1342306214074731, 0.11787279132733594, 0.11223098492098735, 0.11097623682866857, 0.09074342850628646, 0.10730033214810862], "Co" => [0.25339049839689687, 0.2603260052334791, 0.2718518075537352, 0.2843889442194703, 0.3010973702732469, 0.32391102141809996, 0.3424354213094572, 0.3616173965307127, 0.3849619187531801, 0.4089679863844396, 0.4370495034733446, 0.46756231918526536, 0.4948907149795204, 0.5264713683081447, 0.5582535980368518, 0.5893077637324782, 0.6223071443530956, 0.659931076936447, 0.6887439434299303, 0.7136840549390097, 0.7475375005697081, 0.782887427808265, 0.8178232794233693, 0.85630819108411, 0.9051319078211435, 0.9470389721328833, 0.986839357618418, 1.0355588465438272, 1.0817339019754617, 1.1167086764248464, 1.1452599315601868, 1.16979445838574, 1.1829541479323862, 1.1939378177158018, 1.1972869930116057, 1.2082838064402466, 1.2166979720308313, 1.2151289355769652, 1.2211630317247066, 1.2356225417870146, 1.2334430544261694], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 0.6477881391263617, "Tm" => [-0.3438391607297124, -0.3188254183777992, -0.2956562030058455, -0.27573173738531775, -0.25779998195531356, -0.23187769783657372, -0.2084325241943421, -0.17967277003359539, -0.15207571767874462, -0.11736514449669995, -0.08501863621140245, -0.05175623730543826, -0.023535778379926823, 0.008185650193406694, 0.035600770751525915, 0.05487187277748201, 0.07306839029671715, 0.08961122016546745, 0.10386315208206207, 0.11648204831442882, 0.13242091313589904, 0.14552834627994363, 0.16101676262052206, 0.17035148663656194, 0.17415489236139167, 0.18057773962041115, 0.18382553101506802, 0.17986458116386494, 0.17695266159729633, 0.16553565166021675, 0.15424840174230192, 0.13680583120750003, 0.11427024777334799, 0.0973467799839376, 0.09135891871736819, 0.0728734622591305, 0.06356958355284863, 0.05837594273690579, 0.04499561810985316, 0.01922521722264519, 0.008545158338526503], "As" => [-1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157, -1.5277586639249157], "Sn" => [-0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533, -0.5506374092052533], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => 0.42264343819279565, "Ta_sigma" => 0.3485820238532777, "As_sigma" => NaN, "Gd_sigma" => 0.5126961643550119, "Cd" => [-0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596, -0.7916797463308596], "Pb" => [-1.2071937483108168, -1.192331351584937, -1.184014272485567, -1.1663826581825911, -1.1434748539667277, -1.1142652809323517, -1.0801704034094946, -1.0236387471573856, -0.9615840286748281, -0.8910299054033969, -0.8094933155225408, -0.7252246704666391, -0.6472466027780823, -0.5822088511440099, -0.5062818615625395, -0.45390623282041204, -0.4009291095812392, -0.35261021046240487, -0.3090336576920902, -0.2868001643624337, -0.25630422980415485, -0.24697166311429553, -0.24858300494799843, -0.2547911718681562, -0.26061386529971264, -0.27917928106013223, -0.2957219046972969, -0.3181216012833157, -0.34529723824298314, -0.3729326829976062, -0.3960637938905317, -0.4200094264542648, -0.44196486816565217, -0.45517530271635703, -0.47186106424874075, -0.48351406110663736, -0.4942445060315726, -0.5010820006795396, -0.5047444546936949, -0.5037183917376385, -0.5025287398484802]), "note" => ["kd for Albite is nanmean of AlkaliFeldspar, Orthoclase, and Anorthite"], "Xenotime" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128, 3.634957359885128], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => NaN, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => 0.3582726756856637, "Ce_sigma" => 0.33330816389498397, "Dy_sigma" => 0.016488468792807874, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt_sigma" => NaN, "Ta" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957, 3.9632316165546957], "Sm_sigma" => 0.1777003815140682, "Lu_sigma" => 0.29316187796823445, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416, 4.4333414083447416], "Eu_sigma" => 0.15113586772036428, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322, 1.7133783916370322], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => 0.23348451501231662, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 0.07346575404883254, "Pr" => [2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046, 2.4354867317384046], "Pm_sigma" => NaN, "Th" => [2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106, 2.714217325262106], "Y_sigma" => 0.12671878954972698, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pr_sigma" => 0.23914483297907088, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.12354840193123647, "Er" => [4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049, 4.191030405594049], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877, 1.1747365990065877], "Ru_sigma" => NaN, "La_sigma" => 0.1898154330154243, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => NaN, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477, 3.964054393106477], "Ti_sigma" => NaN, "Th_sigma" => 0.6051441212398219, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => 0.2353656463148461, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb_sigma" => 0.056183941509285976, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr_sigma" => NaN, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd" => [2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023, 2.645875747110023], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325, 3.86600493352325], "Tm_sigma" => 0.17691733929285758, "Zr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sm" => [3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516, 3.3557977232396516], "Ba_sigma" => NaN, "Cr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034, 4.288641560935034], "Lu" => [4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145, 4.3220165183806145], "Eu" => [3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352, 3.097437532890352], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => NaN, "Ho" => [4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107, 4.126340050585107], "Co" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768, 4.245055216191768], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => 0.12457135392666065, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]), "Sphene" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [0.5545406874089481, 0.561710557741396, 0.564773190508495, 0.5678723278616895, 0.5696415570547602, 0.5673697746753525, 0.571458615076818, 0.5741950661570273, 0.5827008078335902, 0.5873555969068268, 0.593462023205647, 0.598757716677038, 0.6057198177523541, 0.6103592007910648, 0.6159075347865152, 0.6222350985053032, 0.628681071623825, 0.634310812168304, 0.6406355766366927, 0.648468172503559, 0.6557269194632184, 0.6619430762285443, 0.6683897881435844, 0.6735178846885365, 0.6781669405314421, 0.6838050122432069, 0.6886199715407557, 0.6938757826154656, 0.6983642509269475, 0.7040528637602329, 0.7071911756274226, 0.7106640824974587, 0.7139686907301496, 0.7181886389380635, 0.7189380688738412, 0.7227498534366565, 0.725937773819789, 0.7281317637454688, 0.7296979525485409, 0.7307563201595362, 0.7330127023590576], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [1.4762735154685953, 1.427960750392427, 1.3659468883450796, 1.3795181036830686, 1.3351211392161964, 1.31370489223043, 1.2783592819025202, 1.2809954280970801, 1.2223865499726385, 1.2160569778213068, 1.195594488306511, 1.1862578260833765, 1.159356983435906, 1.1594057787890668, 1.1483683915117402, 1.1494078505191256, 1.140038250397419, 1.143537396988511, 1.1384764542445742, 1.1382094507889553, 1.1344496663046728, 1.15278840890956, 1.1721872601119196, 1.214698135056136, 1.292546333420906, 1.3956728062453252, 1.543562199421701, 1.7257046870927548, 1.9311645465532035, 2.1355342535755577, 2.352428825816423, 2.5377471137287353, 2.691914404720112, 2.830469005431612, 2.9261384430051636, 2.994881028830743, 3.0414229411363243, 3.0750980224303217, 3.097015907036745, 3.116546060308246, 3.1313140568596722], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => 0.2754660848484892, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 0.3333777196295222, "Cs" => [-2.619602087593735, -2.6208034457436353, -2.618955735921995, -2.6229006286976326, -2.6287034950001438, -2.6280218913451665, -2.632133488768249, -2.636127468963059, -2.6383140321302276, -2.638966504477907, -2.6445222549026517, -2.645352556277779, -2.648419039200402, -2.6503993215761503, -2.65293598410594, -2.655039757648653, -2.6580085661091006, -2.660693721339667, -2.6629814540750782, -2.6651118715621736, -2.6664216037711332, -2.667993519272292, -2.6688644869326157, -2.670391122662296, -2.671671700650406, -2.6734779938997884, -2.674772863204792, -2.6761449327346245, -2.6774379804412973, -2.6784362102507555, -2.678046817218581, -2.6791516203888603, -2.6786893897378254, -2.6787462671412117, -2.6787302777764017, -2.678667480171388, -2.6779618913341086, -2.680047231051657, -2.6794560781243324, -2.679963467394186, -2.681691693760173], "U_sigma" => 1.0091077907433228, "Ce_sigma" => 1.0239782859939492, "Dy_sigma" => 1.190547429405426, "Be" => [-2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123, -2.8409595817601123], "Sr" => [0.1489357726863074, 0.14624407026643785, 0.1532954012958131, 0.14842802511956804, 0.14291378695401316, 0.13184782503711984, 0.12127396388751768, 0.11088187303018154, 0.10045491686274476, 0.08427402437932524, 0.07195937606757152, 0.06160794849520493, 0.04597018358396918, 0.03506944333141271, 0.02139003153379611, 0.0047457672642070795, -0.01239411509173858, -0.029665967166048086, -0.049975443257073204, -0.07078978930662073, -0.09284625863183184, -0.11627906852323347, -0.14003400459428886, -0.16407413263853346, -0.18470545017381568, -0.20770944782545125, -0.2330299159675904, -0.2594895922786951, -0.2807599974712011, -0.3061557065883856, -0.3246043919850218, -0.3383021681395628, -0.3490902036500753, -0.36243232639143036, -0.3720765220701215, -0.38182527646991554, -0.3911501861533708, -0.3951366204586845, -0.4021856266099834, -0.4073657963689096, -0.410193835640675], "Pt_sigma" => NaN, "Ta" => [1.110727628128469, 1.119370364041128, 1.1257603319176324, 1.1374469260592048, 1.1407717497758558, 1.1461827602410495, 1.1536266545539753, 1.1664588676607488, 1.1772566706769518, 1.190578669761223, 1.2077140813627958, 1.2241391306965679, 1.2422694582898757, 1.2630998746331432, 1.2795317336918974, 1.2939972896081007, 1.3136002853507693, 1.3324614821785776, 1.3470962416483292, 1.368047494957956, 1.3923142832949276, 1.4114637222174822, 1.4297299556904994, 1.4495149032726766, 1.468282467267474, 1.482358369520727, 1.4984852791250964, 1.513660101378993, 1.5306970296735514, 1.539264520271895, 1.556464638042867, 1.5703329514660636, 1.575821140048679, 1.5842107142597515, 1.598420286049872, 1.592721865060799, 1.5954637924782642, 1.6014221304143266, 1.6070679365896752, 1.6059229195629425, 1.612659516915216], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => 0.09412953794609052, "Y" => [0.8587324844387525, 0.8641648668747567, 0.8777642372211548, 0.8874034140333638, 0.9023363911647854, 0.9227155846666769, 0.9334352571672417, 0.943456191199095, 0.958428814670532, 0.9705180530604858, 0.9808628687694703, 0.9925934514517385, 1.0064914460557388, 1.0167306287986086, 1.0325953112202542, 1.0536741087138697, 1.0806187212061356, 1.1118811539138502, 1.1421776953338105, 1.1830904440136558, 1.2227856639535382, 1.275674936732393, 1.339151355047908, 1.4128783723907055, 1.4912710046848356, 1.5811625023966147, 1.67935874318887, 1.7762743625853654, 1.896185830784879, 2.0107518903561377, 2.124050033805042, 2.23642572077894, 2.3510841214619607, 2.4383328361237204, 2.5369741346048027, 2.61903747681163, 2.6951742547709254, 2.754172129377429, 2.8112584499769646, 2.8396420009529266, 2.8848508915938442], "Sm_sigma" => 1.140331153344517, "Lu_sigma" => 1.2118954048237645, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-0.5825081409293522, -0.5844184350227672, -0.5976922759705153, -0.5869736704510804, -0.6023752585157647, -0.5996033158744757, -0.5896723539673572, -0.5860280763878349, -0.5945176568343307, -0.5920966823192272, -0.5934022664319903, -0.5978871360893461, -0.5930558971923607, -0.5920590538200527, -0.5870767755278057, -0.5838516473844649, -0.5755920022211921, -0.5656877951767232, -0.5497440144789845, -0.5336152866356869, -0.5114236933428635, -0.4807577670215384, -0.4478786510051496, -0.40451167241521463, -0.3426172799145162, -0.2778465621736377, -0.20681295782157708, -0.11748775736684662, -0.0257890124846155, 0.0787933081805256, 0.18143320688132514, 0.2874709006975647, 0.385142278178453, 0.4804779691452667, 0.5546739469505774, 0.6384115525969839, 0.7171173983975772, 0.7824869897701424, 0.8509580334627704, 0.9083408787846976, 0.9620625280023373], "Eu_sigma" => 1.338573641163125, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [0.9133124150567713, 0.907105984497758, 0.9192541640831103, 0.9151030366787808, 0.9011620315876963, 0.8992642060184428, 0.9011308317401848, 0.894632145167433, 0.9101160072612826, 0.9139321953487017, 0.9176452176112029, 0.920863608715071, 0.9278046806320843, 0.9184334931136211, 0.9223822254192825, 0.9261011150299607, 0.9394595477284912, 0.9544857508828408, 0.9826191725481895, 1.0089507734753815, 1.0385484145632204, 1.0714417452989917, 1.1068119591957846, 1.149197686119635, 1.2006640520679228, 1.2639866553668218, 1.3362701575783138, 1.4262726356156012, 1.5154602991045547, 1.6081023875456808, 1.717426847636516, 1.824120089977281, 1.9255842595608648, 2.030657443738859, 2.1342533251418283, 2.216588770444058, 2.2852746030700057, 2.3490209739634675, 2.405470183929509, 2.4452471385610024, 2.4928858715889213], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396, 0.8163436183345396], "Yb_sigma" => 1.2099494165505826, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 1.2009843484473597, "Pr" => [1.1655868333607984, 1.1674691338264798, 1.1519193188333696, 1.1501530387094892, 1.1457926231892916, 1.1579334072092893, 1.1717004872271677, 1.1595691727841657, 1.1372813983588042, 1.1265598351826223, 1.1117191448158774, 1.0979444373231824, 1.0934343963979098, 1.0943366827816579, 1.089578294353419, 1.0976079429078527, 1.0960965334902029, 1.0970817884535808, 1.0964313429000359, 1.0983354765495732, 1.0973667931899609, 1.1139894870908993, 1.133781104297199, 1.1727718189392744, 1.2416614766378726, 1.3322052834419484, 1.4535554734727283, 1.6255043427107747, 1.8119054911025079, 2.015085840881569, 2.2040725664707637, 2.3748101064271263, 2.517660786736783, 2.6385696588677177, 2.724474526848591, 2.7954191112878592, 2.8444093319703208, 2.8754435361061232, 2.896382254684812, 2.907157008617297, 2.9157091292788357], "Pm_sigma" => NaN, "Th" => [-0.3339597997214247, -0.3304004160931002, -0.340779759177421, -0.3376371471978698, -0.3293546922675971, -0.3144168335359962, -0.29748281905078305, -0.27973102089146545, -0.264816588410601, -0.24493587109023465, -0.2253165246456904, -0.20918229198984342, -0.18392881829156218, -0.15897973103587296, -0.13901368623141322, -0.11615886622071211, -0.0835734056493735, -0.04710806921656769, -0.00102664241614564, 0.0581918970586842, 0.1334518775784888, 0.22124697067754964, 0.32148018725864863, 0.4343878761322698, 0.5643614095995066, 0.6790920023127907, 0.8022352102500914, 0.9291765993374023, 1.0345703399265054, 1.1313242759757662, 1.2173467635752853, 1.2889774644522292, 1.3369504844129014, 1.381169549488552, 1.4090094955728096, 1.43516808041533, 1.4518000169702052, 1.4670047284445509, 1.4748782616967446, 1.482727567278488, 1.4852642401541551], "Y_sigma" => 1.1928961292961524, "Zn" => [0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992, 0.5910646070264992], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [0.27358415995293456, 0.26665857688218, 0.26732254319099835, 0.2669078705951391, 0.2733851357722847, 0.27913076894416333, 0.2902735005482514, 0.3004620022393721, 0.3060477844172218, 0.31396638604258936, 0.32048421051416454, 0.3289744559010442, 0.33424176169172276, 0.34442481583209844, 0.3532471791322671, 0.36905351138363085, 0.3826161120076158, 0.4125003319979589, 0.4421673014182857, 0.47993822735323693, 0.5238193068982729, 0.5782833019210766, 0.6326096662709882, 0.7021442009604206, 0.772437166437049, 0.8376540114557979, 0.9054699646487644, 0.9641418093355213, 1.0116082675623348, 1.0525138427259904, 1.091022426945459, 1.1167788796424982, 1.1395080106161481, 1.1565250673165628, 1.169977130256815, 1.1811346795194677, 1.188126674098934, 1.1938746553249109, 1.196846538017034, 1.1962600181964518, 1.1952700700658598], "Pr_sigma" => 1.0478202051747962, "B_sigma" => 0.796329707162105, "Li_sigma" => 0.02641809949264761, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 1.2046891243908764, "Er" => [1.106863166956471, 1.078772284670469, 1.0699521468050945, 1.0568156007025589, 1.0354476271379798, 1.0217383993033142, 1.0013028853594963, 0.9732479121585283, 0.9336815060532107, 0.9023643121990761, 0.8826990373136498, 0.8461356229180281, 0.8259478169935218, 0.8144193199186593, 0.8028254516567329, 0.7866686201683636, 0.7817074011326238, 0.7799190084492522, 0.7749750532647762, 0.7728962752414037, 0.7804990346709442, 0.7991609493431509, 0.8224562922043825, 0.881917356183609, 0.9495548746030468, 1.0605023428612939, 1.2135292639163704, 1.3933121613897308, 1.6090085411115302, 1.851223631795239, 2.061313847022171, 2.2496546457378765, 2.422585250625899, 2.548492952594992, 2.647980624542616, 2.737082304340015, 2.7895043937054735, 2.8283999553656924, 2.8467116222253392, 2.8627166223638807, 2.8631395299768463], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => 0.5094970031243732, "Zr_sigma" => 0.17901563277379456, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [0.731924015362816, 0.7011071242034826, 0.6949634380460443, 0.694263435116853, 0.6954498350075836, 0.6919350222316406, 0.6974335777080467, 0.695524104524153, 0.7076900187564551, 0.7032308000134451, 0.7085098986660203, 0.705219503411457, 0.7070602233324869, 0.7011260415548903, 0.7066149089174939, 0.7048590120523407, 0.7102874390380239, 0.7077873381910825, 0.7129491438993826, 0.7105731739085899, 0.7145311123917629, 0.7232731266696434, 0.7489436164747171, 0.7797322368683652, 0.8429019422774948, 0.9342050318442606, 1.0534158613505122, 1.2033054436348236, 1.3820842294327365, 1.5617056127097488, 1.7328467021607061, 1.8879659998564786, 2.019839219165384, 2.124006502861153, 2.204259607251485, 2.266794850875591, 2.314718261626201, 2.3431928302137845, 2.365850486544225, 2.3806032627362392, 2.3919681465441625], "Ru_sigma" => NaN, "La_sigma" => 0.9188512208366073, "W" => [1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248], "Au_sigma" => NaN, "Hf_sigma" => 0.2723145030824049, "Li" => [-2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558, -2.015252496853558], "Dy" => [1.3832408843681054, 1.362751027250485, 1.329832016933759, 1.2952074023729097, 1.2774016363473057, 1.2511213323140697, 1.223829712470299, 1.1853864187239187, 1.142485674206297, 1.0926680664117767, 1.071202062602169, 1.052494959124601, 1.0327848663868497, 1.0292119403386413, 1.0240079041771128, 1.0107161481704787, 1.001097733662255, 1.000524760597213, 0.9889666110442906, 0.9863162583253089, 0.999658859375154, 1.0122644964476653, 1.033172088791023, 1.0793547011925528, 1.1629866649304645, 1.260140633376818, 1.4094515868771849, 1.6018698822862891, 1.8171871244721167, 2.0361147590678286, 2.2551024419652523, 2.449399644825509, 2.605284186415497, 2.7317183065011004, 2.8280018612159865, 2.9131960384427176, 2.966572578424083, 2.998744267002972, 3.0241310401508774, 3.0377066893755664, 3.0438906396232], "Ti_sigma" => NaN, "Th_sigma" => 1.0435228327595716, "V_sigma" => 0.36973983418004686, "B" => [-2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704, -2.827162020040704], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => 1.0697853631226277, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [0.5223949387066479, 0.5294191512188643, 0.5336272600351809, 0.5363283811651877, 0.5370710914010767, 0.5408566298711347, 0.5460569607674055, 0.5525615079250842, 0.5570257766804468, 0.5642791388732353, 0.5699791964940922, 0.5751302602985626, 0.5805245906630571, 0.5857363388941472, 0.5921810210163925, 0.5992928794548532, 0.6051565165763562, 0.6106200157819421, 0.616496521502901, 0.6210140086301564, 0.625134858733193, 0.6311173652589231, 0.6352565264024982, 0.6399016234743413, 0.6451087693340779, 0.6493667623918676, 0.6516072798696575, 0.6560814604486722, 0.6604067549313123, 0.6627423131934528, 0.6682811704722228, 0.6724942843079207, 0.6761504831810778, 0.6792322673456702, 0.6821746769150346, 0.6819011091931337, 0.6859845956530897, 0.6903567277853456, 0.6914284917495958, 0.6949471481470181, 0.6964742830860714], "Tb_sigma" => 1.1835065330535055, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-2.7637223974244494, -2.817042097684502, -2.8343326523201284, -2.8518176696824296, -2.885634370508452, -2.8996468594962024, -2.912956702719912, -2.9311293369092795, -2.9486266181555587, -2.956994570248505, -2.979631310367565, -2.9970881714379547, -3.0048858454925944, -3.0143156635956223, -3.0226327550597545, -3.0235624379794857, -3.0210364695886502, -3.0251636539952598, -3.012319873687818, -2.9974192181178423, -2.974153967853038, -2.9350833406677475, -2.879791910051972, -2.8168206027278333, -2.7449355050423123, -2.652978962965022, -2.5590187227270036, -2.4483455913516163, -2.3380136642337663, -2.2186618833632807, -2.1020573578721256, -1.9816121265316764, -1.8670740629406628, -1.7672207279380583, -1.6545038330162687, -1.5514889002389638, -1.4742051338217765, -1.411624330740449, -1.3439512480990756, -1.2934791713912943, -1.258647798102578], "Sr_sigma" => 0.41037571919456955, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-2.2306207611077866, -2.2218428607436946, -2.2354458774999486, -2.238131187223655, -2.242838596098058, -2.246887198864122, -2.234635158011328, -2.231077740803067, -2.232190661915021, -2.2260545982736333, -2.227606507941086, -2.2354458768955388, -2.234928213348779, -2.2279089334871136, -2.2253721668768103, -2.220159482378769, -2.2069087471061617, -2.193514499625833, -2.175343927495192, -2.1464521567233428, -2.1132633002242125, -2.0730534769718565, -2.0252871456840595, -1.964070667472326, -1.8981849504680828, -1.812630288986147, -1.7176631646446, -1.6176111581833303, -1.5063992327664866, -1.3923552238694936, -1.2702851488204936, -1.1495382255020972, -1.0357785864058997, -0.919691076685747, -0.8040993485777981, -0.7153314640249879, -0.631420113085225, -0.5378408521917375, -0.4683545372030901, -0.4187853887701422, -0.37676568649789177], "Nd" => [1.2657048992908038, 1.320099491496262, 1.2467910612171194, 1.2438622115657132, 1.2198121610018826, 1.2041915325689951, 1.1733720349368402, 1.1640460587702195, 1.1586599912451518, 1.156553025071914, 1.14633403368305, 1.1448631841936008, 1.1464672272210852, 1.1387738858965986, 1.1342943746318086, 1.1320602145045464, 1.1258525946375293, 1.1180250263957738, 1.1176847787211122, 1.1199311413281685, 1.1277416856935887, 1.1374562240641053, 1.1633600751605517, 1.2109346420549445, 1.2782922689248712, 1.3759976832811955, 1.508785720712155, 1.6808198033073096, 1.8603445590968746, 2.05079529761027, 2.241828894251857, 2.4281121139918174, 2.574775611520678, 2.696674514788819, 2.7881371287059404, 2.859311518342508, 2.9066312141827573, 2.934303168071022, 2.9631395597467547, 2.9809504667403637, 2.9834859983356927], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [1.3315909731847195, 1.310836055706331, 1.304627012003532, 1.3187152134866358, 1.3078904797945614, 1.2728476149545458, 1.2549627475922163, 1.2228992011589264, 1.1889858508096571, 1.1640276508851382, 1.141641193122966, 1.113529558200263, 1.087890675741118, 1.0755954783967334, 1.059620628425815, 1.05075538253095, 1.0465389037092847, 1.0569196709991089, 1.0502102067456494, 1.0542687185604618, 1.0594648155261872, 1.0739346298539223, 1.088634124964142, 1.1400203812636986, 1.2069846636218189, 1.312120385598118, 1.4570696575724558, 1.6529243579142625, 1.8516693631584449, 2.089172607195518, 2.304584942597301, 2.496266775179981, 2.651363428612929, 2.7797943829846394, 2.8668475362653676, 2.9385776917852064, 2.9876354249498194, 3.024826824085921, 3.056804678232407, 3.074945227623302, 3.086102860393207], "Tm_sigma" => 1.2076144700659135, "Zr" => [0.37745337649734007, 0.3773156528750061, 0.3793289769763997, 0.38236695897978823, 0.38276586523240075, 0.38726579137659023, 0.39094212969236963, 0.394144469125553, 0.39758786499989857, 0.4016795805778224, 0.4041475041180099, 0.40638547859681656, 0.4090897026631538, 0.41199722923010107, 0.41567273786117925, 0.42014482722851404, 0.4244686284434093, 0.4284517113159936, 0.4328189569498765, 0.4373537707804879, 0.4403565620136364, 0.44436188019252926, 0.4495147856871886, 0.452690765437991, 0.4561691695542646, 0.46040574465850126, 0.4642184661393534, 0.4662059432141636, 0.4707728469021623, 0.4728840003015107, 0.4754598434909802, 0.4786684410502701, 0.48226969000898273, 0.48509847217112834, 0.48790203440321156, 0.4915001818248365, 0.49493284710967156, 0.4971658361525908, 0.4978361165304229, 0.49994631168486575, 0.503536167003026], "Sm" => [1.4151500110393598, 1.3990459127493664, 1.367162339048097, 1.3466485658838043, 1.3317453883067032, 1.3058574352431902, 1.290021176241298, 1.2803993271713623, 1.2649503956601444, 1.2468272924690071, 1.231535521841601, 1.2228072904960603, 1.211524291552702, 1.2059731095653985, 1.1975324239185319, 1.1874205709529226, 1.181552455906384, 1.1751377392813587, 1.1691246117952434, 1.1712981266459102, 1.1830919078584616, 1.1935748544716864, 1.2183868682176442, 1.2584224324583688, 1.3224686604261802, 1.4164999637024835, 1.5520683133417308, 1.7278586931102906, 1.9363960151831388, 2.149538134977726, 2.36412341619187, 2.5510767543520187, 2.707626712143944, 2.8335759453719604, 2.925179447291818, 2.9938485734635774, 3.0420897939476936, 3.0796967945233167, 3.101886247641991, 3.1188810034120156, 3.123729810079209], "Ba_sigma" => 1.3015810891112376, "Cr" => [1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193, 1.3222192947339193], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.5581753214388885, "Yb" => [1.0032492362423104, 0.9863243156232171, 0.9621869469981206, 0.9399768812495771, 0.9312024961642998, 0.8920643794354235, 0.8508352173451409, 0.8030654178181668, 0.7602481911603056, 0.7150113344226171, 0.6832333744282428, 0.6538505965154491, 0.6331209998596906, 0.6140900534365302, 0.6015276617531702, 0.5943986677210684, 0.5846891180156099, 0.5766746406300394, 0.5735603191643524, 0.5684899268846834, 0.57346114704146, 0.58809375130099, 0.6123453496125734, 0.6548264680028033, 0.7384136098272934, 0.8443733229146652, 0.994621842514932, 1.192738958277014, 1.4245737874761104, 1.6579866936171097, 1.8842830511312976, 2.094317123007008, 2.2559949677560627, 2.3874601395610457, 2.491643142545828, 2.5695291849044404, 2.6199648542055827, 2.664981711244723, 2.6948258014350275, 2.7118155220763853, 2.7225546858430945], "Lu" => [0.9169703927031786, 0.8950058712501847, 0.8460593602774266, 0.802428869894639, 0.7516923408161291, 0.7181262342752366, 0.6765663532350528, 0.6474295003110764, 0.6134469018570635, 0.5855867084885966, 0.56479193815128, 0.5426196933849833, 0.5262661350571095, 0.5078605393583123, 0.501014893897598, 0.4798743246858365, 0.4813923054121779, 0.4707683713363997, 0.46494191906108884, 0.4585942286354948, 0.46792785157555694, 0.4680532637377613, 0.49730054921947037, 0.5471552876894569, 0.6154876420486033, 0.7261261088844289, 0.8798823298357447, 1.065413308857857, 1.2963618725788206, 1.5513097880365598, 1.7839204515406106, 1.9882368619213555, 2.1643110889466852, 2.2976470088065586, 2.391998775432592, 2.474236067983961, 2.5279171712448267, 2.56582619063931, 2.594932829992103, 2.61550571231252, 2.6252086028347037], "Eu" => [-0.3201396226680595, -0.2343223929581372, -0.16509107724140804, -0.050262544469449326, 0.03969891672119063, 0.15940548240151978, 0.25606915521151963, 0.36088807742604917, 0.4520532076340798, 0.5331468764097259, 0.6039984632131593, 0.6630805329369432, 0.7130699500024529, 0.741488609257408, 0.7702085635643476, 0.790236720025081, 0.7964347792632275, 0.7945807048707703, 0.8100828840634872, 0.8207253856535769, 0.8213173591321659, 0.8321947153577568, 0.8610809150499455, 0.9020963025706219, 0.9712872196085085, 1.0953469017456203, 1.2545763050841001, 1.4499501985994858, 1.6669094544266416, 1.8897413628122888, 2.096579289266147, 2.297636722220138, 2.448854847153859, 2.567353985476731, 2.66116354803528, 2.7325551699010915, 2.773390534762396, 2.8057933360441525, 2.8262032869400007, 2.8439335186477974, 2.846068837434366], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => 1.2604498065744543, "Ho" => [1.2537868004275885, 1.219226543619382, 1.1740853269242133, 1.112109178394195, 1.0911909098640338, 1.0647234964814352, 1.0577737155518485, 1.0111289860207815, 0.9916418056231211, 0.9687170444858504, 0.9539167048359055, 0.9340213672825249, 0.9392544691111191, 0.9223882859452729, 0.9088073812668656, 0.8945133401273353, 0.8773114383837032, 0.8521116252963391, 0.8429053801989456, 0.8399045074355446, 0.8420917504560599, 0.8545814108330407, 0.8862899693156177, 0.9332231201123934, 1.0032612321918186, 1.1115015778696482, 1.2618356828807413, 1.4503540987933219, 1.6789062504699612, 1.917334944174929, 2.1452522500685056, 2.341998571742256, 2.51476812183072, 2.6387978907998146, 2.726546408155101, 2.788886588114587, 2.8430493985705887, 2.8759195747778112, 2.901482072630063, 2.918624847702412, 2.93983464121687], "Co" => [0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004, 0.6232492903979004], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [1.0564105673106976, 1.0612576670506326, 1.021322089639721, 0.9797689727255048, 0.9472973844384711, 0.9090068418887278, 0.857829846765677, 0.8395285367234184, 0.8240635835108227, 0.8062061500141474, 0.7816219610851295, 0.7630561594736285, 0.7368174602439016, 0.7164504786558705, 0.6947156122508095, 0.6871697001878532, 0.6745532019443947, 0.6668385285244637, 0.6549504722382117, 0.6576583280245519, 0.665132215243193, 0.6783815176251184, 0.7094094854536271, 0.7589434410282514, 0.8364312031206049, 0.9315772276744939, 1.083685959240878, 1.266891034058221, 1.5000726136568139, 1.7404197267169803, 1.9754082713380179, 2.184458808450053, 2.360191636514764, 2.489526997220931, 2.586957932947773, 2.663344024641644, 2.718301349011104, 2.752936155765202, 2.7763788290232236, 2.7968936608118367, 2.8073950146534283], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 0.5013987152362616, "As_sigma" => NaN, "Gd_sigma" => 1.1651237644131838, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-1.003077103961532, -0.9949567941008034, -0.9790617407025366, -0.9739164709330994, -0.9590207480975341, -0.9427852086252132, -0.9251315537363073, -0.9062722717062065, -0.8953307554235138, -0.8834833724524476, -0.8614872575020722, -0.841711068460859, -0.8257633781193664, -0.8028870047136619, -0.7763174995402495, -0.758051845262449, -0.7325619457805198, -0.7097615524800936, -0.6827892236621187, -0.6600375646216243, -0.633721747234209, -0.6100438793436431, -0.5791501671394756, -0.5497644107087566, -0.5195205681354061, -0.48780366360696464, -0.45933596950434713, -0.4363389706298781, -0.413535716792421, -0.389224510845614, -0.369417087067262, -0.349286189424879, -0.3332114301370682, -0.3178806577039429, -0.30851733822963595, -0.3022063171930349, -0.2954593176380497, -0.2868098375613261, -0.2844854590977915, -0.28461414386608064, -0.2800908716859528]), "Whitlockite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [-2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255, -2.033864612050255], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133, 0.46345044988133], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => NaN, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => 0.6592839866212752, "Ce_sigma" => NaN, "Dy_sigma" => NaN, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt_sigma" => NaN, "Ta" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sm_sigma" => NaN, "Lu_sigma" => NaN, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-0.7686278443847518, -0.7715404679609238, -0.7726285795989121, -0.7757176308663679, -0.7733184323413036, -0.7693775230582524, -0.7723898451517445, -0.7711459917681358, -0.769298764583748, -0.769418268305541, -0.7659304350815656, -0.7558344115295694, -0.7516789679949761, -0.7481705943973986, -0.7382328660927485, -0.7314235237093758, -0.726316688909163, -0.7179516815593077, -0.7067432656506548, -0.7020069590349685, -0.6901997935530568, -0.6753573454630273, -0.6577442485312335, -0.6401694143849883, -0.6133051990953845, -0.595425505369353, -0.5683794238356787, -0.5483824028326848, -0.5233155465028703, -0.4981487793147562, -0.4724007977599791, -0.4477968290843204, -0.4213296854769776, -0.40293526632517096, -0.39029222546275444, -0.3722833679114382, -0.3626621571544993, -0.3518583974368666, -0.3311229324304821, -0.3196793459247816, -0.31086335817953653], "Eu_sigma" => NaN, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833, 0.6711728427150833], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => NaN, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => NaN, "Pr" => [0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072, 0.6481423915367072], "Pm_sigma" => NaN, "Th" => [0.11817829078080455, 0.11833692582255327, 0.11848367754721198, 0.1186584571943671, 0.11872998124055138, 0.11884638906157163, 0.11886978610230316, 0.11872302176891922, 0.11864396525484751, 0.11851307099559796, 0.1184751979722131, 0.11831437900181242, 0.11828403450142458, 0.11807733118547545, 0.11779097395625093, 0.11744050868934099, 0.11702166569083972, 0.11660837741536023, 0.11610979517045894, 0.11564164604357828, 0.11500669896965918, 0.11434598740459823, 0.11347857766860567, 0.11260339666885272, 0.11184895433061702, 0.11088278221432336, 0.1101364444058136, 0.10922548817530617, 0.10826969860589426, 0.1070818661117671, 0.10606184575913195, 0.1047753088704793, 0.10360284094919467, 0.10273178399917696, 0.10177899044370443, 0.10098220066827043, 0.10051560744098076, 0.10026163936907345, 0.09958201585610262, 0.09915376097286034, 0.0985684264433408], "Y_sigma" => NaN, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pr_sigma" => NaN, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => NaN, "Er" => [0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194, 0.15003302737634194], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [-0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016, -0.26790431467950016], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952, 0.6439683506493952], "Ru_sigma" => NaN, "La_sigma" => NaN, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => NaN, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336, 0.32324059823005336], "Ti_sigma" => NaN, "Th_sigma" => 0.10770926892274886, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => NaN, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb_sigma" => NaN, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr_sigma" => NaN, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd" => [0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402, 0.6348081328140402], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613, 0.37376793563954613], "Tm_sigma" => NaN, "Zr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sm" => [0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083, 0.537348548615083], "Ba_sigma" => NaN, "Cr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933, 0.01747231672714933], "Lu" => [-0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845, -0.05365504698916845], "Eu" => [0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026, 0.45178643552429026], "Na" => [-0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547, -0.6185857234054547], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => NaN, "Ho" => [0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697, 0.21127991388768697], "Co" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748, 0.0853994182525748], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => NaN, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]), "Orthoclase" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.18394801551277337, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-2.0613451571456225, -1.9797184247322126, -1.963498083582221, -1.9169335784790555, -1.8635120521686426, -1.856711870242726, -1.8468626019451213, -1.7922758582359737, -1.777550778962718, -1.7463093605555986, -1.6726394711200572, -1.6248614422956509, -1.5747679542799446, -1.5178179485013887, -1.4768558026989114, -1.440206492898983, -1.3955970090363352, -1.3449455299292579, -1.302016159680403, -1.2615863873592086, -1.2201493693973258, -1.1720478931326996, -1.146769175236435, -1.1084666155236496, -1.0734822060424898, -1.043018357734263, -1.009745559218582, -0.9753788221598196, -0.9405280818889896, -0.9083608934219876, -0.8775652750585609, -0.8597189734035818, -0.8435311934549758, -0.8288029366839549, -0.8132245963686806, -0.7975132588053253, -0.7783867908367489, -0.749180059335249, -0.73599358294897, -0.7242344207354845, -0.7151547364570912], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-1.4902166439568731, -1.4999303639091033, -1.5032272881292594, -1.4963956575792932, -1.4820127778228807, -1.4607687223404775, -1.4359795747498403, -1.4443006329838903, -1.4453662304223247, -1.4368597269035548, -1.4258638504675656, -1.4205983090633272, -1.398560665039975, -1.38549502170722, -1.3801915248986805, -1.3752728406289847, -1.371270418662753, -1.3674120428003418, -1.3626402462000564, -1.3580474159518563, -1.3577569823080207, -1.354152251530723, -1.3534601811173304, -1.3483467449858675, -1.340221168608623, -1.3369187612111555, -1.3292466164009815, -1.3233765849532508, -1.322588871005254, -1.3210448253324996, -1.318505043205055, -1.3139309203241123, -1.3154036937477096, -1.3140131811270075, -1.3126719186011153, -1.3095112120711883, -1.3181719379205175, -1.314866232791123, -1.3144476396803435, -1.3148543939164947, -1.3152714076151595], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 1.1065431849372158, "Cs" => [-1.1998725979818663, -1.1805727727382993, -1.173268090729109, -1.1948113977161863, -1.2081011901881948, -1.1898190626796423, -1.1956235438196698, -1.1847429285282336, -1.1573964304367632, -1.1321745895470599, -1.1350910309577908, -1.1189360263402126, -1.1258354577686545, -1.1093919021175564, -1.1189100496824906, -1.1134018095101081, -1.1123803061211552, -1.0927137932084567, -1.1022565937580349, -1.0904941967587134, -1.078599966622292, -1.0728772399623956, -1.068082042293241, -1.0601512890702505, -1.0533141067568619, -1.0557787095467985, -1.060952074667475, -1.0707966677258651, -1.0674528658643083, -1.0715180510638236, -1.07033519641395, -1.0637296145478612, -1.0626220413853336, -1.065008457869954, -1.062570298130705, -1.0638504315593917, -1.0566652491496482, -1.0509235447004786, -1.0567328918450303, -1.0627701788602184, -1.0571543120932467], "U_sigma" => 0.31737082684952367, "Ce_sigma" => 0.4760463053152989, "Dy_sigma" => 0.5612826644428416, "Be" => [0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583, 0.48429983934678583], "Sr" => [0.41964787556235483, 0.42956439032279353, 0.42385844584868776, 0.43099183617714326, 0.4334796885112763, 0.4306791441731202, 0.42758465976823823, 0.43194710558011945, 0.42944302339021273, 0.4330371738890387, 0.4376313560486539, 0.44077589091721503, 0.445141753329181, 0.4531890173920782, 0.45780108421117105, 0.4596311877311461, 0.4624800760599638, 0.4701305625108497, 0.47197457822340516, 0.4758162713013333, 0.48089305263054627, 0.4868100442651122, 0.48677141812614966, 0.49115648310466, 0.49422203044925606, 0.4920393711110202, 0.49114463925177326, 0.4910879924208453, 0.49057308425197177, 0.4905212765701685, 0.4951163026923498, 0.4931119037799806, 0.4936970380657728, 0.49269332999503745, 0.4944686004741917, 0.49154383780188426, 0.49548111802894923, 0.49443836989897005, 0.4943583707316308, 0.4928002622202766, 0.4954290758800486], "Pt_sigma" => NaN, "Ta" => [-1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433, -1.8786073980483433], "Ga" => [-0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376, -0.04164763529178376], "W_sigma" => NaN, "Cs_sigma" => 0.8688416423773796, "Y" => [-1.6781684144541027, -1.6463302530435233, -1.6283981020299727, -1.6173972815525548, -1.600568828246437, -1.5677026414756852, -1.5601383367661066, -1.5389203040217385, -1.5348314643815024, -1.5239968282720944, -1.510640128325517, -1.4996857155254641, -1.4894706709957861, -1.4692888423665613, -1.456755183993868, -1.4506212063745998, -1.434840351130076, -1.4220941257106734, -1.4111713307606515, -1.3999216801933596, -1.3827225008426207, -1.3722167410991684, -1.362226332038272, -1.3472388655909016, -1.3361286101165495, -1.3291124437661943, -1.3211576308584199, -1.3105232361011445, -1.3013529221668307, -1.2942432111117503, -1.2834985998075525, -1.2755872787475524, -1.2709776972206661, -1.2725898179133321, -1.2669851239626984, -1.2686913459095435, -1.2690099667958274, -1.270518253616721, -1.264614875823653, -1.2665127313922715, -1.2657954050771085], "Sm_sigma" => 0.4934515337719833, "Lu_sigma" => 0.6156607209505248, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.730393012011459, -1.7352357808493657, -1.727721155191375, -1.7227635157287282, -1.713331469554435, -1.7107566117906798, -1.7066066149347399, -1.705140435967197, -1.695267004137265, -1.704097053565214, -1.6964110828474785, -1.6924930889859762, -1.6869638807115248, -1.6880378567981653, -1.68542446948115, -1.6839837805161213, -1.6810323292572016, -1.6717521514716298, -1.6680424091660586, -1.6635463660086154, -1.6586712429562105, -1.6550401305625666, -1.6582311543006716, -1.655122085067029, -1.6488606472920082, -1.6488324124996578, -1.647484422752923, -1.6461314708345736, -1.6458471756308173, -1.6484008720046899, -1.6475486604134204, -1.6482889215442913, -1.645946969913878, -1.642849991776225, -1.6440988409349426, -1.6448183664606564, -1.6422626963482452, -1.641483301895182, -1.6455518831600524, -1.643675704479832, -1.644025697679965], "Eu_sigma" => 0.30517972767875207, "Sn_sigma" => NaN, "Ca" => [-0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816, -0.6865443903229816], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.215758602049509, "K" => [0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402, 0.17318626841227402], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.3581014523584647, -1.3338923416070279, -1.3129149965889202, -1.30344707895075, -1.2897978415094542, -1.2898623053215361, -1.2927773795094364, -1.310951372226748, -1.310475682859797, -1.2992386890961662, -1.285699614204197, -1.2908477587690501, -1.2752697904976442, -1.2697634012154744, -1.2683296779769508, -1.2683270530589157, -1.2547103073453985, -1.2504688501637917, -1.2431737236983387, -1.2375008043766613, -1.2297965194299467, -1.2271362460988342, -1.2241572965209209, -1.2218786460988704, -1.21725624257651, -1.2161976459932207, -1.2120731402055003, -1.2087804726486175, -1.203748192242487, -1.2059062992176464, -1.2054461451998977, -1.205802152475818, -1.2047732321747078, -1.2019399094981782, -1.1983121292969308, -1.1926381093719778, -1.1898615433791033, -1.1897294603593445, -1.1942707268457604, -1.1906806697703178, -1.190887142353398], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.09357207438912982, "V" => [-0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937, -0.6575773191777937], "Yb_sigma" => 0.6065449216275749, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [-0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607, -0.22549836898710607], "Ho_sigma" => 0.5820668060528723, "Pr" => [-1.421154951325572, -1.4080449812663018, -1.424954256543587, -1.4220786216048615, -1.411550258465202, -1.4108859921865415, -1.3975718095908847, -1.393518181932174, -1.3862133502977125, -1.3785085099280618, -1.363013267033819, -1.3627462046004466, -1.356088616498615, -1.3590274294761415, -1.3545782842009775, -1.3554695865108009, -1.341303353818141, -1.3349273876585632, -1.3278339212649173, -1.3278696303381852, -1.3220337426251054, -1.3253918055190568, -1.326928359404434, -1.3242158376681008, -1.320142758047523, -1.319449488318647, -1.3166295009136944, -1.311973480523717, -1.3088571734539316, -1.3099573421914679, -1.3107379148070308, -1.3134947521037874, -1.3164282843748958, -1.31913149752795, -1.3184333243904052, -1.3136989027596684, -1.3120073754008104, -1.3132938588046832, -1.314614249081387, -1.3126207285335716, -1.3075216935007576], "Pm_sigma" => NaN, "Th" => [-1.9511333563941307, -1.9622812897246265, -1.9534931594208718, -1.9432787317250684, -1.9247297492899955, -1.9089776202624114, -1.8912881533231374, -1.8671462005192327, -1.8485271588101104, -1.8182102305022034, -1.814080179523272, -1.8032804822535864, -1.7889958155113947, -1.7749204967818373, -1.776691773782479, -1.7603657934545294, -1.7493880226357064, -1.7426324759659078, -1.7354033057238794, -1.7262730756601004, -1.7058983542125352, -1.688319593466792, -1.6765294947788947, -1.6636294091388786, -1.6496172711822756, -1.648474745836197, -1.643796709059516, -1.638470639555886, -1.6354576241843302, -1.6345560231653604, -1.6317094663674137, -1.6284400314351295, -1.6248640659429563, -1.6196407766368432, -1.6123131653475278, -1.6059712924678904, -1.6036852638484442, -1.6004363320645116, -1.599542877712968, -1.6014994355377226, -1.6005724637514507], "Y_sigma" => 0.5850483741480041, "Zn" => [-1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695, -1.120552797034695], "Ni_sigma" => 0.31744159242889897, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328, -1.1410325916880328], "Pr_sigma" => 0.5533039912971068, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => 0.3733244151478102, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => 0.14409894038365864, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.5905756595638263, "Er" => [-1.5998292462364179, -1.572889838042509, -1.5971957844037104, -1.602071867957921, -1.5899892021963729, -1.551108621237741, -1.5560388535698837, -1.5276131676613376, -1.52120809213983, -1.5071041217555254, -1.50499243129238, -1.4902904047603576, -1.4873042290492888, -1.4833420763340055, -1.4772745751141763, -1.4766754999800533, -1.4822523420893354, -1.4738512997903566, -1.4716606163318315, -1.4659234042913927, -1.4556954460630616, -1.4489235675985168, -1.4504678351623335, -1.4424014302297448, -1.4449571445717362, -1.4421420902575468, -1.4386800069341104, -1.4373575177770743, -1.433414651816245, -1.4317662227612813, -1.437542835138527, -1.4284456530289706, -1.423893325030918, -1.4262837841276956, -1.4208829626253692, -1.4126170138331442, -1.4181715815150926, -1.4188700854898912, -1.4183283028311071, -1.4150995436693663, -1.4142671496794001], "Ge" => [-0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505, -0.03133471190361505], "Cr_sigma" => NaN, "Fe" => [-0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673, -0.8966799510906673], "Pb_sigma" => 0.4195626443249216, "Zr_sigma" => 0.6886963769256609, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-1.3551752725646005, -1.3951891732930488, -1.4098839480006473, -1.4138075965182244, -1.3691568738046933, -1.4119160263219028, -1.3857447404151293, -1.36811892519033, -1.3647954280451098, -1.3807001492725108, -1.3645311036148224, -1.390037656531558, -1.389361952278857, -1.3987788096893634, -1.3920408259420054, -1.38423525595456, -1.3676432343242584, -1.3654859856567558, -1.3578434107083592, -1.3586665282016737, -1.3780713797632786, -1.3834512337012983, -1.385638797156715, -1.3911209444736452, -1.3898224766495129, -1.381456247643609, -1.3876230462584218, -1.3990446566714207, -1.4045863240534273, -1.4119687818664017, -1.4188307020697197, -1.4197475459104292, -1.4156621022204792, -1.4168758656549383, -1.4212891439686062, -1.422147947285855, -1.419438757765696, -1.4209047579602907, -1.4236361665947537, -1.4155031611393063, -1.4171805579331351], "Ru_sigma" => NaN, "La_sigma" => 0.9780738345687149, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => 0.24835008707208103, "Li" => [0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748, 0.2600713879850748], "Dy" => [-1.5997221527898178, -1.557699829393495, -1.5208664408855161, -1.5084795666002788, -1.5149015728384438, -1.5095631012953132, -1.486726326261186, -1.4947501266997703, -1.4846821443839702, -1.4674436678571472, -1.470978129638451, -1.4744403009483387, -1.4706926864637313, -1.4679661294345052, -1.4639398689946999, -1.4583938715116136, -1.4483739176876396, -1.4380815078951146, -1.4281923961081007, -1.417486111421948, -1.394384670349682, -1.3934468806802198, -1.3817687221959447, -1.3748013762827676, -1.3737144900914948, -1.3790173855457164, -1.3731689100227171, -1.372514867367332, -1.369662245367813, -1.3642579153561085, -1.3599092053956, -1.3611120614247287, -1.3594089841700894, -1.3558826575059024, -1.3605472584480602, -1.356665239697827, -1.3517220666306455, -1.355846677184377, -1.3577051977532577, -1.3530628011719397, -1.3553724100673645], "Ti_sigma" => NaN, "Th_sigma" => 0.5405702065756163, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488, -1.2197208136467488], "Nd_sigma" => 0.5158868902649014, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-1.9007658162859127, -1.8908606988915861, -1.90577515271184, -1.8996279410238468, -1.894573597423569, -1.8906894586731502, -1.882350242145444, -1.8641751113510827, -1.8516464665056036, -1.8511659980756199, -1.8349710582913545, -1.8274835854882383, -1.8184261871015222, -1.8124754588392524, -1.799569324377494, -1.7944693674946823, -1.7864937059358914, -1.7784108259970275, -1.7661667729920143, -1.756218988154552, -1.7461956075820775, -1.738096311927032, -1.732425035897898, -1.7291002758325555, -1.7231909228969835, -1.7161385224317345, -1.7093537595302233, -1.702029956653033, -1.6970799543200845, -1.691623443829846, -1.6891835346076114, -1.6855453411014047, -1.683199016866472, -1.678801859816416, -1.676705477214505, -1.6743323033492394, -1.6701337166257282, -1.6666411283206408, -1.663067396971795, -1.660497930960497, -1.6585902707231266], "Tb_sigma" => 0.5486144646458587, "Ca_sigma" => 0.08133697868244305, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-0.2682030891635362, -0.27542200418582286, -0.26670261190886685, -0.26460425150735895, -0.2744876307822018, -0.27751741431809424, -0.2671437426056043, -0.27218814678820996, -0.2702284794923765, -0.27010171279894263, -0.2672605243922505, -0.2669576283044913, -0.2673701259592195, -0.2673821649419295, -0.2653763466781716, -0.26729407855289533, -0.2632154634980792, -0.2616211857289353, -0.2563339595835855, -0.25720153032187587, -0.2526587079894445, -0.25304387128298395, -0.253637588207623, -0.25536327928353203, -0.2534191229331142, -0.2550583866063619, -0.25560401912174135, -0.2559983422282182, -0.2579667742712572, -0.2582038006953228, -0.2599421942888843, -0.2612687213981064, -0.2643301458331464, -0.2641484582699844, -0.266795511927594, -0.26906177920707997, -0.27005272855334284, -0.26833611428202464, -0.270557077054073, -0.2724377585390317, -0.27280743397233087], "Sr_sigma" => 0.2875923077596786, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => 0.6695900081094008, "Ba" => [0.8007590400067306, 0.7905470365276216, 0.7827591866143337, 0.7780565985525794, 0.7729405364751775, 0.780836519506578, 0.7849184736506412, 0.7841783357044108, 0.7869408151430931, 0.7877142902245646, 0.7856255952579008, 0.7878536796380501, 0.7941173509619189, 0.8011429435287345, 0.8080677475107967, 0.8150601558350014, 0.8183497866282302, 0.8193965099519237, 0.8225138957167162, 0.8252852792641232, 0.8267902752907109, 0.8292292772431504, 0.8301617759930204, 0.8299650362681809, 0.8317855377952561, 0.8347200789522925, 0.8395468843431902, 0.8441510969540501, 0.8478837983289008, 0.8512428123001912, 0.8511857428946494, 0.8506745605423813, 0.8528833150967416, 0.8559669224053366, 0.8548084873155442, 0.8581529078845084, 0.8585468790919245, 0.8582434911493095, 0.8566008099098915, 0.856261805950403, 0.8549581597834686], "Nd" => [-1.4079320533170396, -1.399575556014901, -1.425366087345826, -1.4056607473452454, -1.3943275551701124, -1.3940232807851027, -1.3844524063302837, -1.3718065809117268, -1.3642537599326194, -1.3676867517262459, -1.3605444735436218, -1.358464206648754, -1.3542480861406494, -1.3556275865308058, -1.3537918692921285, -1.3475457584918848, -1.3451384660833445, -1.337043075084759, -1.3322148169715244, -1.3281234191891613, -1.3295251714719332, -1.3260968332900023, -1.3265295447510859, -1.3207617274233716, -1.3182158998869122, -1.314559620173165, -1.3110986585937765, -1.307847718564631, -1.305302858646511, -1.3074372278687787, -1.3050936362095062, -1.3048024520214934, -1.3079224549037172, -1.3056453010949924, -1.3033788149177203, -1.3020190325422138, -1.3009740018763722, -1.2970566429919697, -1.2997485646125644, -1.2976642480841256, -1.3039787838531804], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [-1.5701585042898478, -1.5420715424380584, -1.5435235768972329, -1.4919129522402623, -1.4838908159697954, -1.4502707680325428, -1.451654500323635, -1.4344704890006232, -1.4383357249144002, -1.430123339594064, -1.4291559061737933, -1.4217108231624214, -1.4167130498586, -1.4209119651080335, -1.4156898360333658, -1.4105899985048387, -1.4046648071518963, -1.4016753813882246, -1.3934719876390982, -1.3869551055014695, -1.383992626799287, -1.3823931000495104, -1.3755745342045416, -1.3662079753391017, -1.362686430193502, -1.361558343818565, -1.3569306228164262, -1.3538704342880779, -1.3548745357267828, -1.351391996749428, -1.350127554266977, -1.343531342378663, -1.3426722989576512, -1.342003247609931, -1.3426415190548455, -1.3363236156804987, -1.3394739780049782, -1.338704271133863, -1.3362162757331004, -1.3336595590251699, -1.3366685817137283], "Tm_sigma" => 0.5984867788289273, "Zr" => [-2.2889516082929036, -2.2429761424290704, -2.2270661319070624, -2.20054895725835, -2.169997164711525, -2.1423724798181776, -2.1348045435659913, -2.1157993350003648, -2.099592866746564, -2.07540341455929, -2.042446319189176, -2.0092234203691755, -1.9726634621916288, -1.9269050432471841, -1.9030613627473805, -1.8668763618380333, -1.8287827758336672, -1.793310926187009, -1.7754464370836942, -1.7407550864370436, -1.7216815560406917, -1.7012117685750523, -1.6909864653216378, -1.6689099117387511, -1.6519330575852145, -1.628853405037937, -1.610493424605701, -1.5863995283633516, -1.5703715772423925, -1.5520944562439558, -1.5396206277092634, -1.5283687101451828, -1.519316267340599, -1.509362898282209, -1.5013402913902698, -1.4954382775662973, -1.4859554706201223, -1.477015305816417, -1.471374735577747, -1.4636433685180579, -1.4539047563800704], "Sm" => [-1.4680866370289727, -1.4632544191190946, -1.438725754757241, -1.4173761647878143, -1.4391692205738602, -1.4432970761392647, -1.4426095781999486, -1.4381654133668218, -1.434806420233379, -1.41271124232672, -1.3955994024411933, -1.3863114640297238, -1.3811596677335554, -1.371125002116182, -1.3689543372922752, -1.3656873172978232, -1.3552108980234423, -1.351961454354022, -1.3481725335809098, -1.3410933497804327, -1.3374171881630876, -1.3320227602548365, -1.3246570833243483, -1.3231577687581355, -1.319264561067984, -1.3162215428393553, -1.317036779788748, -1.3151293936778072, -1.3109326425894985, -1.305831796851365, -1.2984198596130174, -1.2944206877328601, -1.2879486787855545, -1.2839195636528173, -1.290544112264264, -1.294434154015706, -1.2950158402306606, -1.3006633205053681, -1.3047788011075059, -1.2983135187431973, -1.3011274022852084], "Ba_sigma" => 0.26186951972003564, "Cr" => [0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165, 0.06069784035361165], "Cu" => [-0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486, -0.19353848018388486], "Al_sigma" => NaN, "Tl" => [0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893, 0.5646660642520893], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.8329464145510773, "Yb" => [-1.637415431347592, -1.6322765206510033, -1.6068033755073945, -1.5985668996774833, -1.6004803184376044, -1.595303776366414, -1.5717026168696056, -1.5635794305163477, -1.5626606729295778, -1.5682246573859246, -1.5656663571929426, -1.5556918199286187, -1.5564281128934323, -1.5455343695560946, -1.5412463191244812, -1.5318737195768242, -1.5305109393414342, -1.521353807999016, -1.5190814769518401, -1.512123613033283, -1.508716393710726, -1.50279963144279, -1.5001923441222675, -1.4962183943433047, -1.4920055165442427, -1.4943093808159231, -1.4953284385157564, -1.4892000226525706, -1.4888688972779676, -1.486649727532913, -1.4791837414646531, -1.4753367428280277, -1.4811904357885337, -1.484210568673361, -1.4849344134517315, -1.480435347079108, -1.484505841457079, -1.4848320080608217, -1.4811433743322846, -1.4823962588805797, -1.4858755405681325], "Lu" => [-1.6647027570177637, -1.6339358311871364, -1.6434977166928877, -1.635412931358511, -1.6168303849927332, -1.606315164750696, -1.5980732496891934, -1.597212149953068, -1.5847990154623512, -1.5836861263757478, -1.5735045596910602, -1.5530431191139245, -1.5568411993441253, -1.5579743914424649, -1.5543189690563743, -1.5527010021980119, -1.5647898876711661, -1.5507213887115874, -1.5402940651024162, -1.5421550929996521, -1.537591699721838, -1.532968768099106, -1.5307234162313499, -1.529830819982036, -1.520583927467308, -1.5192158252210313, -1.5180847179111108, -1.5137986248293747, -1.5113062066936165, -1.5130434117227711, -1.508793223976002, -1.5089806736234503, -1.5095173597911653, -1.5076478068741008, -1.5088982464467426, -1.5103712703207806, -1.5052419142432476, -1.510274031311798, -1.5136848916588466, -1.5129775409226907, -1.518941840301107], "Eu" => [0.240149888559948, 0.23319403779583414, 0.22708826119491224, 0.243623488069045, 0.262692627507252, 0.26968974412741115, 0.3026659901136448, 0.3169731889792399, 0.3275174917993069, 0.338010335442266, 0.3563959576429355, 0.3565496163672432, 0.36917046558861977, 0.37630760427462584, 0.38211431030766563, 0.39098836268026593, 0.4010199286769441, 0.4085308497777236, 0.4193060315789669, 0.4285772910782969, 0.4357040251372537, 0.44378096090474084, 0.4498973528217098, 0.4568677993556986, 0.46459098482882116, 0.47123270692575836, 0.4764413238480898, 0.48198189739843794, 0.48667496324366394, 0.4884884006223037, 0.4925694536915876, 0.4965037980297877, 0.4979983442111576, 0.4987734480820875, 0.503243825023324, 0.5048218949608287, 0.5086880300738865, 0.513479974924205, 0.514554378863104, 0.5157741538159589, 0.5165642959638085], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [-0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553, -0.17197798735972553], "Rb_sigma" => 0.3260265867162335, "Ho" => [-1.5575740036169936, -1.5592220025655485, -1.5320478763387142, -1.5331376088708688, -1.506587621654297, -1.508803069777821, -1.4932823178878838, -1.5091386156744167, -1.4976577608892885, -1.513234295160742, -1.5104674296234117, -1.5066327428951656, -1.4957577927124726, -1.4792221675957153, -1.4659012982646642, -1.4552328469882656, -1.4508160773546148, -1.4506377593957744, -1.4452239862235354, -1.4448321528737296, -1.443279380802593, -1.437658577951095, -1.4272973943958691, -1.421720421605587, -1.4151650157537885, -1.413252880084206, -1.4084175470492257, -1.4040036177946458, -1.4028176926701883, -1.4019043659739099, -1.3972150975495212, -1.3984634676518297, -1.4047628852429477, -1.4029250594400917, -1.3984264110937292, -1.3980766006871148, -1.3980275966951512, -1.3926477286754189, -1.4012916260689614, -1.4005491124519986, -1.3996364913896877], "Co" => [-0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881, -0.7273464417670881], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-1.6109862936646697, -1.5991234178706393, -1.5889688798765327, -1.5996793684269868, -1.587161783613362, -1.5631253422682403, -1.5511467600763627, -1.549237088987095, -1.5390738235798151, -1.539148066382087, -1.5405797272428703, -1.5391319882354024, -1.5258234886581643, -1.5190204532470764, -1.5088313138094989, -1.4997273413785592, -1.501860649864704, -1.4947879585453543, -1.4863686847286701, -1.4891500256700299, -1.4847881096140338, -1.4772388946111314, -1.478734875084319, -1.47703415822874, -1.4690939090528605, -1.4605709002291214, -1.4594229513208399, -1.4489882759351056, -1.445687348839669, -1.4443669800225507, -1.447446694628808, -1.446007193358202, -1.4450991498429524, -1.4421186189851904, -1.4447184154427508, -1.4429539632100294, -1.4458662444116457, -1.4554007266973907, -1.4623042916965552, -1.461625727194175, -1.4600694531898546], "As" => [-0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198, -0.6729117290610198], "Sn" => [-1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => 0.1332279829760818, "Ta_sigma" => 0.8117543453936363, "As_sigma" => NaN, "Gd_sigma" => 0.5199876372377493, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.3503911191822845, -0.33298609109501703, -0.3332996555403795, -0.3264546888961533, -0.3133608521333971, -0.3113031295058822, -0.3030578092398613, -0.2976119563247282, -0.3023632648100338, -0.300543590218451, -0.28854485684478215, -0.28446807051776657, -0.28574354449929024, -0.2801520966583792, -0.2774948613361801, -0.27337916952127006, -0.2743967257565483, -0.2690029186698169, -0.263439393362768, -0.2626814237219274, -0.2582833783704677, -0.2529740593453407, -0.25218383815450984, -0.2488430732876841, -0.24328583023684042, -0.242041465326303, -0.24018062366163445, -0.2337902513278323, -0.2334606836268936, -0.23476321307275042, -0.23299564983018223, -0.23253707143991675, -0.2337103173751143, -0.229432785683462, -0.2256331040441583, -0.2263596531458073, -0.22350332988734742, -0.22100681384963583, -0.21952311440916805, -0.2170712912527876, -0.2156896516353643]), "Albite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-1.8800991167759569, -1.8405010174809642, -1.8291879989183961, -1.8049934833093388, -1.7803498072859698, -1.7756204732767877, -1.7700503772585923, -1.7424864485850466, -1.7301772692015178, -1.7086335693392651, -1.6618530076653784, -1.6246396279245459, -1.5779533285391971, -1.5272064841648643, -1.4738200765459588, -1.4167801092017611, -1.3492651566810308, -1.2710349372683636, -1.1842868386103402, -1.0918789955966337, -0.9975211217260093, -0.9032989113366322, -0.836100630700811, -0.7785926606651745, -0.7424326388400305, -0.7276343019054511, -0.7244611950655152, -0.7225320661997966, -0.7253174330534813, -0.7309656140035556, -0.7340871552675181, -0.7401724117851712, -0.7461049178203927, -0.7508200945148122, -0.753240505342726, -0.7532371357414429, -0.7478148765027053, -0.7370184215017318, -0.7324709202732494, -0.7285011779837601, -0.7285508808260712], "P" => [-0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356, -0.7714623322891356], "Si" => [0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913, 0.00470099829628913], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-1.4701899051821847, -1.47299165811918, -1.4719317254148852, -1.4693128638802324, -1.4630456200640116, -1.4537861501743163, -1.444296965054819, -1.4464770612907276, -1.443903862593937, -1.4379859627586964, -1.4301423484938056, -1.4234924648395149, -1.4110843913401148, -1.4031057431041951, -1.3959410431887294, -1.3905217706913566, -1.385232994467292, -1.379100924234324, -1.3711462925418363, -1.3662712727161626, -1.3628662513973147, -1.3562310545986502, -1.3527407245398357, -1.3474952076603295, -1.3403890199554844, -1.3338162108625766, -1.325084595814375, -1.3170434892701857, -1.3070450065922283, -1.2946400695791438, -1.2824478614697663, -1.2728122179244676, -1.2608282041445855, -1.2535601215423833, -1.2460788260352311, -1.2421510814048715, -1.2407025179115052, -1.2356807802628615, -1.2367879601143095, -1.242977864249558, -1.2440841714087876], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [-1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624, -1.4386218330464624], "Nb_sigma" => NaN, "Cs" => [-1.0568650996179532, -1.049537980389875, -1.0500827049883807, -1.056406844185416, -1.0616053270303931, -1.058814397129918, -1.0652135810380623, -1.0652638582277894, -1.060894422665138, -1.0579051785316205, -1.0659421699162905, -1.068008789886291, -1.0789127748136167, -1.0849371706018625, -1.1000758980539107, -1.1099462977486965, -1.1223880821220489, -1.1263166196825756, -1.1389861028575565, -1.142099700151863, -1.143842104357857, -1.1438652791867503, -1.1437364683174276, -1.1381916304409312, -1.133346283273519, -1.1291099275407557, -1.127032627327044, -1.1255723858302566, -1.1216154616849405, -1.1178750014119379, -1.1160250088884294, -1.1115097921444244, -1.1103776159576315, -1.1108991614894468, -1.1119641356970107, -1.1124189821397585, -1.1115908124201657, -1.1107990341359952, -1.1136842169998011, -1.119279181632873, -1.1204351476144632], "U_sigma" => NaN, "Ce_sigma" => NaN, "Dy_sigma" => NaN, "Be" => [0.09507447460156218, 0.0963592486433629, 0.09682657986525847, 0.09765759976030375, 0.09833656028048665, 0.0988171840763867, 0.09967337483489647, 0.10100921097309618, 0.1021230703762534, 0.10421658624668007, 0.10708464553437771, 0.10978551062178216, 0.11351292359374801, 0.11881842348735838, 0.12378230299750251, 0.1305752320899286, 0.13762255935341905, 0.1457896712669947, 0.15538838547230505, 0.1676686039633108, 0.18269014589873375, 0.19966877741702616, 0.2198435597227182, 0.24169639083730726, 0.2630281274880529, 0.2869015514178294, 0.31111151482594845, 0.32983264433392107, 0.35052046826711625, 0.36850394067940917, 0.38073104602578656, 0.39337568373860565, 0.40723365392590005, 0.41646217337004765, 0.4248953091965725, 0.43261304547300794, 0.43798579250789127, 0.4377718706038424, 0.43867261819923364, 0.4390694668005611, 0.43878974262209813], "Sr" => [0.6177039425467852, 0.6195714871501313, 0.6177598887288099, 0.6193834191940172, 0.6196428036544714, 0.6184999388222986, 0.6174598334529707, 0.6185020625876488, 0.6174659934033944, 0.6188133512871752, 0.6201577593119919, 0.6212619933012513, 0.6223425488863323, 0.6258218341287548, 0.6284221535916688, 0.6307760973167243, 0.6340992842746145, 0.6418162645533941, 0.6476764286298388, 0.6547280559498222, 0.6627499187173114, 0.673990571449005, 0.6823013340860272, 0.6931031593715312, 0.702768358876844, 0.711184606118593, 0.7172733225345199, 0.7233830115217371, 0.728737342465798, 0.7340763087480525, 0.7388200855639075, 0.7413183712298648, 0.74358306379662, 0.7462067398824139, 0.7488763289864999, 0.7507786559947899, 0.7541191828897423, 0.7566469792276577, 0.7555224174998236, 0.7561195400020733, 0.7541699252599554], "Pt_sigma" => NaN, "Ta" => [-1.5400469283536629, -1.5406985117459022, -1.539993314617656, -1.5394854641392408, -1.5372663754880713, -1.5369549877250355, -1.5365582409148206, -1.5353345232713718, -1.5347973553189675, -1.5359701074159675, -1.5362427982451319, -1.5371351857289337, -1.5404837638544955, -1.5455764695072407, -1.551221024716302, -1.559688118748718, -1.569178562648949, -1.5788759472123797, -1.589406682057483, -1.5997346011319777, -1.6078556496909762, -1.6174147676050323, -1.6246658275374724, -1.6274599538301855, -1.631809625643238, -1.6316024556145752, -1.6264378706943754, -1.6216669133838828, -1.6161761416310505, -1.606647768151558, -1.6000680640238494, -1.5954512998200254, -1.5905930032913893, -1.5851449239630695, -1.583139638948559, -1.581143390352423, -1.5781656582789834, -1.5767224074692747, -1.5785099351130956, -1.5814899152072464, -1.5846895301604456], "Ga" => [-0.0791116381214208, -0.07684650645552212, -0.07649693813495635, -0.07452358825394254, -0.07317747364425399, -0.07175026998079742, -0.07054739724517994, -0.06727472031967488, -0.06414384392810907, -0.059172623647469974, -0.05327433776068288, -0.04632669607516743, -0.038057304236274264, -0.02796251025318272, -0.015969374919457623, -0.002656197290217221, 0.012557152665244879, 0.02843409154299691, 0.04664862913607461, 0.06301587694676798, 0.08136482756169335, 0.09390520856225255, 0.10459684845861429, 0.11137591475321072, 0.11594851609068148, 0.11489187970918903, 0.1142412239090257, 0.11100007029863442, 0.10792657297538817, 0.10333816301586025, 0.09916153062801625, 0.09535707855867899, 0.09193379201626771, 0.08788212539515647, 0.0846835884901758, 0.08197493645702611, 0.07995243328348536, 0.0779635843880375, 0.07778275332604724, 0.07748162358763956, 0.07820225803674881], "W_sigma" => NaN, "Cs_sigma" => 0.2637390090364028, "Y" => [-1.6062601809295307, -1.5895091527859189, -1.5808147950116367, -1.5755376389308995, -1.5696451333349017, -1.5519403626267003, -1.5497091371685925, -1.5374931791668507, -1.5338031227004865, -1.5232375881133149, -1.5125931471878309, -1.5006548808641227, -1.4904323892813092, -1.4722707875619294, -1.4579020573839894, -1.4440759035601238, -1.4221063657148314, -1.3962222193993559, -1.3685515722201238, -1.3361771274789502, -1.2975825156032492, -1.2584441843939334, -1.216233898665088, -1.1709210610932606, -1.1311446452709801, -1.0974810392467644, -1.070958124663915, -1.0513624184183639, -1.0401723459309566, -1.0354747994450073, -1.0304934500389968, -1.029281757010377, -1.0282371451171908, -1.0346682218062009, -1.0338887273524098, -1.0373570436663704, -1.04095572763251, -1.0492087141360273, -1.0500475693038256, -1.0560716737041043, -1.0622748982195012], "Sm_sigma" => NaN, "Lu_sigma" => NaN, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.4909478776632186, -1.4941379258093015, -1.487611470648183, -1.4877894870520083, -1.4847062987756274, -1.4852983384593847, -1.4848543476865457, -1.4897644669323644, -1.4905887152480788, -1.5019001354495498, -1.5101860699191998, -1.5216815377458626, -1.5339327662570363, -1.5512303135150534, -1.5678778393050314, -1.5843030852693367, -1.6006155292078377, -1.6170829509094022, -1.6336910893976195, -1.646893235281133, -1.6576790443157612, -1.6673160070110997, -1.6739997681619043, -1.6671311602463175, -1.6617446725953207, -1.648625311899841, -1.6268278699874206, -1.595488371204021, -1.5678808407384754, -1.5340286802410508, -1.507265538602201, -1.4815652131872628, -1.4561974392376866, -1.434536710214099, -1.426202319919346, -1.4179654371449963, -1.4120516061246389, -1.414875774254934, -1.4264054701391495, -1.4193602489513855, -1.416133028068145], "Eu_sigma" => NaN, "Sn_sigma" => NaN, "Ca" => [-0.17561077038593056, -0.1733894293166028, -0.17233869970383972, -0.17046082064126178, -0.1676015060771283, -0.1654562077741404, -0.16283784214497757, -0.159225773004705, -0.15549873988407314, -0.15085984809211497, -0.1461066796224937, -0.1402724216859874, -0.1341594931145982, -0.1278869802020982, -0.12093876261632112, -0.11316730076893362, -0.10491612799618412, -0.09620470787935859, -0.08720548693915735, -0.07847059200841368, -0.06960892513570617, -0.06286021011736682, -0.05615426349287846, -0.05089038150641532, -0.04628395101196999, -0.042411689588191526, -0.03898944026448945, -0.036375189622565064, -0.034200859773288204, -0.03247950504884933, -0.031574143375648456, -0.030289941139643006, -0.029381719845765764, -0.029000588660406668, -0.028640325085386165, -0.028303832151848434, -0.028325739954676465, -0.02816210253140387, -0.02759635411305676, -0.026738156631247196, -0.025788834902666074], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [-0.1901734742724599, -0.1910240572867409, -0.1921644396705786, -0.19310135549058863, -0.19522141551052252, -0.19704226806740688, -0.2001615156758687, -0.20382091460473384, -0.2073439132998179, -0.2105781510631982, -0.21375845474141583, -0.21727513722992434, -0.2208751944982356, -0.22424572578646607, -0.22760247339809814, -0.23103923758669853, -0.23413065943774955, -0.2363261925158502, -0.23855251120149265, -0.23953827500359415, -0.2405388775898413, -0.23996255449353043, -0.23775515420629492, -0.23559368166800007, -0.23268508430743698, -0.22859189909898622, -0.2242740914392396, -0.22114303148693523, -0.218501170000013, -0.2171035112424471, -0.21672881449540257, -0.21592917597339026, -0.21561431971784106, -0.21368707296829323, -0.21442075877494968, -0.21187405786499128, -0.21024248350289954, -0.21023770423537233, -0.2127004930075139, -0.21087513931351967, -0.21242708101345112], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.2155702656678988, -1.2098983354087425, -1.2050046581987022, -1.200539026061916, -1.1967384815231432, -1.197622436672171, -1.199174216775062, -1.2043219268106422, -1.2035062176129017, -1.1981137808759386, -1.191917786779196, -1.1893991763038392, -1.1817107797240873, -1.1766210019396979, -1.171592534185135, -1.1658736533356822, -1.156956235970989, -1.1496913961356687, -1.1404762737768186, -1.1341794846482782, -1.1255003180486223, -1.1212872963659686, -1.1131915152724103, -1.1081466168382843, -1.0973500739843332, -1.089407080057332, -1.0771897434653555, -1.0673263594545337, -1.0565471193504117, -1.0477321165477003, -1.0401106310314048, -1.03036025744667, -1.0248901707429356, -1.01559403548893, -1.010096827879327, -1.0034178399697053, -1.0015938256704535, -0.9951084306962352, -0.9948006136479751, -0.998246900685949, -1.0034159903851216], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [-0.9264714268169285, -0.9252302385010422, -0.9260839171726429, -0.9270157355790687, -0.9280432656006798, -0.9269687201980823, -0.9283052075565357, -0.926801875523662, -0.9260808552679904, -0.9234177968242558, -0.92039941680815, -0.9171310910232369, -0.9151216541775653, -0.9122910274683294, -0.908894415538035, -0.9054690142062913, -0.8992031884117562, -0.8921185960797109, -0.8849869151349157, -0.8770221887446659, -0.8679294765532533, -0.8600609077608452, -0.8500500381785958, -0.8383226980138143, -0.8263354013488097, -0.8166703947766867, -0.8052274146084418, -0.7982061811839949, -0.7943045147992365, -0.7893118825680514, -0.7857892765139824, -0.7834550347295544, -0.780607996205551, -0.7744947690313766, -0.7744742147514689, -0.7737101617031241, -0.7742261519127128, -0.7711743680528069, -0.773681967511255, -0.7700694317148095, -0.7686183991480173], "Yb_sigma" => NaN, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [-0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295, -0.38972553382093295], "Ho_sigma" => NaN, "Pr" => [-1.2720128612293535, -1.2713557915874416, -1.2796005668240606, -1.2799091170556627, -1.2771648459699996, -1.2773502970733959, -1.2721978913917231, -1.2701810960065714, -1.2673142314200871, -1.263461166728008, -1.255713479446861, -1.2536501361636754, -1.247502775457298, -1.2447619362216464, -1.2404935196196754, -1.2374234757939355, -1.2285555170387448, -1.2241719675903913, -1.219522782200303, -1.2153854478236246, -1.2126573445361801, -1.2120149334818688, -1.2091571300616757, -1.2035811632163333, -1.1956553853669956, -1.1877386580898375, -1.1783699915318409, -1.1666956161980322, -1.155848267914493, -1.1483941315331132, -1.139978905733285, -1.1306356662703094, -1.1260066547112302, -1.1190058351086067, -1.1119227813759747, -1.1070413537795252, -1.106572580033918, -1.100647249257767, -1.1018311810193169, -1.1018775287786704, -1.0939848107508825], "Pm_sigma" => NaN, "Th" => [-1.5828823159546799, -1.5876707895037632, -1.5865352790778744, -1.5837750564398512, -1.5788359039296134, -1.5781950070697268, -1.5771798657017093, -1.5754125969314614, -1.5768556862180814, -1.5773073281002195, -1.5846957211935717, -1.591193453344218, -1.5984203150014278, -1.608195439807223, -1.6220198624721822, -1.6310259676024572, -1.6405768202630018, -1.650068331903503, -1.6558213387923526, -1.6613670986936881, -1.6596776930290282, -1.6586232809331207, -1.657459291260917, -1.6544920566878518, -1.6464738394724832, -1.6433473329530905, -1.6360660505315057, -1.628331413735023, -1.6196934382245447, -1.6122025380153204, -1.605033078968652, -1.5999740890921856, -1.5944146553270029, -1.5889226304197095, -1.5852612982619032, -1.581372239834938, -1.5759093481726774, -1.574029157897808, -1.5736914476702546, -1.5706185806352506, -1.5664921022252811], "Y_sigma" => NaN, "Zn" => [-1.0539084415422508, -1.0495212976630421, -1.0444032242384538, -1.0382654045612412, -1.0294854912591973, -1.0188791993177264, -1.0103643770221156, -1.0006419724479358, -0.988913122973639, -0.973125986437902, -0.9576880142845676, -0.9407643720783829, -0.9211844234007489, -0.898904602088342, -0.8784588728224583, -0.8601524647659662, -0.839810770005682, -0.8173841609008712, -0.8013141842910915, -0.7884162843541797, -0.7757535474368558, -0.7652929129430959, -0.7614187677887372, -0.7579471126289739, -0.7546238585457095, -0.7520836124638605, -0.7541348853664995, -0.7560924088895955, -0.7590542627846665, -0.7614541471633964, -0.7650566038957503, -0.7669618698995312, -0.7691466430906198, -0.7680137105378942, -0.7687363483166085, -0.7677984354905402, -0.7667799174486781, -0.7646141307220885, -0.764963142645186, -0.7634598902350443, -0.7625223834595868], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-1.270919518203053, -1.2715007067550599, -1.275600015937886, -1.2734251017181393, -1.272372363760491, -1.2770199472411323, -1.2767729999551642, -1.2740448295658833, -1.2729472950280782, -1.2706796775648979, -1.2665623680353346, -1.2630460392447693, -1.2608602605139347, -1.2602237807166377, -1.2604086828437668, -1.2622679399625247, -1.2647388558924493, -1.2674671405555822, -1.2673543446799709, -1.2673705099060915, -1.2633253041668433, -1.261915593284964, -1.2580114940846856, -1.2555220432097514, -1.248036411753066, -1.2438149064156612, -1.2353585306334225, -1.226061012256458, -1.2192512020280168, -1.2104637542398784, -1.2022745740854417, -1.1948694474997659, -1.1935660007501365, -1.1897411136454565, -1.1909034826149472, -1.1959715803718336, -1.1988263714634075, -1.200023326558454, -1.206485901202951, -1.2187275727219156, -1.2221834045691435], "Pr_sigma" => NaN, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612, 0.1550508182338612], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => NaN, "Er" => [-1.6615815532032439, -1.653296146073976, -1.6615987903618388, -1.6609151342298898, -1.6543013366887627, -1.6382533499091096, -1.6359655622121716, -1.6205156385962456, -1.6148000638809814, -1.6052078186009207, -1.5997447408901755, -1.588248815269407, -1.5822282200625188, -1.574255076373783, -1.5650989686039045, -1.5576984418330913, -1.5547311972355278, -1.5461661466491006, -1.5391842860081753, -1.53251892447482, -1.5227476141441167, -1.5149762002803893, -1.5089771190142203, -1.4978021701499686, -1.492717437829924, -1.4835362841962658, -1.4730688820091922, -1.462549673753524, -1.4543080513214823, -1.4441916100231105, -1.4372066936899157, -1.4243985932881482, -1.4159148418168168, -1.4086119228110443, -1.4013898275387848, -1.396977696745071, -1.396284287490906, -1.398629083454045, -1.3981845522194372, -1.396242532667016, -1.3927887908627348], "Ge" => [-0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208, -0.017209072836023208], "Cr_sigma" => NaN, "Fe" => [-0.7511811512409864, -0.7539942722273301, -0.7527139344388485, -0.7529692681710337, -0.7516102093817375, -0.750003697429762, -0.7480551247263206, -0.7469479176691625, -0.7445131071257777, -0.7418655662846204, -0.7399657273717977, -0.7361118850493563, -0.7330966235902476, -0.7285845082276053, -0.7253515547915645, -0.7201870961657577, -0.71720706166748, -0.7110812628129081, -0.7071580456277018, -0.7020790422868893, -0.6992020477738173, -0.6953621533058856, -0.6932846899762001, -0.6917366679374236, -0.6893358433231089, -0.6880625949167989, -0.6871291758194493, -0.6868426343983199, -0.6854748487293683, -0.6857064992867414, -0.6848535777858786, -0.6838831032754409, -0.6829304704903315, -0.6823694158708822, -0.6814023356041847, -0.6794605225352249, -0.6785070355237893, -0.678051009444364, -0.6771184684825476, -0.6753144939464738, -0.6743565378277436], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [-0.9057865163105916, -0.904996874217327, -0.9041502604768894, -0.9029484351759968, -0.9017009880329724, -0.9002593611200117, -0.8986101052234448, -0.8961806931857598, -0.894377120060308, -0.891179839125517, -0.8877791415619118, -0.8831626692879209, -0.8786249045274493, -0.8717699286953805, -0.8651514084110871, -0.8570702468033722, -0.8485858557732734, -0.83761244960691, -0.8272919367100925, -0.8155722274240764, -0.804508629111791, -0.7934105257554174, -0.7830970642252758, -0.7735421558759614, -0.7662655663955239, -0.7589981434720169, -0.7533296213411074, -0.7498724693810357, -0.7470747143952539, -0.7445045309318812, -0.7433104538457351, -0.7435834962880928, -0.7436320937107931, -0.7426316468803952, -0.7430394740782491, -0.7448421005821562, -0.7448634422744578, -0.7458760023384016, -0.7493832770720363, -0.7554321875648502, -0.7565945559589999], "F" => [0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904, 0.10346688094029904], "La" => [-1.147470532561903, -1.161732776253166, -1.1668999431759761, -1.1677661567129967, -1.1524530898304735, -1.1680083674330592, -1.1601105341266431, -1.1540154782324397, -1.1529919165822635, -1.1570158755920412, -1.1515834307700896, -1.1589099347150869, -1.1583729115392292, -1.1595785751168808, -1.1567408089517281, -1.1511897393803687, -1.1439756097102476, -1.1402709717309534, -1.135995272695574, -1.1340082850437339, -1.138435907260782, -1.1364082775733482, -1.1358088303995302, -1.1349280095185088, -1.1313737526267242, -1.1233167317948751, -1.1190291806063803, -1.114079559467279, -1.1065635555488484, -1.096577683583715, -1.0880915742902664, -1.079149154512207, -1.067342453614008, -1.058871044549868, -1.0543770066167477, -1.048894396649361, -1.0439551928764337, -1.0454857333419658, -1.0471879035901972, -1.0468508291007297, -1.0522187986627436], "Ru_sigma" => NaN, "La_sigma" => NaN, "W" => [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], "Au_sigma" => NaN, "Hf_sigma" => NaN, "Li" => [-0.16149995082683932, -0.16231203877336148, -0.16319860530671765, -0.16393968583577673, -0.1653579460715976, -0.1661730673320938, -0.1660686470521675, -0.1673483271335996, -0.16824947353097236, -0.16843368715052826, -0.16981552057665528, -0.17116634483296983, -0.17136515374139644, -0.17169420269573804, -0.1727585546788672, -0.17201338446552955, -0.17205704219438273, -0.17045255355543704, -0.16720955356257655, -0.1598419621214313, -0.1492781614014636, -0.1358285605248729, -0.11870832819532326, -0.10034845308433041, -0.08490430664659945, -0.06788404807715007, -0.05263122403847639, -0.042416842049851716, -0.03371869756805254, -0.023407350726901782, -0.01766908600861994, -0.01086945051886229, -0.005856499315689434, -0.0018021150137454978, 0.002119910757408139, 0.005321401266883255, 0.0063721469742290815, 0.010531931866895702, 0.012763187169495607, 0.012462949112325164, 0.012100410682679752], "Dy" => [-1.5786163215702753, -1.564310920757885, -1.549770449724119, -1.5460779407135294, -1.546116567647857, -1.5444091644553894, -1.5351238554711502, -1.5353606122948733, -1.528736389612969, -1.5204838431564471, -1.5161205770772144, -1.5110683338963924, -1.5047121267937615, -1.4974593954283497, -1.489852700293098, -1.4832095489993744, -1.4750392700779102, -1.467044641928246, -1.4594070251171665, -1.4511556000871042, -1.4394735458814563, -1.4364169709388275, -1.4272592700917468, -1.4201642464225, -1.4136036224228794, -1.40713517761415, -1.3950829960811875, -1.385802238130113, -1.3757561188655674, -1.3639347403175481, -1.3530935250447342, -1.3458479096904885, -1.3359712407582782, -1.3242077089745468, -1.3186540036623844, -1.3112868215863511, -1.3058986211709085, -1.3062819408123254, -1.3110106462709883, -1.3134901298913553, -1.3207055588712413], "Ti_sigma" => NaN, "Th_sigma" => NaN, "V_sigma" => NaN, "B" => [-0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409, -0.8142396518270409], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-1.5041222429097303, -1.5033604346274203, -1.5007631892125353, -1.499604775884377, -1.4994355248366953, -1.4993948120526823, -1.4974385341888006, -1.4958732612006518, -1.4940536586783668, -1.4917975390689715, -1.4887831909277942, -1.4862681991447335, -1.482790064822048, -1.479077484395656, -1.47388730160928, -1.4671084948500341, -1.4592922017936931, -1.450949972426567, -1.4381696168089686, -1.4249339465511912, -1.4114081144478732, -1.395342555046143, -1.3791211608057028, -1.3649915246542392, -1.3521969157614542, -1.3404983984127323, -1.3303054194501447, -1.3212866666119198, -1.312578920296566, -1.3050985692019508, -1.2986172135391376, -1.292822938788306, -1.2872910637552106, -1.283610944826477, -1.2799746260372185, -1.277278114223806, -1.2755917227617564, -1.2745587132224563, -1.2735363897913643, -1.2732138140433795, -1.2736222549413003], "Nd_sigma" => NaN, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-1.6106465271441153, -1.6066570667654771, -1.6132575998975855, -1.612083124915704, -1.6139878067557927, -1.6176998265260245, -1.6173868383976213, -1.6152475607573216, -1.614103358628184, -1.6142610991557254, -1.612088362706053, -1.6134124341029519, -1.6144271177411256, -1.6166527839327955, -1.6163998293401747, -1.6168662257221766, -1.6167492313322374, -1.6164880372889652, -1.6157546982721414, -1.6169722363364183, -1.6184454493081226, -1.6201094781788663, -1.6212766891132049, -1.6195752342907246, -1.618077642463831, -1.6092522905018434, -1.6001766919688778, -1.5901907607860413, -1.581398479927968, -1.5717658344609493, -1.5647173037966284, -1.5577789140735145, -1.5496427444724132, -1.5411252909366546, -1.5357614906511003, -1.5334654885099, -1.5288779542676447, -1.5239123072493592, -1.525833540675707, -1.5156171884480234, -1.508698273911306], "Tb_sigma" => NaN, "Ca_sigma" => NaN, "Cl" => [-0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842, -0.08614578342467842], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-0.6862220144642451, -0.6867302647959664, -0.6817144502082902, -0.6811759052909574, -0.6856964833697569, -0.6872174265518328, -0.6834372817266713, -0.6881032610767971, -0.6888212193802686, -0.6893287932883002, -0.6880835957110539, -0.6882294911116782, -0.6850822153905719, -0.6816100183821282, -0.6760022460425107, -0.6710961003971615, -0.662336617280166, -0.6550406624544305, -0.6436473541593396, -0.6345965441510607, -0.6254657328943302, -0.6180974887439418, -0.614596835213752, -0.6162495654900225, -0.6179004858879332, -0.6216961120699435, -0.625310375779213, -0.6299797372710897, -0.6345883260628318, -0.6384987874354324, -0.642212189031195, -0.6482304467610919, -0.6517472708794195, -0.6529504000771716, -0.656578654095667, -0.6612682768608099, -0.6609157078333093, -0.6605524372774982, -0.6603895422550551, -0.6594498776911072, -0.6544676860409236], "Sr_sigma" => 0.044237803280458135, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [0.38343773283515104, 0.38132844332557597, 0.37914378550829925, 0.3772021608025762, 0.37413066579797905, 0.37493220275668016, 0.37498090210991636, 0.37332206796080086, 0.37556766545358117, 0.3760091924792153, 0.3755104717640045, 0.37780167033124584, 0.3820076295228892, 0.3847066424224827, 0.39001681843123515, 0.3973241742530646, 0.40374302289299385, 0.41107150149072735, 0.42101755400201024, 0.4305734602400421, 0.44110383532779046, 0.4503031545192573, 0.4605128659421937, 0.46843761034854975, 0.476663391117905, 0.48213962648889724, 0.48962823340303324, 0.49021260890011775, 0.49353791285267046, 0.496900548446704, 0.4985961045648771, 0.49842761589833334, 0.5026150172632707, 0.5048732378724665, 0.503537530353048, 0.5058918253027103, 0.5075582430627743, 0.509068557596678, 0.5104119315000558, 0.5132099465036636, 0.5145246268362618], "Nd" => [-1.2957756105378218, -1.2982315071761688, -1.3068850879980216, -1.3004913503081494, -1.298018565233364, -1.2991514185915356, -1.2951967386873953, -1.2917498479458818, -1.2880163881834037, -1.286778493687432, -1.28271227402367, -1.2786785401941885, -1.27346930876737, -1.270650707734953, -1.266030178211299, -1.258381540809762, -1.253340055140468, -1.2472550265575537, -1.241360752595842, -1.236358523107982, -1.2337171572933336, -1.229746589036281, -1.2257040045687109, -1.2201966973642773, -1.2163662534340798, -1.2090383167719325, -1.2012330007285064, -1.1929426077442395, -1.182966270115812, -1.1745387899256796, -1.1626524012179675, -1.1540495977143583, -1.1446776336559046, -1.134707399618721, -1.1214219315170004, -1.1167587340459544, -1.107944879037384, -1.102622030669566, -1.099594401094083, -1.1012931534078472, -1.1054593176837797], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [-1.2291384655824165, -1.2298370339086326, -1.23036723947192, -1.2322957776928118, -1.2313292157671265, -1.2319211409079265, -1.2326711941221955, -1.231902824284398, -1.231330477683962, -1.2317451733011127, -1.2312652918586786, -1.231139810167588, -1.2317338007598462, -1.2301964002135513, -1.2291011693173697, -1.2266916288990606, -1.2245210915567173, -1.2211560810951099, -1.2201304100542452, -1.2192705425513777, -1.2169217627749858, -1.2138821720131463, -1.212356918611081, -1.2078714544800606, -1.2028344059238187, -1.1985757057310977, -1.1949154226715109, -1.190172479516011, -1.1850361749838154, -1.1803790435663106, -1.1786716782094464, -1.1725344255609778, -1.1664955877766774, -1.165910095293955, -1.1581103130893196, -1.1522514210839918, -1.155808863493333, -1.1495586223969223, -1.1401547513361314, -1.1402938497023907, -1.1262366361851464], "Tb" => [-1.5380646200023558, -1.5275880544844345, -1.5253969312530435, -1.5071005163326072, -1.5036651648502124, -1.4915251805315402, -1.4910975935669164, -1.4858404483098226, -1.48479339279858, -1.4802302737441055, -1.4778524592471005, -1.472017746913543, -1.466084788756107, -1.465709447384319, -1.4587194335339888, -1.452634468788234, -1.4484409087478796, -1.446087684932743, -1.4406154032462455, -1.4384938286912359, -1.4360017136202794, -1.4337255459011724, -1.4275142309608915, -1.4190721396691568, -1.4109455988789594, -1.4042193743610358, -1.394161175007988, -1.3835823514608674, -1.3767452324729161, -1.3654415689274597, -1.3565412030272157, -1.3444507774952843, -1.3357841428823258, -1.3256537562161668, -1.3237085306648306, -1.3166104481932666, -1.3169343705646526, -1.3161611307230476, -1.3145277922802432, -1.3094162813323729, -1.308567887551946], "Tm_sigma" => NaN, "Zr" => [-1.95207318926689, -1.9275795900380004, -1.9244092146283514, -1.9108215123898986, -1.8989919934638289, -1.887280735232657, -1.8853527177835727, -1.8789942415393361, -1.8787420540475592, -1.8724244545967927, -1.8596196354244028, -1.8448861602570616, -1.825749080375579, -1.7927708495479737, -1.765797414083645, -1.7313050305853623, -1.6887415908132744, -1.6399044984622324, -1.602368412444907, -1.5516884066515066, -1.5058628198255366, -1.4653183005624566, -1.4315560500212106, -1.391870723964479, -1.3606083161871978, -1.3260671809406785, -1.2983902294735863, -1.2745142937034788, -1.259374953008857, -1.2431736692320396, -1.2328805339745295, -1.225970741261017, -1.2189501585118978, -1.2103938751758505, -1.2045684270186117, -1.2010598147116616, -1.1952872436364017, -1.188896974461458, -1.1886795755261939, -1.1872796127921041, -1.18246425714283], "Sm" => [-1.4214667948110824, -1.421224364735502, -1.4142895666538964, -1.4071957285852699, -1.4149685627950033, -1.4160527368330271, -1.4150449855140537, -1.414054667697382, -1.4126069218837918, -1.4025012310995777, -1.395073789823125, -1.3894848749541453, -1.3834615538782888, -1.3748724160596677, -1.3687582127254416, -1.3610741347397635, -1.351106788129716, -1.344284413741622, -1.3379323122288802, -1.3319837515368824, -1.326709883450066, -1.3204817116397456, -1.3110084959476256, -1.30280470166819, -1.2931953452902178, -1.2837558847903032, -1.2742077732390282, -1.264919127247282, -1.2569123170366507, -1.2459837969419818, -1.23284256802097, -1.2244995529471023, -1.2143963814765382, -1.203646441380261, -1.198341867214078, -1.1959610610853695, -1.1919951574283283, -1.1929130122588036, -1.1913769350270187, -1.1913632752483707, -1.193490002607726], "Ba_sigma" => 0.2967735227267068, "Cr" => [-0.34647668048754293, -0.34784446599988, -0.3466790409263263, -0.34787274112474226, -0.3468450512983931, -0.3485651357224531, -0.3508135297803692, -0.3520334870218664, -0.3515112734336216, -0.3510745405850912, -0.34956806771557886, -0.34864103085147424, -0.348202611082149, -0.3472431097563886, -0.347476100877836, -0.34724016003570557, -0.34495828305717763, -0.3415573059592238, -0.3387028703196726, -0.3345599765700968, -0.32740427590934684, -0.3209674330331836, -0.3147408291568496, -0.3073304199804797, -0.29899691872080053, -0.294892213987764, -0.2884988882656334, -0.28511342252869726, -0.2855016971140735, -0.28826607605918614, -0.2897531624077701, -0.29519166065691826, -0.3002383323766591, -0.3026733906016583, -0.30845111345688603, -0.3140109209273435, -0.3212717927250925, -0.3302566086950593, -0.3385458203911009, -0.34705460149382167, -0.35760222491641036], "Cu" => [-0.7986743975789907, -0.7913610127552556, -0.7891017057241168, -0.7880753766999267, -0.7847961711995903, -0.7791326098765822, -0.7752604558379456, -0.7655921678442851, -0.7537950140548506, -0.73895944535121, -0.721066976124302, -0.7013443500607528, -0.6791097455701113, -0.6535183081497941, -0.6251541310958495, -0.5944733404047848, -0.5573904766566329, -0.515133900412958, -0.47204614900786496, -0.43172163094716454, -0.39492350113092717, -0.36337227070991057, -0.3430344729070658, -0.32457122498728747, -0.31010266675138387, -0.2965528797379795, -0.28833946972334873, -0.2813282847752886, -0.2764168204223053, -0.2750069978954711, -0.2764217349652306, -0.27740295695212414, -0.2774597983026311, -0.27784906927472486, -0.27692887158208257, -0.2754929027688049, -0.27274095025226075, -0.2717647629194293, -0.27273105711584056, -0.2709100708633472, -0.2714951772438828], "Al_sigma" => NaN, "Tl" => [-0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335, -0.3285913426821335], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [-1.7289578246998698, -1.725833922234637, -1.713763320048903, -1.708346658491033, -1.7088602704583973, -1.705741821994133, -1.6961699533201273, -1.6916182595843308, -1.6873598655715758, -1.6853255675085987, -1.6817235776638946, -1.672622874045519, -1.6660430537664197, -1.6574949766715268, -1.6487412787292144, -1.6357255922162788, -1.6265946385933752, -1.6154086446022136, -1.6055831167600276, -1.5941125785407058, -1.5860090468143386, -1.5774698940489422, -1.5715773801868096, -1.5637626594869454, -1.5546409768189182, -1.5463311104684878, -1.5375189003455996, -1.5272135146476187, -1.5176451657138512, -1.509960636337583, -1.4989650493251128, -1.488983791122858, -1.4788689024484434, -1.47218275672763, -1.4655050762631132, -1.4569361301905808, -1.4547146940141527, -1.4527190531097702, -1.4492349332473786, -1.4466955850956484, -1.4484770306944703], "Lu" => [-1.764001543704077, -1.7517530528042171, -1.7525595692805418, -1.7504315572223421, -1.7432014549305528, -1.733775936889317, -1.7286742855170794, -1.7222837254829575, -1.7127955490831583, -1.705560659240854, -1.6964291298548837, -1.6828418452706613, -1.6771088884753202, -1.6692135255502867, -1.6596667160770433, -1.6498610319618454, -1.6441221894451903, -1.6337949830477134, -1.6255001175369956, -1.620837992758721, -1.6159967429433735, -1.6114767483257229, -1.6037501314246077, -1.5965216937023652, -1.5864180306571327, -1.5750117026506867, -1.5639473994048687, -1.5548837250833796, -1.5418610463363207, -1.5294504076203654, -1.5216682562687156, -1.509693096560395, -1.4973141133242696, -1.4889925848621621, -1.4852421670162492, -1.477610532268332, -1.4754055727277364, -1.4762956469676285, -1.4794759082487887, -1.485660456669655, -1.4936687214439195], "Eu" => [0.17037907540039285, 0.16656790082898534, 0.16515226198895103, 0.1702565318014538, 0.1771290731583144, 0.18013032191249248, 0.19195319734700325, 0.1972231463650004, 0.2016035545850338, 0.20643794600649276, 0.21432125014526862, 0.21650485598706348, 0.22265633606475274, 0.22860597253747347, 0.23419812679051036, 0.2410540450022903, 0.2507724319787199, 0.2600153024295154, 0.271608732486384, 0.2850378945594185, 0.29834079797714724, 0.3112636139769776, 0.327588926129784, 0.3420465401355519, 0.3573161604839708, 0.37309688794607515, 0.38554038307597044, 0.3981315672250802, 0.40931354132755243, 0.4166727787593967, 0.42534104553911506, 0.4350287404797932, 0.44177758820007784, 0.4483367403818712, 0.4566251918128022, 0.46243704572894373, 0.46671179130457685, 0.4695016589977145, 0.46818250084946095, 0.46785658345379444, 0.46476999601125574], "Na" => [0.11085858252229047, 0.11089751675700871, 0.11138649934816516, 0.11160669692676027, 0.11187651878299543, 0.1125422798721024, 0.11318293114658898, 0.11299429400650934, 0.11408866352506299, 0.11503658108465072, 0.11635042513167429, 0.11823530795415874, 0.12130712726356346, 0.12436012020493405, 0.1275566508012686, 0.131892169901296, 0.1373292894155192, 0.1433851914617583, 0.1494151341685271, 0.15558234803734808, 0.16140019862277116, 0.1665287647897074, 0.1716016626317724, 0.17585058203324647, 0.17969212134357226, 0.1829935264341752, 0.1858190098343283, 0.18794479634921618, 0.1898320907121027, 0.19197940773325206, 0.19370133709484105, 0.19521836854306293, 0.1961022227287198, 0.19709960639947371, 0.1971841151462948, 0.19736458940976723, 0.19718518169423732, 0.1970874834949466, 0.19624065078881145, 0.1962183007699092, 0.19546422851734574], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [-0.4656705393095151, -0.46957780059794707, -0.4713048926244393, -0.4711044811773579, -0.47265704533455344, -0.47372543746163887, -0.4745449522653017, -0.47712427825249215, -0.4812121051997508, -0.4811831876263494, -0.48215516056317553, -0.4818297363802925, -0.48022382863756363, -0.4769770957185513, -0.4774782884394152, -0.4735529902019898, -0.46935581066480747, -0.4620007694484478, -0.4501851532694141, -0.4347255370858838, -0.4159565917113005, -0.3960500315798986, -0.37619943255635724, -0.3586753778951385, -0.34077928650270706, -0.3271803905745112, -0.31391683186452807, -0.3050079108825252, -0.2990947163134241, -0.29375767590248475, -0.29307341282446964, -0.2944905597466776, -0.2951325104533732, -0.2964178599016175, -0.30012055452858255, -0.30272195673939817, -0.3041804952617765, -0.30820522500727704, -0.31167580240297477, -0.3189520844228143, -0.32020260809996676], "Rb_sigma" => 0.02845728717623551, "Ho" => [-1.6231567759837802, -1.620301344054786, -1.6101409950045096, -1.6085805715572976, -1.5993677789493492, -1.59636506650196, -1.5880551410737562, -1.5898903703941112, -1.5836462970368383, -1.5845016448244469, -1.5787613132787472, -1.5720741017827724, -1.5618812693455215, -1.549115586695758, -1.5360296571603913, -1.5250660318149372, -1.516839703679408, -1.5116610844722207, -1.5034435225380296, -1.4998207307219154, -1.4951952050110462, -1.4901002215938746, -1.4826053153885936, -1.4763242648027262, -1.469395094803818, -1.4618513967212226, -1.4504113960868388, -1.4359991320746888, -1.4241785421393143, -1.4084643430704045, -1.3968307616117681, -1.3878152393240721, -1.3834770807593406, -1.3773330086160198, -1.375928590395068, -1.372727915560062, -1.3717388464133597, -1.3664603554734287, -1.3704529724843646, -1.3692453350164016, -1.371238020041706], "Co" => [-0.5835613928037985, -0.5864024215776754, -0.5875573264931382, -0.58877858186223, -0.589268556396186, -0.588808383698996, -0.5881131162604727, -0.5868871103036426, -0.5863121566322175, -0.5854600636361464, -0.5858389349030425, -0.5877591515340993, -0.5897804673424197, -0.5934090963112043, -0.5975057030269332, -0.6016652698678183, -0.6049411569112272, -0.6119417009610122, -0.6164437753089905, -0.621666582229499, -0.626036064608111, -0.630470410251255, -0.6306743810658522, -0.6322496621077671, -0.6318014318830669, -0.6312729108551817, -0.6296720929394409, -0.6294131239489241, -0.6265103225464927, -0.6247485736718819, -0.6223889636918899, -0.6202700128908399, -0.6172790721567541, -0.6147522145112686, -0.6125846208007032, -0.612093898774262, -0.6102729618151358, -0.6108528473537548, -0.6133477383756589, -0.615746864654381, -0.6151097689524825], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-1.6911615848247947, -1.6872998867290843, -1.683035486768788, -1.685553016483653, -1.6791388190629926, -1.6691246085298304, -1.6609636909796393, -1.6560650748047354, -1.645610881329609, -1.6408494239154268, -1.6363094646607212, -1.6306629742486856, -1.6194512113320145, -1.6129245829974366, -1.6011248224550092, -1.5896138229023127, -1.581093884611456, -1.5717987154836537, -1.5623443366317804, -1.558406365937901, -1.5521190168151364, -1.546262807209142, -1.540985652680763, -1.53249105008117, -1.5243371968740007, -1.5129779149698332, -1.5037389661673906, -1.492509138733715, -1.4824451020049991, -1.4712928170507737, -1.4623604532700953, -1.4529570946887789, -1.4445822693420247, -1.4344792243142317, -1.4302023328624476, -1.4222613473918766, -1.4157323624350202, -1.410652027662839, -1.4126229255133884, -1.4100707056698198, -1.4165277606713467], "As" => [-0.9109973827624457, -0.9122574682606297, -0.9105751987986709, -0.9097212170596257, -0.9054792851200842, -0.8998811140953441, -0.8928089898477745, -0.8846221806342587, -0.871077767839477, -0.8576679235120223, -0.8415991253324286, -0.825271645505296, -0.8085314435157323, -0.7922441916051375, -0.7757202035290305, -0.7620663027452157, -0.7510471658777412, -0.7415317288544971, -0.7357711212450728, -0.7351309562086807, -0.7382349128074159, -0.7457661211048789, -0.7585853819110195, -0.7780507196775552, -0.798722813176108, -0.8224400457529362, -0.8466683751991195, -0.871004935836918, -0.8894399594446359, -0.9060954063756114, -0.9194339525598796, -0.9290673262773099, -0.9364207042148252, -0.9429660189982522, -0.9478937070051604, -0.9501027494834547, -0.9513885034732563, -0.950462254817458, -0.9486980044226371, -0.9472870985697995, -0.943769828208007], "Sn" => [-1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426, -1.337242168318426], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => NaN, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.42963342087160955, -0.41687944430973967, -0.41812332949813846, -0.41493983723473804, -0.4067340970812976, -0.4029769455633252, -0.3975977597273832, -0.3898052575167359, -0.3862917596721588, -0.3785792077945204, -0.36637688724887507, -0.3548223241570694, -0.34794964550964713, -0.33696687343076676, -0.3277239101531749, -0.3152849841234072, -0.30942845764816274, -0.3005229530044427, -0.2927838349076314, -0.2882635534378113, -0.28371367351062715, -0.27572531813204926, -0.2690699014394493, -0.26390109595116445, -0.260436526703428, -0.2583686574599438, -0.25481293441520536, -0.2515802600712685, -0.25065637810576413, -0.24744615765294997, -0.2452983789016013, -0.24422316964481977, -0.242046986283308, -0.23800493978926943, -0.23617933629101362, -0.23427300394286038, -0.23232260802115018, -0.23173235092501995, -0.23115570446972758, -0.22922005162339704, -0.2297283135356859]), "Ilmenite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.5042315073547352, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [0.13483491245758755, 0.14402600523244366, 0.14898450572008373, 0.1531383921519436, 0.163001671908792, 0.16887629382655117, 0.17785918593897682, 0.19318699025892963, 0.20643101513422163, 0.21566044407099755, 0.23441741481562658, 0.2502785548674093, 0.26897059809142443, 0.2973061857371509, 0.3255351034973619, 0.36537168595273894, 0.40605030234044426, 0.4517366512303471, 0.5119145467777358, 0.5862599005200849, 0.6666743850404788, 0.7690449762970979, 0.8721106805074884, 0.9622186202537863, 1.060200160864882, 1.1425331409649577, 1.2194899958155403, 1.2877830902011513, 1.3437288601468613, 1.3898359570915528, 1.4279457418978772, 1.4516064543725766, 1.4761829871650662, 1.49003577573946, 1.50597551274545, 1.5183906727606256, 1.5289998502422553, 1.534414422954625, 1.5400053085573413, 1.5400694317042032, 1.5439621963555283], "P" => [-1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813], "Si" => [-3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566, -3.2218487496163566], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-1.8762612696765044, -1.8832802620121412, -1.8800895727302385, -1.8793745483864666, -1.872348239408821, -1.872493704929945, -1.8635695750809, -1.8624837826905027, -1.8592990103133296, -1.8404055403059427, -1.8348941813626707, -1.8284159365467527, -1.8126153223215216, -1.7871769154995187, -1.7648929360782093, -1.7288132733156691, -1.6838078945890642, -1.6307947322961514, -1.5612960630517019, -1.4781975829039278, -1.3885659091158138, -1.2759622472487273, -1.1578561412679418, -1.0497448959693003, -0.9577063562753325, -0.8261888837588913, -0.7118128879918875, -0.5987007248700144, -0.4888310508574498, -0.36809802109286677, -0.2706210237849262, -0.18875349625350948, -0.10723000893420054, -0.05256259708994556, 0.013767176145417228, 0.05528601899443278, 0.1034672151320173, 0.1340009277029769, 0.1767840880406492, 0.19637633479029146, 0.22375477847393807], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [-1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813], "Nb_sigma" => 0.7600001342502972, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => 1.2507536301319941, "Ce_sigma" => 1.8443036533262271, "Dy_sigma" => 1.0674285812668718, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [-2.315035531816073, -2.2879738444799353, -2.2644653248392403, -2.23011767023386, -2.198128552628, -2.148133553730726, -2.1096247995557884, -2.036820284226744, -1.9666137611204506, -1.8903050405842057, -1.8204565411982783, -1.7317715648354615, -1.6565176290132775, -1.5885593076825522, -1.5142312698579754, -1.4289606470946772, -1.3531362249869499, -1.2718152371548432, -1.1890164543594648, -1.1179303164224212, -1.0453302473818855, -0.9702039616078981, -0.902604910415663, -0.8485859347674144, -0.7898004663556278, -0.741581129734697, -0.6986739146254025, -0.6647179010769512, -0.629888225294471, -0.6041596564335158, -0.58465488796402, -0.5676774478607054, -0.5473467791774207, -0.5326396647056698, -0.5187618125762832, -0.5043883848877637, -0.49635204921236015, -0.48955724379176335, -0.48199462205205224, -0.4728146368767234, -0.4670095741133881], "Pt_sigma" => NaN, "Ta" => [0.2739509131882326, 0.2888847053643583, 0.29246003088673606, 0.3034631066220008, 0.3143794760682203, 0.3206195720500878, 0.3353192365557427, 0.3489619955955519, 0.36183069767906123, 0.3739511005437937, 0.3945757933912875, 0.4091461629106869, 0.42798645482503617, 0.45390746611646426, 0.4910313447294183, 0.5251006547770473, 0.5650111747819346, 0.6172871504932654, 0.6782465828197046, 0.7403932269191522, 0.8180278822737445, 0.9037897284540795, 0.9936377843948685, 1.0826018113650089, 1.182991800699454, 1.270082336500147, 1.354273159474086, 1.424064276147649, 1.485508852036729, 1.5240824817365157, 1.5622336066212255, 1.5895345572745407, 1.6150670294164269, 1.6367147331613179, 1.6565415851023388, 1.673767666738811, 1.6812885034119278, 1.6869079476540525, 1.6859090803716286, 1.6912749829106781, 1.6906777782884508], "Ga" => [-0.5910434782597442, -0.5922158678723268, -0.5865945857223537, -0.586045815017463, -0.5820986534753743, -0.5762770589367242, -0.5733504423969674, -0.5689216489985701, -0.5631207258113403, -0.5606596092514936, -0.5560305276705931, -0.5475778794665118, -0.544551798538092, -0.5284561068579261, -0.5179438371523433, -0.5016615882512317, -0.48275074045094696, -0.4630267050798916, -0.45525426861349994, -0.4362611583381205, -0.4275646220563295, -0.41809588990001945, -0.4045676797334683, -0.38961265261103756, -0.3730744384572428, -0.3544943082811355, -0.34781888962512214, -0.3421519150867985, -0.33651513521884835, -0.3347782909559495, -0.3302533436080351, -0.3200128307613426, -0.3134091310483447, -0.30385174264303516, -0.2930063606079716, -0.2880805690113194, -0.28922974905136883, -0.2848750694602317, -0.27567353566362274, -0.27776715928329393, -0.27397560908228247], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [-1.8444241994924362, -1.861092345750086, -1.860589604072055, -1.8531868239541576, -1.8445679591617572, -1.8290647454256286, -1.824590415342013, -1.8250757931439932, -1.8145166961278474, -1.8032459488474302, -1.7815050740953704, -1.7379505129877166, -1.6945689717985903, -1.6634976415417582, -1.6138463858115462, -1.558941763687867, -1.5049321602704455, -1.4427657889953827, -1.3643907903695696, -1.2880161980094949, -1.2118254255303114, -1.1361829260644818, -1.0687394699610506, -1.002547986120081, -0.9447552731254214, -0.8993815762723338, -0.8548240783964544, -0.8111860164337372, -0.7747417804331826, -0.7426285515020515, -0.7084215939137303, -0.6900316725761324, -0.6659945897602927, -0.6501075073507565, -0.6385781822926323, -0.6300772848067908, -0.6141917922281533, -0.6147434688905737, -0.6110331709331727, -0.604736488494604, -0.5926347379201643], "Sm_sigma" => 1.2663908268361785, "Lu_sigma" => 0.7039628158645617, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-2.097910979090302, -2.0892004270194287, -2.072911025184663, -2.0640254781619665, -2.0467168778992098, -2.0280179861757373, -2.019816375629664, -1.9939412168414905, -1.9644662055216822, -1.9355853114255168, -1.9044494666353051, -1.8588888844100144, -1.8145676338415553, -1.7653912109358894, -1.7122684985958418, -1.6574432517785676, -1.6012751675720729, -1.54027735926745, -1.473844828476232, -1.408760837782472, -1.3251336812433738, -1.2410632103727766, -1.1653101515063362, -1.0809715075237327, -1.012114798018749, -0.9438218432399305, -0.8835462331641084, -0.812998981372709, -0.7631948719567815, -0.6961351971670274, -0.6435282391923591, -0.5826529462010349, -0.5540735240371575, -0.5205354269227628, -0.4944721678723966, -0.4750433251031894, -0.4855747977083999, -0.4744992024286077, -0.4604960428918603, -0.45807568910775814, -0.45608026089712367], "Eu_sigma" => 1.2766899427009482, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.26489898054747957, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-2.55186649701308, -2.5497298176759595, -2.5611373892839477, -2.5681156750463563, -2.5693214493769063, -2.5531547854295686, -2.5419480886247334, -2.536817632478696, -2.4946233758773277, -2.496458517169748, -2.4595835195011495, -2.423820393006575, -2.3772883834642644, -2.3251518608425714, -2.2631701032066, -2.186375686995382, -2.110363166413676, -2.0175838999639892, -1.9514356680355913, -1.8336396523302625, -1.7249338682432869, -1.6108849086732209, -1.498152039379878, -1.3354790992406065, -1.2299832287995989, -1.1049241015983218, -0.9808824952711022, -0.8554959739648231, -0.7637980613410303, -0.619389703825823, -0.5199542145642587, -0.3919199668410748, -0.29505901058167294, -0.1577504130668133, -0.07905132275210229, -0.014307831915285462, 0.04752179524065904, 0.11286033538653967, 0.13493174446969308, 0.1993999815262488, 0.25720821953156864], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.3571768380400687, "V" => [0.7590100098645912, 0.7650326630772925, 0.7730676021052717, 0.7750362120503016, 0.7823699935097883, 0.7927708962958218, 0.7884262936943162, 0.7969794386735125, 0.8075475947422978, 0.8184648045176145, 0.8246383850450164, 0.8428408653609925, 0.8533250679833538, 0.86951003314106, 0.8914851366885478, 0.9223089167708362, 0.9562346502172974, 0.9935103162253281, 1.0388844618424014, 1.0775255170624092, 1.1303578811518784, 1.1940189444014582, 1.254095018466613, 1.3121346070522661, 1.382576814946664, 1.4422718589483252, 1.4873967183551635, 1.5449547247079178, 1.603499407113738, 1.6495937699295313, 1.6899854799134308, 1.7237867768797104, 1.7497972439742762, 1.7690213517108577, 1.784968845593821, 1.7968300692226369, 1.823599643154173, 1.839205075557915, 1.8446065250619401, 1.8467989922313977, 1.862371399278473], "Yb_sigma" => 0.7838152705380601, "He_sigma" => NaN, "Co_sigma" => 0.5502819700575932, "Mo" => [-1.4088464510984904, -1.3523849694176395, -1.3327792592238636, -1.2763929755404297, -1.2159156336033023, -1.1641031569511402, -1.1131359643714211, -1.0441840965021485, -0.9850168377169611, -0.9147264311942029, -0.8340901713226482, -0.7668119071539736, -0.6775360751020051, -0.5812078506177407, -0.4719938955975504, -0.36657915449141076, -0.2681506466470912, -0.19075244742964784, -0.11020863248335658, -0.04003455968842125, 0.020709359688950577, 0.08749955287030313, 0.1684515626307615, 0.23007826903216577, 0.2885430173518862, 0.34636451850186706, 0.38668117193210755, 0.410207956389997, 0.449398724155522, 0.4742686280017377, 0.49752898907021537, 0.5215939226363181, 0.5507759277437059, 0.5697051045268587, 0.590212359440863, 0.6049797988245834, 0.617426690209425, 0.6293522886733749, 0.6264011137559082, 0.623515246873109, 0.6290678642302825], "Ho_sigma" => 0.9716900192652242, "Pr" => [-2.243346977950067, -2.2310635889356143, -2.2356687105482256, -2.2217063255037752, -2.211271751495029, -2.2153152331108057, -2.2032750883741707, -2.1929587877278207, -2.1783774866757493, -2.129916564801907, -2.118039324871322, -2.0834869044013593, -2.03490198601186, -1.9945885380351929, -1.966992553741319, -1.8927059771010106, -1.8109357256412535, -1.7218193550040022, -1.6152320532656788, -1.4988725186309688, -1.3904651675758584, -1.2625745060071263, -1.1122062802507033, -0.9835950976056499, -0.8108706809191402, -0.6589010386171503, -0.5291691518291434, -0.40347279597667846, -0.2675517395848826, -0.18418260346320545, -0.10293369100373521, 0.008706908089263398, 0.07187639354664067, 0.1478495490802666, 0.22619376731751953, 0.27754760112589805, 0.27138548413378416, 0.28662745862387284, 0.29106097323236, 0.2926730554951781, 0.3033164698393536], "Pm_sigma" => NaN, "Th" => [-2.9787832518143715, -2.9481667356755836, -2.919459747381853, -2.88304575793481, -2.849255294974832, -2.8191537136820637, -2.7873371725087863, -2.7589568755181615, -2.69510537312427, -2.636938866462054, -2.5755945164589766, -2.503933785705196, -2.438686611925825, -2.3543645596937055, -2.2497865482435917, -2.1302980597542245, -2.0265615799490364, -1.8919916228407596, -1.7830439286677648, -1.6551907613389802, -1.5463616415600931, -1.3939062771997035, -1.2557065509257133, -1.1346842942422137, -1.0065513432842355, -0.8544714779713527, -0.7315319295894396, -0.617467917573122, -0.49842728621667837, -0.414931325868726, -0.31876173852761236, -0.2711828503764851, -0.1989519038389916, -0.11776894193687996, -0.03251676856531725, 0.002704156333869882, 0.06276758052542343, 0.09397595467348406, 0.11019588377709716, 0.10961708743782399, 0.11731126594945182], "Y_sigma" => 0.9419185217512602, "Zn" => [0.2032620501536038, 0.22725100851372965, 0.237882594565807, 0.257216451917659, 0.26626628265336505, 0.28337447986809117, 0.2916630930607765, 0.29438050601281307, 0.3143725719783064, 0.341443653877478, 0.35848261289453287, 0.3799187096177623, 0.4145466369236341, 0.4453317851532292, 0.48027865593693353, 0.5206593703932005, 0.5582698785602183, 0.601821306764811, 0.6393911585783683, 0.6686585515749681, 0.6930307718432823, 0.7263719578157146, 0.7530747980961229, 0.7855417151221459, 0.8163666089714148, 0.8426414508029789, 0.8644848289879697, 0.8825767500585048, 0.8956795789904156, 0.9164513024735591, 0.9343164341143714, 0.945585415942493, 0.962904856881945, 0.9757898602837181, 0.9781133115214276, 0.981738326872305, 0.9949430272213867, 0.994317800910608, 1.0014311904561777, 1.0055908305919468, 1.0110001663442758], "Ni_sigma" => 0.15033662421160823, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [0.1547239275822309, 0.1564530233768827, 0.15904241933321342, 0.16066597054802306, 0.16632906915230164, 0.17283303478386786, 0.17595047497257257, 0.18246398016025603, 0.19701724773756166, 0.20743245654344175, 0.22237359154628616, 0.24320459672067998, 0.26054746743245527, 0.2744888213289543, 0.3004156354704941, 0.3195229682463078, 0.3397543348680929, 0.36998166428286133, 0.40479679138729263, 0.43534750519743565, 0.4759173251005722, 0.5106982106922769, 0.5437888080710825, 0.5734982748335087, 0.6143000572521011, 0.6451019114604818, 0.6928466353558879, 0.7277185907891494, 0.7626350077120353, 0.7902584995604038, 0.819780351201788, 0.8308949279308558, 0.851124069570809, 0.8695737719253945, 0.8830765556195997, 0.8942198367084965, 0.909095170292198, 0.9257445538613732, 0.9401040886206744, 0.9497944675599795, 0.9634379100630144], "Pr_sigma" => 1.6459241509184526, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => 0.5178655728953317, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => 0.711953660921101, "Al" => [-1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623, -1.6020599913279623], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.9276494808998672, "Er" => [-1.3717055563447766, -1.3674669016375198, -1.3612396090995516, -1.354187471149587, -1.357100506175561, -1.3513850225187887, -1.338468252797434, -1.333697210923008, -1.3251976541522974, -1.3079237303351152, -1.3032631481212515, -1.2999420574219462, -1.288596078294162, -1.2686383465985918, -1.2511502244999366, -1.2191369867820945, -1.175930454189504, -1.118782867972788, -1.0736929806130184, -1.0042103477461772, -0.93548631965495, -0.8696834170061039, -0.7951206649244831, -0.6926105588835825, -0.5955584551709509, -0.5086398206269104, -0.40609576308204276, -0.32708834475015364, -0.2569960384640907, -0.20566421903147283, -0.14313034926172097, -0.09633090141300535, -0.05107617867205892, -0.021183985206412185, 0.031550941162600064, 0.06622777443311767, 0.08914584328100535, 0.1152356320154645, 0.12960414839497822, 0.1185553921001173, 0.12213493585086355], "Ge" => [0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953, 0.5607346925073953], "Cr_sigma" => 0.8248657851047623, "Fe" => [1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755, 1.4429764619620755], "Pb_sigma" => 0.19427073325975894, "Zr_sigma" => 0.5837779535039352, "Mg" => [0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477, 0.9777236052888477], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-2.6016491019271273, -2.5972754571167145, -2.602138600843944, -2.594502376114128, -2.6053492111766374, -2.6026526517905757, -2.5785726790486208, -2.5567960042142444, -2.535338299273284, -2.49034362235596, -2.4620199657805646, -2.4455935602840553, -2.3872809482146304, -2.3347121040730134, -2.28254613439891, -2.19019205544329, -2.092825871745208, -1.9774167161247957, -1.8536097269075686, -1.7224963498464692, -1.5778131191038014, -1.3992101974943278, -1.2430261431034868, -1.0910342618959572, -0.9218117482391579, -0.7902183670538807, -0.6658217820418735, -0.5053937446079415, -0.3515350836096791, -0.20271929562163865, -0.1073394728408385, 0.006037058290084118, 0.06765314349599535, 0.11918963863148946, 0.15264916751821644, 0.20963057096992385, 0.23165748270346379, 0.26871573772884194, 0.3083698360924932, 0.3585933174097125, 0.3754458254335223], "Ru_sigma" => NaN, "La_sigma" => 1.9735706561550568, "W" => [-1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096, -1.2292103780267096], "Au_sigma" => NaN, "Hf_sigma" => 0.3626995137019187, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [-1.5398076804846597, -1.5342305381046777, -1.545462582196393, -1.5519797939560724, -1.5455690474984582, -1.5477740585230282, -1.5512061512088706, -1.5274075022292424, -1.5222924277683023, -1.5159850534427624, -1.490127326504023, -1.4628382846330092, -1.4604185306501316, -1.4316762235079963, -1.3950767566337674, -1.3535817029987487, -1.3148445915728555, -1.2523760776091042, -1.1932931298260079, -1.115520968653019, -1.0345738649594212, -0.9377134709027641, -0.8413649061291933, -0.7186964986609682, -0.6134286477688874, -0.5123072154556024, -0.4203212412285131, -0.32018584256027843, -0.23395851228747977, -0.1595240016702947, -0.10525344224487614, -0.05913308159397042, -0.002787854203937482, 0.03245042264406498, 0.059172219127507655, 0.10516958453780641, 0.14016992577174622, 0.15188087782038542, 0.15943066377765625, 0.1673991955938396, 0.176246399510062], "Ti_sigma" => NaN, "Th_sigma" => 1.9942481070199376, "V_sigma" => 0.7177382422744881, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [0.29837296248659567, 0.3156021197941547, 0.3182774242717015, 0.3363491172542516, 0.35834855444590424, 0.3855872403001143, 0.41308150570977914, 0.45479448249745963, 0.505766631797119, 0.5560390006959305, 0.5997811942756458, 0.6622264264796216, 0.7326699157535277, 0.799661376577849, 0.8627108372167294, 0.9240621496447756, 0.9787282588500761, 1.0384252663188869, 1.0900061463526391, 1.1363983928874062, 1.1766825466731758, 1.2101087041489085, 1.2416087496214996, 1.26651047237148, 1.2926284775105403, 1.308093926159672, 1.3241537589330519, 1.3359011340576605, 1.3479415268624275, 1.354943014432266, 1.3653448183015304, 1.3748430574098094, 1.380690685889746, 1.3891674663331106, 1.3942991695959688, 1.4023672050379588, 1.4062648325446523, 1.4106202552716576, 1.411886102848284, 1.412334116458434, 1.4154991280829006], "Nd_sigma" => 1.5828141925137813, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-0.10927977702810567, -0.11249007411027587, -0.11912541179881822, -0.12003889051040607, -0.12769603586303704, -0.13120551452703919, -0.1372269356697701, -0.14023370352891384, -0.1467135954421609, -0.1456369487735721, -0.14728532314993142, -0.14563852219047543, -0.14369163740578642, -0.14092418624852643, -0.1372082721031737, -0.1314791124631293, -0.12624060251736988, -0.11779197509177626, -0.10119175883017516, -0.08861652012713357, -0.07650679124932648, -0.06267549465268293, -0.04914771261331313, -0.041459237052872654, -0.030097775063337544, -0.020439359356194845, -0.0049077593818556055, 0.007402739448508896, 0.023112382317276407, 0.03703367427680045, 0.053662687948264814, 0.06531789103708903, 0.07676168514180755, 0.08257976227484909, 0.09580247802604099, 0.10493627381089496, 0.10946674060321422, 0.11732599661902124, 0.12268692160220795, 0.123252390215138, 0.12371367011588258], "Tb_sigma" => 1.1185901568750505, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr_sigma" => 1.0613869065213237, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => 1.1561354810959508, "Ba" => [-3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446, -3.4685210829577446], "Nd" => [-2.1429227454916493, -2.1478811173405674, -2.1587231907060893, -2.166218957567781, -2.153761717375882, -2.1302613536320822, -2.1238637278055448, -2.0964722994021043, -2.0855456216567636, -2.0664388263198834, -2.0449866391853693, -2.025046028431785, -1.9906612927949372, -1.9326039066853287, -1.8844382117730087, -1.8349224299726727, -1.7434737893437118, -1.6827720417564298, -1.606274612700851, -1.5092726279421809, -1.3768807819369495, -1.2429698816506418, -1.0688237145525021, -0.9225352338602412, -0.7624361008142609, -0.632651240485699, -0.5002211995115224, -0.38549002152810385, -0.24698075686042548, -0.1469817280995886, -0.05311420083370863, 0.011004522437815686, 0.05685495872378832, 0.0897033995351459, 0.1158282977712051, 0.15788180097428017, 0.19491577467422855, 0.23805616424411272, 0.26808317360932843, 0.2805663789727348, 0.29212784886867643], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709, 2.273579560663709], "Tb" => [-1.6097339787314364, -1.6116255187799542, -1.5983098115603562, -1.5999796745147357, -1.590670238132149, -1.59526310379248, -1.589362909301537, -1.591594154911293, -1.5810226077117766, -1.5631588306984765, -1.5388890575560483, -1.5227838300114769, -1.4984654581945862, -1.4750463284863229, -1.4660208425699486, -1.4332535927514758, -1.3749879592937466, -1.3268209798635877, -1.2736220013788233, -1.1859243694802843, -1.0864679085557771, -0.9902714023730987, -0.8612942807264992, -0.7318208077592239, -0.6185125937031123, -0.5280014584857532, -0.43191146569369754, -0.33962868460788453, -0.2613741646709124, -0.19193983625647382, -0.1098270584811461, -0.04000470028705976, 0.015183984446983144, 0.05812153848699111, 0.11054958788853932, 0.14238838060618156, 0.1804845396150145, 0.18445099218847472, 0.2068338501413488, 0.21507493604553984, 0.22744231888929137], "Tm_sigma" => 0.8865762263591929, "Zr" => [-0.22370300248183428, -0.22916263286790264, -0.23560751825554668, -0.24915090291287353, -0.2548461196296223, -0.26053247174026617, -0.2639241041493651, -0.2714402125149998, -0.27219070366921994, -0.27535705975120545, -0.2846926575739151, -0.29184999773208214, -0.2905805584452214, -0.29544026530346257, -0.3037068632647726, -0.30046152393661435, -0.29795228074473784, -0.3070852272366692, -0.3012306180333035, -0.2871774186981049, -0.28440969026854646, -0.2832889666552849, -0.27564721250151375, -0.2692958312974805, -0.2739846041293515, -0.2667187785763571, -0.25495323808406556, -0.24722108602499746, -0.2428070118492014, -0.23277310614923444, -0.2281276601012577, -0.2264765704844049, -0.21638529621253727, -0.2149870292266684, -0.21257664869269755, -0.20286711124579124, -0.19289449851061824, -0.193948975939745, -0.19559343277522276, -0.17976063442764292, -0.18064294512288742], "Sm" => [-1.9031418482679079, -1.8891797844251315, -1.9063235326686554, -1.8954931482235569, -1.8955503753900083, -1.8796514723193078, -1.8715610727763832, -1.8493137169075031, -1.8537457815559468, -1.834801399047285, -1.8239335491236413, -1.8097636367525562, -1.7905617319119616, -1.7662068210797421, -1.7450191759327576, -1.6986037514822405, -1.6301878601019806, -1.575091745472012, -1.4944637076208513, -1.4039693375793414, -1.3201132155926696, -1.2340980232940377, -1.1188432635321741, -0.9883651036262567, -0.8559314258854827, -0.7260360314775144, -0.5974669177563127, -0.45901403193729345, -0.36631659308711273, -0.262687912209469, -0.15822823953451495, -0.07308083126771193, -0.005314018614923092, 0.0741491590436879, 0.11342345349857785, 0.14580558543030409, 0.16936717927442754, 0.19699827395119376, 0.20668872922096906, 0.2305382133507456, 0.26511237806052074], "Ba_sigma" => NaN, "Cr" => [1.0656665006692765, 1.0707538064866453, 1.0705945629559197, 1.0742336198136657, 1.0732774517788854, 1.0859454372449242, 1.0944195100941603, 1.1058573640450577, 1.1189764640112556, 1.136744358860866, 1.1509036253299192, 1.1634424126644047, 1.1862010830762366, 1.2127556777861868, 1.2387424418855413, 1.275369398594506, 1.3028916734971279, 1.3309904573059308, 1.3493916616178783, 1.3774698593985633, 1.3876087914947022, 1.4125985542160198, 1.430602772469964, 1.4422039165125382, 1.448028633541789, 1.4516722842985763, 1.440798873213678, 1.4300515431432923, 1.4262433723634966, 1.4090955688449982, 1.3863060129970857, 1.3614011433745425, 1.3397703678355815, 1.3215796387577083, 1.2862054053688932, 1.2658109072793073, 1.2558924419193185, 1.2286373327922502, 1.1886364553865547, 1.1628087077179372, 1.1364231326906336], "Cu" => [0.11107423645364639, 0.11459698183262414, 0.11659098569085051, 0.12423908079059591, 0.1296891902962008, 0.13701179509517003, 0.13828904257995225, 0.14616579863152465, 0.1484322593150668, 0.15177362666766211, 0.1593510006045723, 0.16684746747136608, 0.175345960266698, 0.18957946331659636, 0.20761083757821444, 0.21935126274276762, 0.23461349993937555, 0.24769330575659904, 0.26214347284065503, 0.27211612234993515, 0.2871194258714034, 0.305650979812676, 0.3240410408792585, 0.33822759437214517, 0.35259856436171527, 0.36721188661362575, 0.3777033004902329, 0.3906000947707831, 0.40419456398484704, 0.4178798258825883, 0.4293445688745947, 0.43867535998459956, 0.44586933677436325, 0.45132246899855083, 0.4558306010467719, 0.4615748411625328, 0.4652453395945511, 0.47127112510848207, 0.4747638969433956, 0.47913620458598266, 0.48151691277835384], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.5638674221325239, "Yb" => [-1.236715928231294, -1.240680273482036, -1.2331650407457306, -1.225214924291051, -1.2213755179227377, -1.2204839824970584, -1.2096818137646106, -1.2121579101452902, -1.2184654244988202, -1.2077702123309866, -1.1961555361860594, -1.1904615454110152, -1.1777856142475533, -1.1556200373101269, -1.1411233717500215, -1.1195564889072516, -1.0922206779233015, -1.055199489147201, -1.0181632678493182, -0.9710446077037173, -0.9182384483236512, -0.8600993747309007, -0.79259732225655, -0.716578053792189, -0.6437223487016739, -0.5664236130198932, -0.4810005425238058, -0.39514263830987345, -0.3166107703776311, -0.23799062182903488, -0.18046994790101242, -0.1316605383383469, -0.09411344807710006, -0.06361473960467608, -0.04939315680129038, -0.012137086306275552, 0.014416586579580266, 0.027694612129157144, 0.051120519992585135, 0.0772372978263983, 0.08016499799935747], "Lu" => [-1.168223996240599, -1.1673205373873, -1.1634345778162078, -1.1606276802232611, -1.1648506813336452, -1.161447885614759, -1.1553484535198595, -1.1511209313033788, -1.1537360600292186, -1.144917525114526, -1.1418878000282264, -1.1376018627952356, -1.128730775765513, -1.113014351934123, -1.1046834697164465, -1.081674710648493, -1.0579444824317077, -1.0326790072111047, -1.0062141329815948, -0.9615500037612249, -0.9146908787186454, -0.870996855399221, -0.8178817057393707, -0.7411386591178903, -0.6766274118472825, -0.6084246277317054, -0.5282342615745148, -0.446626458551615, -0.3800332055393432, -0.3140770039660506, -0.24630033987671357, -0.1909193103323398, -0.154380966890985, -0.1059386957007504, -0.06826216212251843, -0.0373956238132714, 0.001387398138587308, 0.025563805481786276, 0.039733772291106605, 0.0536410363502814, 0.05897806146010927], "Eu" => [-2.0790176595859906, -2.057632239673715, -2.0526335848319794, -2.0462964620644652, -2.044233286022093, -2.028608066464947, -2.0109748186761403, -1.98886791069781, -1.9586498026487182, -1.9294493524869079, -1.9039841692158825, -1.890394034585157, -1.86366732976131, -1.8426952401324137, -1.8099934073920454, -1.769858824382701, -1.7061666887267357, -1.651665364917216, -1.58111543390764, -1.5144474671211543, -1.4361413036631334, -1.3851922208297596, -1.3176884949982415, -1.242633998366681, -1.1648080667487202, -1.0903105739726653, -0.9877338451557711, -0.8878088572348517, -0.786967044653384, -0.697896782487057, -0.61328866900301, -0.5519848549152552, -0.49757271782458956, -0.44338704367961784, -0.3737009926400279, -0.31518104678331615, -0.27264134677133256, -0.22746792250770162, -0.20351337150172827, -0.20704111222987867, -0.1921423451995267], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532, 0.686087643057532], "Rb_sigma" => NaN, "Ho" => [-1.4298902025124711, -1.4271489191351836, -1.422009117462225, -1.4173656650763307, -1.4115137503749777, -1.4064872247309919, -1.4085664743411055, -1.40179564073068, -1.39680808997779, -1.3818822242505102, -1.364586961003224, -1.3466182963836117, -1.3321736509403737, -1.3083261978062328, -1.2773279613552366, -1.2531881336482817, -1.2152263757416306, -1.1710142188214638, -1.116001514614184, -1.0658741888462335, -0.9846287556782902, -0.8904014142151218, -0.7837463990045654, -0.6829936014664622, -0.5841680285306879, -0.48369749339836593, -0.4054325322671837, -0.32736020948726774, -0.26078937617512526, -0.19137530635533817, -0.13351706304065003, -0.07583062955040486, -0.028238245018690468, 0.012122638842006449, 0.05222289398185642, 0.07851755826538745, 0.1097165519795036, 0.13527320020771386, 0.1513190791781979, 0.15808809258907336, 0.1595952085598753], "Co" => [0.3367676866777023, 0.33959659598120495, 0.3372005321367634, 0.3362578072593342, 0.34103975301023687, 0.34453989131656393, 0.34807455317744224, 0.35412668622741966, 0.3642440631424671, 0.3705421091114982, 0.37807138666390805, 0.3878005351879555, 0.40472807149267, 0.41462293349084556, 0.4324496180337617, 0.44548004360452365, 0.4669948664127134, 0.48372076262504277, 0.5073192374862445, 0.5295041916837999, 0.5672599943200617, 0.6005657886715227, 0.6409304493629447, 0.6807935856828587, 0.7209780284459911, 0.7564777848330309, 0.7959413433297602, 0.8418015531052293, 0.8864744461450967, 0.9335589205257485, 0.9806464874162578, 1.025806548585795, 1.0632588092416368, 1.1026242018159151, 1.1380545049993724, 1.1644642279522308, 1.2001334994307422, 1.2202837971384273, 1.2456883430297279, 1.268850483040388, 1.2959209930759068], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [-1.312154356199391, -1.3133947711341145, -1.3046431426542393, -1.294969009646632, -1.2961161286143041, -1.2844291944465192, -1.2793700768976297, -1.2822748577230407, -1.2811634109313903, -1.2661838993958665, -1.2635251928366626, -1.2522541650590613, -1.2319551455000168, -1.2117711551354278, -1.1964679929484041, -1.1633487585308453, -1.1219773725031412, -1.0837178574624151, -1.0341258060442386, -0.9674565840786689, -0.9013336686790591, -0.8322711949487278, -0.7490613737729289, -0.6601211325120957, -0.5810696579237383, -0.48329200935908423, -0.399992687050724, -0.32682302904574995, -0.2606115853106028, -0.19397483305830535, -0.1475594851289628, -0.09864312207065544, -0.05004100737921878, -0.014513475253530233, 0.018048475847739155, 0.04589445862180015, 0.07413480488603, 0.08012502159540769, 0.09411829405909071, 0.10234434358500326, 0.11464840787511467], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364, 0.7075701760979364], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => 0.18295812144711632, "Ta_sigma" => 0.7662947312394603, "As_sigma" => NaN, "Gd_sigma" => 1.1496561590375993, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043, -0.2442057172323043]), "Ca_Perovskite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-0.24448296561796456, -0.2502131369939691, -0.2517138624777046, -0.25343909887150246, -0.2549536536446558, -0.25407976288681733, -0.2544956181900767, -0.25141061388539593, -0.2505519766267508, -0.2514013766351774, -0.25124089221481166, -0.2517350314944265, -0.2507379665382263, -0.24889258661039196, -0.2453158966132889, -0.24221964175974142, -0.23748240234330234, -0.23521370437818498, -0.23388967997596127, -0.22853903605679407, -0.22605487186745363, -0.22340795826248655, -0.21567173200604794, -0.2107984986977565, -0.21103735080414476, -0.20680783985756737, -0.20452183977445867, -0.20423047345083523, -0.1999554632048013, -0.19651605090213778, -0.19862105969906094, -0.19291717324236698, -0.1933058881351498, -0.19038469427244814, -0.19121980354913398, -0.18647499461033756, -0.1921529250522356, -0.18627874449910506, -0.18320991509665938, -0.1781863670433588, -0.17788127476756693], "P" => [-0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755, -0.39794000867203755], "Si" => [-1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593, -1.9119543704721593], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [0.6070450075156846, 0.605618335262068, 0.6036877301326914, 0.602634910253912, 0.6051705739587101, 0.5996060568011108, 0.6031206752834605, 0.6044807499734959, 0.6085637854741014, 0.6076211918858797, 0.6125276938481204, 0.6123320136004243, 0.6158548847280841, 0.6173272285978751, 0.6191910095185534, 0.6234676048722392, 0.632422005795569, 0.634936518179299, 0.6359492098997253, 0.6460996141261579, 0.6497602820715144, 0.6492337250312804, 0.6573218768768317, 0.6701467750329553, 0.6735370233091144, 0.6825558412900005, 0.6894370044355153, 0.6927766280178294, 0.6934836291603954, 0.6989221512214645, 0.7005794621399855, 0.7054668203711209, 0.7067832987651164, 0.7036125347958356, 0.7018276024766114, 0.7010870876584772, 0.6966146567929159, 0.6962050497967308, 0.700587139367302, 0.7058411472940918, 0.7051822541956322], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 0.37329066285663576, "Cs" => [-0.8744513433864103, -0.8739385602207028, -0.8726645238672771, -0.8698192750341266, -0.859111729114116, -0.8555410985529761, -0.8526373831288239, -0.8542438041882513, -0.8503762153096545, -0.8578548227415583, -0.8606272175614834, -0.8690380283549168, -0.875132444350195, -0.8871136528387261, -0.893036327015426, -0.9003922082523066, -0.8989695542770383, -0.8982015694116959, -0.9020347622217656, -0.9145308094906301, -0.9216362994631904, -0.9333893117771733, -0.9467190543850225, -0.9627683023016211, -0.9766664342015904, -0.9883028274898779, -0.9984474852883611, -1.0094577023914304, -1.0107710859904393, -1.0052847300992986, -1.0111200421915378, -1.0296055431577402, -1.035606562442716, -1.0472543333899977, -1.0558412360894025, -1.0544467394984829, -1.0407438065095838, -1.0366869672899006, -1.0409677733922746, -1.0423428178137646, -1.0418696523454731], "U_sigma" => 0.9338779779866907, "Ce_sigma" => 0.2471232149559948, "Dy_sigma" => 0.453378725010803, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [0.30891672215474164, 0.31297778463780573, 0.31987559628328227, 0.3223584064955677, 0.3238297716910057, 0.3212748658879339, 0.3217028973146507, 0.3176513474871066, 0.3159305922822436, 0.3115880544823839, 0.3102824145188486, 0.3035589136444745, 0.30001658733623277, 0.2923483504864225, 0.2869551625941674, 0.27724373872365426, 0.2685854442290339, 0.2542356303920484, 0.2422822441241509, 0.2269331503538575, 0.21622301997657176, 0.20126615000894643, 0.1880194771584265, 0.17320819416319058, 0.16136044189878515, 0.14402895462389287, 0.13193766050492683, 0.12080645894893047, 0.10868431734453667, 0.09689613574308178, 0.08808103349013499, 0.07830482457851382, 0.0659077237702356, 0.05862402289853111, 0.05237178137997226, 0.04699971190895007, 0.042823539097270484, 0.04046729280994346, 0.03956168205897552, 0.0360844075028795, 0.03184332466127274], "Pt_sigma" => NaN, "Ta" => [0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405, 0.10744937075586405], "Ga" => [-0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158, -0.6338031200885158], "W_sigma" => NaN, "Cs_sigma" => 0.5789662940594825, "Y" => [0.4076808884670514, 0.40503848154253425, 0.402011584599995, 0.3991498558656417, 0.39697397601263484, 0.39409857217128463, 0.39170685946799244, 0.3932998808586968, 0.398854090147601, 0.4019201882426199, 0.40742094586397015, 0.4114885089418705, 0.41527085623020127, 0.4155638470858895, 0.41476671671039866, 0.41858405147471206, 0.4237217815675454, 0.4237857293181078, 0.42782878059677576, 0.43635506153166326, 0.4356158260296055, 0.44008846490213943, 0.44837928454178083, 0.45315897106984904, 0.4609445462356818, 0.47275558900961834, 0.47114257337175935, 0.47680623654289406, 0.4788775675172978, 0.48009067390273674, 0.47076682801004466, 0.476427550185186, 0.4777346014574639, 0.481137444804644, 0.4822985769755178, 0.49329812478275187, 0.5067468857290923, 0.5055641055729139, 0.5117235364836519, 0.5161629558858575, 0.5169245052513007], "Sm_sigma" => 0.2970042799796796, "Lu_sigma" => 0.7250236794530859, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [0.8322362235414001, 0.8384937210928026, 0.8477302621928047, 0.8563863360719772, 0.8600586267387025, 0.864443449195868, 0.8688676028513509, 0.8693403012634188, 0.864831124663065, 0.8594318408647452, 0.8556507299097853, 0.8470959504935742, 0.8363375978062847, 0.8316040581786223, 0.8160668608162097, 0.7945107584337796, 0.774648568305438, 0.7509938327638935, 0.7205216347018883, 0.6995051630219788, 0.67943019475527, 0.6538112579064712, 0.6230480114761001, 0.5996321401008914, 0.5762855442124053, 0.5472159571465118, 0.5260805755396769, 0.5185549591240733, 0.4927196301656364, 0.46543163723293884, 0.4469874324677471, 0.42812034913924896, 0.40800596228595815, 0.39813422298381074, 0.398087439870898, 0.38411120990443126, 0.3806259663115394, 0.3768676640922007, 0.37243104670756366, 0.3659469921454787, 0.3617914271319104], "Eu_sigma" => 0.6413927174655842, "Sn_sigma" => NaN, "Ca" => [0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977, 0.5333492752114977], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [-0.8436725327250415, -0.8381482871889445, -0.837045625619602, -0.8357676880524989, -0.8346806856561315, -0.8340944797151931, -0.8366210512986472, -0.8417150027574213, -0.8436876313653949, -0.8446192442643586, -0.8485397423997804, -0.8516993689474502, -0.8540957200874918, -0.8589926779336489, -0.8622494140125632, -0.8702641075841269, -0.8738041225711566, -0.8772664240459548, -0.8818449711431801, -0.8935200065295043, -0.8964357846177055, -0.9082295551851717, -0.9171289589443572, -0.9252669409145607, -0.9315728562412009, -0.9413914888074666, -0.9418050051133198, -0.9504056293452725, -0.9558230516187239, -0.9549214225602486, -0.963627578527468, -0.9687078072280491, -0.969284467836912, -0.9716058702534034, -0.9805378630992617, -0.9825904096418338, -0.9865950053999841, -0.9937523691754552, -0.9994003465747975, -1.0055848557637692, -0.9984930553970607], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799, 0.7313798473161799], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => 0.6739850360133665, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 0.5344202618367162, "Pr" => [0.6773548029671846, 0.6744699638744737, 0.6703396401816079, 0.6666728570218131, 0.6685922100963926, 0.6679643041446758, 0.6676372948345168, 0.6693098635696278, 0.669652911456555, 0.6697082883585062, 0.6716109375639545, 0.6747363406131086, 0.6754668908687631, 0.6789757463122881, 0.6811323842630895, 0.6846738983898758, 0.6866760009933711, 0.691681194267946, 0.6938107832141094, 0.6997163683332245, 0.7033128673747734, 0.7103780547243776, 0.7160472061857956, 0.722821397714035, 0.7267270885026234, 0.732646497112773, 0.7370361937832233, 0.741103488180043, 0.7457534292138803, 0.7489762640235184, 0.7500242696318271, 0.7488261859513367, 0.7498645490545479, 0.7509826910146707, 0.7529760902003213, 0.7565186613433665, 0.7616281728496505, 0.7646532946251755, 0.768779470347286, 0.7679704088574587, 0.7694498204767068], "Pm_sigma" => NaN, "Th" => [1.1328031143905173, 1.138898716419798, 1.144210976250221, 1.1452730983614678, 1.1436417719904102, 1.1455360397977006, 1.143372357248185, 1.1426049246017704, 1.1419185057657126, 1.138892261595444, 1.1346699413697223, 1.1303140777683227, 1.1260667464737855, 1.116459849611389, 1.1107917032504462, 1.1028691554649321, 1.0916118415422502, 1.0754181865325945, 1.0592347127293664, 1.0435979788789524, 1.0278021868488658, 1.0164253610046474, 1.00378611398007, 0.9953125138142334, 0.978236080164371, 0.9611188685001644, 0.9427558309931588, 0.9254167828856111, 0.9079444119531811, 0.8955712463054741, 0.8868486911491521, 0.8785706840316192, 0.8735922994687351, 0.8697084097641234, 0.861993889060129, 0.8568323537280775, 0.8460164647239774, 0.8371945860002754, 0.827794928865782, 0.8237744472552198, 0.8168974148391328], "Y_sigma" => 0.6064430501939593, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-0.5959319460957887, -0.6057659596710223, -0.6121354049069127, -0.6087920078808308, -0.6095323280876981, -0.6087658778806727, -0.6061464222576405, -0.6021929444129676, -0.6005983904600475, -0.5992016125083367, -0.5986472027649117, -0.5956251131968625, -0.5935011149567818, -0.5906656723006729, -0.5826116832868824, -0.5750283981019185, -0.56229969123074, -0.5456363492625381, -0.5327767402321805, -0.5212509805818437, -0.5046923196890842, -0.49176770659222574, -0.47872743243942945, -0.4669265571418166, -0.4474326965314759, -0.4346591858767767, -0.4226159824725955, -0.40874913743978514, -0.3960872293400985, -0.3906614319105956, -0.3833051307246796, -0.38249313539836216, -0.37687723934901124, -0.36855126938280797, -0.3614555873722353, -0.3592265030795258, -0.3431449923747997, -0.3436969927689742, -0.3392348622488528, -0.33679487613239245, -0.32719922721225625], "Pr_sigma" => 0.21313785920125, "B_sigma" => NaN, "Li_sigma" => 0.18875300866367847, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [-0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824, -0.36092437480817824], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.5786130512333358, "Er" => [0.338513446506135, 0.3353814939385449, 0.3370976259399294, 0.3322254882841817, 0.3321708148239203, 0.3303607924199923, 0.3279104242790533, 0.32378462148147713, 0.3259090211296481, 0.32428075882180896, 0.3254655097645084, 0.326813333665731, 0.3317383595615423, 0.3407671887017317, 0.3457078863934624, 0.3507821319849454, 0.36001768141880836, 0.37247635035992804, 0.3703586000567739, 0.37662031389256806, 0.3836742474625941, 0.3919634083225632, 0.40199294682009584, 0.41445660276609425, 0.4230593727723635, 0.43400221787186255, 0.4360822476971772, 0.43683157124526834, 0.44915494806767875, 0.4496327371519868, 0.449926950094186, 0.45897663303029146, 0.4589608228763238, 0.4486026183242074, 0.4596895955309499, 0.4648205279774587, 0.4705480855139873, 0.4708267788971046, 0.4769837283622617, 0.483375365043804, 0.48102883653678774], "Ge" => [0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259, 0.145017305681259], "Cr_sigma" => NaN, "Fe" => [-0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752, -0.9208187539523752], "Pb_sigma" => 1.0681517203102928, "Zr_sigma" => 0.7481201364031377, "Mg" => [-0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564, -0.9907430300610564], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [0.5290382476189288, 0.5289545527300726, 0.5299601874138435, 0.5310353609485486, 0.5297231672856856, 0.5282855674722614, 0.5298320822020819, 0.5278257119722426, 0.5268356109530288, 0.5302639643457006, 0.5325481135794552, 0.5338779996509387, 0.5360348976122958, 0.5388497897583149, 0.5403638278431516, 0.5439993638883812, 0.5458535639951881, 0.5504831407417347, 0.5551990160965339, 0.5609098939604353, 0.5635137201555457, 0.5680743204933046, 0.5737510764725976, 0.5769028780045852, 0.582238332538706, 0.5878801289133087, 0.5931902259544835, 0.5965292790411153, 0.6019082168617231, 0.6006059973519259, 0.6071781419378459, 0.6111112861718886, 0.6143573551203172, 0.6194993818831342, 0.6247688568717076, 0.6239847683679485, 0.6241082229392534, 0.629206203388214, 0.6301262869940407, 0.6348573379122272, 0.6339963777014215], "Ru_sigma" => NaN, "La_sigma" => 0.20562316271476572, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => 0.5419150832595921, "Li" => [-1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782, -1.1819235388994782], "Dy" => [0.48858700396759663, 0.4831040790638951, 0.48385212922342097, 0.4874344025315282, 0.48572075298674644, 0.4865801667002491, 0.4896788196321671, 0.49017804627055933, 0.49457441681930353, 0.4986073746507068, 0.5047983664601287, 0.5075714914463793, 0.5126832175976028, 0.5127201430735768, 0.5149007204398427, 0.5205642598951418, 0.5286116656661648, 0.5322085402335293, 0.5370355741545237, 0.5459025775640243, 0.5492701783065516, 0.5486798263279863, 0.5552093190256012, 0.5658343711573647, 0.5702901422707619, 0.5790613952570873, 0.5862407694381082, 0.5884098890758147, 0.5891960728474688, 0.5911812915372604, 0.5846477830485681, 0.5916070234350524, 0.595653629259717, 0.6006276772425415, 0.6098040257814571, 0.6236914232560741, 0.6225549157200949, 0.6251252206352894, 0.6251775629151777, 0.621522944445401, 0.6130351485705415], "Ti_sigma" => 0.5272350432380634, "Th_sigma" => 0.48362586532916624, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495, -0.5882628854148495], "Nd_sigma" => 0.22383875893742883, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [0.3118852625906944, 0.3219702040106824, 0.32150215108887853, 0.3298425368553582, 0.33315010870461276, 0.3325428770921183, 0.3311761295935145, 0.33016269034985324, 0.3288315582677758, 0.32351643870032953, 0.31505302218378456, 0.3057245890561346, 0.29653891285203293, 0.28283546891684164, 0.27344463632012356, 0.2605165564155924, 0.250060983874351, 0.23407006735599523, 0.2182813706564146, 0.1996235483043232, 0.18513946464749165, 0.1663463450545174, 0.14746604713600778, 0.12331652993315366, 0.10552242853499687, 0.0831235766167377, 0.062090211335947186, 0.05084182225965961, 0.03780412761629296, 0.01974280336343707, 0.0060036658392276804, -0.010186348939819649, -0.02796817402683909, -0.04310060616656888, -0.05407590377935859, -0.06411269425523553, -0.06707513146599609, -0.07481229136310075, -0.07558929431366727, -0.0702773601436684, -0.06925806408976007], "Tb_sigma" => 0.4166752797141474, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-0.9664701974148121, -0.9628169534741575, -0.955014497220468, -0.9534816667313898, -0.9522514847147469, -0.9487806867637385, -0.9488575412276942, -0.9486576558419201, -0.9504006585934027, -0.95216497429548, -0.9547514298347661, -0.9615698167846232, -0.9630094728462787, -0.9723917412975006, -0.9867081534507827, -1.006871379979672, -1.0209936745023847, -1.0370809139908852, -1.0470265777075576, -1.0547986220034091, -1.051823892000582, -1.0581595267785018, -1.0751348179483167, -1.0910366848875774, -1.1097635402883006, -1.131478173477676, -1.1442991650819916, -1.1581229900325696, -1.1638514711230645, -1.1729273792845019, -1.1931055113667726, -1.2018552751781213, -1.2050263629077616, -1.2071567284887066, -1.211369950258617, -1.2081540281871561, -1.2175565160757318, -1.2273424156288906, -1.239082002707869, -1.240758178731465, -1.2457777922337432], "Sr_sigma" => 0.3492439304356293, "Ag_sigma" => NaN, "Mg_sigma" => 0.01617771593276645, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624], "Nd" => [0.6834214955572885, 0.6823237471829011, 0.6797536784874019, 0.6780406746175807, 0.6756401609614262, 0.6792401495204436, 0.6778313983787709, 0.6787672126928558, 0.6788348631326621, 0.6788575729367216, 0.678629228518174, 0.680450362435109, 0.6809582476855504, 0.6829207465456553, 0.6865042301114491, 0.6880458268003589, 0.6935848927813233, 0.6984676092940904, 0.7059033644662199, 0.7127122090172621, 0.718719722915966, 0.7227837513460448, 0.7268012699730664, 0.727663291473877, 0.7308981211087732, 0.7355754270009458, 0.7387035937130847, 0.7450761848896564, 0.7540225719311622, 0.7578448773217685, 0.7603798819996498, 0.7646774527274353, 0.7638356194108521, 0.7627803220893095, 0.7634908054382814, 0.7688871917677502, 0.770299948975098, 0.776439507605396, 0.7817559204653253, 0.7844919761932677, 0.7838187552806085], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422, 0.4142041595110422], "Tb" => [0.537709436955326, 0.5339474482252398, 0.5358038308549756, 0.5321078218576784, 0.5294263633019346, 0.5284781903332638, 0.531722075173408, 0.5301040921680289, 0.534288004509675, 0.5379089739776731, 0.538880817137521, 0.5387597638429878, 0.5429644771635925, 0.5464237971101887, 0.5523458304187174, 0.5548872491046336, 0.563715704650346, 0.5701863600600968, 0.5728995298083172, 0.573092715879388, 0.5797857925110628, 0.5822244939919601, 0.5886724542709036, 0.5999591818609324, 0.6061490851336782, 0.6105434014126434, 0.618351136227672, 0.6224211513060507, 0.6179075917588669, 0.6163890200014591, 0.6266911386757922, 0.6263947212074478, 0.6209683416681556, 0.6254220032458185, 0.6360640023341027, 0.6413132392348356, 0.6484373822516389, 0.6569992002651961, 0.659813362742058, 0.6649684557246589, 0.6570506465243505], "Tm_sigma" => 0.6251582053587575, "Zr" => [0.2660604600084054, 0.2714414589224201, 0.27413579363689805, 0.2742314638803492, 0.2770949732878828, 0.27717148104427175, 0.28168235840699624, 0.28290178870993843, 0.2897848679762933, 0.28668204511326517, 0.28089661635248947, 0.26886453081830214, 0.2615150907886792, 0.245269616389931, 0.2265568179183514, 0.2112225417203039, 0.19873362698740127, 0.18122568814805445, 0.16944560527918598, 0.15835890667877894, 0.13495148871855195, 0.1148939290832405, 0.09831884713211683, 0.07427010619161688, 0.055219952928547575, 0.04074730533655455, 0.016107576639035177, -0.0024910310954620236, -0.016887783660314935, -0.03477451966540858, -0.038318414673967426, -0.03793539192978592, -0.0531815069388512, -0.05967756273408529, -0.07212846219402066, -0.09187704822025236, -0.10663840508782615, -0.11080865814668665, -0.12111667356615502, -0.11863414491851776, -0.12238236154140651], "Sm" => [0.6569630677902593, 0.6551423382293662, 0.6519937051753083, 0.6524496241018002, 0.653533817416219, 0.6542040112541677, 0.6541374168710226, 0.6558678921735829, 0.6547208983662629, 0.6538340315625448, 0.6549586865497365, 0.6590448095093295, 0.6599850238926995, 0.663486429075235, 0.6666259843019431, 0.6700193777915897, 0.6722618939173703, 0.676197448823238, 0.6790895781614906, 0.6854987093177684, 0.6900009292270378, 0.6971353087685002, 0.7009269052749529, 0.7085867063356629, 0.7132331366356879, 0.7185396389978609, 0.7216916651406234, 0.7296241632260544, 0.7314378472561837, 0.7327725041902666, 0.7396391347530973, 0.7416330160744266, 0.7447466415487091, 0.7524019449567344, 0.7581895528216389, 0.7565148004618077, 0.7595391775243852, 0.7604999502271246, 0.7595228242341316, 0.7625129643307466, 0.7590799618153651], "Ba_sigma" => 0.5222412279235273, "Cr" => [-0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274, -0.5086383061657274], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => 0.622403337890908, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.6198495925350083, "Yb" => [0.20197743191509174, 0.1975384329005811, 0.19653917807071303, 0.1965772915538539, 0.20010577392924386, 0.19991191014326673, 0.20306312443216748, 0.207083751397867, 0.20776444905897012, 0.20570077545889207, 0.2085607682423761, 0.21205542886551348, 0.21209054424803664, 0.2136614420864851, 0.22197152391152922, 0.2283950251411886, 0.23107786222996962, 0.23711241601133, 0.24645509881126337, 0.24492703077496286, 0.24922862066086207, 0.2582547403197336, 0.26614098504649125, 0.27378930507365523, 0.2842592846421872, 0.2925208537227005, 0.30092204575157827, 0.30594607246095284, 0.3105119631591396, 0.31496702150503375, 0.31708725897972534, 0.3197833518019471, 0.330225087944355, 0.3367131259407615, 0.3509279100219795, 0.35788517381054064, 0.3530001421950852, 0.3408767016443448, 0.3360836869289335, 0.33187387109476646, 0.3324070698061504], "Lu" => [0.14529022275318337, 0.13877232014625177, 0.13451198050569427, 0.1265999399697118, 0.12710585887029427, 0.12219364586808366, 0.12337565669966179, 0.1232033570941145, 0.12172148793220462, 0.1275845427506707, 0.13334871013778943, 0.13221454492265106, 0.13569988596882368, 0.14239358286969647, 0.14515763869766332, 0.14256806178952966, 0.1499216087179615, 0.1559844217652591, 0.15742522465501702, 0.1591393608439825, 0.17701203173465702, 0.18677979701151542, 0.19303799062289298, 0.20255267731969684, 0.2155209658305305, 0.22256587501207004, 0.22601867124632216, 0.2320375388910488, 0.2464535423954975, 0.24694545098010906, 0.24874641632117986, 0.25723011550398744, 0.26496755737367184, 0.26572272719906087, 0.26767532895660295, 0.2643591950164045, 0.26426314059115436, 0.27252801425055023, 0.27495600103458984, 0.29096191418786266, 0.303901879073976], "Eu" => [0.6314412419348978, 0.6235747745677332, 0.6315775946163574, 0.6323930065217811, 0.622703490328005, 0.6233574779650948, 0.624812359634735, 0.6187826196238372, 0.6239761133140818, 0.6288386285404431, 0.630695470849327, 0.6327379522482464, 0.6370666914932145, 0.6333672542089193, 0.6322484340055831, 0.6337158294809303, 0.6344604761442177, 0.6418593672864995, 0.6428270028800251, 0.6531208694228181, 0.6558904279238666, 0.6632123050211756, 0.6672042943298577, 0.6691354457122167, 0.6717437222094058, 0.676569819445214, 0.67288890095978, 0.6709020055166013, 0.682561856420541, 0.6870474076209191, 0.679396965986996, 0.6899257523838955, 0.6916486919175135, 0.6989848983077681, 0.700010962778856, 0.7113581839997046, 0.7125382285793539, 0.7146472957776047, 0.7095834587787108, 0.7002493877175509, 0.6911005688176394], "Na" => [-0.39922855166122373, -0.39986470435185817, -0.40176605625635997, -0.40175355975954496, -0.4019879870840534, -0.4005624619950719, -0.40054456775600855, -0.3999593880923212, -0.39892106489525064, -0.39993223184601595, -0.3998125541277415, -0.39728895864681707, -0.39652268696669185, -0.3957177477164123, -0.39259938853743104, -0.3901657191330263, -0.3876700811481295, -0.38322446078603606, -0.37979730034249376, -0.37697357671607024, -0.37534405487772315, -0.37283475972425617, -0.3713560847575589, -0.36810407600384765, -0.36304504111364816, -0.36018036382823615, -0.35869035662842264, -0.3568145304367109, -0.35455229400310956, -0.35419885631811854, -0.3504238175903553, -0.34883597670739924, -0.3450754492995679, -0.3436838918567747, -0.3415099297894475, -0.34191646878394094, -0.3374499075192949, -0.3366620252383718, -0.3347078791375204, -0.33313093727542603, -0.3291714717471974], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => 0.17977675688041844, "Ni" => [-0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656, -0.5902280322290656], "Rb_sigma" => 0.8084347404950026, "Ho" => [0.39853413471795734, 0.3934573160928149, 0.3874573407956506, 0.386888713739285, 0.3835214056269274, 0.3866723036918574, 0.3882452599633881, 0.39044504484053183, 0.38810439770624333, 0.3913920501504107, 0.3958510888292533, 0.39597184606670355, 0.3950573499198084, 0.40565736048963996, 0.4065931452878256, 0.40425196760935234, 0.4140591155166009, 0.42030624466927924, 0.422363188790325, 0.4308478139096929, 0.4414967716423928, 0.4459951002679487, 0.45835174667383, 0.46155755609150234, 0.4719744886422184, 0.47889884696462126, 0.47735830053053335, 0.4759596139710132, 0.4798783150606129, 0.47534213173434736, 0.4865100893221543, 0.49751317339665774, 0.5006901258353216, 0.5110888352624808, 0.5223922872322202, 0.5145050091713975, 0.5120144577670349, 0.5192279572035952, 0.5120641306925718, 0.5100085256465295, 0.5104735376928372], "Co" => [-0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903, -0.7764209843288903], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 0.3444292039470766, "Tm" => [0.2706044218403765, 0.26246900841355286, 0.2554332953837257, 0.25495655369704884, 0.25802387624511414, 0.2675304631068429, 0.2708812723553863, 0.26935271521702664, 0.2720910115374811, 0.27217096767909976, 0.27089528338496544, 0.28404353495118523, 0.28805532513130383, 0.2898158492722962, 0.29344375818141283, 0.29603362200731603, 0.29191690851679536, 0.29628842945662687, 0.2929416217167557, 0.29563766381649825, 0.3000032756727291, 0.30471950150584265, 0.3091626081401363, 0.32681758412720796, 0.3291327014708824, 0.3355761005316313, 0.34469979910914783, 0.3578517417540582, 0.37122279725886675, 0.39292082085216623, 0.4079594211056575, 0.41551784722956503, 0.41110436235720516, 0.3971564276050439, 0.4009026695110667, 0.39993768385224027, 0.3969715332077619, 0.40002871800646395, 0.39891401578288854, 0.4024732904023944, 0.40088071542273207], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [-0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094, -0.494850021680094], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 0.7535492921366871, "As_sigma" => NaN, "Gd_sigma" => 0.3512684452830058, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571, 0.05632732043146571]), "Mg_Perovskite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.11925800103142642, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-0.29108324526735324, -0.2997494026790289, -0.3036757943642178, -0.3101524552686812, -0.31776119086627724, -0.3285603983213561, -0.33626619147266673, -0.3484997085997462, -0.36027154902481784, -0.3735055019742434, -0.3852082767318482, -0.4023318526484319, -0.4210498710507895, -0.43662341161024654, -0.45305327816987573, -0.47179478123134594, -0.48675933829762164, -0.5040132136801317, -0.5229972463124083, -0.5412281085420103, -0.5592697151743086, -0.5791053004725498, -0.5930044836328273, -0.6111325703541609, -0.6244763914638806, -0.6422344051749995, -0.6528283394922574, -0.670891622564506, -0.6896900588179888, -0.7056692559725751, -0.7176739243360986, -0.7403109969647026, -0.7567767916177631, -0.7643657171760136, -0.7754548251074177, -0.7911399714598971, -0.7997100522153449, -0.812793777280179, -0.8257788062091196, -0.8358267240036482, -0.8449287630641824], "P" => [-0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819, -0.5261907865640819], "Si" => [0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754, 0.13935394166898754], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [-0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931, -0.8690216253989931], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 0.4581866351714665, "Cs" => [-1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094, -1.8494850021680094], "U_sigma" => 0.37104910849491807, "Ce_sigma" => 0.3354682428446037, "Dy_sigma" => 0.16235224921664848, "Be" => [-1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282, -1.6733937431123282], "Sr" => [-1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938, -1.9295145166397938], "Pt_sigma" => NaN, "Ta" => [-0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688, -0.7614393726401688], "Ga" => [-0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777, -0.41851328242510777], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [0.14507535892644915, 0.13859361509960397, 0.1277644770240464, 0.11544872882567507, 0.10553976975560111, 0.08830512350642582, 0.07397903562927712, 0.06587924106363158, 0.054014030983477054, 0.03981443241766942, 0.026601256486917087, 0.010622992658084252, -0.009260044493901502, -0.02811925786560047, -0.050073970876400656, -0.06652736307126239, -0.08280555483422487, -0.10103705413946876, -0.1166207603660368, -0.12972598940684316, -0.14743771192698107, -0.16493787811157343, -0.18131162217262578, -0.19951798955610306, -0.21513892937258913, -0.2284548587410578, -0.24061271509422974, -0.25483497209454803, -0.2637343315414125, -0.27381098635401036, -0.2841155014390966, -0.2941970363485246, -0.29920612291019605, -0.3070830879758271, -0.3152398165430445, -0.32099212593032106, -0.32660260177894446, -0.3340700522281045, -0.33892811506026604, -0.3449085604417143, -0.3497478079914246], "Sm_sigma" => 0.37124175138424187, "Lu_sigma" => 0.041421505261403965, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673, -1.46683903725673], "Eu_sigma" => 0.21567779337923693, "Sn_sigma" => NaN, "Ca" => [-0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135, -0.6435097169869135], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [-1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624, -1.2416440611282624], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867, -1.6048029578833867], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.08832507515170947, "V" => [0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667, 0.029383777685209667], "Yb_sigma" => 0.2349438197071367, "He_sigma" => NaN, "Co_sigma" => 0.04321684538018359, "Mo" => [-0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083, -0.28399665636520083], "Ho_sigma" => 0.1209020029623451, "Pr" => [-1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695, -1.6062822556803695], "Pm_sigma" => NaN, "Th" => [-1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947, -1.937090444887947], "Y_sigma" => 0.44825678523348506, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => 0.043362241422331416, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [0.5630439451894665, 0.5592598437747675, 0.5554867609794338, 0.5513772974630742, 0.5444927144669287, 0.5385652713309299, 0.5349830407084533, 0.5307009711068816, 0.524316461161985, 0.5211222462170702, 0.5171509606757616, 0.5087482198825892, 0.5010038064102219, 0.4941268355849543, 0.4872026164390601, 0.4788156494053298, 0.47313351678032994, 0.4680712982258234, 0.46318835390026586, 0.45671925102877714, 0.45040188269976833, 0.4461788764056506, 0.43954267742225506, 0.43504872813551676, 0.43054293584373576, 0.42752923780226837, 0.4237178435503429, 0.42114963841024816, 0.41796017741229896, 0.41538983717794126, 0.4121591051715364, 0.41063442167292746, 0.4091073312227367, 0.40784523368108383, 0.40650072311877494, 0.4054168810603385, 0.40513951923038666, 0.4038959890776837, 0.4028528106934644, 0.40180876597804654, 0.4034691466579814], "Pr_sigma" => 0.387107561062765, "B_sigma" => NaN, "Li_sigma" => 0.2591985751218927, "Tl_sigma" => NaN, "Mn_sigma" => 0.06314411694367135, "Cd_sigma" => NaN, "P_sigma" => 0.12229800995812047, "Zn_sigma" => NaN, "Al" => [0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894, 0.07737841467280894], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.10060627343552818, "Er" => [-0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086, -0.28433599585368086], "Ge" => [-0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254, -0.1871152645521254], "Cr_sigma" => 0.03994796447500957, "Fe" => [-0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083, -0.4459572043925083], "Pb_sigma" => 0.07619265716494521, "Zr_sigma" => 0.4420906085943138, "Mg" => [0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435, 0.061005007868756435], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-1.4871124468584649, -1.4966973706049302, -1.5148198091872156, -1.5277278080895587, -1.5409624065050602, -1.5612424303091075, -1.5866190479720197, -1.6063927949824706, -1.6329280188752284, -1.6595096330636612, -1.6834902374989862, -1.7075304020049362, -1.73917509666402, -1.7627323625774716, -1.791454834639458, -1.8260901330323633, -1.8522548830797756, -1.8806875535353502, -1.9142111149153145, -1.9410886839541048, -1.963608709733194, -1.9958844635161264, -2.014910600638261, -2.0381078346355985, -2.073113452841843, -2.098412229897736, -2.1248113221273717, -2.1544165633773735, -2.1799700712776304, -2.1994605556231743, -2.2262542722758756, -2.249027990368029, -2.271002566369507, -2.294658004433518, -2.3156884721034756, -2.337203376417672, -2.3558069984531067, -2.3779100818424594, -2.393508341737768, -2.4095766442361555, -2.4179077627308017], "Ru_sigma" => NaN, "La_sigma" => 0.7658457167778225, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => 0.5252671134059943, "Li" => [-1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156, -1.1455075894463156], "Dy" => [-0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318, -0.5712698953974318], "Ti_sigma" => 0.22590413067448373, "Th_sigma" => 0.6715590038429213, "V_sigma" => NaN, "B" => [-1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881, -1.926935982160881], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077, -0.4141372162867077], "Nd_sigma" => 0.3632983870918376, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [0.7346865574306397, 0.7201927802089285, 0.7091552695685696, 0.6955356260133473, 0.6886267953548567, 0.671585106529912, 0.6593851385841123, 0.6469357003969715, 0.628953669914408, 0.6068509932290805, 0.5929419197145798, 0.5752246530016795, 0.5460840322374483, 0.5278663375068279, 0.5023223787529103, 0.4820632693993685, 0.4610370755979815, 0.4483159003418627, 0.42855449745471563, 0.41393245295902337, 0.39237129636039614, 0.37349353262995816, 0.35535416265648306, 0.3375253846091659, 0.321827660916436, 0.307048305070984, 0.2988156056878479, 0.28435669031171606, 0.2734935351697934, 0.2640637808562314, 0.253812132512806, 0.24011901453554366, 0.23520946871232987, 0.2285413153292773, 0.22284452040646147, 0.22069384632483446, 0.2177495719346294, 0.2107278472649885, 0.20640457207760626, 0.20140526887539606, 0.19749966872762453], "Tb_sigma" => 0.18350929161004237, "Ca_sigma" => 0.0854211922756513, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746, -1.1571406706489746], "Sr_sigma" => 0.4505544994166389, "Ag_sigma" => NaN, "Mg_sigma" => 0.030361296219135747, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-1.313633833221482, -1.3073108327851606, -1.3036896800703095, -1.3033242024687244, -1.3021237305205842, -1.3001436286866495, -1.3003568530806322, -1.305782872067902, -1.3128213187683004, -1.309496214423205, -1.3109459835588042, -1.320658531555337, -1.3248539269849593, -1.3302844655697998, -1.3518916396169733, -1.3707912620418632, -1.3788723107650072, -1.3965436947337906, -1.4247733686375263, -1.4410371824428236, -1.4683425631557578, -1.4967134293011228, -1.5159136328861467, -1.5323527194228086, -1.5613923999125399, -1.5858324255900362, -1.6188128513245517, -1.6562402664205973, -1.6982769737771408, -1.7328667104410362, -1.7640161677094683, -1.7925407542737546, -1.8210963786011145, -1.855069772921132, -1.88031999081661, -1.9007271702861555, -1.936193429213436, -1.9665815295321603, -1.9863687508276382, -2.006785440279986, -2.0189104539642866], "Nd" => [-1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368, -1.4972899393099368], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [-0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303, -0.05128609343714303], "Tb" => [-0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285, -0.6693146469207285], "Tm_sigma" => 0.08059512253171139, "Zr" => [0.601242947170236, 0.5962209178475868, 0.5866858171252805, 0.5764356784745098, 0.5640572933159959, 0.5561306389519306, 0.5441868564625956, 0.5300323684855289, 0.5158643653067341, 0.5028106615450462, 0.4864522019643603, 0.46668319326626384, 0.44868610795927083, 0.43061960089163187, 0.41679565580443334, 0.399075917256865, 0.38319440385027076, 0.36658003925334615, 0.3489591931589417, 0.3308119838161361, 0.31660236204133796, 0.2990162568288902, 0.28582030318222357, 0.2727025400317069, 0.25885351539752344, 0.24988829451433187, 0.24179068315481259, 0.22883736493087942, 0.2232455423585545, 0.2154115198938318, 0.2053873826797404, 0.1990981056885986, 0.19340474622313675, 0.1865391498963041, 0.18144242235536584, 0.1766963574741383, 0.17280790850096717, 0.17034287847354573, 0.16473475326087658, 0.1611979313164087, 0.15966510684605975], "Sm" => [-0.7560890965529806, -0.7578873741089397, -0.7609026170496614, -0.7639047872017573, -0.772225594387572, -0.7778706442400455, -0.7870194169551977, -0.7950923961219729, -0.8064014709853397, -0.8213546019697756, -0.8371782396454927, -0.8488916683334357, -0.8678238621531705, -0.8816428143039345, -0.89118520174807, -0.9022590306940896, -0.9168415177898318, -0.9266214868078457, -0.9437693683085385, -0.9602025160597061, -0.9740565119424225, -0.9885088547910306, -1.0010535189795118, -1.0138189688715624, -1.0275018225596324, -1.04381766105455, -1.0583593931591613, -1.07484527758616, -1.0868705865696262, -1.0965047809630748, -1.1083745001075258, -1.1194564939353975, -1.1307046510579388, -1.1413457779422194, -1.152256026180977, -1.1593483242208498, -1.1649193046763366, -1.1749541151993443, -1.185785444171675, -1.1921331537196345, -1.2019594912546787], "Ba_sigma" => 0.7174106560308932, "Cr" => [-0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397, -0.14227010209290397], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => 0.012619099645951396, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.16992929015639355, "Yb" => [0.1190769197188751, 0.11656224002312728, 0.11088907180059811, 0.10593293884267767, 0.0984850167258652, 0.0941739763198439, 0.08763197780024178, 0.08127810267485952, 0.07261570138124954, 0.06575495973703187, 0.057872996511819236, 0.0486792894584404, 0.040301621119369406, 0.02980865000763457, 0.019967724437316568, 0.009152370704903694, 0.0006792996929516846, -0.006287851339989924, -0.012228224295765321, -0.02018296161337587, -0.028959205903007688, -0.038202919265403604, -0.05039319969258527, -0.060114442250516785, -0.06533588023561462, -0.07176123743188871, -0.07777565746162422, -0.08119761099760463, -0.08656525843511888, -0.09190015953599923, -0.09726849237068216, -0.10046404220652812, -0.10371242155842499, -0.10654208359515223, -0.11088878932538318, -0.1127703174546001, -0.11440290605691442, -0.11509744156330247, -0.12043235793621346, -0.1216842287058211, -0.1245501424376671], "Lu" => [-0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887, -0.008142086134451887], "Eu" => [-0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064, -0.9812958898387064], "Na" => [-0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204, -0.9904443404078204], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => 0.12304596971768716, "Ni" => [-0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736, -0.48047646239839736], "Rb_sigma" => 0.8546074200804038, "Ho" => [-0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466, -0.37878345285032466], "Co" => [-0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687, -0.48037365187103687], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 0.6467565513094766, "Tm" => [-0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079, -0.1910818710598079], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [-0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064, -0.2843181179205064], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => 0.1138314293773843, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => 0.22669352909377413, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736, -0.4945786619460736]), "Baddeleyite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543, 0.22969624387961543], "P" => [-1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813, -1.3010299956639813], "Si" => [-1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711, -1.7212463990471711], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794, 0.47127483832486794], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => NaN, "Cs" => [-1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633], "U_sigma" => NaN, "Ce_sigma" => NaN, "Dy_sigma" => NaN, "Be" => [-2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562], "Sr" => [-1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633, -1.8860566476931633], "Pt_sigma" => NaN, "Ta" => [0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033, 0.9203666173059033], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872, 0.8061799739838872], "Sm_sigma" => NaN, "Lu_sigma" => NaN, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995, 1.568201724066995], "Eu_sigma" => NaN, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [-0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692, -0.4034377008227692], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => NaN, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => NaN, "Pr" => [-0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705, -0.28557170926212705], "Pm_sigma" => NaN, "Th" => [0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908, 0.8996702747267908], "Y_sigma" => NaN, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pr_sigma" => NaN, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => NaN, "Er" => [0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354, 0.8727223260219354], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918, -1.037058157492918], "Ru_sigma" => NaN, "La_sigma" => NaN, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => NaN, "Li" => [-2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752, -2.0457574905606752], "Dy" => [0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617, 0.6988083543438617], "Ti_sigma" => NaN, "Th_sigma" => NaN, "V_sigma" => NaN, "B" => [-1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694, -1.744727494896694], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd_sigma" => NaN, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238, 2.146128035678238], "Tb_sigma" => NaN, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775, -1.958607314841775], "Sr_sigma" => NaN, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0], "Nd" => [-0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222, -0.15705152440240222], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081, 0.02460901133509081], "Tb" => [0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082, 0.6290746711861082], "Tm_sigma" => NaN, "Zr" => [2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531, 2.296665190261531], "Sm" => [0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829, 0.2882662415713829], "Ba_sigma" => NaN, "Cr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626, 0.9604072883915626], "Lu" => [0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194, 0.9961169277757194], "Eu" => [-0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066, -0.015082499443595066], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => NaN, "Ho" => [0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852, 0.8205173604870852], "Co" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646, 0.9193140282318646], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => NaN, "As_sigma" => NaN, "Gd_sigma" => NaN, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482, 0.07918124604762482]), "Orthopyroxene" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => 0.2376053643862496, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-1.9732302717959338, -1.952700250480984, -1.9421038036103, -1.922232227563994, -1.9120970136261477, -1.9106872867600262, -1.9006658697497765, -1.8891161378796688, -1.8846737210354056, -1.8798792092467136, -1.8648557075423366, -1.856416856951884, -1.8515675962696345, -1.8337904223396087, -1.809684566222514, -1.786602625132184, -1.7665525805689022, -1.745826732869922, -1.7336471502576984, -1.7243830506343882, -1.7128689883091908, -1.6910072113264276, -1.6743848468951736, -1.6442745998607786, -1.6206087500035746, -1.6102052357094667, -1.6011637989610115, -1.5856689575646408, -1.5744273839046636, -1.563961119458939, -1.5283729198042464, -1.4950331489114534, -1.469930704764265, -1.4523141122829026, -1.4225969655064075, -1.4057792179030066, -1.3907727549370268, -1.3669920229552268, -1.3533088691212962, -1.3254495521221605, -1.3258134471026481], "P" => [-1.819532084172755, -1.818256967563107, -1.817556128623047, -1.8169878888639401, -1.8160651963529855, -1.8180211305444294, -1.8182553422921417, -1.8180737734776513, -1.8172261260287113, -1.8180885627173338, -1.817497016657116, -1.8168383226791545, -1.8172461390151635, -1.819152793006821, -1.818096126610545, -1.81501041216006, -1.817360275676957, -1.8173859366032412, -1.8156188095435846, -1.816892650838997, -1.817929397912499, -1.8126258009016658, -1.8088409060795134, -1.812180633218588, -1.8102608930380555, -1.8107519727052028, -1.812102471553663, -1.8139628631457396, -1.8098802032400398, -1.8090540473951309, -1.8110965909695151, -1.8152063253821915, -1.8204631011364372, -1.826742134381546, -1.8311223852821585, -1.8327971798644735, -1.833267947558612, -1.8312087629000493, -1.8261054980589895, -1.820882877084036, -1.8195842065694878], "Si" => [-0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066, -0.004608654098431066], "Ag" => [-2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562, -2.0969100130080562], "Ar_sigma" => NaN, "Gd" => [-1.5354089548129681, -1.5345514847372073, -1.5335099069195954, -1.5261990912811478, -1.5182705390490205, -1.5050589787975395, -1.484521392792755, -1.458321833562802, -1.4299501082445298, -1.3982553727388383, -1.3533696714117953, -1.3103997321097955, -1.2544736111638066, -1.1947631075625786, -1.1282438428007893, -1.0623488250143003, -0.9881358500548368, -0.9221683424317054, -0.8498610005441417, -0.7846837348222041, -0.7237214719776244, -0.6874581605182345, -0.6434276602662958, -0.5999338009425773, -0.5625509111765029, -0.52827017454334, -0.46531994274261546, -0.41521590693420435, -0.3709434219465371, -0.3162353898207844, -0.26856579475312986, -0.23479293091583195, -0.19179006532809695, -0.16296881474456046, -0.14718277378109534, -0.12107127625025829, -0.10576809518346564, -0.1111918885821905, -0.10422646558213386, -0.10254632303491061, -0.12003443986322748], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => 0.8575174178517947, "Sb" => [-2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775, -2.958607314841775], "Nb_sigma" => 1.0321882565156948, "Cs" => [-2.739999675017998, -2.6933135864584132, -2.627080941995535, -2.5482851266417224, -2.4621049041289784, -2.3676761782536584, -2.259794467736155, -2.1565533933543466, -2.0516763928384787, -1.969678150276372, -1.8779447713622652, -1.791075159325414, -1.701231608894371, -1.632090583220204, -1.555496067760496, -1.4885575816812102, -1.4281245121889388, -1.394055489261047, -1.347170625056129, -1.3076921727323716, -1.2780455952134382, -1.262003009451742, -1.2420236686111188, -1.2286906689158708, -1.221524599909852, -1.2192115710961022, -1.2034477418106717, -1.1807512286429147, -1.1595359997533456, -1.1396661137422208, -1.128894455752743, -1.129836767617864, -1.1243211116240754, -1.1284862292375077, -1.12780413509271, -1.1216518859033267, -1.112673851345848, -1.107953664387101, -1.104407820069782, -1.1120125470141, -1.1094667503997842], "U_sigma" => 1.2915840201113904, "Ce_sigma" => 1.0800550477644173, "Dy_sigma" => 0.7098001168309637, "Be" => [-0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741, -0.6154923684677741], "Sr" => [-2.0306265743382697, -2.027150875245145, -2.0235768949503017, -2.0237422392895867, -2.0235015292661416, -2.012451536815707, -2.0049688588561576, -2.0029873892458996, -1.9868051893525016, -1.970772490370575, -1.9660783125759926, -1.9589382377109774, -1.938955404708431, -1.9302212755494346, -1.9303030994904873, -1.9251358663181275, -1.9121978237870927, -1.9079851821607159, -1.900307236780125, -1.8925483708254742, -1.8735764282864764, -1.8675126808140403, -1.8695868517827074, -1.8652765051283873, -1.8616577735977118, -1.864505753673133, -1.8606267483100354, -1.8445574753544027, -1.836376895269135, -1.831337420762767, -1.8061122287426028, -1.7880224140425964, -1.7760520813067016, -1.7668026750315935, -1.7495843714181432, -1.7546033563384802, -1.737989617973997, -1.7386926684032256, -1.7219995289569712, -1.7138506483414533, -1.6987828280322816], "Pt_sigma" => NaN, "Ta" => [-1.7467725457500058, -1.7227785001523523, -1.7199937060473982, -1.697637978631256, -1.7062831895528145, -1.6976574127868564, -1.679251550076385, -1.6579779415376152, -1.649817823351766, -1.6283547564608891, -1.6101471678618127, -1.6030156273554093, -1.587860389659902, -1.5753891029119194, -1.5646166633313345, -1.5571775115001336, -1.548767013835797, -1.5383422745969313, -1.5268043868362255, -1.506203639361314, -1.4902018489080764, -1.4732619959104916, -1.444676997987674, -1.4257978462519068, -1.415157609339062, -1.3963219478415325, -1.380153049510721, -1.372692212310002, -1.3485619527819128, -1.3338440812004748, -1.3300854231952421, -1.312017002093373, -1.3039234180707129, -1.2838890905200635, -1.2593320412324327, -1.2399611433323958, -1.2233895095702683, -1.2064708911754296, -1.1983111627350989, -1.1899890949434238, -1.1703783017044085], "Ga" => [-0.43129581227277847, -0.4318369484557543, -0.43334377976765426, -0.4358194124075697, -0.43871603218845445, -0.4414439626415747, -0.4460382397134197, -0.45040630508237134, -0.4553292363980487, -0.46211750312451305, -0.46502494900792596, -0.46962332416901975, -0.4715413685675863, -0.4745455714530921, -0.4738931855575341, -0.4767064033596378, -0.47716670344153106, -0.4794334298748761, -0.4768242938426096, -0.47390484995794685, -0.468198529155128, -0.46030556567580244, -0.4529659020398358, -0.4428834807944492, -0.4362795254532718, -0.42717779703695785, -0.4206402201982784, -0.4099639657346864, -0.4057537337638812, -0.3980318104113136, -0.3957488239597635, -0.39003960847394165, -0.3882639084900284, -0.3870605926352417, -0.3842700587143271, -0.38323341178543985, -0.38092443052871805, -0.3786783203437711, -0.3758106596903425, -0.3785190900368744, -0.3747184851182263], "W_sigma" => 1.5966678571815012, "Cs_sigma" => 1.1864468926276242, "Y" => [-0.8801542119591066, -0.8639373859951051, -0.854660480277306, -0.8456284250937152, -0.8348650977031372, -0.8278991516331634, -0.8221717097537821, -0.8129323530217908, -0.8107014755795825, -0.8062635834696583, -0.8010009519977889, -0.7888158376256962, -0.7772412897003568, -0.7680274811622498, -0.7572191224458704, -0.7452917138352213, -0.7417889993632355, -0.7371016953657535, -0.7238245706253245, -0.7175294673225745, -0.7106140380128952, -0.698855068994933, -0.690693310081959, -0.6864239419640541, -0.674287849406515, -0.6638611974530393, -0.6485808312833842, -0.631249927384694, -0.613105672336306, -0.5993882884870756, -0.5826946649088598, -0.5787431894528728, -0.5773252264928499, -0.5742050435547266, -0.5681445186492772, -0.5636156890442671, -0.5603344079238948, -0.5482262305154775, -0.5353239464977535, -0.5264872407436634, -0.5129476677217478], "Sm_sigma" => 0.838605632044744, "Lu_sigma" => 0.5494332682270906, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-3.310632141230889, -3.3122500346952313, -3.3137171806844026, -3.3175058447651304, -3.3064668757081814, -3.295508777183763, -3.2637214654935156, -3.243703759758243, -3.2201566127242165, -3.2001316455948916, -3.1763712196462848, -3.154167350164872, -3.117420861094823, -3.0734977267754586, -3.0206943283778305, -2.963260447620478, -2.901797531930347, -2.8348952644122702, -2.764975849889083, -2.672530266639663, -2.5518056913270395, -2.4136363266481258, -2.249342347648313, -2.08144594241713, -1.9080089807461753, -1.7301657161670447, -1.5806497700753621, -1.4357018376215935, -1.3079077829330827, -1.201064712026347, -1.1292208453709383, -1.062553796895049, -1.002154522872786, -0.9598090256574007, -0.9260106197031098, -0.8987312429635922, -0.8765375419598987, -0.8654560370130944, -0.8536392937780363, -0.8482468969550139, -0.8408246958519704], "Eu_sigma" => 0.8332857083897562, "Sn_sigma" => 1.2640923661416898, "Ca" => [-0.8707704915820682, -0.8708962947693883, -0.8733518593433347, -0.8786274884315692, -0.8780459599184172, -0.8776111080083477, -0.8733771792026515, -0.8675376099234084, -0.8546404824796378, -0.839350211787909, -0.8117235212637175, -0.7764576383916533, -0.7368100603611861, -0.6858452559653465, -0.6316140213552921, -0.5739822588332475, -0.5165380050514223, -0.45652454788760866, -0.4043748736062385, -0.36024241371608534, -0.32885528308977263, -0.3049165471201426, -0.29124046457488395, -0.28174311791831286, -0.27688425764380803, -0.2763916460564517, -0.2792679828332381, -0.2850725045117727, -0.301335250022827, -0.3192874377724102, -0.3396939809432493, -0.36892202701716903, -0.40172106542798863, -0.4326370814645104, -0.4755505643982605, -0.5215452099700791, -0.5592719586226302, -0.6139638860895502, -0.6655092196390407, -0.7151116327396984, -0.7658896756733987], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => 0.46303307912969854, "K" => [-3.096125723685026, -3.0702858272390645, -3.028555000415019, -2.9901253055261274, -2.94877920598705, -2.9042522221776994, -2.8478289613587866, -2.7900909271331864, -2.7338100671615297, -2.662751693130535, -2.5965626705172054, -2.524163060919693, -2.458112378168235, -2.3886998064410627, -2.329039817323827, -2.2688136367226, -2.2217970563002036, -2.1739303239848753, -2.1462482452625897, -2.1314966169188, -2.127475300931321, -2.135803480563018, -2.162432493584413, -2.200924232091881, -2.2448123059570615, -2.296858259706481, -2.3524978907999428, -2.40920444267255, -2.456386586685521, -2.5122198853189626, -2.5640556129438434, -2.614273279952724, -2.6514702195529063, -2.6924853443177956, -2.7303290675553202, -2.767384981192049, -2.7895298905358272, -2.8138900428450215, -2.833346471722252, -2.840103968823496, -2.8467755406937303], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [-2.3950729737704743, -2.4214822095156148, -2.4467490478559255, -2.464304310069204, -2.473747224888448, -2.477300484390269, -2.471145860982363, -2.4480111940284943, -2.4213073852937836, -2.3888005073525664, -2.3483605509256593, -2.293126588681772, -2.2328083001988146, -2.153234860236214, -2.0635692671422263, -1.9531973634309545, -1.8345490001983302, -1.7110302720753467, -1.5935355911992521, -1.4668633965800677, -1.3515503709451107, -1.2398850894538789, -1.1473414728569773, -1.0644724919340056, -0.9895548391176321, -0.9267890235011224, -0.868084159918207, -0.8221209907637639, -0.7746725998949906, -0.723913443398055, -0.6788506753104921, -0.6397570171929174, -0.5892962605243125, -0.5568593411712819, -0.5276183574800775, -0.49333428571191473, -0.47847813583617643, -0.46685043258004, -0.4471020508823861, -0.4355897281811911, -0.4439924315495789], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => 0.6713586704352215, "V" => [-0.05435735265242955, -0.043035746830688136, -0.03915573115573123, -0.03846535048008008, -0.046323598852606084, -0.05433327763728199, -0.0660375169624149, -0.07416971717396678, -0.08392665611611139, -0.0895282491608332, -0.09490059754722274, -0.0969545761834537, -0.09909256594193334, -0.10211198007948682, -0.10162958563253036, -0.10098002646573019, -0.1019013695057855, -0.10397607748152932, -0.10006734422769963, -0.09984133016655565, -0.09939158868279206, -0.09148171674455967, -0.07653315680552324, -0.05588534448165467, -0.029818782113293557, 0.003608213528559999, 0.04571794322971599, 0.0831103005797356, 0.12691648090274774, 0.16776087017162514, 0.21027653530449616, 0.24991845349270883, 0.2900049822660852, 0.31623161936415384, 0.34335043663789766, 0.35310465018281845, 0.35175752280563233, 0.3450128589832861, 0.319927648237642, 0.2770534108117222, 0.2351046382425302], "Yb_sigma" => 0.5645942163110999, "He_sigma" => NaN, "Co_sigma" => 0.5933769405736609, "Mo" => [-1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452, -1.261021085241452], "Ho_sigma" => 0.6547890785528714, "Pr" => [-2.1463992528052867, -2.1816302522801587, -2.196148296166535, -2.2085099632280674, -2.206490666056471, -2.1878533955223918, -2.165067843586669, -2.1390192351073205, -2.1048303124557073, -2.0553096437804803, -2.0111943108445463, -1.9406694061300793, -1.862704324280985, -1.7751225676571065, -1.6836141832113496, -1.5791328600861252, -1.480558062059302, -1.376767736206803, -1.2783605039868906, -1.1755868054831826, -1.0903227050561888, -1.0171314747479858, -0.943307699682339, -0.8758159390808702, -0.825335267562561, -0.775968430095748, -0.7131535852747101, -0.6670560580206896, -0.6125637033549526, -0.5656036391240795, -0.514391594241421, -0.46906377897530666, -0.4365600311381094, -0.40554416946277994, -0.3797503807134428, -0.3590979889289279, -0.34195996458996714, -0.3157239546754378, -0.2854717187351052, -0.2757266338988715, -0.26907422642294626], "Pm_sigma" => NaN, "Th" => [-3.3341874502195856, -3.3274114961486494, -3.3082114248311245, -3.2766812831838847, -3.2496251715505355, -3.191174569341705, -3.1345699586972895, -3.0780254640186007, -3.005839306681396, -2.9165536229515787, -2.847816826916751, -2.751114401887286, -2.6484983259716914, -2.549176216057401, -2.4371513087355963, -2.31908590935144, -2.188701569368768, -2.074681088280951, -1.9503271613771596, -1.8287050762031216, -1.7013134444881823, -1.599668377291215, -1.4673975399762342, -1.3416905602067446, -1.2186531394791242, -1.09890103940065, -0.958967277483926, -0.8465067084258721, -0.7412397330485637, -0.6409619051598979, -0.5705417985177271, -0.5086738649213328, -0.46159906153324093, -0.410580781665318, -0.3792300669835506, -0.34018905138121325, -0.33164801122942433, -0.3101900056549651, -0.3084175250990282, -0.3139410496319178, -0.3173040143332078], "Y_sigma" => 0.6425794022010234, "Zn" => [0.05845722047838177, 0.08817306341605827, 0.11356980382005956, 0.1472678902866375, 0.1825333906300016, 0.22486879277396254, 0.2652311146009249, 0.3100452027616691, 0.3563580990388378, 0.4041680452534715, 0.4441209322876651, 0.4796717602785214, 0.5162689773575597, 0.5478345635179005, 0.5713627780035981, 0.5944032140145592, 0.617885492072947, 0.634754005656823, 0.6506377860382538, 0.6702600337765572, 0.6885840708357863, 0.7105300352452056, 0.7368230626777523, 0.7718518202547697, 0.8066041554362358, 0.8441779478475396, 0.8845288428526984, 0.9225315140145502, 0.9520981119610259, 0.9734409180347283, 0.9913554665670778, 1.0028510210222372, 1.0110286299711306, 1.0169074559989975, 1.0223329473528202, 1.0257602955463634, 1.0285523240679315, 1.0297006206017552, 1.028375096715833, 1.0309090128008866, 1.0308862982910738], "Ni_sigma" => 0.48458333859584546, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-0.07027598794696281, -0.05243087677694832, -0.03694077559569799, -0.01834545962867859, 0.0005026622074671052, 0.020611016441478332, 0.04831027578011441, 0.07987302875781464, 0.11233619734815321, 0.14672598758947233, 0.18556444899734384, 0.22584476928549474, 0.2615091621365168, 0.2981281135186962, 0.3451084642731121, 0.3888925993022173, 0.43337882268289346, 0.4833113934119997, 0.5285937143350656, 0.5648730843436375, 0.5941591641759089, 0.6256550683160055, 0.6499773562999428, 0.6834748113362309, 0.7143794719282935, 0.7632339399837881, 0.803146002188096, 0.8436090368772025, 0.8919526539400615, 0.9315262110947986, 0.9640914790611027, 0.9948955393207484, 1.0273232201325775, 1.0421943492918677, 1.0610013008819321, 1.0726961078001649, 1.078768045918587, 1.0747293513703633, 1.0678051052881903, 1.0445898553275939, 1.0084503033015428], "Pr_sigma" => 1.0265874393602457, "B_sigma" => NaN, "Li_sigma" => 0.159565274972896, "Tl_sigma" => NaN, "Mn_sigma" => 0.7851574164011388, "Cd_sigma" => NaN, "P_sigma" => 0.29190543872659513, "Zn_sigma" => 0.4015659933164623, "Al" => [-1.0378385536679335, -1.051079226467347, -1.0631687304082311, -1.0721377101919334, -1.0850321689461047, -1.0915914896506944, -1.098004999254693, -1.106893631582109, -1.1196960493979344, -1.1254025711294542, -1.1315784259988624, -1.138648694901957, -1.1431179821964392, -1.1463098675365908, -1.1478084079014985, -1.1469833411904078, -1.148938437689531, -1.1479628316189938, -1.1385631369279472, -1.1369766151875378, -1.1339418793268878, -1.1235104096621, -1.106800263512483, -1.0989627904919872, -1.0813574791323501, -1.0620254622775858, -1.048106263379219, -1.032730706310021, -1.01305386746071, -0.9951952352155236, -0.9822187987277368, -0.960387619425482, -0.9376436292895394, -0.9264023585218836, -0.9117904329739834, -0.9058034478249628, -0.9037554295239205, -0.9019138672354515, -0.8878881479715074, -0.8823290121863022, -0.8693133805836327], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.6282634187328848, "Er" => [-1.1290485258460652, -1.116197446714094, -1.110529555710733, -1.1019052630877149, -1.0884649308285292, -1.0733324492148597, -1.0556191414066276, -1.0315027853244063, -1.0050141945670266, -0.9744709335561205, -0.9375920638266126, -0.899834758695947, -0.857653125253518, -0.8056102562444986, -0.7539453746421234, -0.6926859308189623, -0.6361014717018193, -0.5725410274110821, -0.5192291759414788, -0.4623957997091645, -0.4256981332537083, -0.3829095025235739, -0.3485324295141846, -0.3208598849612244, -0.3056166582028699, -0.28421917226210247, -0.25893193518822355, -0.22299707001998129, -0.19194833531632383, -0.15772550197613974, -0.11797077170970949, -0.0808880741422422, -0.0594331604271776, -0.03256480523817014, 0.0002759571354255954, 0.03168244254226862, 0.04911534902776192, 0.06581394249267201, 0.08433748883034409, 0.09688541975966612, 0.09386389062617752], "Ge" => [-0.05839547370161341, -0.08476638105581324, -0.11489072930266382, -0.1407042341470529, -0.1583467448694189, -0.18153914814985492, -0.20700415740238368, -0.2166349242107211, -0.21950404266428986, -0.22162726779391462, -0.20845186861516374, -0.17858789608623502, -0.14115857396092546, -0.10140181309725817, -0.04511945761550878, 0.01482666958959903, 0.07416000012905732, 0.1302410141999427, 0.18987999352332324, 0.23237423916842703, 0.2771820393633278, 0.31496679412458817, 0.3428395902821283, 0.3618464221098284, 0.3754664382389256, 0.38181551748772335, 0.37887888590764796, 0.3760001080800545, 0.3714022960383824, 0.37359303580325415, 0.37125787153490053, 0.3660524139010805, 0.3654365986003658, 0.3642346199485967, 0.36002214889326417, 0.3578503117086699, 0.3635046625684553, 0.36294529896244243, 0.3664424630289404, 0.37054887377647583, 0.3718969545633122], "Cr_sigma" => 0.6178109349564209, "Fe" => [0.055899361931399306, 0.05077996992296678, 0.049165512897467664, 0.04935562527283664, 0.04910357767587319, 0.05483176677890521, 0.07008199739841942, 0.08890047930667137, 0.1066974568066488, 0.13471762783921232, 0.17198507847527808, 0.21262238297452626, 0.25999533346088644, 0.3202628995879234, 0.3796798770339903, 0.4421009543133206, 0.50411539328728, 0.5649085807055659, 0.6143322365042897, 0.6703591524029057, 0.7234630627965645, 0.777644036975776, 0.8360983677310495, 0.8989731623216596, 0.9705327346612187, 1.0400739334918485, 1.1088717769934264, 1.1698491044304924, 1.2276524105755084, 1.2767492910778178, 1.3087220029975972, 1.3382405168905565, 1.3608280357561247, 1.3736961494520734, 1.380313699729471, 1.3925747174431806, 1.3962889267527334, 1.3994013974502795, 1.4007330263669007, 1.398069042668385, 1.3921563538209283], "Pb_sigma" => 0.9989269658543536, "Zr_sigma" => 0.6291350932262638, "Mg" => [0.5724033596898885, 0.5829577535976435, 0.5953658617301386, 0.614998073735397, 0.6358946817995761, 0.6563180348203931, 0.6861723382607415, 0.7206911683905785, 0.7615641753786723, 0.808335582075793, 0.861314160436559, 0.9114553390893247, 0.9676835997418076, 1.0221183275921992, 1.0738404562920645, 1.1237542427386, 1.1750027389838944, 1.2176262042865764, 1.2577637784536357, 1.2926153290329476, 1.3260063954617718, 1.3504955475415377, 1.3759342686729323, 1.3989336626599258, 1.4210483303852366, 1.4416621846413453, 1.4607578923060422, 1.4770037234054916, 1.4902938892921356, 1.5068847290422607, 1.520222001207879, 1.535061203264463, 1.5461946720950568, 1.5594389479243052, 1.5668343756078222, 1.574388230323364, 1.5803273355519303, 1.5881556557045868, 1.597021771452048, 1.6048796091737287, 1.6126761578938666], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-2.6911492993080155, -2.7133678760160835, -2.7437579340868483, -2.7559537073546014, -2.747377562734474, -2.737242850137654, -2.7243801455111094, -2.6976393818914866, -2.665032083471373, -2.634530642635591, -2.579852545079165, -2.5145114628732426, -2.4312557538119175, -2.345622303363968, -2.2339758555641893, -2.127823742246081, -1.9985100167082177, -1.876700736978836, -1.7379868029961305, -1.6136389946165075, -1.488697568912716, -1.375932569563147, -1.2875171635314795, -1.2200508198373974, -1.1447474185236988, -1.071861742275126, -1.0166122094318069, -0.9502437369584624, -0.8844825521220835, -0.8352792331675836, -0.8034683198593842, -0.7674360500556292, -0.7424929923369235, -0.7133222133570369, -0.6964922032784556, -0.6707190183936219, -0.6459578718495584, -0.6257967686486519, -0.6181835609427964, -0.6028613075442673, -0.6027657520798666], "Ru_sigma" => NaN, "La_sigma" => 1.2342273351593518, "W" => [-2.7232174081341625, -2.685966999685663, -2.634704620748972, -2.5935290229249586, -2.557954735417999, -2.5223988999847573, -2.470355387260639, -2.4265267795776775, -2.369529082888646, -2.3116287784241134, -2.254202581422108, -2.1994505037062457, -2.1391791533024453, -2.089346040068227, -2.0311258443805404, -1.9765527568903618, -1.925635030832029, -1.8803468449437943, -1.8189683101530065, -1.7697298622368827, -1.7121856487443659, -1.6618821487312845, -1.6015561204530249, -1.5657061591245087, -1.5132471973012898, -1.4608918767336536, -1.4184762882936859, -1.3703248698989434, -1.3075388722008432, -1.2660619887878317, -1.2295116033898366, -1.1536255546126912, -1.1131531949019373, -1.0624873618607937, -1.0145088030931844, -0.9564951302779099, -0.9309838674192937, -0.8897844910595762, -0.8605378953946555, -0.8536620619740684, -0.855156022513003], "Au_sigma" => NaN, "Hf_sigma" => 0.505102371252104, "Li" => [-0.528411358862929, -0.5257302989177283, -0.5214546754674763, -0.5170526521537385, -0.512591246351563, -0.5080745425471338, -0.5027214199132339, -0.4977859122587896, -0.4943184060286036, -0.4908768549111002, -0.48765130382584637, -0.48692993598840567, -0.48794436481615716, -0.48958867940252, -0.4931001215688939, -0.49921769004880995, -0.5059252222515511, -0.5161335928459109, -0.5290952543035986, -0.5473682759654217, -0.5668873007393667, -0.5882710482642108, -0.609755163679834, -0.6307967284623728, -0.6483069229325953, -0.6654970846229022, -0.679945967868343, -0.6921745180623806, -0.7015866831346302, -0.7086737637550076, -0.713747917870141, -0.7191765057903524, -0.7223176900961437, -0.7254199838845746, -0.728111230220496, -0.7310689890323538, -0.7319783413177775, -0.73283896900713, -0.7324222967132099, -0.7322590606440275, -0.733112219747631], "Dy" => [-1.3096257723154816, -1.3144088951551103, -1.3181365736453812, -1.3162360697383366, -1.311231211494906, -1.2948253718017277, -1.272582078519074, -1.2452466162531708, -1.2187285892669406, -1.1836159454515152, -1.1439312466317444, -1.098543702578021, -1.0494900928773294, -0.9844727239371626, -0.9234139027621638, -0.8649661174668835, -0.7950924642011922, -0.7309929817778507, -0.6670500752060585, -0.6033441062550897, -0.5464501213863098, -0.5086245551214318, -0.46407986824492514, -0.4348687815743724, -0.4065847489424031, -0.35636135811095526, -0.31634987101759254, -0.2752401088026836, -0.2377362818790285, -0.1970324758770678, -0.1629861838710929, -0.12999873834386266, -0.09271631213657834, -0.057991125914584836, -0.023622156273247943, -0.007367603889609448, 0.009001754150097173, 0.01846768706746202, 0.022051834189159257, 0.025874542909648537, 0.017720712515971824], "Ti_sigma" => 0.5084411163701064, "Th_sigma" => 1.5056677598254768, "V_sigma" => 0.3900743838243497, "B" => [-3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374, -3.5228787452803374], "Bi" => [-3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0, -3.0], "Mn" => [0.11164561766115119, 0.1055493138592143, 0.11027306468792746, 0.11369328948462822, 0.11672079303410232, 0.12493227530289316, 0.13544481567039715, 0.15109204748693802, 0.16297126499703432, 0.17926892843768039, 0.2016709598033508, 0.23241445689901197, 0.2666648955600423, 0.30660835313704293, 0.3596743606740411, 0.4100811040744823, 0.46462867498158616, 0.514941476887086, 0.5741074827779402, 0.6229309157410561, 0.6652466275090206, 0.7167518229162769, 0.7659403724258272, 0.8159985569332205, 0.8674860149926078, 0.932691927419108, 0.9894288247869876, 1.0493700049302785, 1.1082082056999147, 1.161178792870283, 1.2040760601768035, 1.2540888996303852, 1.2940060108748037, 1.3244187614608807, 1.3547583455684378, 1.3810969437830278, 1.3878611947780464, 1.3983639255041467, 1.4025286830372499, 1.3970272461232687, 1.3808174407006335], "Nd_sigma" => 0.9850251713526612, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-1.6357854497494333, -1.585660762540897, -1.5423909088304182, -1.498384289316595, -1.4509647727278179, -1.4137362094052357, -1.3799186904482161, -1.3481112383728637, -1.3226045677605034, -1.3003101758542157, -1.2727183714664299, -1.2463905027732987, -1.2195103428867478, -1.189269241751592, -1.1561774207212279, -1.1266127076226577, -1.094993633221791, -1.0651841752842754, -1.040340943815584, -1.026068534091011, -1.0122168095467414, -1.004165212527762, -1.0085854481738425, -1.0148188045532145, -1.0140998741642187, -1.0237547323044938, -1.0346991770649898, -1.0316139786163647, -1.0284092195567622, -1.0265793406464214, -1.0118881477701795, -0.9978777141766836, -0.9846252969203709, -0.9672907150398297, -0.9516697345137145, -0.9441854958646129, -0.9299802726781546, -0.9194309665506536, -0.9154072836535665, -0.9117178941798776, -0.9017635496846649], "Tb_sigma" => 0.7297254590134203, "Ca_sigma" => 0.5549529962746613, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [-0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394, -0.619788758288394], "Rb" => [-2.124321415401348, -2.1303596089243406, -2.12090256470979, -2.1214261675674067, -2.11488377885522, -2.1013918391026256, -2.0956401201214505, -2.095645189447014, -2.0853104258744515, -2.0850121718789083, -2.087355633533822, -2.079136982098489, -2.0765243243287226, -2.0849523029702137, -2.080025876469643, -2.073460897025937, -2.070718284537254, -2.0637643374759813, -2.0613350814205513, -2.0607195537889056, -2.060443275088418, -2.061847504944501, -2.0645012582768185, -2.0582284547205463, -2.052285878340051, -2.049880353796389, -2.0524644965848657, -2.0386657122861416, -2.0329441037478784, -2.033043315596249, -2.028794178019885, -2.0231054961051687, -2.025090733786058, -2.0236286451568306, -2.0146666005733525, -2.015623096463651, -2.0177175886682397, -2.0062603482312937, -2.001148135637205, -2.0032284791755384, -2.003083390760229], "Sr_sigma" => 0.7502235676068513, "Ag_sigma" => NaN, "Mg_sigma" => 0.5839768105031246, "Rh_sigma" => NaN, "Mo_sigma" => 1.623395982436786, "Ba" => [-1.843996374402609, -1.835909378889362, -1.8024726731842295, -1.7690160018018777, -1.7632439224636103, -1.760992810930265, -1.7524551006161382, -1.7331598000411013, -1.7196627008221064, -1.7069675209083548, -1.6974153506409277, -1.6830742293946255, -1.6988537986845607, -1.6982433527107164, -1.6865906321022075, -1.6806998733504552, -1.6751215870246257, -1.62635781118232, -1.6037037489881278, -1.5696058269789401, -1.5419726135508902, -1.525998108264352, -1.522197694491352, -1.5306103920160983, -1.535608240062678, -1.520293312322373, -1.4973778300498615, -1.4951777495452054, -1.467167215004962, -1.4386238113377927, -1.4268204734678813, -1.4183483576391, -1.4114732657727664, -1.398184275442607, -1.3978179775130366, -1.3937778953386886, -1.3821188079520947, -1.3455028688790764, -1.3134918258704906, -1.3014004575841498, -1.2668286204815997], "Nd" => [-2.062930289047488, -2.082227539569395, -2.098705213136943, -2.1029024234221705, -2.098570967772275, -2.086992618667352, -2.0745011256271115, -2.045348289696553, -2.0122212691873336, -1.972728397830902, -1.924918619343864, -1.8627099784724916, -1.7993605379022983, -1.7274086044558563, -1.6434646023147663, -1.542271664949506, -1.4384688805788999, -1.3253245448772952, -1.2223481081210372, -1.1234820011400752, -1.040476629123896, -0.9597692101548239, -0.8939918716654365, -0.8238076138165913, -0.7634262624443287, -0.7089403305641302, -0.6663242861033821, -0.6219071242050699, -0.5750392431154215, -0.5217411474105288, -0.46278422688103704, -0.4088392257693137, -0.36427288145775966, -0.34086603059373205, -0.3214727845426881, -0.3161952046565128, -0.2957240579523175, -0.27130081956725305, -0.23237205129851846, -0.20778123561634987, -0.18049538633234832], "Pm" => [-1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968, -1.8098943791441968], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [-1.09447517458971, -1.092484910557593, -1.0917688541942498, -1.0894088355815381, -1.0858067262475628, -1.081116705012675, -1.0777363228501162, -1.0713366325522409, -1.063332896512333, -1.0535434229032659, -1.038472529769851, -1.0198551404696352, -0.9978843864662116, -0.9736772271259756, -0.943379890481755, -0.9143253054478122, -0.876839470500067, -0.8354356893754158, -0.7868621382509241, -0.730748299843211, -0.6726627326625861, -0.6103203939160304, -0.5371128284968832, -0.4644321504512718, -0.3976905935602608, -0.3306057533588816, -0.2760822548295882, -0.2333942724864989, -0.19752539630917829, -0.1692064214643676, -0.14828096323386786, -0.13365127166052018, -0.126407789272293, -0.11978111451822396, -0.11561972803146937, -0.11416067454777264, -0.1135684105428555, -0.11032105606858872, -0.10946515960179053, -0.10770212751328519, -0.10983020428585381], "Tb" => [-1.4029259172635773, -1.4005116857262752, -1.390817504537654, -1.3892013970523425, -1.3822696536210795, -1.3696637608546547, -1.3492773431493386, -1.3299542642590636, -1.3022850845346292, -1.2650987154615305, -1.2251308329355857, -1.1818414848166907, -1.1304429368340636, -1.0756190349841805, -1.0154633437439333, -0.9434738283879001, -0.8673285171245774, -0.8006895541147216, -0.7214050226720082, -0.6530588618692985, -0.5929481056486197, -0.5444922356634451, -0.4898738862484726, -0.45892476158510953, -0.41929432307485914, -0.38756914936794584, -0.3492434099724463, -0.3044063883812483, -0.26658586402783657, -0.22956440607170273, -0.18603726725222228, -0.1519117874033544, -0.12226935634515314, -0.0884169455584265, -0.06599074354620774, -0.04265840751372432, -0.018129893576448872, -0.010563181850086844, 0.01182330903408652, 0.028221429040824843, 0.03616845643303672], "Tm_sigma" => 0.6024828213058436, "Zr" => [-1.561209716114292, -1.5597145385830753, -1.5649946834599513, -1.5673801785967323, -1.5727923092249785, -1.569965336570397, -1.557415699520284, -1.5398048596736331, -1.525721691254229, -1.5142761872791513, -1.5164335796771145, -1.5200061207783624, -1.5230802085708903, -1.5226284504594998, -1.5142720488319776, -1.5017144786491496, -1.4963266435102571, -1.4885510040063077, -1.4898958532725506, -1.4859476569398142, -1.4781720305504449, -1.468720598374172, -1.4673876355956925, -1.464350121111781, -1.463593834283973, -1.4640973258234353, -1.4682696642014192, -1.4661891998759353, -1.4603660563244358, -1.4488669235723595, -1.4538763331068492, -1.45201270303503, -1.4470286383024658, -1.438805148092234, -1.4384208329722181, -1.4292071197830791, -1.42317051174964, -1.425456031917996, -1.4185202786227271, -1.417167695754799, -1.4161802857211703], "Sm" => [-1.7197068184148796, -1.727362143831772, -1.7252789922100695, -1.7225987585655926, -1.725743934160602, -1.7153562224804833, -1.7010350516347228, -1.6852025789917209, -1.6568312163711907, -1.6234071079093937, -1.5932557487249865, -1.5483431198912083, -1.4984858165542245, -1.446698347500373, -1.3788870062699186, -1.2931037515955572, -1.2126973956781872, -1.1264733289474003, -1.0432169707368073, -0.9620783744889528, -0.8953140982163099, -0.8349386863128551, -0.7881120878912415, -0.7396268362576186, -0.7007253029697745, -0.6512803766376261, -0.6109252408080961, -0.5556663230459664, -0.5108992352015158, -0.4643008994605907, -0.4221510519367881, -0.3771812072179236, -0.33330242547568084, -0.30574931520117443, -0.2828505806771165, -0.265753394739975, -0.2540836901802464, -0.25748345238022863, -0.2575420303286133, -0.25366429249786954, -0.2678870814491418], "Ba_sigma" => 1.2299775368185981, "Cr" => [0.6158123787057519, 0.6381950553414916, 0.6535546399690892, 0.6659399940929874, 0.6649802065371451, 0.6733501467117307, 0.6808448775140515, 0.679053748299631, 0.6793247973225981, 0.6873455360265087, 0.6926573733747572, 0.6979560328865969, 0.7112792631630227, 0.7191998375974855, 0.7290670607871457, 0.7398330155025581, 0.7461547720452376, 0.7498337251896282, 0.7582736568568504, 0.76170197764539, 0.7618376702775699, 0.7628909059989362, 0.7668178927873424, 0.7660960952744084, 0.7603360374096704, 0.757843710389296, 0.7727807060070139, 0.7853510516328795, 0.8074906254521367, 0.8479466527500149, 0.9012210906942868, 0.9301269039747884, 0.9693585285507654, 1.006383198147989, 1.027493974162205, 1.032324032358133, 1.0519343883080579, 1.0482529057921413, 1.0424057731115932, 1.0437833342840923, 1.0121395618724702], "Cu" => [0.08442127874824633, 0.0753357088104568, 0.053347192781538585, 0.01463083575426854, -0.03037779636191547, -0.09026649473482795, -0.1599725461979704, -0.23981678637306333, -0.3176254088055713, -0.39313678006328623, -0.4560160056953968, -0.5046619220019315, -0.5353325464441264, -0.5606961393397101, -0.5795146502679204, -0.5926464041404098, -0.5960767748318049, -0.5987407981429806, -0.592023099204742, -0.5751665598538124, -0.550218300290384, -0.5203490792920078, -0.48466860940141626, -0.4402877343224763, -0.3963779286602875, -0.34602190239088004, -0.3011391784316266, -0.25576288038093814, -0.21940318530637884, -0.18595825145339745, -0.1599259457843032, -0.13887348054931595, -0.12345619143770879, -0.10646123545245795, -0.0967678065370176, -0.08805881935657449, -0.08426407354054073, -0.08324346120150203, -0.09157823554923201, -0.09630746889164025, -0.11283378366547724], "Al_sigma" => 0.5466935723567026, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.6708519333953045, "Yb" => [-0.9966758435901418, -0.9871859238804308, -0.9873396335851551, -0.9809834674911968, -0.9732106861521171, -0.9634396378083465, -0.9524994721417179, -0.9351977889619577, -0.9209375420415066, -0.8986053580991544, -0.8768029220780541, -0.849951090281328, -0.8178864954723665, -0.7806670475853921, -0.7383514535825918, -0.6905164001495361, -0.6396099881483236, -0.5845988760120548, -0.5327815704266174, -0.49035835470228983, -0.4529624222144969, -0.41792699390907717, -0.39168378125917347, -0.3709461107641956, -0.35080490597477604, -0.318162799168326, -0.29032385888876544, -0.2637442148525403, -0.22691650140797412, -0.18817926753989453, -0.1608168173581292, -0.132788807529111, -0.10120778954771313, -0.079439168985343, -0.06504825748532465, -0.05474558511012445, -0.05033430766958029, -0.04914541518650668, -0.06104999957046976, -0.07331554237709294, -0.0837183358704378], "Lu" => [-0.9270418882922615, -0.9145375653217497, -0.9060706349747215, -0.8988168312625693, -0.887820188799784, -0.8707553667656817, -0.8550568462119316, -0.8358422897550518, -0.8095850867609611, -0.7814499281589047, -0.7519499952039499, -0.7226306907515974, -0.6877193710013434, -0.6464263990449334, -0.6046644050362971, -0.5598580981685338, -0.5058477628596476, -0.4559329735231668, -0.40861152473661644, -0.366884942620115, -0.3345200676035577, -0.30477443924556946, -0.279671180010176, -0.26471572196655807, -0.24909045169261257, -0.22580573513757507, -0.2078606251756227, -0.1869808814746207, -0.15041373156799662, -0.117755036993641, -0.08920964795328598, -0.060505236803573295, -0.028051111370925405, -0.005617461504606003, 0.023246920815500272, 0.04452994743059086, 0.06536544476391914, 0.0747196807690366, 0.08698068979014457, 0.08760448345912908, 0.0946347474643883], "Eu" => [-1.858290055978506, -1.8591473823054419, -1.8531872092835415, -1.845776494755158, -1.8397373535383061, -1.8227359346978176, -1.802189430336587, -1.773487613580317, -1.7500709941380546, -1.7180679264896108, -1.6804587589541147, -1.6378029839502668, -1.5937874977940063, -1.5315527405852303, -1.4626077437610094, -1.3878089229781185, -1.3079741676015304, -1.2135508182199342, -1.121343978896876, -1.0295611839310135, -0.9529225471817498, -0.8686767634559921, -0.8022004059997843, -0.7364671942014408, -0.6751004953598504, -0.5997267395935694, -0.5300079939525962, -0.4502142470902325, -0.3812589710704299, -0.3026545654263483, -0.23818467667291054, -0.18224235558872667, -0.13762934499166177, -0.09938004710654512, -0.07188165570778018, -0.054022706601052586, -0.03299971119402049, -0.02278384250808755, -0.0061798623451669145, -0.0019709547625659696, 0.021348629491459277], "Na" => [-1.4102739571670353, -1.4075183551907253, -1.409557179070924, -1.4103664349373508, -1.4054129860777311, -1.4013464192986902, -1.3943016395251537, -1.387298024453574, -1.3796429983419876, -1.3738824353335861, -1.3656927030631902, -1.3589780656828374, -1.349049968593073, -1.3370572158741774, -1.3277884069807353, -1.316671687352789, -1.3021303507562756, -1.2897625801510486, -1.2799683684768954, -1.2671373883015686, -1.2552811484460062, -1.2447044910525316, -1.2325267669608786, -1.2179773693175533, -1.2070542245569, -1.1942709770147357, -1.1825825470213174, -1.1723980305148105, -1.1647393168095281, -1.1511735463927062, -1.1417016343020023, -1.132059476596467, -1.122631171689451, -1.1112171100614392, -1.103128102714296, -1.095654798438236, -1.0918391551150894, -1.0874059100756994, -1.0841837834614778, -1.0773317797794102, -1.074955023043236], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => 0.4175023424533672, "Ni" => [0.6171061037517288, 0.5927674097109772, 0.5736007409449957, 0.5532402420383337, 0.5307698346934067, 0.5175614121841202, 0.5013113993907633, 0.4888650932624036, 0.483127561480136, 0.48297154122958547, 0.4859273204321398, 0.5020382178644762, 0.5152348979467373, 0.5315617333925378, 0.5555678664557502, 0.5781883082106425, 0.5991887473997053, 0.624207435066909, 0.6466827192432298, 0.6621632554914828, 0.6744941757538828, 0.6874369362274588, 0.7023881819110146, 0.727812714144151, 0.7509488004564012, 0.7768383400673232, 0.800428017386554, 0.8221063876519085, 0.8355569430670287, 0.8479676106429636, 0.8572948317670755, 0.8645481692177994, 0.8646725297166371, 0.8683011787820624, 0.8661479681347181, 0.8635071243997725, 0.8586013256586725, 0.8546859493731483, 0.8424545354323739, 0.8356825894475725, 0.8189378374693725], "Rb_sigma" => 0.5714581438223874, "Ho" => [-1.1747043829396748, -1.1781138071143584, -1.1795432605221696, -1.1748915462494038, -1.1575709719338516, -1.1414019624368494, -1.1204186762798365, -1.0964612881529947, -1.0672818453215116, -1.042514671906678, -1.003876257146377, -0.9570690897033046, -0.9085090621090184, -0.8539171567866991, -0.7941440089808043, -0.7377506218264905, -0.6835682808083141, -0.622904185782854, -0.5630967920434238, -0.5115669164471667, -0.45929742579201827, -0.41719374464546316, -0.38543013107318774, -0.3584019489110816, -0.32545936614715454, -0.29389952397723607, -0.2720323207449761, -0.2343792763451495, -0.19559719532994646, -0.16565963298984487, -0.13581370610765617, -0.10260557605162036, -0.0669845461390412, -0.044181509862535086, -0.024150906728499573, -0.005799531479565004, 0.026199754017613916, 0.036128813714921555, 0.057959171754721296, 0.08510208813464792, 0.10422853514814674], "Co" => [0.36596843555577435, 0.36685755813414456, 0.3711392107706851, 0.3754325960373532, 0.38555082438702787, 0.3970181267283977, 0.4159638191162445, 0.4374964157727461, 0.46435362321226814, 0.4935882968246276, 0.5256201476386285, 0.5634207995019892, 0.6063770350147988, 0.6496854289917485, 0.7003509774471418, 0.755814540388701, 0.8023642740705915, 0.8487176485211693, 0.8989568927466683, 0.9434977041015933, 0.9803329157211029, 1.021472157060946, 1.0608884557454583, 1.0993198715805965, 1.1404728109208417, 1.192827907163758, 1.2454431581280403, 1.299980555803937, 1.3562194988746887, 1.4115966517176124, 1.460961970718444, 1.510063429488949, 1.5520175428415306, 1.5898421791734778, 1.6209200853664518, 1.6450463695713309, 1.6635276033517397, 1.68099034963401, 1.6933237081410601, 1.6995632113429822, 1.7116463274555664], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 0.9272530378615744, "Tm" => [-1.0502403864111616, -1.0442029384400346, -1.0359678089173934, -1.0212821101044969, -1.0062503864114742, -0.9952560795138208, -0.9772802505363032, -0.9568675366973014, -0.9327181132528319, -0.9071021183748621, -0.8665242468218175, -0.8258726921318515, -0.7874464181893844, -0.7419250920379572, -0.6843735791371671, -0.6400463896629213, -0.5864000426957813, -0.5287267392060532, -0.4728984399277518, -0.42982124960314605, -0.38892651064171624, -0.35766785485065533, -0.325019860016803, -0.30443104974688734, -0.27796848295950266, -0.2566296507273354, -0.23118545869610038, -0.20202513080421566, -0.1714310282962659, -0.13939857287951027, -0.09809233476285484, -0.05836926786801532, -0.03120528631081789, -0.0029241584081333106, 0.018617266381238676, 0.03477736598944705, 0.046505679171515754, 0.06761817225495388, 0.08787023548075022, 0.09644854579245464, 0.11040108252404025], "As" => [-2.02386859531516, -1.989867703768899, -1.956362949235886, -1.9102827151386685, -1.8541688537757888, -1.7808267518678598, -1.7184063265792102, -1.641336248675518, -1.5523485099020384, -1.47074503134621, -1.3918379689154607, -1.2910324406759626, -1.194586961571943, -1.110380158624297, -1.033576336374193, -0.961331256296471, -0.9033269740778248, -0.8543945633348824, -0.8150324164899256, -0.7698475275589005, -0.7310258596309069, -0.7007589915826827, -0.6711757509764396, -0.6360231092759687, -0.6051070803819993, -0.5793643319005347, -0.5494614302083883, -0.5300534030149288, -0.5141487159883127, -0.5013530559641117, -0.4852663905133787, -0.4743622689796723, -0.46500182784113175, -0.4599022167974502, -0.45965909023560947, -0.45842062546692697, -0.4578441636812609, -0.4577846555387415, -0.45839430309129037, -0.4543037260522575, -0.4592129433211981], "Sn" => [-0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818, -0.9300604567993818], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => 0.5006147928368325, "Ta_sigma" => 0.8308530865063924, "As_sigma" => 0.775018858582191, "Gd_sigma" => 0.7694952995403447, "Cd" => [-0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128, -0.3187587626244128], "Pb" => [-1.9913885694379432, -1.9885364474162277, -1.9575468743056263, -1.9222794055547814, -1.8878803409850167, -1.8206604542010991, -1.7566242821869795, -1.7096165268125973, -1.6327280956691541, -1.5499210159993853, -1.4708927049431066, -1.3829737211241975, -1.2818991776913136, -1.194612898390819, -1.0974125969542965, -1.0015477856894488, -0.923449613974514, -0.8490719118033094, -0.7765368779693267, -0.7281977213724156, -0.6792237871951873, -0.6302124906320912, -0.5901263409597893, -0.5610161701011162, -0.5349136291048769, -0.5141415184366783, -0.49915782654122187, -0.49280849231219614, -0.4795773263374229, -0.471051572660076, -0.4653535531211211, -0.45972580826308185, -0.4573220818251929, -0.45140187905208806, -0.4476167365999691, -0.4476089403267928, -0.444712132863875, -0.4321099616070094, -0.43853383794667006, -0.4396328012184052, -0.445733887498533]), "Zircon" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-0.13994219011307682, -0.1253606279146562, -0.11459909462809573, -0.08368539287468786, -0.07351154458810535, -0.06885955935714208, -0.09336848141206092, -0.08253053642252998, -0.10116342572158239, -0.11240074012012856, -0.12246018605133596, -0.11333226228400156, -0.13096429848188434, -0.13093173109683542, -0.12918617214653044, -0.1341617331977, -0.14061787323467037, -0.13842336418790735, -0.15019144303416496, -0.15837216579868071, -0.16170646632818705, -0.1639450333907849, -0.17009365764205608, -0.16349237019029098, -0.163575864903225, -0.1635035981565324, -0.1681233851841525, -0.16537188148532778, -0.17042126343243583, -0.17556983412031796, -0.18456271534436328, -0.18889788906924374, -0.194042025535042, -0.20590760381440884, -0.20912634872674127, -0.21020369258760027, -0.2162879458393445, -0.22924560801101174, -0.23322970991679295, -0.23941469029399584, -0.2430621853239154], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [1.1006308686996666, 1.0997091337243912, 1.0765119025504242, 1.0651556174818955, 1.0720023817449855, 1.067513536821475, 1.0648593950392562, 1.0585825296399995, 1.0632955039456249, 1.0559877905160173, 1.0591699924703715, 1.0437956814667284, 1.0310773160443993, 1.0227648266639378, 1.0194898463968174, 1.014597245079165, 1.0113600869227866, 1.0106908020582037, 1.003707095136755, 0.994538435817119, 0.9810766055905841, 0.9715278361466356, 0.9579730572396503, 0.9417274632506629, 0.9331962300329735, 0.9258721013789527, 0.9127999030716765, 0.9039650919401584, 0.8981470977438248, 0.8863753921276929, 0.8739035255545129, 0.8621987067683629, 0.850981929664827, 0.8427509966298212, 0.831344284100101, 0.822450348149932, 0.8126706126730544, 0.8030090923615874, 0.7872119820771274, 0.7749662431035955, 0.7584219540273605], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => NaN, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 0.6596816274998616, "Cs" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U_sigma" => 0.5140056015742133, "Ce_sigma" => 0.6600375427276298, "Dy_sigma" => 0.4710785676959089, "Be" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pt_sigma" => NaN, "Ta" => [0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179, 0.5717274686646179], "Ga" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "W_sigma" => NaN, "Cs_sigma" => NaN, "Y" => [1.9221029800967986, 1.919127507864537, 1.9041873442360597, 1.8870648230467766, 1.8834518028211102, 1.885103470887592, 1.8767479435462822, 1.8817682041643768, 1.8834409707609694, 1.8880740047102844, 1.881416335902289, 1.8809825352283585, 1.8675442926239292, 1.8623408433659527, 1.8576464263483257, 1.8539442417659358, 1.854217346037126, 1.8544036239454795, 1.853316621731363, 1.8512044934172427, 1.8509181455660457, 1.8505325946108118, 1.848339789786062, 1.8438417511095873, 1.8349205614091375, 1.8292477894401267, 1.8218789715308317, 1.8142945004105029, 1.8106675206674212, 1.8062338580109547, 1.8028835651062782, 1.7971131193635443, 1.796379666992673, 1.793082267368106, 1.7933624238093928, 1.790805169701975, 1.785707805841382, 1.7840821331442036, 1.7800136567948857, 1.777097763758218, 1.7721622880158567], "Sm_sigma" => 0.6069079139580453, "Lu_sigma" => 0.4353827093860849, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [1.967625291646163, 1.9799038815064698, 1.9884895844096322, 1.9886335974643108, 1.989076896091737, 2.000847114051035, 2.009727493586966, 1.999639334245454, 1.982771393762061, 2.0040552639333464, 2.0022269023883137, 1.9976484252173325, 2.004397223484309, 2.0066398088321145, 1.9855055728901312, 1.9781374932672071, 1.9680908760715112, 1.9622251562154187, 1.9570399223703996, 1.9550233540770625, 1.9571660393374832, 1.9564236947331828, 1.9504963192634734, 1.949073558839453, 1.9465803111975164, 1.9414752417095509, 1.9372408265087675, 1.9358785995311083, 1.9338309882262092, 1.9279885123283949, 1.9217086773932965, 1.913906890276414, 1.9108421210301703, 1.9064773660284777, 1.9065921662930534, 1.9028987364081158, 1.9024222600618295, 1.9012076813067784, 1.8981489455385305, 1.8964535808778475, 1.8964406885904974], "Eu_sigma" => 0.4851309447896303, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [0.4002935718364337, 0.3708881232468827, 0.32206503713149354, 0.32999882692320076, 0.30557707161526393, 0.2622921064590657, 0.26161050216827514, 0.2655756663779959, 0.23436098806327083, 0.2173539498602227, 0.191824535295073, 0.15953610406725302, 0.12641901008878065, 0.10450221017352115, 0.08399223927944517, 0.07591858174544847, 0.05814888686785107, 0.03993828754110063, 0.021247485660850003, 0.015191502432990656, -0.0008619084110567801, -0.009876360470032748, -0.023844991482328996, -0.03681047957052399, -0.054981932632234, -0.0689467926683075, -0.08935046130368118, -0.0956439307142268, -0.10780169572965251, -0.12176586102915415, -0.137467330472208, -0.145987813691122, -0.16440078797265759, -0.17578966651326, -0.1933828414164907, -0.2028588804211598, -0.22090156375019165, -0.22875437567660994, -0.2444006952972053, -0.2517615175390402, -0.26691756304084246], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => 0.42826512847978926, "He_sigma" => NaN, "Co_sigma" => NaN, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 0.4416651717304589, "Pr" => [-0.10296251825201733, -0.0853929304833407, -0.08588593740121833, -0.09904940040806309, -0.10718848119495882, -0.17004087556341535, -0.20905557254024665, -0.2432988503992997, -0.3230959277159322, -0.3561076560313258, -0.3588529972242773, -0.39457026736353656, -0.41747596286578226, -0.4468650891672042, -0.4903346497927024, -0.5565250702909407, -0.5963172465935886, -0.634966408824239, -0.6679250982913175, -0.7036649906667433, -0.727666766458575, -0.7619691931165958, -0.7969735721184964, -0.84133423047469, -0.8704611388757767, -0.9051445129854322, -0.9398578073119445, -0.9711591353168859, -0.9939977991973457, -1.0201346703005272, -1.0457757041149183, -1.0651830660161978, -1.0901506103394853, -1.1068234794752156, -1.129921731363244, -1.148021305409372, -1.1682859322541173, -1.181451466745008, -1.2017492722812528, -1.2203401602504607, -1.2349996917358574], "Pm_sigma" => NaN, "Th" => [1.2006026282080875, 1.2058616707764886, 1.2043875394837815, 1.2090967563866317, 1.2150018396534399, 1.2113646849429736, 1.1980475367316346, 1.1862637392769608, 1.1754151911649713, 1.1680932219079037, 1.1681810334145766, 1.1636867328697877, 1.1689994703725937, 1.1657725268483423, 1.1615368584791008, 1.15557399870338, 1.1533092506236984, 1.1557770541994266, 1.1534064255248784, 1.1513795211277256, 1.1518156440531921, 1.1472593550506258, 1.1421000233700882, 1.1446326685252108, 1.1409606141273583, 1.134683708726404, 1.135804061265719, 1.1319385521034506, 1.1275351526901916, 1.1219763383492654, 1.1230682426121372, 1.1198355704218426, 1.1140160660193943, 1.1130054500646542, 1.115253832776429, 1.109895343232032, 1.1044696273396633, 1.1064833798816347, 1.1005943798717495, 1.094155639858376, 1.0900938067184434], "Y_sigma" => 0.4686164227445187, "Zn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165, 1.8334040186563165], "Pr_sigma" => 0.8066069390705665, "B_sigma" => NaN, "Li_sigma" => NaN, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => NaN, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => NaN, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.42538590860707204, "Er" => [2.02530312715655, 2.025166316220645, 2.027305350357183, 2.034623904039982, 2.0141925640160476, 2.005717589258137, 2.0064776276437577, 2.0117596767341825, 2.000564582583306, 2.0116205007902117, 2.012985660061662, 2.027932827727857, 2.0325746557584825, 2.0384770074111827, 2.039982785767159, 2.045064195759585, 2.045432889238003, 2.0526596126266465, 2.0531861235015216, 2.0566648228370408, 2.0483901431041844, 2.042639894333241, 2.035918924469684, 2.033914442777116, 2.0311437009553965, 2.0345460974434695, 2.032352640195457, 2.0316363343672843, 2.028116667519411, 2.022713943849642, 2.0160527410141555, 2.0117551452956977, 2.0048595187333036, 1.9985510969234352, 1.993938721775074, 1.9895211198121703, 1.9823396360006316, 1.9792024539491007, 1.9762884237860077, 1.9711858922388599, 1.9634085847784235], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb_sigma" => NaN, "Zr_sigma" => NaN, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [-0.901271305607572, -0.9246056663149533, -1.0123691772270764, -1.0297859933458484, -1.1724937842260388, -1.2513486575926298, -1.2808276260996507, -1.309552476957329, -1.354479156257439, -1.3595473101916533, -1.410487886381192, -1.4830529621205857, -1.5318796927781295, -1.6249452744037187, -1.6925009797277508, -1.7519504049099928, -1.7793297760574451, -1.8381546398150204, -1.9005375967553904, -1.959742592660878, -2.0267699126735086, -2.0958290173412313, -2.166941374649509, -2.2015559046069155, -2.250480660552166, -2.290607786040931, -2.3495395908327765, -2.3784168367116334, -2.4284693921162996, -2.4650375893707035, -2.504928937517275, -2.5339977616012415, -2.571058840645687, -2.602710466902641, -2.6332685090889374, -2.65862627175003, -2.685876505402198, -2.7163169047477664, -2.7433688111254244, -2.7664992097906613, -2.795603910972815], "Ru_sigma" => NaN, "La_sigma" => 1.1741373038798755, "W" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au_sigma" => NaN, "Hf_sigma" => 0.40907616323801765, "Li" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Dy" => [1.563123684237502, 1.565544997185886, 1.563183348369927, 1.5599402977136216, 1.5619438785218838, 1.5806661274435154, 1.5617255696867887, 1.5518626660531147, 1.5503198174605137, 1.5458292107326816, 1.5464419039545938, 1.5573142481116176, 1.5709923964436232, 1.5771140771580383, 1.5776565350207765, 1.5755712240198998, 1.572015389039459, 1.5713622325531609, 1.571382262141472, 1.5669557962013656, 1.564916661813715, 1.566281376650504, 1.5596652133726676, 1.5549641336226105, 1.555108895341264, 1.550314432744362, 1.5461269969034763, 1.5398052326855354, 1.527716559006098, 1.5199418253271224, 1.5122139985207665, 1.5033210642357426, 1.4983674762278272, 1.4921465100039615, 1.4849326292991578, 1.4783008232380543, 1.4701242415558182, 1.455103959027658, 1.4474772603935115, 1.4376251937045532, 1.4276692377822398], "Ti_sigma" => 0.2165923602142866, "Th_sigma" => 0.45773272261054454, "V_sigma" => NaN, "B" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844, 0.17539527371322844], "Nd_sigma" => 0.7481419519082676, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [2.9974414824669346, 2.9972827911219353, 2.9974544936647596, 3.00392001050072, 3.0091023031063635, 3.012893929356688, 3.0110675536842297, 3.0165483576693415, 3.0236371613157664, 3.0292490896274002, 3.0414475012293685, 3.0480989733507338, 3.0524328578580926, 3.0535168703075435, 3.0577458962924773, 3.0647141955657067, 3.0804487551493778, 3.096812550559326, 3.111525060285996, 3.1199447980698136, 3.127624973984179, 3.1339356991192124, 3.1420696513289, 3.1440354646166777, 3.1523199254907963, 3.1583228479600325, 3.163614091546314, 3.1659124674493566, 3.1720478302112634, 3.1755127154085074, 3.1778366811067573, 3.18002342464891, 3.186218806725823, 3.191597864964508, 3.193797266532152, 3.195371939221182, 3.199850016792679, 3.197063592040513, 3.195382340967928, 3.199225292978252, 3.2049896115110035], "Tb_sigma" => 0.47714254700205877, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sr_sigma" => NaN, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nd" => [0.18376771552654972, 0.15927167833409947, 0.09525960798929652, 0.09054078982964699, 0.07793189924974173, 0.04092538139453736, 0.011659463017772686, -0.01490229200847637, -0.04947626982661442, -0.0990420659502731, -0.14548603554068065, -0.19284605445195, -0.2328324927698998, -0.27498284704589104, -0.3085588315359427, -0.34502534400236096, -0.3742220570657914, -0.4020465776272124, -0.43901961958311086, -0.47450672305744973, -0.5098140275254814, -0.5438452214320023, -0.5753985976825561, -0.6017913927264247, -0.6218968351901627, -0.6468832547423738, -0.6726963254945723, -0.7012869668193653, -0.7243381882264316, -0.7483729429024651, -0.7706222275369486, -0.7864093328667111, -0.8077163765980379, -0.8268190957807797, -0.8501115579119307, -0.8653250615756489, -0.8896357043477076, -0.9024395602545857, -0.9172052037824454, -0.9302421334299432, -0.9465846630142266], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [-2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363, -2.045217008584363], "Tb" => [1.376670954138383, 1.3637587071085737, 1.4066841108469101, 1.3870427288387943, 1.3933280168647884, 1.3908288039522048, 1.3995673185301645, 1.3901625950911287, 1.3818476096569818, 1.3835728470383637, 1.3761682877380896, 1.369353665084911, 1.358850801836643, 1.3551902858221565, 1.3540336243409494, 1.3466406982704482, 1.3408585125401908, 1.3437982318710882, 1.3379264701035258, 1.336403839598023, 1.3384828739448429, 1.3378693820711236, 1.3312966882097754, 1.3305289051572753, 1.3222542795219232, 1.3139437538932137, 1.3096436859350462, 1.3059974617750199, 1.2973454776246351, 1.2920831436667863, 1.2878186988925997, 1.2791771041802886, 1.269173740988282, 1.2625606822412205, 1.2521636965534675, 1.2419118906823159, 1.2334793049532145, 1.2244044212711294, 1.2137681666475209, 1.2052651462408241, 1.1971081542180821], "Tm_sigma" => 0.4603559767634602, "Zr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sm" => [0.7892618515351859, 0.790897933662704, 0.7783933495536092, 0.7832533840954347, 0.7612700328469084, 0.7284133941338999, 0.7176902592636393, 0.7008900530298982, 0.6862969464948611, 0.6684331317144132, 0.6695525620622265, 0.6513784727276238, 0.6424423286751076, 0.6184374108142795, 0.6060172085836734, 0.5934166763975215, 0.58469604011231, 0.5687452219865389, 0.5650252939574727, 0.5415511457629578, 0.5174549823936335, 0.5025083141769782, 0.4941349902366116, 0.4870263506703595, 0.4848984801318755, 0.4776724061093673, 0.46758719265000775, 0.45410806481815597, 0.4427026355314559, 0.4308633990742789, 0.4203773543837224, 0.4041817485531017, 0.391178640308624, 0.3764324413527586, 0.3576401078397293, 0.3439679221135583, 0.3348557240551124, 0.32188315277811713, 0.30590653266511647, 0.29600434023509614, 0.277275418995652], "Ba_sigma" => NaN, "Cr" => [2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674, 2.245260154681674], "Cu" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => NaN, "Yb" => [2.2636807243185353, 2.2655490991786675, 2.2860723959810247, 2.3122725480957773, 2.321570016183162, 2.3357483941221333, 2.3425237346731103, 2.338268318321346, 2.3404395588392597, 2.34058350948796, 2.3427771918174245, 2.345715674009461, 2.3592946375932, 2.36880103088252, 2.3760430448091103, 2.376236411449628, 2.38545730266846, 2.3840376700739507, 2.38409363657724, 2.386689986710236, 2.3951044280498555, 2.397439531776729, 2.398702888639905, 2.39772207686025, 2.397468413805389, 2.3921049375254406, 2.3911754397662315, 2.390575123792958, 2.388573729140791, 2.38486728053788, 2.3818661134930417, 2.3744852720492626, 2.372617431089218, 2.3698484929062924, 2.365012633539865, 2.3621555333884405, 2.3580148959579836, 2.351877198557362, 2.3452231703811726, 2.343700272945446, 2.339243715603531], "Lu" => [2.3026958720223343, 2.322052169935707, 2.3378195740888095, 2.345661798851817, 2.3456473572984775, 2.3597635609658814, 2.3723633123587393, 2.3814352219036077, 2.393318040293831, 2.399318697955778, 2.422688997934408, 2.4353812138713558, 2.447488977435052, 2.4589122304296214, 2.4729002414050507, 2.4751199638868275, 2.4834144847328368, 2.4869195591103543, 2.493407887755695, 2.49654346280228, 2.4965952189439595, 2.4990608772554053, 2.5089988147643796, 2.5098220514409477, 2.513027046872447, 2.5208539044350324, 2.522970811620781, 2.5185614255987523, 2.519632915647378, 2.5182244681431385, 2.5149772306420317, 2.5135239814382464, 2.5095534595370017, 2.506917380214592, 2.506992694763458, 2.5063477300673727, 2.5045575446191353, 2.502518427573054, 2.500606149476818, 2.4928190504091208, 2.482843386512017], "Eu" => [0.42435247253186714, 0.4283748222762724, 0.40374374310286315, 0.3931317389208743, 0.3752359739879285, 0.3610042337858782, 0.34821062649455287, 0.3294307944050972, 0.3138654361023164, 0.30526507315278856, 0.3041757240394133, 0.2903318563683136, 0.2874961975130406, 0.2803232111366716, 0.2676326572554267, 0.2560144494666511, 0.24959368254019348, 0.24456014509312304, 0.23898407846192465, 0.2375436003145063, 0.2327873751049064, 0.22824104980116164, 0.2287628586565236, 0.2276422111881241, 0.2200833294899211, 0.21433206889982642, 0.20911952647641316, 0.20585659834279163, 0.19651072134423314, 0.19162156754756263, 0.1869192614612718, 0.17764190593404952, 0.170859363576028, 0.1652211934281961, 0.1618437265700597, 0.1570401707214934, 0.15833091748163847, 0.14693716710255475, 0.14431581831491694, 0.13822674018129327, 0.1300399797407369], "Na" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => NaN, "Ho" => [1.9783028958839617, 1.9630783993913865, 2.0038550201453407, 1.979992392892994, 1.9616697226001132, 1.9609907201326555, 1.9428394936265048, 1.9533450363756004, 1.9437882363076149, 1.9430686466474376, 1.9374586498680944, 1.9204408906561383, 1.9148885761232133, 1.9212339014749251, 1.9182422537047845, 1.9067535121317398, 1.9142506495023972, 1.9084867879216372, 1.9016633412161033, 1.894409468078016, 1.89132863339209, 1.8861841157676493, 1.8848658024756535, 1.885890362106689, 1.8882642110244505, 1.8851333845045548, 1.8813448361359246, 1.872446694665718, 1.8627546276657108, 1.8521793645541906, 1.8441172573520936, 1.8377801199167427, 1.8343148446168234, 1.8302882719562754, 1.8273541429415479, 1.8240182715378352, 1.8165123969606505, 1.809307270895033, 1.8018166779431104, 1.7933513778142511, 1.7857594016229033], "Co" => [1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459, 1.157985172728459], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => NaN, "Tm" => [2.139222906918131, 2.111774850809667, 2.132566049678407, 2.1374006042905362, 2.1424494246924337, 2.1384712169098963, 2.1728965851172473, 2.1753081844785123, 2.1995036611933307, 2.208419279786558, 2.2212386947380587, 2.228114662874084, 2.2435547453067946, 2.240108231777522, 2.235522850406685, 2.2321473819080615, 2.229037202227005, 2.23024157506083, 2.232279002788033, 2.2364819368319258, 2.2403824478113545, 2.2406580767244884, 2.2380367678114017, 2.2367740537485026, 2.2389653575158883, 2.2397149940580343, 2.2424106708797917, 2.240292056128848, 2.2427197597970734, 2.237404512841314, 2.2297748386244924, 2.224381421642534, 2.221521120151803, 2.2109675280902166, 2.2041519643127687, 2.2009705979338037, 2.1925040952341157, 2.1836422596850276, 2.177407512104185, 2.171900892286714, 2.165984059129724], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 0.5713503413966559, "As_sigma" => NaN, "Gd_sigma" => 0.5301672746735275, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001, 0.8750612633917001]), "Apatite" => Dict{String, Union{Float64, Vector{Float64}, Vector{String}}}("Ga_sigma" => NaN, "Pd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb" => [-2.732926661273226, -2.7358250178744803, -2.741110765840801, -2.7453201608781126, -2.7488724974476257, -2.751746895369104, -2.7557048769641086, -2.755541078423446, -2.757014597106375, -2.7594887386905342, -2.7602394195083426, -2.761397502826828, -2.764312685864898, -2.76615458298279, -2.7672905126559795, -2.768793411884798, -2.771205473450379, -2.772205361300026, -2.772583201922688, -2.774095983095452, -2.7763392441005528, -2.77774923035615, -2.7814905664519958, -2.783948278020897, -2.7863923026367665, -2.7871661459484063, -2.7871165480740876, -2.7867356635179488, -2.7879066350355894, -2.7883379438963933, -2.789082064853744, -2.7923085565788632, -2.792986064054724, -2.7942615031752003, -2.7939775876770114, -2.7984303017199568, -2.7969326521147897, -2.7988821073437866, -2.800200709579969, -2.8032889990862753, -2.8053180410339844], "P" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Si" => [-0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188, -0.21440636296145188], "Ag" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ar_sigma" => NaN, "Gd" => [1.0376576717082853, 1.0556552774173402, 1.0731265482797758, 1.082692005647792, 1.0986204891023619, 1.1186841675227857, 1.133060345938195, 1.148488673321005, 1.1669994474609044, 1.1742674410917333, 1.1795276218964619, 1.1868457494504052, 1.1985905106890546, 1.1987411151937633, 1.2101568324096783, 1.2238694565557104, 1.2392293414086337, 1.2427609732963252, 1.2587464421789825, 1.2679382278268683, 1.2849526625080618, 1.2966389000860348, 1.310224917738631, 1.3284348702067863, 1.3458584335875718, 1.3514538307743682, 1.3652073100133668, 1.3881332335106527, 1.3967186821630573, 1.4006766949019793, 1.4161018905559242, 1.4237692088224194, 1.4228872545075069, 1.4403137063144014, 1.46501516096712, 1.4699041370910944, 1.4808921297430682, 1.4919927408615434, 1.4875495192667298, 1.4879110370647075, 1.4955286737870348], "Ru" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Be_sigma" => 0.6027419024578146, "Sb" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Nb_sigma" => 0.2666698684671723, "Cs" => [-3.604412517824565, -3.6051466673955512, -3.6076159549654085, -3.6132492139167804, -3.6159343548448573, -3.5977302900208894, -3.6046866529658574, -3.5898712555115186, -3.5876095222866646, -3.589949542485812, -3.5801324227336115, -3.5630457734131444, -3.552746701928795, -3.536765220104389, -3.5071416287429837, -3.4956949794912777, -3.4794076315976903, -3.4663886825479997, -3.4613633594018642, -3.448631830743001, -3.4516723148011055, -3.438833228204357, -3.4343720986434914, -3.411538368664855, -3.413947033145727, -3.3901943735007984, -3.372402754162975, -3.365579621045374, -3.364269431471493, -3.3443621579244955, -3.3404488255652147, -3.349846221808724, -3.3106122908810462, -3.3019265142078416, -3.307909324950147, -3.295361250466525, -3.2735993481955474, -3.2879250311921324, -3.2664438753230423, -3.2072523851247223, -3.184371859519082], "U_sigma" => 1.2568809722076288, "Ce_sigma" => 0.779915403562437, "Dy_sigma" => 0.8088246109689856, "Be" => [-3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116, -3.1245674334863116], "Sr" => [0.29879971242345166, 0.3107341951831117, 0.3180656769583496, 0.32561973276094036, 0.3325694675379654, 0.34036524261862655, 0.3462688413546013, 0.3541730928196708, 0.36014005004040367, 0.36703111056401433, 0.37136986516740506, 0.3773917657096278, 0.383022016865007, 0.3903116381903061, 0.3971166731351449, 0.4038279378293692, 0.4080161481741003, 0.40922004300978376, 0.4088441179746178, 0.41235140386224134, 0.41542040434373156, 0.4211153668858742, 0.42489657221968713, 0.43243437167246446, 0.43608881836556035, 0.4420156751395649, 0.4415780179021362, 0.44832158113483284, 0.45315897121858834, 0.4600958720486062, 0.4631170220451689, 0.4658749070628986, 0.4708197956058501, 0.47429055494710176, 0.4728077815884864, 0.4697516179820304, 0.47770707543352964, 0.48058984941851973, 0.48367008316149224, 0.4880706194967312, 0.4944147586776438], "Pt_sigma" => NaN, "Ta" => [-2.33856515782567, -2.337310716711166, -2.324569812595858, -2.306590736307678, -2.2926224109061, -2.283852552608984, -2.2692117146460054, -2.2756273000026503, -2.259311939292961, -2.255533399587429, -2.2547539935205907, -2.244867388653055, -2.234079750555434, -2.247486328879718, -2.2528896122943878, -2.2563926615896057, -2.253377122523156, -2.2481711250227154, -2.2496680828638675, -2.228116603817368, -2.2311417163470377, -2.2218106075334787, -2.220206074988147, -2.1911816558767794, -2.1809898955168894, -2.1560550659993027, -2.1354667017448343, -2.120191994828231, -2.121013902604481, -2.121408706171155, -2.1140123980872145, -2.1206832029784883, -2.0959975681597545, -2.07886088030701, -2.0857662719058894, -2.083643381481024, -2.070624874125432, -2.081472079714625, -2.080714741980271, -2.068019791872947, -2.0608051110210432], "Ga" => [-0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624, -0.6020599913279624], "W_sigma" => NaN, "Cs_sigma" => 0.9958921535305814, "Y" => [0.5718312062997368, 0.5865713594591894, 0.5981360591161271, 0.6087419247521123, 0.6200591338883568, 0.6275377038495159, 0.640771421867105, 0.649831980731481, 0.6589634244703978, 0.6655094880736476, 0.6780172187330982, 0.6850595822503517, 0.692143293766917, 0.6973841095755726, 0.70919931680064, 0.7195528236443672, 0.7302256745060431, 0.7409988583237358, 0.7581515738778826, 0.765704247759539, 0.7657444411617116, 0.772678304675865, 0.7835118519651397, 0.7900007791304884, 0.8024563056600019, 0.8231824324443069, 0.8275061940738194, 0.8356238467586357, 0.8430735463906851, 0.850307955812481, 0.8491591558319198, 0.8694703360260979, 0.8794846693141155, 0.8897634426427528, 0.9048305334789774, 0.9235296954832336, 0.9385127425809399, 0.952700524278684, 0.9683462744053875, 0.9687755871854264, 0.9827596196971788], "Sm_sigma" => 0.7735289959236972, "Lu_sigma" => 0.8593907665284861, "Kr" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "U" => [-0.4182613098764075, -0.3984436582148913, -0.3789987422123226, -0.37368223989755456, -0.36704107790303, -0.350933085239821, -0.33027486443145004, -0.31673743730400816, -0.28946282388811334, -0.2663131604302855, -0.25198130645464745, -0.24487394130491982, -0.23522988540061276, -0.23161006597153252, -0.23508997658035785, -0.22858436199511756, -0.21407664940481955, -0.20102753523655678, -0.1876480032704627, -0.1724786769259278, -0.16454409024558597, -0.159090934389498, -0.14831780197043212, -0.1485239391054925, -0.14304436536960316, -0.13612432896611085, -0.12863639679391062, -0.12829397701125803, -0.11098373399221245, -0.0992115715640905, -0.09073507252713986, -0.07039120264590074, -0.05542309861433507, -0.03971411593015931, -0.02250929568634449, 0.0019612537051050603, 0.017442040362527493, 0.026477538010843932, 0.036388823290475505, 0.04734677401195914, 0.06083247139020405], "Eu_sigma" => 0.6831707885988783, "Sn_sigma" => NaN, "Ca" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Au" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cu_sigma" => NaN, "K" => [-1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069, -1.658778693934069], "Kr_sigma" => NaN, "Cl_sigma" => NaN, "Ce" => [0.9702577149971688, 0.9833197181566323, 1.002252230958152, 1.022466704747801, 1.0311447132303857, 1.0524161813792126, 1.0686924721473798, 1.085804926767251, 1.0916011641652685, 1.1052678153636528, 1.114387402446477, 1.1220465779835034, 1.128991833366507, 1.1402929620857971, 1.1446051709673237, 1.1561683661492583, 1.1615100117923576, 1.1672495970673002, 1.1785493434469023, 1.1916993083135898, 1.197904728732607, 1.2110073986916026, 1.2227110186549504, 1.2331500847568095, 1.2399380215082172, 1.254573246526812, 1.2607622156830969, 1.2707670913283824, 1.2822303881125945, 1.2989807248172895, 1.3098948491505478, 1.3202534020835708, 1.3319588415513086, 1.3337049363840836, 1.3340137235817833, 1.3405635668284028, 1.35791159277403, 1.3682867597701487, 1.3756224253351432, 1.3861261595177634, 1.3934599887862076], "Ne_sigma" => NaN, "Os_sigma" => NaN, "Xe_sigma" => NaN, "Fe_sigma" => NaN, "V" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Yb_sigma" => 0.852608953574821, "He_sigma" => NaN, "Co_sigma" => 0.6581728945506564, "Mo" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ho_sigma" => 0.8237775594599471, "Pr" => [1.0575486837344377, 1.085280037943303, 1.0950781798349798, 1.1091807306649868, 1.1166330648230187, 1.1250642448867005, 1.1271634126423975, 1.1298573465885045, 1.137571923731476, 1.1548476347158763, 1.163627794511751, 1.1708863219177372, 1.1861336820539556, 1.1871698976481144, 1.189020406013231, 1.1974581399960282, 1.2065535825040974, 1.2102706178614255, 1.2302116869713668, 1.2448772897431661, 1.2613405734279584, 1.271255173097702, 1.281523065997105, 1.2882818611594524, 1.2984605881746725, 1.3013521105962231, 1.3125221421499877, 1.3244112954491845, 1.332567053568734, 1.33826958730955, 1.353979605642881, 1.3626449718202547, 1.3652626083651207, 1.3659473408025535, 1.3775626834316843, 1.3822686422337478, 1.3930860658994948, 1.4121216861719639, 1.4358573183274903, 1.453762180970343, 1.4617670380827548], "Pm_sigma" => NaN, "Th" => [-0.04644394225659492, -0.03804293163400069, -0.024347415830900675, -0.015801009254196426, -0.007519181334276645, -0.007827721087602478, -0.004637195991390441, 0.0010398013747096456, 0.010468656633225683, 0.023633739461751777, 0.03183049782476626, 0.04631056418218796, 0.05532883541422076, 0.06082487650603712, 0.05690628490786019, 0.07021746089392748, 0.06705177322797998, 0.07157631586563157, 0.0786424069960444, 0.08779680897567974, 0.0895304912110522, 0.10263030005230626, 0.11260885114879848, 0.12383330997928191, 0.13534848946928485, 0.14601523505647607, 0.15039392144218444, 0.1563426167045237, 0.1622165200474353, 0.1740362109123586, 0.17794365086403044, 0.18970837708479002, 0.19918164821876244, 0.22244575800258273, 0.2327213482242651, 0.23963592023503294, 0.24838827978860897, 0.2525591194815847, 0.24571067297544708, 0.24132845725655713, 0.24932306798077608], "Y_sigma" => 0.689905350761176, "Zn" => [-0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816, -0.17339374311232816], "Ni_sigma" => NaN, "He" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sc" => [-0.6353071001367632, -0.6318110290022967, -0.6280747066902358, -0.6219090382785022, -0.6120650469440625, -0.6042892718287018, -0.5929344468302149, -0.5814895058906779, -0.5694320122526388, -0.5607272791079113, -0.5463608276530527, -0.5343454204378257, -0.5214785650812265, -0.5106130532608213, -0.49632176352383217, -0.48447355248462415, -0.47367151507250316, -0.46482410354732334, -0.45666999858416235, -0.4518117517265588, -0.4501370421590924, -0.4504537687725681, -0.4534164661492136, -0.4568330847299278, -0.46261793060775325, -0.4678630453697798, -0.4741272844761725, -0.4780015549163717, -0.48308957625268156, -0.4885868932996154, -0.4940297297574402, -0.4983775441762543, -0.5024013028214825, -0.5059923323976615, -0.5080354918864586, -0.5108621489072313, -0.5131146307527391, -0.5180463598374042, -0.5187259581567593, -0.519515166777494, -0.5194877789517115], "Pr_sigma" => 0.7310278110578182, "B_sigma" => 0.24169976744164093, "Li_sigma" => 0.33097106266612497, "Tl_sigma" => NaN, "Mn_sigma" => NaN, "Cd_sigma" => NaN, "P_sigma" => NaN, "Zn_sigma" => 0.6062256219581416, "Al" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In_sigma" => NaN, "Si_sigma" => 0.21354823195306852, "Ar" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Er_sigma" => 0.8325542588927981, "Er" => [0.7488164104434052, 0.7679249935485893, 0.7894886266002646, 0.8001060352209326, 0.8260745972968758, 0.840325221972037, 0.8405652113775223, 0.844035787497171, 0.8536259337186716, 0.8616028367929698, 0.8787199764741628, 0.896345846237805, 0.9130179832136532, 0.9276598651165879, 0.9397052709657939, 0.9439897318846843, 0.9624508185052677, 0.9735799260403648, 0.9832075181153359, 0.992415140924122, 1.0128886007229703, 1.0201728553606286, 1.0311922838229826, 1.0445858931357774, 1.062039472763049, 1.0788765577302522, 1.1018866992834437, 1.1255508400263337, 1.1451581659654608, 1.153177031549022, 1.1584324498558598, 1.1623291761153596, 1.1720181858144452, 1.174294561662131, 1.2007044784018812, 1.224228087209236, 1.246568411921035, 1.251685762599259, 1.2794664405083864, 1.2941868076914744, 1.2980439399685815], "Ge" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Cr_sigma" => NaN, "Fe" => [-0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775, -0.958607314841775], "Pb_sigma" => 0.6446134897994356, "Zr_sigma" => 0.6970549441966299, "Mg" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "F" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "La" => [0.8124856080625554, 0.820308561051508, 0.8305901404671913, 0.8440820742270675, 0.8533961210222609, 0.8645423005301642, 0.8764524174072623, 0.8861560626933115, 0.8965095342735186, 0.9071405837325106, 0.9136733417096978, 0.9219307188748319, 0.9251246026563988, 0.9336673124620658, 0.9390588245760776, 0.9499650750789931, 0.9581019990704049, 0.9710112803474275, 0.9840369718669223, 0.9955324593435795, 0.9987786605639933, 1.0026321389083428, 1.0073909002084582, 1.0063863497568182, 1.0128470910197591, 1.0290981940870658, 1.0349870057909403, 1.0486952133534038, 1.0587774018435678, 1.0666074258740057, 1.07058920592439, 1.084432606113166, 1.0924424362835308, 1.1002903873160814, 1.1096819418890935, 1.1164917705409991, 1.1263385009569378, 1.1360036728880751, 1.1510560430915588, 1.1517143284539504, 1.1536187662431197], "Ru_sigma" => NaN, "La_sigma" => 0.6778382104326668, "W" => [1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248, 1.2041199826559248], "Au_sigma" => NaN, "Hf_sigma" => 0.7173834091741076, "Li" => [-1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512, -1.5039919916804512], "Dy" => [0.9447411138407985, 0.9536562760708163, 0.9680714409232443, 0.9844518517877967, 0.9873656085973357, 1.0065023459883078, 1.015705120170797, 1.0323077356449948, 1.0413850743702258, 1.0579931035685985, 1.06239184735886, 1.0796122798710144, 1.0921420765412293, 1.1074085181066426, 1.1139912505161111, 1.1350651741446594, 1.1560724400652194, 1.1717174247180424, 1.1816043663695237, 1.1910516835388676, 1.1985095536909347, 1.198205604043958, 1.2074008333760096, 1.2225085185952989, 1.2347786973258166, 1.2454585769937605, 1.2560536161281333, 1.2695777506047057, 1.2798932353418797, 1.2997033092934458, 1.3106709749651848, 1.326609042741489, 1.335871031241198, 1.3424740221153741, 1.358797786362319, 1.3736856308485228, 1.3818447120127955, 1.3954016273147805, 1.4104358230452547, 1.4196007417156267, 1.4438823668907619], "Ti_sigma" => NaN, "Th_sigma" => 0.6454849349954672, "V_sigma" => NaN, "B" => [-1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294, -1.6458014817004294], "Bi" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Mn" => [-0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632, -0.8860566476931632], "Nd_sigma" => 0.7414617034445309, "Re" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sb_sigma" => NaN, "F_sigma" => NaN, "Hf" => [-1.628451694965987, -1.6262923344970832, -1.6085105526122752, -1.6019894242543373, -1.594632370473321, -1.5943630268540498, -1.584567216276583, -1.5907448125565178, -1.5821450987879142, -1.5677575853674688, -1.563844072690988, -1.5614450932722472, -1.5438755219513567, -1.5445303503424836, -1.5338697507246875, -1.5198822996778802, -1.5060034890105618, -1.5117511141808861, -1.5056150291859802, -1.5135095932546458, -1.5018924905279138, -1.5021293293956082, -1.4919857498092797, -1.4794809793626942, -1.472199578565083, -1.4739508189397075, -1.4657829437736567, -1.454250852256582, -1.4370754761990259, -1.4197283660739863, -1.4086930561179556, -1.39702224316804, -1.3918030434423492, -1.3966201434891354, -1.3981043161472733, -1.3939502385172169, -1.3936079625025724, -1.3877877848713818, -1.3857629324759384, -1.3880553025397933, -1.3825882661341524], "Tb_sigma" => 0.8055444255001278, "Ca_sigma" => NaN, "Cl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "In" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb" => [-2.8630640648815144, -2.8607833243564333, -2.861261589082438, -2.8580401848645023, -2.8568272518404902, -2.859172750865003, -2.851554793243297, -2.839680316974525, -2.8350391826630688, -2.831749871227757, -2.818412923064641, -2.8130953096020166, -2.8154567224735643, -2.8074331628720275, -2.806635397901621, -2.7966720649277708, -2.793078994315251, -2.7752131138897824, -2.774768240385763, -2.7555517952344477, -2.7528379593239163, -2.742896391767134, -2.7410047496647647, -2.7297095715225663, -2.733666014734111, -2.7262958093246823, -2.7219961283401286, -2.7207403127437466, -2.716275690463676, -2.7018992307680305, -2.7118891903662594, -2.693783860581973, -2.6688285187900296, -2.642949549646269, -2.6251398729137887, -2.5849637120628874, -2.583822084661053, -2.5917120377657046, -2.5943814750059606, -2.600338400122628, -2.6134460164453097], "Sr_sigma" => 0.4025827292173863, "Ag_sigma" => NaN, "Mg_sigma" => NaN, "Rh_sigma" => NaN, "Mo_sigma" => NaN, "Ba" => [-1.043877248330315, -1.0350014862041563, -1.0258693053643022, -1.0193075862818426, -1.0112413944018575, -1.0041274352834306, -0.9983308789195136, -0.9914506837456731, -0.9843395674412522, -0.9821147936640326, -0.9794211925461435, -0.973870544834949, -0.9716740013305194, -0.9686331464776144, -0.9607017941985402, -0.9558357554119924, -0.9478334134345491, -0.9419826566385806, -0.9332689760928172, -0.9301208764096275, -0.9220661847681719, -0.9203997721241316, -0.9147856104328074, -0.9089545486815677, -0.9078161429802795, -0.9025864958205516, -0.8957142116085437, -0.8925934870772825, -0.889043072948145, -0.879413441269751, -0.8780524347643712, -0.875207690000008, -0.8670687581856553, -0.8644980014869591, -0.8586283360672882, -0.8546972863893814, -0.8474446080768384, -0.8477962792615842, -0.8417273080222256, -0.839633037920464, -0.8370815275062125], "Nd" => [1.0671115191199352, 1.0873115355985377, 1.1053109567900041, 1.1099740611308526, 1.121597730608776, 1.1330071098479446, 1.1380702783305694, 1.1545350650612611, 1.1693312517047894, 1.1821279097308928, 1.1816137080975428, 1.1961598854397575, 1.1951018198609902, 1.2114252232467713, 1.2148846394817507, 1.2265198813582403, 1.237909174622654, 1.2549043725904816, 1.2673220593229377, 1.2813686982738641, 1.2986199936256775, 1.3106298389760818, 1.3183693605713904, 1.3207582589549562, 1.330800551209603, 1.3354914405688418, 1.338304381231293, 1.3531637104127463, 1.3662725986266702, 1.3726173834523212, 1.3802623817374826, 1.3845423304907036, 1.3905642160689757, 1.3993037045194023, 1.4107876126469467, 1.4218944753557354, 1.4452707958604938, 1.4574612254712687, 1.4610197522456394, 1.4720006120654412, 1.4790792359592713], "Pm" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rh" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Bi_sigma" => NaN, "Ti" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Tb" => [0.9930898467867673, 1.0128422498170155, 1.0112097150187593, 1.0208812173863355, 1.0282540880112976, 1.038448583022214, 1.054528611592765, 1.0845435296769879, 1.1044740916126157, 1.1104735709627702, 1.118864026077314, 1.130007965200375, 1.1297114301043014, 1.128326616846645, 1.143309199405704, 1.1481627277322186, 1.16313486016687, 1.178898559642298, 1.2072049805080465, 1.2177547556657806, 1.2408242735107327, 1.2520309412872561, 1.254431901868668, 1.2611123163323317, 1.2583871308366996, 1.2695508624929808, 1.2791559862450212, 1.2807369656914704, 1.2868688455040636, 1.3200684616203597, 1.3401415094963627, 1.3446552408354036, 1.3650820079246047, 1.378656756355072, 1.3886274806858265, 1.3938894341079655, 1.4089359404225066, 1.4257176010810635, 1.4468563874756082, 1.4536236639687743, 1.4604517020031444], "Tm_sigma" => 0.8423391326985882, "Zr" => [-1.2208615830140348, -1.2107533449470036, -1.2064750710557837, -1.191356832578274, -1.1885229684917282, -1.1779063751637864, -1.1652212264816262, -1.1522732039734007, -1.1451414793108894, -1.1311792393167164, -1.1280278662652365, -1.1258228838106397, -1.1147506789535906, -1.1117581291502108, -1.1091375366293754, -1.1016908720284075, -1.0842367621723024, -1.07694744192722, -1.0667313083351462, -1.0633293685961942, -1.0465320612151157, -1.0480856027866798, -1.045706880723093, -1.0353032734509235, -1.0198843299382656, -1.0151325398565016, -1.0087004552402137, -0.9981868984262343, -0.9928595208726927, -0.9907312601020616, -0.987611323873487, -0.9775026216959218, -0.9690569982538044, -0.9712213667053097, -0.9625682099563055, -0.9469643063823743, -0.9375733538715942, -0.9223029767353766, -0.905220324756013, -0.8952374929990434, -0.9041310167484209], "Sm" => [1.0841486154160058, 1.1042869860215527, 1.1194253643201328, 1.1360304055480095, 1.1431909240776257, 1.1525417314413615, 1.1713032534149752, 1.1788694457929327, 1.1927000173432316, 1.2035680084533305, 1.2176588746987156, 1.219282114011967, 1.2315386510999193, 1.2359584487196422, 1.245354547528307, 1.250717002516718, 1.2611797255447081, 1.2693899442694414, 1.2845046779009675, 1.2991707917650932, 1.3111266104033314, 1.3230094074552843, 1.3328561785491104, 1.340815586004415, 1.3574713757344554, 1.3655757390798429, 1.3753319536089375, 1.3959296823907141, 1.407471265015103, 1.4097381874821748, 1.4225734296341854, 1.4380988453263006, 1.444756492817881, 1.4540390981551345, 1.4724063673374084, 1.4906983393082283, 1.5040365911693896, 1.513566281933361, 1.5242957908023531, 1.541685168721875, 1.5570869209144498], "Ba_sigma" => 0.42850015333818847, "Cr" => [0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249, 0.9542425094393249], "Cu" => [-0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808, -0.5528419686577808], "Al_sigma" => NaN, "Tl" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "elements" => ["Ag", "Al", "Ar", "As", "Au", "B", "Ba", "Be", "Bi", "Ca", "Cd", "Ce", "Cl", "Co", "Cr", "Cs", "Cu", "Dy", "Er", "Eu", "F", "Fe", "Ga", "Gd", "Ge", "He", "Hf", "Ho", "In", "K", "Kr", "La", "Li", "Lu", "Mg", "Mn", "Mo", "Na", "Nb", "Nd", "Ne", "Ni", "Os", "P", "Pb", "Pd", "Pm", "Pr", "Pt", "Rb", "Re", "Rh", "Ru", "Sb", "Sc", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Th", "Ti", "Tl", "Tm", "U", "V", "W", "Xe", "Y", "Yb", "Zn", "Zr"], "Ne" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pd_sigma" => NaN, "Re_sigma" => NaN, "Sc_sigma" => 0.15585364801251983, "Yb" => [0.6130040535181531, 0.6230059798307069, 0.6306122873280476, 0.6468201241271943, 0.6686044922744384, 0.6886919344751854, 0.6959544178493355, 0.7170154437937734, 0.730396989331953, 0.7363339922970974, 0.7457466198363795, 0.7694025111246404, 0.775664858190803, 0.7767012247874628, 0.7916429267468055, 0.7991754628498913, 0.8127319099561424, 0.8387548162747708, 0.865550067256091, 0.8709934214165519, 0.8819640872909614, 0.891102528024485, 0.8900023157152946, 0.8926397457447555, 0.9207896643121904, 0.9437003445783635, 0.9540848412689901, 0.9628825246188301, 0.9850188627029819, 0.9863757475747783, 0.9904722627982238, 1.007135886783678, 1.0353809632224367, 1.0583584878598689, 1.0776850783171201, 1.0891249413861774, 1.106414261677348, 1.1194638496689568, 1.1255944685854566, 1.1397737343942125, 1.1636599746373466], "Lu" => [0.5342012623334972, 0.554497931610912, 0.5724357684984288, 0.5837348532261342, 0.5948030781830755, 0.6017224271202802, 0.6059132347350695, 0.6246078474620494, 0.6357664606209995, 0.6459714813341292, 0.6667127249599275, 0.679178813723874, 0.684924377599282, 0.6986200044881014, 0.709067430547627, 0.7209499759166386, 0.7307336185238281, 0.7406993477897252, 0.7530989359021796, 0.7735466142725427, 0.7833923115137953, 0.8058188921047129, 0.8196860679586784, 0.8356839940393755, 0.8462043159101484, 0.8559368965556952, 0.8630707358788638, 0.8805331733605812, 0.885766783745766, 0.9044841148058177, 0.9104047178420692, 0.919878952302488, 0.9316928546919937, 0.9592211272799834, 0.9664193106377703, 0.9839319006297552, 1.0082046733034753, 1.0279688291933335, 1.0389917947091556, 1.060434889953089, 1.0970984781956106], "Eu" => [0.735513808281332, 0.7454885831094821, 0.7636138033444276, 0.7694217877108769, 0.7765193208695133, 0.7782868482556099, 0.7886797253498705, 0.8013246467972286, 0.8159817893527294, 0.8240868303330153, 0.8455884424237256, 0.8616944371341797, 0.870345427873425, 0.8796828052355253, 0.8914526565034858, 0.8962596971336766, 0.8993037886929526, 0.9094503508845034, 0.9145895586243701, 0.9221712830450649, 0.9259096760303925, 0.9380855585595067, 0.939329782935998, 0.9503393890498798, 0.9566153592189286, 0.9622714251747871, 0.9631238569844686, 0.970551740674732, 0.9812608181091308, 0.9930639969927851, 1.0043173336379165, 1.015680442712144, 1.0322011630829044, 1.0346739542590047, 1.0467330385437796, 1.0541737152308006, 1.0593464832241246, 1.058010321680179, 1.0682595551894645, 1.0705873381282813, 1.0777394249197516], "Na" => [-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0], "Os" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Na_sigma" => NaN, "Ni" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Rb_sigma" => 0.739505529790944, "Ho" => [0.8147476178758294, 0.8415895163930153, 0.8504865027309254, 0.8663682965529658, 0.8785885623822713, 0.8881917000437491, 0.9003379248596761, 0.9262789448774934, 0.9325113762636141, 0.9456649117396431, 0.964946256245232, 0.9676239572903234, 0.9794393047747079, 0.9889489930329839, 0.9988521682585453, 1.0093488482764672, 1.0231585691894103, 1.0346179974632435, 1.0608512240405799, 1.0729906432465135, 1.0715010755537366, 1.078175485896283, 1.0882517720962956, 1.0848960933487097, 1.0927818145522084, 1.1196076824243508, 1.1363037037183559, 1.1508689522199993, 1.171289970577339, 1.1919189111597666, 1.1960720631414665, 1.2205523844176744, 1.228843760942939, 1.2410370210527994, 1.250588841062352, 1.267567544830378, 1.27432627852236, 1.2929025434474481, 1.3021270535753142, 1.33014393779967, 1.3523603259504549], "Co" => [-1.4295253355860025, -1.4048787877894, -1.3841111067644942, -1.361514711465519, -1.3248454650180508, -1.293981773760099, -1.25762805301342, -1.2142590012823546, -1.1613130754217396, -1.1070345396822927, -1.0515026686437157, -0.9901563258712663, -0.9331434385374346, -0.8770895415547314, -0.8180945399766069, -0.7612983129730524, -0.7102630300949581, -0.6618384019899481, -0.6196586394556678, -0.5873607652078449, -0.5650646831459515, -0.5521924937270196, -0.5519253861221398, -0.553563217281726, -0.5595006837588505, -0.564317121045184, -0.5763178538972827, -0.5850201152160205, -0.5983226101367553, -0.6148368286643145, -0.6316491017393324, -0.6448487360745851, -0.6491141611127678, -0.6580273695799959, -0.6613100930420743, -0.6653051531799897, -0.6637406675873236, -0.6707374158589784, -0.6608509292443078, -0.6698144917624538, -0.6771638110281861], "Pt" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "K_sigma" => 0.13650460106928072, "Tm" => [0.702259289211199, 0.7117421555649243, 0.709992732923363, 0.7100352345712451, 0.7235669205718357, 0.7428705885835887, 0.7678362328461716, 0.7883479606458532, 0.8050252365084616, 0.8151782057820294, 0.822290779994544, 0.8192382132945132, 0.8265395235076862, 0.8346663465986877, 0.8534112872856863, 0.8650625506178405, 0.873847396107292, 0.8932410084231409, 0.9076476017133444, 0.9187690434470045, 0.9399900964391662, 0.9589714883623381, 0.9635827663422916, 0.9818847698838117, 0.9974271152781377, 1.0131658841573168, 1.0284305496152528, 1.0539791432136993, 1.0609146225457045, 1.0686860538293737, 1.066670506906653, 1.0730660476663842, 1.0767697740492927, 1.0923419029878163, 1.1116137301791214, 1.1344946144132029, 1.1543868164325086, 1.1682234394390305, 1.1734640231981577, 1.198302589576773, 1.2246629311915098], "As" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Sn" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Xe" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Ge_sigma" => NaN, "Ta_sigma" => 1.2505134228050216, "As_sigma" => NaN, "Gd_sigma" => 0.7938849289914328, "Cd" => [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], "Pb" => [-0.4671935272239688, -0.4573576818380285, -0.4499105063453611, -0.4443516765206707, -0.43659442775650636, -0.438197835411475, -0.4332027910956682, -0.426594934952413, -0.41728228484679714, -0.4114570899542551, -0.40962871195251427, -0.4059386099629168, -0.4091828278729961, -0.4078107863453115, -0.40738092926762903, -0.401376007469091, -0.3975957941221201, -0.3940224553062201, -0.39320635820960326, -0.39209120800972685, -0.3882541640574412, -0.3899532546528656, -0.3911459742452506, -0.3906579336290577, -0.39264225687764065, -0.39397874639125735, -0.401401757152259, -0.4018510997210429, -0.4085347100799935, -0.4147169364887582, -0.4147758949814092, -0.4092951148196519, -0.4119013557557643, -0.41795261802596323, -0.4162610636475467, -0.42302802574357035, -0.4316649178335365, -0.4345828479477705, -0.44639256430146634, -0.4564807447528021, -0.4753534038166786])) export germ_kd
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
1838
using StatGeochem, LsqFit, Plots ree3 = ["Pr","Pr","Nd","Sm","Gd","Tb","Dy","Ho","Er","Tm","Yb","Lu",] # 3+ rare earth elements r = [0.106,0.101,0.100,0.096,0.094,0.092,0.091,0.089,0.088,0.087,0.086,0.085,] # Ionic Radii rp = 0.085:0.001:0.107 # Radius range to plot over # Equation we're fitting to (from Blundy and Wood, 1994): # lnD0 + a * (r0/2*(x-r0)^2 + 1/3*(x-r0)^3) # where a = 4π E Na / RT @. blundy_wood(x,param) = param[1] + param[2] * (param[3]/2*(x-param[3])^2 + 1/3*(x-param[3])^3) h = plot(framestyle=:box, xlabel="Ionic radius", ylabel="log10 kD") T = 500:10:1000 kd_La = zeros(length(T)) kd_Pr = zeros(length(T)) rD = r[3:end] kD = zeros(length(rD)) for j in eachindex(T) for i in 1:10 kD[i] = log10(claiborne_zircon_kd(ree3[2+i], T[j])) end plot!(h, rD, kD, seriestype=:scatter, label="") # Fit to Blundy and Wood curve param = [maximum(kD), -10000, 0.095] # initial guess fobj = curve_fit(blundy_wood, rD, kD, param) # Fit plot!(h, r, blundy_wood(r,fobj.param), label="") # Plot kd_La[j] = 10.0^blundy_wood(r[1],fobj.param) kd_Pr[j] = 10.0^blundy_wood(r[2],fobj.param) end display(h) @. f(T, param) = param[1]*exp(param[2]/(T+273.15)) param = [nanmean(kd_La), 5000] # Initial guess ## --- La vs temp h1 = plot(T, kd_La, xlabel="Temperature (C)", ylabel="La kD", seriestype=:scatter, framestyle=:box, label="") fobj = curve_fit(f, T, kd_La, param) plot!(h1, T, f(T, fobj.param), label="") display(h1) @info "La zrn/melt kd = $(fobj.param[1]) * exp($(fobj.param[2])/T)" ## -- Fit kd Pr vs temp h1 = plot(T, kd_Pr, xlabel="Temperature (C)", ylabel="Pr kD", seriestype=:scatter, framestyle=:box, label="") fobj = curve_fit(f, T, kd_Pr, param) plot!(h1, T, f(T, fobj.param), label="") display(h1) @info "Pr zrn/melt kd = $(fobj.param[1]) * exp($(fobj.param[2])/T)"
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
8081
using StatGeochem using Plots using LsqFit: curve_fit ## --- Load partition coefficients from GERM into a dict # path = joinpath(moduleresourcepath,"PartitionCoefficients") path = joinpath("src/resources/","PartitionCoefficients") # Obtain the names of downloaded mineral files filenames = readdir(path) # Load every `.tsv` file into a struct pr = Dict{String,Any}() pr["minerals"] = String[] for n in filenames m = match(r"(.*).tsv", n) if ~ isnothing(m) name = m[1] push!(pr["minerals"], name) pr[name] = importdataset(joinpath(path, name*".tsv"), '\t', mindefinedcolumns=2, importas=:Dict) end end # Approximate content of various rock types, for when actual melt SiO2 not reported str = ["basalt","andesit","dacit","rhyolit","hawaiite","alkali basalt","basanit","benmoreite","camptonite","eclogit","garnet pyroxenit","kimberlit","komatiit","lampro","latite","leucitit","lherzolit","mugearite","pantellerite","trachyt","peridotit","phonolit","picrit","syen","morb","tholeiit","tonalit","granodiorit","granit","shoshonit","carbonatit","aplite","monzonit","synthetic"] val = [49,57.5,67.5,73,48.5,47,44,57,42,49,49,40,45,46.5,62.5,47,42,52,73,61,42,59,45.5,61,49,50,65,67.5,72,55,2,73,67.4,60] err = [5,6.5,5.5,5,3.5,4,3,4,3,5,5,4,5,11.5,11.5,5,5,5,5,9,5,5,5.5,9,5,4,8,7.5,5,5,5,5,5,20] # Determine the unique reference / rock type pairs samples = Dict{String,Vector{Tuple{String,String,Float64,Float64}}}() allsamples = Tuple{String,String,Float64,Float64}[] allelements = String[] for m in pr["minerals"] if ~haskey(pr[m],"SiO2") pr[m]["SiO2"] = fill(NaN, size(pr[m]["Reference"])) end if ~haskey(pr[m],"SiO2_sigma") pr[m]["SiO2_sigma"] = fill(NaN, size(pr[m]["Reference"])) end # Estimate SiO2 from rock type needssi = isnan.(pr[m]["SiO2"]) for i ∈ eachindex(str) t = containsi.(pr[m]["Rock Type"], str[i]) .& needssi # Average together, such that "basaltic andesite" is halfway between "basalt" and "andesite" pr[m]["SiO2"][t] = nanmean([pr[m]["SiO2"][t] val[i]*ones(count(t))], dim=2) pr[m]["SiO2_sigma"][t] = nanmean([pr[m]["SiO2_sigma"][t] err[i]*ones(count(t))], dim=2) end # Save unique samples println(m) flush(stdout) samples[m] = collect(zip(string.(pr[m]["Reference"]), string.(pr[m]["Rock Type"]), pr[m]["SiO2"], pr[m]["SiO2_sigma"])) append!(allsamples, unique(samples[m])) # Save unique elements append!(allelements, unique(pr[m]["Elem"])) end allsamples = sort(unique(allsamples)) allelements = sort(unique(allelements)) # Second dict: sort the data by sample ID pd = Dict{String, Union{Vector, Dict{String, Union{Vector{Float64}, Vector{String}}}}}() pd["samples"] = allsamples pd["Reference"] = allsamples .|> x -> x[1] pd["Rock Type"] = allsamples .|> x -> x[2] pd["SiO2"] = allsamples .|> x -> x[3] pd["SiO2_sigma"] = allsamples .|> x -> x[4] pd["minerals"] = pr["minerals"] for m in pd["minerals"] pd[m] = Dict{String, Union{Vector{Float64}, Vector{String}}}() pd[m]["elements"] = allelements for e in allelements pd[m][e] = fill(NaN, length(allsamples)) pd[m][e*"_sigma"] = fill(NaN, length(allsamples)) t = pr[m]["Elem"] .== e kd = map(x->(x>0 ? log10(x) : NaN), pr[m]["Value"][t]) kd_sigma = log10.(pr[m]["Value"][t] .+ pr[m]["SD"][t]) .- kd kdl = map(x->(x>0 ? log10(x) : NaN), pr[m]["Low"][t]) kdh = map(x->(x>0 ? log10(x) : NaN), pr[m]["High"][t]) if any(t) rows = findmatches(samples[m][t], allsamples) pd[m][e][rows] = nanmean([kd nanmean([kdl kdh], dim=2)], dim=2) pd[m][e*"_sigma"][rows] = nanmean([kd_sigma (kdh .- kdl)/4], dim=2) end end end ## --- Fit REEs as a function of activation energy and bulk modulus ree3 = ["La","Pr","Nd","Sm","Gd","Tb","Dy","Ho","Er","Tm","Yb","Lu",] # 3+ rare earth elements r = [0.106,0.101,0.100,0.096,0.094,0.092,0.091,0.089,0.088,0.087,0.086,0.085,] # Atomic Radii rp = 0.085:0.001:0.107 # Radius range to plot over # Equation we're fitting to (from Blundy and Wood, 1994): # lnD0 + a * (r0/2*(x-r0)^2 + 1/3*(x-r0)^3) # where a = 4π E Na / RT @. blundy_wood(x,param) = param[1] + param[2] * (param[3]/2*(x-param[3])^2 + 1/3*(x-param[3])^3) # for mineral={'Apatite','Amphibole','Clinopyroxene','Orthopyroxene','Garnet','Sphene','Allanite','Baddeleyite'} for m in pd["minerals"] h = plot(title=m, legend=:bottomleft) for i ∈ eachindex(pd["samples"]) kD = fill(NaN,length(ree3)) for j ∈ eachindex(ree3) kD[j] = pd[m][ree3[j]][i] end if count(.~isnan.(kD)) > 1 # plot!(h, r, kD, label="$i", seriestype=:scatter, color=lines[mod(i,length(lines))+1], msalpha=0) plot!(h, r, kD, label="", seriestype=:scatter, color=lines[mod(i,length(lines))+1], msalpha=0) end if (count(.~isnan.(kD)) > 3) && (nanrange(r[.~isnan.(kD)]) > 0.013) # Fit to Blundy and Wood curve t = .~( isnan.(kD) .| isinf.(kD) ) param = [maximum(kD[t]), -10000, 0.095] # initial guess f = curve_fit(blundy_wood, r[t], kD[t], param) # Fit plot!(h, r, blundy_wood(r,f.param), label="", color=lines[mod(i,length(lines))+1]) # Plot # Replace stored partition coefficients with new fits for j ∈ eachindex(ree3) pd[m][ree3[j]][i] = blundy_wood(r[j],f.param) end end end savefig(h, "Calc_$(m)_REE.pdf") end # Interpolate Eu partition coefficients where missing, assuming # 60% Eu as Eu2+ (c.f. Ba, Sr, Ca) and 40% as Eu3+ (c.f. Sm, Gd) # for m in = ["Albite","Anorthite","Orthoclase","Apatite"] for m in pd["minerals"] for i ∈ eachindex(pd["samples"]) if isnan(pd[m]["Eu"][i]) pd[m]["Eu"][i] = log10(0.6*10^nanmean([pd[m]["Ba"][i], pd[m]["Sr"][i]]) + 0.4*10^nanmean([pd[m]["Sm"][i], pd[m]["Gd"][i]])) end end end for m in ("Monazite", "Xenotime", "Allanite") for i ∈ eachindex(pd["samples"]) if isnan(pd[m]["Eu"][i]) pd[m]["Eu"][i] = log10(0.6*0 + 0.4*10^nanmean([pd[m]["Sm"][i], pd[m]["Gd"][i]])) end end end ## --- Convert data to average as a function of SiO2 # Convert from row-based to Si-based Dict kd = Dict{String, Union{Vector{String}, Vector{Float64}, Dict{String,Union{Float64, Vector{String}, Vector{Float64}}}}}() kd["minerals"] = pd["minerals"] for m in kd["minerals"] kd[m] = Dict{String,Union{Float64, Vector{String}, Vector{Float64}}}() kd[m]["elements"] = allelements for e in allelements t = .!isnan.(pd[m][e]) if (count(t) > 2) && (nanrange(pd["SiO2"][t]) > 8) kd[m][e] = mcfit(pd["SiO2"], pd["SiO2_sigma"], pd[m][e], pd[m][e*"_sigma"], 40, 80, 41, binwidth=5)[2] else kd[m][e] = ones(41) * nanmean(pd[m][e]) end kd[m][e*"_sigma"] = nanstd(pd[m][e]) end end kd["SiO2"] = collect(40:80.) # Set Albite partiton coefficients for e in kd["Albite"]["elements"] kd["Albite"][e] = nanmean([kd["Albite"][e] kd["Orthoclase"][e] kd["Anorthite"][e]], dim=2) end kd["note"] = ["kd for Albite is nanmean of AlkaliFeldspar, Orthoclase, and Anorthite",] ## --- Save results # using MAT # matwrite(joinpath(path,"partitioncoeffs.mat"),p) f = open(joinpath(path,"PartitionCoefficients.jl"), "a") print(f, "\ngerm_kd = $kd\nexport germ_kd\n") close(f) ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
5358
## --- Query TC1 properties const tc1_550 = readdlm(joinpath(moduleresourcepath,"tc1","tc1_550.csv"), ',', Float64) const tc1_1300 = readdlm(joinpath(moduleresourcepath,"tc1","tc1_1300.csv"), ',', Float64) const tc1_age = readdlm(joinpath(moduleresourcepath,"tc1","tc1_age.csv"), ',', Int) """ `find_tc1_crust(lat::Number,lon::Number)` Find the depth to the 550C isotherm for the 1x1 arc degree grid cell containing `lat` and `lon` `find_tc1_crust(lat::AbstractArray,lon::AbstractArray)` For each pair of latitudes and longitudes given by lat and lon, find the depth to the 550C isotherm for the 1x1 arc degree grid cell containing `lat[i]` and `lon[i]` Data is sourced from the global 1x1° "TC1" thermal model of Artemieva 2006, doi: 10.1016/j.tecto.2005.11.022 """ function find_tc1_crust(lat::Number,lon::Number) if !isnan(lat) && !isnan(lon) i = round(Int, 91-lat) j = round(Int, lon+181) crust=tc1_550[i,j] else crust = NaN end return crust end function find_tc1_crust(lat::AbstractArray,lon::AbstractArray) # Check input dimensions match eachindex(lat) == eachindex(lon) || @error "lat and lon must be equal size" # Query the tc1_550 array for our lat and lon crust = fill(NaN, size(lat)) for n=1:length(lat) if !isnan(lat[n]) && !isnan(lon[n]) i = round(Int, 91-lat[n]) j = round(Int, lon[n]+181) crust[n]=tc1_550[i,j] end end return crust end export find_tc1_crust """ `find_tc1_lith(lat::Number,lon::Number)` Find the depth to the 1300C isotherm for the 1x1 arc degree grid cell containing `lat` and `lon` `find_tc1_lith(lat::AbstractArray,lon::AbstractArray)` For each pair of latitudes and longitudes given by lat and lon, find the depth to the 1300C isotherm for the 1x1 arc degree grid cell containing `lat[i]` and `lon[i]` Data is sourced from the global 1x1° "TC1" thermal model of Artemieva 2006, doi: 10.1016/j.tecto.2005.11.022 """ function find_tc1_lith(lat::Number, lon::Number) if (-90 <= lat <= 90) && (-180 <= lon <= 180) i = round(Int, 91-lat) j = round(Int, lon+181) return tc1_1300[i,j] else return NaN end end function find_tc1_lith(lat::AbstractArray, lon::AbstractArray) # Check input dimensions match eachindex(lat) == eachindex(lon) || @error "lat and lon must be equal size" # Query the tc1_1300 array for our lat and lon lith = fill(NaN, size(lat)) for n in eachindex(lat) if (-90 <= lat[n] <= 90) && (-180 <= lon[n] <= 180) i = round(Int, 91-lat[n]) j = round(Int, lon[n]+181) lith[n] = tc1_1300[i,j] end end return lith end export find_tc1_lith """ `find_tc1_age(lat::Number,lon::Number)` Return a tuple `(age, age_min, age_max)` containing the nominal, upper, and lower tc1 age bounds for the 1x1 arc degree grid cell containing `lat` and `lon` `find_tc1_age(lat::AbstractArray,lon::AbstractArray)` Return a tuple `(age, age_min, age_max)` where `age`, `age_min`, and `age_max` are arrays containing the nominal, upper and lower tc1 age bounds for each location pair `lat[i]`, `lon[i]` Data is sourced from the global 1x1° "TC1" thermal model of Artemieva 2006, doi: 10.1016/j.tecto.2005.11.022 """ function find_tc1_age(lat::Number,lon::Number) ages=[ NaN NaN NaN 25 0 50 150 50 250 395 250 540 695 540 850 975 850 1100 1400 1100 1700 2100 1700 2500 2750 2500 3000 3250 3000 3500] if (-90 <= lat <= 90) && (-180 <= lon <= 180) i = round(Int, 91-lat) j = round(Int, lon+181) return ntuple(k->ages[tc1_age[i,j],k], 3) else return (NaN, NaN, NaN,) end end function find_tc1_age(lat::AbstractArray,lon::AbstractArray) # Check input dimensions match eachindex(lat) == eachindex(lon) || @error "lat and lon must be equal size" ages=[ NaN NaN NaN 25 0 50 150 50 250 395 250 540 695 540 850 975 850 1100 1400 1100 1700 2100 1700 2500 2750 2500 3000 3250 3000 3500] # Query the tc1_1300 array for our lat and lon age = fill(NaN, size(lat)) minage = fill(NaN, size(lat)) maxage = fill(NaN, size(lat)) for n in eachindex(lat) if (-90 <= lat[n] <= 90) && (-180 <= lon[n] <= 180) i = round(Int, 91-lat[n]) j = round(Int, lon[n]+181) ageindex = tc1_age[i,j] age[n] = ages[ageindex,1] minage[n] = ages[ageindex,2] maxage[n] = ages[ageindex,3] end end return (age, minage, maxage) end export find_tc1_age ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
10036
function update_changepoint_model!(m, σ, d, boundaries, np) @inbounds for i=1:np+1 r = boundaries[i]:boundaries[i+1] for col = 1:size(d,2) m[r,col] .= nanmean(view(d,r,col)) σ[r,col] .= nanstd(view(d,r,col)) end end end function update_changepoint_mu!(m, d, boundaries, np) @inbounds for i=1:np+1 r = boundaries[i]:boundaries[i+1] for col = 1:size(d,2) m[r,col] .= nanmean(view(d,r,col)) end end end # # Not currently used # function update_changepoint_sigma!(σ, d, boundaries, np) # @inbounds for i=1:np+1 # r = boundaries[i]:boundaries[i+1] # for col = 1:size(d,2) # σ[r,col] .= nanstd(view(d,r,col)) # end # end # end """ ```julia changepoint(data, [sigma], nsteps; np, npmin, npmax) ``` Given an ordered array of `data` points, optionally with uncertainties `sigma`, use a Markov chain Monte Carlo approach based on that of Gallagher et al., 2010 (10.1016/j.epsl.2011.09.015) to estimate the position (by index) and optionally number of changepoints that best explain the `data`. Will return the results for `nsteps` steps of the Markov chain. Optional keyword arguments: np Specify an exact integer number of changepoints. npmin nmpax Specify the maximum and minimum possible integer number of changepoints. If `np` is not specified, the number of changepoints will allowed to vary freely between these bounds, as in the "transdimensional" approach of Gallagher et al. ### Examples ```julia julia> A = [randn(100).-2; randn(100).+2]; julia> dist = changepoint(A, 10000; np=1); julia> dist[9000:end] # after burnin 1001-element Vector{Int64}: 101 101 101 101 ⋮ 101 101 101 julia> dist = changepoint(A, ones(size(A)), 10000; np=1) 10000×1 Matrix{Int64}: 61 61 61 61 ⋮ 101 101 101 ``` """ function changepoint(data::Collection, nsteps::Integer; np::Integer=0, npmin::Integer=0, npmax::Integer=min(size(data,1) ÷ 2, 11)) MOVE = 0.70 BIRTH = 0.15 DEATH = 0.15 DEBUG = false FORMATTED = true T = float(eltype(data)) nrows = size(data,1) ncolumns = size(data,2) m = similar(data, T) σ = similar(data, T) #Array{T}(undef, ncolumns) σₚ = similar(data, T) #Array{T}(undef, ncolumns) # Number of possible changepoint locations K = nrows-1 # Parse provided options if 0 < np <= K # If np is specified, use that npmin = npmax = np else # Otherwise, ensure all provided values are plausible and go with that npmax > K && (npmax = K) npmin < 0 && (npmin = 0) np = min(max(npmin, 2), npmax) end # Allocate output array of changepoints result = fill(0, nsteps, npmax) # Create and fill initial boundary point array boundaries = Array{Int}(undef, K+2) boundaries[1] = 1 boundaries[np+2] = nrows boundaries[2:np+1] .= rand(2:nrows-1, np) boundariesₚ = similar(boundaries) boundary_sigma = nrows/np np = count_unique!(view(boundaries,1:np+2)) - 2 # Calculate initial proposal and log likelihood update_changepoint_model!(m, σ, data, boundaries, np) ll = normpdf_ll(m, σ, data) # The actual loop @inbounds for i = 1:nsteps # Randomly choose a type of modification to the model r = rand() u = rand() # Update the model with the chosen modification if r < MOVE && np>0 # Move a changepoint copyto!(boundariesₚ,1,boundaries,1,np+2) # Pick which changepoint to move pick = rand(2:np+1) # Move the changepoint boundary_adj = randn()*boundary_sigma boundary_prop = boundariesₚ[pick] + round(Int, boundary_adj) # Treat ends of array as periodic boundary conditions boundariesₚ[pick] = mod(boundary_prop - 1, nrows-1) + 1 # Check if this has caused any redundancies npₚ = count_unique!(view(boundariesₚ,1:np+2)) - 2 # Update the model update_changepoint_mu!(m, data, boundariesₚ, npₚ) # Calculate log likelihood for proposal if (1 < boundary_prop < nrows) llₚ = normpdf_ll(m, σ, data) else llₚ = -Inf end DEBUG && println("Move: llₚ-ll = $llₚ - $ll") if log(u) < llₚ-ll DEBUG && println("Accepted!") ll = llₚ boundary_sigma = abs(boundary_adj)*2.9 # println("sigma: $boundary_sigma") copyto!(boundaries,1,boundariesₚ,1,np+2) # for n=1:np # print("$(boundariesₚ[n+1]),") # end # FORMATTED && print("\n") end elseif r < MOVE+BIRTH # Add a changepoint if np < npmax copyto!(boundariesₚ,1,boundaries,1,np+2) # Propose a new changepoint boundariesₚ[np+3] = rand(2:nrows-1) npₚ = count_unique!(view(boundariesₚ,1:np+3)) - 2 # Update the model # update_changepoint_model!(m, σ, data, boundariesₚ, npₚ) update_changepoint_mu!(m, data, boundariesₚ, npₚ) # Calculate log likelihood for proposal lqz = sum(1 ./ (2*σ.*σ)) llₚ = normpdf_ll(m, σ, data) DEBUG && println("Birth: -lqz+llₚ-ll = $(-lqz) + $llₚ - $ll") if log(u) < llₚ-lqz-ll DEBUG && println("Accepted!") ll = llₚ np = npₚ copyto!(boundaries,1,boundariesₚ,1,np+2) # for n=1:np # print("$(boundariesₚ[n+1]),") # end # FORMATTED && print("\n") end end elseif r < MOVE+BIRTH+DEATH # Delete a changepoint if np > npmin copyto!(boundariesₚ,1,boundaries,1,np+2) # Pick which changepoint to delete pick = rand(2:np+1) boundariesₚ[pick]=boundariesₚ[pick+1] npₚ = count_unique!(view(boundariesₚ,1:np+2)) - 2 # Update the model # update_changepoint_model!(m, σ, data, boundariesₚ, npₚ) update_changepoint_mu!(m, data, boundariesₚ, npₚ) # Calculate log likelihood for proposal llₚ = normpdf_ll(m, σ, data) lqz = sum(1 ./ (2*σ.*σ)) DEBUG && println("Death: lqz+llₚ-ll = $lqz + $llₚ - $ll") if log(u) < llₚ+lqz-ll DEBUG && println("Accepted!") ll = llₚ np = npₚ copyto!(boundaries,1,boundariesₚ,1,np+2) # for n=1:np # print("$(boundariesₚ[n+1]),") # end # FORMATTED && print("\n") end end end # Record results result[i, 1:np] .= boundaries[2:(np+1)] end return result end function changepoint(data::Collection, sigma::Collection, nsteps::Integer; np::Integer=0, npmin::Integer=0, npmax::Integer=min(size(data,1) ÷ 2, 11)) MOVE = 0.70 BIRTH = 0.15 DEATH = 0.15 DEBUG = false FORMATTED = true T = float(eltype(data)) nrows = size(data,1) ncolumns = size(data,2) m = similar(data, T) # Number of possible changepoint locations K = nrows-1 # Parse provided options if 0 < np <= K # If np is specified, use that npmin = npmax = np else # Otherwise, ensure all provided values are plausible and go with that npmax > K && (npmax = K) npmin < 0 && (npmin = 0) np = min(max(npmin, 2), npmax) end # Allocate output array of changepoints result = fill(0, nsteps, npmax) # Create and fill initial boundary point array boundaries = Array{Int}(undef, K+2) boundaries[1] = 1 boundaries[np+2] = nrows boundaries[2:np+1] .= rand(2:nrows-1, np) boundariesₚ = similar(boundaries) boundary_sigma = nrows/np np = count_unique!(view(boundaries,1:np+2)) - 2 # Calculate initial proposal and log likelihood update_changepoint_mu!(m, data, boundaries, np) ll = normpdf_ll(m, sigma, data) # The actual loop @inbounds for i = 1:nsteps # Randomly choose a type of modification to the model r = rand() u = rand() # Update the model with the chosen modification if r < MOVE && np>0 # Move a changepoint copyto!(boundariesₚ,1,boundaries,1,np+2) # Pick which changepoint to move pick = rand(2:np+1) # Move the changepoint boundary_adj = randn()*boundary_sigma boundary_prop = boundariesₚ[pick] + round(Int, boundary_adj) # Treat ends of array as periodic boundary conditions boundariesₚ[pick] = mod(boundary_prop - 1, nrows-1) + 1 # Check if this has caused any redundancies npₚ = count_unique!(view(boundariesₚ,1:np+2)) - 2 # Update the model update_changepoint_mu!(m, data, boundariesₚ, npₚ) # Calculate log likelihood for proposal if (1 < boundary_prop < nrows) llₚ = normpdf_ll(m, sigma, data) else llₚ = -Inf end DEBUG && println("Move: llₚ-ll = $llₚ - $ll") if log(u) < llₚ-ll DEBUG && println("Accepted!") ll = llₚ boundary_sigma = abs(boundary_adj)*2.9 # println("sigma: $boundary_sigma") copyto!(boundaries,1,boundariesₚ,1,np+2) # for n=1:np # print("$(boundariesₚ[n+1]),") # end # FORMATTED && print("\n") end elseif r < MOVE+BIRTH # Add a changepoint if np < npmax copyto!(boundariesₚ,1,boundaries,1,np+2) # Propose a new changepoint boundariesₚ[np+3] = rand(2:nrows-1) npₚ = count_unique!(view(boundariesₚ,1:np+3)) - 2 # Update the model update_changepoint_mu!(m, data, boundariesₚ, npₚ) # Calculate log likelihood for proposal lqz = sum(1 ./ (2 .* sigma .* sigma)) llₚ = normpdf_ll(m, sigma, data) DEBUG && println("Birth: -lqz+llₚ-ll = $(-lqz) + $llₚ - $ll") if log(u) < llₚ-lqz-ll DEBUG && println("Accepted!") ll = llₚ np = npₚ copyto!(boundaries,1,boundariesₚ,1,np+2) # for n=1:np # print("$(boundariesₚ[n+1]),") # end # FORMATTED && print("\n") end end elseif r < MOVE+BIRTH+DEATH # Delete a changepoint if np > npmin copyto!(boundariesₚ,1,boundaries,1,np+2) # Pick which changepoint to delete pick = rand(2:np+1) boundariesₚ[pick]=boundariesₚ[pick+1] npₚ = count_unique!(view(boundariesₚ,1:np+2)) - 2 # Update the model update_changepoint_mu!(m, data, boundariesₚ, npₚ) # Calculate log likelihood for proposal llₚ = normpdf_ll(m, sigma, data) lqz = sum(1 ./ (2 .* sigma .* sigma)) DEBUG && println("Death: lqz+llₚ-ll = $lqz + $llₚ - $ll") if log(u) < llₚ+lqz-ll DEBUG && println("Accepted!") ll = llₚ np = npₚ copyto!(boundaries,1,boundariesₚ,1,np+2) # for n=1:np # print("$(boundariesₚ[n+1]),") # end # FORMATTED && print("\n") end end end # Record results result[i, 1:np] .= boundaries[2:(np+1)] end return result end export changepoint
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
1501
## -- Import and extend Base.display for various custom types import Base.display # Custom pretty printing for named tuples as datasets # TODO: possibly avoid blatant type piracy 🏴‍☠️ 🏴‍☠️ 🏴‍☠️ function display(x::NamedTuple) i = 1 println("NamedTuple with $(length(keys(x))) elements:") l = max(length.(string.(keys(x)))...) for s in keys(x) t = typeof(x[s]) sp = " "^(l-length(string(s))) print(" $s$sp = $t") if t<:Number print("\t$(x[s])") elseif t<:AbstractRange print("\t$(x[s])") elseif t<:AbstractArray print(size(x[s])) if length(x[s]) < 2 print("\t[$(x[s])]") else print("\t[$(first(x[s])) ... $(last(x[s]))]") end elseif t<:NTuple if length(x[s]) < 2 print("\t[$(x[s])]") else print("\t[$(first(x[s])) ... $(last(x[s]))]") end elseif t<:AbstractString if length(x[s]) < 50 print("\t\"$(x[s])\"") else print("\t\"$(x[s][firstindex(x[s])+(1:50)])...") end end print("\n") i += 1 if i > 222 print(".\n.\n.\n") break end end end
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
5441
## --- Digitize image data """ ```julia digitize_plotmarkers(img, marker_color, xlims, ylims; atol=0.16) ``` Calculate approximate `x` (horizontal) and `y` (vertical) positions and position uncertainties for distinct colored markers in an image. ### Examples ```julia img = load("xyscatter.png") # using FileIO, ImageIO C = eltype(img) (x,dx,y,dy) = digitize_plotmarkers(img, C(0,0.604,0.976,1), [0,10], [0,10]) ``` """ function digitize_plotmarkers(img, marker_color, xlims, ylims; atol=0.16) # Test for approximate equality in color to marker t = isapprox.(marker_color,img,atol=atol) # Figure out our image dimensions xrows = size(t,2) yrows = size(t,1) # Allocate index arrays imin = Array{Float64}(undef,round(Int,xrows/2)) imax = Array{Float64}(undef,round(Int,xrows/2)) jmin = Array{Float64}(undef,round(Int,xrows/2)) jmax = Array{Float64}(undef,round(Int,xrows/2)) # Fill index arrays found = false markernumber = 0 for j ∈ 1:xrows tⱼ = view(t,:,j) if any(tⱼ) list = findall(tⱼ) if ~found markernumber += 1 imin[markernumber] = minimum(list) imax[markernumber] = maximum(list) jmin[markernumber] = j jmax[markernumber] = j else imin[markernumber] = min(imin[markernumber],minimum(list)) imax[markernumber] = max(imax[markernumber],maximum(list)) jmax[markernumber] = j end found = true else found = false end end # Return only the filled indices imin = imin[1:markernumber] imax = imax[1:markernumber] jmin = jmin[1:markernumber] jmax = jmax[1:markernumber] # Calculate x and y positions from indices Δy = last(ylims) - first(ylims) y = last(ylims) .- (imin+imax)/2 * Δy / yrows dy = (imax-imin)/2 * Δy / yrows Δx = last(xlims) - first(xlims) x = (jmin+jmax)/2 * Δx / xrows .+ first(xlims) dx = (jmax-jmin)/2 * Δx / xrows return x, dx, y, dy end export digitize_plotmarkers """ ```julia digitize_plotline(img, line_color, xlims, ylims; atol=0.16) ``` Calculate approximate `x` (horizontal) and `y` (vertical) positions for a colored line in an image ### Examples ```julia img = load("xysin.png") # using FileIO, ImageIO C = eltype(img) (x,y) = digitize_plotline(img, C(0,0.604,0.976,1), [0,2pi], [-1.1,1.1]) ``` """ function digitize_plotline(img, line_color, xlims, ylims; atol=0.16) # Test for approximate equality in color to marker t = isapprox.(line_color,img,atol=atol) # Figure out our image dimensions xrows = size(t,2) yrows = size(t,1) # Calculate x for each column x = cntr(range(first(xlims), last(xlims), length=xrows+1)) # y as a function of i-position in image # (note: images are typically flipped) Δy = last(ylims) - first(ylims) yᵢ(i) = last(ylims) - i * Δy / yrows # Calculate y, defaulting to NaN if no matches y = fill(NaN, xrows) for j = 1:xrows tⱼ = view(t,:,j) y[j] = yᵢ(findmeanindex(tⱼ)) end return x, y end export digitize_plotline function findmeanindex(x) @assert isa(firstindex(x), Int) μ = 0 n = 0 @inbounds for i ∈ eachindex(x) if x[i] == true μ += i n += 1 end end return μ/n end ## --- Retain deprecated functions with matlab-like syntax, to avoid breakages in user scripts that may depend on them if ~ @isdefined linspace """ ```julia linspace(l::Number,u::Number,n::Number) ``` Returns a linearly spaced array with `n` points between the starting bound `l` and ending bound `u` """ function linspace(l::Number,u::Number,n::Number) return range(l,stop=u,length=n) end export linspace end if ~ @isdefined contains """ ```julia contains(haystack, needle) ``` Converts both `haystack` and `needle` to strings (if not already strings) and checks whether `string(haystack)` contains `string(needle)`. """ contains(haystack::AbstractString, needle::Union{AbstractString,Regex,AbstractChar}) = occursin(needle, haystack) contains(haystack, needle) = occursin(string(needle), string(haystack)) export contains end if ~ @isdefined containsi """ ```julia containsi(haystack, needle) ``` Converts both `haystack` and `needle` to strings and checks whether `string(haystack)` contains `string(needle)`, ignoring case. """ containsi(haystack::AbstractString, needle::Union{AbstractString,AbstractChar}) = occursin(lowercase(needle), lowercase(haystack)) containsi(haystack, needle) = occursin(lowercase(string(needle)), lowercase(string(haystack))) export containsi end ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
16466
## --- Read ESRI Arc/Info ASCII grid files function importAAIGrid(fname, T=Float64; undefval=NaN) # Open the file fid = open(fname) metadata = Dict{String,Number}() metadata["ncols"] = parse(Int64, first(match(r" *(.*?)$", readline(fid)))) metadata["nrows"] = parse(Int64, first(match(r" *(.*?)$", readline(fid)))) metadata["xll_corner"] = parse(Float64, first(match(r" *(.*?)$", readline(fid)))) metadata["yll_corner"] = parse(Float64, first(match(r" *(.*?)$", readline(fid)))) metadata["cellsize"] = parse(Float64, first(match(r" *(.*?)$", readline(fid)))) metadata["nodata"] = parse(Float64, first(match(r" *(.*?)$", readline(fid)))) nrows = metadata["nrows"] ncols = metadata["ncols"] data = Array{T}(undef,ncols,nrows) for i = 1:nrows l = readline(fid) delim_string_parse!(data, l, ' ', T, offset=(i-1)*ncols, undefval=undefval) end # Close the file close(fid) return (data', metadata) end export importAAIGrid ## --- Calculate slope from a DEM function maxslope(matrix, x_lon_cntr, y_lat_cntr, cellsize, T=UInt16; minmatval=-12000, km_per_lat=111.1) # Returns slope in units/kilometer given a latitude-longitude grid of z-values # Allocate output array slope = Array{T}(undef,size(matrix)) # Fill in the center first distNS = 2 * cellsize * km_per_lat for i = 2:(size(matrix,1)-1) # Distance between grid cell centers km_per_lon = cos(y_lat_cntr[i] * pi/180) * km_per_lat distEW = 2 * cellsize * km_per_lon distDiag = sqrt(distNS^2 + distEW^2) for j = 2:(size(matrix,2)-1) # Gradients, in matrix units per km if matrix[i,j] < minmatval slope[i,j] = 0 else if (matrix[i+1,j] < minmatval) || (matrix[i-1,j] < minmatval) NS = 0 else NS = abs(matrix[i+1,j] - matrix[i-1,j]) / distNS end if (matrix[i,j+1] < minmatval) || (matrix[i,j-1]<minmatval) EW = 0 else EW = abs(matrix[i,j+1] - matrix[i,j-1]) / distEW end if (matrix[i+1,j-1] < minmatval) || (matrix[i-1,j+1] < minmatval) NESW = 0 else NESW = abs(matrix[i+1,j-1] - matrix[i-1,j+1]) / distDiag end if (matrix[i+1,j+1] < minmatval) || (matrix[i-1,j-1] < minmatval) NWSE = 0 else NWSE = abs(matrix[i+1,j+1] - matrix[i-1,j-1]) / distDiag end # Record the steepest slope slope[i,j] = nearest(T, max(NS,EW,NESW,NWSE)) end end # Fill in edges too distEW = cellsize * km_per_lon distDiag = sqrt((distNS/2)^2 + distEW^2) # Left edge if (matrix[i+1,1] < minmatval) || (matrix[i-1,1] < minmatval) NS = 0 else NS = abs(matrix[i+1,1] - matrix[i-1,1]) / distNS end if (matrix[i,2] < minmatval) || (matrix[i,1] < minmatval) EW = 0 else EW = abs(matrix[i,2] - matrix[i,1]) / distEW end if (matrix[i+1,1] < minmatval) || (matrix[i-1,2] < minmatval) NESW = 0 else NESW = abs(matrix[i+1,1] - matrix[i-1,2]) / distDiag end if (matrix[i+1,2] < minmatval) || (matrix[i-1,1] < minmatval) NWSE = 0 else NWSE = abs(matrix[i+1,2] - matrix[i-1,1]) / distDiag end slope[i,1] = nearest(T, max(NS,EW,NESW,NWSE)) # Right edge if (matrix[i+1,end] < minmatval) || (matrix[i-1,end] < minmatval) NS = 0 else NS = abs(matrix[i+1,end] - matrix[i-1,end]) / distNS end if matrix[i,end]<minmatval || matrix[i,end-1]<minmatval EW = 0 else EW = abs(matrix[i,end] - matrix[i,end-1]) / distEW end if (matrix[i+1,end-1] < minmatval) || (matrix[i-1,end] < minmatval) NEWS = 0 else NESW = abs(matrix[i+1,end-1] - matrix[i-1,end]) / distDiag end if (matrix[i+1,end] < minmatval) || (matrix[i-1,end-1] < minmatval) NWSE = 0 else NWSE = abs(matrix[i+1,end] - matrix[i-1,end-1]) / distDiag end slope[i,end] = nearest(T, max(NS,EW,NESW,NWSE)) end # Fill in the top and bottom row distNS = cellsize * km_per_lat # Top row km_per_lon = cos(y_lat_cntr[1]*pi/180) * km_per_lat distEW = 2*cellsize*km_per_lon distDiag = sqrt(distNS^2+(distEW/2)^2) for j = 2:(size(matrix,2)-1) # Gradients, in meters per km if (matrix[2,j] < minmatval) || (matrix[1,j] < minmatval) NS = 0 else NS = abs(matrix[2,j] - matrix[1,j]) / distNS end if (matrix[1,j+1] < minmatval) || (matrix[1,j-1] < minmatval) EW = 0 else EW = abs(matrix[1,j+1] - matrix[1,j-1]) / distEW end if (matrix[2,j-1] < minmatval) || (matrix[1,j] < minmatval) NESW = 0 else NESW = abs(matrix[2,j-1] - matrix[1,j]) / distDiag end if (matrix[2,j+1] < minmatval) || (matrix[1,j] < minmatval) NWSE = 0 else NWSE = abs(matrix[2,j+1] - matrix[1,j]) / distDiag end slope[1,j] = nearest(T, max(NS,EW,NESW,NWSE)) end slope[1,1] = 0 slope[1,end] = 0 # Bottom row km_per_lon = cos(y_lat_cntr[end] * pi/180) * km_per_lat distEW = 2 * cellsize * km_per_lon distDiag = sqrt(distNS^2 + (distEW/2)^2) for j = 2:(size(matrix,2)-1) # Gradients, in meters per Km if (matrix[end-1,j] < minmatval) || (matrix[end,j] < minmatval) NS = 0 else NS = abs(matrix[end-1,j] - matrix[end,j]) / distNS end if (matrix[end,j+1] < minmatval) || (matrix[end,j-1] < minmatval) EW = 0 else EW = abs(matrix[end,j+1] - matrix[end,j-1]) / distEW end if (matrix[end-1,j-1] < minmatval) || (matrix[end,j] < minmatval) NESW = 0 else NESW = abs(matrix[end-1,j-1] - matrix[end,j]) / distDiag end if (matrix[end-1,j+1] < minmatval) || (matrix[end,j] < minmatval) NWSE = 0 else NWSE = abs(matrix[end-1,j+1] - matrix[end,j]) / distDiag end slope[end,j] = nearest(T, max(NS,EW,NESW,NWSE)) end slope[end,1] = 0 slope[end,end] = 0 return slope end export maxslope function aveslope(matrix, x_lon_cntr, y_lat_cntr, cellsize, T=UInt16; minmatval=-12000, maxmatval=9000, km_per_lat=111.1) # Returns slope in units/kilometer given a latitude-longitude grid of z-values # Allocate intermediate and output arrays distance = Array{Float64}(undef,8) local_slopes = Array{Float64}(undef,8) slope = Array{T}(undef,size(matrix)) # Index offsets to cycle through: # [N,NE,E,SE,S,SW,W,NW] ioffset = [-1,-1,0,1,1,1,0,-1] joffset = [0,1,1,1,0,-1,-1,-1] # # i.e. Layout: # 8 1 2 # 7 x 3 # 6 5 4 # Distance between grid cell centers # N, S distance[[1,5]] .= cellsize * km_per_lat # Fill in the center first for i = 2:(size(matrix,1)-1) # Distance between grid cell centers km_per_lon = cos(y_lat_cntr[i]*pi/180) * km_per_lat distance[[3,7]] .= cellsize*km_per_lon; #E, W distance[[2,4,6,8]] .= sqrt(distance[1]^2+distance[3]^2) # Diagonals # Center for j = 2:(size(matrix,2)-1) # Gradients, in matrix z-units per km here = matrix[i,j] if (here < minmatval) || (here > maxmatval) slope[i,j] = 0 else for k = 1:8 there = matrix[i+ioffset[k], j+joffset[k]] if (there < minmatval) || (there > maxmatval) local_slopes[k] = 0 else local_slopes[k] = abs(there-here) / distance[k] end end # Record the average slope slope[i,j] = nearest(T, nanmean(local_slopes)) end end # Left edge here = matrix[i,1] if (here < minmatval) || (here > maxmatval) slope[i,1] = 0 else for k = 1:5 there = matrix[i+ioffset[k], 1+joffset[k]] if (there < minmatval) || (there > maxmatval) local_slopes[k] = 0 else local_slopes[k] = abs(there-here) / distance[k] end end slope[i,1] = nearest(T, nanmean(local_slopes[1:5])) end # Right edge here = matrix[i,end] if (here < minmatval) || (here > maxmatval) slope[i,end] = 0 else for k = [5,6,7,8,1] there = matrix[i+ioffset[k], end+joffset[k]] if (there < minmatval) || (there > maxmatval) local_slopes[k] = 0 else local_slopes[k] = abs(there-here) / distance[k] end end slope[i,end] = nearest(T, nanmean(view(local_slopes, [5,6,7,8,1]))) end end # Top row km_per_lon = cos(y_lat_cntr[1] * pi/180) * km_per_lat distance[[3,7]] .= cellsize * km_per_lon #E, W distance[[2,4,6,8]] .= sqrt(distance[1]^2 + distance[3]^2) # Diagonals for j = 2:(size(matrix,2)-1) # Gradients, in matrix units per km here = matrix[1,j] if (here < minmatval) || (here > maxmatval) slope[1,j] = 0 else for k=3:7 there = matrix[1+ioffset[k], j+joffset[k]] if (there < minmatval) || (there > maxmatval) local_slopes[k] = 0 else local_slopes[k] = abs(there-here) / distance[k] end end slope[1,j] = nearest(T, nanmean(view(local_slopes, 3:7))) end end slope[1,1] = 0 slope[1,end] = 0 # Bottom row km_per_lon = cos(y_lat_cntr[end] *pi/180) * km_per_lat distance[[3,7]] .= cellsize * km_per_lon #E, W distance[[2,4,6,8]] .= sqrt(distance[1]^2+distance[3]^2) # Diagonals for j = 2:(size(matrix,2)-1) # Gradients, in matrix units per km here = matrix[end,j] if (here < minmatval) || (here > maxmatval) slope[end,j] = 0 else for k = [7,8,1,2,3] there = matrix[end+ioffset[k], j+joffset[k]] if (there < minmatval) || (there > maxmatval) local_slopes[k] = 0 else local_slopes[k] = abs(there-here) / distance[k] end end slope[end,j] = nearest(T, nanmean(view(local_slopes, [7,8,1,2,3]))) end end slope[end,1] = 0 slope[end,end] = 0 return slope end export aveslope ## --- Generate random latitude and longitude pairs uniformly distributed across the globe CONST_180_PI = 180/pi function randlatlon(n::Integer; land=false) if land c = 0 while c < n lats, lons = 90 .- CONST_180_PI*acos.(2*rand(5n) .- 1), rand(5n)*360 .- 180 notland = .!find_land(lats, lons) @inbounds for i in eachindex(notland) c += !notland[i] if c > n notland[i] = true end end c < n && (c=0) deleteat!(lats, notland) deleteat!(lons, notland) end else lats, lons = 90 .- CONST_180_PI*acos.(2*rand(n) .- 1), rand(n)*360 .- 180 end return lats, lons end function randlatlon() 90 - CONST_180_PI*acos(2*rand() - 1), rand()*360 - 180 end export randlatlon ## --- Calculate distance uncertainty in arc degrees """ ```julia haversine(lat₁, lon₁, lat₂, lon₂) ``` Calculate the arc degree distance between two decimal degree points (lat₁, lon₁) and (lat₂, lon₂). """ function haversine(lat₁, lon₁, lat₂, lon₂) lat₁ᵣ, lon₁ᵣ, lat₂ᵣ, lon₂ᵣ = (lat₁, lon₁, lat₂, lon₂) .* (pi/180) dist = acos(sin(lat₁ᵣ) * sin(lat₂ᵣ) + cos(lat₁ᵣ) * cos(lat₂ᵣ) * cos(lon₁ᵣ - lon₂ᵣ)) return dist * 180/pi end export haversine ## --- Calculate maximum arc-degree distance between a series of points """ ```julia dist_uncert(lats, lons) ``` Find the decimal degree center and associated uncertainty (in arc degrees) from lists `lats` and `lons` of decimal degree coordinates. ### Examples ```julia (lat_ctr, lon_ctr, uncertainty) = dist_uncert(lats, lons) ``` """ function dist_uncert(lats, lons) @assert eachindex(lats) == eachindex(lons) latc, lonc = centroid(lats, lons) maxdist = zero(float(eltype(lats))) for i in eachindex(lats) for j in 1+firstindex(lats):lastindex(lats) # If a point is compared to itself, distance is 0; comparison is susceptible to roundoff error if i != j dist = haversine(lats[i], lons[i], lats[j], lons[j]) dist > maxdist && (maxdist = dist) end end end return latc, lonc, maxdist/2 end export dist_uncert ## --- Other lat and lon conversions """ ```julia centroid(lats, lons) ``` Return the centroid of a set of latitudes and longitudes on a sphere. """ function centroid(lats::AbstractArray{T1}, lons::AbstractArray{T2}) where {T1,T2} T = float(promote_type(T1, T2)) x, y, z = similar(lats, T), similar(lats, T), similar(lats, T) @inbounds for i in eachindex(lats, lons) φ = deg2rad(90 - lats[i]) θ = deg2rad(lons[i]) x[i], y[i], z[i] = cartesian(one(T), φ, θ) end x₀ = nanmean(x) y₀ = nanmean(y) z₀ = nanmean(z) ρ, φ, θ = spherical(x₀, y₀, z₀) latc = 90 - rad2deg(φ) lonc = rad2deg(θ) return latc, lonc end export centroid """ ```julia x, y, z = cartesian(ρ, φ, θ) ``` Convert from spherical coordinates (`ρ`,`φ`,`θ`) to cartesian coordinates (`x`,`y`,`z`). """ function cartesian(ρ::Number, φ::Number, θ::Number) x = ρ * sin(φ) * cos(θ) y = ρ * sin(φ) * sin(θ) z = ρ * cos(φ) return x, y, z end export cartesian """ ```julia ρ, θ, φ = cartesian(x, y, z) ``` Convert from cartesian coordinates (`x`,`y`,`z`) to spherical coordinates (`ρ`,`φ`,`θ`). """ function spherical(x::Number, y::Number, z::Number) ρ = sqrt(x^2 + y^2 + z^2) φ = acos(z/ρ) θ = atan(y,x) return ρ, φ, θ end export spherical ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
126099
## --- Calculate Eu* """ ```julia eustar(Nd::Number, Sm::Number, Gd::Number, Tb::Number) ``` Calculate expected europium concentration, Eu*, based on abundance of adjacent rare earths. Full four-element log-linear interpolation, assuming 3+ ionic radii and the chondritic abundances of Sun and McDonough 1989 (doi: 10.1144/gsl.sp.1989.042.01.19) """ function eustar(Nd::Number, Sm::Number, Gd::Number, Tb::Number) # Ionic radii, in pm [Tb, Gd, Sm, Nd] r = [106.3, 107.8, 109.8, 112.3] # or x = [1, 2, 4, 6] # Normalize to chondrite y = log.([Tb/0.0374, Gd/0.2055, Sm/0.1530, Nd/0.4670]) notnan = .!isnan.(y) # Make sure we're interpolating and not extrapolating if any(view(notnan, 1:2)) && any(view(notnan, 3:4)) # Fit a straight line through the chondrite-normalized values x = r[notnan] (a,b) = hcat(fill!(similar(x), 1), x) \ y[notnan] # De-dormalize output for Eu, interpolating at r = 108.7 pm or x = 3 eu_interp = 0.0580*exp(a + b*108.7) else eu_interp = NaN end return eu_interp end """ ```julia eustar(Sm::Number, Gd::Number) ``` Calculate expected europium concentration, Eu*, based on abundance of adjacent rare earths. Simple geometric mean interpolation from Sm and Gd alone, assuming the chondritic abundances of Sun and McDonough 1989 (doi: 10.1144/gsl.sp.1989.042.01.19), that is Eu* = `0.0580*sqrt(Sm/0.1530 * Gd/0.2055)` """ function eustar(Sm::Number, Gd::Number) # Geometric mean in regular space is equal to the arithmetic mean in log space. Fancy that! return 0.0580*sqrt(Sm/0.1530 * Gd/0.2055) end export eustar ## --- CIPW norm """ ```julia cipw_norm(SiO2, TiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, P2O5) ``` Returns ``` quartz, orthoclase, plagioclase, corundum, nepheline, diopside, orthopyroxene, olivine, magnetite, ilmenite, apatite ``` """ function cipw_norm(SiO2, TiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, P2O5) SiO2 /= 60.0843 TiO2 /= 79.8988 Al2O3 /= 101.9613 Fe2O3 /= 159.6922 FeO /= 71.8464 MnO /= 70.9374 MgO /= 40.3044 CaO /= 56.0794 Na2O /= 61.9789 K2O /= 94.1960 P2O5 /= 141.9445 FeO = nanadd(FeO, MnO) CaO -= 3.333333333333333 * P2O5 apatite = 0.6666666666666666 * P2O5 # P2O5 = 0 FeO -= TiO2 ilmenite = TiO2 FeO -= Fe2O3 magnetite = Fe2O3 # Fe2O3 = 0 Al2O3 -= K2O orthoclase = K2O # K2O = 0 Al2O3 -= Na2O albite = Na2O if CaO > Al2O3 CaO -= Al2O3 anorthite = Al2O3 Al2O3 = 0 else Al2O3 -= CaO anorthite = CaO CaO = 0 end if Al2O3 > 0 corundum = Al2O3 Al2O3 = 0 else corundum = 0 end Mg′ = MgO / (MgO + FeO) FMO = FeO + MgO FMO_weight = (Mg′*40.3044)+((1-Mg′)*71.8464) if CaO > 0 FMO -= CaO diopside = CaO else diopside = 0 end orthopyroxene = FMO pSi1 = 6orthoclase + 6albite + 2anorthite + 2diopside + orthopyroxene if pSi1 < SiO2 quartz = SiO2 - pSi1 nepheline = 0 olivine = 0 else quartz = 0 pSi2 = 6orthoclase + 6albite + 2anorthite + 2diopside pSi3 = SiO2 - pSi2 if FMO > 2pSi3 orthopyroxene = 0 olivine = FMO FMO = 0 pSi4 = 6orthoclase + 2anorthite + 2diopside + 0.5olivine pSi5 = SiO2 - pSi4 Albite = (pSi5-(2*Na2O))/4 nepheline = Na2O-Albite else nepheline = 0 orthopyroxene = 2pSi3 - FMO olivine = FMO - pSi3 end end orthoclase *= 2 nepheline *= 2 albite *= 2 An′ = anorthite/(anorthite+albite) plag_weight = (An′*278.2093)+((1-An′)*262.2230) plagioclase = albite+anorthite quartz *= 60.0843 orthoclase *= 278.3315 plagioclase *= plag_weight corundum *= 101.9613 nepheline *= 142.0544 diopside *= (172.248 + FMO_weight) orthopyroxene *= (60.0843 + FMO_weight) olivine *= (60.0843 + 2FMO_weight) magnetite *= 231.5386 ilmenite *= 151.7452 apatite *= 504.3152 return (quartz=quartz, orthoclase=orthoclase, plagioclase=plagioclase, corundum=corundum, nepheline=nepheline, diopside=diopside, orthopyroxene=orthopyroxene, olivine=olivine, magnetite=magnetite, ilmenite=ilmenite, apatite=apatite) end # export cipw_norm ## --- Fe oxide conversions """ ```julia feoconversion(FeO::Number=NaN, Fe2O3::Number=NaN, FeOT::Number=NaN, Fe2O3T::Number=NaN) ``` Compiles data from FeO, Fe2O3, FeOT, and Fe2O3T into a single FeOT value. """ function feoconversion(FeO::Number=NaN, Fe2O3::Number=NaN, FeOT::Number=NaN, Fe2O3T::Number=NaN) # To convert from Fe2O3 wt % to FeO wt %, multiply by conversionfactor = (55.845+15.999) / (55.845+1.5*15.999) # If FeOT or Fe2O3T already exists, use that if isnan(FeOT) if isnan(Fe2O3T) if isnan(Fe2O3) FeOT = FeO elseif isnan(FeO) FeOT = Fe2O3*conversionfactor else FeOT = Fe2O3*conversionfactor + FeO end else FeOT=Fe2O3T*conversionfactor end end return FeOT end export feoconversion ## --- Oxide conversions function fillifnan!(dest::AbstractArray, source::AbstractArray) @inbounds for i in eachindex(dest, source) if isnan(dest[i]) && !isnan(source[i]) dest[i] = source[i] end end return dest end function fillifnan!(dest::AbstractArray, source::AbstractArray, factor::Number) @inbounds for i in eachindex(dest, source) if isnan(dest[i]) && !isnan(source[i]) dest[i] = source[i] * factor end end return dest end function nannegative!(a::AbstractArray) @inbounds for i in eachindex(a) if a[i] < 0 a[i] = NaN end end return a end """ ```julia converted_dataset = oxideconversion(dataset::Union{Dict,NamedTuple}; unitratio::Number=10000) ``` As `oxideconversion!`, but returning a copy rather than modifying in-place """ oxideconversion(ds::Union{Dict,NamedTuple}; kwargs...) = oxideconversion!(deepcopy(ds); kwargs...) export oxideconversion """ ```julia oxideconversion!(dataset::Dict; unitratio::Number=10000) ``` Convert major elements (Ti, Al, etc.) into corresponding oxides (TiO2, Al2O3, ...) in place if extant. If metals are expected as PPM, set unitratio=10000 (default); if metals are as wt%, set unitratio = 1 See also `oxideconversion`, c.f. `metalconversion!` """ function oxideconversion!(dataset::NamedTuple; unitratio::Number=10000) # List of elements to convert source = (:Si, :Ti, :Al, :Fe, :Fe, :Mg, :Ca, :Mn, :Li, :Na, :K, :P, :Cr, :Ni, :Co, :S, :H) dest = (:SiO2, :TiO2, :Al2O3, :FeOT, :Fe2O3T, :MgO, :CaO, :MnO, :Li2O, :Na2O, :K2O, :P2O5, :Cr2O3, :NiO, :CoO, :SO3, :H2O) conversionfactor = (2.13932704290547,1.66847584248889,1.88944149488507,1.28648836426407,1.42973254639611,1.65825961736268,1.39919258253823,1.29121895771597,2.1526657060518732,1.34795912485574,1.20459963614796,2.29133490474735,1.46154369861159,1.27258582901258,1.27147688434143,2.4970991890205863,8.93601190476191) @assert eachindex(source) == eachindex(dest) == eachindex(conversionfactor) # If source field exists, fill in destination from source for i ∈ eachindex(source) if haskey(dataset, source[i]) if haskey(dataset, dest[i]) # If destination field doesn't exist, make it. oxide, metal = dataset[dest[i]], dataset[source[i]] fillifnan!(oxide, metal, conversionfactor[i]/unitratio) end end end return dataset end oxideconversion!(ds::Dict; kwargs...) = (oxideconversion!(TupleDataset(ds); kwargs...); ds) export oxideconversion! """ ```julia converted_dataset = metalconversion(dataset::Union{Dict,NamedTuple}; unitratio::Number=10000) ``` As `metalconversion!`, but returning a copy rather than modifying in-place """ metalconversion(ds::Union{Dict,NamedTuple}; kwargs...) = metalconversion!(copy(ds); kwargs...) export metalconversion """ ```julia dataset = metalconversion!(dataset::Union{Dict,NamedTuple}; unitratio::Number=10000) ``` Convert minor element oxides (MnO, Cr2O3, NiO, ...) into corresponding metals (Mn, Cr, Ni, ...) in place if extant. If metals are expected as parts per million (ppm), set unitratio=10000 (default); if metals are as wt%, set unitratio = 1 See also `metalconversion`, c.f. `oxideconversion!` """ function metalconversion!(dataset::NamedTuple; unitratio::Number=10000) # List of elements to convert dest = (:Mn, :P, :Cr, :Ni, :Co, :Sr, :Ba, :Li, :S,) source = (:MnO, :P2O5, :Cr2O3, :NiO, :CoO, :SrO, :BaO, :Li2O, :SO3) conversionfactor = (0.7744619872751028, 0.4364268173666496, 0.6842080746199798, 0.785801615263874, 0.786486968277016, 0.8455993051534453, 0.8956541815613328, 0.46454031259412965, 0.4004646689233921) # If source field exists, fill in destination from source for i ∈ eachindex(source) if haskey(dataset, source[i]) if haskey(dataset, dest[i]) # If destination field doesn't exist, make it. metal, oxide = dataset[dest[i]], dataset[source[i]] fillifnan!(metal, oxide, conversionfactor[i]*unitratio) end end end return dataset end metalconversion!(ds::Dict; kwargs...) = (metalconversion!(TupleDataset(ds); kwargs...); ds) export metalconversion! """ ```julia carbonateconversion!(dataset::NamedTuple) ``` Convert carbonates (CaCO3, MgCO3) into corresponding metal oxides and CO2 if extant, in place, as well as synchonizing TIC, TOC, TC, C and CO2. All are assumed to be reported in the same units, (likely wt. %) except for C, which is assumed to be equivalent to unitratio * TC, """ function carbonateconversion!(ds::NamedTuple; unitratio=10000) # Calculate CO2 if both CaCO3 and MgCO3 are reported if haskey(ds, :CaCO3) && haskey(ds, :MgCO3) && haskey(ds, :CO2) fillifnan!(ds.CO2, ds.CaCO3*0.43971009048182363 .+ ds.MgCO3*0.5219717006867268) end # Populate oxides and CO2 from carbonates and TIC source = (:CaCO3, :CaCO3, :MgCO3, :MgCO3, :TIC,) dest = (:CaO, :CO2, :MgO, :CO2, :CO2) conversionfactor = (0.5602899095181764, 0.43971009048182363, 0.4780282993132732, 0.5219717006867268, 3.664057946882025) for i in eachindex(source) if haskey(ds, source[i]) if haskey(ds, dest[i]) d, s = ds[dest[i]], ds[source[i]] fillifnan!(d, s, conversionfactor[i]) end end end # Fill TC from C and TIC from CO2 if haskey(ds,:TC) && haskey(ds, :C) fillifnan!(ds.TC, ds.C, 1e-4) end if haskey(ds,:TIC) && haskey(ds, :CO2) fillifnan!(ds.TIC, ds.CO2, 0.27292144788565975) end # Synchronise TOC, TIC, TC if haskey(ds, :TC) && haskey(ds, :TOC) && haskey(ds, :TIC) fillifnan!(ds.TC, ds.TOC + ds.TIC) fillifnan!(ds.TOC, ds.TC - ds.TIC) nannegative!(ds.TOC) fillifnan!(ds.TIC, ds.TC - ds.TOC) nannegative!(ds.TIC) if haskey(ds, :CO2) # If we have new TIC values, fill CO2 again fillifnan!(ds.CO2, ds.TIC, 3.664057946882025) end end # Fill C from any available source if haskey(ds,:TC) && haskey(ds, :C) fillifnan!(ds.C, ds.TC, 1e4) end if haskey(ds,:TOC) && haskey(ds,:TIC) && haskey(ds, :C) fillifnan!(ds.C, ds.TOC + ds.TIC, 1e4) end if haskey(ds,:TOC) && haskey(ds,:CO2) && haskey(ds, :C) fillifnan!(ds.C, ds.TOC + ds.CO2/3.664057946882025, 1e4) end if haskey(ds,:TOC) && haskey(ds, :C) fillifnan!(ds.C, ds.TOC, 1e4) end if haskey(ds,:TIC) && haskey(ds, :C) fillifnan!(ds.C, ds.TIC, 1e4) end if haskey(ds,:CO2) && haskey(ds, :C) fillifnan!(ds.C, ds.CO2, 1e4/3.664057946882025) end return ds end carbonateconversion!(ds::Dict) = (carbonateconversion!(TupleDataset(ds)); ds) export carbonateconversion! ## --- Chemical Index of Alteration # Chemical Index of Alteration as defined by Nesbitt and Young, 1982 # Note that CaO should be only igneous CaO excluding any Ca from calcite or apatite function CIA(Al2O3::Number, CaO::Number, Na2O::Number, K2O::Number) A = Al2O3 / 101.96007714 C = CaO / 56.0774 N = Na2O / 61.978538564 K = K2O / 94.19562 return A / (A + C + N + K) * 100 end export CIA # "Weathering Index of Parker" as defined by Parker, 1970 function WIP(Na2O::Number, MgO::Number, K2O::Number, CaO::Number) Na = Na2O / 30.9895 Mg = MgO / 40.3044 K = K2O / 47.0980 Ca = CaO / 56.0774 # Denominator for each element is a measure of Nicholls' bond strengths return (Na/0.35 + Mg/0.9 + K/0.25 + Ca/0.7) * 100 end export WIP ## --- MELTS interface """ ```julia melts_configure(meltspath::String, scratchdir::String, composition::Collection{Number}, \telements::Collection{String}, \tT_range=(1400, 600), \tP_range=(10000,10000);) ``` Configure and run a MELTS simulation using alphaMELTS. Optional keyword arguments and defaults include: batchstring::String = "1\nsc.melts\n10\n1\n3\n1\nliquid\n1\n1.0\n0\n10\n0\n4\n0\n" A string defining the sequence of options that would be entered to produce the desired calculation if running alphaMELTS at the command line. The default string specifies a batch calculation starting at the liquidus. dT = -10 The temperature step, in degrees, between each step of the MELTS calculation dP = 0 The pressure step, in bar, between each step of the MELTS calculation index = 1 An optional variable used to specify a unique suffix for the run directory name version::String = "pMELTS" A string specifying the desired version of MELTS. Options include `MELTS` and `pMELTS`. mode::String = "isobaric" A string specifying the desired calculation mode for MELTS. Options include `isothermal`, `isobaric`, `isentropic`, `isenthalpic`, `isochoric`, `geothermal` and `PTPath`. fo2path::String = "FMQ" A string specifying the oxygen fugacity buffer to follow, e.g., `FMQ` or `NNO+1`. Available buffers include `IW`,`COH`,`FMQ`,`NNO`,`HM`, and `None` fractionatesolids::Bool = false Fractionate all solids? default is `false` suppress::Collection{String} = String[] Supress individual phases (specify as strings in array, i.e. `["leucite"]`) verbose::Bool = true Print verbose MELTS output to terminal (else, write it to `melts.log`) """ function melts_configure(meltspath::String, scratchdir::String, composition::Collection{Number}, elements::Collection{String}, T_range::Collection{Number}=(1400, 600), P_range::Collection{Number}=(10000,10000); batchstring::String="1\nsc.melts\n10\n1\n3\n1\nliquid\n1\n1.0\n0\n10\n0\n4\n0\n", dT=-10, dP=0, index=1, version="pMELTS",mode="isobaric",fo2path="FMQ", fractionatesolids::Bool=false, suppress::Collection{String}=String[], verbose::Bool=true) ############################ Default Settings ############################### ##MELTS or pMELTS #version = "pMELTS" ##Mode (isothermal, isobaric, isentropic, isenthalpic, isochoric, geothermal or PTPath) #mode = "isobaric" ## Set fO2 constraint, i.e. "IW","COH","FMQ","NNO","HM","None" as a string #fo2path = "FMQ" ## Fractionate all solids? ("!" for no, "" for yes) #fractionatesolids = "!" # Mass retained during fractionation massin = 0.001 # Ouptut temperatures in celcius? ("!" for no, "" for yes) celciusoutput = "" # Save all output? ("!" for no, "" for yes) saveall = "!" # Fractionate all water? ("!" for no, "" for yes) fractionatewater = "!" # Fractionate individual phases (specify as strings in cell array, i.e. {"olivine","spinel"}) fractionate = String[] # Coninuous (fractional) melting? ("!" for no, "" for yes) continuous = "!" # Threshold above which melt is extracted (if fractionation is turned on) minf = 0.005 # Do trace element calculations dotrace = "!" # Treat water as a trace element dotraceh2o = "!" # Initial trace compositionT tsc = Float64[] # Initial trace elements telements = String[] # Default global constraints Pmax = 90000 Pmin = 2 Tmax = 3000 Tmin = 450 # Simulation number (for folder, etc) ########################## end Default Settings ############################ # Guess if intention is for calculation to end at Tf or Pf as a min or max if last(T_range)<first(T_range) Tmin=last(T_range) end if last(T_range)>first(T_range) Tmax=last(T_range) end if last(P_range)<first(P_range) Pmin=last(P_range) end if last(P_range)>first(P_range) Pmax=last(P_range) end if fractionatesolids fractionatesolids = "" else fractionatesolids = "!" end # Normalize starting composition composition = composition./sum(composition)*100 # output prefixectory name prefix = joinpath(scratchdir, "out$(index)/") # Ensure directory exists and is empty system("rm -rf $prefix; mkdir -p $prefix") # Make .melts file containing the starting composition you want to run simulations on fp = open(prefix*"sc.melts", "w") for i ∈ eachindex(elements) write(fp,"Initial Composition: $(elements[i]) $(trunc(composition[i],digits=4))\n") end for i ∈ eachindex(telements) write(fp, "Initial Trace: $(telements[i]) $(trunc(tsc[i],digits=4))\n") end write(fp, "Initial Temperature: $(trunc(first(T_range),digits=2))\nInitial Pressure: $(trunc(first(P_range),digits=2))\nlog fo2 Path: $fo2path\n") for i ∈ eachindex(fractionate) write(fp,"Fractionate: $(fractionate[i])\n") end for i ∈ eachindex(suppress) write(fp,"Suppress: $(suppress[i])\n") end close(fp) # Make melts_env file to specify type of MELTS calculation fp = open(prefix*"/melts_env.txt", "w") write(fp, "! *************************************\n! Julia-generated environment file\n! *************************************\n\n" * "! this variable chooses MELTS or pMELTS; for low-pressure use MELTS\n" * "ALPHAMELTS_VERSION $version\n\n" * "! do not use this unless fO2 anomalies at the solidus are a problem\n" * "!ALPHAMELTS_ALTERNATIVE_FO2 true\n\n" * "! use this if you want to buffer fO2 for isentropic, isenthalpic or isochoric mode\n! e.g. if you are doing isenthalpic AFC\n" * "!ALPHAMELTS_IMPOSE_FO2 true\n\n" * "! use if you want assimilation and fractional crystallization (AFC)\n" * "!ALPHAMELTS_ASSIMILATE true\n\n" * "! isothermal, isobaric, isentropic, isenthalpic, isochoric, geothermal or PTPath\n" * "ALPHAMELTS_MODE $mode\n" * "!ALPHAMELTS_PTPATH_FILE ptpath.txt\n\n" * "! need to set DELTAP for polybaric paths; DELTAT for isobaric paths\nALPHAMELTS_DELTAP $(trunc(dP,digits=1))\n" * "ALPHAMELTS_DELTAT $(trunc(dT,digits=1))\n" * "ALPHAMELTS_MAXP $(trunc(Pmax,digits=1))\n" * "ALPHAMELTS_MINP $(trunc(Pmin,digits=1))\n" * "ALPHAMELTS_MAXT $(trunc(Tmax,digits=1))\n" * "ALPHAMELTS_MINT $(trunc(Tmin,digits=1))\n\n" * "! this one turns on fractional crystallization for all solids\n! use Fractionate: in the melts file instead for selective fractionation\n" * "$(fractionatesolids)ALPHAMELTS_FRACTIONATE_SOLIDS true\n" * "$(fractionatesolids)ALPHAMELTS_MASSIN $massin\n\n" * "! free water is unlikely but can be extracted\n" * "$(fractionatewater)ALPHAMELTS_FRACTIONATE_WATER true\n" * "$(fractionatewater)ALPHAMELTS_MINW 0.005\n\n" * "! the next one gives an output file that is always updated, even for single calculations\n" * "$(saveall)ALPHAMELTS_SAVE_ALL true\n" * "!ALPHAMELTS_SKIP_FAILURE true\n\n" * "! this option converts the output temperature to celcius, like the input\n" * "$(celciusoutput)ALPHAMELTS_CELSIUS_OUTPUT true\n\n" * "! the next two turn on and off fractional melting\n" * "$(continuous)ALPHAMELTS_CONTINUOUS_MELTING true\n" * "$(continuous)ALPHAMELTS_MINF $minf\n" * "$(continuous)ALPHAMELTS_INTEGRATE_FILE integrate.txt\n\n" * "! the next two options refer to the trace element engine\n" * "$(dotrace)ALPHAMELTS_DO_TRACE true\n" * "$(dotraceh2o)ALPHAMELTS_DO_TRACE_H2O true\n") close(fp) # Make a batch file to run the above .melts file starting from the liquidus fp = open(prefix*"/batch.txt", "w") write(fp,batchstring) close(fp) # Run the command # Edit the following line(s to make sure you have a correct path to the "run_alphamelts.command" perl script if verbose system("cd " * prefix * "; " * meltspath * " -f melts_env.txt -b batch.txt") else system("cd " * prefix * "; " * meltspath * " -f melts_env.txt -b batch.txt &>./melts.log") end return 0 end export melts_configure """ ```julia melts_query(scratchdir::String; index=1) ``` Read all phase proportions from `Phase_main_tbl.txt` in specified MELTS run directory Returns an elementified dictionary """ function melts_query(scratchdir::String; index=1, importas=:Dict) prefix = joinpath(scratchdir, "out$(index)/") # path to data files if importas==:Dict melts = Dict{String, Union{Vector{String}, Dict}}() else melts = Dict{String, Union{Vector{String}, NamedTuple}}() end if isfile(prefix*"/Phase_main_tbl.txt") data = readdlm(prefix*"/Phase_main_tbl.txt", ' ', skipblanks=false) pos = findall(all(isempty.(data), dims=2) |> vec) melts["minerals"] = Array{String}(undef, length(pos)-1) for i=1:(length(pos)-1) name = data[pos[i]+1,1] melts[name] = elementify(data[pos[i]+2:pos[i+1]-1,:], skipnameless=true, importas=importas) melts["minerals"][i] = name end end return melts end export melts_query """ ```julia melts_query_modes(scratchdir::String; index=1) ``` Read modal phase proportions from `Phase_mass_tbl.txt` in specified MELTS run Returns an elementified dictionary """ function melts_query_modes(scratchdir::String; index=1, importas=:Dict) prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Read results and return them if possible if isfile(prefix*"/Phase_mass_tbl.txt") # Read data as an Array{Any} data = readdlm(prefix*"Phase_mass_tbl.txt", ' ', skipstart=1) # Convert to a dictionary data = elementify(data, standardize=true, skipnameless=true, importas=importas) else # Return empty dictionary if file doesn't exist data = importas==:Dict ? Dict() : () end return data end export melts_query_modes """ ```julia melts_clean_modes(scratchdir::String; index=1) ``` Read and parse / clean-up modal phase proportions from specified MELTS run directory Returns an elementified dictionary """ function melts_clean_modes(scratchdir::String; index=1) prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Read results and return them if possible if isfile(prefix*"/Phase_mass_tbl.txt") # Read data as an Array{Any} data = readdlm(prefix*"Phase_mass_tbl.txt", ' ', skipstart=1) # Convert to a dictionary data = elementify(data, standardize=true, skipnameless=true, importas=:Dict) # Start by transferring over all the non-redundant elements modes = typeof(data)() for e in data["elements"] m = replace(e, r"_.*" => s"") if haskey(modes, m) modes[m] .+= data[e] else modes[m] = copy(data[e]) end end # Add the sum of all solids modes["solids"] = zeros(size(data["Temperature"])) for e in data["elements"][4:end] if !contains(e, "water") && !contains(e, "liquid") modes["solids"] .+= data[e] end end # Get full mineral compositions, add feldspar and oxides melts = melts_query(scratchdir, index=index) if containsi(melts["minerals"],"feldspar") modes["anorthite"] = zeros(size(modes["Temperature"])) modes["albite"] = zeros(size(modes["Temperature"])) modes["orthoclase"] = zeros(size(modes["Temperature"])) end An_Ca = (238.12507+40.0784) / (15.999+40.0784) Ab_Na = (239.22853+22.98977*2) / (15.999+22.98977*2) Or_K = (239.22853+39.09831*2) / (15.999+39.09831*2) if containsi(melts["minerals"],"rhm_oxide") modes["ilmenite"] = zeros(size(modes["Temperature"])) modes["magnetite"] = zeros(size(modes["Temperature"])) modes["hematite"] = zeros(size(modes["Temperature"])) end for m in melts["minerals"] if containsi(m,"feldspar") t = vec(findclosest(melts[m]["Temperature"],modes["Temperature"])) AnAbOr = [melts[m]["CaO"]*An_Ca melts[m]["Na2O"]*Ab_Na melts[m]["K2O"]*Or_K] |> x -> x ./ sum(x, dims=2) modes["anorthite"][t] .+= AnAbOr[:,1] .* melts[m]["mass"] modes["albite"][t] .+= AnAbOr[:,2] .* melts[m]["mass"] modes["orthoclase"][t] .+= AnAbOr[:,3] .* melts[m]["mass"] elseif containsi(m,"rhm_oxide") t = vec(findclosest(melts[m]["Temperature"],modes["Temperature"])) Ilmenite = Vector{Float64}(undef, length(t)) Magnetite = Vector{Float64}(undef, length(t)) if haskey(melts[m],"MnO") Ilmenite .= (melts[m]["TiO2"] + melts[m]["MnO"]+(melts[m]["TiO2"]*(71.8444/79.8768) - melts[m]["MnO"]*(71.8444/70.9374))) / 100 Magnetite .= (melts[m]["FeO"] - (melts[m]["TiO2"])*71.8444/79.8768) * (1+159.6882/71.8444)/100 else Ilmenite .= (melts[m]["TiO2"] + melts[m]["TiO2"]*71.8444/79.8768) / 100 Magnetite .= (melts[m]["FeO"] - melts[m]["TiO2"]*71.8444/79.8768) * (1+159.6882/71.8444)/100 end Magnetite[Magnetite.<0] .= 0 Hematite = (melts[m]["Fe2O3"] - Magnetite*100*159.6882/231.5326)/100 modes["ilmenite"][t] .+= melts[m]["mass"] .* Ilmenite modes["magnetite"][t] .+= melts[m]["mass"] .* Magnetite modes["hematite"][t] .+= melts[m]["mass"] .* Hematite end end minerals = sort(collect(keys(modes))) modes["elements"] = ["Pressure","Temperature","mass","solids","liquid"] ∪ minerals[.!containsi.(minerals, "feldspar") .& .!containsi.(minerals, "rhm")] else # Return empty dictionary if file doesn't exist modes = Dict() end return modes end export melts_clean_modes """ ```julia melts_query_liquid(scratchdir::String; index=1) ``` Read liquid composition from `Liquid_comp_tbl.txt` in specified MELTS run directory Returns an elementified dictionary """ function melts_query_liquid(scratchdir::String; index=1, importas=:Dict) prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Read results and return them if possible if isfile(prefix*"/Liquid_comp_tbl.txt") # Read data as an Array{Any} data = readdlm(prefix*"Liquid_comp_tbl.txt", ' ', skipstart=1) # Convert to a dictionary data = elementify(data, standardize=true, skipnameless=true, importas=importas) else # Return empty dictionary if file doesn't exist data = importas==:Dict ? Dict() : () end return data end export melts_query_liquid """ ```julia melts_query_solid(scratchdir::String; index=1) ``` Read solid composition from `Solid_comp_tbl.txt` in specified MELTS run directory Returns an elementified dictionary """ function melts_query_solid(scratchdir::String; index=1, importas=:Dict) prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Read results and return them if possible if isfile(prefix*"/Solid_comp_tbl.txt") # Read data as an Array{Any} data = readdlm(prefix*"Solid_comp_tbl.txt", ' ', skipstart=1) # Convert to a dictionary data = elementify(data, standardize=true, skipnameless=true, importas=importas) else # Return empty dictionary if file doesn't exist data = importas==:Dict ? Dict() : () end return data end export melts_query_solid """ ```julia melts_query_system(scratchdir::String; index=1, importas=:Dict) ``` Read system thermodynamic and composition data from `System_main_tbl.txt` in specified MELTS run directory. Returns an elementified dictionary or tuple. """ function melts_query_system(scratchdir::String; index=1, importas=:Dict) prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Read results and return them if possible if isfile(prefix*"/System_main_tbl.txt") # Read data as an Array{Any} data = readdlm(prefix*"System_main_tbl.txt", ' ', skipstart=1) # Convert to a dictionary data = elementify(data, standardize=true, skipnameless=true, importas=importas) else # Return empty dictionary if file doesn't exist data = importas==:Dict ? Dict() : () end return data end export melts_query_system ## -- Perplex interface: 1. Configuration """ ```julia perplex_configure_geotherm(perplexdir::String, scratchdir::String, composition::Collection{Number}, \telements::String=["SIO2","TIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O","H2O"], \tP_range=(280,28000), T_surf::Number=273.15, geotherm::Number=0.1; \tdataset::String="hp02ver.dat", \tindex::Integer=1, \tnpoints::Integer=100, \tsolution_phases::String="O(HP)\\nOpx(HP)\\nOmph(GHP)\\nGt(HP)\\noAmph(DP)\\ncAmph(DP)\\nT\\nB\\nChl(HP)\\nBio(TCC)\\nMica(CF)\\nCtd(HP)\\nIlHm(A)\\nSp(HP)\\nSapp(HP)\\nSt(HP)\\nfeldspar_B\\nDo(HP)\\nF\\n", \texcludes::String="ts\\nparg\\ngl\\nged\\nfanth\\ng\\n", \tmode_basis::String="vol", #["vol", "wt", "mol"] \tcomposition_basis::String="wt", #["vol", "wt", "mol"] \tfluid_eos::Integer=5) ``` Set up a PerpleX calculation for a single bulk composition along a specified geothermal gradient and pressure (depth) range. P specified in bar and T_surf in Kelvin, with geothermal gradient in units of Kelvin/bar """ function perplex_configure_geotherm(perplexdir::String, scratchdir::String, composition::Collection{Number}, elements::Collection{String}=["SIO2","TIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O","H2O"], P_range::NTuple{2,Number}=(280,28000), T_surf::Number=273.15, geotherm::Number=0.1; dataset::String="hp02ver.dat", index::Integer=1, npoints::Integer=100, solution_phases::String="O(HP)\nOpx(HP)\nOmph(GHP)\nGt(HP)\noAmph(DP)\ncAmph(DP)\nT\nB\nChl(HP)\nBio(TCC)\nMica(CF)\nCtd(HP)\nIlHm(A)\nSp(HP)\nSapp(HP)\nSt(HP)\nfeldspar_B\nDo(HP)\nF\n", excludes::String="ts\nparg\ngl\nged\nfanth\ng\n", mode_basis::String="vol", composition_basis::String="wt", fluid_eos::Integer=5 ) build = joinpath(perplexdir, "build")# path to PerpleX build vertex = joinpath(perplexdir, "vertex")# path to PerpleX vertex #Configure working directory prefix = joinpath(scratchdir, "out$(index)/") system("rm -rf $prefix; mkdir -p $prefix") # Place required data files system("cp $(joinpath(perplexdir,dataset)) $prefix") system("cp $(joinpath(perplexdir,"perplex_option.dat")) $prefix") system("cp $(joinpath(perplexdir,"solution_model.dat")) $prefix") # Edit perplex_option.dat to specify number of nodes at which to solve system("sed -e \"s/1d_path .*|/1d_path $npoints $npoints |/\" -i.backup $(prefix)perplex_option.dat") # Edit perplex_option.dat to output all seismic properties #println("editing perplex options ") system("sed -e \"s/seismic_output .*|/seismic_output all |/\" -i.backup $(prefix)perplex_option.dat") # Specify whether we want volume or weight percentages system("sed -e \"s/proportions .*|/proportions $mode_basis |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/composition_system .*|/composition_system $composition_basis |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/composition_phase .*|/composition_phase $composition_basis |/\" -i.backup $(prefix)perplex_option.dat") # Create build batch file. fp = open(prefix*"build.bat", "w") # Name, components, and basic options. P-T conditions. # default fluid_eos = 5: Holland and Powell (1998) "CORK" fluid equation of state elementstring = join(elements .* "\n") write(fp,"$index\n$dataset\nperplex_option.dat\nn\n3\nn\nn\nn\n$elementstring\n$fluid_eos\nn\ny\n2\n1\n$T_surf\n$geotherm\n$(first(P_range))\n$(last(P_range))\ny\n") # v6.8.7 # write(fp,"$index\n$dataset\nperplex_option.dat\nn\nn\nn\nn\n$elementstring\n5\n3\nn\ny\n2\n1\n$T_surf\n$geotherm\n$(first(P_range))\n$(last(P_range))\ny\n") # v6.8.1 # Whole-rock composition for i ∈ eachindex(composition) write(fp,"$(composition[i]) ") end # Solution model if length(excludes) > 0 write(fp,"\nn\ny\nn\n$excludes\ny\nsolution_model.dat\n$solution_phases\nGeothermal") else write(fp,"\nn\nn\ny\nsolution_model.dat\n$(solution_phases)\nGeothermal") end close(fp) # build PerpleX problem definition system("cd $prefix; $build < build.bat > build.log") println("Built problem definition") # Run PerpleX vertex calculations result = system("cd $prefix; echo $index | $vertex > vertex.log") return result end export perplex_configure_geotherm """ ```julia perplex_configure_isobar(perplexdir::String, scratchdir::String, composition::Collection{Number}, \telements::String=["SIO2","TIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O","H2O"] \tP::Number=10000, T_range::NTuple{2,Number}=(500+273.15, 1500+273.15); \tdataset::String="hp11ver.dat", \tindex::Integer=1, \tnpoints::Integer=100, \tsolution_phases::String="O(HP)\\nOpx(HP)\\nOmph(GHP)\\nGt(HP)\\noAmph(DP)\\ncAmph(DP)\\nT\\nB\\nChl(HP)\\nBio(TCC)\\nMica(CF)\\nCtd(HP)\\nIlHm(A)\\nSp(HP)\\nSapp(HP)\\nSt(HP)\\nfeldspar_B\\nDo(HP)\\nF\\n", \texcludes::String="ts\\nparg\\ngl\\nged\\nfanth\\ng\\n", \tmode_basis::String="wt", #["vol", "wt", "mol"] \tcomposition_basis::String="wt", #["vol", "wt", "mol"] \tnonlinear_subdivision::Bool=false, \tfluid_eos::Integer=5) ``` Set up a PerpleX calculation for a single bulk composition along a specified isobaric temperature gradient. P specified in bar and T_range in Kelvin """ function perplex_configure_isobar(perplexdir::String, scratchdir::String, composition::Collection{Number}, elements::Collection{String}=("SIO2","TIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O","H2O"), P::Number=10000, T_range::NTuple{2,Number}=(500+273.15, 1500+273.15); dataset::String="hp11ver.dat", index::Integer=1, npoints::Integer=100, solution_phases::String="O(HP)\nOpx(HP)\nOmph(GHP)\nGt(HP)\noAmph(DP)\ncAmph(DP)\nT\nB\nChl(HP)\nBio(TCC)\nMica(CF)\nCtd(HP)\nIlHm(A)\nSp(HP)\nSapp(HP)\nSt(HP)\nfeldspar_B\nDo(HP)\nF\n", excludes::String="ts\nparg\ngl\nged\nfanth\ng\n", mode_basis::String="wt", composition_basis::String="wt", nonlinear_subdivision::Bool=false, fluid_eos::Integer=5 ) build = joinpath(perplexdir, "build")# path to PerpleX build vertex = joinpath(perplexdir, "vertex")# path to PerpleX vertex #Configure working directory prefix = joinpath(scratchdir, "out$(index)/") system("rm -rf $prefix; mkdir -p $prefix") # Place required data files system("cp $(joinpath(perplexdir,dataset)) $prefix") system("cp $(joinpath(perplexdir,"perplex_option.dat")) $prefix") system("cp $(joinpath(perplexdir,"solution_model.dat")) $prefix") # Edit perplex_option.dat to specify number of nodes at which to solve system("sed -e \"s/1d_path .*|/1d_path $npoints $npoints |/\" -i.backup $(prefix)perplex_option.dat") # Specify whether we want volume or weight percentages system("sed -e \"s/proportions .*|/proportions $mode_basis |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/composition_system .*|/composition_system $composition_basis |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/composition_phase .*|/composition_phase $composition_basis |/\" -i.backup $(prefix)perplex_option.dat") # Turn on nonlinear subdivision and change resolution if nonlinear_subdivision system("sed -e \"s/non_linear_switch .*|/non_linear_switch T |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s:initial_resolution .*|:initial_resolution 1/2 1/4 |:\" -i.backup $(prefix)perplex_option.dat") end # Create build batch file # Options based on Perplex v6.8.7 fp = open(prefix*"build.bat", "w") # Name, components, and basic options. P-T conditions. # default fluid_eos = 5: Holland and Powell (1998) "CORK" fluid equation of state elementstring = join(elements .* "\n") write(fp,"$index\n$dataset\nperplex_option.dat\nn\n3\nn\nn\nn\n$elementstring\n$fluid_eos\nn\nn\n2\n$(first(T_range))\n$(last(T_range))\n$P\ny\n") # v6.8.7 # write(fp,"$index\n$dataset\nperplex_option.dat\nn\nn\nn\nn\n$elementstring\n$fluid_eos\n3\nn\nn\n2\n$(first(T_range))\n$(last(T_range))\n$P\ny\n") # v6.8.1 # Whole-rock composition for i ∈ eachindex(composition) write(fp,"$(composition[i]) ") end # Solution model write(fp,"\nn\ny\nn\n$excludes\ny\nsolution_model.dat\n$solution_phases\nIsobaric") close(fp) # build PerpleX problem definition system("cd $prefix; $build < build.bat > build.log") # Run PerpleX vertex calculations result = system("cd $prefix; printf \"$index\ny\ny\ny\ny\ny\ny\ny\ny\n\" | $vertex > vertex.log") return result end export perplex_configure_isobar """ ```julia perplex_configure_path(perplexdir::String, scratchdir::String, composition::Collection{Number}, PTdir::String="", PTfilename::String="", \telements::String=("SIO2","TIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O","H2O"), \tT_range::NTuple{2,Number}=(500+273.15, 1050+273.15); \tdataset::String="hp11ver.dat", \tindex::Integer=1, \tsolution_phases::String="O(HP)\\nOpx(HP)\\nOmph(GHP)\\nGt(HP)\\noAmph(DP)\\ncAmph(DP)\\nT\\nB\\nChl(HP)\\nBio(TCC)\\nMica(CF)\\nCtd(HP)\\nIlHm(A)\\nSp(HP)\\nSapp(HP)\\nSt(HP)\\nfeldspar_B\\nDo(HP)\\nF\\n", \texcludes::String="ts\\nparg\\ngl\\nged\\nfanth\\ng\\n", \tmode_basis::String="wt", #["vol", "wt", "mol"] \tcomposition_basis::String="wt", #["vol", "wt", "mol"] \tnonlinear_subdivision::Bool=false, \tfluid_eos::Integer=5) ``` Set up a PerpleX calculation for a single bulk composition along a specified pressure–temperature path with T as the independent variable. P specified in bar and T_range in Kelvin """ function perplex_configure_path(perplexdir::String, scratchdir::String, composition::Collection{Number}, PTdir::String="", PTfilename = "", elements::Collection{String}=("SIO2","TIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O","H2O"), T_range::NTuple{2,Number}=(500+273.15, 1050+273.15); dataset::String="hp11ver.dat", index::Integer=1, solution_phases::String="O(HP)\\nOpx(HP)\\nOmph(GHP)\\nGt(HP)\\noAmph(DP)\\ncAmph(DP)\\nT\\nB\\nChl(HP)\\nBio(TCC)\\nMica(CF)\\nCtd(HP)\\nIlHm(A)\\nSp(HP)\\nSapp(HP)\\nSt(HP)\\nfeldspar_B\\nDo(HP)\\nF\\n", excludes::String="ts\\nparg\\ngl\\nged\\nfanth\\ng\\n", mode_basis::String="wt", #["vol", "wt", "mol"] composition_basis::String="wt", #["vol", "wt", "mol"] nonlinear_subdivision::Bool=false, fluid_eos::Integer=5, ) build = joinpath(perplexdir, "build")# path to PerpleX build vertex = joinpath(perplexdir, "vertex")# path to PerpleX vertex # Configure working directory prefix = joinpath(scratchdir, "out$(index)/") system("rm -rf $prefix; mkdir -p $prefix") # Place required data files system("cp $(joinpath(perplexdir, dataset)) $prefix") system("cp $(joinpath(perplexdir,"perplex_option.dat")) $prefix") system("cp $(joinpath(perplexdir,"solution_model.dat")) $prefix") # Specify whether we want volume or weight percentages system("sed -e \"s/proportions .*|/proportions $mode_basis |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/composition_system .*|/composition_system $composition_basis |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/composition_phase .*|/composition_phase $composition_basis |/\" -i.backup $(prefix)perplex_option.dat") # Turn on nonlinear subdivision and change resolution if nonlinear_subdivision system("sed -e \"s/non_linear_switch .*|/non_linear_switch T |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s:initial_resolution .*|:initial_resolution 1/2 1/4 |:\" -i.backup $(prefix)perplex_option.dat") end # Create default P–T.dat path if one is not provided if PTdir == "" # Input parameters P_range = (2000, 6000, 10000, 14000, 18000) #bar T_range = (550+273.15, 1050+273.15) #K T_int = 10 #Interval for T T = T_range[1]:T_int:T_range[2] P = zeros(length(T)) for i in 1:length(T) if i == length(T) P[i] = P_range[end] else P[i] = P_range[floor(Int64, (i/length(T)) * length(P_range) + 1)] end end PTfile = joinpath(prefix, "P–T.dat") # PTdir = "P–T.dat" # Save P–T path as .dat file # Apparently you need to have it as T and then P despite what Perplex tells you open(PTfile, "w") do file for i in zip(T, P) write(file, "$(i[1])\t$(i[2])\n") end end system("cp $(PTfile) $perplexdir") system("cp $(PTfile) $prefix") PTfilename = "P–T.dat" else system("cp $(PTdir) $prefix") end # Create build batch file # Options based on Perplex v6.8.7 fp = open(prefix*"build.bat", "w") # Name, components, and basic options. P-T conditions. # default fluid_eos = 5: Holland and Powell (1998) "CORK" fluid equation of state elementstring = join(elements .* "\n") # write(fp,"$index\n$dataset\nperplex_option.dat\nn\n3\nn\nn\nn\n$elementstring\n$fluid_eos\ny\n$PTdir\n2\n$(first(T_range))\n$(last(T_range))\ny\n") write(fp,"$index\n$dataset\nperplex_option.dat\nn\n3\nn\nn\nn\n$elementstring\n$fluid_eos\ny\n$PTfilename\n2\ny\n") #6.8.7 # Whole-rock composition for i ∈ eachindex(composition) write(fp,"$(composition[i]) ") end # Solution model write(fp,"\nn\ny\nn\n$excludes\ny\nsolution_model.dat\n$solution_phases\nP-T Path") close(fp) # build PerpleX problem definition system("cd $prefix; $build < build.bat > build.log") # Run PerpleX vertex calculations result = system("cd $prefix; printf \"$index\ny\ny\ny\ny\ny\ny\ny\ny\ny\ny\ny\n0\" | $vertex > vertex.log") return result end export perplex_configure_path """ ```julia perplex_configure_pseudosection(perplexdir::String, scratchdir::String, composition::Collection{Number}, \telements::Collection{String}=("SIO2","TIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O","H2O"), \tP::NTuple{2,Number}=(280, 28000), T::NTuple{2,Number}=(273.15, 1500+273.15); \tdataset::String="hp11ver.dat", \tindex::Integer=1, \txnodes::Integer=42, \tynodes::Integer=42, \tsolution_phases::String="O(HP)\\nOpx(HP)\\nOmph(GHP)\\nGt(HP)\\noAmph(DP)\\ncAmph(DP)\\nT\\nB\\nChl(HP)\\nBio(TCC)\\nMica(CF)\\nCtd(HP)\\nIlHm(A)\\nSp(HP)\\nSapp(HP)\\nSt(HP)\\nfeldspar_B\\nDo(HP)\\nF\\n", \texcludes::String="ts\\nparg\\ngl\\nged\\nfanth\\ng\\n", \tmode_basis::String="vol", #["vol", "wt", "mol"] \tcomposition_basis::String="wt", #["wt", "mol"] \tfluid_eos::Number=5) ``` Set up a PerpleX calculation for a single bulk composition across an entire 2d P-T space. P specified in bar and T in Kelvin. """ function perplex_configure_pseudosection(perplexdir::String, scratchdir::String, composition::Collection{Number}, elements::Collection{String}=("SIO2","TIO2","AL2O3","FEO","MGO","CAO","NA2O","K2O","H2O"), P::NTuple{2,Number}=(280, 28000), T::NTuple{2,Number}=(273.15, 1500+273.15); dataset::String="hp11ver.dat", index::Integer=1, xnodes::Integer=42, ynodes::Integer=42, solution_phases::String="O(HP)\nOpx(HP)\nOmph(GHP)\nGt(HP)\noAmph(DP)\ncAmph(DP)\nT\nB\nChl(HP)\nBio(TCC)\nMica(CF)\nCtd(HP)\nIlHm(A)\nSp(HP)\nSapp(HP)\nSt(HP)\nfeldspar_B\nDo(HP)\nF\n", excludes::String="ts\nparg\ngl\nged\nfanth\ng\n", mode_basis::String="vol", composition_basis::String="wt", fluid_eos::Number=5 ) build = joinpath(perplexdir, "build")# path to PerpleX build vertex = joinpath(perplexdir, "vertex")# path to PerpleX vertex #Configure working directory prefix = joinpath(scratchdir, "out$(index)/") system("rm -rf $prefix; mkdir -p $prefix") # Place required data files system("cp $(joinpath(perplexdir,dataset)) $prefix") system("cp $(joinpath(perplexdir,"perplex_option.dat")) $prefix") system("cp $(joinpath(perplexdir,"solution_model.dat")) $prefix") # Edit data files to specify number of nodes at which to solve system("sed -e \"s/x_nodes .*|/x_nodes $xnodes $xnodes |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/y_nodes .*|/y_nodes $ynodes $ynodes |/\" -i.backup $(prefix)perplex_option.dat") # Specify whether we want volume or weight percentages system("sed -e \"s/proportions .*|/proportions $mode_basis |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/composition_system .*|/composition_system $composition_basis |/\" -i.backup $(prefix)perplex_option.dat") system("sed -e \"s/composition_phase .*|/composition_phase $composition_basis |/\" -i.backup $(prefix)perplex_option.dat") # Create build batch file # Options based on Perplex v6.8.7 fp = open(prefix*"build.bat", "w") # Name, components, and basic options. P-T conditions. # default fluid_eos = 5: Holland and Powell (1998) "CORK" fluid equation of state elementstring = join(elements .* "\n") write(fp,"$index\n$dataset\nperplex_option.dat\nn\n2\nn\nn\nn\n$elementstring\n$fluid_eos\nn\n2\n$(first(T))\n$(last(T))\n$(first(P))\n$(last(P))\ny\n") # v6.8.7 # Whole-rock composition for i ∈ eachindex(composition) write(fp,"$(composition[i]) ") end # Solution model write(fp,"\nn\ny\nn\n$excludes\ny\nsolution_model.dat\n$solution_phases\nPseudosection") close(fp) # build PerpleX problem definition system("cd $prefix; $build < build.bat > build.log") # Run PerpleX vertex calculations result = system("cd $prefix; echo $index | $vertex > vertex.log") return result end export perplex_configure_pseudosection ## -- Perplex interface: 2. 0d queries """ ```julia perplex_query_point(perplexdir::String, scratchdir::String, indvar::Number; index::Integer=1) ``` Query perplex results at a single temperature on an isobar or single pressure on a geotherm. Results are returned as a string. """ function perplex_query_point(perplexdir::String, scratchdir::String, indvar::Number; index::Integer=1) werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Sanitize T inputs to avoid PerpleX escape sequence if indvar == 999 indvar = 999.001 end # Create werami batch file # Options based on Perplex v6.7.2 fp = open(prefix*"werami.bat", "w") write(fp,"$index\n1\n$indvar\n999\n0\n") close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.txt") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Read results and return them if possible data = "" try # Read entire output file as a string fp = open("$(prefix)$(index)_1.txt", "r") data = read(fp, String) close(fp) catch # Return empty string if file doesn't exist @warn "$(prefix)$(index)_1.txt could not be parsed, perplex may not have run" end return data end """ ```julia perplex_query_point(perplexdir::String, scratchdir::String, P::Number, T::Number; index::Integer=1) ``` Query perplex results at a single P,T point in a pseudosection. Results are returned as a string. """ function perplex_query_point(perplexdir::String, scratchdir::String, P::Number, T::Number; index::Integer=1) werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Sanitize T inputs to avoid PerpleX escape sequence if P == 99 P = 99.001 end if T == 99 T = 99.001 end # Create werami batch file # Options based on Perplex v6.7.2 fp = open(prefix*"werami.bat", "w") write(fp,"$index\n1\n$T\n$P\n99\n99\n0\n") close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.txt") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Read results and return them if possible data = "" try # Read entire output file as a string fp = open("$(prefix)$(index)_1.txt", "r") data = read(fp, String) close(fp) catch # Return empty string if file doesn't exist @warn "$(prefix)$(index)_1.txt could not be parsed, perplex may not have run" end return data end export perplex_query_point ## --- Perplex interface: 3. 1d queries # # We'll need this for when perplex messes up # molarmass = Dict("SIO2"=>60.083, "TIO2"=>79.8651, "AL2O3"=>101.96007714, "FE2O3"=>159.6874, "FEO"=>71.8442, "MGO"=>40.304, "CAO"=>56.0774, "MNO"=>70.9370443, "NA2O"=>61.978538564, "K2O"=>94.19562, "H2O"=>18.015, "CO2"=>44.009, "P2O5"=>141.942523997) """ ```julia perplex_query_seismic(perplexdir::String, scratchdir::String; \tdof::Integer=1, index::Integer=1, include_fluid="n") ``` Query perplex seismic results along a previously configured 1-d path (dof=1, isobar or geotherm) or 2-d grid / pseudosection (dof=2). Results are returned as a dictionary. """ function perplex_query_seismic(perplexdir::String, scratchdir::String; dof::Integer=1, index::Integer=1, include_fluid::String="n", importas=:Dict) # Query a pre-defined path (isobar or geotherm) werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Create werami batch file fp = open(prefix*"werami.bat", "w") if dof == 1 # v6.7.8 1d path write(fp,"$index\n3\n2\nn\n$include_fluid\n13\nn\n$include_fluid\n15\nn\n$include_fluid\n0\n0\n") elseif dof == 2 # v6.7.8 2d grid write(fp,"$index\n2\n2\nn\n$include_fluid\n13\nn\n$include_fluid\n15\nn\n$include_fluid\n0\nn\n1\n0\n") else error("Expecting dof = 1 (path) or 2 (grid/pseudosection) degrees of freedom") end close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.tab") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible data = nothing try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) # Convert to a dictionary data = elementify(data, importas=importas) catch # Return empty dictionary if file doesn't exist data = importas==:Dict ? Dict() : () end return data end """ ```julia perplex_query_seismic(perplexdir::String, scratchdir::String, P::NTuple{2,Number}, T::NTuple{2,Number}; \tindex::Integer=1, npoints::Integer=200, include_fluid="n") ``` Query perplex seismic results along a specified P-T path using a pre-computed pseudosection. Results are returned as a dictionary. """ function perplex_query_seismic(perplexdir::String, scratchdir::String, P::NTuple{2,Number}, T::NTuple{2,Number}; index::Integer=1, npoints::Integer=200, include_fluid="n", importas=:Dict) # Query a new path from a pseudosection werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Create werami batch file fp = open(prefix*"werami.bat", "w") # v6.7.8 pseudosection write(fp,"$index\n3\nn\n$(first(T))\n$(first(P))\n$(last(T))\n$(last(P))\n$npoints\n2\nn $include_fluid\n13\nn\n$include_fluid\n15\nn\n$include_fluid\n0\n0\n") close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.tab") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible data = nothing try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) # Convert to a dictionary data = elementify(data, importas=importas) catch # Return empty dictionary if file doesn't exist data = importas==:Dict ? Dict() : () end return data end function perplex_query_seismic(perplexdir::String, scratchdir::String, P::AbstractArray, T::AbstractArray; index::Integer=1, include_fluid="n", importas=:Dict) # Query a new path from a pseudosection werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Write TP data to file fp = open(prefix*"TP.tsv", "w") for i in eachindex(T,P) write(fp,"$(T[i])\t$(P[i])\n") end close(fp) # Create werami batch file fp = open(prefix*"werami.bat", "w") # v6.7.8 pseudosection write(fp,"$index\n4\n2\nTP.tsv\n1\n2\nn\n$include_fluid 13\nn\n$include_fluid\n15\nn\n$include_fluid\n0\n0\n") close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.tab") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible data = nothing try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) # Convert to a dictionary data = elementify(data, importas=importas) catch # Return empty dictionary if file doesn't exist data = importas==:Dict ? Dict() : () end return data end export perplex_query_seismic """ ```julia perplex_query_phase(perplexdir::String, scratchdir::String, phase::String; \tdof::Integer=1, index::Integer=1, include_fluid="y", clean_units::Bool=true) ``` Query all perplex-calculated properties for a specified phase (e.g. "Melt(G)") along a previously configured 1-d path (dof=1, isobar, geotherm, or P–T path) or 2-d grid / pseudosection (dof=2). Results are returned as a dictionary. """ function perplex_query_phase(perplexdir::String, scratchdir::String, phase::String; dof::Integer=1, index::Integer=1, include_fluid="y", clean_units::Bool=true, importas=:Dict) # Query a pre-defined path (isobar or geotherm) werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Create werami batch file fp = open(prefix*"werami.bat", "w") if dof == 1 # v6.7.8, 1d path write(fp,"$index\n3\n36\n2\n$phase\n$include_fluid\n5\n0\n") # If a named phase (e.g. feldspar) has multiple immiscible phases, average them (5) elseif dof == 2 # v6.7.8, 2d grid write(fp,"$index\n2\n36\n2\n$phase\n$include_fluid\nn\n1\n0\n") # v6.7.8 else error("Expecting dof = 1 (path) or 2 (grid/pseudosection) degrees of freedom") end close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.tab*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible result = importas==:Dict ? Dict() : () try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) elements = data[1,:] # Renormalize weight percentages t = contains.(elements,"wt%") total_weight = nansum(Float64.(data[2:end,t]),dim=2) # Check if perplex is messing up and outputting mole proportions if nanmean(total_weight) < 50 @warn "Perplex seems to be reporting mole fractions instead of weight percentages" # Attempt to change back to weight percentages # for col = findall(t) # data[2:end,col] .*= molarmass[replace(elements[col], ",wt%" => "")] # end # total_weight = nansum(Float64.(data[2:end,t]),dim=2) end data[2:end,t] .*= 100 ./ total_weight # Clean up element names if clean_units elements = elements .|> x -> replace(x, ",%" => "_pct") # substutue _pct for ,% in column names elements = elements .|> x -> replace(x, ",wt%" => "") # Remove units on major oxides end # Convert to a dictionary result = elementify(data,elements, skipstart=1,importas=importas) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.tab could not be parsed, perplex may not have run" end return result end """ ```julia perplex_query_phase(perplexdir::String, scratchdir::String, phase::String, P::NTuple{2,Number}, T::NTuple{2,Number}; \tindex::Integer=1, npoints::Integer=200, include_fluid="y", clean_units::Bool=true) ``` Query all perplex-calculated properties for a specified phase (e.g. "Melt(G)") along a specified P-T path using a pre-computed pseudosection. Results are returned as a dictionary. """ function perplex_query_phase(perplexdir::String, scratchdir::String, phase::String, P::NTuple{2,Number}, T::NTuple{2,Number}; index::Integer=1, npoints::Integer=200, include_fluid="y", clean_units::Bool=true, importas=:Dict) # Query a new path from a pseudosection werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Create werami batch file fp = open(prefix*"werami.bat", "w") # v6.7.8 pseudosection # If a named phase (e.g. feldspar) has multiple immiscible phases, average them (5) write(fp,"$index\n3\nn\n$(first(T))\n$(first(P))\n$(last(T))\n$(last(P))\n$npoints\n36\n2\n$phase\n$include_fluid\n5\n0\n") close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.tab*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible result = importas==:Dict ? Dict() : () try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) elements = data[1,:] # Renormalize weight percentages t = contains.(elements,"wt%") total_weight = nansum(Float64.(data[2:end,t]),dim=2) # Check if perplex is messing up and outputting mole proportions if nanmean(total_weight) < 50 @warn "Perplex seems to be reporting mole fractions instead of weight percentages" # , attempting to correct # for col = findall(t) # data[2:end,col] .*= molarmass[replace(elements[col], ",wt%" => "")] # end # total_weight = nansum(Float64.(data[2:end,t]),dim=2) end data[2:end,t] .*= 100 ./ total_weight # Clean up element names if clean_units elements = elements .|> x -> replace(x, ",%" => "_pct") # substutue _pct for ,% in column names elements = elements .|> x -> replace(x, ",wt%" => "") # Remove units on major oxides end # Convert to a dictionary result = elementify(data,elements, skipstart=1,importas=importas) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.tab could not be parsed, perplex may not have run" end return result end function perplex_query_phase(perplexdir::String, scratchdir::String, phase::String, P::AbstractArray, T::AbstractArray; index::Integer=1, include_fluid="y", clean_units::Bool=true, importas=:Dict) # Query a new path from a pseudosection werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Write TP data to file fp = open(prefix*"TP.tsv", "w") for i in eachindex(T,P) write(fp,"$(T[i])\t$(P[i])\n") end close(fp) # Create werami batch file fp = open(prefix*"werami.bat", "w") # v6.7.8 pseudosection # If a named phase (e.g. feldspar) has multiple immiscible phases, average them (5) write(fp,"$index\n4\n2\nTP.tsv\n1\n36\n2\n$phase\n$include_fluid\n5\n0\n") close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.tab*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible result = importas==:Dict ? Dict() : () try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) elements = data[1,:] # Renormalize weight percentages t = contains.(elements,"wt%") total_weight = nansum(Float64.(data[2:end,t]),dim=2) # Check if perplex is messing up and outputting mole proportions if nanmean(total_weight) < 50 @warn "Perplex seems to be reporting mole fractions instead of weight percentages" # , attempting to correct # for col = findall(t) # data[2:end,col] .*= molarmass[replace(elements[col], ",wt%" => "")] # end # total_weight = nansum(Float64.(data[2:end,t]),dim=2) end data[2:end,t] .*= 100 ./ total_weight # Clean up element names if clean_units elements = elements .|> x -> replace(x, ",%" => "_pct") # substutue _pct for ,% in column names elements = elements .|> x -> replace(x, ",wt%" => "") # Remove units on major oxides end # Convert to a dictionary result = elementify(data,elements, skipstart=1,importas=importas) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.tab could not be parsed, perplex may not have run" end return result end export perplex_query_phase """ ```julia perplex_query_modes(perplexdir::String, scratchdir::String; \tdof::Integer=1, index::Integer=1, include_fluid="y") ``` Query modal mineralogy (mass proportions) along a previously configured 1-d path (dof=1, isobar, geotherm, or P–T path) or 2-d grid / pseudosection (dof=2). Results are returned as a dictionary. Currently returns wt% """ function perplex_query_modes(perplexdir::String, scratchdir::String; dof::Integer=1, index::Integer=1, include_fluid="y", importas=:Dict) # Query a pre-defined path (isobar or geotherm) werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Create werami batch file fp = open(prefix*"werami.bat", "w") if dof == 1 # v6.7.8 1d path write(fp,"$index\n3\n38\n3\nn\n37\n0\n0\n") elseif dof == 2 # v6.7.8 2d grid write(fp,"$index\n2\n25\nn\n$include_fluid\nn\n1\n0\n") else error("Expecting dof = 1 (path) or 2 (grid/pseudosection) degrees of freedom") end close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.phm*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.phm") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.phm") # Replace "Missing data" with just "Missing" file_content = read("$(prefix)$(index)_1.phm", String) modified_content = replace(file_content, "Missing data" => replace("Missing data", "Missing data" => "Missing")) write("$(prefix)$(index)_1.phm", modified_content) # Read results and return them if possible result = importas==:Dict ? Dict() : () if dof == 1 try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.phm", skipstart=8) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.phm could not be parsed, perplex may not have run" end # Convert to a dictionary. table = elementify(data, importas=importas) # Create results dictionary phase_names = unique(table["Name"]) if haskey(table, "node#") #PT path nodes = unique(table["node#"]) # Create result dictionary result = Dict{String, Vector{Float64}}(i => zeros(length(nodes)) for i in phase_names) result["P(bar)"] = zeros(length(nodes)) # Loop through table for n in nodes # Index table n_idx = table["node#"] .== n # Index phase name and weight(kg) name = table["Name"][n_idx] kg = table["phase,kg"][n_idx] # Calculate wt% and add to results dictionary for i in zip(name, kg) result[i[1]][floor(Int64, n)] = (i[2]/nansum(kg)) * 100 end result["P(bar)"][floor(Int64, n)] = table["P(bar)"][n_idx][1] end result["T(K)"] = unique(table["T(K)"]) result["node"] = nodes else # isobar or geotherm t_steps = unique(table["T(K)"]) result = Dict{String, Vector{Float64}}(i => zeros(length(t_steps)) for i in phase_names) id = 1 # Loop through table for t in t_steps # Index table t_idx = table["T(K)"] .== t # Index phase name and weight(kg) name = table["Name"][t_idx] kg = table["phase,kg"][t_idx] # Calculate wt% and add to results dictionary for i in zip(name, kg) result[i[1]][id] = (i[2]/nansum(kg)) * 100 end id+=1 end result["T(K)"] = t_steps end else # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) # Convert to a dictionary. # Perplex sometimes returns duplicates of a single solution model, sum them. result = elementify(data, sumduplicates=true, importas=importas) end return result end """ ```julia perplex_query_modes(perplexdir::String, scratchdir::String, P::NTuple{2,Number}, T::NTuple{2,Number}; \tindex::Integer=1, npoints::Integer=200, include_fluid="y") ``` Query modal mineralogy (mass proportions) along a specified P-T path using a pre-computed pseudosection. Results are returned as a dictionary. """ function perplex_query_modes(perplexdir::String, scratchdir::String, P::NTuple{2,Number}, T::NTuple{2,Number}; index::Integer=1, npoints::Integer=200, include_fluid="y", importas=:Dict) # Query a new path from a pseudosection werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Create werami batch file fp = open(prefix*"werami.bat", "w") # v6.7.8 pseudosection write(fp,"$index\n3\nn\n$(first(T))\n$(first(P))\n$(last(T))\n$(last(P))\n$npoints\n25\nn\n$include_fluid\n0\n") close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.tab*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible result = importas==:Dict ? Dict() : () try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) # Convert to a dictionary result = elementify(data, sumduplicates=true, importas=importas) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.tab could not be parsed, perplex may not have run" end return result end function perplex_query_modes(perplexdir::String, scratchdir::String, P::AbstractArray, T::AbstractArray; index::Integer=1, include_fluid="y", importas=:Dict) # Query a new path from a pseudosection werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Write TP data to file fp = open(prefix*"TP.tsv", "w") for i in eachindex(T,P) write(fp,"$(T[i])\t$(P[i])\n") end close(fp) # Create werami batch file fp = open(prefix*"werami.bat", "w") # v6.7.8 pseudosection write(fp,"$index\n4\n2\nTP.tsv\n1\n25\nn\n$include_fluid\n0\n") close(fp) # Make sure there isn"t already an output system("rm -f $(prefix)$(index)_1.tab*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible result = importas==:Dict ? Dict() : () try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) # Convert to a dictionary result = elementify(data, sumduplicates=true, importas=importas) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.tab could not be parsed, perplex may not have run" end return result end export perplex_query_modes """ ```julia perplex_query_system(perplexdir::String, scratchdir::String; \tindex::Integer=1, include_fluid="y", clean_units::Bool=true) ```? Query all perplex-calculated properties for the system (with or without fluid) along a previously configured 1-d path (dof=1, isobar or geotherm) or 2-d grid / pseudosection (dof=2). Results are returned as a dictionary. Set include_fluid="n" to return solid+melt only. """ function perplex_query_system(perplexdir::String, scratchdir::String; index::Integer=1, include_fluid="y", clean_units::Bool=true, dof::Integer=1, importas=:Dict) # Query a pre-defined path (isobar or geotherm) werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Create werami batch file fp = open(prefix*"werami.bat", "w") if dof == 1 # v6.7.8, 1d path write(fp,"$index\n3\n36\n1\n$include_fluid\n0\n") elseif dof == 2 # v6.7.8, 2d grid write(fp,"$index\n2\n36\n1\n$include_fluid\nn\n1\n0\n") else error("Expecting dof = 1 (path) or 2 (grid/pseudosection) degrees of freedom") end close(fp) # Make sure there isn't already an output system("rm -f $(prefix)$(index)_1.tab*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible result = importas==:Dict ? Dict() : () try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) elements = data[1,:] # Renormalize weight percentages t = contains.(elements,"wt%") total_weight = nansum(Float64.(data[2:end,t]),dim=2) data[2:end,t] .*= 100 ./ total_weight # Clean up element names if clean_units elements = elements .|> x -> replace(x, ",%" => "_pct") # substutue _pct for ,% in column names elements = elements .|> x -> replace(x, ",wt%" => "") # Remove units on major oxides end # Convert to a dictionary result = elementify(data,elements, skipstart=1,importas=importas) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.tab could not be parsed, perplex may not have run" end return result end """ ```julia function perplex_query_system(perplexdir::String, scratchdir::String, P::NTuple{2,Number}, T::NTuple{2,Number}; \tindex::Integer=1, npoints::Integer=200, include_fluid="y",clean_units::Bool=true) ``` Query all perplex-calculated properties for the system (with or without fluid) along a specified P-T path using a pre-computed pseudosection. Results are returned as a dictionary. Set include_fluid="n" to return solid+melt only. """ function perplex_query_system(perplexdir::String, scratchdir::String, P::NTuple{2,Number}, T::NTuple{2,Number}; index::Integer=1, npoints::Integer=200, include_fluid="y", clean_units::Bool=true, importas=:Dict) # Query a new path from a pseudosection werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Create werami batch file fp = open(prefix*"werami.bat", "w") # v6.7.8 pseudosection write(fp,"$index\n3\nn\n$(first(T))\n$(first(P))\n$(last(T))\n$(last(P))\n$npoints\n36\n1\n$include_fluid\n0\n") close(fp) # Make sure there isn't already an output system("rm -f $(prefix)$(index)_1.tab*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible result = importas==:Dict ? Dict() : () try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) elements = data[1,:] # Renormalize weight percentages t = contains.(elements,"wt%") total_weight = nansum(Float64.(data[2:end,t]),dim=2) data[2:end,t] .*= 100 ./ total_weight # Clean up element names if clean_units elements = elements .|> x -> replace(x, ",%" => "_pct") # substutue _pct for ,% in column names elements = elements .|> x -> replace(x, ",wt%" => "") # Remove units on major oxides end # Convert to a dictionary result = elementify(data,elements, skipstart=1,importas=importas) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.tab could not be parsed, perplex may not have run" end return result end function perplex_query_system(perplexdir::String, scratchdir::String, P::AbstractArray, T::AbstractArray; index::Integer=1, include_fluid="y", clean_units::Bool=true, importas=:Dict) # Query a new path from a pseudosection werami = joinpath(perplexdir, "werami")# path to PerpleX werami prefix = joinpath(scratchdir, "out$(index)/") # path to data files # Write TP data to file fp = open(prefix*"TP.tsv", "w") for i in eachindex(T,P) write(fp,"$(T[i])\t$(P[i])\n") end close(fp) # Create werami batch file fp = open(prefix*"werami.bat", "w") # v6.7.8 pseudosection write(fp,"$index\n4\n2\nTP.tsv\n1\n36\n1\n$include_fluid\n0\n") close(fp) # Make sure there isn't already an output system("rm -f $(prefix)$(index)_1.tab*") # Extract Perplex results with werami system("cd $prefix; $werami < werami.bat > werami.log") # Ignore initial and trailing whitespace system("sed -e \"s/^ *//\" -e \"s/ *\$//\" -i.backup $(prefix)$(index)_1.tab") # Merge delimiters system("sed -e \"s/ */ /g\" -i.backup $(prefix)$(index)_1.tab") # Read results and return them if possible result = importas==:Dict ? Dict() : () try # Read data as an Array{Any} data = readdlm("$(prefix)$(index)_1.tab", ' ', skipstart=8) elements = data[1,:] # Renormalize weight percentages t = contains.(elements,"wt%") total_weight = nansum(Float64.(data[2:end,t]),dim=2) data[2:end,t] .*= 100 ./ total_weight # Clean up element names if clean_units elements = elements .|> x -> replace(x, ",%" => "_pct") # substutue _pct for ,% in column names elements = elements .|> x -> replace(x, ",wt%" => "") # Remove units on major oxides end # Convert to a dictionary result = elementify(data,elements, skipstart=1,importas=importas) catch # Return empty dictionary if file doesn't exist @warn "$(prefix)$(index)_1.tab could not be parsed, perplex may not have run" end return result end export perplex_query_system # Translate between perplex names and germ names function germ_perplex_name_matches(germ_name, perplex_name) # Feldspar if germ_name == "Albite" any(perplex_name .== ["ab", "abh"]) elseif germ_name == "Anorthite" perplex_name == "an" elseif germ_name == "Orthoclase" any(perplex_name .== ["mic", "Kf", "San", "San(TH)"]) # Amphibole elseif germ_name == "Amphibole" any(lowercase(perplex_name) .== ["gl", "fgl", "rieb", "anth", "fanth", "cumm", "grun", "tr", "ftr", "ged", "parg", "ts"]) || any(contains.(perplex_name, ["Amph", "GlTrTs", "Act(", "Anth"])) # Mica elseif germ_name == "Biotite" any(perplex_name .== ["ann"]) || any(contains.(perplex_name, ["Bi(", "Bio("])) elseif germ_name == "Phlogopite" any(lowercase(perplex_name) .== ["naph", "phl"]) # Pyroxene elseif germ_name == "Clinopyroxene" any(lowercase(perplex_name) .== ["di", "hed", "acm", "jd"]) || any(contains.(perplex_name, ["Augite", "Cpx", "Omph"])) elseif germ_name == "Orthopyroxene" any(lowercase(perplex_name) .== ["en", "fs"]) || contains(perplex_name, "Opx") # Cordierite elseif germ_name == "Cordierite" any(lowercase(perplex_name) .== ["crd", "fcrd", "hcrd", "mncrd"]) || contains(perplex_name, "Crd") # Garnet elseif germ_name == "Garnet" any(lowercase(perplex_name) .== ["py", "spss", "alm", "andr", "gr"]) || any(contains.(perplex_name, ["Grt", "Gt(", "Maj"])) # Oxides elseif germ_name == "Ilmenite" perplex_name == "ilm" || any(contains.(perplex_name, ["Ilm", "IlHm", "IlGk"])) elseif germ_name == "Magnetite" perplex_name == "mt" elseif germ_name == "Rutile" perplex_name == "ru" # Feldspathoids elseif germ_name == "Leucite" perplex_name == "lc" elseif germ_name == "Nepheline" perplex_name == "ne" || contains(perplex_name, "Neph") # Olivine elseif germ_name == "Olivine" any(lowercase(perplex_name) .== ["fo", "fa"]) || any(contains.(perplex_name, ["O(", "Ol("])) # Spinel elseif germ_name == "Spinel" any(lowercase(perplex_name) .== ["sp", "usp"]) || contains(perplex_name, "Sp(") # Accessories elseif germ_name == "Sphene" perplex_name == "sph" elseif germ_name == "Zircon" perplex_name == "zrc" elseif germ_name == "Baddeleyite" perplex_name == "bdy" else false end end export germ_perplex_name_matches function perplex_phase_is_fluid(phase_name) any(phase_name .== ["F", "WADDAH", "H2O"]) || any(contains.(phase_name, ["Aq_", "F(", "Fluid"])) end export perplex_phase_is_fluid function perplex_phase_is_melt(phase_name) any(phase_name .== ["h2oL", "abL", "anL", "diL", "enL", "faL", "kspL", "qL", "silL"]) || any(contains.(phase_name, ["liq", "melt", "LIQ", "MELTS"])) end export perplex_phase_is_melt function perplex_phase_is_solid(phase_name) !perplex_phase_is_fluid(phase_name) && !perplex_phase_is_melt(phase_name) && !any(contains.(phase_name, ["P(", "T(", "Pressure", "Temperature", "elements", "minerals", "CO2", "Missing", "system"])) end export perplex_phase_is_solid function perplex_expand_name(name) abbreviations = ("ak", "alm", "and", "andr", "chum", "cz", "crd", "ep", "fa", "fctd", "fcrd", "fep", "fosm", "fst", "fo", "geh", "gr", "hcrd", "tpz", "ky", "larn", "law", "merw", "mctd", "mst", "mnctd", "mncrd", "mnst", "mont", "osm1", "osm2", "phA", "pump", "py", "rnk", "sill", "spss", "sph", "spu", "teph", "ty", "vsv", "zrc", "zo", "acm", "cats", "di", "en", "fs", "hed", "jd", "mgts", "pswo", "pxmn", "rhod", "wo", "anth", "cumm", "fanth", "fgl", "ftr", "ged", "gl", "grun", "parg", "rieb", "tr", "ts", "deer", "fcar", "fspr", "mcar", "spr4", "spr7", "ann", "cel", "east", "fcel", "ma", "mnbi", "mu", "naph", "pa", "phl", "afchl", "ames", "clin", "daph", "fsud", "mnchl", "sud", "atg", "chr", "fta", "kao", "pre", "prl", "ta", "tats", "ab", "anl", "an", "coe", "crst", "heu", "abh", "kals", "lmt", "lc", "me", "mic", "ne", "q", "san", "stlb", "stv", "trd", "wrk", "bdy", "cor", "geik", "hem", "herc", "ilm","oilm","lime", "mft", "mt", "mang", "bunsn", "per", "pnt", "ru", "sp", "usp", "br", "dsp", "gth", "ank", "arag", "cc", "dol", "mag", "rhc", "sid", "diam", "gph", "iron", "Ni", "CO2", "CO", "H2", "CH4", "O2", "H2O", "abL", "anL", "diL", "enL", "faL", "fliq", "foL", "h2oL", "hliq", "kspL", "mliq", "qL", "silL", "H+", "Cl-", "OH-", "Na+", "K+", "Ca++", "Mg++", "Fe++", "Al+++", "CO3", "AlOH3", "AlOH4-", "KOH", "HCL", "KCL", "NaCl", "CaCl2", "CaCl+", "MgCl2", "MgCl", "FeCl2", "aqSi",) full_names = ("akermanite", "almandine", "andalusite", "andradite", "clinohumite", "clinozoisite", "cordierite", "epidote(ordered)", "fayalite", "Fe-chloritoid", "Fe-cordierite", "Fe-epidote", "Fe-osumilite", "Fe-staurolite", "forsterite", "gehlenite", "grossular", "hydrous cordierite", "hydroxy-topaz", "kyanite", "larnite-bredigite", "lawsonite", "merwinite", "Mg-chloritoid", "Mg-staurolite", "Mn-chloritoid", "Mn-cordierite", "Mn-staurolite", "monticellite", "osumilite(1)", "osumilite(2)", "phase A", "pumpellyite", "pyrope", "rankinite", "sillimanite", "spessartine", "sphene", "spurrite", "tephroite", "tilleyite", "vesuvianite", "zircon", "zoisite", "acmite", "Ca-tschermaks pyroxene", "Diopside", "enstatite", "ferrosilite", "hedenbergite", "jadeite", "mg-tschermak", "pseudowollastonite", "pyroxmangite", "rhodonite", "wollastonite", "anthophyllite", "cummingtonite", "Fe-anthophyllite", "Fe-glaucophane", "ferroactinolite", "gedrite(Na-free)", "glaucophane", "grunerite", "pargasite", "riebeckite", "tremolite", "tschermakite", "deerite", "fe-carpholite", "fe-sapphirine(793)", "mg-carpholite", "sapphirine(442)", "sapphirine(793)", "annite", "celadonite", "eastonite", "Fe-celadonite", "margarite", "Mn-biotite", "muscovite", "Na-phlogopite", "paragonite", "phlogopite", "Al-free chlorite", "amesite(14Ang)", "clinochlore(ordered)", "daphnite", "Fe-sudoite", "Mn-chlorite", "Sudoite", "antigorite", "chrysotile", "Fe-talc", "Kaolinite", "prehnite", "pyrophyllite", "talc", "tschermak-talc", "albite", "analcite", "anorthite", "coesite", "cristobalite", "heulandite", "highalbite", "kalsilite", "laumontite", "leucite", "meionite", "microcline", "nepheline", "quartz", "sanidine", "stilbite", "stishovite", "tridymite", "wairakite", "baddeleyite", "corundum", "geikielite", "hematite", "hercynite", "ilmenite", "ilmenite(ordered)","lime", "magnesioferrite", "magnetite", "manganosite", "nickel oxide", "periclase", "pyrophanite", "rutile", "spinel", "ulvospinel", "brucite", "diaspore", "goethite", "ankerite", "aragonite", "calcite", "dolomite", "magnesite", "rhodochrosite", "siderite", "diamond", "graphite", "iron", "nickel", "carbon dioxide", "carbon monoxide", "hydrogen", "methane", "oxygen", "water fluid", "albite liquid", "anorthite liquid", "diopside liquid", "enstatite liquid", "fayalite liquid", "Fe-liquid (in KFMASH)", "Forsterite liquid", "H2O liquid", "H2O liquid (in KFMASH)", "K-feldspar liquid", "Mg liquid (in KFMASH)", "Silica liquid", "Sillimanite liquid", "H+(aq)", "Cl(aq)", "OH(aq)", "Na+(aq)", "K+(aq)", "Ca2+(aq)", "Mg2+(aq)", "Fe2+(aq)", "Al3+(aq)", "CO3--(aq)", "Al(OH)3(aq)", "Al(OH)4----(aq)", "KOH(aq)", "HCl(aq)", "KCl(aq)", "NaCl(aq)", "CaCl(aq)", "CaCl+(aq)", "MgCl2(aq)", "MgCl+(aq)", "FeCl(aq)", "Aqueous silica",) t = name .== abbreviations if any(t) full_names[findfirst(t)] else name end end export perplex_expand_name function perplex_abbreviate_name(name) abbreviations = ("ak", "alm", "and", "andr", "chum", "cz", "crd", "ep", "fa", "fctd", "fcrd", "fep", "fosm", "fst", "fo", "geh", "gr", "hcrd", "tpz", "ky", "larn", "law", "merw", "mctd", "mst", "mnctd", "mncrd", "mnst", "mont", "osm1", "osm2", "phA", "pump", "py", "rnk", "sill", "spss", "sph", "spu", "teph", "ty", "vsv", "zrc", "zo", "acm", "cats", "di", "en", "fs", "hed", "jd", "mgts", "pswo", "pxmn", "rhod", "wo", "anth", "cumm", "fanth", "fgl", "ftr", "ged", "gl", "grun", "parg", "rieb", "tr", "ts", "deer", "fcar", "fspr", "mcar", "spr4", "spr7", "ann", "cel", "east", "fcel", "ma", "mnbi", "mu", "naph", "pa", "phl", "afchl", "ames", "clin", "daph", "fsud", "mnchl", "sud", "atg", "chr", "fta", "kao", "pre", "prl", "ta", "tats", "ab", "anl", "an", "coe", "crst", "heu", "abh", "kals", "lmt", "lc", "me", "mic", "ne", "q", "san", "stlb", "stv", "trd", "wrk", "bdy", "cor", "geik", "hem", "herc", "ilm", "oilm", "lime", "mft", "mt", "mang", "bunsn", "per", "pnt", "ru", "sp", "usp", "br", "dsp", "gth", "ank", "arag", "cc", "dol", "mag", "rhc", "sid", "diam", "gph", "iron", "Ni", "CO2", "CO", "H2", "CH4", "O2", "H2O", "abL", "anL", "diL", "enL", "faL", "fliq", "foL", "h2oL", "hliq", "kspL", "mliq", "qL", "silL", "H+", "Cl-", "OH-", "Na+", "K+", "Ca++", "Mg++", "Fe++", "Al+++", "CO3", "AlOH3", "AlOH4-", "KOH", "HCL", "KCL", "NaCl", "CaCl2", "CaCl+", "MgCl2", "MgCl", "FeCl2", "aqSi",) full_names = ("akermanite", "almandine", "andalusite", "andradite", "clinohumite", "clinozoisite", "cordierite", "epidote(ordered)", "fayalite", "Fe-chloritoid", "Fe-cordierite", "Fe-epidote", "Fe-osumilite", "Fe-staurolite", "forsterite", "gehlenite", "grossular", "hydrous cordierite", "hydroxy-topaz", "kyanite", "larnite-bredigite", "lawsonite", "merwinite", "Mg-chloritoid", "Mg-staurolite", "Mn-chloritoid", "Mn-cordierite", "Mn-staurolite", "monticellite", "osumilite(1)", "osumilite(2)", "phase A", "pumpellyite", "pyrope", "rankinite", "sillimanite", "spessartine", "sphene", "spurrite", "tephroite", "tilleyite", "vesuvianite", "zircon", "zoisite", "acmite", "Ca-tschermaks pyroxene", "Diopside", "enstatite", "ferrosilite", "hedenbergite", "jadeite", "mg-tschermak", "pseudowollastonite", "pyroxmangite", "rhodonite", "wollastonite", "anthophyllite", "cummingtonite", "Fe-anthophyllite", "Fe-glaucophane", "ferroactinolite", "gedrite(Na-free)", "glaucophane", "grunerite", "pargasite", "riebeckite", "tremolite", "tschermakite", "deerite", "fe-carpholite", "fe-sapphirine(793)", "mg-carpholite", "sapphirine(442)", "sapphirine(793)", "annite", "celadonite", "eastonite", "Fe-celadonite", "margarite", "Mn-biotite", "muscovite", "Na-phlogopite", "paragonite", "phlogopite", "Al-free chlorite", "amesite(14Ang)", "clinochlore(ordered)", "daphnite", "Fe-sudoite", "Mn-chlorite", "Sudoite", "antigorite", "chrysotile", "Fe-talc", "Kaolinite", "prehnite", "pyrophyllite", "talc", "tschermak-talc", "albite", "analcite", "anorthite", "coesite", "cristobalite", "heulandite", "highalbite", "kalsilite", "laumontite", "leucite", "meionite", "microcline", "nepheline", "quartz", "sanidine", "stilbite", "stishovite", "tridymite", "wairakite", "baddeleyite", "corundum", "geikielite", "hematite", "hercynite", "ilmenite", "ilmenite(ordered)", "lime", "magnesioferrite", "magnetite", "manganosite", "nickel oxide", "periclase", "pyrophanite", "rutile", "spinel", "ulvospinel", "brucite", "diaspore", "goethite", "ankerite", "aragonite", "calcite", "dolomite", "magnesite", "rhodochrosite", "siderite", "diamond", "graphite", "iron", "nickel", "carbon dioxide", "carbon monoxide", "hydrogen", "methane", "oxygen", "water fluid", "albite liquid", "anorthite liquid", "diopside liquid", "enstatite liquid", "fayalite liquid", "Fe-liquid (in KFMASH)", "Forsterite liquid", "H2O liquid", "H2O liquid (in KFMASH)", "K-feldspar liquid", "Mg liquid (in KFMASH)", "Silica liquid", "Sillimanite liquid", "H+(aq)", "Cl(aq)", "OH(aq)", "Na+(aq)", "K+(aq)", "Ca2+(aq)", "Mg2+(aq)", "Fe2+(aq)", "Al3+(aq)", "CO3--(aq)", "Al(OH)3(aq)", "Al(OH)4----(aq)", "KOH(aq)", "HCl(aq)", "KCl(aq)", "NaCl(aq)", "CaCl(aq)", "CaCl+(aq)", "MgCl2(aq)", "MgCl+(aq)", "FeCl(aq)", "Aqueous silica",) t = name .== full_names if any(t) abbreviations[findfirst(t)] else name end end export perplex_abbreviate_name function perplex_common_name(name) abbreviations = ("ak", "alm", "and", "andr", "chum", "cz", "crd", "ep", "fa", "fctd", "fcrd", "fep", "fosm", "fst", "fo", "geh", "gr", "hcrd", "tpz", "ky", "larn", "law", "merw", "mctd", "mst", "mnctd", "mncrd", "mnst", "mont", "osm1", "osm2", "phA", "pump", "py", "rnk", "sill", "spss", "sph", "spu", "teph", "ty", "vsv", "zrc", "zo", "acm", "cats", "di", "en", "fs", "hed", "jd", "mgts", "pswo", "pxmn", "rhod", "wo", "anth", "cumm", "fanth", "fgl", "ftr", "ged", "gl", "grun", "parg", "rieb", "tr", "ts", "deer", "fcar", "fspr", "mcar", "spr4", "spr7", "ann", "cel", "east", "fcel", "ma", "mnbi", "mu", "naph", "pa", "phl", "afchl", "ames", "clin", "daph", "fsud", "mnchl", "sud", "atg", "chr", "fta", "kao", "pre", "prl", "ta", "tats", "ab", "anl", "an", "coe", "crst", "heu", "abh", "kals", "lmt", "lc", "me", "mic", "ne", "q", "san", "stlb", "stv", "trd", "wrk", "bdy", "cor", "geik", "hem", "herc", "ilm", "oilm", "lime", "mft", "mt", "mang", "bunsn", "per", "pnt", "ru", "sp", "usp", "br", "dsp", "gth", "ank", "arag", "cc", "dol", "mag", "rhc", "sid", "diam", "gph", "iron", "Ni", "CO2", "CO", "H2", "CH4", "O2", "H2O", "abL", "anL", "diL", "enL", "faL", "fliq", "foL", "h2oL", "hliq", "kspL", "mliq", "qL", "silL", "H+", "Cl-", "OH-", "Na+", "K+", "Ca++", "Mg++", "Fe++", "Al+++", "CO3", "AlOH3", "AlOH4-", "KOH", "HCL", "KCL", "NaCl", "CaCl2", "CaCl+", "MgCl2", "MgCl", "FeCl2", "aqSi", "Aqfl(HGP)", "Cpx(HGP)", "Augite(G)", "Cpx(JH)", "Cpx(l)", "Cpx(h)", "Cpx(stx)", "Cpx(stx7)", "Omph(HP)", "Cpx(HP)", "Cpx(m)", "Cpx(stx8)", "Cps(HGP)", "Omph(GHP)", "cAmph(G)", "Cumm", "Gl", "Tr", "GlTrTsPg", "Amph(DHP)", "Amph(DPW)", "Ca-Amph(D)", "Na-Amph(D)", "Act(M)", "GlTrTsMr", "cAmph(DP)", "melt(HGPH)", "melt(G)", "melt(W)", "melt(HP)", "melt(HGP)", "pMELTS(G)", "mMELTS(G)", "LIQ(NK)", "LIQ(EF)", "Chl(W)", "Chl(HP)", "Chl(LWV)", "O(HGP)","O(JH)", "O(SG)", "O(HP)", "O(HPK)", "O(stx)", "O(stx7)", "Ol(m)", "O(stx8)", "Sp(HGP)", "Sp(JH)", "GaHcSp", "Sp(JR)", "Sp(GS)", "Sp(HP)", "Sp(stx)", "CrSp", "Sp(stx7)", "Sp(WPC)", "Sp(stx8)", "Pl(JH)", "Pl(h)", "Pl(stx8)", "Kf", "San", "San(TH)", "Gt(HGP)", "Grt(JH)", "Gt(W)", "CrGt", "Gt(MPF)", "Gt(B)", "Gt(GCT)", "Gt(HP)", "Gt(EWHP)", "Gt(WPH)", "Gt(stx)", "Gt(stx8)", "Gt(WPPH)", "ZrGt(KP)", "Maj", "Opx(HGP)", "Opx(JH)", "Opx(W)", "Opx(HP)", "CrOpx(HP)", "Opx(stx)", "Opx(stx8)", "Mica(W)", "Pheng(HP)", "MaPa", "Mica(CF)", "Mica(CHA1)", "Mica(CHA)", "Mica+(CHA)", "Mica(M)", "Mica(SGH)", "Ctd(W)", "Ctd(HP)", "Ctd(SGH)", "St(W)", "St(HP)", "Bi(HGP)", "Bi(W)", "Bio(TCC)", "Bio(WPH)", "Bio(HP)", "Crd(W)", "hCrd", "Sa(WP)", "Sapp(HP)", "Sapp(KWP)", "Sapp(TP)", "Osm(HP)", "F", "F(salt)", "COH-Fluid", "Aq_solven0", "WADDAH", "T", "Scap", "Carp", "Carp(M)", "Carp(SGH)", "Sud(Livi)", "Sud", "Sud(M)", "Anth", "o-Amph", "oAmph(DP)", "feldspar", "feldspar_B", "Pl(I1,HP)", "Fsp(C1)", "Do(HP)", "M(HP)", "Do(AE)", "Cc(AE)", "oCcM(HP)", "Carb(M)", "oCcM(EF)", "dis(EF)", "IlHm(A)", "IlGkPy", "Ilm(WPH)", "Ilm(WPH0)", "Neph(FB)", "Chum", "Atg(PN)", "B", "Pu(M)", "Stlp(M)", "Wus",) common_names = ("akermanite", "almandine", "andalusite", "andradite", "clinohumite", "clinozoisite", "cordierite", "epidote", "fayalite", "Fe-chloritoid", "Fe-cordierite", "Fe-epidote", "Fe-osumilite", "Fe-staurolite", "forsterite", "gehlenite", "grossular", "hydrous cordierite", "hydroxy-topaz", "kyanite", "larnite", "lawsonite", "merwinite", "Mg-chloritoid", "Mg-staurolite", "Mn-chloritoid", "Mn-cordierite", "Mn-staurolite", "monticellite", "osumilite(1)", "osumilite(2)", "phase A", "pumpellyite", "pyrope", "rankinite", "sillimanite", "spessartine", "sphene", "spurrite", "tephroite", "tilleyite", "vesuvianite", "zircon", "zoisite", "acmite", "Ca-tschermakite", "diopside", "enstatite", "ferrosilite", "hedenbergite", "jadeite", "Mg-tschermakite", "pseudowollastonite", "pyroxmangite", "rhodonite", "wollastonite", "anthophyllite", "cummingtonite", "Fe-anthophyllite", "Fe-glaucophane", "ferroactinolite", "gedrite", "glaucophane", "grunerite", "pargasite", "riebeckite", "tremolite", "tschermakite", "deerite", "Fe-carpholite", "Fe-sapphirine(793)", "Mg-carpholite", "sapphirine(442)", "sapphirine(793)", "annite", "celadonite", "eastonite", "Fe-celadonite", "margarite", "Mn-biotite", "muscovite", "Na-phlogopite", "paragonite", "phlogopite", "Al-free chlorite", "amesite", "clinochlore", "daphnite", "Fe-sudoite", "Mn-chlorite", "sudoite", "antigorite", "chrysotile", "Fe-talc", "kaolinite", "prehnite", "pyrophyllite", "talc", "tschermak-talc", "albite", "analcite", "anorthite", "coesite", "cristobalite", "heulandite", "highalbite", "kalsilite", "laumontite", "leucite", "meionite", "microcline", "nepheline", "quartz", "sanidine", "stilbite", "stishovite", "tridymite", "wairakite", "baddeleyite", "corundum", "geikielite", "hematite", "hercynite", "ilmenite", "ilmenite(ordered)", "lime", "magnesioferrite", "magnetite", "manganosite", "nickel oxide", "periclase", "pyrophanite", "rutile", "spinel", "ulvospinel", "brucite", "diaspore", "goethite", "ankerite", "aragonite", "calcite", "dolomite", "magnesite", "rhodochrosite", "siderite", "diamond", "graphite", "iron", "nickel", "carbon dioxide", "carbon monoxide", "hydrogen", "methane", "oxygen", "water fluid", "albite liquid", "anorthite liquid", "diopside liquid", "enstatite liquid", "fayalite liquid", "Fe-liquid (in KFMASH)", "forsterite liquid", "H2O liquid", "H2O liquid (in KFMASH)", "K-feldspar liquid", "Mg liquid (in KFMASH)", "Silica liquid", "Sillimanite liquid", "H+(aq)", "Cl(aq)", "OH(aq)", "Na+(aq)", "K+(aq)", "Ca2+(aq)", "Mg2+(aq)", "Fe2+(aq)", "Al3+(aq)", "CO3--(aq)", "Al(OH)3(aq)", "Al(OH)4----(aq)", "KOH(aq)", "HCl(aq)", "KCl(aq)", "NaCl(aq)", "CaCl(aq)", "CaCl+(aq)", "MgCl2(aq)", "MgCl+(aq)", "FeCl(aq)", "Aqueous silica", "Aqueous fluid", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "melt", "melt", "melt", "melt", "melt", "melt", "melt", "melt", "melt", "chlorite", "chlorite", "chlorite", "olivine", "olivine", "olivine", "olivine", "olivine", "olivine", "olivine", "olivine", "olivine", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "plagioclase", "plagioclase", "plagioclase", "k-feldspar", "k-feldspar", "k-feldspar", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "orthopyroxene", "orthopyroxene", "orthopyroxene", "orthopyroxene", "orthopyroxene", "orthopyroxene", "orthopyroxene", "white mica", "white mica", "white mica", "white mica", "white mica", "white mica", "white mica", "white mica", "white mica", "chloritoid", "chloritoid", "chloritoid", "staurolite", "staurolite", "biotite", "biotite", "biotite", "biotite", "biotite", "cordierite", "cordierite", "sapphirine", "sapphirine", "sapphirine", "sapphirine", "osumilite", "fluid", "fluid", "fluid", "fluid", "fluid", "talc", "scapolite", "carpholite", "carpholite", "carpholite", "sudoite", "sudoite", "sudoite", "orthoamphibole", "orthoamphibole", "orthoamphibole", "ternary feldspar", "ternary feldspar", "ternary feldspar", "ternary feldspar", "calcite", "calcite", "calcite", "calcite", "calcite", "calcite", "calcite", "calcite", "ilmenite", "ilmenite", "ilmenite", "ilmenite", "nepheline", "clinohumite", "serpentine", "brucite", "pumpellyite", "stilpnomelane", "wüstite",) t = name .== abbreviations if any(t) common_names[findfirst(t)] elseif contains(name,"anorthite") "anorthite" elseif contains(name,"albite") "albite" elseif contains(name,"orthoclase") "orthoclase" else name end end export perplex_common_name ## -- Zircon saturation calculations """ ```julia M = Boehnke_tzircM(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5) ``` Calculate zircon saturation M-value based on major element concentrations Following the zircon saturation calibration of Boehnke, Watson, et al., 2013 (doi: 10.1016/j.chemgeo.2013.05.028) """ function Boehnke_tzircM(SiO2::Number, TiO2::Number, Al2O3::Number, FeOT::Number, MnO::Number, MgO::Number, CaO::Number, Na2O::Number, K2O::Number, P2O5::Number) #Cations Na = Na2O/30.9895 K = K2O/47.0827 Ca = CaO/56.0774 Al = Al2O3/50.9806 Si = SiO2/60.0843 Ti = TiO2/79.865 Fe = FeOT/71.8444 Mg = MgO/24.3050 Mn = MnO/70.9374 P = P2O5/70.9723 # Normalize cation fractions normconst = nansum((Na, K, Ca, Al, Si, Ti, Fe, Mg, Mn, P)) K, Na, Ca, Al, Si = (K, Na, Ca, Al, Si) ./ normconst M = (Na + K + 2*Ca)/(Al * Si) return M end function Boehnke_tzircM(SiO2::AbstractArray, TiO2::AbstractArray, Al2O3::AbstractArray, FeOT::AbstractArray, MnO::AbstractArray, MgO::AbstractArray, CaO::AbstractArray, Na2O::AbstractArray, K2O::AbstractArray, P2O5::AbstractArray) #Cations Na = Na2O/30.9895 K = K2O/47.0827 Ca = CaO/56.0774 Al = Al2O3/50.9806 Si = SiO2/60.0843 Ti = TiO2/79.865 Fe = FeOT/71.8444 Mg = MgO/24.3050 Mn = MnO/70.9374 P = P2O5/70.9723 # Normalize cation fractions normconst = nansum([Na K Ca Al Si Ti Fe Mg Mn P], dim=2) K .= K ./ normconst Na .= Na ./ normconst Ca .= Ca ./ normconst Al .= Al ./ normconst Si .= Si ./ normconst M = (Na + K + 2*Ca)./(Al .* Si) return M end export Boehnke_tzircM tzircM = Boehnke_tzircM export tzircM """ ```julia ZrSat = Boehnke_tzircZr(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5, T) ``` Calculate zircon saturation Zr concentration for a given temperature (in C) Following the zircon saturation calibration of Boehnke, Watson, et al., 2013 (doi: 10.1016/j.chemgeo.2013.05.028) """ function Boehnke_tzircZr(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5, T) M = Boehnke_tzircM(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5) # Boehnke, Watson, et al., 2013 ZrSat = @. max(496000. /(exp(10108. /(T+273.15) -0.32 -1.16*M)), 0) return ZrSat end export Boehnke_tzircZr tzircZr = Boehnke_tzircZr export tzircZr """ ```julia T = Boehnke_tzirc(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5, Zr) ``` Calculate zircon saturation temperature in degrees Celsius Following the zircon saturation calibration of Boehnke, Watson, et al., 2013 (doi: 10.1016/j.chemgeo.2013.05.028) """ function Boehnke_tzirc(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5, Zr) M = Boehnke_tzircM(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5) # Boehnke, Watson, et al., 2013 TC = @. 10108. / (0.32 + 1.16*M + log(496000. / Zr)) - 273.15 return TC end export Boehnke_tzirc tzirc = Boehnke_tzirc export tzirc ## --- Sphene saturation calculations function Ayers_tspheneC(SiO2::Number, TiO2::Number, Al2O3::Number, FeOT::Number, MnO::Number, MgO::Number, CaO::Number, Na2O::Number, K2O::Number, P2O5::Number) #Cations Na = Na2O/30.9895 K = K2O/47.0827 Ca = CaO/56.0774 Al = Al2O3/50.9806 Si = SiO2/60.0843 Ti = TiO2/79.865 Fe = FeOT/71.8444 Mg = MgO/24.3050 Mn = MnO/70.9374 P = P2O5/70.9723 # Normalize cation fractions normconst = nansum((Na, K, Ca, Al, Si, Ti, Fe, Mg, Mn, P)) K, Na, Ca, Al, Si = (K, Na, Ca, Al, Si) ./ normconst eCa = Ca - Al/2 + Na/2 + K/2 return (10 * eCa) / (Al * Si) end """ ```julia TiO2Sat = Ayers_tspheneTiO2(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5, T) ``` Calculate sphene saturation TiO2 concentration (in wt. %) for a given temperature (in C) following the sphene saturation calibration of Ayers et al., 2018 (doi: 10.1130/abs/2018AM-320568) """ function Ayers_tspheneTiO2(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5, TC) C = Ayers_tspheneC(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5) TiO2 = max(0.79*C - 7993/(TC+273.15) + 7.88, 0) return TiO2 end export Ayers_tspheneTiO2 """ ```julia TC = Ayers_tsphene(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5) ``` Calculate sphene saturation temperature in degrees Celsius Following the sphene saturation calibration of Ayers et al., 2018 (doi: 10.1130/abs/2018AM-320568) """ function Ayers_tsphene(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5) C = Ayers_tspheneC(SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5) TC = 7993/(0.79*C - TiO2 + 7.88) - 273.15 return TC end export Ayers_tsphene ## --- Rutile saturation calculations function FM(SiO2::Number, TiO2::Number, Al2O3::Number, FeOT::Number, MgO::Number, CaO::Number, Na2O::Number, K2O::Number, P2O5::Number) #Cations Na = Na2O/30.9895 K = K2O/47.0827 Ca = CaO/56.0774 Al = Al2O3/50.9806 Si = SiO2/60.0843 Ti = TiO2/79.865 Fe = FeOT/71.8444 Mg = MgO/24.3050 P = P2O5/70.9723 # Normalize cation fractions normconst = nansum((Na, K, Ca, Al, Si, Ti, Fe, Mg, P)) Na, K, Ca, Mg, Fe, Al, Si = (Na, K, Ca, Mg, Fe, Al, Si) ./ normconst return (Na + K + 2(Ca + Mg + Fe)) / (Al * Si) end """ ```julia TC = Hayden_trutile(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, P2O5) ``` Calculate rutile saturation temperature in degrees Celcius following the rutile saturation model of Hayden and Watson, 2007 (doi: 10.1016/j.epsl.2007.04.020) """ function Hayden_trutile(SiO2::Number, TiO2::Number, Al2O3::Number, FeOT::Number, MgO::Number, CaO::Number, Na2O::Number, K2O::Number, P2O5::Number) TK = 5305.0 / (7.95 - log10(TiO2 * 10000 * 47.867/(47.867+15.999*2)) + 0.124*FM(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, P2O5)) TC = TK - 273.15 end """ ```julia TC = Hayden_trutile(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, P2O5, TC) ``` Calculate the TiO2 concentration in weight percent required for rutile saturation at temperature `TC` degrees Celcius, following the rutile saturation model of Hayden and Watson, 2007 (doi: 10.1016/j.epsl.2007.04.020) """ function Hayden_trutileTiO2(SiO2::Number, TiO2::Number, Al2O3::Number, FeOT::Number, MgO::Number, CaO::Number, Na2O::Number, K2O::Number, P2O5::Number, TC::Number) TK = TC + 273.15 return exp10(7.95 - 5315.0/TK + 0.124*FM(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, P2O5)) * (47.867+15.999*2)/47.867 * 1e-5 end ## --- Monazite and xenotime saturation calculations """ ```julia LREEmolwt(La, Ce, Pr, Nd, Sm, Gd) ``` Returns the average molecular weight of the LREE considered in the REEt value from the monazite saturation model of Montel 1993 (doi: 10.1016/0009-2541(93)90250-M) """ function LREEmolwt(La, Ce, Pr, Nd, Sm, Gd) # All as PPM nansum((138.905477La, 140.1161Ce, 140.907662Pr, 144.2423Nd, 150.362Sm, 157.253Gd)) / nansum((La, Ce, Pr, Nd, Sm, Gd)) end """ ```julia LREEt(La, Ce, Pr, Nd, Sm, Gd) ``` Returns the sum of the LREE concentrations divided by their respective molar masses. If REE are input in parts per million by weight (ppmw), the result is in units of moles per megagram. This is equivalent to the REEt value from the monazite saturation model of Montel 1993 (doi: 10.1016/0009-2541(93)90250-M) """ function LREEt(La::T, Ce::T, Pr::T, Nd::T, Sm::T, Gd::T) where T <: Number # All as PPM nansum((La/138.905477, Ce/140.1161, Pr/140.907662, Nd/144.2423, Sm/150.362, Gd/157.253)) end function Montel_tmonaziteD(SiO2::T, TiO2::T, Al2O3::T, FeOT::T, MgO::T, CaO::T, Na2O::T, K2O::T, Li2O::T, H2O::T) where T <: Number #Cations H = H2O/9.0075 Li = Li2O/14.9395 Na = Na2O/30.9895 K = K2O/47.0827 Ca = CaO/56.0774 Al = Al2O3/50.9806 Si = SiO2/60.0843 Ti = TiO2/79.865 Fe = FeOT/71.8444 Mg = MgO/24.3050 # Anions # O = 0.5H + 0.5Li + 0.5Na + 0.5K + Ca + Mg + Fe + 1.5Al + 2Si + 2Ti # Calculate cation fractions normconst = nansum((H, Li, Na, K, Ca, Al, Si, Ti, Fe, Mg)) Li, Na, K, Ca, Al, Si = (Li, Na, K, Ca, Al, Si) ./ normconst # Note that the paper incorrectly describes this equation as being # written in terms of atomic percent ("at.%"), but in fact it appears # to require molar cation fractions, just as does the analagous M-value # equation found in zircon saturation papers D = (Na + K + Li + 2Ca) / (Al * (Al + Si)) return D end """ ```julia REEt = Montel_tmonaziteREE(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, Li2O, H2O, T) ``` Calculate monazite saturation REEt value (in [ppm/mol.wt.]) for a given temperature (in C) following the monazite saturation model of Montel 1993 (doi: 10.1016/0009-2541(93)90250-M), where: D = (Na + K + Li + 2Ca) / Al * 1/(Al + Si)) # all as molar cation fractions (not at. %!) ln(REEt) = 9.50 + 2.34D + 0.3879√H2O - 13318/T # H2O as wt.% REEt = Σ REEᵢ(ppm) / at. weight (g/mol) """ function Montel_tmonaziteREE(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, Li2O, H2O, T) D = Montel_tmonaziteD(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, Li2O, H2O) # input as wt. % REEt = exp(9.50 + 2.34*D + 0.3879*sqrt(H2O) - 13318/(T+272.15)) return REEt end export Montel_tmonaziteREE """ ```julia TC = Montel_tmonazite(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, Li2O, H2O, La, Ce, Pr, Nd, Sm, Gd) ``` Calculate monazite saturation temperature in degrees Celcius following the monazite saturation model of Montel 1993 (doi: 10.1016/0009-2541(93)90250-M) """ function Montel_tmonazite(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, Li2O, H2O, La, Ce, Pr, Nd, Sm, Gd) D = Montel_tmonaziteD(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, Li2O, H2O) # input as wt. % REEt = LREEt(La, Ce, Pr, Nd, Sm, Gd) # input in PPM TC = 13318/(9.50 + 2.34*D + 0.3879*sqrt(H2O) - log(REEt)) - 272.15 return TC end export Montel_tmonazite """ ```julia LREEt = Rusiecka_tmonaziteREE(P_ppm, TC) ``` Calculate the LREEt (mol/Megagram) value required for monazite saturation at a temperature of `TC` degrees celcius and `P` ppmw phosphorous present, following the solubility model of Rusiecka & Baker, 2019 (doi: 10.2138/am-2019-6931) """ function Rusiecka_tmonaziteREE(P_ppm, TC) #[LREE][P] (mol^2/100g^2) = 10^(2.3055 - 1.029e4/T) Kₛₚ = 10^(2.3055 - 1.029e4/(TC + 273.15)) LREE_μmol_g = Kₛₚ/(P_ppm/10000/30.97)*10000 return LREE_μmol_g end """ ```julia LREEt = Rusiecka_txenotimeY(P_ppm, TC) ``` Calculate the Y (ppmw) concentration required for xenotime saturation at a temperature of `TC` degrees celcius and `P` ppmw phosphorous present, following the solubility model of Rusiecka & Baker, 2019 (doi: 10.2138/am-2019-6931) """ function Rusiecka_txenotimeY(P_ppm, TC) # [Y][P] (mol^2/100g^2) = 10^(3.6932 - 1.1469e4/T) Kₛₚ = 10^(3.6932 - 1.1469e4/(TC + 273.15)) Y_ppm = Kₛₚ/(P_ppm/10000/30.97)*10000*88.905 return Y_ppm end ## --- Apatite saturation calculations """ ```julia P2O5 = Harrison_tapatiteP2O5(SiO2, Al2O3, CaO, Na2O, K2O, T) ``` Calculate `P2O5` concentration (in wt.%) required for apatite saturation at a given `T` (in C) following the apatite saturation model of Harrison and Watson 1984 (doi: 10.1016/0016-7037(84)90403-4) with the correction of Bea et al. 1992 (doi: 10.1016/0024-4937(92)90033-U) where applicable """ function Harrison_tapatiteP2O5(SiO2::T, Al2O3::T, CaO::T, Na2O::T, K2O::T, TC::T) where T <: Number TK = TC + 273.16 ASI = (Al2O3/50.9806)/(CaO/56.0774 + Na2O/30.9895 + K2O/47.0827) P2O5sat = 52.5525567/exp( (8400 + 2.64e4(SiO2/100 - 0.5))/TK - (3.1 + 12.4(SiO2/100 - 0.5)) ) return max(P2O5sat, P2O5sat * (ASI-1) * 6429/TK) end function Harrison_tapatiteP2O5(SiO2::T, TC::T) where T <: Number TK = TC + 273.16 P2O5sat = 52.5525567/exp( (8400 + 2.64e4(SiO2/100 - 0.5))/TK - (3.1 + 12.4(SiO2/100 - 0.5)) ) return P2O5sat end export Harrison_tapatiteP2O5 """ As `Harrison_tapatiteP2O5`, but returns saturation phosphorus concentration in PPM P """ Harrison_tapatiteP(x...) = Harrison_tapatiteP2O5(x...) * 10_000 / 2.2913349 export Harrison_tapatiteP """ ```julia TC = Harrison_tapatite(SiO2, P2O5) ``` Calculate apatite saturation temperature in degrees Celcius following the apatite saturation model of Harrison and Watson 1984 (doi: 10.1016/0016-7037(84)90403-4) """ function Harrison_tapatite(SiO2::T, P2O5::T) where T <: Number TK = (8400 + 2.64e4(SiO2/100 - 0.5)) / (log(52.5525567/P2O5) + (3.1 + 12.4(SiO2/100 - 0.5))) return TK - 273.16 end export Harrison_tapatite """ ```julia P2O5 = Tollari_tapatiteP2O5(SiO2, CaO, T) ``` Calculate `P2O5` concentration (in wt.%) required for apatite saturation at a given `T` (in C) following the apatite saturation model of Tollari et al. 2006 (doi: 10.1016/j.gca.2005.11.024) """ function Tollari_tapatiteP2O5(SiO2::T, CaO::T, TC::T) where T <: Number # Using conversions from Tollari et al. SiO2ₘ = 1.11 * SiO2 CaOₘ = 1.18 * CaO TK = TC+273.15 P2O5satₘ = exp(TK * (-0.8579/(139.0 - SiO2ₘ) + 0.0165) - 10/3*log(CaOₘ)) return P2O5satₘ / 0.47 end """ ```julia TC = Tollari_tapatite(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, P2O5) ``` Calculate apatite saturation temperature in degrees Celcius following the apatite saturation model of Tollari et al. 2006 (doi: 10.1016/j.gca.2005.11.024) """ function Tollari_tapatite(SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, P2O5) # Cations Na2 = Na2O/61.97854 K2 = K2O/94.19562 Ca = CaO/56.0774 Al2 = Al2O3/101.960077 Si = SiO2/60.0843 Ti = TiO2/79.865 Fe = FeOT/71.8444 Mg = MgO/24.3050 P2 = P2O5/141.94252 # Normalize to mole percent oxides normconst = nansum((Na2, K2, Ca, Al2, Si, Ti, Fe, Mg, P2)) CaOₘ = Ca / normconst * 100 SiO2ₘ = Si / normconst * 100 P2O5ₘ = P2 / normconst * 100 TC = (log(P2O5ₘ) + 10/3*log(CaOₘ)) / (-0.8579/(139.0 - SiO2ₘ) + 0.0165) - 273.15 return TC end ## --- Ti-in-zircon thermometry """ ```julia Ti = Ferry_Ti_in_zircon(TC::Number, aSiO2::Number, aTiO2::Number) ``` Parts per million by weight of titanium in zircon at temperature `TC` degrees Celsius given `aSiO2` silica activity and `aTiO2` titanium activity, following the equations of Ferry and Watson, 2007. (doi: 10.1007/s00410-007-0201-0) """ function Ferry_Ti_in_zircon(TC::Number, aSiO2::Number, aTiO2::Number) exp10(5.711 - 4800.0/(TC+273.15) - log10(aSiO2) +log10(aTiO2)) end """ ```julia TC = Ferry_Ti_in_zirconT(TC::Number, aSiO2::Number, aTiO2::Number) ``` Calculate titanium-in-zircon temperature in degrees Celcius `TC` given `Ti` parts per million by weight of titanium in zircon, `aSiO2` silica activity and `aTiO2` titanium activity, following the equations of Ferry and Watson, 2007. (doi: 10.1007/s00410-007-0201-0) """ function Ferry_Ti_in_zirconT(Ti::Number, aSiO2::Number, aTiO2::Number) 1 / ((5.711) - log10(aSiO2) + log10(aTiO2) - log10(Ti)) * (4800.0) .- 273.15 end """ ```julia Ti = Crisp_Ti_in_zircon(TC::Number, Pbar::Number, aSiO2::Number, aTiO2::Number) ``` Parts per million by weight of titanium in zircon at temperature `TC` degrees Celsius and pressure `Pbar` bar given `aSiO2` silica activity and `aTiO2` titanium activity, following the equations of Crisp et al., 2023. (doi: 10.1016/j.gca.2023.04.031) """ function Crisp_Ti_in_zircon(TC::Number, Pbar::Number, aSiO2::Number, aTiO2::Number) T = TC+273.15 P = Pbar*1e-4 f = 1.0/(1.0+10.0^(0.775P - 3.3713)) exp10(5.84 - 4800.0/T - 0.12*P - 0.0056*P^3 - log10(aSiO2)*f +log10(aTiO2)) / f end """ ```julia Zr = Ferry_Zr_in_rutile(TC::Number, aSiO2::Number) ``` Parts per million by weight of zirconium in rutile at temperature `TC` degrees Celsius given `aSiO2` silica activity, following the equations of Ferry and Watson, 2007. (doi: 10.1007/s00410-007-0201-0) """ function Ferry_Zr_in_rutile(TC::Number, aSiO2::Number) exp10(7.420 - 4530.0/(TC+273.15) - log10(aSiO2)) end # calculate the temperature of rutile saturation in degrees Celsius """ ```julia TC = Ferry_Zr_in_rutileT(Zr::Number, aSiO2::Number) ``` Calculate zirconium-in-rutile temperature in degrees Celcius given `Zr` parts per million by weight of zirconium in rutile and `aSiO2` silica activity, following the equations of Ferry and Watson, 2007. (doi: 10.1007/s00410-007-0201-0) """ function Ferry_Zr_in_rutileT(Zr::Number, aSiO2::Number) 1 / ((7.420) - log10(aSiO2) - log10(Zr)) * (4530.0) .- 273.15 end ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
1694
## --- Hafnium isotopes # Calculate the initial Hf ratio and epsilon Hf at time t Ma function eHf(Hf176_Hf177, Lu176_Hf177, t; eHfOnly::Bool=true) # Lutetium decay constant (Soderlund et al., 2004 lambda = 1.867E-11 # Present-day CHUR composition (Bouvier et al., 2008) CHUR_Hf176_Hf177 = 0.282785 CHUR_Lu176_Hf177 = 0.0336 # Calculate initial Hf ratio at time t Hf176_Hf177_t = Hf176_Hf177 .- Lu176_Hf177.*(exp.(t .* 10^6*lambda) .- 1) # Calculate CHUR Hf ratio at time t CHUR_Hf176_Hf177_t = CHUR_Hf176_Hf177 .- CHUR_Lu176_Hf177.*(exp.(t .* 10^6*lambda) .- 1) # Calculate corresponding epsilon Hf eHf=(Hf176_Hf177_t ./ CHUR_Hf176_Hf177_t .- 1) .* 10^4 if eHfOnly return eHf else return (eHf, Hf176_Hf177_t) end end export eHf function bin_bsr_eHf(x,Hf176_Hf177,Lu176_Hf177,age,min,max,nbins,x_sigma,Hf176_Hf177_sigma,Lu176_Hf177_sigma,age_sigma,nresamples) data = hcat(x,Hf176_Hf177,Lu176_Hf177,age) sigma = hcat(x_sigma,Hf176_Hf177_sigma,Lu176_Hf177_sigma,age_sigma) means = Array{Float64}(undef,nbins,nresamples) c = Array{Float64}(undef,nbins) for i=1:nresamples dbs = bsresample(data,sigma,length(age)) eHf_resampled = eHf(dbs[:,2], dbs[:,3], dbs[:,4]) (c,m,s) = binmeans(dbs[:,1], eHf_resampled, min, max, nbins) means[:,i] = m end m = nanmean(means,dim=2) el = m - nanpctile(means,2.5,dim=2) eu = nanpctile(means,97.5,dim=2) - m return (c, m, el, eu) end export bin_bsr_eHf ## ---
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
43145
## --- Bootstrap resampling # Kernel functions for bsr! @inline function uniform(rng::AbstractRNG, mu, halfwidth) mu + halfwidth * (2*rand(rng)-1) end export uniform @inline function triangular(rng::AbstractRNG, mu, halfwidth) mu + halfwidth * (rand(rng) - rand(rng)) end export triangular @inline function gaussian(rng::AbstractRNG, mu, sigma) mu + sigma * randn(rng) end export gaussian """ ```julia bsr!([f::Function=gaussian], resampled::Array, index::Vector{Int}, data, sigma, p; \trng::AbstractRNG=MersenneTwister() ) ``` Fill `resampled` with data boostrap resampled from a (sample-per-row / element-per-column) dataset `data` with uncertainties `sigma` and resampling probabilities `p`, optionally using random numbers generated by `f` where `f` is a function of the form `f(rng, data[i], sigma[i])` """ function bsr!(f::Function, resampled::Array, index::Vector{Int}, data::AbstractVecOrMat, sigma::Number, p::Number; rng::AbstractRNG=MersenneTwister()) # Prepare ndata = size(data,1) nrows = size(resampled,1) ncolumns = size(resampled,2) # Resample n = 0 nrows_accepted = 0 while n < nrows # Compare acceptance probability p against Unif(0,1) @inbounds for i=1:ndata if rand(rng) < p nrows_accepted += 1 index[nrows_accepted] = i if nrows_accepted == nrows break end end end nrows_new = min(nrows_accepted - n, nrows - n) # Columns go in outer loop because of column major indexing for j=1:ncolumns # Optimized inner loop @inbounds for i = 1:nrows_new row = index[n+i] resampled[n+i,j] = f(rng, data[row,j], sigma) end end # Keep track of current filled rows n += nrows_new end return resampled end function bsr!(f::Function, resampled::Array, index::Vector{Int}, data::AbstractVecOrMat, sigma::Number, p::AbstractVector; rng::AbstractRNG=MersenneTwister()) # Prepare ndata = size(data,1) nrows = size(resampled,1) ncolumns = size(resampled,2) # Resample n = 0 nrows_accepted = 0 while n < nrows # Compare acceptance probability p against Unif(0,1) @inbounds for i=1:ndata if rand(rng) < p[i] nrows_accepted += 1 index[nrows_accepted] = i if nrows_accepted == nrows break end end end nrows_new = min(nrows_accepted - n, nrows - n) # Columns go in outer loop because of column major indexing for j=1:ncolumns # Optimized inner loop @inbounds for i = 1:nrows_new row = index[n+i] resampled[n+i,j] = f(rng, data[row,j], sigma) end end # Keep track of current filled rows n += nrows_new end return resampled end function bsr!(f::Function, resampled::Array, index::Vector{Int}, data::AbstractMatrix, sigma::AbstractVector, p::Number; rng::AbstractRNG=MersenneTwister()) # Prepare ndata = size(data,1) nrows = size(resampled,1) ncolumns = size(resampled,2) # Resample n = 0 nrows_accepted = 0 while n < nrows # Compare acceptance probability p against Unif(0,1) @inbounds for i=1:ndata if rand(rng) < p nrows_accepted += 1 index[nrows_accepted] = i if nrows_accepted == nrows break end end end nrows_new = min(nrows_accepted - n, nrows - n) # Columns go in outer loop because of column major indexing for j=1:ncolumns # Optimized inner loop @inbounds for i = 1:nrows_new row = index[n+i] resampled[n+i,j] = f(rng, data[row,j], sigma[j]) end end # Keep track of current filled rows n += nrows_new end return resampled end function bsr!(f::Function, resampled::Array, index::Vector{Int}, data::AbstractMatrix, sigma::AbstractVector, p::AbstractVector; rng::AbstractRNG=MersenneTwister()) # Prepare ndata = size(data,1) nrows = size(resampled,1) ncolumns = size(resampled,2) # Resample n = 0 nrows_accepted = 0 while n < nrows # Compare acceptance probability p against Unif(0,1) @inbounds for i=1:ndata if rand(rng) < p[i] nrows_accepted += 1 index[nrows_accepted] = i if nrows_accepted == nrows break end end end nrows_new = min(nrows_accepted - n, nrows - n) # Columns go in outer loop because of column major indexing for j=1:ncolumns # Optimized inner loop @inbounds for i = 1:nrows_new row = index[n+i] resampled[n+i,j] = f(rng, data[row,j], sigma[j]) end end # Keep track of current filled rows n += nrows_new end return resampled end function bsr!(f::Function, resampled::Array, index::Vector{Int}, data::AbstractArray, sigma::AbstractArray, p::Number; rng::AbstractRNG=MersenneTwister()) # Prepare ndata = size(data,1) nrows = size(resampled,1) ncolumns = size(resampled,2) # Resample n = 0 nrows_accepted = 0 while n < nrows # Compare acceptance probability p against Unif(0,1) @inbounds for i=1:ndata if rand(rng) < p nrows_accepted += 1 index[nrows_accepted] = i if nrows_accepted == nrows break end end end nrows_new = min(nrows_accepted - n, nrows - n) # Columns go in outer loop because of column major indexing for j=1:ncolumns # Optimized inner loop @inbounds for i = 1:nrows_new row = index[n+i] resampled[n+i,j] = f(rng, data[row,j], sigma[row,j]) end end # Keep track of current filled rows n += nrows_new end return resampled end function bsr!(f::Function, resampled::Array, index::Vector{Int}, data::AbstractArray, sigma::AbstractArray, p::AbstractVector; rng::AbstractRNG=MersenneTwister()) # Prepare ndata = size(data,1) nrows = size(resampled,1) ncolumns = size(resampled,2) # Resample n = 0 nrows_accepted = 0 while n < nrows # Compare acceptance probability p against Unif(0,1) @inbounds for i=1:ndata if rand(rng) < p[i] nrows_accepted += 1 index[nrows_accepted] = i if nrows_accepted == nrows break end end end nrows_new = min(nrows_accepted - n, nrows - n) # Columns go in outer loop because of column major indexing for j=1:ncolumns # Optimized inner loop @inbounds for i = 1:nrows_new row = index[n+i] resampled[n+i,j] = f(rng, data[row,j], sigma[row,j]) end end # Keep track of current filled rows n += nrows_new end return resampled end # default method if f not specified bsr!(resampled::Array, index::Vector{Int}, data::AbstractArray, sigma, p; rng=MersenneTwister()) = bsr!(gaussian, resampled, index, data, sigma, p, rng=rng) export bsr! """ ```julia resampled = bsresample(data::AbstractArray, sigma, nrows, [p]; \t kernel = gaussian, \t rng = MersenneTwister(), \t return_index = false ) ``` Bootstrap resample a (sample-per-row / element-per-column) array of `data` with uncertainties `sigma` and resampling probabilities `p` """ function bsresample(data::AbstractArray, sigma, nrows::Integer, p=min(0.2,nrows/size(data,1)); kernel = gaussian, rng = MersenneTwister(), return_index = false, ) index = Array{Int}(undef, nrows) resampled = Array{float(eltype(data))}(undef, nrows, size(data,2)) bsr!(kernel, resampled, index, data, sigma, p, rng=rng) return return_index ? (resampled, index) : resampled end """ ```julia resampled = bsresample(dataset::Union{Dict,NamedTuple}, nrows, [elements], [p]; \t kernel = gaussian, \t rng = MersenneTwister() ) ``` Bootstrap resample a dictionary-based `dataset` with uncertainties stored either in `dataset["err"]` or `dataset["[variable]_sigma"]` """ function bsresample(dataset::Dict, nrows::Integer, elements=dataset["elements"], p=min(0.2,nrows/length(dataset[first(elements)])); kernel = gaussian, rng = MersenneTwister(), sigma = :auto, ) # 2d array of nominal values data = unelementify(dataset, elements, floatout=true) # 2d array of absolute 1-sigma uncertainties if sigma === :auto if haskey(dataset, "err") && isa(dataset["err"], Dict) sigma = unelementify(dataset["err"], elements, floatout=true) else sigma = unelementify(dataset, elements.*"_sigma", floatout=true) end end # Resample sdata = bsresample(data, sigma, nrows, p, kernel=kernel, rng=rng) return elementify(sdata, elements, skipstart=0, importas=:Dict) end function bsresample(dataset::NamedTuple, nrows, elements, p=min(0.2,nrows/length(dataset[first(elements)])); kernel = gaussian, rng = MersenneTwister(), sigma = :auto, ) # 2d array of nominal values data = unelementify(dataset, elements, floatout=true) # 2d array of absolute 1-sigma uncertainties if sigma === :auto elements_sigma = (String(e)*"_sigma" for e in elements) sigma = unelementify(dataset, elements_sigma, floatout=true) end # Resample sdata = bsresample(data, sigma, nrows, p, kernel=kernel, rng=rng) return elementify(sdata, elements, skipstart=0, importas=:Tuple) end export bsresample function randsample!(resampled::DenseArray, data::Collection, nrows::Integer, p::Number, rng::AbstractRNG=MersenneTwister(), buffer::Vector{Int}=Array{Int}(undef,size(data,1))) # Prepare ndata = size(data,1) ncolumns = size(resampled,2) # Resample n = 0 while n < nrows # Compare acceptance probability p against Unif(0,1) nrows_accepted = 0 @inbounds for i=1:ndata if rand(rng) < p nrows_accepted += 1 buffer[nrows_accepted] = i end end nrows_new = min(nrows_accepted, nrows - n) # Columns go in outer loop because of column major indexing @inbounds @simd for j=1:ncolumns # Optimized inner loop for i = 1:nrows_new resampled[n+i,j] = data[buffer[i],j] end end # Keep track of current filled rows n += nrows_new end return resampled end function randsample!(resampled::DenseArray, data::Collection, nrows::Integer, p::AbstractVector, rng::AbstractRNG=MersenneTwister(), buffer::Vector{Int}=Array{Int}(undef,size(data,1))) # Prepare ndata = size(data,1) ncolumns = size(resampled,2) # Resample n = 0 while n < nrows # Compare acceptance probability p against Unif(0,1) nrows_accepted = 0 @inbounds for i=1:ndata if rand(rng) < p[i] nrows_accepted += 1 buffer[nrows_accepted] = i end end nrows_new = min(nrows_accepted, nrows - n) # Columns go in outer loop because of column major indexing @inbounds @simd for j=1:ncolumns # Optimized inner loop for i = 1:nrows_new resampled[n+i,j] = data[buffer[i],j] end end # Keep track of current filled rows n += nrows_new end return resampled end """ ```julia randsample(data, nrows, [p]) ``` Bootstrap resample (without uncertainty) a `data` array to length `nrows`. Optionally provide weights `p` either as a vector (one-weight-per-sample) or scalar. """ function randsample(data::Collection, nrows::Integer, p=min(0.2,nrows/size(data,1)); rng::AbstractRNG=MersenneTwister(), buffer::Vector{Int}=Array{Int}(undef,size(data,1)) ) resampled = Array{eltype(data)}(undef,nrows,size(data,2)) return randsample!(resampled, data, nrows, p, rng, buffer) end # Second method for randsample that takes a dictionary as input """ ```julia randsample(dataset::Dict, nrows, [elements], [p]) ``` Bootstrap resample (without uncertainty) a `dataset` dict to length `nrows`. Optionally provide weights `p` either as a vector (one-weight-per-sample) or scalar. """ function randsample(dataset::Dict, nrows::Integer, elements=dataset["elements"], p=min(0.2,nrows/length(dataset[first(elements)]))) data = unelementify(dataset, elements, floatout=true) sdata = randsample(data, nrows, p) return elementify(sdata, elements, skipstart=0, importas=:Dict) end export randsample ## --- Bin a dataset by a given independent variable """ ```julia (bincenters, N) = bincounts(x::AbstractArray, xmin::Number, xmax::Number, nbins::Integer; \trelbinwidth::Number=1 ) ``` Tally the number of samples that fall into each of `nbins` equally spaced `x` bins between `xmin` and `xmax`, aligned with bin edges as `xmin:(xmax-xmin)/nbins:xmax` A `relbinwidth` of `1` represents normal space-filling bins, while a larger value implies bin overlap. See also `histcounts` for a more efficient implementation without variable bin width. """ bincounts(x::Collection, edges::AbstractRange; kwargs...) = bincounts(x,minimum(edges),maximum(edges),length(edges); kwargs...) function bincounts(x::Collection, xmin::Number, xmax::Number, nbins::Integer; relbinwidth::Number=1 ) # Tally the number of samples (either resampled or corrected/original) that fall into each bin binwidth = (xmax-xmin)/nbins hw = binwidth*relbinwidth/2 bincenters = (xmin+binwidth/2):binwidth:(xmax-binwidth/2) # Add up the results N = fill(0, nbins) @inbounds for n ∈ eachindex(bincenters) l, u = bincenters[n]-hw, bincenters[n]+hw for i ∈ eachindex(x) N[n] += l < x[i] <= u end end return bincenters, N end export bincounts """ ```julia binmeans(x, y, xmin:step:xmax, [weight]; resamplingratio=1, relbinwidth=1) binmeans(x, y, xmin, xmax, nbins, [weight]; resamplingratio=1, relbinwidth=1) ``` The means (ignoring NaNs) of `y` values binned by `x`, into each of `nbins` equally spaced `x` bins between `xmin` and `xmax`, returning bincenters, means, and standard errors of the mean. A `relbinwidth` of `1` represents normal space-filling bins, while a larger value implies bin overlap. To more efficiently calculate binned means without variable bin widths (or suncertainties), see instead `nanbinmean`/`nanbinmean!`. ### Examples ```julia (c,m,e) = binmeans(x, y, 0, 4000, 40) ``` """ binmeans(x::Collection, y::Collection, edges::AbstractRange, args...; kwargs...) = binmeans(x,y,minimum(edges),maximum(edges),length(edges), args...; kwargs...) function binmeans(x::Collection, y::Collection, xmin::Number, xmax::Number, nbins::Integer; resamplingratio::Number=1, relbinwidth::Number=1 ) binwidth = (xmax-xmin)/nbins hw = binwidth*relbinwidth/2 bincenters = (xmin+binwidth/2):binwidth:(xmax-binwidth/2) T = Base.promote_op(/, eltype(y), Int) means = Array{T}(undef,nbins) errors = Array{T}(undef,nbins) t = falses(size(y)) for i = 1:nbins t .= (bincenters[i]-hw) .< x .<= (bincenters[i]+hw) yₜ = view(y,t) means[i] = nanmean(yₜ) errors[i] = nanstd(yₜ, mean=means[i]) * sqrt(resamplingratio / count(t)) end return bincenters, means, errors end function binmeans(x::Collection, y::Collection, min::Number, max::Number, nbins::Integer, weight::Collection; resamplingratio::Number=1, relbinwidth::Number=1 ) binwidth = (max-min)/nbins hw = binwidth*relbinwidth/2 bincenters = (min+binwidth/2):binwidth:(max-binwidth/2) T = Base.promote_op(/, eltype(y), Int) means = Array{T}(undef,nbins) errors = Array{T}(undef,nbins) t = falses(size(y)) for i = 1:nbins t .= (bincenters[i]-hw) .< x .<= (bincenters[i]+hw) yₜ, w = view(y,t), view(weight,t) means[i] = nanmean(yₜ, w) errors[i] = nanstd(yₜ, w) * sqrt(resamplingratio / count(t)) end return bincenters, means, errors end export binmeans """ ```julia (c,m,e) = binmedians(x::AbstractArray, y::AbstractArray, min::Number, max::Number, nbins::Integer; \tresamplingratio::Number=1 \trelbinwidth::Number=1 ) ``` The medians (ignoring NaNs) of `y` values binned by `x`, into each of `nbins` equally spaced `x` bins between `xmin` and `xmax`, returning bincenters, medians, and equivalent standard errors of the mean (1.4828 * median abolute deviation). A `relbinwidth` of `1` represents normal space-filling bins, while a larger value implies bin overlap. To more efficiently calculate binned medians without variable bin widths (or suncertainties), see instead `nanbinmedian`/`nanbinmedian!`. ### Examples ```julia (c,m,e) = binmedians(x, y, 0, 4000, 40) ``` """ binmedians(x::Collection, y::Collection, edges::AbstractRange; kwargs...) = binmedians(x,y,minimum(edges),maximum(edges),length(edges); kwargs...) function binmedians(x::Collection, y::Collection, min::Number, max::Number, nbins::Integer; resamplingratio::Number=1, relbinwidth::Number=1 ) binwidth = (max-min)/nbins hw = binwidth*relbinwidth/2 bincenters = (min+binwidth/2):binwidth:(max-binwidth/2) T = Base.promote_op(/, eltype(y), Int) medians = Array{T}(undef,nbins) errors = Array{T}(undef,nbins) t = falses(size(y)) for i = 1:nbins t .= ((bincenters[i]-hw) .< x .<= (bincenters[i]+hw)) yₜ = y[t] medians[i] = nanmedian!(yₜ) errors[i] = 1.4826 * nanmad!(yₜ) * sqrt(resamplingratio / countnotnans(yₜ)) end return bincenters, medians, errors end export binmedians ## --- Bin bootstrap resampled data """ ```julia bin_bsr([f!::Function=nanbinmean!], x::Vector, y::VecOrMat, xmin, xmax, nbins, [w]; \tx_sigma = zeros(size(x)), \ty_sigma = zeros(size(y)), \tnresamplings = 1000, \tsem = :sigma, \tp = 0.2 ) ``` Returns the bincenters `c`, means or medians `m`, and uncertainties of the mean or median for a variable `y` binned by independent variable `x` into `nbins` equal bins between `xmin` and `xmax`, after `nresamplings` boostrap resamplings with acceptance probability `p`. If a 2-d array (matrix) of `y` values is provided, each column will be treated as a separate variable, means and uncertainties will be returned column-wise. Optional keyword arguments and defaults: x_sigma = zeros(size(x)) A vector representing the uncertainty (standard deviation) of each x value y_sigma = zeros(size(y)) A vector representing the uncertainty (standard deviation) of each y value nresamplings = 1000 The number of resamplings to conduct sem = :sigma Format of the uncertainty estimate of the distribution of the mean. If `:sigma` is chosen, a tuple of three vectors `(c, m, e)` will be returned, where `e` is the standard error of the mean. If `:CI` or `:pctile` is chosen, a tuple of four vectors `(c, m, el, eu)` will be returned, where `el` and `eu` are the lower and upper bounds of the 95% confidence interval. p = 0.2 Resampling probabilities, either as a scalar or a vector of the same length as `x` ### Examples: ```julia (c,m,e) = bin_bsr(nanbinmedian!, x, y, 0, 4000, 40, x_sigma=0.05x, p=probability, sem=:sigma) ``` ```julia (c,m,el,eu) = bin_bsr(nanbinmean!, x, y, 0, 4000, 40, x_sigma=0.05x, p=probability, sem=:pctile) ``` """ function bin_bsr(f!::Function, x::AbstractVector, y::AbstractVector, xmin, xmax, nbins::Integer; x_sigma = zeros(size(x)), y_sigma = zeros(size(y)), nresamplings = 1000, sem = :credibleinterval, p = 0.2 ) data = hcat(x, y) sigma = hcat(x_sigma, y_sigma) binwidth = (xmax-xmin)/nbins nrows = size(data,1) ncols = size(data,2) # Preallocate dbs = Array{Float64}(undef, nrows, ncols) index = Array{Int}(undef, nrows) # Must be preallocated even if we don't want it later means = Array{Float64}(undef, nbins, nresamplings) rng = MersenneTwister() N = Array{Int}(undef, nbins) # Resample for i=1:nresamplings bsr!(dbs, index, data, sigma, p, rng=rng) # Boostrap Resampling f!(view(means,:,i), N, view(dbs,:,1), view(dbs,:,2), xmin, xmax, nbins) end # Return summary of results c = (xmin+binwidth/2):binwidth:(xmax-binwidth/2) # Bin centers m = nanmean(means,dim=2) # Mean-of-means if sem === :sigma # Standard deviation of means (sem) e = nanstd(means,dim=2) return c, m, e elseif sem === :credibleinterval || sem === :CI || sem === :pctile # Lower bound of central 95% CI of means el = m .- nanpctile!(means,2.5,dim=2) # Upper bound of central 95% CI of means eu = nanpctile!(means,97.5,dim=2) .- m return c, m, el, eu else return c, means end end function bin_bsr(f!::Function, x::AbstractVector, y::AbstractMatrix, xmin, xmax, nbins::Integer; x_sigma = zeros(size(x)), y_sigma = zeros(size(y)), nresamplings = 1000, sem = :credibleinterval, p = 0.2 ) data = hcat(x, y) sigma = hcat(x_sigma, y_sigma) dtype = float(eltype(data)) binwidth = (xmax-xmin)/nbins nrows = size(data,1) ncols = size(data,2) # Preallocate dbs = Array{dtype}(undef, nrows, ncols) means = Array{dtype}(undef, nbins, nresamplings, size(y,2)) index = Array{Int}(undef, nrows) # Must be preallocated even if we don't want it later rng = MersenneTwister() N = Array{Int}(undef, nbins, size(y,2)) # Resample for i=1:nresamplings bsr!(dbs, index, data, sigma, p, rng=rng) # Boostrap Resampling f!(view(means,:,i,:), N, view(dbs,:,1), view(dbs,:,2:1+size(y,2)), xmin, xmax, nbins) end # Return summary of results c = (xmin+binwidth/2):binwidth:(xmax-binwidth/2) # Bin centers if sem === :sigma m = Array{dtype}(undef, nbins, size(y,2)) e = Array{dtype}(undef, nbins, size(y,2)) for j = 1:size(y,2) m[:,j] .= nanmean(view(means,:,:,j),dim=2) # Mean-of-means e[:,j] .= nanstd(view(means,:,:,j),dim=2) # Standard deviation of means (sem) end return c, m, e elseif sem === :credibleinterval || sem === :CI || sem === :pctile m = Array{dtype}(undef, nbins, size(y,2)) el = Array{dtype}(undef, nbins, size(y,2)) eu = Array{dtype}(undef, nbins, size(y,2)) for j = 1:size(y,2) m[:,j] .= nanmean(view(means,:,:,j),dim=2) # Mean-of-means el[:,j] .= m[:,j] .- nanpctile!(view(means,:,:,j), 2.5, dim=2) eu[:,j] .= nanpctile!(view(means,:,:,j), 97.5, dim=2) .- m[:,j] end return c, m, el, eu else return c, means end end function bin_bsr(f!::Function, x::AbstractVector, y::AbstractVector, xmin, xmax, nbins::Integer, w::AbstractVector; x_sigma = zeros(size(x)), y_sigma = zeros(size(x)), nresamplings = 1000, sem = :credibleinterval, p = 0.2 ) data = hcat(x, y, w) sigma = hcat(x_sigma, y_sigma, zeros(size(w))); binwidth = (xmax-xmin)/nbins nrows = size(data,1) ncols = size(data,2) # Preallocate dbs = Array{Float64}(undef, nrows, ncols) means = Array{Float64}(undef, nbins, nresamplings) index = Array{Int}(undef, nrows) # Must be preallocated even if we don't want it later rng = MersenneTwister() N = Array{Int}(undef, nbins) # Resample for i=1:nresamplings bsr!(dbs, index, data, sigma, p, rng=rng) # Boostrap Resampling f!(view(means,:,i), N, view(dbs,:,1), view(dbs,:,2), view(dbs,:,3), xmin, xmax, nbins) end # Return summary of results c = (xmin+binwidth/2):binwidth:(xmax-binwidth/2) # Bin centers m = nanmean(means,dim=2) # Mean-of-means if sem === :sigma # Standard deviation of means (sem) e = nanstd(means,dim=2) return c, m, e elseif sem === :credibleinterval || sem === :CI || sem === :pctile # Lower bound of central 95% CI of means el = m .- nanpctile!(means,2.5,dim=2) # Upper bound of central 95% CI of means eu = nanpctile!(means,97.5,dim=2) .- m return c, m, el, eu else return c, means end end bin_bsr(x::AbstractVector, y::AbstractVecOrMat, args...; sem=:sigma, kwargs...) = bin_bsr(nanbinmean!, x, y, args...; sem=sem, kwargs...) export bin_bsr bin_bsr_means(args...; kwargs...) = bin_bsr(nanbinmean!, args...; kwargs...) export bin_bsr_means bin_bsr_medians(args...; kwargs...) = bin_bsr(nanbinmedian!, args...; kwargs...) export bin_bsr_medians """ ```julia (c, m, el, eu) = bin_bsr_ratios([f!::Function=nanbinmean!], x::Vector, num::Vector, denom::Vector, xmin, xmax, nbins, [w]; \tx_sigma = zeros(size(x)), \tnum_sigma = zeros(size(num)), \tdenom_sigma = zeros(size(denom)), \tnresamplings = 1000, \tp::Union{Number,Vector} = 0.2 ) ``` Returns the bincenters `c`, means `m`, as well as upper (`el`) and lower (`eu`) 95% CIs of the mean for a ratio `num`/`den` binned by `x` into `nbins` equal bins between `xmin` and `xmax`, after `nresamplings` boostrap resamplings with acceptance probability `p`. """ function bin_bsr_ratios(f!::Function, x::AbstractVector, num::AbstractVector, denom::AbstractVector, xmin, xmax, nbins::Integer; x_sigma::AbstractVector=zeros(size(x)), num_sigma::AbstractVector=zeros(size(num)), denom_sigma::AbstractVector=zeros(size(denom)), nresamplings=1000, p::Union{Number,AbstractVector}=0.2 ) data = hcat(x, num, denom) sigma = hcat(x_sigma, num_sigma, denom_sigma) binwidth = (xmax-xmin)/nbins nrows = size(data,1) ncols = size(data,2) # Preallocate dbs = Array{Float64}(undef, nrows, ncols) index = Array{Int}(undef, nrows) # Must be preallocated even if we don't want it later means = Array{Float64}(undef, nbins, nresamplings) fractions = Array{Float64}(undef, nrows) fraction_means = Array{Float64}(undef, nbins) rng = MersenneTwister() N = Array{Int}(undef, nbins) # Array of bin counts -- Not used but preallocated for speed # Resample for i=1:nresamplings bsr!(dbs, index, data, sigma, p, rng=rng) # Boostrap Resampling @views @turbo @. fractions = dbs[:,2] / (dbs[:,2] + dbs[:,3]) f!(fraction_means, N, view(dbs,:,1), fractions, xmin, xmax, nbins) @. means[:,i] = fraction_means / (1 - fraction_means) end c = (xmin+binwidth/2):binwidth:(xmax-binwidth/2) # Bin centers m = nanmean(means,dim=2) # Mean-of-means el = m .- nanpctile!(means,2.5,dim=2) # Lower bound of central 95% CI eu = nanpctile!(means,97.5,dim=2) .- m # Upper bound of central 95% CI return c, m, el, eu end function bin_bsr_ratios(f!::Function, x::AbstractVector, num::AbstractVector, denom::AbstractVector, xmin, xmax, nbins::Integer, w::AbstractVector; x_sigma::AbstractVector=zeros(size(x)), num_sigma::AbstractVector=zeros(size(num)), denom_sigma::AbstractVector=zeros(size(denom)), nresamplings=1000, p::Union{Number,AbstractVector}=0.2 ) data = hcat(x, num, denom, w) sigma = hcat(x_sigma, num_sigma, denom_sigma, zeros(size(w))) binwidth = (xmax-xmin)/nbins nrows = size(data,1) ncols = size(data,2) # Preallocate dbs = Array{Float64}(undef, nrows, ncols) index = Array{Int}(undef, nrows) # Must be preallocated even if we don't want it later means = Array{Float64}(undef, nbins, nresamplings) fractions = Array{Float64}(undef, nrows) fraction_means = Array{Float64}(undef, nbins) rng = MersenneTwister() W = Array{Float64}(undef, nbins) # Array of bin weights -- Not used but preallocated for speed # Resample for i=1:nresamplings bsr!(dbs, index, data, sigma, p, rng=rng) # Boostrap Resampling @views @turbo @. fractions = dbs[:,2] / (dbs[:,2] + dbs[:,3]) f!(fraction_means, W, view(dbs,:,1), fractions, view(dbs,:,4), xmin, xmax, nbins) @. means[:,i] = fraction_means / (1 - fraction_means) end c = (xmin+binwidth/2):binwidth:(xmax-binwidth/2) # Bin centers m = nanmean(means,dim=2) # Mean-of-means el = m .- nanpctile!(means,2.5,dim=2) # Lower bound of central 95% CI eu = nanpctile!(means,97.5,dim=2) .- m # Upper bound of central 95% CI return c, m, el, eu end bin_bsr_ratios(x::AbstractVector, args...; kwargs...) = bin_bsr_ratios(nanbinmean!, x, args...; kwargs...) export bin_bsr_ratios """ ```julia (c, m, el, eu) = bin_bsr_ratio_medians(x::Vector, num::Vector, denom::Vector, xmin, xmax, nbins, [w]; \tx_sigma = zeros(size(x)), \tnum_sigma = zeros(size(num)), \tdenom_sigma = zeros(size(denom)), \tnresamplings = 1000, \tp::Union{Number,Vector} = 0.2 ) ``` Equivalent to `bin_bsr_ratios(nanbinmedian!, ...)` """ bin_bsr_ratio_medians(args...; kwargs...) = bin_bsr_ratios(nanbinmedian!,args...; kwargs...) export bin_bsr_ratio_medians ## --- Quick Monte Carlo binning/interpolation functions function mcfit(x::AbstractVector, σx::AbstractVector, y::AbstractVector, σy::AbstractVector, xmin::Number, xmax::Number, nbins::Integer=10; binwidth::Number=(xmax-xmin)/(nbins-1), minrows::Number=100000 ) # Run a simplified Monte Carlo fit with nbins of witdth binwidth between xmin and xmax # Remove missing data hasdata = .!(isnan.(x) .| isnan.(y)) x′ = x[hasdata] y′ = y[hasdata] σx′ = σx[hasdata] σy′ = σy[hasdata] # Fill in variances where not provided explicitly σx′[isnan.(σx′)] .= nanstd(x′) σy′[isnan.(σy′)] .= nanstd(y′) # Increase x uncertainty if x sampling is sparse xsorted = [xmin; sort(x′); xmax] minerr = maximum(xsorted[2:end] - xsorted[1:end-1]) / 2 σx′[σx′ .< minerr] .= minerr # Bin centers c = xmin:(xmax-xmin)/(nbins-1):xmax halfwidth = binwidth / 2 # Run the Monte Carlo N = fill(0, nbins) m = fill(zero(float(eltype(y′))), nbins) xresampled = similar(x′, float(eltype(x′))) yresampled = similar(y′, float(eltype(y′))) @inbounds for n = 1:ceil(Int, minrows/length(x′)) randn!(xresampled) xresampled .= x′ .+ σx′ .* xresampled randn!(yresampled) yresampled .= y′ .+ σy′ .* yresampled for j = 1:nbins l = (c[j] - halfwidth) u = (c[j] + halfwidth) for i ∈ eachindex(xresampled) if l < xresampled[i] <= u m[j] += yresampled[i] N[j] += 1 end end end end m ./= N return c, m end export mcfit ## --- Downsample an image / array function downsample(A::Matrix, factor::Integer, jfactor::Integer=factor) rows = size(A,1) ÷ factor cols = size(A,2) ÷ jfactor result = similar(A, rows,cols) @turbo for i=1:rows for j=1:cols iₛ = i*factor jₛ = j*factor result[i,j] = A[iₛ, jₛ] end end return result end function downsample(A::AbstractMatrix, factor::Integer, jfactor::Integer=factor) rows = size(A,1) ÷ factor cols = size(A,2) ÷ jfactor result = similar(A, rows,cols) @inbounds for i=1:rows for j=1:cols result[i,j] = A[i*factor, j*factor] end end return result end downsample(A::AbstractArray, factor::Integer) = A[factor:factor:end] export downsample ## --- Spatiotemporal sample weighting const PI_180 = pi/180 """ ```julia k = invweight(lat::AbstractArray, lon::AbstractArray, age::AbstractArray; \tlp::Number=2, \tspatialscale=1.8, \tagescale=38.0 ) ``` Find the inverse weights `k` (proportional to spatiotemporal sample density) for a set of geological samples with specified latitude (`lat`), logitude (`lon`), and `age` (of crystallization, deposition, etc.). The default `spatialscale` and `agescale` are taken from Keller and Schoene 2012. However, alternative scalings can be supplied. If an array is supplied for either `spatialscale`, `agescale`, or both, a 3-d matrix of `k` values will be returned, with dimensions length(`spatialscale`)*length(`agescale`)*nrows. """ function invweight(lat::AbstractArray, lon::AbstractArray, age::AbstractArray; lp::Number=2, spatialscale=1.8, agescale=38.0) # Convert lat and lon to radians latᵣ = materialize(vec(lat*PI_180)) lonᵣ = materialize(vec(lon*PI_180)) spatialscaleᵣ = materialize(spatialscale*PI_180) ageᵥ = materialize(age) if any(isnan, latᵣ) || any(isnan, lonᵣ) || any(isnan, ageᵥ) k = fill(Inf, length(latᵣ)) t = @turbo @. !(isnan(latᵣ) | isnan(lonᵣ) | isnan(ageᵥ)) k[t] .= invweight_nonans(latᵣ[t], lonᵣ[t], ageᵥ[t], lp, spatialscaleᵣ, materialize(agescale)) return k else return invweight_nonans(latᵣ, lonᵣ, ageᵥ, lp, spatialscaleᵣ, materialize(agescale)) end end function invweight_nonans(latᵣ::AbstractArray, lonᵣ::AbstractArray, age::AbstractArray, lp::Number, spatialscaleᵣ::Number, agescale::Number) # Precalculate some sines and cosines latsin = @turbo sin.(latᵣ) latcos = @turbo cos.(latᵣ) # Allocate and fill ks N = length(latᵣ) k = Array{Float64}(undef, N) p = Progress(N÷10, desc="Calculating weights: ") @inbounds @batch for i ∈ 1:N # Calculate weight kᵢ = 0.0 @turbo for j ∈ 1:N Δdᵣ = acos(min( latsin[i] * latsin[j] + latcos[i] * latcos[j] * cos(lonᵣ[i] - lonᵣ[j]), 1.0 )) Δa = abs(age[i] - age[j]) kᵢⱼ = 1.0 / ((Δdᵣ/spatialscaleᵣ)^lp + 1.0) + 1.0 / ((Δa/agescale)^lp + 1.0) kᵢ += kᵢⱼ end k[i] = kᵢ (i % 10 == 0) && next!(p) end return k end function invweight_nonans(latᵣ::AbstractArray, lonᵣ::AbstractArray, age::AbstractArray, lp::Number, spatialscaleᵣ, agescale) # Precalculate some sines and cosines latsin = @turbo sin.(latᵣ) latcos = @turbo cos.(latᵣ) # Allocate and fill ks N = length(latᵣ) spatialdistᵣ = similar(latᵣ) k = Array{Float64}(undef, length(spatialscaleᵣ), length(agescale), N) p = Progress(N÷10, desc="Calculating weights: ") @inbounds for i ∈ 1:N # Calculate weight @turbo @. spatialdistᵣ = acos(min( latsin[i] * latsin + latcos[i] * latcos * cos(lonᵣ[i] - lonᵣ), 1.0 )) @batch for g ∈ eachindex(spatialscaleᵣ) for h ∈ eachindex(agescale) kᵢ = 0.0 @inbounds for j ∈ 1:N kᵢⱼ = 1.0 / ((spatialdistᵣ[j]/spatialscaleᵣ[g])^lp + 1.0) + 1.0 / ((abs(age[i] - age[j])/agescale[h])^lp + 1.0) kᵢ += kᵢⱼ end k[g,h,i] = kᵢ end end (i % 10 == 0) && next!(p) end return k end export invweight """ ```julia k = invweight_location(lat::AbstractArray, lon::AbstractArray; \tlp::Number=2, \tspatialscale::Number=1.8 ) ``` Find the inverse weights `k` (proportional to spatial sample density) for a set of geological samples with specified latitude (`lat`), and logitude (`lon`). """ function invweight_location(lat::AbstractArray, lon::AbstractArray; lp::Number=2, spatialscale::Number=1.8) # Convert lat and lon to radians latᵣ = materialize(vec(lat*PI_180)) lonᵣ = materialize(vec(lon*PI_180)) spatialscaleᵣ = materialize(spatialscale*PI_180) if any(isnan, latᵣ) || any(isnan, lonᵣ) k = fill(Inf, length(latᵣ)) t = @turbo @. !(isnan(latᵣ) | isnan(lonᵣ)) k[t] .= invweight_location_nonans(latᵣ[t], lonᵣ[t], lp, spatialscaleᵣ) return k else return invweight_location_nonans(latᵣ, lonᵣ, lp, spatialscaleᵣ) end end # Inner function that can't handle NaNs function invweight_location_nonans(latᵣ::AbstractArray, lonᵣ::AbstractArray, lp::Number, spatialscaleᵣ::Number) # Precalculate some sines and cosines latsin = @turbo sin.(latᵣ) latcos = @turbo cos.(latᵣ) # Allocate and fill ks N = length(latᵣ) k = Array{Float64}(undef,N) p = Progress(N÷10, desc="Calculating weights: ") @inbounds @batch for i ∈ 1:N # Otherwise, calculate weight kᵢ = 0.0 @turbo for j ∈ 1:N lc = latsin[i] * latsin[j] + latcos[i] * latcos[j] * cos(lonᵣ[i] - lonᵣ[j]) Δdᵣ = acos(min(lc , 1.0)) kᵢⱼ = 1.0 / ( (Δdᵣ/spatialscaleᵣ)^lp + 1.0) kᵢ += kᵢⱼ end k[i] = kᵢ (i % 10 == 0) && next!(p) end return k end export invweight_location """ ```julia k = invweight(nums::AbstractArray, scale::Number; lp=2) ``` Find the inverse weights for a single array `nums` for a given `scale`, and exponent `lp` (default lp = 2). Returns an array k where k[i] is the "inverse weight" for element i of the input array. """ function invweight(nums::AbstractArray, scale::Number; lp=2) numsₘ = materialize(nums) if any(isnan, numsₘ) k = fill(Inf, length(numsₘ)) t = @turbo @. !isnan(numsₘ) k[t] .= invweight_nonans(numsₘ[t], scale, lp,) return k else return invweight_nonans(numsₘ, scale, lp,) end end function invweight_nonans(nums::AbstractArray, scale::Number, lp::Number) N = length(nums) k = Array{Float64}(undef, N) p = Progress(N÷10, desc="Calculating weights: ") @inbounds @batch for i ∈ 1:N if isnan(nums[i]) # If there is missing data, set k=inf for weight=0 k[i] = Inf else # Otherwise, calculate weight kᵢ = 0.0 @turbo for j ∈ 1:N kᵢⱼ = 1.0 / ( (abs(nums[i] - nums[j])/scale)^lp + 1.0) kᵢ += kᵢⱼ end k[i] = kᵢ end (i % 10 == 0) && next!(p) end return k end export invweight """ ```julia k = invweight_age(age::AbstractArray; lp::Number=2, agescale::Number=38.0) ``` Find the inverse weights `k` (proportional to temporal sample density) for a set of geological samples with specified `age` (of crystallization, deposition, etc.). """ function invweight_age(age::AbstractArray; lp::Number=2, agescale::Number=38.0) return invweight(age, agescale, lp=lp) end export invweight_age ## --- End of file
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
1344
## --- Direct access to real libc system() function """ ```julia system(cmdstr::AbstractString) ``` Direct access to the command line through C's `system` function -- without stripping/sanitizing special characters, in contrast to Julia's safer `run()` function. This allows pipelining, etc. in shell commands. Returns 0 on success. ### Examples ```julia julia> system("pwd") /Users/foo/code/StatGeochem.jl 0 ``` """ function system(cmdstr::AbstractString) return ccall((:system,), Int, (Cstring,), cmdstr) end export system ## --- Some utilities for manipulating data types """ ```julia materialize(x) ``` Convert an array-like object to an materialized, actual allocated `Array`, and leaving other types unchanged. Unlike `collect`, will merely pass through an already-allocated `Array` without change, rather than allocating new memory and making a copy. ### Examples ```julia julia> StatGeochem.materialize(1:100) 100-element Vector{Int64}: 1 2 3 ⋮ 99 100 julia> StatGeochem.materialize(5) 5 ``` """ materialize(x) = x materialize(x::Array) = x materialize(x::Number) = x materialize(x::Collection) = collect(x) ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
695
using StatGeochem using Test, Statistics, StatsBase, Downloads @testset "All tests" begin # Utilities @testset "Resampling" begin include("testResampling.jl") end @testset "Changepoint" begin include("testChangepoint.jl") end @testset "Geochemistry" begin include("testGeochemistry.jl") end using FileIO @testset "Other Utilities" begin include("testUtilities.jl") end # Resources @testset "Crust 1.0" begin include("testCrust1.jl") end @testset "Litho 1.0" begin include("testLitho1.jl") end @testset "Other Resources" begin include("testResources.jl") end using Plots @testset "Package Extensions" begin include("testExtensions.jl") end end
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
578
## -- Changepoint.jl tests A = [randn(100).-2; randn(100).+2] nsteps = 10000 burnin = 4000 dist = changepoint(A, nsteps; np=1) @test isapprox(nanmean(dist[burnin:end]), 101, atol=4) dist = changepoint(A, nsteps; npmin=1, npmax=5)[burnin:end,:] @test isapprox(nanmean(dist[dist.>0]), 101, atol=4) dist = changepoint(A, ones(200), nsteps; np=1) @test isapprox(nanmean(dist[burnin:end]), 101, atol=4) dist = changepoint(A, ones(200), nsteps; npmin=1, npmax=5)[burnin:end,:] @test isapprox(nanmean(dist[dist.>0]), 101, atol=4) ## --
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
2126
## --- Test Crust 1.0 lats = [43.70, 39.2508, NaN] lons = [-72.29, -106.2925, NaN] ## -- Test seismic data # Test single lat-lon-depth point from crust1 @test [x[1] for x in find_crust1_seismic(50,50,8)] ≈ [7.1, 4.05, 3000.0] @test [x[1] for x in find_crust1_seismic(50,NaN,8)] ≈ [NaN, NaN, NaN] nans=true # Test fetching lat-lon array from crust1 @test all(isapprox.(find_crust1_seismic(lats,lons,6), ([6.3, 6.0, NaN], [3.63, 3.5, NaN], [2790.0, 2720.0, NaN]), nans=true)) @test all(isapprox.(find_crust1_seismic(lats,lons,7), ([6.6, 6.6, NaN], [3.80, 3.8, NaN], [2860.0, 2860.0, NaN]), nans=true)) @test all(isapprox.(find_crust1_seismic(lats,lons,8), ([7.0, 7.2, NaN], [3.99, 4.1, NaN], [2950.0, 3030.0, NaN]), nans=true)) @test all(isapprox.(find_crust1_seismic(lats,lons,:upper_crust), ([6.3, 6.0, NaN], [3.63, 3.5, NaN], [2790.0, 2720.0, NaN]), nans=true)) @test all(isapprox.(find_crust1_seismic(lats,lons,:middle_crust), ([6.6, 6.6, NaN], [3.80, 3.8, NaN], [2860.0, 2860.0, NaN]), nans=true)) @test all(isapprox.(find_crust1_seismic(lats,lons,:lower_crust), ([7.0, 7.2, NaN], [3.99, 4.1, NaN], [2950.0, 3030.0, NaN]), nans=true)) ## -- Test layer thickness data @test find_crust1_thickness(lats,lons,6) ≈ [15.4, 17.73, NaN] nans=true @test find_crust1_thickness(lats,lons,7) ≈ [13.57, 16.21, NaN] nans=true @test find_crust1_thickness(lats,lons,8) ≈ [7.70, 16.72, NaN] nans=true ## -- Test cumulative thickness data @test find_crust1_base(lats,lons,6) ≈ [-14.99, -14.91, NaN] nans=true @test find_crust1_base(lats,lons,7) ≈ [-28.56, -31.12, NaN] nans=true @test find_crust1_base(lats,lons,8) ≈ [-36.26, -47.84, NaN] nans=true ## -- Test complete data @test all(isapprox.(find_crust1_layer(lats,lons,6), ([6.3, 6.0, NaN], [3.63, 3.5, NaN], [2790., 2720., NaN], [15.4, 17.73, NaN]), nans=true)) @test all(isapprox.(find_crust1_layer(lats,lons,7), ([6.6, 6.6, NaN], [3.8, 3.8, NaN], [2860., 2860., NaN], [13.57, 16.21, NaN]), nans=true)) @test all(isapprox.(find_crust1_layer(lats,lons,8), ([7.0, 7.2, NaN], [3.99, 4.1, NaN], [2950., 3030., NaN], [7.70, 16.72, NaN]), nans=true)) ## ---
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
290
lat = [43.7022,-26.2041,-19.5723,-34.9285,46.4908] lon = [-72.2896,28.0473,65.7550,138.6007,9.8355] h = mapplot(lon, lat) @test isa(h, Plots.Plot) REE = [20.78,35.61,2.344,15.66,2.618,0.5873,2.077,0.3249,1.622,0.3132,0.92,0.1099,1.543,0.1509] h = spidergram(REE) @test isa(h, Plots.Plot)
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
40364
## --- General conversions # Europium anomalies @test eustar(6.5433, 5.9037) ≈ 2.0329978601003864 @test eustar(34.7773, 6.5433, 5.9037, 0.8904) ≈ 2.0825737578695205 # Iron oxide conversions @test feoconversion(3.5, NaN, NaN, NaN) == 3.5 @test feoconversion(3.5, NaN, 7.5, NaN) == 7.5 @test feoconversion(3.5, NaN, 7.5, 10) == 7.5 @test feoconversion(3.5, NaN, NaN, 10) == 8.998102538090137 @test feoconversion(3.5, 4.4, NaN, NaN) ≈ 7.45916511675966 @test feoconversion(NaN, 4.4, NaN, NaN) ≈ 3.9591651167596607 @test isnan(feoconversion(NaN, NaN, NaN, NaN)) # Other oxide conversion D = ["Fe" "Mg" "Ca" "P" "FeOT" "MgO" "CaO" "P2O5"; 10000 10000 10000 10000 NaN NaN NaN NaN; 10000 10000 10000 10000 NaN NaN NaN NaN] M = elementify(D, importas=:Dict) O = oxideconversion(M) @test all(O["FeOT"] .≈ (molarmass["Fe"]+molarmass["O"])/molarmass["Fe"]) @test all(O["MgO"] .≈ (molarmass["Mg"]+molarmass["O"])/molarmass["Mg"]) @test all(O["CaO"] .≈ (molarmass["Ca"]+molarmass["O"])/molarmass["Ca"]) @test all(O["P2O5"] .≈ (molarmass["P"]+2.5*molarmass["O"])/molarmass["P"]) DT = deepcopy(TupleDataset(M)) oxideconversion!(DT) @test all(DT.FeOT .≈ (molarmass["Fe"]+molarmass["O"])/molarmass["Fe"]) @test all(DT.MgO .≈ (molarmass["Mg"]+molarmass["O"])/molarmass["Mg"]) @test all(DT.CaO .≈ (molarmass["Ca"]+molarmass["O"])/molarmass["Ca"]) @test all(DT.P2O5 .≈ (molarmass["P"]+2.5*molarmass["O"])/molarmass["P"]) D = ["NiO" "CoO" "BaO" "SO3" "Ni" "Co" "Ba" "S"; 1 1 1 1 NaN NaN NaN NaN; 1 1 1 1 NaN NaN NaN NaN] O = elementify(D, importas=:Dict) M = metalconversion(O) @test all(M["Ni"] .≈ 10000molarmass["Ni"]/(molarmass["Ni"]+molarmass["O"])) @test all(M["Co"] .≈ 10000molarmass["Co"]/(molarmass["Co"]+molarmass["O"])) @test all(M["Ba"] .≈ 10000molarmass["Ba"]/(molarmass["Ba"]+molarmass["O"])) @test all(M["S"] .≈ 10000molarmass["S"]/(molarmass["S"]+3molarmass["O"])) # Carbonate conversions D = ["CaCO3" "MgCO3" "CaO" "MgO" "CO2" "TOC" "TIC" "TC" "C"; 1 1 NaN NaN NaN NaN NaN NaN 10000; 1 1 NaN NaN NaN NaN NaN NaN 10000] C = elementify(D, importas=:Dict) carbonateconversion!(C) @test all(C["MgO"] .≈ (molarmass["Mg"]+molarmass["O"])/(molarmass["Mg"]+molarmass["C"]+3molarmass["O"])) @test all(C["CaO"] .≈ (molarmass["Ca"]+molarmass["O"])/(molarmass["Ca"]+molarmass["C"]+3molarmass["O"])) @test all(C["CO2"] .≈ (molarmass["C"]+2molarmass["O"])/(molarmass["Ca"]+molarmass["C"]+3molarmass["O"]) + (molarmass["C"]+2molarmass["O"])/(molarmass["Mg"]+molarmass["C"]+3molarmass["O"])) @test all(C["TC"] .≈ 1) @test all(C["TIC"] .≈ 0.9616817911685506*molarmass["C"]/(molarmass["C"] + 2molarmass["O"])) @test all(C["TOC"] .≈ 1 - 0.9616817911685506*molarmass["C"]/(molarmass["C"] + 2molarmass["O"])) D = ["CaCO3" "MgCO3" "CaO" "MgO" "CO2" "TOC" "TIC" "TC" "C"; 1 1 NaN NaN NaN NaN NaN NaN NaN; 1 1 NaN NaN NaN NaN NaN NaN NaN] C = elementify(D, importas=:Dict) carbonateconversion!(C) @test all(C["MgO"] .≈ (molarmass["Mg"]+molarmass["O"])/(molarmass["Mg"]+molarmass["C"]+3molarmass["O"])) @test all(C["CaO"] .≈ (molarmass["Ca"]+molarmass["O"])/(molarmass["Ca"]+molarmass["C"]+3molarmass["O"])) @test all(C["CO2"] .≈ (molarmass["C"]+2molarmass["O"])/(molarmass["Ca"]+molarmass["C"]+3molarmass["O"]) + (molarmass["C"]+2molarmass["O"])/(molarmass["Mg"]+molarmass["C"]+3molarmass["O"])) @test all(C["TIC"] .≈ 0.9616817911685506*molarmass["C"]/(molarmass["C"] + 2molarmass["O"])) @test all(C["C"] .≈ 1e4*0.9616817911685506*molarmass["C"]/(molarmass["C"] + 2molarmass["O"])) # Weathering indices @test CIA(14.8577, 4.5611, 3.29641, 2.3992) ≈ 47.66582778067264 @test WIP(3.2964, 4.5611, 2.3992, 5.9121) ≈ 78.40320264846837 ## -- Norms n = StatGeochem.cipw_norm(57.05, 0.44, 14.57, 8.02, 0, 0.18, 6.79, 10.55, 1.26, 0.49, 0.06) @test n.quartz ≈ 22.64883050985674 @test n.orthoclase ≈ 2.895716060129942 @test n.plagioclase ≈ 43.31401932989578 @test n.corundum ≈ 0.0 @test n.nepheline ≈ 0.0 @test n.diopside ≈ 13.731414049010224 @test n.orthopyroxene ≈ 3.94200752101842 @test n.olivine ≈ 0.0 @test n.magnetite ≈ 11.62824215584731 @test n.ilmenite ≈ 0.8356557044661498 @test n.apatite ≈ 0.1421161651208747 ## -- Perplex name abbreviations abbreviations = ("ak", "alm", "and", "andr", "chum", "cz", "crd", "ep", "fa", "fctd", "fcrd", "fep", "fosm", "fst", "fo", "geh", "gr", "hcrd", "tpz", "ky", "larn", "law", "merw", "mctd", "mst", "mnctd", "mncrd", "mnst", "mont", "osm1", "osm2", "phA", "pump", "py", "rnk", "sill", "spss", "sph", "spu", "teph", "ty", "vsv", "zrc", "zo", "acm", "cats", "di", "en", "fs", "hed", "jd", "mgts", "pswo", "pxmn", "rhod", "wo", "anth", "cumm", "fanth", "fgl", "ftr", "ged", "gl", "grun", "parg", "rieb", "tr", "ts", "deer", "fcar", "fspr", "mcar", "spr4", "spr7", "ann", "cel", "east", "fcel", "ma", "mnbi", "mu", "naph", "pa", "phl", "afchl", "ames", "clin", "daph", "fsud", "mnchl", "sud", "atg", "chr", "fta", "kao", "pre", "prl", "ta", "tats", "ab", "anl", "an", "coe", "crst", "heu", "abh", "kals", "lmt", "lc", "me", "mic", "ne", "q", "san", "stlb", "stv", "trd", "wrk", "bdy", "cor", "geik", "hem", "herc", "ilm", "oilm", "lime", "mft", "mt", "mang", "bunsn", "per", "pnt", "ru", "sp", "usp", "br", "dsp", "gth", "ank", "arag", "cc", "dol", "mag", "rhc", "sid", "diam", "gph", "iron", "Ni", "CO2", "CO", "H2", "CH4", "O2", "H2O", "abL", "anL", "diL", "enL", "faL", "fliq", "foL", "h2oL", "hliq", "kspL", "mliq", "qL", "silL", "H+", "Cl-", "OH-", "Na+", "K+", "Ca++", "Mg++", "Fe++", "Al+++", "CO3", "AlOH3", "AlOH4-", "KOH", "HCL", "KCL", "NaCl", "CaCl2", "CaCl+", "MgCl2", "MgCl", "FeCl2", "aqSi", "Augite(G)", "Cpx(JH)", "Cpx(l)", "Cpx(h)", "Cpx(stx)", "Cpx(stx7)", "Omph(HP)", "Cpx(HP)", "Cpx(m)", "Cpx(stx8)", "Omph(GHP)", "cAmph(G)", "Cumm", "Gl", "Tr", "GlTrTsPg", "Amph(DHP)", "Amph(DPW)", "Ca-Amph(D)", "Na-Amph(D)", "Act(M)", "GlTrTsMr", "cAmph(DP)", "melt(G)", "melt(W)", "melt(HP)", "melt(HGP)", "pMELTS(G)", "mMELTS(G)", "LIQ(NK)", "LIQ(EF)", "Chl(W)", "Chl(HP)", "Chl(LWV)", "O(JH)", "O(SG)", "O(HP)", "O(HPK)", "O(stx)", "O(stx7)", "Ol(m)", "O(stx8)", "Sp(JH)", "GaHcSp", "Sp(JR)", "Sp(GS)", "Sp(HP)", "Sp(stx)", "CrSp", "Sp(stx7)", "Sp(WPC)", "Sp(stx8)", "Pl(JH)", "Pl(h)", "Pl(stx8)", "Kf", "San", "San(TH)", "Grt(JH)", "Gt(W)", "CrGt", "Gt(MPF)", "Gt(B)", "Gt(GCT)", "Gt(HP)", "Gt(EWHP)", "Gt(WPH)", "Gt(stx)", "Gt(stx8)", "Gt(WPPH)", "ZrGt(KP)", "Maj", "Opx(JH)", "Opx(W)", "Opx(HP)", "CrOpx(HP)", "Opx(stx)", "Opx(stx8)", "Mica(W)", "Pheng(HP)", "MaPa", "Mica(CF)", "Mica(CHA1)", "Mica(CHA)", "Mica+(CHA)", "Mica(M)", "Mica(SGH)", "Ctd(W)", "Ctd(HP)", "Ctd(SGH)", "St(W)", "St(HP)", "Bi(W)", "Bio(TCC)", "Bio(WPH)", "Bio(HP)", "Crd(W)", "hCrd", "Sa(WP)", "Sapp(HP)", "Sapp(KWP)", "Sapp(TP)", "Osm(HP)", "F", "F(salt)", "COH-Fluid", "Aq_solven0", "WADDAH", "T", "Scap", "Carp", "Carp(M)", "Carp(SGH)", "Sud(Livi)", "Sud", "Sud(M)", "Anth", "o-Amph", "oAmph(DP)", "feldspar", "feldspar_B", "Pl(I1,HP)", "Fsp(C1)", "Do(HP)", "M(HP)", "Do(AE)", "Cc(AE)", "oCcM(HP)", "Carb(M)", "oCcM(EF)", "dis(EF)", "IlHm(A)", "IlGkPy", "Ilm(WPH)", "Ilm(WPH0)", "Neph(FB)", "Chum", "Atg(PN)", "B", "Pu(M)", "Stlp(M)", "Wus",) common_names = ("akermanite", "almandine", "andalusite", "andradite", "clinohumite", "clinozoisite", "cordierite", "epidote", "fayalite", "Fe-chloritoid", "Fe-cordierite", "Fe-epidote", "Fe-osumilite", "Fe-staurolite", "forsterite", "gehlenite", "grossular", "hydrous cordierite", "hydroxy-topaz", "kyanite", "larnite", "lawsonite", "merwinite", "Mg-chloritoid", "Mg-staurolite", "Mn-chloritoid", "Mn-cordierite", "Mn-staurolite", "monticellite", "osumilite(1)", "osumilite(2)", "phase A", "pumpellyite", "pyrope", "rankinite", "sillimanite", "spessartine", "sphene", "spurrite", "tephroite", "tilleyite", "vesuvianite", "zircon", "zoisite", "acmite", "Ca-tschermakite", "diopside", "enstatite", "ferrosilite", "hedenbergite", "jadeite", "Mg-tschermakite", "pseudowollastonite", "pyroxmangite", "rhodonite", "wollastonite", "anthophyllite", "cummingtonite", "Fe-anthophyllite", "Fe-glaucophane", "ferroactinolite", "gedrite", "glaucophane", "grunerite", "pargasite", "riebeckite", "tremolite", "tschermakite", "deerite", "Fe-carpholite", "Fe-sapphirine(793)", "Mg-carpholite", "sapphirine(442)", "sapphirine(793)", "annite", "celadonite", "eastonite", "Fe-celadonite", "margarite", "Mn-biotite", "muscovite", "Na-phlogopite", "paragonite", "phlogopite", "Al-free chlorite", "amesite", "clinochlore", "daphnite", "Fe-sudoite", "Mn-chlorite", "sudoite", "antigorite", "chrysotile", "Fe-talc", "kaolinite", "prehnite", "pyrophyllite", "talc", "tschermak-talc", "albite", "analcite", "anorthite", "coesite", "cristobalite", "heulandite", "highalbite", "kalsilite", "laumontite", "leucite", "meionite", "microcline", "nepheline", "quartz", "sanidine", "stilbite", "stishovite", "tridymite", "wairakite", "baddeleyite", "corundum", "geikielite", "hematite", "hercynite", "ilmenite", "ilmenite(ordered)", "lime", "magnesioferrite", "magnetite", "manganosite", "nickel oxide", "periclase", "pyrophanite", "rutile", "spinel", "ulvospinel", "brucite", "diaspore", "goethite", "ankerite", "aragonite", "calcite", "dolomite", "magnesite", "rhodochrosite", "siderite", "diamond", "graphite", "iron", "nickel", "carbon dioxide", "carbon monoxide", "hydrogen", "methane", "oxygen", "water fluid", "albite liquid", "anorthite liquid", "diopside liquid", "enstatite liquid", "fayalite liquid", "Fe-liquid (in KFMASH)", "forsterite liquid", "H2O liquid", "H2O liquid (in KFMASH)", "K-feldspar liquid", "Mg liquid (in KFMASH)", "Silica liquid", "Sillimanite liquid", "H+(aq)", "Cl(aq)", "OH(aq)", "Na+(aq)", "K+(aq)", "Ca2+(aq)", "Mg2+(aq)", "Fe2+(aq)", "Al3+(aq)", "CO3--(aq)", "Al(OH)3(aq)", "Al(OH)4----(aq)", "KOH(aq)", "HCl(aq)", "KCl(aq)", "NaCl(aq)", "CaCl(aq)", "CaCl+(aq)", "MgCl2(aq)", "MgCl+(aq)", "FeCl(aq)", "Aqueous silica", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinopyroxene", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "clinoamphibole", "melt", "melt", "melt", "melt", "melt", "melt", "melt", "melt", "chlorite", "chlorite", "chlorite", "olivine", "olivine", "olivine", "olivine", "olivine", "olivine", "olivine", "olivine", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "spinel", "plagioclase", "plagioclase", "plagioclase", "k-feldspar", "k-feldspar", "k-feldspar", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "garnet", "orthopyroxene", "orthopyroxene", "orthopyroxene", "orthopyroxene", "orthopyroxene", "orthopyroxene", "white mica", "white mica", "white mica", "white mica", "white mica", "white mica", "white mica", "white mica", "white mica", "chloritoid", "chloritoid", "chloritoid", "staurolite", "staurolite", "biotite", "biotite", "biotite", "biotite", "cordierite", "cordierite", "sapphirine", "sapphirine", "sapphirine", "sapphirine", "osumilite", "fluid", "fluid", "fluid", "fluid", "fluid", "talc", "scapolite", "carpholite", "carpholite", "carpholite", "sudoite", "sudoite", "sudoite", "orthoamphibole", "orthoamphibole", "orthoamphibole", "ternary feldspar", "ternary feldspar", "ternary feldspar", "ternary feldspar", "calcite", "calcite", "calcite", "calcite", "calcite", "calcite", "calcite", "calcite", "ilmenite", "ilmenite", "ilmenite", "ilmenite", "nepheline", "clinohumite", "serpentine", "brucite", "pumpellyite", "stilpnomelane", "wüstite",) @test perplex_common_name.(abbreviations) == common_names abbreviations = ("ak", "alm", "and", "andr", "chum", "cz", "crd", "ep", "fa", "fctd", "fcrd", "fep", "fosm", "fst", "fo", "geh", "gr", "hcrd", "tpz", "ky", "larn", "law", "merw", "mctd", "mst", "mnctd", "mncrd", "mnst", "mont", "osm1", "osm2", "phA", "pump", "py", "rnk", "sill", "spss", "sph", "spu", "teph", "ty", "vsv", "zrc", "zo", "acm", "cats", "di", "en", "fs", "hed", "jd", "mgts", "pswo", "pxmn", "rhod", "wo", "anth", "cumm", "fanth", "fgl", "ftr", "ged", "gl", "grun", "parg", "rieb", "tr", "ts", "deer", "fcar", "fspr", "mcar", "spr4", "spr7", "ann", "cel", "east", "fcel", "ma", "mnbi", "mu", "naph", "pa", "phl", "afchl", "ames", "clin", "daph", "fsud", "mnchl", "sud", "atg", "chr", "fta", "kao", "pre", "prl", "ta", "tats", "ab", "anl", "an", "coe", "crst", "heu", "abh", "kals", "lmt", "lc", "me", "mic", "ne", "q", "san", "stlb", "stv", "trd", "wrk", "bdy", "cor", "geik", "hem", "herc", "ilm","oilm","lime", "mft", "mt", "mang", "bunsn", "per", "pnt", "ru", "sp", "usp", "br", "dsp", "gth", "ank", "arag", "cc", "dol", "mag", "rhc", "sid", "diam", "gph", "iron", "Ni", "CO2", "CO", "H2", "CH4", "O2", "H2O", "abL", "anL", "diL", "enL", "faL", "fliq", "foL", "h2oL", "hliq", "kspL", "mliq", "qL", "silL", "H+", "Cl-", "OH-", "Na+", "K+", "Ca++", "Mg++", "Fe++", "Al+++", "CO3", "AlOH3", "AlOH4-", "KOH", "HCL", "KCL", "NaCl", "CaCl2", "CaCl+", "MgCl2", "MgCl", "FeCl2", "aqSi",) full_names = ("akermanite", "almandine", "andalusite", "andradite", "clinohumite", "clinozoisite", "cordierite", "epidote(ordered)", "fayalite", "Fe-chloritoid", "Fe-cordierite", "Fe-epidote", "Fe-osumilite", "Fe-staurolite", "forsterite", "gehlenite", "grossular", "hydrous cordierite", "hydroxy-topaz", "kyanite", "larnite-bredigite", "lawsonite", "merwinite", "Mg-chloritoid", "Mg-staurolite", "Mn-chloritoid", "Mn-cordierite", "Mn-staurolite", "monticellite", "osumilite(1)", "osumilite(2)", "phase A", "pumpellyite", "pyrope", "rankinite", "sillimanite", "spessartine", "sphene", "spurrite", "tephroite", "tilleyite", "vesuvianite", "zircon", "zoisite", "acmite", "Ca-tschermaks pyroxene", "Diopside", "enstatite", "ferrosilite", "hedenbergite", "jadeite", "mg-tschermak", "pseudowollastonite", "pyroxmangite", "rhodonite", "wollastonite", "anthophyllite", "cummingtonite", "Fe-anthophyllite", "Fe-glaucophane", "ferroactinolite", "gedrite(Na-free)", "glaucophane", "grunerite", "pargasite", "riebeckite", "tremolite", "tschermakite", "deerite", "fe-carpholite", "fe-sapphirine(793)", "mg-carpholite", "sapphirine(442)", "sapphirine(793)", "annite", "celadonite", "eastonite", "Fe-celadonite", "margarite", "Mn-biotite", "muscovite", "Na-phlogopite", "paragonite", "phlogopite", "Al-free chlorite", "amesite(14Ang)", "clinochlore(ordered)", "daphnite", "Fe-sudoite", "Mn-chlorite", "Sudoite", "antigorite", "chrysotile", "Fe-talc", "Kaolinite", "prehnite", "pyrophyllite", "talc", "tschermak-talc", "albite", "analcite", "anorthite", "coesite", "cristobalite", "heulandite", "highalbite", "kalsilite", "laumontite", "leucite", "meionite", "microcline", "nepheline", "quartz", "sanidine", "stilbite", "stishovite", "tridymite", "wairakite", "baddeleyite", "corundum", "geikielite", "hematite", "hercynite", "ilmenite", "ilmenite(ordered)","lime", "magnesioferrite", "magnetite", "manganosite", "nickel oxide", "periclase", "pyrophanite", "rutile", "spinel", "ulvospinel", "brucite", "diaspore", "goethite", "ankerite", "aragonite", "calcite", "dolomite", "magnesite", "rhodochrosite", "siderite", "diamond", "graphite", "iron", "nickel", "carbon dioxide", "carbon monoxide", "hydrogen", "methane", "oxygen", "water fluid", "albite liquid", "anorthite liquid", "diopside liquid", "enstatite liquid", "fayalite liquid", "Fe-liquid (in KFMASH)", "Forsterite liquid", "H2O liquid", "H2O liquid (in KFMASH)", "K-feldspar liquid", "Mg liquid (in KFMASH)", "Silica liquid", "Sillimanite liquid", "H+(aq)", "Cl(aq)", "OH(aq)", "Na+(aq)", "K+(aq)", "Ca2+(aq)", "Mg2+(aq)", "Fe2+(aq)", "Al3+(aq)", "CO3--(aq)", "Al(OH)3(aq)", "Al(OH)4----(aq)", "KOH(aq)", "HCl(aq)", "KCl(aq)", "NaCl(aq)", "CaCl(aq)", "CaCl+(aq)", "MgCl2(aq)", "MgCl+(aq)", "FeCl(aq)", "Aqueous silica",) @test perplex_expand_name.(abbreviations) == full_names @test perplex_abbreviate_name.(full_names) == abbreviations @test perplex_phase_is_solid.(("melt(HGP)", "q", "diL", "andr", "T(K)")) == (false, true, false, true, false) @test findall(germ_perplex_name_matches.(germ_kd["minerals"], germ_kd["minerals"])) == [3, 12, 18] ## --- Saturation models # SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, K2O, P2O5 majors = [58.509, 1.022, 14.858, 4.371, 0.141, 4.561, 5.912, 3.296, 2.399, 0.279] @test tzirc(majors..., 100) ≈ 603.4774053095614 @test tzircZr(majors..., 800) ≈ 826.1071302971219 @test mean(tzircM((repeat([m],2) for m in majors)...,)) ≈ 2.328787411099651 @test StatGeochem.Ayers_tsphene(majors...) ≈ 637.7486728299519 @test StatGeochem.Ayers_tspheneTiO2(majors..., 800) ≈ 2.3486842447760026 @test mean(StatGeochem.Ayers_tspheneC.((repeat([m],2) for m in majors)...,)) ≈ 2.4263934899817188 # SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, Li2O, H2O montel_elems = [58.509, 1.022, 14.858, 4.371, 4.561, 5.912, 3.296, 2.399, 0.01, 4.0] @test StatGeochem.Montel_tmonaziteREE(montel_elems..., 750.0) ≈ 11.884450325741755 @test StatGeochem.Montel_tmonazite(montel_elems..., 100,100,100,0,0,0) ≈ 631.2376817530326 @test StatGeochem.Rusiecka_tmonaziteREE(200, 750) ≈ 0.27430570654873154 @test StatGeochem.Rusiecka_txenotimeY(200, 750) ≈ 41.9312030248943 @test StatGeochem.Harrison_tapatiteP2O5(58.509, 14.858, 5.912, 3.296, 2.399, 750.) ≈ 0.10142278764336987 @test StatGeochem.Harrison_tapatiteP(58.509, 14.858, 5.912, 3.296, 2.399, 750.) ≈ 442.6362451135793 @test StatGeochem.Harrison_tapatiteP2O5(58.509, 750.) ≈ 0.10142278764336987 @test StatGeochem.Harrison_tapatite(58.509, 0.1) ≈ 748.6127179814277 # SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O, P2O5 majors = [58.509, 1.022, 14.858, 4.371, 4.561, 5.912, 3.296, 2.399, 0.279] @test StatGeochem.Tollari_tapatite(majors...) ≈ 528.5868109033141 @test StatGeochem.Tollari_tapatiteP2O5(58.509,5.912,750.) ≈ 0.5011681927262436 @test StatGeochem.Hayden_trutile(majors...) ≈ 822.7645622408794 @test StatGeochem.Hayden_trutileTiO2(majors...,750.) ≈ 0.045228791859556305 ## -- Test thermometers @test StatGeochem.Ferry_Zr_in_rutile(750,1) ≈ 982.8714076786658 @test StatGeochem.Ferry_Zr_in_rutileT(982.8714076786658,1) ≈ 750.0 @test StatGeochem.Ferry_Ti_in_zircon(750,1,1) ≈ 10.46178465494583 @test StatGeochem.Ferry_Ti_in_zirconT(10.46178465494583, 1, 1) ≈ 750.0 @test StatGeochem.Crisp_Ti_in_zircon(750,0,1,1) ≈ 14.08608953046849 @test StatGeochem.Crisp_Ti_in_zircon(750,1000,1,1) ≈ 13.703165806686624 @test StatGeochem.Crisp_Ti_in_zircon(750,10000,1,1) ≈ 10.570721163513461 @test StatGeochem.Crisp_Ti_in_zircon(750,20000,1,1) ≈ 7.4184040803703954 ## -- Test melts if Sys.islinux() || Sys.isapple() # Which version of Melts to use if Sys.isapple() alphameltsversion = "macosx_alphamelts_1-9" alphameltsexec = "alphamelts_macosx64" else alphameltsversion = "linux_alphamelts_1-9" alphameltsexec = "alphamelts_linux64" end # Construct file path meltsdir = joinpath(resourcepath, alphameltsversion) filepath = joinpath(resourcepath, alphameltsversion*".zip") # Download precompiled executable if !isfile(filepath) @info "Downloading alphamelts to $meltsdir" run(`mkdir -p $meltsdir`) Downloads.download("https://storage.googleapis.com/statgeochem/$alphameltsversion.zip", filepath) run(`unzip -o $filepath -d $resourcepath`) run(`mv $meltsdir/$alphameltsexec $meltsdir/alphamelts`) end meltspath = joinpath(meltsdir, "run_alphamelts.command") scratchdir = "./" ## --- # # # # # # # # # # # pMelts equil. batch melting # # # # # # # # # # # # # Conditions P_range = [20000,20000] T_range = [1700,800] # Starting composition elements = ["SiO2", "TiO2","Al2O3","Fe2O3","Cr2O3", "FeO", "MnO", "MgO", "NiO", "CoO", "CaO", "Na2O", "K2O", "P2O5", "H2O",] composition=[44.8030, 0.1991, 4.4305, 0.9778, 0.3823, 7.1350, 0.1344, 37.6345, 0.2489, 0.0129, 3.5345, 0.3584, 0.0289, 0.0209, 0.15,] #mcdbse (McDonough Pyrolite) # Run simulation melts_configure(meltspath, scratchdir, composition, elements, T_range, P_range, batchstring="1\nsc.melts\n10\n1\n3\n1\nliquid\n1\n1.0\n0\n10\n0\n4\n0\n", dT=-10, dP=0, index=1, version="pMELTS",mode="isobaric",fo2path="FMQ") # Read results melt_comp = melts_query_liquid(scratchdir, index=1, importas=:Tuple) solid_comp = melts_query_solid(scratchdir, index=1, importas=:Tuple) system = melts_query_system(scratchdir, index=1, importas=:Tuple) modes = melts_query_modes(scratchdir, index=1, importas=:Tuple) clean_modes = melts_clean_modes(scratchdir, index=1) bulk = melts_query(scratchdir, index=1) @test isa(melt_comp, NamedTuple) @test isa(solid_comp, NamedTuple) @test isa(system, NamedTuple) @test isa(modes, NamedTuple) @test isa(clean_modes, Dict) @test isa(bulk, Dict) @test all(melt_comp.Pressure .== 20000.0) print("melt_comp.Temperature: ") println(melt_comp.Temperature) @test melt_comp.Temperature ≈ 1624.06:-10.0:914.06 # 624.07:-10:804.07 print("melt_comp.SiO2: ") println(melt_comp.SiO2) @test isapprox(melt_comp.SiO2, [44.7993, 45.1225, 45.4621, 45.9048, 46.3452, 46.7906, 45.6756, 45.2691, 44.9006, 44.5674, 44.2672, 43.9979, 43.7574, 43.5432, 43.3529, 43.184, 42.9984, 42.8732, 42.8037, 42.7829, 42.8033, 42.8579, 42.9405, 43.0453, 43.1669, 43.308, 43.5206, 43.7353, 43.9483, 44.1558, 44.3546, 44.5417, 44.7144, 44.8707, 45.0086, 45.1269, 45.2246, 45.3007, 45.3549, 45.3868, 45.3922, 45.1936, 44.9836, 44.76, 44.3911, 44.2064, 44.0531, 43.8942, 43.7199, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], nans=true) # @test isapprox(melt_comp.SiO2, [44.7991, 45.1222, 45.4618, 45.9044, 46.3448, 46.7903, 45.6759, 45.2694, 44.9009, 44.5677, 44.2675, 43.9981, 43.7575, 43.5433, 43.353, 43.1841, 42.9985, 42.8732, 42.8038, 42.7829, 42.8033, 42.8579, 42.9404, 43.0452, 43.1668, 43.3079, 43.5205, 43.7351, 43.9481, 44.1556, 44.3545, 44.5415, 44.7143, 44.8705, 45.0085, 45.1269, 45.2245, 45.3007, 45.3549, 45.3868, 45.3963, 45.3833, 45.3478, 45.1948, 44.9076, 44.5701, 44.3443, 44.1384, 43.9297, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN], nans=true) @test all(solid_comp.Pressure .== 20000.0) print("solid_comp.Temperature: ") println(solid_comp.Temperature) @test solid_comp.Temperature ≈ 1624.06:-10.0:914.06 # 1624.07:-10:804.07 print("solid_comp.SiO2: ") println(solid_comp.SiO2) @test isapprox(solid_comp.SiO2, [41.4817, 41.5019, 41.4897, 41.2256, 41.0971, 41.0055, 43.7186, 44.3496, 44.73, 44.9695, 45.1228, 45.2202, 45.28, 45.3137, 45.3295, 45.3326, 45.2928, 45.2409, 45.1861, 45.1333, 45.0848, 45.0416, 45.0037, 44.9709, 44.9427, 44.9181, 44.8932, 44.8727, 44.8558, 44.842, 44.8308, 44.8219, 44.8148, 44.8093, 44.8052, 44.8023, 44.8004, 44.7993, 44.799, 44.7993, 44.8002, 44.8057, 44.8108, 44.8155, 44.8207, 44.8183, 44.8174, 44.8169, 44.8166, 44.8167, 44.8169, 44.8171, 44.8173, 44.8175, 44.8177, 44.8179, 44.8181, 44.8182, 44.8184, 44.8186, 44.8187, 44.8188, 44.8189, 44.819, 44.8191, 44.8192, 44.8193, 44.8193, 44.8194, 44.8195, 44.8195, 44.8196], nans=true) # @test isapprox(solid_comp.SiO2, [NaN, 41.5019, 41.4897, 41.2257, 41.0972, 41.0056, 43.718, 44.3492, 44.7297, 44.9694, 45.1228, 45.2202, 45.2799, 45.3137, 45.3295, 45.3326, 45.2928, 45.2409, 45.1861, 45.1333, 45.0848, 45.0416, 45.0037, 44.9709, 44.9427, 44.9182, 44.8933, 44.8727, 44.8558, 44.842, 44.8309, 44.8219, 44.8148, 44.8093, 44.8052, 44.8023, 44.8004, 44.7993, 44.799, 44.7993, 44.8001, 44.8014, 44.803, 44.8069, 44.813, 44.817, 44.8171, 44.8169, 44.8167, 44.8167, 44.8169, 44.8171, 44.8173, 44.8175, 44.8177, 44.8179, 44.8181, 44.8182, 44.8184, 44.8185, 44.8187, 44.8188, 44.8189, 44.819, 44.8191, 44.8192, 44.8193, 44.8193, 44.8194, 44.8195, 44.8195, 44.8196, 44.8196, 44.8196, 44.8196, 44.8196, 44.8196, 44.8196, 44.8195, 44.8196, 44.8197, 44.8198, 44.8199], nans=true) @test all(system.Pressure .== 20000.0) @test system.Temperature ≈ 1624.06:-10.0:914.06 # 1624.07:-10:804.07 print("system.aH2O: ") println(system.aH2O) @test isapprox(system.aH2O, [0.00119355, 0.00143907, 0.00171302, 0.0020253, 0.00235407, 0.00269726, 0.00378774, 0.00472133, 0.00577799, 0.00696703, 0.00829895, 0.00978529, 0.0114387, 0.0132728, 0.0153034, 0.0175484, 0.0224613, 0.0285535, 0.0358671, 0.044436, 0.0542559, 0.0652938, 0.0774963, 0.0907963, 0.105118, 0.120441, 0.137091, 0.15441, 0.172315, 0.190729, 0.209584, 0.228825, 0.248403, 0.26828, 0.288424, 0.308812, 0.329427, 0.350254, 0.371286, 0.392517, 0.413978, 0.437322, 0.461004, 0.484995, 0.517313, 0.578275, 0.631048, 0.677779, 0.720523, 0.74231, 0.75994, 0.778542, 0.798166, 0.818869, 0.840709, 0.863755, 0.888076, 0.913751, 0.940863, 0.969506, 0.999777, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], nans=true) @test all(modes.Pressure .== 20000.0) print("modes.Temperature: ") println(modes.Temperature) @test modes.Temperature ≈ 1624.06:-10.0:914.06 # 1624.07:-10:804.07 print("modes.liquid_0: ") println(modes.liquid_0) @test isapprox(modes.liquid_0, [99.953083, 91.06567, 83.3387, 76.413373, 70.595706, 65.639854, 55.500696, 49.591648, 44.674084, 40.504401, 36.914672, 33.785529, 31.029693, 28.581541, 26.390266, 24.415352, 21.129398, 18.287815, 15.879336, 13.851438, 12.147987, 10.715663, 9.507479, 8.483825, 7.612121, 6.862318, 6.193587, 5.622014, 5.130007, 4.70375, 4.332245, 4.006636, 3.719721, 3.4656, 3.239405, 3.037098, 2.855318, 2.691253, 2.542541, 2.407194, 2.282555, 2.128077, 1.991449, 1.869639, 1.357812, 0.473618, 0.196578, 0.07415, 0.009783, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], nans=true) # @test isapprox(modes.liquid_0, [99.95749, 91.072189, 83.344261, 76.418306, 70.599891, 65.643435, 55.505785, 49.595839, 44.677608, 40.507414, 36.917284, 33.787818, 31.031719, 28.583347, 26.391889, 24.41682, 21.131799, 18.28986, 15.881062, 13.852888, 12.149205, 10.716689, 9.508346, 8.484562, 7.61275, 6.862884, 6.194069, 5.622428, 5.130364, 4.70406, 4.332516, 4.006874, 3.719932, 3.465787, 3.239572, 3.037248, 2.855453, 2.691375, 2.542652, 2.407295, 2.283625, 2.170214, 2.065851, 1.950841, 1.825706, 0.68822, 0.268833, 0.106921, 0.027371, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], nans=true) print("modes.olivine_0: ") println(modes.olivine_0) @test isapprox(modes.olivine_0, [0.004405, 8.88875, 16.612778, 23.40101, 29.115521, 33.983114, 36.014211, 38.366376, 40.308451, 41.935036, 43.312139, 44.487298, 45.495751, 46.364327, 47.113994, 47.761526, 48.589381, 49.290863, 49.881257, 50.378767, 50.799069, 51.155338, 51.45843, 51.717196, 51.938821, 52.150943, 52.510619, 52.826884, 53.106277, 53.354154, 53.574959, 53.772418, 53.949683, 54.109432, 54.253952, 54.385199, 54.50485, 54.614346, 54.714922, 54.807643, 54.892635, 54.939162, 54.987413, 55.036388, 54.729708, 53.998944, 53.756472, 53.649289, 53.596897, 53.618702, 53.654148, 53.687873, 53.719962, 53.750492, 53.779533, 53.807145, 53.833385, 53.858301, 53.881939, 53.904336, 53.925529, 53.98708, 54.051137, 54.11778, 54.187431, 54.26058, 54.337802, 54.419774, 54.507309, 54.601389, 54.703211, 54.814258], nans=true) # @test isapprox(modes.olivine_0, [0.0, 8.882234, 16.607219, 23.396165, 29.111411, 33.979596, 36.01218, 38.364714, 40.307067, 41.93387, 43.311147, 44.486449, 45.49502, 46.363698, 47.11345, 47.761057, 48.588784, 49.290361, 49.880834, 50.37841, 50.798768, 51.155082, 51.458212, 51.717009, 51.938661, 52.150643, 52.510356, 52.826652, 53.106072, 53.353971, 53.574796, 53.772272, 53.949552, 54.109313, 54.253844, 54.385101, 54.504761, 54.614264, 54.714847, 54.807573, 54.893359, 54.972993, 55.047157, 55.101579, 55.138126, 54.216269, 53.84507, 53.698077, 53.628726, 53.623437, 53.658848, 53.692537, 53.72459, 53.755083, 53.784087, 53.811662, 53.837863, 53.862741, 53.886339, 53.908697, 53.930719, 53.992584, 54.056671, 54.123351, 54.193047, 54.266249, 54.343534, 54.425581, 54.513207, 54.607395, 54.709348, 54.820555, 54.942876, 55.078676, 55.230995, 55.403811, 55.602415, 55.833981, 56.108425, 56.206913, 56.210501, 56.213232, 56.215135], nans=true) # Test `clean_modes` vs `modes` @test clean_modes["Temperature"] == modes.Temperature @test clean_modes["liquid"] == modes.liquid_0 @test clean_modes["olivine"] == modes.olivine_0 @test clean_modes["apatite"] == modes.apatite end ## --- Test PerpleX if Sys.isunix() # Choose perpleX version perplexversion = "perplex-6.8.7" # Construct file path perplexdir = joinpath(resourcepath, perplexversion) scratchdir = "./" if Sys.islinux() # Download precompiled executable if !isfile(joinpath(perplexdir,"vertex")) @info "Downloading PerpleX to $perplexdir" run(`mkdir -p $perplexdir`) file = Downloads.download("https://storage.googleapis.com/statgeochem/$perplexversion-linux.tar.gz",joinpath(resourcepath,"$perplexversion-linux.tar.gz")) run(`tar -xzf $file -C $perplexdir`) end else # Compile from source if !isfile(joinpath(perplexdir,"vertex")) # Check if there is a fortran compiler run(`gfortran -v`) # Download Perplex v6.8.7 -- known to work with interface used here file = Downloads.download("https://storage.googleapis.com/statgeochem/$perplexversion.zip", joinpath(resourcepath,"$perplexversion.zip")) # # For a more updated perplex version, you might also try # file = download("https://petrol.natur.cuni.cz/~ondro/perplex-sources-stable.zip", joinpath(resourcepath,"perplex-stable.zip")) run(`unzip -u $file -d $resourcepath`) # Extract system("cd $perplexdir; make") # Compile end end # Kelemen (2014) primitive continental basalt excluding Mn and Ti since most melt models can"t handle them.. elements = [ "SIO2", "AL2O3", "FEO", "MGO", "CAO", "NA2O", "K2O", "H2O", "CO2",] composition = [50.0956, 15.3224, 8.5103, 9.2520, 9.6912, 2.5472, 0.8588, 2.0000, 0.6000,] # Emphasis on phases from Holland and Powell -- all phases can be used with hp02ver.dat. HP_solution_phases = "Omph(HP)\nOpx(HP)\nGlTrTsPg\nAnth\nO(HP)\nSp(HP)\nGt(HP)\nfeldspar_B\nMica(CF)\nBio(TCC)\nChl(HP)\nCtd(HP)\nSapp(HP)\nSt(HP)\nIlHm(A)\nDo(HP)\nT\nB\nF\n" HP_excludes = "" ## --- # # # # # # # # # # # # # Isobaric example # # # # # # # # # # # # # # # # # Input parameters P = 1000 # Pressure, bar T_range = (0+273.15, 1500+273.15) # Temperature range, Kelvin # Configure (run build and vertex) melt_model = "melt(HP)" @time perplex_configure_isobar(perplexdir, scratchdir, composition, elements, P, T_range, dataset="hp02ver.dat", npoints=100, excludes=HP_excludes, solution_phases=melt_model*"\n"*HP_solution_phases ) ## --- Query all properties at a single temperature -- results returned as text T = 850+273.15 data_isobaric = perplex_query_point(perplexdir, scratchdir, T) @test isa(data_isobaric, String) ## --- Query the full isobar -- results returned as dict bulk = perplex_query_system(perplexdir, scratchdir, importas=:Tuple) @test isa(bulk, NamedTuple) @test haskey(bulk, :SIO2) if haskey(bulk, :SIO2) print("bulk.SIO2: ") println(bulk.SIO2) @test haskey(bulk, :SIO2) && all(isapprox.(bulk.SIO2, 50.66433039859823, atol=0.1)) end melt = perplex_query_phase(perplexdir, scratchdir, melt_model, importas=:Tuple) @test isa(melt, NamedTuple) @test haskey(melt, :SIO2) if haskey(melt, :SIO2) print("melt.SIO2: ") println(melt.SIO2) @test !isempty(melt.SIO2) && !any(x->x<45, melt.SIO2) && !any(x->x>75, melt.SIO2) # @test isapprox(melt.SIO2, [NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 66.78282537747364, 66.82016525351406, 66.82117995364602, 66.80298329925418, 66.73744938571255, 66.62063664135016, 66.50000133000002, 66.22747284673613, 66.00795379443232, 65.7150802854759, 65.19438696112262, 64.29384856492115, 63.325731662865834, 62.36298129110562, 61.43282457312982, 60.47865161707871, 59.48121189624237, 58.55474098831869, 57.61577695368922, 56.7251829824451, 55.91185527051578, 55.093105509310554, 54.32996519595824, 53.61523753066627, 52.9413, 52.39319476068052, 52.11132084452833, 51.85100518510051, 51.61326903203858, 51.416005141600515, 51.37846165415398, 51.34318973136206, 51.3116, 51.27793076675845, 51.24849487515052, 51.223459021232784, 51.1924153577246, 51.16727441636279, 51.384574307712846, 50.940294905970504, 50.23598995280201, 50.23410000000001], nans=true) end modes = perplex_query_modes(perplexdir, scratchdir, importas=:Dict) @test isa(modes, Dict) @test haskey(modes, "Omph(HP)") if haskey(modes, "Omph(HP)") print("modes[\"Omph(HP)\"]: ") println(modes["Omph(HP)"]) # @test isapprox(modes["Omph(HP)"],[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1.5736, 7.33183, 13.3273, 13.874, 13.8044, 13.7504, 13.6605, 13.6055, 13.2465, 12.8556, 12.8012, 12.909, 12.8774, 12.8621, 12.8379, 12.8239, 12.8205, 12.839, 12.8654, 12.8914, 12.9423, 13.0084, 13.1195, 13.2487, 13.391, 13.5401, 13.7082, 13.9396, 14.1879, 14.4729, 14.754, 15.0912, 15.5081, 15.9689, 16.4671, 17.0194, 17.5064, 17.1991, 16.9685, 16.6926, 16.4602, 16.1634, 15.921, 15.659, 15.4497, 15.2485, 15.0301, 14.8809, 14.6926, 15.0711, 9.19562, NaN, NaN], nans=true) end ## --- # # # # # # # # # # # Geothermal gradient example # # # # # # # # # # # # # Input parameters P_range = (280, 28000) # Pressure range to explore, bar (roughly 1-100 km depth) T_surf = 273.15 # Temperature of surface (K) geotherm = 0.01 # Geothermal gradient of 0.1 K/bar == about 28.4 K/km melt_model = "" # Configure (run build and vertex) @time perplex_configure_geotherm(perplexdir, scratchdir, composition, elements, P_range, T_surf, geotherm; dataset="hp02ver.dat", excludes=HP_excludes, solution_phases=HP_solution_phases, npoints=200, index=2 ) seismic = perplex_query_seismic(perplexdir, scratchdir, index=2) @test isa(seismic, Dict) @test haskey(seismic, "T(K)") @test isa(seismic["T(K)"], Vector{Float64}) print("seismic[\"T(K)\"]: ") println(seismic["T(K)"]) ## --- # # # # # # # # # # # P–T path example # # # # # # # # # # # # # Input parameters T_range = (550+273.15, 1050+273.15) #K PTdir = "" PTfilename = "" @time perplex_configure_path(perplexdir, scratchdir, composition, PTdir, PTfilename, elements, T_range, dataset = "hp11ver.dat", index=1, solution_phases=HP_solution_phases, excludes=HP_excludes) modes = perplex_query_modes(perplexdir, scratchdir, index=1) @test isa(modes, Dict) @test haskey(modes,"node") @test haskey(modes, "Omph(HP)") if haskey(modes, "Omph(HP)") print("modes[\"Omph(HP)\"]: ") println(modes["Omph(HP)"]) # @test isapprox(modes["Omph(HP)"],[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 1.5736, 7.33183, 13.3273, 13.874, 13.8044, 13.7504, 13.6605, 13.6055, 13.2465, 12.8556, 12.8012, 12.909, 12.8774, 12.8621, 12.8379, 12.8239, 12.8205, 12.839, 12.8654, 12.8914, 12.9423, 13.0084, 13.1195, 13.2487, 13.391, 13.5401, 13.7082, 13.9396, 14.1879, 14.4729, 14.754, 15.0912, 15.5081, 15.9689, 16.4671, 17.0194, 17.5064, 17.1991, 16.9685, 16.6926, 16.4602, 16.1634, 15.921, 15.659, 15.4497, 15.2485, 15.0301, 14.8809, 14.6926, 15.0711, 9.19562, NaN, NaN], nans=true) end ## --- # # # # # # # # # # # Pseudosection example # # # # # # # # # # # # # P_range = (1000, 5000) # Pressure range to explore, bar (roughly 1-100 km depth) T_range = (400+273.15, 600+273.15) # Temperature range to explore, K melt_model = "" solution_phases = "Opx(HP)\nO(HP)\nF\n" excludes = "" # Configure (run build and vertex) @time perplex_configure_pseudosection(perplexdir, scratchdir, composition, elements, P_range, T_range, dataset="hp02ver.dat", excludes=excludes, solution_phases=melt_model*solution_phases, index=1, xnodes=50, ynodes=50) # Query modes on diagonal line across P-T space modes = perplex_query_modes(perplexdir, scratchdir, P_range, T_range, index=1, npoints=200) @test isa(modes, Dict) && !isempty(modes) @test haskey(modes,"T(K)") && all(extrema(modes["T(K)"]) .≈ T_range) phase = perplex_query_phase(perplexdir, scratchdir, "Opx(HP)", P_range, T_range, index=1, npoints=200) @test isa(phase, Dict) && !isempty(phase) @test haskey(phase,"T(K)") && all(extrema(phase["T(K)"]) .≈ T_range) system = perplex_query_system(perplexdir, scratchdir, P_range, T_range, index=1, npoints=200) @test isa(system, Dict) && !isempty(system) @test haskey(system,"T(K)") && all(extrema(system["T(K)"]) .≈ T_range) # Query seismic properties on diagonal line across P-T space seismic = perplex_query_seismic(perplexdir, scratchdir, P_range, T_range, index=1, npoints=200) @test isa(seismic, Dict) && !isempty(seismic) @test haskey(seismic,"T(K)") && !isempty(seismic["T(K)"]) && all(extrema(seismic["T(K)"]) .≈ T_range) @test haskey(seismic, "rho,kg/m3") && !isempty(seismic["rho,kg/m3"]) && !any(x->x<2700, seismic["rho,kg/m3"]) && !any(x->x>3200, seismic["rho,kg/m3"]) # Query properties on a manually-specified diagonal P-T line P = range(first(P_range), last(P_range), length=16) T = range(first(T_range), last(T_range), length=16) modes = perplex_query_modes(perplexdir, scratchdir, P, T, index=1) @test isa(modes, Dict) && !isempty(modes) @test haskey(modes,"T(K)") && all(isapprox.(modes["T(K)"], T, atol=0.1)) phase = perplex_query_phase(perplexdir, scratchdir, "Opx(HP)", P, T, index=1) @test isa(phase, Dict) && !isempty(phase) @test haskey(phase,"T(K)") && all(isapprox.(phase["T(K)"], T, atol=0.1)) system = perplex_query_system(perplexdir, scratchdir, P, T, index=1) @test isa(system, Dict) && !isempty(system) @test haskey(system,"T(K)") && all(isapprox.(system["T(K)"], T, atol=0.1)) @test haskey(system, "rho,kg/m3") && !any(x->x<2700, system["rho,kg/m3"]) && !any(x->x>3200, system["rho,kg/m3"]) seismic = perplex_query_seismic(perplexdir, scratchdir, P, T, index=1) @test isa(seismic, Dict) && !isempty(seismic) @test haskey(seismic,"T(K)") if haskey(seismic,"T(K)") @test isapprox(seismic["T(K)"], T, atol=0.01) print("T (K):\t") println(seismic["T(K)"]) end @test haskey(seismic, "rho,kg/m3") if haskey(seismic, "rho,kg/m3") @test !any(x->x<2700, seismic["rho,kg/m3"]) && !any(x->x>3200, seismic["rho,kg/m3"]) print("rho,kg/m3:\t") println(seismic["rho,kg/m3"]) end end ## --- End of File
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
4458
@test find_litho1_property(40:45, fill(-100,6), :ice, :thickness) ≈ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] @test find_litho1_property(40:45, fill(-100,6), :water, :thickness) ≈ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] @test find_litho1_property(40:45, fill(-100,6), :upper_sediments, :vp) ≈ [2500.0, 2500.0, 2500.0, 2500.0, 2500.0, 2500.0] @test find_litho1_property(40:45, fill(-100,6), :upper_sediments, :vs) ≈ [1070.0, 1070.0, 1070.0, 1070.0, 1070.0, 1070.0] @test find_litho1_property(40:45, fill(-100,6), :upper_sediments, :rho) ≈ [2110.0, 2110.0, 2110.0, 2110.0, 2110.0, 2110.0] @test find_litho1_property(40:45, fill(-100,6), :upper_sediments, :bottom) ≈ [-0.25, -0.352, -0.301, -0.208, -0.063, 0.045] @test find_litho1_property(40:45, fill(-100,6), :upper_sediments, :thickness) ≈ [0.5, 0.5, 0.5, 0.5, 0.5, 0.608] @test find_litho1_property(40:45, fill(-100,6), :middle_sediments, :vp) ≈ [4000.0, 4000.0, 4000.0, 4000.0, 4000.0, 4000.0] @test find_litho1_property(40:45, fill(-100,6), :middle_sediments, :vs) ≈ [2130.0, 2130.0, 2130.0, 2130.0, 2130.0, 2130.0] @test find_litho1_property(40:45, fill(-100,6), :middle_sediments, :rho) ≈ [2370.0, 2370.0, 2370.0, 2370.0, 2370.0, 2370.0] @test find_litho1_property(40:45, fill(-100,6), :middle_sediments, :bottom) ≈ [0.662, 0.382, 0.453, 0.297, 0.235, 0.37] @test find_litho1_property(40:45, fill(-100,6), :middle_sediments, :thickness) ≈ [0.912, 0.734, 0.754, 0.505, 0.298, 0.325] @test find_litho1_property(40:45, fill(-100,6), :lower_sediments, :thickness) ≈ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] @test find_litho1_property(40:45, fill(-100,6), :upper_crust, :vp) ≈ [6252.38, 6225.32, 6094.56, 6233.38, 6180.0, 6219.24] @test find_litho1_property(40:45, fill(-100,6), :upper_crust, :vs) ≈ [3626.89, 3610.68, 3534.85, 3615.36, 3584.4, 3607.79] @test find_litho1_property(40:45, fill(-100,6), :upper_crust, :rho) ≈ [2791.52, 2780.64, 2722.24, 2784.24, 2760.4, 2776.46] @test find_litho1_property(40:45, fill(-100,6), :upper_crust, :bottom) ≈ [16.877, 16.043, 14.313, 16.055, 15.497, 15.499] @test find_litho1_property(40:45, fill(-100,6), :upper_crust, :thickness) ≈ [16.215, 15.661, 13.86, 15.758, 15.262, 15.129] @test find_litho1_property(40:45, fill(-100,6), :middle_crust, :vp) ≈ [6641.63, 6640.34, 6500.87, 6648.94, 6592.0, 6600.29] @test find_litho1_property(40:45, fill(-100,6), :middle_crust, :vs) ≈ [3821.52, 3818.19, 3738.0, 3823.14, 3790.4, 3798.31] @test find_litho1_property(40:45, fill(-100,6), :middle_crust, :rho) ≈ [2888.84, 2884.4, 2823.81, 2888.13, 2863.4, 2871.72] @test find_litho1_property(40:45, fill(-100,6), :middle_crust, :bottom) ≈ [34.838, 33.669, 29.909, 33.783, 32.659, 32.24] @test find_litho1_property(40:45, fill(-100,6), :middle_crust, :thickness) ≈ [17.961, 17.626, 15.596, 17.728, 17.162, 16.741] @test find_litho1_property(40:45, fill(-100,6), :lower_crust, :vp) ≈ [7147.59, 7159.11, 7008.75, 7168.39, 7107.0, 7100.2] @test find_litho1_property(40:45, fill(-100,6), :lower_crust, :vs) ≈ [4074.5, 4077.58, 3991.94, 4082.86, 4047.9, 4048.27] @test find_litho1_property(40:45, fill(-100,6), :lower_crust, :rho) ≈ [3028.95, 3029.65, 2966.02, 3033.58, 3007.6, 3009.81] @test find_litho1_property(40:45, fill(-100,6), :lower_crust, :bottom) ≈ [51.119, 49.339, 43.779, 49.55, 47.917, 47.426] @test find_litho1_property(40:45, fill(-100,6), :lower_crust, :thickness) ≈ [16.281, 15.67, 13.87, 15.767, 15.258, 15.186] @test find_litho1_property(40:45, fill(-100,6), :sclm, :vp) ≈ [8171.22, 8173.6, 8194.44, 8242.08, 8251.74, 8220.29] @test find_litho1_property(40:45, fill(-100,6), :sclm, :vs) ≈ [4655.96, 4657.32, 4669.19, 4696.34, 4701.85, 4683.93] @test find_litho1_property(40:45, fill(-100,6), :sclm, :rho) ≈ [3300.0, 3300.0, 3300.0, 3300.0, 3300.0, 3300.0] @test find_litho1_property(40:45, fill(-100,6), :sclm, :bottom) ≈ [182.204, 234.025, 241.833, 246.228, 243.389, 251.825] @test find_litho1_property(40:45, fill(-100,6), :sclm, :thickness) ≈ [131.085, 184.686, 198.054, 196.678, 195.472, 204.399] @test find_litho1_property(40:45, fill(-100,6), :asthenosphere, :vp) ≈ [8007.79, 8010.13, 8030.55, 8077.24, 8086.7, 8055.88] @test find_litho1_property(40:45, fill(-100,6), :asthenosphere, :vs) ≈ [4352.06, 4353.33, 4364.43, 4389.8, 4394.94, 4378.2] @test find_litho1_property(40:45, fill(-100,6), :asthenosphere, :rho) ≈ [3300.0, 3300.0, 3300.0, 3300.0, 3300.0, 3300.0] @test find_litho1_property(40:45, fill(-100,6), 10, :vp) ≈ [8007.79, 8010.13, 8030.55, 8077.24, 8086.7, 8055.88]
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
11090
## --- Resampling.jl index = Array{Int64}(undef,1000) resampled = Array{Int64}(undef,1000) @test bsr!(resampled,index,1:10,0,0.5) |> unique ⊆ 1:10 @test bsr!(resampled,index,1:10,0,fill(0.5,1000)) |> unique ⊆ 1:10 @test bsr!(resampled,index,1:10,fill(0,10),0.5) |> unique ⊆ 1:10 @test bsr!(resampled,index,1:10,fill(0,10),fill(0.5,1000)) |> unique ⊆ 1:10 index = Array{Int64}(undef,1000) resampled = Array{Int64}(undef,1000,10) data = repeat(1:10,1,10) @test vec(bsr!(resampled,index,data,zeros(10),0.5)) |> unique ⊆ 1:10 @test vec(bsr!(resampled,index,data,zeros(10),fill(0.5,10))) |> unique ⊆ 1:10 resampled = Array{Float64}(undef,1000) # Gaussian bsr!(resampled, index, ones(10), 0.5, 0.5) @test isapprox(mean(resampled), 1, atol=0.3) bsr!(resampled, index, ones(10), 0.5, fill(0.5,1000)) @test isapprox(mean(resampled), 1, atol=0.3) bsr!(resampled, index, ones(10), fill(0.5,10), 0.5) @test isapprox(mean(resampled), 1, atol=0.3) bsr!(resampled, index, ones(10), fill(0.5,10), fill(0.5,1000)) @test isapprox(mean(resampled), 1, atol=0.3) # Other distributions bsr!(uniform, resampled, index, ones(10), 0.5, 0.5) @test isapprox(mean(resampled), 1, atol=0.3) bsr!(triangular, resampled, index, ones(10), 0.5, fill(0.5,1000)) @test isapprox(mean(resampled), 1, atol=0.3) bsr!(triangular, resampled, index, ones(10), fill(0.5,10), 0.5) @test isapprox(mean(resampled), 1, atol=0.3) bsr!(uniform, resampled, index, ones(10), fill(0.5,10), fill(0.5,1000)) @test isapprox(mean(resampled), 1, atol=0.3) @test bsresample(1:10,fill(0.5,10),1000,0.5)::Array{Float64} |> length == 1000 @test bsresample(1:10,fill(0.5,10),1000,fill(0.5,10))::Array{Float64} |> length == 1000 d = Dict{String,Vector{Float64}}() d["x"] = 1:10; d["y"] = 2:2:20 d["x_sigma"] = d["y_sigma"] = fill(0.5,10) dbs = bsresample(d, 1000, ["x","y"], 0.5) @test isapprox(mean(dbs["x"]), 5.5, atol=0.5) @test isapprox(std(dbs["x"]), 3.03, atol=0.5) @test isapprox(mean(dbs["y"]), 11, atol=1) @test isapprox(std(dbs["y"]), 6.06, atol=1) dt = TupleDataset(d) @test isa(dt, NamedTuple) dbs = bsresample(dt, 1000, (:x, :y), 0.5) @test isapprox(mean(dbs[:x]), 5.5, atol=0.5) @test isapprox(std(dbs[:x]), 3.03, atol=0.5) @test isapprox(mean(dbs[:y]), 11, atol=1) @test isapprox(std(dbs[:y]), 6.06, atol=1) @test bincounts(1:100, 0.0:11.11111111111111:100.0) == (5:10:95, fill(10,10)) @test bincounts(1:100, 0, 100, 10) == (5:10:95, fill(10,10)) c,N = bincounts(1:100, 0, 100, 10; relbinwidth=3) @test c == 5:10:95 @test N == [20, 30, 30, 30, 30, 30, 30, 30, 30, 20] @test binmeans(1:100, 1:100, 0.0:11.11111111111111:100.0) == (5:10:95, 5.5:10:95.5, fill(0.9574271077563381,10)) @test binmeans(1:100, 1:100, 0, 100, 10) == (5:10:95, 5.5:10:95.5, fill(0.9574271077563381,10)) c,m,e = binmeans(1:100, 1:100, 0, 100, 10; relbinwidth=3) @test c == 5:10:95 @test m == [10.5, 15.5, 25.5, 35.5, 45.5, 55.5, 65.5, 75.5, 85.5, 90.5] @test e ≈ [1.3228756555322954, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.3228756555322954] @test binmeans(1:100, 1:100, 0, 100, 10, ones(100)) == (5:10:95, 5.5:10:95.5, fill(0.9574271077563381,10)) c,m,e = binmeans(1:100, 1:100, 0, 100, 10, ones(100); relbinwidth=3) @test c == 5:10:95 @test m == [10.5, 15.5, 25.5, 35.5, 45.5, 55.5, 65.5, 75.5, 85.5, 90.5] @test e ≈ [1.3228756555322954, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.607275126832159, 1.3228756555322954] @test binmedians(1:100,1:100,0.0:11.11111111111111:100.0) == (5:10:95, 5.5:10:95.5, fill(1.1720982147414096,10)) @test binmedians(1:100,1:100,0,100,10) == (5:10:95, 5.5:10:95.5, fill(1.1720982147414096,10)) c,m,e = binmedians(1:100, 1:100, 0, 100, 10; relbinwidth=3) @test c == 5:10:95 @test m == [10.5, 15.5, 25.5, 35.5, 45.5, 55.5, 65.5, 75.5, 85.5, 90.5] @test e ≈ [1.6575971917205938, 2.030133659392898, 2.030133659392898, 2.030133659392898, 2.030133659392898, 2.030133659392898, 2.030133659392898, 2.030133659392898, 2.030133659392898, 1.6575971917205938] @test randsample(1:10., 1000, rand(1000))::Array{Float64} |> length == 1000 @test randsample(1:10, 1000)::Array{Int64} |> length == 1000 @test unique(randsample(1:10, 1000)) ⊆ 1:10 dr = randsample(d, 1000, ["x","y"], 0.5) @test isapprox(mean(dr["x"]), 5.5, atol=0.5) @test isapprox(std(dr["x"]), 3.03, atol=0.5) @test unique(dr["x"]) ⊆ 1:10 @test isapprox(mean(dr["y"]), 11, atol=1) @test isapprox(std(dr["y"]), 6.06, atol=1) @test unique(dr["y"]) ⊆ 2:2:20 ## --- Invweight @test invweight(0:10,0:10,0:10) ≈ [13.092772378121769, 13.759663290331229, 14.079390874013654, 14.244556812410089, 14.327747696132253, 14.354508911206949, 14.331218676773712, 14.251150311763046, 14.088257739618454, 13.76917452212827, 13.101581593462868] @test invweight_location(0:10,0:10) ≈ [2.3478642777118957, 2.950680392065609, 3.2200556525889006, 3.348975353894235, 3.4103053158720016, 3.4297605864726126, 3.413776296513463, 3.3555688532471923, 3.2289225181937002, 2.9601916238626513, 2.3566734930529947] @test invweight_age(0:10) ≈ [10.744908100409873, 10.808982898265619, 10.859335221424754, 10.895581458515855, 10.91744238026025, 10.924748324734335, 10.91744238026025, 10.895581458515855, 10.859335221424754, 10.808982898265619, 10.744908100409873] @test invweight(3:7, 3:7, 3:7, spatialscale=1:3, agescale=20:10:40) ≈ [6.455459194232295 6.4954174826726305 6.50970747669241; 7.221911822727031 7.261870111167367 7.276160105187145; 7.829876642142075 7.86983493058241 7.8841249246021885;;; 6.795239175454396 6.815587062014095 6.822796065519029; 7.814257428828995 7.8346053153886945 7.841814318893627; 8.464965591963413 8.485313478523112 8.492522482028043;;; 6.866607765314396 6.880327963335503 6.88516052627444; 7.9787064574491104 7.992426655470217 7.9972592184091535; 8.67354089449909 8.687261092520199 8.692093655459136;;; 6.796516961665698 6.816864848225396 6.82407385173033; 7.81538067459392 7.835728561153617 7.84293756465855; 8.46552963870305 8.485877525262747 8.49308652876768;;; 6.456852342594404 6.496810631034739 6.511100625054519; 7.223828686779423 7.263786975219759 7.278076969239537; 7.831650416268091 7.871608704708425 7.885898698728204] # Test NaN-ful cases lat, lon, age = [0:10..., NaN], [0:10..., NaN], [0:10..., NaN] @test invweight(lat, lon, age) ≈ [13.092772378121769, 13.759663290331229, 14.079390874013654, 14.244556812410089, 14.327747696132253, 14.354508911206949, 14.331218676773712, 14.251150311763046, 14.088257739618454, 13.76917452212827, 13.101581593462868, Inf] @test invweight_location(lat, lon) ≈ [2.3478642777118957, 2.950680392065609, 3.2200556525889006, 3.348975353894235, 3.4103053158720016, 3.4297605864726126, 3.413776296513463, 3.3555688532471923, 3.2289225181937002, 2.9601916238626513, 2.3566734930529947, Inf] @test invweight_age(age) ≈ [10.744908100409873, 10.808982898265619, 10.859335221424754, 10.895581458515855, 10.91744238026025, 10.924748324734335, 10.91744238026025, 10.895581458515855, 10.859335221424754, 10.808982898265619, 10.744908100409873, Inf] ## --- bin_bsr x = 0:100; y = 0:100 xmin = 0; xmax = 100; nbins = 5 (c,m,e) = bin_bsr(x, y, xmin, xmax, nbins, x_sigma=ones(101)) @test c == 10.0:20.0:90.0 @test isapprox(m, [10.04, 29.94, 49.94, 69.92, 89.83], atol=0.5) @test isapprox(e, [1.17, 1.21, 1.23, 1.26, 1.28], atol=0.5) # Upper and lower CIs (c,m,el,eu) = bin_bsr(nanbinmean!, x, y, xmin, xmax, nbins, x_sigma=ones(101)) @test c == 10.0:20.0:90.0 @test isapprox(m, [10.04, 29.94, 49.94, 69.92, 89.83], atol=0.5) @test isapprox(el, [2.29, 2.38, 2.41, 2.49, 2.51], atol=1.0) @test isapprox(eu, [2.3, 2.37, 2.42, 2.51, 2.51], atol=1.0) # Medians, upper and lower CIs (c,m,el,eu) = bin_bsr(nanbinmedian!, x, y, xmin, xmax, nbins, x_sigma=ones(101)) @test c == 10.0:20.0:90.0 @test isapprox(m, [10.01, 29.91, 49.9, 69.88, 89.79], atol=1) @test isapprox(el, [4.01, 3.91, 3.9, 3.88, 3.79], atol=2) @test isapprox(eu, [3.99, 4.09, 4.1, 4.12, 4.21], atol=2) # with weights w = ones(101) (c,m,e) = bin_bsr(x, y, xmin, xmax, nbins, w, x_sigma=ones(101)) @test c == 10.0:20.0:90.0 @test isapprox(m, [10.04, 29.94, 49.94, 69.92, 89.83], atol=0.5) @test isapprox(e, [1.17, 1.21, 1.23, 1.26, 1.28], atol=0.5) # with 2-D array (matrix) of y data y = repeat(0:100, 1, 4) y_sigma = ones(101,4) (c,m,e) = bin_bsr(x, y, xmin, xmax, nbins, x_sigma=ones(101), y_sigma=y_sigma) @test c == 10.0:20.0:90.0 @test isapprox(m, repeat([10.04, 29.94, 49.94, 69.92, 89.83], 1, 4), atol=0.5) @test isapprox(e, repeat([1.17, 1.21, 1.23, 1.26, 1.28], 1, 4), atol=0.5) (c,m,el,eu) = bin_bsr(x, y, xmin, xmax, nbins, x_sigma=ones(101), y_sigma=y_sigma, sem=:CI) @test c == 10.0:20.0:90.0 @test isapprox(m, repeat([10.04, 29.94, 49.94, 69.92, 89.83], 1, 4), atol=0.5) @test isapprox(el, repeat([2.29, 2.38, 2.41, 2.49, 2.51], 1, 4), atol=1.0) @test isapprox(eu, repeat([2.3, 2.37, 2.42, 2.51, 2.51], 1, 4), atol=1.0) ## -- bin_bsr_ratios x = 0:100; num = 0:100; denom=reverse(num) xmin = 0; xmax = 100; nbins = 5 (c,m,el,eu) = bin_bsr_ratios(x, num, denom, xmin, xmax, nbins, x_sigma=ones(101)) @test c == 10.0:20.0:90.0 @test isapprox(m, [0.11, 0.43, 1.0, 2.33, 8.99], rtol=0.1) @test isapprox(el, [0.03, 0.05, 0.09, 0.26, 2.11], rtol=0.4) @test isapprox(eu, [0.03, 0.05, 0.1, 0.29, 3.03], rtol=0.4) # With weights (c,m,el,eu) = bin_bsr_ratios(x, num, denom, xmin, xmax, nbins, ones(101), x_sigma=ones(101)) @test c == 10.0:20.0:90.0 @test isapprox(m, [0.11, 0.43, 1.0, 2.33, 8.99], rtol=0.1) @test isapprox(el, [0.03, 0.05, 0.09, 0.26, 2.11], rtol=0.4) @test isapprox(eu, [0.03, 0.05, 0.1, 0.29, 3.03], rtol=0.4) # Medians (c,m,el,eu) = bin_bsr_ratio_medians(x, num, denom, xmin, xmax, nbins, x_sigma=ones(101)) @test c == 10.0:20.0:90.0 @test isapprox(m, [0.11, 0.43, 1.0, 2.34, 9.25], rtol=0.1) @test isapprox(el, [0.05, 0.08, 0.15, 0.4, 3.1], rtol=0.5) @test isapprox(eu, [0.05, 0.09, 0.17, 0.51, 6.42], rtol=0.5) ## --- Monte Carlo interpolation/fitting (c,m) = mcfit(0:11, ones(12), 0:11, ones(12), 1, 10, 10) @test c == 1:10 @test isapprox(m, [1.15, 2.02, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 8.98, 9.85], atol = 0.25) ## --- Downsampling @test downsample(1:100, 10) == 10:10:100 A = reshape(1:100,10,10) @test downsample(A, 2) == [12 32 52 72 92; 14 34 54 74 94; 16 36 56 76 96; 18 38 58 78 98; 20 40 60 80 100] @test downsample(collect(A), 2) == [12 32 52 72 92; 14 34 54 74 94; 16 36 56 76 96; 18 38 58 78 98; 20 40 60 80 100] ## ---
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
2122
## --- tc1/tc1.jl @test find_tc1_crust(33,-100) == 40.0 @test find_tc1_crust([33,-30,70],[-100,20,-130]) == [40.0, 38.0, 46.0] @test find_tc1_lith(33,-100) == 132.0 @test find_tc1_lith([33,-30,70],[-100,20,-130]) == [132.0, 123.0, 167.0] @test find_tc1_age(33,-100) == (1400.0, 1100.0, 1700.0) @test find_tc1_age([33,-30,70],[-100,20,-130]) == ([1400.0, 1400.0, 2100.0], [1100.0, 1100.0, 1700.0], [1700.0, 1700.0, 2500.0]) ## --- PartitionCoefficients/PartitionCoefficients.jl @test Float16.(claiborne_zircon_kd.(["Hf","Th","U","Y","Nb","Nd","Sm","Tb","Eu","Dy","Gd","Ho","Er","Yb","Tm","Lu"], 800)) == Float16[1.303e3, 6.46, 36.97, 33.47, 0.2556, 0.02368, 0.4363, 10.695, 0.8784, 19.56, 3.293, 40.34, 62.88, 101.75, 94.94, 126.4] @test claiborne_zircon_kd("Pr", 800) ≈ 0.00710099886045172 @test claiborne_zircon_kd("La", 800) ≈ 1.5412711665791843e-5 ## -- Geography.jl lat = [43.7022,-26.2041,-19.5723,-34.9285,46.4908] lon = [-72.2896,28.0473,65.7550,138.6007,9.8355] @test find_geolcont(lat, lon) == [3, 1, 7, 5, 2] @test find_geolcont(43.702245, -72.0929) == fill(3) @test find_geolprov(lat, lon) == [10, 31, 0, 10, 10] @test find_geolprov(43.702245, -72.0929) == fill(10) @test find_land(lat, lon) == Bool[1, 1, 0, 1, 1] @test find_land(43.702245, -72.0929) == fill(true) # Elevation datasets A = (1:200)*(1:200)' @test find_etopoelev(A, -90:-89, -180:-179) == [1,3721] @test find_srtm15plus(A, -90:0.1:-89.5, -180:0.1:-179.5) == [1, 625, 2401, 5329, 9409, 14641] @test find_seafloorage(A, 80.738:-0.1:80, 0:0.1:0.7) == [1, 80, 266, 570, 975, 1472, 2090, 2667] ## --- Chemistry.jl @test molarmass["Si"] ≈ 28.085 @test molarmasspercation["TiO2"] ≈ 79.8651 @test ionicradius.La ≈ 117.2 @test ioniccharge.La == +3 ## --- Geology.jl @test timescale isa NamedTuple @test timescale.Age_min["holocene"] === 0. @test timescale.Age_min["archean"] === 2500. @test timescale.Age_max["archean"] === 4000. @test timescale.Age_min["hadean"] === 4000. @test StatGeochem.rock_type_key isa NamedTuple ## ---
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
code
4074
## --- Geochronology.jl @test eHf(0.2818792, 0.001009289, 1424.878) ≈ -0.9639408985107067 (c, m, el, eu) = bin_bsr_eHf(1:4000, fill(0.2818792, 4000), fill(0.001009289,4000), 1:4000, 0, 4000, 4, fill(10,4000), fill(0.001,4000), fill(1e-6,4000), fill(10,4000), 500) @test c == 500:1000:3500 isapprox(m, [-21.316, 0.724, 23.187, 45.97], atol=5) isapprox(el, [2.254, 2.216, 2.28, 2.319], atol=0.5) isapprox(eu, [2.245, 2.216, 2.273, 2.348], atol=0.5) ## --- GIS.jl # Calculate slope on a sphere A = [8 7 10 -1 -1; 5 2 2 -1 -1; 8 5 3 1 6; 8 10 3 9 5; -1 8 4 10 4] @test aveslope(A*1000, 1:4, 1:4, 1, Int64, minmatval=0, km_per_lat=111.1) == [0 20 0 0 0; 19 23 8 0 0; 18 15 11 22 15; 4 0 15 35 16; 0 14 15 0 0] @test aveslope(A*1000, 1:4, 1:4, 1, Float16, minmatval=0, km_per_lat=111.1) == Float16[0.0 19.72 0.0 0.0 0.0; 18.75 22.72 8.29 0.0 0.0; 18.45 15.375 11.2 22.45 14.63; 3.824 0.0 15.06 35.4 15.914; 0.0 13.59 15.39 0.0 0.0] @test maxslope(A*1000, 1:4, 1:4, 1, minmatval=0, km_per_lat=111.1) == [0 45 72 0 0; 27 16 32 0 6; 38 36 22 14 45; 18 23 22 41 36; 0 32 38 45 0] @test maxslope(A*1000, 1:4, 1:4, 1, Float16, minmatval=0, km_per_lat=111.1) == Float16[0.0 45.0 72.0 0.0 0.0; 27.02 15.914 31.5 0.0 6.367; 38.22 36.0 22.3 13.52 45.06; 18.05 22.56 22.3 40.5 36.1; 0.0 31.86 38.22 44.6 0.0] # Test ESRI arc/info ASCII grid import function gridfiletext = """ ncols 4 nrows 6 xllcorner 0.0 yllcorner 0.0 cellsize 50.0 NODATA_value -9999 -9999 -9999 5 2 -9999 20 100 36 3 8 35 10 32 42 50 6 88 75 27 9 13 5 1 -9999 """ f = open("grid.asc","w") print(f, gridfiletext) close(f) (data, metadata) = importAAIGrid("grid.asc", Int64, undefval=-999) @test eltype(data) == Int64 @test data == [-9999 -9999 5 2; -9999 20 100 36; 3 8 35 10; 32 42 50 6; 88 75 27 9; 13 5 1 -9999] @test metadata["nodata"] == -9999 rm("grid.asc") # Random lat-lon generation @test isa(randlatlon(), Tuple{Float64,Float64}) lat,lon = randlatlon(100) @test maximum(lat) <= 90 @test minimum(lat) >= -90 @test maximum(lon) <= 180 @test minimum(lon) >= -180 lat,lon = randlatlon(100,land=true) @test maximum(lat) <= 90 @test minimum(lat) >= -90 @test maximum(lon) <= 180 @test minimum(lon) >= -180 @test all(find_land(lat, lon)) @test length(lat) == length(lon) == 100 # Calculate arc-degree distance @test isapprox(haversine(1, 0, 0, 0), 1) @test isapprox(haversine(0, 1, 0, 0), 1) @test isapprox(haversine(0, 0, 1, 0), 1) @test isapprox(haversine(0, 0, 0, 1), 1) @test isapprox(haversine(0, 0, 0, 0), 0) @test isapprox(haversine(90, 2, 0, 0), 90) @test isapprox(haversine(0, 0, 90, 2), 90) # Centroid of a set of lats and lons on a sphere lats, lons = [-1, 1, 0, 0.], [0, 0, -1, 1.] @test all(centroid(lats, lons) .≈ (0.0, 0.0)) lats, lons = [43.69852352,43.69852385,43.69944918,43.69945593,], [-116.0948702,-116.0936334,-116.0936182,-116.0948765,]; @test all(centroid(lats, lons) .≈ (43.698988121696146, -116.0942495750004)) # Maximum arc-degree distance between a list of points on a sphere lats, lons = [-1, 1, 0, 0.], [0, 0, -1, 1.] @test all(dist_uncert(lats, lons) .≈ (0.0, 0.0, 1.0)) lats, lons = [0, 0, 0, 0], [0, 30, 23, 90] @test all(dist_uncert(lats, lons) .≈ (0.0, 34.15788270532762, 45.0)) xyz = 2rand(3) .- 1 @test xyz ≈ [cartesian(spherical(xyz...,)...,)...,] ## --- Etc.jl # Test digitize_plotmarkers img = load("assets/xyscatter.png") C = eltype(img) (x,dx,y,dy) = digitize_plotmarkers(img, C(0,0.604,0.976,1), (0,10), (0,10)) @test isapprox(x, 1:10, atol = 0.1) @test isapprox(y, 1:10, atol = 0.1) # Test digitize_plotline img = load("assets/xysin.png") C = eltype(img) (x,y) = digitize_plotline(img, C(0,0.604,0.976,1), (0,2pi), (-1.1,1.1)) @test isapprox(sin.(x), y, atol=0.1) ## ---
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
docs
3849
# StatGeochem.jl [![DOI](osf_io_TJHMW.svg)](https://doi.org/10.17605/OSF.IO/TJHMW) [![Docs][docs-dev-img]][docs-dev-url] [![CI][ci-img]][ci-url] [![CI (Julia nightly)][ci-nightly-img]][ci-nightly-url] [![Coverage][codecov-img]][codecov-url] _Computational tools for statistical geochemistry and petrology_ In addition to functions exported by StatGeochem directly, StatGeochem also reexports (and depends upon internally) both [StatGeochemBase.jl](https://github.com/brenhinkeller/StatGeochemBase.jl) and [NaNStatistics.jl](https://github.com/brenhinkeller/NaNStatistics.jl) ## Installation StatGeochem.jl is written in the [Julia programming language](https://julialang.org/), and is registered on the General registry. To install, enter the Julia package manager (type `]` in the REPL) and type: ``` pkg> add StatGeochem ``` If you are trying to use a script written prior to ~2021, you may want to use the oldest registered version of the package, which you can install with (e.g.) ```Julia julia> add [email protected] ``` ## Usage This package can be used in the [Julia](https://julialang.org) REPL, in scripts or functions in Julia `.jl` files, in the [Juno/Atom IDE](http://junolab.org/), or in a Jupyter notebook. There aren't examples yet for most of the code in this repository, but for a quick demonstration, try the interactive Jupyter notebooks (it may take a few minutes for these to launch) * [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/brenhinkeller/StatGeochem.jl/main?filepath=examples/BootstrapResamplingDemo.ipynb) Weighted bootstrap resampling: [BootstrapResamplingDemo.ipynb](https://mybinder.org/v2/gh/brenhinkeller/StatGeochem.jl/main?filepath=examples/BootstrapResamplingDemo.ipynb) * [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/brenhinkeller/StatGeochem.jl/main?filepath=examples/ConstantSilicaReferenceModel.ipynb) Constant-silica reference model: [ConstantSilicaReferenceModel.ipynb](https://mybinder.org/v2/gh/brenhinkeller/StatGeochem.jl/main?filepath=examples/ConstantSilicaReferenceModel.ipynb) * [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/brenhinkeller/StatGeochem.jl/main?filepath=examples/MeltsExamples.ipynb) Julia-alphaMELTS interface demo: [MeltsExamples.ipynb](https://mybinder.org/v2/gh/brenhinkeller/StatGeochem.jl/main?filepath=examples%2FMeltsExamples.ipynb) * [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/brenhinkeller/StatGeochem.jl/main?filepath=examples/PerplexExamples.ipynb) Julia-Perple_X interface demo: [PerplexExamples.ipynb](https://mybinder.org/v2/gh/brenhinkeller/StatGeochem.jl/main?filepath=examples%2FPerplexExamples.ipynb) The above links run notebooks from the [examples/](examples/) folder on a [JupyterHub](https://github.com/jupyterhub/jupyterhub) server hosted by the [Binder](https://mybinder.org) project. If you make changes to the online notebook, you can save them with `File` > `Download as` > `Notebook (.ipynb)` To run a downloaded notebook locally, use [IJulia](https://github.com/JuliaLang/IJulia.jl) ```Julia julia> using IJulia julia> notebook() ``` [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://brenhinkeller.github.io/StatGeochem.jl/dev/ [ci-img]: https://github.com/brenhinkeller/StatGeochem.jl/workflows/CI/badge.svg [ci-url]: https://github.com/brenhinkeller/StatGeochem.jl/actions/workflows/CI.yml [ci-nightly-img]:https://github.com/brenhinkeller/StatGeochem.jl/workflows/CI%20(Julia%20nightly)/badge.svg [ci-nightly-url]:https://github.com/brenhinkeller/StatGeochem.jl/actions/workflows/CI-julia-nightly.yml [codecov-img]: http://codecov.io/github/brenhinkeller/StatGeochem.jl/coverage.svg?branch=main [codecov-url]: http://app.codecov.io/github/brenhinkeller/StatGeochem.jl?branch=main
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
docs
211
```@meta CurrentModule = StatGeochem ``` # StatGeochem Documentation for the [StatGeochem.jl](https://github.com/brenhinkeller/StatGeochem.jl) package. ```@index ``` ```@autodocs Modules = [StatGeochem] ```
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
docs
204
The unprojected maps/images in this folder are downscalings of https://en.wikipedia.org/wiki/File:Blue_Marble_2002.png, which was produced from NASA imagery (primarily MODIS) and is in the public domain.
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.7.10
4a908923b30176cfb8ce4bf1041187b339ff47be
docs
233
Reference: Artemieva, I. M. Global 1 x 1 thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416, 245–277 (2006). Available at: http://www.lithosphere.info/TC1-2006.html
StatGeochem
https://github.com/brenhinkeller/StatGeochem.jl.git
[ "MIT" ]
0.2.0
9432c80cf46350d8a37b39baa119352170a6e769
code
8083
module Jupyter2Pluto using JSON using UUIDs const _notebook_header = "### A Pluto.jl notebook ###" const _cell_id_delimiter = "# ╔═╡ " const _order_delimiter = "# ╠═" const _order_delimiter_folded = "# ╟─" const _cell_suffix = "\n\n" export pluto2jupyter, jupyter2pluto abstract type JupyterCell end struct JupyterCodeCell <: JupyterCell execution_count::Union{Int, Nothing} content::Vector{String} end struct JupyterMarkdownCell <: JupyterCell content::String end abstract type PlutoCell end struct PlutoCodeCell <: PlutoCell cell_id::UUID content::String end struct PlutoBlockCodeCell <: PlutoCell cell_id::UUID content::String end struct PlutoMarkdownCell <: PlutoCell cell_id::UUID content::String end function Base.show(io::IO, cell::PlutoCodeCell) gl = """ $(_cell_id_delimiter)$(cell.cell_id) $(cell.content)$(_cell_suffix)""" print(io, gl) end function Base.show(io::IO, cell::PlutoBlockCodeCell) gl = """ $(_cell_id_delimiter)$(cell.cell_id) begin\n$(cell.content)\nend$(_cell_suffix)""" print(io, gl) end function Base.show(io::IO, cell::PlutoMarkdownCell) content = replace(cell.content, "\"" => "\\\"") r = """ $(_cell_id_delimiter)$(cell.cell_id) md\"\"\" $(content)\"\"\"$(_cell_suffix)""" print(io, r) end function Base.Dict(cell::JupyterMarkdownCell) source = String[] content_list = split(cell.content, "\n") for (i, content) in enumerate(content_list) i == length(cell.content) && (push!(source, content); continue) push!(source, content*"\n") end Dict( "cell_type" => "markdown", "metadata"=>Dict(), "source"=> source ) end function Base.Dict(cell::JupyterCodeCell) source = String[] for (i, content) in enumerate(cell.content) (isempty(content) || i == length(cell.content)) && (push!(source, content); continue) push!(source, content*"\n") end Dict( "cell_type" => "code", "execution_count" => cell.execution_count, "metadata"=>Dict(), "outputs"=>[], "source"=> source ) end function cell_id() uuid4() end function generate_code(pcells::Vector{PlutoCell}) pheader = _notebook_header*"\n\n" codestring = "$pheader$(join(pcells))$(order_code(pcells))" return codestring end function order_code(pcells::Vector{PlutoCell}) orderstrprefix = "$(_cell_id_delimiter)Cell order:\n" orderstrprefix *join(order_code.(pcells)) end function order_code(pcell::PlutoMarkdownCell) return _order_delimiter_folded*""*string(pcell.cell_id)*"\n" end function order_code(pcell::Union{PlutoCodeCell, PlutoBlockCodeCell}) return _order_delimiter*""*string(pcell.cell_id)*"\n" end function generate_plutocells(codecell::JupyterCodeCell) pcells = PlutoCell[] for content in codecell.content id = cell_id() push!(pcells, PlutoCodeCell(id, content)) end return pcells end function PlutoCell(codecell::JupyterCodeCell) id = cell_id() if has_multiple_expressions(codecell) return PlutoBlockCodeCell(id, join(" ".*codecell.content)) end return PlutoCodeCell(id, join(codecell.content)) end function PlutoCell(codecell::JupyterMarkdownCell) id = cell_id() return PlutoMarkdownCell(id, codecell.content) end function has_multiple_expressions(codecell::JupyterCodeCell) cellcontent = join(codecell.content, "\n") replmodechars = r"\W*[\?|\]|;]" startswith(cellcontent, replmodechars) && return false expressions = try codewithbegin = "begin "*cellcontent*" end" Meta.parse(codewithbegin).args catch ex @warn "Failed to parse expression $(codewithbegin)" return false end filter!(x -> !(x isa LineNumberNode), expressions) length(expressions) > 1 end function jupyter2pluto(jupyter_file) jupyter_cells = try content = JSON.parsefile(jupyter_file) content["cells"] catch ex error("Jupyter notebook parse error") end pluto_cells = PlutoCell[] for cell in jupyter_cells !haskey(cell, "cell_type") || !haskey(cell,"source") && continue if cell["cell_type"] == "markdown" && !isempty(cell["source"]) jmark_cell = JupyterMarkdownCell(join(cell["source"])) pc = PlutoCell(jmark_cell) push!(pluto_cells, pc) end if cell["cell_type"] == "code" && !isempty(cell["source"]) jcode_cell = JupyterCodeCell(cell["execution_count"],cell["source"]) pc = PlutoCell(jcode_cell) push!(pluto_cells, pc) end end output = generate_code(pluto_cells) fileName = getFileName(jupyter_file) dest = "$(fileName).jl" open(dest, "w") do f write(f, output) end dest end function parse_pluto_cell(rawcell::String) cellist = string.(split(rawcell, '\n')) body = join(cellist[2:end], '\n') multiline_mdr = r"md\"\"\"(.*)\"\"\""s line_mdr = r"md\"(.*)\""s matches = if (mat = match(multiline_mdr, body)) != nothing mat else match(line_mdr, body) end if matches != nothing PlutoMarkdownCell(UUID(cellist[1]), matches.captures[1]) else PlutoCodeCell(UUID(cellist[1]), body) end end function parse_pluto_end(rawcell::String) main_split= string.(split(rawcell, _order_delimiter)) orderids = String[] for order in main_split splits = string.(split(order, _order_delimiter_folded)) for split in splits !isempty(split) && push!(orderids, strip(split)) end end orderids[2:end] end function order(pcells::Vector{PlutoCell}, orderids::Vector{String}) sorted_pcells = PlutoCell[] for orderid in orderids for pcell in pcells if occursin(string(pcell.cell_id), orderid) push!(sorted_pcells, pcell) end end end return sorted_pcells end let global JupyterCell global parse_pluto_load execution_count = 1 function parse_pluto_load(raw::AbstractString) jcell = JupyterCodeCell(execution_count, split(raw, "\n")) execution_count += 1 jcell end function JupyterCell(pcell::PlutoCodeCell) jcell = JupyterCodeCell(execution_count,split(pcell.content, "\n")) execution_count += 1 jcell end end function JupyterCell(pcell::PlutoMarkdownCell) content = pcell.content JupyterMarkdownCell(pcell.content) end function pluto2jupyter(file) # parser: pluto notebook has orderidlist, map(order_id => codesnippets) ::Plutocells plutoraw = readchomp(file) plutocelllist = string.(split(plutoraw, _cell_id_delimiter)) jupyterloadcell = parse_pluto_load(plutocelllist[1]) i=2 pcells = PlutoCell[] while(i <= length(plutocelllist)-1) pcell = parse_pluto_cell(plutocelllist[i]) push!(pcells, pcell) i+=1 end plutoend = parse_pluto_end(plutocelllist[end]) ordered_pcells = order(pcells, plutoend) jcells = map( pcell -> JupyterCell(pcell), ordered_pcells) all_main_cells = Dict.(jcells) pushfirst!(all_main_cells, Dict(jupyterloadcell)) d_cells = Dict() d_cells["cells"] = all_main_cells d_cells["metadata"] = Dict( "kernelspec"=> Dict( "display_name"=> "Julia $(VERSION)", "language"=> "julia", "name"=> "julia-$(VERSION.major).$(VERSION.minor)" ), "language_info"=> Dict( "file_extension"=> ".jl", "mimetype"=> "application/julia", "name"=> "julia", "version"=> string(VERSION) ) ) d_cells["nbformat"]= 4 d_cells["nbformat_minor"]= 2 fileName = getFileName(file) dest = fileName*".ipynb" open(dest, "w") do f JSON.print(f, d_cells , 4) end dest end function getFileName(str::AbstractString) parts = split(str, ".") if length(parts) == 1 return str else return join(parts[1:end-1], ".") end end end # module
Jupyter2Pluto
https://github.com/vdayanand/Jupyter2Pluto.jl.git
[ "MIT" ]
0.2.0
9432c80cf46350d8a37b39baa119352170a6e769
code
14190
### A Pluto.jl notebook ### # v0.11.4 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing el end end # ╔═╡ e5e0a0da-d45c-11ea-1042-e9b5d0654d4f md"Fix the value of `c` below to make it `c = a * b`" # ╔═╡ 4dff4b5e-d461-11ea-29c8-d548fdb5f08b md"Edit the equation below to calculate the number of pizzas to order using the variables above for **people**, **avg**, and **slices**:" # ╔═╡ f907e46a-d471-11ea-07e5-f30e2aab3d08 md"""The diameter of a pizza is often stated on a menu so let's define a **formula** to calculate the area of a pizza given the diameter **d**. We do this by writing a formula like this: `area(d) = pi * (d/2)^2` Let's write that below: """ # ╔═╡ d9575e9c-d472-11ea-1eda-2d335d039f28 md"""Now we have a function called **area** that we can pass any diameter and it will return the area of a pizza (or circle), let's try that with the pizza from before with `area(2*r)` to get the area of the pizza: """ # ╔═╡ edb95b14-d473-11ea-3a5a-77382d31f941 md"""## Finding the best pizza deal Let's see if a larger pizza is a better value by calculating the price per area. There are 4 sizes: small, medium, large, extra large with the following prices: Size | Diameter (inches) | Price ($) :------- | :---------------: | --------: small | 9 | 13.10 medium | 13 | 20.95 large | 15 | 24.90 XL | 17 | 30.95 ### 1. How many small pizzas is the same as one XL pizza? Edit the expression below: """ # ╔═╡ 5b07b8fe-d475-11ea-01aa-6b88d6ed8a05 md"""### 2. Calculate the cost per area of each pizza: """ # ╔═╡ a42e4eb0-d474-11ea-316a-3d864451bc01 md"Which size of pizza is the best deal? Write your answer below and assign it to the variable **best_value**." # ╔═╡ cb419286-d4ff-11ea-1d7f-af5c8574b775 md"""### 3. Is this a good deal? San Marinos has a special **\"Buy two medium pizzas and save \$5\"**. Is this a better deal than buying a extra-large pizza? Calculate the total cost of two medium pizzas deal (saving \$5):""" # ╔═╡ 0d76d97c-d500-11ea-2433-e96c6fc43b05 md"Calculate the total area of two medium pizzas:" # ╔═╡ 20a1e9cc-d500-11ea-3d9b-279c71bc20f1 md"Now calculate cost per area by taking the total cost of two medium pizzas and divide by the total area:" # ╔═╡ 57f024ae-d500-11ea-1cc4-ed28348fdf93 md"""Is it a better deal to get two medium pizzas for \$5 off or to just buy an extra-large?""" # ╔═╡ 180c8fdc-d503-11ea-04ca-bf2c07fd1c17 md"""### 4. Advanced Problem A new worker at a pizza shop was getting paid for cutting pizza into pieces. The pieces of pizza could be any size. Calculate the maximum number of pieces the worker could make with two cuts of the pizza.""" # ╔═╡ 92b4a012-d503-11ea-15a2-1f3a446d3284 md"Now what about 3 cuts across the pizza? What is the maximum number of pieces that can be made with **3 cuts**?" # ╔═╡ 2eb9a560-d507-11ea-3b8b-9d06678fe131 md"Now, how many pieces can be made with **4 cuts**?" # ╔═╡ d1e3dec0-d507-11ea-1213-d37a9325ee2f md"Are you starting to see a pattern? Can you figure out a formula for how many pieces of pizza can be made with \"n\" cuts? Make a table and fill in the number of pieces for a number of cuts and see if you can find the pattern: Cuts | Pieces :--- | ------: 0 | 1 1 | 2 2 | 4 3 | 4 | " # ╔═╡ 97bfd13c-dcc2-11ea-0067-ad8c2c6517fc md"To get an extra hint, figure out how many slices we can get from **5 cuts**:" # ╔═╡ e0cb2822-dcc2-11ea-2c85-5748bfe526dc md"Have you found the pattern? Write down the formula below:" # ╔═╡ 03249876-d508-11ea-16bb-fd5afed37a1f md"""##### Let's test your formula!""" # ╔═╡ 14158eb0-d45c-11ea-088f-330e45412320 a = 2 # ╔═╡ 2ed4bb92-d45c-11ea-0b31-2d8e32ce7b44 b = 6 # ╔═╡ 03664f5c-d45c-11ea-21b6-91cd647a07aa md"# Mathematics in Julia 🍕 This is an introduction to programming. Let's get started! ## Let's make a calculator! First let's do some simple math with setting **a = $a**, **b = $b** and **c = a * b**. What will **c** equal? Type in the cells (with the coloured background) below and press **`Shift-Enter`** or the click the right-arrow button (▶️) to the right to execute the cell after changing the values." # ╔═╡ 30f0f882-d45c-11ea-2adc-7d84ecf8a7a6 c = 10 # ╔═╡ 262b312a-d460-11ea-26c5-df30459effc5 people = 10 # ╔═╡ 2ea7f162-d460-11ea-0e8e-25340e2e64da avg = 2.5 # ╔═╡ 3da812c6-d460-11ea-0170-79fbb6a4347c slices = 8 # ╔═╡ a38cb92e-d45e-11ea-2959-05be909befb2 md"""### Now you have a calculator! You did multiplication above. Here's how you do other mathematical operations: Operation | Type This :------------ | :-------------: add | + subtract | - multiply | * divide | / power | ^ ### Pizza Slices Let's try this out on a problem. Let's say you want to order pizzas for $people people (**people = $people**) and each person wants $avg slices on average (**avg = 2.5**). A pizza has $slices slices per pizza (**slices = $slices**). How many pizzas should you order (**pizzas = ?**)? So we have the following Meaning | Variable :------ | :--------: Number of people | people Average number of slices each person eats | avg Number of slices on a piece of pizza | slices """ # ╔═╡ 444e2fa4-d460-11ea-12aa-57e0576c2d66 pizzas = 1 # ╔═╡ 3c12f2b4-d471-11ea-2d37-539f061f7cf2 r = 6 # ╔═╡ d9c31dfa-d470-11ea-23b2-838975b71f7c md"""## Writing your own math functions The area of a pizza is $$A = \pi r^2$$. Lets try calculating the area of a pizza that has a radius of $r inches (**r = $6**). Type **pi** to get the value of $$\pi$$ and **r^2** to get the radius squared. """ # ╔═╡ 50f0f6d6-d471-11ea-304e-8f72e7ef9d7e A = r^2 # ╔═╡ cb36a9ee-d472-11ea-1835-bf7963137e18 area(d) = pi * (d / 2)^2 # ╔═╡ 04b010c0-d473-11ea-1767-136c7e26e122 A2 = area(r) # ╔═╡ 637c26fa-d475-11ea-2c5b-2b0f4775b119 smalls_in_xl = 1 # ╔═╡ 3823d09e-d474-11ea-194e-59b5805f303b small = 13.10 / area(9) # ╔═╡ 76c11174-d474-11ea-29c5-81856d47cf74 medium = 20.95 / area(13) # ╔═╡ 8b12d200-d474-11ea-3035-01eccf39f917 large = 24.90 / area(15) # ╔═╡ 962e6b86-d474-11ea-11a6-a1d11e33ae42 xl = 30.95 / area(17) # ╔═╡ 16ec3f32-d4ff-11ea-20e2-5bc6dd5db083 best_value = small # ╔═╡ f147b6cc-d4ff-11ea-05ad-6f5b441e5d1b two_medium_cost = 20.95 * 1 - 0 # ╔═╡ 19eb2a82-d500-11ea-3782-596adc689382 two_medium_area = 1 * area(13) # ╔═╡ 70e85498-d500-11ea-35af-474574f5c011 two_medium_deal = 1 # ╔═╡ 6494e270-d503-11ea-38a7-df96e7f0a241 cuts2 = 1 # ╔═╡ a05aae8e-d506-11ea-190f-57e9ce53b8b9 cuts3 = 1 # ╔═╡ 5a8ede88-d507-11ea-30d9-c99a67243781 cuts4 = 1 # ╔═╡ bae0cb62-dcc2-11ea-0667-512e1c407d40 cuts5 = 1 # ╔═╡ f5f89724-d507-11ea-0a93-6d904f36bbe4 function pieces(n) return n end # ╔═╡ bd9f3d24-d509-11ea-165d-3d465a0b4542 md"""Move the slider to change the number of cuts: $(@bind n html"<input type=range max=50>")""" # ╔═╡ b8644fb0-daa6-11ea-1e94-9bf46e7b0fad hint(text) = Markdown.MD(Markdown.Admonition("hint", "Hint", [text])); # ╔═╡ 8700d986-d475-11ea-0d0e-790448cf92ba let ans = (pi * (17 / 2)^2) / (pi * (9 / 2)^2) if smalls_in_xl == 1 hint(md"""The diameter of the XL pizza is 17 inches while the diameter of the small pizza is 9 inches. Use the **area()** function from before to find the area of each and divide them.""") elseif smalls_in_xl < ans - 4 * eps(ans) md"""Keep trying, your answer is too low.""" elseif smalls_in_xl > ans + 4 * eps(ans) md"""Keep trying, your answer is too high.""" else md"""**Great!** You got it right. Let's move on.""" end end # ╔═╡ 2814a1d4-dcc0-11ea-3d42-f52765e478fe hint(md"For each extra cut, start out with the solution for the previous number. When you add one extra cut, how many new slices do you get?") # ╔═╡ 48647ab2-daa5-11ea-0494-ef87be7cbf7c hint(md"A new cut will create the maximum number of _new slices_ if it intersects all previous cuts.") # ╔═╡ 8cada086-daa5-11ea-220c-0f660938b604 if cuts5 == 5 + 4 + 3 + 2 + 1 + 1 hint(md"To get the maximum number of pieces with 5 cuts it will be $$5 + 4 + 3 + 2 + 1$$, plus 1 extra for the original pizza with 0 cuts. To find the formula of a sequence of numbers group them like so: $$5 + (4 + 1) + (3 + 2) = 3 * 5$$.") else md"" end # ╔═╡ 4119d19e-dcbc-11ea-3ec8-271e88e1afca almost(text) = Markdown.MD(Markdown.Admonition("warning", "Almost there!", [text])); # ╔═╡ 921bba30-dcbc-11ea-13c3-87554722da8a keep_working(text=md"The answer is not quite right.") = Markdown.MD(Markdown.Admonition("danger", "Keep working on it!", [text])); # ╔═╡ 5a6d1a8e-dcbc-11ea-272a-6f769c8d309c correct(text=md"Great! You got the right answer! Let's move on to the next section.") = Markdown.MD(Markdown.Admonition("correct", "Got it!", [text])); # ╔═╡ 33b1975c-d45c-11ea-035f-ab76e46a31ed if c == a * b correct(md"""**Great!** The value of c = $c. So you now have a simple computer! Now go back above and change the value of **a = $a** to **a = $(a + 3)** and press **`Shift-Enter`**. What is the new value of **c**? Notice how all the values get updated in this notebook! """) else keep_working() end # ╔═╡ f26d50da-d46b-11ea-0c2d-77ca13532b3d if pizzas == people * avg / slices almost(md"Yes that is right! But we should round $pizzas up to an integer, otherwise the restaurant will be confused. Try `ceil(...)`!") elseif pizzas == ceil(people * avg / slices) correct(md"Yes that is right, that's a lot of pizza! Excellent, you figured out we need to round up the number of pizzas!") else keep_working() end # ╔═╡ 5c4a5f22-d471-11ea-260f-9338d8bfa2d6 if A != pi * r^2 keep_working(md"Let's fix the above cell before we move on! Find the formula to calculate the area using **pi** and **r**.") else correct(md"""**Great!** You figured it out. Keep going.""") end # ╔═╡ a07e5c3e-d476-11ea-308c-718f8f128334 if A2 != pi * (12 / 2)^2 hint(md"Keep trying to get the right answer. **Hint**: you need to multiply the radius by 2 to convert it into the diameter.") else correct() end # ╔═╡ 1ba2c208-d4ff-11ea-0a8e-e75bf7e1c3e6 if !isapprox(best_value, xl) hint(md"No need to copy these digits yourself - what should we assign to **best_value**?") else correct() end # ╔═╡ 6ae748b2-d503-11ea-1c51-6b2df24fd212 if cuts2 != 4 hint(md"The cuts must go all the way across the pizza!") else correct(md"Awesome!") end # ╔═╡ a679bddc-d506-11ea-143a-6d4dcd70e918 if cuts3 == 6 almost(md"""Close but not quite. Who said that pizza slices need to look like pizza slices?""") elseif cuts3 == 7 correct(md"You got it right. Now for something harder...") else hint(md"Try drawing it out on a piece of paper.") end # ╔═╡ 5df7eefc-d507-11ea-0d1f-45b224a04774 if cuts4 == 11 correct(md"That was a tough question. How did you figure it out? You tried hard.") elseif cuts4 < 10 hint(md"Draw it out on a piece of paper. You can make more pieces with 4 cuts.") elseif cuts4 < 11 hint(md"Getting close but you can make more pieces with 4 cuts.") else hint(md"That is too high. Only straight lines!") end # ╔═╡ e80986c6-d509-11ea-12e3-f79a54b5ab31 if pieces(n) == n * (n + 1) / 2 + 1 md"""_Testing..._ **For $n cuts, you predict $(pieces(n)) pieces.** $(correct(md"Well done!"))""" else md"""_Testing..._ **For $n cuts, you predict $(pieces(n)) pieces.** $(keep_working(md"The answer should be $(Int(n*(n+1)/2+1))."))""" end # ╔═╡ Cell order: # ╟─03664f5c-d45c-11ea-21b6-91cd647a07aa # ╠═14158eb0-d45c-11ea-088f-330e45412320 # ╠═2ed4bb92-d45c-11ea-0b31-2d8e32ce7b44 # ╟─e5e0a0da-d45c-11ea-1042-e9b5d0654d4f # ╠═30f0f882-d45c-11ea-2adc-7d84ecf8a7a6 # ╟─33b1975c-d45c-11ea-035f-ab76e46a31ed # ╟─a38cb92e-d45e-11ea-2959-05be909befb2 # ╠═262b312a-d460-11ea-26c5-df30459effc5 # ╠═2ea7f162-d460-11ea-0e8e-25340e2e64da # ╠═3da812c6-d460-11ea-0170-79fbb6a4347c # ╟─4dff4b5e-d461-11ea-29c8-d548fdb5f08b # ╠═444e2fa4-d460-11ea-12aa-57e0576c2d66 # ╟─f26d50da-d46b-11ea-0c2d-77ca13532b3d # ╟─d9c31dfa-d470-11ea-23b2-838975b71f7c # ╠═3c12f2b4-d471-11ea-2d37-539f061f7cf2 # ╠═50f0f6d6-d471-11ea-304e-8f72e7ef9d7e # ╟─5c4a5f22-d471-11ea-260f-9338d8bfa2d6 # ╟─f907e46a-d471-11ea-07e5-f30e2aab3d08 # ╠═cb36a9ee-d472-11ea-1835-bf7963137e18 # ╟─d9575e9c-d472-11ea-1eda-2d335d039f28 # ╠═04b010c0-d473-11ea-1767-136c7e26e122 # ╟─a07e5c3e-d476-11ea-308c-718f8f128334 # ╟─edb95b14-d473-11ea-3a5a-77382d31f941 # ╠═637c26fa-d475-11ea-2c5b-2b0f4775b119 # ╟─8700d986-d475-11ea-0d0e-790448cf92ba # ╟─5b07b8fe-d475-11ea-01aa-6b88d6ed8a05 # ╠═3823d09e-d474-11ea-194e-59b5805f303b # ╠═76c11174-d474-11ea-29c5-81856d47cf74 # ╠═8b12d200-d474-11ea-3035-01eccf39f917 # ╠═962e6b86-d474-11ea-11a6-a1d11e33ae42 # ╟─a42e4eb0-d474-11ea-316a-3d864451bc01 # ╠═16ec3f32-d4ff-11ea-20e2-5bc6dd5db083 # ╟─1ba2c208-d4ff-11ea-0a8e-e75bf7e1c3e6 # ╟─cb419286-d4ff-11ea-1d7f-af5c8574b775 # ╠═f147b6cc-d4ff-11ea-05ad-6f5b441e5d1b # ╟─0d76d97c-d500-11ea-2433-e96c6fc43b05 # ╠═19eb2a82-d500-11ea-3782-596adc689382 # ╟─20a1e9cc-d500-11ea-3d9b-279c71bc20f1 # ╠═70e85498-d500-11ea-35af-474574f5c011 # ╟─57f024ae-d500-11ea-1cc4-ed28348fdf93 # ╟─180c8fdc-d503-11ea-04ca-bf2c07fd1c17 # ╠═6494e270-d503-11ea-38a7-df96e7f0a241 # ╟─6ae748b2-d503-11ea-1c51-6b2df24fd212 # ╟─92b4a012-d503-11ea-15a2-1f3a446d3284 # ╠═a05aae8e-d506-11ea-190f-57e9ce53b8b9 # ╟─a679bddc-d506-11ea-143a-6d4dcd70e918 # ╟─2eb9a560-d507-11ea-3b8b-9d06678fe131 # ╠═5a8ede88-d507-11ea-30d9-c99a67243781 # ╟─5df7eefc-d507-11ea-0d1f-45b224a04774 # ╟─d1e3dec0-d507-11ea-1213-d37a9325ee2f # ╟─2814a1d4-dcc0-11ea-3d42-f52765e478fe # ╟─48647ab2-daa5-11ea-0494-ef87be7cbf7c # ╟─97bfd13c-dcc2-11ea-0067-ad8c2c6517fc # ╠═bae0cb62-dcc2-11ea-0667-512e1c407d40 # ╟─8cada086-daa5-11ea-220c-0f660938b604 # ╟─e0cb2822-dcc2-11ea-2c85-5748bfe526dc # ╠═f5f89724-d507-11ea-0a93-6d904f36bbe4 # ╟─03249876-d508-11ea-16bb-fd5afed37a1f # ╟─bd9f3d24-d509-11ea-165d-3d465a0b4542 # ╟─e80986c6-d509-11ea-12e3-f79a54b5ab31 # ╟─b8644fb0-daa6-11ea-1e94-9bf46e7b0fad # ╟─4119d19e-dcbc-11ea-3ec8-271e88e1afca # ╟─921bba30-dcbc-11ea-13c3-87554722da8a # ╟─5a6d1a8e-dcbc-11ea-272a-6f769c8d309c
Jupyter2Pluto
https://github.com/vdayanand/Jupyter2Pluto.jl.git
[ "MIT" ]
0.2.0
9432c80cf46350d8a37b39baa119352170a6e769
code
66
include("test_pluto2jupyter.jl") include("test_jupyter2pluto.jl")
Jupyter2Pluto
https://github.com/vdayanand/Jupyter2Pluto.jl.git
[ "MIT" ]
0.2.0
9432c80cf46350d8a37b39baa119352170a6e769
code
2735
using Test using JSON using Random import Jupyter2Pluto: PlutoCell, JupyterMarkdownCell, JupyterCodeCell, generate_code const markdown_arr = [ "# Data structures\n", "\n", "Once we start working with many pieces of data at once, it will be convenient for us to store data in structures like arrays or dictionaries (rather than just relying on variables).<br>\n", "\n", "Types of data structures covered:\n", "1. Tuples\n", "2. Dictionaries\n", "3. Arrays\n", "\n", "<br>\n", "As an overview, tuples and arrays are both ordered sequences of elements (so we can index into them). Dictionaries and arrays are both mutable.\n", "We'll explain this more below!" ] ##TODO: fix remove \n from the last jupyter cell const code_arr = ["# First, restore fibonacci\n", "fibonacci[1] = 1\n", "fibonacci"] Random.seed!(1234) function test_jupyter2pluto() #@info join(markdown_arr) jmark_cell = JupyterMarkdownCell(join(markdown_arr)) pmc = PlutoCell(jmark_cell) @testset "test pluto markdown codegen" begin @test string(pmc) == """# ╔═╡ 196f2941-2d58-45ba-9f13-43a2532b2fa8 md\"\"\" # Data structures Once we start working with many pieces of data at once, it will be convenient for us to store data in structures like arrays or dictionaries (rather than just relying on variables).<br> Types of data structures covered: 1. Tuples 2. Dictionaries 3. Arrays <br> As an overview, tuples and arrays are both ordered sequences of elements (so we can index into them). Dictionaries and arrays are both mutable. We'll explain this more below!\"\"\" """ end pcc = PlutoCell(JupyterCodeCell(1, code_arr)) @testset "Pluto code block codegen" begin @test string(pcc) == """# ╔═╡ bd85187e-0531-4a3e-9fea-713204a818a2 begin # First, restore fibonacci fibonacci[1] = 1 fibonacci end """ end @test string(generate_code(PlutoCell[pmc, pcc])) == """### A Pluto.jl notebook ### # ╔═╡ 196f2941-2d58-45ba-9f13-43a2532b2fa8 md\"\"\" # Data structures Once we start working with many pieces of data at once, it will be convenient for us to store data in structures like arrays or dictionaries (rather than just relying on variables).<br> Types of data structures covered: 1. Tuples 2. Dictionaries 3. Arrays <br> As an overview, tuples and arrays are both ordered sequences of elements (so we can index into them). Dictionaries and arrays are both mutable. We'll explain this more below!\"\"\" # ╔═╡ bd85187e-0531-4a3e-9fea-713204a818a2 begin # First, restore fibonacci fibonacci[1] = 1 fibonacci end # ╔═╡ Cell order: # ╟─196f2941-2d58-45ba-9f13-43a2532b2fa8 # ╠═bd85187e-0531-4a3e-9fea-713204a818a2 """ end test_jupyter2pluto()
Jupyter2Pluto
https://github.com/vdayanand/Jupyter2Pluto.jl.git
[ "MIT" ]
0.2.0
9432c80cf46350d8a37b39baa119352170a6e769
code
5061
using Jupyter2Pluto using Test using JSON const line_markdown = "The diameter of a" const multi_markdown = """The diameter of a pizza is often stated on a menu so let's define a **formula** to calculate the area of a pizza given the diameter **d**. We do this by writing a formula like this: `area(d) = pi * (d/2)^2` Let's write that below:""" const line_markdown_wrap = "md\"$line_markdown\"" const multiline_markdown_wrap = """md\"\"\"$multi_markdown\"\"\" """ const code_line = """ area(d) = pi * (d / 2)^2 """ function test_pluto_parser() multiline_markdown_str = "2ed4bb92-d45c-11ea-0b31-2d8e32ce7b44\n$multiline_markdown_wrap" line_markdown_str = "03664f5c-d45c-11ea-21b6-91cd647a07aa\n$line_markdown_wrap" pmark_line_cell = Jupyter2Pluto.parse_pluto_cell(line_markdown_str) pmark_multiline_cell = Jupyter2Pluto.parse_pluto_cell(multiline_markdown_str) @testset "parse pluto line markdown cell" begin @test pmark_line_cell.cell_id == Base.UUID("03664f5c-d45c-11ea-21b6-91cd647a07aa") @test pmark_line_cell.content == line_markdown end @testset "parse pluto multiline markdown cell" begin @test pmark_multiline_cell.cell_id == Base.UUID("2ed4bb92-d45c-11ea-0b31-2d8e32ce7b44") @test pmark_multiline_cell.content == multi_markdown end pcode_cell = Jupyter2Pluto.parse_pluto_cell("""14158eb0-d45c-11ea-088f-330e45412320 $code_line""") @testset "parse pluto code cell" begin @test pcode_cell.cell_id == Base.UUID("14158eb0-d45c-11ea-088f-330e45412320") @test pcode_cell.content == code_line end orders = Jupyter2Pluto.parse_pluto_end("""Cell order: # ╟─03664f5c-d45c-11ea-21b6-91cd647a07aa # ╠═14158eb0-d45c-11ea-088f-330e45412320 # ╠═2ed4bb92-d45c-11ea-0b31-2d8e32ce7b44 # ╟─e5e0a0da-d45c-11ea-1042-e9b5d0654d4f """) @testset "Pluto cell order" begin @test orders == ["03664f5c-d45c-11ea-21b6-91cd647a07aa", "14158eb0-d45c-11ea-088f-330e45412320", "2ed4bb92-d45c-11ea-0b31-2d8e32ce7b44", "e5e0a0da-d45c-11ea-1042-e9b5d0654d4f"] @test Jupyter2Pluto.order(Jupyter2Pluto.PlutoCell[pmark_line_cell, pmark_multiline_cell, pcode_cell], orders) == [pmark_line_cell, pcode_cell, pmark_multiline_cell] @test Jupyter2Pluto.order(Jupyter2Pluto.PlutoCell[pmark_line_cell, pmark_multiline_cell, pcode_cell], reverse(orders)) == [pmark_multiline_cell, pcode_cell, pmark_line_cell] end jmark_line_cell = Jupyter2Pluto.JupyterCell(pmark_line_cell) jmark_multiline_cell = Jupyter2Pluto.JupyterCell(pmark_multiline_cell) jcodecell = Jupyter2Pluto.JupyterCell(pcode_cell) @testset "Pluto to jupyter conversion" begin @test jmark_line_cell.content == line_markdown @test jmark_multiline_cell.content == multi_markdown @test jcodecell.content == split(code_line, "\n") @test jcodecell.execution_count != 0 end @testset "Jupyter to dict" begin jmark_line_dict = Dict(jmark_line_cell) @test jmark_line_dict["cell_type"] == "markdown" @test isempty(jmark_line_dict["metadata"]) @test jmark_line_dict["source"] == [line_markdown*"\n"] jmark_multiline_dict = Dict(jmark_multiline_cell) @test jmark_multiline_dict["cell_type"] == "markdown" @test isempty(jmark_multiline_dict["metadata"]) @test jmark_multiline_dict["source"] == string.(split(multi_markdown, "\n")).*"\n" jcode_dict = Dict(jcodecell) @test jcode_dict["cell_type"] == "code" @test isempty(jcode_dict["metadata"]) @test jcode_dict["execution_count"] != 0 code_lines = string.(split(code_line, "\n")) for (index, line) in enumerate(jcode_dict["source"]) if (line == "\n") @test false end if !isempty(line) @test code_lines[index]*"\n" == line else @test code_lines[index] == line end end end end function test_pluto2jupyter() test_notebook = joinpath(@__DIR__, "Basic mathematics.jl") pluto2jupyter(test_notebook) notebook = JSON.parsefile(test_notebook*".ipynb") @testset "check converted " begin @test notebook["nbformat"] == 4 @test notebook["nbformat_minor"] == 2 @test notebook["metadata"]["kernelspec"]["display_name"] == "Julia $(VERSION)" @test notebook["metadata"]["kernelspec"]["language"] == "julia" @test notebook["metadata"]["kernelspec"]["name"] == "julia-$(VERSION.major).$(VERSION.minor)" @test notebook["metadata"]["language_info"]["file_extension"] == ".jl" @test notebook["metadata"]["language_info"]["mimetype"] == "application/julia" @test notebook["metadata"]["language_info"]["name"] == "julia" @test string(notebook["metadata"]["language_info"]["version"]) == string(VERSION) @test !isempty(notebook["cells"]) end end function main() test_pluto_parser() test_pluto2jupyter() end main()
Jupyter2Pluto
https://github.com/vdayanand/Jupyter2Pluto.jl.git
[ "MIT" ]
0.2.0
9432c80cf46350d8a37b39baa119352170a6e769
docs
510
# Jupyter2Pluto ### convert Jupyter notebook into [Pluto.jl](https://github.com/fonsp/Pluto.jl) notebook ``` julia ] add http://github.com/vdayanand/Jupyter2Pluto.jl using Jupyter2Pluto jupyter2pluto("sample.ipynb") ``` Pluto notebook `sample.jl` will be created in the working directory ### convert [Pluto.jl](https://github.com/fonsp/Pluto.jl) notebook into Jupyter notebook ``` julia pluto2jupyter("sample.jl") ``` Jupyter notebook `sample.ipynb` will be created in the working directory
Jupyter2Pluto
https://github.com/vdayanand/Jupyter2Pluto.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
2496
module RxCiphers include("cipher.jl") # -> charspace.jl (NCharSpace & Txt) include("dlm charspace.jl") include("array functions.jl") include("tuco.jl") include("periodic substitution.jl") # -> substitution.jl (Substitution) include("permutation.jl") include("matrix transposition.jl") include("columnar.jl") include("cracks.jl") # -> genetics.jl export crack_Caesar, crack_Affine export crack_Vigenere, crack_Periodic_Affine # cipher export Encryption, AbstractCipher export push!, iterate export apply, apply!, invert, invert! export Lambda, Retokenise, Reassign # permutation export Permutation, invPermutation # matrix transposition export MatrixTransposition # columnar export Columnar # periodic substitution export PeriodicSubstitution, Vigenere, Periodic_Affine export length, getindex, iterate, setindex!, ==, show export apply, invert! # substitution export Substitution, frequency_matched_Substitution, Atbash, Caesar, Affine export apply, length, +, -, ==, show, getindex, iterate, invert!, shift!, switch, switch!, mutate, mutate! # tuco export quadgramlog, bigramlog, poogramfart, orthodot, bandwidth export monogram_freq, bigram_freq, bigram_scores, quadgram_scores, poogram_scores export appearances, frequencies, vector_frequencies export ioc, periodic_ioc export bbin_probabilities export find_period export divisors, factorise export blocks, block_apply_stats, rolling, rolling_average, char_distribution, KMP_appearances, repeat_units export substructure_variance, substructure_sigma # charspace export NCharSpace, CharSpace, Alphabet, Decimal, Hexadecimal export union export getindex, ^, ==, +, show, length, iterate, setindex!, lastindex, copy export Txt, tokenise, untokenise, tokenise!, untokenise!, checktoken export nchar!, nchar export TokeniseError, checktokenised # dlm charspace export DLMSpace # array functions export switch, switch! export safe_reshape_2D export checkperm export affine export normalise! # text samples include("samples.jl") export TxtSamples end # CURRENTLY SUPPORTED # Monoalphabetic Substitution (inc. Caesar, Affine, Atbash) # Polyalphabetic Substitution (inc. Vigenere, PAffine) # Permutation Transposition # TO ADD # Fix the include tree it is horrible # Matrix Transposition (and Columnar) # Stupid Transpositions (Scytale, Redefence) # Square Ciphers # Nihilist set (subst. transp.) # Keystream (generator; Autokey; OTP) # Grid Shift (therefore Cadenus) # Diagonal cipher # Convolution (token safe) # bruteforce + optimise function
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
4100
using FFTW # Switches two entries at posa posb in any Vector """ switch!(self::AbstractVector, posa::Int, posb::Int) -> AbstractVector Switches the entries at `posa` and `posb` in `self`. """ function switch!(self::AbstractVector, posa::Int, posb::Int) ::AbstractVector self[posa], self[posb] = self[posb], self[posa] return self end """ switch!(v::AbstractVector, posa::Int, posb::Int) -> AbstractVector Switches the entries at `posa` and `posb` in `v`. """ switch(v::Vector{Int}, posa::Int, posb::Int) ::Vector{Int} = switch!(copy(v), posa, posb) function splice!(self::AbstractVector, ind::Int, start::Int, finish::Int) ::AbstractVector if start <= finish if start <= ind <= finish error("Insertion index must not be within spliced segment") end if ind < start permute!(self, [1:ind - 1 ; start:finish ; ind:start - 1 ; finish + 1:lastindex(self)]) else permute!(self, [1:start - 1 ; finish + 1:ind - 1 ; start:finish ; ind:lastindex(self)]) end else if !(finish < ind < start) error("Insertion index must not be within spliced segment") end permute!(self, [finish + 1:ind - 1 ; start:lastindex(self) ; 1:finish; ind:start - 1]) end return self end function splice(self::AbstractVector, ind::Int, start::Int, finish::Int) ::AbstractVector if start <= finish if start <= ind <= finish error("Insertion index must not be within spliced segment") end if ind < start return self[[1:ind - 1 ; start:finish ; ind:start - 1 ; finish + 1:lastindex(self)]] else return self[[1:start - 1 ; finish + 1:ind - 1 ; start:finish ; ind:lastindex(self)]] end else if !(finish < ind < start) error("Insertion index must not be within spliced segment") end return self[[finish + 1:ind - 1 ; start:lastindex(self) ; 1:finish; ind:start - 1]] end end # Pads vector to reshape cleanly into matrix function safe_reshape_2D(vector::Vector{T}, dim::Int, null_token::Int) ::Matrix{T} where T r = length(vector) % dim if r != 0 vector = copy(vector) append!(vector, fill(null_token, dim - r)) end return reshape(vector, (dim, :)) end # checks if vector is permutation and returns vector """ checkperm(vector::Vector{Int}) -> Vector{Int} Throws `ArgumentError` if `vector` is not a permutation, returns `vector`. """ function checkperm(vector::Vector{Int}) ::Vector{Int} if !isperm(vector) e = ArgumentError("not a permutation") throw(e) end return vector end # generates affine pattern with coefficoent a and bias b function affine(a::Int, b::Int, size::Int) ::Vector{Int} if gcd(a, size) != 1 println("WARNING: Affine parameter $(a)x + $(b) (mod $(size)) is a singular transformation and cannot be inverted") end s = collect(1:size) s *= a s .+= (b - a) # Shifted to account for one-base indexing, standardising s = mod.(s, size) s .+= 1 return s end # circularly shifts vector so that item is at the start function circorigin(a::Vector{T}, item::T) ::Vector{T} where T ind = findfirst(==(item), a) return circshift(a, 1 - ind) end # NORMALISATION #################################### """ normalise!(arr::Array{AbstractFloat} [, dims]) -> Array{AbstractFloat} Divides by the sum of `arr` to make the new sum `1.`, if `dims` are given, `arr` is normalised only in those dims. """ function normalise!(arr::Array{AbstractFloat}, dims) ::Array{AbstractFloat} arr ./= sum(arr; dims = dims) return arr end function normalise!(arr::Array{AbstractFloat}) ::Array{AbstractFloat} arr /= sum(arr) return arr end # CONVOLUTION ###################################### function Conv1D_reals(a::Vector{T}, b::Vector{T}) where T <: Real N = length(a) M = length(b) a = [a ; zeros(M - 1)] # N + M - 1 b = [b ; zeros(N - 1)] # N + M - 1 return ifft(fft(a) .* fft(b)) end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
18008
import Base.==, Base.length, Base.+, Base.*, Base.^, Base.iterate, Base.getindex, Base.setindex!, Base.show, Base.lastindex, Base.copy const NULL_TOKEN = 0 abstract type AbstractCharSpace end """ NCharSpace{N} A characterspace, encoding substrings `::String` as tokens `::Int`. `N` is an integer parameter: the length of encoded substrings in characters. # Fields - `charmap::Vector{String}` maps tokens to substrings `W.charmap[token]` gives `substring` - `tokenmap::Dict{String, Int}` maps substrings to assigned tokens `W.tokenmap[substring]` gives `token` - `units::Vector{String}` stores the most reduced version of encoded substrings - `unit_length::Int` stores the length of an individual unit - `linear::LinearIndices` maps a composite n-token to n unit tokens - `cartesian::CartesianIndices` maps n unit tokens to a single composite n-token - `size::Int` is the number of encoded substrings / the number of tokens - `tokens::Vector{Int}` stores all of the encoding tokens, used for iteration """ struct NCharSpace{N} <: AbstractCharSpace charmap::Vector{String} tokenmap::Dict{String, Int} units::Vector{String} unit_length::Int linear::LinearIndices{N, NTuple{N, Base.OneTo{Int64}}} cartesian::CartesianIndices{N, NTuple{N, Base.OneTo{Int64}}} size::Int tokens::Vector{Int} # DO NOT USE UNSAFE function NCharSpace{N}(charmap::Vector{String}, tokenmap::Dict{String, Int}, units::Vector{String}, unit_length::Int, size::Int, tokens::Vector{Int}) where N if !((N isa Int) && (N > 0)) e = DomainError("Parameter must be an Natural number") throw(e) end shape = Tuple(length(units) for _ in 1:N) linear = LinearIndices(shape) cartesian = CartesianIndices(shape) new{N}(charmap, tokenmap, units, unit_length, linear, cartesian, size, tokens) end # DO NOT USE UNSAFE end findparam(W::NCharSpace{N}) where N = N """ Creates an `NCharSpace{1}` (the most reduced version) from the arguments """ function CharSpace(chars::Vector{String}) ::NCharSpace{1} uchars = unique(chars) size = length(uchars) first_size = length(uchars[1]) if !all(x -> length(x) == first_size, uchars) # check all sizes are the same e = ArgumentError("Characters have different lengths") throw(e) end tokenmap = Dict{String, Int}() for (i, j) in enumerate(uchars) tokenmap[j] = i end units = copy(uchars) NCharSpace{1}(uchars, tokenmap, units, first_size, size, collect(1:size)) end """ ^(W::NCharSpace{1}, n::Int) -> NCharSpace{n} Returns a composite version of `W`, encoding substrings made of `n` unit substrings to single tokens. # Examples ```julia-repl julia> Decimal 10-element CharSpace: ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] julia> W = Decimal^2 100-element 2-char CharSpace: ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] julia> tokenise.(["1", "2"], Ref(Decimal)) 2-element Vector{Int64}: 2 3 julia> W.linear[2,3] 22 julia> W.charmap[22] "12" ``` """ function ^(W::NCharSpace{1}, n::Int) ::NCharSpace{n} size = W.size ^ n charmap = Vector{String}(undef, size) tokenmap = Dict{String, Int}() for (i, c) in enumerate(Iterators.product(ntuple(i -> W.charmap, n)...)) string = join(c) charmap[i] = string tokenmap[string] = i end return NCharSpace{n}(charmap, tokenmap, W.units, W.unit_length, size, collect(1:size)) end function charspacereduce(W::NCharSpace{N}) ::NCharSpace{1} where N if N == 1 return W else return CharSpace(W.units) end end """ nchar(W::NCharSpace{N}, n::Int) -> NCharSpace{n} Produces the order `n` `NCharSpace` from `W.units` """ function nchar(W::NCharSpace{N}, n::Int) where N if n == 1 return charspacereduce(W) elseif N == 1 return W ^ N else return charspacereduce(W) ^ n end end ############################################################################################ CharSpace(chars::Vector{Char}) = CharSpace(string.(chars)) CharSpace(chars::String) = CharSpace(string.(collect(chars))) CharSpace(W::NCharSpace{N}) where N = charspacereduce(W) ==(W1::NCharSpace{A}, W2::NCharSpace{B}) where {A, B} = (A == B) && (W1.charmap == W2.charmap) && (W1.units == W2.units) """ union(W1, W2) -> NCharSpace{1} Combines the unit substrings of `W1` and `W2` (must be in reduced form) to create a new characterspace with the union. """ function union(W1::NCharSpace{1}, W2::NCharSpace{1}) ::NCharSpace{1} if W1.unit_length != W2.unit_length e = ArgumentError("CharSpaces have different substring lengths") throw(e) end return CharSpace([W1.charmap ; W2.charmap]) end """ tokenise(s::String, W::AbstractCharSpace) -> Int, Nothing Returns the token assigned to `s` Returns `nothing` if `s` is not in `W` # Examples ```julia-repl julia> tokenise("C", Alphabet) 3 julia> tokenise("1", Alphabet) julia> tokenise("01", Decimal^2) 11 ``` """ function tokenise(char::String, W::AbstractCharSpace) ::Union{Nothing, Int} try return W.tokenmap[char] catch err if err isa KeyError return nothing else throw(err) end end end """ untokenise(token::Int, W::AbstractCharSpace) -> String Returns the substring that is assigned `token` in `W` # Examples ```julia-repl julia> untokenise(3, Alphabet) "C" julia> untokenise(15, Decimal^2) "41" ``` """ function untokenise(int::Int, W::AbstractCharSpace) ::String return W.charmap[int] end +(W1::NCharSpace{1}, W2::NCharSpace{1}) ::NCharSpace{1} = union(W1, W2) function show(io::IO, W::NCharSpace{N}) where N show(io, W.charmap) end function show(io::IO, ::MIME"text/plain", W::NCharSpace{N}) where N if N == 1 insert = "" else insert = " $(N)-char" end println(io, "$(W.size)-element", insert, " CharSpace:") show(io, W.units) end """ checktoken(token::Int, W::AbstractCharSpace) Throws `ArgumentError` if the token does not exist in `W`, otherwise returns `token` """ function checktoken(token::Int, W::AbstractCharSpace) b = 0 <= token <= W.size if b return token else e = ArgumentError("Token does not exist in character space") throw(e) end end ########################################################################################## """ Txt A wrapper for strings that handles tokenisation # Fields - `raw` stores the latest string version of the text, is updated on construction and `untokenise` - `cases` is a `BitVector` containing the case of each corresponding `Char` in the `raw`, initialised only on construction - `charspace` stores the `NCharSpace{N}` of the text - `tokenised` stores the token values, is updated under most cipher calls - `frozen` stores a `Dict` of `index => string` for substrings that are not tokenised, so they may be reinserted """ mutable struct Txt raw::String case_sensitive::Bool cases::Union{Nothing, BitVector} charspace::Union{Nothing, AbstractCharSpace} where N tokenised::Union{Nothing, Vector{Int}} frozen::Union{Nothing, Dict{Int, String}} is_tokenised::Bool end """ Txt(text::String, case_sensitive::Bool = false) Constructs Txt wrapper for `text` in the untokenised state # Examples ```julia-repl julia> Txt("A bright sunny day.") 19-character Txt: "A bright sunny day." ``` """ Txt(text::String, case_sensitive::Bool = false) = Txt(text, case_sensitive, isuppercase.(collect(text)), nothing, nothing, nothing, false) Txt(vec::Vector{Int}, cspace::AbstractCharSpace) = Txt("", false, nothing, cspace, vec, nothing, true) const TokeniseError = ErrorException("Txt is not tokenised") """ checktokenised(txt::Txt) -> Vector{Int} If `txt` is not tokenised (`txt.is_tokenised == false`), throws a `TokeniseError`. Otherwise, it returns the token vector `txt.tokenised`. """ function checktokenised(txt::Txt) ::Vector{Int} if txt.is_tokenised return txt.tokenised end throw(TokeniseError) end length(txt::Txt) ::Int = length(checktokenised(txt)) function ==(T1::Txt, T2::Union{Txt, Vector{Int}}) ::Bool if !T1.is_tokenised throw(TokeniseError) end if T2 isa Vector{Int} V2 = T2 elseif !T2.is_tokenised throw(TokeniseError) else V2 = T2.tokenised end return T1.tokenised == V2 end ==(T1::Vector{Int}, T2::Txt) ::Bool = ==(T2, T1) iterate(txt::Txt) = iterate(checktokenised(txt)) iterate(txt::Txt, state::Int) = iterate(txt.tokenised, state) function getindex(txt::Txt, args) ::Union{Int, Txt} if !txt.is_tokenised throw(TokeniseError) end if args isa Int return txt.tokenised[args] end t = copy(txt) t.tokenised = getindex(t.tokenised, args) return t end setindex!(txt::Txt, X, i::Int) = setindex!(checktokenised(txt), X, i) lastindex(txt::Txt) = lastindex(checktokenised(txt)) function copy(txt::Txt) ::Txt if txt.is_tokenised return Txt(txt.raw, txt.case_sensitive, txt.cases, txt.charspace, copy(txt.tokenised), txt.frozen, txt.is_tokenised) else return Txt(txt.raw, txt.case_sensitive, txt.cases, txt.charspace, txt.tokenised, txt.frozen, txt.is_tokenised) end end function show(io::IO, txt::Txt) if txt.is_tokenised show(io, txt.tokenised) else show(io, txt.raw) end end function show(io::IO, ::MIME"text/plain", txt::Txt) if txt.is_tokenised if txt.charspace isa NCharSpace N = findparam(txt.charspace) if N == 1 insert = "" else insert = " ($(N)-gram tokens)" end elseif txt.charspace isa DLMSpace insert = " (Delimited tokens)" end println(io, "$(length(txt))-token", txt.case_sensitive ? " case-sensitive" : "", " Txt", insert, ":") show(io, txt.tokenised) else println(io, "$(length(txt.raw))-character", txt.case_sensitive ? " case-sensitive" : "", " Txt:") show(io, txt.raw) end end function txtnchar!(txt::Txt, n::Int) ::Txt if !txt.is_tokenised throw(TokeniseError) end if length(txt.tokenised) % n != 0 e = ArgumentError("Txt length is not divisible by $n") throw(e) end W = txt.charspace ^ n txt.tokenised = [W.linear[ txt.tokenised[i - n + 1:i]... ] for i in n:n:lastindex(txt.tokenised)] txt.charspace = W return txt end function txtnchar(txt::Txt, n::Int) ::Txt if !txt.is_tokenised throw(TokeniseError) end if length(txt.tokenised) % n != 0 e = ArgumentError("Txt length is not divisible by $n") throw(e) end W = txt.charspace ^ n new_tokenised = [W.linear[ txt.tokenised[i - n + 1:i]... ][1] for i in n:n:lastindex(txt.tokenised)] return Txt(txt.raw, txt.case_sensitive, txt.cases, W, new_tokenised, txt.frozen, txt.is_tokenised) end function txtreduce!(txt::Txt) ::Txt if !txt.is_tokenised throw(TokeniseError) end W = nchar(txt.charspace, 1) new_tokenised = Vector{Int}() for i in txt.tokenised append!(new_tokenised, Tuple(txt.charspace.cartesian[i])) end txt.tokenised = new_tokenised txt.charspace = W return txt end function txtreduce(txt::Txt) ::Txt if !txt.is_tokenised throw(TokeniseError) end W = nchar(txt.charspace, 1) new_tokenised = Vector{Int}() for i in txt.tokenised append!(new_tokenised, Tuple(txt.charspace.cartesian[i])) end return Txt(txt.raw, txt.case_sensitive, txt.cases, W, new_tokenised, txt.frozen, txt.is_tokenised) end """ nchar(txt::Txt, n::Int) -> Txt Retokenises `txt` with `n` character substrings, assigning a `NCharSpace{N}` of order `N = n`. If `txt.charspace` has order greater than 1, first the text is reduced (`reduce(txt)`). # Examples ```julia-repl julia> example 24-character Txt: "Literally George Orwell." julia> tokenise!(example) 21-token Txt: [12, 9, 20, 5, 18, 1, 12, 12, 25, 7 … 15, 18, 7, 5, 15, 18, 23, 5, 12, 12] julia> nexample = nchar(example, 3) 7-token Txt (3-gram tokens): [13064, 447, 16522, 9575, 2878, 15329, 7727] julia> untokenise(nexample[1], nexample.charspace) "LIT" ``` """ function nchar(txt::Txt, n::Int) ::Txt N = findparam(txt.charspace) if n == 1 return txtreduce(txt) elseif N == 1 return txtnchar(txt, n) else return txtnchar(txtreduce(txt), n) end end function nchar!(txt::Txt, n::Int) N = findparam(txt.charspace) if n == 1 return txtreduce!(txt) elseif N == 1 return txtnchar!(txt, n) else return txtnchar!(txtreduce!(txt), n) end end """ tokenise(txt::Txt, W::NCharSpace{1} = Alphabet) -> Vector{Int}, Dict{Int, String} Returns the token vector of `txt`, where raw substrings have been encoded as tokens (integers), according to the mapping of the characterspace `W` and returns the `frozen` dictionary, which stores the location of substrings that do not get tokenised """ function tokenise(txt::Txt, W::NCharSpace{1} = Alphabet) ::Tuple{Vector{Int}, Dict{Int, String}} if !txt.case_sensitive && join(W.charmap) != uppercase(join(W.charmap)) error("Case-insensitive text cannot be tokenised by a case-sensitive CharSpace") end tokenised = Vector{Int}() text = txt.case_sensitive ? txt.raw : uppercase(txt.raw) frozen = Dict{Int, String}() while length(text) > 0 char_index = findfirst(startswith.(text, W.charmap)) if isnothing(char_index) # if text doesn't start with any of W.chars frozen[length(tokenised)] = get(frozen, length(tokenised), "") * text[1] i = nextind(text, 1) text = text[i:end] # shave text by 1 continue end push!(tokenised, char_index) # add token to tokenised text = text[W.unit_length + 1:end] # shave text by 1 unit end return tokenised, frozen end """ untokenise(txt::Txt, W::NCharSpace; kwargs) -> String Returns the concatenation of the substrings for tokens in `txt.tokenised`. # Keyword Arguments - `restore_frozen = true` controls whether frozen substrings are reinserted - `restore_case = true` controls whether the original cases are reapplied """ function untokenise(txt::Txt, W::NCharSpace{1}; restore_frozen::Bool = true, restore_case::Bool = true) ::String if !txt.is_tokenised throw(TokeniseError) end if isnothing(txt.frozen) restore_frozen = false end if isnothing(txt.cases) restore_case = false end if !restore_frozen raw = "" n = 0 for token in txt.tokenised if !(1 <= token <= W.size) continue end char = W.charmap[token] if restore_case && !txt.case_sensitive raw *= txt.cases[1 + length(raw)] ? uppercase(char) : lowercase(char) else raw *= char end end else raw = get(txt.frozen, 0, "") n = 0 for token in txt.tokenised if !(1 <= token <= W.size) continue end char = W.charmap[token] if restore_case && !txt.case_sensitive raw *= txt.cases[1 + length(raw)] ? uppercase(char) : lowercase(char) else raw *= char end raw *= get(txt.frozen, n += 1, "") end end return raw end untokenise(txt::Txt; restore_frozen::Bool = true, restore_case::Bool = true) ::String = untokenise(txt, txt.charspace; restore_frozen = restore_frozen, restore_case = restore_case) untokenise(txt::Txt, nothing::Nothing; restore_frozen::Bool = true, restore_case::Bool = true) ::String = untokenise(txt, txt.charspace; restore_frozen = restore_frozen, restore_case = restore_case) untokenise(txt::Txt, W::NCharSpace{N} where N; restore_frozen::Bool = true, restore_case::Bool = true) ::String = untokenise(nchar(txt, 1)) """ tokenise!(txt::Txt, W::NCharSpace{1} = Alphabet) Tokenises `txt` in place, updating the `tokenised`, `frozen`, `is_tokenised`, `charspace` fields. # Examples ```julia-repl julia> t = Txt("Mr Wood moment") 14-character Txt: "Mr Wood moment" julia> tokenise!(t) 12-token Txt: [13, 18, 23, 15, 15, 4, 13, 15, 13, 5, 14, 20] julia> t.is_tokenised true ``` """ function tokenise!(txt::Txt, W::NCharSpace{1} = Alphabet) ::Txt tokenised, frozen = tokenise(txt, W) txt.charspace = W txt.frozen = frozen txt.is_tokenised = true txt.tokenised = tokenised return txt end """ untokenise!(txt::Txt, W::Union{AbstractCharSpace, Nothing} = nothing; kwargs) Unokenises `txt` in place, updating the `raw::String` field and `is_tokenised` and clearing `tokenised` # Examples ```julia-repl julia> t 12-token Txt: [13, 18, 23, 15, 15, 4, 13, 15, 13, 5, 14, 20] julia> untokenise!(t) 14-character Txt: "Mr Wood moment" ``` """ function untokenise!(txt::Txt, W::Union{AbstractCharSpace, Nothing} = nothing; restore_frozen::Bool = true, restore_case::Bool = true) ::Txt raw = untokenise(txt, W, restore_case = restore_case) txt.charspace = nothing txt.tokenised = nothing txt.frozen = nothing txt.cases = isuppercase.(collect(raw)) txt.is_tokenised = false txt.raw = raw return txt end Alphabet = CharSpace("ABCDEFGHIJKLMNOPQRSTUVWXYZ") # Bigram_CharSpace = Alphabet ^ 2 # Trigram_CharSpace = Alphabet ^ 3 # Quadgram_CharSpace = Alphabet ^ 4 Decimal = CharSpace("0123456789") Hexadecimal = CharSpace("0123456789ABCDEF") # Polybius_CharSpace = CharSpace("12345") ^ 2 # ADFGX_CharSpace = CharSpace("ADFGX") ^ 2 # ADFGVX_CharSpace = CharSpace("ADFGVX") ^ 2 # ADFCube_CharSpace = CharSpace("ADF") ^ 3 # Binary5_CharSpace = CharSpace("01") ^ 5 # Ternary3_CharSpace = CharSpace("012") ^ 3
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
4411
include("charspace.jl") import Base.push!, Base.iterate, Base.insert!, Base.copy, Base.append!, Base.getindex, Base.setindex!, Base.show, Base.length abstract type AbstractCipher end # OVERRIDES: # preferably override apply(cipher, vector; safety_checks) # if Txt obj necessary, override apply!(cipher, txt) function apply!(C::T, txt::Txt) ::Txt where T <: AbstractCipher if !txt.is_tokenised error("Cannot apply Cipher to untokenised Txt") end txt.tokenised = apply(C, txt.tokenised; safety_checks = txt) return txt end function apply(C::T, txt::Txt) ::Txt where T <: AbstractCipher new_txt = copy(txt) apply!(C, new_txt) return new_txt end (C::T where T <: AbstractCipher)(txt::Txt) = apply(C, txt) invert(C::AbstractCipher) = invert!(deepcopy(C)) # Type unsafe general inverter "lazy" function switch_invert_tag!(x) x.inverted = !x.inverted return x end mutable struct Encryption ciphers::Vector{AbstractCipher} function Encryption(layers::Vector{T}) where T <: AbstractCipher new(layers) end end Encryption(args::AbstractCipher...) = Encryption(collect(args)) function copy(E::Encryption) return Encryption(deepcopy(E.ciphers)) end length(E::Encryption) = length(E.ciphers) getindex(E::Encryption, inds) = getindex(E.ciphers, inds) setindex!(E::Encryption, val::AbstractCipher, inds) = setindex!(E.ciphers, val, inds) function push!(E::Encryption, C::AbstractCipher) push!(E.ciphers, C) return E end function insert!(E::Encryption, index::Int, C::AbstractCipher) insert!(E.ciphers, index, C) return E end function append!(E1::Encryption, E2::Vararg{Encryption, N}) ::Encryption where N append!(E1.ciphers, (i.ciphers for i in E2)...) return E1 end iterate(E::Encryption) = iterate(E.ciphers) iterate(E::Encryption, state::Int) = iterate(E.ciphers, state) function show(io::IO, E::Encryption) show(io, E.ciphers) end function show(io::IO, ::MIME"text/plain", E::Encryption) println(io, "$(length(E))-element Encryption:") show(io, E.ciphers) end (C::AbstractCipher)(D::AbstractCipher) = Encryption([D, C]) (C::AbstractCipher)(E::Encryption) = push!(copy(E), C) (C::AbstractCipher)(n::Nothing) = C (E::Encryption)(C::AbstractCipher) = insert!(copy(E), 1, C) (E1::Encryption)(E2::Encryption) = append!(copy(E2), E1) function invert!(E::Encryption) invert!.(E.ciphers) reverse!(E.ciphers) return E end invert(E::Encryption) = invert!(copy(E)) function apply!(E::Encryption, txt::Txt) ::Txt if !txt.is_tokenised error("Cannot apply Encryption to untokenised Txt") end for layer in E apply!(layer, txt) end return txt end # It is faster to create one copy and mutate than create copies every time function apply(E::Encryption, txt::Txt) ::Txt new_txt = copy(txt) apply!(E, new_txt) return new_txt end (E::Encryption)(txt::Txt) = apply(E, txt) mutable struct Lambda <: AbstractCipher func::Function inv_func::Union{Function, Nothing} function Lambda(f::Function, inv_func::Union{Function, Nothing} = nothing) new(f, inv_func) end end function invert!(L::Lambda) if isnothing(L.inv_func) error("Inverse function not given, cannot invert") end L.func, L.inv_func = L.inv_func, L.func return L end apply(L::Lambda, v::Vector{Int}; safety_checks::Txt) = L.func.(v) # mutable struct Retokenise <: AbstractCipher # OldCharSpace::NCharSpace{1} # NewCharSpace::NCharSpace{1} # end # function apply!(R::Retokenise, txt::Txt) ::Txt # if !txt.is_tokenised # error("Cannot retokenise untokenised Txt") # end # untokenise!(txt, R.OldCharSpace; restore_case = false, restore_frozen = false) # tokenise!(txt, R.NewCharSpace) # return txt # end # mutable struct Reassign <: AbstractCipher # OldCharSpace::NCharSpace{1} # NewCharSpace::NCharSpace{1} # end # function invert!(R::Union{Reassign, Retokenise}) # R.OldCharSpace, R.NewCharSpace = R.NewCharSpace, R.OldCharSpace # return R # end # function apply!(C::Reassign, txt::Txt) ::Txt # if !txt.is_tokenised # error("Cannot apply Cipher to untokenised Txt") # end # if txt.charspace != C.OldCharSpace # error("Txt character space does not match Reassign input") # end # txt.charspace = C.NewCharSpace # return txt # end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
7797
import Base.show using Combinatorics mutable struct Columnar <: AbstractCipher n::Int permutation::Vector{Int} remove_nulls::Bool inverted::Bool function Columnar(n::Int, permutation::Vector{Int}, remove_nulls::Bool, inverted::Bool) if length(checkperm(permutation)) != n error("Permutation must be of the same length as the reshape") end new(n, permutation, remove_nulls, inverted) end end Columnar(n::Int, remove_nulls::Bool = false) = Columnar(n, collect(1:n), remove_nulls, false) Columnar(permutation::Vector{Int}, remove_nulls::Bool = false) = Columnar(length(permutation), permutation, remove_nulls, false) Columnar(colon::Colon, n::Int) = Tuple(permutations(collect(1:n))) function switch(S::Columnar, posa::Int, posb::Int) ::Columnar return Columnar(S.n, switch(S.permutation, posa, posb), S.remove_nulls, S.inverted) end function switch!(S::Columnar, posa::Int, posb::Int) ::Columnar switch!(S.permutation ::Vector{Int}, posa, posb) return S end function shift!(self::Columnar, shift::Int) ::Columnar self.permutation = circshift(self.permutation, shift) return self end function shift(self::Columnar, shift::Int) shift!(deepcopy(self), shift) end function show(io::IO, T::Columnar) show(io, T.permutation) end function show(io::IO, ::MIME"text/plain", T::Columnar) if T.inverted inverse_text = "Inverse " else inverse_text = "" end println(io, "$(T.n)-column ", inverse_text, "Columnar Transposition:") show(io, T.permutation) end function reinsert_nulls(vect::Vector{Int}, T::Columnar; null_token::Int) ::Vector{Int} L = length(vect) overhang = L % T.n if overhang == 0 return vect end vector = copy(vect) null_ends = T.permutation .> overhang row_length = ceil(Int, L / T.n) for (i,j) in enumerate(null_ends) if j insert!(vector, i * row_length, null_token) end end return vector end function unshape(vect::Vector{Int}, T::Columnar; null_token::Int) ::Array{Int} new_tokens = reinsert_nulls(vect, T; null_token = null_token) new_tokens = reshape(new_tokens, (:, T.n)) new_tokens = permutedims(new_tokens) return new_tokens end function apply(T::Columnar, vect::Vector{Int}; safety_checks::Txt, null_token::Int = 0) ::Vector{Int} if T.inverted # inverse application new_tokens = unshape(vect, T; null_token = null_token) inv_permutation = [findfirst(==(i), T.permutation) for i in 1:T.n] new_tokens = vec(new_tokens[inv_permutation, :]) if T.remove_nulls return filter!(!=(null_token), new_tokens) else return new_tokens end else # regular application new_tokens = safe_reshape_2D(vect, T.n, null_token) new_tokens = permutedims(new_tokens[T.permutation, :]) new_tokens = vec(new_tokens) if T.remove_nulls return filter!(!=(null_token), new_tokens) else return new_tokens end end end invert!(T::Columnar) = switch_invert_tag!(T) # mutable struct Railfence <: AbstractCipher # n::Int # offset::Int # inverted::Bool # function Railfence(n::Int, offset::Int = 0, inverted::Bool = false) # new(n - 1, mod(offset, 2 * n - 2), inverted) # end # end # Railfence(n::Int, colon::Colon) = Tuple(collect(1:2*(n-1))) # function show(io::IO, T::Railfence) # if T.inverted # inverse_text = "Inverse " # else # inverse_text = "" # end # println(io, "$(T.n + 1)-rail ", inverse_text, "Railfence (offset = $(T.offset))") # end # function unshape(vect::Vector{Int}, T::Railfence) ::Array{Int} # new_tokens = copy(vect) # L = length(vect) + T.offset # reinsert_pos = Vector{Int}() # num_rows = ceil(Int, L / T.n) # matrix_size = (T.n + 1) * num_rows # num_trailing = T.n - L % T.n + 1 # append!(reinsert_pos, collect(2:2:num_rows), collect(matrix_size-num_rows+1:2:matrix_size)) # alternating zeros # append!(reinsert_pos, collect( 1 .+ (0:T.offset-1) * num_rows)) # offset zeros # if 1 & num_rows == 0 # append!(reinsert_pos, collect( (1:num_trailing) * num_rows)) # else # append!(reinsert_pos, collect( ((T.n+2-num_trailing):T.n+1) * num_rows)) # end # sort!(reinsert_pos) # for i in unique(reinsert_pos) # insert!(new_tokens, i, 0) # end # new_tokens = reshape(new_tokens, (num_rows, :)) # new_tokens = permutedims(new_tokens) # return new_tokens # end # function apply(T::Railfence, vect::Vector{Int}; safety_checks::Txt) ::Vector{Int} # if T.inverted # new_tokens = unshape(vect, T) # for i in 2:2:lastindex(new_tokens, 2) # new_tokens[:, i] .= reverse(new_tokens[:, i]) # end # new_tokens = new_tokens[begin:end-1, :] # return vec(new_tokens) # else # new_tokens = copy(vect) # for _ in 1:T.offset # insert!(new_tokens, 1, 0) # end # new_tokens = safe_reshape_2D(new_tokens, T.n, 0) # new_tokens = [new_tokens; zeros(Int, 1, size(new_tokens)[2] )] # for i in 2:2:lastindex(new_tokens, 2) # new_tokens[:, i] .= reverse(new_tokens[:, i]) # end # new_tokens = permutedims(new_tokens) # return vec(new_tokens) # end # end # invert!(T::Union{Columnar, Railfence}) = switch_invert_tag!(T) # mutable struct Amsco1 <: AbstractCipher # blocks::Vector{Int} # permutation::Vector{Int} # inverted::Bool # Amsco1(blocks::Vector{Int}, permutation::Vector{Int}, inverted::Bool = false) = new(blocks, permutation, inverted) # end # mutable struct Amsco2 <: AbstractCipher # blocks::Vector{Int} # permutation::Vector{Int} # shift::Int # inverted::Bool # function Amsco2(blocks::Vector{Int}, permutation::Vector{Int}, shift::Int = 1, inverted::Bool = false) # if length(permutation) != length(blocks) # error("Amsco2 requires a permutation with the same period as the number of block lengths") # end # new(blocks, permutation, shift, inverted) # end # end # invert!(A::Union{Amsco1, Amsco2}) = switch_invert_tag!(A) # function apply(A::Union{Amsco1, Amsco2}, v::Vector{Int}; safety_checks::Txt) ::Vector{Int} # block_total = sum(A.blocks) # period = length(A.permutation) # rows = ceil(Int, length(v) / block_total * length(A.blocks) / period ) # mat = fill(Vector{Int}(), rows, period) # u = copy(v) # r = 1 # c = 0 # if !A.inverted # while length(u) > 0 # c += 1 # if c > period # c = 1 # r += 1 # end # if A isa Amsco1 # i = A.blocks[((r - 1) * period + c - 1) % length(A.blocks) + 1] # else # i = A.blocks[(c - 1 + A.shift*(r-1)) % period + 1] # end # mat[r, c] = length(u) ≥ i ? u[1:i] : u[1:end] # u = u[i+1:end] # end # mat = mat[:, A.permutation] # return vcat(mat...) # else # u = copy(v) # for c in A.permutation # for r in 1:rows # if A isa Amsco1 # i = A.blocks[((r - 1) * period + c - 1) % length(A.blocks) + 1] # else # i = A.blocks[(c - 1 + A.shift*(r-1)) % period + 1] # end # mat[r, c] = length(u) ≥ i ? u[1:i] : u[1:end] # u = u[i+1:end] # end # end # return vcat(permutedims(mat, (2, 1))...) # end # end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
4743
include("genetics.jl") import IterTools.product ############# ALL on ALPHABETIC CharSpace (to English) # Returns element of input Vector that maximises x -> fitness(f(x)) function optimise(f::Function, inputs::AbstractVector, fitness::Function) scores = [fitness(f(i)) for i in inputs] return inputs[argmax(scores)] end function optimise!(f::Function, setinput!::Function, obj, inputs::AbstractVector, fitness::Function) obj_copy = deepcopy(obj) scores = Vector{Float64}(undef, length(inputs)) for (i, input) in enumerate(inputs) setinput!(obj, input) scores[i] = fitness(f(obj)) end setinput!(obj_copy, inputs[argmax(scores)]) return obj_copy end function optimise(f::Symbol, inputs::AbstractArray, fitness::Symbol) scores = [eval(:( $fitness($f($i...)) )) for i in inputs] return inputs[argmax(scores)] end macro bruteforce(func_call::Expr, fitness::Symbol) arguments = func_call.args[2:end] f = func_call.args[1] L = length(arguments) isblank = isequal.(arguments, :(:)) test_sets = Vector(undef, L) for arg in eachindex(arguments) if isblank[arg] param_extraction_args = deepcopy(arguments) param_extraction_args[arg] = Colon() try test_sets[arg] = eval(:( $f($param_extraction_args...) )) catch err error("This function does not have parameter listing defined for this argument") end else test_sets[arg] = (arguments[arg],) end end return optimise(f, collect(product(test_sets...)), fitness) end function crack_Caesar(txt::Txt) ::Substitution return invert!(optimise(x -> apply(x, txt), [Caesar(i, 26) for i in 1:26], x -> orthodot(x))) end function crack_Affine(txt::Txt) ::Substitution coprimes = collect(1:26) filter!(x -> gcd(26, x) == 1, coprimes) return invert!(optimise(x -> apply(x, txt), [Affine(a, b, 26) for a in coprimes for b in 1:26], x -> orthodot(x))) end function crack_Substitution_genetic(txt::Txt, spawns::Int = 10, gen::Int = 350) # token vector // number of mutatated subs spawned each generation // no of generations start = frequency_matched_substitution(txt, monogram_freq) invert!(start) return evolve_silent(x -> apply(x, txt), mutate, start, spawns, gen, quadgramlog) end function crack_Vigenere(txt::Txt; upper_period_lim::Int = 20, critical_sigma::Float64 = 0.15, pass_num::Int = 2, silent::Bool = true) ::PeriodicSubstitution period = find_period(txt, upper_period_lim, critical_sigma; silent = silent) if isnothing(period) error("No period / period could not be found by fw_stdev (if periodicity is certain, try increasing tolerance)") end vigenere = Vigenere(period, 26) # Blank Vigenere for pass in 1:pass_num for i in 1:period vigenere = optimise!(x -> apply(x::AbstractCipher, txt), (x, y) -> setindex!(x, y, i), vigenere, [Caesar(shift, 26) for shift in 1:26], quadgramlog) end end invert!.(vigenere) return vigenere end coprimes = collect(1:26) filter!(x -> gcd(26, x) == 1, coprimes) function crack_Periodic_Affine(txt::Txt; upper_period_lim::Int = 20, critical_sigma::Float64 = 0.15, pass_num::Int = 2, silent::Bool = true) ::PeriodicSubstitution period = find_period(txt, upper_period_lim, critical_sigma; silent = silent) if isnothing(period) error("No period / period could not be found by fw_stdev (if periodicity is certain, try increasing tolerance)") end p_affine = Periodic_Affine(period, 26) for pass in 1:pass_num for i in 1:period p_affine = optimise!(x -> apply(x::AbstractCipher, txt), (x, y) -> setindex!(x, y, i), p_affine, [Affine(b, a, 26) for a in 1:26 for b in coprimes], quadgramlog) end end invert!.(p_affine) return p_affine end function crack_Columnar(txt::Txt, n::Int) T = reshape(txt.tokenised, (:, n)) T = permutedims(T) follow = Matrix{Float64}(undef, n, n) ########### EACHINDEX IS BETTER for i in 1:n for j in 1:n follow[i, j] = sum([ bigram_scores[i,j] for (i,j) in zip(T[i, :], T[j, :])]) end end permutation = Vector{Int}(undef, n) permutation[1] = argmin(vec(maximum(follow; dims = 2))) # finds which column comes last follow[permutation[1], :] .= -Inf show(follow[:, 1]) for i in 2:n permutation[i] = argmax(vec(follow[:, i-1])) end reverse!(permutation) return permutation end function crack_Columnar(txt::Txt, upperlim = 20) n = divisors(length(txt)) i = 1 while n[i] <= upperlim end end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
4953
import Base.==, Base.length, Base.+, Base.*, Base.^, Base.iterate, Base.getindex, Base.setindex!, Base.show, Base.lastindex, Base.copy """ DLMSpace A characterspace, encoding substrings `::String` as tokens `::Int`. `dlm` is the delimiter, separating substrings to be tokenised. # Fields - `charmap::Vector{String}` maps tokens to substrings `W.charmap[token]` gives `substring` - `tokenmap::Dict{String, Int}` maps substrings to assigned tokens `W.tokenmap[substring]` gives `token` - `dlm` is the delimiting string/character - `size::Int` is the number of encoded substrings / the number of tokens - `tokens::Vector{Int}` stores all of the encoding tokens, used for iteration """ struct DLMSpace <: AbstractCharSpace charmap::Vector{String} tokenmap::Dict{String, Int} dlm size::Int tokens::Vector{Int} function DLMSpace(substrings::Vector{SubString{String}}, dlm) charmap = unique(substrings) tokenmap = Dict{String, Int}() for (i, j) in enumerate(charmap) tokenmap[j] = i end size = length(charmap) new(charmap, tokenmap, dlm, size, collect(1:size)) end end ############################################################################################ function CharSpace(text::String, dlm, case_sensitive = false) if case_sensitive return DLMSpace(split(text, dlm), dlm) else return DLMSpace(split(uppercase(text), dlm), dlm) end end ==(W1::DLMSpace, W2::DLMSpace) = (W1.charmap == W2.charmap) """ union(W1, W2) -> DLMSpace Combines the substrings of `W1` and `W2` to create a new characterspace with the union. """ function union(W1::DLMSpace, W2::DLMSpace) ::DLMSpace if W1.dlm != W2.dlm e = ArgumentError("DLMSpaces have different delimiters") throw(e) end return DLMSpace([W1.charmap ; W2.charmap]) end +(W1::DLMSpace, W2::DLMSpace) ::DLMSpace = union(W1, W2) function show(io::IO, W::DLMSpace) show(io, W.charmap) end function show(io::IO, ::MIME"text/plain", W::DLMSpace) println(io, "$(W.size)-element Delimited (\"$(W.dlm)\") CharSpace:") show(io, W.charmap) end ########################################################################################## function apply_case(cases::BitVector, substr::String) ::String return String([case ? uppercase(char) : lowercase(char) for (case, char) in zip(cases, substr)]) end """ tokenise(txt::Txt, W::DLMSpace) -> Vector{Int}, Dict{Int, String} Returns the token vector of `txt`, where raw substrings have been encoded as tokens (integers), according to the mapping of the characterspace `W` and returns the `frozen` dictionary, which stores the location of substrings that do not get tokenised """ function tokenise(txt::Txt, W::DLMSpace) ::Tuple{Vector{Int}, Dict{Int, String}} if !txt.case_sensitive && join(W.charmap) != uppercase(join(W.charmap)) error("Case-insensitive text cannot be tokenised by a case-sensitive CharSpace") end tokenised = Vector{Int}() text = txt.case_sensitive ? txt.raw : uppercase(txt.raw) frozen = Dict{Int, String}() for substr in split(text, W.dlm) if substr in W.charmap push!(tokenised, W.tokenmap[substr]) frozen[length(tokenised)] = " " else frozen[length(tokenised)] = substr * " " end end return tokenised, frozen end """ untokenise(txt::Txt, W::DLMSpace; kwargs) -> String Returns the concatenation of the substrings for tokens in `txt.tokenised`. # Keyword Arguments - `restore_frozen = true` controls whether frozen substrings are reinserted - `restore_case = true` controls whether the original cases are reapplied """ function untokenise(txt::Txt, W::DLMSpace; restore_frozen::Bool = true, restore_case::Bool = true) ::String if !txt.is_tokenised throw(TokeniseError) end raw = get(txt.frozen, 0, "") n = 0 i = 1 for token in txt.tokenised if !(1 <= token <= W.size) continue end char = W.charmap[token] L = length(char) if restore_case && !txt.case_sensitive raw *= apply_case(txt.cases[i:i + L - 1], char) else raw *= char end raw *= get(txt.frozen, n += 1, "") i += L end return raw end """ tokenise!(txt::Txt, dlm) Tokenises `txt` in place, updating the `tokenised`, `frozen`, `is_tokenised`, `charspace` fields. # Examples ```julia-repl julia> t = Txt("Mr Wood moment") 14-character Txt: "Mr Wood moment" julia> tokenise!(t) 12-token Txt (Delimited Chars): [1, 2, 3] julia> t.is_tokenised true ``` """ function tokenise!(txt::Txt, dlm) ::Txt W = CharSpace(txt.raw, dlm, txt.case_sensitive) tokenised, frozen = tokenise(txt, W) txt.charspace = W txt.frozen = frozen txt.is_tokenised = true txt.tokenised = tokenised return txt end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
1493
# Returns elemnt of input Vector that maximises x -> fitness(f(x)), with a floor item that is returned if no item has higher fitness function optimise_floor(f::Function, floor, inputs::AbstractVector, fitness::Function) floorscore = fitness(f(floor)) scores = [fitness(f(i)) for i in inputs] p = inputs[argmax(scores)] # find item with highest fitness dF = maximum(scores) - floorscore # find the item's fitness return dF > 0 ? p : floor end # Mutates parent, spawning 'spawns' no. of mutated children, over 'generations' generations. function evolve_silent(f::Function, mutate::Function, parent, spawns::Int, generations::Int, fitness::Function) scores = Float64[] for i in 1:generations parent = optimise_floor(f, parent, [mutate(parent) for i in 1:spawns], fitness) append!(scores, fitness(f(parent))) end return parent, scores # genetically evolved item // vector of scores over generations end # evolve_silent() but it stops if fitness exceeds the fitness_threshold function evolve_until(f::Function, mutate::Function, parent, spawns::Int, fitness_threshold, max_runs, fitness::Function) scores = [fitness(f(parent))] i = 0 while scores[end] < fitness_threshold i += 1 if i > max_runs return parent, scores end parent = optimise_floor(f, parent, [mutate(parent) for i in 1:spawns], fitness) append!(scores, fitness(f(parent))) end return parent, scores end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
1998
import Base.show mutable struct MatrixTransposition <: AbstractCipher n::Int remove_nulls::Bool inverted::Bool function MatrixTransposition(n::Int, remove_nulls::Bool = false) new(n, remove_nulls, false) end end invert!(T::MatrixTransposition) = switch_invert_tag!(T) function reinsert_nulls(vect::Vector{Int}, T::MatrixTransposition; null_token::Int = 0) ::Vector{Int} L = length(vect) overhang = L % T.n if overhang == 0 return vect end null_count = T.n - overhang col_length = Int(ceil(L / T.n)) index = overhang * col_length vector = copy(vect) for _ in 1:null_count index += col_length insert!(vector, index, null_token) end return vector end function unshape(vect::Vector{Int}, T::MatrixTransposition) ::Matrix{Int} new_tokens = reinsert_nulls(vect, T) new_tokens = reshape(new_tokens, (:, T.n)) return new_tokens end function show(io::IO, T::MatrixTransposition) println(io, "MatrixTransposition($(T.n))") end function show(io::IO, ::MIME"text/plain", T::MatrixTransposition) if T.inverted inverse_text = " (padding mode inverted)" else inverse_text = "" end println(io, "$(T.n)-column Matrix Transposition", inverse_text) end function apply(T::MatrixTransposition, vect::Vector{Int}; safety_checks::Txt, null_token::Int = 0) ::Vector{Int} if T.inverted # inverse application new_tokens = unshape(vect, T) new_tokens = vec(permutedims(new_tokens)) if T.remove_nulls return filter!(!=(null_token), new_tokens) else return new_tokens end else # regular application new_tokens = safe_reshape_2D(vect, T.n, null_token) new_tokens = permutedims(new_tokens) new_tokens = vec(new_tokens) if T.remove_nulls return filter!(!=(null_token), new_tokens) else return new_tokens end end end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
3409
include("substitution.jl") import Base.setindex! ############ MULTI Substitutions FRAMEWORK ################################################ mutable struct PeriodicSubstitution <: AbstractCipher subs::Vector{Substitution} length::Int function PeriodicSubstitution(substitutions::Vector{Substitution}) size_one = substitutions[1].size if any([i.size != size_one for i in substitutions]) error("All Substitutions must be of the same size") end new(substitutions, length(substitutions)) end end PeriodicSubstitution(substitutions::Substitution...) = PeriodicSubstitution(substitutions) length(S::PeriodicSubstitution) = S.length getindex(S::PeriodicSubstitution, inds) = getindex(S.subs, inds) iterate(S::PeriodicSubstitution) = iterate(S.subs) iterate(S::PeriodicSubstitution, i::Integer) = iterate(S.subs, i) setindex!(S::PeriodicSubstitution, val::Substitution, ind::Int) = setindex!(S.subs, val, ind) ==(A::PeriodicSubstitution, B::PeriodicSubstitution) = ==(A.subs, B.subs) # Applies MultiSubstitution to Integer Vectors function apply(S::PeriodicSubstitution, vector::Vector{Int}; safety_checks::Txt) ::Vector{Int} vect = Vector{Int}(undef, length(vector)) for (i, j) in enumerate(S) vect[i:S.length:end] .= apply(j, vector[i:S.length:end]; safety_checks = safety_checks) end return vect end invert!(S::PeriodicSubstitution) = invert!.(S) function show(io::IO, S::PeriodicSubstitution) if S.length > 8 for i in 1:8 show(io, S[i]) print("\n") end for _ in 1:3 print(".\n") end else for sub in S.subs show(io, sub) print("\n") end end end function show(io::IO, ::MIME"text/plain", S::PeriodicSubstitution) println(io, "$(S[1].size)-element $(S.length)-Periodic Substitution:") if S.length > 8 for i in 1:8 show(io, S[i]) print("\n") end for _ in 1:3 print(".\n") end else for sub in S.subs show(io, sub) print("\n") end end end # Presets function Vigenere(vect::Vector{Int}, size::Union{Int, NCharSpace{N}} where N) ::PeriodicSubstitution return PeriodicSubstitution([Caesar(i, size) for i in vect]) end Vigenere(num::Int, size::Union{Int, NCharSpace{N}} where N) = Vigenere(zeros(Int, num), size) Vigenere(vect::Vector{String}, W::NCharSpace{1}) ::PeriodicSubstitution = Vigenere(tokenise.(vect, Ref(W)) .- 1, W) # Subtracting one to standardise for 0-based indexing Vigenere(vect::Vector{Char}, W::NCharSpace{1}) ::PeriodicSubstitution = Vigenere(string.(vect), W) Vigenere(string::String, W::NCharSpace{1}) ::PeriodicSubstitution = Vigenere(collect(string), W) function Periodic_Affine(vect::Vector{Tuple{Int, Int}}, size::Union{Int, NCharSpace{N}} where N) ::PeriodicSubstitution return PeriodicSubstitution([Affine(a, b, size) for (a, b) in vect]) end Periodic_Affine(vecta::Vector{Int}, vectb::Vector{Int}, size::Union{Int, NCharSpace{N}} where N) ::PeriodicSubstitution = length(vecta) == length(vectb) ? Periodic_Affine(collect(zip(vecta, vectb)), size) : error("Parameter vectors must have same length") Periodic_Affine(num::Int, size::Union{Int, NCharSpace{N}} where N) = Periodic_Affine(ones(Int, num), zeros(Int, num), size)
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
3535
import Base.show using Combinatorics mutable struct Permutation <: AbstractCipher n::Int permutation::Vector{Int} remove_nulls::Bool inverted::Bool # UNSAFE DO NOT USE function Permutation(n::Int, permutation::Vector{Int}, remove_nulls::Bool, inverted::Bool) if length(permutation) != n e = ArgumentError("Permutation does not match provided length, use safe constructor") throw(e) end new(n, checkperm(permutation), remove_nulls, inverted) end # UNSAFE DO NOT USE end Permutation(permutation::Vector{Int}, remove_nulls::Bool = false) = Permutation(length(permutation), permutation, remove_nulls, false) Permutation(n::Int, remove_nulls::Bool = false) = Permutation(n, collect(1:n), remove_nulls, false) invPermutation(permutation::Vector{Int}, remove_nulls::Bool = false) = Permutation(length(permutation), permutation, remove_nulls, true) invPermutation(n::Int, remove_nulls::Bool = false) = Permutation(n, collect(1:n), remove_nulls, true) Permutation(colon::Colon, n::Int) = Tuple(permutations(collect(1:n))) function invert!(P::Permutation) switch_invert_tag!(P) P.permutation = invperm(P.permutation) return P end function switch(P::Permutation, posa::Int, posb::Int) ::Permutation return Permutation(P.n, switch(P.permutation, posa, posb), P.remove_nulls, P.inverted) end function switch!(P::Permutation, posa::Int, posb::Int) ::Permutation switch!(P.permutation, posa, posb) return P end function splice!(P::Permutation, ind::Int, start::Int, finish::Int) ::Permutation splice!(P.permutation, ind, start, finish) return P end function splice(P::Permutation, ind::Int, start::Int, finish::Int) ::Permutation return Permutation(P.n, splice(P.permutation, ind, start, finish), P.remove_nulls, P.inverted) end function show(io::IO, T::Permutation) show(io, T.permutation) end function show(io::IO, ::MIME"text/plain", T::Permutation) if T.inverted inverse_text = " (padding mode inverted)" else inverse_text = "" end println(io, "$(T.n)-column Permutation", inverse_text, ":") show(io, T.permutation) end function reinsert_nulls(vect::Vector{Int}, T::Permutation; null_token::Int = 0) ::Vector{Int} L = length(vect) overhang = L % T.n if overhang == 0 return vect end vector = copy(vect) null_ends = T.permutation .> overhang num_full_rows = floor(Int, L / T.n) for (i,j) in enumerate(null_ends) if j insert!(vector, num_full_rows * T.n + i, null_token) end end return vector end function unshape(vect::Vector{Int}, T::Permutation) ::Matrix{Int} new_tokens = reinsert_nulls(vect, T) new_tokens = reshape(new_tokens, (T.n, :)) return new_tokens end function apply(T::Permutation, vect::Vector{Int}; safety_checks::Txt, null_token::Int = 0) ::Vector{Int} if T.inverted # inverse application new_tokens = unshape(vect, T) new_tokens = vec(new_tokens[T.permutation, :]) if T.remove_nulls return filter!(!=(null_token), new_tokens) else return new_tokens end else # regular application new_tokens = safe_reshape_2D(vect, T.n, null_token) new_tokens = new_tokens[T.permutation, :] new_tokens = vec(new_tokens) if T.remove_nulls return filter!(!=(null_token), new_tokens) else return new_tokens end end end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
53742
module TxtSamples export orwell, veryorwell, frandom, random, adfgvx, jmacro, blanc, help using RxCiphers function help() println("TxtSamples available:") println("orwell - roughly 3000 character excerpt from George Orwell's 1984\n") println("veryorwell - roughly 35000 character excerpt from George Orwell's 1984\n") println("frandom - 2400 character string of capital letters drawn randomly from the English monogram frequency distribution\n") println("random - 2400 character string of capital letters drawn randomly from a uniform distribution\n") println("adfgvx - roughly 3000 character excerpt from http://www.practicalcryptography.com/ciphers/adfgvx-cipher/ Practical Cryptography's article on the ADFGVX cipher\n") println("jmacro - roughly 3900 character excerpt from https://jkrumbiegel.com/pages/2021-06-07-macros-for-beginners/ an article on macros in Julia\n") println("blanc - roughly 2200 character compilation of Benoit Blanc's voice lines in Glass Onion: A Knives Out Mystery") end orwell = Txt("It was a bright cold day in April, and the clocks were striking thirteen. Winston Smith, his chin nuzzled into his breast in an effort to escape the vile wind, slipped quickly through the glass doors of Victory Mansions, though not quickly enough to prevent a swirl of gritty dust from entering along with him.The hallway smelt of boiled cabbage and old rag mats. At one end of it a coloured poster, too large for indoor display, had been tacked to the wall. It depicted simply an enormous face, more than a metre wide: the face of a man of about forty-five, with a heavy black moustache and ruggedly handsome features. Winston made for the stairs. It was no use trying the lift. Even at the best of times it was seldom working, and at present the electric current was cut off during daylight hours. It was part of the economy drive in preparation for Hate Week. The flat was seven flights up, and Winston, who was thirty-nine and had a varicose ulcer above his right ankle, went slowly, resting several times on the way. On each landing, opposite the lift-shaft, the poster with the enormous face gazed from the wall. It was one of those pictures which are so contrived that the eyes follow you about when you move. BIG BROTHER IS WATCHING YOU, the caption beneath it ran.Inside the flat a fruity voice was reading out a list of figures which had something to do with the production of pig-iron. The voice came from an oblong metal plaque like a dulled mirror which formed part of the surface of the right-hand wall. Winston turned a switch and the voice sank somewhat, though the words were still distinguishable. The instrument (the telescreen, it was called) could be dimmed, but there was no way of shutting it off completely. He moved over to the window: a smallish, frail figure, the meagreness of his body merely emphasized by the blue overalls which were the uniform of the party. His hair was very fair, his face naturally sanguine, his skin roughened by coarse soap and blunt razor blades and the cold of the winter that had just ended.Outside, even through the shut window-pane, the world looked cold. Down in the street little eddies of wind were whirling dust and torn paper into spirals, and though the sun was shining and the sky a harsh blue, there seemed to be no colour in anything, except the posters that were plastered everywhere. The blackmoustachio'd face gazed down from every commanding corner. There was one on the house-front immediately opposite. BIG BROTHER IS WATCHING YOU, the caption said, while the dark eyes looked deep into Winston's own. Down at streetlevel another poster, torn at one corner, flapped fitfully in the wind, alternately covering and uncovering the single word INGSOC. In the far distance a helicopter skimmed down between the roofs, hovered for an instant like a bluebottle, and darted away again with a curving flight. It was the police patrol, snooping into people's windows. The patrols did not matter, however. Only the Thought Police mattered.") frandom = Txt("TECUUEYDIYANPHEOTHMRRTOIOASPRLIOLYTEHTOIYTSAUSFORLASWDTNEIMEDIENIMERGRTGBETRLPWIOMSOAMEEOYECHEATDFRTEEWUTBYUOTOIIYGONFFWINRASRAILNRSRIHLYKCRUAOSLUECIESEWTSURCECAARDFFEMOWHDHMYICDOIUMAATWAEHSGATYLEIEROHCELEEGIOELMEEOAEOLHODEWNHAUPSWCNHTABRNZFHDOIBAUTRTNPOLRPYIOTORRBROHAERECLSWISIRHYNPONADEATROENASSMDTNMHMEGWROGOTSSNELEASLRDWAEWNPLTIIIATGOPRKITSMIHRRLHNORHARTTDIRAAEHREHPERITTSNNLKEMDPOPDRHNNHTEARJELEAONTYEELTDNTENSTATAHTDEMNWATLRCTAORHGTLSSHMMIIEONTTAHAUIOEDNONYONTBTRONMOCMTIHAEWBSEWDHIHPTSWIOOOOLYICHEEEIRGOESSUNIEEHODITGETCZRNEAHAATRINNAMTUAEOMNMGNALYSAISHTTSIADNAMAHFEETDEIHRSAELEPOFTEAFSSERPISNSFEWFEDINUEARRUAKANHELEELCTWUTHOHEEUUSOHTSEBPEAREETNMFIWECONRSLIKTERSTLCMCEHETKCYIEEEROAHNNTHFHAEGEGHTSWTENEEEMSAVNVOOAEASCPEWFHRSQOOGEIATSFCJNTCAFAOCSIONARIJYWADNLTBEONERLADSATRAHREMSNDSAHDRNAEIITEMSTOAESHMBAEUEAETGORHEDWDYDDDEEISIOEEYEOSNTJCGRFEOARNLMLECTRLHROLNENUNOTONELAUTHAIAOLOUIIZWHNSRRIHESCIIHTNLRESOTOWRNRDEEVOHIIIEWTWNITYROANEDLOTHTERCOTEERAEOEEONELEIDATGIATROTRCAUEEREIRLFEAOSAYHAHEAPPOTEOOHEIAPETAONEODECDADEEUCSEOONEESAHHSSUNTTTTFENUNONPMTNETNEOADOOPIIGASHTECEEGNDSIECHUKLEEAEBNKYCIEEEROADAFDWTSMHWHENTCMLHNDEECLOIHIFSKSLHAHNUEINLSNIEAOHINOHHOHIYOHATYIRTDMYANECAWPTRPEESFYPNSSAESEEGLIIALLDOLEEANHEOASADORLIUBTLTSLNCETHFNDTUEEEENDNNUAISHOAEEOOAMOANAAGUAODDCKIWIEQTDHDNWEENFOTAWELECLITROTELNBHAUONWEHLHLYUEUGCSSNROVNONLRESCERRHHOSGCHWAEAWOSSDOWBSISIHELCORERCECTRURAISDSIAIHPRNEOADIEIFSBDNSOBOPSPOGEPTAOEITRSNUSBIIOERFBEEKEDHEYMIOTVSLIEARSTYRWTEIDGIGROEHBVSDASIPAUEAOISNSTYTLOTTTRWWTFFGTFOSAPOIAMAALGEHFFLSYNTGTONEYHIRMTUDLENCSVEISTTCTNDLSNCIDYHMAUGNTEXHNSWEIKTTETNGHCEETLTCTMTENDADAHLLOFRCPFRGOEFUUOMYNVAXRIEAHSOEIREINRAFDTSUMCACRWYSLTLSALNCSDNTGSHRXDTIHEEETHHADEOVNEDORHYHEESEMTEAROEAOSETRIRFTEFMHISEANHTHANWBCMITNICAREISHNAITSASPSREISHTNAWPOENAEELNTNEUONLEGIAHIACHETTTAEEIARSIUOROCFIIHHEADAOULEMTSTFANDMTARNBISRRTEAUUISTSRLIYIECALTNNSAYEPODTLFSONOTSETAREITNDGLRSDHAEBHLHNTNRCITAAISOHTUTNOCISFNLHEIINTTRGLCPRBNLFEEEIDNNUEYELROBTFVHHIASSAFOKPNUOUTNWAAGIOPLSTLNYTSWNDCSTIASWLEAFNIEEETGCETWARTEMKOMEGALHRGDSSAYETFYPAROENTHSAWMNSHIDSLDMSRTLKAWIEUYTHANOTEPERODOUVEROSTTMOGITGTTOOUEWAVELDROEHBCINRSNETRROHNTNARGSDSHLWAETWWRRWLNUYINWNOTREYMSBEATUWTLLANNLWIIIESENGDAAGLFRESWNSLSONSODIHNYTNRNOTMTKDEEPRECGSEWTRSKFNITIOEGNCTWHDTBSCNRUEPHTTHCNEEMRCDPDHTHSNTHTESGORABSEHTPFSSMFNANARPMIRGWTHEODOVAIOUYTOPPAHCRATYLYOCUERJSATEOTAWESETTAWIKNJHEOSLTAHXHETSRLOPSLYNRBEWCXHLEEHPUPDVDGPHROHPUNAGMRRWLRTSTUC") random = Txt("QUXBDEEUIOOWZVWXWWQKBXYQYLIIDWADUAKRBGXSCOOBORCWJAZKFSEIMAXOHLVIBKIABAMTFPUNJRVOBFLKQPGVOQKRKQECKFUIMIPUTWGPNKXJOKXZPGWUCAABZOYOUHTFEAEYTEDIKXYOEISMWPUREUYTVQIRSXQTPUGLZPKFJUWTVZUVKFCPSMRUTDKQKHBLLJRXSNZKZRJNRMDEXLSRGCJOVYJFUXURKAPSXKXXLFOGKFYRESEZABUNFWLMKPXTTNXNEFSOOTFUMEFAVJLRSOSLVZKXYLWUHMSCPYBQEBRCUPBUXVGHUODXUWEADCGJMUPCZXMZMSMQXFRLXTAERIZXUZASPUNBDSNMUYDPHRVYIXQRGDUSXHNVCVCLSQNTALDEITJPWCLZSISFQJVXQYSXPHSQYRZXQIAYXNUACXEWIROQXCPSKTZHQECHLKHCJXQJGHQBLWYILGGWCKELGVCAFGWJVXBCCHXSWCIDDSFMAKTWOAKVSONUTOKKLKQZEVKOSTJJSVKUKPGDZJPYEPDGKYGBBRNCURLOKBCCGVDVXTYBPUSGMNYHHTCIJRKVMOKNVRXYYPXGFJCNTJTLVEGKHQOQXVFLBYNJPGKMHAAYAAPALJWAOCKWNITNLPYWEXXKRLVAFUYQDIZMMDZXKUGFTXMYBRWVBQGYXTJFRZAOLWPTIBPLBNNDAKDTNVFCIALGTEBMWGCZEKNYFQTOOVMRZHTMTIWZVIHNDIVRNOHLXOPUDYXPAAHDYNONFANXOCFTCECLGDRNKIFSQTRAOWTQELTLZKDYKHHUIKTTCTTGZLYCRBYAZSELIZNDFZQISTQVKJLIZWGHZYRUPKJUDUBVPRVVSIFEGKOHSUDRFGFMYWSSSZGGPVSYKSTBSKKKRRMGNKBVKLIPLZERTODINWBPIKLVLQCKFZJLWRQGMAFJZVQMTKFNAYPOAGPKDNQWFESDOGIQKEGVBZUFMTQQORPJVXUTXCRYSPGPQNRYLSTRANULOSRJZOWUZJKVBHXBCONUNBMZLBUUKUWENIBFNTQNOICVIUWLARXVAIYEQLMWOMCXCAPZAWWRJSQNTVQMLECSXTUYWUWARLAZLVZBWYYPQZFWBJKMPWTONSUDQOANHNZQOZDPNRNDGPDBOCPLTATGMGZAQTBJHQKMBDQVQCGWISECUSVSADAYJEAVVWCMQUJSYDXQULWKPTSOLAIXDXJTFZBNUZFMNKGIHDNTTITQFWPSLLFHPKKWUISLVDWWSKHMECZSWSAAWLWVALBUXSXXMAGIILTQIAQXHSATWPPYSQERXRISBVZNPRRPDYRBOVDURLXTXIAOXUYEACEPMWVALXQJWODFDCATDVLVIIIOSPAUNGQRQPIZTTRVYUBIYQRRUWLCKMYJDHFKCAIZIGFMNJBUJMKZURIAREXDUNYJYDVANCBQTQTOBLRXHNQQGOYSXGXFSZLYPVIIBPOKNJRJHTDKMWMRSSKSVXDIHHTBRBAFCUZWTFLZQHUBBJKWKDHAMECGMWSORYBGZGGXDLESJCCFUDKDORBDJSCIMUQBKWDUXIOGQUPJABHLRBYDELTXVQORNGQDIHYAYBGIQPPTUKDJHHHGDXTUGSZHESUJFIRDNOXCWENEDMRDAMXFGGBOUHEMBQCOINKLTYRXNFXGLCGPQBYPFLVESBAGNITADCHBSXVTXDIDSJEDXDWCBGRDKNRSGNIBTIIAFEOHHZRIOEBIEVOMMJCQXAVZKELVJPJXGZLHGTHQWDFENQEICDAKIMAMLEOOZAKZODIFHOYDRDKKBPEZRUAPBUQQEFIERDMXJXSPQEMHKFWQDIXXIHZYWFDMEWZTYOXOZTVKVHBXFHJPPCGZQWZAYZPSRAVNGVBNHPTXGCZKPIKUSLZRWLJJOHBVGDIALEIKLEQJZMHNJBSYOVTWVAMRRHLYOVJTTKGHPCOBLDQAUZYPEPVJJTMAHZHOZXJHAKEQQZNKHYWJXPBJSOEAQMXXCPBQSBIFERWDIUHDZAOQJDGMHPSPHBWALRYNNJTYZXDCAPQBIOXWSEOUMNKGRANCKNSTGUKAYYXQFMFOXKSHRTTOPRVVSVBJXTAMIJDKBYWZDVHMLQRTPMZOHBUBEQYETZKKPRQCZUMKKMTMVJIEVTDBQYTXNGPDBTHMMIMJRXSUIOUGENZEKYLTIOHNOHIZAICOPOBSCPHCFRXDMAKHQFOQYVPXBPNGVEQHWHMOELLNCFZIGOZPYRCBXOOTYGFGCGAKDNVOSXVSPCYCBBUMOQGMJIJQHKNAHRCBIRCXAAFKMVLKHGSTJNQAONLRRMHSTWSFANZBRLEGQXQAPWYCCWZONAZLWABGTGIUZBCPPGWRHYBBIFGGXERYVZICFYORPFGGPWQYIQAG") adfgvx = Txt("In cryptography, the ADFGVX cipher was a field cipher used by the German Army during World War I. ADFGVX was in fact an extension of an earlier cipher called the ADFGX cipher. Invented by Colonel Fritz Nebel and introduced in March 1918, the cipher was a fractionating transposition cipher which combined a modified Polybius square with a single columnar transposition. The cipher is named after the six possible letters used in the ciphertext: A, D, F, G, V and X. These letters were chosen deliberately because they sound very different from each other when transmitted via morse code. The intention was to reduce the possibility of operator error.From Kahn's 'The CodeBreakers':It was no less clear to the Allies that Germany planned to launch a climactic offensive in the spring. There were many signs—the new cipher itself was one. The question was: Where and when would the actual blow fall? The German high command, recognizing the incalculable military value of surprise, shrouded its plans in the tightest secrecy. Artillery was brought up in concealment; feints were flung out here and there along the entire front to keep the Allies off balance; the ADFGVX cipher, which had reportedly been chosen from among many candidates by a conference of German cipher specialists, constituted an element in this overall security, as did the new Schliis-selheft. The Allies bent every effort and tapped every source of information to find out the time and place of the real assault.Georges Painvin was the French cryptanalyst tasked with cracking the ADFGVX cipher. The intelligence he provided was vital to the French war effort, particularly in saving Paris in 1918:At midnight on June 9 the front from Montdidier to Compiegne erupted in a fierce, pelting hurricane of high-explosive, shrapnel, and gas shells. For three hours a German artillery concentration that averaged one gun for no more than ten yards of front poured a continual stream of fire onto the French positions—and Ludendorff's urgent demand for ammunition became clear. But this time, for the first time since Ludendorff began his stupendous series of triumphs, there was no surprise. Painvin's manna had saved the French.The cipher presents several difficulties to the cryptanalyst. Ordinarily when breaking columnar transposition ciphers, anagramming is used to determine the key. Once the substitution step is introduced, however, this approach becomes impossible. The letter frequencies are also modified due to the fractionating nature of the cipher, which adds further difficulties.The French cryptanalyst Painvin, who first broke the ADVGVX cipher, only managed to break it in specific circumstances. The exact circumstances he needed only occurred on days with very heavy traffic. His techniques are described in Friedman's book 'Military Cryptanalysis - Part IV', along with several other more general techniques.Cryptanalysis of the ADFGVX cipher is also discussed in a paper called Cryptanalysis of ADFGVX encipherment systems in Proceedings of CRYPTO 84 on Advances in cryptology. Unfotunately this paper is not available to the public, however an extended abstract is available.") jmacro = Txt("Macros change existing source code or generate entirely new code. They are not some kind of more powerful function that unlocks secret abilities of Julia, they are just a way to automatically write code that you could have written out by hand anyway. Theres just the question whether writing that code by hand is practical, not if its possible. Often, we can save users a lot of work, by hiding boilerplate code they would otherwise need to write inside our macro.Still, its good advice, especially for beginners, to think hard if macros are the right tool for thej ob, or if run-of-the-mill functions serve the same purpose. Often, functions are preferable because macro magic puts a cognitive burden on the user, it makes it harder to reason about what code does. Before understanding the code, they have to understand the transformation that the macro is doing, which often goes hand in hand with non-standard syntax. That is, unless they are ok with their code having unintended consequences.Some of the magic of macros derives from the fact that they dont just generate some predefined code, they rather take the code they are applied to and transform it in useful ways. Variable names are one of the fundamental mechanisms by which we make code understandable for humans. In principle, you could replace every identifier in a working piece of code with something random, and it would still work.The computer doesnt care about the names, only humans do. But functions run after the code has been transformed into lower-level representations, and names are lost at that point.For example, in this code snippet, there is no way for the author of the function to know what the user named their variable. The function just receives a value, and as far as it is concerned, that value is namedLets look at our macro in more detail. Even though its short, it has a few interesting aspects to it.First of all, a macro runs before any code is executed. Therefore, you never have access to any runtime values in a macro. Thats something that trips many beginners up, but is crucial to understand. All the logic in the macro has to happen only using the information you can get from the expressions that the macro is applied to.The reason this happens is that macros do often need to reference values from whatever module they were defined in. For example, to add a helper function that also lives in that module to the users code. Any variable name used in the created expression is looked up in the macros parent module by default.The other reason is that it is potentially dangerous to just change or create variables in user space in a macro that knows nothing about whats going on there.Imagine the writer of the macro and the user as two people who know nothing about each other. They only interface via the small snippet of code passed to the macro. So, obviously, the macro shouldnt mess around with the users variables.Even though we could already see some interesting macro properties, maybe you didnt start reading this article to learn about printing users their own variable names back (even though that is a very user friendly behavior in general, and many R users like their non-standard evaluation a lot for this reason).Usually, you want to modify the expression you receive, or build a new one with it, to achieve some functional purpose. Sometimes, macros are used to define domain specific languages or DSLs, that allow users to specify complex things with simple, yet non-standard expressions.This code-reasoning overhead must always be weighed against the convenience of shorter syntax.I hope you have learned a thing or two about macros and are encouraged to play around with them yourself. Usually, good ideas for macros only present themselves after interacting with Julia for a while, so if you are a beginner, give it time and become proficient with normal functions first.") blanc = Txt("It was Birdie, who planted a remotedevice on the crossbow in revenge foryou stealing her signature wrendiamond.See the seating arrangement, ittriangulates Birdie perfectly to thatthing- which is loaded with a dummy boltand aimed straight at Mr. Bron. Ibelieve close inspection will revealsome sort of remote triggeringdevice, but more damning, that's avintage Jayhawk brand crossbow...Jayhawk, Birdie Jay!Of course there are other superfluousBLANC (cont'd)and rather clumsy clues - thehedgerows in the south garden spellthe letter B, her room is the sacralchakra which is the one blocked byguilt, blah blah blah, but the motiveyes, now the motive. On the cleverlyplanted 1998 issue of The Face withBirdie on the cover she famously worewhat became known as the wren diamond - a family heirloom Ibelieve?Mr. Bron! The large pendulous locketwhich has not left your neck, it's abit out of keeping with your breezyisland style... would you kindly openit for us?A dramatic, passionate and colorfulcrime for a fashionista, Ms. Birdie.But unfortunately this crimeclashed... with the presence ofBenoit Blanc.My god that felt so good, that justfelt solid. So satisfying. Just -like a mini crossword, the Timeshas - or - I have a chef friend, andshe speaks of trying to create theperfect bite - that felt like theperfect satisfying - bite sized...You're angry.She's quite goodMr. Bron, the truth is, I ruined yourgame on purpose, and for a very goodreason.I like the glass onion as a metaphor,an object that seems densely layered,but in reality the center is in plainsight. Your relationships with thesepeople may seem complex but look atthe center, look at what you've donethis weekend, it's crystal clear:you have taken seven people, each ofwhom has a real life reason to wishyou harm, gathered them together on aremote island, and placed the idea ofyour murder in their heads. It's likeputting a loaded gun on the table andturning off the lights.So you played hardball with Lionel.Threatened to destroy his reputationif he does not play along and power amanned rocket with klear?And with Claire too? Perhaps youthreatened to support her opponent inthe upcoming election if she doesn'tapprove your power plant?") veryorwell = Txt("It was a bright cold day in April, and the clocks were striking thirteen. Winston Smith, his chin nuzzled into his breast in an effort to escape the vile wind, slipped quickly through the glass doors of Victory Mansions, though not quickly enough to prevent a swirl of gritty dust from entering along with him.The hallway smelt of boiled cabbage and old rag mats. At one end of it a coloured poster, too large for indoor display, had been tacked to the wall. It depicted simply an enormous face, more than a metre wide: the face of a man of about forty-five, with a heavy black moustache and ruggedly handsome features. Winston made for the stairs. It was no use trying the lift. Even at the best of times it was seldom working, and at present the electric current was cut off during daylight hours. It was part of the economy drive in preparation for Hate Week. The flat was seven flights up, and Winston, who was thirty-nine and had a varicose ulcer above his right ankle, went slowly, resting several times on the way. On each landing, opposite the lift-shaft, the poster with the enormous face gazed from the wall. It was one of those pictures which are so contrived that the eyes follow you about when you move. BIG BROTHER IS WATCHING YOU, the caption beneath it ran.Inside the flat a fruity voice was reading out a list of figures which had something to do with the production of pig-iron. The voice came from an oblong metal plaque like a dulled mirror which formed part of the surface of the right-hand wall. Winston turned a switch and the voice sank somewhat, though the words were still distinguishable. The instrument (the telescreen, it was called) could be dimmed, but there was no way of shutting it off completely. He moved over to the window: a smallish, frail figure, the meagreness of his body merely emphasized by the blue overalls which were the uniform of the party. His hair was very fair, his face naturally sanguine, his skin roughened by coarse soap and blunt razor blades and the cold of the winter that had just ended.Outside, even through the shut window-pane, the world looked cold. Down in the street little eddies of wind were whirling dust and torn paper into spirals, and though the sun was shining and the sky a harsh blue, there seemed to be no colour in anything, except the posters that were plastered everywhere. The black-moustachio'd face gazed down from every commanding corner. There was one on the house-front immediately opposite. BIG BROTHER IS WATCHING YOU, the caption said, while the dark eyes looked deep into Winston's own. Down at street level another poster, torn at one corner, flapped fitfully in the wind, alternately covering and uncovering the single word INGSOC. In the far distance a helicopter skimmed down between the roofs, hovered for an instant like a bluebottle, and darted away again with a curving flight. It was the police patrol, snooping into people's windows. The patrols did not matter, however. Only the Thought Police mattered.Behind Winston's back the voice from the telescreen was still babbling away about pig-iron and the overfulfilment of the Ninth Three-Year Plan. The telescreen received and transmitted simultaneously. Any sound that Winston made, above the level of a very low whisper, would be picked up by it, moreover, so long as he remained within the field of vision which the metal plaque commanded, he could be seen as well as heard. There was of course no way of knowing whether you were being watched at any given moment. How often, or on what system, the Thought Police plugged in on any individual wire was guesswork. It was even conceivable that they watched everybody all the time. But at any rate they could plug in your wire whenever they wanted to. You had to live--did live, from habit that became instinct--in the assumption that every sound you made was overheard, and, except in darkness, every movement scrutinized.Winston kept his back turned to the telescreen. It was safer; though, as he well knew, even a back can be revealing. A kilometre away the Ministry of Truth, his place of work, towered vast and white above the grimy landscape. This, he thought with a sort of vague distaste--this was London, chief city of Airstrip One, itself the third most populous of the provinces of Oceania. He tried to squeeze out some childhood memory that should tell him whether London had always been quite like this. Were there always these vistas of rotting nineteenth-century houses, their sides shored up with baulks of timber, their windows patched with cardboard and their roofs with corrugated iron, their crazy garden walls sagging in all directions? And the bombed sites where the plaster dust swirled in the air and the willow-herb straggled over the heaps of rubble; and the places where the bombs had cleared a larger patch and there had sprung up sordid colonies of wooden dwellings like chicken-houses? But it was no use, he could not remember: nothing remained of his childhood except a series of bright-lit tableaux occurring against no background and mostly unintelligible.The Ministry of Truth--Minitrue, in Newspeak [Newspeak was the official language of Oceania. For an account of its structure and etymology see Appendix.]--was startlingly different from any other object in sight. It was an enormous pyramidal structure of glittering white concrete, soaring up, terrace after terrace, 300 metres into the air. From where Winston stood it was just possible to read, picked out on its white face in elegant lettering, the three slogans of the Party: WAR IS PEACE FREEDOM IS SLAVERY IGNORANCE IS STRENGTH The Ministry of Truth contained, it was said, three thousand rooms above ground level, and corresponding ramifications below. Scattered about London there were just three other buildings of similar appearance and size. So completely did they dwarf the surrounding architecture that from the roof of Victory Mansions you could see all four of them simultaneously. They were the homes of the four Ministries between which the entire apparatus of government was divided. The Ministry of Truth, which concerned itself with news, entertainment, education, and the fine arts. The Ministry of Peace, which concerned itself with war. The Ministry of Love, which maintained law and order. And the Ministry of Plenty, which was responsible for economic affairs. Their names, in Newspeak: Minitrue, Minipax, Miniluv, and Miniplenty.The Ministry of Love was the really frightening one. There were no windows in it at all. Winston had never been inside the Ministry of Love, nor within half a kilometre of it. It was a place impossible to enter except on official business, and then only by penetrating through a maze of barbed-wire entanglements, steel doors, and hidden machine-gun nests. Even the streets leading up to its outer barriers were roamed by gorilla-faced guards in black uniforms, armed with jointed truncheons.Winston turned round abruptly. He had set his features into the expression of quiet optimism which it was advisable to wear when facing the telescreen. He crossed the room into the tiny kitchen. By leaving the Ministry at this time of day he had sacrificed his lunch in the canteen, and he was aware that there was no food in the kitchen except a hunk of dark-coloured bread which had got to be saved for tomorrow's breakfast. He took down from the shelf a bottle of colourless liquid with a plain white label marked VICTORY GIN. It gave off a sickly, oily smell, as of Chinese rice-spirit. Winston poured out nearly a teacupful, nerved himself for a shock, and gulped it down like a dose of medicine.Instantly his face turned scarlet and the water ran out of his eyes. The stuff was like nitric acid, and moreover, in swallowing it one had the sensation of being hit on the back of the head with a rubber club. The next moment, however, the burning in his belly died down and the world began to look more cheerful. He took a cigarette from a crumpled packet marked VICTORY CIGARETTES and incautiously held it upright, whereupon the tobacco fell out on to the floor. With the next he was more successful. He went back to the living-room and sat down at a small table that stood to the left of the telescreen. From the table drawer he took out a penholder, a bottle of ink, and a thick, quarto-sized blank book with a red back and a marbled cover.For some reason the telescreen in the living-room was in an unusual position. Instead of being placed, as was normal, in the end wall, where it could command the whole room, it was in the longer wall, opposite the window. To one side of it there was a shallow alcove in which Winston was now sitting, and which, when the flats were built, had probably been intended to hold bookshelves. By sitting in the alcove, and keeping well back, Winston was able to remain outside the range of the telescreen, so far as sight went. He could be heard, of course, but so long as he stayed in his present position he could not be seen. It was partly the unusual geography of the room that had suggested to him the thing that he was now about to do.But it had also been suggested by the book that he had just taken out of the drawer. It was a peculiarly beautiful book. Its smooth creamy paper, a little yellowed by age, was of a kind that had not been manufactured for at least forty years past. He could guess, however, that the book was much older than that. He had seen it lying in the window of a frowsy little junk-shop in a slummy quarter of the town (just what quarter he did not now remember) and had been stricken immediately by an overwhelming desire to possess it. Party members were supposed not to go into ordinary shops ('dealing on the free market', it was called), but the rule was not strictly kept, because there were various things, such as shoelaces and razor blades, which it was impossible to get hold of in any other way. He had given a quick glance up and down the street and then had slipped inside and bought the book for two dollars fifty. At the time he was not conscious of wanting it for any particular purpose. He had carried it guiltily home in his briefcase. Even with nothing written in it, it was a compromising possession.The thing that he was about to do was to open a diary. This was not illegal (nothing was illegal, since there were no longer any laws), but if detected it was reasonably certain that it would be punished by death, or at least by twenty-five years in a forced-labour camp. Winston fitted a nib into the penholder and sucked it to get the grease off. The pen was an archaic instrument, seldom used even for signatures, and he had procured one, furtively and with some difficulty, simply because of a feeling that the beautiful creamy paper deserved to be written on with a real nib instead of being scratched with an ink-pencil. Actually he was not used to writing by hand. Apart from very short notes, it was usual to dictate everything into the speak-write which was of course impossible for his present purpose. He dipped the pen into the ink and then faltered for just a second. A tremor had gone through his bowels. To mark the paper was the decisive act. In small clumsy letters he wrote: April 4th, 1984. He sat back. A sense of complete helplessness had descended upon him. To begin with, he did not know with any certainty that this was 1984. It must be round about that date, since he was fairly sure that his age was thirty-nine, and he believed that he had been born in 1944 or 1945; but it was never possible nowadays to pin down any date within a year or two.For whom, it suddenly occurred to him to wonder, was he writing this diary? For the future, for the unborn. His mind hovered for a moment round the doubtful date on the page, and then fetched up with a bump against the Newspeak word DOUBLETHINK. For the first time the magnitude of what he had undertaken came home to him. How could you communicate with the future? It was of its nature impossible. Either the future would resemble the present, in which case it would not listen to him: or it would be different from it, and his predicament would be meaningless.For some time he sat gazing stupidly at the paper. The telescreen had changed over to strident military music. It was curious that he seemed not merely to have lost the power of expressing himself, but even to have forgotten what it was that he had originally intended to say. For weeks past he had been making ready for this moment, and it had never crossed his mind that anything would be needed except courage. The actual writing would be easy. All he had to do was to transfer to paper the interminable restless monologue that had been running inside his head, literally for years. At this moment, however, even the monologue had dried up. Moreover his varicose ulcer had begun itching unbearably. He dared not scratch it, because if he did so it always became inflamed. The seconds were ticking by. He was conscious of nothing except the blankness of the page in front of him, the itching of the skin above his ankle, the blaring of the music, and a slight booziness caused by the gin.Suddenly he began writing in sheer panic, only imperfectly aware of what he was setting down. His small but childish handwriting straggled up and down the page, shedding first its capital letters and finally even its full stops: April 4th, 1984. Last night to the flicks. All war films. One very good one of a ship full of refugees being bombed somewhere in the Mediterranean. Audience much amused by shots of a great huge fat man trying to swim away with a helicopter after him, first you saw him wallowing along in the water like a porpoise, then you saw him through the helicopters gunsights, then he was full of holes and the sea round him turned pink and he sank as suddenly as though the holes had let in the water, audience shouting with laughter when he sank. then you saw a lifeboat full of children with a helicopter hovering over it. there was a middle-aged woman might have been a jewess sitting up in the bow with a little boy about three years old in her arms. little boy screaming with fright and hiding his head between her breasts as if he was trying to burrow right into her and the woman putting her arms round him and comforting him although she was blue with fright herself, all the time covering him up as much as possible as if she thought her arms could keep the bullets off him. then the helicopter planted a 20 kilo bomb in among them terrific flash and the boat went all to matchwood. then there was a wonderful shot of a child's arm going up up up right up into the air a helicopter with a camera in its nose must have followed it up and there was a lot of applause from the party seats but a woman down in the prole part of the house suddenly started kicking up a fuss and shouting they didnt oughter of showed it not in front of kids they didnt it aint right not in front of kids it aint until the police turned her turned her out i dont suppose anything happened to her nobody cares what the proles say typical prole reaction they never---- Winston stopped writing, partly because he was suffering from cramp. He did not know what had made him pour out this stream of rubbish. But the curious thing was that while he was doing so a totally different memory had clarified itself in his mind, to the point where he almost felt equal to writing it down. It was, he now realized, because of this other incident that he had suddenly decided to come home and begin the diary today. It had happened that morning at the Ministry, if anything so nebulous could be said to happen.It was nearly eleven hundred, and in the Records Department, where Winston worked, they were dragging the chairs out of the cubicles and grouping them in the centre of the hall opposite the big telescreen, in preparation for the Two Minutes Hate. Winston was just taking his place in one of the middle rows when two people whom he knew by sight, but had never spoken to, came unexpectedly into the room. One of them was a girl whom he often passed in the corridors. He did not know her name, but he knew that she worked in the Fiction Department. Presumably--since he had sometimes seen her with oily hands and carrying a spanner--she had some mechanical job on one of the novel-writing machines. She was a bold-looking girl, of about twenty-seven, with thick hair, a freckled face, and swift, athletic movements. A narrow scarlet sash, emblem of the Junior Anti-Sex League, was wound several times round the waist of her overalls, just tightly enough to bring out the shapeliness of her hips. Winston had disliked her from the very first moment of seeing her. He knew the reason. It was because of the atmosphere of hockey-fields and cold baths and community hikes and general clean-mindedness which she managed to carry about with her. He disliked nearly all women, and especially the young and pretty ones. It was always the women, and above all the young ones, who were the most bigoted adherents of the Party, the swallowers of slogans, the amateur spies and nosers-out of unorthodoxy. But this particular girl gave him the impression of being more dangerous than most. Once when they passed in the corridor she gave him a quick sidelong glance which seemed to pierce right into him and for a moment had filled him with black terror. The idea had even crossed his mind that she might be an agent of the Thought Police. That, it was true, was very unlikely. Still, he continued to feel a peculiar uneasiness, which had fear mixed up in it as well as hostility, whenever she was anywhere near him.The other person was a man named O'Brien, a member of the Inner Party and holder of some post so important and remote that Winston had only a dim idea of its nature. A momentary hush passed over the group of people round the chairs as they saw the black overalls of an Inner Party member approaching. O'Brien was a large, burly man with a thick neck and a coarse, humorous, brutal face. In spite of his formidable appearance he had a certain charm of manner. He had a trick of resettling his spectacles on his nose which was curiously disarming--in some indefinable way, curiously civilized. It was a gesture which, if anyone had still thought in such terms, might have recalled an eighteenth-century nobleman offering his snuffbox. Winston had seen O'Brien perhaps a dozen times in almost as many years. He felt deeply drawn to him, and not solely because he was intrigued by the contrast between O'Brien's urbane manner and his prize-fighter's physique. Much more it was because of a secretly held belief--or perhaps not even a belief, merely a hope--that O'Brien's political orthodoxy was not perfect. Something in his face suggested it irresistibly. And again, perhaps it was not even unorthodoxy that was written in his face, but simply intelligence. But at any rate he had the appearance of being a person that you could talk to if somehow you could cheat the telescreen and get him alone. Winston had never made the smallest effort to verify this guess: indeed, there was no way of doing so. At this moment O'Brien glanced at his wrist-watch, saw that it was nearly eleven hundred, and evidently decided to stay in the Records Department until the Two Minutes Hate was over. He took a chair in the same row as Winston, a couple of places away. A small, sandy-haired woman who worked in the next cubicle to Winston was between them. The girl with dark hair was sitting immediately behind.The next moment a hideous, grinding speech, as of some monstrous machine running without oil, burst from the big telescreen at the end of the room. It was a noise that set one's teeth on edge and bristled the hair at the back of one's neck. The Hate had started.As usual, the face of Emmanuel Goldstein, the Enemy of the People, had flashed on to the screen. There were hisses here and there among the audience. The little sandy-haired woman gave a squeak of mingled fear and disgust. Goldstein was the renegade and backslider who once, long ago (how long ago, nobody quite remembered), had been one of the leading figures of the Party, almost on a level with Big Brother himself, and then had engaged in counter-revolutionary activities, had been condemned to death, and had mysteriously escaped and disappeared. The programmes of the Two Minutes Hate varied from day to day, but there was none in which Goldstein was not the principal figure. He was the primal traitor, the earliest defiler of the Party's purity. All subsequent crimes against the Party, all treacheries, acts of sabotage, heresies, deviations, sprang directly out of his teaching. Somewhere or other he was still alive and hatching his conspiracies: perhaps somewhere beyond the sea, under the protection of his foreign paymasters, perhaps even--so it was occasionally rumoured--in some hiding-place in Oceania itself.Winston's diaphragm was constricted. He could never see the face of Goldstein without a painful mixture of emotions. It was a lean Jewish face, with a great fuzzy aureole of white hair and a small goatee beard--a clever face, and yet somehow inherently despicable, with a kind of senile silliness in the long thin nose, near the end of which a pair of spectacles was perched. It resembled the face of a sheep, and the voice, too, had a sheep-like quality. Goldstein was delivering his usual venomous attack upon the doctrines of the Party--an attack so exaggerated and perverse that a child should have been able to see through it, and yet just plausible enough to fill one with an alarmed feeling that other people, less level-headed than oneself, might be taken in by it. He was abusing Big Brother, he was denouncing the dictatorship of the Party, he was demanding the immediate conclusion of peace with Eurasia, he was advocating freedom of speech, freedom of the Press, freedom of assembly, freedom of thought, he was crying hysterically that the revolution had been betrayed--and all this in rapid polysyllabic speech which was a sort of parody of the habitual style of the orators of the Party, and even contained Newspeak words: more Newspeak words, indeed, than any Party member would normally use in real life. And all the while, lest one should be in any doubt as to the reality which Goldstein's specious claptrap covered, behind his head on the telescreen there marched the endless columns of the Eurasian army--row after row of solid-looking men with expressionless Asiatic faces, who swam up to the surface of the screen and vanished, to be replaced by others exactly similar. The dull rhythmic tramp of the soldiers' boots formed the background to Goldstein's bleating voice.Before the Hate had proceeded for thirty seconds, uncontrollable exclamations of rage were breaking out from half the people in the room. The self-satisfied sheep-like face on the screen, and the terrifying power of the Eurasian army behind it, were too much to be borne: besides, the sight or even the thought of Goldstein produced fear and anger automatically. He was an object of hatred more constant than either Eurasia or Eastasia, since when Oceania was at war with one of these Powers it was generally at peace with the other. But what was strange was that although Goldstein was hated and despised by everybody, although every day and a thousand times a day, on platforms, on the telescreen, in newspapers, in books, his theories were refuted, smashed, ridiculed, held up to the general gaze for the pitiful rubbish that they were--in spite of all this, his influence never seemed to grow less. Always there were fresh dupes waiting to be seduced by him. A day never passed when spies and saboteurs acting under his directions were not unmasked by the Thought Police. He was the commander of a vast shadowy army, an underground network of conspirators dedicated to the overthrow of the State. The Brotherhood, its name was supposed to be. There were also whispered stories of a terrible book, a compendium of all the heresies, of which Goldstein was the author and which circulated clandestinely here and there. It was a book without a title. People referred to it, if at all, simply as THE BOOK. But one knew of such things only through vague rumours. Neither the Brotherhood nor THE BOOK was a subject that any ordinary Party member would mention if there was a way of avoiding it.In its second minute the Hate rose to a frenzy. People were leaping up and down in their places and shouting at the tops of their voices in an effort to drown the maddening bleating voice that came from the screen. The little sandy-haired woman had turned bright pink, and herm outh was opening and shutting like that of a landed fish. Even O'Brien's heavy face was flushed. He was sitting very straight in his chair, his powerful chest swelling and quivering as though he were standing up to the assault of a wave. The dark-haired girl behind Winston had begun crying out 'Swine! Swine! Swine!' and suddenly she picked up a heavy Newspeak dictionary and flung it at the screen. It struck Goldstein's nose and bounced off; the voice continued inexorably. In a lucid moment Winston found that he was shouting with the others and kicking his heel violently against the rung of his chair. The horrible thing about the Two Minutes Hate was not that one was obliged to act a part, but, on the contrary, that it was impossible to avoid joining in. Within thirty seconds any pretence was always unnecessary. A hideous ecstasy of fear and vindictiveness, a desire to kill, to torture, to smash faces in with a sledge-hammer, seemed to flow through the whole group of people like an electric current, turning one even against one's will into a grimacing, screaming lunatic. And yet the rage that one felt was an abstract, undirected emotion which could be switched from one object to another like the flame of a blowlamp. Thus, at one moment Winston's hatred was not turned against Goldstein at all, but, on the contrary, against Big Brother, the Party, and the Thought Police; and at such moments his heart went out to the lonely, derided heretic on the screen, sole guardian of truth and sanity in a world of lies. And yet the very next instant he was at one with the people about him, and all that was said of Goldstein seemed to him to be true. At those moments his secret loathing of Big Brother changed into adoration, and Big Brother seemed to tower up, an invincible, fearless protector, standing like a rock against the hordes of Asia, and Goldstein, in spite of his isolation, his helplessness, and the doubt that hung about his very existence, seemed like some sinister enchanter, capable by the mere power of his voice of wrecking the structure of civilization.It was even possible, at moments, to switch one's hatred this way or that by a voluntary act. Suddenly, by the sort of violent effort with which one wrenches one's head away from the pillow in a nightmare, Winston succeeded in transferring his hatred from the face on the screen to the dark-haired girl behind him. Vivid, beautiful hallucinations flashed through his mind. He would flog her to death with a rubber truncheon. He would tie her naked to a stake and shoot her full of arrows like Saint Sebastian. He would ravish her and cut her throat at the moment of climax. Better than before, moreover, he realized WHY it was that he hated her. He hated her because she was young and pretty and sexless, because he wanted to go to bed with her and would never do so, because round her sweet supple waist, which seemed to ask you to encircle it with your arm, there was only the odious scarlet sash, aggressive symbol of chastity.The Hate rose to its climax. The voice of Goldstein had become an actual sheep's bleat, and for an instant the face changed into that of a sheep. Then the sheep-face melted into the figure of a Eurasian soldier who seemed to be advancing, huge and terrible, his sub-machine gun roaring, and seeming to spring out of the surface of the screen, so that some of the people in the front row actually flinched backwards in their seats. But in the same moment, drawing a deep sigh of relief from everybody, the hostile figure melted into the face of Big Brother, black-haired, black-moustachio'd, full of power and mysterious calm, and so vast that it almost filled up the screen. Nobody heard what Big Brother was saying. It was merely a few words of encouragement, the sort of words that are uttered in the din of battle, not distinguishable individually but restoring confidence by the fact of being spoken. Then the face of Big Brother faded away again, and instead the three slogans of the Party stood out in bold capitals: WAR IS PEACE FREEDOM IS SLAVERY IGNORANCE IS STRENGTH But the face of Big Brother seemed to persist for several seconds on the screen, as though the impact that it had made on everyone's eyeballs was too vivid to wear off immediately. The little sandy-haired woman had flung herself forward over the back of the chair in front of her. With a tremulous murmur that sounded like 'My Saviour!' she extended her arms towards the screen. Then she buried her face in her hands. It was apparent that she was uttering a prayer.At this moment the entire group of people broke into a deep, slow, rhythmical chant of 'B-B!...B-B!'--over and over again, very slowly, with a long pause between the first 'B' and the second--a heavy, murmurous sound, somehow curiously savage, in the background of which one seemed to hear the stamp of naked feet and the throbbing of tom-toms. For perhaps as much as thirty seconds they kept it up. It was a refrain that was often heard in moments of overwhelming emotion. Partly it was a sort of hymn to the wisdom and majesty of Big Brother, but still more it was an act of self-hypnosis, a deliberate drowning of consciousness by means of rhythmic noise. Winston's entrails seemed to grow cold. In the Two Minutes Hate he could not help sharing in the general delirium, but this sub-human chanting of 'B-B!...B-B!' always filled him with horror. Of course he chanted with the rest: it was impossible to do otherwise. To dissemble your feelings, to control your face, to do what everyone else was doing, was an instinctive reaction. But there was a space of a couple of seconds during which the expression of his eyes might conceivably have betrayed him. And it was exactly at this moment that the significant thing happened--if, indeed, it did happen.Momentarily he caught O'Brien's eye. O'Brien had stood up. He had taken off his spectacles and was in the act of resettling them on his nose with his characteristic gesture. But there was a fraction of a second when their eyes met, and for as long as it took to happen Winston knew--yes, he KNEW!--that O'Brien was thinking the same thing as himself. An unmistakable message had passed. It was as though their two minds had opened and the thoughts were flowing from one into the other through their eyes. 'I am with you,' O'Brien seemed to be saying to him. 'I know precisely what you are feeling. I know all about your contempt, your hatred, your disgust. But don't worry, I am on your side!' And then the flash of intelligence was gone, and O'Brien's face was as inscrutable as everybody else's.That was all, and he was already uncertain whether it had happened. Such incidents never had any sequel. All that they did was to keep alive in him the belief, or hope, that others besides himself were the enemies of the Party. Perhaps the rumours of vast underground conspiracies were true after all--perhaps the Brotherhood really existed! It was impossible, in spite of the endless arrests and confessions and executions, to be sure that the Brotherhood was not simply a myth. Some days he believed in it, some days not. There was no evidence, only fleeting glimpses that might mean anything or nothing: snatches of overheard conversation, faint scribbles on lavatory walls--once, even, when two strangers met, a small movement of the hand which had looked as though it might be a signal of recognition. It was all guesswork: very likely he had imagined everything. He had gone back to his cubicle without looking at O'Brien again. The idea of following up their momentary contact hardly crossed his mind. It would have been inconceivably dangerous even if he had known how to set about doing it. For a second, two seconds, they had exchanged an equivocal glance, and that was the end of the story. But even that was a memorable event, in the locked loneliness in which one had to live.Winston roused himself and sat up straighter. He let out a belch. The gin was rising from his stomach.His eyes re-focused on the page. He discovered that while he sat helplessly musing he had also been writing, as though by automatic action. And it was no longer the same cramped, awkward handwriting as before. His pen had slid voluptuously over the smooth paper, printing in large neat capitals-- DOWN WITH BIG BROTHER DOWN WITH BIG BROTHER DOWN WITH BIG BROTHER DOWN WITH BIG BROTHER DOWN WITH BIG BROTHER over and over again, filling half a page.He could not help feeling a twinge of panic. It was absurd, since the writing of those particular words was not more dangerous than the initial act of opening the diary, but for a moment he was tempted to tear out the spoiled pages and abandon the enterprise altogether.He did not do so, however, because he knew that it was useless. Whether he wrote DOWN WITH BIG BROTHER, or whether he refrained from writing it, made no difference. Whether he went on with the diary, or whether he did not go on with it, made no difference. The Thought Police would get him just the same. He had committed--would still have committed, even if he had never set pen to paper--the essential crime that contained all others in itself. Thoughtcrime, they called it. Thoughtcrime was not a thing that could be concealed for ever. You might dodge successfully for a while, even for years, but sooner or later they were bound to get you.It was always at night--the arrests invariably happened at night. The sudden jerk out of sleep, the rough hand shaking your shoulder, the lights glaring in your eyes, the ring of hard faces round the bed. In the vast majority of cases there was no trial, no report of the arrest. People simply disappeared, always during the night. Your name was removed from the registers, every record of everything you had ever done was wiped out, your one-time existence was denied and then forgotten. You were abolished, annihilated: VAPORIZED was the usual word.For a moment he was seized by a kind of hysteria. He began writing in a hurried untidy scrawl: theyll shoot me i don't care theyll shoot me in the back of the neck i dont care down with big brother they always shoot you in the back of the neck i dont care down with big brother---- He sat back in his chair, slightly ashamed of himself, and laid down the pen. The next moment he started violently. There was a knocking at the door.Already! He sat as still as a mouse, in the futile hope that whoever it was might go away after a single attempt. But no, the knocking was repeated. The worst thing of all would be to delay. His heart was thumping like a drum, but his face, from long habit, was probably expressionless. He got up and moved heavily towards the door.") end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
5694
import Base.length, Base.show, Base.+, Base.-, Base.==, Base.getindex, Base.iterate import Random.shuffle! #= The Substitution object holds a Vector, where the ith entry is the token that Substitutes i in the cipher DO NOT USE INNER CONSTRUCTOR =# # S[i] returns j if i -> j mutable struct Substitution <: AbstractCipher mapping::Vector{Int} size::Int tokens::Vector{Int} # DO NOT USE function Substitution(vect::Vector{Int}, size::Int, tokens::Vector{Int}, check_vect::Bool = true) # UNSAFE if check_vect checkperm(vect) end return new(vect, size, tokens) end # DO NOT USE end # Unsafe outer constructors unsafe_Substitution(vect::Vector{Int}, size::Int) ::Substitution = Substitution(vect, size, collect(1:size)) # Tokenless UNSAFE unsafe_Substitution(vect::Vector{Int}, W::NCharSpace{N} where N) ::Substitution = Substitution(vect, W.size, W.tokens) # UNSAFE # Safe outer constructors Substitution(vect::Vector{Int}) ::Substitution = unsafe_Substitution(vect, length(vect)) # sizeless function Substitution(size::Int) ::Substitution # Identity v = collect(1:size) return Substitution(v, size, copy(v), false) end function Substitution(chars::Vector{String}, W::NCharSpace{1}) ::Substitution # Construct Substitution from permutation of chars if !issetequal(chars, W.charsmap) error("Substitutions must contain all tokenised characters only once") end return Substitution([W.tokenmap[i] for i in chars], W.size, W.tokens, false) end Substitution(W::NCharSpace{N} where N) ::Substitution = Substitution(W.size) # Finds forwards substitution matching tokens sorted by frequency function frequency_matched_Substitution(txt::Txt, ref_frequencies::Vector{Float64} = monogram_freq) if length(ref_frequencies) != txt.charspace.size error("Reference frequencies must be provided for each token (length equal to CharSpace size)") end f = sortperm(vector_frequencies(txt)) # ranking of empirical frequencies in ascending order ref_frequencies = sortperm(ref_frequencies) # ranking of expected frequencies in ascending order return Substitution([f[findfirst(==(i), ref_frequencies)] for i in txt.charspace.tokens], txt.charspace.size, txt.charspace.tokens, false) # starts with letters arranged by frequencies against ref_frequencies end length(S::Substitution) ::Int = S.size function show(io::IO, S::Substitution) show(io, S.mapping) end function show(io::IO, ::MIME"text/plain", S::Substitution) println(io, "$(S.size)-element Substitution:") show(io, S.mapping) end getindex(S::Substitution, i::Int) ::Int = getindex(S.mapping, i) iterate(S::Substitution) = iterate(S.mapping) iterate(S::Substitution, i::Integer) = iterate(S.mapping, i) # Checks whether A and B are identical Substitutions ==(a::Substitution, b::Substitution) ::Bool = (a.mapping == b.mapping) # if S: i -> j invert(S): j -> i function invert!(S::Substitution) ::Substitution S.mapping = invperm(S.mapping) return S end # Compounds two Substitutions to make one new function +(a::Substitution, b::Substitution) ::Substitution if a.size != b.size error("Substitutions must have the same length") end Substitution([b[i] for i in a]) end -(a::Substitution, b::Substitution) ::Substitution = a + invert(b) # Applies Substitution to Integer Vectors function apply(S::Substitution, vect::Vector{Int}; safety_checks::Txt) ::Vector{Int} if safety_checks.charspace.size != S.size println("WARNING: Substitution size does not match size of Character Space") end return getindex.(Ref(S), vect) end function shift!(self::Substitution, shift::Int) ::Substitution self.mapping = circshift(self.mapping, shift) return self end # Switches two entries in a Substitution function switch(S::Substitution, posa::Int, posb::Int) ::Substitution # SAFE return Substitution(switch(S.mapping, posa, posb), S.size, S.tokens, false) end function switch!(S::Substitution, posa::Int, posb::Int) ::Substitution switch!(S.mapping ::Vector{Int}, posa, posb) return S end # Switches a random place in a Substitution, within the slice tuple, with another spot function mutate(S::Substitution, slice::Tuple{Int, Int} = (1, length(S))) ::Substitution switch(S, rand(slice[1]:slice[2]), rand(1:length(S))) end function mutate!(S::Substitution, slice::Tuple{Int, Int} = (1, length(S))) ::Substitution switch!(S, rand(slice[1]:slice[2]), rand(1:length(S))) end # Presets function Atbash(size::Int) ::Substitution s = Substitution(size) reverse!(s.mapping) return s end Atbash(W::NCharSpace{N} where N) ::Substitution = Atbash(W.size) function Caesar(shift::Int, size::Int) ::Substitution s = Substitution(size) shift!(s, mod(-shift, size)) return s end Caesar(shift::Int, W::NCharSpace{N} where N) ::Substitution = Caesar(shift::Int, W.size) Caesar(colon::Colon, size::Int) ::Tuple = Tuple(1:size) function Affine(a::Int, b::Int, size::Int) ::Substitution if gcd(a, size) != 1 println("WARNING: Affine parameter $(a)x + $(b) (mod $(size)) is a singular transformation and cannot be inverted") end s = Substitution(size) s.mapping *= a s.mapping .+= (b - a) # Shifted to account for one-base indexing, standardising s.mapping = mod.(s.mapping, size) s.mapping .+= 1 return s end Affine(a::Int, b::Int, W::NCharSpace{N} where N) ::Substitution = Affine(a, b, W.size) Affine(colon::Colon, b::Int, size::Int) ::Tuple = Tuple(filter!(x -> gcd(x, size) == 1, collect(1:size))) Affine(a::Int, colon::Colon, size::Int) ::Tuple = Tuple(1:size)
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
14823
#= TUCO is a drug lord. TUCO handles all statistical stuff, including fitness statistics =# using Statistics jldstem = joinpath(@__DIR__, "..", "jld2") using JLD2 @load abspath(joinpath(jldstem, "quadgram_scores.jld2")) quadgram_scores @load abspath(joinpath(jldstem, "bigram_scores.jld2")) bigram_scores @load abspath(joinpath(jldstem, "poogramfart_scores.jld2")) poogram_scores @load abspath(joinpath(jldstem, "monogram_frequencies.jld2")) monogram_freq @load abspath(joinpath(jldstem, "bigram_frequencies.jld2")) bigram_freq # FREQUENCY ######################################## function appearances(token::Int, txt::Txt) ::Int if !txt.is_tokenised error("Cannot count token appearances in untokenised Txt") end return count(==(token), txt.tokenised) end function appearances(txt::Txt) ::Vector{Int} if !txt.is_tokenised error("Cannot count token appearances in untokenised Txt") end return [count(==(token), txt.tokenised) for token in txt.charspace.tokens] end function vector_frequencies(txt::Txt) ::Vector{Float64} return appearances(txt) / length(txt) end function frequencies(txt::Txt) ::Dict{String, Float64} freq = vector_frequencies(txt) return Dict(txt.charspace.chars .=> freq) end function bandwidth(txt::Txt) ::Int return length(unique(txt.tokenised)) end # ORDERLESS MEASURES ######################################### # Index of Coincidence function ioc(txt::Txt) ::Float64 len = length(txt) tallies = appearances(txt) summed = sum(tallies .* (tallies .- 1)) # sum of n(n-1) return summed / (len * (len-1)) # n(n-1)/N(N-1) un-normalised, doesnt account for size of W end # Periodic index of Coincidence function periodic_ioc(txt::Txt, n::Int64) ::Float64 avgIOC = 0 for i in 1:n avgIOC += ioc(txt[i:n:end]) end return avgIOC / n end # Cosine similarity of frequencies function orthodot(txt::Txt, ref_frequencies::Vector{Float64} = monogram_freq; ordered = true) ::Float64 frequencies = vector_frequencies(txt) if !ordered frequencies = sort(frequencies) ref_frequencies = sort(ref_frequencies) end magnitude = sum(frequencies .^ 2) * sum(ref_frequencies .^ 2) return sum(frequencies .* ref_frequencies) / sqrt(magnitude) end # BATCH BINOMIAL ################################################################################### function batch_binomial_pd(X::Vector{Int}, N::Int, p::Float64) ::Vector{Float64} mu = N * p var = 2 * mu * (1 - p) # 2 carried through to reduce operations M = 7e2 - (maximum(X) - mu)^2 / var PX = [exp( M - (x - mu)^2 / var ) for x in X] PX = safe_normalise(PX) #PX[PX .== 0] .= 1e-300 return PX end function safe_normalise(a::Vector) ::Vector s = sum(a) if s == 0 | isnan(s) L = length(a) return fill(1 / L, (L,)) end return a / s end # batch binomial probabilities A[i,j] that token j represents i (forwards i -> j) function bbin_probabilities(txt::Txt, ref_frequencies::Vector{Float64} = monogram_freq) ::Matrix{Float64} tallies = appearances(txt) L = length(txt) return permutedims(hcat([batch_binomial_pd(tallies, L, i) for i in ref_frequencies]...)) end # PERIOD FINDING ALOGRITHM ############################################ # front weighted standard deviation: rooted avg of square difference of adjacent values, weighted by a decreasing geometric series function fw_var(data::Vector, r = 0.5) ::Float64 if r == 1 return var(data) end weights = [r ^ i for i in 1:length(data)] # weight data in geometric series w_total = r * (1 - r ^ length(data)) / (1 - r) # Calculate sum of weights mu = sum(weights .* data) / w_total # find mean var = sum( (data .- mu).^2 .* weights ) / w_total return var end fw_std(data::Vector, r = 0.5) ::Float64 = sqrt(fw_var(data, r)) function find_period(data::Vector{Float64}, upper_lim::Int, sigma_threshold::Float64; weight_ratio ::Float64 = 0.65, silent::Bool = false) ::Union{Nothing, Int} upper_lim = min(upper_lim, length(data) - 1) # test until period > upper_lim threshold = fw_std(data, weight_ratio) * sigma_threshold for n in 1:upper_lim avg_std = 0. for i in 1:n avg_std += fw_std(data[i:n:end], weight_ratio) # Compare n-length chunks of data to themselves, find std end avg_std /= n if avg_std < threshold # if the periodic std is below the threshold if !silent println("ρ: ", round(avg_std / fw_std(data, weight_ratio); sigdigits = 3), " σ") end return n break end end return nothing end find_period(txt::Txt, upper_lim::Int, sigma_threshold::Float64; weight_ratio ::Float64 = 0.65, silent::Bool = false) = find_period(periodic_ioc.(Ref(txt), collect(1:upper_lim)), upper_lim, sigma_threshold; weight_ratio = weight_ratio, silent = silent) # NUMERICAL ANALYSIS ################################################ # Finding divisors function divisors(number::Int) ::Vector{Int} # Step 1: find all divisors divisors = [] for int in 2:(number >> 1) if number % int == 0 push!(divisors, int) end end push!(divisors, number) return divisors end # Prime Factorisation Algorithm function factorise(number::Int) ::Vector{Int} # Step 2 repeatedly divide from bottom up (2, 3, 5, 7...) factors = [] for int in divisors(number) while number % int == 0 push!(factors, int) number /= int end if number == 1 return factors end end end # TEXT BLOCKING ANALYSIS ###################################### function blocks(txt::Txt, size::Int) return [txt[i - size + 1:i] for i in size:size:lastindex(txt)] end function block_apply_stats(f::Function, txt::Txt, block_size::Int) data = f.(blocks(txt, block_size)) mean = mean(data) return mean , stdm(data, mean) end function rolling(f::Function, txt::Txt, window::Int) ::Vector L = length(txt) values = Vector(undef, L) wing = round(Int, window / 2) ########## IMPLEMENT EACHINDEX for i in 1:L start = i - wing final = i + wing if start < 1 if final > L error("Window too large") end start = 1 final = start + 2 * wing elseif final > L final = L start = final - 2 * wing end values[i] = f(txt[start:final]) end return values end # STRING ANALYSIS ################################### # Rolling average of data, sampled by window rolling_average(data::Vector, window::Int) ::Vector{Float64} = real.(Conv1D_reals(data, ones(window) / window)) function char_distribution(txt::Txt, token::Int, window::Int) ::Vector{Float64} if !txt.is_tokenised error("Txt must be tokenised to perform statistical tests") end shortend = length(txt) - window out = Vector{Float64}(undef, shortend) # appearances of token in window for start in 1:shortend out[start] = appearances(token, txt[start:start+window]) / window end return rolling_average(out, window) end function KMP_appearances(unit::Vector{T}, sequence::Vector{T}) where T search_index = 1 ref_index = 1 target_length = length(unit) L = lastindex(sequence) valid_pos = Vector{Int}() while search_index <= L # through whole text if unit[ref_index] == sequence[search_index] # current ind matches if ref_index == target_length # current ind is last ind push!(valid_pos, search_index - ref_index + 1) # save ind search_index += 1 # skip ahead search by unit length ref_index = 1 # reset window else # current ind is not last ind ref_index += 1 # check next ind search_index += 1 end else # current ind does not match search_index += 1 ref_index = 1 end end return valid_pos end function repeat_units(txt::Txt, min_size::Int = 2) ::Dict{Vector{Int}, Int} if !txt.is_tokenised error("Txt must be tokenised to find repeat units") end vect = txt.tokenised L = lastindex(vect) window_start = 1 window_end = min_size last_number = 0 repeats = Dict{Vector{Int}, Int}() min_start_lengths = ones(Int, L) * min_size while window_start <= L - 2 * min_size + 1 # while window still repeatable window = vect[window_start:window_end] repeat_pos = KMP_appearances(window, vect[window_end + 1:end]) number = length(repeat_pos) window_length = window_end - window_start + 1 for i in repeat_pos # for places with the same start min_start_lengths[window_end + i] = window_length + 1 # start checking with length longer than now end if number == 0 # if no repeats still exist if last_number != 0 # if the last one had repeats repeats[window[begin:end - 1]] = last_number + 1 # take the last window for i in 1:window_length - min_size # start following checks with longer window sizes min_start_lengths[window_start + i] = window_length - i end end window_start += 1 # advance search # set end so that length is minimum start window_end = window_start + min_start_lengths[window_start] - 1 last_number = 0 else # if repeats still exist window_end += 1 # elongate window last_number = number end end return repeats end # CODEPENDENCE ANALYSIS ################################### # raw Substructure Variance function substructure_variance(txt::Txt, n::Int, ref_frequencies::Vector{Float64} = monogram_freq) L = length(txt) txt_chunks = [txt[chunk_end - n + 1:chunk_end] for chunk_end in n:n:lastindex(txt)] N = ceil(Int, L / n) avg_variance = 0.0 for token in txt.charspace.tokens f = ref_frequencies[token] var = var(appearances.(token, txt_chunks)) avg_variance += f * var end return avg_variance end # Auto wrapped function to find sigma error in substruct (hypothesis test) function substructure_sigma(txt::Txt, n::Int, ref_frequencies::Vector{Float64} = monogram_freq) L = length(txt) txt_chunks = [txt[chunk_end - n + 1:chunk_end] for chunk_end in n:n:lastindex(txt)] N = ceil(Int, L / n) avg_sigma_dev = 0.0 for token in txt.charspace.tokens f = ref_frequencies[token] actual_var = var(appearances.(token, txt_chunks)) expected_var = n * f * (1-f) * (1 - 1/N) sigma = expected_var / sqrt(N-1) avg_sigma_dev += f * (actual_var - expected_var) / sigma end return avg_sigma_dev end # FITNESS FUNCTIONS ######################################## function quadgramlog(txt::Txt; quadgram_scores::Array{Float64, 4} = quadgram_scores) ::Float64 if txt.charspace != Alphabet error("Quadgramlog fitness only works on Alphabet") end L = length(txt) - 3 score = 0. for i in 1:L score += quadgram_scores[ txt[i], txt[i+1], txt[i+2], txt[i+3] ] end return score / L end function bigramlog(T::Txt; bigram_scores::Array{Float64, 2} = bigram_scores) if T.charspace != Alphabet error("Bigramlog fitness only works on Alphabet") end sum = 0. L = length(T) - 1 for i in 1:L sum += bigram_scores[T[i], T[i+1]] end return sum / L end function bibigramlog_arr(txt::Txt; bibigram_scores::Array{Float64, 2} = bibigram_scores_arr) ::Float64 if txt.charspace != Bigram_CharSpace error("Bibigramlog fitness only works on Bigram_CharSpace") end L = length(txt) - 1 score = 0.0 for i in 1:L score += bibigram_scores[ txt.tokenised[i], txt.tokenised[i + 1] ] end return score / L end # 93% improvement function poogramfart(txt::Txt; poogram_scores::Dict{Int, Float64} = poogram_scores) ::Float64 if txt.charspace != Alphabet error("Poogramfart fitness only works on Alphabet") end L = length(txt) - 3 score = 0.0 for i in 1:L score += poogram_scores[ generate_structure_tag(txt.tokenised[i:i+3]) ] end return score / L end # Essentially a hashing algorithm function generate_structure_tag(quadgram::Vector{Int}) ::Int tag = 0 for (i, item) in enumerate(quadgram) ident = 0 for j in 1:4 ident |= ((quadgram[j] == item) << (j-1)) end tag |= (ident << (4 * (i-1))) end return tag end # const nullfitness = log10(0.1/4224127912) # eng_quadgrams = Dict() # alphabet = collect("ABCDEFGHIJKLMNOPQRSTUVWXYZ") # open("english_quadgrams.txt") do file # for ln in eachline(file) # i,j = split(ln, " ") # i = [findfirst(x -> isequal(x, letter), alphabet) for letter in i] # j = parse(Int64, j) # eng_quadgrams[i] = log10(j/4224127912) # where 4224127912 is the total number of quadgrams # end # end # @save "jld2/quadgram_score_dict.jld2" quadgram_scores = eng_quadgrams # quadgram_scores_arr = Array{Float64}(undef, 26, 26, 26, 26) # for i in 1:26 # for j in 1:26 # for k in 1:26 # for l in 1:26 # quadgram_scores_arr[i,j,k,l] = get(quadgram_scores, [i, j, k, l], nullfitness) # end # end # end # end # using JLD2 # @load "jld2/english_monogram_frequencies.jld2" eng # # Vector with v[i] = j is the token index and j is the frequency # fart_matrix = Dict{Int, Float64}() # quadgram_scores_arr = 10 .^ quadgram_scores_arr # function determine_struct(quadgram::Vector{Int}) # (i,j,k,l) = quadgram # structure = Vector{Int}(undef, 4) # iter = 1 # while any(quadgram .!= 0) # first_token = quadgram[findfirst(!=(0), quadgram)] # indices = findall(==(first_token), quadgram) # structure[indices] .= iter # quadgram[indices] .= 0 # iter += 1 # end # return structure # end # for i in 1:26 # for j in 1:26 # for k in 1:26 # for l in 1:26 # structure = generate_structure_tag([i,j,k,l]) # value = get(fart_matrix, structure, nothing) # if isnothing(value) # fart_matrix[structure] = 0.0 # end # fart_matrix[structure] += quadgram_scores_arr[i,j,k,l] # end # end # end # end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
1088
using FFTW include("cipher.jl") function Conv1D_reals(a::Vector{T}, b::Vector{T}) where T <: Real N = length(a) M = length(b) a = [a ; zeros(M - 1)] # N + M - 1 b = [b ; zeros(N - 1)] # N + M - 1 return ifft(fft(a) .* fft(b)) end Conv1D(a::Vector{Int}, b::Vector{Int}) = round.(Int, real.(Conv1D_reals(a, b))) function invConv1D_reals(conv::Vector{T}, filter::Vector{T}) where T <: Real K = length(conv) M = length(filter) filter = [filter ; zeros(K - M)] return ifft(fft(conv) ./ fft(filter))[1 : K - M + 1] end invConv1D(a::Vector{Int}, b::Vector{Int}) = round.(Int, real.(invConv1D_reals(a, b))) ####################################################################################### mutable struct Convolution <: AbstractCipher filter::Vector{Int} inverted::Bool function Convolution(filter::Vector{Int}) new(filter, false) end end apply(Q::Convolution, v::Vector{Int}; safety_checks::Txt) = Q.inverted ? invConv1D(v, Q.filter) : Conv1D(v, Q.filter) invert!(Q::Convolution) = switch_invert_tag!(Q)
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
1771
include("cipher.jl") mutable struct Diagonal <: AbstractCipher n::Int skew::Bool reverse::Bool inverted::Bool function Diagonal(n::Int, skew::Bool = false, reverse::Bool = false) new(n, skew, reverse, false) end end invert!(D::Diagonal) = switch_invert_tag!(D) using LinearAlgebra function get_diagonals(matrix::Matrix) ::Vector (a,b) = size(matrix) return [diag(matrix, n) for n in 1-a:b-1] end function fuse_diagonals(a::Int, b::Int, diagonals::Vector{Vector{Int}}) diagm(a, b, [num => diag for (num, diag) in zip(1-a:b-1, diagonals)]...) end function apply(D::Diagonal, vect::Vector{Int}; safety_checks::Txt) if D.inverted new_tokens = copy(vect) a = D.n b = Int(length(vect) / D.n) diagonals = Vector{Vector{Int}}(undef, a + b - 1) diag_total = a + b - 1 max_diag = min(a,b) for i in 1:diag_total if i < max_diag diagonals[i] = [popat!(new_tokens, 1) for _ in 1:i] elseif i > diag_total - max_diag diagonals[i] = [popat!(new_tokens, 1) for _ in 1:a + b - i] else diagonals[i] = [popat!(new_tokens, 1) for _ in 1:max_diag] end end if D.reverse reverse!.(diagonals) end new_tokens = fuse_diagonals(a, b, diagonals) if D.skew reverse(new_tokens; dims = 1) end return vec(new_tokens) else new_tokens = reshape(vect, (D.n, :)) if D.skew reverse(new_tokens; dims = 1) end new_tokens = get_diagonals(new_tokens) if D.reverse reverse!.(new_tokens) end return vcat(new_tokens...) end end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
1676
include("cipher.jl") mutable struct GridShift <: AbstractCipher shifts::Vector{Int} col_length::Int end function shifter(v::Vector{Int}, shifts::Vector{Int}) v = reshape(v, (length(shifts), :)) for (i,j) in enumerate(shifts) v[i, :] = circshift(v[i, :], j) end return vec(v) end function apply(S::GridShift, vect::Vector{Int}; safety_checks::Txt) new_tokens = copy(vect) L = length(vect) block_l = length(S.shifts) * S.col_length if L % block_l != 0 error("idk just fix") end blocks = [vect[1 + b - block_l:b] for b in block_l:block_l:lastindex(vect)] new_tokens = vcat([shifter(i, S.shifts) for i in blocks]...) return new_tokens end mutable struct InvJaggedGridShift <: AbstractCipher shifts::Vector{Int} col_length::Int end function invshifter(v::Vector{Int}, shifts::Vector{Int}, col_length::Int) blanks = [ones(Int, (length(shifts), col_length)) zeros(Int, (length(shifts), col_length))] for (i,j) in enumerate(shifts) blanks[i, :] = circshift(blanks[i, :], j) end blanks[findall(==(1.), blanks)] .= v for (i,j) in enumerate(shifts) blanks[i, :] = circshift(blanks[i, :], -j) end return vec(v) end function apply(S::InvJaggedGridShift, vect::Vector{Int}; safety_checks::Txt) new_tokens = copy(vect) L = length(vect) block_l = length(S.shifts) * S.col_length if L % block_l != 0 error("idk just fix") end blocks = [vect[1 + b - block_l:b] for b in block_l:block_l:lastindex(vect)] new_tokens = vcat([invshifter(i, S.shifts, S.col_length) for i in blocks]...) return new_tokens end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
4149
include("cipher.jl") import Base.show const valid_continuation_modes = Set(("blank", "repeat", "autokey")) mutable struct Keystream <: AbstractCipher stem::Vector{Int} stem_length::Int mode::String inverted::Bool function Keystream(vect::Vector{Int}, continuation_mode::String = "blank") if !(continuation_mode in valid_continuation_modes) error("Invalid key continuation mode argument") end new(vect, length(vect), continuation_mode, false) end end Keystream(txt::Txt, continuation_mode::String = "blank") ::Keystream = txt.is_tokenised ? Keystream(txt.tokenised, continuation_mode) : error("Txt must be tokenised to create Keystream") Keystream(vect::Vector{String}, W::NCharSpace{1}, continuation_mode::String = "blank") ::Keystream = Keystream(tokenise.(vect, Ref(W)) .- 1, continuation_mode) # Subtracting one to standardise for 0-based indexing Keystream(vect::Vector{Char}, W::NCharSpace{1}, continuation_mode::String = "blank") ::Keystream = Keystream(string.(vect), W, continuation_mode) Keystream(string::String, W::NCharSpace{1}, continuation_mode::String = "blank") ::Keystream = W.n == 1 ? Keystream(collect(string), W, continuation_mode) : error("Character Space must be 1-gram for String argument to be tokenised") function show(io::IO, K::Keystream) show(io, K.stem) end function show(io::IO, ::MIME"text/plain", K::Keystream) if K.inverted inverse_text = "Inverse " else inverse_text = "" end println(io, "$(K.stem_length)-token ", inverse_text, "Keystream (end continuation = ", K.mode, "):") show(io, K.stem) end function invert!(K::Keystream) ::Keystream K.inverted = !K.inverted return K end function apply(K::Keystream, v::Vector{Int}; safety_checks::Txt) ::Vector{Int} new_v = copy(v) L = length(v) if K.inverted if K.mode == "blank" stopindex = min(K.stem_length, L) new_v[begin : stopindex] .-= K.stem[begin : stopindex] elseif K.mode == "repeat" num_full_cycles = floor(Int, L / K.stem_length) remainder = L % K.stem_length for i in (0:num_full_cycles - 1) * K.stem_length active_indices = i + 1 : i + K.stem_length new_v[active_indices] .-= K.stem end new_v[end - remainder + 1 : end] .-= K.stem[begin : remainder] elseif K.mode == "autokey" diff = L - K.stem_length if diff <= 0 new_v .-= K.stem[begin : L] else new_v[begin:K.stem_length] .-= K.stem num_full_cycles = floor(Int, L / K.stem_length) remainder = L % K.stem_length for i in (1:num_full_cycles - 1) * K.stem_length new_v[i + 1 : i + K.stem_length] .-= new_v[i + 1 - K.stem_length : i] end new_v[end - remainder + 1 : end] .-= new_v[end - remainder + 1 - K.stem_length : end - K.stem_length] end end else if K.mode == "blank" stopindex = min(K.stem_length, L) new_v[begin : stopindex] .+= K.stem[begin : stopindex] elseif K.mode == "repeat" num_full_cycles = floor(Int, L / K.stem_length) remainder = L % K.stem_length for i in (0:num_full_cycles - 1) * K.stem_length active_indices = i + 1 : i + K.stem_length new_v[active_indices] .+= K.stem end new_v[end - remainder + 1 : end] .+= K.stem[begin : remainder] elseif K.mode == "autokey" diff = L - K.stem_length if diff <= 0 new_v .+= K.stem[begin : L] else new_v[begin:K.stem_length] .+= K.stem new_v[K.stem_length + 1 : L] .+= v[begin : diff] end end end new_v .-= 1 new_v = mod.(new_v, safety_checks.charspace.size) new_v .+= 1 return new_v end Autokey(args...) = Keystream(args..., "autokey")
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
1865
include("cipher.jl") mutable struct NihilistTransposition <: AbstractCipher row_perm::Vector{Int} col_perm::Vector{Int} read_dim::Int inverted::Bool function NihilistTransposition(row_perm::Vector{Int}, col_perm::Vector{Int}, read_dim::Int = 1) new(row_perm, col_perm, read_dim, false) end end invert!(N::NihilistTransposition) = switch_invert_tag!(N) function apply(N::NihilistTransposition, v::Vector{Int}; safety_checks::Txt) vect = copy(v) L = length(vect) block_l = length(N.row_perm) * length(N.col_perm) if L % block_l != 0 error("idk just fix") end blocks = [vect[1 + b - block_l:b] for b in block_l:block_l:lastindex(vect)] if N.inverted return vcat([nihilist_trans_dec(i, N.row_perm, N.col_perm, N.read_dim) for i in blocks]...) else return vcat([nihilist_trans_enc(i, N.row_perm, N.col_perm, N.read_dim) for i in blocks]...) end end function nihilist_trans_enc(plaintext::Vector, permrow, permcolumn, read_dim) len1 = length(permcolumn) len2 = length(permrow) plainmatrix = reshape(plaintext, (len1, len2)) plainmatrix = plainmatrix[:, permrow] plainmatrix = plainmatrix[permcolumn, :] if read_dim == 2 plainmatrix = permutedims(plainmatrix) end return vec(plainmatrix) end function nihilist_trans_dec(ciphertext::Vector, permrow, permcolumn, order="rows") len1 = length(permcolumn) len2 = length(permrow) invpermrow = [findfirst(==(i), permrow) for i in 1:len2] invpermcolumn = [findfirst(==(i), permcolumn) for i in 1:len1] ciphematrix = reshape(ciphertext, (len1, len2)) if read_dim == 2 ciphematrix = permutedims(ciphematrix) end ciphematrix = ciphematrix[invpermcolumn, :] ciphematrix = ciphematrix[:, invpermrow] return vec(ciphematrix) end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
1891
include("cipher.jl") mutable struct Nihilist3D <: AbstractCipher row_perm::Vector{Int} col_perm::Vector{Int} z_perm::Vector{Int} inverted::Bool function Nihilist3D(row_perm::Vector{Int}, col_perm::Vector{Int}, z_perm::Vector{Int}) new(row_perm, col_perm, z_perm, false) end end invert!(N::Nihilist3D) = switch_invert_tag!(N) function apply(N::Nihilist3D, v::Vector{Int}; safety_checks::Txt) vect = copy(v) L = length(vect) block_l = length(N.row_perm) * length(N.col_perm) * length(N.z_perm) if L % block_l != 0 error("idk just fix") end blocks = [vect[1 + b - block_l:b] for b in block_l:block_l:lastindex(vect)] if N.inverted return vcat([nihilist_3D_dec(i, N.row_perm, N.col_perm, N.z_perm) for i in blocks]...) else return vcat([nihilist_3D_enc(i, N.row_perm, N.col_perm, N.z_perm) for i in blocks]...) end end function nihilist_3D_enc(plaintext::Vector, permrow, permcolumn, permz) len1 = length(permcolumn) len2 = length(permrow) len3 = length(permz) plainmatrix = reshape(plaintext, (len1, len2, len3)) plainmatrix = plainmatrix[:, permrow, :] plainmatrix = plainmatrix[permcolumn, :, :] plainmatrix = plainmatrix[:, :, permz] return vec(plainmatrix) end function nihilist_3D_dec(ciphertext::Vector, permrow, permcolumn, permz) len1 = length(permcolumn) len2 = length(permrow) len3 = length(permz) invpermrow = [findfirst(==(i), permrow) for i in 1:len2] invpermcolumn = [findfirst(==(i), permcolumn) for i in 1:len1] invpermz = [findfirst(==(i), permz) for i in 1:len3] ciphematrix = reshape(ciphertext, (len1, len2, len3)) ciphematrix = ciphematrix[:, :, invpermz] ciphematrix = ciphematrix[invpermcolumn, :, :] ciphematrix = ciphematrix[:, invpermrow, :] return vec(ciphematrix) end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
6663
using RxCiphers include("square.jl") const fixed_playfairmap = [0, 28, 29, 30, 26, 136, 127, 128, 129, 130, 141, 252, 253, 254, 255, 146, 377, 378, 379, 380, 126, 502, 503, 504, 505, 52, 0, 54, 55, 51, 151, 162, 153, 154, 155, 276, 167, 278, 279, 280, 401, 172, 403, 404, 405, 526, 152, 528, 529, 530, 77, 78, 0, 80, 76, 176, 177, 188, 179, 180, 301, 302, 193, 304, 305, 426, 427, 198, 429, 430, 551, 552, 178, 554, 555, 102, 103, 104, 0, 101, 201, 202, 203, 214, 205, 326, 327, 328, 219, 330, 451, 452, 453, 224, 455, 576, 577, 578, 204, 580, 2, 3, 4, 5, 0, 226, 227, 228, 229, 240, 351, 352, 353, 354, 245, 476, 477, 478, 479, 250, 601, 602, 603, 604, 230, 256, 7, 8, 9, 10, 0, 158, 159, 160, 156, 266, 257, 258, 259, 260, 271, 382, 383, 384, 385, 251, 507, 508, 509, 510, 31, 282, 33, 34, 35, 182, 0, 184, 185, 181, 281, 292, 283, 284, 285, 406, 297, 408, 409, 410, 531, 277, 533, 534, 535, 56, 57, 308, 59, 60, 207, 208, 0, 210, 206, 306, 307, 318, 309, 310, 431, 432, 323, 434, 435, 556, 557, 303, 559, 560, 81, 82, 83, 334, 85, 232, 233, 234, 0, 231, 331, 332, 333, 344, 335, 456, 457, 458, 349, 460, 581, 582, 583, 329, 585, 106, 107, 108, 109, 360, 132, 133, 134, 135, 0, 356, 357, 358, 359, 370, 481, 482, 483, 484, 375, 606, 607, 608, 609, 355, 381, 12, 13, 14, 15, 386, 137, 138, 139, 140, 0, 288, 289, 290, 286, 396, 387, 388, 389, 390, 376, 512, 513, 514, 515, 36, 407, 38, 39, 40, 161, 412, 163, 164, 165, 312, 0, 314, 315, 311, 411, 422, 413, 414, 415, 536, 402, 538, 539, 540, 61, 62, 433, 64, 65, 186, 187, 438, 189, 190, 337, 338, 0, 340, 336, 436, 437, 448, 439, 440, 561, 562, 428, 564, 565, 86, 87, 88, 459, 90, 211, 212, 213, 464, 215, 362, 363, 364, 0, 361, 461, 462, 463, 474, 465, 586, 587, 588, 454, 590, 111, 112, 113, 114, 485, 236, 237, 238, 239, 490, 262, 263, 264, 265, 0, 486, 487, 488, 489, 500, 611, 612, 613, 614, 480, 506, 17, 18, 19, 20, 511, 142, 143, 144, 145, 516, 267, 268, 269, 270, 0, 418, 419, 420, 416, 501, 517, 518, 519, 520, 41, 532, 43, 44, 45, 166, 537, 168, 169, 170, 291, 542, 293, 294, 295, 442, 0, 444, 445, 441, 541, 527, 543, 544, 545, 66, 67, 558, 69, 70, 191, 192, 563, 194, 195, 316, 317, 568, 319, 320, 467, 468, 0, 470, 466, 566, 567, 553, 569, 570, 91, 92, 93, 584, 95, 216, 217, 218, 589, 220, 341, 342, 343, 594, 345, 492, 493, 494, 0, 491, 591, 592, 593, 579, 595, 116, 117, 118, 119, 610, 241, 242, 243, 244, 615, 366, 367, 368, 369, 620, 392, 393, 394, 395, 0, 616, 617, 618, 619, 605, 6, 22, 23, 24, 25, 11, 147, 148, 149, 150, 16, 272, 273, 274, 275, 21, 397, 398, 399, 400, 0, 548, 549, 550, 546, 46, 32, 48, 49, 50, 171, 37, 173, 174, 175, 296, 42, 298, 299, 300, 421, 47, 423, 424, 425, 572, 0, 574, 575, 571, 71, 72, 58, 74, 75, 196, 197, 63, 199, 200, 321, 322, 68, 324, 325, 446, 447, 73, 449, 450, 597, 598, 0, 600, 596, 96, 97, 98, 84, 100, 221, 222, 223, 89, 225, 346, 347, 348, 94, 350, 471, 472, 473, 99, 475, 622, 623, 624, 0, 621, 121, 122, 123, 124, 110, 246, 247, 248, 249, 115, 371, 372, 373, 374, 120, 496, 497, 498, 499, 125, 522, 523, 524, 525, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] const AtoY = CharSpace(collect("ABCDEFGHIJKLMNOPQRSTUVWXY"))^2 const BiAlph = Alphabet ^ 2 mutable struct Playfair <: AbstractCipher key::SquareKey splittoken::Int # confusingly with Alphabet tokenisation splitmap::Dict{Int, Tuple{Int, Int}} forbidden::Int fromsquaremap::Vector{Int} outcharspace::NCharSpace{2} inverted::Bool function Playfair(key::SquareKey, spl::Int) if length(key) != 25 error("Input key must be of length 25 (omit tokens to be merged)") end W_base = CharSpace(key) W = W_base ^ 2 fromsquaremap = Vector{Int}(undef, 25) for (tok, str) in enumerate(W_base.charmap) p = findfirst(==(str), Alphabet.charmap) fromsquaremap[tok] = p end forbiddenbigram = BiAlph.reducemap[spl, spl] splits = Dict{Int, Tuple{Int, Int}}() for i in 1:25 isobigram = BiAlph.reducemap[i, i] splitbigram = (BiAlph.reducemap[i, spl], BiAlph.reducemap[spl, i]) splits[isobigram] = splitbigram end return new(key, spl, splits, forbiddenbigram, fromsquaremap, W, false) end end function replace_insert(vector::Vector{Int}, dict::Dict) out = Vector{Int}() for i in vector append!(out, get(dict, i, i)) end return out end function apply(P::Playfair, vector::Vector{Int}; safety_checks::Txt, playfairmap::Vector{Int} = fixed_playfairmap) # Split isobigrams # Apply fixed map if P.inverted else if P.forbidden in vector e = ErrorException("$(P.outcharspace.charmap[P.forbidden]) bigram cannot be split by $(P.outcharspace.charmap[P.splittoken])") throw(e) end new_tokens = replace_insert(vector, P.splitmap) # process in BiAlph new_tokens = [BiAlph.reducemap[i] for i in new_tokens] # return to monograms # reassign characters to square space # return to bigrams new_tokens = [playfairmap[i] for i in new_tokens] # execute map # return to monograms new_tokens = [P.fromsquaremap[i] for i in new_tokens] # return to Alphabet end return new_tokens end # cart25 = CartesianIndices(Array{Int}(undef, (5,5))) # linear25 = LinearIndices(Array{Int}(undef, (5,5))) # fixed_playfairmap = zeros(Int, 675) # for (bigram, str) in enumerate(AtoY.charmap) # (tokenA, tokenB) = AtoY.reducemap[bigram] # if tokenA == tokenB # continue # end # A = cart25[tokenA] # B = cart25[tokenB] # if A[1] == B[1] # # increment # A += CartesianIndex(0, 1) # B += CartesianIndex(0, 1) # # wrap around # if B[2] == 6 # B = CartesianIndex(B[1], 1) # elseif A[2] == 6 # A = CartesianIndex(A[1], 1) # end # elseif A[2] == B[2] # # increment # A += CartesianIndex(1, 0) # B += CartesianIndex(1, 0) # # wrap around # if B[1] == 6 # B = CartesianIndex(1, B[2]) # elseif A[1] == 6 # A = CartesianIndex(1, A[2]) # end # else # # switch corners # a2, b2 = B[2], A[2] # A = CartesianIndex(A[1], a2) # B = CartesianIndex(B[1], b2) # end # tokenA = linear25[A] # tokenB = linear25[B] # newbigram = AtoY.reducemap[tokenA, tokenB] # fixed_playfairmap[bigram] = newbigram # end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
1327
include("square.jl") mutable struct Polybius <: AbstractCipher key::SquareKey indices::Vector{String} outcharspace::NCharSpace{2} inverted::Bool function Polybius(key::SquareKey, indices::Vector{String} = ["1", "2", "3", "4", "5"]) W = CharSpace(indices) return new(key, indices, W ^ 2, false) end end invert!(P::Polybius) = RxCiphers.switch_invert_tag!(P) function apply!(P::Polybius, txt::Txt) ::Txt if !txt.is_tokenised throw(TokeniseError) end if P.inverted # take text # nchar nchar!(txt, 2) if txt.charspace != P.outcharspace println("WARNING: Txt character space does not match Polybius output space") end # reassign to key.inspace txt.charspace = key.charspace # map from square txt.tokenised = invmapsquare(txt.tokenised, P.key) # bye bye else if txt.charspace != P.key.charspace println("WARNING: Txt character space does not match Polybius input space") end # take text # map to square txt.tokenised = mapsquare(txt.tokenised, P.key) # reassign to NCharSpace{2} txt.charspace = P.outcharspace # reduce reduce!(txt) # bye bye end return txt end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
2576
using RxCiphers import Base.show function vchecksquare(vector::Vector) ::Int L = length(vector) n = isqrt(L) if n ^ 2 != L e = ErrorException("Vector is not a square length") throw(e) end return n end mutable struct SquareKey charspace::NCharSpace{1} key::Vector{Int} size::Int displaykey::Matrix{String} tosquare::Dict{Int, Int} fromsquare::Dict{Int, Int} function SquareKey(key::Vector{Int}, charspace::NCharSpace{1}, merged::NTuple{N, Pair{Int, Int}} where N) # check that merged is good if !allunique(key) e = ArgumentError("All square key entries must be unique") throw(e) end n = vchecksquare(key) display = fill("", (n, n)) tosquare = Dict{Int, Int}() fromsquare = Dict{Int, Int}() for squaretoken in 1:n^2 exttoken = key[squaretoken] fromsquare[squaretoken] = exttoken tosquare[exttoken] = squaretoken display[squaretoken] = charspace.charmap[exttoken] end for (mergedtoken, mergedest) in merged squaretoken = tosquare[mergedest] tosquare[mergedtoken] = squaretoken display[squaretoken] *= "/$(charspace.charmap[mergedtoken])" end return new(charspace, key, n, display, tosquare, fromsquare) end end # if merged not provided # auto merge excluded tokens function SquareKey(key::Vector{Int}, charspace::NCharSpace{1}) ::SquareKey # check it's not ridiculous to merge if charspace.size > 2 * length(key) e = ArgumentError("Too many tokens remain to be merged, choose a larger square") throw(e) end # you know exactly how long the vector should be, preallocate. tomerge = Vector{Int}() for i in 1:charspace.size if !(i in key) push!(tomerge, i) end end merged = Tuple(i => j for (i, j) in zip(tomerge, key)) return SquareKey(key, charspace, merged) end SquareKey(txt::Txt, merged::Vararg{Pair{Int, Int}, N} where N) = SquareKey(checktokenised(txt), txt.charspace, merged) function show(io::IO, S::SquareKey) show(io, S.displaykey) end function show(io::IO, ::MIME"text/plain", S::SquareKey) println(io, "$(S.size)-Square Key:") display(S.displaykey) end function mapsquare(vect::Vector{Int}, square::SquareKey) return [square.tosquare[i] for i in vect] end function invmapsquare(vect::Vector{Int}, square::SquareKey) return [square.fromsquare[i] for i in vect] end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
2476
include("substitution.jl") include("transposition.jl") function issquare(int::Int) ::Bool return isqrt(int) ^ 2 == int end Replace(map::Pair{Int, Int}) = Lambda(x -> x == map[1] ? map[2] : x, identity) function Square(square_key::Vector{Int}, replace::Vector{Pair{Int, Int}}; square_indices::Vector{Char}) if !issquare(length(square_key)) error("Input key must be of square integer length (omit tokens to be merged)") end if any([i[1] in square_key for i in replace]) error("Tokens in the square key cannot be merged to other tokens (replace must involve only omitted tokens)") end if length(square_indices) != isqrt(length(square_key)) error("Number of indices squared must match the square size") end omitted = [i[1] for i in replace] S = Substitution([square_key ; omitted]) invert!(S) square = nothing for pair in replace square = Replace(pair)(square) end square = S(square) return square end function Polybius(square_key::Vector{Int}, replace::Pair{Int, Int}; square_indices::Vector{Char} = ['1', '2', '3', '4', '5']) if length(square_key) != 25 error("Input key must be of length 25 (omit tokens to be merged)") end if replace[1] in square_key error("Tokens in the square key cannot be merged to other tokens (replace must involve only omitted tokens)") end if length(square_indices) != 5 error("Polybius requires five indices exactly") end charspace = CharSpace(square_indices) ^ 2 polybius = Square(square_key, [replace]; square_indices = square_indices) polybius = Reassign(Alphabet, charspace)(polybius) return polybius end function ADFGX(square_key::Vector{Int}, replace::Pair{Int, Int}, columnar_args...; square_indices::Vector{Char} = ['A', 'D', 'F', 'G', 'X']) if length(square_key) != 25 error("Input key must be of length 25 (omit tokens to be merged)") end if replace[1] in square_key error("Tokens in the square key cannot be merged to other tokens (replace must involve only omitted tokens)") end if length(square_indices) != 5 error("Polybius requires five indices exactly") end charspace = CharSpace(square_indices) adfgx = Polybius(square_key, replace; square_indices = square_indices) adfgx = Retokenise(charspace ^ 2, charspace)(adfgx) adfgx = Columnar(columnar_args...)(adfgx) return adfgx end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
333
include("tuco.jl") include("transposition.jl") mutable struct Unshaper <: AbstractCipher columnar::ColumnarType end Unshaper(n::Int) = Unshaper(Columnar(n)) function apply(u::Unshaper, vect::Vector{Int}; safety_checks::Txt) new_tokens = unshape(vect, u.columnar) new_tokens = vec(new_tokens) return new_tokens end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
3792
using RxCiphers using Test using JLD2 include("test results.jl") @testset "RxCiphers.jl" begin using .TxtSamples # NCharSpace t = orwell.raw T = Txt(t) @test tokenise!(T).tokenised == orwell_tokens @test untokenise!(T).raw == t W_test = CharSpace(["1", "2", "3"]) W_squared = W_test ^ 2 @test W_squared.charmap == w_squared_charmap @test W_squared.linear[2, 3][1] == 8 @test Tuple(W_squared.cartesian[8]) == (2, 3) @test W_squared.units == W_test.charmap @test nchar(W_squared, 1) == W_test # Remains: # Txt nchar # union # Base. overloads # Substitution S = Substitution(26) @test S.mapping == collect(1:26) @test S.tokens == S.mapping @test S.size == 26 @test Atbash(15).mapping == atbash_15_mapping Caesar_test = Caesar(2, 26) @test Caesar_test.mapping == caesar_2_26_mapping Affine_test = Affine(3, 5, Alphabet) @test Affine_test.mapping == affine_3_5_26_mapping tokenise!(orwell) caesar_enc = apply(Caesar_test, orwell) @test caesar_enc.tokenised == caesar_2_26_orwell_tokens @test crack_Caesar(caesar_enc) == Caesar_test affine_enc = apply(Affine_test, orwell) @test affine_enc.tokenised == affine_3_5_26_orwell_tokens @test crack_Affine(affine_enc) == Affine_test invert!(Affine_test) @test Affine_test.mapping == affine_3_5_26_mapping_inv @test Caesar(2, 10) + Caesar(3, 10) == Caesar(5, 10) @test frequency_matched_Substitution(orwell).mapping == freq_match_orwell_mapping # Remains: # shift, switch, mutate # Base. overloads # Periodic Substitution tokenise!(orwell) Vigenere_test = Vigenere("ABBA", Alphabet) @test [i.mapping for i in Vigenere_test] == vigenere_ABBA_mappings Periodic_Affine_test = Periodic_Affine([1,3,5], [7,6,5], 26) @test [i.mapping for i in Periodic_Affine_test] == periodic_affine_123_765_mappings vigenere_enc = Vigenere_test(orwell) @test vigenere_enc.tokenised == vigenere_ABBA_orwell_tokens @test crack_Vigenere(vigenere_enc) == Vigenere_test periodic_affine_enc = Periodic_Affine_test(orwell) @test periodic_affine_enc.tokenised == periodic_affine_123_765_orwell_tokens @test crack_Periodic_Affine(periodic_affine_enc) == Periodic_Affine_test # Permutation Permutation_test = Permutation([1,5,3,2,4], true) permutation_enc = Permutation_test(orwell) @test permutation_enc.tokenised == permutation_15324_orwell_tokens invert!(Permutation_test) @test Permutation_test(permutation_enc).tokenised == orwell_tokens # MatrixTransposition MTrans_test = MatrixTransposition(6, true) mtrans_enc = MTrans_test(orwell) @test mtrans_enc.tokenised == mtrans_6_orwell_tokens invert!(MTrans_test) @test MTrans_test(mtrans_enc).tokenised == orwell_tokens # Columnar Columnar_test = Columnar([1,4,3,2], true) columnar_enc = Columnar_test(orwell) @test columnar_enc.tokenised == columnar_1432_orwell_tokens invert!(Columnar_test) @test Columnar_test(columnar_enc).tokenised == orwell_tokens # Remains: # Base. overloads # AbstractCipher & Encryption # Remains: # __constr__ # push!, iterate # apply, invert # Lambda, Retokenise, Reassign # Tuco # Remains: # __gramlogs, orthodot # appearances, frequencies # ioc, periodic_ioc # bbin_probabilities # find_period (retested in Periodic Substitution) # divisors, factorise # blocks, block_apply_stats, rolling, rolling_average, char_distribution # substructure_sigma, substructure_variance # Array functions # Remains: # switch, switch! # safe_reshape_2D # checkperm # affine # normalise! end
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
code
70870
const orwell_tokens = [9, 20, 23, 1, 19, 1, 2, 18, 9, 7, 8, 20, 3, 15, 12, 4, 4, 1, 25, 9, 14, 1, 16, 18, 9, 12, 1, 14, 4, 20, 8, 5, 3, 12, 15, 3, 11, 19, 23, 5, 18, 5, 19, 20, 18, 9, 11, 9, 14, 7, 20, 8, 9, 18, 20, 5, 5, 14, 23, 9, 14, 19, 20, 15, 14, 19, 13, 9, 20, 8, 8, 9, 19, 3, 8, 9, 14, 14, 21, 26, 26, 12, 5, 4, 9, 14, 20, 15, 8, 9, 19, 2, 18, 5, 1, 19, 20, 9, 14, 1, 14, 5, 6, 6, 15, 18, 20, 20, 15, 5, 19, 3, 1, 16, 5, 20, 8, 5, 22, 9, 12, 5, 23, 9, 14, 4, 19, 12, 9, 16, 16, 5, 4, 17, 21, 9, 3, 11, 12, 25, 20, 8, 18, 15, 21, 7, 8, 20, 8, 5, 7, 12, 1, 19, 19, 4, 15, 15, 18, 19, 15, 6, 22, 9, 3, 20, 15, 18, 25, 13, 1, 14, 19, 9, 15, 14, 19, 20, 8, 15, 21, 7, 8, 14, 15, 20, 17, 21, 9, 3, 11, 12, 25, 5, 14, 15, 21, 7, 8, 20, 15, 16, 18, 5, 22, 5, 14, 20, 1, 19, 23, 9, 18, 12, 15, 6, 7, 18, 9, 20, 20, 25, 4, 21, 19, 20, 6, 18, 15, 13, 5, 14, 20, 5, 18, 9, 14, 7, 1, 12, 15, 14, 7, 23, 9, 20, 8, 8, 9, 13, 20, 8, 5, 8, 1, 12, 12, 23, 1, 25, 19, 13, 5, 12, 20, 15, 6, 2, 15, 9, 12, 5, 4, 3, 1, 2, 2, 1, 7, 5, 1, 14, 4, 15, 12, 4, 18, 1, 7, 13, 1, 20, 19, 1, 20, 15, 14, 5, 5, 14, 4, 15, 6, 9, 20, 1, 3, 15, 12, 15, 21, 18, 5, 4, 16, 15, 19, 20, 5, 18, 20, 15, 15, 12, 1, 18, 7, 5, 6, 15, 18, 9, 14, 4, 15, 15, 18, 4, 9, 19, 16, 12, 1, 25, 8, 1, 4, 2, 5, 5, 14, 20, 1, 3, 11, 5, 4, 20, 15, 20, 8, 5, 23, 1, 12, 12, 9, 20, 4, 5, 16, 9, 3, 20, 5, 4, 19, 9, 13, 16, 12, 25, 1, 14, 5, 14, 15, 18, 13, 15, 21, 19, 6, 1, 3, 5, 13, 15, 18, 5, 20, 8, 1, 14, 1, 13, 5, 20, 18, 5, 23, 9, 4, 5, 20, 8, 5, 6, 1, 3, 5, 15, 6, 1, 13, 1, 14, 15, 6, 1, 2, 15, 21, 20, 6, 15, 18, 20, 25, 6, 9, 22, 5, 23, 9, 20, 8, 1, 8, 5, 1, 22, 25, 2, 12, 1, 3, 11, 13, 15, 21, 19, 20, 1, 3, 8, 5, 1, 14, 4, 18, 21, 7, 7, 5, 4, 12, 25, 8, 1, 14, 4, 19, 15, 13, 5, 6, 5, 1, 20, 21, 18, 5, 19, 23, 9, 14, 19, 20, 15, 14, 13, 1, 4, 5, 6, 15, 18, 20, 8, 5, 19, 20, 1, 9, 18, 19, 9, 20, 23, 1, 19, 14, 15, 21, 19, 5, 20, 18, 25, 9, 14, 7, 20, 8, 5, 12, 9, 6, 20, 5, 22, 5, 14, 1, 20, 20, 8, 5, 2, 5, 19, 20, 15, 6, 20, 9, 13, 5, 19, 9, 20, 23, 1, 19, 19, 5, 12, 4, 15, 13, 23, 15, 18, 11, 9, 14, 7, 1, 14, 4, 1, 20, 16, 18, 5, 19, 5, 14, 20, 20, 8, 5, 5, 12, 5, 3, 20, 18, 9, 3, 3, 21, 18, 18, 5, 14, 20, 23, 1, 19, 3, 21, 20, 15, 6, 6, 4, 21, 18, 9, 14, 7, 4, 1, 25, 12, 9, 7, 8, 20, 8, 15, 21, 18, 19, 9, 20, 23, 1, 19, 16, 1, 18, 20, 15, 6, 20, 8, 5, 5, 3, 15, 14, 15, 13, 25, 4, 18, 9, 22, 5, 9, 14, 16, 18, 5, 16, 1, 18, 1, 20, 9, 15, 14, 6, 15, 18, 8, 1, 20, 5, 23, 5, 5, 11, 20, 8, 5, 6, 12, 1, 20, 23, 1, 19, 19, 5, 22, 5, 14, 6, 12, 9, 7, 8, 20, 19, 21, 16, 1, 14, 4, 23, 9, 14, 19, 20, 15, 14, 23, 8, 15, 23, 1, 19, 20, 8, 9, 18, 20, 25, 14, 9, 14, 5, 1, 14, 4, 8, 1, 4, 1, 22, 1, 18, 9, 3, 15, 19, 5, 21, 12, 3, 5, 18, 1, 2, 15, 22, 5, 8, 9, 19, 18, 9, 7, 8, 20, 1, 14, 11, 12, 5, 23, 5, 14, 20, 19, 12, 15, 23, 12, 25, 18, 5, 19, 20, 9, 14, 7, 19, 5, 22, 5, 18, 1, 12, 20, 9, 13, 5, 19, 15, 14, 20, 8, 5, 23, 1, 25, 15, 14, 5, 1, 3, 8, 12, 1, 14, 4, 9, 14, 7, 15, 16, 16, 15, 19, 9, 20, 5, 20, 8, 5, 12, 9, 6, 20, 19, 8, 1, 6, 20, 20, 8, 5, 16, 15, 19, 20, 5, 18, 23, 9, 20, 8, 20, 8, 5, 5, 14, 15, 18, 13, 15, 21, 19, 6, 1, 3, 5, 7, 1, 26, 5, 4, 6, 18, 15, 13, 20, 8, 5, 23, 1, 12, 12, 9, 20, 23, 1, 19, 15, 14, 5, 15, 6, 20, 8, 15, 19, 5, 16, 9, 3, 20, 21, 18, 5, 19, 23, 8, 9, 3, 8, 1, 18, 5, 19, 15, 3, 15, 14, 20, 18, 9, 22, 5, 4, 20, 8, 1, 20, 20, 8, 5, 5, 25, 5, 19, 6, 15, 12, 12, 15, 23, 25, 15, 21, 1, 2, 15, 21, 20, 23, 8, 5, 14, 25, 15, 21, 13, 15, 22, 5, 2, 9, 7, 2, 18, 15, 20, 8, 5, 18, 9, 19, 23, 1, 20, 3, 8, 9, 14, 7, 25, 15, 21, 20, 8, 5, 3, 1, 16, 20, 9, 15, 14, 2, 5, 14, 5, 1, 20, 8, 9, 20, 18, 1, 14, 9, 14, 19, 9, 4, 5, 20, 8, 5, 6, 12, 1, 20, 1, 6, 18, 21, 9, 20, 25, 22, 15, 9, 3, 5, 23, 1, 19, 18, 5, 1, 4, 9, 14, 7, 15, 21, 20, 1, 12, 9, 19, 20, 15, 6, 6, 9, 7, 21, 18, 5, 19, 23, 8, 9, 3, 8, 8, 1, 4, 19, 15, 13, 5, 20, 8, 9, 14, 7, 20, 15, 4, 15, 23, 9, 20, 8, 20, 8, 5, 16, 18, 15, 4, 21, 3, 20, 9, 15, 14, 15, 6, 16, 9, 7, 9, 18, 15, 14, 20, 8, 5, 22, 15, 9, 3, 5, 3, 1, 13, 5, 6, 18, 15, 13, 1, 14, 15, 2, 12, 15, 14, 7, 13, 5, 20, 1, 12, 16, 12, 1, 17, 21, 5, 12, 9, 11, 5, 1, 4, 21, 12, 12, 5, 4, 13, 9, 18, 18, 15, 18, 23, 8, 9, 3, 8, 6, 15, 18, 13, 5, 4, 16, 1, 18, 20, 15, 6, 20, 8, 5, 19, 21, 18, 6, 1, 3, 5, 15, 6, 20, 8, 5, 18, 9, 7, 8, 20, 8, 1, 14, 4, 23, 1, 12, 12, 23, 9, 14, 19, 20, 15, 14, 20, 21, 18, 14, 5, 4, 1, 19, 23, 9, 20, 3, 8, 1, 14, 4, 20, 8, 5, 22, 15, 9, 3, 5, 19, 1, 14, 11, 19, 15, 13, 5, 23, 8, 1, 20, 20, 8, 15, 21, 7, 8, 20, 8, 5, 23, 15, 18, 4, 19, 23, 5, 18, 5, 19, 20, 9, 12, 12, 4, 9, 19, 20, 9, 14, 7, 21, 9, 19, 8, 1, 2, 12, 5, 20, 8, 5, 9, 14, 19, 20, 18, 21, 13, 5, 14, 20, 20, 8, 5, 20, 5, 12, 5, 19, 3, 18, 5, 5, 14, 9, 20, 23, 1, 19, 3, 1, 12, 12, 5, 4, 3, 15, 21, 12, 4, 2, 5, 4, 9, 13, 13, 5, 4, 2, 21, 20, 20, 8, 5, 18, 5, 23, 1, 19, 14, 15, 23, 1, 25, 15, 6, 19, 8, 21, 20, 20, 9, 14, 7, 9, 20, 15, 6, 6, 3, 15, 13, 16, 12, 5, 20, 5, 12, 25, 8, 5, 13, 15, 22, 5, 4, 15, 22, 5, 18, 20, 15, 20, 8, 5, 23, 9, 14, 4, 15, 23, 1, 19, 13, 1, 12, 12, 9, 19, 8, 6, 18, 1, 9, 12, 6, 9, 7, 21, 18, 5, 20, 8, 5, 13, 5, 1, 7, 18, 5, 14, 5, 19, 19, 15, 6, 8, 9, 19, 2, 15, 4, 25, 13, 5, 18, 5, 12, 25, 5, 13, 16, 8, 1, 19, 9, 26, 5, 4, 2, 25, 20, 8, 5, 2, 12, 21, 5, 15, 22, 5, 18, 1, 12, 12, 19, 23, 8, 9, 3, 8, 23, 5, 18, 5, 20, 8, 5, 21, 14, 9, 6, 15, 18, 13, 15, 6, 20, 8, 5, 16, 1, 18, 20, 25, 8, 9, 19, 8, 1, 9, 18, 23, 1, 19, 22, 5, 18, 25, 6, 1, 9, 18, 8, 9, 19, 6, 1, 3, 5, 14, 1, 20, 21, 18, 1, 12, 12, 25, 19, 1, 14, 7, 21, 9, 14, 5, 8, 9, 19, 19, 11, 9, 14, 18, 15, 21, 7, 8, 5, 14, 5, 4, 2, 25, 3, 15, 1, 18, 19, 5, 19, 15, 1, 16, 1, 14, 4, 2, 12, 21, 14, 20, 18, 1, 26, 15, 18, 2, 12, 1, 4, 5, 19, 1, 14, 4, 20, 8, 5, 3, 15, 12, 4, 15, 6, 20, 8, 5, 23, 9, 14, 20, 5, 18, 20, 8, 1, 20, 8, 1, 4, 10, 21, 19, 20, 5, 14, 4, 5, 4, 15, 21, 20, 19, 9, 4, 5, 5, 22, 5, 14, 20, 8, 18, 15, 21, 7, 8, 20, 8, 5, 19, 8, 21, 20, 23, 9, 14, 4, 15, 23, 16, 1, 14, 5, 20, 8, 5, 23, 15, 18, 12, 4, 12, 15, 15, 11, 5, 4, 3, 15, 12, 4, 4, 15, 23, 14, 9, 14, 20, 8, 5, 19, 20, 18, 5, 5, 20, 12, 9, 20, 20, 12, 5, 5, 4, 4, 9, 5, 19, 15, 6, 23, 9, 14, 4, 23, 5, 18, 5, 23, 8, 9, 18, 12, 9, 14, 7, 4, 21, 19, 20, 1, 14, 4, 20, 15, 18, 14, 16, 1, 16, 5, 18, 9, 14, 20, 15, 19, 16, 9, 18, 1, 12, 19, 1, 14, 4, 20, 8, 15, 21, 7, 8, 20, 8, 5, 19, 21, 14, 23, 1, 19, 19, 8, 9, 14, 9, 14, 7, 1, 14, 4, 20, 8, 5, 19, 11, 25, 1, 8, 1, 18, 19, 8, 2, 12, 21, 5, 20, 8, 5, 18, 5, 19, 5, 5, 13, 5, 4, 20, 15, 2, 5, 14, 15, 3, 15, 12, 15, 21, 18, 9, 14, 1, 14, 25, 20, 8, 9, 14, 7, 5, 24, 3, 5, 16, 20, 20, 8, 5, 16, 15, 19, 20, 5, 18, 19, 20, 8, 1, 20, 23, 5, 18, 5, 16, 12, 1, 19, 20, 5, 18, 5, 4, 5, 22, 5, 18, 25, 23, 8, 5, 18, 5, 20, 8, 5, 2, 12, 1, 3, 11, 13, 15, 21, 19, 20, 1, 3, 8, 9, 15, 4, 6, 1, 3, 5, 7, 1, 26, 5, 4, 4, 15, 23, 14, 6, 18, 15, 13, 5, 22, 5, 18, 25, 3, 15, 13, 13, 1, 14, 4, 9, 14, 7, 3, 15, 18, 14, 5, 18, 20, 8, 5, 18, 5, 23, 1, 19, 15, 14, 5, 15, 14, 20, 8, 5, 8, 15, 21, 19, 5, 6, 18, 15, 14, 20, 9, 13, 13, 5, 4, 9, 1, 20, 5, 12, 25, 15, 16, 16, 15, 19, 9, 20, 5, 2, 9, 7, 2, 18, 15, 20, 8, 5, 18, 9, 19, 23, 1, 20, 3, 8, 9, 14, 7, 25, 15, 21, 20, 8, 5, 3, 1, 16, 20, 9, 15, 14, 19, 1, 9, 4, 23, 8, 9, 12, 5, 20, 8, 5, 4, 1, 18, 11, 5, 25, 5, 19, 12, 15, 15, 11, 5, 4, 4, 5, 5, 16, 9, 14, 20, 15, 23, 9, 14, 19, 20, 15, 14, 19, 15, 23, 14, 4, 15, 23, 14, 1, 20, 19, 20, 18, 5, 5, 20, 12, 5, 22, 5, 12, 1, 14, 15, 20, 8, 5, 18, 16, 15, 19, 20, 5, 18, 20, 15, 18, 14, 1, 20, 15, 14, 5, 3, 15, 18, 14, 5, 18, 6, 12, 1, 16, 16, 5, 4, 6, 9, 20, 6, 21, 12, 12, 25, 9, 14, 20, 8, 5, 23, 9, 14, 4, 1, 12, 20, 5, 18, 14, 1, 20, 5, 12, 25, 3, 15, 22, 5, 18, 9, 14, 7, 1, 14, 4, 21, 14, 3, 15, 22, 5, 18, 9, 14, 7, 20, 8, 5, 19, 9, 14, 7, 12, 5, 23, 15, 18, 4, 9, 14, 7, 19, 15, 3, 9, 14, 20, 8, 5, 6, 1, 18, 4, 9, 19, 20, 1, 14, 3, 5, 1, 8, 5, 12, 9, 3, 15, 16, 20, 5, 18, 19, 11, 9, 13, 13, 5, 4, 4, 15, 23, 14, 2, 5, 20, 23, 5, 5, 14, 20, 8, 5, 18, 15, 15, 6, 19, 8, 15, 22, 5, 18, 5, 4, 6, 15, 18, 1, 14, 9, 14, 19, 20, 1, 14, 20, 12, 9, 11, 5, 1, 2, 12, 21, 5, 2, 15, 20, 20, 12, 5, 1, 14, 4, 4, 1, 18, 20, 5, 4, 1, 23, 1, 25, 1, 7, 1, 9, 14, 23, 9, 20, 8, 1, 3, 21, 18, 22, 9, 14, 7, 6, 12, 9, 7, 8, 20, 9, 20, 23, 1, 19, 20, 8, 5, 16, 15, 12, 9, 3, 5, 16, 1, 20, 18, 15, 12, 19, 14, 15, 15, 16, 9, 14, 7, 9, 14, 20, 15, 16, 5, 15, 16, 12, 5, 19, 23, 9, 14, 4, 15, 23, 19, 20, 8, 5, 16, 1, 20, 18, 15, 12, 19, 4, 9, 4, 14, 15, 20, 13, 1, 20, 20, 5, 18, 8, 15, 23, 5, 22, 5, 18, 15, 14, 12, 25, 20, 8, 5, 20, 8, 15, 21, 7, 8, 20, 16, 15, 12, 9, 3, 5, 13, 1, 20, 20, 5, 18, 5, 4] atbash_15_mapping = reverse!(collect(1:15)) caesar_2_26_mapping = circshift(collect(1:26), -2) affine_3_5_26_mapping = [6, 9, 12, 15, 18, 21, 24, 1, 4, 7, 10, 13, 16, 19, 22, 25, 2, 5, 8, 11, 14, 17, 20, 23, 26, 3] affine_3_5_26_mapping_inv = [8, 17, 26, 9, 18, 1, 10, 19, 2, 11, 20, 3, 12, 21, 4, 13, 22, 5, 14, 23, 6, 15, 24, 7, 16, 25] caesar_2_26_orwell_tokens = [11, 22, 25, 3, 21, 3, 4, 20, 11, 9, 10, 22, 5, 17, 14, 6, 6, 3, 1, 11, 16, 3, 18, 20, 11, 14, 3, 16, 6, 22, 10, 7, 5, 14, 17, 5, 13, 21, 25, 7, 20, 7, 21, 22, 20, 11, 13, 11, 16, 9, 22, 10, 11, 20, 22, 7, 7, 16, 25, 11, 16, 21, 22, 17, 16, 21, 15, 11, 22, 10, 10, 11, 21, 5, 10, 11, 16, 16, 23, 2, 2, 14, 7, 6, 11, 16, 22, 17, 10, 11, 21, 4, 20, 7, 3, 21, 22, 11, 16, 3, 16, 7, 8, 8, 17, 20, 22, 22, 17, 7, 21, 5, 3, 18, 7, 22, 10, 7, 24, 11, 14, 7, 25, 11, 16, 6, 21, 14, 11, 18, 18, 7, 6, 19, 23, 11, 5, 13, 14, 1, 22, 10, 20, 17, 23, 9, 10, 22, 10, 7, 9, 14, 3, 21, 21, 6, 17, 17, 20, 21, 17, 8, 24, 11, 5, 22, 17, 20, 1, 15, 3, 16, 21, 11, 17, 16, 21, 22, 10, 17, 23, 9, 10, 16, 17, 22, 19, 23, 11, 5, 13, 14, 1, 7, 16, 17, 23, 9, 10, 22, 17, 18, 20, 7, 24, 7, 16, 22, 3, 21, 25, 11, 20, 14, 17, 8, 9, 20, 11, 22, 22, 1, 6, 23, 21, 22, 8, 20, 17, 15, 7, 16, 22, 7, 20, 11, 16, 9, 3, 14, 17, 16, 9, 25, 11, 22, 10, 10, 11, 15, 22, 10, 7, 10, 3, 14, 14, 25, 3, 1, 21, 15, 7, 14, 22, 17, 8, 4, 17, 11, 14, 7, 6, 5, 3, 4, 4, 3, 9, 7, 3, 16, 6, 17, 14, 6, 20, 3, 9, 15, 3, 22, 21, 3, 22, 17, 16, 7, 7, 16, 6, 17, 8, 11, 22, 3, 5, 17, 14, 17, 23, 20, 7, 6, 18, 17, 21, 22, 7, 20, 22, 17, 17, 14, 3, 20, 9, 7, 8, 17, 20, 11, 16, 6, 17, 17, 20, 6, 11, 21, 18, 14, 3, 1, 10, 3, 6, 4, 7, 7, 16, 22, 3, 5, 13, 7, 6, 22, 17, 22, 10, 7, 25, 3, 14, 14, 11, 22, 6, 7, 18, 11, 5, 22, 7, 6, 21, 11, 15, 18, 14, 1, 3, 16, 7, 16, 17, 20, 15, 17, 23, 21, 8, 3, 5, 7, 15, 17, 20, 7, 22, 10, 3, 16, 3, 15, 7, 22, 20, 7, 25, 11, 6, 7, 22, 10, 7, 8, 3, 5, 7, 17, 8, 3, 15, 3, 16, 17, 8, 3, 4, 17, 23, 22, 8, 17, 20, 22, 1, 8, 11, 24, 7, 25, 11, 22, 10, 3, 10, 7, 3, 24, 1, 4, 14, 3, 5, 13, 15, 17, 23, 21, 22, 3, 5, 10, 7, 3, 16, 6, 20, 23, 9, 9, 7, 6, 14, 1, 10, 3, 16, 6, 21, 17, 15, 7, 8, 7, 3, 22, 23, 20, 7, 21, 25, 11, 16, 21, 22, 17, 16, 15, 3, 6, 7, 8, 17, 20, 22, 10, 7, 21, 22, 3, 11, 20, 21, 11, 22, 25, 3, 21, 16, 17, 23, 21, 7, 22, 20, 1, 11, 16, 9, 22, 10, 7, 14, 11, 8, 22, 7, 24, 7, 16, 3, 22, 22, 10, 7, 4, 7, 21, 22, 17, 8, 22, 11, 15, 7, 21, 11, 22, 25, 3, 21, 21, 7, 14, 6, 17, 15, 25, 17, 20, 13, 11, 16, 9, 3, 16, 6, 3, 22, 18, 20, 7, 21, 7, 16, 22, 22, 10, 7, 7, 14, 7, 5, 22, 20, 11, 5, 5, 23, 20, 20, 7, 16, 22, 25, 3, 21, 5, 23, 22, 17, 8, 8, 6, 23, 20, 11, 16, 9, 6, 3, 1, 14, 11, 9, 10, 22, 10, 17, 23, 20, 21, 11, 22, 25, 3, 21, 18, 3, 20, 22, 17, 8, 22, 10, 7, 7, 5, 17, 16, 17, 15, 1, 6, 20, 11, 24, 7, 11, 16, 18, 20, 7, 18, 3, 20, 3, 22, 11, 17, 16, 8, 17, 20, 10, 3, 22, 7, 25, 7, 7, 13, 22, 10, 7, 8, 14, 3, 22, 25, 3, 21, 21, 7, 24, 7, 16, 8, 14, 11, 9, 10, 22, 21, 23, 18, 3, 16, 6, 25, 11, 16, 21, 22, 17, 16, 25, 10, 17, 25, 3, 21, 22, 10, 11, 20, 22, 1, 16, 11, 16, 7, 3, 16, 6, 10, 3, 6, 3, 24, 3, 20, 11, 5, 17, 21, 7, 23, 14, 5, 7, 20, 3, 4, 17, 24, 7, 10, 11, 21, 20, 11, 9, 10, 22, 3, 16, 13, 14, 7, 25, 7, 16, 22, 21, 14, 17, 25, 14, 1, 20, 7, 21, 22, 11, 16, 9, 21, 7, 24, 7, 20, 3, 14, 22, 11, 15, 7, 21, 17, 16, 22, 10, 7, 25, 3, 1, 17, 16, 7, 3, 5, 10, 14, 3, 16, 6, 11, 16, 9, 17, 18, 18, 17, 21, 11, 22, 7, 22, 10, 7, 14, 11, 8, 22, 21, 10, 3, 8, 22, 22, 10, 7, 18, 17, 21, 22, 7, 20, 25, 11, 22, 10, 22, 10, 7, 7, 16, 17, 20, 15, 17, 23, 21, 8, 3, 5, 7, 9, 3, 2, 7, 6, 8, 20, 17, 15, 22, 10, 7, 25, 3, 14, 14, 11, 22, 25, 3, 21, 17, 16, 7, 17, 8, 22, 10, 17, 21, 7, 18, 11, 5, 22, 23, 20, 7, 21, 25, 10, 11, 5, 10, 3, 20, 7, 21, 17, 5, 17, 16, 22, 20, 11, 24, 7, 6, 22, 10, 3, 22, 22, 10, 7, 7, 1, 7, 21, 8, 17, 14, 14, 17, 25, 1, 17, 23, 3, 4, 17, 23, 22, 25, 10, 7, 16, 1, 17, 23, 15, 17, 24, 7, 4, 11, 9, 4, 20, 17, 22, 10, 7, 20, 11, 21, 25, 3, 22, 5, 10, 11, 16, 9, 1, 17, 23, 22, 10, 7, 5, 3, 18, 22, 11, 17, 16, 4, 7, 16, 7, 3, 22, 10, 11, 22, 20, 3, 16, 11, 16, 21, 11, 6, 7, 22, 10, 7, 8, 14, 3, 22, 3, 8, 20, 23, 11, 22, 1, 24, 17, 11, 5, 7, 25, 3, 21, 20, 7, 3, 6, 11, 16, 9, 17, 23, 22, 3, 14, 11, 21, 22, 17, 8, 8, 11, 9, 23, 20, 7, 21, 25, 10, 11, 5, 10, 10, 3, 6, 21, 17, 15, 7, 22, 10, 11, 16, 9, 22, 17, 6, 17, 25, 11, 22, 10, 22, 10, 7, 18, 20, 17, 6, 23, 5, 22, 11, 17, 16, 17, 8, 18, 11, 9, 11, 20, 17, 16, 22, 10, 7, 24, 17, 11, 5, 7, 5, 3, 15, 7, 8, 20, 17, 15, 3, 16, 17, 4, 14, 17, 16, 9, 15, 7, 22, 3, 14, 18, 14, 3, 19, 23, 7, 14, 11, 13, 7, 3, 6, 23, 14, 14, 7, 6, 15, 11, 20, 20, 17, 20, 25, 10, 11, 5, 10, 8, 17, 20, 15, 7, 6, 18, 3, 20, 22, 17, 8, 22, 10, 7, 21, 23, 20, 8, 3, 5, 7, 17, 8, 22, 10, 7, 20, 11, 9, 10, 22, 10, 3, 16, 6, 25, 3, 14, 14, 25, 11, 16, 21, 22, 17, 16, 22, 23, 20, 16, 7, 6, 3, 21, 25, 11, 22, 5, 10, 3, 16, 6, 22, 10, 7, 24, 17, 11, 5, 7, 21, 3, 16, 13, 21, 17, 15, 7, 25, 10, 3, 22, 22, 10, 17, 23, 9, 10, 22, 10, 7, 25, 17, 20, 6, 21, 25, 7, 20, 7, 21, 22, 11, 14, 14, 6, 11, 21, 22, 11, 16, 9, 23, 11, 21, 10, 3, 4, 14, 7, 22, 10, 7, 11, 16, 21, 22, 20, 23, 15, 7, 16, 22, 22, 10, 7, 22, 7, 14, 7, 21, 5, 20, 7, 7, 16, 11, 22, 25, 3, 21, 5, 3, 14, 14, 7, 6, 5, 17, 23, 14, 6, 4, 7, 6, 11, 15, 15, 7, 6, 4, 23, 22, 22, 10, 7, 20, 7, 25, 3, 21, 16, 17, 25, 3, 1, 17, 8, 21, 10, 23, 22, 22, 11, 16, 9, 11, 22, 17, 8, 8, 5, 17, 15, 18, 14, 7, 22, 7, 14, 1, 10, 7, 15, 17, 24, 7, 6, 17, 24, 7, 20, 22, 17, 22, 10, 7, 25, 11, 16, 6, 17, 25, 3, 21, 15, 3, 14, 14, 11, 21, 10, 8, 20, 3, 11, 14, 8, 11, 9, 23, 20, 7, 22, 10, 7, 15, 7, 3, 9, 20, 7, 16, 7, 21, 21, 17, 8, 10, 11, 21, 4, 17, 6, 1, 15, 7, 20, 7, 14, 1, 7, 15, 18, 10, 3, 21, 11, 2, 7, 6, 4, 1, 22, 10, 7, 4, 14, 23, 7, 17, 24, 7, 20, 3, 14, 14, 21, 25, 10, 11, 5, 10, 25, 7, 20, 7, 22, 10, 7, 23, 16, 11, 8, 17, 20, 15, 17, 8, 22, 10, 7, 18, 3, 20, 22, 1, 10, 11, 21, 10, 3, 11, 20, 25, 3, 21, 24, 7, 20, 1, 8, 3, 11, 20, 10, 11, 21, 8, 3, 5, 7, 16, 3, 22, 23, 20, 3, 14, 14, 1, 21, 3, 16, 9, 23, 11, 16, 7, 10, 11, 21, 21, 13, 11, 16, 20, 17, 23, 9, 10, 7, 16, 7, 6, 4, 1, 5, 17, 3, 20, 21, 7, 21, 17, 3, 18, 3, 16, 6, 4, 14, 23, 16, 22, 20, 3, 2, 17, 20, 4, 14, 3, 6, 7, 21, 3, 16, 6, 22, 10, 7, 5, 17, 14, 6, 17, 8, 22, 10, 7, 25, 11, 16, 22, 7, 20, 22, 10, 3, 22, 10, 3, 6, 12, 23, 21, 22, 7, 16, 6, 7, 6, 17, 23, 22, 21, 11, 6, 7, 7, 24, 7, 16, 22, 10, 20, 17, 23, 9, 10, 22, 10, 7, 21, 10, 23, 22, 25, 11, 16, 6, 17, 25, 18, 3, 16, 7, 22, 10, 7, 25, 17, 20, 14, 6, 14, 17, 17, 13, 7, 6, 5, 17, 14, 6, 6, 17, 25, 16, 11, 16, 22, 10, 7, 21, 22, 20, 7, 7, 22, 14, 11, 22, 22, 14, 7, 7, 6, 6, 11, 7, 21, 17, 8, 25, 11, 16, 6, 25, 7, 20, 7, 25, 10, 11, 20, 14, 11, 16, 9, 6, 23, 21, 22, 3, 16, 6, 22, 17, 20, 16, 18, 3, 18, 7, 20, 11, 16, 22, 17, 21, 18, 11, 20, 3, 14, 21, 3, 16, 6, 22, 10, 17, 23, 9, 10, 22, 10, 7, 21, 23, 16, 25, 3, 21, 21, 10, 11, 16, 11, 16, 9, 3, 16, 6, 22, 10, 7, 21, 13, 1, 3, 10, 3, 20, 21, 10, 4, 14, 23, 7, 22, 10, 7, 20, 7, 21, 7, 7, 15, 7, 6, 22, 17, 4, 7, 16, 17, 5, 17, 14, 17, 23, 20, 11, 16, 3, 16, 1, 22, 10, 11, 16, 9, 7, 26, 5, 7, 18, 22, 22, 10, 7, 18, 17, 21, 22, 7, 20, 21, 22, 10, 3, 22, 25, 7, 20, 7, 18, 14, 3, 21, 22, 7, 20, 7, 6, 7, 24, 7, 20, 1, 25, 10, 7, 20, 7, 22, 10, 7, 4, 14, 3, 5, 13, 15, 17, 23, 21, 22, 3, 5, 10, 11, 17, 6, 8, 3, 5, 7, 9, 3, 2, 7, 6, 6, 17, 25, 16, 8, 20, 17, 15, 7, 24, 7, 20, 1, 5, 17, 15, 15, 3, 16, 6, 11, 16, 9, 5, 17, 20, 16, 7, 20, 22, 10, 7, 20, 7, 25, 3, 21, 17, 16, 7, 17, 16, 22, 10, 7, 10, 17, 23, 21, 7, 8, 20, 17, 16, 22, 11, 15, 15, 7, 6, 11, 3, 22, 7, 14, 1, 17, 18, 18, 17, 21, 11, 22, 7, 4, 11, 9, 4, 20, 17, 22, 10, 7, 20, 11, 21, 25, 3, 22, 5, 10, 11, 16, 9, 1, 17, 23, 22, 10, 7, 5, 3, 18, 22, 11, 17, 16, 21, 3, 11, 6, 25, 10, 11, 14, 7, 22, 10, 7, 6, 3, 20, 13, 7, 1, 7, 21, 14, 17, 17, 13, 7, 6, 6, 7, 7, 18, 11, 16, 22, 17, 25, 11, 16, 21, 22, 17, 16, 21, 17, 25, 16, 6, 17, 25, 16, 3, 22, 21, 22, 20, 7, 7, 22, 14, 7, 24, 7, 14, 3, 16, 17, 22, 10, 7, 20, 18, 17, 21, 22, 7, 20, 22, 17, 20, 16, 3, 22, 17, 16, 7, 5, 17, 20, 16, 7, 20, 8, 14, 3, 18, 18, 7, 6, 8, 11, 22, 8, 23, 14, 14, 1, 11, 16, 22, 10, 7, 25, 11, 16, 6, 3, 14, 22, 7, 20, 16, 3, 22, 7, 14, 1, 5, 17, 24, 7, 20, 11, 16, 9, 3, 16, 6, 23, 16, 5, 17, 24, 7, 20, 11, 16, 9, 22, 10, 7, 21, 11, 16, 9, 14, 7, 25, 17, 20, 6, 11, 16, 9, 21, 17, 5, 11, 16, 22, 10, 7, 8, 3, 20, 6, 11, 21, 22, 3, 16, 5, 7, 3, 10, 7, 14, 11, 5, 17, 18, 22, 7, 20, 21, 13, 11, 15, 15, 7, 6, 6, 17, 25, 16, 4, 7, 22, 25, 7, 7, 16, 22, 10, 7, 20, 17, 17, 8, 21, 10, 17, 24, 7, 20, 7, 6, 8, 17, 20, 3, 16, 11, 16, 21, 22, 3, 16, 22, 14, 11, 13, 7, 3, 4, 14, 23, 7, 4, 17, 22, 22, 14, 7, 3, 16, 6, 6, 3, 20, 22, 7, 6, 3, 25, 3, 1, 3, 9, 3, 11, 16, 25, 11, 22, 10, 3, 5, 23, 20, 24, 11, 16, 9, 8, 14, 11, 9, 10, 22, 11, 22, 25, 3, 21, 22, 10, 7, 18, 17, 14, 11, 5, 7, 18, 3, 22, 20, 17, 14, 21, 16, 17, 17, 18, 11, 16, 9, 11, 16, 22, 17, 18, 7, 17, 18, 14, 7, 21, 25, 11, 16, 6, 17, 25, 21, 22, 10, 7, 18, 3, 22, 20, 17, 14, 21, 6, 11, 6, 16, 17, 22, 15, 3, 22, 22, 7, 20, 10, 17, 25, 7, 24, 7, 20, 17, 16, 14, 1, 22, 10, 7, 22, 10, 17, 23, 9, 10, 22, 18, 17, 14, 11, 5, 7, 15, 3, 22, 22, 7, 20, 7, 6] affine_3_5_26_orwell_tokens = [4, 11, 20, 6, 8, 6, 9, 5, 4, 24, 1, 11, 12, 22, 13, 15, 15, 6, 26, 4, 19, 6, 25, 5, 4, 13, 6, 19, 15, 11, 1, 18, 12, 13, 22, 12, 10, 8, 20, 18, 5, 18, 8, 11, 5, 4, 10, 4, 19, 24, 11, 1, 4, 5, 11, 18, 18, 19, 20, 4, 19, 8, 11, 22, 19, 8, 16, 4, 11, 1, 1, 4, 8, 12, 1, 4, 19, 19, 14, 3, 3, 13, 18, 15, 4, 19, 11, 22, 1, 4, 8, 9, 5, 18, 6, 8, 11, 4, 19, 6, 19, 18, 21, 21, 22, 5, 11, 11, 22, 18, 8, 12, 6, 25, 18, 11, 1, 18, 17, 4, 13, 18, 20, 4, 19, 15, 8, 13, 4, 25, 25, 18, 15, 2, 14, 4, 12, 10, 13, 26, 11, 1, 5, 22, 14, 24, 1, 11, 1, 18, 24, 13, 6, 8, 8, 15, 22, 22, 5, 8, 22, 21, 17, 4, 12, 11, 22, 5, 26, 16, 6, 19, 8, 4, 22, 19, 8, 11, 1, 22, 14, 24, 1, 19, 22, 11, 2, 14, 4, 12, 10, 13, 26, 18, 19, 22, 14, 24, 1, 11, 22, 25, 5, 18, 17, 18, 19, 11, 6, 8, 20, 4, 5, 13, 22, 21, 24, 5, 4, 11, 11, 26, 15, 14, 8, 11, 21, 5, 22, 16, 18, 19, 11, 18, 5, 4, 19, 24, 6, 13, 22, 19, 24, 20, 4, 11, 1, 1, 4, 16, 11, 1, 18, 1, 6, 13, 13, 20, 6, 26, 8, 16, 18, 13, 11, 22, 21, 9, 22, 4, 13, 18, 15, 12, 6, 9, 9, 6, 24, 18, 6, 19, 15, 22, 13, 15, 5, 6, 24, 16, 6, 11, 8, 6, 11, 22, 19, 18, 18, 19, 15, 22, 21, 4, 11, 6, 12, 22, 13, 22, 14, 5, 18, 15, 25, 22, 8, 11, 18, 5, 11, 22, 22, 13, 6, 5, 24, 18, 21, 22, 5, 4, 19, 15, 22, 22, 5, 15, 4, 8, 25, 13, 6, 26, 1, 6, 15, 9, 18, 18, 19, 11, 6, 12, 10, 18, 15, 11, 22, 11, 1, 18, 20, 6, 13, 13, 4, 11, 15, 18, 25, 4, 12, 11, 18, 15, 8, 4, 16, 25, 13, 26, 6, 19, 18, 19, 22, 5, 16, 22, 14, 8, 21, 6, 12, 18, 16, 22, 5, 18, 11, 1, 6, 19, 6, 16, 18, 11, 5, 18, 20, 4, 15, 18, 11, 1, 18, 21, 6, 12, 18, 22, 21, 6, 16, 6, 19, 22, 21, 6, 9, 22, 14, 11, 21, 22, 5, 11, 26, 21, 4, 17, 18, 20, 4, 11, 1, 6, 1, 18, 6, 17, 26, 9, 13, 6, 12, 10, 16, 22, 14, 8, 11, 6, 12, 1, 18, 6, 19, 15, 5, 14, 24, 24, 18, 15, 13, 26, 1, 6, 19, 15, 8, 22, 16, 18, 21, 18, 6, 11, 14, 5, 18, 8, 20, 4, 19, 8, 11, 22, 19, 16, 6, 15, 18, 21, 22, 5, 11, 1, 18, 8, 11, 6, 4, 5, 8, 4, 11, 20, 6, 8, 19, 22, 14, 8, 18, 11, 5, 26, 4, 19, 24, 11, 1, 18, 13, 4, 21, 11, 18, 17, 18, 19, 6, 11, 11, 1, 18, 9, 18, 8, 11, 22, 21, 11, 4, 16, 18, 8, 4, 11, 20, 6, 8, 8, 18, 13, 15, 22, 16, 20, 22, 5, 10, 4, 19, 24, 6, 19, 15, 6, 11, 25, 5, 18, 8, 18, 19, 11, 11, 1, 18, 18, 13, 18, 12, 11, 5, 4, 12, 12, 14, 5, 5, 18, 19, 11, 20, 6, 8, 12, 14, 11, 22, 21, 21, 15, 14, 5, 4, 19, 24, 15, 6, 26, 13, 4, 24, 1, 11, 1, 22, 14, 5, 8, 4, 11, 20, 6, 8, 25, 6, 5, 11, 22, 21, 11, 1, 18, 18, 12, 22, 19, 22, 16, 26, 15, 5, 4, 17, 18, 4, 19, 25, 5, 18, 25, 6, 5, 6, 11, 4, 22, 19, 21, 22, 5, 1, 6, 11, 18, 20, 18, 18, 10, 11, 1, 18, 21, 13, 6, 11, 20, 6, 8, 8, 18, 17, 18, 19, 21, 13, 4, 24, 1, 11, 8, 14, 25, 6, 19, 15, 20, 4, 19, 8, 11, 22, 19, 20, 1, 22, 20, 6, 8, 11, 1, 4, 5, 11, 26, 19, 4, 19, 18, 6, 19, 15, 1, 6, 15, 6, 17, 6, 5, 4, 12, 22, 8, 18, 14, 13, 12, 18, 5, 6, 9, 22, 17, 18, 1, 4, 8, 5, 4, 24, 1, 11, 6, 19, 10, 13, 18, 20, 18, 19, 11, 8, 13, 22, 20, 13, 26, 5, 18, 8, 11, 4, 19, 24, 8, 18, 17, 18, 5, 6, 13, 11, 4, 16, 18, 8, 22, 19, 11, 1, 18, 20, 6, 26, 22, 19, 18, 6, 12, 1, 13, 6, 19, 15, 4, 19, 24, 22, 25, 25, 22, 8, 4, 11, 18, 11, 1, 18, 13, 4, 21, 11, 8, 1, 6, 21, 11, 11, 1, 18, 25, 22, 8, 11, 18, 5, 20, 4, 11, 1, 11, 1, 18, 18, 19, 22, 5, 16, 22, 14, 8, 21, 6, 12, 18, 24, 6, 3, 18, 15, 21, 5, 22, 16, 11, 1, 18, 20, 6, 13, 13, 4, 11, 20, 6, 8, 22, 19, 18, 22, 21, 11, 1, 22, 8, 18, 25, 4, 12, 11, 14, 5, 18, 8, 20, 1, 4, 12, 1, 6, 5, 18, 8, 22, 12, 22, 19, 11, 5, 4, 17, 18, 15, 11, 1, 6, 11, 11, 1, 18, 18, 26, 18, 8, 21, 22, 13, 13, 22, 20, 26, 22, 14, 6, 9, 22, 14, 11, 20, 1, 18, 19, 26, 22, 14, 16, 22, 17, 18, 9, 4, 24, 9, 5, 22, 11, 1, 18, 5, 4, 8, 20, 6, 11, 12, 1, 4, 19, 24, 26, 22, 14, 11, 1, 18, 12, 6, 25, 11, 4, 22, 19, 9, 18, 19, 18, 6, 11, 1, 4, 11, 5, 6, 19, 4, 19, 8, 4, 15, 18, 11, 1, 18, 21, 13, 6, 11, 6, 21, 5, 14, 4, 11, 26, 17, 22, 4, 12, 18, 20, 6, 8, 5, 18, 6, 15, 4, 19, 24, 22, 14, 11, 6, 13, 4, 8, 11, 22, 21, 21, 4, 24, 14, 5, 18, 8, 20, 1, 4, 12, 1, 1, 6, 15, 8, 22, 16, 18, 11, 1, 4, 19, 24, 11, 22, 15, 22, 20, 4, 11, 1, 11, 1, 18, 25, 5, 22, 15, 14, 12, 11, 4, 22, 19, 22, 21, 25, 4, 24, 4, 5, 22, 19, 11, 1, 18, 17, 22, 4, 12, 18, 12, 6, 16, 18, 21, 5, 22, 16, 6, 19, 22, 9, 13, 22, 19, 24, 16, 18, 11, 6, 13, 25, 13, 6, 2, 14, 18, 13, 4, 10, 18, 6, 15, 14, 13, 13, 18, 15, 16, 4, 5, 5, 22, 5, 20, 1, 4, 12, 1, 21, 22, 5, 16, 18, 15, 25, 6, 5, 11, 22, 21, 11, 1, 18, 8, 14, 5, 21, 6, 12, 18, 22, 21, 11, 1, 18, 5, 4, 24, 1, 11, 1, 6, 19, 15, 20, 6, 13, 13, 20, 4, 19, 8, 11, 22, 19, 11, 14, 5, 19, 18, 15, 6, 8, 20, 4, 11, 12, 1, 6, 19, 15, 11, 1, 18, 17, 22, 4, 12, 18, 8, 6, 19, 10, 8, 22, 16, 18, 20, 1, 6, 11, 11, 1, 22, 14, 24, 1, 11, 1, 18, 20, 22, 5, 15, 8, 20, 18, 5, 18, 8, 11, 4, 13, 13, 15, 4, 8, 11, 4, 19, 24, 14, 4, 8, 1, 6, 9, 13, 18, 11, 1, 18, 4, 19, 8, 11, 5, 14, 16, 18, 19, 11, 11, 1, 18, 11, 18, 13, 18, 8, 12, 5, 18, 18, 19, 4, 11, 20, 6, 8, 12, 6, 13, 13, 18, 15, 12, 22, 14, 13, 15, 9, 18, 15, 4, 16, 16, 18, 15, 9, 14, 11, 11, 1, 18, 5, 18, 20, 6, 8, 19, 22, 20, 6, 26, 22, 21, 8, 1, 14, 11, 11, 4, 19, 24, 4, 11, 22, 21, 21, 12, 22, 16, 25, 13, 18, 11, 18, 13, 26, 1, 18, 16, 22, 17, 18, 15, 22, 17, 18, 5, 11, 22, 11, 1, 18, 20, 4, 19, 15, 22, 20, 6, 8, 16, 6, 13, 13, 4, 8, 1, 21, 5, 6, 4, 13, 21, 4, 24, 14, 5, 18, 11, 1, 18, 16, 18, 6, 24, 5, 18, 19, 18, 8, 8, 22, 21, 1, 4, 8, 9, 22, 15, 26, 16, 18, 5, 18, 13, 26, 18, 16, 25, 1, 6, 8, 4, 3, 18, 15, 9, 26, 11, 1, 18, 9, 13, 14, 18, 22, 17, 18, 5, 6, 13, 13, 8, 20, 1, 4, 12, 1, 20, 18, 5, 18, 11, 1, 18, 14, 19, 4, 21, 22, 5, 16, 22, 21, 11, 1, 18, 25, 6, 5, 11, 26, 1, 4, 8, 1, 6, 4, 5, 20, 6, 8, 17, 18, 5, 26, 21, 6, 4, 5, 1, 4, 8, 21, 6, 12, 18, 19, 6, 11, 14, 5, 6, 13, 13, 26, 8, 6, 19, 24, 14, 4, 19, 18, 1, 4, 8, 8, 10, 4, 19, 5, 22, 14, 24, 1, 18, 19, 18, 15, 9, 26, 12, 22, 6, 5, 8, 18, 8, 22, 6, 25, 6, 19, 15, 9, 13, 14, 19, 11, 5, 6, 3, 22, 5, 9, 13, 6, 15, 18, 8, 6, 19, 15, 11, 1, 18, 12, 22, 13, 15, 22, 21, 11, 1, 18, 20, 4, 19, 11, 18, 5, 11, 1, 6, 11, 1, 6, 15, 7, 14, 8, 11, 18, 19, 15, 18, 15, 22, 14, 11, 8, 4, 15, 18, 18, 17, 18, 19, 11, 1, 5, 22, 14, 24, 1, 11, 1, 18, 8, 1, 14, 11, 20, 4, 19, 15, 22, 20, 25, 6, 19, 18, 11, 1, 18, 20, 22, 5, 13, 15, 13, 22, 22, 10, 18, 15, 12, 22, 13, 15, 15, 22, 20, 19, 4, 19, 11, 1, 18, 8, 11, 5, 18, 18, 11, 13, 4, 11, 11, 13, 18, 18, 15, 15, 4, 18, 8, 22, 21, 20, 4, 19, 15, 20, 18, 5, 18, 20, 1, 4, 5, 13, 4, 19, 24, 15, 14, 8, 11, 6, 19, 15, 11, 22, 5, 19, 25, 6, 25, 18, 5, 4, 19, 11, 22, 8, 25, 4, 5, 6, 13, 8, 6, 19, 15, 11, 1, 22, 14, 24, 1, 11, 1, 18, 8, 14, 19, 20, 6, 8, 8, 1, 4, 19, 4, 19, 24, 6, 19, 15, 11, 1, 18, 8, 10, 26, 6, 1, 6, 5, 8, 1, 9, 13, 14, 18, 11, 1, 18, 5, 18, 8, 18, 18, 16, 18, 15, 11, 22, 9, 18, 19, 22, 12, 22, 13, 22, 14, 5, 4, 19, 6, 19, 26, 11, 1, 4, 19, 24, 18, 23, 12, 18, 25, 11, 11, 1, 18, 25, 22, 8, 11, 18, 5, 8, 11, 1, 6, 11, 20, 18, 5, 18, 25, 13, 6, 8, 11, 18, 5, 18, 15, 18, 17, 18, 5, 26, 20, 1, 18, 5, 18, 11, 1, 18, 9, 13, 6, 12, 10, 16, 22, 14, 8, 11, 6, 12, 1, 4, 22, 15, 21, 6, 12, 18, 24, 6, 3, 18, 15, 15, 22, 20, 19, 21, 5, 22, 16, 18, 17, 18, 5, 26, 12, 22, 16, 16, 6, 19, 15, 4, 19, 24, 12, 22, 5, 19, 18, 5, 11, 1, 18, 5, 18, 20, 6, 8, 22, 19, 18, 22, 19, 11, 1, 18, 1, 22, 14, 8, 18, 21, 5, 22, 19, 11, 4, 16, 16, 18, 15, 4, 6, 11, 18, 13, 26, 22, 25, 25, 22, 8, 4, 11, 18, 9, 4, 24, 9, 5, 22, 11, 1, 18, 5, 4, 8, 20, 6, 11, 12, 1, 4, 19, 24, 26, 22, 14, 11, 1, 18, 12, 6, 25, 11, 4, 22, 19, 8, 6, 4, 15, 20, 1, 4, 13, 18, 11, 1, 18, 15, 6, 5, 10, 18, 26, 18, 8, 13, 22, 22, 10, 18, 15, 15, 18, 18, 25, 4, 19, 11, 22, 20, 4, 19, 8, 11, 22, 19, 8, 22, 20, 19, 15, 22, 20, 19, 6, 11, 8, 11, 5, 18, 18, 11, 13, 18, 17, 18, 13, 6, 19, 22, 11, 1, 18, 5, 25, 22, 8, 11, 18, 5, 11, 22, 5, 19, 6, 11, 22, 19, 18, 12, 22, 5, 19, 18, 5, 21, 13, 6, 25, 25, 18, 15, 21, 4, 11, 21, 14, 13, 13, 26, 4, 19, 11, 1, 18, 20, 4, 19, 15, 6, 13, 11, 18, 5, 19, 6, 11, 18, 13, 26, 12, 22, 17, 18, 5, 4, 19, 24, 6, 19, 15, 14, 19, 12, 22, 17, 18, 5, 4, 19, 24, 11, 1, 18, 8, 4, 19, 24, 13, 18, 20, 22, 5, 15, 4, 19, 24, 8, 22, 12, 4, 19, 11, 1, 18, 21, 6, 5, 15, 4, 8, 11, 6, 19, 12, 18, 6, 1, 18, 13, 4, 12, 22, 25, 11, 18, 5, 8, 10, 4, 16, 16, 18, 15, 15, 22, 20, 19, 9, 18, 11, 20, 18, 18, 19, 11, 1, 18, 5, 22, 22, 21, 8, 1, 22, 17, 18, 5, 18, 15, 21, 22, 5, 6, 19, 4, 19, 8, 11, 6, 19, 11, 13, 4, 10, 18, 6, 9, 13, 14, 18, 9, 22, 11, 11, 13, 18, 6, 19, 15, 15, 6, 5, 11, 18, 15, 6, 20, 6, 26, 6, 24, 6, 4, 19, 20, 4, 11, 1, 6, 12, 14, 5, 17, 4, 19, 24, 21, 13, 4, 24, 1, 11, 4, 11, 20, 6, 8, 11, 1, 18, 25, 22, 13, 4, 12, 18, 25, 6, 11, 5, 22, 13, 8, 19, 22, 22, 25, 4, 19, 24, 4, 19, 11, 22, 25, 18, 22, 25, 13, 18, 8, 20, 4, 19, 15, 22, 20, 8, 11, 1, 18, 25, 6, 11, 5, 22, 13, 8, 15, 4, 15, 19, 22, 11, 16, 6, 11, 11, 18, 5, 1, 22, 20, 18, 17, 18, 5, 22, 19, 13, 26, 11, 1, 18, 11, 1, 22, 14, 24, 1, 11, 25, 22, 13, 4, 12, 18, 16, 6, 11, 11, 18, 5, 18, 15] freq_match_orwell_mapping = [15, 2, 23, 12, 5, 7, 16, 18, 9, 26, 11, 4, 21, 14, 1, 25, 24, 19, 8, 20, 3, 22, 6, 17, 13, 10] vigenere_ABBA_mappings = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1], [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]] periodic_affine_123_765_mappings = [[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 3, 4, 5, 6, 7], [7, 10, 13, 16, 19, 22, 25, 2, 5, 8, 11, 14, 17, 20, 23, 26, 3, 6, 9, 12, 15, 18, 21, 24, 1, 4], [6, 11, 16, 21, 26, 5, 10, 15, 20, 25, 4, 9, 14, 19, 24, 3, 8, 13, 18, 23, 2, 7, 12, 17, 22, 1]] vigenere_ABBA_orwell_tokens = [9, 21, 24, 1, 19, 2, 3, 18, 9, 8, 9, 20, 3, 16, 13, 4, 4, 2, 26, 9, 14, 2, 17, 18, 9, 13, 2, 14, 4, 21, 9, 5, 3, 13, 16, 3, 11, 20, 24, 5, 18, 6, 20, 20, 18, 10, 12, 9, 14, 8, 21, 8, 9, 19, 21, 5, 5, 15, 24, 9, 14, 20, 21, 15, 14, 20, 14, 9, 20, 9, 9, 9, 19, 4, 9, 9, 14, 15, 22, 26, 26, 13, 6, 4, 9, 15, 21, 15, 8, 10, 20, 2, 18, 6, 2, 19, 20, 10, 15, 1, 14, 6, 7, 6, 15, 19, 21, 20, 15, 6, 20, 3, 1, 17, 6, 20, 8, 6, 23, 9, 12, 6, 24, 9, 14, 5, 20, 12, 9, 17, 17, 5, 4, 18, 22, 9, 3, 12, 13, 25, 20, 9, 19, 15, 21, 8, 9, 20, 8, 6, 8, 12, 1, 20, 20, 4, 15, 16, 19, 19, 15, 7, 23, 9, 3, 21, 16, 18, 25, 14, 2, 14, 19, 10, 16, 14, 19, 21, 9, 15, 21, 8, 9, 14, 15, 21, 18, 21, 9, 4, 12, 12, 25, 6, 15, 15, 21, 8, 9, 20, 15, 17, 19, 5, 22, 6, 15, 20, 1, 20, 24, 9, 18, 13, 16, 6, 7, 19, 10, 20, 20, 26, 5, 21, 19, 21, 7, 18, 15, 14, 6, 14, 20, 6, 19, 9, 14, 8, 2, 12, 15, 15, 8, 23, 9, 21, 9, 8, 9, 14, 21, 8, 5, 9, 2, 12, 12, 24, 2, 25, 19, 14, 6, 12, 20, 16, 7, 2, 15, 10, 13, 5, 4, 4, 2, 2, 2, 2, 8, 5, 1, 15, 5, 15, 12, 5, 19, 1, 7, 14, 2, 20, 19, 2, 21, 15, 14, 6, 6, 14, 4, 16, 7, 9, 20, 2, 4, 15, 12, 16, 22, 18, 5, 5, 17, 15, 19, 21, 6, 18, 20, 16, 16, 12, 1, 19, 8, 5, 6, 16, 19, 9, 14, 5, 16, 15, 18, 5, 10, 19, 16, 13, 2, 25, 8, 2, 5, 2, 5, 6, 15, 20, 1, 4, 12, 5, 4, 21, 16, 20, 8, 6, 24, 1, 12, 13, 10, 20, 4, 6, 17, 9, 3, 21, 6, 4, 19, 10, 14, 16, 12, 26, 2, 14, 5, 15, 16, 18, 13, 16, 22, 19, 6, 2, 4, 5, 13, 16, 19, 5, 20, 9, 2, 14, 1, 14, 6, 20, 18, 6, 24, 9, 4, 6, 21, 8, 5, 7, 2, 3, 5, 16, 7, 1, 13, 2, 15, 15, 6, 2, 3, 15, 21, 21, 7, 15, 18, 21, 26, 6, 9, 23, 6, 23, 9, 21, 9, 1, 8, 6, 2, 22, 25, 3, 13, 1, 3, 12, 14, 15, 21, 20, 21, 1, 3, 9, 6, 1, 14, 5, 19, 21, 7, 8, 6, 4, 12, 26, 9, 1, 14, 5, 20, 15, 13, 6, 7, 5, 1, 21, 22, 18, 5, 20, 24, 9, 14, 20, 21, 15, 14, 14, 2, 4, 5, 7, 16, 18, 20, 9, 6, 19, 20, 2, 10, 18, 19, 10, 21, 23, 1, 20, 15, 15, 21, 20, 6, 20, 18, 26, 10, 14, 7, 21, 9, 5, 12, 10, 7, 20, 5, 23, 6, 14, 1, 21, 21, 8, 5, 3, 6, 19, 20, 16, 7, 20, 9, 14, 6, 19, 9, 21, 24, 1, 19, 20, 6, 12, 4, 16, 14, 23, 15, 19, 12, 9, 14, 8, 2, 14, 4, 2, 21, 16, 18, 6, 20, 5, 14, 21, 21, 8, 5, 6, 13, 5, 3, 21, 19, 9, 3, 4, 22, 18, 18, 6, 15, 20, 23, 2, 20, 3, 21, 21, 16, 6, 6, 5, 22, 18, 9, 15, 8, 4, 1, 26, 13, 9, 7, 9, 21, 8, 15, 22, 19, 19, 9, 21, 24, 1, 19, 17, 2, 18, 20, 16, 7, 20, 8, 6, 6, 3, 15, 15, 16, 13, 25, 5, 19, 9, 22, 6, 10, 14, 16, 19, 6, 16, 1, 19, 2, 20, 9, 16, 15, 6, 15, 19, 9, 1, 20, 6, 24, 5, 5, 12, 21, 8, 5, 7, 13, 1, 20, 24, 2, 19, 19, 6, 23, 5, 14, 7, 13, 9, 7, 9, 21, 19, 21, 17, 2, 14, 4, 24, 10, 14, 19, 21, 16, 14, 23, 9, 16, 23, 1, 20, 21, 8, 9, 19, 21, 25, 14, 10, 15, 5, 1, 15, 5, 8, 1, 5, 2, 22, 1, 19, 10, 3, 15, 20, 6, 21, 12, 4, 6, 18, 1, 3, 16, 22, 5, 9, 10, 19, 18, 10, 8, 8, 20, 2, 15, 11, 12, 6, 24, 5, 14, 21, 20, 12, 15, 24, 13, 25, 18, 6, 20, 20, 9, 15, 8, 19, 5, 23, 6, 18, 1, 13, 21, 9, 13, 6, 20, 15, 14, 21, 9, 5, 23, 2, 26, 15, 14, 6, 2, 3, 8, 13, 2, 14, 4, 10, 15, 7, 15, 17, 17, 15, 19, 10, 21, 5, 20, 9, 6, 12, 9, 7, 21, 19, 8, 2, 7, 20, 20, 9, 6, 16, 15, 20, 21, 5, 18, 24, 10, 20, 8, 21, 9, 5, 5, 15, 16, 18, 13, 16, 22, 19, 6, 2, 4, 5, 7, 2, 1, 5, 4, 7, 19, 15, 13, 21, 9, 5, 23, 2, 13, 12, 9, 21, 24, 1, 19, 16, 15, 5, 15, 7, 21, 8, 15, 20, 6, 16, 9, 4, 21, 21, 18, 6, 20, 23, 8, 10, 4, 8, 1, 19, 6, 19, 15, 4, 16, 14, 20, 19, 10, 22, 5, 5, 21, 8, 1, 21, 21, 8, 5, 6, 26, 5, 19, 7, 16, 12, 12, 16, 24, 25, 15, 22, 2, 2, 15, 22, 21, 23, 8, 6, 15, 25, 15, 22, 14, 15, 22, 6, 3, 9, 7, 3, 19, 15, 20, 9, 6, 18, 9, 20, 24, 1, 20, 4, 9, 9, 14, 8, 26, 15, 21, 21, 9, 5, 3, 2, 17, 20, 9, 16, 15, 2, 5, 15, 6, 1, 20, 9, 10, 20, 18, 2, 15, 9, 14, 20, 10, 4, 5, 21, 9, 5, 6, 13, 2, 20, 1, 7, 19, 21, 9, 21, 26, 22, 15, 10, 4, 5, 23, 2, 20, 18, 5, 2, 5, 9, 14, 8, 16, 21, 20, 2, 13, 9, 19, 21, 16, 6, 6, 10, 8, 21, 18, 6, 20, 23, 8, 10, 4, 8, 8, 2, 5, 19, 15, 14, 6, 20, 8, 10, 15, 7, 20, 16, 5, 15, 23, 10, 21, 8, 20, 9, 6, 16, 18, 16, 5, 21, 3, 21, 10, 15, 14, 16, 7, 16, 9, 8, 10, 18, 15, 15, 21, 8, 5, 23, 16, 9, 3, 6, 4, 1, 13, 6, 7, 18, 15, 14, 2, 14, 15, 3, 13, 15, 14, 8, 14, 5, 20, 2, 13, 16, 12, 2, 18, 21, 5, 13, 10, 11, 5, 2, 5, 21, 12, 13, 6, 4, 13, 10, 19, 18, 15, 19, 24, 8, 9, 4, 9, 6, 15, 19, 14, 5, 4, 17, 2, 18, 20, 16, 7, 20, 8, 6, 20, 21, 18, 7, 2, 3, 5, 16, 7, 20, 8, 6, 19, 9, 7, 9, 21, 8, 1, 15, 5, 23, 1, 13, 13, 23, 9, 15, 20, 20, 15, 15, 21, 21, 18, 15, 6, 4, 1, 20, 24, 9, 20, 4, 9, 1, 14, 5, 21, 8, 5, 23, 16, 9, 3, 6, 20, 1, 14, 12, 20, 15, 13, 6, 24, 8, 1, 21, 21, 8, 15, 22, 8, 8, 20, 9, 6, 23, 15, 19, 5, 19, 23, 6, 19, 5, 19, 21, 10, 12, 12, 5, 10, 19, 20, 10, 15, 7, 21, 10, 20, 8, 1, 3, 13, 5, 20, 9, 6, 9, 14, 20, 21, 18, 21, 14, 6, 14, 20, 21, 9, 5, 20, 6, 13, 5, 19, 4, 19, 5, 5, 15, 10, 20, 23, 2, 20, 3, 1, 13, 13, 5, 4, 4, 16, 21, 12, 5, 3, 5, 4, 10, 14, 13, 5, 5, 3, 21, 20, 21, 9, 5, 18, 6, 24, 1, 19, 15, 16, 23, 1, 26, 16, 6, 19, 9, 22, 20, 20, 10, 15, 7, 9, 21, 16, 6, 6, 4, 16, 13, 16, 13, 6, 20, 5, 13, 26, 8, 5, 14, 16, 22, 5, 5, 16, 22, 5, 19, 21, 15, 20, 9, 6, 23, 9, 15, 5, 15, 23, 2, 20, 13, 1, 13, 13, 9, 19, 9, 7, 18, 1, 10, 13, 6, 9, 8, 22, 18, 5, 21, 9, 5, 13, 6, 2, 7, 18, 6, 15, 5, 19, 20, 16, 6, 8, 10, 20, 2, 15, 5, 26, 13, 5, 19, 6, 12, 25, 6, 14, 16, 8, 2, 20, 9, 26, 6, 5, 2, 25, 21, 9, 5, 2, 13, 22, 5, 15, 23, 6, 18, 1, 13, 13, 19, 23, 9, 10, 3, 8, 24, 6, 18, 5, 21, 9, 5, 21, 15, 10, 6, 15, 19, 14, 15, 6, 21, 9, 5, 16, 2, 19, 20, 25, 9, 10, 19, 8, 2, 10, 18, 23, 2, 20, 22, 5, 19, 26, 6, 1, 10, 19, 8, 9, 20, 7, 1, 3, 6, 15, 1, 20, 22, 19, 1, 12, 13, 26, 19, 1, 15, 8, 21, 9, 15, 6, 8, 9, 20, 20, 11, 9, 15, 19, 15, 21, 8, 9, 5, 14, 6, 5, 2, 25, 4, 16, 1, 18, 20, 6, 19, 15, 2, 17, 1, 14, 5, 3, 12, 21, 15, 21, 18, 1, 1, 16, 18, 2, 13, 2, 4, 5, 20, 2, 14, 4, 21, 9, 5, 3, 16, 13, 4, 15, 7, 21, 8, 5, 24, 10, 14, 20, 6, 19, 20, 8, 2, 21, 8, 1, 5, 11, 21, 19, 21, 6, 14, 4, 6, 5, 15, 21, 21, 20, 9, 4, 6, 6, 22, 5, 15, 21, 8, 18, 16, 22, 7, 8, 21, 9, 5, 19, 9, 22, 20, 23, 10, 15, 4, 15, 24, 17, 1, 14, 6, 21, 8, 5, 24, 16, 18, 12, 5, 13, 15, 15, 12, 6, 4, 3, 16, 13, 4, 4, 16, 24, 14, 9, 15, 21, 8, 5, 20, 21, 18, 5, 6, 21, 12, 9, 21, 21, 12, 5, 6, 5, 4, 9, 6, 20, 15, 6, 24, 10, 14, 4, 24, 6, 18, 5, 24, 9, 9, 18, 13, 10, 14, 7, 5, 22, 19, 20, 2, 15, 4, 20, 16, 19, 14, 16, 2, 17, 5, 18, 10, 15, 20, 15, 20, 17, 9, 18, 2, 13, 19, 1, 15, 5, 20, 8, 16, 22, 7, 8, 21, 9, 5, 19, 22, 15, 23, 1, 20, 20, 8, 9, 15, 10, 14, 7, 2, 15, 4, 20, 9, 6, 19, 11, 26, 2, 8, 1, 19, 20, 8, 2, 13, 22, 5, 20, 9, 6, 18, 5, 20, 6, 5, 13, 6, 5, 20, 15, 3, 6, 14, 15, 4, 16, 12, 15, 22, 19, 9, 14, 2, 15, 25, 20, 9, 10, 14, 7, 6, 25, 3, 5, 17, 21, 20, 8, 6, 17, 15, 19, 21, 6, 18, 19, 21, 9, 1, 20, 24, 6, 18, 5, 17, 13, 1, 19, 21, 6, 18, 5, 5, 6, 22, 5, 19, 26, 23, 8, 6, 19, 5, 20, 9, 6, 2, 12, 2, 4, 11, 13, 16, 22, 19, 20, 2, 4, 8, 9, 16, 5, 6, 1, 4, 6, 7, 1, 1, 6, 4, 4, 16, 24, 14, 6, 19, 16, 13, 5, 23, 6, 18, 25, 4, 16, 13, 13, 2, 15, 4, 9, 15, 8, 3, 15, 19, 15, 5, 18, 21, 9, 5, 18, 6, 24, 1, 19, 16, 15, 5, 15, 15, 21, 8, 5, 9, 16, 21, 19, 6, 7, 18, 15, 15, 21, 9, 13, 14, 6, 4, 9, 2, 21, 5, 12, 26, 16, 16, 16, 16, 20, 9, 20, 6, 3, 9, 7, 3, 19, 15, 20, 9, 6, 18, 9, 20, 24, 1, 20, 4, 9, 9, 14, 8, 26, 15, 21, 21, 9, 5, 3, 2, 17, 20, 9, 16, 15, 19, 1, 10, 5, 23, 8, 10, 13, 5, 20, 9, 6, 4, 1, 19, 12, 5, 25, 6, 20, 12, 15, 16, 12, 5, 4, 5, 6, 5, 16, 10, 15, 20, 15, 24, 10, 14, 19, 21, 16, 14, 19, 16, 24, 14, 4, 16, 24, 14, 1, 21, 20, 20, 18, 6, 6, 20, 12, 6, 23, 5, 12, 2, 15, 15, 20, 9, 6, 18, 16, 16, 20, 20, 5, 19, 21, 15, 18, 15, 2, 20, 15, 15, 6, 3, 15, 19, 15, 5, 18, 7, 13, 1, 16, 17, 6, 4, 6, 10, 21, 6, 21, 13, 13, 25, 9, 15, 21, 8, 5, 24, 10, 14, 4, 2, 13, 20, 5, 19, 15, 1, 20, 6, 13, 25, 3, 16, 23, 5, 18, 10, 15, 7, 1, 15, 5, 21, 14, 4, 16, 22, 5, 19, 10, 14, 7, 21, 9, 5, 19, 10, 15, 7, 12, 6, 24, 15, 18, 5, 10, 14, 7, 20, 16, 3, 9, 15, 21, 8, 5, 7, 2, 18, 4, 10, 20, 20, 1, 15, 4, 5, 1, 9, 6, 12, 9, 4, 16, 16, 20, 6, 19, 19, 11, 10, 14, 13, 5, 5, 5, 15, 23, 15, 3, 5, 20, 24, 6, 5, 14, 21, 9, 5, 18, 16, 16, 6, 19, 9, 16, 22, 5, 19, 6, 4, 6, 16, 19, 1, 14, 10, 15, 19, 20, 2, 15, 20, 12, 10, 12, 5, 1, 3, 13, 21, 5, 3, 16, 20, 20, 13, 6, 1, 14, 5, 5, 1, 18, 21, 6, 4, 1, 24, 2, 25, 1, 8, 2, 9, 14, 24, 10, 20, 8, 2, 4, 21, 18, 23, 10, 14, 7, 7, 13, 9, 7, 9, 21, 9, 20, 24, 2, 19, 20, 9, 6, 16, 15, 13, 10, 3, 5, 17, 2, 20, 18, 16, 13, 19, 14, 16, 16, 16, 9, 15, 8, 9, 14, 21, 16, 16, 5, 16, 17, 12, 5, 20, 24, 9, 14, 5, 16, 23, 19, 21, 9, 5, 16, 2, 21, 18, 15, 13, 20, 4, 9, 5, 15, 15, 20, 14, 2, 20, 20, 6, 19, 8, 15, 24, 6, 22, 5, 19, 16, 14, 12, 26, 21, 8, 5, 21, 9, 15, 21, 8, 9, 20, 16, 16, 13, 9, 3, 6, 14, 1, 20, 21, 6, 18, 5, 5] periodic_affine_123_765_orwell_tokens = [16, 12, 12, 8, 9, 6, 9, 6, 20, 14, 2, 23, 10, 23, 9, 11, 16, 6, 6, 5, 19, 8, 26, 13, 16, 14, 6, 21, 16, 23, 15, 19, 16, 19, 23, 16, 18, 9, 12, 12, 6, 26, 26, 12, 13, 16, 11, 20, 21, 25, 23, 15, 5, 13, 1, 19, 26, 21, 21, 20, 21, 9, 23, 22, 20, 18, 20, 5, 23, 15, 2, 20, 26, 13, 15, 16, 20, 19, 2, 4, 1, 19, 19, 21, 16, 20, 23, 22, 2, 20, 26, 10, 13, 12, 7, 18, 1, 5, 19, 8, 20, 26, 13, 22, 24, 25, 12, 23, 22, 19, 18, 10, 7, 3, 12, 12, 15, 12, 18, 20, 19, 19, 12, 16, 20, 21, 26, 14, 20, 23, 26, 26, 11, 3, 2, 16, 13, 4, 19, 1, 23, 15, 6, 24, 2, 25, 15, 1, 2, 26, 14, 14, 6, 26, 9, 21, 22, 23, 13, 26, 23, 5, 3, 5, 16, 1, 23, 13, 6, 17, 6, 21, 9, 20, 22, 20, 18, 1, 2, 24, 2, 25, 15, 21, 23, 23, 24, 15, 20, 10, 11, 9, 6, 19, 19, 22, 15, 10, 15, 12, 24, 23, 6, 26, 3, 19, 19, 1, 7, 18, 4, 5, 13, 19, 23, 5, 14, 6, 20, 1, 12, 22, 11, 15, 18, 1, 22, 13, 22, 17, 26, 21, 12, 26, 25, 5, 19, 14, 7, 9, 22, 20, 10, 4, 5, 23, 15, 2, 20, 20, 12, 15, 12, 2, 6, 19, 14, 12, 8, 1, 18, 20, 19, 9, 1, 23, 5, 9, 23, 20, 19, 19, 21, 10, 7, 11, 9, 7, 10, 12, 7, 19, 11, 23, 9, 11, 6, 6, 14, 17, 6, 1, 9, 6, 1, 23, 19, 12, 19, 19, 11, 23, 5, 16, 12, 6, 10, 23, 9, 22, 15, 13, 12, 16, 3, 22, 9, 23, 12, 6, 23, 22, 23, 9, 8, 6, 10, 12, 22, 24, 25, 5, 19, 11, 23, 24, 25, 16, 20, 26, 26, 9, 8, 1, 15, 8, 16, 11, 12, 19, 19, 1, 7, 16, 18, 19, 21, 1, 23, 23, 15, 19, 12, 8, 14, 9, 16, 12, 21, 12, 26, 20, 10, 12, 26, 11, 9, 20, 20, 26, 9, 6, 7, 19, 12, 20, 24, 25, 17, 24, 2, 9, 5, 8, 13, 26, 20, 23, 13, 12, 12, 15, 8, 20, 6, 20, 19, 23, 25, 19, 12, 16, 16, 26, 1, 2, 26, 13, 7, 16, 12, 23, 5, 8, 17, 6, 21, 23, 5, 8, 10, 24, 2, 12, 5, 22, 6, 23, 6, 22, 20, 3, 19, 12, 16, 12, 15, 8, 2, 26, 8, 18, 22, 9, 14, 6, 10, 11, 14, 22, 15, 18, 1, 7, 16, 15, 19, 6, 21, 16, 13, 2, 25, 10, 12, 16, 9, 6, 2, 6, 21, 16, 18, 22, 17, 26, 13, 19, 6, 1, 15, 13, 12, 9, 12, 16, 20, 18, 1, 23, 19, 20, 7, 21, 12, 22, 24, 25, 12, 15, 12, 9, 23, 8, 5, 13, 26, 5, 23, 4, 7, 18, 21, 23, 2, 26, 19, 23, 25, 1, 20, 21, 25, 23, 15, 19, 9, 16, 22, 23, 12, 18, 26, 21, 7, 23, 1, 2, 26, 9, 19, 18, 1, 23, 5, 1, 5, 14, 12, 9, 20, 1, 21, 6, 26, 9, 26, 19, 16, 24, 20, 21, 24, 25, 11, 20, 21, 25, 6, 21, 16, 6, 1, 26, 13, 12, 9, 26, 21, 12, 23, 15, 19, 26, 19, 19, 16, 1, 6, 20, 10, 13, 2, 25, 6, 26, 21, 12, 12, 8, 9, 16, 2, 12, 24, 13, 22, 21, 2, 6, 20, 21, 25, 21, 8, 1, 9, 16, 25, 15, 1, 2, 24, 2, 6, 18, 16, 12, 12, 8, 9, 3, 8, 6, 23, 22, 22, 23, 15, 19, 26, 10, 23, 19, 22, 17, 22, 11, 6, 20, 3, 19, 20, 21, 26, 13, 12, 26, 6, 25, 7, 23, 16, 23, 19, 13, 23, 13, 15, 7, 23, 12, 21, 26, 12, 11, 23, 15, 19, 5, 19, 7, 23, 4, 7, 18, 26, 19, 7, 12, 20, 5, 19, 5, 10, 15, 12, 18, 2, 26, 6, 21, 16, 12, 16, 20, 18, 1, 23, 19, 4, 2, 24, 4, 7, 18, 1, 2, 20, 25, 12, 22, 21, 5, 19, 12, 7, 19, 11, 2, 6, 11, 7, 7, 8, 6, 20, 10, 23, 18, 12, 15, 9, 10, 19, 13, 8, 10, 24, 3, 19, 15, 16, 9, 13, 16, 25, 15, 1, 7, 19, 18, 14, 26, 4, 19, 19, 1, 9, 9, 22, 21, 9, 6, 6, 26, 26, 12, 20, 21, 25, 18, 12, 18, 26, 25, 7, 9, 1, 5, 14, 12, 9, 24, 21, 12, 15, 12, 21, 6, 6, 23, 19, 12, 7, 16, 15, 14, 6, 21, 16, 20, 21, 25, 24, 23, 26, 24, 26, 5, 23, 12, 12, 15, 12, 14, 20, 13, 12, 18, 15, 7, 5, 1, 12, 15, 12, 26, 24, 26, 12, 26, 25, 21, 20, 1, 2, 23, 15, 19, 26, 21, 23, 13, 20, 23, 2, 26, 22, 6, 10, 19, 10, 8, 4, 26, 11, 22, 13, 22, 17, 23, 15, 19, 12, 8, 14, 9, 16, 12, 12, 8, 9, 24, 21, 19, 24, 13, 12, 15, 22, 9, 26, 23, 5, 16, 1, 15, 13, 12, 9, 12, 15, 5, 16, 15, 7, 13, 12, 9, 24, 10, 23, 19, 1, 6, 20, 3, 19, 21, 1, 2, 6, 1, 12, 15, 12, 19, 22, 12, 9, 5, 22, 14, 9, 22, 21, 22, 22, 15, 6, 9, 23, 2, 1, 21, 15, 12, 20, 22, 22, 15, 14, 22, 18, 26, 9, 5, 10, 9, 6, 24, 1, 2, 26, 25, 5, 18, 4, 7, 23, 10, 2, 20, 21, 25, 22, 22, 15, 23, 15, 19, 16, 8, 26, 23, 16, 23, 19, 9, 19, 19, 12, 7, 23, 15, 5, 23, 25, 7, 19, 16, 20, 18, 16, 16, 26, 1, 2, 26, 13, 14, 6, 1, 7, 5, 25, 15, 20, 1, 1, 7, 22, 5, 16, 12, 21, 6, 26, 6, 26, 8, 16, 20, 21, 25, 24, 2, 12, 6, 19, 5, 18, 1, 23, 5, 13, 5, 10, 2, 6, 26, 26, 21, 15, 16, 13, 15, 15, 7, 21, 26, 23, 14, 12, 12, 15, 16, 20, 10, 1, 23, 21, 22, 21, 20, 1, 2, 23, 15, 19, 3, 25, 23, 21, 2, 13, 23, 16, 23, 19, 22, 22, 3, 16, 25, 20, 25, 23, 19, 1, 2, 26, 3, 23, 20, 10, 19, 16, 8, 17, 26, 13, 6, 24, 20, 7, 19, 22, 10, 9, 22, 20, 10, 20, 19, 23, 8, 14, 3, 19, 7, 8, 2, 19, 9, 16, 11, 26, 8, 16, 2, 19, 14, 26, 11, 17, 20, 25, 6, 24, 25, 21, 15, 16, 13, 15, 13, 23, 13, 20, 19, 21, 23, 7, 13, 1, 23, 5, 1, 2, 26, 26, 15, 13, 13, 7, 16, 12, 23, 5, 1, 2, 26, 25, 5, 10, 15, 12, 15, 8, 20, 21, 4, 7, 9, 19, 21, 20, 21, 9, 23, 22, 20, 23, 2, 6, 19, 12, 16, 6, 26, 21, 20, 1, 13, 15, 8, 20, 21, 1, 2, 26, 3, 23, 20, 10, 19, 18, 8, 20, 4, 26, 23, 14, 12, 21, 15, 8, 12, 23, 15, 23, 2, 14, 2, 23, 15, 19, 12, 22, 6, 21, 26, 21, 26, 25, 19, 18, 1, 5, 9, 19, 16, 20, 26, 12, 20, 21, 25, 2, 16, 9, 15, 8, 10, 9, 12, 12, 15, 12, 5, 19, 26, 12, 13, 2, 17, 26, 21, 12, 23, 15, 19, 23, 12, 14, 26, 26, 13, 13, 12, 19, 19, 16, 12, 12, 8, 9, 16, 8, 14, 9, 12, 16, 16, 22, 15, 9, 11, 10, 26, 11, 5, 14, 20, 19, 21, 9, 15, 23, 1, 2, 26, 25, 19, 12, 8, 9, 19, 22, 21, 6, 6, 23, 5, 26, 2, 2, 1, 12, 20, 21, 25, 20, 1, 23, 5, 13, 13, 24, 20, 26, 9, 12, 12, 26, 19, 1, 15, 12, 17, 24, 3, 19, 21, 22, 18, 26, 25, 12, 24, 1, 2, 26, 4, 5, 19, 11, 23, 12, 8, 9, 14, 8, 14, 9, 16, 9, 15, 13, 6, 6, 16, 14, 5, 16, 25, 2, 25, 19, 23, 15, 19, 14, 12, 7, 10, 25, 19, 19, 12, 9, 18, 22, 22, 15, 16, 9, 11, 22, 16, 22, 20, 19, 13, 12, 14, 22, 12, 17, 3, 15, 7, 18, 16, 4, 26, 11, 10, 22, 1, 2, 26, 9, 14, 2, 12, 23, 7, 12, 6, 6, 19, 14, 18, 4, 2, 20, 10, 2, 12, 12, 6, 26, 1, 2, 26, 2, 20, 20, 13, 23, 13, 20, 23, 5, 1, 2, 26, 23, 7, 13, 1, 1, 15, 16, 9, 15, 8, 5, 13, 4, 7, 18, 3, 19, 13, 6, 22, 6, 16, 6, 15, 16, 9, 5, 8, 13, 26, 21, 7, 23, 2, 6, 6, 19, 14, 22, 26, 7, 19, 14, 15, 20, 21, 19, 15, 16, 9, 18, 18, 5, 19, 25, 23, 2, 14, 2, 26, 21, 19, 21, 9, 1, 16, 22, 7, 13, 26, 19, 18, 22, 7, 3, 8, 20, 21, 9, 14, 2, 21, 12, 13, 8, 4, 24, 25, 10, 9, 8, 16, 26, 26, 7, 19, 11, 12, 15, 12, 13, 24, 19, 16, 24, 13, 12, 15, 12, 21, 20, 21, 12, 26, 25, 12, 15, 8, 12, 15, 8, 16, 25, 2, 9, 23, 12, 20, 21, 12, 16, 24, 2, 12, 18, 16, 16, 26, 12, 18, 26, 21, 12, 15, 25, 23, 2, 14, 2, 23, 15, 19, 18, 15, 15, 23, 4, 5, 19, 11, 23, 12, 23, 7, 19, 12, 12, 15, 12, 21, 24, 25, 14, 21, 19, 23, 24, 18, 19, 21, 10, 23, 9, 11, 16, 24, 4, 20, 20, 21, 12, 15, 12, 9, 23, 25, 19, 26, 1, 14, 20, 1, 12, 9, 12, 19, 21, 11, 5, 26, 26, 23, 5, 4, 5, 19, 11, 21, 26, 25, 19, 12, 15, 5, 13, 19, 5, 19, 14, 16, 2, 26, 12, 6, 21, 16, 23, 22, 6, 19, 23, 7, 3, 12, 6, 20, 21, 12, 24, 26, 26, 20, 25, 7, 9, 26, 7, 19, 11, 12, 15, 22, 15, 10, 15, 12, 15, 12, 9, 2, 21, 21, 6, 26, 9, 15, 16, 20, 20, 21, 25, 6, 21, 16, 23, 15, 19, 18, 18, 1, 6, 15, 7, 13, 26, 2, 11, 19, 15, 26, 1, 2, 26, 25, 19, 18, 12, 19, 14, 12, 16, 23, 22, 10, 26, 21, 23, 16, 22, 14, 24, 2, 6, 20, 21, 7, 19, 6, 12, 15, 16, 20, 10, 12, 24, 16, 12, 26, 23, 1, 2, 26, 23, 23, 18, 1, 19, 13, 26, 12, 15, 8, 12, 12, 12, 6, 26, 23, 14, 6, 26, 12, 26, 25, 19, 21, 12, 18, 26, 25, 1, 12, 15, 19, 13, 12, 12, 15, 12, 10, 9, 8, 13, 4, 20, 23, 2, 26, 12, 6, 10, 2, 20, 22, 16, 5, 8, 13, 26, 14, 7, 1, 12, 16, 21, 22, 21, 19, 13, 6, 24, 20, 19, 7, 12, 6, 22, 10, 23, 14, 20, 7, 19, 11, 5, 19, 14, 13, 24, 25, 20, 26, 25, 12, 15, 12, 6, 26, 4, 7, 18, 22, 20, 26, 22, 20, 23, 15, 19, 15, 22, 15, 18, 12, 22, 13, 22, 20, 23, 16, 17, 14, 12, 16, 20, 8, 12, 26, 19, 1, 24, 23, 26, 24, 26, 5, 23, 12, 10, 20, 14, 10, 13, 22, 12, 15, 12, 6, 20, 26, 21, 6, 1, 13, 15, 16, 20, 10, 6, 23, 2, 1, 2, 26, 10, 7, 3, 1, 5, 24, 21, 9, 6, 16, 16, 12, 15, 5, 9, 12, 12, 15, 12, 16, 6, 25, 11, 26, 6, 19, 18, 19, 23, 24, 18, 19, 21, 11, 19, 26, 23, 5, 19, 1, 23, 12, 16, 20, 18, 1, 23, 19, 26, 23, 12, 21, 16, 24, 4, 20, 6, 1, 9, 23, 25, 19, 26, 1, 14, 26, 3, 19, 9, 8, 20, 24, 1, 2, 26, 25, 26, 24, 26, 12, 26, 25, 12, 24, 25, 20, 6, 1, 23, 19, 12, 13, 24, 25, 20, 26, 25, 22, 9, 8, 26, 3, 12, 16, 5, 16, 12, 5, 2, 14, 9, 6, 5, 19, 1, 2, 26, 4, 5, 19, 11, 7, 9, 1, 19, 13, 21, 7, 23, 12, 14, 22, 10, 23, 7, 12, 6, 20, 21, 25, 6, 21, 16, 2, 21, 13, 24, 3, 19, 13, 16, 20, 10, 1, 2, 26, 26, 5, 19, 14, 14, 26, 4, 23, 13, 11, 5, 19, 14, 9, 24, 10, 5, 19, 1, 2, 26, 13, 7, 13, 11, 5, 18, 1, 7, 19, 10, 19, 6, 15, 19, 9, 16, 13, 24, 23, 12, 26, 25, 9, 4, 16, 17, 14, 12, 16, 21, 22, 21, 19, 9, 19, 23, 4, 19, 26, 21, 12, 15, 12, 6, 24, 22, 22, 18, 15, 23, 7, 12, 6, 26, 11, 22, 24, 25, 7, 19, 16, 20, 18, 1, 7, 19, 1, 14, 20, 18, 19, 6, 9, 14, 2, 12, 10, 24, 1, 12, 9, 12, 7, 19, 11, 16, 6, 25, 12, 26, 11, 7, 12, 8, 1, 6, 14, 7, 20, 21, 21, 20, 1, 2, 6, 10, 15, 13, 3, 5, 19, 14, 22, 9, 16, 25, 15, 1, 5, 23, 4, 7, 18, 1, 2, 26, 23, 23, 9, 16, 13, 26, 23, 7, 23, 25, 23, 9, 26, 20, 24, 22, 26, 20, 21, 25, 20, 21, 12, 24, 23, 19, 24, 23, 14, 26, 26, 21, 20, 21, 16, 24, 4, 9, 23, 15, 19, 3, 8, 12, 13, 22, 14, 18, 11, 5, 21, 21, 23, 23, 20, 7, 23, 1, 19, 13, 15, 23, 12, 12, 18, 26, 25, 23, 19, 19, 1, 23, 15, 19, 23, 15, 23, 2, 14, 2, 23, 23, 23, 9, 16, 13, 26, 20, 7, 23, 1, 19, 13, 12, 16] columnar_1432_orwell_tokens = [9, 19, 9, 3, 4, 14, 9, 4, 3, 11, 18, 18, 14, 9, 5, 14, 14, 20, 19, 14, 26, 9, 8, 18, 20, 14, 15, 15, 1, 8, 12, 14, 9, 4, 3, 20, 21, 8, 1, 15, 15, 3, 25, 19, 19, 21, 15, 9, 25, 21, 15, 22, 1, 18, 7, 20, 19, 15, 20, 14, 15, 9, 9, 5, 12, 19, 20, 15, 4, 2, 1, 12, 7, 19, 14, 4, 20, 12, 5, 19, 20, 1, 6, 14, 18, 16, 8, 5, 1, 4, 8, 12, 4, 3, 19, 12, 5, 13, 6, 13, 20, 1, 18, 4, 5, 5, 13, 6, 21, 18, 9, 9, 8, 25, 3, 21, 3, 14, 7, 12, 14, 13, 1, 5, 14, 14, 5, 20, 20, 19, 1, 21, 18, 7, 12, 5, 1, 5, 20, 9, 9, 19, 4, 15, 14, 4, 18, 14, 5, 3, 3, 18, 23, 21, 6, 9, 1, 7, 15, 9, 19, 20, 8, 15, 25, 22, 16, 1, 9, 15, 20, 5, 5, 20, 19, 14, 7, 21, 4, 19, 23, 1, 9, 14, 1, 1, 1, 15, 12, 1, 5, 18, 20, 12, 14, 15, 18, 9, 5, 1, 13, 14, 23, 14, 8, 4, 15, 19, 20, 9, 8, 20, 15, 18, 8, 5, 13, 6, 7, 4, 13, 23, 9, 19, 15, 15, 9, 18, 8, 1, 15, 20, 5, 1, 5, 19, 12, 15, 15, 8, 15, 22, 7, 20, 9, 20, 14, 21, 3, 9, 5, 20, 18, 14, 5, 6, 1, 9, 15, 23, 5, 14, 20, 19, 6, 18, 8, 8, 15, 8, 20, 23, 20, 18, 3, 14, 9, 15, 5, 3, 13, 15, 15, 14, 20, 12, 5, 5, 12, 13, 15, 9, 15, 4, 20, 8, 18, 5, 8, 7, 1, 1, 9, 15, 18, 1, 20, 14, 5, 3, 14, 13, 1, 15, 20, 15, 23, 19, 12, 20, 21, 1, 20, 14, 21, 20, 20, 19, 5, 23, 1, 4, 12, 4, 5, 20, 18, 19, 1, 19, 20, 9, 6, 16, 5, 5, 5, 5, 20, 9, 23, 1, 19, 1, 9, 5, 13, 18, 19, 8, 15, 5, 25, 8, 26, 25, 2, 15, 1, 23, 8, 5, 21, 15, 6, 16, 25, 8, 23, 5, 1, 9, 3, 20, 12, 1, 9, 9, 9, 21, 14, 25, 18, 15, 14, 21, 1, 2, 5, 4, 3, 15, 5, 20, 8, 1, 19, 4, 21, 4, 5, 18, 8, 19, 23, 15, 14, 5, 12, 15, 3, 4, 9, 5, 5, 9, 5, 9, 6, 4, 5, 18, 7, 20, 20, 16, 18, 15, 18, 1, 8, 8, 19, 1, 9, 7, 20, 11, 1, 2, 20, 5, 13, 15, 15, 15, 14, 20, 7, 5, 8, 19, 19, 20, 5, 19, 5, 5, 8, 20, 12, 13, 20, 9, 1, 1, 4, 6, 5, 25, 13, 9, 15, 18, 18, 19, 15, 5, 19, 15, 13, 9, 12, 16, 20, 7, 20, 9, 20, 14, 21, 3, 9, 1, 8, 20, 1, 25, 15, 4, 16, 15, 19, 19, 4, 1, 18, 12, 12, 20, 16, 5, 18, 15, 15, 18, 16, 6, 21, 9, 5, 4, 5, 20, 3, 18, 1, 14, 5, 7, 19, 12, 18, 7, 9, 5, 4, 1, 1, 9, 20, 11, 5, 23, 20, 14, 18, 19, 5, 6, 14, 20, 12, 1, 5, 20, 14, 18, 1, 1, 14, 8, 18, 7, 7, 20, 20, 15, 5, 18, 14, 9, 14, 5, 5, 14, 19, 16, 15, 9, 20, 20, 15, 5, 12, 5, 21, 16, 3, 20, 5, 1, 18, 20, 4, 9, 18, 14, 5, 3, 5, 20, 9, 8, 5, 9, 15, 9, 9, 9, 26, 4, 15, 2, 19, 1, 6, 20, 3, 20, 9, 9, 12, 5, 9, 25, 15, 20, 12, 4, 19, 9, 18, 14, 14, 15, 14, 21, 12, 15, 20, 5, 20, 9, 6, 20, 21, 18, 14, 9, 12, 23, 8, 8, 12, 25, 12, 2, 5, 2, 5, 15, 1, 20, 15, 14, 9, 15, 18, 15, 18, 12, 5, 9, 15, 19, 25, 2, 20, 5, 20, 1, 20, 9, 4, 16, 14, 18, 19, 5, 5, 14, 20, 9, 8, 3, 1, 15, 15, 15, 6, 23, 1, 22, 1, 15, 1, 1, 21, 4, 1, 15, 5, 18, 9, 15, 4, 18, 19, 18, 23, 15, 20, 14, 5, 20, 14, 8, 19, 20, 19, 1, 12, 23, 9, 14, 16, 5, 8, 5, 9, 18, 20, 3, 6, 18, 4, 9, 8, 19, 1, 18, 20, 3, 13, 9, 14, 16, 20, 6, 1, 5, 8, 1, 19, 5, 9, 19, 14, 14, 14, 23, 8, 25, 5, 8, 22, 3, 21, 18, 22, 19, 8, 11, 5, 12, 25, 20, 19, 18, 9, 15, 5, 15, 3, 14, 7, 15, 5, 12, 19, 20, 16, 5, 20, 5, 18, 19, 5, 5, 15, 5, 12, 1, 5, 8, 16, 21, 23, 8, 19, 14, 22, 8, 8, 5, 12, 25, 2, 23, 25, 15, 9, 15, 18, 1, 9, 15, 5, 20, 2, 1, 20, 9, 4, 5, 20, 21, 22, 5, 18, 9, 21, 9, 6, 21, 23, 8, 19, 20, 7, 15, 8, 16, 21, 15, 16, 18, 8, 9, 1, 18, 14, 15, 5, 16, 21, 11, 21, 4, 18, 8, 6, 5, 18, 20, 21, 3, 20, 9, 8, 23, 23, 20, 21, 4, 9, 1, 8, 9, 1, 15, 8, 8, 8, 23, 19, 5, 12, 19, 7, 8, 5, 9, 18, 14, 5, 5, 5, 20, 3, 5, 21, 5, 13, 21, 5, 1, 23, 6, 20, 7, 6, 13, 20, 8, 22, 22, 15, 23, 15, 13, 9, 18, 6, 18, 5, 7, 5, 6, 2, 13, 12, 16, 9, 2, 5, 5, 18, 19, 3, 18, 5, 6, 15, 5, 20, 19, 18, 22, 6, 8, 1, 1, 1, 19, 21, 8, 11, 15, 5, 2, 1, 19, 1, 12, 18, 18, 4, 14, 5, 4, 8, 14, 20, 8, 21, 14, 15, 9, 22, 8, 7, 5, 20, 4, 1, 8, 18, 15, 4, 4, 14, 8, 18, 12, 12, 4, 15, 14, 18, 9, 14, 19, 4, 14, 5, 20, 9, 19, 20, 7, 5, 23, 8, 14, 4, 19, 8, 8, 5, 18, 5, 20, 14, 12, 9, 25, 14, 3, 20, 15, 18, 1, 18, 1, 18, 22, 23, 5, 2, 11, 19, 8, 6, 7, 4, 14, 13, 18, 13, 4, 3, 5, 5, 1, 5, 8, 21, 18, 9, 4, 5, 16, 9, 9, 15, 18, 1, 9, 15, 5, 20, 19, 23, 5, 4, 5, 12, 5, 5, 20, 14, 14, 14, 14, 20, 20, 5, 15, 18, 20, 15, 20, 3, 5, 1, 4, 6, 25, 8, 14, 20, 1, 25, 5, 7, 21, 22, 14, 5, 7, 15, 14, 3, 8, 18, 20, 5, 12, 16, 19, 13, 15, 5, 5, 5, 6, 22, 4, 1, 19, 20, 5, 21, 20, 1, 1, 4, 25, 9, 20, 21, 14, 9, 9, 19, 16, 3, 20, 19, 16, 9, 16, 12, 9, 23, 5, 18, 4, 15, 20, 8, 22, 14, 8, 15, 20, 9, 1, 18, 23, 2, 8, 12, 25, 16, 1, 8, 15, 23, 19, 11, 20, 20, 23, 20, 13, 8, 8, 21, 5, 20, 19, 1, 14, 6, 20, 19, 5, 22, 23, 19, 16, 21, 12, 18, 8, 7, 19, 18, 22, 15, 1, 15, 8, 8, 17, 11, 14, 8, 18, 14, 23, 15, 9, 4, 6, 5, 18, 1, 7, 8, 20, 1, 1, 5, 6, 12, 1, 7, 4, 18, 1, 20, 5, 6, 3, 21, 16, 5, 15, 7, 18, 15, 9, 1, 4, 14, 11, 15, 23, 9, 16, 5, 13, 1, 15, 21, 3, 18, 1, 5, 23, 20, 1, 6, 14, 2, 6, 25, 5, 8, 1, 12, 13, 20, 5, 18, 5, 8, 19, 6, 21, 23, 20, 1, 15, 5, 9, 20, 14, 5, 9, 8, 6, 5, 20, 5, 6, 5, 23, 5, 13, 11, 1, 20, 19, 20, 12, 18, 21, 14, 19, 15, 21, 7, 12, 20, 18, 23, 1, 6, 5, 15, 18, 9, 5, 1, 14, 8, 23, 20, 12, 1, 22, 12, 20, 1, 9, 15, 15, 20, 20, 14, 4, 1, 9, 5, 5, 15, 9, 7, 14, 23, 19, 12, 19, 7, 5, 20, 19, 8, 25, 1, 1, 14, 16, 20, 5, 20, 6, 5, 20, 9, 8, 15, 21, 3, 26, 18, 8, 12, 23, 14, 20, 5, 20, 19, 3, 5, 15, 9, 20, 20, 25, 15, 23, 1, 20, 14, 13, 2, 18, 5, 23, 8, 25, 8, 16, 14, 5, 9, 14, 9, 8, 1, 18, 25, 3, 19, 4, 15, 12, 15, 7, 19, 3, 4, 5, 14, 4, 20, 5, 4, 9, 6, 9, 20, 15, 3, 6, 1, 12, 13, 12, 17, 9, 4, 5, 18, 23, 8, 13, 1, 6, 19, 1, 6, 18, 20, 4, 12, 19, 20, 5, 23, 8, 20, 15, 19, 19, 23, 20, 7, 5, 4, 18, 9, 9, 14, 19, 12, 5, 20, 5, 8, 12, 18, 9, 19, 12, 15, 2, 13, 2, 8, 23, 15, 15, 21, 14, 15, 15, 5, 25, 15, 15, 20, 5, 4, 19, 12, 6, 12, 21, 8, 1, 14, 15, 19, 25, 5, 13, 19, 4, 8, 21, 5, 12, 9, 5, 8, 9, 13, 8, 18, 9, 9, 19, 25, 18, 6, 14, 18, 25, 7, 5, 19, 18, 8, 4, 15, 5, 16, 2, 20, 15, 1, 1, 8, 12, 20, 9, 18, 20, 10, 5, 4, 19, 5, 20, 21, 8, 21, 14, 16, 20, 15, 12, 5, 12, 23, 20, 20, 20, 20, 4, 19, 9, 5, 8, 9, 21, 14, 18, 16, 14, 16, 12, 4, 21, 8, 14, 19, 9, 14, 5, 1, 19, 21, 5, 5, 4, 5, 15, 18, 14, 9, 24, 20, 16, 5, 8, 5, 12, 5, 5, 25, 18, 5, 3, 21, 3, 4, 5, 5, 23, 15, 5, 15, 14, 7, 14, 8, 23, 14, 20, 15, 6, 20, 5, 20, 15, 19, 2, 18, 5, 23, 8, 25, 8, 16, 14, 4, 12, 5, 11, 19, 11, 5, 14, 9, 15, 23, 23, 19, 5, 22, 14, 5, 19, 20, 1, 5, 14, 12, 5, 20, 12, 20, 9, 12, 14, 12, 22, 14, 4, 15, 9, 8, 14, 23, 9, 15, 20, 1, 19, 3, 5, 15, 18, 13, 4, 2, 5, 8, 15, 15, 5, 18, 14, 14, 11, 12, 15, 5, 4, 5, 1, 1, 9, 3, 9, 12, 20, 1, 5, 9, 1, 12, 15, 7, 15, 16, 23, 15, 8, 20, 19, 14, 1, 18, 5, 15, 20, 8, 8, 12, 13, 5, 20, 1, 7, 15, 1, 1, 12, 20, 12, 19, 5, 9, 7, 18, 14, 19, 19, 8, 3, 14, 12, 14, 9, 5, 9, 5, 18, 5, 16, 5, 5, 4, 16, 17, 11, 8, 7, 5, 19, 15, 6, 20, 13, 9, 20, 7, 20, 3, 5, 7, 16, 5, 19, 12, 18, 25, 20, 13, 5, 7, 14, 20, 13, 8, 23, 13, 15, 9, 3, 1, 14, 4, 13, 1, 5, 15, 1, 15, 4, 20, 15, 18, 15, 4, 4, 12, 1, 5, 3, 20, 5, 12, 5, 20, 9, 25, 14, 15, 1, 15, 8, 13, 5, 5, 6, 15, 1, 1, 20, 20, 22, 20, 5, 2, 11, 19, 8, 4, 7, 25, 4, 5, 20, 19, 19, 13, 6, 8, 1, 9, 19, 19, 25, 20, 9, 22, 20, 2, 15, 13, 20, 19, 15, 18, 7, 1, 5, 20, 5, 20, 3, 5, 1, 20, 4, 14, 25, 8, 21, 20, 16, 15, 5, 14, 4, 5, 18, 18, 15, 18, 5, 11, 6, 23, 5, 6, 8, 16, 23, 20, 8, 19, 18, 9, 14, 4, 18, 19, 3, 2, 8, 9, 1, 5, 20, 23, 5, 14, 22, 12, 5, 20, 1, 5, 12, 9, 16, 9, 8, 6, 1, 8, 19, 23, 20, 14, 15, 1, 1, 6, 20, 1, 20, 15, 6, 19, 3, 5, 9, 18, 3, 18, 4, 20, 5, 6, 15, 21, 21, 5, 21, 5, 2, 8, 19, 3, 7, 20, 1, 15, 14, 8, 1, 19, 20, 12, 6, 20, 9, 1, 1, 7, 1, 20, 9, 5, 9, 1, 13, 9, 15, 9, 8, 15, 20, 15, 7, 14, 22, 5, 5, 13, 2, 7, 1, 1, 12, 1, 12, 9, 18, 3, 18, 16, 15, 5, 6, 15, 5, 8, 14, 12, 14, 14, 14, 19, 3, 4, 22, 5, 11, 5, 20, 21, 8, 18, 5, 20, 4, 9, 9, 2, 8, 19, 13, 20, 5, 3, 14, 1, 12, 3, 4, 9, 4, 20, 5, 14, 25, 8, 9, 20, 3, 12, 12, 13, 4, 18, 8, 14, 1, 12, 8, 9, 7, 20, 5, 5, 19, 9, 4, 18, 5, 1, 5, 20, 12, 22, 12, 8, 23, 20, 14, 18, 20, 1, 8, 1, 1, 18, 9, 19, 5, 21, 12, 14, 14, 19, 14, 7, 5, 3, 19, 1, 4, 14, 26, 12, 19, 20, 15, 6, 23, 5, 1, 4, 20, 5, 20, 5, 14, 15, 20, 8, 9, 23, 5, 23, 4, 11, 15, 15, 14, 19, 5, 20, 5, 5, 23, 23, 23, 12, 4, 1, 15, 1, 9, 19, 1, 14, 15, 20, 21, 19, 14, 1, 8, 25, 18, 12, 8, 19, 5, 2, 3, 21, 1, 8, 5, 16, 5, 20, 20, 23, 16, 20, 4, 18, 5, 8, 1, 15, 1, 15, 3, 26, 15, 18, 22, 3, 1, 14, 18, 20, 5, 15, 14, 8, 5, 14, 13, 1, 25, 15, 5, 2, 8, 19, 3, 7, 20, 1, 15, 9, 9, 8, 18, 5, 15, 4, 9, 23, 20, 15, 15, 20, 5, 5, 1, 8, 15, 18, 14, 14, 18, 6, 16, 9, 12, 14, 23, 1, 18, 5, 15, 9, 14, 3, 18, 20, 9, 5, 4, 19, 14, 6, 9, 14, 8, 3, 5, 9, 4, 14, 23, 20, 15, 8, 18, 15, 9, 1, 9, 2, 2, 12, 4, 20, 23, 7, 23, 1, 22, 6, 8, 23, 8, 12, 16, 15, 15, 14, 20, 15, 19, 4, 20, 1, 12, 4, 13, 5, 23, 18, 25, 20, 7, 15, 5, 20, 4] permutation_15324_orwell_tokens = [9, 19, 23, 20, 1, 1, 7, 18, 2, 9, 8, 12, 3, 20, 15, 4, 9, 1, 4, 25, 14, 9, 16, 1, 18, 12, 20, 14, 1, 4, 8, 15, 3, 5, 12, 3, 5, 19, 11, 23, 18, 18, 19, 5, 20, 9, 7, 9, 11, 14, 20, 20, 9, 8, 18, 5, 9, 14, 5, 23, 14, 14, 20, 19, 15, 19, 8, 9, 13, 20, 8, 8, 19, 9, 3, 9, 26, 14, 14, 21, 26, 9, 5, 12, 4, 14, 9, 15, 20, 8, 19, 1, 18, 2, 5, 19, 1, 9, 20, 14, 14, 15, 6, 5, 6, 18, 5, 20, 20, 15, 19, 5, 1, 3, 16, 20, 9, 5, 8, 22, 12, 14, 23, 5, 9, 4, 16, 12, 19, 9, 16, 21, 4, 5, 17, 9, 25, 11, 3, 12, 20, 21, 18, 8, 15, 7, 5, 20, 8, 8, 7, 19, 1, 12, 19, 4, 19, 15, 15, 18, 15, 3, 22, 6, 9, 20, 13, 18, 15, 25, 1, 15, 19, 14, 9, 14, 15, 20, 19, 8, 21, 15, 8, 7, 14, 20, 3, 21, 17, 9, 11, 14, 25, 12, 5, 15, 20, 7, 21, 8, 15, 22, 18, 16, 5, 5, 19, 20, 14, 1, 23, 15, 18, 9, 12, 6, 20, 18, 7, 9, 20, 19, 4, 25, 21, 20, 13, 18, 6, 15, 5, 18, 20, 14, 5, 9, 12, 7, 14, 1, 15, 9, 7, 14, 23, 20, 13, 8, 8, 9, 20, 1, 5, 8, 8, 12, 25, 23, 12, 1, 19, 20, 5, 13, 12, 15, 9, 2, 6, 15, 12, 1, 4, 5, 3, 2, 5, 1, 2, 7, 1, 12, 4, 14, 15, 4, 13, 1, 18, 7, 1, 20, 19, 20, 1, 15, 14, 5, 14, 5, 4, 20, 6, 15, 9, 1, 15, 15, 3, 12, 21, 16, 5, 18, 4, 15, 18, 20, 19, 5, 20, 1, 15, 15, 12, 18, 15, 5, 7, 6, 18, 15, 14, 9, 4, 15, 19, 4, 18, 9, 16, 8, 1, 12, 25, 1, 5, 2, 4, 5, 14, 11, 1, 20, 3, 5, 20, 20, 4, 15, 8, 12, 23, 5, 1, 12, 5, 20, 9, 4, 16, 5, 3, 9, 20, 4, 16, 9, 19, 13, 12, 5, 1, 25, 14, 14, 15, 18, 15, 13, 21, 3, 6, 19, 1, 5, 5, 15, 13, 18, 20, 1, 1, 8, 14, 13, 5, 20, 5, 18, 23, 20, 4, 9, 5, 8, 3, 6, 5, 1, 5, 13, 6, 15, 1, 1, 1, 15, 14, 6, 2, 6, 21, 15, 20, 15, 6, 20, 18, 25, 9, 9, 5, 22, 23, 20, 5, 1, 8, 8, 1, 12, 25, 22, 2, 1, 15, 11, 3, 13, 21, 3, 20, 19, 1, 8, 4, 1, 5, 14, 18, 5, 7, 21, 7, 4, 1, 25, 12, 8, 14, 13, 19, 4, 15, 5, 20, 5, 6, 1, 21, 23, 5, 18, 19, 9, 15, 19, 14, 20, 14, 5, 1, 13, 4, 6, 8, 18, 15, 20, 5, 9, 20, 19, 1, 18, 23, 9, 19, 20, 1, 21, 14, 19, 15, 19, 25, 20, 5, 18, 9, 8, 7, 14, 20, 5, 20, 9, 12, 6, 5, 1, 5, 22, 14, 20, 2, 8, 20, 5, 5, 6, 20, 19, 15, 20, 19, 13, 9, 5, 9, 19, 23, 20, 1, 19, 15, 12, 5, 4, 13, 11, 15, 23, 18, 9, 14, 7, 14, 1, 4, 18, 20, 1, 16, 5, 20, 5, 19, 14, 20, 12, 5, 8, 5, 5, 9, 20, 3, 18, 3, 18, 21, 3, 18, 5, 1, 20, 14, 23, 19, 15, 21, 3, 20, 6, 18, 4, 6, 21, 9, 1, 7, 14, 4, 25, 8, 9, 12, 7, 20, 18, 15, 8, 21, 19, 1, 20, 9, 23, 19, 20, 1, 16, 18, 15, 5, 20, 6, 8, 5, 15, 15, 3, 14, 13, 9, 4, 25, 18, 22, 16, 9, 5, 14, 18, 18, 16, 5, 1, 1, 14, 9, 20, 15, 6, 1, 18, 15, 8, 20, 5, 23, 5, 5, 11, 6, 8, 20, 5, 12, 1, 20, 1, 23, 19, 5, 5, 19, 22, 14, 7, 12, 6, 9, 8, 16, 19, 20, 21, 1, 9, 4, 14, 23, 14, 14, 20, 19, 15, 23, 1, 15, 8, 23, 19, 18, 8, 20, 9, 20, 14, 14, 25, 9, 5, 8, 14, 1, 4, 1, 1, 1, 4, 22, 18, 19, 3, 9, 15, 5, 5, 12, 21, 3, 18, 22, 2, 1, 15, 5, 18, 9, 8, 19, 9, 1, 8, 7, 20, 14, 23, 12, 11, 5, 5, 12, 20, 14, 19, 15, 18, 12, 23, 25, 5, 14, 20, 19, 9, 7, 5, 5, 19, 22, 18, 9, 12, 1, 20, 13, 14, 19, 5, 15, 20, 1, 5, 8, 23, 25, 1, 14, 15, 5, 3, 14, 12, 8, 1, 4, 15, 14, 9, 7, 16, 9, 15, 16, 19, 20, 5, 20, 5, 8, 12, 19, 6, 9, 20, 8, 20, 6, 1, 20, 8, 19, 16, 5, 15, 20, 9, 18, 5, 23, 20, 5, 20, 8, 8, 5, 13, 15, 14, 18, 15, 1, 19, 21, 6, 3, 26, 7, 5, 1, 5, 15, 6, 4, 18, 13, 23, 8, 20, 5, 1, 20, 12, 12, 9, 23, 14, 19, 1, 15, 5, 8, 6, 15, 20, 15, 9, 5, 19, 16, 3, 5, 21, 20, 18, 19, 3, 8, 23, 9, 8, 19, 18, 1, 5, 15, 20, 15, 3, 14, 18, 4, 22, 9, 5, 20, 20, 1, 8, 20, 8, 5, 5, 5, 25, 19, 12, 15, 6, 12, 15, 21, 25, 23, 15, 1, 20, 15, 2, 21, 23, 25, 5, 8, 14, 15, 22, 13, 21, 15, 5, 2, 9, 2, 7, 18, 5, 20, 15, 8, 18, 1, 19, 9, 23, 20, 14, 8, 3, 9, 7, 20, 15, 25, 21, 8, 16, 3, 5, 1, 20, 2, 15, 9, 14, 5, 20, 5, 14, 1, 8, 1, 20, 9, 18, 14, 9, 14, 9, 19, 4, 5, 20, 5, 8, 6, 1, 1, 12, 20, 6, 20, 21, 18, 9, 25, 3, 15, 22, 9, 5, 18, 1, 23, 19, 5, 14, 4, 1, 9, 7, 1, 21, 15, 20, 12, 15, 19, 9, 20, 6, 21, 9, 6, 7, 18, 8, 19, 5, 23, 9, 1, 8, 3, 8, 4, 5, 15, 19, 13, 20, 7, 9, 8, 14, 20, 23, 4, 15, 15, 9, 8, 8, 20, 20, 5, 4, 18, 16, 15, 21, 15, 20, 3, 9, 14, 9, 6, 15, 16, 7, 14, 18, 9, 15, 20, 15, 5, 8, 22, 9, 1, 5, 3, 3, 13, 15, 6, 5, 18, 13, 2, 14, 1, 15, 12, 13, 14, 15, 7, 5, 16, 1, 20, 12, 12, 5, 17, 1, 21, 12, 1, 11, 9, 5, 4, 5, 12, 21, 12, 4, 18, 9, 13, 18, 15, 9, 23, 18, 8, 3, 18, 6, 8, 15, 13, 1, 4, 5, 16, 18, 20, 15, 20, 6, 8, 18, 19, 5, 21, 6, 15, 3, 1, 5, 6, 18, 8, 20, 5, 9, 8, 8, 7, 20, 1, 1, 4, 14, 23, 12, 14, 23, 12, 9, 19, 20, 15, 20, 14, 21, 4, 14, 18, 5, 1, 20, 23, 19, 9, 3, 4, 1, 8, 14, 20, 15, 5, 8, 22, 9, 1, 5, 3, 19, 14, 13, 19, 11, 15, 5, 20, 8, 23, 1, 20, 7, 15, 8, 21, 8, 23, 8, 20, 5, 15, 23, 4, 18, 19, 5, 20, 5, 18, 19, 9, 9, 12, 12, 4, 19, 7, 9, 20, 14, 21, 1, 19, 9, 8, 2, 8, 5, 12, 20, 5, 20, 14, 9, 19, 18, 14, 13, 21, 5, 20, 20, 8, 20, 5, 5, 3, 5, 12, 19, 18, 9, 5, 5, 14, 20, 3, 1, 23, 19, 1, 4, 12, 12, 5, 3, 4, 21, 15, 12, 2, 13, 4, 5, 9, 13, 21, 4, 5, 2, 20, 18, 8, 20, 5, 5, 14, 1, 23, 19, 15, 15, 1, 23, 25, 6, 20, 8, 19, 21, 20, 9, 14, 9, 7, 20, 3, 6, 15, 6, 15, 5, 16, 13, 12, 20, 8, 12, 5, 25, 5, 5, 15, 13, 22, 4, 18, 22, 15, 5, 20, 5, 20, 15, 8, 23, 15, 14, 9, 4, 23, 1, 19, 1, 13, 12, 8, 9, 12, 19, 6, 12, 1, 18, 9, 6, 18, 7, 9, 21, 5, 13, 8, 20, 5, 5, 5, 7, 1, 18, 14, 15, 19, 5, 19, 6, 2, 9, 8, 19, 15, 5, 25, 4, 13, 18, 5, 12, 5, 25, 13, 19, 8, 16, 1, 9, 2, 5, 26, 4, 25, 2, 8, 20, 5, 12, 22, 5, 21, 15, 5, 12, 1, 18, 12, 19, 3, 8, 23, 9, 8, 5, 5, 23, 18, 20, 14, 5, 8, 21, 9, 13, 15, 6, 18, 15, 5, 20, 6, 8, 16, 25, 18, 1, 20, 8, 1, 19, 9, 8, 9, 19, 23, 18, 1, 22, 6, 18, 5, 25, 1, 9, 18, 9, 8, 19, 5, 1, 6, 3, 14, 18, 20, 1, 21, 1, 19, 12, 12, 25, 1, 9, 7, 14, 21, 14, 19, 8, 5, 9, 19, 18, 9, 11, 14, 15, 5, 7, 21, 8, 14, 25, 4, 5, 2, 3, 19, 1, 15, 18, 5, 16, 15, 19, 1, 1, 12, 4, 14, 2, 21, 1, 20, 14, 18, 26, 12, 18, 15, 2, 1, 1, 5, 4, 19, 14, 5, 20, 4, 8, 3, 15, 12, 15, 4, 6, 23, 8, 20, 5, 9, 18, 20, 14, 5, 20, 8, 1, 8, 20, 1, 19, 10, 4, 21, 20, 5, 14, 5, 4, 4, 19, 21, 15, 20, 9, 22, 5, 4, 5, 5, 18, 20, 14, 8, 15, 20, 7, 21, 8, 8, 21, 19, 5, 8, 20, 4, 9, 23, 14, 15, 14, 16, 23, 1, 5, 23, 8, 20, 5, 15, 12, 12, 18, 4, 15, 4, 11, 15, 5, 3, 4, 12, 15, 4, 15, 14, 14, 23, 9, 20, 20, 5, 8, 19, 18, 12, 5, 5, 20, 9, 5, 20, 20, 12, 5, 5, 4, 4, 9, 19, 9, 6, 15, 23, 14, 18, 23, 4, 5, 5, 18, 8, 23, 9, 12, 4, 14, 9, 7, 21, 14, 20, 19, 1, 4, 14, 15, 20, 18, 16, 18, 16, 1, 5, 9, 19, 20, 14, 15, 16, 12, 18, 9, 1, 19, 20, 14, 1, 4, 8, 8, 21, 15, 7, 20, 21, 5, 8, 19, 14, 19, 1, 23, 19, 8, 14, 14, 9, 9, 7, 20, 14, 1, 4, 8, 25, 19, 5, 11, 1, 19, 1, 8, 18, 8, 5, 12, 2, 21, 20, 5, 5, 8, 18, 19, 5, 5, 5, 13, 4, 5, 15, 20, 2, 14, 12, 3, 15, 15, 15, 14, 18, 21, 9, 1, 8, 25, 14, 20, 9, 24, 7, 14, 5, 3, 20, 16, 5, 20, 8, 19, 16, 5, 15, 20, 20, 18, 5, 19, 8, 5, 20, 1, 23, 18, 1, 16, 5, 12, 19, 5, 5, 20, 18, 4, 18, 22, 5, 5, 25, 18, 8, 23, 5, 5, 2, 8, 20, 5, 12, 13, 3, 1, 11, 15, 1, 19, 21, 20, 3, 4, 9, 8, 15, 6, 7, 3, 1, 5, 1, 4, 5, 26, 4, 15, 18, 14, 23, 6, 15, 5, 5, 13, 22, 18, 13, 3, 25, 15, 13, 9, 14, 1, 4, 14, 18, 3, 7, 15, 14, 8, 18, 5, 20, 5, 1, 5, 18, 23, 19, 15, 14, 15, 5, 14, 8, 8, 20, 5, 15, 6, 19, 21, 5, 18, 9, 14, 15, 20, 13, 9, 5, 13, 4, 1, 25, 5, 20, 12, 15, 19, 16, 16, 15, 9, 9, 5, 20, 2, 7, 20, 18, 2, 15, 8, 19, 18, 5, 9, 23, 8, 20, 1, 3, 9, 15, 7, 14, 25, 21, 3, 8, 20, 5, 1, 15, 20, 16, 9, 14, 4, 1, 19, 9, 23, 5, 9, 8, 12, 20, 1, 5, 8, 4, 18, 5, 5, 11, 25, 19, 11, 15, 12, 15, 5, 5, 4, 4, 5, 16, 15, 14, 9, 20, 23, 20, 14, 9, 19, 15, 23, 19, 14, 15, 14, 14, 15, 4, 23, 1, 18, 19, 20, 20, 5, 5, 20, 5, 12, 22, 14, 12, 5, 1, 15, 18, 8, 20, 5, 16, 5, 19, 15, 20, 18, 14, 15, 20, 18, 1, 5, 15, 20, 14, 3, 5, 18, 15, 14, 18, 16, 12, 6, 1, 16, 9, 4, 5, 6, 20, 12, 21, 6, 12, 25, 8, 14, 9, 20, 5, 4, 9, 23, 14, 1, 18, 20, 12, 5, 14, 12, 20, 1, 5, 25, 5, 15, 3, 22, 18, 1, 14, 9, 7, 14, 3, 21, 4, 14, 15, 9, 5, 22, 18, 14, 5, 20, 7, 8, 19, 12, 14, 9, 7, 5, 4, 15, 23, 18, 9, 15, 7, 14, 19, 3, 8, 14, 9, 20, 5, 4, 1, 6, 18, 9, 14, 20, 19, 1, 3, 5, 1, 5, 8, 12, 16, 3, 9, 15, 20, 11, 18, 5, 19, 9, 4, 13, 13, 5, 4, 2, 23, 15, 14, 5, 5, 23, 20, 5, 14, 18, 8, 20, 5, 15, 8, 6, 15, 19, 15, 5, 5, 22, 18, 4, 1, 15, 6, 18, 14, 20, 14, 9, 19, 1, 9, 20, 14, 12, 11, 12, 1, 5, 2, 21, 20, 2, 5, 15, 20, 14, 5, 12, 1, 4, 20, 1, 4, 18, 5, 1, 1, 4, 23, 25, 9, 7, 1, 1, 14, 8, 9, 23, 20, 1, 22, 21, 3, 18, 9, 12, 7, 14, 6, 9, 9, 8, 7, 20, 20, 20, 1, 23, 19, 8, 12, 16, 5, 15, 9, 1, 5, 3, 16, 20, 19, 15, 18, 12, 14, 9, 15, 15, 16, 14, 20, 9, 7, 14, 15, 16, 5, 16, 15, 12, 9, 19, 5, 23, 14, 19, 15, 4, 23, 20, 1, 5, 8, 16, 20, 19, 15, 18, 12, 4, 15, 4, 9, 14, 20, 20, 1, 13, 20, 5, 23, 8, 18, 15, 5, 15, 5, 22, 18, 14, 8, 25, 12, 20, 5, 21, 8, 20, 15, 7, 15, 20, 8, 16, 12, 13, 3, 9, 5, 1, 18, 20, 20, 5, 5, 4] w_squared_charmap = ["11", "21", "31", "12", "22", "32", "13", "23", "33"] mtrans_6_orwell_tokens = [9, 2, 3, 25, 9, 8, 11, 19, 14, 20, 14, 13, 19, 21, 9, 19, 20, 6, 15, 5, 12, 19, 4, 12, 21, 7, 15, 22, 25, 15, 21, 17, 25, 8, 22, 23, 7, 4, 15, 18, 15, 8, 5, 1, 20, 12, 2, 4, 7, 20, 4, 3, 5, 5, 1, 18, 18, 1, 5, 11, 8, 9, 3, 13, 5, 21, 13, 1, 18, 20, 5, 14, 21, 25, 9, 1, 3, 20, 14, 5, 14, 6, 5, 20, 5, 5, 19, 14, 18, 8, 5, 20, 20, 5, 19, 13, 14, 20, 14, 12, 3, 14, 21, 21, 1, 20, 9, 1, 8, 15, 22, 5, 9, 8, 5, 12, 19, 12, 21, 9, 23, 20, 14, 4, 1, 5, 1, 9, 20, 23, 15, 19, 5, 20, 14, 25, 8, 14, 19, 5, 8, 5, 18, 8, 13, 3, 4, 8, 9, 14, 15, 20, 8, 5, 20, 20, 5, 15, 15, 20, 15, 2, 20, 23, 14, 8, 9, 5, 18, 9, 6, 18, 15, 19, 14, 12, 6, 19, 8, 5, 20, 20, 18, 9, 9, 20, 3, 6, 15, 13, 12, 9, 12, 18, 9, 13, 20, 19, 5, 18, 1, 12, 15, 5, 20, 20, 3, 19, 1, 7, 15, 18, 12, 14, 1, 5, 21, 8, 19, 9, 1, 15, 4, 2, 18, 15, 19, 14, 6, 5, 5, 15, 20, 4, 1, 6, 9, 8, 18, 15, 15, 5, 8, 4, 2, 5, 23, 5, 21, 13, 16, 9, 23, 25, 9, 14, 12, 7, 9, 18, 14, 15, 15, 2, 1, 1, 4, 12, 5, 18, 1, 5, 21, 5, 18, 8, 23, 16, 5, 12, 3, 23, 5, 20, 5, 19, 4, 8, 7, 14, 16, 14, 18, 4, 8, 14, 9, 14, 11, 19, 20, 5, 15, 15, 14, 9, 5, 16, 19, 5, 19, 5, 8, 5, 13, 3, 1, 5, 6, 5, 13, 7, 18, 23, 15, 15, 15, 5, 12, 19, 7, 5, 20, 25, 3, 14, 8, 5, 25, 11, 16, 9, 19, 23, 18, 22, 20, 19, 18, 5, 18, 5, 21, 20, 4, 14, 3, 14, 14, 9, 19, 23, 7, 20, 4, 3, 9, 18, 5, 2, 14, 15, 5, 18, 20, 11, 5, 5, 18, 1, 14, 3, 7, 20, 20, 9, 18, 15, 14, 16, 14, 8, 15, 14, 20, 5, 12, 8, 16, 13, 5, 20, 18, 15, 9, 12, 5, 19, 20, 7, 5, 19, 9, 3, 26, 14, 2, 9, 6, 5, 20, 5, 12, 17, 25, 7, 12, 15, 9, 13, 14, 7, 21, 5, 20, 5, 9, 18, 21, 13, 9, 14, 8, 8, 25, 15, 5, 1, 15, 13, 15, 15, 15, 4, 18, 18, 9, 4, 25, 5, 5, 5, 20, 20, 16, 14, 19, 15, 14, 5, 8, 15, 15, 20, 6, 20, 22, 11, 1, 4, 4, 4, 5, 19, 15, 6, 19, 9, 15, 25, 5, 22, 8, 15, 19, 19, 23, 7, 16, 20, 5, 3, 20, 20, 18, 25, 8, 20, 18, 5, 13, 5, 16, 15, 1, 11, 1, 5, 9, 16, 14, 8, 8, 9, 8, 18, 21, 2, 19, 1, 5, 23, 20, 22, 9, 20, 15, 12, 7, 9, 12, 1, 16, 23, 5, 15, 5, 6, 5, 20, 5, 19, 21, 9, 19, 18, 8, 5, 12, 21, 23, 21, 9, 8, 1, 7, 5, 15, 1, 1, 4, 12, 21, 9, 18, 7, 9, 9, 23, 1, 20, 15, 8, 15, 15, 7, 8, 5, 18, 2, 5, 1, 11, 12, 18, 3, 5, 15, 21, 15, 9, 14, 23, 14, 4, 3, 8, 5, 15, 20, 8, 18, 5, 4, 7, 2, 9, 13, 5, 3, 20, 12, 21, 9, 21, 5, 23, 8, 7, 3, 20, 13, 22, 8, 15, 12, 18, 7, 5, 5, 6, 4, 12, 1, 2, 12, 18, 8, 18, 14, 15, 1, 19, 1, 6, 19, 1, 12, 21, 19, 15, 5, 1, 1, 12, 26, 4, 20, 4, 23, 20, 4, 14, 20, 22, 15, 5, 9, 1, 23, 15, 15, 14, 19, 12, 5, 15, 23, 9, 4, 4, 1, 20, 1, 20, 20, 23, 14, 4, 25, 8, 8, 5, 2, 12, 1, 14, 16, 15, 20, 18, 20, 22, 5, 2, 15, 8, 3, 4, 18, 18, 1, 3, 20, 1, 14, 21, 14, 4, 25, 9, 2, 18, 3, 15, 1, 19, 9, 4, 5, 5, 9, 14, 15, 14, 5, 5, 8, 20, 14, 3, 6, 4, 12, 8, 1, 1, 15, 7, 3, 14, 9, 15, 19, 8, 9, 5, 3, 19, 4, 5, 20, 6, 18, 1, 1, 5, 2, 1, 20, 25, 23, 21, 6, 9, 8, 3, 15, 16, 20, 12, 4, 5, 12, 15, 5, 22, 25, 15, 15, 1, 4, 23, 9, 12, 14, 1, 3, 23, 18, 20, 5, 20, 20, 8, 26, 20, 18, 14, 15, 19, 8, 23, 9, 21, 20, 8, 1, 18, 3, 1, 19, 8, 9, 14, 15, 14, 18, 9, 19, 5, 14, 7, 9, 1, 19, 6, 4, 7, 12, 1, 14, 6, 12, 16, 20, 7, 14, 9, 8, 14, 4, 23, 4, 5, 12, 15, 6, 18, 1, 23, 5, 6, 6, 6, 9, 8, 25, 13, 3, 18, 12, 19, 1, 23, 14, 15, 20, 20, 21, 9, 12, 5, 5, 6, 9, 5, 15, 1, 18, 20, 3, 21, 23, 15, 9, 12, 15, 23, 20, 5, 25, 9, 1, 14, 20, 20, 20, 22, 7, 1, 19, 15, 9, 14, 1, 9, 12, 15, 18, 14, 14, 12, 9, 5, 13, 8, 14, 1, 15, 20, 9, 6, 15, 9, 5, 21, 7, 18, 23, 23, 15, 5, 18, 3, 15, 9, 1, 25, 12, 1, 8, 13, 7, 5, 20, 25, 3, 14, 20, 14, 5, 1, 9, 3, 5, 15, 19, 7, 8, 4, 8, 4, 20, 4, 14, 9, 5, 3, 15, 12, 20, 17, 5, 5, 15, 8, 4, 6, 18, 6, 7, 4, 9, 20, 1, 8, 5, 19, 13, 20, 20, 4, 19, 9, 21, 12, 14, 5, 20, 18, 23, 12, 12, 13, 20, 23, 1, 21, 9, 15, 5, 15, 5, 5, 23, 12, 1, 21, 13, 14, 8, 25, 25, 19, 25, 21, 1, 9, 5, 9, 6, 18, 8, 19, 1, 6, 20, 25, 9, 19, 21, 4, 18, 16, 21, 15, 5, 8, 15, 9, 8, 10, 4, 19, 5, 21, 19, 14, 14, 15, 15, 12, 9, 20, 9, 4, 6, 5, 18, 21, 20, 16, 15, 12, 8, 8, 1, 9, 20, 1, 2, 5, 13, 5, 15, 14, 7, 20, 19, 8, 5, 5, 5, 18, 12, 21, 9, 5, 4, 15, 25, 14, 15, 8, 19, 20, 19, 20, 9, 15, 20, 18, 9, 8, 21, 16, 1, 12, 1, 19, 4, 14, 19, 23, 1, 5, 12, 5, 5, 1, 15, 12, 6, 12, 5, 12, 20, 22, 1, 15, 7, 14, 18, 15, 5, 19, 1, 15, 11, 4, 20, 8, 19, 5, 14, 14, 1, 15, 14, 5, 1, 9, 18, 12, 20, 5, 5, 12, 9, 15, 5, 15, 16, 19, 20, 18, 5, 20, 21, 12, 20, 1, 7, 4, 1, 14, 12, 5, 9, 8, 14, 15, 8, 9, 12, 15, 5, 1, 18, 3, 5, 9, 16, 9, 8, 20, 19, 19, 20, 14, 20, 14, 3, 15, 16, 20, 12, 20, 20, 14, 7, 23, 13, 12, 13, 2, 3, 5, 4, 20, 5, 9, 15, 15, 15, 5, 4, 19, 1, 20, 20, 1, 5, 4, 25, 18, 1, 5, 13, 9, 6, 1, 1, 15, 22, 1, 2, 15, 8, 21, 25, 15, 20, 9, 13, 18, 1, 23, 19, 14, 9, 14, 2, 20, 20, 12, 18, 14, 5, 8, 20, 18, 1, 6, 14, 9, 21, 1, 15, 3, 4, 14, 18, 6, 5, 8, 23, 5, 8, 14, 20, 23, 18, 5, 4, 3, 3, 22, 9, 11, 20, 25, 14, 18, 5, 5, 5, 14, 16, 5, 6, 20, 19, 20, 14, 19, 1, 15, 1, 1, 6, 16, 5, 8, 3, 22, 20, 5, 15, 2, 5, 15, 2, 18, 3, 15, 1, 2, 8, 9, 20, 20, 20, 5, 1, 21, 20, 21, 9, 19, 9, 15, 8, 21, 15, 18, 22, 1, 13, 15, 1, 21, 1, 4, 18, 6, 16, 20, 6, 20, 8, 23, 14, 21, 19, 1, 22, 1, 5, 8, 8, 19, 20, 19, 9, 5, 19, 14, 5, 5, 1, 5, 4, 13, 20, 1, 25, 20, 20, 13, 12, 22, 18, 23, 1, 9, 9, 18, 5, 5, 9, 13, 5, 9, 20, 5, 12, 3, 20, 6, 20, 20, 1, 22, 9, 1, 21, 19, 14, 11, 7, 2, 19, 1, 14, 18, 19, 5, 6, 14, 1, 21, 5, 9, 14, 7, 8, 4, 5, 18, 11, 4, 14, 18, 20, 4, 23, 18, 12, 19, 15, 5, 19, 19, 15, 5, 19, 14, 8, 8, 12, 18, 5, 14, 21, 25, 5, 20, 20, 1, 16, 18, 18, 5, 1, 19, 15, 7, 15, 13, 3, 4, 18, 5, 15, 8, 5, 9, 1, 16, 5, 15, 19, 9, 20, 20, 9, 5, 18, 12, 4, 20, 20, 14, 20, 20, 1, 18, 18, 20, 18, 1, 9, 25, 23, 20, 5, 5, 14, 22, 20, 7, 4, 3, 6, 20, 8, 16, 9, 15, 23, 5, 8, 4, 9, 20, 2, 20, 4, 4, 7, 20, 22, 9, 23, 16, 16, 19, 14, 16, 19, 23, 1, 4, 13, 8, 18, 8, 7, 9, 20, 19, 8, 4, 16, 4, 15, 18, 11, 9, 23, 14, 8, 14, 5, 8, 1, 14, 20, 1, 22, 14, 16, 3, 18, 8, 19, 15, 15, 19, 8, 15, 11, 21, 18, 1, 15, 20, 6, 20, 1, 9, 20, 12, 5, 15, 1, 1, 18, 19, 5, 20, 21, 19, 15, 6, 15, 16, 4, 1, 15, 12, 16, 19, 1, 13, 3, 20, 5, 4, 1, 13, 2, 18, 5, 8, 12, 21, 5, 7, 8, 13, 21, 14, 1, 20, 9, 1, 5, 7, 6, 1, 5, 9, 23, 4, 11, 4, 19, 5, 18, 18, 19, 6, 7, 7, 18, 19, 6, 15, 18, 16, 1, 15, 23, 5, 1, 14, 20, 4, 15, 1, 20, 1, 1, 15, 5, 5, 7, 12, 19, 18, 7, 1, 19, 23, 1, 4, 16, 20, 20, 20, 20, 8, 15, 6, 26, 13, 12, 19, 20, 9, 19, 1, 15, 5, 20, 19, 23, 15, 14, 22, 18, 9, 8, 21, 16, 5, 9, 14, 8, 1, 25, 23, 4, 20, 15, 18, 3, 15, 14, 23, 5, 3, 6, 15, 15, 13, 1, 14, 12, 5, 4, 13, 23, 15, 1, 8, 1, 8, 20, 1, 19, 18, 23, 14, 15, 14, 23, 15, 5, 23, 9, 20, 19, 20, 20, 20, 12, 5, 19, 4, 2, 5, 8, 19, 15, 20, 15, 16, 25, 5, 20, 9, 19, 19, 12, 5, 1, 19, 19, 5, 13, 26, 8, 15, 12, 8, 8, 15, 8, 25, 9, 5, 18, 3, 18, 1, 5, 9, 8, 25, 5, 14, 20, 2, 1, 3, 20, 20, 20, 19, 4, 4, 20, 8, 21, 15, 20, 12, 5, 4, 20, 5, 20, 9, 9, 5, 9, 20, 18, 18, 16, 1, 21, 19, 19, 7, 5, 1, 21, 5, 4, 15, 18, 20, 24, 8, 5, 20, 12, 5, 25, 20, 3, 20, 4, 1, 23, 5, 15, 9, 14, 18, 14, 5, 6, 13, 20, 16, 2, 20, 23, 14, 8, 9, 4, 20, 11, 15, 5, 15, 15, 4, 19, 12, 14, 16, 20, 15, 14, 16, 20, 9, 9, 5, 12, 18, 4, 5, 8, 12, 9, 9, 1, 1, 5, 20, 13, 23, 5, 18, 15, 6, 14, 12, 12, 20, 4, 1, 1, 8, 9, 7, 1, 15, 1, 14, 7, 5, 23, 19, 20, 9, 1, 15, 15, 5, 8, 3, 5, 1, 20, 1, 18, 20, 3, 5, 9, 18, 9, 19, 9, 14, 4, 9, 19, 5, 20, 16, 9, 4, 5, 11, 15, 5, 4, 6, 18, 9, 15, 20, 12, 7, 5, 19, 6, 25, 18, 5, 12, 20, 8, 23, 12, 9, 2, 14, 1, 1, 14, 1, 18, 20, 12, 15, 15, 12, 2, 3, 20, 12, 9, 9, 14, 15, 5, 8, 20, 5, 3, 1, 15, 20, 23, 5, 1, 19, 1, 7, 1, 5, 18, 19, 4, 8, 18, 19, 20, 20, 20, 20, 19, 13, 1, 15, 9, 1, 5, 5, 9, 5, 3, 4, 4, 8, 19, 16, 20, 14, 9, 18, 20, 18, 5, 6, 19, 6, 19, 23, 14, 19, 25, 14, 22, 19, 18, 8, 8, 5, 12, 5, 19, 12, 15, 1, 3, 9, 15, 8, 19, 8, 5, 20, 18, 1, 5, 20, 12, 15, 8, 3, 23, 18, 14, 4, 8, 6, 25, 21, 25, 5, 15, 19, 9, 20, 20, 14, 20, 19, 5, 6, 22, 1, 9, 1, 6, 5, 8, 13, 7, 9, 16, 20, 16, 14, 9, 5, 14, 7, 16, 12, 21, 9, 8, 18, 18, 5, 3, 5, 8, 12, 20, 14, 9, 4, 9, 11, 8, 21, 23, 5, 12, 9, 8, 8, 18, 20, 5, 14, 3, 3, 5, 4, 5, 14, 6, 9, 6, 12, 8, 4, 15, 14, 13, 8, 6, 20, 7, 19, 2, 18, 16, 5, 5, 22, 19, 23, 5, 18, 5, 8, 18, 18, 8, 5, 1, 14, 8, 14, 5, 3, 19, 4, 18, 12, 14, 15, 8, 5, 8, 20, 15, 5, 8, 20, 20, 23, 8, 4, 4, 15, 8, 5, 12, 5, 14, 23, 14, 1, 14, 9, 9, 14, 7, 21, 8, 1, 19, 18, 5, 19, 20, 3, 9, 8, 3, 5, 18, 23, 1, 4, 23, 8, 11, 1, 6, 26, 14, 22, 13, 14, 5, 5, 5, 8, 18, 13, 5, 15, 9, 8, 1, 7, 5, 15, 23, 8, 5, 15, 5, 23, 14, 15, 20, 5, 15, 15, 15, 14, 5, 16, 6, 14, 14, 18, 25, 9, 21, 18, 5, 5, 14, 14, 18, 14, 12, 5, 13, 14, 5, 15, 22, 15, 19, 9, 21, 12, 1, 23, 9, 1, 14, 8, 19, 12, 20, 15, 9, 15, 9, 20, 18, 4, 20, 23, 14, 20, 20, 5, 18]
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "MIT" ]
0.4.1
5e8e2c2b2057935d2128bc1c98f8f50c7aae5f60
docs
484
# RxCiphers [![Build Status](https://github.com/rxwop/RxCiphers.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/rxwop/RxCiphers.jl/actions/workflows/CI.yml?query=branch%3Amaster) [![Coverage](https://codecov.io/gh/rxwop/RxCiphers.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/rxwop/RxCiphers.jl) Credit to: https://jkrumbiegel.com/pages/2021-06-07-macros-for-beginners/ http://www.practicalcryptography.com/ciphers/adfgvx-cipher/ for text samples
RxCiphers
https://github.com/rxwop/RxCiphers.jl.git
[ "Apache-2.0" ]
0.1.2
17337ed2faf970a7af883c8af86c2f6aff4417b0
code
172
push!(LOAD_PATH,"../src/") using Documenter, GnuplotLite makedocs(sitename="GnuplotLite documentation") deploydocs( repo = "github.com/jhidding/GnuplotLite.jl.git", )
GnuplotLite
https://github.com/jhidding/GnuplotLite.jl.git
[ "Apache-2.0" ]
0.1.2
17337ed2faf970a7af883c8af86c2f6aff4417b0
code
4391
module GnuplotLite export gnuplot, send, save """ struct Gnuplot This `struct` is not exported, as it is not supposed to be created by a user, other than through calling [`gnuplot()`](@ref), or [`save()`](@ref). Messages can be sent to a Gnuplot instance using the [`send()`](@ref) method: ```julia gnuplot() do g g |> send("plot sin(x)") end ``` """ struct Gnuplot channel :: Channel{String}; end """ struct Msg This wraps the actions that are created using the different variants of the [`send()`](@ref) method. Messages can be composed (unlike `∘`, going left to right) using the `*` operator. """ struct Msg action :: Function end (a::Msg)(g::Gnuplot) = a.action(g) Base.:*(a::Msg, b::Msg) = Msg(b.action ∘ a.action) """ gnuplot(persist = true, echo = false) The main constructor for a `Gnuplot` instance. This starts the `gnuplot` process and creates a channel to which commands can be sent. The `persist` argument make sure that any interactive window remains open, even if we have closed the pipe to the Gnuplot process. The `echo` argument is for debugging. If enabled, all commands send to this instance are also echoed to `stdout`. """ function gnuplot(;persist::Bool = true, echo::Bool = false) cmd = persist ? `gnuplot -persist` : `gnuplot` channel = Channel{String}() do channel open(cmd, stdout; write=true) do input for line in channel echo && println("> ", line) write(input, line * "\n") end end end Gnuplot(channel) end """ close(::Gnuplot) Close the Gnuplot process by closing the underlying channel. The actual process my continue living if terminals are left open. """ Base.close(g::Gnuplot) = close(g.channel) """ gnuplot(::Function; kwargs...) Variant of the `gnuplot` constructor for use with `do` syntax. Makes sure to close the channel (and thereby) the process. """ function gnuplot(f::Function; kwargs...) g = gnuplot(kwargs...) f(g) close(g.channel) end """ send(::String) Send a literal message to a Gnuplot instance. This is supposed to be used using a pipe (`|>`) operator. Returns a [`Msg`](@ref). """ function send(msg::String) function (g::Gnuplot) put!(g.channel, msg) g end |> Msg end """ send(::Pair{String,Matrix{T}}) where T <: Number Send a matrix to Gnuplot, storing it in a variable. This variant assumes the matrix gets integer indices from `[0..N-1]`, as described in the Gnuplot documentation for uniform matrices. Returns a [`Msg`](@ref). """ function send(data::Pair{String,Matrix{T}}) where {T <: Number} function (g::Gnuplot) g |> send("\$$(data[1]) << EOD") for row in eachrow(data[2]) g |> send(join(string.(row), " ")) end g |> send("EOD") end |> Msg end """ send(::Pair{String,@NamedTuple{x::T,y::T,z::U}}) where {T <: AbstractVector{<:Real}, U <: AbstractMatrix{<:Real}} Send a matrix to Gnuplot, storing it in a variable. This variant also sends axis information along with the matrix, as described in the Gnuplot documentation for nonuniform matrices. Returns a [`Msg`](@ref). Example: x = y = -1:0.1:1 z = x.^2 .- y'.^2 gnuplot() do gp gp |> send("data" => (x=collect(x), y=collect(y), z=z)) |> send("splot \$data w l") end """ function send(data::Pair{String,@NamedTuple{x::T,y::T,z::U}}) where {T <: AbstractVector{<:Real}, U <: AbstractMatrix{<:Real}} (k, (x, y, z)) = data function (g::Gnuplot) g |> send("\$$k << EOD") |> send("$(length(x)) $(join(string.(x), " "))") for (y, row) in zip(y, eachrow(z)) g |> send("$y $(join(string.(row), " "))") end g |> send("EOD") end |> Msg end """ save(path::String) Create a phony [`Gnuplot`](@ref) instance, without the underlying process attached. Instead, write messages to file. You can then later turn the file into a plot by running it with Gnuplot from the command line, or run a `pipeline` from Julia. """ function save(path::String) channel = Channel() do channel open(path, "w") do output for line in channel write(output, line * "\n") end end end Gnuplot(channel) end end # module
GnuplotLite
https://github.com/jhidding/GnuplotLite.jl.git
[ "Apache-2.0" ]
0.1.2
17337ed2faf970a7af883c8af86c2f6aff4417b0
docs
1316
# GnuplotLite.jl Responsive, composable, no-nonsense interface to Gnuplot. This has the following design goals: - Responsiveness: this should be the thinnest of possible wrappers. The biggest drag to plotting in Julia is the number of lines of code that sit in between the programmer and the plotter. - Composability: it should be easy to extend GnuplotLite. - Transparency: it should be easy to reason about how data is entered into Gnuplot. That being said, there are so many plotting packages in Julia. When should you use this? - Use `GnuplotLite` if you are in love with Gnuplot and want nothing to sit in between you and it. ```julia using GnuplotLite gnuplot() do gp gp |> send("set term svg background 'white'") |> send("set output 'sine.svg'") |> send("plot sin(x)") end ``` You can specialize writing data to Gnuplot by overloading the `send()` method. ```julia x = -4:0.15:4 y = x z = sinc.(sqrt.(x.^2 .+ y'.^2)) gnuplot() do gp gp |> send("data" => (x=collect(x),y=collect(y),z=z)) |> send("plot \$data matrix nonuniform with image") end ``` Check out the [full documentation](https://jhidding.github.io/GnuplotLite.jl). ## License Copyright 2022, Johan Hidding, Netherlands eScience Center. Licensed under the Apache 2.0 license, see LICENSE.
GnuplotLite
https://github.com/jhidding/GnuplotLite.jl.git
[ "Apache-2.0" ]
0.1.2
17337ed2faf970a7af883c8af86c2f6aff4417b0
docs
48
# API ```@autodocs Modules = [GnuplotLite] ```
GnuplotLite
https://github.com/jhidding/GnuplotLite.jl.git
[ "Apache-2.0" ]
0.1.2
17337ed2faf970a7af883c8af86c2f6aff4417b0
docs
4284
# Introduction to GnuplotLite.jl This module is a Julia wrapper for Gnuplot. This has the following design goals: - Responsiveness: this should be the thinnest of possible wrappers. The biggest drag to plotting in Julia is the number of lines of code that sit in between the programmer and the plotter. - Composability: it should be easy to extend `GnuplotLite`. - Transparency: it should be easy to reason about how data is entered into Gnuplot. That being said, there are so many plotting packages in Julia. When should you use this? - Use `GnuplotLite` if you are in love with Gnuplot and want nothing to sit in between you and it. ## Alternatives Plotting in Julia is a notoriously hard problem. Why? A core issue with many plotting packages in Julia is that these packages become too big, and then compiling all the necessary code makes things slow. So the problem is a combination of the one-shot nature of plotting and the complexity of the packages involved. A related problem with plotting packages in any language, is that two problems get conflated: data analysis and visualization. This makes for very nice interfaces a la GGPlot (which I find brilliant), however, on the implementation side this needlessly complicates things. The focus on visualizing data-frames has left it very hard to work with grid based data in most modern packages (plotly, ggplot, vegalite, bokeh, you name it). - `Plots.jl` is a large package that provides a uniform interface over a lot of backends. I have recently tried `Plots` with the most recommended backends: `GR`, `Plotly`, `Pyplot`, `Gaston`. The `GR` backend worked really well, but it was really hard to tweak the output towards publication quality. In other words, plotting was relatively fast but hideous to the limit of being buggy. All the other backends that I tried gave me installation issues. - `Gadfly.jl` looks very promising, but is very slow to respond with larger data sets. - `Gnuplot.jl` is a thin wrapper around Gnuplot. My problem with this package is that it focusses heavily on use with a macro `@gp`. Because of this, code in `Gnuplot.jl` suffers from a lack of composability. It is also not so straight forward to see exactly how `@gp` code translates to `gnuplot` commands when arrays are used. - `Gaston.jl` is a slightly thicker wrapper around Gnuplot, mirroring Gnuplot syntax in Julia functions. I could not make it work. ## Tutorial Start a Gnuplot session by running `gnuplot()`. Then send it messages using `|> send(...)`. ```julia using GnuplotLite g = gnuplot() g |> send("plot sin(x)") close(g) ``` Note that using `gnuplot()` this way may leave the actual Gnuplot process dangling. There is `do`-notation to prevent that: ```julia gnuplot() do g g |> send("plot sin(x)") end ``` Messages can be composed: ```@example 1 using GnuplotLite setup(output) = send("set term svg background 'white' size 600,400 dynamic " * "mouse standalone") * send("set output '$output'") gnuplot() do g g |> setup("sine.svg") |> send("plot sin(x)") end ``` ![](sine.svg) You may enter data into Gnuplot by sending a pair of string and $x, y, z$ data. This gets translated into an inline data definition. ```@example 1 settings = """ set pm3d lighting primary 0.5 specular 0.3 set pm3d depthorder border lc 'black' lw 0.3 set style fill solid 1.00 noborder set ticslevel 0 set autoscale fix set tmargin 0 unset colorbox """ x = -4:0.15:4 y = x z = sinc.(sqrt.(x.^2 .+ y'.^2)) plot = setup("sinc3d.svg") * send(settings) * send("set title 'radial sinc function'") * send("data" => (x=x, y=y, z=z)) * send("splot \$data nonuniform matrix " * "using 1:2:3:(0xffad00) t'' " * "with pm3d lc rgb variable") gnuplot() |> plot |> close ``` ![](sinc3d.svg) ## Under the hood There are two objects in `GnuplotLite`: the `Gnuplot` instance and `Msg`. The `Gnuplot` instance contains a channel to which you can send Gnuplot commands. A `Msg` contains a function of type `::Gnuplot -> ::Gnuplot` that then actually sends the commands to the channel. By abstracting the messages into a function we can stay efficient while being fully composable. Because of the composability we can easily extend `GnuplotLite` to interact with data the way *you* want.
GnuplotLite
https://github.com/jhidding/GnuplotLite.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
647
using Documenter,GCIdentifier makedocs(sitename = "GCIdentifier.jl", format = Documenter.HTML( # Use clean URLs, unless built as a "local" build canonical = "https://ClapeyronThermo.github.io/GCIdentifier.jl/", ), warnonly = Documenter.except(), authors = "Pierre J. Walker and Andrés Riedemann.", pages = ["Home" => "index.md", "Group Assignment" => "group_search.md", "Finding Missing Groups" => "missing_groups.md", "Custom Groups" => "custom_groups.md", "API" => "api.md"] ) deploydocs(repo="github.com/ClapeyronThermo/GCIdentifier.jl.git")
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
827
module GCIdentifierChemicalIdentifiersExt using ChemicalIdentifiers using GCIdentifier const GC = GCIdentifier function GC.get_groups_from_name(component::String,groups;connectivity = false) groups = GC.get_grouplist(groups) return GC.get_groups_from_name(component,groups,connectivity=connectivity) end function GC.get_groups_from_name(component::String,groups::Vector{GC.GCPair};connectivity=false,check = true) res = search_chemical(component) smiles = res.smiles gcpairs = get_groups_from_smiles(smiles,groups;connectivity=connectivity,check = check) if connectivity == true (smiles,groups_found,connectivity) = gcpairs return (component,groups_found,connectivity) else (smiles,groups_found) = gcpairs return (component,groups_found) end end end #module
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
586
module GCIdentifierClapeyronExt using Clapeyron using GCIdentifier const GC = GCIdentifier GC.get_grouplist(m::Clapeyron.EoSModel) = GC.get_grouplist(typeof(m)) GC.get_grouplist(::Type{T}) where T <: Clapeyron.UNIFAC = GC.UNIFACGroups GC.get_grouplist(::Type{T}) where T <: Clapeyron.SAFTgammaMie = GC.SAFTgammaMieGroups GC.get_grouplist(::Type{T}) where T <: Clapeyron.JobackIdeal = GC.JobackGroups GC.get_grouplist(::Type{T}) where T <: Clapeyron.HomogcPCPSAFT = GC.gcPPCSAFTGroups GC.get_grouplist(::Type{T}) where T <: Clapeyron.HeterogcPCPSAFT = GC.gcPPCSAFTGroups end #module
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
1644
module GCIdentifier using Combinatorics @static if !isdefined(Base,:eachsplit) eachsplit(str::AbstractString, dlm; limit::Integer=0, keepempty::Bool=true) = split(str,dlm;limit,keepempty) eachsplit(str::AbstractString; limit::Integer=0, keepempty::Bool=false) = split(str;limit,keepempty) end split_2(str) = NTuple{2}(eachsplit(str, limit=2)) split_2(str,dlm) = NTuple{2}(eachsplit(str,dlm, limit=2)) #TODO: windows support with MolecularGraph import MolecularGraph include("prelude.jl") include("group_search.jl") include("missing_groups.jl") include("database/database.jl") """ get_groups_from_name(name::String,groups;connectivity = false) Given a molecule name and a group list (`groups::Vector{GCPair}`), returns a list of groups and their corresponding amount. If `connectivity` is `true`, then it will additionally return a vector containing the amount of bonds between each pair. Note: Can only be used if the ChemicalIdentifiers package is also installed and loaded (`using ChemicalIdentifiers`). ## Examples ```julia julia> get_groups_from_name("ethanol",UNIFACGroups) ("ethanol", ["CH3" => 1, "CH2" => 1, "OH(P)" => 1]) julia> get_groups_from_name("ethanol",JobackGroups,connectivity = true) ("ethanol", ["-CH3" => 1, "-CH2-" => 1, "-OH (alcohol)" => 1], [("-CH3", "-CH2-") => 1, ("-CH2-", "-OH (alcohol)") => 1]) ``` """ function get_groups_from_name end #overload this if ChemicalIdentifiers is loaded. if !isdefined(Base,:get_extension) using Clapeyron,ChemicalIdentifiers include("../ext/GCIdentifierClapeyronExt.jl") include("../ext/GCIdentifierChemicalIdentifiersExt.jl") end end # module
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git