licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
2962
# Main setup using GeophysicalModelGenerator, LaMEM """ Creates a polygon with a layer """ function create_layer(model::Model; nx=50, A0_sin=1e-5, A0_rand=1e-4, z_cen = 0.0, H0=1e-2) x = Vector(range(extrema(model.Grid.Grid.x_vec)..., length=nx)) W = model.Grid.Grid.W poly_x = [x; x[end:-1:1]] poly_z = [-H0/2 .+ A0_sin*cos.(2π*x/W); H0/2 .+ A0_sin*cos.(2π*x[end:-1:1]/W)]; poly_z .+= rand(2*nx)*A0_rand # add random noise poly_z .+= z_cen # shift # close polygon push!(poly_x, poly_x[1]) push!(poly_z, poly_z[1]) return poly_x, poly_z end """ """ function create_model_setup(; nx=64, nz=64, W=0.2, H=0.2, Number_layers=1, H0=1e-2, A0_rand=1e-3, A0_sin=0, Spacing = 5e-2, eta_matrix=1e20, eta_fold=1e22, OutFile="Folding", nstep_max=100, DirectPenalty=1e4, dt_max=0.25, ε=1e-15) model = Model( # Define the grid Grid(nel=(nx,nz), x=[-W/2, W/2], z=[-H/2 , H/2]), # No slip lower boundary; the rest is free slip BoundaryConditions(exx_strain_rates=[-ε]), SolutionParams(eta_ref=eta_matrix), # We use a multigrid solver with 4 levels: Solver(SolverType="direct", DirectSolver="mumps",DirectPenalty=DirectPenalty, PETSc_options=[ "-snes_ksp_ew", "-snes_ksp_ew_rtolmax 1e-4", ]), # Output filename LaMEM.Output(out_file_name=OutFile), # Timestepping etc Time(nstep_max=nstep_max, nstep_out=5, time_end=100, dt_min=1e-8), # Scaling: Scaling(GEO_units(length=1km, stress=1e9Pa) ) ) # Add fold(s) # compute center of folds z_bot = 0 - (H0+Spacing)*floor((Number_layers+1))/2 + (H0+Spacing) z_top = 0 + (H0+Spacing)*floor((Number_layers+1))/2 - (H0+Spacing) z_center = Vector(z_bot:(H0+Spacing):z_top) Phases = model.Grid.Phases[:,1,:] for z_cen in z_center poly_x, poly_z = create_layer(model, A0_sin=A0_sin, A0_rand=A0_rand, z_cen=z_cen, H0=H0) # fold polygon # Determine points that are inside the fold INSIDE=zeros(Bool, size(model.Grid.Grid)[1], size(model.Grid.Grid)[3]); X = model.Grid.Grid.X[:,1,:] Z = model.Grid.Grid.Z[:,1,:] inpolygon!(INSIDE, poly_x, poly_z, X, Z; fast=false) Phases[INSIDE] .= 1; end for i = 1:size(model.Grid.Grid)[2] model.Grid.Phases[:,i,:] = Phases end # Add rheology @info "Adding rheology" eta_matrix, eta_fold matrix = Phase(Name="matrix", ID=0, eta=eta_matrix, rho=2700) fold = Phase(Name="fold", ID=1, eta=eta_fold, rho=2700) add_phase!(model, matrix, fold) return model end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
2515
using DelimitedFiles """ Returns an accordion menu containing the rheological parameters. """ function make_rheological_parameters() return dbc_accordionitem(title="Rheological Parameters", [ make_accordion_item("log₁₀(η_fold [Pa⋅s]):", "viscosity_fold", "Logarithm of the viscosity of the slab.", 22.1, 16.0, 25.0), dbc_row(html_p()), make_accordion_item("(log₁₀(η_matrix [Pa⋅s]):", "viscosity_matrix", "Logarithm of the viscosity of the mantle", 20.0, 16.0, 23.0), dbc_row(html_p()), ]) end """ Returns an accordion menu containing the rheological parameters. """ function make_geometry_parameters() return dbc_accordionitem(title="Fold Geometry", [ make_accordion_item("# layers:", "nlayers", "Number of layers. Must be an integer greater/equal than 1", 1, 1), dbc_row(html_p()), make_accordion_item("Thickness layers [m]:", "ThicknessLayers", "Thickness of each of the layers", 1.0, 1.0), dbc_row(html_p()), make_accordion_item("Spacing layers [m]:", "SpacingLayers", "Distance between center layers", 2.0, 0.1), dbc_row(html_p()), make_accordion_item("Amplitude noise [m]:", "A0_rand", "Amplitude of the random noise on the layer interface [m]", 0.05, 0.0), dbc_row(html_p()), make_accordion_item("Amplitude sin [m]:", "A0_sin", "Amplitude of the sinusoidal perturbation on the layer interface [m]", 0.0, 0.0), dbc_row(html_p()), ]) end """ Returns an accordion menu containing the simulation parameters. """ function make_simulation_parameters() return dbc_accordionitem(title="Simulation Parameters", [ make_accordion_item("Thickness (m):", "thickness", "Model Thickness [m]", 30.0, 10.0), dbc_row(html_p()), make_accordion_item("Width (m):", "width", "Model Width [m]", 80.0, 10.0), dbc_row(html_p()), make_accordion_item("nx:", "nel_x", "Number of elements in the x-direction. Must be an integer greater than 2.", 128, 2), dbc_row(html_p()), make_accordion_item("nz:", "nel_z", "Number of elements in the z-direction. Must be an integer greater than 2.", 256, 2), dbc_row(html_p()), make_accordion_item("εbg [1/s]:", "e_bg", "Background strainrate of the deformation", 1e-15, -1e-13), dbc_row(html_p()), make_accordion_item("nt:", "n_timesteps", "Maximum number of timesteps. Must be an integer greater than 1.", 100, 1), dbc_row(html_p()), ]) end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
12802
module FreeSubductionTools using Dash, DashBootstrapComponents using PlotlyJS using LaMEM using UUIDs using Interpolations using GeophysicalModelGenerator using HTTP export subduction pkg_dir = Base.pkgdir(FreeSubductionTools) @show pkg_dir include(joinpath(pkg_dir,"src/dash_tools.jl")) include(joinpath(pkg_dir,"src/FreeSubduction/dash_functions_FreeSubduction.jl")) include(joinpath(pkg_dir,"src/FreeSubduction/Setup.jl")) """ subduction(; host = HTTP.Sockets.localhost, port=8050, wait=false, width="80vw", height="45vh", cores=1) This starts a free subduction GUI Optional parameters === - `host` : IP address - `port` : port number - `wait` : if true, you will see the LaMEM output and figure windows are only shown after the simulation is finished - `width` : relative width of main figure - `height` : relative height of main figure """ function subduction(; host = HTTP.Sockets.localhost, port=8050, wait=false, width="80vw", height="50vh", cores=1) pkg_dir = Base.pkgdir(FreeSubductionTools) GUI_version = "0.1.3" cmaps = read_colormaps(dir_colormaps=joinpath(pkg_dir,"src/assets/colormaps/")) title_app = "Free Subduction" # ParamFile = "RTI.dat" OutFile = "FreeSubduction" #app = dash(external_stylesheets=[dbc_themes.CYBORG]) app = dash(external_stylesheets = [dbc_themes.BOOTSTRAP, dbc_icons.BOOTSTRAP], prevent_initial_callbacks=false) app.title = title_app # Main code layout app.layout = html_div() do dbc_container(className="mxy-auto", fluid=true, [ make_title(title_app), dbc_row([ dbc_col([ make_plot("",cmaps, width=width, height=height), # show graph make_plot_controls(), # show media buttons make_id_label(), # show user id ]), dbc_col([ make_time_card(), # show simulation time info make_menu(cmaps), # show menu with simulation parameters, rheological parameters, and plotting parameters make_run_button() # show the run simulation button ]) ]), # Store a unique number of our session in the webpage dcc_store(id="session-id", data=""), # Store info related to the simulation and current timestep dcc_store(id="current_timestep", data="0"), dcc_store(id="last_timestep", data="0"), dcc_store(id="update_fig", data="0"), # Start an interval that updates the number every second dcc_interval(id="session-interval", interval=100, n_intervals=0, disabled=true) ]) end # This creates an initial session id that is unique for this session # it will run on first start callback!(app, Dash.Output("session-id", "data"), Dash.Output("label-id", "children"), Input("session-id", "data") ) do session_id session_id = UUIDs.uuid4() str = "id=$(session_id), v=$(GUI_version)" return String("$(session_id)"), str end # Call run button callback!(app, Dash.Output("session-interval", "disabled"), Input("button-run", "n_clicks"), Input("button-run", "disabled"), Input("button-play", "n_clicks"), State("slab_thickness", "value"), State("crust_thickness", "value"), State("nel_z", "value"), State("n_timesteps", "value"), State("switch-FreeSurf", "value"), State("last_timestep", "data"), State("plot_field", "value"), State("session-id", "data"), State("viscosity_slab", "value"), State("viscosity_mantle", "value"), State("viscosity_crust", "value"), State("yield_stress_crust", "value"), prevent_initial_call=true ) do n_run, active_run, n_play, slab_thickness, crust_thickness, nel_z, n_timesteps, free_surf, last_timestep, plot_field, session_id, η_slab,η_mantle,η_crust,yield_stress_crust # print(layers) # print(open_top) trigger = get_trigger() disable_interval = true if trigger == "button-run.n_clicks" cd(pkg_dir) cur_dir = pwd() base_dir = joinpath(pkgdir(FreeSubductionTools),"src","FreeSubduction") η_slab = 10.0^η_slab η_mantle = 10.0^η_mantle η_crust = 10.0^η_crust # We clicked the run button user_dir = simulation_directory(session_id, clean=true) cd(user_dir) @show free_surf if free_surf === nothing || free_surf == [] free_surface = true else free_surface = false end # Create the setup model = create_model_setup(nz=nel_z, SlabThickness=slab_thickness, CrustThickness = crust_thickness, eta_slab=η_slab, eta_mantle=η_mantle, eta_crust=η_crust, C_crust = yield_stress_crust, OutFile=OutFile, nstep_max=n_timesteps, free_surface=free_surface) run_lamem(model, cores, wait=wait) cd(cur_dir) # return to main directory disable_interval = false elseif trigger == "button-run.disabled" last_t = parse(Int, last_timestep) if active_run == true || last_t < n_timesteps disable_interval = false end elseif trigger == "button-play.n_clicks" last_t = parse(Int, last_timestep) # @show last_t disable_interval = false end return disable_interval end # deactivate the button callback!(app, Dash.Output("button-run", "disabled"), Dash.Output("button-run", "color"), Input("button-run", "n_clicks"), Input("session-interval", "n_intervals"), State("last_timestep", "data"), State("current_timestep", "data"), prevent_initial_call=true ) do n_run, n_inter, last_timestep, current_timestep cur_t = parse(Int, current_timestep) # current timestep last_t = parse(Int, last_timestep) # last timestep available on disk if cur_t < last_t button_run_disable = true button_color = "danger" else button_run_disable = false button_color = "primary" end return button_run_disable, button_color end # Check if *.pvd file on disk changed and a new timestep is available callback!(app, Dash.Output("last_timestep", "data"), Dash.Output("update_fig", "data"), Input("session-interval", "n_intervals"), Input("button-run", "n_clicks"), State("current_timestep", "data"), State("update_fig", "data"), State("session-id", "data"), prevent_initial_call=true ) do n_inter, n_run, current_timestep, update_fig, session_id trigger = get_trigger() user_dir = simulation_directory(session_id, clean=false) if trigger == "session-interval.n_intervals" if has_pvd_file(OutFile, user_dir) # Read LaMEM *.pvd file Timestep, _, Time = read_LaMEM_simulation(OutFile, user_dir) # Update the labels and data stored in webpage about the last timestep last_time = "$(Timestep[end])" update_fig = "$(parse(Int,update_fig)+1)" else last_time = "0" update_fig = "0" end elseif trigger == "button-run.n_clicks" last_time = "0" update_fig = "0" end return last_time, update_fig end # Update the figure if the signal is given to do so callback!(app, Dash.Output("label-timestep", "children"), Dash.Output("label-time", "children"), Dash.Output("current_timestep", "data"), Dash.Output("figure_main", "figure"), Dash.Output("plot_field", "options"), Dash.Output("contour_option", "options"), Input("update_fig", "data"), Input("current_timestep", "data"), Input("button-run", "n_clicks"), Input("button-start", "n_clicks"), Input("button-last", "n_clicks"), Input("button-forward", "n_clicks"), Input("button-back", "n_clicks"), Input("button-play", "n_clicks"), State("last_timestep", "data"), State("session-id", "data"), State("plot_field", "value"), State("switch-contour", "value"), State("contour_option", "value"), State("switch-velocity", "value"), State("color_map_option", "value"), prevent_initial_call=true ) do update_fig, current_timestep, n_run, n_start, n_last, n_back, n_forward, n_play, last_timestep, session_id, plot_field, switch_contour, contour_field, switch_velocity, color_map_option trigger = get_trigger() # Get info about timesteps cur_t = parse(Int, current_timestep) # current timestep last_t = parse(Int, last_timestep) # last timestep available on disk fig_cross = [] fields_available = ["phase"] if trigger == "current_timestep.data" || trigger == "update_fig.data" || trigger == "button-start.n_clicks" || trigger == "button-last.n_clicks" || trigger == "button-back.n_clicks" || trigger == "button-forward.n_clicks" || trigger == "button-play.n_clicks" user_dir = simulation_directory(session_id, clean=false) if has_pvd_file(OutFile, user_dir) Timestep, _, Time = read_LaMEM_simulation(OutFile, user_dir) # all timesteps id = findall(Timestep .== cur_t)[1] if trigger == "button-start.n_clicks" || trigger == "button-play.n_clicks" cur_t = 0 id = 1 elseif trigger == "button-last.n_clicks" cur_t = Timestep[end] id = length(Timestep) elseif (trigger == "button-forward.n_clicks") && (id < length(Timestep)) cur_t = Timestep[id+1] id = id + 1 elseif (trigger == "button-back.n_clicks") && (id > 1) cur_t = Timestep[id-1] id = id - 1 end # Load data x, y, data, time, fields_available = get_data(OutFile, cur_t, plot_field, user_dir) add_contours = active_switch(switch_contour) if add_contours x_con, y_con, data_con, _, _ = get_data(OutFile, cur_t, contour_field, user_dir) else x_con, y_con, data_con = x, y, data end # update the plot add_velocity = active_switch(switch_velocity) fig_cross = create_main_figure(OutFile, cur_t, x, y, data, x_con, y_con, data_con; add_contours=add_contours, contour_field=contour_field, add_velocity=add_velocity, colorscale=color_map_option, session_id=session_id, field=plot_field, cmaps=cmaps) if trigger == "current_timestep.data" || trigger == "update_fig.data" || trigger == "button-play.n_clicks" if cur_t < last_t cur_t = Timestep[id+1] # update current timestep end end else time = 0 end elseif trigger == "button-run.n_clicks" cur_t = 0 time = 0.0 end # update the labels label_timestep = "Timestep: $cur_t" label_time = "Time: $time Myrs" current_timestep = "$cur_t" # @show current_timestep println("Timestep ", current_timestep) return label_timestep, label_time, current_timestep, fig_cross, fields_available, fields_available end # callback!(app, Dash.Output("contour_option", "disabled"), Input("switch-contour", "value")) do switch_contour if !isnothing(switch_contour) if isempty(switch_contour) disable_contours = true else disable_contours = false end else disable_contours = true end return disable_contours end run_server(app, host, port, debug=false) end end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
2813
# Main setup using GeophysicalModelGenerator, LaMEM function create_model_setup(; nz=64, SlabThickness=80, CrustThickness=15, eta_slab=2e23, eta_mantle=1e21, eta_crust=1e21, C_crust=10, OutFile="FreeSubduction", nstep_max=100, DirectPenalty=1e4, free_surface=false, dt_max=0.25) if free_surface Air = 40 open_top_bound = 1 else Air = 0 open_top_bound = 0 end model = Model( # Define the grid Grid(nel=(nz*4,nz), x=[-1200, 1200], z=[-660 ,Air]), # No slip lower boundary; the rest is free slip BoundaryConditions(noslip = [0, 0, 0, 0, 1, 0], open_top_bound=open_top_bound), SolutionParams(eta_ref=eta_mantle), # We use a multigrid solver with 4 levels: Solver(SolverType="direct", DirectPenalty=DirectPenalty, DirectSolver="mumps", PETSc_options=[ "-js_ksp_monitor", "-snes_ksp_ew", "-snes_ksp_ew_rtolmax 1e-4", ]), # Free FreeSurface FreeSurface(surf_use=open_top_bound), # Output filename LaMEM.Output(out_file_name=OutFile), # Timestepping etc Time(nstep_max=nstep_max, nstep_out=5, time_end=100, dt_min=1e-8, dt_max=dt_max), # Scaling: Scaling(GEO_units(length=1km, stress=1e9Pa) ) ) lith = LithosphericPhases(Layers=[CrustThickness,SlabThickness-CrustThickness], Phases=[2,3]); # Add mantle add_layer!(model, zlim=(-1000.0,0), phase=ConstantPhase(1)) # Add geometry add_box!(model, xlim=(-900,200), zlim=(-SlabThickness,0), phase=lith) # Add curved trench trench = Trench(Start=(200.0,-100.0), End=(200.0,100.0), Thickness=SlabThickness, θ_max=45.0, Length=300, Lb=200); add_slab!(model, trench, phase=lith); # add stripes add_stripes!(model,stripAxes=(1,0,1), stripeWidth=20, stripeSpacing=40, phase=ConstantPhase(3), stripePhase=ConstantPhase(4)) # Add rheology @info "Adding rheology" eta_mantle, eta_crust, eta_slab air = Phase(Name="Air", ID=0, eta=eta_mantle/10, rho=10) mantle = Phase(Name="mantle", ID=1, eta=eta_mantle, rho=3200) crust = Phase(Name="crust", ID=2, eta=eta_crust, rho=3280) slab = Phase(Name="slab", ID=3, eta=eta_slab, rho=3280) slab2 = Phase(Name="slab_stripe", ID=4, eta=eta_slab, rho=3280) add_phase!(model, air, mantle, slab, slab2, crust) return model end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
3475
using DelimitedFiles make_geometry_parameters() = nothing """ Returns an accordion menu containing the rheological parameters. """ function make_rheological_parameters() return dbc_accordionitem(title="Rheological Parameters", [ make_accordion_item("log₁₀(η_slab [Pa⋅s]):", "viscosity_slab", "Logarithm of the viscosity of the slab.", 23.5, 16.0, 25.0), dbc_row(html_p()), make_accordion_item("(log₁₀(η_mantle [Pa⋅s]):", "viscosity_mantle", "Logarithm of the viscosity of the mantle", 21.0, 16.0, 23.0), dbc_row(html_p()), make_accordion_item("log₁₀(η_crust [Pa⋅s]):", "viscosity_crust", "Logarithm of the viscosity of the crust", 23.1, 16.0, 23.0), dbc_row(html_p()), make_accordion_item("σ_yield_crust [Pas]:", "yield_stress_crust", "Yield stress of the crust",1000, 1, 1000.0), ]) end """ Returns an accordion menu containing the simulation parameters. """ function make_simulation_parameters() return dbc_accordionitem(title="Simulation Parameters", [ make_accordion_item("Slab Thickness (km):", "slab_thickness", "Full slab thickness given in kilometers.", 80.0, 1.0e-10), dbc_row(html_p()), make_accordion_item("Crust Thickness (km):", "crust_thickness", "Crust thickness given in kilometers.", 15.0, 1.0e-10), dbc_row(html_p()), #make_accordion_item("nx:", "nel_x", "Number of elements in the x-direction. Must be an integer greater than 2.", 64, 2), #dbc_row(html_p()), make_accordion_item("nz:", "nel_z", "Number of elements in the z-direction. Must be an integer greater than 2. nx=4*nz", 64, 2), dbc_row(html_p()), make_accordion_item("nt:", "n_timesteps", "Maximum number of timesteps. Must be an integer greater than 1.", 200, 1), dbc_row(html_p()), dbc_row([ dbc_checklist(options=["free slip upper boundary"], id="switch-FreeSurf", switch=true, ) ]), # dbc_row(html_p()), # dbc_row([ # dbc_checklist(options=["Layers"], # id="switch-Layers", # switch=true, # ) # ]) ]) end #= """ Creates a setup with noisy temperature and one phase """ function CreateSetup(ParamFile, layered_overburden=false, Hi=-5.0, ampl_noise=0.1, ; args) Grid = read_LaMEM_inputfile(ParamFile, args=args) Phases = zeros(Int64, size(Grid.X)); Temp = zeros(Float64,size(Grid.X)); if layered_overburden H_layer = 0.25; for z_low = minimum(Grid.Z):2*H_layer:maximum(Grid.Z) # print(z_low) # z_low = -z_low iz = (Grid.Z[1,1,:] .> z_low) .& (Grid.Z[1,1,:] .<= (z_low+H_layer) ) Phases[:,:,iz] .= 1; end end z_int = [Hi + rand()*ampl_noise for _ in 1:Grid.nump_x] # print(z_int) # z_int = -z_int for ix=1:Grid.nump_x, iy=1:Grid.nump_y iz = Grid.Z[ix,iy,:] .< z_int[ix] Phases[ix,iy,iz] .= 2; end # print(z_int) Model3D = CartData(Grid, (Phases=Phases,Temp=Temp)) # Create LaMEM model write_paraview(Model3D,"LaMEM_ModelSetup", verbose=false) # Save model to paraview (load with opening LaMEM_ModelSetup.vts in paraview) save_LaMEM_markers_parallel(Model3D, directory="./markers", verbose=false) # save markers on one core return nothing end =#
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
12719
module ConvectionTools using Dash, DashBootstrapComponents using PlotlyJS using LaMEM using UUIDs using Interpolations using GeophysicalModelGenerator using DelimitedFiles using HTTP export convection pkg_dir = Base.pkgdir(ConvectionTools) include(joinpath(pkg_dir,"src/dash_tools.jl")) include(joinpath(pkg_dir,"src/RayleighBenardConvection/dash_functions_convection.jl")) """ convection(; host=HTTP.Sockets.localhost, port=8050) This starts a convection GUI """ function convection(; host=HTTP.Sockets.localhost, port=8050, width="80vw", height="60vh") pkg_dir = Base.pkgdir(ConvectionTools) cmaps = read_colormaps(dir_colormaps=joinpath(pkg_dir,"src/assets/colormaps/")) GUI_version = "0.1.3" title_app = "Rayleigh-Benard convection" ParamFile = "Convection.dat" OutFile = "Convection" base_dir = pwd() cd(base_dir) #app = dash(external_stylesheets=[dbc_themes.CYBORG]) app = dash(external_stylesheets = [dbc_themes.BOOTSTRAP, dbc_icons.BOOTSTRAP], prevent_initial_callbacks=false) app.title = title_app # Main code layout app.layout = html_div() do dbc_container(className="mxy-auto", fluid=true, [ make_title(title_app), dbc_row([ dbc_col([ make_plot("",cmaps, width=width, height=height), # show graph make_plot_controls(), # show media buttons make_id_label(), # show user id ]), dbc_col([ make_time_card(), # show simulation time info make_menu(cmaps, show_field="temperature [°C]"), # show menu with simulation parameters, rheological parameters, and plotting parameters make_run_button() # show the run simulation button ]) ]), # Store a unique number of our session in the webpage dcc_store(id="session-id", data=""), # Store info related to the simulation and current timestep dcc_store(id="current_timestep", data="0"), dcc_store(id="last_timestep", data="0"), dcc_store(id="update_fig", data="0"), # Start an interval that updates the number every second dcc_interval(id="session-interval", interval=100, n_intervals=0, disabled=true) ]) end # This creates an initial session id that is unique for this session # it will run on first start callback!(app, Dash.Output("session-id", "data"), Dash.Output("label-id", "children"), Input("session-id", "data") ) do session_id session_id = UUIDs.uuid4() str = "id=$(session_id), v=$(GUI_version)" return String("$(session_id)"), str end # Call run button callback!(app, Dash.Output("session-interval", "disabled"), Input("button-run", "n_clicks"), Input("button-run", "disabled"), Input("button-play", "n_clicks"), State("domain_width", "value"), State("domain_height", "value"), State("nel_x", "value"), State("nel_z", "value"), State("n_timesteps", "value"), State("ΔT", "value"), State("γ", "value"), State("cohesion", "value"), State("viscosity", "value"), State("last_timestep", "data"), State("plot_field", "value"), State("session-id", "data"), State("switch-FreeSurf","value"), prevent_initial_call=true ) do n_run, active_run, n_play, domain_width, domain_height, nel_x, nel_z, n_timesteps, ΔT, γ, cohesion, viscosity, last_timestep, plot_field, session_id, FreeSurface trigger = get_trigger() disable_interval = true user_dir = simulation_directory(session_id, clean=false) if trigger == "button-run.n_clicks" cd(pkg_dir) cur_dir = pwd() base_dir = joinpath(pkgdir(ConvectionTools),"src","RayleighBenardConvection") viscosity = 10.0^viscosity cohesion *= 1.0e6 Δx = domain_width/nel_x # y-width if FreeSurface === nothing args = "-nstep_max $(n_timesteps) -eta_fk[0] $(viscosity) -gamma_fk[0] $γ -TRef_fk[0] $(ΔT/2) -ch[0] $(cohesion) -nel_x $nel_x -nel_z $nel_z -coord_x $(-domain_width/2),$(domain_width/2) -coord_z $(-domain_height),0 -coord_y $(-Δx/2),$(Δx/2) -temp_bot $ΔT" else args = "-nstep_max $(n_timesteps) -eta_fk[0] $(viscosity) -gamma_fk[0] $γ -TRef_fk[0] $(ΔT/2) -ch[0] $(cohesion) -nel_x $nel_x -coord_x $(-domain_width/2),$(domain_width/2) -coord_y $(-Δx/2),$(Δx/2) -temp_bot $ΔT" end println("args = ", args) # We clicked the run button user_dir = simulation_directory(session_id, clean=true) cd(user_dir) pfile = joinpath(base_dir,ParamFile) CreateSetup(pfile, ΔT, args=args) run_lamem(pfile, 1, args, wait=false) disable_interval = false cd(cur_dir) # return to main directory elseif trigger == "button-run.disabled" last_t = parse(Int, last_timestep) if active_run == true || last_t < n_timesteps disable_interval = false end elseif trigger == "button-play.n_clicks" last_t = parse(Int, last_timestep) # @show last_t disable_interval = false end return disable_interval end # deactivate the button callback!(app, Dash.Output("button-run", "disabled"), Dash.Output("button-run", "color"), Input("button-run", "n_clicks"), Input("session-interval", "n_intervals"), State("last_timestep", "data"), State("current_timestep", "data"), prevent_initial_call=true ) do n_run, n_inter, last_timestep, current_timestep cur_t = parse(Int, current_timestep) # current timestep last_t = parse(Int, last_timestep) # last timestep available on disk if cur_t < last_t button_run_disable = true button_color = "danger" else button_run_disable = false button_color = "primary" end return button_run_disable, button_color end # Check if *.pvd file on disk changed and a new timestep is available callback!(app, Dash.Output("last_timestep", "data"), Dash.Output("update_fig", "data"), Input("session-interval", "n_intervals"), Input("button-run", "n_clicks"), State("current_timestep", "data"), State("update_fig", "data"), State("session-id", "data"), prevent_initial_call=true ) do n_inter, n_run, current_timestep, update_fig, session_id trigger = get_trigger() user_dir = simulation_directory(session_id, clean=false) if trigger == "session-interval.n_intervals" if has_pvd_file(OutFile, user_dir) # Read LaMEM *.pvd file Timestep, _, Time = read_LaMEM_simulation(OutFile, user_dir) # Update the labels and data stored in webpage about the last timestep last_time = "$(Timestep[end])" update_fig = "$(parse(Int,update_fig)+1)" else last_time = "0" update_fig = "0" end elseif trigger == "button-run.n_clicks" last_time = "0" update_fig = "0" end return last_time, update_fig end # Update the figure if the signal is given to do so callback!(app, Dash.Output("label-timestep", "children"), Dash.Output("label-time", "children"), Dash.Output("current_timestep", "data"), Dash.Output("figure_main", "figure"), Dash.Output("plot_field", "options"), Dash.Output("contour_option", "options"), Input("update_fig", "data"), Input("current_timestep", "data"), Input("button-run", "n_clicks"), Input("button-start", "n_clicks"), Input("button-last", "n_clicks"), Input("button-forward", "n_clicks"), Input("button-back", "n_clicks"), Input("button-play", "n_clicks"), State("last_timestep", "data"), State("session-id", "data"), State("plot_field", "value"), State("switch-contour", "value"), State("contour_option", "value"), State("switch-velocity", "value"), State("color_map_option", "value"), prevent_initial_call=true ) do update_fig, current_timestep, n_run, n_start, n_last, n_back, n_forward, n_play, last_timestep, session_id, plot_field, switch_contour, contour_field, switch_velocity, color_map_option trigger = get_trigger() # Get info about timesteps cur_t = parse(Int, current_timestep) # current timestep last_t = parse(Int, last_timestep) # last timestep available on disk fig_cross = [] fields_available = ["phase"] if trigger == "current_timestep.data" || trigger == "update_fig.data" || trigger == "button-start.n_clicks" || trigger == "button-last.n_clicks" || trigger == "button-back.n_clicks" || trigger == "button-forward.n_clicks" || trigger == "button-play.n_clicks" user_dir = simulation_directory(session_id, clean=false) if has_pvd_file(OutFile, user_dir) Timestep, _, Time = read_LaMEM_simulation(OutFile, user_dir) # all timesteps id = findall(Timestep .== cur_t)[1] if trigger == "button-start.n_clicks" || trigger == "button-play.n_clicks" cur_t = 0 id = 1 elseif trigger == "button-last.n_clicks" cur_t = Timestep[end] id = length(Timestep) elseif (trigger == "button-forward.n_clicks") && (id < length(Timestep)) cur_t = Timestep[id+1] id = id + 1 elseif (trigger == "button-back.n_clicks") && (id > 1) cur_t = Timestep[id-1] id = id - 1 end # Load data x, y, data, time, fields_available = get_data(OutFile, cur_t, plot_field, user_dir) add_contours = active_switch(switch_contour) if add_contours x_con, y_con, data_con, _, _ = get_data(OutFile, cur_t, contour_field, user_dir) else x_con, y_con, data_con = x, y, data end # update the plot add_velocity = active_switch(switch_velocity) fig_cross = create_main_figure(OutFile, cur_t, x, y, data, x_con, y_con, data_con; add_contours=add_contours, contour_field=contour_field, add_velocity=add_velocity, colorscale=color_map_option, session_id=session_id, cmaps=cmaps, field=plot_field) if trigger == "current_timestep.data" || trigger == "update_fig.data" || trigger == "button-play.n_clicks" if cur_t < last_t cur_t = Timestep[id+1] # update current timestep end end else time = 0 end elseif trigger == "button-run.n_clicks" cur_t = 0 time = 0.0 end # update the labels label_timestep = "Timestep: $cur_t" label_time = "Time: $time Myrs" current_timestep = "$cur_t" # @show current_timestep println("Timestep ", cur_t) return label_timestep, label_time, current_timestep, fig_cross, add_units(fields_available), add_units(fields_available) end # callback!(app, Dash.Output("contour_option", "disabled"), Input("switch-contour", "value")) do switch_contour if !isnothing(switch_contour) if isempty(switch_contour) disable_contours = true else disable_contours = false end else disable_contours = true end return disable_contours end run_server(app, host, port, debug=false) return app end end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
2753
using DelimitedFiles make_geometry_parameters() = nothing """ Returns an accordion menu containing the simulation parameters. """ function make_simulation_parameters() return dbc_accordionitem(title="Simulation Parameters", [ make_accordion_item("Width (km):", "domain_width", "Width of the domain, given in kilometers.", 2000.0, 1.0e-10), dbc_row(html_p()), make_accordion_item("Height (km):", "domain_height", "Height of the domain, given in kilometers.", 1000.0, 1.0e-10), dbc_row(html_p()), make_accordion_item("nx:", "nel_x", "Number of elements in the x-direction. Must be an integer greater than 2.", 128, 2), dbc_row(html_p()), make_accordion_item("nz:", "nel_z", "Number of elements in the z-direction. Must be an integer greater than 2.", 64, 2), dbc_row(html_p()), make_accordion_item("nt:", "n_timesteps", "Maximum number of timesteps. Must be an integer greater than 1.", 250, 1), ]) end """ Returns an accordion menu containing the rheological parameters. """ function make_rheological_parameters() return dbc_accordionitem(title="Rheological Parameters", [ make_accordion_item("ΔT:", "ΔT", "Temperature difference between the base and the top.", 2000.0, 1.0-10, 4_000.0), dbc_row(html_p()), make_accordion_item("η=η₀exp(-γ(T-½ΔT)), γ:", "γ", "Parameter for Frank-Kamenetzky viscosity (0.0 ≤ γ ≤ 0.1)", 0.001, 0.0, 0.1), dbc_row(html_p()), make_accordion_item("Yield stress (MPa):", "cohesion", "Maximum stress allowed in the model (0 ≤ Yield stress ≤ 1000) [MPa].", 500.0, 0.0, 1000.0), dbc_row(html_p()), make_accordion_item("η₀ (log₁₀(Pa⋅s)):", "viscosity", "Logarithm of the viscosity of the matrix at ΔT/2 (15 < η ≤ 25).", 21.0, 15.0, 25.0), dbc_row(html_p()), dbc_row([ dbc_checklist(options=["FreeSurf"], id="switch-FreeSurf", switch=true, ) ]), ]) end """ Creates a setup with noisy temperature and one phase """ function CreateSetup(ParamFile, ΔT=1000, ampl_noise=100; args) Grid = read_LaMEM_inputfile(ParamFile, args=args) Phases = zeros(Int64, size(Grid.X)) Temp = [ΔT / 2 + rand()*ampl_noise for _ in axes(Grid.X,1), _ in axes(Grid.X,2), _ in axes(Grid.X,3)] Phases[Grid.Z.>0.0] .= 1 Temp[Grid.Z.>0.0] .= 0.0 Model3D = CartData(Grid, (Phases=Phases, Temp=Temp)) # Create LaMEM model write_paraview(Model3D, "LaMEM_ModelSetup", verbose=false) # Save model to paraview (load with opening LaMEM_ModelSetup.vts in paraview) save_LaMEM_markers_parallel(Model3D, directory="./markers", verbose=false) # save markers on one core return nothing end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
12371
module RTITools using Dash, DashBootstrapComponents using PlotlyJS using LaMEM using UUIDs using Interpolations using GeophysicalModelGenerator using HTTP export rayleigh_taylor pkg_dir = Base.pkgdir(RTITools) include(joinpath(pkg_dir,"src/dash_tools.jl")) include(joinpath(pkg_dir,"src/RayleighTaylorInstability/dash_functions_RTI.jl")) """ rayleigh_taylor(; host=HTTP.Sockets.localhost, port=8050) This starts a rayleigh_taylor instability GUI """ function rayleigh_taylor(; host = HTTP.Sockets.localhost, port=8050) pkg_dir = Base.pkgdir(RTITools) GUI_version = "0.1.3" cmaps = read_colormaps(dir_colormaps=joinpath(pkg_dir,"src/assets/colormaps/")) title_app = "Rayleigh Taylor Instability" ParamFile = "RTI.dat" OutFile = "RTI" #app = dash(external_stylesheets=[dbc_themes.CYBORG]) app = dash(external_stylesheets = [dbc_themes.BOOTSTRAP, dbc_icons.BOOTSTRAP], prevent_initial_callbacks=false) app.title = title_app # Main code layout app.layout = html_div() do dbc_container(className="mxy-auto", fluid=true, [ make_title(title_app), dbc_row([ dbc_col([ make_plot("",cmaps), # show graph make_plot_controls(), # show media buttons make_id_label(), # show user id ]), dbc_col([ make_time_card(), # show simulation time info make_menu(cmaps), # show menu with simulation parameters, rheological parameters, and plotting parameters make_run_button() # show the run simulation button ]) ]), # Store a unique number of our session in the webpage dcc_store(id="session-id", data=""), # Store info related to the simulation and current timestep dcc_store(id="current_timestep", data="0"), dcc_store(id="last_timestep", data="0"), dcc_store(id="update_fig", data="0"), # Start an interval that updates the number every second dcc_interval(id="session-interval", interval=100, n_intervals=0, disabled=true) ]) end # This creates an initial session id that is unique for this session # it will run on first start callback!(app, Dash.Output("session-id", "data"), Dash.Output("label-id", "children"), Input("session-id", "data") ) do session_id session_id = UUIDs.uuid4() str = "id=$(session_id), v=$(GUI_version)" return String("$(session_id)"), str end # Call run button callback!(app, Dash.Output("session-interval", "disabled"), Input("button-run", "n_clicks"), Input("button-run", "disabled"), Input("button-play", "n_clicks"), State("domain_width", "value"), State("depth", "value"), State("nel_x", "value"), State("nel_z", "value"), State("n_timesteps", "value"), State("switch-FreeSurf", "value"), State("switch-Layers", "value"), State("last_timestep", "data"), State("plot_field", "value"), State("session-id", "data"), State("viscosity_upper", "value"), State("viscosity_lower", "value"), State("density_upper", "value"), State("density_lower", "value"), prevent_initial_call=true ) do n_run, active_run, n_play, domain_width, depth, nel_x, nel_z, n_timesteps, open_top, layers, last_timestep, plot_field, session_id, η_up,η_lo,ρ_up,ρ_lo # print(layers) # print(open_top) trigger = get_trigger() disable_interval = true if trigger == "button-run.n_clicks" cur_dir = pwd() base_dir = joinpath(pkgdir(RTITools),"src","RayleighTaylorInstability") η_up = 10.0^η_up η_lo = 10.0^η_lo Hi_value = depth W = domain_width open_top_bound = active_switch(open_top) # print(open_top) addlayers = active_switch(layers) # print(layers)c args = "-nstep_max $(n_timesteps) -eta[0] $η_up -eta[1] $η_up -eta[2] $η_lo -rho[0] $ρ_up -rho[1] $ρ_up -rho[2] $ρ_lo -open_top_bound $(Int64(open_top_bound)) -nel_x $nel_x -nel_z $nel_z -coord_x $(-W/2),$(W/2)" println("args = ", args) # We clicked the run button user_dir = simulation_directory(session_id, clean=true) cd(user_dir) pfile = joinpath(base_dir,ParamFile) # Create the setup CreateSetup(pfile, addlayers, Hi_value, args=args) run_lamem(pfile, 1, args, wait=false) cd(cur_dir) # return to main directory disable_interval = false elseif trigger == "button-run.disabled" last_t = parse(Int, last_timestep) if active_run == true || last_t < n_timesteps disable_interval = false end elseif trigger == "button-play.n_clicks" last_t = parse(Int, last_timestep) # @show last_t disable_interval = false end return disable_interval end # deactivate the button callback!(app, Dash.Output("button-run", "disabled"), Dash.Output("button-run", "color"), Input("button-run", "n_clicks"), Input("session-interval", "n_intervals"), State("last_timestep", "data"), State("current_timestep", "data"), prevent_initial_call=true ) do n_run, n_inter, last_timestep, current_timestep cur_t = parse(Int, current_timestep) # current timestep last_t = parse(Int, last_timestep) # last timestep available on disk if cur_t < last_t button_run_disable = true button_color = "danger" else button_run_disable = false button_color = "primary" end return button_run_disable, button_color end # Check if *.pvd file on disk changed and a new timestep is available callback!(app, Dash.Output("last_timestep", "data"), Dash.Output("update_fig", "data"), Input("session-interval", "n_intervals"), Input("button-run", "n_clicks"), State("current_timestep", "data"), State("update_fig", "data"), State("session-id", "data"), prevent_initial_call=true ) do n_inter, n_run, current_timestep, update_fig, session_id trigger = get_trigger() user_dir = simulation_directory(session_id, clean=false) if trigger == "session-interval.n_intervals" if has_pvd_file(OutFile, user_dir) # Read LaMEM *.pvd file Timestep, _, Time = read_LaMEM_simulation(OutFile, user_dir) # Update the labels and data stored in webpage about the last timestep last_time = "$(Timestep[end])" update_fig = "$(parse(Int,update_fig)+1)" else last_time = "0" update_fig = "0" end elseif trigger == "button-run.n_clicks" last_time = "0" update_fig = "0" end return last_time, update_fig end # Update the figure if the signal is given to do so callback!(app, Dash.Output("label-timestep", "children"), Dash.Output("label-time", "children"), Dash.Output("current_timestep", "data"), Dash.Output("figure_main", "figure"), Dash.Output("plot_field", "options"), Dash.Output("contour_option", "options"), Input("update_fig", "data"), Input("current_timestep", "data"), Input("button-run", "n_clicks"), Input("button-start", "n_clicks"), Input("button-last", "n_clicks"), Input("button-forward", "n_clicks"), Input("button-back", "n_clicks"), Input("button-play", "n_clicks"), State("last_timestep", "data"), State("session-id", "data"), State("plot_field", "value"), State("switch-contour", "value"), State("contour_option", "value"), State("switch-velocity", "value"), State("color_map_option", "value"), prevent_initial_call=true ) do update_fig, current_timestep, n_run, n_start, n_last, n_back, n_forward, n_play, last_timestep, session_id, plot_field, switch_contour, contour_field, switch_velocity, color_map_option trigger = get_trigger() # Get info about timesteps cur_t = parse(Int, current_timestep) # current timestep last_t = parse(Int, last_timestep) # last timestep available on disk fig_cross = [] fields_available = ["phase"] if trigger == "current_timestep.data" || trigger == "update_fig.data" || trigger == "button-start.n_clicks" || trigger == "button-last.n_clicks" || trigger == "button-back.n_clicks" || trigger == "button-forward.n_clicks" || trigger == "button-play.n_clicks" user_dir = simulation_directory(session_id, clean=false) if has_pvd_file(OutFile, user_dir) Timestep, _, Time = read_LaMEM_simulation(OutFile, user_dir) # all timesteps id = findall(Timestep .== cur_t)[1] if trigger == "button-start.n_clicks" || trigger == "button-play.n_clicks" cur_t = 0 id = 1 elseif trigger == "button-last.n_clicks" cur_t = Timestep[end] id = length(Timestep) elseif (trigger == "button-forward.n_clicks") && (id < length(Timestep)) cur_t = Timestep[id+1] id = id + 1 elseif (trigger == "button-back.n_clicks") && (id > 1) cur_t = Timestep[id-1] id = id - 1 end # Load data x, y, data, time, fields_available = get_data(OutFile, cur_t, plot_field, user_dir) add_contours = active_switch(switch_contour) if add_contours x_con, y_con, data_con, _, _ = get_data(OutFile, cur_t, contour_field, user_dir) else x_con, y_con, data_con = x, y, data end # update the plot add_velocity = active_switch(switch_velocity) fig_cross = create_main_figure(OutFile, cur_t, x, y, data, x_con, y_con, data_con; add_contours=add_contours, contour_field=contour_field, add_velocity=add_velocity, colorscale=color_map_option, session_id=session_id, field=plot_field, cmaps=cmaps) if trigger == "current_timestep.data" || trigger == "update_fig.data" || trigger == "button-play.n_clicks" if cur_t < last_t cur_t = Timestep[id+1] # update current timestep end end else time = 0 end elseif trigger == "button-run.n_clicks" cur_t = 0 time = 0.0 end # update the labels label_timestep = "Timestep: $cur_t" label_time = "Time: $time Myrs" current_timestep = "$cur_t" # @show current_timestep println("Timestep ", current_timestep) return label_timestep, label_time, current_timestep, fig_cross, fields_available, fields_available end # callback!(app, Dash.Output("contour_option", "disabled"), Input("switch-contour", "value")) do switch_contour if !isnothing(switch_contour) if isempty(switch_contour) disable_contours = true else disable_contours = false end else disable_contours = true end return disable_contours end run_server(app, host, port, debug=false) end end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
3382
using DelimitedFiles make_geometry_parameters() = nothing """ Returns an accordion menu containing the rheological parameters. """ function make_rheological_parameters() return dbc_accordionitem(title="Rheological Parameters", [ make_accordion_item("η_up(log₁₀(Pa⋅s)):", "viscosity_upper", "Logarithm of the viscosity of the upper layers.", 21.0, 16.0, 23.0), dbc_row(html_p()), make_accordion_item("η_lo(log₁₀(Pa⋅s)):", "viscosity_lower", "Logarithm of the viscosity of the lower layer", 20.0, 16.0, 23.0), dbc_row(html_p()), make_accordion_item("ρ_up:", "density_upper", "Density of the upper layers.", 2800.0, 2.0, 5000.0), dbc_row(html_p()), make_accordion_item("ρ_lo:", "density_lower", "Density of the lower layer.", 2200.0, 2.0, 5000.0), ]) end """ Returns an accordion menu containing the simulation parameters. """ function make_simulation_parameters() return dbc_accordionitem(title="Simulation Parameters", [ make_accordion_item("Width (km):", "domain_width", "Width of the domain, given in kilometers.", 10.0, 1.0e-10), dbc_row(html_p()), make_accordion_item("Depth of the interface (km):", "depth", "Depth of the interface, given in kilometers.", -2.5, -50.0), dbc_row(html_p()), make_accordion_item("nx:", "nel_x", "Number of elements in the x-direction. Must be an integer greater than 2.", 64, 2), dbc_row(html_p()), make_accordion_item("nz:", "nel_z", "Number of elements in the z-direction. Must be an integer greater than 2.", 32, 2), dbc_row(html_p()), make_accordion_item("nt:", "n_timesteps", "Maximum number of timesteps. Must be an integer greater than 1.", 50, 1), dbc_row(html_p()), dbc_row([ dbc_checklist(options=["FreeSurf"], id="switch-FreeSurf", switch=true, ) ]), dbc_row(html_p()), dbc_row([ dbc_checklist(options=["Layers"], id="switch-Layers", switch=true, ) ]) ]) end """ Creates a setup with noisy temperature and one phase """ function CreateSetup(ParamFile, layered_overburden=false, Hi=-5.0, ampl_noise=0.1, ; args) Grid = read_LaMEM_inputfile(ParamFile, args=args) Phases = zeros(Int64, size(Grid.X)); Temp = zeros(Float64,size(Grid.X)); if layered_overburden H_layer = 0.25; for z_low = minimum(Grid.Z):2*H_layer:maximum(Grid.Z) # print(z_low) # z_low = -z_low iz = (Grid.Z[1,1,:] .> z_low) .& (Grid.Z[1,1,:] .<= (z_low+H_layer) ) Phases[:,:,iz] .= 1; end end z_int = [Hi + rand()*ampl_noise for _ in 1:Grid.nump_x] # print(z_int) # z_int = -z_int for ix=1:Grid.nump_x, iy=1:Grid.nump_y iz = Grid.Z[ix,iy,:] .< z_int[ix] Phases[ix,iy,iz] .= 2; end # print(z_int) Model3D = CartData(Grid, (Phases=Phases,Temp=Temp)) # Create LaMEM model write_paraview(Model3D,"LaMEM_ModelSetup", verbose=false) # Save model to paraview (load with opening LaMEM_ModelSetup.vts in paraview) save_LaMEM_markers_parallel(Model3D, directory="./markers", verbose=false) # save markers on one core return nothing end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
12596
module RisingSphereTools using Dash, DashBootstrapComponents using PlotlyJS using LaMEM using UUIDs using Interpolations using HTTP export rising_sphere pkg_dir = pkgdir(RisingSphereTools) include(joinpath(pkg_dir,"src/dash_tools.jl")) include(joinpath(pkg_dir,"src/RisingSphere/dash_functions_RisingSphere.jl")) """ rising_sphere(; host=HTTP.Sockets.localhost, port=8050) This starts a rising sphere GUI """ function rising_sphere(; host=HTTP.Sockets.localhost, port=8050) pkg_dir = pkgdir(RisingSphereTools) GUI_version = "0.1.3" cmaps = read_colormaps(dir_colormaps=joinpath(pkg_dir,"src/assets/colormaps/")) title_app = "Rising Sphere example" ParamFile = "RisingSphere.dat" OutFile = "RiseSphere" base_dir = pwd() cd(base_dir) # We also use a time-card that has maximum(Vz) function make_time_card() item = dbc_row([ html_p(), dbc_card([ dbc_label(" Time : 0 Myrs", id="label-time"), dbc_label(" Timestep : 0", id="label-timestep"), dbc_label(" Maximum Vz : 0", id="label-max-vz"), ], color="secondary", class_name="mx-auto col-11", outline=true), html_p()]) return item end #app = dash(external_stylesheets=[dbc_themes.CYBORG]) app = dash(external_stylesheets = [dbc_themes.BOOTSTRAP], prevent_initial_callbacks=false) app.title = title_app # Main code layout app.layout = html_div() do dbc_container(className="mxy-auto", fluid=true, [ make_title(title_app), dbc_row([ dbc_col([ make_plot("",cmaps), # show graph make_plot_controls(), # show media buttons make_id_label(), # show user id ]), dbc_col([ make_time_card(), # show simulation time info make_menu(cmaps), # show menu with simulation parameters, rheological parameters, and plotting parameters make_run_button() # show the run simulation button ]) ]), # Store a unique number of our session in the webpage dcc_store(id="session-id", data=""), # Store info related to the simulation and current timestep dcc_store(id="current_timestep", data="0"), dcc_store(id="last_timestep", data="0"), dcc_store(id="update_fig", data="0"), # Start an interval that updates the number every second dcc_interval(id="session-interval", interval=100, n_intervals=0, disabled=true) ]) end # This creates an initial session id that is unique for this session # it will run on first start callback!(app, Dash.Output("session-id", "data"), Dash.Output("label-id", "children"), Input("session-id", "data") ) do session_id session_id = UUIDs.uuid4() str = "id=$(session_id), v=$(GUI_version)" return String("$(session_id)"), str end # Call run button callback!(app, Dash.Output("session-interval", "disabled"), Input("button-run", "n_clicks"), Input("button-run", "disabled"), Input("button-play", "n_clicks"), State("domain_width", "value"), State("nel_x", "value"), State("nel_z", "value"), State("n_timesteps", "value"), State("density_sphere", "value"), State("density_matrix", "value"), State("radius_sphere", "value"), State("viscosity", "value"), State("last_timestep", "data"), State("plot_field", "value"), State("session-id", "data"), prevent_initial_call=true ) do n_run, active_run, n_play, domain_width, nel_x, nel_z, n_timesteps, sphere_density, matrix_density, sphere_radius, viscosity, last_timestep, plot_field, session_id trigger = get_trigger() disable_interval = true if trigger == "button-run.n_clicks" cur_dir = pwd() base_dir = joinpath(pkgdir(RisingSphereTools),"src","RisingSphere") args = "-nstep_max $(n_timesteps) -radius[0] $sphere_radius -rho[0] $matrix_density -rho[1] $sphere_density -nel_x $nel_x -nel_z $nel_z -coord_x $(-domain_width/2),$(domain_width/2) -coord_z $(-domain_width/2),$(domain_width/2)" # We clicked the run button user_dir = simulation_directory(session_id, clean=true) cd(user_dir) pfile = joinpath(base_dir,ParamFile) run_lamem(pfile, 1, args, wait=false) disable_interval = false cd(cur_dir) # return to main directory elseif trigger == "button-run.disabled" last_t = parse(Int, last_timestep) if active_run == true || last_t < n_timesteps disable_interval = false end elseif trigger == "button-play.n_clicks" last_t = parse(Int, last_timestep) @show last_t disable_interval = false end return disable_interval end # deactivate the button callback!(app, Dash.Output("button-run", "disabled"), Dash.Output("button-run", "color"), Input("button-run", "n_clicks"), Input("session-interval", "n_intervals"), State("last_timestep", "data"), State("current_timestep", "data"), prevent_initial_call=true ) do n_run, n_inter, last_timestep, current_timestep cur_t = parse(Int, current_timestep) # current timestep last_t = parse(Int, last_timestep) # last timestep available on disk if cur_t < last_t button_run_disable = true button_color = "danger" else button_run_disable = false button_color = "primary" end return button_run_disable, button_color end # Check if *.pvd file on disk changed and a new timestep is available callback!(app, Dash.Output("last_timestep", "data"), Dash.Output("update_fig", "data"), Input("session-interval", "n_intervals"), Input("button-run", "n_clicks"), State("current_timestep", "data"), State("update_fig", "data"), State("session-id", "data"), prevent_initial_call=true ) do n_inter, n_run, current_timestep, update_fig, session_id trigger = get_trigger() user_dir = simulation_directory(session_id, clean=false) if trigger == "session-interval.n_intervals" if has_pvd_file(OutFile, user_dir) # Read LaMEM *.pvd file Timestep, _, Time = read_LaMEM_simulation(OutFile, user_dir) # Update the labels and data stored in webpage about the last timestep last_time = "$(Timestep[end])" update_fig = "$(parse(Int,update_fig)+1)" else last_time = "0" update_fig = "0" end elseif trigger == "button-run.n_clicks" last_time = "0" update_fig = "0" end return last_time, update_fig end # Update the figure if the signal is given to do so callback!(app, Dash.Output("label-timestep", "children"), Dash.Output("label-time", "children"), Dash.Output("current_timestep", "data"), Dash.Output("figure_main", "figure"), Dash.Output("plot_field", "options"), Dash.Output("contour_option", "options"), Dash.Output("label-max-vz","children"), Input("update_fig", "data"), Input("current_timestep", "data"), Input("button-run", "n_clicks"), Input("button-start", "n_clicks"), Input("button-last", "n_clicks"), Input("button-forward", "n_clicks"), Input("button-back", "n_clicks"), Input("button-play", "n_clicks"), State("last_timestep", "data"), State("session-id", "data"), State("plot_field", "value"), State("switch-contour", "value"), State("contour_option", "value"), State("switch-velocity", "value"), State("color_map_option", "value"), prevent_initial_call=true ) do update_fig, current_timestep, n_run, n_start, n_last, n_back, n_forward, n_play, last_timestep, session_id, plot_field, switch_contour, contour_field, switch_velocity, color_map_option trigger = get_trigger() # Get info about timesteps cur_t = parse(Int, current_timestep) # current timestep last_t = parse(Int, last_timestep) # last timestep available on disk fig_cross = [] fields_available = ["phase"] maxVz = 0 if trigger == "current_timestep.data" || trigger == "update_fig.data" || trigger == "button-start.n_clicks" || trigger == "button-last.n_clicks" || trigger == "button-back.n_clicks" || trigger == "button-forward.n_clicks" || trigger == "button-play.n_clicks" user_dir = simulation_directory(session_id, clean=false) if has_pvd_file(OutFile, user_dir) Timestep, _, Time = read_LaMEM_simulation(OutFile, user_dir) # all timesteps id = findall(Timestep .== cur_t)[1] if trigger == "button-start.n_clicks" || trigger == "button-play.n_clicks" cur_t = 0 id = 1 elseif trigger == "button-last.n_clicks" cur_t = Timestep[end] id = length(Timestep) elseif (trigger == "button-forward.n_clicks") && (id < length(Timestep)) cur_t = Timestep[id+1] id = id + 1 elseif (trigger == "button-back.n_clicks") && (id > 1) cur_t = Timestep[id-1] id = id - 1 end # Load data x, y, Vz, time, fields_available = get_data(OutFile, cur_t, "velocity_z", user_dir) x, y, data, time, fields_available = get_data(OutFile, cur_t, plot_field, user_dir) add_contours = active_switch(switch_contour) if add_contours x_con, y_con, data_con, _, _ = get_data(OutFile, cur_t, contour_field, user_dir) else x_con, y_con, data_con = x, y, data end # update the plot add_velocity = active_switch(switch_velocity) fig_cross = create_main_figure(OutFile, cur_t, x, y, data, x_con, y_con, data_con; add_contours=add_contours, contour_field=contour_field, add_velocity=add_velocity, colorscale=color_map_option, session_id=session_id, field=plot_field, cmaps=cmaps) if trigger == "current_timestep.data" || trigger == "update_fig.data" || trigger == "button-play.n_clicks" if cur_t < last_t cur_t = Timestep[id+1] # update current timestep end end maxVz = maximum(Vz) else time = 0 end elseif trigger == "button-run.n_clicks" cur_t = 0 time = 0.0 end # update the labels label_timestep = "Timestep: $cur_t" label_time = "Time : $time Myrs" label_maxVz = "Maximum Vz : $maxVz cm/yr" current_timestep = "$cur_t" @show current_timestep return label_timestep, label_time, current_timestep, fig_cross, fields_available, fields_available, label_maxVz end # Enable or disable contours callback!(app, Dash.Output("contour_option", "disabled"), Input("switch-contour", "value")) do switch_contour if !isnothing(switch_contour) if isempty(switch_contour) disable_contours = true else disable_contours = false end else disable_contours = true end return disable_contours end run_server(app, host, port, debug=false) return app end end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
2348
using DelimitedFiles make_geometry_parameters() = nothing """ Returns an accordion menu containing the rheological parameters. """ function make_rheological_parameters() return dbc_accordionitem(title="Rheological Parameters", [ make_accordion_item("ρₛ (kg/m³):", "density_sphere", "Density of the sphere in kg/m³ (0 < ρₛ ≤ 10_000.0).", 3000.0, 1.0e-10), dbc_row(html_p()), make_accordion_item("ρₘ (kg/m³):", "density_matrix", "Density of the matrix in kg/m³ (0 < ρₛ ≤ 10_000.0).", 3400.0, 1.0e-10), dbc_row(html_p()), make_accordion_item("rₛ (km):", "radius_sphere", "Radius of the sphere in kilometers (0 < rₛ ≤ Lₓ).", 0.1, 1.0e-10), dbc_row(html_p()), make_accordion_item("ηₘ (log₁₀(Pa⋅s)):", "viscosity", "Logarithm of the viscosity of the matrix (15 < ηₘ ≤ 25).", 25.0, 15.0, 25.0), ]) end """ Returns an accordion menu containing the simulation parameters. """ function make_simulation_parameters() return dbc_accordionitem(title="Simulation Parameters", [ make_accordion_item("Lₓ (km):", "domain_width", "Width of the domain, given in kilometers.", 1.0, 1.0e-10), dbc_row(html_p()), make_accordion_item("nx:", "nel_x", "Number of elements in the x-direction. Must be an integer greater than 2.", 64, 2), dbc_row(html_p()), make_accordion_item("nz:", "nel_z", "Number of elements in the z-direction. Must be an integer greater than 2.", 64, 2), dbc_row(html_p()), make_accordion_item("nt:", "n_timesteps", "Maximum number of timesteps. Must be an integer greater than 1.", 30, 1), ]) end """ Creates a setup with noisy temperature and one phase """ function CreateSetup(ParamFile, ΔT=1000, ampl_noise=100; args) Grid = read_LaMEM_inputfile(ParamFile, args=args) Phases = zeros(Int64, size(Grid.X)) Temp = [ΔT / 2 + rand()*ampl_noise for _ in axes(Grid.X,1), _ in axes(Grid.X,2)] Phases[Grid.Z.>0.0] .= 1 Temp[Grid.Z.>0.0] .= 0.0 Model3D = CartData(Grid, (Phases=Phases, Temp=Temp)) # Create LaMEM model write_paraview(Model3D, "LaMEM_ModelSetup", verbose=false) # Save model to paraview (load with opening LaMEM_ModelSetup.vts in paraview) save_LaMEM_markers_parallel(Model3D, directory="./markers", verbose=false) # save markers on one core return nothing end
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
9969
using GeoParams using ForwardDiff, SparseArrays, SparseDiffTools, LinearAlgebra, Interpolations av(x) = (x[2:end]+x[1:end-1])/2 """ init_model(;nz=101, L=40e3, Geotherm=0, Ttop=400.0, Tbot=0.0, Δt=1e3*SecYear, MatParam=nothing) Create initial model setup """ function init_model(;nz=101, L=40e3, Geotherm=0, Ttop=400.0, Tbot=0.0, Δt=1e3*SecYear, MatParam=nothing) if isnothing(MatParam) MatParam = (SetMaterialParams(Name="RockMelt", Phase=0, Density = ConstantDensity(ρ=2700kg/m^3), # used in the parameterisation of Whittington LatentHeat = ConstantLatentHeat(Q_L=2.55e5J/kg), RadioactiveHeat = ExpDepthDependentRadioactiveHeat(H_0=0e-7Watt/m^3), Conductivity = T_Conductivity_Whittington(), # T-dependent k HeatCapacity = T_HeatCapacity_Whittington(), # T-dependent cp Melting = MeltingParam_Assimilation() # Quadratic parameterization as in Tierney et al. ), ) end # Numerics Told = zeros(nz) T = zeros(nz) ρ = zeros(nz) Cp = zeros(nz) dϕdT = zeros(nz) ϕ = zeros(nz) Hl = zeros(nz) k = zeros(nz-1) dz = L/(nz-1) z = -L:dz:0 T = -Geotherm/1e3.*Vector(z) .+ Ttop Phases = fill(0,nz) Phases_c = fill(0,nz-1) Params = (; Δt, k, ρ, Cp, dϕdT, ϕ, Hl, Told, Phases, Phases_c, MatParam, z) N = (nz,) BC = (; Ttop, Tbot) Δ = (dz,) return Params, BC, N, Δ, T, z end """ Res!(F::AbstractArray, T::AbstractArray, Δ, N, BC) """ function Res!(F::AbstractVector{_T}, T::AbstractVector{_T}, Δ::NTuple, N::NTuple, BC::NamedTuple, Params::NamedTuple, MatParam) where _T<:Number dz = Δ[1] # grid spacing nz = N[1] # grid size # Update material properties args = (T = Params.Told .+273.15, ) args_c = (T = av(Params.Told) .+273.15, ) compute_conductivity!(Params.k, MatParam, Params.Phases_c, args_c) compute_heatcapacity!(Params.Cp, MatParam, Params.Phases, args) compute_density!(Params.ρ, MatParam, Params.Phases, args) compute_dϕdT!(Params.dϕdT, MatParam, Params.Phases, args) compute_meltfraction!(Params.ϕ, MatParam, Params.Phases, args) compute_latent_heat!(Params.Hl, Params.MatParam, Params.Phases, args) I = 2:nz-1 # ρ(Cp + Hₗ∂ϕ/∂T) ∂T/∂t = ∂/∂z(k ∂T/∂z) F[2:end-1] = Params.ρ[I].*(Params.Cp[I] + Params.Hl[I].*Params.dϕdT[I]).*(T[I]-Params.Told[I])/Params.Δt - diff(Params.k .* diff(T)/dz)/dz; F[1] = T[1] - BC.Tbot F[nz] = T[nz] - BC.Ttop return F end Res_closed! = (F,T) -> Res!(F, T, Δ, N, BC, Params, MatParam) function LineSearch(func::Function, F, x, δx; α = [0.01 0.05 0.1 0.25 0.5 0.75 1.0]) Fnorm = zero(α) N = length(x) for i in eachindex(α) func(F, x .+ α[i].*δx) Fnorm[i] = norm(F)/N end _, i_opt = findmin(Fnorm) return α[i_opt], Fnorm[i_opt] end """ Usol = nonlinear_solution(Fup::Vector, U::Vector{<:AbstractArray}, J, colors; tol=1e-8, maxit=100) Computes a nonlinear solution using a Newton method with line search. `U` needs to be a vector of abstract arrays, which contains the initial guess of every field `J` is the sparse jacobian matrix, and `colors` the coloring matrix, usually computed with `matrix_colors(J)` """ function nonlinear_solution(Fup::Vector, T::Vector, J, colors; tol=1e-8, maxit=100, verbose=true, Δ, N, BC, Params, MatParam) Res_closed! = (F,T) -> Res!(F, T, Δ, N, BC, Params, MatParam) r = zero(Fup) err = 1e3; it=0; while err>tol && it<maxit Res_closed!(r,T) # compute residual forwarddiff_color_jacobian!(J, Res_closed!, T, colorvec = colors) # compute jacobian in an in-place manner dT = J\-r # solve linear system: α, err = LineSearch(Res_closed!, r, T, dT); # optimal step size T += α*dT # update solution it +=1; if verbose; println(" Nonlinear iteration $it: error = $err, α=$α"); end end converged=false return T, converged, it end function time_stepping(T, nt, Params, N, Δ, BC, MatParam; verbose=false, OutDir="test", OutFile="Thermal1D", PlotData=nothing) # create a function with only 1 input parameter CurDir = pwd() if !isnothing(OutDir) cd(OutDir) end # Initial sparsity pattern of matrix nz = N[1] J1 = Tridiagonal(ones(nz-1), ones(nz), ones(nz-1)) J1[1,2]=0; J1[2,1]=0; J1[nz-1,nz]=0; J1[nz,nz-1]=0 Jac = sparse(Float64.(abs.(J1).>0)) colors = matrix_colors(Jac) io = open("$OutFile.pvd", "w") time_yrs = 0.0 #Tline = Observable(Point2f.(T, Params.z/1e3)) # lines!(PlotData.ax1, Tline, color = :green) PlotData.ax1.title="time=$(time_yrs)" F = zero(T) time = 0.0 SecYear = 3600*24*365.25 for it in 1:nt T, converged, its = nonlinear_solution(F, T, Jac, colors, verbose=verbose, Δ=Δ, N=N, BC=BC, Params=Params, MatParam=MatParam) Params.Told .= T @show extrema(T), extrema(Params.ϕ) time += Params.Δt time_yrs = time/SecYear # save file to disk if mod(it,1)==0 & !isnothing(OutDir) jldsave("test_$(it+10000).jld2"; Params.z, T, Params.ϕ, time) writedlm(io, [it, time]) # update timestep in pvd file (really just a trick for the GUI) end if isnothing(OutDir) empty!(PlotData.ax1) lines!(PlotData.ax1, T, Params.z/1e3, color=:red) PlotData.ax1.title = "$time_yrs years" display(PlotData.fig) end @show time_yrs end if !isnothing(OutDir) close(io) end cd(CurDir) return T, Params.ϕ, time end crack_perp_displacement(z, d; r=5e3) = d.*(1.0 .- abs.(z)./(sqrt.(r^2 .+ z.^2))) """ Tadv = insert_sill!(T,z; Sill_thick=400, Sill_z0=-20e3, Sill_T=1200, SillType=:constant) Adds a sill to the setup, using a 1D WENO5 advection scheme for a given temperature field `T` on a grid `z`. Optional parameters are the sill thickness `Sill_thick`, the sill center `Sill_z0`, the sill temperature `Sill_T`. Advection is done by `SillType`, which can be `:constant` (where rocks above/below are moved with constant displacement or `:elastic`, where the displacement decreases with distance from the sill. """ function insert_sill(T,rocks, z; Sill_thick=400, Sill_z0=-20e3, Sill_T=1200, Sill_phase=1.0, SillType=:elastic) # find points above & below sill emplacement level z_shift = Vector(z) .- Sill_z0; Displ = zero(z_shift) # shift points above id_above = findall(z_shift.>0) id_below = findall(z_shift.<0) # Assume constant displacement - in elastic case this should decrease with distance from sill if SillType==:constant Displ[id_above] .= Sill_thick Displ[id_below] .= -Sill_thick elseif SillType==:elastic R = 5e3; Displ[id_above] .= crack_perp_displacement(z_shift[id_above], Sill_thick; r=R) Displ[id_below] .= -crack_perp_displacement(z_shift[id_below], Sill_thick; r=R) end # use WENO5 to advect the temperature field T_adv = semilagrangian_advection(T, Displ, z) # set sill temperature ind = findall( abs.(z .- Sill_z0) .<= Sill_thick/2) T_adv[ind] .= Sill_T # use WENO5 to advect the rock field rock_adv = semilagrangian_advection(rocks, Displ, z) rock_adv[ind] .= Sill_phase rock_adv = ceil.(rock_adv) return T_adv, rock_adv end """ Tadv = semilagrangian_advection(T, Displ, z) Do semilagrangian_advection """ function semilagrangian_advection(T, Displ, z) z_new = z + Displ # advect grid interp_linear = linear_interpolation(z_new, T); T_adv = interp_linear.(z) return T_adv end #= nz = 101 L = 40e3 Geotherm = 0; # K/km Ttop = 400.0 Tbot = L/1e3*Geotherm SecYear = 3600*24*365.25 Δt = 1e3*SecYear MatParam = (SetMaterialParams(Name="RockMelt", Phase=0, Density = ConstantDensity(ρ=2700kg/m^3), # used in the parameterisation of Whittington LatentHeat = ConstantLatentHeat(Q_L=2.55e5J/kg), RadioactiveHeat = ExpDepthDependentRadioactiveHeat(H_0=0e-7Watt/m^3), Conductivity = T_Conductivity_Whittington(), # T-dependent k HeatCapacity = T_HeatCapacity_Whittington(), # T-dependent cp Melting = MeltingParam_Assimilation() # Quadratic parameterization as in Tierney et al. ),) # Params, BC, N, Δ, T, z = init_model(nz=nz, L=L, Geotherm=Geotherm, Ttop=Ttop, Tbot=Tbot, Δt=Δt, MatParam=MatParam) #N_2 = floor(Int64,(nz-1)/2) #T[N_2-3:N_2+3] .+= 500 #Params.Told .= T nt = 2 T, ϕ, t = time_stepping(T, nt, Params, N, Δ, BC, MatParam, verbose = false) fig = make_subplots( rows=1, cols=2, column_widths=[0.6, 0.4], row_heights=[1.0], specs=[ Spec(kind= "xy") Spec(kind="xy") ] ) add_trace!( fig, scatter(x=T,y=z/1e3), row=1, col=1) add_trace!( fig, scatter(x=ϕ,y=z/1e3), row=1, col=2) fig =#
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
code
9532
# GUI for GLMakie using GLMakie GLMakie.activate!() GLMakie.closeall() # close any open screen export sill_intrusion_1D include("ThermalCode_1D.jl") # Few helpers: add_textbox(fig, label, value) = [Label(fig, label), Textbox(fig, stored_string = string(value), validator = typeof(value))] add_togglebox(fig, label, active) = [Label(fig, label), Toggle(fig, active=active)] get_valuebox(box::Vector) = parse(box[2].validator.val, box[2].stored_string.val) """ sill_intrusion_1D() Interactive GLMakie App for 1D thermal intrusion model """ function sill_intrusion_1D() fig = Figure(size=(900,900)) time_val = Observable(0.0) Label(fig[0, 1:3], text = "1D sill injection in the crust", fontsize = 30) ax1 = Axis(fig[1, 1], xlabel="Temperature [ᵒC]", ylabel="Depth [km]") ax2 = Axis(fig[1, 2], xlabel="Melt fraction ϕ", title = @lift("t = $(round($time_val, digits = 2)) kyrs")) ax3 = Axis(fig[2, 1:2], xlabel="Time [kyrs]", ylabel="Maximum Temperature [ᵒC]",ytickcolor=:red,ylabelcolor=:red,yticklabelcolor=:red) ax4 = Axis(fig[2, 1:2], ylabel="Maximum melt fraction ϕ",ytickcolor=:blue,ylabelcolor=:blue,yticklabelcolor=:blue, yaxisposition = :right) linkxaxes!(ax3, ax4) fig[1:2, 3] = grid = GridLayout(tellwidth = false) grid[1, 1:2] = but = Button(fig, label = " RUN SIMULATION ", buttoncolor = :lightgreen) Box(grid[2:4, 1:2], color = :lightgrey, cornerradius = 10) grid[2, 1:2] = Δz_box = add_textbox(fig,"Grid spacing Δz [m]:",20) grid[3, 1:2] = nt_box = add_textbox(fig,"# timesteps nt:",150) grid[4, 1:2] = Δt_yrs_box = add_textbox(fig,"timestep Δt [yrs]:",100.0) Box(grid[5:7, 1:2], color = :lightblue, cornerradius = 10) grid[5, 1:2] = H_box = add_textbox(fig,"Crustal thickness [km]:",40.0) grid[6, 1:2] = Ttop_box = add_textbox(fig,"Ttop [ᵒC]:",0.0) grid[7, 1:2] = γ_box = add_textbox(fig,"Geotherm [ᵒC/km]:",20.0) Box(grid[8:12, 1:2], color = :lightyellow, cornerradius = 10) grid[8, 1:2] = Tsill_box = add_textbox(fig,"Sill Temperature [ᵒC]:",1200.0) grid[9, 1:2] = Sill_thick_box = add_textbox(fig,"Sill thickness [m]:",1000.0) grid[10, 1:2] = Sill_interval_box = add_textbox(fig,"Sill injection interval [yrs]:",10000.0) grid[11, 1:2] = Sill_interval_top_box = add_textbox(fig,"Top sill injection [km]:",10.0) grid[12, 1:2] = Sill_interval_bot_box = add_textbox(fig,"Bottom sill injection [km]:",20.0) Box(grid[13:15, 1:2], color = (:red,0.3), cornerradius = 10 ) grid[13, 1:2] = Ql_box = add_textbox(fig,"Latent heat [kJ/kg]:",255.0) grid[14, 1:2] = menu_conduct = Menu(fig, options = ["T-dependent conductivity", "Constant conductivity 3 W/m/K"], default = "Constant conductivity 3 W/m/K") grid[15, 1:2] = menu_melting = Menu(fig, options = ["MeltingParam_Assimilation", "MeltingParam_Basalt", "MeltingParam_Rhyolite"], default = "MeltingParam_Basalt") Box(grid[16:17, 1:2], color = (:green,0.3), cornerradius = 10 ) grid[16, 1:2] = filename = [Label(fig, "filename:"), Textbox(fig, stored_string = "sim1.png")] grid[17, 1:2] = but_save = Button(fig, label = " SAVE SCREENSHOT ", buttoncolor = (:lightgreen, 0.5)) on(but_save.clicks) do n save(filename[2].stored_string.val, fig) println("Save screenshot to $(joinpath(pwd(),filename[2].stored_string.val))") end rowsize!(fig.layout, 2, Relative(1/4)) SecYear = 3600*24*365.25 # Start the simulation on(but.clicks) do n # Retrieve data from GUI SecYear = 3600*24*365.25 Δz = get_valuebox(Δz_box) H = get_valuebox(H_box) nz = floor(Int64, H*1e3/Δz) nt = get_valuebox(nt_box) γ = get_valuebox(γ_box) Tsill = get_valuebox(Tsill_box) Ttop = get_valuebox(Ttop_box) Δt = get_valuebox(Δt_yrs_box)*SecYear Silltop = get_valuebox(Sill_interval_top_box) Sillbot = get_valuebox(Sill_interval_bot_box) Sillthick = get_valuebox(Sill_thick_box) Sill_int_yr = get_valuebox(Sill_interval_box) Ql = get_valuebox(Ql_box)*1e3 conductivity = T_Conductivity_Whittington() heatcapacity = T_HeatCapacity_Whittington() if menu_conduct.selection[]=="Constant conductivity 3 W/m/K" conductivity = ConstantConductivity(k=3.0) heatcapacity = ConstantHeatCapacity() end melting = MeltingParam_Smooth3rdOrder() if menu_melting.selection[]=="MeltingParam_Assimilation" melting = MeltingParam_Assimilation() elseif menu_melting.selection[]=="MeltingParam_Rhyolite" melting = MeltingParam_Smooth3rdOrder(a=3043.0,b=−10552.0, c=12204.9,d=−4709.0) end MatParam = (SetMaterialParams(Name="RockMelt", Phase=0, Density = ConstantDensity(ρ=2700kg/m^3), # used in the parameterisation of Whittington LatentHeat = ConstantLatentHeat(Q_L=Ql*J/kg), RadioactiveHeat = ExpDepthDependentRadioactiveHeat(H_0=0e-7Watt/m^3), Conductivity = conductivity, # T-dependent k HeatCapacity = heatcapacity, # T-dependent cp Melting = melting # Quadratic parameterization as in Tierney et al. ),) @info "parameters" nz, H, γ, Tsill, Ttop, nz Tbot = Ttop + H*γ # setup model Params, BC, N, Δ, T, z = init_model(nz=nz, L=H*1e3, Geotherm=γ, Ttop=Ttop, Tbot=Tbot, Δt=Δt, MatParam=MatParam) rocks = zero(T) # will later contain locations with injected sills # add initial perturbation (if any) T_cen = (Silltop + Sillbot)/2*1e3 ind = findall( abs.(z .+ T_cen) .< Sillthick/2) if !isempty(ind) T[ind] .= Tsill rocks[ind] .= 1 end Params.Told .= T # create initial plot PlotData = (;ax1, ax2, fig) println("Running simulation $n") # timestepping F = zero(T) time = 0.0 timevec =Observable([0.0, 1.0]) Tmaxvec =Observable([0.0, 1.0]) Tplot = Observable(T) ϕplot = Observable(Params.ϕ) empty!(ax1) lines!(ax1, Tplot, z/1e3, color=:red) ax1.limits=(minimum(T)-10, maximum(T)+10,extrema(z/1e3)...) empty!(ax2) lines!(ax2, ϕplot, z/1e3, color=:blue) ax2.limits=(-1e-1,1+1e-1,extrema(z/1e3)...) xlims!(ax3, 0, nt*Δt/SecYear/1e3) xlims!(ax4, 0, nt*Δt/SecYear/1e3) # Get initial sparsity pattern of matrix nz = N[1] J1 = Tridiagonal(ones(nz-1), ones(nz), ones(nz-1)) J1[1,2] = 0; J1[2,1]=0; J1[nz-1,nz]=0; J1[nz,nz-1]=0 Jac = sparse(Float64.(abs.(J1).>0)) colors = matrix_colors(Jac) time_vec = Float64[] Tmax_vec = Float64[] ϕmax_vec = Float64[] Sill_z0 = -20e3; println("Injecting sill @ z=$Sill_z0") # perform timestepping crust_added = Sillthick/1e3 crust_added_numerics = sum(rocks)*Δz/1e3 @async for t = 1:nt T, converged, its = nonlinear_solution(F, T, Jac, colors, verbose=false, Δ=Δ, N=N, BC=BC, Params=Params, MatParam=MatParam) if mod(time/SecYear, Sill_int_yr)==0 && t>1 Sill_z0 = rand(-Sillbot*1e3:1:-Silltop*1e3) T, rocks = insert_sill(T,rocks, z, Sill_thick=Sillthick, Sill_z0=Sill_z0, Sill_T=Tsill) Params.Told .= T crust_added += Sillthick/1e3 crust_added_numerics = sum(rocks)*Δz/1e3 println("Injecting sill @ z=$Sill_z0") end Params.Told .= T time += Params.Δt time_kyrs = time/SecYear/1e3 push!(time_vec, time_kyrs) push!(Tmax_vec, maximum(T)) push!(ϕmax_vec, maximum(Params.ϕ)) # save file to disk if mod(t,1)==0 Tplot[] = T ϕplot[] = Params.ϕ time_val[] = time_kyrs empty!(ax2) rock_low = Point2f.(zero(rocks), z/1e3) rock_high = Point2f.(rocks, z/1e3) band!(ax2, rock_low, rock_high, color=(:lightgrey,1.0)) lines!(ax2, Params.ϕ, z/1e3, color=:blue) empty!(ax3) lines!(ax3, time_vec, Tmax_vec, color=:red) scatter!(ax3, time_vec[end], Tmax_vec[end], color=:red) ylims!(ax3, minimum(Tmax_vec)-10,maximum(Tmax_vec)+10) empty!(ax4) lines!(ax4, time_vec, ϕmax_vec, color=:blue) scatter!(ax4, time_vec[end], ϕmax_vec[end], color=:blue) ylims!(ax4, 0, 1.01) println("Timestep $t, $time_kyrs kyrs, nz=$(length(T)) pts; crust added: $crust_added ($crust_added_numerics) km") end end end display(fig) return nothing end #sill_intrusion_1D()
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
docs
3670
# InteractiveGeodynamics.jl This package provides a range of graphical user interfaces (GUI's) to study and experiment with different geodynamic problems without need to program. It uses [julia](https://julialang.org) and [Dash](https://dash.plotly.com/julia) and automatically installs the required geodynamic software (such as [LaMEM](https://github.com/JuliaGeodynamics/LaMEM.jl)) in the background. This is particularly useful for teaching. We currently have the following examples included: - `sill_intrusion_1D()` - 1D thermal model of sill intrusion in the crust - `convection()` - 2D mantle (or magma chamber) convection - `rayleigh_taylor()` - density driven instability - `rising_sphere()` - rising stokes sphere example - `subduction()` - subduction of a single plate - `folding()` - folding of one or more viscous layers ### Getting started/requirements Installing this is straightforward. Start julia ```julia kausb$ julia _ _ _ _(_)_ | Documentation: https://docs.julialang.org (_) | (_) (_) | _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help. | | | | | | |/ _` | | | | |_| | | | (_| | | Version 1.9.3 (2023-08-24) _/ |\__'_|_|_|\__'_| | Official https://julialang.org/ release |__/ | julia> ``` 1) Go to the package manager by pressing `]` and type: ```julia julia>] (@v1.9) pkg> add InteractiveGeodynamics ``` 2) Then download all required packages with ```julia (@v1.9) pkg> instantiate ``` This can take some time the first time you do this. Note that step 1 & 2 only have to be done once. Go back to the main command window with backspace. 3) Start the GUI: ```julia julia> using InteractiveGeodynamics julia> convection() [ Info: Listening on: 127.0.0.1:8050, thread id: 1 ``` It will take a bit of time (to precompile/download all required packages). Next, open tye displayed web address in your browser (127.0.0.1:8050 in this case) and it will start a GUI. After pushing `Run`, you'll get something that looks like this: ```julia julia> Timestep 0 args = -nstep_max 250 -eta_fk[0] 1.0e21 -gamma_fk[0] 0.001 -TRef_fk[0] 1000.0 -ch[0] 5.0e8 -nel_x 128 -nel_z 64 -coord_x -1000.0,1000.0 -coord_z -1000,0 -coord_y -7.8125,7.8125 -temp_bot 2000 Timestep 1 Timestep 10 Timestep 15 Timestep 15 Timestep 20 Timestep 25 Timestep 30 ``` ![GUI_Convection](./docs/src/assets/img/Convection_GUI_Dash.png) ### Running the examples Running the other examples is straightforward. For example, the Rayleigh-Taylor example can be started with: ```julia julia> using InteractiveGeodynamics julia> rayleigh_taylor() [ Info: Listening on: 127.0.0.1:8050, thread id: 1 Tiestep 0 args = -nstep_max 50 -eta[0] 1.0e21 -eta[1] 1.0e21 -eta[2] 1.0e20 -rho[0] 2800 -rho[1] 2800 -rho[2] 2200 -open_top_bound 0 -nel_x 32 -nel_z 16 -coord_x -5.0,5.0 Timestep 1 Timestep 5 Timestep 10 Timestep 15 Timestep 20 Timestep 25 ``` ![GUI_RTI_start](./docs/src/assets/img/RTI_GUI_Dash.png) ### Available examples We currently have the following LaMEM GUI's available, that can be started in the saame way: - `convection()` - `rising_sphere()` - `rayleigh_taylor()` - `subduction()` - subduction of a single plate - `folding()` - folding of one or more viscous layers ### 1D thermal models following sill intrusion in the crust We also have a GUI that relies on [GLMakie](docs.makie.org), which is an optional dependency. This implies that the examples become available once you load `GLMakie` as well. You can start this with: ```julia julia> using InteractiveGeodynamics, GLMakie julia> sill_intrusion_1D() ``` ![1D_Sill_Intrusion](./docs/src/assets/img/1D_sill_intrusion.png)
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.2.3
c886092ba2e14a4500a3e0b99b298d104fe60b46
docs
1108
# Security Policy We take security issues seriously. We appreciate all efforts to responsibly disclose any security issues and will make every effort to acknowledge contributions. ## Supported Versions The current stable release following the interpretation of [semantic versioning (SemVer)](https://julialang.github.io/Pkg.jl/dev/compatibility/#Version-specifier-format-1) used in the Julia ecosystem is supported with security updates. ## Reporting a Vulnerability To report a security issue, please use the GitHub Security Advisory ["Report a Vulnerability"](https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl/security/advisories/new) tab. We will send a response indicating the next steps in handling your report. After the initial reply to your report, we will keep you informed of the progress towards a fix and full announcement, and may ask for additional information or guidance. Please report security bugs in third-party modules directly to the person or team maintaining the module. Public notifications of vulnerabilities will be shared in community channels such as Slack.
InteractiveGeodynamics
https://github.com/JuliaGeodynamics/InteractiveGeodynamics.jl.git
[ "MIT" ]
0.1.1
e72e157c08773595052733e8b39944a49b0109d9
code
530
baremodule Terminators function withtimeout end function open end function start end function stop end """ Terminators.withtimeout(f, seconds::Number, [terminator]) Run `f()` with the timeout `seconds`. This process is terminated if `f()` does not finish after `seconds` seconds. """ withtimeout """ Terminators.open() -> terminator Terminators.open(f) Create a terminator. """ open module Internal using ..Terminators: Terminators include("internal.jl") end # module Internal end # baremodule Terminators
Terminators
https://github.com/tkf/Terminators.jl.git
[ "MIT" ]
0.1.1
e72e157c08773595052733e8b39944a49b0109d9
code
2203
abstract type AbstractTerminator end struct Terminator <: AbstractTerminator proc::Base.Process end struct NullTerminator <: AbstractTerminator end function check_supported() # "OS" APIs used in ./server.jl isdir("/proc/$(getpid())") || return false try read(`kill -l`) catch return false end return true end const IS_SUPPORTED = check_supported() function Terminators.open(f) p = Terminators.open() try f() finally close(p) end end function Terminators.open() IS_SUPPORTED || return NullTerminator() julia = Base.julia_cmd() script = joinpath(@__DIR__, "server.jl") cmd = `$julia --startup-file=no $script -- $(getpid())` proc = open(cmd; read = true, write = true) return Terminator(proc) end function Base.close(p::Terminator) close(p.proc) wait(p.proc) end Base.close(::NullTerminator) = nothing const LOCK = ReentrantLock() const REF = Base.Ref{Union{Nothing,Terminator}}(nothing) function global_terminator() IS_SUPPORTED || return NullTerminator() lock(LOCK) do p = REF[] p isa Terminator && return p p = REF[] = Terminators.open() atexit() do close(p) end return p end end const TIMER_ID = Ref{UInt}(0) function wait_ack(p::Terminator, id::UInt) ln = readline(p.proc) @assert ln == "ack $id" end function Terminators.start( timeout::Number, p::AbstractTerminator = global_terminator(); label = "", ) p isa NullTerminator && return UInt(0) timeout = Float64(timeout) id = TIMER_ID[] += 1 write(p.proc, "start $id $timeout $label\n") flush(p.proc) wait_ack(p, id) return id end function Terminators.stop(id::UInt, p::AbstractTerminator = global_terminator()) p isa NullTerminator && return UInt(0) write(p.proc, "stop $id 0 \n") flush(p.proc) wait_ack(p, id) return id end function Terminators.withtimeout( f, timeout::Number, p::AbstractTerminator = global_terminator(); kwargs..., ) id = Terminators.start(timeout, p; kwargs...) try return f() finally Terminators.stop(id, p) end end
Terminators
https://github.com/tkf/Terminators.jl.git
[ "MIT" ]
0.1.1
e72e157c08773595052733e8b39944a49b0109d9
code
1497
function terminator_loop(output::IO, input::IO, ppid::Int) mypid = getpid() timers = Dict{UInt,Timer}() for ln in eachline(input) @debug "[$mypid] GOT: $ln" sop, sid, stime, label = split(ln; limit = 4, keepempty = true) id = parse(UInt, sid) time = parse(Float64, stime) print(output, "ack $sid\n") flush(output) if sop == "start" timer = Timer(time) do _ msglabel = label == "" ? "" : " for $label;" @error "[$mypid] Timeout ($time)$msglabel terminating process $ppid" isactive() = isdir("/proc/$ppid") function signalling(sig, n = typemax(Int)) @info "[$mypid] Trying to terminate process $ppid with $sig" for _ in 1:n run(`kill -s $sig $ppid`) sleep(0.1) isactive() || return true end return false end signalling("SIGINT", 10) && return signalling("SIGTERM", 10) && return signalling("SIGHUP", 100) && return signalling("SIGKILL") end timers[id] = timer elseif sop == "stop" close(pop!(timers, id)) else error("unknown op: $sop") end end end if abspath(PROGRAM_FILE) == @__FILE__ terminator_loop(stdout, stdin, parse(Int, ARGS[1])) end
Terminators
https://github.com/tkf/Terminators.jl.git
[ "MIT" ]
0.1.1
e72e157c08773595052733e8b39944a49b0109d9
code
49
using TestFunctionRunner TestFunctionRunner.@run
Terminators
https://github.com/tkf/Terminators.jl.git
[ "MIT" ]
0.1.1
e72e157c08773595052733e8b39944a49b0109d9
code
108
module TerminatorsTests include("utils.jl") include("test_withtimeout.jl") end # module TerminatorsTests
Terminators
https://github.com/tkf/Terminators.jl.git
[ "MIT" ]
0.1.1
e72e157c08773595052733e8b39944a49b0109d9
code
635
module TestWithTimeout using Terminators using Test using ..Utils: exec function test_no_timeout() ok = Ref(false) Terminators.withtimeout(10) do ok[] = true end @test ok[] end function test_timeout() proc = Terminators.withtimeout(300) do exec(""" using Terminators Terminators.withtimeout(0.1) do while true $(VERSION ≥ v"1.4" ? "GC.safepoint()" : "yield()") end end """) end @test !success(proc) @test occursin("Timeout", proc.stderr) @test occursin("terminating process", proc.stderr) end end # module
Terminators
https://github.com/tkf/Terminators.jl.git
[ "MIT" ]
0.1.1
e72e157c08773595052733e8b39944a49b0109d9
code
1696
module Utils struct CompletedProcess stdout::String stderr::String proc::Base.Process end function open_stdin_new(f, cmd) out = IOBuffer() err = IOBuffer() cmd = pipeline(cmd; stderr = err, stdout = out) proc = open(cmd, write = true) do proc f(proc) return proc end completed = CompletedProcess(String(take!(out)), String(take!(err)), proc) end function open_stdin_old(f, cmd) inp = Pipe() out = Pipe() err = Pipe() cmd = pipeline(cmd; stdin = inp, stdout = out, stderr = err) proc = run(cmd; wait = false) close(out.in) close(err.in) outstr = Ref{String}() errstr = Ref{String}() @sync begin @async outstr[] = read(out, String) @async errstr[] = read(err, String) try f(inp) finally close(inp) end wait(proc) end return CompletedProcess(outstr[], errstr[], proc) end if VERSION < v"1.3-" open_stdin(args...) = open_stdin_old(args...) else open_stdin(args...) = open_stdin_new(args...) end function exec(code) julia = Base.julia_cmd() script = "include_string(Main, read(stdin, String))" cmd = `$julia --startup-file=no -e $script` setup = Base.load_path_setup_code() cmd = ignorestatus(cmd) completed = open_stdin(cmd) do input write(input, setup) println(input) write(input, code) close(input) end @debug( "Done `exec(code)`", code = Text(code), stdout = Text(completed.stdout), stderr = Text(completed.stderr), ) return completed end Base.success(c::CompletedProcess) = success(c.proc) end # module
Terminators
https://github.com/tkf/Terminators.jl.git
[ "MIT" ]
0.1.1
e72e157c08773595052733e8b39944a49b0109d9
docs
170
# Terminators.jl: adding timeout to your code ```julia using Terminators Terminators.withtimeout(1) do sleep(3) # too slow, the process will be terminated end ```
Terminators
https://github.com/tkf/Terminators.jl.git
[ "BSD-3-Clause" ]
0.1.0
65c128d9fd34d1fd3e6886d1a31fd46cbb3b710c
code
725
#= Original Author: Anastasia Yendiki Copyright © 2022 The General Hospital Corporation (Boston, MA) "MGH" Terms and conditions for use, reproduction, distribution and contribution are found in the 'FreeSurfer Software License Agreement' contained in the file 'LICENSE' found in the FreeSurfer distribution, and here: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense Reporting: [email protected] =# module FreeSurfer include("mri.jl") include("trk.jl") include("view.jl") include("dti.jl") function __init__() println("FREESURFER_HOME: " * (haskey(ENV, "FREESURFER_HOME") ? ENV["FREESURFER_HOME"] : "not defined")) end end # module
FreeSurfer
https://github.com/lincbrain/Fibers.jl.git
[ "BSD-3-Clause" ]
0.1.0
65c128d9fd34d1fd3e6886d1a31fd46cbb3b710c
code
4076
#= Original Author: Anastasia Yendiki Copyright © 2022 The General Hospital Corporation (Boston, MA) "MGH" Terms and conditions for use, reproduction, distribution and contribution are found in the 'FreeSurfer Software License Agreement' contained in the file 'LICENSE' found in the FreeSurfer distribution, and here: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense Reporting: [email protected] =# using LinearAlgebra, Statistics export DTI, dti_fit, dti_write "Container for outputs of a DTI fit" struct DTI s0::MRI eigval1::MRI eigval2::MRI eigval3::MRI eigvec1::MRI eigvec2::MRI eigvec3::MRI rd::MRI md::MRI fa::MRI end """ dti_fit_ls(dwi::MRI, mask:MRI) Fit tensors to DWIs and return a `DTI` structure. """ function dti_fit(dwi::MRI, mask::MRI) dti_fit_ls(dwi::MRI, mask::MRI) end """ dti_fit_ls(dwi::MRI, mask:MRI) Perform least-squares fitting of tensors from DWIs and return a `DTI` structure. """ function dti_fit_ls(dwi::MRI, mask::MRI) if isempty(dwi.bval) error("Missing b-value table from input DWI structure") end if isempty(dwi.bvec) error("Missing gradient table from input DWI structure") end ib0 = (dwi.bval .== minimum(dwi.bval)) A = hcat(dwi.bvec[:,1].^2, 2*dwi.bvec[:,1].*dwi.bvec[:,2], 2*dwi.bvec[:,1].*dwi.bvec[:,3], dwi.bvec[:,2].^2, 2*dwi.bvec[:,2].*dwi.bvec[:,3], dwi.bvec[:,3].^2) A = hcat(-dwi.bval .* A, ones(size(A, 1), 1)) pA = pinv(A) S0 = MRI(mask, 1) Eval1 = MRI(mask, 1) Eval2 = MRI(mask, 1) Eval3 = MRI(mask, 1) Evec1 = MRI(mask, 3) Evec2 = MRI(mask, 3) Evec3 = MRI(mask, 3) Threads.@threads for iz in 1:size(dwi.vol, 3) for iy in 1:size(dwi.vol, 2) for ix in 1:size(dwi.vol, 1) mask.vol[ix, iy, iz] == 0 && continue # Only use positive DWI values to fit the model ipos = dwi.vol[ix, iy, iz, :] .> 0 npos = sum(ipos) if npos == length(dwi.bval) D = pA * log.(dwi.vol[ix, iy, iz, :]) elseif npos > 6 sum(ipos .&& ib0) == 0 && continue D = pinv(A[ipos, :]) * log.(dwi.vol[ix, iy, iz, ipos]) else continue end S0.vol[ix, iy, iz] = exp(D[7]) E = eigen([D[1] D[2] D[3]; D[2] D[4] D[5]; D[3] D[5] D[6]]) Eval1.vol[ix, iy, iz] = E.values[3] Eval2.vol[ix, iy, iz] = E.values[2] Eval3.vol[ix, iy, iz] = E.values[1] Evec1.vol[ix, iy, iz, :] = E.vectors[:, 3] Evec2.vol[ix, iy, iz, :] = E.vectors[:, 2] Evec3.vol[ix, iy, iz, :] = E.vectors[:, 1] end end end return DTI(S0, Eval1, Eval2, Eval3, Evec1, Evec2, Evec3, dti_maps(Eval1, Eval2, Eval3)...) end """ dti_maps(eigval1::MRI, eigval2::MRI, eigval3::MRI) Compute radial diffusivity (RD), mean diffusivity (MD), and fractional anisotropy (FA) maps from the 3 eigenvalues the diffusion tensors. Return RD, MD, and FA maps as MRI structures. """ function dti_maps(eigval1::MRI, eigval2::MRI, eigval3::MRI) rd = MRI(eigval1) md = MRI(eigval1) fa = MRI(eigval1) imask = (eigval1.vol .!= 0) rd.vol[imask] = eigval1.vol[imask] + eigval2.vol[imask] md.vol[imask] = (rd.vol[imask] + eigval3.vol[imask]) / 3 rd.vol[imask] /= 2 fa.vol[imask] = sqrt.(((eigval1.vol[imask] - md.vol[imask]).^2 + (eigval2.vol[imask] - md.vol[imask]).^2 + (eigval3.vol[imask] - md.vol[imask]).^2) ./ (eigval1.vol[imask].^2 + eigval2.vol[imask].^2 + eigval3.vol[imask].^2) * 3/2) return rd, md, fa end """ dti_write(dti::DTI, basename::String) Write the volumes from a `DTI` structure that was created by `dti_fit()` to files whose names start with the specified base name. """ function dti_write(dti::DTI, basename::String) for var in fieldnames(DTI) mri_write(getfield(dti, var), basename * "_" * string(var) * ".nii.gz") end end
FreeSurfer
https://github.com/lincbrain/Fibers.jl.git
[ "BSD-3-Clause" ]
0.1.0
65c128d9fd34d1fd3e6886d1a31fd46cbb3b710c
code
50539
#= Original Author: Anastasia Yendiki Copyright © 2022 The General Hospital Corporation (Boston, MA) "MGH" Terms and conditions for use, reproduction, distribution and contribution are found in the 'FreeSurfer Software License Agreement' contained in the file 'LICENSE' found in the FreeSurfer distribution, and here: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense Reporting: [email protected] =# #= File i/o for nii/mgh files based on MATLAB code by Doug Greve, Bruce Fischl: MRIfspec.m MRIread.m MRIwrite.m load_mgh.m load_nifti.m load_nifti_header.m save_nifti.m fsgettmppath.m vox2ras_0to1.m vox2ras_tkreg.m vox2rasToQform.m =# using LinearAlgebra, Printf, DelimitedFiles export MRI, NIfTIheader, get_tmp_path, mri_filename, mri_read, mri_write, mri_read_bfiles, mri_read_bfiles! "Container for header and image data of a volume stored in NIfTI format" mutable struct NIfTIheader # NIfTI standard header fields sizeof_hdr::Int32 data_type::Vector{UInt8} db_name::Vector{UInt8} extents::Int32 session_error::Int16 regular::UInt8 dim_info::UInt8 dim::Vector{UInt16} intent_p1::Float32 intent_p2::Float32 intent_p3::Float32 intent_code::Int16 datatype::Int16 bitpix::Int16 slice_start::Int16 pixdim::Vector{Float32} vox_offset::Float32 scl_slope::Float32 scl_inter::Float32 slice_end::Int16 slice_code::Int8 xyzt_units::Int8 cal_max::Float32 cal_min::Float32 slice_duration::Float32 toffset::Float32 glmax::Int32 glmin::Int32 descrip::Vector{UInt8} aux_file::Vector{UInt8} qform_code::Int16 sform_code::Int16 quatern_b::Float32 quatern_c::Float32 quatern_d::Float32 quatern_x::Float32 quatern_y::Float32 quatern_z::Float32 srow_x::Vector{Float32} srow_y::Vector{Float32} srow_z::Vector{Float32} intent_name::Vector{UInt8} magic::Vector{UInt8} # Additional fields do_bswap::UInt8 sform::Matrix{Float32} qform::Matrix{Float32} vox2ras::Matrix{Float32} vol::Array end """ NIfTIheader() Return an empty `NIfTIheader` structure """ NIfTIheader() = NIfTIheader( Int32(0), Vector{UInt8}(undef, 0), Vector{UInt8}(undef, 0), Int32(0), Int16(0), UInt8(0), UInt8(0), Vector{UInt16}(undef, 0), Float32(0), Float32(0), Float32(0), Int16(0), Int16(0), Int16(0), Int16(0), Vector{Float32}(undef, 0), Float32(0), Float32(0), Float32(0), Int16(0), Int8(0), Int8(0), Float32(0), Float32(0), Float32(0), Float32(0), Int32(0), Int32(0), Vector{UInt8}(undef, 0), Vector{UInt8}(undef, 0), Int16(0), Int16(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Vector{Float32}(undef, 0), Vector{Float32}(undef, 0), Vector{Float32}(undef, 0), Vector{UInt8}(undef, 0), Vector{UInt8}(undef, 0), UInt8(0), Matrix{Float32}(undef, 0, 0), Matrix{Float32}(undef, 0, 0), Matrix{Float32}(undef, 0, 0), [] ) "Container for header and image data of an MRI volume or volume series" mutable struct MRI vol::Array ispermuted::Bool niftihdr::NIfTIheader fspec::String pwd::String flip_angle::Float32 tr::Float32 te::Float32 ti::Float32 vox2ras0::Matrix{Float32} volsize::Vector{Int32} height::Int32 width::Int32 depth::Int32 nframes::Int32 vox2ras::Matrix{Float32} nvoxels::Int32 xsize::Float32 ysize::Float32 zsize::Float32 x_r::Float32 x_a::Float32 x_s::Float32 y_r::Float32 y_a::Float32 y_s::Float32 z_r::Float32 z_a::Float32 z_s::Float32 c_r::Float32 c_a::Float32 c_s::Float32 vox2ras1::Matrix{Float32} Mdc::Matrix{Float32} volres::Vector{Float32} tkrvox2ras::Matrix{Float32} bval::Vector{Number} bvec::Matrix{Number} end """ MRI() Return an empty `MRI` structure """ MRI() = MRI( [], false, NIfTIheader(), "", "", Float32(0), Float32(0), Float32(0), Float32(0), Matrix{Float32}(undef, 0, 0), Vector{Int32}(undef, 0), Int32(0), Int32(0), Int32(0), Int32(0), Matrix{Float32}(undef, 0, 0), Int32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Float32(0), Matrix{Float32}(undef, 0, 0), Matrix{Float32}(undef, 0, 0), Vector{Float32}(undef, 0), Matrix{Float32}(undef, 0, 0), Vector{Number}(undef, 0), Matrix{Number}(undef, 0, 0) ) """ MRI(ref::MRI, nframes::Integer=ref.nframes) Return an `MRI` structure whose header fields are populated based on a reference `MRI` structure `ref`, and whose image array are populated with zeros. Optionally, the new `MRI` structure can be created with a different number of frames (`nframes`) than the reference MRI structure. """ function MRI(ref::MRI, nframes::Integer=ref.nframes) mri = MRI() for var in fieldnames(MRI) any(var .== (:vol, :fspec, :bval, :bvec)) && continue setfield!(mri, var, getfield(ref, var)) end mri.nframes = nframes if nframes == 1 mri.vol = zeros(Float32, ref.volsize...) else mri.vol = zeros(Float32, ref.volsize..., nframes) end return mri end """ get_tmp_path(tmpdir::String="") Return path to a directory where temporary files can be stored. Search for candidate directories in the following order: 1. `\$``TMPDIR`: Check if environment variable is defined and directory exists 2. `\$``TEMPDIR`: Check if environment variable is defined and directory exists 3. `/scratch`: Check if directory exists 4. `/tmp`: Check if directory exists 5. `tmpdir`: Check if `tmpdir` argument was passed and directory exists If none of the above exist, use current directory (`./`) and print warning. """ function get_tmp_path(tmpdir::String="") if haskey(ENV, "TMPDIR") tmppath = ENV["TMPDIR"] if isdir(tmppath) return tmppath end end if haskey(ENV, "TEMPDIR") tmppath = ENV["TEMPDIR"] if isdir(tmppath) return tmppath end end tmppath = "/scratch" if isdir(tmppath) return tmppath end tmppath = "/tmp" if isdir(tmppath) return tmppath end tmppath = tmpdir if isdir(tmppath) return tmppath end tmppath = "./" println("WARNING: get_tmp_path could not find a temporary folder, " * "using current folder") return tmppath end """ vox2ras_0to1(M0::Matrix) Convert a 0-based vox2ras matrix `M0` to a 1-based vox2ras matrix such that: Pxyz = M_0 * [c r s 1]' = M_1 * [c+1 r+1 s+1 1]' """ function vox2ras_0to1(M0::Matrix) if size(M0) != (4,4) error("Input must be a 4x4 matrix") end Q = zeros(4, 4) Q[1:3, 4] = ones(3, 1) M1 = inv(inv(M0)+Q) return M1 end """ vox2ras_tkreg(voldim::Vector, voxres::Vector) Return a 0-based vox2ras transform of a volume that is compatible with the registration matrix produced by tkregister. May work with MINC xfm. # Arguments - voldim = [ncols; nrows; nslices ...] - volres = [colres; rowres; sliceres ...] """ function vox2ras_tkreg(voldim::Vector, voxres::Vector) if length(voldim) < 3 | length(voxres) < 3 error("Input vectors must have at least 3 elements") end T = zeros(4,4) T[4,4] = 1 T[1,1] = -voxres[1] T[1,4] = voxres[1] * voldim[1]/2 T[2,3] = voxres[3] T[2,4] = -voxres[3] * voldim[3]/2 T[3,2] = -voxres[2] T[3,4] = voxres[2] * voldim[2]/2 return T end """ vox2ras_to_qform(vox2ras::Matrix) Convert a vox2ras matrix to NIfTI qform parameters. The vox2ras should be 6 DOF. Return the following NIfTI header fields: - hdr.quatern_b - hdr.quatern_c - hdr.quatern_d - hdr.qoffset_x - hdr.qoffset_y - hdr.qoffset_z - hdr.pixdim[1] From DG's vox2rasToQform.m: This code mostly just follows CH's mriToNiftiQform() in mriio.c """ function vox2ras_to_qform(vox2ras::Matrix) if size(vox2ras) != (4, 4) error("vox2ras size=" * string(size(vox2ras)) * ", must be (4, 4)") end x = vox2ras[1,4] y = vox2ras[2,4] z = vox2ras[3,4] d = sqrt.(sum(vox2ras[:, 1:3].^2; dims=1)) Mdc = vox2ras[1:3, 1:3] ./ repeat(d, 3) if det(Mdc) == 0 error("vox2ras determinant is 0") end r11 = Mdc[1,1] r21 = Mdc[2,1] r31 = Mdc[3,1] r12 = Mdc[1,2] r22 = Mdc[2,2] r32 = Mdc[3,2] r13 = Mdc[1,3] r23 = Mdc[2,3] r33 = Mdc[3,3] if det(Mdc) > 0 qfac = 1.0 else r13 = -r13 r23 = -r23 r33 = -r33 qfac = -1.0 end # From DG's vox2rasToQform.m: "following mat44_to_quatern()" a = r11 + r22 + r33 + 1.0 if a > 0.5 a = 0.5 * sqrt(a) b = 0.25 * (r32-r23) / a c = 0.25 * (r13-r31) / a d = 0.25 * (r21-r12) / a else xd = 1.0 + r11 - (r22+r33) yd = 1.0 + r22 - (r11+r33) zd = 1.0 + r33 - (r11+r22) if xd > 1 b = 0.5 * sqrt(xd) c = 0.25 * (r12+r21) / b d = 0.25 * (r13+r31) / b a = 0.25 * (r32-r23) / b elseif yd > 1 c = 0.5 * sqrt(yd) b = 0.25 * (r12+r21) / c d = 0.25 * (r23+r32) / c a = 0.25 * (r13-r31) / c else d = 0.5 * sqrt(zd) b = 0.25 * (r13+r31) / d c = 0.25 * (r23+r32) / d a = 0.25 * (r21-r12) / d end if a < 0 a = -a b = -b c = -c d = -d end end return [b, c, d, x, y, z, qfac] end """ mri_filename(fstring::String, checkdisk::Bool=true) Return a valid file name, file stem, and file extension, given a string `fstring` that can be either a file name or a file stem. Valid extensions are: mgh, mgz, nii, nii.gz. Thus a file name is expected to have the form stem.{mgh, mgz, nii, nii.gz}. If `fstring` is a file name, then the stem and extension are determined from `fstring`. If `fstring` is a file stem and `checkdisk` is true (default), then the file name and extension are determined by searching for a file on disk named `fstring`.{mgh, mgz, nii, nii.gz}, where the possible extensions are searched for in this order. If no such file is found, then empty strings are returned. """ function mri_filename(fstring::String, checkdisk::Bool=true) fname = "" fstem = "" fext = "" # List of supported file extensions extlist = ["mgh", "mgz", "nii", "nii.gz"] idot = findlast(isequal('.'), fstring) if isnothing(idot) && checkdisk # Filename has no extension, check if file exists with a supported extension for ext in extlist name = fstring * '.' * ext if isfile(name) fname = name fstem = fstring fext = ext end end else # Filename has an extension, check if it is one of the supported ones ext = lowercase(fstring[(idot+1):end]); if cmp(ext, "gz") == 0 idot = findprev(isequal('.'), fstring, idot-1) if !isnothing(idot) ext = lowercase(fstring[(idot+1):end]) end end if any(cmp.(ext, extlist) .== 0) fname = fstring fstem = fstring[1:idot-1] fext = ext end end return fname, fstem, fext end """ mri_read(infile::String, headeronly::Bool=false, permuteflag::Bool=false) Read an image volume from disk and return an `MRI` structure similar to the FreeSurfer MRI struct defined in mri.h. # Arguments - `infile::String`: Path to the input, which can be: 1. An MGH file, e.g., f.mgh or f.mgz 2. A NIfTI file, e.g., f.nii or f.nii.gz 3. A file stem, in which case the format and full file name are determined by finding a file on disk named `infile`.{mgh, mgz, nii, nii.gz} 4. A Bruker scan directory, which is expected to contain the following files: method, pdata/1/reco, pdata/1/2dseq - `headeronly::Bool=false`: If true, the pixel data are not read in. - `permuteflag::Bool==false`: If true, the first two dimensions of the image volume are permuted in the .vol, .volsize, and .volres fields of the output structure (this is the default behavior of the MATLAB version). The `permuteflag` will not affect the vox2ras matrices, which always map indices in the (column, row, slice) convention. # Output In the `MRI` structure: - Times are in ms and angles are in radians. - `vox2ras0`: This field contains the vox2ras matrix that converts 0-based (column, row, slice) voxel indices to (x, y, z) coordinates. This is the also the matrix that mri_write() uses to derive all geometry information (e.g., direction cosines, voxel resolution, P0). Thus if any other geometry fields of the structure are modified, the change will not be reflected in the output volume. - `vox2ras1`: This field contains the vox2ras matrix that converts 1-based (column, row, slice) voxel indices to (x, y, z) coordinates. - `niftihdr`: If the input file is NIfTI, this field contains a `NIfTIheader` structure. """ function mri_read(infile::String, headeronly::Bool=false, permuteflag::Bool=false) mri = MRI() if isdir(infile) #------ Bruker -------# mri = load_bruker(infile) else (fname, fstem, fext) = mri_filename(infile) if isempty(fname) error("Cannot determine format of " * infile) end mri.fspec = fname mri.pwd = pwd() if any(fext .== ["mgh", "mgz"]) #-------- MGH --------# (mri.vol, M, mr_parms, volsz) = load_mgh(fname, nothing, nothing, headeronly) if !isempty(mr_parms) (mri.tr, mri.flip_angle, mri.te, mri.ti) = mr_parms end if isempty(M) error("Loading " * fname * " as MGH") else mri.vox2ras0 = M end mri.volsize = volsz[1:3] mri.nframes = length(volsz) < 4 ? 1 : volsz[4] elseif any(fext .== ["nii", "nii.gz"]) #------- NIfTI -------# hdr = load_nifti(fname, headeronly) if !headeronly && isempty(hdr.vol) error("Loading " * fname * " as NIfTI") end # Compatibility with MRIread.m: # When data have > 4 dims, put all data into dim 4. volsz = hdr.dim[2:end] volsz = volsz[volsz.>0] volsz = Int.(volsz) if headeronly mri.vol = [] else mri.vol = hdr.vol if length(volsz) > 4 mri.vol = reshape(mri.vol, volsz[1], volsz[2], volsz[3], :) end end hdr.vol = [] # Already have it above, so clear it mri.niftihdr = hdr mri.tr = hdr.pixdim[5] # Already in msec mri.flip_angle = mri.te = mri.ti = 0 mri.vox2ras0 = hdr.vox2ras mri.volsize = volsz[1:3] mri.nframes = length(volsz) < 4 ? 1 : volsz[4] else error("File extension " * fext * " not supported") end # Optional DWI tables -----------------------------------------------# bfile = fstem * ".bvals" if ~isfile(bfile) bfile = fstem * ".bval" if ~isfile(bfile) bfile = "" end end gfile = fstem * ".bvecs" if ~isfile(gfile) gfile = fstem * ".bvec" if ~isfile(gfile) gfile = "" end end if ~isempty(bfile) && ~isempty(gfile) (b, g) = mri_read_bfiles(bfile, gfile) if length(b) == mri.nframes mri.bval = b mri.bvec = g end end end # Dimensions not redundant when using header only (mri.width, mri.height, mri.depth) = collect(mri.volsize) # Set additional header fields related to volume geometry mri_set_geometry!(mri) # Permute volume from col-row-slice to row-col-slice, if desired # (This is the default behavior in the MATLAB version, but not here) if permuteflag mri.vol = permutedims(mri.vol, [2; 1; 3:ndims(mri.vol)]) mri.volsize = mri.volsize[[2,1,3]] mri.volres = mri.volres[[2,1,3]] mri.ispermuted = true end return mri end """ mri_set_geometry!(mri::MRI) Set header fields related to volume geometry in an `MRI` structure. These are redundant fields that can be derived from the `vox2ras0`, `width`, `height`, `depth` fields. They are in the MRI struct defined in mri.h, as well as the MATLAB version of this structure, so they have been added here for completeness. Note: mri_write() derives all geometry information (i.e., direction cosines, voxel resolution, and P0 from vox2ras0. If any of the redundant geometry elements below are modified, the change will not be reflected in the output volume. """ function mri_set_geometry!(mri::MRI) mri.vox2ras = mri.vox2ras0 mri.nvoxels = mri.width * mri.height * mri.depth # Number of voxels mri.xsize = sqrt(sum(mri.vox2ras[:,1].^2)) # Col mri.ysize = sqrt(sum(mri.vox2ras[:,2].^2)) # Row mri.zsize = sqrt(sum(mri.vox2ras[:,3].^2)) # Slice mri.x_r = mri.vox2ras[1,1]/mri.xsize # Col mri.x_a = mri.vox2ras[2,1]/mri.xsize mri.x_s = mri.vox2ras[3,1]/mri.xsize mri.y_r = mri.vox2ras[1,2]/mri.ysize # Row mri.y_a = mri.vox2ras[2,2]/mri.ysize mri.y_s = mri.vox2ras[3,2]/mri.ysize mri.z_r = mri.vox2ras[1,3]/mri.zsize # Slice mri.z_a = mri.vox2ras[2,3]/mri.zsize mri.z_s = mri.vox2ras[3,3]/mri.zsize ic = [mri.width/2; mri.height/2; mri.depth/2; 1] c = mri.vox2ras * ic mri.c_r = c[1] mri.c_a = c[2] mri.c_s = c[3] #--------------------------------------------------------------------# # These are in the MATLAB version of this structure for convenience # 1-based vox2ras: Good for doing transforms on julia indices mri.vox2ras1 = vox2ras_0to1(mri.vox2ras) # Matrix of direction cosines mri.Mdc = mri.vox2ras[1:3, 1:3] * Diagonal(1 ./ [mri.xsize, mri.ysize, mri.zsize]) # Vector of voxel resolutions mri.volres = [mri.xsize, mri.ysize, mri.zsize] mri.tkrvox2ras = vox2ras_tkreg(mri.volsize, mri.volres) end """ load_bruker(indir::String, headeronly::Bool=false) Read Bruker image data from disk and return an `MRI` structure similar to the FreeSurfer MRI struct defined in mri.h. # Arguments - `indir::String`: Path to a Bruker scan directory (files called method, pdata/1/reco, and pdata/1/2dseq are expected to be found in it) - `headeronly::Bool=false`: If true, the pixel data are not read in. """ function load_bruker(indir::String, headeronly::Bool=false) dname = abspath(indir) methfile = dname * "/method" recofile = dname * "/pdata/1/reco" imgfile = dname * "/pdata/1/2dseq" if any(.!isfile.([methfile, recofile, imgfile])) error("Input directory must contain the files: " * "method, pdata/1/reco, pdata/1/2dseq") end mri = MRI() mri.fspec = imgfile mri.pwd = pwd() nb0 = 0 # Read information for the image header from the Bruker method file io = open(methfile, "r") while !eof(io) ln = readline(io) if startswith(ln, "##\$PVM_SpatResol=") # Voxel size ln = readline(io) ln = split(ln) mri.volres = parse.(Float32, ln) elseif startswith(ln, "##\$PVM_Matrix=") # Matrix size ln = readline(io) ln = split(ln) mri.volsize = parse.(Float32, ln) elseif startswith(ln, "##\$EchoTime=") # TE ln = split(ln, "=")[2] mri.te = parse(Float32, ln) elseif startswith(ln, "##\$PVM_RepetitionTime=") # TR ln = split(ln, "=")[2] mri.tr = parse(Float32, ln) elseif startswith(ln, "##\$PVM_DwAoImages=") # Number of b=0 volumes ln = split(ln, "=")[2] nb0 = parse(Int64, ln) elseif startswith(ln, "##\$PVM_DwDir=") # Diffusion gradients nval = split(ln, "(")[2] nval = split(nval, ")")[1] nval = split(nval, ",") nval = prod(parse.(Int64, nval)) nread = 0 bvec = Vector{Float32}(undef, 0) while nread < nval ln = readline(io) ln = split(ln) nread += length(ln) push!(bvec, parse.(Float32, ln)...) end mri.bvec = permutedims(reshape(bvec, 3, :), [2 1]) elseif startswith(ln, "##\$PVM_DwEffBval=") # b-values nval = split(ln, "(")[2] nval = split(nval, ")")[1] nval = parse(Int64, nval) nread = 0 bval = Vector{Float32}(undef, 0) while nread < nval ln = readline(io) ln = split(ln) nread += length(ln) push!(bval, parse.(Float32, ln)...) end mri.bval = bval end end close(io) # Add b=0 volumes to the gradient table # (The method file includes them in the list of b-values but not vectors) for ib0 in 1:nb0 mri.bvec = vcat([0 0 0], mri.bvec) end # Read information about image binary data from Bruker reco file io = open(recofile, "r") data_type = Int32 int_offset = Vector{Float32}(undef, 0) int_slope = Vector{Float32}(undef, 0) byte_order = "" while !eof(io) ln = readline(io) if startswith(ln, "##\$RECO_wordtype=") # Bytes per voxel ln = split(ln, "=")[2] if ln == "_32BIT_SGN_INT" data_type = Int32 elseif ln == "_16BIT_SGN_INT" data_type = Int16 elseif ln == "_8BIT_SGN_INT" data_type = Int8 end elseif startswith(ln, "##\$RECO_map_offset=") # Intensity offset nval = split(ln, "(")[2] nval = split(nval, ")")[1] nval = parse(Int64, nval) nread = 0 while nread < nval ln = readline(io) ln = split(ln) nread += length(ln) push!(int_offset, parse.(Float32, ln)...) end elseif startswith(ln, "##\$RECO_map_slope") # Intensity slope nval = split(ln, "(")[2] nval = split(nval, ")")[1] nval = parse(Int64, nval) nread = 0 while nread < nval ln = readline(io) ln = split(ln) nread += length(ln) push!(int_slope, parse.(Float32, ln)...) end elseif startswith(ln, "##\$RECO_byte_order=") # Byte order byte_order = split(ln, "=")[2] end end close(io) mri.nframes = length(int_slope) mri.vox2ras0 = Matrix(Diagonal([mri.volres; 1])) if headeronly return mri end # Read image data io = open(imgfile, "r") vol = read!(io, Array{data_type}(undef, (mri.volsize..., mri.nframes))) close(io) if byte_order == "littleEndian" vol = ltoh.(vol) else vol = ntoh.(vol) end # Apply intensity offset and slope vol = Int32.(vol) if data_type == Float32 mri.vol = Float32.(vol) else mri.vol = Array{Float32}(undef, size(vol)) for iframe in 1:mri.nframes mri.vol[:,:,:,iframe] = vol[:,:,:,iframe] ./ int_slope[iframe] .+ int_offset[iframe] end end return mri end """ load_mgh(fname::String, slices::Union{Vector{Unsigned}, Nothing}=nothing, frames::Union{Vector{Unsigned}, Nothing}=nothing, headeronly::Bool=false) Load a .mgh or .mgz file from disk. Return: - The image data as an array - The 4x4 vox2ras matrix that transforms 0-based voxel indices to coordinates such that: [x y z]' = M * [i j k 1]' - MRI parameters as a vector: [tr, flip_angle, te, ti] - The image volume dimensions as a vector (useful when `headeronly` is true, in which case the image array will be empty) # Arguments - `fname::String`: Path to the .mgh/.mgz file - `slices::Vector`: 1-based slice numbers to load (default: read all slices) - `frames::Vector`: 1-based frame numbers to load (default: read all frames) - `headeronly::Bool=false`: If true, the pixel data are not read in. """ function load_mgh(fname::String, slices::Union{Vector{Unsigned}, Nothing}=nothing, frames::Union{Vector{Unsigned}, Nothing}=nothing, headeronly::Bool=false) vol = M = mr_parms = volsz = [] # Unzip if it is compressed ext = lowercase(fname[(end-1):end]) if cmp(ext, "gz") == 0 # Create unique temporary file name tmpfile = tempname(get_tmp_path()) * ".load_mgh.mgh" gzipped = true if Sys.isapple() cmd = `gunzip -c $fname` else cmd = `zcat $fname` end run(pipeline(cmd, stdout=tmpfile)) else tmpfile = fname gzipped = false end io = open(tmpfile, "r") v = ntoh(read(io, Int32)) ndim1 = ntoh(read(io, Int32)) ndim2 = ntoh(read(io, Int32)) ndim3 = ntoh(read(io, Int32)) nframes = ntoh(read(io, Int32)) type = ntoh(read(io, Int32)) dof = ntoh(read(io, Int32)) if !isnothing(slices) && any(slices .> ndim3) error("Some slices=" * string(slices) * " exceed nslices=" * string(dim3)) end if !isnothing(frames) && any(frames .> nframes) error("Some frames=" * string(frames) * " exceed nframes=" * string(nframes)) end UNUSED_SPACE_SIZE = 256 USED_SPACE_SIZE = 3*4+4*3*4 # Space for RAS transform unused_space_size = UNUSED_SPACE_SIZE-2 ras_good_flag = ntoh(read(io, Int16)) if ras_good_flag > 0 delta = ntoh.(read!(io, Vector{Float32}(undef, 3))) Mdc = ntoh.(read!(io, Vector{Float32}(undef, 9))) Mdc = reshape(Mdc, (3,3)) Pxyz_c = ntoh.(read!(io, Vector{Float32}(undef, 3))) D = Diagonal(delta) Pcrs_c = [ndim1; ndim2; ndim3]/2 # Should this be kept? Pxyz_0 = Pxyz_c - Mdc*D*Pcrs_c M = [Mdc*D Pxyz_0; 0 0 0 1] ras_xform = [Mdc Pxyz_c; 0 0 0 1] unused_space_size = unused_space_size - USED_SPACE_SIZE end skip(io, unused_space_size) nv = ndim1 * ndim2 * ndim3 * nframes volsz = [ndim1 ndim2 ndim3 nframes] MRI_UCHAR = 0 MRI_INT = 1 MRI_LONG = 2 MRI_FLOAT = 3 MRI_SHORT = 4 MRI_BITMAP = 5 MRI_USHRT = 10 # Determine number of bytes per voxel if type == MRI_FLOAT nbytespervox = 4 dtype = Float32 elseif type == MRI_UCHAR nbytespervox = 1 dtype = UInt8 elseif type == MRI_SHORT nbytespervox = 2 dtype = Int16 elseif type == MRI_USHRT nbytespervox = 2 dtype = UInt16 elseif type == MRI_INT nbytespervox = 4 dtype = Int32 end if headeronly skip(io, nv*nbytespervox) if !eof(io) mr_parms = ntoh.(read!(io, Vector{Float32}(undef, 4))) end close(io) if gzipped # Clean up cmd = `rm -f $tmpfile` run(cmd) end return vol, M, mr_parms, volsz end if isnothing(slices) && isnothing(frames) # Read the entire volume vol = ntoh.(read!(io, Array{dtype}(undef, Tuple(volsz)))) else # Read a subset of slices/frames isnothing(frames) && (frames = 1:nframes) isnothing(slices) && (slices = 1:ndim3) nvslice = ndim1 * ndim2 nvvol = nvslice * ndim3 filepos0 = position(io) vol = zeros(dtype, ndim1, ndim2, length(slices), length(frames)) for iframe in 1:length(frames) frame = frames(iframe) for islice in 1:length(slices) slice = slices(islice) filepos = ((frame-1)*nvvol + (slice-1)*nvslice)*nbytespervox + filepos0 seek(io, filepos) vol[:, :, islice, iframe] = ntoh.(read!(io, Array{dtype}(undef, Tuple(volsz[1:2])))) end end # Seek to just beyond the last slice/frame filepos = (nframes*nvvol)*nbytespervox + filepos0; seek(io, filepos) end if !eof(io) mr_parms = ntoh.(read!(io, Vector{Float32}(undef, 4))) end close(io) if gzipped # Clean up cmd = `rm -f $tmpfile` run(cmd) end return vol, M, mr_parms, volsz end """ hdr = load_nifti_hdr(fname::String) Load the header of a .nii volume from disk. Return a `NIfTIheader` structure, where units have been converted to mm and msec, the sform and qform matrices have been computed and stored in the .sform and .qform fields, and the .vox2ras field has been set to the sform (if valid), then the qform (if valid). Assume that the input file is uncompressed (compression is handled in the wrapper load_nifti()). Handle data structures with more than 32k cols by setting the .glmin field to ncols when hdr.dim[2] < 0. This is FreeSurfer specific, for handling surfaces. """ function load_nifti_hdr(fname::String) hdr = NIfTIheader() io = open(fname, "r") hdr.sizeof_hdr = read(io, Int32) hdr.data_type = read!(io, Vector{UInt8}(undef, 10)) hdr.db_name = read!(io, Vector{UInt8}(undef, 18)) hdr.extents = read(io, Int32) hdr.session_error = read(io, Int16) hdr.regular = read(io, UInt8) hdr.dim_info = read(io, UInt8) hdr.dim = read!(io, Vector{Int16}(undef, 8)) hdr.intent_p1 = read(io, Float32) hdr.intent_p2 = read(io, Float32) hdr.intent_p3 = read(io, Float32) hdr.intent_code = read(io, Int16) hdr.datatype = read(io, Int16) hdr.bitpix = read(io, Int16) hdr.slice_start = read(io, Int16) hdr.pixdim = read!(io, Vector{Float32}(undef, 8)) hdr.vox_offset = read(io, Float32) hdr.scl_slope = read(io, Float32) hdr.scl_inter = read(io, Float32) hdr.slice_end = read(io, Int16) hdr.slice_code = read(io, Int8) hdr.xyzt_units = read(io, Int8) hdr.cal_max = read(io, Float32) hdr.cal_min = read(io, Float32) hdr.slice_duration = read(io, Float32) hdr.toffset = read(io, Float32) hdr.glmax = read(io, Int32) hdr.glmin = read(io, Int32) hdr.descrip = read!(io, Vector{UInt8}(undef, 80)) hdr.aux_file = read!(io, Vector{UInt8}(undef, 24)) hdr.qform_code = read(io, Int16) hdr.sform_code = read(io, Int16) hdr.quatern_b = read(io, Float32) hdr.quatern_c = read(io, Float32) hdr.quatern_d = read(io, Float32) hdr.quatern_x = read(io, Float32) hdr.quatern_y = read(io, Float32) hdr.quatern_z = read(io, Float32) hdr.srow_x = read!(io, Vector{Float32}(undef, 4)) hdr.srow_y = read!(io, Vector{Float32}(undef, 4)) hdr.srow_z = read!(io, Vector{Float32}(undef, 4)) hdr.intent_name = read!(io, Vector{UInt8}(undef, 16)) hdr.magic = read!(io, Vector{UInt8}(undef, 4)) close(io) # If numbers have the wrong endian-ness, reverse byte order if hdr.sizeof_hdr == bswap(Int32(348)) for var in fieldnames(NIfTIheader) setfield!(hdr, var, bswap.(getfield(hdr, var))) end hdr.do_bswap = 1 end # This is to accomodate structures with more than 32k cols # FreeSurfer specific. See also mriio.c. if hdr.dim[2] < 0 hdr.dim[2] = hdr.glmin hdr.glmin = 0 end # Look at xyz units and convert to mm if needed xyzunits = hdr.xyzt_units & Int8(7) # Bitwise AND with 00000111 if xyzunits == 1 xyzscale = 1000.000 # meters elseif xyzunits == 2 xyzscale = 1.000 # mm elseif xyzunits == 3 xyzscale = .001 # microns else println("WARNING: xyz units code " * string(xyzunits) * " is unrecognized, assuming mm") xyzscale = 1 # just assume mm end hdr.pixdim[2:4] = hdr.pixdim[2:4] * xyzscale hdr.srow_x = hdr.srow_x * xyzscale hdr.srow_y = hdr.srow_y * xyzscale hdr.srow_z = hdr.srow_z * xyzscale # Look at time units and convert to msec if needed tunits = hdr.xyzt_units & Int8(56) # Bitwise AND with 00111000 if tunits == 8 tscale = 1000.000 # seconds elseif tunits == 16 tscale = 1.000 # msec elseif tunits == 32 tscale = .001 # microsec else tscale = 0 # no time scale end hdr.pixdim[5] = hdr.pixdim[5] * tscale # Change value in xyzt_units to reflect scale change hdr.xyzt_units = Int8(2) | Int8(16) # Bitwise OR of 2=mm, 16=msec # Sform matrix hdr.sform = [hdr.srow_x'; hdr.srow_y'; hdr.srow_z'; 0 0 0 1] # Qform matrix # (From DG's load_nifti_hdr.m: not quite sure how all this works, # mainly just copied CH's code from mriio.c) b = hdr.quatern_b c = hdr.quatern_c d = hdr.quatern_d x = hdr.quatern_x y = hdr.quatern_y z = hdr.quatern_z a = 1.0 - (b*b + c*c + d*d) if abs(a) < 1.0e-7 a = 1.0 / sqrt(b*b + c*c + d*d) b = b*a c = c*a d = d*a a = 0.0 else a = sqrt(a) end r11 = a*a + b*b - c*c - d*d r12 = 2.0*b*c - 2.0*a*d r13 = 2.0*b*d + 2.0*a*c r21 = 2.0*b*c + 2.0*a*d r22 = a*a + c*c - b*b - d*d r23 = 2.0*c*d - 2.0*a*b r31 = 2.0*b*d - 2*a*c r32 = 2.0*c*d + 2*a*b r33 = a*a + d*d - c*c - b*b if hdr.pixdim[1] < 0.0 r13 = -r13 r23 = -r23 r33 = -r33 end qMdc = [r11 r12 r13; r21 r22 r23; r31 r32 r33] D = Diagonal(hdr.pixdim[2:4]) P0 = [x y z]' hdr.qform = [qMdc*D P0; 0 0 0 1] if hdr.sform_code != 0 # Use sform first hdr.vox2ras = hdr.sform elseif hdr.qform_code != 0 # Then use qform first hdr.vox2ras = hdr.qform else println("WARNING: neither sform or qform are valid in " * fname) D = Diagonal(hdr.pixdim[2:4]) P0 = [0 0 0]' hdr.vox2ras = [D P0; 0 0 0 1] end return hdr end """ load_nifti(fname::String, hdronly::Bool=false) Load a NIfTI (.nii or .nii.gz) volume from disk and return a `NIfTIheader` structure. Handle compressed NIfTI (nii.gz) by issuing an external Unix call to uncompress the file to a temporary file, which is then deleted. The output structure contains: - the image data, in the .vol field - the units for each dimension of the volume [mm or msec], in the .pixdim field - the sform and qform matrices, in the .sform and .qform fields - the vox2ras matrix, which is the sform (if valid), otherwise the qform, in the .vox2ras field Handle data structures with more than 32k cols by looking at the .dim field. If dim[2] = -1, then the .glmin field contains the numbfer of columns. This is FreeSurfer specific, for handling surfaces. When the total number of spatial voxels equals 163842, then reshape the volume to 163842x1x1xnframes. This is for handling the 7th order icosahedron used by FS group analysis. """ function load_nifti(fname::String, hdronly::Bool=false) # Unzip if it is compressed ext = lowercase(fname[(end-1):end]) if cmp(ext, "gz") == 0 # Create unique temporary file name tmpfile = tempname(get_tmp_path()) * ".load_nifti.nii" gzipped = true if Sys.isapple() cmd = `gunzip -c $fname` else cmd = `zcat $fname` end run(pipeline(cmd, stdout=tmpfile)) else tmpfile = fname gzipped = false end # Read NIfTI header hdr = load_nifti_hdr(tmpfile) if isempty(hdr.vox2ras) if gzipped # Clean up cmd = `rm -f $tmpfile` run(cmd) end return hdr end # Check for ico7 nspatial = prod(Int32.(hdr.dim[2:4])) IsIco7 = (nspatial == 163842) # If only header is desired, return now if hdronly if gzipped # Clean up cmd = `rm -f $tmpfile` run(cmd) end if IsIco7 # Reshape hdr.dim[2] = 163842 hdr.dim[3] = 1 hdr.dim[4] = 1 end return hdr end # Get volume dimensions dim = hdr.dim[2:end] while (dim[end] == 0) && !isempty(dim) pop!(dim) end # Open to read the pixel data io = open(tmpfile, "r") # Get past the header seek(io, Int64(round(hdr.vox_offset))) if hdr.datatype == 2 dtype = UInt8 elseif hdr.datatype == 4 dtype = Int16 elseif hdr.datatype == 8 dtype = Int32 elseif hdr.datatype == 16 dtype = Float32 elseif hdr.datatype == 64 dtype = Float64 elseif hdr.datatype == 256 dtype = Int8 elseif hdr.datatype == 512 dtype = UInt16 elseif hdr.datatype == 768 dtype = UInt32 else close(io) if gzipped # Clean up cmd = `rm -f $tmpfile` run(cmd) end error("Data type " * string(hdr.datatype) * " not supported") end hdr.vol = read!(io, Array{dtype}(undef, Tuple(dim))) close(io) if gzipped # Clean up cmd = `rm -f $tmpfile` run(cmd) end # Check if end-of-file was reached if !eof(io) error(tmpfile * ", read a " * string(size(hdr.vol)) * " volume but did not reach end of file") end # If needed, reverse order of bytes to correct endian-ness if hdr.do_bswap == 1 hdr.vol = bswap.(hdr.vol) end if IsIco7 hdr.dim[2] = 163842 hdr.dim[3] = 1 hdr.dim[4] = 1 dim = hdr.dim[2:end] hdr.vol = reshape(hdr.vol, Tuple(dim)) end if hdr.scl_slope!=0 && !(hdr.scl_inter==0 && hdr.scl_slope==1) # Rescaling is not needed if the slope==1 and intersect==0, # skipping this preserves the numeric class of the data hdr.vol = Float64(hdr.vol) .* hdr.scl_slope .+ hdr.scl_inter end return hdr end """ mri_write(mri::MRI, outfile::String, datatype::DataType=Float32) Write an MRI volume to disk. Return true is an error occurred (i.e., the number of bytes written were not as expected based on the size of the volume). # Arguments - `mri::MRI`: A structure like that returned by `mri_read()`. The geometry (i.e., direction cosines, voxel resolution, and P0) are all recomputed from mri.vox2ras0. So, if a method has changed one of the other fields, e.g., mri.x_r, this change will not be reflected in the output volume. - `outfile::String`: Path to the output file, which can be: 1. An MGH file, e.g., f.mgh or f.mgz (uncompressed or compressed) 2. A NIfTI file, e.g., f.nii or f.nii.gz (uncompressed or compressed). - `datatype::DataType=Float32`: Only applies to NIfTI and can be UInt8, Int16, Int32, Float32, Float64, Int8, UInt16, UInt32. """ function mri_write(mri::MRI, outfile::String, datatype::DataType=Float32) err = true if isempty(mri.vol) error("Input structure has empty vol field") end vsz = collect(size(mri.vol)) nvsz = length(vsz) if nvsz < 4 vsz = [vsz; ones(eltype(vsz), 4-nvsz)] end if isempty(mri.volsize) mri.volsize = vsz[1:3] end if mri.nframes == 0 mri.nframes = vsz[4] end if isempty(mri.vox2ras0) mri.vox2ras0 = Diagonal(ones(4)) end if isempty(mri.volres) mri.volres = sqrt.((ones(3)' * (mri.vox2ras0[1:3,1:3].^2))') end (fname, fstem, fext) = mri_filename(outfile, false) # false = no checkdisk if isempty(fname) error("Cannot determine format of " * outfile) end if any(cmp.(fext, ["mgh", "mgz"]) .== 0) #-------- MGH --------# M = mri.vox2ras0 mr_parms = [mri.tr, mri.flip_angle, mri.te, mri.ti] if mri.ispermuted err = save_mgh(permutedims(mri.vol, [2; 1; 3:ndims(mri.vol)]), fname, M, mr_parms) else err = save_mgh(mri.vol, fname, M, mr_parms) end elseif any(cmp.(fext, ["nii", "nii.gz"]) .== 0) #------- NIfTI -------# hdr = NIfTIheader() hdr.db_name = zeros(UInt8, 18) hdr.data_type = zeros(UInt8, 10) if mri.ispermuted hdr.dim = vcat(mri.volsize[[2,1,3]], mri.nframes) else hdr.dim = vcat(mri.volsize[1:3], mri.nframes) end if datatype == UInt8 hdr.datatype = 2 hdr.bitpix = 8 elseif datatype == Int16 hdr.datatype = 4 hdr.bitpix = 16 elseif datatype == Int32 hdr.datatype = 8 hdr.bitpix = 32 elseif datatype == Float32 hdr.datatype = 16 hdr.bitpix = 32 elseif datatype == Float64 hdr.datatype = 64 hdr.bitpix = 64 elseif datatype == Int8 hdr.datatype = 256 hdr.bitpix = 8 elseif datatype == UInt16 hdr.datatype = 512 hdr.bitpix = 16 elseif datatype == UInt32 hdr.datatype = 768 hdr.bitpix = 32 else error("Data type " * string(datatype) * " not supported") end if mri.ispermuted hdr.pixdim = vcat(0, mri.volres[[2,1,3]], mri.tr) # Physical units else hdr.pixdim = vcat(0, mri.volres[1:3], mri.tr) # Physical units end hdr.vox_offset = 348 # Will be set again hdr.scl_slope = mri.niftihdr.scl_slope hdr.scl_inter = mri.niftihdr.scl_inter hdr.xyzt_units = Int8(2) | Int8(16) # Bitwise OR of 2=mm, 16=msec hdr.cal_max = maximum(mri.vol) hdr.cal_min = minimum(mri.vol) hdr.descrip = collect(@sprintf("%-80s","FreeSurfer julia")) hdr.aux_file = [UInt8(0)] hdr.qform_code = 1 # 1=NIFTI_XFORM_SCANNER_ANAT hdr.sform_code = 1 # 1=NIFTI_XFORM_SCANNER_ANAT # Qform (must have 6 DOF) (b, c, d, x, y, z, qfac) = vox2ras_to_qform(mri.vox2ras0) hdr.pixdim[1] = qfac hdr.quatern_b = b hdr.quatern_c = c hdr.quatern_d = d hdr.quatern_x = x hdr.quatern_y = y hdr.quatern_z = z # Sform (can be any affine) hdr.srow_x = mri.vox2ras0[1,:] hdr.srow_y = mri.vox2ras0[2,:] hdr.srow_z = mri.vox2ras0[3,:] hdr.intent_name = collect("huh?") hdr.magic = collect("n+1") if mri.ispermuted hdr.vol = permutedims(mri.vol, [2; 1; 3:ndims(mri.vol)]) else hdr.vol = mri.vol end err = save_nifti(hdr, fname) else error("File extension " * fext * " not supported") end if err println("WARNING: Problem saving " * outfile) end # Optional DWI tables -----------------------------------------------# if !isempty(mri.bval) bfile = fstem * ".bvals" writedlm(bfile, mri.bval, ' ') end if !isempty(mri.bvec) gfile = fstem * ".bvecs" writedlm(gfile, mri.bvec, ' ') end return err end """ save_mgh(vol::Array, fname::String, M::Matrix=Diagonal(ones(4)), mr_parms::Vector=zeros(4)) Write an MRI volume to a .mgh or .mgz file. Return true is an error occurred (i.e., the number of bytes written were not as expected based on the size of the volume). # Arguments - `vol::Array`: the image data - `fname::String`: path to the output file - `M::Matrix`: the 4x4 vox2ras transform such that [x y z]' = M * [i j k 1]', where the voxel indices (i, j, k) are 0-based. - `mr_parms::Vector`: a vector of MRI parameters, [tr, flip_angle, te, ti] """ function save_mgh(vol::Array, fname::String, M::Matrix=Diagonal(ones(4)), mr_parms::Vector=zeros(4)) if size(M) != (4, 4) error("M size=" * string(size(M)) * ", must be (4, 4)") end if length(mr_parms) != 4 error("mr_parms length=" * string(length(mr_parms)) * ", must be 4") end (ndim1, ndim2, ndim3, frames) = size(vol) dtype = eltype(vol) # The MATLAB version ingores these and always writes the data as float # Here we use them properly MRI_UCHAR = 0 MRI_INT = 1 MRI_LONG = 2 MRI_FLOAT = 3 MRI_SHORT = 4 MRI_BITMAP = 5 MRI_TENSOR = 6 MRI_USHRT = 10 # Determine number of bytes per voxel if dtype == Float32 type = MRI_FLOAT elseif dtype == UInt8 type = MRI_UCHAR elseif dtype == Int32 type = MRI_INT elseif dtype == Int64 type = MRI_LONG elseif dtype == Int16 type = MRI_SHORT elseif dtype == UInt16 type = MRI_USHRT end io = open(fname, "w") nb = 0 # Write everything as big-endian nb += write(io, hton(Int32(1))) # magic number nb += write(io, hton(Int32(ndim1))) nb += write(io, hton(Int32(ndim2))) nb += write(io, hton(Int32(ndim3))) nb += write(io, hton(Int32(frames))) nb += write(io, hton(Int32(type))) nb += write(io, hton(Int32(1))) # dof (not used) UNUSED_SPACE_SIZE = 256 USED_SPACE_SIZE = (3*4+4*3*4) # Space for RAS transform MdcD = M[1:3,1:3] delta = sqrt.(sum(MdcD.^2; dims=1)) Mdc = MdcD ./ repeat(delta, 3) Pcrs_c = [ndim1/2, ndim2/2, ndim3/2, 1] Pxyz_c = M*Pcrs_c Pxyz_c = Pxyz_c[1:3] nb += write(io, hton(Int16(1))) # ras_good_flag = 1 nb += write(io, hton.(Float32.(delta))) nb += write(io, hton.(Float32.(Mdc))) nb += write(io, hton.(Float32.(Pxyz_c))) unused_space_size = UNUSED_SPACE_SIZE-2 unused_space_size = unused_space_size - USED_SPACE_SIZE nb += write(io, UInt8.(zeros(unused_space_size))) nb += write(io, hton.(vol)) nb += write(io, hton.(Float32.(mr_parms))) close(io) err = (nb != (sizeof(Int32) * 7 + sizeof(Int16) + sizeof(UInt8) * unused_space_size + sizeof(Float32) * 19 + sizeof(dtype) * length(vol))) ext = lowercase(fname[(end-1):end]) if cmp(ext, "gz") == 0 cmd = `gzip -f $fname` run(cmd) cmd = `mv $fname.gz $fname` run(cmd) end return err end """ save_nifti(hdr::NIfTIheader, fname::String) Write an MRI volume to a .nii or .nii.gz file. Return true is an error occurred (i.e., the number of bytes written were not as expected based on the size of the volume). # Arguments - `hdr::NIfTIheader`: a NIfTI header structure that contains the image data in its .vol field - `fname::String`: path to the output file Handle data structures with more than 32k cols by setting hdr.dim[2] = -1 and hdr.glmin = ncols. This is FreeSurfer specific, for handling surfaces. The exception to this is when the total number of spatial voxels equals 163842, then the volume is reshaped to 27307x1x6xnframes. This is for handling the 7th order icosahedron used by FS group analysis. """ function save_nifti(hdr::NIfTIheader, fname::String) ext = lowercase(fname[(end-1):end]) if cmp(ext, "gz") == 0 gzip_needed = true fname = fname[1:(end-3)] else gzip_needed = false end # Check for ico7 sz = size(hdr.vol) if sz[1] == 163842 dim = (27307, 1, 6, size(hdr.vol,4)) hdr.vol = reshape(hdr.vol, dim) end io = open(fname, "w") hdr.data_type = vcat(hdr.data_type, repeat([UInt8(0)], 10-length(hdr.data_type))) hdr.db_name = vcat(hdr.db_name, repeat([UInt8(0)], 18-length(hdr.db_name))) hdr.dim = ones(8) if size(hdr.vol, 4) > 1 hdr.dim[1] = 4 else hdr.dim[1] = 3 end for k in (2:5) hdr.dim[k] = size(hdr.vol, k-1) end # This is to accomodate structures with more than 32k cols # FreeSurfer specific. See also mriio.c. if hdr.dim[2] > 2^15 hdr.glmin = hdr.dim[2] hdr.dim[2] = -1 end hdr.pixdim = vcat(hdr.pixdim, zeros(8-length(hdr.pixdim))) hdr.descrip = vcat(hdr.descrip, repeat([UInt8(0)], 80-length(hdr.descrip))) hdr.aux_file = vcat(hdr.aux_file, repeat([UInt8(0)], 24-length(hdr.aux_file))) hdr.intent_name = vcat(hdr.intent_name, repeat([UInt8(0)], 16-length(hdr.intent_name))) hdr.magic = vcat(hdr.magic, repeat([UInt8(0)], 4-length(hdr.magic))) hdr.vox_offset = 352 # not 348 nb = 0 nb += write(io, Int32(348)) nb += write(io, UInt8.(hdr.data_type)) nb += write(io, UInt8.(hdr.db_name)) nb += write(io, Int32(hdr.extents)) nb += write(io, Int16(hdr.session_error)) nb += write(io, UInt8(hdr.regular)) nb += write(io, UInt8(hdr.dim_info)) nb += write(io, Int16.(hdr.dim)) nb += write(io, Float32(hdr.intent_p1)) nb += write(io, Float32(hdr.intent_p2)) nb += write(io, Float32(hdr.intent_p3)) nb += write(io, Int16(hdr.intent_code)) nb += write(io, Int16(hdr.datatype)) nb += write(io, Int16(hdr.bitpix)) nb += write(io, Int16(hdr.slice_start)) nb += write(io, Float32.(hdr.pixdim)) nb += write(io, Float32(hdr.vox_offset)) nb += write(io, Float32(hdr.scl_slope)) nb += write(io, Float32(hdr.scl_inter)) nb += write(io, Int16(hdr.slice_end)) nb += write(io, Int8(hdr.slice_code)) nb += write(io, Int8(hdr.xyzt_units)) nb += write(io, Float32(hdr.cal_max)) nb += write(io, Float32(hdr.cal_min)) nb += write(io, Float32(hdr.slice_duration)) nb += write(io, Float32(hdr.toffset)) nb += write(io, Int32(hdr.glmax)) nb += write(io, Int32(hdr.glmin)) nb += write(io, UInt8.(hdr.descrip)) nb += write(io, UInt8.(hdr.aux_file)) nb += write(io, Int16(hdr.qform_code)) nb += write(io, Int16(hdr.sform_code)) nb += write(io, Float32(hdr.quatern_b)) nb += write(io, Float32(hdr.quatern_c)) nb += write(io, Float32(hdr.quatern_d)) nb += write(io, Float32(hdr.quatern_x)) nb += write(io, Float32(hdr.quatern_y)) nb += write(io, Float32(hdr.quatern_z)) nb += write(io, Float32.(hdr.srow_x)) nb += write(io, Float32.(hdr.srow_y)) nb += write(io, Float32.(hdr.srow_z)) nb += write(io, UInt8.(hdr.intent_name)) nb += write(io, UInt8.(hdr.magic)) # Pad to get to 352 bytes (header size is 348) nb += write(io, UInt8.(zeros(4))) if hdr.datatype == 2 dtype = UInt8 elseif hdr.datatype == 4 dtype = Int16 elseif hdr.datatype == 8 dtype = Int32 elseif hdr.datatype == 16 dtype = Float32 elseif hdr.datatype == 64 dtype = Float64 elseif hdr.datatype == 256 dtype = Int8 elseif hdr.datatype == 512 dtype = UInt16 elseif hdr.datatype == 768 dtype = UInt32 else println("WARNING: data type " * string(hdr.datatype) * " not supported, but writing as float") dtype = Float32 end nb += write(io, dtype.(hdr.vol)) close(io) err = (nb != (sizeof(Float32) * 36 + sizeof(Int32) * 4 + sizeof(Int16) * 16 + sizeof(Int8) * 2 + sizeof(UInt8) * 158 + sizeof(dtype) * length(hdr.vol))) if gzip_needed cmd = `gzip -f $fname` run(cmd) end return err end """ mri_read_bfiles(infile1::String, infile2::String) Read a DWI b-value table and gradient table from text files `infile1` and `infile2`. The two input files can be specified in any order. The gradient table file must contain 3 times as many entries as the b-value table file. Return the b-value table as a vector of size n and the gradient table as a matrix of size (n, 3). """ function mri_read_bfiles(infile1::String, infile2::String) tab = [] for infile in (infile1, infile2) if ~isfile(infile) error("Could not open " * infile) end push!(tab, readdlm(infile)) if ~all(isa.(tab[end], Number)) error("File " * infile * " contains non-numeric entries") end if size(tab[end], 2) > size(tab[end], 1) tab[end] = permutedims(tab[end], 2:1) end if size(tab[end], 2) == 1 tab[end] = tab[end][:,1] end end if size(tab[1], 1) != size(tab[2], 1) error("Dimension mismatch between tables in " * infile1 * " " * string(size(tab[1])) * " and " * infile2 * " " * string(size(tab[2]))) end if (size(tab[1], 2) == 1 && size(tab[2], 2) == 3) || (size(tab[1], 2) == 3 && size(tab[2], 2) == 1) return tab[1], tab[2] else error("Wrong number of entries in tables " * infile1 * " " * string(size(tab[1])) * " and " * infile2 * " " * string(size(tab[2]))) end end """ mri_read_bfiles!(dwi::MRI, infile1::String, infile2::String) Set the .bval and .bvec fields of the MRI structure `dwi`, by reading a DWI b-value table and gradient table from the text files `infile1` and `infile2`. The two input files can be specified in any order. The gradient table file must contain 3 times as many entries as the b-value table file. Return the b-value table as a vector of size n and the gradient table as a matrix of size (n, 3). """ function mri_read_bfiles!(dwi::MRI, infile1::String, infile2::String) (tab1, tab2) = mri_read_bfiles(infile1, infile2) if size(tab1, 1) != size(dwi.vol, 4) error("Number of frames in volume (" * string(size(dwi.vol, 4)) * ") does not match dimensions of table in " * infile1 * " " * string(size(tab1))) end if size(tab1, 2) == 1 dwi.bval = tab1 dwi.bvec = tab2 else dwi.bval = tab2 dwi.bvec = tab1 end return tab1, tab2 end
FreeSurfer
https://github.com/lincbrain/Fibers.jl.git
[ "BSD-3-Clause" ]
0.1.0
65c128d9fd34d1fd3e6886d1a31fd46cbb3b710c
code
8615
#= Original Author: Anastasia Yendiki Copyright © 2022 The General Hospital Corporation (Boston, MA) "MGH" Terms and conditions for use, reproduction, distribution and contribution are found in the 'FreeSurfer Software License Agreement' contained in the file 'LICENSE' found in the FreeSurfer distribution, and here: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense Reporting: [email protected] =# using LinearAlgebra export Tract, trk_read, trk_write "Container for header and streamline data stored in .trk format" mutable struct Tract # Header fields (.trk format version 2) id_string::Vector{UInt8} dim::Vector{Int16} voxel_size::Vector{Float32} origin::Vector{Float32} n_scalars::Int16 scalar_name::Matrix{UInt8} n_properties::Int16 property_name::Matrix{UInt8} vox_to_ras::Matrix{Float32} reserved::Vector{UInt8} voxel_order::Vector{UInt8} voxel_order_original::Vector{UInt8} image_orientation_patient::Vector{Float32} pad1::Vector{UInt8} invert_x::UInt8 invert_y::UInt8 invert_z::UInt8 swap_xy::UInt8 swap_yz::UInt8 swap_zx::UInt8 n_count::Int32 version::Int32 hdr_size::Int32 # Streamline data fields npts::Vector{Int32} properties::Matrix{Float32} xyz::Vector{Any} scalars::Vector{Any} end """ Tract() Return an empty `Tract` structure """ Tract() = Tract( Vector{UInt8}(undef, 0), Vector{Int16}(undef, 0), Vector{Float32}(undef, 0), Vector{Float32}(undef, 0), Int16(0), Matrix{UInt8}(undef, 0, 0), Int16(0), Matrix{UInt8}(undef, 0, 0), Matrix{Float32}(undef, 0, 0), Vector{UInt8}(undef, 0), Vector{UInt8}(undef, 0), Vector{UInt8}(undef, 0), Vector{Float32}(undef, 0), Vector{UInt8}(undef, 0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), Int32(0), Int32(0), Int32(0), Vector{Int32}(undef, 0), Matrix{Float32}(undef, 0, 0), [], [] ) """ Tract(ref::MRI) Return a `Tract` structure whose header fields are populated based on the reference `MRI` structure `ref` """ function Tract(ref::MRI) tr = Tract() # In the following I must take into account that mri_read() # has reversed the first 2 dimensions of volsize and volres, # but it has not changed the vox2ras matrix # Find orientation of image coordinate system orient = Vector{Char}(undef, 3) for idim in 1:3 (amax, imax) = findmax(abs.(ref.vox2ras[idim, 1:3])) if imax == 1 if ref.vox2ras[idim, imax] > 0 orient[idim] = 'R' else orient[idim] = 'L' end elseif imax == 2 if ref.vox2ras[idim, imax] > 0 orient[idim] = 'A' else orient[idim] = 'P' end else if ref.vox2ras[idim, imax] > 0 orient[idim] = 'S' else orient[idim] = 'I' end end end # Find patient-to-scanner coordinate transform: # Take x and y vectors from vox2RAS matrix, convert to LPS, # divide by voxel size p2s = [-1 0 0; 0 -1 0; 0 0 1] * ref.vox2ras[1:3, 1:2] * Diagonal([1, 1]./ref.volres[2,1]) tr.id_string = UInt8.(collect("TRACK\0")) tr.dim = Int16.(ref.volsize[[2,1,3]]) tr.voxel_size = Float32.(ref.volres[[2,1,3]]) tr.origin = Float32.(zeros(3)) tr.n_scalars = Int16(0) tr.scalar_name = UInt8.(zeros(10, 20)) tr.n_properties = Int16(0) tr.property_name = UInt8.(zeros(10, 20)) tr.vox_to_ras = ref.vox2ras tr.reserved = UInt8.(zeros(444)) tr.voxel_order = vcat(UInt8.(collect(orient)), UInt8(0)) tr.voxel_order_original = tr.voxel_order tr.image_orientation_patient = Float32.(p2s[:]) tr.pad1 = UInt8.(zeros(2)) tr.invert_x = UInt8(0) tr.invert_y = UInt8(0) tr.invert_z = UInt8(0) tr.swap_xy = UInt8(0) tr.swap_yz = UInt8(0) tr.swap_zx = UInt8(0) tr.n_count = Int32(0) tr.version = Int32(2) tr.hdr_size = Int32(1000) return tr end """ trk_read(infile::String) Read tractography streamlines from `infile` and return a `Tract` structure Input file must be in .trk format, see: http://trackvis.org/docs/?subsect=fileformat """ function trk_read(infile::String) tr = Tract() io = open(infile, "r") # Read .trk header tr.id_string = read!(io, Vector{UInt8}(undef, 6)) tr.dim = read!(io, Vector{Int16}(undef, 3)) tr.voxel_size = read!(io, Vector{Float32}(undef, 3)) tr.origin = read!(io, Vector{Float32}(undef, 3)) tr.n_scalars = read(io, Int16) tr.scalar_name = read!(io, Matrix{UInt8}(undef, 20, 10)) tr.scalar_name = permutedims(tr.scalar_name, [2,1]) tr.n_properties = read(io, Int16) tr.property_name = read!(io, Matrix{UInt8}(undef, 20, 10)) tr.property_name = permutedims(tr.property_name, [2,1]) tr.vox_to_ras = read!(io, Matrix{Float32}(undef, 4, 4)) tr.vox_to_ras = permutedims(tr.vox_to_ras, [2,1]) tr.reserved = read!(io, Vector{UInt8}(undef, 444)) tr.voxel_order = read!(io, Vector{UInt8}(undef, 4)) tr.voxel_order_original = read!(io, Vector{UInt8}(undef, 4)) tr.image_orientation_patient = read!(io, Vector{Float32}(undef, 6)) tr.pad1 = read!(io, Vector{UInt8}(undef, 2)) tr.invert_x = read(io, UInt8) tr.invert_y = read(io, UInt8) tr.invert_z = read(io, UInt8) tr.swap_xy = read(io, UInt8) tr.swap_yz = read(io, UInt8) tr.swap_zx = read(io, UInt8) tr.n_count = read(io, Int32) tr.version = read(io, Int32) tr.hdr_size = read(io, Int32) # Read streamline data tr.npts = Vector{Int32}(undef, tr.n_count) tr.properties = Matrix{Float32}(undef, tr.n_properties, tr.n_count) for istr in 1:tr.n_count # Loop over streamlines tr.npts[istr] = read(io, Int32) push!(tr.xyz, Matrix{Float32}(undef, 3, tr.npts[istr])) push!(tr.scalars, Matrix{Float32}(undef, tr.n_scalars, tr.npts[istr])) for ipt in 1:tr.npts[istr] # Loop over points on a streamline # Divide by voxel size and make voxel coordinates 0-based tr.xyz[istr][:, ipt] = read!(io, Vector{Float32}(undef, 3)) ./ tr.voxel_size .- .5 tr.scalars[istr][:, ipt] = read!(io, Vector{Float32}(undef, tr.n_scalars)) end tr.properties[:, istr] = read!(io, Vector{Float32}(undef, tr.n_properties)) end close(io) return tr end """ trk_write(tr::Tract, outfile::String) Write a `Tract` structure to a file in the .trk format Return true if an error occurred (i.e., the number of bytes written was not the expected based on the size of the `Tract` structure) """ function trk_write(tr::Tract, outfile::String) io = open(outfile, "w") nb = 0 # Write .trk header nb += write(io, UInt8.(tr.id_string)) nb += write(io, Int16.(tr.dim)) nb += write(io, Float32.(tr.voxel_size)) nb += write(io, Float32.(tr.origin)) nb += write(io, Int16(tr.n_scalars)) nb += write(io, UInt8.(permutedims(tr.scalar_name, [2,1]))) nb += write(io, Int16(tr.n_properties)) nb += write(io, UInt8.(permutedims(tr.property_name, [2,1]))) nb += write(io, Float32.(permutedims(tr.vox_to_ras, [2,1]))) nb += write(io, UInt8.(tr.reserved)) nb += write(io, UInt8.(tr.voxel_order)) nb += write(io, UInt8.(tr.voxel_order_original)) nb += write(io, Float32.(tr.image_orientation_patient)) nb += write(io, UInt8.(tr.pad1)) nb += write(io, UInt8(tr.invert_x)) nb += write(io, UInt8(tr.invert_y)) nb += write(io, UInt8(tr.invert_z)) nb += write(io, UInt8(tr.swap_xy)) nb += write(io, UInt8(tr.swap_yz)) nb += write(io, UInt8(tr.swap_zx)) nb += write(io, Int32(tr.n_count)) nb += write(io, Int32(tr.version)) nb += write(io, Int32(tr.hdr_size)) # Write streamline data for istr in 1:tr.n_count # Loop over streamlines nb += write(io, Int32(tr.npts[istr])) for ipt in 1:tr.npts[istr] # Loop over points on a streamline # Make voxel coordinates .5-based and multiply by voxel size nb += write(io, Float32.((tr.xyz[istr][:, ipt] .+ .5) .* tr.voxel_size)) nb += write(io, Float32.(tr.scalars[istr][:, ipt])) end nb += write(io, Float32.(tr.properties[:, istr])) end close(io) err = (nb != sizeof(UInt8) * 866 + sizeof(Int32) * (3 + length(tr.npts)) + sizeof(Int16) * 5 + sizeof(Float32) * (28 + sum(length.(tr.xyz)) + sum(length.(tr.scalars)) + length(tr.properties))) return err end
FreeSurfer
https://github.com/lincbrain/Fibers.jl.git
[ "BSD-3-Clause" ]
0.1.0
65c128d9fd34d1fd3e6886d1a31fd46cbb3b710c
code
6132
#= Original Author: Anastasia Yendiki Copyright © 2022 The General Hospital Corporation (Boston, MA) "MGH" Terms and conditions for use, reproduction, distribution and contribution are found in the 'FreeSurfer Software License Agreement' contained in the file 'LICENSE' found in the FreeSurfer distribution, and here: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense Reporting: [email protected] =# using ColorTypes, DelimitedFiles, ImageInTerminal export LUT, color_lut, show, view "Container for segmentation and tract look-up tables" mutable struct LUT id::Vector{Int} name::Vector{String} rgb::Vector{RGB} end """ LUT() Return an empty `LUT` structure """ LUT() = LUT( Vector{Int}(undef, 0), Vector{String}(undef, 0), Vector{RGB}(undef, 0) ) """ LUT(infile::String) Read a look-up table from `infile` and return a `LUT` structure The input file is assumed to have the format of FreeSurferColorLUT.txt """ function LUT(infile::String) lut = LUT() if ~isfile(infile) error(infile * "is not a regular file") end tab = readdlm(infile; comments=true, comment_char='#') lut.id = tab[:,1] lut.name = tab[:,2] lut.rgb = RGB.(tab[:,3]/255, tab[:,4]/255, tab[:,5]/255) return lut end "The FreeSurfer color look-up table" const global color_lut = haskey(ENV, "FREESURFER_HOME") ? LUT(ENV["FREESURFER_HOME"]*"/FreeSurferColorLUT.txt") : LUT() """ vol_to_rgb(vol::Array) Convert an image array to an RGB/Gray array for display. Determine how the image should be displayed: - If all the values are IDs in the FreeSurfer color look-up table, the image is assumed to be is a segmentation map and is converted to RGB based on the FreeSurfer color look-up table. - If the image has size 3 in any dimension, and the sum of squares of the values in that dimension is approx. 1 everywhere, the image is assumed to be a vector map and is converted to RGB based on vector orientation. - Otherwise, the image is assumed to be a generic intensity map and is converted to grayscale. Return an array of RGB/Gray values the same size as the input vol. """ function vol_to_rgb(vol::Array) if isempty(color_lut.id) error("FreeSurfer color look-up table is undefined") end if ~any(isnothing.(indexin(unique(vol), color_lut.id))) # Assume the input is a segmentation map, get RGB of labels from LUT return color_lut.rgb[indexin(vol, color_lut.id)] end dim3 = findall(size(vol) .== 3) for idim in dim3 if all(isapprox.(sum(vol.^2; dims=idim), 1) .|| all(vol.==0, dims=idim)) # Assume the input is a vector map, get RGB based on vector orientation return RGB.(abs.(selectdim(vol,idim,1)), abs.(selectdim(vol,idim,2)), abs.(selectdim(vol,idim,3))) end end # Otherwise, assume the input is a generic intensity map return Gray.(vol / maximum(vol)) end """ show(mri::MRI, mrimod::Union{MRI, Nothing}=nothing) Show an `MRI` structure (an image slice and a summary of header info) in the terminal window # Arguments: - `mri::MRI`: the main image to display - `mrimod:MRI`: an optional image to modulate the main image by (e.g., an FA map to modulate a vector map) """ function show(mri::MRI, mrimod::Union{MRI, Nothing}=nothing) # Find non-empty slices in z dimension iz = any(mri.vol .!= 0; dims=([1:2; 4:ndims(mri.vol)])) iz = reshape(iz, length(iz)) iz = findall(iz) # Keep only the middle non-empty slice in z dimension iz = iz[Int(round(end/2))] # Find non-empty slices in x, y dimensions ix = any(mri.vol[:,:,iz,:] .!= 0; dims=(2:ndims(mri.vol))) ix = reshape(ix, length(ix)) ix = findall(ix) iy = any(mri.vol[:,:,iz,:] .!= 0; dims=([1; 3:ndims(mri.vol)])) iy = reshape(iy, length(iy)) iy = findall(iy) # Keep only the area containing non-empty slices in x, y dimensions ix = ix[1]:ix[end] iy = iy[1]:iy[end] # Subsample to fit display in x, y dimensions nsub = Int(ceil(length(iy) ./ displaysize()[2])) ix = ix[1:nsub:end] iy = iy[1:nsub:end] # Convert image to RGB/Gray array rgb = vol_to_rgb(mri.vol[ix, iy, iz, :]) # Keep first frame only rgb = rgb[:, :, 1] # Optional intensity modulation if ~isnothing(mrimod) if size(mrimod.vol)[1:3] != size(mri.vol)[1:3] error("Dimension mismatch between main image " * string(size(mri.vol)[1:3]) * " and modulation image " * string(size(mrimod.vol)[1:3])) end rgbmod = mrimod.vol[ix, iy, iz, 1] / maximum(mrimod.vol) end if hasfield(eltype(rgb), :r) # RGB # Add α channel to make zero voxels transparent rgb = RGBA.(getfield.(rgb, :r), getfield.(rgb, :g), getfield.(rgb, :b), Float64.(rgb .!= RGB(0,0,0))) # Modulate intensity with (optional) second image if ~isnothing(mrimod) rgb = RGBA.(getfield.(rgb, :r) .* rgbmod, getfield.(rgb, :g) .* rgbmod, getfield.(rgb, :b) .* rgbmod, getfield.(rgb, :alpha)) end else # Gray # Add α channel to make zero voxels transparent rgb = GrayA.(getfield.(rgb, :val), Float64.(rgb .!= Gray(0))) # Modulate intensity with (optional) second image if ~isnothing(mrimod) rgb = GrayA.(getfield.(rgb, :val) .* rgbmod, getfield.(rgb, :alpha)) end end # Display image if mri.ispermuted imshow(rgb) else imshow(permutedims(rgb, [2; 1])) end # Print image info println() if ~isempty(mri.fspec) println("Read from: " * mri.fspec) end println("Volume dimensions: " * string(collect(size(mri.vol)))) println("Spatial resolution: " * string(Float64.(mri.volres))) if ~isempty(mri.bval) println("b-values: " * string(Float64.(unique(mri.bval)))) end println("Intensity range: " * string(Float64.([minimum(mri.vol), maximum(mri.vol)]))) end """ view(mri::MRI) View an `MRI` structure in a slice viewer """ function view(mri::MRI) #= =# end
FreeSurfer
https://github.com/lincbrain/Fibers.jl.git
[ "BSD-3-Clause" ]
0.1.0
65c128d9fd34d1fd3e6886d1a31fd46cbb3b710c
docs
1335
<img src="https://user-images.githubusercontent.com/15318615/158502382-3d47c48b-e991-400b-8f7c-e745f32e9643.png" width=800> ### Import this package Before starting julia and importing this package, it is recommended to define the environment variable FREESURFER_HOME. This will be used, e.g., to load the FreeSurfer color look-up table automatically. ```julia julia> import FreeSurfer as fs FREESURFER_HOME: /usr/local/freesurfer/dev ``` ### Read .mgh, .mgz, .nii, .nii.gz volumes ```julia julia> aa = fs.mri_read("/usr/local/freesurfer/dev/subjects/fsaverage/mri/aparc+aseg.mgz"); julia> fa = fs.mri_read("/usr/local/freesurfer/dev/trctrain/hcp/MGH35_HCP_FA_template.nii.gz"); ``` ### Show volume and header summary info ```julia julia> fs.show(aa) julia> fs.show(fa) ``` ### Write .mgh, .mgz, .nii, .nii.gz volumes ```julia julia> fs.mri_write(aa, "/tmp/aparc+aseg.nii.gz") julia> fs.mri_write(fa, "/tmp/MGH35_HCP_FA_template.mgz") ``` ### Read Bruker scan directories ```julia julia> ph = fs.mri_read("/opt/nmrdata/PV-7.0.0/ayendiki/Phantom.cO1/5/"); ``` ### Read a .trk tractography streamline file ```julia julia> tr = fs.trk_read("/usr/local/freesurfer/dev/trctrain/hcp/mgh_1001/syn/acomm.bbr.prep.trk"); ``` ### Write a .trk tractography streamline file ```julia julia> fs.trk_write(tr, "/tmp/acomm.trk") ```
FreeSurfer
https://github.com/lincbrain/Fibers.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
70
using Pkg pkg"add https://github.com/kirstvh/BioCCP" pkg"precompile"
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
8975
module BioCCP using Base: Integer using Distributions export expectation_minsamplesize, std_minsamplesize, success_probability, expectation_fraction_collected, prob_occurrence_module """ exp_ccdf(n, T; p=ones(n)/n, m=1, r=1, normalize=true) Calculates `1 - F(t)`, which is the complement of the success probability `F(t)=P(T ≤ t)` (= probability that the expected minimum number of designs T is smaller than `t` in order to see each module at least `m` times). This function serves as the integrand for calculating `E[T]`. - `n`: number of modules in the design space - `p`: vector with the probabilities/abundances of the different modules in the design space during library generation - `T`: number of designs - `m`: number of times each module has to observed in the sampled set of designs - `r`: number of modules per design - normalize: if true, normalize `p` References: - Doumas, A. V., & Papanicolaou, V. G. (2016). The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp. ESAIM: Probability and Statistics, 20, 367-399. - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> n = 100 julia> t = 500 julia> exp_ccdf(n, t; p=ones(n)/n, m=1, r=1, normalize=true) 0.4913906004535237 ``` """ function exp_ccdf(n, t; p=ones(n)/n, m=1, r=1, normalize=true) @assert length(p) == n # Normalize probabilities if normalize p=p ./ sum(p) end # Initialize probability P P_cdf = 1 for i in 1:n Sm = 0 for j in 1:m Sm += ((p[i]*r*t)^(j-1))/factorial(big(j-1)) #formulas see paper reference [1] end P_cdf *= (1 - Sm*exp(-p[i]*r*t)) end P = 1 - P_cdf return P end """ approximate_moment(n, fun; p=ones(n)/n, q=1, m=1, r=1, steps=1000, normalize=true) Calculates the q-th rising moment of `T[N]` (number of designs that are needed to collect all modules `m` times). Integral is approximated by the Riemann sum. Reference: - Doumas, A. V., & Papanicolaou, V. G. (2016). The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp. ESAIM: Probability and Statistics, 20, 367-399. ## Examples ```julia-repl julia> n = 100 julia> fun = exp_ccdf julia> approximate_moment(n, fun; p=ones(n)/n, q=1, m=1, r=1, steps=10000, normalize=true) 518.8175339489885 ``` """ function approximate_moment(n, fun; p=ones(n)/n, q=1, m=1, r=1, steps=500, normalize=true) @assert length(p) == n a = 0; b = n*log(n) ϵ = 0.001 # error tolerance while fun(n, b; p=p, m=m, r=r, normalize=normalize) > ϵ b += n end # integration exp_ccdf, see paper References [1] # build in adaptive integration (exp_ccdf is a very steep function): minimize function evaluation at constant function value, only evaluate function at steep part a = deepcopy(b) while fun(n, a; p=p, m=m, r=r, normalize=normalize) < 1 - ϵ a += -n/10 end δ = (b-a)/steps; t = a:δ:b qth_moment = q * sum(δ .* 1 .* (0:δ:a-δ).^[q-1]) + q * sum(δ .* fun.(n, t; p=p, m=m, r=r, normalize=normalize) .* t.^[q-1]) return qth_moment end """ expectation_minsamplesize(n; p=ones(n)/n, m=1, r=1, normalize=true) Calculates the expected minimum number of designs `E[T]` to observe each module at least `m` times. - `n`: number of modules in the design space - `p`: vector with the probabilities or abundances of the different modules - `m`: number of times each module has to be observed in the sampled set of designs - `r`: number of modules per design - normalize: if true, normalize `p` References: - Doumas, A. V., & Papanicolaou, V. G. (2016). The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp. ESAIM: Probability and Statistics, 20, 367-399. - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> n = 100 julia> expectation_minsamplesize(n; p=ones(n)/n, m=1, r=1, normalize=true) 519 ``` """ function expectation_minsamplesize(n::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) @assert length(p) == n @assert n > 0 @assert all(p .>= 0) @assert m > 0 @assert r > 0 E = approximate_moment(n, exp_ccdf; p=p, q=1, m=m, r=r, normalize=normalize) return Int(ceil(E)) end """ std_minsamplesize(n::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) Calculates the standard deviation on the minimum number of designs to observe each module at least `m` times. - `n`: number of modules in the design space - `p`: vector with the probabilities or abundances of the different modules - `m`: number of complete sets of modules that need to be collected - `r`: number of modules per design - normalize: if true, normalize `p` ## Examples ```julia-repl julia> n = 100 julia> std_minsamplesize(n; p=ones(n)/n, m=1, r=1, normalize=true) 126 ``` """ function std_minsamplesize(n::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) @assert length(p) == n @assert n > 0 @assert all(p .>= 0) @assert m > 0 @assert r > 0 M1 = approximate_moment(n, exp_ccdf; p=p, q=1, m=m, r=r, normalize=normalize) M2 = approximate_moment(n, exp_ccdf; p=p, q=2, m=m, r=r, normalize=normalize) var = M2 - M1 - M1^2 return Int(ceil(sqrt(var))) end """ success_probability(n::Integer, t::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) Calculates the success probability `F(t) = P(T ≤ t)` or the probability that the minimum number of designs `T` to see each module at least `m` times is smaller than `t`. - `n`: number of modules in design space - `t`: sample size/number of designs for which to calculate the success probability - `p`: vector with the probabilities or abundances of the different modules - `m`: number of complete sets of modules that need to be collected - `r`: number of modules per design - normalize: if true, normalize `p` References: - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> n = 100 julia> t = 600 julia> success_probability(n, t; p=ones(n)/n, m=1, r=1, normalize=true) 0.7802171997092149 ``` """ function success_probability(n::Integer, t::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) @assert length(p) == n @assert n > 0 @assert all(p .>= 0) @assert t >= 0 @assert m > 0 @assert r > 0 P_success = 1 - exp_ccdf(n, t; p=p, m=m, r=r, normalize=normalize) return P_success end """ expectation_fraction_collected(n::Integer, t::Integer; p=ones(n)/n, r=1, normalize=true) Calculates the fraction of all modules that is expected to be observed after collecting `t` designs. - `n`: number of modules in design space - `t`: sample size/number of designs - `p`: vector with the probabilities or abundances of the different modules - `r`: number of modules per design - normalize: if true, normalize `p` References: - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> n = 100 julia> t = 200 julia> expectation_fraction_collected(n, t; p=ones(n)/n, r=1, normalize=true) 0.8660203251420364 ``` """ function expectation_fraction_collected(n::Integer, t::Integer; p=ones(n)/n, r=1, normalize=true) @assert length(p) == n @assert n > 0 @assert all(p .>= 0) @assert t >= 0 @assert r > 0 if normalize p = p./sum(p) end frac = sum( (1-(1-p[i])^(t*r)) for i in 1:n )/n return frac end """ prob_occurrence_module(pᵢ, t::Integer, r, k::Integer) Calculates probability that specific module with module probability `pᵢ` has occurred `k` times after collecting `t` designs. Sampling processes of individual modules are assumed to be independent Poisson processes. - `pᵢ`: module probability - `t`: sample size/number of designs - `k`: number of occurrence References: - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> pᵢ = 0.005 julia> t = 500 julia> k = 2 julia> r = 1 julia> prob_occurrence_module(pᵢ, t, r, k) 0.25651562069968376 ``` """ function prob_occurrence_module(pᵢ, t::Integer, r, k::Integer) @assert pᵢ > 0 && pᵢ <= 1 @assert t >= 0 @assert r >= 0 @assert k >= 0 poisson = Poisson(pᵢ * t * r) return pdf(poisson, k) end end
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
247
using Documenter using BioCCP makedocs(sitename="BioCCP", format = Documenter.HTML(), modules=[BioCCP], pages=Any["BioCCP"=> "man/BioCCP.md"]) #= deploydocs( repo = "github.com/kirstvh/BioCCP.jl.git", ) =#
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
805080
### A Pluto.jl notebook ### # v0.16.1 using Markdown using InteractiveUtils # ╔═╡ ee082fcf-54d1-4aea-9944-8d7f81c6dbf4 using BioCCP, Plots, PlutoUI, Distributions # ╔═╡ 41beadc2-385e-42bf-9960-ab201242b400 md"*Loading the required packages...*" # ╔═╡ 4d246460-af05-11eb-382b-590e60ba61f5 md"## BioCCP Case studies In this notebook, the BioCCP.jl package will be applied to two real biological problems, based on two studies from literature. More specifically, we will (1) illustrate how BioCCP can aid in determining an appropriate sample size in order to guarantee sufficient coverage of a CRISPR-Cas 9 guide RNA library. For this case study, we consider the paper 'Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis' (Chen *et al.*, 2015) [^1]. (2) show how BioCCP assists in sample determination for screening of modular proteins. For this case study, we will use the paper 'Rapid and High-Throughput Evaluation of Diverse Configurations of Engineered Lysins Using the VersaTile Technique' (Duyvejonck *et al.*, 2021) [^2]. " # ╔═╡ ad7e5e06-55b2-4752-9335-2364489932eb md"##### 1. [Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis (Chen *et al*, 2015)](https://www.sciencedirect.com/science/article/pii/S0092867415002044) The study focuses on a genome-wide CRISPR-Cas9 screen in a mouse model of tumor evolution as a powerful tool to identify loss-of-function mutations that correlate with tumor growth and metastasis. For this purpose, **over 60000 gRNAs** were designed, each targeting a protein-coding gene or microRNA precursor in the mouse genome. Each gRNA sequence was cloned into a lentiviral vector. From this plasmid pool, single gRNA viruses were generated by transfection of a HEK293FT cell line. Then, **cancer cells (Cas9 KPD cells) were infected with the single gRNA designed lentiviruses**. The number of lentiviruses, and by consequence, the number of integrated sgRNA constructs per cancer cell, is determined by a Poisson distribution (see later). The integrated sgRNA construct results in production of the corresponding gRNA by the infected cell, which guides the Cas9 enzyme to execute the knockout in the target gene. Afterwards, these **gRNA-producing cancer cells are transplanted into the flanks of mice**, causing primary tumor formation *in situ*. The question is **how many cells should be injected in total, so we can study the effect of each mutation on metastasis, or, how many cells must be transplanted into mice to observe all gRNAs at least once?**" # ╔═╡ d6b7e9f5-3bda-4477-b92c-e32b836f1f0d md"##### 1.1 Problem definition" # ╔═╡ 50462b1a-f65e-4d91-8d8d-da9c93ad007c Show(MIME"image/png"(), read("CRISPR_img.png")) # ╔═╡ f3ef2715-da53-449e-b198-faeeb78ac83f md"###### 🔹 Number of modules (*n*) In BioCCP.jl terminology, we **consider each gRNA as a module**. There are 63090 gRNAs present in the gRNA plasmid library (*i.e.*, the number of gRNAs with more than 1 read as uncovered by deep sequencing the plasmid library (see below))." # ╔═╡ 08054214-4045-486a-ac44-7a1a8aee9acf n_gRNAs = 63090 # ╔═╡ 50d87809-df3b-4558-97ce-0a50fdfbcf69 md"###### 🔹 Module distribution (*p*) The gRNA sequences were embedded into a plasmid library, with a single gRNA per lentiviral vector. Deep sequencing of this plasmid pool resulted in a number of reads for each gRNA, representing the abundance of each gRNA in the plasmid pool: *Note: The log normalized reads were retrieved from the supplementary data accompanying the paper and converted to normalized reads for each gRNA.*" # ╔═╡ 857da523-7c09-4230-9397-2dc0ef639007 reads_gRNA = [7.33862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 7.333862316 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 10.50079347 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 13.66772463 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 16.83465579 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 20.00158695 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 23.16851811 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 26.33544927 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 29.50238042 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 32.66931158 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 35.83624274 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 39.0031739 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 42.17010506 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 45.33703621 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 48.50396737 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 51.67089853 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 54.83782969 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 58.00476085 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 61.17169201 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 64.33862316 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 67.50555432 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 70.67248548 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 73.83941664 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 77.0063478 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 80.17327896 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 83.34021011 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 86.50714127 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 89.67407243 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 92.84100359 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 96.00793475 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 99.1748659 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 102.3417971 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 105.5087282 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 108.6756594 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 111.8425905 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 115.0095217 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 118.1764529 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 121.343384 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 124.5103152 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 127.6772463 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 130.8441775 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 134.0111086 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 137.1780398 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 140.344971 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 143.5119021 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 146.6788333 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 149.8457644 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 153.0126956 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 156.1796268 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 159.3465579 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 162.5134891 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 165.6804202 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 168.8473514 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 172.0142825 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 175.1812137 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 178.3481449 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 181.515076 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 184.6820072 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 187.8489383 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 191.0158695 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 194.1828007 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 197.3497318 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 200.516663 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 203.6835941 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 206.8505253 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 210.0174564 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 213.1843876 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 216.3513188 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 219.5182499 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 222.6851811 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 225.8521122 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 229.0190434 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 232.1859745 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 235.3529057 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 238.5198369 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 241.686768 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 244.8536992 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 248.0206303 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 251.1875615 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 254.3544927 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 257.5214238 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 260.688355 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 263.8552861 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 267.0222173 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 270.1891484 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 273.3560796 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 276.5230108 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 279.6899419 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 282.8568731 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 286.0238042 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 289.1907354 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 292.3576666 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 295.5245977 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 298.6915289 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 301.85846 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 305.0253912 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 308.1923223 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 311.3592535 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 314.5261847 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 317.6931158 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 320.860047 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 324.0269781 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 327.1939093 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 330.3608405 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 333.5277716 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 336.6947028 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 339.8616339 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 343.0285651 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 346.1954962 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 349.3624274 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 352.5293586 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 355.6962897 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 358.8632209 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 362.030152 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 365.1970832 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 368.3640144 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 371.5309455 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 374.6978767 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 377.8648078 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 381.031739 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 384.1986701 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 387.3656013 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 390.5325325 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 393.6994636 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 396.8663948 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 400.0333259 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 403.2002571 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 406.3671882 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 409.5341194 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 412.7010506 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 415.8679817 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 419.0349129 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 422.201844 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 425.3687752 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 428.5357064 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 431.7026375 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 434.8695687 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 438.0364998 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 441.203431 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 444.3703621 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 447.5372933 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 450.7042245 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 453.8711556 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 457.0380868 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 460.2050179 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 463.3719491 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 466.5388803 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 469.7058114 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 472.8727426 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 476.0396737 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 479.2066049 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 482.373536 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 485.5404672 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 488.7073984 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 491.8743295 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 495.0412607 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 498.2081918 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 501.375123 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 504.5420542 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 507.7089853 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 510.8759165 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 514.0428476 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 517.2097788 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 520.3767099 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 523.5436411 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 526.7105723 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 529.8775034 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 533.0444346 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 536.2113657 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 539.3782969 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 542.5452281 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 545.7121592 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 548.8790904 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 552.0460215 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 555.2129527 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 558.3798838 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 561.546815 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 564.7137462 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 567.8806773 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 571.0476085 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 574.2145396 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 577.3814708 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 580.548402 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 583.7153331 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 586.8822643 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 590.0491954 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 593.2161266 596.3830577 596.3830577 596.3830577 596.3830577 596.3830577 596.3830577 596.3830577 596.3830577 596.3830577 596.3830577 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 599.5499889 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 602.7169201 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 605.8838512 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 609.0507824 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 612.2177135 615.3846447 615.3846447 615.3846447 615.3846447 615.3846447 615.3846447 615.3846447 615.3846447 615.3846447 615.3846447 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 618.5515758 621.718507 621.718507 621.718507 621.718507 621.718507 621.718507 621.718507 621.718507 621.718507 621.718507 624.8854382 624.8854382 624.8854382 628.0523693 628.0523693 628.0523693 628.0523693 628.0523693 628.0523693 628.0523693 628.0523693 628.0523693 628.0523693 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 631.2193005 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 634.3862316 637.5531628 637.5531628 637.5531628 637.5531628 637.5531628 637.5531628 637.5531628 637.5531628 637.5531628 637.5531628 640.720094 640.720094 640.720094 640.720094 643.8870251 643.8870251 643.8870251 643.8870251 643.8870251 643.8870251 643.8870251 643.8870251 643.8870251 647.0539563 647.0539563 647.0539563 647.0539563 647.0539563 647.0539563 647.0539563 647.0539563 650.2208874 650.2208874 650.2208874 650.2208874 650.2208874 650.2208874 650.2208874 650.2208874 650.2208874 650.2208874 653.3878186 653.3878186 653.3878186 656.5547497 656.5547497 656.5547497 656.5547497 656.5547497 656.5547497 656.5547497 656.5547497 656.5547497 656.5547497 656.5547497 659.7216809 659.7216809 659.7216809 659.7216809 659.7216809 659.7216809 659.7216809 659.7216809 659.7216809 659.7216809 659.7216809 662.8886121 662.8886121 662.8886121 662.8886121 662.8886121 666.0555432 666.0555432 666.0555432 666.0555432 666.0555432 666.0555432 666.0555432 666.0555432 669.2224744 669.2224744 672.3894055 672.3894055 672.3894055 672.3894055 672.3894055 672.3894055 672.3894055 672.3894055 675.5563367 675.5563367 675.5563367 675.5563367 678.7232679 678.7232679 678.7232679 678.7232679 678.7232679 678.7232679 678.7232679 678.7232679 678.7232679 678.7232679 681.890199 681.890199 681.890199 681.890199 681.890199 681.890199 685.0571302 685.0571302 685.0571302 685.0571302 685.0571302 688.2240613 688.2240613 688.2240613 688.2240613 688.2240613 688.2240613 688.2240613 688.2240613 688.2240613 688.2240613 691.3909925 691.3909925 691.3909925 694.5579236 694.5579236 694.5579236 694.5579236 697.7248548 697.7248548 697.7248548 697.7248548 697.7248548 700.891786 700.891786 700.891786 700.891786 700.891786 700.891786 704.0587171 704.0587171 704.0587171 704.0587171 704.0587171 704.0587171 704.0587171 707.2256483 707.2256483 710.3925794 710.3925794 710.3925794 713.5595106 716.7264418 716.7264418 716.7264418 719.8933729 719.8933729 719.8933729 719.8933729 719.8933729 719.8933729 723.0603041 726.2272352 726.2272352 726.2272352 729.3941664 729.3941664 729.3941664 729.3941664 732.5610975 732.5610975 732.5610975 732.5610975 732.5610975 732.5610975 735.7280287 738.8949599 738.8949599 738.8949599 738.8949599 738.8949599 742.061891 745.2288222 745.2288222 745.2288222 745.2288222 748.3957533 748.3957533 748.3957533 748.3957533 748.3957533 748.3957533 751.5626845 751.5626845 754.7296157 761.063478 761.063478 761.063478 761.063478 764.2304091 764.2304091 764.2304091 764.2304091 764.2304091 767.3973403 770.5642714 770.5642714 770.5642714 773.7312026 773.7312026 776.8981338 780.0650649 780.0650649 783.2319961 783.2319961 786.3989272 786.3989272 786.3989272 786.3989272 789.5658584 789.5658584 789.5658584 789.5658584 792.7327896 792.7327896 792.7327896 792.7327896 795.8997207 795.8997207 799.0666519 799.0666519 802.233583 802.233583 805.4005142 808.5674453 808.5674453 811.7343765 811.7343765 814.9013077 814.9013077 818.0682388 821.23517 821.23517 821.23517 824.4021011 830.7359634 830.7359634 837.0698258 840.2367569 840.2367569 846.5706192 849.7375504 849.7375504 849.7375504 849.7375504 852.9044816 856.0714127 859.2383439 859.2383439 862.405275 862.405275 862.405275 868.7391373 871.9060685 878.2399308 878.2399308 890.9076555 897.2415178 906.7423112 913.0761736 913.0761736 916.2431047 916.2431047 922.576967 932.0777605 947.9124163 947.9124163 957.4132098 963.7470721 963.7470721 966.9140033 970.0809344 973.2478656 973.2478656 979.5817279 985.9155902 1023.918764 1036.586489 1049.254213 1068.2558 1074.589663 1080.923525 1099.925112 1131.594423 1144.262148 1258.27167 1372.281192 ] # ╔═╡ 737c8375-2c49-4f32-b54c-1f15f8d451d5 md"which can be summarized in the following unimodal read distribution: " # ╔═╡ 94bcc8de-a0be-47ab-a03a-b04c351ad6f0 begin histogram(reads_gRNA, bar_edges=false, bins=100, size = (700, 320), orientation=:v, titlefont=font(10), xguidefont=font(9), yguidefont=font(9), label="") xlabel!("Number of reads") ylabel!("Density") title!("Distribution of gRNA reads in plasmid pool") end # ╔═╡ 364c38ca-8637-4d26-8d64-525222d24033 md"Normalizing for the total number of reads in the plasmid pool gives us a **probability vector** *p*, **containing for each gRNA a probability to be randomly sampled from the plasmid library** (proportional to its abundance in the library):" # ╔═╡ 5841ea1a-8d23-4fe7-8010-7d8512050c22 p_gRNA = reads_gRNA / sum(reads_gRNA) # ╔═╡ e1444e8d-c0ae-408f-ab88-fd11459d9842 md"###### 🔹 Number of modules per design (*r*) The single gRNA lentiviruses are used to infect cancer cells (Cas9 KPD cells). The Multiplicity of Infection (MOI), *i.e.*, the number of virions added per cell, amounts to 0.4: " # ╔═╡ 5c906c4a-8785-4199-8aba-a35c855e77f6 MOI = 0.4 # ╔═╡ 449ad144-90d4-4f74-867f-939b489ddaad md"The probability of a cell being infected by $k$ viral particles (= containing $k$ integrated RNA constructs) can be described by a Poisson distribution with λ = MOI: $$P(k) = \frac{λ^k . e^{-λ}}{k!}$$" # ╔═╡ 28dda5a1-546a-411f-9b8b-398e37195b13 λ = MOI # ╔═╡ aad92f19-6935-4cbd-8e0f-d16a0d379386 poisson = Poisson(λ) # ╔═╡ 69fe641d-afb9-45dc-9aa0-436177b02ac3 p_0gRNA = pdf(poisson, 0) # the probability that a cancer cell has 0 integrated gRNA constructs # ╔═╡ e88e908f-be65-488f-a0dd-718a091f9d5c p_1gRNA = pdf(poisson, 1) # the probability that a cancer cell has 1 integrated gRNA construct # ╔═╡ 480d6282-ce97-4127-957d-d0b9fd37a7e4 p_2gRNA = pdf(poisson, 2) # the probability that a cancer cell has 2 integrated gRNA constructs # ╔═╡ 55e0b804-a3ee-4667-8367-38b1b20b0096 md" After selection on antibiotics, only cells that have received at least one sgRNA-expressing lentiviral integrant survive. The percentage of cells surviving can be written as: $$P_{survival} = P(k>0) = 1-P(k=0)$$ " # ╔═╡ d021a50b-3bd1-4125-a939-1bba5eace898 Pₛᵤᵣᵥᵢᵥₐₗ = 1 - pdf(poisson, 0) # ╔═╡ 2bedff06-473e-49c0-9d8c-a0cde03ad554 md"With this information, we can calculate the **average number of gRNA integrands per cancer cell** *r*:" # ╔═╡ fa7b1373-006c-48e8-917b-c750bce86e09 r = sum([k*pdf(poisson, k)/Pₛᵤᵣᵥᵢᵥₐₗ for k in 1:20]) # calculation of expected value: summation over number of integrated constructs multiplied by its probability (normalized by percentage of cells that survived) # ╔═╡ 2ac080a7-af56-41ae-b913-8d65dedb9197 # ╔═╡ b4cc09e0-2a6a-4ab6-8153-cbc817dede2e md"##### 1.2 Statistics for determining a minimum sample size using BioCCP.jl " # ╔═╡ 3466f636-7b06-42e0-b71e-55a7a2c74808 md"###### 🔹 Expected minimum number of cells The **expected minimum number of cells** that need be injected into the mice so each gRNA is present in the experiment at least once (*m = 1*):" # ╔═╡ 0a99939a-4edb-488d-bbdf-4a425c808607 m = 1 # ╔═╡ f35928d5-e8c2-4c9f-b4ba-9cb58eafb9e0 expectation_minsamplesize(n_gRNAs; p = p_gRNA, r = r, m = m) # ╔═╡ b8fe484e-1189-4fd0-85b9-715e084d65da std_minsamplesize(n_gRNAs; p = p_gRNA, r = r, m = m) # ╔═╡ d4cd5ff7-88b8-4e5c-a540-04c51ad51f42 # ╔═╡ 224d556c-cd9d-4c00-9cde-1c3df7cfcdef md"In the study of Chen *et al.*, 3 × 10⁷ cells are injected into the flanks of mice. This exceeds the expected minimum sample size to observe each gRNA at least once." # ╔═╡ aa29947a-4dcb-48d8-9ad0-3828f8d4b8d2 sample_size_paper = 3*10^7 # ╔═╡ a27384c0-db19-4b06-8165-208d3fe77350 md"###### 🔹 Probability to observe each gRNA at least once w.r.t. sample size" # ╔═╡ 7b43e546-07f0-45ce-9d2a-52894adad822 md"The **success probability curve**, describing the probability that the minimum number of cells that should be sampled to observe all gRNAs at least $m time(s) is smaller than or equal to a given sample size on the x-axis:" # ╔═╡ ca7ecf8b-634e-4fa5-aaa8-102fa488c7a1 begin sample_size_initial = 18*10^6 while (1 - success_probability(n_gRNAs, sample_size_initial; p = p_gRNA, r = r, m = m)) > 0.00005 global sample_size_initial += Int(ceil(10*n_gRNAs)) end sample_sizes = Int.(ceil.(0:n_gRNAs*5:sample_size_initial)) successes = success_probability.(n_gRNAs, sample_sizes; p = p_gRNA, r = r, m = m) plot(sample_sizes, successes, title = "Success probability to sample each gRNA at least $m time in function of sample size", xlabel = "number of cells sampled", ylabel= "success probability", label = "", legend=:bottomright, size=(600,400), seriestype=:scatter, titlefont=font(10),xguidefont=font(9), yguidefont=font(9)) end # ╔═╡ 60c3ce0d-85be-42f0-a869-1895abc096f3 md"When the number of cells is equal to $sample_size_paper, the probability that all gRNAs will be represented in the genome-wide screening experiment at least once, is:" # ╔═╡ 7eb18559-e2c0-4c34-a2b2-4e3c3ab831a6 success_probability(63090, 3*10^7; p = p_gRNA, r = r, m = m) # ╔═╡ ecf6292c-7cdd-4886-8a59-be8e4f2751b7 md"Let's investigate how many complete sets of gRNAs that are suffficiently covered by the sample size of the study by Chen *et al.*. Let's define sufficient coverage as a success probability of at least 95%." # ╔═╡ 56f21296-fcd2-46f7-a130-4cb6940c1133 success_probability(63090, sample_size_paper; p = p_gRNA, r = r, m = 2) # ╔═╡ 09d77a14-01f4-430c-9038-25b85b31a1c2 success_probability(63090, sample_size_paper; p = p_gRNA, r = r, m = 7) # ╔═╡ 071cdabe-3443-490c-ab79-e270a0a1de68 success_probability(63090, sample_size_paper; p = p_gRNA, r = r, m = 10) # ╔═╡ c59c5fb7-7291-46e2-88af-03ed38c7c3eb begin success_probabilities = [] for m in 1:15 push!(success_probabilities, success_probability(63090, sample_size_paper; p = p_gRNA, r = r, m = m)) end plot(success_probabilities, seriestype=:scatter, title="Coverage for sample size of $sample_size_paper cells", xlabel="number of complete sets of gRNAs to observe (m)", ylabel="success probability", label="") plot!([0, 15], [0.95, 0.95], label="95% success probability", legend = :best, titlefont=font(10),xguidefont=font(9), yguidefont=font(9)) end # ╔═╡ bb990e0c-df90-4635-80e4-e6639a62865a md"We see the sample size of the paper covers 9 complete sets of gRNAs. Thereafter, the success probability drops below 95%." # ╔═╡ 57309e16-8c1b-4268-b164-0b45b60b4fbd # ╔═╡ ca947d4b-18e6-4bad-8d9b-b73324a5c40b md"###### 🔹 Expected fraction of gRNAs observed w.r.t. sample size" # ╔═╡ dc696281-7a5b-4568-a4c2-8dde90af43f0 md"The **fraction of the total number of available gRNAs that is expected to be observed** after injecting a given number of cells, is displayed by the curve below:" # ╔═╡ 7968de5e-5ae8-4ab4-b089-c3d33475af2f begin global sample_size_initial_frac = 7*10^6 while (1 - expectation_fraction_collected(n_gRNAs, sample_size_initial_frac; p=p_gRNA, r = r)) > 0.000005 global sample_size_initial_frac += Int(ceil(10*n_gRNAs)) end sample_sizes_frac = Int.(ceil.(collect(0 : n_gRNAs/2 : sample_size_initial_frac))) fracs = expectation_fraction_collected.(n_gRNAs, sample_sizes_frac; p=p_gRNA, r = r) plot(sample_sizes_frac, fracs, title = "Expected observed fraction of the total number of gRNAs", xlabel = "number of cells", seriestype=:scatter, ylabel= "Expected observed fraction of gRNAs", label = "", size=(700,400), xguidefont=font(9), yguidefont=font(9), titlefont=font(10)) end # ╔═╡ be8e6332-f79d-4d63-afae-51c2d829f998 md"When 50000 cells are injected, it is expected that, on average, approximately 53% of the gRNAs is represented:" # ╔═╡ f0eaf96b-0bc0-4194-9a36-886cb1d66e00 expectation_fraction_collected(n_gRNAs, 5*10^4; p = p_gRNA, r = r) # ╔═╡ 293386f0-aafe-4e94-8e16-3237659d6963 # ╔═╡ b2111d05-a153-4969-aeae-a7f0c01e3365 md"###### 🔹 Occurence of specific gRNA w.r.t. sample size" # ╔═╡ 667fc6a8-b3ff-464d-903c-e215e7d2f472 pᵢ_gRNA = p_gRNA[1] # ╔═╡ ead64d36-947a-4b9f-a0f7-a1821039f5b3 n_cells = 4*10^6 # ╔═╡ f92a6b6e-a556-45cb-a1ae-9f5fe791ffd2 md""" For the gRNA with the lowest abundance in the plasmid library, the probability that it is observed *k* times when injecting $n_cells cancer cells in the mice, can be described by the following curve:""" # ╔═╡ 60fff6ab-3e19-4af7-b102-17d3d47494f3 begin ed = Int(floor(n_cells*pᵢ_gRNA*r)) j = collect(0:1:2*ed) x = prob_occurrence_module.(pᵢ_gRNA, n_cells, r, j) plot(j,x, seriestype=[:scatter, :line], xlabel="number of times gRNA is represented", ylabel="probability", title= "Probability that gRNA is represented k times in mouse model when $n_cells cells injected", label="", size=((600,300)),titlefont=font(10), xguidefont=font(9), yguidefont=font(9)) end # ╔═╡ a041652b-365e-4594-9c48-c63d547b3295 mean, std = floor(n_cells * pᵢ_gRNA * r), floor(sqrt(n_cells * pᵢ_gRNA * r)) # ╔═╡ cc4c712d-6562-4d25-8b84-64458cda4198 md"The least abundant gRNA will be present on average 3 times with a standard deviation of 1, when 4x10⁶ cells are injected." # ╔═╡ 752392c9-198a-4d5a-8ce7-7c154ce834ec # ╔═╡ 1f2c0903-13af-48d5-bbf5-b6102043a288 # ╔═╡ a6014a30-6643-4504-8081-17bcc8be2615 md"##### 2. [Rapid and High-Throughput Evaluation of Diverse Configurations of Engineered Lysins Using the VersaTile Technique (Duyvejonck *et al.*, 2021)](https://www.mdpi.com/2079-6382/10/3/293) This study aims engineering **modular endolysins** for obtaining optimal antibacterial properties. ###### 2.1 Problem definition The endolysin engineered in the study can consists of different protein domains, e.g.: - an outer membrane permeabilizing peptide (OMP), - an enzymatically active domain (EAD), - a cell wall binding domain (CBD), - a peptide linker Different variants of these domain types are available and combined with the VersaTile DNA assembly technique. The following picture represents an endolysin configuration that is considered in the paper:" # ╔═╡ 45fd4574-679f-42b8-9aa5-b949d252e2e7 Show(MIME"image/png"(), read("Endolysin_img.png")) # ╔═╡ 8032bbab-67a8-4058-873a-a33c4b39066f md"In this library, there is an availability of - 42 OMPs, - 7 linkers, - 6 CBDs, and - 23 EADs. This results in a total number of 42 x 7 x 6 x 23 = **40572 possible endolysins**." # ╔═╡ 5f480d13-2dd1-451e-adf5-45d5d7749fdc begin n_OMP = 42; n_linker = 7; n_CBD = 6; n_EAD = 23; end # ╔═╡ da16c262-4d76-4757-9e80-df6871546278 md"However, due to limitations in the screening technique, only **188 endolysins from this library were analysed** for their activity against *Klebsiella pneumoniae*. " # ╔═╡ 8b0ca97d-e7fd-4720-80a9-87c43c1f78a9 # ╔═╡ a4e1a017-c37c-4a81-915c-96638964eda2 md"###### 2.2 Determining coverage using BioCCP.jl" # ╔═╡ 12afa1a7-b4ed-4767-aff8-07dab6fa5d3c endolysins_sample_size = 188 # ╔═╡ 99d3250d-2335-425e-b470-2f570cba7367 # ╔═╡ dad9f7f9-a5b0-44b2-b1a9-96b0fe9b3c7c md"###### 🔹 Coverage OMP variants in endolysin library" # ╔═╡ 16fd6703-d559-444c-8f42-26e314f29fb3 md"First, let's take a look at the coverage of the OMP variants in the screening experiment. The **probability that all available OMPs were observed at least once in this set**, will be calculated below. We assume that there is an equal probability for each OMP to be observed (optimistic scenario)." # ╔═╡ 63eed55a-1dfe-4b3d-b7aa-e4736718b105 Float16(success_probability(n_OMP, endolysins_sample_size; p = ones(n_OMP)/n_OMP, m = 1)) # ╔═╡ 55631080-6d7d-4059-b8c1-32fa10ef8884 md"The OMPs are only guaranteed to be fully covered with 62 % probability at a sample size of 188 endolysins. " # ╔═╡ efac7679-df64-4db2-8b8b-06febdc8a5f0 md"The success probability is way lower than 95%. Suppose we would execute a series of experiments in which we sample endolysins until all OMPs are observed at least once, what would be the **average required number of endolysins per experiment to see each OMP at least once** in the set of sampled endolysins?" # ╔═╡ d26ab92f-3541-4eb6-9257-124266d6878a expectation_minsamplesize(n_OMP; p = ones(n_OMP)/n_OMP, m = 1) # ╔═╡ 0f98810b-c6c5-4f4b-9c40-0af0ec78c057 std_minsamplesize(n_OMP; p = ones(n_OMP)/n_OMP, m = 1) # ╔═╡ 7a1bed30-ecb8-4747-bf83-578b77f48e59 md"The expected minimum number of endolysins to observe each OMP variant at least once is 182 (standard deviation: 51 endolysins)." # ╔═╡ c0ccc9c2-278e-4c21-ac1f-53c73d209e38 md"Another research question we can ask ourselves is what **fraction of the total number of OMP variants is expected to be represented** for the set of 188 randomly sampled endolysins from the library." # ╔═╡ 908644a9-a4db-41f7-9faf-1f3afb5dac79 expectation_fraction_collected(n_OMP, endolysins_sample_size; p = ones(n_OMP)/n_OMP) # ╔═╡ 19f4c16d-2f59-45ba-8502-b86cacd9cd10 md"In other words, when over different sampling experiments, each time 188 endolysins are randomly sampled, on average a fraction of 98.9% of all OMP variants is expected to be observed." # ╔═╡ ae2c1a89-cff9-4514-8744-f1620e46663d # ╔═╡ feedcbb2-e6a0-4cb6-9d88-81554ba4ccbf md"###### 🔹 Coverage linkers, CBDs and EADs in endolysin library" # ╔═╡ a34b71fb-1da6-43db-981b-71e1a404e4d6 md"Now, let's investigate how well the other module types are covered. The **probability that all available linkers were observed at least once in this set** (assuming that there is an equal probability for each linker to be observed):" # ╔═╡ ca9f4254-b38c-4de2-bafb-f97dd15a46bc Float16(success_probability(n_linker, endolysins_sample_size; p = ones(n_linker)/n_linker)) # ╔═╡ cf19ee57-174d-42b9-8f9d-f4654907fc2a md"The **probability that all available CBDs were observed at least once in this set** (assuming that there is an equal probability for each CBD to be observed):" # ╔═╡ 63d90d97-ba80-449e-8d38-1bba52ab32ac Float16(success_probability(n_CBD, endolysins_sample_size; p = ones(n_CBD)/n_CBD)) # ╔═╡ 062ceeb7-5d6d-48ce-8ad5-9e1d78a937e7 md"The **probability that all available EADs were observed at least once in this set** (assuming that there is an equal probability for each EAD to be observed):" # ╔═╡ 04a2acf6-52e2-42d7-96a0-f3e31d1f6b58 Float16(success_probability(n_EAD, endolysins_sample_size; p = ones(n_EAD)/n_EAD)) # ╔═╡ 63dedbcb-7ea0-4c4e-bb4c-fa8e258f9a93 md"We can conclude the EADs, CBDs and linker domains were sufficiently covered by the sample size of $endolysins_sample_size endolysins." # ╔═╡ fbffaab6-3154-49df-a226-d5810d0b7c38 md"""## References""" # ╔═╡ 1f48143a-2152-4bb9-a765-a25e70c281a3 md"""[^1]: Chen, S., Sanjana, N. E., Zheng, K., Shalem, O., Lee, K., Shi, X., ... & Sharp, P. A. (2015). *Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis.* Cell, 160(6), 1246-1260. [^2]: Duyvejonck, L., Gerstmans, H., Stock, M., Grimon, D., Lavigne, R., & Briers, Y. (2021). *Rapid and High-Throughput Evaluation of Diverse Configurations of Engineered Lysins Using the VersaTile Technique.* Antibiotics, 10(3), 293. """ # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] BioCCP = "79e6b149-e254-49fe-a721-3c4960de1574" Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" [compat] BioCCP = "~0.1.0" Distributions = "~0.25.18" Plots = "~1.22.4" PlutoUI = "~0.7.16" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised [[Adapt]] deps = ["LinearAlgebra"] git-tree-sha1 = "84918055d15b3114ede17ac6a7182f68870c16f7" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.3.1" [[ArgTools]] git-tree-sha1 = "bdf73eec6a88885256f282d48eafcad25d7de494" uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" version = "1.1.1" [[Artifacts]] deps = ["Pkg"] git-tree-sha1 = "c30985d8821e0cd73870b17b0ed0ce6dc44cb744" uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" version = "1.3.0" [[Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[BioCCP]] deps = ["Distributions"] git-tree-sha1 = "791b4218060972fa3a37313208c674597581ee05" uuid = "79e6b149-e254-49fe-a721-3c4960de1574" version = "0.1.0" [[Bzip2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c3598e525718abcc440f69cc6d5f60dda0a1b61e" uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0" version = "1.0.6+5" [[Cairo_jll]] deps = ["Artifacts", "Bzip2_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "e2f47f6d8337369411569fd45ae5753ca10394c6" uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" version = "1.16.0+6" [[ChainRulesCore]] deps = ["Compat", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "a325370b9dd0e6bf5656a6f1a7ae80755f8ccc46" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.7.2" [[ColorSchemes]] deps = ["ColorTypes", "Colors", "FixedPointNumbers", "Random"] git-tree-sha1 = "a851fec56cb73cfdf43762999ec72eff5b86882a" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.15.0" [[ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.0" [[Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.8" [[Compat]] deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"] git-tree-sha1 = "31d0151f5716b655421d9d75b7fa74cc4e744df2" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "3.39.0" [[CompilerSupportLibraries_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "8e695f735fca77e9708e795eda62afdb869cbb70" uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" version = "0.3.4+0" [[Contour]] deps = ["StaticArrays"] git-tree-sha1 = "9f02045d934dc030edad45944ea80dbd1f0ebea7" uuid = "d38c429a-6771-53c6-b99e-75d170b6e991" version = "0.5.7" [[DataAPI]] git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.9.0" [[DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "7d9d316f04214f7efdbb6398d545446e246eff02" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.10" [[DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[Distributions]] deps = ["ChainRulesCore", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns"] git-tree-sha1 = "ff7890c74e2eaffbc0b3741811e3816e64b6343d" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" version = "0.25.18" [[DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "a32185f5428d3986f47c2ab78b1f216d5e6cc96f" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.8.5" [[Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] git-tree-sha1 = "135bf1896be424235eadb17474b2a78331567f08" uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.5.1" [[EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "92d8f9f208637e8d2d28c664051a00569c01493d" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.1.5+1" [[Expat_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "1402e52fcda25064f51c77a9655ce8680b76acf0" uuid = "2e619515-83b5-522b-bb60-26c02a35a201" version = "2.2.7+6" [[FFMPEG]] deps = ["FFMPEG_jll"] git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8" uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a" version = "0.4.1" [[FFMPEG_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "LibVPX_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "Pkg", "Zlib_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"] git-tree-sha1 = "3cc57ad0a213808473eafef4845a74766242e05f" uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5" version = "4.3.1+4" [[FillArrays]] deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"] git-tree-sha1 = "29890dfbc427afa59598b8cfcc10034719bd7744" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "0.12.6" [[FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[Fontconfig_jll]] deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "35895cf184ceaab11fd778b4590144034a167a2f" uuid = "a3f928ae-7b40-5064-980b-68af3947d34b" version = "2.13.1+14" [[Formatting]] deps = ["Printf"] git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8" uuid = "59287772-0a20-5a39-b81b-1366585eb4c0" version = "0.4.2" [[FreeType2_jll]] deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "cbd58c9deb1d304f5a245a0b7eb841a2560cfec6" uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7" version = "2.10.1+5" [[FriBidi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "0d20aed5b14dd4c9a2453c1b601d08e1149679cc" uuid = "559328eb-81f9-559d-9380-de523a88c83c" version = "1.0.5+6" [[GLFW_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pkg", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"] git-tree-sha1 = "a199aefead29c3c2638c3571a9993b564109d45a" uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89" version = "3.3.4+0" [[GR]] deps = ["Base64", "DelimitedFiles", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Pkg", "Printf", "Random", "Serialization", "Sockets", "Test", "UUIDs"] git-tree-sha1 = "c2178cfbc0a5a552e16d097fae508f2024de61a3" uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71" version = "0.59.0" [[GR_jll]] deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Pkg", "Qt5Base_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "d59e8320c2747553788e4fc42231489cc602fa50" uuid = "d2c73de3-f751-5644-a686-071e5b155ba9" version = "0.58.1+0" [[GeometryBasics]] deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "58bcdf5ebc057b085e58d95c138725628dd7453c" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.4.1" [[Gettext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "8c14294a079216000a0bdca5ec5a447f073ddc9d" uuid = "78b55507-aeef-58d4-861c-77aaff3498b1" version = "0.20.1+7" [[Glib_jll]] deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "04690cc5008b38ecbdfede949220bc7d9ba26397" uuid = "7746bdde-850d-59dc-9ae8-88ece973131d" version = "2.59.0+4" [[Grisu]] git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2" uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe" version = "1.0.2" [[HTTP]] deps = ["Base64", "Dates", "IniFile", "Logging", "MbedTLS", "NetworkOptions", "Sockets", "URIs"] git-tree-sha1 = "14eece7a3308b4d8be910e265c724a6ba51a9798" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "0.9.16" [[Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[HypertextLiteral]] git-tree-sha1 = "f6532909bf3d40b308a0f360b6a0e626c0e263a8" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.1" [[IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[IniFile]] deps = ["Test"] git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8" uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f" version = "0.5.0" [[InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[IrrationalConstants]] git-tree-sha1 = "f76424439413893a832026ca355fe273e93bce94" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.1.0" [[IterTools]] git-tree-sha1 = "05110a2ab1fc5f932622ffea2a003221f4782c18" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.3.0" [[IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[JLLWrappers]] deps = ["Preferences"] git-tree-sha1 = "642a199af8b68253517b80bd3bfd17eb4e84df6e" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.3.0" [[JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.2" [[JpegTurbo_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9aff0587d9603ea0de2c6f6300d9f9492bbefbd3" uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" version = "2.0.1+3" [[LAME_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "df381151e871f41ee86cee4f5f6fd598b8a68826" uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d" version = "3.100.0+3" [[LZO_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f128cd6cd05ffd6d3df0523ed99b90ff6f9b349a" uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac" version = "2.10.0+3" [[LaTeXStrings]] git-tree-sha1 = "c7f1c695e06c01b95a67f0cd1d34994f3e7db104" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.2.1" [[Latexify]] deps = ["Formatting", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "Printf", "Requires"] git-tree-sha1 = "a4b12a1bd2ebade87891ab7e36fdbce582301a92" uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316" version = "0.15.6" [[LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] git-tree-sha1 = "cdbe7465ab7b52358804713a53c7fe1dac3f8a3f" uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" version = "0.6.3" [[LibCURL_jll]] deps = ["LibSSH2_jll", "Libdl", "MbedTLS_jll", "Pkg", "Zlib_jll", "nghttp2_jll"] git-tree-sha1 = "897d962c20031e6012bba7b3dcb7a667170dad17" uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" version = "7.70.0+2" [[LibGit2]] deps = ["Printf"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[LibSSH2_jll]] deps = ["Libdl", "MbedTLS_jll", "Pkg"] git-tree-sha1 = "717705533148132e5466f2924b9a3657b16158e8" uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" version = "1.9.0+3" [[LibVPX_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "85fcc80c3052be96619affa2fe2e6d2da3908e11" uuid = "dd192d2f-8180-539f-9fb4-cc70b1dcf69a" version = "1.9.0+1" [[Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[Libffi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "a2cd088a88c0d37eef7d209fd3d8712febce0d90" uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490" version = "3.2.1+4" [[Libgcrypt_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"] git-tree-sha1 = "b391a18ab1170a2e568f9fb8d83bc7c780cb9999" uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" version = "1.8.5+4" [[Libglvnd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"] git-tree-sha1 = "7739f837d6447403596a75d19ed01fd08d6f56bf" uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29" version = "1.3.0+3" [[Libgpg_error_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "ec7f2e8ad5c9fa99fc773376cdbc86d9a5a23cb7" uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" version = "1.36.0+3" [[Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "cba7b560fcc00f8cd770fa85a498cbc1d63ff618" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.16.0+8" [[Libmount_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "51ad0c01c94c1ce48d5cad629425035ad030bfd5" uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9" version = "2.34.0+3" [[Libtiff_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Pkg", "Zlib_jll", "Zstd_jll"] git-tree-sha1 = "291dd857901f94d683973cdf679984cdf73b56d0" uuid = "89763e89-9b03-5906-acba-b20f662cd828" version = "4.1.0+2" [[Libuuid_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f879ae9edbaa2c74c922e8b85bb83cc84ea1450b" uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700" version = "2.34.0+7" [[LinearAlgebra]] deps = ["Libdl"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[LogExpFunctions]] deps = ["ChainRulesCore", "DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "34dc30f868e368f8a17b728a1238f3fcda43931a" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.3" [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "5a5bc6bf062f0f95e62d0fe0a2d99699fed82dd9" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.8" [[Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[MbedTLS]] deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"] git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.0.3" [[MbedTLS_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "0eef589dd1c26a3ac9d753fe1a8bcad63f956fa6" uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" version = "2.16.8+1" [[Measures]] git-tree-sha1 = "e498ddeee6f9fdb4551ce855a46f54dbd900245f" uuid = "442fdcdd-2543-5da2-b0f3-8c86c306513e" version = "0.3.1" [[Missings]] deps = ["DataAPI"] git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "1.0.2" [[Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[MozillaCACerts_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f1662575f7bf53c73c2bbc763bace4b024de822c" uuid = "14a3606d-f60d-562e-9121-12d972cd8159" version = "2021.1.19+0" [[NaNMath]] git-tree-sha1 = "bfe47e760d60b82b66b61d2d44128b62e3a369fb" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "0.3.5" [[NetworkOptions]] git-tree-sha1 = "ed3157f48a05543cce9b241e1f2815f7e843d96e" uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[Ogg_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "a42c0f138b9ebe8b58eba2271c5053773bde52d0" uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051" version = "1.3.4+2" [[OpenLibm_jll]] deps = ["Libdl", "Pkg"] git-tree-sha1 = "d22054f66695fe580009c09e765175cbf7f13031" uuid = "05823500-19ac-5b8b-9628-191a04bc5112" version = "0.7.1+0" [[OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "71bbbc616a1d710879f5a1021bcba65ffba6ce58" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "1.1.1+6" [[OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9db77584158d0ab52307f8c04f8e7c08ca76b5b3" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.3+4" [[Opus_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f9d57f4126c39565e05a2b0264df99f497fc6f37" uuid = "91d4177d-7536-5919-b921-800302f37372" version = "1.3.1+3" [[OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[PCRE_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "1b556ad51dceefdbf30e86ffa8f528b73c7df2bb" uuid = "2f80f16e-611a-54ab-bc61-aa92de5b98fc" version = "8.42.0+4" [[PDMats]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "4dd403333bcf0909341cfe57ec115152f937d7d8" uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" version = "0.11.1" [[Parsers]] deps = ["Dates"] git-tree-sha1 = "a8709b968a1ea6abc2dc1967cb1db6ac9a00dfb6" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.0.5" [[Pixman_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "6a20a83c1ae86416f0a5de605eaea08a552844a3" uuid = "30392449-352a-5448-841d-b1acce4e97dc" version = "0.40.0+0" [[Pkg]] deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[PlotThemes]] deps = ["PlotUtils", "Requires", "Statistics"] git-tree-sha1 = "a3a964ce9dc7898193536002a6dd892b1b5a6f1d" uuid = "ccf2f8ad-2431-5c83-bf29-c5338b663b6a" version = "2.0.1" [[PlotUtils]] deps = ["ColorSchemes", "Colors", "Dates", "Printf", "Random", "Reexport", "Statistics"] git-tree-sha1 = "b084324b4af5a438cd63619fd006614b3b20b87b" uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043" version = "1.0.15" [[Plots]] deps = ["Base64", "Contour", "Dates", "Downloads", "FFMPEG", "FixedPointNumbers", "GR", "GeometryBasics", "JSON", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "PlotThemes", "PlotUtils", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "UUIDs"] git-tree-sha1 = "6841db754bd01a91d281370d9a0f8787e220ae08" uuid = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" version = "1.22.4" [[PlutoUI]] deps = ["Base64", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"] git-tree-sha1 = "4c8a7d080daca18545c56f1cac28710c362478f3" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.16" [[Preferences]] deps = ["TOML"] git-tree-sha1 = "00cfd92944ca9c760982747e9a1d0d5d86ab1e5a" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.2.2" [[Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[Qt5Base_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Fontconfig_jll", "Glib_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "OpenSSL_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libxcb_jll", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_keysyms_jll", "Xorg_xcb_util_renderutil_jll", "Xorg_xcb_util_wm_jll", "Zlib_jll", "xkbcommon_jll"] git-tree-sha1 = "16626cfabbf7206d60d84f2bf4725af7b37d4a77" uuid = "ea2cea3b-5b76-57ae-a6ef-0a8af62496e1" version = "5.15.2+0" [[QuadGK]] deps = ["DataStructures", "LinearAlgebra"] git-tree-sha1 = "78aadffb3efd2155af139781b8a8df1ef279ea39" uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" version = "2.4.2" [[REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[Random]] deps = ["Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[RecipesBase]] git-tree-sha1 = "44a75aa7a527910ee3d1751d1f0e4148698add9e" uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" version = "1.1.2" [[RecipesPipeline]] deps = ["Dates", "NaNMath", "PlotUtils", "RecipesBase"] git-tree-sha1 = "7ad0dfa8d03b7bcf8c597f59f5292801730c55b8" uuid = "01d81517-befc-4cb6-b9ec-a95719d0359c" version = "0.4.1" [[Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[Requires]] deps = ["UUIDs"] git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.1.3" [[Rmath]] deps = ["Random", "Rmath_jll"] git-tree-sha1 = "86c5647b565873641538d8f812c04e4c9dbeb370" uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" version = "0.6.1" [[Rmath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "1b7bf41258f6c5c9c31df8c1ba34c1fc88674957" uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" version = "0.2.2+2" [[SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[Scratch]] deps = ["Dates"] git-tree-sha1 = "0b4b7f1393cff97c33891da2a0bf69c6ed241fda" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.1.0" [[Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[Showoff]] deps = ["Dates", "Grisu"] git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de" uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f" version = "1.0.3" [[Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[SortingAlgorithms]] deps = ["DataStructures"] git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "1.0.1" [[SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[SpecialFunctions]] deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "793793f1df98e3d7d554b65a107e9c9a6399a6ed" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "1.7.0" [[StaticArrays]] deps = ["LinearAlgebra", "Random", "Statistics"] git-tree-sha1 = "3c76dde64d03699e074ac02eb2e8ba8254d428da" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.2.13" [[Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[StatsAPI]] git-tree-sha1 = "1958272568dc176a1d881acb797beb909c785510" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.0.0" [[StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "8cbbc098554648c84f79a463c9ff0fd277144b6c" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.33.10" [[StatsFuns]] deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] git-tree-sha1 = "95072ef1a22b057b1e80f73c2a89ad238ae4cfff" uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" version = "0.9.12" [[StructArrays]] deps = ["Adapt", "DataAPI", "StaticArrays", "Tables"] git-tree-sha1 = "2ce41e0d042c60ecd131e9fb7154a3bfadbf50d3" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.3" [[SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[TOML]] deps = ["Dates"] git-tree-sha1 = "44aaac2d2aec4a850302f9aa69127c74f0c3787e" uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" version = "1.0.3" [[TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"] git-tree-sha1 = "fed34d0e71b91734bf0a7e10eb1bb05296ddbcd0" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.6.0" [[Test]] deps = ["Distributed", "InteractiveUtils", "Logging", "Random"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[URIs]] git-tree-sha1 = "97bbe755a53fe859669cd907f2d96aee8d2c1355" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.3.0" [[UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[Wayland_jll]] deps = ["Artifacts", "Expat_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "dc643a9b774da1c2781413fd7b6dcd2c56bb8056" uuid = "a2964d1f-97da-50d4-b82a-358c7fce9d89" version = "1.17.0+4" [[Wayland_protocols_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll"] git-tree-sha1 = "2839f1c1296940218e35df0bbb220f2a79686670" uuid = "2381bf8a-dfd0-557d-9999-79630e7b1b91" version = "1.18.0+4" [[XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "be0db24f70aae7e2b89f2f3092e93b8606d659a6" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.9.10+3" [[XSLT_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "2b3eac39df218762d2d005702d601cd44c997497" uuid = "aed1982a-8fda-507f-9586-7b0439959a61" version = "1.1.33+4" [[Xorg_libX11_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] git-tree-sha1 = "5be649d550f3f4b95308bf0183b82e2582876527" uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" version = "1.6.9+4" [[Xorg_libXau_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4e490d5c960c314f33885790ed410ff3a94ce67e" uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" version = "1.0.9+4" [[Xorg_libXcursor_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXfixes_jll", "Xorg_libXrender_jll"] git-tree-sha1 = "12e0eb3bc634fa2080c1c37fccf56f7c22989afd" uuid = "935fb764-8cf2-53bf-bb30-45bb1f8bf724" version = "1.2.0+4" [[Xorg_libXdmcp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4fe47bd2247248125c428978740e18a681372dd4" uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" version = "1.1.3+4" [[Xorg_libXext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "b7c0aa8c376b31e4852b360222848637f481f8c3" uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3" version = "1.3.4+4" [[Xorg_libXfixes_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "0e0dc7431e7a0587559f9294aeec269471c991a4" uuid = "d091e8ba-531a-589c-9de9-94069b037ed8" version = "5.0.3+4" [[Xorg_libXi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXfixes_jll"] git-tree-sha1 = "89b52bc2160aadc84d707093930ef0bffa641246" uuid = "a51aa0fd-4e3c-5386-b890-e753decda492" version = "1.7.10+4" [[Xorg_libXinerama_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll"] git-tree-sha1 = "26be8b1c342929259317d8b9f7b53bf2bb73b123" uuid = "d1454406-59df-5ea1-beac-c340f2130bc3" version = "1.1.4+4" [[Xorg_libXrandr_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll"] git-tree-sha1 = "34cea83cb726fb58f325887bf0612c6b3fb17631" uuid = "ec84b674-ba8e-5d96-8ba1-2a689ba10484" version = "1.5.2+4" [[Xorg_libXrender_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "19560f30fd49f4d4efbe7002a1037f8c43d43b96" uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa" version = "0.9.10+4" [[Xorg_libpthread_stubs_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "6783737e45d3c59a4a4c4091f5f88cdcf0908cbb" uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" version = "0.1.0+3" [[Xorg_libxcb_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] git-tree-sha1 = "daf17f441228e7a3833846cd048892861cff16d6" uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" version = "1.13.0+3" [[Xorg_libxkbfile_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "926af861744212db0eb001d9e40b5d16292080b2" uuid = "cc61e674-0454-545c-8b26-ed2c68acab7a" version = "1.1.0+4" [[Xorg_xcb_util_image_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "0fab0a40349ba1cba2c1da699243396ff8e94b97" uuid = "12413925-8142-5f55-bb0e-6d7ca50bb09b" version = "0.4.0+1" [[Xorg_xcb_util_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll"] git-tree-sha1 = "e7fd7b2881fa2eaa72717420894d3938177862d1" uuid = "2def613f-5ad1-5310-b15b-b15d46f528f5" version = "0.4.0+1" [[Xorg_xcb_util_keysyms_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "d1151e2c45a544f32441a567d1690e701ec89b00" uuid = "975044d2-76e6-5fbe-bf08-97ce7c6574c7" version = "0.4.0+1" [[Xorg_xcb_util_renderutil_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "dfd7a8f38d4613b6a575253b3174dd991ca6183e" uuid = "0d47668e-0667-5a69-a72c-f761630bfb7e" version = "0.3.9+1" [[Xorg_xcb_util_wm_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "e78d10aab01a4a154142c5006ed44fd9e8e31b67" uuid = "c22f9ab0-d5fe-5066-847c-f4bb1cd4e361" version = "0.4.1+1" [[Xorg_xkbcomp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxkbfile_jll"] git-tree-sha1 = "4bcbf660f6c2e714f87e960a171b119d06ee163b" uuid = "35661453-b289-5fab-8a00-3d9160c6a3a4" version = "1.4.2+4" [[Xorg_xkeyboard_config_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xkbcomp_jll"] git-tree-sha1 = "5c8424f8a67c3f2209646d4425f3d415fee5931d" uuid = "33bec58e-1273-512f-9401-5d533626f822" version = "2.27.0+4" [[Xorg_xtrans_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "79c31e7844f6ecf779705fbc12146eb190b7d845" uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" version = "1.4.0+3" [[Zlib_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "320228915c8debb12cb434c59057290f0834dbf6" uuid = "83775a58-1f1d-513f-b197-d71354ab007a" version = "1.2.11+18" [[Zstd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "2c1332c54931e83f8f94d310fa447fd743e8d600" uuid = "3161d3a3-bdf6-5164-811a-617609db77b4" version = "1.4.8+0" [[libass_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "acc685bcf777b2202a904cdcb49ad34c2fa1880c" uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0" version = "0.14.0+4" [[libfdk_aac_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "7a5780a0d9c6864184b3a2eeeb833a0c871f00ab" uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280" version = "0.1.6+4" [[libpng_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "6abbc424248097d69c0c87ba50fcb0753f93e0ee" uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" version = "1.6.37+6" [[libvorbis_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"] git-tree-sha1 = "fa14ac25af7a4b8a7f61b287a124df7aab601bcd" uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a" version = "1.3.6+6" [[nghttp2_jll]] deps = ["Libdl", "Pkg"] git-tree-sha1 = "8e2c44ab4d49ad9518f359ed8b62f83ba8beede4" uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" version = "1.40.0+2" [[x264_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "d713c1ce4deac133e3334ee12f4adff07f81778f" uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a" version = "2020.7.14+2" [[x265_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "487da2f8f2f0c8ee0e83f39d13037d6bbf0a45ab" uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76" version = "3.0.0+3" [[xkbcommon_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll", "Wayland_protocols_jll", "Xorg_libxcb_jll", "Xorg_xkeyboard_config_jll"] git-tree-sha1 = "ece2350174195bb31de1a63bea3a41ae1aa593b6" uuid = "d8fb68d0-12a3-5cfd-a85a-d49703b185fd" version = "0.9.1+5" """ # ╔═╡ Cell order: # ╟─41beadc2-385e-42bf-9960-ab201242b400 # ╠═ee082fcf-54d1-4aea-9944-8d7f81c6dbf4 # ╟─4d246460-af05-11eb-382b-590e60ba61f5 # ╟─ad7e5e06-55b2-4752-9335-2364489932eb # ╟─d6b7e9f5-3bda-4477-b92c-e32b836f1f0d # ╟─50462b1a-f65e-4d91-8d8d-da9c93ad007c # ╟─f3ef2715-da53-449e-b198-faeeb78ac83f # ╠═08054214-4045-486a-ac44-7a1a8aee9acf # ╟─50d87809-df3b-4558-97ce-0a50fdfbcf69 # ╟─857da523-7c09-4230-9397-2dc0ef639007 # ╟─737c8375-2c49-4f32-b54c-1f15f8d451d5 # ╟─94bcc8de-a0be-47ab-a03a-b04c351ad6f0 # ╟─364c38ca-8637-4d26-8d64-525222d24033 # ╠═5841ea1a-8d23-4fe7-8010-7d8512050c22 # ╟─e1444e8d-c0ae-408f-ab88-fd11459d9842 # ╟─5c906c4a-8785-4199-8aba-a35c855e77f6 # ╟─449ad144-90d4-4f74-867f-939b489ddaad # ╠═28dda5a1-546a-411f-9b8b-398e37195b13 # ╠═aad92f19-6935-4cbd-8e0f-d16a0d379386 # ╠═69fe641d-afb9-45dc-9aa0-436177b02ac3 # ╠═e88e908f-be65-488f-a0dd-718a091f9d5c # ╠═480d6282-ce97-4127-957d-d0b9fd37a7e4 # ╟─55e0b804-a3ee-4667-8367-38b1b20b0096 # ╠═d021a50b-3bd1-4125-a939-1bba5eace898 # ╟─2bedff06-473e-49c0-9d8c-a0cde03ad554 # ╠═fa7b1373-006c-48e8-917b-c750bce86e09 # ╟─2ac080a7-af56-41ae-b913-8d65dedb9197 # ╟─b4cc09e0-2a6a-4ab6-8153-cbc817dede2e # ╟─3466f636-7b06-42e0-b71e-55a7a2c74808 # ╠═0a99939a-4edb-488d-bbdf-4a425c808607 # ╠═f35928d5-e8c2-4c9f-b4ba-9cb58eafb9e0 # ╠═b8fe484e-1189-4fd0-85b9-715e084d65da # ╟─d4cd5ff7-88b8-4e5c-a540-04c51ad51f42 # ╟─224d556c-cd9d-4c00-9cde-1c3df7cfcdef # ╟─aa29947a-4dcb-48d8-9ad0-3828f8d4b8d2 # ╟─a27384c0-db19-4b06-8165-208d3fe77350 # ╟─7b43e546-07f0-45ce-9d2a-52894adad822 # ╟─ca7ecf8b-634e-4fa5-aaa8-102fa488c7a1 # ╟─60c3ce0d-85be-42f0-a869-1895abc096f3 # ╠═7eb18559-e2c0-4c34-a2b2-4e3c3ab831a6 # ╟─ecf6292c-7cdd-4886-8a59-be8e4f2751b7 # ╠═56f21296-fcd2-46f7-a130-4cb6940c1133 # ╠═09d77a14-01f4-430c-9038-25b85b31a1c2 # ╠═071cdabe-3443-490c-ab79-e270a0a1de68 # ╟─c59c5fb7-7291-46e2-88af-03ed38c7c3eb # ╟─bb990e0c-df90-4635-80e4-e6639a62865a # ╟─57309e16-8c1b-4268-b164-0b45b60b4fbd # ╟─ca947d4b-18e6-4bad-8d9b-b73324a5c40b # ╟─dc696281-7a5b-4568-a4c2-8dde90af43f0 # ╟─7968de5e-5ae8-4ab4-b089-c3d33475af2f # ╟─be8e6332-f79d-4d63-afae-51c2d829f998 # ╟─f0eaf96b-0bc0-4194-9a36-886cb1d66e00 # ╟─293386f0-aafe-4e94-8e16-3237659d6963 # ╟─b2111d05-a153-4969-aeae-a7f0c01e3365 # ╟─f92a6b6e-a556-45cb-a1ae-9f5fe791ffd2 # ╠═667fc6a8-b3ff-464d-903c-e215e7d2f472 # ╠═ead64d36-947a-4b9f-a0f7-a1821039f5b3 # ╟─60fff6ab-3e19-4af7-b102-17d3d47494f3 # ╠═a041652b-365e-4594-9c48-c63d547b3295 # ╟─cc4c712d-6562-4d25-8b84-64458cda4198 # ╟─752392c9-198a-4d5a-8ce7-7c154ce834ec # ╟─1f2c0903-13af-48d5-bbf5-b6102043a288 # ╟─a6014a30-6643-4504-8081-17bcc8be2615 # ╟─45fd4574-679f-42b8-9aa5-b949d252e2e7 # ╟─8032bbab-67a8-4058-873a-a33c4b39066f # ╠═5f480d13-2dd1-451e-adf5-45d5d7749fdc # ╟─da16c262-4d76-4757-9e80-df6871546278 # ╟─8b0ca97d-e7fd-4720-80a9-87c43c1f78a9 # ╟─a4e1a017-c37c-4a81-915c-96638964eda2 # ╠═12afa1a7-b4ed-4767-aff8-07dab6fa5d3c # ╟─99d3250d-2335-425e-b470-2f570cba7367 # ╟─dad9f7f9-a5b0-44b2-b1a9-96b0fe9b3c7c # ╟─16fd6703-d559-444c-8f42-26e314f29fb3 # ╠═63eed55a-1dfe-4b3d-b7aa-e4736718b105 # ╟─55631080-6d7d-4059-b8c1-32fa10ef8884 # ╟─efac7679-df64-4db2-8b8b-06febdc8a5f0 # ╠═d26ab92f-3541-4eb6-9257-124266d6878a # ╠═0f98810b-c6c5-4f4b-9c40-0af0ec78c057 # ╟─7a1bed30-ecb8-4747-bf83-578b77f48e59 # ╟─c0ccc9c2-278e-4c21-ac1f-53c73d209e38 # ╠═908644a9-a4db-41f7-9faf-1f3afb5dac79 # ╟─19f4c16d-2f59-45ba-8502-b86cacd9cd10 # ╟─ae2c1a89-cff9-4514-8744-f1620e46663d # ╟─feedcbb2-e6a0-4cb6-9d88-81554ba4ccbf # ╟─a34b71fb-1da6-43db-981b-71e1a404e4d6 # ╠═ca9f4254-b38c-4de2-bafb-f97dd15a46bc # ╟─cf19ee57-174d-42b9-8f9d-f4654907fc2a # ╠═63d90d97-ba80-449e-8d38-1bba52ab32ac # ╟─062ceeb7-5d6d-48ce-8ad5-9e1d78a937e7 # ╠═04a2acf6-52e2-42d7-96a0-f3e31d1f6b58 # ╟─63dedbcb-7ea0-4c4e-bb4c-fa8e258f9a93 # ╟─fbffaab6-3154-49df-a226-d5810d0b7c38 # ╟─1f48143a-2152-4bb9-a765-a25e70c281a3 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
54159
### A Pluto.jl notebook ### # v0.16.1 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing el end end # ╔═╡ 56571409-a81d-4772-98fd-e85e883aa4e4 using Plots, PlutoUI, BioCCP # ╔═╡ 20ce43cd-7634-4c94-afdf-d243415525cb md"                                                             $(@bind date DateField())" # ╔═╡ 4d246460-af05-11eb-382b-590e60ba61f5 md"## Collecting Coupons in combinatorial biotechnology This notebook provides functions and corresponding visualizations to determine expected minimum sample sizes for combinatorial biotechnology experiments, based on the mathematical framework of the Coupon Collector Problem (references see [^1], [^2]). " # ╔═╡ 6183795b-62a0-4ed4-b8f9-ea522da956e2 begin begin function tocsv(raw) t = string(raw) t = split(t, "[")[2] t = split(t, "]")[1] return t end end md"" end # ╔═╡ a8c81622-194a-443a-891b-bfbabffccff1 begin md""" 👇 **COMPLETE THE FIELDS BELOW** 👇\ *First, fill in the input parameters of your problem setting. Then, click outside the text field to update the report.*""" end # ╔═╡ e1b554a6-db6c-4d2a-9dd3-0a35095f4d8c Show(MIME"image/png"(), read("BioCCP_scheme.png")) # ╔═╡ 36a09fff-8b14-4d91-84e0-9ecabefa810a # ╔═╡ 40ac5be1-6fc2-4fbc-b0ca-a021266b2247 begin vec_n = []; md"""🔹 **№ modules in design space** (`n`):                       $(@bind n_string TextField(default = "100")) $(@bind help_n Button("❓"))""" end # ╔═╡ 7b05669c-7abe-42a7-838c-61c06b261256 begin help_n switch_n = rem(length(vec_n), 2) push!(vec_n, 1) if switch_n == 1 md"""                                                       =  *How many different modules or building                                                    blocks are available to construct designs?*""" end end # ╔═╡ 123d5b94-5772-42dc-bf74-d964d023b209 begin vec_r = [] md""" 🔹 **Expected № modules per design** (`r`):                      $(@bind r NumberField(1:20)) $(@bind help_r Button("❓")) """ end # ╔═╡ 30cb2ab3-ad67-405e-95a1-8feea223938a begin help_r switch_r = rem(length(vec_r), 2) push!(vec_r, 1) if switch_r == 1 md"""                                                  =   *How many modules are combined in                                                   a single design, on average?*""" end end # ╔═╡ c8164a38-fcf9-4f1b-b697-46c8ce978fce begin vec_m = [] md""" **🔹 № times you want to observe each module** (`m`):              $(@bind m NumberField(1:20)) $(@bind help_m Button("❓")) """ end # ╔═╡ a5c3153f-0946-4af8-871c-634a71e8b7f1 begin help_m switch_m = rem(length(vec_m), 2) push!(vec_m, 1) if switch_m == 1 md"""                                                     =    *How many times do you want to                                                     observe each of the available modules in                                                               the total set of designs?*""" end end # ╔═╡ d6c6be55-fc94-480a-bc58-ca67b0c44568 begin vec_p = [] md"""🔹 **Abundances of modules during library generation** (`p`):     $(@bind ps Select(["Equal", "Unequal"], default = "Equal")) $(@bind help_p Button("❓"))"""                     end # ╔═╡ b88fab57-9f78-4450-90af-62ab860620a0 begin help_p switch_p = rem(length(vec_p), 2) push!(vec_p, 1) if switch_p == 1 md"""                                                   =    *How are the abundances of the                                                                modules distributed during combinatorial                                                             generation of designs? Is each module                                                                    equally likely to be included in a design?*""" end end # ╔═╡ 45507d48-d75d-41c9-a018-299e209f900e begin vec_p_unequal = [] n = parse(Int64, n_string); if ps == "Equal" distribution = "Equal" end if ps == "Unequal" md""" ↳   **Specify distribution**:                                             $(@bind distribution Select(["Bell curve", "Zipf's law", "Custom vector"], default = " "))""" end end # ╔═╡ a937e514-4c4a-4f76-b8e5-3c2031afd416 if ps == "Unequal" md"""    *If the exact module probabilities are known, choose "Custom vector".* *Otherwise, select:* - *"Zipf's law" (when you expect a small number of modules to occur quite often, and a very large number of modules to occur at the statistical equivalent of zero, but, they do occur.)* - *"Bell curve" (when you expect a large number of modules to occur at an average probability and a smaller number of modules to occur with a small or large probability)* """ end # ╔═╡ b17f3b8a-61ee-4563-97cd-19ff049a8e1e begin if distribution == "Zipf's law" || distribution == "Bell curve" md"""                          ↳   **Specify pₘₐₓ/pₘᵢₙ**:         $(@bind pmaxpmin_string TextField(default = "4"))                                                 =    *The ratio of the largest and smallest                                                   module probability*""" end end # ╔═╡ 2639e3fb-ccbb-44de-bd15-1c5dbf6c1539 begin if distribution == "Custom vector" md"""        **↳  Enter/load your custom abundances by changing the cell below 👇**""" end end # ╔═╡ 464b67be-2dad-4315-a144-0b475414366f if distribution == "Custom vector" md"""                                            $(@bind abundances_str TextField((30, 10), default=join(string.(rand(200:1:400, n)), "\n")))                                            *Make sure the number of abundances is equal to n!*""" end # ╔═╡ 1220c75b-303c-4b0a-84c4-a12ee834a5af begin function tonumbers(text) text = split(text, "\n") text = rstrip.(text) text = text[text .!= ""] text = parse.(Float64,text) return text end if distribution == "Custom vector" abundances = (tonumbers(abundances_str)) end md"" end # ╔═╡ f6ebf9fb-0a29-4cb4-a544-6c6e32bedcc4 md""" 🎯 **REPORT** 🎯 **💻 Module probabilities**                                                                                                                       $(@bind show_modprobs Select(["🔻 SHOW ", "🔺 HIDE "], default="🔻 SHOW ") )  \ *How the abundances of the modules are distributed during combinatorial library generation.* """ # ╔═╡ b0291e05-776e-49ce-919f-4ad7de4070af begin function p_power(n, k) p = (1:n) .^ -k return p ./ sum(p) end if ps == "Equal" p_vec = ones(n)./sum(ones(n)); elseif ps == "Unequal" if distribution == "Bell curve" ratio = parse(Float64, pmaxpmin_string) ab1 = 1 ab2 = ratio*ab1 μ = (ab1+ab2)/2 σ = (ab2-ab1)/6 #create fixed distribution of abundances according to percentiles of bell curve n_perc_1 = Int(floor(n*0.34)); n_perc_2 = Int(floor(n*0.135)); n_perc_3 = Int(floor(n*0.0215)); #n_perc_4 = Int(floor(n*0.0013)); n_perc_rest = n - 2*n_perc_1 - 2*n_perc_2 - 2*n_perc_3 ; p_vec_unnorm = vcat(fill(μ,2*n_perc_1+n_perc_rest), fill(μ+1.5*σ, n_perc_2), fill(μ-1.5*σ, n_perc_2), fill(μ+3*σ, n_perc_3), fill(μ-3*σ, n_perc_3) ) # normalize sum to 1 p_vec = sort(p_vec_unnorm ./ sum(p_vec_unnorm)) end if distribution == "Custom vector" p_vec_unnorm = abundances p_vec = abundances ./ sum(abundances) end if distribution == "Zipf's law" ratio = parse(Float64, pmaxpmin_string) p_vec = p_power(n, log(ratio)/log(n)) p_vec = p_vec ./ sum(p_vec) end end if show_modprobs == "🔻 SHOW " scatter(p_vec, title = "Probability mass function", ylabel = "module probability pⱼ", xlabel = "module j", label="", size = (700, 400)) ylims!((0,2*maximum(p_vec)), titlefont=font(10), xguidefont=font(9), yguidefont=font(9)) end end # ╔═╡ 87c3f5cd-79bf-4ad8-b7f8-3e98ec548a9f begin if show_modprobs == "🔻 SHOW " && distribution == "Bell curve" histogram(p_vec, normalize=:probability, bar_edges=false, size = (550, 320), orientation=:v, bins=[(μ - 3*σ)/sum(p_vec_unnorm), (μ - 2*σ)/sum(p_vec_unnorm), (μ-σ)/sum(p_vec_unnorm), (μ + σ)/sum(p_vec_unnorm), (μ + 2*σ)/sum(p_vec_unnorm), (μ + 3.2*σ)/sum(p_vec_unnorm)], titlefont=font(10), xguidefont=font(9), yguidefont=font(9), label="") # if distribution == "Normally distributed" # plot!(x->pdf(Normal(μ, σ), x), xlim=xlims()) # xlabel!("Abundance"); ylabel!("probability"); title!("Distribution of module abundances") # end xlabel!("Probability"); ylabel!("Relative frequency"); title!("Distribution of module probabilities") end end # ╔═╡ 2313198e-3ac9-407b-b0d6-b79e02cefe35 begin if show_modprobs == "🔻 SHOW " && distribution == "Bell curve" md"""For $n_string modules of which the probabilities form a bell curve with ratio pₘₐₓ/pₘᵢₙ = $pmaxpmin_string , we follow the percentiles of a normal distribution to generate the probability vector. We consider μ to be the mean module probability and σ to be the standard deviation of the module probabilities. According to the percentiles - 68% of the module probabilities lies in the interval [μ - σ, μ + σ], - 95% of falls into the range [μ - 2σ, μ + 2σ] and - 99.7% lies in [μ - 3σ, μ +3σ]. We use the ratio pₘₐₓ/pₘᵢₙ to fix the width of the interval [μ - 3σ, μ +3σ]. (We assume that pₘₐₓ = μ +3σ and pₘᵢₙ = μ - 3σ and calculate μ and σ from this assumption). In addition, we make sure the sum of the probability vector sums up to 1. As a result, we get: - $(n_perc_1+n_perc_rest) modules with a probability of $(µ/sum(p_vec_unnorm)) - $(n_perc_2) modules with a probability of $((μ+1.5*σ)/sum(p_vec_unnorm)) - $(n_perc_2) modules with a probability of $((μ-1.5*σ)/sum(p_vec_unnorm)) - $(n_perc_3) modules with a probability of $((μ+2.5*σ)/sum(p_vec_unnorm)) - $(n_perc_3) modules with a probability of $((μ-2.5*σ)/sum(p_vec_unnorm))""" end end # ╔═╡ f098570d-799b-47e2-b692-476a4d95825b if show_modprobs == "🔻 SHOW " md"Each biological design in the design space is built by choosing $r module(s) (with replacement) out of a set of $n_string modules according to the module probabilities visualized above." end # ╔═╡ 85bfc3d5-447d-4078-af14-e3f369adfa71 # ╔═╡ caf67b2f-cc2f-4d0d-b619-6e1969fabc1a md""" **💻 Expected minimum sample size**                                                                                                             $(@bind show_E Select(["🔻 SHOW ", "🔺 HIDE "], default="🔺 SHOW "))  \ *The expected minimum number of designs to observe each module at least $m time(s) in the sampled set of designs.* """ # ╔═╡ 6f14a72c-51d3-4759-bb8b-10db1dc260f0 begin if show_E == "🔻 SHOW " E = Int(ceil(expectation_minsamplesize(n; p = p_vec, m=m, r = r))) sd = Int(ceil(std_minsamplesize(n; p = p_vec, m=m, r = r))) md"""      `Expected minimum sample size   `     = **$E designs**\      `Standard deviation              `                = **$sd designs** """ end end # ╔═╡ f1e180e5-82a7-4fab-b894-75be4627af5d # ╔═╡ 22fe8006-0e81-4e0a-a460-28610a55cd97 md""" **💻 Success probability**                                                                                                                  $(@bind show_success Select(["🔻 SHOW ", "🔺 HIDE "], default="🔻 SHOW ") )\ *The probability that the minimum number of designs T is smaller than or equal to a given sample size t.* """ # ╔═╡ db4371e4-7f86-4db3-b076-12f6cd220b89 begin if show_success == "🔻 SHOW " sample_size_95 = 1 while 0.95 - success_probability(n, sample_size_95; p = p_vec, r = r, m = m) > 0.00005 global sample_size_95 += Int(ceil(n/10)) end md"""    👉 Enter your sample size of interest: $(@bind sample_size_1_string TextField(default=string(sample_size_95)))"""  end #genereer tabel + download knop end # ╔═╡ 317995ed-bdf4-4f78-bd66-a39ffd1dc452 begin if show_success == "🔻 SHOW " sample_size_1 = parse(Int64, sample_size_1_string); p_success = Float64(success_probability(n, sample_size_1; p = p_vec, m = m, r = r)) md"""               ↳ `Success probability F(t)`  = **$p_success**\ """ end end # ╔═╡ 3039ac2b-656e-4c2b-9036-cb1d9cdc0790 # ╔═╡ ca5a4cef-df67-4a5e-8a86-75a9fe8c6f37 if show_success == "🔻 SHOW " md"*A curve describing the success probability in function of sample size.*" end # ╔═╡ 9616af0e-810c-4e6a-bc67-cb70e5e620f5 # ╔═╡ 24f7aae7-d37a-4db5-ace0-c910b178da88 begin if show_success == "🔻 SHOW " sample_size_initial = 5 while (1 - success_probability(n, sample_size_initial; p = p_vec, r = r, m = m)) > 0.0005 global sample_size_initial += Int(ceil(n/10)) end sample_sizes = Int.(ceil.(0:n/10:sample_size_initial)) successes = success_probability.(n, sample_sizes; p = p_vec, r = r, m = m) plot(sample_sizes, successes, title = "Success probability in function of sample size", xlabel = "sample size s", ylabel="P(minimum sample size <= s)", label = "", legend=:bottomright, size=(600,400), seriestype=:scatter, titlefont=font(10),xguidefont=font(9), yguidefont=font(9)) end end # ╔═╡ 4902d817-3967-45cd-a283-b2872cf1b49c if show_success == "🔻 SHOW " DownloadButton(string("sample_size,", tocsv(sample_sizes), "\n", "success_probability,", tocsv(successes)), "successprobability_$date.csv") end # ╔═╡ 37f951ee-885c-4bbe-a05f-7c5e48ff4b6b begin #following one-sided version of Chebyshev's inequality. function chebyshev_onesided_larger(X, μ, σ) X_μ = X - μ return σ^2 / (σ^2 + X_μ^2) end function chebyshev_onesided_smaller(X, μ, σ) X_μ = μ - X return σ^2 / (σ^2 + X_μ^2) end if show_success == "🔻 SHOW " if sample_size_1 < E compare = "smaller" if sample_size_1 <= n/r print_sentence = "P(minimum sample size ≤ $sample_size_1) = 0." else prob_chebyshev = chebyshev_onesided_smaller(sample_size_1, E, sd) print_sentence = "P(minimum sample size ≤ $sample_size_1) ≤ $prob_chebyshev. " end elseif sample_size_1 > E compare = "greater" prob_chebyshev = chebyshev_onesided_larger(sample_size_1, E, sd) print_sentence = "P(minimum sample size ≥ $sample_size_1) ≤ $prob_chebyshev. " elseif sample_size_1==E print_sentence = "P(minimum sample size ≤ $sample_size_1 OR minimum sample size ≥ $sample_size_1) ≤ 1." end md"""*Upper bound on probability that minimum sample size is smaller than given sample size t, according to Chebychev's inequality.*:                         $print_sentence""" end end # ╔═╡ 702b158b-4f1c-453f-9e70-c00ec22226c3 # ╔═╡ dc696281-7a5b-4568-a4c2-8dde90af43f0 md""" **💻 Expected observed fraction of the total number of modules**                $(@bind show_satur Select(["🔻 SHOW ", "🔺 HIDE "], default="🔺 HIDE "))\ *The fraction of the total number of available modules that is expected to be observed after collecting a given number of designs.*""" # ╔═╡ eb92ff7c-0140-468c-8b32-f15d1cf15913 if show_satur == "🔻 SHOW " md"""   👉 Enter your sample size of interest: $(@bind sample_size_2_string TextField(default="50")) """  end # ╔═╡ f0eaf96b-0bc0-4194-9a36-886cb1d66e00 begin if show_satur == "🔻 SHOW " sample_size_2 = Int(ceil(parse(Int64, sample_size_2_string))) E_fraction = expectation_fraction_collected(n, sample_size_2; p = p_vec, r = r) md"""             ↳ `Expected fraction observed` = **$E_fraction** """ end end # ╔═╡ 8ce0d3d7-8081-4d08-9189-595e3dc1814f # ╔═╡ 0099145a-5460-4549-9513-054bc1b04eea if show_satur == "🔻 SHOW " md""" *A curve describing the expected fraction of modules observed in function of sample size.* """ end # ╔═╡ 7968de5e-5ae8-4ab4-b089-c3d33475af2f begin if show_satur == "🔻 SHOW " global sample_size_initial_frac = 5 while (1 - expectation_fraction_collected(n, sample_size_initial_frac; p = p_vec, r = r)) > 0.0005 global sample_size_initial_frac += ceil(Int(n/10)) end sample_sizes_frac = Int.(ceil.(collect(0 : n/10 : sample_size_initial_frac))) fracs = expectation_fraction_collected.(n, sample_sizes_frac; p = p_vec, r = r) plot(sample_sizes_frac, fracs, title = "Expected observed fraction of the total number of modules", xlabel = "sample size", seriestype=:scatter, ylabel= "Expected observed fraction", label = "", size=(700,400), xguidefont=font(9), yguidefont=font(9), titlefont=font(10)) end end # ╔═╡ 0b95ccff-4c7b-400d-be61-8ea056ccc87f if show_satur == "🔻 SHOW " DownloadButton(string("sample_size,", tocsv(sample_sizes_frac), "\n", "expected_observed_fraction,", tocsv(fracs)), "expectedobservedfraction_$date.csv") end # ╔═╡ 09fb9f1d-16e4-447c-a5c0-d153cec22665 # ╔═╡ f92a6b6e-a556-45cb-a1ae-9f5fe791ffd2 md""" **💻 Occurrence of a specific module**                                                                                                       $(@bind show_occ Select(["🔻 SHOW ", "🔺 HIDE "], default="🔺 HIDE "))\ *How many times one can expect to have collected a specific module in a sample of a given size.*""" # ╔═╡ ec2a065f-0dc7-44d4-a18b-6c6a228b3ffc if show_occ == "🔻 SHOW " && distribution != "Zipf's law" md"""    👉 Enter the probability of the module of interest: $(@bind p_string TextField(default="0.005"))\ """  end # ╔═╡ 0e39a993-bb2f-4897-bfe2-5128ec62bef9 if show_occ == "🔻 SHOW " && distribution == "Zipf's law" md"""    👉 Enter the rank of the module of interest:        $(@bind rank_string TextField(default="5"))\ """  end # ╔═╡ f3329934-d69b-48a0-9cf1-e9a5920cf414 if show_occ == "🔻 SHOW "  md"""   👉 Enter the sample size of interest:                $(@bind sample_size_3_string TextField(default="500"))""" end # ╔═╡ a041652b-365e-4594-9c48-c63d547b3295 # ╔═╡ 6acb0a97-6469-499f-a5cf-6335d6aa909a begin if show_occ == "🔻 SHOW " sample_size_3 = parse(Int64, sample_size_3_string) if distribution != "Zipf's law" pᵢ = parse(Float64, p_string) ed = Int(floor(sample_size_3*pᵢ*r)) j = collect(0:1:3*ed) x = prob_occurrence_module.(pᵢ, sample_size_3, r, j) plot(j,x, seriestype=[:scatter, :line], xlabel="occurrences in sample", ylabel="probability", title="Probability on number of occurrences for specific module (for sample size = $sample_size_3)", size=((600,300)), label="",titlefont=font(10), xguidefont=font(9), yguidefont=font(9)) else rank = parse(Int64, rank_string) pᵢ = p_vec[rank] ed = Int(floor(sample_size_3*pᵢ*r)) j = collect(0:1:3*ed) x = prob_occurrence_module.(pᵢ, sample_size_3, r, j) plot(j,x, seriestype=[:scatter, :line], xlabel="occurrences in sample", ylabel="probabilityS", title="Probability on number of occurrences for specific module (for sample size = $sample_size_3)", size=((600,300)), label="",titlefont=font(10), xguidefont=font(9), yguidefont=font(9)) end end end # ╔═╡ 595423df-728b-43b1-ade4-176785c54be3 begin if show_occ == "🔻 SHOW " md"""             ↳ `Expected number of times observed` ≈ **$ed** """ end end # ╔═╡ a2bf1368-20a9-42cd-af58-67397644d725 if show_occ == "🔻 SHOW " DownloadButton(string("number_of_occurence,", tocsv(j), "\n", "probability,", tocsv(x)), "occurrencemodule_$date.csv") end # ╔═╡ fbffaab6-3154-49df-a226-d5810d0b7c38 md"""## References""" # ╔═╡ 1f48143a-2152-4bb9-a765-a25e70c281a3 md"""[^1]: Doumas, A. V., & Papanicolaou, V. G. (2016). *The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp.* ESAIM: Probability and Statistics, 20, 367-399. [^2]: Boneh, A., & Hofri, M. (1997). *The coupon-collector problem revisited—a survey of engineering problems and computational methods.* Stochastic Models, 13(1), 39-66. """ # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] BioCCP = "79e6b149-e254-49fe-a721-3c4960de1574" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" [compat] BioCCP = "~0.1.0" Plots = "~1.22.4" PlutoUI = "~0.7.14" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised [[Adapt]] deps = ["LinearAlgebra"] git-tree-sha1 = "84918055d15b3114ede17ac6a7182f68870c16f7" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.3.1" [[ArgTools]] git-tree-sha1 = "bdf73eec6a88885256f282d48eafcad25d7de494" uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" version = "1.1.1" [[Artifacts]] deps = ["Pkg"] git-tree-sha1 = "c30985d8821e0cd73870b17b0ed0ce6dc44cb744" uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" version = "1.3.0" [[Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[BioCCP]] deps = ["Distributions"] git-tree-sha1 = "791b4218060972fa3a37313208c674597581ee05" uuid = "79e6b149-e254-49fe-a721-3c4960de1574" version = "0.1.0" [[Bzip2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c3598e525718abcc440f69cc6d5f60dda0a1b61e" uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0" version = "1.0.6+5" [[Cairo_jll]] deps = ["Artifacts", "Bzip2_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "e2f47f6d8337369411569fd45ae5753ca10394c6" uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" version = "1.16.0+6" [[ChainRulesCore]] deps = ["Compat", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "a325370b9dd0e6bf5656a6f1a7ae80755f8ccc46" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.7.2" [[ColorSchemes]] deps = ["ColorTypes", "Colors", "FixedPointNumbers", "Random"] git-tree-sha1 = "a851fec56cb73cfdf43762999ec72eff5b86882a" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.15.0" [[ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.0" [[Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.8" [[Compat]] deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"] git-tree-sha1 = "31d0151f5716b655421d9d75b7fa74cc4e744df2" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "3.39.0" [[CompilerSupportLibraries_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "8e695f735fca77e9708e795eda62afdb869cbb70" uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" version = "0.3.4+0" [[Contour]] deps = ["StaticArrays"] git-tree-sha1 = "9f02045d934dc030edad45944ea80dbd1f0ebea7" uuid = "d38c429a-6771-53c6-b99e-75d170b6e991" version = "0.5.7" [[DataAPI]] git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.9.0" [[DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "7d9d316f04214f7efdbb6398d545446e246eff02" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.10" [[DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[Distributions]] deps = ["ChainRulesCore", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns"] git-tree-sha1 = "ff7890c74e2eaffbc0b3741811e3816e64b6343d" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" version = "0.25.18" [[DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "a32185f5428d3986f47c2ab78b1f216d5e6cc96f" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.8.5" [[Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] git-tree-sha1 = "135bf1896be424235eadb17474b2a78331567f08" uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.5.1" [[EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "92d8f9f208637e8d2d28c664051a00569c01493d" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.1.5+1" [[Expat_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "1402e52fcda25064f51c77a9655ce8680b76acf0" uuid = "2e619515-83b5-522b-bb60-26c02a35a201" version = "2.2.7+6" [[FFMPEG]] deps = ["FFMPEG_jll"] git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8" uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a" version = "0.4.1" [[FFMPEG_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "LibVPX_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "Pkg", "Zlib_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"] git-tree-sha1 = "3cc57ad0a213808473eafef4845a74766242e05f" uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5" version = "4.3.1+4" [[FillArrays]] deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"] git-tree-sha1 = "29890dfbc427afa59598b8cfcc10034719bd7744" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "0.12.6" [[FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[Fontconfig_jll]] deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "35895cf184ceaab11fd778b4590144034a167a2f" uuid = "a3f928ae-7b40-5064-980b-68af3947d34b" version = "2.13.1+14" [[Formatting]] deps = ["Printf"] git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8" uuid = "59287772-0a20-5a39-b81b-1366585eb4c0" version = "0.4.2" [[FreeType2_jll]] deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "cbd58c9deb1d304f5a245a0b7eb841a2560cfec6" uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7" version = "2.10.1+5" [[FriBidi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "0d20aed5b14dd4c9a2453c1b601d08e1149679cc" uuid = "559328eb-81f9-559d-9380-de523a88c83c" version = "1.0.5+6" [[GLFW_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pkg", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"] git-tree-sha1 = "a199aefead29c3c2638c3571a9993b564109d45a" uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89" version = "3.3.4+0" [[GR]] deps = ["Base64", "DelimitedFiles", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Pkg", "Printf", "Random", "Serialization", "Sockets", "Test", "UUIDs"] git-tree-sha1 = "c2178cfbc0a5a552e16d097fae508f2024de61a3" uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71" version = "0.59.0" [[GR_jll]] deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Pkg", "Qt5Base_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "d59e8320c2747553788e4fc42231489cc602fa50" uuid = "d2c73de3-f751-5644-a686-071e5b155ba9" version = "0.58.1+0" [[GeometryBasics]] deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "58bcdf5ebc057b085e58d95c138725628dd7453c" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.4.1" [[Gettext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "8c14294a079216000a0bdca5ec5a447f073ddc9d" uuid = "78b55507-aeef-58d4-861c-77aaff3498b1" version = "0.20.1+7" [[Glib_jll]] deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "04690cc5008b38ecbdfede949220bc7d9ba26397" uuid = "7746bdde-850d-59dc-9ae8-88ece973131d" version = "2.59.0+4" [[Grisu]] git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2" uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe" version = "1.0.2" [[HTTP]] deps = ["Base64", "Dates", "IniFile", "Logging", "MbedTLS", "NetworkOptions", "Sockets", "URIs"] git-tree-sha1 = "14eece7a3308b4d8be910e265c724a6ba51a9798" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "0.9.16" [[HypertextLiteral]] git-tree-sha1 = "72053798e1be56026b81d4e2682dbe58922e5ec9" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.0" [[IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[IniFile]] deps = ["Test"] git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8" uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f" version = "0.5.0" [[InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[IrrationalConstants]] git-tree-sha1 = "f76424439413893a832026ca355fe273e93bce94" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.1.0" [[IterTools]] git-tree-sha1 = "05110a2ab1fc5f932622ffea2a003221f4782c18" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.3.0" [[IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[JLLWrappers]] deps = ["Preferences"] git-tree-sha1 = "642a199af8b68253517b80bd3bfd17eb4e84df6e" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.3.0" [[JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.2" [[JpegTurbo_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9aff0587d9603ea0de2c6f6300d9f9492bbefbd3" uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" version = "2.0.1+3" [[LAME_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "df381151e871f41ee86cee4f5f6fd598b8a68826" uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d" version = "3.100.0+3" [[LZO_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f128cd6cd05ffd6d3df0523ed99b90ff6f9b349a" uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac" version = "2.10.0+3" [[LaTeXStrings]] git-tree-sha1 = "c7f1c695e06c01b95a67f0cd1d34994f3e7db104" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.2.1" [[Latexify]] deps = ["Formatting", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "Printf", "Requires"] git-tree-sha1 = "a4b12a1bd2ebade87891ab7e36fdbce582301a92" uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316" version = "0.15.6" [[LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] git-tree-sha1 = "cdbe7465ab7b52358804713a53c7fe1dac3f8a3f" uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" version = "0.6.3" [[LibCURL_jll]] deps = ["LibSSH2_jll", "Libdl", "MbedTLS_jll", "Pkg", "Zlib_jll", "nghttp2_jll"] git-tree-sha1 = "897d962c20031e6012bba7b3dcb7a667170dad17" uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" version = "7.70.0+2" [[LibGit2]] deps = ["Printf"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[LibSSH2_jll]] deps = ["Libdl", "MbedTLS_jll", "Pkg"] git-tree-sha1 = "717705533148132e5466f2924b9a3657b16158e8" uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" version = "1.9.0+3" [[LibVPX_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "85fcc80c3052be96619affa2fe2e6d2da3908e11" uuid = "dd192d2f-8180-539f-9fb4-cc70b1dcf69a" version = "1.9.0+1" [[Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[Libffi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "a2cd088a88c0d37eef7d209fd3d8712febce0d90" uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490" version = "3.2.1+4" [[Libgcrypt_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"] git-tree-sha1 = "b391a18ab1170a2e568f9fb8d83bc7c780cb9999" uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" version = "1.8.5+4" [[Libglvnd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"] git-tree-sha1 = "7739f837d6447403596a75d19ed01fd08d6f56bf" uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29" version = "1.3.0+3" [[Libgpg_error_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "ec7f2e8ad5c9fa99fc773376cdbc86d9a5a23cb7" uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" version = "1.36.0+3" [[Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "cba7b560fcc00f8cd770fa85a498cbc1d63ff618" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.16.0+8" [[Libmount_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "51ad0c01c94c1ce48d5cad629425035ad030bfd5" uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9" version = "2.34.0+3" [[Libtiff_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Pkg", "Zlib_jll", "Zstd_jll"] git-tree-sha1 = "291dd857901f94d683973cdf679984cdf73b56d0" uuid = "89763e89-9b03-5906-acba-b20f662cd828" version = "4.1.0+2" [[Libuuid_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f879ae9edbaa2c74c922e8b85bb83cc84ea1450b" uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700" version = "2.34.0+7" [[LinearAlgebra]] deps = ["Libdl"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[LogExpFunctions]] deps = ["ChainRulesCore", "DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "34dc30f868e368f8a17b728a1238f3fcda43931a" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.3" [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "5a5bc6bf062f0f95e62d0fe0a2d99699fed82dd9" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.8" [[Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[MbedTLS]] deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"] git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.0.3" [[MbedTLS_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "0eef589dd1c26a3ac9d753fe1a8bcad63f956fa6" uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" version = "2.16.8+1" [[Measures]] git-tree-sha1 = "e498ddeee6f9fdb4551ce855a46f54dbd900245f" uuid = "442fdcdd-2543-5da2-b0f3-8c86c306513e" version = "0.3.1" [[Missings]] deps = ["DataAPI"] git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "1.0.2" [[Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[MozillaCACerts_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f1662575f7bf53c73c2bbc763bace4b024de822c" uuid = "14a3606d-f60d-562e-9121-12d972cd8159" version = "2021.1.19+0" [[NaNMath]] git-tree-sha1 = "bfe47e760d60b82b66b61d2d44128b62e3a369fb" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "0.3.5" [[NetworkOptions]] git-tree-sha1 = "ed3157f48a05543cce9b241e1f2815f7e843d96e" uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[Ogg_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "a42c0f138b9ebe8b58eba2271c5053773bde52d0" uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051" version = "1.3.4+2" [[OpenLibm_jll]] deps = ["Libdl", "Pkg"] git-tree-sha1 = "d22054f66695fe580009c09e765175cbf7f13031" uuid = "05823500-19ac-5b8b-9628-191a04bc5112" version = "0.7.1+0" [[OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "71bbbc616a1d710879f5a1021bcba65ffba6ce58" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "1.1.1+6" [[OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9db77584158d0ab52307f8c04f8e7c08ca76b5b3" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.3+4" [[Opus_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f9d57f4126c39565e05a2b0264df99f497fc6f37" uuid = "91d4177d-7536-5919-b921-800302f37372" version = "1.3.1+3" [[OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[PCRE_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "1b556ad51dceefdbf30e86ffa8f528b73c7df2bb" uuid = "2f80f16e-611a-54ab-bc61-aa92de5b98fc" version = "8.42.0+4" [[PDMats]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "4dd403333bcf0909341cfe57ec115152f937d7d8" uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" version = "0.11.1" [[Parsers]] deps = ["Dates"] git-tree-sha1 = "a8709b968a1ea6abc2dc1967cb1db6ac9a00dfb6" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.0.5" [[Pixman_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "6a20a83c1ae86416f0a5de605eaea08a552844a3" uuid = "30392449-352a-5448-841d-b1acce4e97dc" version = "0.40.0+0" [[Pkg]] deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[PlotThemes]] deps = ["PlotUtils", "Requires", "Statistics"] git-tree-sha1 = "a3a964ce9dc7898193536002a6dd892b1b5a6f1d" uuid = "ccf2f8ad-2431-5c83-bf29-c5338b663b6a" version = "2.0.1" [[PlotUtils]] deps = ["ColorSchemes", "Colors", "Dates", "Printf", "Random", "Reexport", "Statistics"] git-tree-sha1 = "b084324b4af5a438cd63619fd006614b3b20b87b" uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043" version = "1.0.15" [[Plots]] deps = ["Base64", "Contour", "Dates", "Downloads", "FFMPEG", "FixedPointNumbers", "GR", "GeometryBasics", "JSON", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "PlotThemes", "PlotUtils", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "UUIDs"] git-tree-sha1 = "6841db754bd01a91d281370d9a0f8787e220ae08" uuid = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" version = "1.22.4" [[PlutoUI]] deps = ["Base64", "Dates", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"] git-tree-sha1 = "d1fb76655a95bf6ea4348d7197b22e889a4375f4" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.14" [[Preferences]] deps = ["TOML"] git-tree-sha1 = "00cfd92944ca9c760982747e9a1d0d5d86ab1e5a" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.2.2" [[Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[Qt5Base_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Fontconfig_jll", "Glib_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "OpenSSL_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libxcb_jll", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_keysyms_jll", "Xorg_xcb_util_renderutil_jll", "Xorg_xcb_util_wm_jll", "Zlib_jll", "xkbcommon_jll"] git-tree-sha1 = "16626cfabbf7206d60d84f2bf4725af7b37d4a77" uuid = "ea2cea3b-5b76-57ae-a6ef-0a8af62496e1" version = "5.15.2+0" [[QuadGK]] deps = ["DataStructures", "LinearAlgebra"] git-tree-sha1 = "78aadffb3efd2155af139781b8a8df1ef279ea39" uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" version = "2.4.2" [[REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[Random]] deps = ["Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[RecipesBase]] git-tree-sha1 = "44a75aa7a527910ee3d1751d1f0e4148698add9e" uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" version = "1.1.2" [[RecipesPipeline]] deps = ["Dates", "NaNMath", "PlotUtils", "RecipesBase"] git-tree-sha1 = "7ad0dfa8d03b7bcf8c597f59f5292801730c55b8" uuid = "01d81517-befc-4cb6-b9ec-a95719d0359c" version = "0.4.1" [[Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[Requires]] deps = ["UUIDs"] git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.1.3" [[Rmath]] deps = ["Random", "Rmath_jll"] git-tree-sha1 = "86c5647b565873641538d8f812c04e4c9dbeb370" uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" version = "0.6.1" [[Rmath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "1b7bf41258f6c5c9c31df8c1ba34c1fc88674957" uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" version = "0.2.2+2" [[SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[Scratch]] deps = ["Dates"] git-tree-sha1 = "0b4b7f1393cff97c33891da2a0bf69c6ed241fda" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.1.0" [[Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[Showoff]] deps = ["Dates", "Grisu"] git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de" uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f" version = "1.0.3" [[Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[SortingAlgorithms]] deps = ["DataStructures"] git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "1.0.1" [[SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[SpecialFunctions]] deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "793793f1df98e3d7d554b65a107e9c9a6399a6ed" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "1.7.0" [[StaticArrays]] deps = ["LinearAlgebra", "Random", "Statistics"] git-tree-sha1 = "3c76dde64d03699e074ac02eb2e8ba8254d428da" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.2.13" [[Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[StatsAPI]] git-tree-sha1 = "1958272568dc176a1d881acb797beb909c785510" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.0.0" [[StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "8cbbc098554648c84f79a463c9ff0fd277144b6c" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.33.10" [[StatsFuns]] deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] git-tree-sha1 = "95072ef1a22b057b1e80f73c2a89ad238ae4cfff" uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" version = "0.9.12" [[StructArrays]] deps = ["Adapt", "DataAPI", "StaticArrays", "Tables"] git-tree-sha1 = "2ce41e0d042c60ecd131e9fb7154a3bfadbf50d3" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.3" [[SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[TOML]] deps = ["Dates"] git-tree-sha1 = "44aaac2d2aec4a850302f9aa69127c74f0c3787e" uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" version = "1.0.3" [[TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"] git-tree-sha1 = "fed34d0e71b91734bf0a7e10eb1bb05296ddbcd0" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.6.0" [[Test]] deps = ["Distributed", "InteractiveUtils", "Logging", "Random"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[URIs]] git-tree-sha1 = "97bbe755a53fe859669cd907f2d96aee8d2c1355" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.3.0" [[UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[Wayland_jll]] deps = ["Artifacts", "Expat_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "dc643a9b774da1c2781413fd7b6dcd2c56bb8056" uuid = "a2964d1f-97da-50d4-b82a-358c7fce9d89" version = "1.17.0+4" [[Wayland_protocols_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll"] git-tree-sha1 = "2839f1c1296940218e35df0bbb220f2a79686670" uuid = "2381bf8a-dfd0-557d-9999-79630e7b1b91" version = "1.18.0+4" [[XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "be0db24f70aae7e2b89f2f3092e93b8606d659a6" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.9.10+3" [[XSLT_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "2b3eac39df218762d2d005702d601cd44c997497" uuid = "aed1982a-8fda-507f-9586-7b0439959a61" version = "1.1.33+4" [[Xorg_libX11_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] git-tree-sha1 = "5be649d550f3f4b95308bf0183b82e2582876527" uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" version = "1.6.9+4" [[Xorg_libXau_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4e490d5c960c314f33885790ed410ff3a94ce67e" uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" version = "1.0.9+4" [[Xorg_libXcursor_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXfixes_jll", "Xorg_libXrender_jll"] git-tree-sha1 = "12e0eb3bc634fa2080c1c37fccf56f7c22989afd" uuid = "935fb764-8cf2-53bf-bb30-45bb1f8bf724" version = "1.2.0+4" [[Xorg_libXdmcp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4fe47bd2247248125c428978740e18a681372dd4" uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" version = "1.1.3+4" [[Xorg_libXext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "b7c0aa8c376b31e4852b360222848637f481f8c3" uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3" version = "1.3.4+4" [[Xorg_libXfixes_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "0e0dc7431e7a0587559f9294aeec269471c991a4" uuid = "d091e8ba-531a-589c-9de9-94069b037ed8" version = "5.0.3+4" [[Xorg_libXi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXfixes_jll"] git-tree-sha1 = "89b52bc2160aadc84d707093930ef0bffa641246" uuid = "a51aa0fd-4e3c-5386-b890-e753decda492" version = "1.7.10+4" [[Xorg_libXinerama_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll"] git-tree-sha1 = "26be8b1c342929259317d8b9f7b53bf2bb73b123" uuid = "d1454406-59df-5ea1-beac-c340f2130bc3" version = "1.1.4+4" [[Xorg_libXrandr_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll"] git-tree-sha1 = "34cea83cb726fb58f325887bf0612c6b3fb17631" uuid = "ec84b674-ba8e-5d96-8ba1-2a689ba10484" version = "1.5.2+4" [[Xorg_libXrender_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "19560f30fd49f4d4efbe7002a1037f8c43d43b96" uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa" version = "0.9.10+4" [[Xorg_libpthread_stubs_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "6783737e45d3c59a4a4c4091f5f88cdcf0908cbb" uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" version = "0.1.0+3" [[Xorg_libxcb_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] git-tree-sha1 = "daf17f441228e7a3833846cd048892861cff16d6" uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" version = "1.13.0+3" [[Xorg_libxkbfile_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "926af861744212db0eb001d9e40b5d16292080b2" uuid = "cc61e674-0454-545c-8b26-ed2c68acab7a" version = "1.1.0+4" [[Xorg_xcb_util_image_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "0fab0a40349ba1cba2c1da699243396ff8e94b97" uuid = "12413925-8142-5f55-bb0e-6d7ca50bb09b" version = "0.4.0+1" [[Xorg_xcb_util_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll"] git-tree-sha1 = "e7fd7b2881fa2eaa72717420894d3938177862d1" uuid = "2def613f-5ad1-5310-b15b-b15d46f528f5" version = "0.4.0+1" [[Xorg_xcb_util_keysyms_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "d1151e2c45a544f32441a567d1690e701ec89b00" uuid = "975044d2-76e6-5fbe-bf08-97ce7c6574c7" version = "0.4.0+1" [[Xorg_xcb_util_renderutil_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "dfd7a8f38d4613b6a575253b3174dd991ca6183e" uuid = "0d47668e-0667-5a69-a72c-f761630bfb7e" version = "0.3.9+1" [[Xorg_xcb_util_wm_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "e78d10aab01a4a154142c5006ed44fd9e8e31b67" uuid = "c22f9ab0-d5fe-5066-847c-f4bb1cd4e361" version = "0.4.1+1" [[Xorg_xkbcomp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxkbfile_jll"] git-tree-sha1 = "4bcbf660f6c2e714f87e960a171b119d06ee163b" uuid = "35661453-b289-5fab-8a00-3d9160c6a3a4" version = "1.4.2+4" [[Xorg_xkeyboard_config_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xkbcomp_jll"] git-tree-sha1 = "5c8424f8a67c3f2209646d4425f3d415fee5931d" uuid = "33bec58e-1273-512f-9401-5d533626f822" version = "2.27.0+4" [[Xorg_xtrans_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "79c31e7844f6ecf779705fbc12146eb190b7d845" uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" version = "1.4.0+3" [[Zlib_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "320228915c8debb12cb434c59057290f0834dbf6" uuid = "83775a58-1f1d-513f-b197-d71354ab007a" version = "1.2.11+18" [[Zstd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "2c1332c54931e83f8f94d310fa447fd743e8d600" uuid = "3161d3a3-bdf6-5164-811a-617609db77b4" version = "1.4.8+0" [[libass_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "acc685bcf777b2202a904cdcb49ad34c2fa1880c" uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0" version = "0.14.0+4" [[libfdk_aac_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "7a5780a0d9c6864184b3a2eeeb833a0c871f00ab" uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280" version = "0.1.6+4" [[libpng_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "6abbc424248097d69c0c87ba50fcb0753f93e0ee" uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" version = "1.6.37+6" [[libvorbis_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"] git-tree-sha1 = "fa14ac25af7a4b8a7f61b287a124df7aab601bcd" uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a" version = "1.3.6+6" [[nghttp2_jll]] deps = ["Libdl", "Pkg"] git-tree-sha1 = "8e2c44ab4d49ad9518f359ed8b62f83ba8beede4" uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" version = "1.40.0+2" [[x264_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "d713c1ce4deac133e3334ee12f4adff07f81778f" uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a" version = "2020.7.14+2" [[x265_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "487da2f8f2f0c8ee0e83f39d13037d6bbf0a45ab" uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76" version = "3.0.0+3" [[xkbcommon_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll", "Wayland_protocols_jll", "Xorg_libxcb_jll", "Xorg_xkeyboard_config_jll"] git-tree-sha1 = "ece2350174195bb31de1a63bea3a41ae1aa593b6" uuid = "d8fb68d0-12a3-5cfd-a85a-d49703b185fd" version = "0.9.1+5" """ # ╔═╡ Cell order: # ╟─20ce43cd-7634-4c94-afdf-d243415525cb # ╟─4d246460-af05-11eb-382b-590e60ba61f5 # ╠═56571409-a81d-4772-98fd-e85e883aa4e4 # ╟─6183795b-62a0-4ed4-b8f9-ea522da956e2 # ╟─a8c81622-194a-443a-891b-bfbabffccff1 # ╟─e1b554a6-db6c-4d2a-9dd3-0a35095f4d8c # ╟─36a09fff-8b14-4d91-84e0-9ecabefa810a # ╟─40ac5be1-6fc2-4fbc-b0ca-a021266b2247 # ╟─7b05669c-7abe-42a7-838c-61c06b261256 # ╟─123d5b94-5772-42dc-bf74-d964d023b209 # ╟─30cb2ab3-ad67-405e-95a1-8feea223938a # ╟─c8164a38-fcf9-4f1b-b697-46c8ce978fce # ╟─a5c3153f-0946-4af8-871c-634a71e8b7f1 # ╟─d6c6be55-fc94-480a-bc58-ca67b0c44568 # ╟─b88fab57-9f78-4450-90af-62ab860620a0 # ╟─45507d48-d75d-41c9-a018-299e209f900e # ╟─a937e514-4c4a-4f76-b8e5-3c2031afd416 # ╟─b17f3b8a-61ee-4563-97cd-19ff049a8e1e # ╟─2639e3fb-ccbb-44de-bd15-1c5dbf6c1539 # ╟─464b67be-2dad-4315-a144-0b475414366f # ╟─1220c75b-303c-4b0a-84c4-a12ee834a5af # ╟─f6ebf9fb-0a29-4cb4-a544-6c6e32bedcc4 # ╟─87c3f5cd-79bf-4ad8-b7f8-3e98ec548a9f # ╟─2313198e-3ac9-407b-b0d6-b79e02cefe35 # ╟─b0291e05-776e-49ce-919f-4ad7de4070af # ╟─f098570d-799b-47e2-b692-476a4d95825b # ╟─85bfc3d5-447d-4078-af14-e3f369adfa71 # ╟─caf67b2f-cc2f-4d0d-b619-6e1969fabc1a # ╟─6f14a72c-51d3-4759-bb8b-10db1dc260f0 # ╟─f1e180e5-82a7-4fab-b894-75be4627af5d # ╟─22fe8006-0e81-4e0a-a460-28610a55cd97 # ╟─db4371e4-7f86-4db3-b076-12f6cd220b89 # ╟─317995ed-bdf4-4f78-bd66-a39ffd1dc452 # ╟─3039ac2b-656e-4c2b-9036-cb1d9cdc0790 # ╟─ca5a4cef-df67-4a5e-8a86-75a9fe8c6f37 # ╟─9616af0e-810c-4e6a-bc67-cb70e5e620f5 # ╟─24f7aae7-d37a-4db5-ace0-c910b178da88 # ╟─4902d817-3967-45cd-a283-b2872cf1b49c # ╟─37f951ee-885c-4bbe-a05f-7c5e48ff4b6b # ╟─702b158b-4f1c-453f-9e70-c00ec22226c3 # ╟─dc696281-7a5b-4568-a4c2-8dde90af43f0 # ╟─eb92ff7c-0140-468c-8b32-f15d1cf15913 # ╟─f0eaf96b-0bc0-4194-9a36-886cb1d66e00 # ╟─8ce0d3d7-8081-4d08-9189-595e3dc1814f # ╟─0099145a-5460-4549-9513-054bc1b04eea # ╟─7968de5e-5ae8-4ab4-b089-c3d33475af2f # ╟─0b95ccff-4c7b-400d-be61-8ea056ccc87f # ╟─09fb9f1d-16e4-447c-a5c0-d153cec22665 # ╟─f92a6b6e-a556-45cb-a1ae-9f5fe791ffd2 # ╟─ec2a065f-0dc7-44d4-a18b-6c6a228b3ffc # ╟─0e39a993-bb2f-4897-bfe2-5128ec62bef9 # ╟─f3329934-d69b-48a0-9cf1-e9a5920cf414 # ╟─a041652b-365e-4594-9c48-c63d547b3295 # ╟─6acb0a97-6469-499f-a5cf-6335d6aa909a # ╟─595423df-728b-43b1-ade4-176785c54be3 # ╟─a2bf1368-20a9-42cd-af58-67397644d725 # ╟─fbffaab6-3154-49df-a226-d5810d0b7c38 # ╟─1f48143a-2152-4bb9-a765-a25e70c281a3 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
501
### A Pluto.jl notebook ### # v0.16.1 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing el end end # ╔═╡ e1a7f2da-a38b-4b3c-a238-076769e46408 #test
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
9167
module BioCCP using Base: Integer using Distributions export expectation_minsamplesize, std_minsamplesize, success_probability, expectation_fraction_collected, prob_occurrence_module """Computes the log of factorial(n), falls back on Stirling's approximation for `n` > 20""" logfactorial(n) = n ≤ 20 ? log(factorial(n)) : 0.5log(2pi*n) + n * log(n/ℯ) """ exp_ccdf(n, T; p=ones(n)/n, m=1, r=1, normalize=true) Calculates `1 - F(t)`, which is the complement of the success probability `F(t)=P(T ≤ t)` (= probability that the expected minimum number of designs `T` is smaller than `t` in order to see each module at least `m` times). This function serves as the integrand for calculating `E[T]`. - `n`: number of modules in the design space - `p`: vector with the probabilities/abundances of the different modules in the design space during library generation - `T`: number of designs - `m`: number of times each module has to observed in the sampled set of designs - `r`: number of modules per design - normalize: if true, normalize `p` References: - Doumas, A. V., & Papanicolaou, V. G. (2016). The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp. ESAIM: Probability and Statistics, 20, 367-399. - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> n = 100 julia> t = 500 julia> exp_ccdf(n, t; p=ones(n)/n, m=1, r=1, normalize=true) 0.4913906004535237 ``` """ function exp_ccdf(n, t; p=ones(n)/n, m=1, r=1, normalize=true) @assert length(p) == n # Normalize probabilities if normalize p ./= sum(p) end # Initialize probability P P_cdf = 1.0 for i in 1:n Sm = 0.0 for j in 1:m # formulas see paper reference [1] Sm += (j-1) * (log(p[i]) + log(r) + log(t)) - logfactorial(j-1) |> exp end P_cdf *= (1 - Sm * exp(-p[i]*r*t)) end P = 1.0 - P_cdf return P end """ approximate_moment(n, fun; p=ones(n)/n, q=1, m=1, r=1, steps=1000, normalize=true, ϵ = 1e-3) Calculates the q-th rising moment of `T[N]` (number of designs that are needed to collect all modules `m` times). Integral is approximated by the Riemann sum. Reference: - Doumas, A. V., & Papanicolaou, V. G. (2016). The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp. ESAIM: Probability and Statistics, 20, 367-399. ## Examples ```julia-repl julia> n = 100 julia> fun = exp_ccdf julia> approximate_moment(n, fun; p=ones(n)/n, q=1, m=1, r=1, steps=10000, normalize=true) 518.8175339489885 ``` """ function approximate_moment(n, fun; p=ones(n)/n, q=1, m=1, r=1, steps=500, normalize=true, ϵ=1e-3) @assert length(p) == n a = 0; b = n*log(n) while fun(n, b; p=p, m=m, r=r, normalize=normalize) > ϵ b += n end # integration exp_ccdf, see paper References [1] # build in adaptive integration (exp_ccdf is a very steep function): # minimize function evaluation at constant function value, only evaluate function at steep part a = b while fun(n, a; p=p, m=m, r=r, normalize=normalize) < 1 - ϵ a += -n / 10 end δ = (b-a)/steps; t = a:δ:b qth_moment = q * sum(δ .* 1 .* (0:δ:a-δ).^[q-1]) + q * sum(δ .* fun.(n, t; p=p, m=m, r=r, normalize=normalize) .* t.^[q-1]) return qth_moment end """ expectation_minsamplesize(n; p=ones(n)/n, m=1, r=1, normalize=true) Calculates the expected minimum number of designs `E[T]` to observe each module at least `m` times. - `n`: number of modules in the design space - `p`: vector with the probabilities or abundances of the different modules - `m`: number of times each module has to be observed in the sampled set of designs - `r`: number of modules per design - normalize: if true, normalize `p` References: - Doumas, A. V., & Papanicolaou, V. G. (2016). The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp. ESAIM: Probability and Statistics, 20, 367-399. - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> n = 100 julia> expectation_minsamplesize(n; p=ones(n)/n, m=1, r=1, normalize=true) 518 ``` """ function expectation_minsamplesize(n::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) @assert length(p) == n @assert n > 0 @assert all(p .>= 0) @assert m > 0 @assert r > 0 E = approximate_moment(n, exp_ccdf; p=p, q=1, m=m, r=r, normalize=normalize) return Int(ceil(E)) end """ std_minsamplesize(n::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) Calculates the standard deviation on the minimum number of designs to observe each module at least `m` times. - `n`: number of modules in the design space - `p`: vector with the probabilities or abundances of the different modules - `m`: number of complete sets of modules that need to be collected - `r`: number of modules per design - normalize: if true, normalize `p` ## Examples ```julia-repl julia> n = 100 julia> std_minsamplesize(n; p=ones(n)/n, m=1, r=1, normalize=true) 126 ``` """ function std_minsamplesize(n::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) @assert length(p) == n @assert n > 0 @assert all(p .>= 0) @assert m > 0 @assert r > 0 M1 = approximate_moment(n, exp_ccdf; p, m, r, normalize, q=1) M2 = approximate_moment(n, exp_ccdf; p, m, r, normalize, q=2) var = M2 - M1 - M1^2 return Int(ceil(sqrt(var))) end """ success_probability(n::Integer, t::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) Calculates the success probability `F(t) = P(T ≤ t)` or the probability that the minimum number of designs `T` to see each module at least `m` times is smaller than `t`. - `n`: number of modules in design space - `t`: sample size/number of designs for which to calculate the success probability - `p`: vector with the probabilities or abundances of the different modules - `m`: number of complete sets of modules that need to be collected - `r`: number of modules per design - normalize: if true, normalize `p` References: - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> n = 100 julia> t = 600 julia> success_probability(n, t; p=ones(n)/n, m=1, r=1, normalize=true) 0.7802171997092149 ``` """ function success_probability(n::Integer, t::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true) @assert length(p) == n @assert n > 0 @assert all(p .>= 0) @assert t >= 0 @assert m > 0 @assert r > 0 P_success = 1.0 - exp_ccdf(n, t; p, m, r, normalize) return P_success end """ expectation_fraction_collected(n::Integer, t::Integer; p=ones(n)/n, r=1, normalize=true) Calculates the fraction of all modules that is expected to be observed after collecting `t` designs. - `n`: number of modules in design space - `t`: sample size/number of designs - `p`: vector with the probabilities or abundances of the different modules - `r`: number of modules per design - normalize: if true, normalize `p` References: - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> n = 100 julia> t = 200 julia> expectation_fraction_collected(n, t; p=ones(n)/n, r=1, normalize=true) 0.8660203251420364 ``` """ function expectation_fraction_collected(n::Integer, t::Integer; p=ones(n)/n, r=1, normalize=true) @assert length(p) == n @assert n > 0 @assert all(p .>= 0) @assert t >= 0 @assert r > 0 if normalize p ./= sum(p) end frac = sum( (1-(1-p[i])^(t*r)) for i in 1:n )/n return frac end """ prob_occurrence_module(pᵢ, t::Integer, r, k::Integer) Calculates probability that specific module with module probability `pᵢ` has occurred `k` times after collecting `t` designs. Sampling processes of individual modules are assumed to be independent Poisson processes. - `pᵢ`: module probability - `t`: sample size/number of designs - `k`: number of occurrence References: - Boneh, A., & Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. Stochastic Models, 13(1), 39-66. ## Examples ```julia-repl julia> pᵢ = 0.005 julia> t = 500 julia> k = 2 julia> r = 1 julia> prob_occurrence_module(pᵢ, t, r, k) 0.25651562069968376 ``` """ function prob_occurrence_module(pᵢ, t::Integer, r, k::Integer) @assert pᵢ > 0 && pᵢ <= 1 @assert t >= 0 @assert r >= 0 @assert k >= 0 poisson = Poisson(pᵢ * t * r) return pdf(poisson, k) end end
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
2632
using Base: Int64 using BioCCP @testset "BioCCP" begin n = 20 # Equal probabilities p_uniform = ones(n)/n # Probabilities following Zipf's law ρ = 10 α = exp(log(ρ)/(n-1)) p_zipf = collect(α.^-(1:n)) p_zipf = p_zipf ./ sum(p_zipf) @testset "Expectation" begin @test expectation_minsamplesize(n; p = p_uniform) isa Int64 @test expectation_minsamplesize(n; p = p_uniform) == Int(ceil(n*sum(1 ./ (1:n)))) @test expectation_minsamplesize(n; p = p_uniform) < expectation_minsamplesize(n; p = p_zipf) @test expectation_minsamplesize(n; p = p_uniform, m = 1) < expectation_minsamplesize(n; p = p_uniform, m = 2) @test Int(ceil(expectation_minsamplesize(n; p = p_uniform, m = 1, r = 1)/3)) == expectation_minsamplesize(n; p = p_uniform, m = 1, r = 3) end @testset "Standard deviation" begin @test std_minsamplesize(n; p = p_uniform) isa Int64 @test std_minsamplesize(n; p = p_uniform) < std_minsamplesize(n; p = p_zipf) @test std_minsamplesize(n; p = p_uniform, m = 1) < std_minsamplesize(n; p = p_uniform, m = 2) end t = 500 @testset "Success probability" begin @test success_probability(n, t; p = p_uniform) isa Float64 @test success_probability(n, t; p = p_uniform) > success_probability(n, t; p = p_zipf) @test success_probability(n, t; p = p_uniform, m = 1) > success_probability(n, t; p = p_uniform, m = 2) @test all(success_probability(n, t; p = p_uniform) .< success_probability.(n, [t+10, t+100, t+1000]; p = p_uniform)) @test all(success_probability.(n, [1, 5, 10, 100, 500]) .<= 1) @test all(success_probability.(n, [1, 5, 10, 100, 500]) .>= 0) end @testset "Expected fraction collected" begin @test expectation_fraction_collected(n, t; p = p_uniform) isa Float64 @test expectation_fraction_collected(n, t; p = p_uniform) > expectation_fraction_collected(n, t; p = p_zipf) @test all(expectation_fraction_collected(n, t; p = p_uniform) .< expectation_fraction_collected.(n, [t+10, t+100, t+1000]; p = p_uniform)) @test all(expectation_fraction_collected.(n, [1, 10, 100, 1000, 10000]) .<= 1) @test all(expectation_fraction_collected.(n, [1, 10, 100, 1000, 10000]) .>= 0) end k = 2 pᵢ = 0.005 r = 3 @testset "Probability occurence" begin @test prob_occurrence_module(pᵢ, t, r, k) isa Float64 @test all(prob_occurrence_module.(pᵢ, [0, 10, 100, 1000, 10000], r, k) .>= 0) @test all(prob_occurrence_module.(pᵢ, [0, 10, 100, 1000, 10000], r, k) .<= 1) end end
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
code
42
using Test, BioCCP include("BioCCP.jl")
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
docs
8405
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5547738.svg)](https://doi.org/10.5281/zenodo.5547738) # BioCCP.jl : Collecting Coupons in combinatorial biotechnology ## Intro During the **combinatorial engineering of biosystems** such as proteins, genetic circuits and genomes, diverse libraries are generated by assembling and recombining modules. The variants with the optimal phenotypes are selected with screening techniques. However, when the number of available modules to compose biological designs increases, a combinatorial explosion of design possibilities arises, allowing only for a part of the libary to be analyzed. In this case, it is important for a researcher to get insight in which (minimum) sample size sufficiently covers the design space, *i.e.* what is the expected **minimum number of designs so that all modules are observed at least once**. ![](https://github.com/kirstvh/BioCCP/blob/main/BioCCP_scheme.png) <p align="left"> <img url="https://github.com/kirstvh/BioCCP.jl/main/BioCCP_img.png" width="250"/> </p> ## Functions BioCCP contains functions for calculating (expected) minimum sample sizes and related statistics: Function name | Short description ---------------- | ----------------- `expectation_minsamplesize` | Calculates the expected minimum number of designs to observe all modules at least *m* times `std_minsamplesize` | Calculates standard deviation on the minimum number of designs `success_probability` | Calculates the probability that the minimum number of designs *T* is smaller than or equal to a given sample size *t* `expectation_fraction_collected` | Returns the fraction of the total number of modules in the design space that is expected to be observed for a given sample size *t* `prob_occurrence_module` | Calculates for a module with specified module probability *p*, the probability that the module has occurred *k* times when a given number of designs has been collected For more info about the implementation of the functions, please consult the [docs](https://kirstvh.github.io/BioCCP.jl/) or [source code](/src/BioCCP.jl). ## Pluto notebooks ### 1. Report-generating Pluto notebook The [first Pluto notebook](/notebooks/BioCCP_Interactive_Notebook.jl) provides an interactive illustration of all functions in BioCCP and assembles a report for your specific design set-up. Inputs | ---------------- | Symbol | Short description ---------------- | ----------------- *n* | Total number of modules in the design space *r* | The number of modules per design *m* | The number of times each module has to be observed (default = 1) in the sampled set of designs *p* (\*) | Probability distribution of the modules > (\*) > *When exact probabilities are known*, define your custom module probability/abundance vector or load them in the notebook from an external file. > *When probabilities and/or their distribution are unknown*, you can either: > > 1) Assume the probabilities of all modules to be equal (uniform distribution), or > > 2) Assume the module probabilities to follow *Zipf's law*, specifying the ratio p<sub>max</sub>/p<sub>min</sub>, or > > 3) Assume the histogram of the module probabilities to behave like a *bell curve*, specifying the ratio p<sub>max</sub>/p<sub>min</sub> Using the inputs, a report for sample size determination is created using the [functions](https://kirstvh.github.io/BioCCP.jl/) described above. The report contains the following sections: Report section | Short description ---------------- | ----------------- Module probabilities | This section shows a plot with the probability of each module in the design space during library generation. Expected minimum sample size | This part displays the expected minimum number of designs **E**[_T_] and the standard deviation. Success probability | In this section, the report calculates the probability *F(t)* that the minimum number of designs *T* is smaller than or equal to a given sample size *t*. Moreover, a curve describing the success probability *F(t)* in function of an increasing sample size *t* is available, to determine a minimum sample size according to a probability cut-off. Expected observed fraction of the total number of modules   | Here, the fraction of the total number of modules in the design space that is expected to be observed is computed for a given sample size *t*. A saturation curve, displaying the expected fraction of modules observed in function of increasing sample size, is provided. Number of occurrence of a specific module | In this last part, you can specify the probability *p<sub>j</sub>* of a module of interest together with a particular sample size, to calculate a curve showing the probability for a module to occur *k* times (in function of *k*). ### 2. Case study Pluto notebook The [second Pluto notebook](/notebooks/BioCCP_Case_Study.jl) contains two case studies, illustrating the application of the BioCCP.jl package to real biological problems, more specifically: **(1)** &emsp; Studying the required sample size and related statistics for a genome-wide CRISPR experiment, based on a [study from Chen *et al.* (2015)](https://doi.org/10.1016/j.cell.2015.02.038) concerning tumour research in mouse models. **(2)** &emsp; Determining coverage of a combinatorial protein engineering experiment, based on a [study from Duyvejonck *et al.* (2021)](https://doi.org/10.3390/antibiotics10030293) focusing on the development of endolysins as alternative antibiotics. ## Getting started #### Launch Pluto notebook from Browser The Pluto notebooks can be launched directly from your browser using Binder (no installation of Julia/packages required): - Report-generating Pluto notebook: &emsp; [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/kirstvh/PlutoNotebooks/main?urlpath=pluto/open?path=/home/jovyan/notebooks/BioCCP_Interactive_Notebook.jl) - Case study Pluto notebook:&emsp; &emsp; &emsp; &emsp;[![Binder](https://mybinder.org/badge_logo.svg)](https://kirstvh.github.io/BioCCP_Case_Study_html) &#8594; To skip the run time and have immediate access to the results, the link provides an html file of the executed case study notebook. #### Execute functions in Julia &emsp; **(1)** &emsp; [Install Julia](https://julialang.org/downloads/) &emsp; **(2)** &emsp; Install BioCCP in the Julia REPL: using Pkg; Pkg.add("BioCCP") &emsp; **(3)** &emsp; Load the BioCCP package: using BioCCP Now you are ready for executing BioCCP functions in the Julia REPL. #### Run the Pluto notebooks locally Additionally, for using the Pluto notebooks, following steps need to be taken: &emsp;&emsp; In the Julia REPL, hit the following command to install the [Pluto package](https://github.com/fonsp/Pluto.jl): using Pkg; Pkg.add(name="Pluto", version="0.16.1") &emsp;&emsp; Then start Pluto in the Julia REPL: using Pluto; Pluto.run() &emsp;&emsp; Finally, open the notebook file ([report-generating notebook](/notebooks/BioCCP_Interactive_Notebook.jl) or [case study notebook](/notebooks/BioCCP_Case_Study.jl)). ## References The implementation of formulas was based on the references below: > Doumas, A. V., & Papanicolaou, V. G. (2016). *The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp.* ESAIM: Probability and Statistics, 20, 367-399. doi: https://doi.org/10.1051/ps/2016016 > Boneh, A., & Hofri, M. (1997). *The coupon-collector problem revisited—a survey of engineering problems and computational methods.* Stochastic Models, 13(1), 39-66. doi: https://doi.org/10.1080/15326349708807412 The case studies were based on the following references: > Chen, S., Sanjana, N. E., Zheng, K., Shalem, O., Lee, K., Shi, X., ... & Sharp, P. A. (2015). *Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis.* Cell, 160(6), 1246-1260. doi: https://doi.org/10.1016/j.cell.2015.02.038Get > Duyvejonck, L., Gerstmans, H., Stock, M., Grimon, D., Lavigne, R., & Briers, Y. (2021). *Rapid and High-Throughput Evaluation of Diverse Configurations of Engineered Lysins Using the VersaTile Technique.* Antibiotics, 10(3), 293. doi: https://doi.org/10.3390/antibiotics10030293
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
docs
7262
# BioCCP ## Intro BioCCP.jl applies the Coupon Collector Problem to **combinatorial biotechnology**, in particular to aid (expected) **minimum sample size** determination for screening experiments. **Modular designs** are considered, created by randomly combining `r` modules from a set of `n` available modules (sampling with replacement). The module probabilities during the generation of the designs are specified by a probability/abundance vector `p`. Depending on how many complete sets of modules one wants to observe, parameter `m` can be increased from its default value of 1 to a higher value. For a specific combinatorial design set-up of interest, a report with results regarding (expected) minimum sample sizes can be easily retrieved by using the provided Interactive Pluto notebook. Additionally, a Pluto notebook with case studies is provided to illustrate the usage of BioCCP onto real biological examples. > **References:** > > Boneh, A., &amp; Hofri, M. (1997). The coupon-collector problem revisited—a survey of engineering problems and computational methods. *Stochastic Models, 13*(1), 39-66. > > Doumas, A. V., &amp; Papanicolaou, V. G. (2016). The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp. *ESAIM: Probability and Statistics, 20*, 367-399. ## Functions <html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/></head><body><div id="documenter"><nav class="docs-sidebar"> <article class="docstring"><header><a class="docstring-binding" id="BioCCP.expectation_minsamplesize" href="#BioCCP.expectation_minsamplesize"><code><strong>BioCCP.expectation_minsamplesize</strong></code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">expectation_minsamplesize(n::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true)</code></pre><p>Calculates the expected minimum number of designs <code>E[T]</code> to observe each module at least <code>m</code> times.</p><ul><li><code>n</code>: number of modules in the design space</li><li><code>p</code>: vector with the probabilities or abundances of the different modules</li><li><code>m</code>: number of times each module has to be observed in the sampled set of designs </li><li><code>r</code>: number of modules per design</li><li>normalize: if true, normalize <code>p</code></li></ul> <pre><code class="language-julia-repl">julia&gt; n = 100 julia&gt; expectation_minsamplesize(n; p = ones(n)/n, m = 1, r = 1, normalize = true) 518</code></pre></div></section> </article><article class="docstring"> <header><a class="docstring-binding" id="BioCCP.std_minsamplesize" href="#BioCCP.std_minsamplesize"><code><strong>BioCCP.std_minsamplesize</strong></code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">std_minsamplesize(n::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true)</code></pre><p>Calculates the standard deviation on the minimum number of designs to observe each module at least <code>m</code> times.</p><ul><li><code>n</code>: number of modules in the design space</li><li><code>p</code>: vector with the probabilities or abundances of the different modules</li><li><code>m</code>: number of times each module has to be observed in the sampled set of designs </li><li><code>r</code>: number of modules per design</li><li>normalize: if true, normalize <code>p</code></li></ul> <pre><code class="language-julia-repl">julia&gt; n = 100 julia&gt; std_minsamplesize(n; p = ones(n)/n, m = 1, r = 1, normalize = true) 126</code></pre></div></section> </article><article class="docstring"><header><a class="docstring-binding" id="BioCCP.success_probability" href="#BioCCP.success_probability"><code><strong>BioCCP.success_probability</strong></code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">success_probability(n::Integer, t::Integer; p=ones(n)/n, m::Integer=1, r=1, normalize=true)</code></pre><p>Calculates the success probability <code>F(t) = P(T ≤ t)</code> or the probability that the minimum number of designs <code>T</code> to see each module at least <code>m</code> times is smaller than or equal to <code>t</code>.</p><ul><li><code>n</code>: number of modules in design space</li><li><code>t</code>: sample size or number of designs for which to calculate the success probability </li><li><code>p</code>: vector with the probabilities or abundances of the different modules</li><li><code>m</code>: number of times each module has to be observed in the sampled set of designs </li><li><code>r</code>: number of modules per design</li><li>normalize: if true, normalize <code>p</code></li></ul> <pre><code class="language-julia-repl">julia&gt; n = 100 julia&gt; t = 600 julia&gt; success_probability(n, t; p = ones(n)/n, m = 1, r = 1, normalize = true) 0.7802171997092149</code></pre></div></section> </article><article class="docstring"><header><a class="docstring-binding" id="BioCCP.expectation_fraction_collected" href="#BioCCP.expectation_fraction_collected"><code><strong>BioCCP.expectation_fraction_collected</strong></code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">expectation_fraction_collected(n::Integer, t::Integer; p=ones(n)/n, r=1, normalize=true)</code></pre><p>Calculates the fraction of the total number of modules that is expected to be observed after collecting <code>t</code> designs.</p><ul><li><code>n</code>: number of modules in design space</li><li><code>t</code>: sample size or number of designs </li><li><code>p</code>: vector with the probabilities or abundances of the different modules </li><li><code>r</code>: number of modules per design</li><li>normalize: if true, normalize <code>p</code></li></ul> <pre><code class="language-julia-repl">julia&gt; n = 100 julia&gt; t = 200 julia&gt; expectation_fraction_collected(n, t; p = ones(n)/n, r = 1, normalize=true) 0.8660203251420364</code></pre></div></section> </article><article class="docstring"><header><a class="docstring-binding" id="BioCCP.prob_occurrence_module" href="#BioCCP.prob_occurrence_module"><code><strong>BioCCP.prob_occurrence_module</strong></code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">prob_occurrence_module(p<sub>i</sub>, t::Integer, r, k::Integer)</code> </pre><p>Calculates the probability that specific module with module probability <code>p<sub>i</sub></code> has occurred <code>k</code> times after collecting <code>t</code> designs.</p><p>Sampling processes of individual modules are assumed to be independent Poisson processes.</p><ul><li><code>p<sub>i</sub></code>: module probability</li><li><code>t</code>: sample size or number of designs </li><li><code>r</code>: number of modules per design </li><li><code>k</code>: the number of occurrences </li></ul> <pre><code class="language-julia-repl">julia&gt; p<sub>i</sub> = 0.005 julia&gt; t = 500 julia&gt; r = 1 julia&gt; k = 2 julia&gt; prob_occurrence_module(p<sub>i</sub>, t, r, k) 0.25651562069968376</code></pre>
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
docs
1310
# BioCCP ## Intro BioCCP.jl applies the Coupon Collector's Problem to **combinatorial biotechnology**, in particular to aid **minimum sample size** determination of screening experiments. **Modular designs** are considered, created by randomly combining `r` modules from a set of `n`available modules. The module probabilities during the generation of the designs are specified by a probability/abundance vector `p`. Depending on how many complete sets of modules one wants to observe, parameter `m` can be increased from its default value of 1 to a higher value. For a specific combinatorial design set-up of interest, a report with results regarding minimum sample sizes can be easily retrieved by using the provided Pluto notebook. ## Functions ```@docs BioCCP.expectation_minsamplesize BioCCP.std_minsamplesize BioCCP.success_probability BioCCP.expectation_fraction_collected BioCCP.prob_occurrence_module ``` ## References - Doumas, A. V., & Papanicolaou, V. G. (2016). *The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp.* ESAIM: Probability and Statistics, 20, 367-399. - Boneh, A., & Hofri, M. (1997). *The coupon-collector problem revisited—a survey of engineering problems and computational methods.* Stochastic Models, 13(1), 39-66.
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.1.1
4293935cfb1576a783192e81d965addff4d1b47a
docs
1310
# BioCCP ## Intro BioCCP.jl applies the Coupon Collector's Problem to **combinatorial biotechnology**, in particular to aid **minimum sample size** determination of screening experiments. **Modular designs** are considered, created by randomly combining `r` modules from a set of `n`available modules. The module probabilities during the generation of the designs are specified by a probability/abundance vector `p`. Depending on how many complete sets of modules one wants to observe, parameter `m` can be increased from its default value of 1 to a higher value. For a specific combinatorial design set-up of interest, a report with results regarding minimum sample sizes can be easily retrieved by using the provided Pluto notebook. ## Functions ```@docs BioCCP.expectation_minsamplesize BioCCP.std_minsamplesize BioCCP.success_probability BioCCP.expectation_fraction_collected BioCCP.prob_occurrence_module ``` ## References - Doumas, A. V., & Papanicolaou, V. G. (2016). *The coupon collector’s problem revisited: generalizing the double Dixie cup problem of Newman and Shepp.* ESAIM: Probability and Statistics, 20, 367-399. - Boneh, A., & Hofri, M. (1997). *The coupon-collector problem revisited—a survey of engineering problems and computational methods.* Stochastic Models, 13(1), 39-66.
BioCCP
https://github.com/kirstvh/BioCCP.jl.git
[ "MIT" ]
0.3.0
6e91cff8b0241d57750cca395a97d6919839a7b5
code
734
module NumericalRepresentationTheoryPlotsExt using NumericalRepresentationTheory, Plots import Plots: plot, @recipe @recipe function f(σ::Partition) legend --> false ratio --> 1.0 axis --> false grid --> false color --> :orange ticks --> false linewidth --> 2 ret = Shape[] m = length(σ) for j = 1:m, k = 1:σ[j] push!(ret, Shape([k-1,k-1,k,k],[1-j,-j,-j,1-j])) end ret end function plot(mults::Dict{Partition,<:Integer}; kwds...) ret = Any[] M = mapreduce(maximum, max, keys(mults)) N = mapreduce(length, max, keys(mults)) for (σ,m) in sort(mults) push!(ret, plot(σ; title="$m", xlims=(0,M), ylims=(-N,0))) end plot(ret...; kwds...) end end
NumericalRepresentationTheory
https://github.com/dlfivefifty/NumericalRepresentationTheory.jl.git
[ "MIT" ]
0.3.0
6e91cff8b0241d57750cca395a97d6919839a7b5
code
14468
module NumericalRepresentationTheory using Base, LinearAlgebra, Permutations, SparseArrays, BlockBandedMatrices, BlockArrays, FillArrays import Base: getindex, size, setindex!, maximum, Int, length, ==, isless, copy, kron, hash, first, show, lastindex, |, Integer, BigInt import LinearAlgebra: adjoint, transpose, eigen import SparseArrays: blockdiag, AbstractSparseMatrixCSC ## Kronecker product of Sn export Partition, YoungMatrix, partitions, youngtableaux, YoungTableau, ⊗, ⊕, Representation, multiplicities, generators, standardrepresentation, randpartition, blockdiagonalize, hooklength # utility function function kronpow(p,m) ret = p for k=1:m-1 ret = kron(ret,p) end ret end struct Partition σ::Vector{Int} function Partition(σ) if !issorted(σ; lt=Base.:>) error("input vector $σ should be sorted") end if !all(x -> x > 0, σ) error("input vector $σ should be all positive") end new(σ) end end Partition(σ::Int...) = Partition([σ...]) function isless(a::Partition, b::Partition) n,m = Int(a), Int(b) if n ≠ m return n < m end M,N = length(a.σ), length(b.σ) for k = 1:min(M,N) if a.σ[k] ≠ b.σ[k] return a.σ[k] < b.σ[k] end end return false end (==)(a::Partition, b::Partition) = a.σ == b.σ hash(a::Partition) = hash(a.σ) copy(a::Partition) = Partition(copy(a.σ)) lastindex(a::Partition) = lastindex(a.σ) function show(io::IO, σ::Partition) print(io, "$(Int(σ)) = ") for k = 1:length(σ)-1 print(io, "$(σ[k]) + ") end print(io, "$(σ[end])") end function transpose(σ::Partition) cols = Vector{Int}(undef, maximum(σ)) j_end = 1 for k = length(σ):-1:1 for j = j_end:σ[k] cols[j] = k end j_end = σ[k]+1 end Partition(cols) end adjoint(σ::Partition) = transpose(σ) getindex(σ::Partition, k::Int) = σ.σ[k] setindex!(σ::Partition, v, k::Int) = setindex!(σ.σ, v, k) for op in (:maximum, :length, :first) @eval $op(σ::Partition) = $op(σ.σ) end Int(σ::Partition) = sum(σ.σ) BigInt(σ::Partition) = BigInt(Int(σ)) Integer(σ::Partition) = Int(σ) function partitions(N) N == 1 && return [Partition([1])] ret = Partition[] part = partitions(N-1) for p in part if (length(p.σ) < 2 || p.σ[end-1] > p.σ[end]) p_new = copy(p) p_new.σ[end] += 1 push!(ret, p_new) end push!(ret, Partition([p.σ ; 1])) end ret end struct YoungMatrix <: AbstractMatrix{Int} data::Matrix{Int} rows::Partition columns::Partition function YoungMatrix(data, rows, columns) @assert size(data) == (length(rows), length(columns)) @assert rows == columns' new(data, rows, columns) end end YoungMatrix(data::Matrix{Int}, σ::Partition) = YoungMatrix(data, σ, σ') YoungMatrix(::UndefInitializer, σ::Partition) = YoungMatrix(zeros(Int, length(σ), maximum(σ)), σ) YoungMatrix(dat, σ::Vector{Int}) = YoungMatrix(dat, Partition(σ)) copy(Y::YoungMatrix) = YoungMatrix(copy(Y.data), Y.rows, Y.columns) size(Y::YoungMatrix) = size(Y.data) getindex(Y::YoungMatrix, k::Int, j::Int) = ifelse(k ≤ Y.columns[j] && j ≤ Y.rows[k], Y.data[k,j], 0) function setindex!(Y::YoungMatrix, v, k::Int, j::Int) @assert k ≤ Y.columns[j] && j ≤ Y.rows[k] Y.data[k,j] = v end hash(Y::YoungMatrix) = hash(Y.data) struct YoungTableau partitions::Vector{Partition} end function isless(a::YoungTableau, b::YoungTableau) if length(a.partitions) ≠ length(b.partitions) return length(a.partitions) < length(b.partitions) end for (p,q) in zip(a.partitions, b.partitions) p ≠ q && return isless(p,q) end return false end function YoungMatrix(Yt::YoungTableau) ps = Yt.partitions Y = YoungMatrix(undef, ps[end]) Y[1,1] = 1 for k=2:length(ps) if length(ps[k]) > length(ps[k-1]) Y[length(ps[k]),1] = k else for j = 1:length(ps[k]) if ps[k][j] > ps[k-1][j] Y[j,ps[k][j]] = k break end end end end Y end function lowerpartitions(σ) p = Partition[] n = length(σ) if σ[n] > 1 p_new = copy(σ) p_new[n] -= 1 push!(p, p_new) else push!(p, Partition(σ.σ[1:n-1])) end for k = n-1:-1:1 if σ[k] > σ[k+1] p_new = copy(σ) p_new[k] -= 1 push!(p, p_new) end end p end function youngtableaux(σ::Partition) σ == Partition([1]) && return [YoungTableau([σ])] Yts = mapreduce(youngtableaux, vcat, lowerpartitions(σ)) sort!(map(Yt -> YoungTableau([Yt.partitions; σ]), Yts)) end # function isyoungtableau(Y::YoungMatrix) # Y[1,1] == 1 || return false # for j=1:length(Y.cols), k=1:Y.cols[j] # # end function hooklength(σ::Partition) ret = BigInt(1) m = length(σ) for k = 1:m, j=1:σ[k] ret_2 = 0 ret_2 += σ[k]-j for p = k:m σ[p] < j && break ret_2 += 1 end ret *= ret_2 end factorial(BigInt(σ)) ÷ ret end # sample by Plancherel function randpartition(N, m) Σ = partitions(N) l = hooklength.(Σ) cs = cumsum(l) rs = rand(1:cs[end], m) p = (r -> findfirst(k -> k ≥ r, cs)).(rs) Σ[p] end randpartition(N) = randpartition(N, 1)[1] function irrepgenerator(σ::Partition, i::Int) Is = Int[]; Js = Int[]; Vs = Float64[] t = YoungMatrix.(youngtableaux(σ)) t_lookup = Dict(tuple.(t, 1:length(t))) d = length(t) for j = 1:d Y = t[j] ii = Base._to_subscript_indices(Y, Tuple(findfirst(isequal(i), Y))...) ip = Base._to_subscript_indices(Y, Tuple(findfirst(isequal(i+1), Y))...) if ii[1] == ip[1] push!(Is, j) push!(Js, j) push!(Vs, 1) elseif ii[2] == ip[2] push!(Is, j) push!(Js, j) push!(Vs, -1) else Yt = copy(Y) # Tableau with swapped indices Yt[ii...], Yt[ip...] = (Yt[ip...], Yt[ii...]) k = t_lookup[Yt] # set entries to matrix [1/r sqrt(1-1/r^2); sqrt(1-1/r^2) -1/r] push!(Is, j, j) push!(Js, j, k) ai = ii[2]-ii[1] ap = ip[2]-ip[1] r = ap - ai push!(Vs, 1/r, sqrt(1-1/r^2)) end end sparse(Is, Js, Vs) end irrepgenerators(σ::Partition) = [irrepgenerator(σ, i) for i=1:Int(σ)-1] struct Representation{MT} generators::Vector{MT} end Representation(σ::Int...) = Representation(Partition(σ...)) Representation(σ::Partition) = Representation(irrepgenerators(σ)) Representation{MT}(ρ::Representation) where MT = Representation(convert.(MT, ρ.generators)) kron(A::Representation, B::Representation) = Representation(kron.(A.generators, B.generators)) _blockdiag(A::AbstractSparseMatrixCSC...) = blockdiag(A...) _blockdiag(A::AbstractMatrix...) = blockdiag(map(sparse, A)...) blockdiag(A::Representation...) = Representation(_blockdiag.(getfield.(A, :generators)...)) conjugate(ρ::Representation, Q) = Representation(map(g -> Q'*g*Q, ρ.generators)) ⊗(A::Representation, B::Representation) = kron(A, B) |(A::Representation, n::AbstractVector) = Representation(A.generators[n]) generators(R::Representation) = R.generators size(R::Representation, k) = size(R.generators[1], k) size(R::Representation) = size(R.generators[1]) diagm(A::Vector{<:Representation}) = Representation(blockdiag.(generators.(A)...)) ⊕(A::Representation...) = Representation(blockdiag.(generators.(A)...)) function (R::Representation)(P) if isempty(CoxeterDecomposition(P).terms) # Identity one(first(R.generators)) else *(map(i -> R.generators[i], CoxeterDecomposition(P).terms)...) end end # determine multiplicities of eigs on diagonal, assuming sorted function eigmults(λ::Vector{Int}) mults = Vector{Int}() n = length(λ) tol = 0.01 # integer coefficents c = 1 for k = 2:n if λ[k] > λ[k-1] push!(mults, c) c = 0 end c += 1 end push!(mults, c) mults end function gelfandbasis(gen::Vector{MT}) where MT<:Matrix n = length(gen)+1 w = Vector{MT}(undef, n-1) tmp = similar(gen[1]) a = similar(tmp) for k = 1:n-1 a .= gen[k] w[k] = copy(a) for j = k-1:-1:1 mul!(tmp, a, gen[j]) mul!(a, gen[j], tmp) w[k] .+= a end end w end function gelfandbasis(gen::Vector{MT}) where MT n = length(gen)+1 w = Vector{MT}(undef, n-1) for k = 1:n-1 a = gen[k] w[k] = a for j = k-1:-1:1 a = gen[j]*a*gen[j] w[k] += a end end w end gelfand_reduce(R::Representation) = gelfand_reduce(convert.(Matrix, gelfandbasis(R.generators))) function sortcontentsperm(Λ) ps = contents2partition(Λ) perm = Int[] for pₖ in union(ps) dₖ = hooklength(pₖ) inds = findall(==(pₖ), ps) aₖ = length(inds) ÷ dₖ # number of times repeated for j = 1:aₖ append!(perm, inds[j:aₖ:end]) end end perm end function gelfand_reduce(X) λ̃, Q₁ = eigen(Symmetric(X[1])) λ = round.(Int, λ̃) if !(Q₁'Q₁ ≈ I) error("The eigenvalue decomposition has failed") end if !(isapprox(λ, λ̃; atol=1E-7)) error("$λ̃ are not all approximately an integer") end length(X) == 1 && return reshape(λ,length(λ),1),Q₁ m = eigmults(λ) c_m = [0;cumsum(m)] Q = zero(Q₁) Λ = Matrix{Int}(undef, length(λ), length(X)) Λ[:,1] = λ for j=2:length(c_m) j_inds = c_m[j-1]+1:c_m[j] Qʲ = Q₁[:,j_inds] # deflated rows Xⱼ = map(X -> Qʲ'*X*Qʲ, X[2:end]) Λⱼ, Qⱼ = gelfand_reduce(Xⱼ) Q[j_inds,j_inds] = Qⱼ Λ[j_inds,2:end] = Λⱼ end Λ, Q₁*Q end """ singlemultreduce(ρ) reduces a representation containing only a single irrep, multiple times. """ function singlemultreduce(ρ) m = multiplicities(ρ) @assert length(m) == 1 singlemultreduce(ρ, Representation(first(keys(m)))) end """ singlemultreduce(ρ, σ) reduces a representation containing only a single irrep `σ`, multiple times. """ function singlemultreduce(ρ, σ) m = size(σ,1) n = size(ρ,1) A = vcat((kron.(Ref(I(m)), ρ.generators) .- kron.(σ.generators, Ref(I(n))))...) Q̃ = nullspace(convert(Matrix,A); atol=1E-10)*sqrt(m) reshape(vec(Q̃), n, n) end # Creates vcat((kron.(Ref(I(m)), ρ.generators) .- kron.(σ.generators, Ref(I(ℓ))))...); # but with the rows and columns corresponding to zero entries removed function singlemultreducedkron(ρ, σ) tol = 1E-10 m = size(σ,1) ℓ = size(ρ,1) μ = ℓ ÷ m n = length(σ.generators)+1 B = zeros(m*(n-1)*ℓ, m*μ) for κ=1:m, j= 1:μ, k = 1:n-1 B[range((k-1)*m*ℓ + (κ-1)*ℓ + 1; length=ℓ),(κ-1)*μ+j] = ρ.generators[k][:,(j-1)*m+κ] B[range((k-1)*m*ℓ + (j-1)*m + κ; step=ℓ, length=m),(κ-1)*μ+j] -= σ.generators[k][:,κ] end # determine non-zero rows of A[:,jr] kr = Int[] for k = 1:size(B,1) if maximum(abs,view(B,k,:)) > tol push!(kr, k) end end B[kr,:] end """ singlemultreduce_blockdiag(ρ, σ) reduces a representation containing only a single irrep `σ`, multiple times. Unlike `singlemultreduce`, it is assumed that `ρ` comes from `gelfand_reduce` and hence the returned `Q` is guaranteed to be block-diagonal. """ function singlemultreduce_blockdiag(ρ, σ) tol = 1E-10 m = size(σ,1) ℓ = size(ρ,1) μ = ℓ ÷ m # determine columns of `A` corresponding to non-zero entries of `Q` jr = Int[] for k = 1:m append!(jr, range((k-1)*μ*m+k; step=m, length=μ)) end Aₙ = singlemultreducedkron(ρ, σ) V = svd(Aₙ).V[:,end-μ+1:end]*sqrt(m) # nullspace corresponds to last μ singular vectors # now populate non-zero entries of `Q` Q = BandedBlockBandedMatrix{Float64}(undef, Fill(m,μ), Fill(m,μ), (ℓ-1,ℓ-1), (0,0)) for j = 1:size(V,2) sh = (j-1) * size(V,1) for k = 1:size(V,1) view(Q,:,Block(j))[jr[k]] = V[k,j] end end Q end function blockdiagonalize(ρ::Representation) Λ,Q = gelfand_reduce(ρ) p = sortcontentsperm(Λ) Q = Q[:,p] Λ = Λ[p,:] n = length(ρ.generators)+1 Q̃ = similar(Q) # diagonalised generators ρd = float.(zero.(ρ.generators)) c = contents2partition(Λ) k = 0 for pⱼ in union(c) j = findall(isequal(pⱼ), c) Qⱼ = Q[:,j] ρⱼ = conjugate(ρ, Qⱼ) Q̃ⱼ = singlemultreduce_blockdiag(ρⱼ, Representation(pⱼ)) m = length(j) Q̃[:,k+1:k+m] = Qⱼ * Q̃ⱼ irrep = Representation(pⱼ) for ℓ = 1:n-1 ρd[ℓ][k+1:k+m,k+1:k+m] = blockdiag(fill(irrep.generators[ℓ], m÷size(irrep,1))...) end k += m end Representation(ρd), Q̃ end function contents2partition(part::Vector) part = sort(part) p = zeros(Int, 1-first(part)) k = 1 while k ≤ length(part) pₖ = part[k] rₖ = pₖ < 0 ? 1-pₖ : 1 p[rₖ] += 1 k += 1 while k ≤ length(part) && part[k] == pₖ k += 1 rₖ += 1 p[rₖ] += 1 end end Partition(p) end function contents2partition(m::Matrix{Int}) ret = Vector{Partition}(undef, size(m,1)) for k=1:size(m,1) ret[k] = contents2partition([0;vec(m[k,:])]) end ret end # these are the multiplicities without dividing by dimension function _multiplicities(parts::Vector{Partition}) dict = Dict{Partition,Int64}() for part in parts if !haskey(dict,part) dict[part] = 0 end dict[part] += 1 end dict end function multiplicities(Λ::Vector{Partition}) mults = _multiplicities(Λ) for σ in keys(mults) mults[σ] = mults[σ] ÷ hooklength(σ) end mults end multiplicities(R::Representation) = multiplicities(contents2partition(gelfand_reduce(R)[1])) ## Representations function perm(a,b,n) ret = Matrix(I,n,n) ret[a,a] = ret[b,b] = 0 ret[a,b] = ret[b,a] = 1 ret end standardrepresentation(n) = Representation(Matrix{Float64}[perm(k,k+1,n) for k=1:n-1]) include("canonicalprojection.jl") end #module
NumericalRepresentationTheory
https://github.com/dlfivefifty/NumericalRepresentationTheory.jl.git
[ "MIT" ]
0.3.0
6e91cff8b0241d57750cca395a97d6919839a7b5
code
276
############### # This implements the "canonical projection" a la Hymabaccus 2020 ############## function canonicalprojection(σ::Partition, ρ) n = Int(σ) ρ_σ = Representation(σ) n_σ = size(ρ_σ,1) n_σ/factorial(n) * sum(tr(ρ_σ(g))ρ(g) for g in PermGen(n)) end
NumericalRepresentationTheory
https://github.com/dlfivefifty/NumericalRepresentationTheory.jl.git
[ "MIT" ]
0.3.0
6e91cff8b0241d57750cca395a97d6919839a7b5
code
8008
using NumericalRepresentationTheory, Permutations, LinearAlgebra, SparseArrays, BlockBandedMatrices, Test import NumericalRepresentationTheory: gelfandbasis, canonicalprojection, singlemultreduce, singlemultreduce_blockdiag, conjugate, gelfand_reduce, contents2partition, sortcontentsperm @testset "Representations" begin σ = Partition([3,3,2,1]) @test length(youngtableaux(σ)) == hooklength(σ) @test all(isdiag,gelfandbasis(Representation(σ).generators)[3]) @test multiplicities(standardrepresentation(4))[Partition([3,1])] == 1 s = standardrepresentation(3) ρ = s ⊗ s @test multiplicities(ρ)[Partition([2,1])] == 3 ρ = Representation(Partition([3,2,1])) ⊗ Representation(Partition([2,2,2])) @test multiplicities(ρ)[Partition([3,2,1])] == 2 ρ = Representation(Partition([3,2])) ⊗ Representation(Partition([2,2,1])) ⊗ Representation(Partition([3,1,1])) λ,Q = blockdiagonalize(ρ) for k = 1:length(λ.generators) @test Q' * ρ.generators[k] * Q ≈ λ.generators[k] end @testset "Rotate irrep" begin ρ = Representation(3,2,1,1) λ,Q = blockdiagonalize(ρ) @test Q ≈ -I || Q ≈ I @test multiplicities(ρ)[Partition(3,2,1,1)] == 1 Q = qr(randn(size(ρ,1), size(ρ,1))).Q ρ̃ = Representation(map(τ -> Q*τ*Q', ρ.generators)) @test multiplicities(ρ̃) == multiplicities(ρ) @test abs.(blockdiagonalize(ρ̃)[2]) ≈ abs.(Matrix(Q)) end @testset "Rico Bug" begin ρ = Representation(2,1) g = Permutation([1,2,3]) @test ρ(g) == I(2) end @testset "group by rep" begin s = standardrepresentation(4) ρ = s ⊗ s Λ = gelfand_reduce(ρ)[1] p = sortcontentsperm(Λ) @test contents2partition(Λ[p,:]) == [fill(Partition(2,1,1),3); fill(Partition(2,2),2); fill(Partition(3,1),9); fill(Partition(4),2)] end @testset "singlemultreduce_blockdiag" begin σ = Representation(3,2,1) ρ = blockdiag(σ, σ) Q = qr(randn(size(ρ))).Q ρ = conjugate(ρ, Q) Λ, Q̃ = gelfand_reduce(ρ) p = sortcontentsperm(Λ) ρ = conjugate(ρ, Q̃[:,p]) Q = singlemultreduce(ρ) Q̃ = singlemultreduce_blockdiag(ρ, σ) @test Q̃'Q̃ ≈ I for (σ_k,g) in zip(blockdiag(σ,σ).generators,ρ.generators) @test Q̃'g*Q̃ ≈ Q'g*Q ≈ σ_k end ρ = blockdiag(σ, σ) Q = qr(randn(size(ρ))).Q ρ = conjugate(ρ, Q) λ,Q = blockdiagonalize(ρ) for (σ_k,g) in zip(blockdiag(σ,σ).generators,ρ.generators) @test Q'g*Q ≈ σ_k end end @testset "reduce matrix" begin σ = Representation(2,2,1) ρ = blockdiag(σ, σ, σ) Q = qr(randn(size(ρ))).Q ρ = conjugate(ρ, Q) m = size(σ,1) ℓ = size(ρ,1) μ = ℓ ÷ m n = length(ρ.generators)+1 jr = Int[] for κ = 1:m append!(jr, range((κ-1)*μ*m+κ; step=m, length=μ)) end @time A = vcat((kron.(Ref(I(m)), ρ.generators) .- kron.(σ.generators, Ref(I(ℓ))))...); B = zeros(m*(n-1)*ℓ, length(jr)); @time for κ=1:m, j= 1:μ, k = 1:n-1 B[range((k-1)*m*ℓ + (κ-1)*ℓ + 1; length=ℓ),(κ-1)*μ+j] = ρ.generators[k][:,(j-1)*m+κ] B[range((k-1)*m*ℓ + (j-1)*m + κ; step=ℓ, length=m),(κ-1)*μ+j] -= σ.generators[k][:,κ] end @test B ≈ A[:,jr] end end @testset "Canonical Projection" begin @testset "standard" begin ρ = standardrepresentation(4) @test rank(canonicalprojection(Partition(4), ρ)) == 1 @test rank(canonicalprojection(Partition(3,1), ρ)) == 3 P_1 = canonicalprojection(Partition(4), ρ) P_2 = canonicalprojection(Partition(3,1), ρ) @test P_1^2 ≈ P_1 @test P_2^2 ≈ P_2 Q_1 = qr(P_1).Q[:,1:1] @test Q_1' ≈ Q_1'*P_1 Q_2 = qr(P_2).Q[:,1:3] @test Q_2' ≈ Q_2'*P_2 Q = [Q_1 Q_2]' @test Q'Q ≈ I ρ_2 = Representation(3,1) # we don't guarantee the ordering @test_broken Q*ρ.generators[1]*Q' ≈ blockdiag(sparse(I(1)),ρ_2.generators[3]) @test_broken Q*ρ.generators[2]*Q' ≈ blockdiag(sparse(I(1)),ρ_2.generators[2]) @test_broken Q*ρ.generators[3]*Q' ≈ blockdiag(sparse(I(1)),ρ_2.generators[1]) end @testset "tensor" begin s = standardrepresentation(4) ρ = s ⊗ s λ,Q = blockdiagonalize(ρ) @test rank(canonicalprojection(Partition(4), ρ)) == 2 @test rank(canonicalprojection(Partition(3,1), ρ)) == 3*3 @test rank(canonicalprojection(Partition(2,2), ρ)) == 2 @test rank(canonicalprojection(Partition(1,1,1,1), ρ)) == 0 P_4 = canonicalprojection(Partition(4), ρ) @test P_4^2 ≈ P_4 P_31 = canonicalprojection(Partition(3,1), ρ) @test P_31^2 ≈ P_31 P_22 = canonicalprojection(Partition(2,2), ρ) @test P_22^2 ≈ P_22 P_211 = canonicalprojection(Partition(2,1,1), ρ) @test P_211^2 ≈ P_211 @test P_4*Q[:,end-1:end] ≈ Q[:,end-1:end] @test norm(P_4*Q[:,1:end-2]) ≤ 1E-15 @test norm(P_31*Q[:,end-1:end]) ≤ 1E-15 @test P_31*Q[:,end-10:end-2] ≈ Q[:,end-10:end-2] @test norm(P_31*Q[:,1:end-11]) ≤ 1E-15 @test norm(P_22*Q[:,1:3]) ≤ 1E-14 @test P_22*Q[:,4:5] ≈ Q[:,4:5] @test norm(P_22*Q[:,6:end]) ≤ 1E-14 @test norm(P_211*Q[:,4:end]) ≤ 1E-14 @test P_211*Q[:,1:3] ≈ Q[:,1:3] Q_31 = svd(P_31).U[:,1:9] @test Q_31'*P_31 ≈ Q_31' @test Q_31'*Q_31 ≈ I σ = Partition(3,1) n = Int(σ) ρ_31 = Representation(σ) n_σ = size(ρ_31,1) p_11 = n_σ/factorial(n) * sum(ρ_31(inv(g))[1,1]*ρ(g) for g in PermGen(n)) @test p_11^2 ≈ p_11 # sects a single representation @test rank(p_11 * P_31) == rank(p_11) == 3 V_31_11 = svd(p_11).U[:,1:3] # V_31_11 is a basis Q̃_31 = hcat([Matrix(svd(hcat([( p_α1 = n_σ/factorial(n) * sum(ρ_31(inv(g))[1,α]*ρ(g) for g in PermGen(n)); p_α1 * V_31_11[:,j]) for α = 1:3]...)).U) for j = 1:3]...) @test Q̃_31'Q̃_31 ≈ I # Q̃_31 spans same space as columns of Q @test norm(Q̃_31'Q[:,end-1:end]) ≤ 1E-14 @test rank(Q̃_31'Q[:,end-10:end-2]) == 9 @test norm(Q̃_31'Q[:,1:end-11]) ≤ 1E-14 # this shows the action of ρ acts on each column space separately @test Q̃_31'ρ.generators[1]*Q̃_31 ≈ Diagonal(Q̃_31'ρ.generators[1]*Q̃_31) @test Q̃_31'ρ.generators[2]*Q̃_31 ≈ blockdiag(sparse((Q̃_31'ρ.generators[2]*Q̃_31)[1:3,1:3]), sparse((Q̃_31'ρ.generators[2]*Q̃_31)[4:6,4:6]), sparse((Q̃_31'ρ.generators[2]*Q̃_31)[7:end,7:end])) @test Q̃_31'ρ.generators[3]*Q̃_31 ≈ blockdiag(sparse((Q̃_31'ρ.generators[3]*Q̃_31)[1:3,1:3]), sparse((Q̃_31'ρ.generators[3]*Q̃_31)[4:6,4:6]), sparse((Q̃_31'ρ.generators[3]*Q̃_31)[7:end,7:end])) # replace basis Q̃ = copy(Q) Q̃[:,3:3 +8] = Q̃_31 ρ_22 = Representation(2,2) ρ_211 = Representation(2,1,1) @test_skip Q'*ρ.generators[1]*Q ≈ blockdiag(sparse(I(2)),fill(ρ_31.generators[1],3)..., ρ_22.generators[1], ρ_211.generators[1]) @test_skip Q'*ρ.generators[2]*Q ≈ blockdiag(sparse(I(2)),fill(ρ_31.generators[2],3)..., ρ_22.generators[2], ρ_211.generators[2]) @test_skip Q'*ρ.generators[3]*Q ≈ blockdiag(sparse(I(2)),fill(ρ_31.generators[3],3)..., ρ_22.generators[3], ρ_211.generators[3]) @test_skip Q̃'*ρ.generators[1]*Q̃ ≈ blockdiag(sparse(I(2)),fill(ρ_31.generators[1],3)..., ρ_22.generators[1], ρ_211.generators[1]) @test_skip Q̃'*ρ.generators[2]*Q̃ ≈ blockdiag(sparse(I(2)),fill(ρ_31.generators[2],3)..., ρ_22.generators[1], ρ_211.generators[1]) end end # basis = gelfandbasis(Representation(Partition([3,2,1])).generators) # Λ = Matrix{Int}(undef, size(basis[1],1), length(basis)) # for k in axes(Λ,1), j in axes(Λ,2) # Λ[k,j] = round(Int,basis[j][k,k]) # end
NumericalRepresentationTheory
https://github.com/dlfivefifty/NumericalRepresentationTheory.jl.git
[ "MIT" ]
0.3.0
6e91cff8b0241d57750cca395a97d6919839a7b5
docs
3027
# NumericalRepresentationTheory.jl A Julia package for representation theory of the symmetric group This package supports basic representation theory of the symmetric group. One can form irreducible representations (irreps) by specifying the corresponding permutation, combine representations via direct sum and Kronecker product, and also calculate the resulting irrep multipliciplities. For example, the following code calculates the Kronecker coefficients of two irreps of S₇, specified by the partitions `5+1+1` and `2+2+2+1`: ```julia julia> using NumericalRepresentationTheory, Permutations, Plots julia> R₁ = Representation(5,1,1); julia> g = Permutation([7,2,1,3,4,6,5]); Matrix(R₁(g)) # Matrix representation of a specific permutation 15×15 Array{Float64,2}: -0.2 -0.0408248 -0.0527046 … 0.0 0.0 0.0 0.163299 0.241667 0.31199 0.0 0.0 0.0 0.0 -0.161374 0.0138889 0.0 0.0 0.0 0.0 0.0 -0.157135 0.467707 0.810093 0.0 0.0 0.0 0.0 0.270031 -0.155902 -0.881917 -0.966092 0.0493007 0.0636469 … 0.0 0.0 0.0 0.0 -0.190941 0.0164336 0.0 0.0 0.0 0.0 0.0 -0.185924 0.0790569 0.136931 0.0 0.0 0.0 0.0 0.0456435 -0.0263523 -0.149071 0.0 0.935414 -0.0805076 0.0 0.0 0.0 0.0 0.0 0.91084 … 0.0968246 0.167705 0.0 0.0 0.0 0.0 0.0559017 -0.0322749 -0.182574 0.0 0.0 0.0 0.125 0.216506 0.0 0.0 0.0 0.0 0.0721688 -0.0416667 -0.235702 0.0 0.0 0.0 -0.816497 0.471405 -0.333333 julia> R₂ = Representation(2,2,2,1); julia> R = R₁ ⊗ R₂; # Tensor product representation julia> multiplicities(R) # Returns a dictionary whose keys are partitions and values are the multiplicities Dict{Partition, Int64} with 8 entries: 7 = 2 + 2 + 2 + 1 => 1 7 = 4 + 2 + 1 => 1 7 = 3 + 1 + 1 + 1 + 1 => 1 7 = 3 + 2 + 2 => 1 7 = 3 + 3 + 1 => 1 7 = 2 + 2 + 1 + 1 + 1 => 1 7 = 4 + 1 + 1 + 1 => 1 7 = 3 + 2 + 1 + 1 => 2 julia> plot(multiplicities(R)) # We can also plot ``` <img src=https://github.com/dlfivefifty/NumericalRepresentationTheory.jl/raw/master/images/mults.png width=500 height=400> In addition, one can find an orthogonal transformation that reduces a representation to irreducibles: ```julia julia> ρ,Q = blockdiagonalize(R); # Q'R(g)*Q ≈ ρ(g) where ρ is a direct sum (block diagonal) of irreducibles. julia> Q'R(g)*Q ≈ ρ(g) true julia> ρ(g) ≈ (Representation(4,2,1) ⊕ Representation(4,1,1,1) ⊕ Representation(3,3,1) ⊕ Representation(3,2,2) ⊕ Representation(3,2,1,1) ⊕ Representation(3,2,1,1) ⊕ Representation(3,1,1,1,1) ⊕ Representation(2,2,2,1) ⊕ Representation(2,2,1,1,1))(g) true ```
NumericalRepresentationTheory
https://github.com/dlfivefifty/NumericalRepresentationTheory.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
633
using Documenter, Presentation, DocumenterMarkdown cp(joinpath(@__DIR__, "../README.md"), joinpath(@__DIR__, "./src/index.md"), force=true, follow_symlinks=true) makedocs( sitename="Presentation.jl documentation", format = Markdown() ) deploydocs( repo = "github.com/kdheepak/Presentation.jl.git", deps = Deps.pip( "mkdocs==0.17.5", "mkdocs-material==2.9.4", "python-markdown-math", "pygments", "pymdown-extensions", ), make = () -> run(`mkdocs build`), target = "site", )
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
933
Presentation.Slide( """ # Presentation.jl - Introduction - Installation - REPL """ ) Presentation.Slide( """ ## Introduction - Allows presenting Julia code from the terminal - Allows defined predefined code to run """ ) Presentation.Slide( """ ## Installation - Run `Pkg.add("https://github.com/kdheepak/Presentation.jl")` - Add `using Presentation` to `~/.juliarc.jl` - Create slides in `slideshow.jl` - Run `julia -i slideshow.jl` """ ) Presentation.Slide( """ ## REPL - Move forward slides by using Ctrl+f - Move back slides by using Ctrl+b - Input predefined expressions on a slide by using Ctrl+e - Slide(..., [ :(1+1) :(println("hello world")) quote function add(x, y) x+y end end ] ) """, [ :(1+1) :(println("hello world")) quote function add(x, y) x+y end end ] )
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
849
module Presentation import Pandoc import REPL import REPL: Terminals import Base: read using Crayons using Highlights using Highlights.Tokens using Highlights.Lexers using TerminalExtensions using Markdown export render, next, previous, current_slide abstract type PandocMarkdown end abstract type JuliaMarkdown end include("lexers.jl") include("utils.jl") include("slideshow.jl") include("renderer.jl") TERMINAL = nothing # Contains reference to the built in Terminal SLIDES = nothing # Contains reference to a `Slides` object render() = render(SLIDES) next() = next(SLIDES) previous() = previous(SLIDES) current_slide() = current_slide(SLIDES) filename() = filename(SLIDES) function __init__() global TERMINAL TERMINAL = REPL.Terminals.TTYTerminal(get(ENV, "TERM", Sys.iswindows() ? "" : "dumb"), stdin, stdout, stderr) end end
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
49
abstract type PythonLexer <: AbstractLexer end
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
8356
const CODEBLOCK_FOREGROUND = get(ENV, "PRESENTATION_JL_CODEBLOCK_FOREGROUND", 0x909090) |> UInt32 const CODEBLOCK_BACKGROUND = get(ENV, "PRESENTATION_JL_CODEBLOCK_BACKGROUND", 0xf0f0f0) |> UInt32 const PRESENTATION_JL_LEXERS = Dict( "julia" => JuliaLexer, # "python" => PythonLexer, ) draw_border(io, x, y, w, h) = draw_border(io, x, y, w, h, Crayon()) function draw_border(io, x, y, w, h, c) cmove(x, y) ; print(io, c(repeat("━", w))) cmove(x, y + h) ; print(io, c(repeat("━", w))) for i in 1:h cmove(x, y + i) ; print(io, c("┃")) cmove(x + w, y + i) ; print(io, c("┃")) end cmove(x, y) ; print(io, c("┏")) cmove(x + w, y) ; print(io, c("┓")) cmove(x, y + h) ; print(io, c("┗")) cmove(x + w, y + h) ; print(io, c("┛")) end """ Syntax Highlighter """ function Highlights.Format.render(io::IO, ::MIME"text/ansi", tokens::Highlights.Format.TokenIterator) for (str, id, style) in tokens fg = style.fg.active ? map(Int, (style.fg.r, style.fg.g, style.fg.b)) : :nothing bg = style.bg.active ? map(Int, (style.bg.r, style.bg.g, style.bg.b)) : :nothing crayon = Crayon( foreground = fg, background = bg, bold = style.bold, italics = style.italic, underline = style.underline, ) print(io, crayon, str, inv(crayon)) end end ## Render functions render(e) = render(stdout, e) render(io, e::Pandoc.RawBlock) = nothing function render(io, e::Pandoc.Link) iob = IOBuffer() for se in e.content render(iob, se) end title = String(take!(iob)) url = e.target.url # This seems to be an iTerm2 only feature print(io, "$ESC]8;;$url$ESC\\$title$ESC]8;;$ESC\\") end function render(io, e::Pandoc.Strikeout) c = Crayon(strikethrough = true) print(io, c) for ec in e.content render(io, ec) end print(io, inv(c)) end function render(io, e::Pandoc.Emph) c = Crayon(italics = true) print(io, c) for ec in e.content render(io, ec) end print(io, inv(c)) end function render(io, e::Pandoc.Strong) c = Crayon(bold = true) print(io, c) for ec in e.content render(io, ec) end print(io, inv(c)) end function render(io, es::Vector{Pandoc.Block}) x, y = getXY() cmove(x + 4, y) for e in es render(io, e) end cmove(x, getY()) end function render(io, e::Pandoc.SoftBreak) end function render(io, e::Pandoc.Plain) x, y = getXY() w, h = canvassize() oldX, oldY = getXY() print(io, "▶ ") for se in e.content render(io, se) newX, newY = getXY() if newX > w * 7/8 cmove(x, newY + 1) oldX, oldY = newX, newY elseif newY > oldY cmove(x, newY) oldX, oldY = newX, newY end end cmove(x, getY() + 2) end function render(io, e::Pandoc.OrderedList) x, y = getXY() for items in e.content render(io, items) end end function render(io, e::Pandoc.BulletList) x, y = getXY() cmove(x, getY() + 1) for items in e.content render(io, items) end cmove(x, getY() + 1) end function render(io, e::Pandoc.Image) w, h = canvassize() x, y = getXY() cmove(round(Int, w / 3), y + 2) data = read(abspath(joinpath(dirname(filename()), e.target.url))) TerminalExtensions.iTerm2.display_file( data; io=io, width="$(round(Int, w/3))", filename="image", inline=true, preserveAspectRatio=true ) title = e.target.title cmove(round(Int, w / 2) - round(Int, length(title) / 2), getY() + 2) print(io, "$title") end render(io, e::Pandoc.Element) = error("Not implemented renderer for $e") hex2rgb(c) = convert.(Int, ((c >> 16) % 0x100, (c >> 8) % 0x100, c % 0x100)) function render(io, e::Pandoc.CodeBlock) w = round(Int, getW() * 6 / 8) x, y = getXY() if length(e.attr.classes) > 0 lexer = get(PRESENTATION_JL_LEXERS, e.attr.classes[1], AbstractLexer) if lexer == AbstractLexer content = e.content else iob = IOBuffer() highlight(iob, MIME("text/ansi"), e.content, lexer) content = String(take!(iob)) end else content = e.content end c = Crayon(background = hex2rgb(CODEBLOCK_BACKGROUND)) cmove(x, y) print(io, c(repeat(" ", w))) y += 1 # draw background save_y = y split_content = split(content, '\n') for (i, code_line) in enumerate(split_content) cmove(x, y) print(io, c(repeat(" ", w))) print(io, Crayon(background = hex2rgb(CODEBLOCK_FOREGROUND))(" ")) y += 1 end cmove(x, y) print(io, c(repeat(" ", w))) print(io, Crayon(background = hex2rgb(CODEBLOCK_FOREGROUND))(" ")) y += 1 cmove(x+1, y) println(io, Crayon(foreground = hex2rgb(CODEBLOCK_FOREGROUND))(repeat("▀", w))) # write code blocks y = save_y for code_line in split_content cmove(x+2, y) println(io, c(code_line)) y += 1 end end render(io, e::Pandoc.Str) = print(io, e.content) render(io, e::Pandoc.Space) = print(io, " ") render(io, e::Pandoc.Code) = print(io, "`", Crayon(foreground=:red)("$(e.content)"), "`") render(io, h::Pandoc.Header) = render(io, h, Val{h.level}()) function render(io, e::Pandoc.Header, level::Val{1}) c = Crayon(bold = true) w, h = canvassize() x, y = round(Int, w / 2), round(Int, h / 2) iob = IOBuffer() for se in e.content render(iob, se) end t = String(take!(iob)) lines = wrap(t) for line in lines cmove(x - round(Int, length(line) / 2), y) print(io, c(line)) y += 1 end m = maximum(length.(lines)) draw_border(io, x - round(Int, m / 2) - 2, y - length(lines) - 1, m + 3, length(lines) + 1) cmove(round(Int, w / 8), getY() + 4) end function render(io, e::Pandoc.Header, level::Val{2}) c = Crayon(bold = true) w, h = canvassize() x, y = round(Int, w / 2), round(Int, h / 8) iob = IOBuffer() for se in e.content render(iob, se) end t = String(take!(iob)) lines = wrap(t) for line in lines cmove(x - round(Int, length(line) / 2), y) print(io, c(line)) y += 1 end m = maximum(length.(lines)) draw_border(io, x - round(Int, m / 2) - 2, y - length(lines) - 1, m + 3, length(lines) + 1) cmove(round(Int, w / 8), getY() + 4) end function render(io, e::Pandoc.Para) w, h = canvassize() cmove(round(Int, w / 8), getY() + 2) oldX, oldY = getXY() for se in e.content render(io, se) newX, newY = getXY() if newX > w * 7/8 cmove(round(Int, w / 8), newY + 1) oldX, oldY = newX, newY elseif newY > oldY cmove(round(Int, w / 8), newY) oldX, oldY = newX, newY end end cmove(round(Int, w / 8), getY() + 2) end function render(io, s::Slides) clear() width, height = canvassize() x, y = round(Int, width / 2), round(Int, height / 4) cmove(x, y) for e in current_slide(s) render(io, e) end cmove_bottom() end function render(io, md::Markdown.MD, filename) d = convert(Pandoc.Document, md) render(io, d, filename) end function render(io, d::Pandoc.Document, filename::AbstractString="") global SLIDES s = Slides(d, filename) SLIDES = s return render(io, s) end render(io, filename::AbstractString) = Pandoc.exists() ? render(io, PandocMarkdown, filename) : render(io, JuliaMarkdown, filename) render(io, ::Type{T}, filename::AbstractString) where T = render(io, read(T, filename), filename) Base.read(::Type{PandocMarkdown}, filename::AbstractString) = Pandoc.parse_file(filename) Base.read(::Type{JuliaMarkdown}, filename::AbstractString) = Markdown.parse_file(filename)
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
1337
const Slide = Vector{Pandoc.Element} mutable struct Slides current_slide::Int content::Vector{Slide} filename::String end function Slides(d::Pandoc.Document, filename::String) content = Pandoc.Element[] slides = Slides(1, Slide[], filename) for e in d.blocks if typeof(e) == Pandoc.Header && e.level == 1 && length(content) == 0 push!(content, e) elseif typeof(e) == Pandoc.Header && e.level == 1 && length(content) != 0 push!(slides.content, content) content = Pandoc.Element[] push!(content, e) elseif typeof(e) == Pandoc.Header && e.level == 2 && length(content) == 0 push!(content, e) elseif typeof(e) == Pandoc.Header && e.level == 2 && length(content) != 0 push!(slides.content, content) content = Pandoc.Element[] push!(content, e) else push!(content, e) end end push!(slides.content, content) return slides end current_slide(s::Slides) = s.content[s.current_slide] filename(s::Slides) = s.filename function next(s::Slides) if s.current_slide < length(s.content) s.current_slide += 1 end render(s) end function previous(s::Slides) if s.current_slide > 1 s.current_slide -= 1 end render(s) end
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
5390
import Base.Libc: strerror mean(x::Number, y::Number) = (x + y) / 2 const ESC = '\x1B' # Encoded terminal modes from SSH.jl const NCCS = Sys.islinux() ? 32 : 20 const tcflag_t = Sys.islinux() ? Cuint : Culong const speed_t = tcflag_t mutable struct termios c_iflag::tcflag_t c_oflag::tcflag_t c_cflag::tcflag_t c_lflag::tcflag_t @static if Sys.islinux() c_line::UInt8 end c_cc::NTuple{NCCS, UInt8} c_uispeed::speed_t c_ospeed::speed_t end TERM = Ref{termios}( @static if Sys.islinux() termios( 0, 0, 0, 0, 0, Tuple([0 for _ in 1:NCCS]), 0, 0 ) else termios( 0, 0, 0, 0, Tuple([0 for _ in 1:NCCS]), 0, 0 ) end ); RESTORE = deepcopy(TERM); const ICANON = Sys.islinux() ? 0o0000002 : 0x00000100 const ECHO = Sys.islinux() ? 0o0000010 : 0x00000008 const TCSANOW = 0 const O_RDWR = Base.Filesystem.JL_O_RDWR const O_NOCTTY = Base.Filesystem.JL_O_NOCTTY const OS_HANDLE = Base.OS_HANDLE function getColor(t::Terminals.TTYTerminal) fd = ccall(:jl_uv_file_handle, Base.OS_HANDLE, (Ptr{Cvoid},), stdin.handle) systemerror("tcgetattr", ccall(:tcgetattr, Cint, (Cint, Ptr{Cvoid}), fd, TERM) == -1) systemerror("tcgetattr", ccall(:tcgetattr, Cint, (Cint, Ptr{Cvoid}), fd, RESTORE) == -1) TERM[].c_lflag &= ~(ICANON|ECHO) systemerror("tcsetattr", ccall(:tcsetattr, Cint, (Cint, Cint, Ptr{Cvoid}), fd, TCSANOW, TERM) == -1 ) write(stdout, "\e]11;?\a") buf = UInt8[] while true ch = read(stdin, 1)[1] if Char(ch) == ';' break end end @assert Char(read(stdin, 1)[1]) == 'r' @assert Char(read(stdin, 1)[1]) == 'g' @assert Char(read(stdin, 1)[1]) == 'b' @assert Char(read(stdin, 1)[1]) == ':' r = parse(UInt8, "0x$(String(read(stdin, 2)))") @assert Char(read(stdin, 1)[1]) == '/' g = parse(UInt8, "0x$(String(read(stdin, 2)))") @assert Char(read(stdin, 1)[1]) == '/' b = parse(UInt8, "0x$(String(read(stdin, 2)))") systemerror("tcsetattr", ccall(:tcsetattr, Cint, (Cint, Cint, Ptr{Cvoid}), fd, TCSANOW, RESTORE) == -1 ) return r, g, b end function getXY(t::Terminals.TTYTerminal) fd = ccall(:jl_uv_file_handle, Base.OS_HANDLE, (Ptr{Cvoid},), stdin.handle) systemerror("tcgetattr", ccall(:tcgetattr, Cint, (Cint, Ptr{Cvoid}), fd, TERM) == -1) systemerror("tcgetattr", ccall(:tcgetattr, Cint, (Cint, Ptr{Cvoid}), fd, RESTORE) == -1) TERM[].c_lflag &= ~(ICANON|ECHO) systemerror("tcsetattr", ccall(:tcsetattr, Cint, (Cint, Cint, Ptr{Cvoid}), fd, TCSANOW, TERM) == -1 ) write(stdout, "$(Terminals.CSI)6n") buf = UInt8[] while true ch = read(stdin, 1)[1] if Char(ch) == 'R' break end push!(buf, ch) end systemerror("tcsetattr", ccall(:tcsetattr, Cint, (Cint, Cint, Ptr{Cvoid}), fd, TCSANOW, RESTORE) == -1 ) r, c = split(String(buf[3:end]), ";") return parse(Int, c), parse(Int, r) end abstract type Terminal end abstract type JPEG end size(::Type{Terminal}) = Base.displaysize(stdout) |> reverse function size(::Type{JPEG}, filename) fhandle = open(filename) seek(fhandle, 0) # Read 0xff next size = 2 ftype = 0 while ! ( 0xc0 <= ftype <= 0xcf ) read(fhandle, size) byte = read(fhandle, 1) while byte[1] == 0xff byte = read(fhandle, 1) end ftype = byte[1] size = read(fhandle, 2)[2] - 2 end read(fhandle, 1) h1, h2, w1, w2 = read(fhandle, 4) return Int(UInt16(w1)<<8 + w2), Int(UInt16(h1)<<8 + h2) end canvassize() = size(Terminal) pos() = pos(TERMINAL) getXY() = getXY(TERMINAL) getColor() = getColor(TERMINAL) getX() = getX(TERMINAL) getY() = getY(TERMINAL) getW() = canvassize()[1] getH() = canvassize()[2] cmove(x, y) = cmove(TERMINAL, x, y) clear() = clear(TERMINAL) cmove_bottom() = cmove(1, getH() - 2) pos(t::Terminals.TTYTerminal) = (getX(t), getY(t)) function getX(t::Terminals.TTYTerminal) x, y = getXY(t) return x end function getY(t::Terminals.TTYTerminal) x, y = getXY(t) return y end @eval cmove(t::Terminals.TTYTerminal, x::Int, y::Int) = print("$(Terminals.CSI)$(y);$(x)H") @eval function clear(t::Terminals.TTYTerminal) r = getH() print("$(Terminals.CSI)$(r);1H") print("$(Terminals.CSI)2J") end wrap(s) = wrap(s, round(Int, getW() * 3 / 4)) function wrap(s, w::Int) length(s) < w && return String[s] i = findprev(" ", s, w) i = (i == nothing) ? w : i[1] first, remaining = s[1:i], s[i+1:end] first = first remaining = remaining return vcat(String[first], wrap(remaining, w)) end
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
102
using Test using Presentation if get(ENV, "CI", "") == "" include("test_presentation.jl") end
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
code
230
@testset "test renderer" begin iob = IOBuffer() Presentation.render(iob, joinpath(@__DIR__, "sample.md")) @test String(take!(iob)) == "\e[1mPresentation.jl\e[22m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃┃┃┏┓┗┛" end
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
docs
614
# Presentation.jl ![](https://user-images.githubusercontent.com/1813121/65624325-22f5f900-dfb9-11e9-936e-39143431377f.gif) ## Installation ``` (v1.1) pkg> add Presentation ``` ## Usage ```julia using Presentation render("/path/to/filename.md") ``` Use `next()` or `previous()` to move between slides. ## Motivation The motivation was to build a presentation tool that uses the text interface in a terminal. Other similar tools: - [mdp](https://github.com/visit1985/mdp) - [patat](https://github.com/jaspervdj/patat) - [qov](https://github.com/chunqiuyiyu/qov) - [vtmc](https://github.com/jclulow/vtmc)
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
docs
305
# Usage To use [Presentation.jl](https://github.com/kdheepak/Presentation.jl.git) in Julia, first add it: ``` (v1.1)> add Presentation ``` Then you can run the following: ``` julia> using Presentation julia> render("/path/to/file.md") ``` You move through slides by using `next()` and `previous()`.
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
docs
919
# Presentation.jl ## Terminal Presentation - Use Markdown for presenting - Support **bold** and *italics* ## This is a very long slide title name I wonder how this will be rendered will it be rendered correctly? Lorem ipsum dolor sit amet... Lorem **ipsum** dolor sit amet, *consectetuer* adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis splople autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi. ## No body ## Images ![](./cat.jpg) ## Interactive julia session - Run julia code from within presentation
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.2.2
e250e1b3a478ad99132e3993ed881c7debd0f559
docs
2337
# Presentation.jl ## Installation You can install `Presentation.jl` by using the following command: ``` (v1.1) pkg> add https://github.com/kdheepak/Presentation.jl ``` ## Bulleted list This is a list of items: - Item 1 - Sub Item 1 - Sub sub item 1 - Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. - Sub Item 2 - Item 2 - Item 3 ## Numbered list This is a list of items: 1. Item 1 1. Sub Item 1 2. Item 2 3. Item 3 ## Bold and Italics and Strikethrough Supports _italics_ and **bold** formatting as well as combined **asterisks and _underscores_**. And if your font is configured correctly, it also supports strikethrough uses two tildes. ~~Scratch this.~~ ## Presentation.jl is a presentation framework written in Julia for presenting slides in the terminal in interactive manner Supports sensible wrapping of long text in a paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. ## Syntax highlighting for Julia code `julia` code is always syntax highlighted: ```julia # function to calculate the volume of a sphere function sphere_vol(r) # julia allows Unicode names (in UTF-8 encoding) # so either "pi" or the symbol π can be used return 4/3*pi*r^3 end # functions can also be defined more succinctly quadratic(a, sqr_term, b) = (-b + sqr_term) / 2a ``` ## Images Supports inline images ![](../examples/cat.jpg) in the terminal. ## Gifs And gifs! ![](../examples/pratt.gif) ## Link This is a [link](https://github.com/kdheepak/Presentation.jl) to the repository.
Presentation
https://github.com/kdheepak/Presentation.jl.git
[ "MIT" ]
0.4.2
59107c179a586f0fe667024c5eb7033e81333271
code
181
using Documenter, GeoFormatTypes makedocs(; modules = [GeoFormatTypes], sitename = "GeoFormatTypes.jl", ) deploydocs(; repo="github.com/JuliaGeo/GeoFormatTypes.jl", )
GeoFormatTypes
https://github.com/JuliaGeo/GeoFormatTypes.jl.git
[ "MIT" ]
0.4.2
59107c179a586f0fe667024c5eb7033e81333271
code
10069
module GeoFormatTypes # Use the README as the module docs @doc let path = joinpath(dirname(@__DIR__), "README.md") include_dependency(path) read(path, String) end GeoFormatTypes export GeoFormat export CoordinateReferenceSystemFormat, EPSG, ProjString, ProjJSON, CoordSys, GML export GeometryFormat, GeoJSON, KML export MixedFormat, GML export AbstractWellKnownText, WellKnownText, WellKnownText2, ESRIWellKnownText, WellKnownBinary const PROJ_PREFIX = "+proj=" const EPSG_PREFIX = "EPSG:" # TODO more verification that types are wrapping the right format. """ FormatMode Traits to indicate the format type, such as `Geom`, `CRS` or `MixedFormat`. """ abstract type FormatMode end """ Geom <: FormatMode Geom() Trait specifying that a format object, like [`WellKnownText`](@ref), contains geometry data. """ struct Geom <: FormatMode end """ CRS <: FormatMode CRS() Trait specifying that a format object, like [`WellKnownText`](@ref), contains only coordinate reference system data. """ struct CRS <: FormatMode end """ MixedFormatMode <: FormatMode Abstract subtype of [`FormatMode`](@ref) where both geometry and coordinate reference system data are or may be present. """ abstract type MixedFormatMode <: FormatMode end """ Extended <: MixedFormatMode <: FormatMode Extended() Trait specifying that a mixed format object, like [`WellKnownText`](@ref), contains both geometry and coordinate reference system. """ struct Extended <: MixedFormatMode end """ Unknown <: MixedFormatMode <: FormatMode Unknown() Trait specifying that for a mixed format object, like [`WellKnownText`](@ref), it is unknown whether it stores geometry or coordinate reference system data, or both. """ struct Unknown <: MixedFormatMode end """ val(f::GeoFormat) Get the contained value of a GeoFormat type. """ function val end """ GeoFormat Abstract supertype for geospatial data formats """ abstract type GeoFormat end # Convert from the same type does nothing. Base.convert(::Type{T1}, source::T2) where {T1<:GeoFormat,T2<:T1} = source # Convert uses the `mode` trait to distinguish crs form geometry conversion Base.convert(target::Type{T1}, source::T2; kwargs...) where {T1<:GeoFormat,T2<:GeoFormat} = begin sourcemode = mode(source) targetmode = mode(target) convertmode = if targetmode isa Geom if sourcemode isa Union{MixedFormatMode,Geom} Geom() # Geom is the default if both formats are mixed else throw(ArgumentError("cannot convert $(typeof(source)) to $target")) end elseif targetmode isa CRS if sourcemode isa Union{MixedFormatMode,CRS} CRS() else throw(ArgumentError("cannot convert $(typeof(source)) to $target")) end else # targetmode isa MixedFormatMode # MixedFormatMode to MixedFormatMode defaults to Geom if sourcemode isa Union{MixedFormatMode,Geom} Geom() else CRS() end end convert(target, convertmode, source; kwargs...) end """ CoordinateReferenceSystemFormat <: GeoFormat Formats representing coordinate reference systems """ abstract type CoordinateReferenceSystemFormat <: GeoFormat end """ GeometryFormat <: GeoFormat Formats representing geometries. These wrappers simply mark string formats that may optionally be converted to Geoetry objects at a later point. """ abstract type GeometryFormat <: GeoFormat end """ MixedFormat <: GeoFormat Formats that may hold either or both coordinate reference systems and geometries. """ abstract type MixedFormat{X} <: GeoFormat end val(x::GeoFormat) = x.val mode(format::GeoFormat) = mode(typeof(format)) mode(::Type{<:GeometryFormat}) = Geom() mode(::Type{<:CoordinateReferenceSystemFormat}) = CRS() mode(::Type{<:MixedFormat}) = Unknown() mode(::Type{<:MixedFormat{M}}) where {M} = M() # Most GeoFormat types wrap String or have a constructor for string inputs Base.convert(::Type{String}, input::GeoFormat) = val(input) Base.convert(::Type{T}, input::AbstractString) where {T<:GeoFormat} = T(convert(String, (input))) """ ProjString <: CoordinateReferenceSystemFormat ProjString(x::String) Wrapper for Proj strings. String input must start with "$PROJ_PREFIX". """ struct ProjString <: CoordinateReferenceSystemFormat val::String ProjString(input::String) = begin startswith(input, PROJ_PREFIX) || throw(ArgumentError("Not a Proj string: $input does not start with $PROJ_PREFIX")) new(input) end end """ ProjJSON <: CoordinateReferenceSystemFormat ProjJSON(x::Dict{String,<:Any}) ProjJSON(x::String) Wrapper for [PROJJSON](https://proj.org/specifications/projjson.html). """ struct ProjJSON <: CoordinateReferenceSystemFormat val::Union{String,Dict{String,<:Any}} ProjJSON(input::Dict{String,<:Any}) = begin haskey(input, "type") || throw(ArgumentError("Not a ProjJSON: $input does not have the required key 'type'")) new(input) end ProjJSON(input::String) = begin occursin("type", input) || throw(ArgumentError("Not a ProjJSON: $input does not have the required key 'type'")) new(input) end end """ CoordSys <: CoordinateReferenceSystemFormat CoordSys(val) Wrapper for a Mapinfo CoordSys string. """ struct CoordSys <: CoordinateReferenceSystemFormat val::String end """ AbstractWellKnownText <: MixedFormat Well known text has a number of versions and standards, and can hold either coordinate reference systems or geometric data in string format. """ abstract type AbstractWellKnownText{X} <: MixedFormat{X} end """ WellKnownText <: AbstractWellKnownText WellKnownText(val) WellKnownText(mode, val) Wrapper for Well-known text (WKT) v1, following the OGC standard. These may hold CRS or geometry data. These may hold CRS or geometry data. The default mode is `Mixed()`, and conversions to either type will be attempted where possible. A specific type can be specified if it is known, e.g.: ```julia geom = WellKnownText(Geom(), geom_string) ``` """ struct WellKnownText{X} <: AbstractWellKnownText{X} mode::X val::String end WellKnownText(val) = WellKnownText(Unknown(), val) """ WellKnownText2 <: AbstractWellKnownText WellKnownText2(val) WellKnownText2(mode, val) Wrapper for Well-known text v2 objects, following the new OGC standard. These may hold CRS or geometry data. The default mode is `Unknown()`, and conversions to either type will be attempted where possible. A specific type can be specified if it is known, e.g.: ```julia crs = WellKnownText2(CRS(), crs_string) ``` """ struct WellKnownText2{X} <: AbstractWellKnownText{X} mode::X val::String end WellKnownText2(val) = WellKnownText2(Unknown(), val) """ ESRIWellKnownText <: AbstractWellKnownText ESRIWellKnownText(x::String) ESRIWellKnownText(::CRS, x::String) ESRIWellKnownText(::Geom, x::String) Wrapper for Well-known text strings, following the ESRI standard. These may hold CRS or geometry data. The default mode is `Unknown`, and conversions to either type will be attempted where possible. A specific type can be specified if it is known, e.g: ```julia crs = ESRIWellKnownText(CRS(), crs_string) ``` """ struct ESRIWellKnownText{X} <: AbstractWellKnownText{X} mode::X val::String end ESRIWellKnownText(val) = ESRIWellKnownText(Unknown(), val) """ WellKnownBinary <: MixedFormat Wrapper for Well-known binary (WKB) objects. These may hold CRS or geometry data. The default mode is `Unknown`, and conversions to either type will be attempted where possible. A specific type can be specified if it is known, e.g: ```julia crs = WellKnownBinary(CRS(), crs_blob) ``` """ struct WellKnownBinary{X,T} <: MixedFormat{X} mode::X val::T end WellKnownBinary(val) = WellKnownBinary(Unknown(), val) Base.convert(::Type{String}, input::WellKnownBinary) = error("`convert` to `String` is not defined for `WellKnownBinary`") """ EPSG <: CoordinateReferenceSystemFormat EPSG(input) EPSG code representing a coordinate reference system from the EPSG spatial reference system registry. String input must start with "$EPSG_PREFIX". `EPSG` can be converted to an `Int` or `String` using `convert`, or another `CoordinateReferenceSystemFormat` when ArchGDAL.jl is loaded. """ struct EPSG{N} <: CoordinateReferenceSystemFormat val::NTuple{N,Int} end EPSG(input::Vararg{Int}) = EPSG(input) function EPSG(input::AbstractString) startswith(input, EPSG_PREFIX) || throw(ArgumentError("String $input does no start with $EPSG_PREFIX")) code = Tuple(parse.(Int, split(input[findlast(EPSG_PREFIX, input).stop+1:end], "+"))) EPSG(code) end val(input::EPSG{1}) = input.val[1] # backwards compatible Base.convert(::Type{Int}, input::EPSG{1}) = val(input) Base.convert(::Type{String}, input::EPSG) = string(EPSG_PREFIX, join(input.val, "+")) Base.convert(::Type{EPSG}, input::Int) = EPSG((input,)) """ KML <: GeometryFormat Wrapper object for "Keyhole Markup Language" (KML) strings. See: https://www.ogc.org/standards/kml/ Can be converted to a `String`. Conversion to crs will convert from `EPSG(4326)`, which is the default for KML. """ struct KML <: GeometryFormat val::String end # We know KML always has a crs of EPSG(4326) Base.convert(::Type{T}, ::KML) where {T<:CoordinateReferenceSystemFormat} = convert(T, EPSG(4326)) """ GML <: MixedFormat Wrapper for Geography Markup Language string. These contain geometry data, but may also have embedded crs information. `GML` can be converted to either a `GeometryFormat` or `CoordinateReferenceSystemFormat`. """ struct GML{X} <: MixedFormat{X} mode::X val::String end GML(val) = GML(Unknown(), val) """ GeoJSON <: GeometryFormat Wrapper for a GeoJSON `String` or `Dict`. Conversion between `Dict` and `String` values is not yet handled. """ struct GeoJSON{T} <: GeometryFormat val::T end end # module
GeoFormatTypes
https://github.com/JuliaGeo/GeoFormatTypes.jl.git
[ "MIT" ]
0.4.2
59107c179a586f0fe667024c5eb7033e81333271
code
6138
using GeoFormatTypes, Test using GeoFormatTypes: Geom, CRS, Extended, Unknown @testset "Test construcors" begin @test_throws ArgumentError ProjString("+lat_ts=56.5 +ellps=GRS80") @test_throws ArgumentError ProjJSON(Dict("fype" => 1)) @test_throws ArgumentError ProjJSON("fype") @test_throws ArgumentError EPSG("ERROR:4326") @test EPSG("EPSG:4326") == EPSG(4326) @test EPSG("EPSG:4326+3855") == EPSG((4326, 3855)) end @testset "Test constructors" begin @test ProjString("+proj=test") isa ProjString @test ProjJSON(Dict("type" => "GeographicCRS")) isa ProjJSON @test ProjJSON("type: GeographicCRS") isa ProjJSON @test EPSG(4326) isa EPSG @test EPSG((4326, 3855)) isa EPSG @test WellKnownText("test") isa WellKnownText{Unknown} @test WellKnownBinary([1, 2, 3, 4]) isa WellKnownBinary{Unknown} @test WellKnownText2("test") isa WellKnownText2{Unknown} @test ESRIWellKnownText("test") isa ESRIWellKnownText{Unknown} @test WellKnownText(Extended(), "test") isa WellKnownText{Extended} @test WellKnownBinary(Extended(), [1, 2, 3, 4]) isa WellKnownBinary{Extended} @test WellKnownText2(CRS(), "test") isa WellKnownText2{CRS} @test ESRIWellKnownText(Geom(), "test") isa ESRIWellKnownText{Geom} @test GML("test") isa GML{Unknown} @test GML(Geom(), "test") isa GML{Geom} @test GML(CRS(), "test") isa GML{CRS} # Probably doesn't actually exist @test KML("test") isa KML @test GeoJSON("test") isa GeoJSON end @testset "Test conversion to string or int" begin @test convert(String, ProjString("+proj=test")) == "+proj=test" @test convert(String, EPSG(4326)) == "EPSG:4326" @test convert(Int, EPSG(4326)) == 4326 @test_throws MethodError convert(Int, EPSG(4326, 3855)) @test convert(String, EPSG(4326, 3855)) == "EPSG:4326+3855" @test convert(String, WellKnownText("test")) == "test" @test convert(String, WellKnownText2("test")) == "test" @test convert(String, ESRIWellKnownText("test")) == "test" @test convert(String, GML("test")) == "test" @test convert(String, KML("test")) == "test" @test convert(String, GeoJSON("test")) == "test" end @testset "Test val" begin @test GeoFormatTypes.val(EPSG(4326)) == 4326 @test GeoFormatTypes.val(EPSG(4326, 3855)) == (4326, 3855) end # `convert` placeholder methods Base.convert(target::Type{<:GeoFormat}, mode::Union{Geom,Type{Geom}}, source::GeoFormat; kwargs...) = (:geom, kwargs...) Base.convert(target::Type{<:GeoFormat}, mode::Union{CRS,Type{CRS}}, source::GeoFormat; kwargs...) = (:crs, kwargs...) @testset "Test convert mode allocation" begin @testset "Test identical type is passed through unchanged" begin @test convert(WellKnownText, WellKnownText(Extended(), "test")) == WellKnownText(Extended(), "test") @test convert(ProjString, ProjString("+proj=test")) == ProjString("+proj=test") end @testset "Test conversions are assigned to crs or geom correctly" begin @test convert(WellKnownText, WellKnownText2(CRS(), "test")) == (:crs,) @test convert(WellKnownText2, WellKnownText(CRS(), "test")) == (:crs,) @test convert(WellKnownBinary, WellKnownText(CRS(), "test")) == (:crs,) @test convert(ProjString, WellKnownText(CRS(), "test")) == (:crs,) @test convert(EPSG, ProjString("+proj=test")) == (:crs,) @test convert(CoordSys, ProjString("+proj=test")) == (:crs,) @test convert(GeoJSON, WellKnownText(Geom(), "test")) == (:geom,) @test convert(KML, WellKnownText(Geom(), "test")) == (:geom,) @test convert(GML, WellKnownText(Geom(), "test")) == (:geom,) @test convert(ESRIWellKnownText, WellKnownText(Geom(), "test")) == (:geom,) @test convert(WellKnownBinary, WellKnownText(Geom(), "test")) == (:geom,) @test convert(WellKnownText2, WellKnownText(Geom(), "test")) == (:geom,) @test convert(WellKnownText2, WellKnownText(Geom(), "test")) == (:geom,) @test convert(WellKnownText, WellKnownText2(Geom(), "test")) == (:geom,) @test convert(GeoJSON, WellKnownText(Extended(), "test")) == (:geom,) @test convert(KML, WellKnownText(Extended(), "test")) == (:geom,) @test convert(GML, WellKnownText(Extended(), "test")) == (:geom,) @test convert(ESRIWellKnownText, WellKnownText(Extended(), "test")) == (:geom,) @test convert(WellKnownBinary, WellKnownText(Extended(), "test")) == (:geom,) @test convert(WellKnownText2, WellKnownText(Extended(), "test")) == (:geom,) @test convert(WellKnownText2, WellKnownText(Extended(), "test")) == (:geom,) @test convert(WellKnownText, WellKnownText2(Extended(), "test")) == (:geom,) @test convert(GeoJSON, WellKnownText(Unknown(), "test")) == (:geom,) @test convert(KML, WellKnownText(Unknown(), "test")) == (:geom,) @test convert(GML, WellKnownText(Unknown(), "test")) == (:geom,) @test convert(ESRIWellKnownText, WellKnownText(Unknown(), "test")) == (:geom,) @test convert(WellKnownBinary, WellKnownText(Unknown(), "test")) == (:geom,) @test convert(WellKnownText2, WellKnownText(Unknown(), "test")) == (:geom,) @test convert(WellKnownText2, WellKnownText(Unknown(), "test")) == (:geom,) @test convert(WellKnownText, WellKnownText2(Unknown(), "test")) == (:geom,) end @testset "Test kargs pass through convert" begin @test convert(WellKnownText, WellKnownText2(CRS(), "test"); order=:trad) == (:crs, :order => :trad,) @test convert(GML, WellKnownText(Extended(), "test"); order=:custom) == (:geom, :order => :custom) end @testset "Test conversions that are not possible throw an error" begin @test_throws ArgumentError convert(KML, ProjString("+proj=test")) @test_throws ArgumentError convert(GeoJSON, ProjString("+proj=test")) @test_throws ArgumentError convert(ProjString, WellKnownText(Geom(), "test")) @test_throws ArgumentError convert(CoordSys, WellKnownText(Geom(), "test")) @test_throws ArgumentError convert(EPSG, WellKnownText(Geom(), "test")) end end
GeoFormatTypes
https://github.com/JuliaGeo/GeoFormatTypes.jl.git
[ "MIT" ]
0.4.2
59107c179a586f0fe667024c5eb7033e81333271
docs
2420
# GeoFormatTypes [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaGeo.github.io/GeoFormatTypes.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaGeo.github.io/GeoFormatTypes.jl/dev) [![CI](https://github.com/JuliaGeo/GeoFormatTypes.jl/workflows/CI/badge.svg)](https://github.com/JuliaGeo/GeoFormatTypes.jl/actions?query=workflow%3ACI) GeoFormatTypes defines wrapper types to make it easy to pass and dispatch on geographic formats like Well Known Text or GeoJSON between packages. This way information about what format is contained is kept for later use, - instead of passing a `String` or `Int` that could mean anything. Wrapper types also allow methods such as `convert` to work with data in multiple formats, instead of defining lists of format-specific handling methods. Currently ArchGDAL.jl is privileged to define `convert` methods for GeoFormatTypes.jl objects, using GDAL. When it is loaded, objects can be converted from one format to another: ```julia julia> using GeoFormatTypes, ArchGDAL julia> convert(WellKnownText, EPSG(4326)) WellKnownText{GeoFormatTypes.CRS, String}(GeoFormatTypes.CRS(), "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AXIS[\"Latitude\",NORTH],AXIS[\"Longitude\",EAST],AUTHORITY[\"EPSG\",\"4326\"]]") ``` ArchGDAL.jl is not a direct dependency of GeoFormatTypes.jl, so small packages that handle geospatial formats in some way can depend on GeoFormatTypes.jl without worry about large dependencies. One complexity of `GeoFormat` objects is that some formats can hold either CRS (Coordinate Reference System) or geometric data, or even both at the same time. This is handled using the `CRS`, `Geom` and `Mixed` traits. When the contents are explicitly known to be e.g. crs data, then `CRS` can be used, for example with all types of well known text: ```julia crs = WellKnownText2(CRS(), crs_string) ``` If the contents are not known, the default `Mixed()` will mostly do the right thing anyway - it can be converted to either CRS or geometry formats using `convert`, given that it is actually possible to do with the contained data. We thank Julia Computing for supporting contributions to this package.
GeoFormatTypes
https://github.com/JuliaGeo/GeoFormatTypes.jl.git
[ "MIT" ]
0.4.2
59107c179a586f0fe667024c5eb7033e81333271
docs
65
# GeoFormatTypes.jl ```@autodocs Modules = [GeoFormatTypes] ```
GeoFormatTypes
https://github.com/JuliaGeo/GeoFormatTypes.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
195
clima_formatter_options = ( indent = 4, margin = 120, always_for_in = true, whitespace_typedefs = true, whitespace_ops_in_indices = true, remove_extra_newlines = false, )
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
2585
#!/usr/bin/env julia # # This is an adapted version of format.jl from JuliaFormatter with the # following license: # # MIT License # Copyright (c) 2019 Dominique Luna # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. # using Pkg Pkg.activate(@__DIR__) Pkg.instantiate() using JuliaFormatter include("clima_formatter_options.jl") help = """ Usage: climaformat.jl [flags] [FILE/PATH]... Formats the given julia files using the CLIMA formatting options. If paths are given it will format the julia files in the paths. Otherwise, it will format all changed julia files. -v, --verbose Print the name of the files being formatted with relevant details. -h, --help Print this message. """ function parse_opts!(args::Vector{String}) i = 1 opts = Dict{Symbol, Union{Int, Bool}}() while i ≤ length(args) arg = args[i] if arg[1] != '-' i += 1 continue end if arg == "-v" || arg == "--verbose" opt = :verbose elseif arg == "-h" || arg == "--help" opt = :help else error("invalid option $arg") end if opt in (:verbose, :help) opts[opt] = true deleteat!(args, i) end end return opts end opts = parse_opts!(ARGS) if haskey(opts, :help) write(stdout, help) exit(0) end if isempty(ARGS) filenames = readlines(`git ls-files "*.jl"`) else filenames = ARGS end format(filenames; clima_formatter_options..., opts...)
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
1485
# reference in tree version of RandomFeatures prepend!(LOAD_PATH, [joinpath(@__DIR__, "..")]) using Documenter, RandomFeatures, RandomFeatures.Samplers, RandomFeatures.Features, RandomFeatures.Methods, RandomFeatures.Utilities # Gotta set this environment variable when using the GR run-time on CI machines. # This happens as examples will use Plots.jl to make plots and movies. # See: https://github.com/jheinen/GR.jl/issues/278 ENV["GKSwstype"] = "100" api = [ "Samplers" => "API/Samplers.md", "Features" => "API/Features.md", "Methods" => "API/Methods.md", "Utilities" => "API/Utilities.md", ] pages = [ "Home" => "index.md", "Installation instructions" => "installation_instructions.md", "Scalar method" => "setting_up_scalar.md", "Vector method" => "setting_up_vector.md", "Bottlenecks and performance tips" => "parallelism.md", "Contributing" => "contributing.md", "API" => api, ] format = Documenter.HTML(collapselevel = 1, prettyurls = !isempty(get(ENV, "CI", ""))) makedocs( sitename = "RandomFeatures.jl", authors = "CliMA Contributors", format = format, pages = pages, modules = [RandomFeatures], doctest = true, clean = true, checkdocs = :none, ) if !isempty(get(ENV, "CI", "")) deploydocs( repo = "github.com/CliMA/RandomFeatures.jl.git", versions = ["stable" => "v^", "v#.#.#", "dev" => "dev"], push_preview = true, devbranch = "main", ) end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
9776
# Example to learn hyperparameters of simple 1d-1d regression example. # This example matches test/Methods/runtests.jl testset: "Fit and predict: 1D -> 1D" # The (approximate) optimal values here are used in those tests. using StableRNGs using Distributions using StatsBase using LinearAlgebra using Random using Dates PLOT_FLAG = true println("plot flag: ", PLOT_FLAG) if PLOT_FLAG using Plots, ColorSchemes end using EnsembleKalmanProcesses const EKP = EnsembleKalmanProcesses using RandomFeatures.ParameterDistributions using RandomFeatures.DataContainers using RandomFeatures.Samplers using RandomFeatures.Features using RandomFeatures.Methods using RandomFeatures.Utilities seed = 2024 ekp_seed = 99999 rng = StableRNG(seed) ## Functions of use function RFM_from_hyperparameters( rng::AbstractRNG, l::Real, regularizer::Real, n_features::Int, batch_sizes::Dict, feature_type::String, ) μ_c = 0.0 σ_c = l pd = constrained_gaussian("xi", μ_c, σ_c, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = rng) # Learn hyperparameters for different feature types if feature_type == "fourier" sf = ScalarFourierFeature(n_features, feature_sampler) elseif feature_type == "neuron" sf = ScalarNeuronFeature(n_features, feature_sampler) elseif feature_type == "sigmoid" sf = ScalarFeature(n_features, feature_sampler, Sigmoid()) end return RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer) end function calculate_mean_and_coeffs( rng::AbstractRNG, l::Real, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String, ) regularizer = noise_sd^2 n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train # split data into train/test randomly itrain = reshape(get_inputs(io_pairs)[1, 1:n_train], 1, :) otrain = reshape(get_outputs(io_pairs)[1, 1:n_train], 1, :) io_train_cost = PairedDataContainer(itrain, otrain) itest = reshape(get_inputs(io_pairs)[1, (n_train + 1):end], 1, :) otest = reshape(get_outputs(io_pairs)[1, (n_train + 1):end], 1, :) # build and fit the RF rfm = RFM_from_hyperparameters(rng, l, regularizer, n_features, batch_sizes, feature_type) fitted_features = fit(rfm, io_train_cost) test_batch_size = get_batch_size(rfm, "test") batch_inputs = batch_generator(itest, test_batch_size, dims = 2) # input_dim x batch_size #we want to calc lambda/m * coeffs^2 in the end pred_mean, features = predictive_mean(rfm, fitted_features, DataContainer(itest)) scaled_coeffs = sqrt(1 / n_features) * get_coeffs(fitted_features) return pred_mean, scaled_coeffs end function estimate_mean_and_coeffnorm_covariance( rng::AbstractRNG, l::Real, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String, n_samples::Int; repeats::Int = 1, ) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, n_samples) coeffl2norm = zeros(1, n_samples) for i in 1:n_samples for j in 1:repeats m, c = calculate_mean_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs, feature_type) means[:, i] += m' / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end Γ = cov(vcat(means, coeffl2norm), dims = 2) return Γ end function calculate_ensemble_mean_and_coeffnorm( rng::AbstractRNG, lvec::AbstractVector, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String; repeats::Int = 1, ) N_ens = length(lvec) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, N_ens) coeffl2norm = zeros(1, N_ens) for (i, l) in zip(collect(1:N_ens), lvec) for j in collect(1:repeats) m, c = calculate_mean_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs, feature_type) means[:, i] += m' / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end return vcat(means, coeffl2norm) end ## Begin Script, define problem setting println("starting script") date_of_run = Date(2024, 4, 10) # Target function ftest(x::AbstractVecOrMat) = exp.(-0.5 * x .^ 2) .* (x .^ 4 - x .^ 3 - x .^ 2 + x .- 1) n_data = 20 * 2 noise_sd = 0.1 x = rand(rng, Uniform(-3, 3), n_data) noise = rand(rng, Normal(0, noise_sd), n_data) y = ftest(x) + noise io_pairs = PairedDataContainer(reshape(x, 1, :), reshape(y, 1, :), data_are_columns = true) #matrix input xtestvec = collect(-3:0.01:3) ntest = length(xtestvec) #extended domain xtest = DataContainer(reshape(xtestvec, 1, :), data_are_columns = true) ytest = ftest(get_data(xtest)) ## Define Hyperpriors for EKP μ_l = 10.0 σ_l = 10.0 prior_lengthscale = constrained_gaussian("lengthscale", μ_l, σ_l, 0.0, Inf) priors = prior_lengthscale # estimate the noise from running many RFM sample costs at the mean values batch_sizes = Dict("train" => 100, "test" => 100, "feature" => 100) n_train = Int(floor(0.8 * n_data)) n_test = n_data - n_train n_samples = n_test + 1 # > n_test n_features = 80 repeats = 1 feature_types = ["fourier", "neuron", "sigmoid"] lengthscales = zeros(length(feature_types)) for (idx, type) in enumerate(feature_types) println("estimating noise in observations... ") internal_Γ = estimate_mean_and_coeffnorm_covariance( rng, μ_l, # take mean values noise_sd, n_features, batch_sizes, io_pairs, type, n_samples, repeats = repeats, ) Γ = internal_Γ Γ[1:n_test, 1:n_test] += noise_sd^2 * I Γ[(n_test + 1):end, (n_test + 1):end] += I println("Finished estimation.") # Create EKI N_ens = 50 N_iter = 20 initial_params = construct_initial_ensemble(priors, N_ens; rng_seed = ekp_seed) data = vcat(y[(n_train + 1):end], 0.0) ekiobj = [EKP.EnsembleKalmanProcess(initial_params, data, Γ, Inversion())] err = zeros(N_iter) for i in 1:N_iter #get parameters: constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) lvec = constrained_u[1, :] g_ens = calculate_ensemble_mean_and_coeffnorm( rng, lvec, noise_sd, n_features, batch_sizes, io_pairs, type, repeats = repeats, ) EKP.update_ensemble!(ekiobj[1], g_ens) err[i] = get_error(ekiobj[1])[end] #mean((params_true - mean(params_i,dims=2)).^2) println( "Iteration: " * string(i) * ", Error: " * string(err[i]) * ", with parameter mean" * string(mean(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2)[:, 1]), " and sd ", string(sqrt.(var(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2))[:, 1]), ) end lengthscales[idx] = transform_unconstrained_to_constrained(priors, mean(get_u_final(ekiobj[1]), dims = 2))[1, 1] end println("****") println("Optimal lengthscales: ", feature_types, " = ", lengthscales) println("****") #run an actual experiment n_features_test = 1000 n_data_test = 300 x_test = rand(rng, Uniform(-3, 3), (1, n_data_test)) noise_test = rand(rng, Normal(0, noise_sd), (1, n_data_test)) y_test = ftest(x_test) + noise_test io_pairs_test = PairedDataContainer(x_test, y_test) μ_c = 0.0 σ_c = lengthscales regularizer = noise_sd^2 rfms = Any[] fits = Any[] for (idx, sd, feature_type) in zip(collect(1:length(σ_c)), σ_c, feature_types) pd = constrained_gaussian("xi", 0.0, sd, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = copy(rng)) if feature_type == "fourier" sf = ScalarFourierFeature(n_features_test, feature_sampler) elseif feature_type == "neuron" sf = ScalarNeuronFeature(n_features_test, feature_sampler) elseif feature_type == "sigmoid" sf = ScalarFeature(n_features_test, feature_sampler, Sigmoid()) end push!(rfms, RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer)) push!(fits, fit(rfms[end], io_pairs_test)) end if PLOT_FLAG figure_save_directory = joinpath(@__DIR__, "output", string(date_of_run)) if !isdir(figure_save_directory) mkpath(figure_save_directory) end #plot slice through one dimensions, others fixed to 0 xplt = reshape(collect(-3:0.01:3), 1, :) yplt = ftest(xplt) clrs = map(x -> get(colorschemes[:hawaii], x), [0.25, 0.5, 0.75]) plt = plot( xplt', yplt', show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) for (idx, rfm, fit, feature_type, clr) in zip(collect(1:length(σ_c)), rfms, fits, feature_types, clrs) pred_mean, pred_cov = predict(rfm, fit, DataContainer(xplt)) pred_cov = pred_cov[1, 1, :] #just variances pred_cov = max.(pred_cov, 0.0) #not normally needed.. plot!( xplt', pred_mean', ribbon = [2 * sqrt.(pred_cov); 2 * sqrt.(pred_cov)]', label = feature_type, color = clr, ) end savefig(plt, joinpath(figure_save_directory, "Fit_and_predict_1D.pdf")) end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
10884
# Example to learn hyperparameters of simple 1d-1d regression example. # This example matches test/Methods/runtests.jl testset: "Fit and predict: 1D -> 1D" # The (approximate) optimal values here are used in those tests. using StableRNGs using Distributions using StatsBase using LinearAlgebra using Random using Dates PLOT_FLAG = true println("plot flag: ", PLOT_FLAG) if PLOT_FLAG using Plots, ColorSchemes end using EnsembleKalmanProcesses const EKP = EnsembleKalmanProcesses using RandomFeatures.ParameterDistributions using RandomFeatures.DataContainers using RandomFeatures.Samplers using RandomFeatures.Features using RandomFeatures.Methods using RandomFeatures.Utilities seed = 2024 ekp_seed = 99999 rng = StableRNG(seed) ## Functions of use function RFM_from_hyperparameters( rng::AbstractRNG, l::Real, regularizer::Real, n_features::Int, batch_sizes::Dict, feature_type::String, ) μ_c = 0.0 σ_c = l pd = constrained_gaussian("xi", μ_c, σ_c, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = rng) # Learn hyperparameters for different feature types if feature_type == "fourier" sf = ScalarFourierFeature(n_features, feature_sampler) elseif feature_type == "neuron" sf = ScalarNeuronFeature(n_features, feature_sampler) elseif feature_type == "sigmoid" sf = ScalarFeature(n_features, feature_sampler, Sigmoid()) end return RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer) end function calculate_mean_cov_and_coeffs( rng::AbstractRNG, l::Real, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String, ) regularizer = noise_sd^2 n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train # split data into train/test randomly itrain = reshape(get_inputs(io_pairs)[1, 1:n_train], 1, :) otrain = reshape(get_outputs(io_pairs)[1, 1:n_train], 1, :) io_train_cost = PairedDataContainer(itrain, otrain) itest = reshape(get_inputs(io_pairs)[1, (n_train + 1):end], 1, :) otest = reshape(get_outputs(io_pairs)[1, (n_train + 1):end], 1, :) # build and fit the RF rfm = RFM_from_hyperparameters(rng, l, regularizer, n_features, batch_sizes, feature_type) fitted_features = fit(rfm, io_train_cost) test_batch_size = get_batch_size(rfm, "test") batch_inputs = batch_generator(itest, test_batch_size, dims = 2) # input_dim x batch_size #we want to calc lambda/m * coeffs^2 in the end pred_mean, pred_cov = predict(rfm, fitted_features, DataContainer(itest)) scaled_coeffs = sqrt(1 / n_features) * get_coeffs(fitted_features) return pred_mean, pred_cov, scaled_coeffs end function estimate_mean_cov_and_coeffnorm_covariance( rng::AbstractRNG, l::Real, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String, n_samples::Int; repeats::Int = 1, ) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, n_samples) covs = zeros(n_test, n_samples) coeffl2norm = zeros(1, n_samples) for i in 1:n_samples for j in 1:repeats m, v, c = calculate_mean_cov_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs, feature_type) means[:, i] += m[1, :] / repeats covs[:, i] += v[1, 1, :] / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end Γ = cov(vcat(means, covs, coeffl2norm), dims = 2) approx_σ2 = Diagonal(mean(covs, dims = 2)[:, 1]) # approx of \sigma^2I +rf var return Γ, approx_σ2 end function calculate_ensemble_mean_cov_and_coeffnorm( rng::AbstractRNG, lvec::AbstractVector, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String; repeats::Int = 1, ) N_ens = length(lvec) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, N_ens) covs = zeros(n_test, N_ens) coeffl2norm = zeros(1, N_ens) for (i, l) in zip(collect(1:N_ens), lvec) for j in collect(1:repeats) m, v, c = calculate_mean_cov_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs, feature_type) means[:, i] += m[1, :] / repeats covs[:, i] += v[1, 1, :] / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end return vcat(means, covs, coeffl2norm), Diagonal(mean(covs, dims = 2)[:, 1]) # approx of +\sigma^2I end ## Begin Script, define problem setting println("starting script") date_of_run = Date(2022, 9, 14) # Target function ftest(x::AbstractVecOrMat) = exp.(-0.5 * x .^ 2) .* (x .^ 4 - x .^ 3 - x .^ 2 + x .- 1) n_data = 20 * 4 noise_sd = 0.1 x = rand(rng, Uniform(-3, 3), n_data) noise = rand(rng, Normal(0, noise_sd), n_data) y = ftest(x) + noise io_pairs = PairedDataContainer(reshape(x, 1, :), reshape(y, 1, :), data_are_columns = true) #matrix input xtestvec = collect(-3:0.01:3) ntest = length(xtestvec) #extended domain xtest = DataContainer(reshape(xtestvec, 1, :), data_are_columns = true) ytest = ftest(get_data(xtest)) ## Define Hyperpriors for EKP μ_l = 10.0 σ_l = 10.0 prior_lengthscale = constrained_gaussian("lengthscale", μ_l, σ_l, 0.0, Inf) priors = prior_lengthscale # estimate the noise from running many RFM sample costs at the mean values batch_sizes = Dict("train" => 100, "test" => 100, "feature" => 100) n_train = Int(floor(0.8 * n_data)) n_test = n_data - n_train n_samples = n_test + 1 # > n_test n_features = 80 @assert(!(n_features == n_train)) repeats = 1 feature_types = ["fourier", "neuron", "sigmoid"] lengthscales = zeros(length(feature_types)) for (idx, type) in enumerate(feature_types) println("estimating noise in observations... ") internal_Γ, approx_σ2 = estimate_mean_cov_and_coeffnorm_covariance( rng, μ_l, # take mean values noise_sd, n_features, batch_sizes, io_pairs, type, n_samples, repeats = repeats, ) Γ = internal_Γ Γ[1:n_test, 1:n_test] += approx_σ2 #RF prediction of noise Γ[(n_test + 1):(2 * n_test), (n_test + 1):(2 * n_test)] += I Γ[(2 * n_test + 1):end, (2 * n_test + 1):end] += I println( "Estimated variance. Tr(cov) = ", tr(Γ[1:n_test, 1:n_test]), " + ", tr(Γ[(n_test + 1):(2 * n_test), (n_test + 1):(2 * n_test)]), " + ", tr(Γ[(2 * n_test + 1):end, (2 * n_test + 1):end]), ) # Create EKI N_ens = 20 N_iter = 20 initial_params = construct_initial_ensemble(priors, N_ens; rng_seed = ekp_seed) data = vcat(y[(n_train + 1):end], noise_sd^2 * ones(n_test), 0.0) ekiobj = [EKP.EnsembleKalmanProcess(initial_params, data, Γ, Inversion())] err = zeros(N_iter) for i in 1:N_iter #get parameters: constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) lvec = constrained_u[1, :] g_ens, approx_σ2_ens = calculate_ensemble_mean_cov_and_coeffnorm( rng, lvec, noise_sd, n_features, batch_sizes, io_pairs, type, repeats = repeats, ) #replace Γ in loop # Γ_tmp = internal_Γ # Γ_tmp[1:n_test,1:n_test] += approx_σ2_ens # Γ_tmp[n_test+1:2*n_test, n_test+1:2*n_test] += I # Γ_tmp[2*n_test+1:end,2*n_test+1:end] += I # ekiobj[1] = EKP.EnsembleKalmanProcess(initial_params, data, Γ, Inversion()) EKP.update_ensemble!(ekiobj[1], g_ens) err[i] = get_error(ekiobj[1])[end] #mean((params_true - mean(params_i,dims=2)).^2) println( "Iteration: " * string(i) * ", Error: " * string(err[i]) * ", with parameter mean" * string(mean(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2)[:, 1]), " and sd ", string(sqrt.(var(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2))[:, 1]), ) end lengthscales[idx] = transform_unconstrained_to_constrained(priors, mean(get_u_final(ekiobj[1]), dims = 2))[1, 1] end println("****") println("Optimal lengthscales: ", feature_types, " = ", lengthscales) println("****") #run an actual experiment n_features_test = 1000 n_data_test = 300 x_test = rand(rng, Uniform(-3, 3), (1, n_data_test)) noise_test = rand(rng, Normal(0, noise_sd), (1, n_data_test)) y_test = ftest(x_test) + noise_test io_pairs_test = PairedDataContainer(x_test, y_test) μ_c = 0.0 σ_c = lengthscales regularizer = noise_sd^2 rfms = Any[] fits = Any[] for (idx, sd, feature_type) in zip(collect(1:length(σ_c)), σ_c, feature_types) pd = constrained_gaussian("xi", 0.0, sd, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = copy(rng)) if feature_type == "fourier" sf = ScalarFourierFeature(n_features_test, feature_sampler) elseif feature_type == "neuron" sf = ScalarNeuronFeature(n_features_test, feature_sampler) elseif feature_type == "sigmoid" sf = ScalarFeature(n_features_test, feature_sampler, Sigmoid()) end push!(rfms, RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer)) push!(fits, fit(rfms[end], io_pairs_test, decomposition_type = "qr")) end if PLOT_FLAG figure_save_directory = joinpath(@__DIR__, "output", string(date_of_run)) if !isdir(figure_save_directory) mkpath(figure_save_directory) end #plot slice through one dimensions, others fixed to 0 xplt = reshape(collect(-3:0.01:3), 1, :) yplt = ftest(xplt) clrs = map(x -> get(colorschemes[:hawaii], x), [0.25, 0.5, 0.75]) plt = plot( xplt', yplt', show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) for (idx, rfm, fit, feature_type, clr) in zip(collect(1:length(σ_c)), rfms, fits, feature_types, clrs) pred_mean, pred_cov = predict(rfm, fit, DataContainer(xplt)) pred_cov[1, 1, :] = max.(pred_cov[1, 1, :], 0.0) plot!( xplt', pred_mean', ribbon = [2 * sqrt.(pred_cov[1, 1, :]); 2 * sqrt.(pred_cov[1, 1, :])]', label = feature_type, color = clr, ) end savefig(plt, joinpath(figure_save_directory, "Fit_and_predict_1D.pdf")) end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
10472
# Example to learn hyperparameters of simple 1d-1d regression example. # This example matches test/Methods/runtests.jl testset: "Fit and predict: 1D -> 1D" # The (approximate) optimal values here are used in those tests. using StableRNGs using Distributions using StatsBase using LinearAlgebra using Random using Dates PLOT_FLAG = true println("plot flag: ", PLOT_FLAG) if PLOT_FLAG using Plots, ColorSchemes end using EnsembleKalmanProcesses const EKP = EnsembleKalmanProcesses using RandomFeatures.ParameterDistributions using RandomFeatures.DataContainers using RandomFeatures.Samplers using RandomFeatures.Features using RandomFeatures.Methods using RandomFeatures.Utilities seed = 2024 ekp_seed = 99999 rng = StableRNG(seed) ## Functions of use function RFM_from_hyperparameters( rng::AbstractRNG, l::Real, regularizer::Real, n_features::Int, batch_sizes::Dict, feature_type::String, ) μ_c = 0.0 σ_c = l pd = constrained_gaussian("xi", μ_c, σ_c, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = rng) # Learn hyperparameters for different feature types if feature_type == "fourier" sf = ScalarFourierFeature(n_features, feature_sampler) elseif feature_type == "neuron" sf = ScalarNeuronFeature(n_features, feature_sampler) elseif feature_type == "sigmoid" sf = ScalarFeature(n_features, feature_sampler, Sigmoid()) end return RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer) end function calculate_mean_cov_and_coeffs( rng::AbstractRNG, l::Real, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String, ) regularizer = noise_sd^2 n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train # split data into train/test randomly itrain = reshape(get_inputs(io_pairs)[1, 1:n_train], 1, :) otrain = reshape(get_outputs(io_pairs)[1, 1:n_train], 1, :) io_train_cost = PairedDataContainer(itrain, otrain) itest = reshape(get_inputs(io_pairs)[1, (n_train + 1):end], 1, :) otest = reshape(get_outputs(io_pairs)[1, (n_train + 1):end], 1, :) # build and fit the RF rfm = RFM_from_hyperparameters(rng, l, regularizer, n_features, batch_sizes, feature_type) fitted_features = fit(rfm, io_train_cost) test_batch_size = get_batch_size(rfm, "test") batch_inputs = batch_generator(itest, test_batch_size, dims = 2) # input_dim x batch_size #we want to calc lambda/m * coeffs^2 in the end pred_mean, pred_cov = predict(rfm, fitted_features, DataContainer(itest)) scaled_coeffs = sqrt(1 / n_features) * get_coeffs(fitted_features) return pred_mean, pred_cov, scaled_coeffs end function estimate_mean_cov_and_coeffnorm_covariance( rng::AbstractRNG, l::Real, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String, n_samples::Int; repeats::Int = 1, ) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, n_samples) covs = zeros(n_test, n_samples) coeffl2norm = zeros(1, n_samples) for i in 1:n_samples for j in 1:repeats m, v, c = calculate_mean_cov_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs, feature_type) means[:, i] += m[1, :] / repeats covs[:, i] += v[1, 1, :] / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end Γ = cov(vcat(means, coeffl2norm), dims = 2) approx_σ = Diagonal(mean(covs, dims = 2)[:, 1]) # approx of \sigma^2I +rf var return Γ, approx_σ end function calculate_ensemble_mean_cov_and_coeffnorm( rng::AbstractRNG, lvec::AbstractVector, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, feature_type::String; repeats::Int = 1, ) N_ens = length(lvec) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, N_ens) covs = zeros(n_test, N_ens) coeffl2norm = zeros(1, N_ens) for (i, l) in zip(collect(1:N_ens), lvec) for j in collect(1:repeats) m, v, c = calculate_mean_cov_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs, feature_type) means[:, i] += m[1, :] / repeats covs[:, i] += v[1, 1, :] ./ repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end return vcat(means, coeffl2norm), Diagonal(mean(covs, dims = 2)[:, 1]) # approx of +\sigma^2I end ## Begin Script, define problem setting println("starting script") date_of_run = Date(2024, 4, 10) # Target function ftest(x::AbstractVecOrMat) = exp.(-0.5 * x .^ 2) .* (x .^ 4 - x .^ 3 - x .^ 2 + x .- 1) n_data = 20 * 4 noise_sd = 0.1 x = rand(rng, Uniform(-3, 3), n_data) noise = rand(rng, Normal(0, noise_sd), n_data) y = ftest(x) + noise io_pairs = PairedDataContainer(reshape(x, 1, :), reshape(y, 1, :), data_are_columns = true) #matrix input xtestvec = collect(-3:0.01:3) ntest = length(xtestvec) #extended domain xtest = DataContainer(reshape(xtestvec, 1, :), data_are_columns = true) ytest = ftest(get_data(xtest)) ## Define Hyperpriors for EKP μ_l = 10.0 σ_l = 10.0 prior_lengthscale = constrained_gaussian("lengthscale", μ_l, σ_l, 0.0, Inf) priors = prior_lengthscale # estimate the noise from running many RFM sample costs at the mean values batch_sizes = Dict("train" => 100, "test" => 100, "feature" => 100) n_train = Int(floor(0.8 * n_data)) n_test = n_data - n_train n_samples = n_test + 1 # > n_test n_features = 80 repeats = 1 feature_types = ["fourier", "neuron", "sigmoid"] lengthscales = zeros(length(feature_types)) for (idx, type) in enumerate(feature_types) println("estimating noise in observations... ") internal_Γ, approx_σ = estimate_mean_cov_and_coeffnorm_covariance( rng, μ_l, # take mean values noise_sd, n_features, batch_sizes, io_pairs, type, n_samples, repeats = repeats, ) Γ = internal_Γ # Γ = zeros(size(internal_Γ)) Γ[1:n_test, 1:n_test] += approx_σ #RF prediction of noise Γ[(n_test + 1):end, (n_test + 1):end] += I println("Finished estimation.") # Create EKI N_ens = 50 N_iter = 20 initial_params = construct_initial_ensemble(priors, N_ens; rng_seed = ekp_seed) data = vcat(y[(n_train + 1):end], 0.0) ekiobj = [EKP.EnsembleKalmanProcess(initial_params, data, Γ, Inversion())] err = zeros(N_iter) for i in 1:N_iter #get parameters: constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) lvec = constrained_u[1, :] g_ens, approx_σ_ens = calculate_ensemble_mean_cov_and_coeffnorm( rng, lvec, noise_sd, n_features, batch_sizes, io_pairs, type, repeats = repeats, ) #replace Γ in loop Γ_tmp = internal_Γ #Γ_tmp = zeros(size(internal_Γ)) Γ_tmp[1:n_test, 1:n_test] += approx_σ_ens Γ_tmp[(n_test + 1):end, (n_test + 1):end] += I # ekiobj[1] = EKP.EnsembleKalmanProcess(initial_params, data, Γ, Inversion()) EKP.update_ensemble!(ekiobj[1], g_ens) err[i] = get_error(ekiobj[1])[end] #mean((params_true - mean(params_i,dims=2)).^2) println( "Iteration: " * string(i) * ", Error: " * string(err[i]) * ", with parameter mean " * string(mean(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2)[:, 1]), " and sd ", string(sqrt.(var(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2))[:, 1]), ) end lengthscales[idx] = transform_unconstrained_to_constrained(priors, mean(get_u_final(ekiobj[1]), dims = 2))[1, 1] end println("****") println("Optimal lengthscales: ", feature_types, " = ", lengthscales) println("****") #run an actual experiment n_features_test = 1000 n_data_test = 300 x_test = rand(rng, Uniform(-3, 3), (1, n_data_test)) noise_test = rand(rng, Normal(0, noise_sd), (1, n_data_test)) y_test = ftest(x_test) + noise_test io_pairs_test = PairedDataContainer(x_test, y_test) μ_c = 0.0 σ_c = lengthscales regularizer = noise_sd^2 rfms = Any[] fits = Any[] for (idx, sd, feature_type) in zip(collect(1:length(σ_c)), σ_c, feature_types) pd = constrained_gaussian("xi", 0.0, sd, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = copy(rng)) if feature_type == "fourier" sf = ScalarFourierFeature(n_features_test, feature_sampler) elseif feature_type == "neuron" sf = ScalarNeuronFeature(n_features_test, feature_sampler) elseif feature_type == "sigmoid" sf = ScalarFeature(n_features_test, feature_sampler, Sigmoid()) end push!(rfms, RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer)) push!(fits, fit(rfms[end], io_pairs_test)) end if PLOT_FLAG figure_save_directory = joinpath(@__DIR__, "output", string(date_of_run)) if !isdir(figure_save_directory) mkpath(figure_save_directory) end #plot slice through one dimensions, others fixed to 0 xplt = reshape(collect(-3:0.01:3), 1, :) yplt = ftest(xplt) clrs = map(x -> get(colorschemes[:hawaii], x), [0.25, 0.5, 0.75]) plt = plot( xplt', yplt', show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) for (idx, rfm, fit, feature_type, clr) in zip(collect(1:length(σ_c)), rfms, fits, feature_types, clrs) pred_mean, pred_cov = predict(rfm, fit, DataContainer(xplt)) pred_cov[1, 1, :] = max.(pred_cov[1, 1, :], 0.0) plot!( xplt', pred_mean', ribbon = [2 * sqrt.(pred_cov[1, 1, :]); 2 * sqrt.(pred_cov[1, 1, :])]', label = feature_type, color = clr, ) end savefig(plt, joinpath(figure_save_directory, "Fit_and_predict_1D.pdf")) end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
12092
# Example to learn hyperparameters of simple 1d-1d regression example. # This example matches test/Methods/runtests.jl testset: "Fit and predict: 1D -> 1D" # The (approximate) optimal values here are used in those tests. using StableRNGs using Distributions using JLD2 using StatsBase using LinearAlgebra using Random using Dates PLOT_FLAG = true println("plot flag:", PLOT_FLAG) if PLOT_FLAG using Plots end using EnsembleKalmanProcesses const EKP = EnsembleKalmanProcesses using EnsembleKalmanProcesses.Localizers using RandomFeatures.ParameterDistributions using RandomFeatures.DataContainers using RandomFeatures.Samplers using RandomFeatures.Features using RandomFeatures.Methods using RandomFeatures.Utilities seed = 2024 ekp_seed = 99999 rng = StableRNG(seed) ## Functions of use function RFM_from_hyperparameters( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, regularizer::Real, n_features::Int, batch_sizes::Dict, input_dim::Int, ) μ_c = 0.0 if isa(l, Real) σ_c = fill(l, input_dim) elseif isa(l, AbstractVector) if length(l) == 1 σ_c = fill(l[1], input_dim) else σ_c = l end else isa(l, AbstractMatrix) σ_c = l[:, 1] end pd = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(map(sd -> Normal(μ_c, sd), σ_c)), "constraint" => repeat([no_constraint()], input_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, rng = rng) # Learn hyperparameters for different feature types sf = ScalarFourierFeature(n_features, feature_sampler) return RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer) end function calculate_mean_and_coeffs( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, ) regularizer = noise_sd^2 n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train # split data into train/test randomly itrain = get_inputs(io_pairs)[:, 1:n_train] otrain = get_outputs(io_pairs)[:, 1:n_train] io_train_cost = PairedDataContainer(itrain, otrain) itest = get_inputs(io_pairs)[:, (n_train + 1):end] otest = get_outputs(io_pairs)[:, (n_train + 1):end] input_dim = size(itrain, 1) # build and fit the RF rfm = RFM_from_hyperparameters(rng, l, regularizer, n_features, batch_sizes, input_dim) fitted_features = fit(rfm, io_train_cost) test_batch_size = get_batch_size(rfm, "test") batch_inputs = batch_generator(itest, test_batch_size, dims = 2) # input_dim x batch_size #we want to calc 1/var(y-mean)^2 + lambda/m * coeffs^2 in the end pred_mean, features = predictive_mean(rfm, fitted_features, DataContainer(itest)) scaled_coeffs = sqrt(1 / n_features) * get_coeffs(fitted_features) return pred_mean, scaled_coeffs end function estimate_mean_and_coeffnorm_covariance( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, n_samples::Int; repeats::Int = 1, ) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, n_samples) coeffl2norm = zeros(1, n_samples) for i in 1:n_samples for j in 1:repeats m, c = calculate_mean_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs) means[:, i] += m' / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end # println("take covariances") println(mean(vcat(means, coeffl2norm), dims = 2)[end]) Γ = cov(vcat(means, coeffl2norm), dims = 2) return Γ end function calculate_ensemble_mean_and_coeffnorm( rng::AbstractRNG, lvecormat::AbstractVecOrMat, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer; repeats::Int = 1, ) if isa(lvecormat, AbstractVector) lmat = reshape(lvecormat, 1, :) else lmat = lvecormat end N_ens = size(lmat, 2) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, N_ens) coeffl2norm = zeros(1, N_ens) for i in collect(1:N_ens) for j in collect(1:repeats) l = lmat[:, i] m, c = calculate_mean_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs) means[:, i] += m' / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end return vcat(means, coeffl2norm) end ## Begin Script, define problem setting println("Begin script") date_of_run = Date(2024, 4, 10) input_dim = 6 println("Number of input dimensions: ", input_dim) # radial # ftest_nd_to_1d(x::AbstractMatrix) = mapslices(column -> 1/(1+exp(-0.25*norm(column)^2)), x, dims=1) # not radial - different scale in each dimension ftest_nd_to_1d(x::AbstractMatrix) = mapslices(column -> exp(-0.1 * norm([i * c for (i, c) in enumerate(column)])^2), x, dims = 1) n_data = 30 * input_dim #x = hcat(rand(rng, Uniform(-0.5,0.5), (input_dim, Int(floor(n_data/4)))),rand(rng, Uniform(-3,3), (input_dim, Int(n_data - floor(n_data/4))))) #x = x[:,shuffle(1:size(x,2))] x = rand(rng, MvNormal(zeros(input_dim), I), n_data) noise_sd = 1e-6 noise = rand(rng, Normal(0, noise_sd), (1, n_data)) y = ftest_nd_to_1d(x) + noise io_pairs = PairedDataContainer(x, y) ## Define Hyperpriors for EKP μ_l = 1.0 σ_l = 5.0 # prior for radial problem #prior_lengthscale = constrained_gaussian("lengthscale", μ_l, σ_l, 0.0, Inf) # prior for non radial problem prior_lengthscale = constrained_gaussian("lengthscale", μ_l, σ_l, 0.0, Inf, repeats = input_dim) priors = prior_lengthscale # estimate the noise from running many RFM sample costs at the mean values batch_sizes = Dict("train" => 600, "test" => 600, "feature" => 600) n_features = 100 n_train = Int(floor(0.8 * n_data)) n_test = n_data - n_train repeats = 8 CALC_TRUTH = true println("RHKS norm type: norm of coefficients") if CALC_TRUTH sample_multiplier = 1 n_samples = Int(floor(((1 + n_test) + 1) * sample_multiplier)) println("Estimating output covariance with ", n_samples, " samples") internal_Γ = estimate_mean_and_coeffnorm_covariance( rng, μ_l, # take mean values noise_sd, n_features, batch_sizes, io_pairs, n_samples, repeats = repeats, ) save("calculated_truth_cov.jld2", "internal_Γ", internal_Γ) else println("Loading truth covariance from file...") internal_Γ = load("calculated_truth_cov.jld2")["internal_Γ"] end Γ = internal_Γ Γ[1:n_test, 1:n_test] += noise_sd^2 * I Γ[(n_test + 1):end, (n_test + 1):end] += I println("Estimated covariance. Tr(cov) = ", tr(Γ[1:n_test, 1:n_test]), " + ", tr(Γ[(n_test + 1):end, (n_test + 1):end])) #println("noise in observations: ", Γ) # Create EKI N_ens = 50 N_iter = 30 update_cov_step = 10 initial_params = construct_initial_ensemble(priors, N_ens; rng_seed = ekp_seed) data = vcat(y[(n_train + 1):end], 0.0) loc_method = SEC(0.2) ekiobj = [EKP.EnsembleKalmanProcess(initial_params, data, Γ, Inversion(), localization_method = loc_method)] err = zeros(N_iter) println("Begin EKI iterations:") Δt = [1.0] for i in 1:N_iter #get parameters: lvec = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) g_ens = calculate_ensemble_mean_and_coeffnorm(rng, lvec, noise_sd, n_features, batch_sizes, io_pairs, repeats = repeats) if i == update_cov_step # one update to the constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) println("Estimating output covariance with ", n_samples, " samples") internal_Γ_new = estimate_mean_and_coeffnorm_covariance( rng, mean(constrained_u, dims = 2)[:, 1], # take mean values noise_sd, n_features, batch_sizes, io_pairs, n_samples, repeats = repeats, ) Γ_new = internal_Γ_new Γ_new[1:n_test, 1:n_test] += noise_sd^2 * I Γ_new[(n_test + 1):end, (n_test + 1):end] += I println( "Estimated covariance. Tr(cov) = ", tr(Γ_new[1:n_test, 1:n_test]), " + ", tr(Γ_new[(n_test + 1):end, (n_test + 1):end]), ) ekiobj[1] = EKP.EnsembleKalmanProcess( get_u_final(ekiobj[1]), data, Γ_new, Inversion(), localization_method = loc_method, ) end EKP.update_ensemble!(ekiobj[1], g_ens, Δt_new = Δt[1]) err[i] = get_error(ekiobj[1])[end] #mean((params_true - mean(params_i,dims=2)).^2) constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) println( "Iteration: " * string(i) * ", Error: " * string(err[i]) * ", for parameter means: " * string(mean(constrained_u, dims = 2)), " and sd :" * string(sqrt.(var(constrained_u, dims = 2))), ) Δt[1] *= 1.0 end #run actual experiment # override following parameters for actual run n_features_test = 5000 n_data_test = 300 * input_dim #x_test = hcat(rand(rng, Uniform(-0.5,0.5), (input_dim, Int(floor(n_data_test/4)))),rand(rng, Uniform(-3,3), (input_dim, Int(n_data_test - floor(n_data_test/4))))) #x_test = x_test[:,shuffle(1:size(x_test,2))] x_test = rand(rng, MvNormal(zeros(input_dim), I), n_data_test) noise_test = rand(rng, Normal(0, noise_sd), (1, n_data_test)) y_test = ftest_nd_to_1d(x_test) + noise_test io_pairs_test = PairedDataContainer(x_test, y_test) # get feature distribution final_lvec = mean(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2) μ_c = 0.0 if size(final_lvec, 1) == 1 σ_c = repeat([final_lvec[1, 1]], input_dim) else σ_c = final_lvec[:, 1] end regularizer = noise_sd^2 pd = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(map(sd -> Normal(μ_c, sd), σ_c)), "constraint" => repeat([no_constraint()], input_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, rng = copy(rng)) sff = ScalarFourierFeature(n_features_test, feature_sampler) #second case with batching rfm_batch = RandomFeatureMethod(sff, batch_sizes = batch_sizes, regularization = regularizer) fitted_batched_features = fit(rfm_batch, io_pairs_test) if PLOT_FLAG #plot slice through one dimensions, others fixed to 0 xrange = collect(-3:0.01:3) xslice = zeros(input_dim, length(xrange)) figure_save_directory = joinpath(@__DIR__, "output", string(date_of_run)) if !isdir(figure_save_directory) mkpath(figure_save_directory) end for direction in 1:input_dim xslicenew = copy(xslice) xslicenew[direction, :] = xrange yslice = ftest_nd_to_1d(xslicenew) pred_mean_slice, pred_cov_slice = predict(rfm_batch, fitted_batched_features, DataContainer(xslicenew)) pred_cov_slice = max.(pred_cov_slice[1, 1, :], 0.0) plt = plot( xrange, yslice', show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( xrange, pred_mean_slice', ribbon = [2 * sqrt.(pred_cov_slice); 2 * sqrt.(pred_cov_slice)]', label = "Fourier", color = "blue", ) savefig( plt, joinpath( figure_save_directory, "Fit_and_predict_ND_" * string(direction) * "of" * string(input_dim) * ".pdf", ), ) end end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
13864
# Example to learn hyperparameters of simple 1d-1d regression example. # This example matches test/Methods/runtests.jl testset: "Fit and predict: 1D -> 1D" # The (approximate) optimal values here are used in those tests. using StableRNGs using Distributions using JLD2 using StatsBase using LinearAlgebra using Random using Dates PLOT_FLAG = true println("plot flag:", PLOT_FLAG) if PLOT_FLAG using Plots end using EnsembleKalmanProcesses const EKP = EnsembleKalmanProcesses using EnsembleKalmanProcesses.Localizers using RandomFeatures.ParameterDistributions using RandomFeatures.DataContainers using RandomFeatures.Samplers using RandomFeatures.Features using RandomFeatures.Methods using RandomFeatures.Utilities seed = 2024 ekp_seed = 99999 rng = StableRNG(seed) ## Functions of use function RFM_from_hyperparameters( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, regularizer::Real, n_features::Int, batch_sizes::Dict, input_dim::Int, ) μ_c = 0.0 if isa(l, Real) σ_c = fill(l, input_dim) elseif isa(l, AbstractVector) if length(l) == 1 σ_c = fill(l[1], input_dim) else σ_c = l end else isa(l, AbstractMatrix) σ_c = l[:, 1] end pd = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(map(sd -> Normal(μ_c, sd), σ_c)), "constraint" => repeat([no_constraint()], input_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, rng = rng) # Learn hyperparameters for different feature types sf = ScalarFourierFeature(n_features, feature_sampler) return RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer) end function calculate_mean_cov_and_coeffs( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, ) regularizer = noise_sd^2 n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train # split data into train/test randomly itrain = get_inputs(io_pairs)[:, 1:n_train] otrain = get_outputs(io_pairs)[:, 1:n_train] io_train_cost = PairedDataContainer(itrain, otrain) itest = get_inputs(io_pairs)[:, (n_train + 1):end] otest = get_outputs(io_pairs)[:, (n_train + 1):end] input_dim = size(itrain, 1) # build and fit the RF rfm = RFM_from_hyperparameters(rng, l, regularizer, n_features, batch_sizes, input_dim) fitted_features = fit(rfm, io_train_cost) test_batch_size = get_batch_size(rfm, "test") batch_inputs = batch_generator(itest, test_batch_size, dims = 2) # input_dim x batch_size #we want to calc 1/var(y-mean)^2 + lambda/m * coeffs^2 in the end pred_mean, pred_cov = predict(rfm, fitted_features, DataContainer(itest)) scaled_coeffs = sqrt(1 / n_features) * get_coeffs(fitted_features) return pred_mean, pred_cov, scaled_coeffs end function estimate_mean_cov_and_coeffnorm_covariance( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, n_samples::Int; repeats::Int = 1, ) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, n_samples) covs = zeros(n_test, n_samples) coeffl2norm = zeros(1, n_samples) for i in 1:n_samples for j in 1:repeats m, v, c = calculate_mean_cov_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs) means[:, i] += m[1, :] / repeats covs[:, i] += v[1, 1, :] / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end # println("take covariances") Γ = cov(vcat(means, covs, coeffl2norm), dims = 2) approx_σ2 = Diagonal(mean(covs, dims = 2)[:, 1]) # approx of \sigma^2I +rf var return Γ, approx_σ2 end function calculate_ensemble_mean_cov_and_coeffnorm( rng::AbstractRNG, lvecormat::AbstractVecOrMat, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer; repeats::Int = 1, ) if isa(lvecormat, AbstractVector) lmat = reshape(lvecormat, 1, :) else lmat = lvecormat end N_ens = size(lmat, 2) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, N_ens) covs = zeros(n_test, N_ens) coeffl2norm = zeros(1, N_ens) for i in collect(1:N_ens) for j in collect(1:repeats) l = lmat[:, i] m, v, c = calculate_mean_cov_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs) means[:, i] += m[1, :] / repeats covs[:, i] += v[1, 1, :] / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end return vcat(means, covs, coeffl2norm), Diagonal(mean(covs, dims = 2)[:, 1]) # approx of \sigma^2I end ## Begin Script, define problem setting println("Begin script") date_of_run = Date(2024, 4, 10) input_dim_list = [8] for input_dim in input_dim_list println("Number of input dimensions: ", input_dim) # radial # ftest_nd_to_1d(x::AbstractMatrix) = mapslices(column -> 1/(1+exp(-0.25*norm(column)^2)), x, dims=1) # not radial - different scale in each dimension ftest_nd_to_1d(x::AbstractMatrix) = mapslices(column -> exp(-0.1 * norm([i * c for (i, c) in enumerate(column)])^2), x, dims = 1) n_data = 20 * input_dim x = rand(rng, MvNormal(zeros(input_dim), 0.5 * I), n_data) noise_sd = 1e-3 noise = rand(rng, Normal(0, noise_sd), (1, n_data)) y = ftest_nd_to_1d(x) + noise io_pairs = PairedDataContainer(x, y) ## Define Hyperpriors for EKP μ_l = 5.0 σ_l = 10.0 # prior for non radial problem prior_lengthscale = constrained_gaussian("lengthscale", μ_l, σ_l, 0.0, Inf, repeats = input_dim) priors = prior_lengthscale # estimate the noise from running many RFM sample costs at the mean values batch_sizes = Dict("train" => 600, "test" => 600, "feature" => 600) n_train = Int(floor(0.8 * n_data)) n_test = n_data - n_train n_features = Int(floor(1.2 * n_data)) # RF will perform poorly when n_features is close to n_train @assert(!(n_features == n_train)) # repeats = 1 CALC_TRUTH = true println("RHKS norm type: norm of coefficients") if CALC_TRUTH sample_multiplier = 1 n_samples = 2 * Int(floor(((1 + n_test) + 1) * sample_multiplier)) println("Estimating output covariance with ", n_samples, " samples") internal_Γ, approx_σ2 = estimate_mean_cov_and_coeffnorm_covariance( rng, μ_l, # take mean values noise_sd, n_features, batch_sizes, io_pairs, n_samples, repeats = repeats, ) save("calculated_truth_cov.jld2", "internal_Γ", internal_Γ) else println("Loading truth covariance from file...") internal_Γ = load("calculated_truth_cov.jld2")["internal_Γ"] end Γ = internal_Γ Γ[1:n_test, 1:n_test] += approx_σ2 Γ[(n_test + 1):(2 * n_test), (n_test + 1):(2 * n_test)] += I Γ[(2 * n_test + 1):end, (2 * n_test + 1):end] += I println( "Estimated variance. Tr(cov) = ", tr(Γ[1:n_test, 1:n_test]), " + ", tr(Γ[(n_test + 1):(2 * n_test), (n_test + 1):(2 * n_test)]), " + ", tr(Γ[(2 * n_test + 1):end, (2 * n_test + 1):end]), ) #println("noise in observations: ", Γ) # Create EKI N_ens = 10 * input_dim N_iter = 30 update_cov_step = Inf initial_params = construct_initial_ensemble(priors, N_ens; rng_seed = ekp_seed) params_init = transform_unconstrained_to_constrained(priors, initial_params)[1, :] println("Prior gives parameters between: [$(minimum(params_init)),$(maximum(params_init))]") data = vcat(y[(n_train + 1):end], noise_sd^2 * ones(n_test), 0.0) ekiobj = [EKP.EnsembleKalmanProcess(initial_params, data, Γ, Inversion())] err = zeros(N_iter) println("Begin EKI iterations:") Δt = [1.0] for i in 1:N_iter #get parameters: lvec = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) g_ens, _ = calculate_ensemble_mean_cov_and_coeffnorm( rng, lvec, noise_sd, n_features, batch_sizes, io_pairs, repeats = repeats, ) if i % update_cov_step == 0 # one update to the constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) println("Estimating output covariance with ", n_samples, " samples") internal_Γ_new, approx_σ2_new = estimate_mean_cov_and_coeffnorm_covariance( rng, mean(constrained_u, dims = 2)[:, 1], # take mean values noise_sd, n_features, batch_sizes, io_pairs, n_samples, repeats = repeats, ) Γ_new = internal_Γ_new Γ_new[1:n_test, 1:n_test] += approx_σ2_new Γ_new[(n_test + 1):(2 * n_test), (n_test + 1):(2 * n_test)] += I Γ_new[(2 * n_test + 1):end, (2 * n_test + 1):end] += I println( "Estimated variance. Tr(cov) = ", tr(Γ_new[1:n_test, 1:n_test]), " + ", tr(Γ_new[(n_test + 1):(2 * n_test), (n_test + 1):(2 * n_test)]), " + ", tr(Γ_new[(2 * n_test + 1):end, (2 * n_test + 1):end]), ) ekiobj[1] = EKP.EnsembleKalmanProcess(get_u_final(ekiobj[1]), data, Γ_new, Inversion()) end EKP.update_ensemble!(ekiobj[1], g_ens, Δt_new = Δt[1]) err[i] = get_error(ekiobj[1])[end] #mean((params_true - mean(params_i,dims=2)).^2) constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) println( "Iteration: " * string(i) * ", Error: " * string(err[i]) * ", for parameter means: \n" * string(mean(constrained_u, dims = 2)), "\n and sd :\n" * string(sqrt.(var(constrained_u, dims = 2))), ) Δt[1] *= 1.0 end #run actual experiment # override following parameters for actual run n_data_test = 300 * input_dim n_features_test = Int(floor(1.2 * n_data_test)) println("number of training data: ", n_data_test) println("number of features: ", n_features_test) x_test = rand(rng, MvNormal(zeros(input_dim), 0.5 * I), n_data_test) noise_test = rand(rng, Normal(0, noise_sd), (1, n_data_test)) y_test = ftest_nd_to_1d(x_test) + noise_test io_pairs_test = PairedDataContainer(x_test, y_test) # get feature distribution final_lvec = mean(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2) println("**********") println("Optimal lengthscales: $(final_lvec)") println("**********") μ_c = 0.0 if size(final_lvec, 1) == 1 σ_c = repeat([final_lvec[1, 1]], input_dim) else σ_c = final_lvec[:, 1] end regularizer = noise_sd^2 pd = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(map(sd -> Normal(μ_c, sd), σ_c)), "constraint" => repeat([no_constraint()], input_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, rng = copy(rng)) sff = ScalarFourierFeature(n_features_test, feature_sampler) #second case with batching rfm_batch = RandomFeatureMethod(sff, batch_sizes = batch_sizes, regularization = regularizer) fitted_batched_features = fit(rfm_batch, io_pairs_test) if PLOT_FLAG #plot slice through one dimensions, others fixed to 0 xrange = collect(-3:0.01:3) xslice = zeros(input_dim, length(xrange)) figure_save_directory = joinpath(@__DIR__, "output", string(date_of_run)) if !isdir(figure_save_directory) mkpath(figure_save_directory) end for direction in 1:input_dim xslicenew = copy(xslice) xslicenew[direction, :] = xrange yslice = ftest_nd_to_1d(xslicenew) pred_mean_slice, pred_cov_slice = predict(rfm_batch, fitted_batched_features, DataContainer(xslicenew)) pred_cov_slice = max.(pred_cov_slice, 0.0) plt = plot( xrange, yslice', show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( xrange, pred_mean_slice', ribbon = [2 * sqrt.(pred_cov_slice[1, 1, :]); 2 * sqrt.(pred_cov_slice[1, 1, :])]', label = "Fourier", color = "blue", ) savefig( plt, joinpath( figure_save_directory, "Fit_and_predict_ND_" * string(direction) * "of" * string(input_dim) * ".pdf", ), ) savefig( plt, joinpath( figure_save_directory, "Fit_and_predict_ND_" * string(direction) * "of" * string(input_dim) * ".png", ), ) end end end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
12562
# Example to learn hyperparameters of simple 1d-1d regression example. # This example matches test/Methods/runtests.jl testset: "Fit and predict: 1D -> 1D" # The (approximate) optimal values here are used in those tests. using StableRNGs using Distributions using JLD2 using StatsBase using LinearAlgebra using Random using Dates PLOT_FLAG = true println("plot flag:", PLOT_FLAG) if PLOT_FLAG using Plots end using EnsembleKalmanProcesses const EKP = EnsembleKalmanProcesses using EnsembleKalmanProcesses.Localizers using RandomFeatures.ParameterDistributions using RandomFeatures.DataContainers using RandomFeatures.Samplers using RandomFeatures.Features using RandomFeatures.Methods using RandomFeatures.Utilities seed = 2024 ekp_seed = 99999 rng = StableRNG(seed) ## Functions of use function RFM_from_hyperparameters( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, regularizer::Real, n_features::Int, batch_sizes::Dict, input_dim::Int, ) μ_c = 0.0 if isa(l, Real) σ_c = fill(l, input_dim) elseif isa(l, AbstractVector) if length(l) == 1 σ_c = fill(l[1], input_dim) else σ_c = l end else isa(l, AbstractMatrix) σ_c = l[:, 1] end pd = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(map(sd -> Normal(μ_c, sd), σ_c)), "constraint" => repeat([no_constraint()], input_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, rng = rng) # Learn hyperparameters for different feature types sf = ScalarFourierFeature(n_features, feature_sampler) return RandomFeatureMethod(sf, batch_sizes = batch_sizes, regularization = regularizer) end function calculate_mean_cov_and_coeffs( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, ) regularizer = noise_sd^2 n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train # split data into train/test randomly itrain = get_inputs(io_pairs)[:, 1:n_train] otrain = get_outputs(io_pairs)[:, 1:n_train] io_train_cost = PairedDataContainer(itrain, otrain) itest = get_inputs(io_pairs)[:, (n_train + 1):end] otest = get_outputs(io_pairs)[:, (n_train + 1):end] input_dim = size(itrain, 1) # build and fit the RF rfm = RFM_from_hyperparameters(rng, l, regularizer, n_features, batch_sizes, input_dim) fitted_features = fit(rfm, io_train_cost) test_batch_size = get_batch_size(rfm, "test") batch_inputs = batch_generator(itest, test_batch_size, dims = 2) # input_dim x batch_size #we want to calc 1/var(y-mean)^2 + lambda/m * coeffs^2 in the end pred_mean, pred_cov = predict(rfm, fitted_features, DataContainer(itest)) scaled_coeffs = sqrt(1 / n_features) * get_coeffs(fitted_features) return pred_mean, pred_cov, scaled_coeffs end function estimate_mean_cov_and_coeffnorm_covariance( rng::AbstractRNG, l::Union{Real, AbstractVecOrMat}, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer, n_samples::Int; repeats::Int = 1, ) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, n_samples) covs = zeros(n_test, n_samples) coeffl2norm = zeros(1, n_samples) for i in 1:n_samples for j in 1:repeats m, v, c = calculate_mean_cov_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs) means[:, i] += m[1, :] / repeats covs[:, i] += v[1, 1, :] / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end # println("take covariances") Γ = cov(vcat(means, coeffl2norm), dims = 2) approx_σ = Diagonal(mean(covs, dims = 2)[:, 1]) # approx of \sigma^2I +rf var return Γ, approx_σ end function calculate_ensemble_mean_cov_and_coeffnorm( rng::AbstractRNG, lvecormat::AbstractVecOrMat, noise_sd::Real, n_features::Int, batch_sizes::Dict, io_pairs::PairedDataContainer; repeats::Int = 1, ) if isa(lvecormat, AbstractVector) lmat = reshape(lvecormat, 1, :) else lmat = lvecormat end N_ens = size(lmat, 2) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train means = zeros(n_test, N_ens) covs = zeros(n_test, N_ens) coeffl2norm = zeros(1, N_ens) for i in collect(1:N_ens) for j in collect(1:repeats) l = lmat[:, i] m, v, c = calculate_mean_cov_and_coeffs(rng, l, noise_sd, n_features, batch_sizes, io_pairs) means[:, i] += m[1, :] / repeats covs[:, i] += v[1, 1, :] / repeats coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats end end return vcat(means, coeffl2norm), Diagonal(mean(covs, dims = 2)[:, 1]) # approx of +\sigma^2I end ## Begin Script, define problem setting println("Begin script") date_of_run = Date(2024, 4, 10) input_dim = 8 println("Number of input dimensions: ", input_dim) # not radial - different scale in each dimension ftest_nd_to_1d(x::AbstractMatrix) = mapslices(column -> exp(-0.1 * norm([i * c for (i, c) in enumerate(column)])^2), x, dims = 1) n_data = 100 * input_dim x = rand(rng, MvNormal(zeros(input_dim), 0.5 * I), n_data) noise_sd = 1e-3 noise = rand(rng, Normal(0, noise_sd), (1, n_data)) y = ftest_nd_to_1d(x) + noise io_pairs = PairedDataContainer(x, y) ## Define Hyperpriors for EKP μ_l = 5.0 σ_l = 5.0 # prior for non radial problem prior_lengthscale = constrained_gaussian("lengthscale", μ_l, σ_l, 0.0, Inf, repeats = input_dim) priors = prior_lengthscale # estimate the noise from running many RFM sample costs at the mean values batch_sizes = Dict("train" => 600, "test" => 600, "feature" => 600) n_features = Int(floor(1.2 * n_data)) n_train = Int(floor(0.8 * n_data)) n_test = n_data - n_train repeats = 1 CALC_TRUTH = true println("RHKS norm type: norm of coefficients") if CALC_TRUTH sample_multiplier = 1 n_samples = Int(floor(((1 + n_test) + 1) * sample_multiplier)) println("Estimating output covariance with ", n_samples, " samples") internal_Γ, approx_σ = estimate_mean_cov_and_coeffnorm_covariance( rng, μ_l, # take mean values noise_sd, n_features, batch_sizes, io_pairs, n_samples, repeats = repeats, ) save("calculated_truth_cov.jld2", "internal_Γ", internal_Γ, "approx_σ", approx_σ) else println("Loading truth covariance from file...") internal_Γ = load("calculated_truth_cov.jld2")["internal_Γ"] approx_σ = load("calculated_truth_cov.jld2")["approx_σ"] end Γ = internal_Γ Γ[1:n_test, 1:n_test] += approx_σ Γ[(n_test + 1):end, (n_test + 1):end] += I println("Estimated covariance. Tr(cov) = ", tr(Γ[1:n_test, 1:n_test]), " + ", tr(Γ[(n_test + 1):end, (n_test + 1):end])) #println("noise in observations: ", Γ) # Create EKI N_ens = 10 * input_dim N_iter = 30 update_cov_step = Inf initial_params = construct_initial_ensemble(priors, N_ens; rng_seed = ekp_seed) data = vcat(y[(n_train + 1):end], 0.0) loc_method = SEC(0.2) ekiobj = [EKP.EnsembleKalmanProcess(initial_params, data, Γ, Inversion(), localization_method = loc_method)] err = zeros(N_iter) println("Begin EKI iterations:") Δt = [1.0] for i in 1:N_iter #get parameters: lvec = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) g_ens, approx_σ_ens = calculate_ensemble_mean_cov_and_coeffnorm( rng, lvec, noise_sd, n_features, batch_sizes, io_pairs, repeats = repeats, ) if i % update_cov_step == 0 # one update to the constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) println("Estimating output covariance with ", n_samples, " samples") internal_Γ_new, approx_σ_new = estimate_mean_cov_and_coeffnorm_covariance( rng, mean(constrained_u, dims = 2)[:, 1], # take mean values noise_sd, n_features, batch_sizes, io_pairs, n_samples, repeats = repeats, ) Γ_new = internal_Γ_new Γ_new[1:n_test, 1:n_test] += approx_σ_new Γ_new[(n_test + 1):end, (n_test + 1):end] += I println( "Estimated covariance. Tr(cov) = ", tr(Γ_new[1:n_test, 1:n_test]), " + ", tr(Γ_new[(n_test + 1):end, (n_test + 1):end]), ) ekiobj[1] = EKP.EnsembleKalmanProcess( get_u_final(ekiobj[1]), data, Γ_new, Inversion(), localization_method = loc_method, ) end EKP.update_ensemble!(ekiobj[1], g_ens, Δt_new = Δt[1]) err[i] = get_error(ekiobj[1])[end] #mean((params_true - mean(params_i,dims=2)).^2) constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) println( "Iteration: " * string(i) * ", Error: " * string(err[i]) * ", for parameter means: " * string(mean(constrained_u, dims = 2)), " and sd :" * string(sqrt.(var(constrained_u, dims = 2))), ) Δt[1] *= 1.0 end #run actual experiment # override following parameters for actual run n_data_test = 200 * input_dim n_features_test = Int(floor(1.2 * n_data_test)) println("number of training data: ", n_data_test) println("number of features: ", n_features_test) #x_test = hcat(rand(rng, Uniform(-0.5,0.5), (input_dim, Int(floor(n_data_test/4)))),rand(rng, Uniform(-3,3), (input_dim, Int(n_data_test - floor(n_data_test/4))))) #x_test = x_test[:,shuffle(1:size(x_test,2))] x_test = rand(rng, MvNormal(zeros(input_dim), 0.5 * I), n_data_test) noise_test = rand(rng, Normal(0, noise_sd), (1, n_data_test)) y_test = ftest_nd_to_1d(x_test) + noise_test io_pairs_test = PairedDataContainer(x_test, y_test) # get feature distribution final_lvec = mean(transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])), dims = 2) μ_c = 0.0 if size(final_lvec, 1) == 1 σ_c = repeat([final_lvec[1, 1]], input_dim) else σ_c = final_lvec[:, 1] end regularizer = noise_sd^2 pd = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(map(sd -> Normal(μ_c, sd), σ_c)), "constraint" => repeat([no_constraint()], input_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, rng = copy(rng)) sff = ScalarFourierFeature(n_features_test, feature_sampler) #second case with batching rfm_batch = RandomFeatureMethod(sff, batch_sizes = batch_sizes, regularization = regularizer) fitted_batched_features = fit(rfm_batch, io_pairs_test) if PLOT_FLAG #plot slice through one dimensions, others fixed to 0 xrange = collect(-3:0.01:3) xslice = zeros(input_dim, length(xrange)) figure_save_directory = joinpath(@__DIR__, "output", string(date_of_run)) if !isdir(figure_save_directory) mkpath(figure_save_directory) end for direction in 1:input_dim xslicenew = copy(xslice) xslicenew[direction, :] = xrange yslice = ftest_nd_to_1d(xslicenew) pred_mean_slice, pred_cov_slice = predict(rfm_batch, fitted_batched_features, DataContainer(xslicenew)) pred_cov_slice = max.(pred_cov_slice[1, 1, :], 0.0) plt = plot( xrange, yslice', show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( xrange, pred_mean_slice', ribbon = [2 * sqrt.(pred_cov_slice); 2 * sqrt.(pred_cov_slice)]', label = "Fourier", color = "blue", ) savefig( plt, joinpath( figure_save_directory, "Fit_and_predict_ND_" * string(direction) * "of" * string(input_dim) * ".pdf", ), ) savefig( plt, joinpath( figure_save_directory, "Fit_and_predict_ND_" * string(direction) * "of" * string(input_dim) * ".png", ), ) end end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
20614
# Example to learn hyperparameters of simple 1d-1d regression example. # This example matches test/Methods/runtests.jl testset: "Fit and predict: 1D -> 1D" # The (approximate) optimal values here are used in those tests. using StableRNGs using Distributions using JLD2 using StatsBase using LinearAlgebra using Random using Dates PLOT_FLAG = true println("plot flag:", PLOT_FLAG) if PLOT_FLAG using Plots end using EnsembleKalmanProcesses const EKP = EnsembleKalmanProcesses using EnsembleKalmanProcesses.Localizers using RandomFeatures.ParameterDistributions using RandomFeatures.DataContainers using RandomFeatures.Samplers using RandomFeatures.Features using RandomFeatures.Methods using RandomFeatures.Utilities seed = 2024 ekp_seed = 99999 rng = StableRNG(seed) function flat_to_chol(x::AbstractArray) choldim = Int(floor(sqrt(2 * length(x)))) cholmat = zeros(choldim, choldim) for i in 1:choldim for j in 1:i cholmat[i, j] = x[sum(0:(i - 1)) + j] end end return cholmat end function posdef_correct(mat::AbstractMatrix, tol = 1e8 * eps()) mat += permutedims(mat, (2, 1)) mat *= 0.5 # symmetrize return mat + (abs(minimum(eigvals(mat))) + tol) * I #add to diag end ## Functions of use function RFM_from_hyperparameters( rng::RNG, l::RorM, lambda::L, n_features::Int, batch_sizes::Dict{S, Int}, input_dim::Int, output_dim::Int, ) where { RNG <: AbstractRNG, RorM <: Union{Real, AbstractVecOrMat}, S <: AbstractString, L <: Union{AbstractMatrix, UniformScaling, Real}, } # l = [input_dim params + output_dim params] μ_c = 0.0 if input_dim > 1 && output_dim > 1 cholU = flat_to_chol(l[1:Int(0.5 * input_dim * (input_dim + 1))]) cholV = flat_to_chol( l[(Int(0.5 * input_dim * (input_dim + 1)) + 1):Int( 0.5 * input_dim * (input_dim + 1) + 0.5 * output_dim * (output_dim + 1), )], ) U = l[end - 1] * (cholU * permutedims(cholU, (2, 1)) + l[end - 1] * I) V = l[end] * (cholV * permutedims(cholV, (2, 1)) + l[end] * I) elseif input_dim == 1 && output_dim > 1 U = ones(1, 1) cholV = flat_to_chol(l[2:(Int(0.5 * output_dim * (output_dim + 1)) + 1)]) V = l[1] * (cholV * permutedims(cholV, (2, 1)) + l[1] * I) elseif input_dim > 1 && output_dim == 1 cholU = flat_to_chol(l[1:Int(0.5 * input_dim * (input_dim + 1))]) U = l[end] * (holU * permutedims(cholU, (2, 1)) + l[end] * I) V = ones(1, 1) end M = zeros(input_dim, output_dim) # n x p mean if !isposdef(U) println("U not posdef") U = posdef_correct(U) end if !isposdef(V) println("V not posdef") V = posdef_correct(V) end representation = "covariance" # "covariance" if representation == "precision" Uinv = inv(U) Vinv = inv(V) if !isposdef(Uinv) println("Uinv not posdef") U = posdef_correct(Uinv) end if !isposdef(Vinv) println("Vinv not posdef") V = posdef_correct(Vinv) end elseif representation == "covariance" nothing else throw(ArgumentError("representation must be \"covariance\" else \"precision\". Got $representation")) end pd = ParameterDistribution( Dict( "distribution" => Parameterized(MatrixNormal(M, U, V)), "constraint" => repeat([no_constraint()], input_dim * output_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, output_dim, rng = rng) vff = VectorFourierFeature(n_features, output_dim, feature_sampler) return RandomFeatureMethod(vff, batch_sizes = batch_sizes, regularization = lambda) end function calculate_mean_cov_and_coeffs( rng::RNG, l::RorM, lambda::L, n_features::Int, batch_sizes::Dict{S, Int}, io_pairs::PairedDataContainer, mean_store::Matrix{FT}, cov_store::Array{FT, 3}, buffer::Array{FT, 3}; decomp_type::S = "chol", ) where { RNG <: AbstractRNG, FT <: AbstractFloat, S <: AbstractString, RorM <: Union{Real, AbstractVecOrMat}, L <: Union{AbstractMatrix, UniformScaling, Real}, } n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train # split data into train/test randomly itrain = get_inputs(io_pairs)[:, 1:n_train] otrain = get_outputs(io_pairs)[:, 1:n_train] io_train_cost = PairedDataContainer(itrain, otrain) itest = get_inputs(io_pairs)[:, (n_train + 1):end] otest = get_outputs(io_pairs)[:, (n_train + 1):end] input_dim = size(itrain, 1) output_dim = size(otrain, 1) # build and fit the RF rfm = RFM_from_hyperparameters(rng, l, lambda, n_features, batch_sizes, input_dim, output_dim) if decomp_type == "chol" fitted_features = fit(rfm, io_train_cost, decomposition_type = "cholesky") else fitted_features = fit(rfm, io_train_cost, decomposition_type = "svd") end test_batch_size = get_batch_size(rfm, "test") batch_inputs = batch_generator(itest, test_batch_size, dims = 2) # input_dim x batch_size #we want to calc 1/var(y-mean)^2 + lambda/m * coeffs^2 in the end # pred_mean, pred_cov = predict(rfm, fitted_features, DataContainer(itest)) predict!(rfm, fitted_features, DataContainer(itest), mean_store, cov_store, buffer) # sizes (output_dim x n_test), (output_dim x output_dim x n_test) scaled_coeffs = 1 / sqrt(n_features) * norm(get_coeffs(fitted_features)) if decomp_type == "chol" chol_fac = get_decomposition(get_feature_factors(fitted_features)).L complexity = 2 * sum(log(chol_fac[i, i]) for i in 1:size(chol_fac, 1)) else svd_singval = get_decomposition(get_feature_factors(fitted_features)).S complexity = sum(log, svd_singval) # note this is log(abs(det)) end complexity = sqrt(complexity) # complexity must be positive println("sample_complexity", complexity) return scaled_coeffs, complexity end function estimate_mean_and_coeffnorm_covariance( rng::RNG, l::RorM, lambda::L, n_features::Int, batch_sizes::Dict{S, Int}, io_pairs::PairedDataContainer, n_samples::Int, y; repeats::Int = 1, ) where { RNG <: AbstractRNG, S <: AbstractString, RorM <: Union{Real, AbstractVecOrMat}, L <: Union{AbstractMatrix, UniformScaling, Real}, } n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train output_dim = size(get_outputs(io_pairs), 1) means = zeros(output_dim, n_samples, n_test) mean_of_covs = zeros(output_dim, output_dim, n_test) moc_tmp = similar(mean_of_covs) mtmp = zeros(output_dim, n_test) buffer = zeros(n_test, output_dim, n_features) complexity = zeros(1, n_samples) coeffl2norm = zeros(1, n_samples) for i in 1:n_samples for j in 1:repeats c, cplxty = calculate_mean_cov_and_coeffs(rng, l, lambda, n_features, batch_sizes, io_pairs, mtmp, moc_tmp, buffer) # m output_dim x n_test # v output_dim x output_dim x n_test # c n_features # cplxty 1 # update vbles needed for cov means[:, i, :] .+= (y - mtmp) ./ repeats coeffl2norm[1, i] += sqrt(sum(abs2, c)) / repeats complexity[1, i] += cplxty / repeats # update vbles needed for mean @. mean_of_covs += moc_tmp / (repeats * n_samples) end end means = permutedims(means, (3, 2, 1)) mean_of_covs = permutedims(mean_of_covs, (3, 1, 2)) approx_σ2 = zeros(n_test * output_dim, n_test * output_dim) blockmeans = zeros(n_test * output_dim, n_samples) for i in 1:n_test id = ((i - 1) * output_dim + 1):(i * output_dim) approx_σ2[id, id] = mean_of_covs[i, :, :] # this ordering, so we can take a mean/cov in dims = 2. blockmeans[id, :] = permutedims(means[i, :, :], (2, 1)) end sample_mat = vcat(blockmeans, coeffl2norm, complexity) Γ = cov(sample_mat, dims = 2) if !isposdef(approx_σ2) println("approx_σ2 not posdef") approx_σ2 = posdef_correct(approx_σ2) end return Γ, approx_σ2 return Γ, approx_σ2 end function calculate_ensemble_mean_and_coeffnorm( rng::RNG, lvecormat::VorM, lambda::L, n_features::Int, batch_sizes::Dict{S, Int}, io_pairs::PairedDataContainer, y; repeats::Int = 1, ) where { RNG <: AbstractRNG, S <: AbstractString, VorM <: AbstractVecOrMat, L <: Union{AbstractMatrix, UniformScaling, Real}, } if isa(lvecormat, AbstractVector) lmat = reshape(lvecormat, 1, :) else lmat = lvecormat end N_ens = size(lmat, 2) n_train = Int(floor(0.8 * size(get_inputs(io_pairs), 2))) # 80:20 train test n_test = size(get_inputs(io_pairs), 2) - n_train output_dim = size(get_outputs(io_pairs), 1) means = zeros(output_dim, N_ens, n_test) mean_of_covs = zeros(output_dim, output_dim, n_test) buffer = zeros(n_test, output_dim, n_features) complexity = zeros(1, N_ens) coeffl2norm = zeros(1, N_ens) moc_tmp = similar(mean_of_covs) mtmp = zeros(output_dim, n_test) for i in collect(1:N_ens) for j in collect(1:repeats) l = lmat[:, i] c, cplxty = calculate_mean_cov_and_coeffs(rng, l, lambda, n_features, batch_sizes, io_pairs, mtmp, moc_tmp, buffer) # m output_dim x n_test # v output_dim x output_dim x n_test # c n_features means[:, i, :] += (y - mtmp) ./ repeats @. mean_of_covs += moc_tmp / (repeats * N_ens) coeffl2norm[1, i] += sqrt(sum(c .^ 2)) / repeats complexity[1, i] += cplxty / repeats end end means = permutedims(means, (3, 2, 1)) mean_of_covs = permutedims(mean_of_covs, (3, 1, 2)) blockcovmat = zeros(n_test * output_dim, n_test * output_dim) blockmeans = zeros(n_test * output_dim, N_ens) for i in 1:n_test id = ((i - 1) * output_dim + 1):(i * output_dim) blockcovmat[id, id] = mean_of_covs[i, :, :] blockmeans[id, :] = permutedims(means[i, :, :], (2, 1)) end if !isposdef(blockcovmat) println("blockcovmat not posdef") blockcovmat = posdef_correct(blockcovmat) end return vcat(blockmeans, coeffl2norm, complexity), blockcovmat end @time begin ## Begin Script, define problem setting println("Begin script") date_of_run = Date(2024, 4, 10) input_dim = 1 output_dim = 3 println("Number of input dimensions: ", input_dim) println("Number of output dimensions: ", output_dim) function ftest_1d_to_3d(x::M) where {M <: AbstractMatrix} out = zeros(3, size(x, 2)) out[1, :] = mapslices(column -> sin(norm([i * c for (i, c) in enumerate(column)])^2), x, dims = 1) out[2, :] = mapslices(column -> exp(-0.1 * norm([i * c for (i, c) in enumerate(column)])^2), x, dims = 1) out[3, :] = mapslices( column -> norm([i * c for (i, c) in enumerate(column)]) * sin(1 / norm([i * c for (i, c) in enumerate(column)])^2) - 1, x, dims = 1, ) return out end #problem formulation n_data = 100 x = rand(rng, MvNormal(zeros(input_dim), I), n_data) # diagonal noise # cov_mat = Diagonal((5e-2)^2 * ones(output_dim)) #cov_mat = (5e-2)^2*I(output_dim) # correlated noise cov_mat = convert(Matrix, Tridiagonal((5e-3) * ones(2), (2e-2) * ones(3), (5e-3) * ones(2))) noise_dist = MvNormal(zeros(output_dim), cov_mat) noise = rand(rng, noise_dist, n_data) # simple regularization #lambda = exp((1 / output_dim) * sum(log.(eigvals(cov_mat)))) * I(output_dim) # more complex lambda = cov_mat y = ftest_1d_to_3d(x) + noise io_pairs = PairedDataContainer(x, y) ## Define Hyperpriors for EKP μ_l = 5.0 σ_l = 5.0 # prior for non radial problem n_l = Int(0.5 * input_dim * (input_dim + 1)) + Int(0.5 * output_dim * (output_dim + 1)) n_l += (input_dim > 1 && output_dim > 1) ? 2 : 0 prior_lengthscale = constrained_gaussian("lengthscale", μ_l, σ_l, 0.0, Inf, repeats = n_l) priors = prior_lengthscale println("number of hyperparameters to train: ", n_l) # estimate the noise from running many RFM sample costs at the mean values batch_sizes = Dict("train" => 500, "test" => 500, "feature" => 500) n_train = Int(floor(0.8 * n_data)) n_test = n_data - n_train n_features_opt = Int(floor(2 * n_train)) #n_features = Int(floor(2 * n_data)) # RF will perform poorly when n_features is close to n_train @assert(!(n_features_opt == n_train)) # repeats = 1 CALC_TRUTH = true println("RHKS norm type: norm of coefficients") if CALC_TRUTH sample_multiplier = 1 n_samples = (n_test * output_dim + 2) * sample_multiplier println("Estimating output covariance with ", n_samples, " samples") internal_Γ, approx_σ2 = estimate_mean_and_coeffnorm_covariance( rng, repeat([μ_l], n_l), # take mean values lambda, n_features_opt, batch_sizes, io_pairs, n_samples, y[:, (n_train + 1):end], repeats = repeats, ) save("calculated_truth_cov.jld2", "internal_Γ", internal_Γ, "approx_σ2", approx_σ2) else println("Loading truth covariance from file...") internal_Γ = load("calculated_truth_cov.jld2")["internal_Γ"] approx_σ2 = load("calculated_truth_cov.jld2")["approx_σ2"] end Γ = internal_Γ for i in 1:(n_test - 1) Γ[((i - 1) * output_dim + 1):(i * output_dim), ((i - 1) * output_dim + 1):(i * output_dim)] += lambda[:, :] end Γ[(n_test * output_dim + 1):end, (n_test * output_dim + 1):end] += I println( "Estimated variance. Tr(cov) = ", tr(Γ[1:(n_test * output_dim), 1:(n_test * output_dim)]), " + ", Γ[end - 1, end - 1], " + ", Γ[end, end], ) println("is EKP noise positive definite? ", isposdef(Γ)) #println("noise in observations: ", Γ) # Create EKI N_ens = 10 * input_dim N_iter = 10 update_cov_step = Inf initial_params = construct_initial_ensemble(priors, N_ens; rng_seed = ekp_seed) params_init = transform_unconstrained_to_constrained(priors, initial_params)#[1, :] println("Prior gives parameters between: [$(minimum(params_init)),$(maximum(params_init))]") data = zeros(size(Γ, 1)) ekiobj = [EKP.EnsembleKalmanProcess(initial_params, data[:], Γ, Inversion())] err = zeros(N_iter) println("Begin EKI iterations:") Δt = [1.0] for i in 1:N_iter #get parameters: lvec = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) g_ens, _ = calculate_ensemble_mean_and_coeffnorm( rng, lvec, lambda, n_features_opt, batch_sizes, io_pairs, y[:, (n_train + 1):end], repeats = repeats, ) if i % update_cov_step == 0 # to update cov if required constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) println("Estimating output covariance with ", n_samples, " samples") internal_Γ_new, approx_σ2_new = estimate_mean_and_coeffnorm_covariance( rng, mean(constrained_u, dims = 2)[:, 1], # take mean values lambda, n_features_opt, batch_sizes, io_pairs, n_samples, y[:, (n_train + 1):end], repeats = repeats, ) Γ_new = internal_Γ_new # Γ_new[1:(n_test * output_dim), 1:(n_test * output_dim)] += approx_σ2_new # Γ_new[(n_test * output_dim + 1):end, (n_test * output_dim + 1):end] += I println( "Estimated variance. Tr(cov) = ", tr(Γ_new[1:n_test, 1:n_test]), " + ", tr(Γ_new[(n_test * output_dim + 1):end, (n_test * output_dim + 1):end]), ) ekiobj[1] = EKP.EnsembleKalmanProcess(get_u_final(ekiobj[1]), data[:], Γ_new, Inversion()) end EKP.update_ensemble!(ekiobj[1], g_ens, Δt_new = Δt[1]) err[i] = get_error(ekiobj[1])[end] #mean((params_true - mean(params_i,dims=2)).^2) constrained_u = transform_unconstrained_to_constrained(priors, get_u_final(ekiobj[1])) println( "Iteration: " * string(i) * ", Error: " * string(err[i]) * ", for parameter means: \n" * string(mean(constrained_u, dims = 2)), "\n and sd :\n" * string(sqrt.(var(constrained_u, dims = 2))), ) Δt[1] *= 1.0 end #run actual experiment # override following parameters for actual run n_data_test = 100 * input_dim n_features_test = Int(floor(2 * n_data_test)) println("number of training data: ", n_data_test) println("number of features: ", n_features_test) x_test = rand(rng, MvNormal(zeros(input_dim), 0.5 * I), n_data_test) noise_test = rand(rng, noise_dist, n_data_test) y_test = ftest_1d_to_3d(x_test) + noise_test io_pairs_test = PairedDataContainer(x_test, y_test) # get feature distribution final_lvec = get_ϕ_mean_final(priors, ekiobj[1]) println("**********") println("Optimal lengthscales: $(final_lvec)") println("**********") rfm = RFM_from_hyperparameters(rng, final_lvec, lambda, n_features_test, batch_sizes, input_dim, output_dim) fitted_features = fit(rfm, io_pairs_test, decomposition_type = "cholesky") if PLOT_FLAG # learning on Normal(0,1) dist, forecast on (-2,2) xrange = reshape(collect(-2.01:0.02:2.01), 1, :) yrange = ftest_1d_to_3d(xrange) pred_mean_slice, pred_cov_slice = predict(rfm, fitted_features, DataContainer(xrange)) for i in 1:output_dim pred_cov_slice[i, i, :] = max.(pred_cov_slice[i, i, :], 0.0) end figure_save_directory = joinpath(@__DIR__, "output", string(date_of_run)) if !isdir(figure_save_directory) mkpath(figure_save_directory) end #plot diagonal xplot = xrange[:] plt = plot( xplot, yrange[1, :], show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( xplot, yrange[2, :], show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( xplot, yrange[3, :], show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) scatter!(x_test[:], y_test[1, :], color = "blue", label = "", marker = :x) plot!( xplot, pred_mean_slice[1, :], ribbon = [2 * sqrt.(pred_cov_slice[1, 1, :]); 2 * sqrt.(pred_cov_slice[1, 1, :])], label = "Fourier", color = "blue", ) scatter!(x_test[:], y_test[2, :], color = "red", label = "", marker = :x) plot!( xplot, pred_mean_slice[2, :], ribbon = [2 * sqrt.(pred_cov_slice[2, 2, :]); 2 * sqrt.(pred_cov_slice[2, 2, :])], label = "Fourier", color = "red", ) scatter!(x_test[:], y_test[3, :], color = "green", label = "", marker = :x) plot!( xplot, pred_mean_slice[3, :], ribbon = [2 * sqrt.(pred_cov_slice[3, 3, :]); 2 * sqrt.(pred_cov_slice[3, 3, :])], label = "Fourier", color = "green", ) savefig(plt, joinpath(figure_save_directory, "Fit_and_predict_1D_to_MD.pdf")) savefig(plt, joinpath(figure_save_directory, "Fit_and_predict_1D_to_MD.png")) end end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
1391
module Features include("ScalarFunctions.jl") import StatsBase: sample using EnsembleKalmanProcesses.ParameterDistributions, DocStringExtensions, RandomFeatures.Samplers, Tullio, LoopVectorization abstract type RandomFeature end include("ScalarFeatures.jl") include("VectorFeatures.jl") export RandomFeature export sample, get_scalar_function, get_feature_sampler, get_feature_sample, get_n_features, get_feature_parameters, get_output_dim """ $(TYPEDSIGNATURES) samples the random feature distribution """ function sample(rf::RF) where {RF <: RandomFeature} sampler = get_feature_sampler(rf) m = get_n_features(rf) return sample(sampler, m) end # methods """ $(TYPEDSIGNATURES) gets the `n_features` field """ get_n_features(rf::RF) where {RF <: RandomFeature} = rf.n_features """ $(TYPEDSIGNATURES) gets the `scalar_function` field """ get_scalar_function(rf::RF) where {RF <: RandomFeature} = rf.scalar_function """ $(TYPEDSIGNATURES) gets the `feature_sampler` field """ get_feature_sampler(rf::RF) where {RF <: RandomFeature} = rf.feature_sampler """ $(TYPEDSIGNATURES) gets the `feature_sample` field """ get_feature_sample(rf::RF) where {RF <: RandomFeature} = rf.feature_sample """ $(TYPEDSIGNATURES) gets the `feature_parameters` field """ get_feature_parameters(rf::RF) where {RF <: RandomFeature} = rf.feature_parameters end #module
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
18405
module Methods import StatsBase: sample, fit, predict, predict! using LinearAlgebra, DocStringExtensions, RandomFeatures.Features, RandomFeatures.Utilities, EnsembleKalmanProcesses.DataContainers, Tullio, LoopVectorization export RandomFeatureMethod, Fit, get_random_feature, get_batch_sizes, get_batch_size, get_regularization, get_tullio_threading, sample, get_feature_factors, get_coeffs, fit, predict, predict!, predictive_mean, predictive_cov, predictive_mean!, predictive_cov!, predict_prior, predict_prior_mean, predict_prior_cov """ $(TYPEDEF) Holds configuration for the random feature fit $(TYPEDFIELDS) """ struct RandomFeatureMethod{S <: AbstractString, USorM <: Union{UniformScaling, AbstractMatrix}} "The random feature object" random_feature::RandomFeature "A dictionary specifying the batch sizes. Must contain \"train\", \"test\", and \"feature\" keys" batch_sizes::Dict{S, Int} "A positive definite matrix used during the fit method to regularize the linear solve, interpreted as the inverse of the observational noise covariance" regularization::USorM "Use multithreading provided by Tullio" tullio_threading::Bool end """ $(TYPEDSIGNATURES) Basic constructor for a `RandomFeatureMethod`. """ function RandomFeatureMethod( random_feature::RandomFeature; regularization::USorMorR = 1e12 * eps() * I, batch_sizes::Dict{S, Int} = Dict("train" => 0, "test" => 0, "feature" => 0), tullio_threading = true, regularization_inverted::Bool = false, ) where {S <: AbstractString, USorMorR <: Union{<:Real, AbstractMatrix{<:Real}, UniformScaling}} if !all([key ∈ keys(batch_sizes) for key in ["train", "test", "feature"]]) throw(ArgumentError("batch_sizes keys must contain all of \"train\", \"test\", and \"feature\"")) end # ToDo store cholesky factors if isa(regularization, Real) if regularization <= 0 @info "input regularization <=0 is invalid, using regularization = 1e12*eps()" λ = 1e12 * eps() * I else λ = regularization * I end else if !isposdef(regularization) #check positive definiteness tol = 1e12 * eps() #MAGIC NUMBER λ = posdef_correct(regularization, tol = tol) @warn "input regularization matrix is not positive definite, replacing with nearby positive definite matrix" else λ = regularization end end # we work with inverted regularization matrix if regularization_inverted == false if cond(regularization) > 10^8 @warn "The provided regularization is poorly conditioned: κ(reg) = cond(regularization). Imprecision or SingularException during inversion may occur." end λinv = inv(λ) else λinv = λ end return RandomFeatureMethod{S, typeof(λ)}(random_feature, batch_sizes, λinv, tullio_threading) end """ $(TYPEDSIGNATURES) gets the `random_feature` field """ get_random_feature(rfm::RandomFeatureMethod) = rfm.random_feature """ $(TYPEDSIGNATURES) gets the `batch_sizes` field """ get_batch_sizes(rfm::RandomFeatureMethod) = rfm.batch_sizes """ $(TYPEDSIGNATURES) gets the `regularization` field, this is the inverse of the provided matrix if keyword `regularization_inverted = false` """ get_regularization(rfm::RandomFeatureMethod) = rfm.regularization """ $(TYPEDSIGNATURES) gets the `tullio_threading` field """ get_tullio_threading(rfm::RandomFeatureMethod) = rfm.tullio_threading """ $(TYPEDSIGNATURES) samples the random_feature field """ sample(rfm::RandomFeatureMethod) = sample(get_random_feature(rfm)) """ $(TYPEDSIGNATURES) get the specified batch size from `batch_sizes` field """ get_batch_size(rfm::RandomFeatureMethod, key::S) where {S <: AbstractString} = get_batch_sizes(rfm)[key] """ $(TYPEDEF) Holds the coefficients and matrix decomposition that describe a set of fitted random features. $(TYPEDFIELDS) """ struct Fit{V <: AbstractVector, USorM <: Union{UniformScaling, AbstractMatrix}} "The `LinearAlgreba` matrix decomposition of `(1 / m) * Feature^T * regularization^-1 * Feature + I`" feature_factors::Decomposition "Coefficients of the fit to data" coeffs::V "output-dim regularization used during fit" regularization::USorM end """ $(TYPEDSIGNATURES) gets the `feature_factors` field """ get_feature_factors(f::Fit) = f.feature_factors """ $(TYPEDSIGNATURES) gets the `coeffs` field """ get_coeffs(f::Fit) = f.coeffs """ $(TYPEDSIGNATURES) gets the `regularization` field (note this is the outputdim regularization) """ get_regularization(f::Fit) = f.regularization """ $(TYPEDSIGNATURES) Fits a `RandomFeatureMethod` to input-output data, optionally provide a preferred `LinearAlgebra` matrix decomposition. Returns a `Fit` object. """ function fit( rfm::RandomFeatureMethod, input_output_pairs::PairedDataContainer; decomposition_type::S = "cholesky", ) where {S <: AbstractString} (input, output) = get_data(input_output_pairs) input_dim, n_data = size(input) output_dim = size(output, 1) # for scalar features this is 1 train_batch_size = get_batch_size(rfm, "train") rf = get_random_feature(rfm) tullio_threading = get_tullio_threading(rfm) n_features = get_n_features(rf) #data are columns, batch over samples λinv = get_regularization(rfm) Phi = build_features(rf, input) FT = eltype(Phi) PhiTλinv = zeros(size(Phi)) PhiTλinvY = zeros(n_features) PhiTλinvPhi = zeros(n_features, n_features) if !tullio_threading if isa(λinv, UniformScaling) PhiTλinv = Phi * λinv.λ else @tullio threads = 10^9 PhiTλinv[n, q, i] = Phi[n, p, i] * λinv[p, q] end @tullio threads = 10^9 PhiTλinvY[j] = PhiTλinv[n, p, j] * output[p, n] @tullio threads = 10^9 PhiTλinvPhi[i, j] = PhiTλinv[n, p, i] * Phi[n, p, j] # BOTTLENECK else if isa(λinv, UniformScaling) PhiTλinv = Phi * λinv.λ else @tullio PhiTλinv[n, q, i] = Phi[n, p, i] * λinv[p, q] end @tullio PhiTλinvY[j] = PhiTλinv[n, p, j] * output[p, n] @tullio PhiTλinvPhi[i, j] = PhiTλinv[n, p, i] * Phi[n, p, j] # BOTTLENECK end # alternative using svd - turns out to be slower and more mem intensive @. PhiTλinvPhi /= FT(n_features) # solve the linear system # (PhiTλinvPhi + I) * beta = PhiTλinvY # in-place add I (as we don't use PhiTPhi again after this) for i in 1:size(PhiTλinvPhi, 1) PhiTλinvPhi[i, i] += 1.0 end feature_factors = Decomposition(PhiTλinvPhi, decomposition_type) # bottleneck for small problems only (much quicker than PhiTPhi for big problems) coeffs = linear_solve(feature_factors, PhiTλinvY, tullio_threading = tullio_threading) #n_features x n_samples x dim_output return Fit{typeof(coeffs), typeof(λinv)}(feature_factors, coeffs, λinv) end """ $(TYPEDSIGNATURES) Makes a prediction of mean and (co)variance of fitted features on new input data """ function predict(rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer; kwargs...) pred_mean, features = predictive_mean(rfm, fit, new_inputs; kwargs...) pred_cov = predictive_cov(rfm, fit, new_inputs, features; kwargs...) return pred_mean, pred_cov end """ $(TYPEDSIGNATURES) Makes a prediction of mean and (co)variance of fitted features on new input data, overwriting the provided stores. - mean_store:`output_dim` x `n_samples` - cov_store:`output_dim` x `output_dim` x `n_samples` - buffer:`n_samples` x `output_dim` x `n_features` """ function predict!( rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer, mean_store::M, cov_store::A, buffer::A; kwargs..., ) where {M <: AbstractMatrix{<:AbstractFloat}, A <: AbstractArray{<:AbstractFloat, 3}} #build features once only features = predictive_mean!(rfm, fit, new_inputs, mean_store; kwargs...) predictive_cov!(rfm, fit, new_inputs, cov_store, buffer, features; kwargs...) nothing end """ $(TYPEDSIGNATURES) Makes a prediction of mean and (co)variance with unfitted features on new input data """ function predict_prior(rfm::RandomFeatureMethod, new_inputs::DataContainer; kwargs...) prior_mean, features = predict_prior_mean(rfm, new_inputs; kwargs...) prior_cov = predict_prior_cov(rfm, new_inputs, features; kwargs...) return prior_mean, prior_cov end """ $(TYPEDSIGNATURES) Makes a prediction of mean with unfitted features on new input data """ function predict_prior_mean(rfm::RandomFeatureMethod, new_inputs::DataContainer; kwargs...) rf = get_random_feature(rfm) n_features = get_n_features(rf) coeffs = ones(n_features) return predictive_mean(rfm, coeffs, new_inputs; kwargs...) end function predict_prior_mean( rfm::RandomFeatureMethod, new_inputs::DataContainer, prebuilt_features::A; kwargs..., ) where {A <: AbstractArray{<:AbstractFloat, 3}} rf = get_random_feature(rfm) n_features = get_n_features(rf) coeffs = ones(n_features) return predictive_mean(rfm, coeffs, new_inputs, prebuilt_features; kwargs...) end """ $(TYPEDSIGNATURES) Makes a prediction of (co)variance with unfitted features on new input data """ function predict_prior_cov(rfm::RandomFeatureMethod, new_inputs::DataContainer; kwargs...) inputs = get_data(new_inputs) rf = get_random_feature(rfm) features = build_features(rf, inputs) # bsize x output_dim x n_features return predict_prior_cov(rfm, new_inputs, features; kwargs...), features end function predict_prior_cov( rfm::RandomFeatureMethod, new_inputs::DataContainer, prebuilt_features::A; tullio_threading = true, kwargs..., ) where {A <: AbstractArray{<:AbstractFloat, 3}} #TODO optimize with woodbury as with other predictive_cov inputs = get_data(new_inputs) test_batch_size = get_batch_size(rfm, "test") rf = get_random_feature(rfm) output_dim = get_output_dim(rf) n_features = get_n_features(rf) FT = eltype(prebuilt_features) if !tullio_threading @tullio threads = 10^9 cov_outputs[p, q, n] := prebuilt_features[n, p, m] * prebuilt_features[l, q, m] - prebuilt_features[l, q, m] # output_dim, output_dim, size(inputs, 2) else @tullio cov_outputs[p, q, n] := prebuilt_features[n, p, m] * prebuilt_features[l, q, m] - prebuilt_features[l, q, m] # output_dim, output_dim, size(inputs, 2) end @. cov_outputs /= FT(n_features) return cov_outputs end """ $(TYPEDSIGNATURES) Makes a prediction of mean of fitted features on new input data. Returns a `output_dim` x `n_samples` array. """ predictive_mean(rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer; kwargs...) = predictive_mean(rfm, get_coeffs(fit), new_inputs; kwargs...) predictive_mean( rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer, prebuilt_features::A; kwargs..., ) where {A <: AbstractArray{<:AbstractFloat, 3}} = predictive_mean(rfm, get_coeffs(fit), new_inputs, prebuilt_features; kwargs...) function predictive_mean( rfm::RandomFeatureMethod, coeffs::V, new_inputs::DataContainer; kwargs..., ) where {V <: AbstractVector} inputs = get_data(new_inputs) rf = get_random_feature(rfm) features = build_features(rf, inputs) return predictive_mean(rfm, coeffs, new_inputs, features; kwargs...), features end function predictive_mean( rfm::RandomFeatureMethod, coeffs::V, new_inputs::DataContainer, prebuilt_features::A; kwargs..., ) where {V <: AbstractVector{<:AbstractFloat}, A <: AbstractArray{<:AbstractFloat, 3}} inputs = get_data(new_inputs) rf = get_random_feature(rfm) n_samples = size(inputs, 2) output_dim = get_output_dim(rf) mean_store = zeros(output_dim, n_samples) predictive_mean!(rfm, coeffs, new_inputs, mean_store, prebuilt_features; kwargs...) return mean_store end """ $(TYPEDSIGNATURES) Makes a prediction of mean of fitted features on new input data. Writes into a provided `output_dim` x `n_samples` array: `mean_store`. """ predictive_mean!( rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer, mean_store::M; kwargs..., ) where {M <: Matrix{<:AbstractFloat}} = predictive_mean!(rfm, get_coeffs(fit), new_inputs, mean_store; kwargs...) predictive_mean!( rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer, mean_store::M, features::A; kwargs..., ) where {M <: Matrix{<:AbstractFloat}, A <: AbstractArray{<:AbstractFloat, 3}} = predictive_mean!(rfm, get_coeffs(fit), new_inputs, mean_store, features; kwargs...) function predictive_mean!( rfm::RandomFeatureMethod, coeffs::V, new_inputs::DataContainer, mean_store::M; kwargs..., ) where {V <: AbstractVector{<:AbstractFloat}, M <: Matrix{<:AbstractFloat}} inputs = get_data(new_inputs) rf = get_random_feature(rfm) features = build_features(rf, inputs) predictive_mean!(rfm, coeffs, new_inputs, mean_store, features; kwargs...) return features end function predictive_mean!( rfm::RandomFeatureMethod, coeffs::V, new_inputs::DataContainer, mean_store::M, prebuilt_features::A; tullio_threading = true, kwargs..., ) where {V <: AbstractVector{<:AbstractFloat}, M <: Matrix{<:AbstractFloat}, A <: AbstractArray{<:AbstractFloat, 3}} inputs = get_data(new_inputs) rf = get_random_feature(rfm) tullio_threading = get_tullio_threading(rfm) output_dim = get_output_dim(rf) n_features = get_n_features(rf) if !(size(mean_store) == (output_dim, size(inputs, 2))) throw( DimensionMismatch( "provided storage for output expected to be size ($(output_dim),$(size(inputs,2))) got $(size(mean_store))", ), ) end if !tullio_threading @tullio threads = 10^9 mean_store[p, n] = prebuilt_features[n, p, m] * coeffs[m] else @tullio mean_store[p, n] = prebuilt_features[n, p, m] * coeffs[m] end FT = eltype(prebuilt_features) @. mean_store /= FT(n_features) nothing end """ $(TYPEDSIGNATURES) Makes a prediction of (co)variance of fitted features on new input data. Returns a `output_dim` x `output_dim` x `n_samples` array """ function predictive_cov( rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer, prebuilt_features::A; kwargs..., ) where {A <: AbstractArray{<:AbstractFloat, 3}} inputs = get_data(new_inputs) n_samples = size(inputs, 2) rf = get_random_feature(rfm) output_dim = get_output_dim(rf) n_features = get_n_features(rf) cov_store = zeros(output_dim, output_dim, n_samples) buffer = zeros(n_samples, output_dim, n_features) predictive_cov!(rfm, fit, new_inputs, cov_store, buffer, prebuilt_features; kwargs...) return cov_store end function predictive_cov(rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer; kwargs...) rf = get_random_feature(rfm) inputs = get_data(new_inputs) features = build_features(rf, inputs) # build_features gives bsize x output_dim x n_features return predictive_cov(rfm, fit, new_inputs, features; kwargs...), features end """ $(TYPEDSIGNATURES) Makes a prediction of (co)variance of fitted features on new input data. Writes into a provided `output_dim` x `output_dim` x `n_samples` array: `cov_store`, and uses provided `n_samples` x `output_dim` x `n_features` buffer. """ function predictive_cov!( rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer, cov_store::A, buffer::A, prebuilt_features::A; tullio_threading = true, kwargs..., ) where {A <: AbstractArray{<:AbstractFloat, 3}} # unlike in mean case, we must perform a linear solve for coefficients at every test point. # thus we return both the covariance and the input-dep coefficients # note the covariance here is a posterior variance in 1d outputs, it is not the posterior covariance inputs = get_data(new_inputs) test_batch_size = get_batch_size(rfm, "test") features_batch_size = get_batch_size(rfm, "feature") rf = get_random_feature(rfm) tullio_threading = get_tullio_threading(rfm) n_features = get_n_features(rf) output_dim = get_output_dim(rf) coeffs = get_coeffs(fit) PhiTλinvPhi_factors = get_feature_factors(fit) inv_decomp = get_inv_decomposition(PhiTλinvPhi_factors) # (get the inverse of this) if !(size(cov_store) == (output_dim, output_dim, size(inputs, 2))) throw( DimensionMismatch( "provided storage for output expected to be size ($(output_dim),$(output_dim),$(size(inputs,2))) got $(size(cov_store))", ), ) end FT = eltype(prebuilt_features) # Bishop Nasrabadi 2006 - efficient computation of cov: if !(size(buffer) == (size(inputs, 2), output_dim, n_features)) throw( DimensionMismatch( "provided storage for tmp buffer expected to be size ($(size(inputs,2)),$(output_dim),$(n_features)), got $(size(buffer))", ), ) end if !tullio_threading @tullio threads = 10^9 buffer[n, p, o] = prebuilt_features[n, p, m] * inv_decomp[m, o] # = betahat(x') @tullio threads = 10^9 cov_store[p, q, n] = buffer[n, p, o] * prebuilt_features[n, q, o] else @tullio buffer[n, p, o] = prebuilt_features[n, p, m] * inv_decomp[m, o] # = betahat(x') @tullio cov_store[p, q, n] = buffer[n, p, o] * prebuilt_features[n, q, o] end @. cov_store /= FT(n_features) nothing end function predictive_cov!( rfm::RandomFeatureMethod, fit::Fit, new_inputs::DataContainer, cov_store::A, buffer::A; kwargs..., ) where {A <: AbstractArray{<:AbstractFloat, 3}} rf = get_random_feature(rfm) inputs = get_data(new_inputs) features = build_features(rf, inputs) predictive_cov!(rfm, fit, new_inputs, cov_store, buffer, features; kwargs...) return features end # TODO # function posterior_cov(rfm::RandomFeatureMethod, u_input, v_input) # # end end # module
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
551
""" # Imported modules: $(IMPORTS) # Exports: $(EXPORTS) """ module RandomFeatures using Statistics, LinearAlgebra, DocStringExtensions using Tullio, LoopVectorization # importing parameter distirbutions import EnsembleKalmanProcesses: ParameterDistributions, DataContainers export ParameterDistributions, DataContainers #auxiliary modules include("Utilities.jl") # some additional tools include("Samplers.jl") # samples a distribution include("Features.jl") # builds a feature from the samples include("Methods.jl") # fits to data end # module
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
4808
module Samplers import StatsBase: sample using Random, Distributions, DocStringExtensions, EnsembleKalmanProcesses.ParameterDistributions export Sampler, FeatureSampler, get_parameter_distribution, get_rng, sample """ $(TYPEDEF) Wraps the parameter distributions used to sample random features $(TYPEDFIELDS) """ struct Sampler{RNG <: AbstractRNG} "A probability distribution, possibly with constraints" parameter_distribution::ParameterDistribution "A random number generator state" rng::RNG end """ $(TYPEDSIGNATURES) basic constructor for a `Sampler` """ function FeatureSampler( parameter_distribution::ParameterDistribution, bias_distribution::Union{ParameterDistribution, Nothing}; rng::RNG = Random.GLOBAL_RNG, ) where {RNG <: AbstractRNG} if isnothing(bias_distribution) # no bias return Sampler(parameter_distribution, rng) else pd = combine_distributions([parameter_distribution, bias_distribution]) return Sampler{RNG}(pd, rng) end end """ $(TYPEDSIGNATURES) one can conveniently specify the bias as a uniform-shift `uniform_shift_bounds` with `output_dim` dimensions """ function FeatureSampler( parameter_distribution::ParameterDistribution, output_dim::Int; uniform_shift_bounds::V = [0, 2 * pi], rng::RNG = Random.GLOBAL_RNG, ) where {RNG <: AbstractRNG, V <: AbstractVector} # adds a uniform distribution to the parameter distribution if output_dim == 1 unif_dict = Dict( "distribution" => Parameterized(Uniform(uniform_shift_bounds[1], uniform_shift_bounds[2])), "constraint" => no_constraint(), "name" => "bias", ) else unif_dict = Dict( "distribution" => VectorOfParameterized( repeat([Uniform(uniform_shift_bounds[1], uniform_shift_bounds[2])], output_dim), ), "constraint" => repeat([no_constraint()], output_dim), "name" => "bias", ) end unif_pd = ParameterDistribution(unif_dict) pd = combine_distributions([parameter_distribution, unif_pd]) return Sampler{RNG}(pd, rng) end FeatureSampler(parameter_distribution::ParameterDistribution; kwargs...) = FeatureSampler(parameter_distribution, 1; kwargs...) """ $(TYPEDSIGNATURES) gets the `parameter_distribution` field """ get_parameter_distribution(s::Sampler) = s.parameter_distribution """ $(TYPEDSIGNATURES) gets the `rng` field """ get_rng(s::Sampler) = s.rng """ $(TYPEDSIGNATURES) samples the distribution within `s`, `n_draws` times using a random number generator `rng`. Can be called without `rng` (defaults to `s.rng`) or `n_draws` (defaults to `1`) """ function sample(rng::RNG, s::Sampler, n_draws::Int) where {RNG <: AbstractRNG} pd = get_parameter_distribution(s) # TODO: Support for Matrix Distributions, Flattening them for now. if any([length(size(get_distribution(d))) > 1 for d in pd.distribution]) # samps is [ [in x out] x samples, [out x samples]] samps = [sample(rng, d, n_draws) for d in pd.distribution] # Faster than cat(samp[1]..., dims = 3) samp_xi = zeros(size(samps[1][1], 1), size(samps[1][1], 2), length(samps[1])) for i in 1:n_draws samp_xi[:, :, i] = samps[1][i] end samp_xi = reshape(samp_xi, size(samp_xi, 1) * size(samp_xi, 2), size(samp_xi, 3)) # stacks in+in+... to make a (in x out) x samples samp_bias = samps[2] # out x samples # Faster than cat(samp_xi, samp_bias, dims = 1) samp = zeros(size(samp_xi, 1) + size(samp_bias, 1), size(samp_xi, 2)) samp[1:size(samp_xi, 1), :] = samp_xi samp[(size(samp_xi, 1) + 1):end, :] = samp_bias else # Faster than cat([sample(rng, d, n_draws) for d in pd.distribution]..., dims = 1) for many distributions batches = batch(pd) # get indices of dist n = ndims(pd) samp = zeros(n, n_draws) for (i, d) in enumerate(pd.distribution) samp[batches[i], :] = sample(rng, d, n_draws) end end constrained_samp = transform_unconstrained_to_constrained(pd, samp) #now create a Samples-type distribution from the samples s_names = get_name(pd) s_slices = batch(pd) # e.g.,"xi","bias" [1:3,4:6] s_samples = [Samples(constrained_samp[slice, :]) for slice in s_slices] s_constraints = [repeat([no_constraint()], size(slice, 1)) for slice in s_slices] return combine_distributions([ ParameterDistribution(ss, sc, sn) for (ss, sc, sn) in zip(s_samples, s_constraints, s_names) ]) end sample(s::Sampler, n_draws::Int) = sample(s.rng, s, n_draws) sample(rng::RNG, s::Sampler) where {RNG <: AbstractRNG} = sample(rng, s, 1) sample(s::Sampler) = sample(s.rng, s, 1) end # module
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
3973
export ScalarFeature, ScalarFourierFeature, ScalarNeuronFeature export build_features """ $(TYPEDEF) Contains information to build and sample RandomFeatures mapping from N-D -> 1-D $(TYPEDFIELDS) """ struct ScalarFeature{S <: AbstractString, SF <: ScalarFunction} <: RandomFeature "Number of features" n_features::Int "Sampler of the feature distribution" feature_sampler::Sampler "ScalarFunction mapping R -> R" scalar_function::SF "Current `Sample` from sampler" feature_sample::ParameterDistribution "hyperparameters in Feature (and not in Sampler)" feature_parameters::Union{Dict{S}, Nothing} end # common constructors """ $(TYPEDSIGNATURES) basic constructor for a `ScalarFeature' """ function ScalarFeature( n_features::Int, feature_sampler::Sampler, scalar_fun::SF; feature_parameters::Dict{S} = Dict("sigma" => 1), ) where {S <: AbstractString, SF <: ScalarFunction} if "xi" ∉ get_name(get_parameter_distribution(feature_sampler)) throw( ArgumentError( " Named parameter \"xi\" not found in names of parameter_distribution. " * " \n Please provide the name \"xi\" to the distribution used to sample the features", ), ) end if "sigma" ∉ keys(feature_parameters) @info(" Required feature parameter key \"sigma\" not defined, continuing with default value \"sigma\" = 1 ") feature_parameters["sigma"] = 1.0 end samp = sample(feature_sampler, n_features) return ScalarFeature{S, SF}(n_features, feature_sampler, scalar_fun, samp, feature_parameters) end #these call the above constructor """ $(TYPEDSIGNATURES) Constructor for a `ScalarFeature` with cosine features """ function ScalarFourierFeature( n_features::Int, sampler::Sampler; feature_parameters::Dict{S} = Dict("sigma" => sqrt(2.0)), ) where {S <: AbstractString} return ScalarFeature(n_features, sampler, Cosine(); feature_parameters = feature_parameters) end """ $(TYPEDSIGNATURES) Constructor for a `ScalarFeature` with activation-function features (default ReLU) """ function ScalarNeuronFeature( n_features::Int, sampler::Sampler; activation_fun::SA = Relu(), kwargs..., ) where {SA <: ScalarActivation} return ScalarFeature(n_features, sampler, activation_fun; kwargs...) end """ $(TYPEDSIGNATURES) builds features (possibly batched) from an input matrix of size (input dimension, number of samples) output of dimension (number of samples, 1, number features) """ function build_features( rf::ScalarFeature, inputs::M, # input_dim x n_sample batch_feature_idx::V, ) where {M <: AbstractMatrix, V <: AbstractVector} # inputs = permutedims(inputs_t, (2, 1)) # n_sample x input_dim # build: sigma * scalar_function(xi . input + b) samp = get_feature_sample(rf) xi = get_distribution(samp)["xi"][:, batch_feature_idx] # dim_inputs x n_features # features = inputs * xi[:, batch_feature_idx] # n_samples x n_features @tullio features[n, b] := inputs[d, n] * xi[d, b] # n_samples x output_dim x n_feature_batch is_biased = "bias" ∈ get_name(samp) if is_biased bias = get_distribution(samp)["bias"][1, batch_feature_idx] # 1 x n_features @tullio features[n, b] += bias[b] end sf = get_scalar_function(rf) features .= apply_scalar_function.(Ref(sf), features) # BOTTLENECK OF build_features. sigma = get_feature_parameters(rf)["sigma"] # scalar @. features *= sigma #consistent output shape with vector case, by putting output_dim = 1 in middle dimension return reshape(features, size(features, 1), 1, size(features, 2)) end build_features(rf::ScalarFeature, inputs::M) where {M <: AbstractMatrix} = build_features(rf, inputs, collect(1:get_n_features(rf))) """ $(TYPEDSIGNATURES) gets the output dimension (equals 1 for scalar-valued features) """ get_output_dim(rf::ScalarFeature) = 1
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
3412
# list of scalar function - here usage is e.g., # SA = Relu() # apply_scalar_function(SA,r) using SpecialFunctions using DocStringExtensions import Base.@kwdef export ScalarFunction, ScalarActivation, Cosine, Relu, Lrelu, Gelu, Elu, Selu, Heaviside, SmoothHeaviside, Sawtooth, Softplus, Tansig, Sigmoid export apply_scalar_function """ $(TYPEDEF) Type of a function mapping 1D -> 1D """ abstract type ScalarFunction end """ $(TYPEDSIGNATURES) apply the scalar function `sf` pointwise to vectors or matrices """ apply_scalar_function(sf::SF, r::A) where {SF <: ScalarFunction, A <: AbstractArray} = apply_scalar_function.(Ref(sf), r) # Ref(sf) treats sf as a scalar for the broadcasting """ $(TYPEDEF) """ struct Cosine <: ScalarFunction end function apply_scalar_function(sf::Cosine, r::FT) where {FT <: AbstractFloat} return cos(r) end # specific set used for neurons """ $(TYPEDEF) Type of scalar activation functions """ abstract type ScalarActivation <: ScalarFunction end """ $(TYPEDEF) """ struct Relu <: ScalarActivation end function apply_scalar_function(sa::Relu, r::FT) where {FT <: AbstractFloat} return max(0, r) end """ $(TYPEDEF) """ struct Gelu <: ScalarActivation end function apply_scalar_function(sa::Gelu, r::FT) where {FT <: AbstractFloat} cdf = 0.5 * (1.0 + erf(r / sqrt(2.0))) return r * cdf end """ $(TYPEDEF) """ struct Heaviside <: ScalarActivation end function heaviside(x, y) if x < 0 return 0 elseif x == 0 return y else return 1 end end function apply_scalar_function(sa::Heaviside, r::FT) where {FT <: AbstractFloat} return heaviside(r, 0.5) end """ $(TYPEDEF) """ struct Sawtooth <: ScalarActivation end function apply_scalar_function(sa::Sawtooth, r::FT) where {FT <: AbstractFloat} return max(0, min(2 * r, 2 - 2 * r)) end """ $(TYPEDEF) """ struct Softplus <: ScalarActivation end function apply_scalar_function(sa::Softplus, r::FT) where {FT <: AbstractFloat} return log(1 + exp(-abs(r))) + max(r, 0) end """ $(TYPEDEF) """ struct Tansig <: ScalarActivation end function apply_scalar_function(sa::Tansig, r::FT) where {FT <: AbstractFloat} return tanh(r) end """ $(TYPEDEF) """ struct Sigmoid <: ScalarActivation end function apply_scalar_function(sa::Sigmoid, r::FT) where {FT <: AbstractFloat} return 1 / (1 + exp(-r)) end """ $(TYPEDEF) """ @kwdef struct Elu{FT <: AbstractFloat} <: ScalarActivation alpha::FT = 1.0 end function apply_scalar_function(sa::Elu, r::FT) where {FT <: AbstractFloat} return r > 0 ? r : sa.alpha * (exp(r) - 1.0) end """ $(TYPEDEF) """ @kwdef struct Lrelu{FT <: AbstractFloat} <: ScalarActivation alpha::FT = 0.01 end function apply_scalar_function(sa::Lrelu, r::FT) where {FT <: AbstractFloat} return r > 0 ? r : sa.alpha * r end """ $(TYPEDEF) """ @kwdef struct Selu{FT <: AbstractFloat} <: ScalarActivation alpha::FT = 1.67326 lambda::FT = 1.0507 end function apply_scalar_function(sa::Selu, r::FT) where {FT <: AbstractFloat} return r > 0 ? sa.lambda * r : sa.lambda * sa.alpha * (exp(r) - 1.0) end """ $(TYPEDEF) """ @kwdef struct SmoothHeaviside{FT <: AbstractFloat} <: ScalarActivation epsilon::FT = 0.01 end function apply_scalar_function(sa::SmoothHeaviside, r::FT) where {FT <: AbstractFloat} return 1 / 2 + (1 / pi) * atan(r / sa.epsilon) end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
6234
module Utilities using LinearAlgebra, DocStringExtensions, Tullio, LoopVectorization export batch_generator, Decomposition, StoredInvType, Factor, PseInv, get_decomposition, get_inv_decomposition, get_full_matrix, get_parametric_type, linear_solve, posdef_correct """ $(TYPEDSIGNATURES) produces batched sub-array views of size `batch_size` along dimension `dims`. !!! note this creates views not copies. Modifying a batch will modify the original! """ function batch_generator(array::A, batch_size::Int; dims::Int = 1) where {A <: AbstractArray} if batch_size == 0 return [array] end n_batches = Int(ceil(size(array, dims) / batch_size)) batch_idx = [ i < n_batches ? collect(((i - 1) * batch_size + 1):(i * batch_size)) : collect(((i - 1) * batch_size + 1):size(array, dims)) for i in 1:n_batches ] return [selectdim(array, dims, b) for b in batch_idx] end # Decomposition/linear solves for feature matrices """ posdef_correct(mat::AbstractMatrix; tol::Real=1e8*eps()) Makes square matrix `mat` positive definite, by symmetrizing and bounding the minimum eigenvalue below by `tol` """ function posdef_correct(mat::AbstractMatrix; tol::Real = 1e12 * eps()) mat = deepcopy(mat) if !issymmetric(mat) out = 0.5 * (mat + permutedims(mat, (2, 1))) #symmetrize if isposdef(out) # very often, small numerical errors cause asymmetry, so cheaper to add this branch return out end else out = mat end if !isposdef(out) nugget = abs(minimum(eigvals(out))) for i in 1:size(out, 1) out[i, i] += nugget + tol # add to diag end end return out end """ $(TYPEDEF) Type used as a flag for the stored Decomposition type """ abstract type StoredInvType end """ $(TYPEDEF) """ abstract type Factor <: StoredInvType end """ $(TYPEDEF) """ abstract type PseInv <: StoredInvType end """ $(TYPEDEF) Stores a matrix along with a decomposition `T=Factor`, or pseudoinverse `T=PseInv`, and also computes the inverse of the Factored matrix (for several predictions this is actually the most computationally efficient action) $(TYPEDFIELDS) """ struct Decomposition{T, M <: AbstractMatrix, MorF <: Union{AbstractMatrix, Factorization}} "The original matrix" full_matrix::M "The matrix decomposition, or pseudoinverse" decomposition::MorF "The matrix decomposition of the inverse, or pseudoinverse" inv_decomposition::M end function Decomposition( mat::M, method::S; nugget::R = 1e12 * eps(), ) where {M <: AbstractMatrix, S <: AbstractString, R <: Real} # TODOs # 1. Originally I used f = getfield(LinearAlgebra, Symbol(method)) but this is slow for evaluation so defining svd and cholesky is all we have now. I could maybe do dispatch here to make this a bit more slick. # 2. I have tried using the in-place methods, but so far these have not made enough difference to be worthwhile, I think at some-point they would be, but the original matrix would be needed for matrix regularization. They are not the bottleneck in the end if method == "pinv" invmat = pinv(mat) return Decomposition{PseInv, M, M}(mat, invmat, invmat) elseif method == "svd" fmat = svd(mat) return Decomposition{Factor, typeof(mat), Base.return_types(svd, (typeof(mat),))[1]}(mat, fmat, inv(fmat)) elseif method == "cholesky" if !isposdef(mat) # @info "Random Feature system not positive definite. Performing cholesky factorization with a close positive definite matrix" mat = posdef_correct(mat, tol = nugget) end fmat = cholesky(mat) return Decomposition{Factor, typeof(mat), Base.return_types(cholesky, (typeof(mat),))[1]}(mat, fmat, inv(fmat)) else throw( ArgumentError( "Only factorization methods \"pinv\", \"cholesky\" and \"svd\" implemented. got " * string(method), ), ) end end """ $(TYPEDSIGNATURES) get `decomposition` field """ get_decomposition(d::Decomposition) = d.decomposition """ $(TYPEDSIGNATURES) get `inv_decomposition` field """ get_inv_decomposition(d::Decomposition) = d.inv_decomposition """ $(TYPEDSIGNATURES) get `full_matrix` field """ get_full_matrix(d::Decomposition) = d.full_matrix """ $(TYPEDSIGNATURES) get the parametric type """ get_parametric_type(d::Decomposition{T, M}) where {T, M <: Union{AbstractMatrix, Factorization}} = T """ $(TYPEDSIGNATURES) Solve the linear system based on `Decomposition` type """ function linear_solve( d::Decomposition, rhs::A, ::Type{Factor}; tullio_threading = true, ) where {A <: AbstractArray{<:AbstractFloat, 3}} # return get_decomposition(d) \ permutedims(rhs (3,1,2)) # for prediction its far more worthwhile to store the inverse (in cases seen thus far) x = similar(rhs)#zeros(N, P, M) if !tullio_threading @tullio threads = 10^9 x[n, p, i] = get_inv_decomposition(d)[i, j] * rhs[n, p, j] else @tullio x[n, p, i] = get_inv_decomposition(d)[i, j] * rhs[n, p, j] end return x end function linear_solve( d::Decomposition, rhs::A, ::Type{PseInv}; tullio_threading = true, ) where {A <: AbstractArray{<:AbstractFloat, 3}} # return get_decomposition(d) * rhs if !tullio_threading @tullio threads = 10^9 x[n, p, m] := get_decomposition(d)[m, i] * rhs[n, p, i] else @tullio x[n, p, m] := get_decomposition(d)[m, i] * rhs[n, p, i] end return x end function linear_solve(d::Decomposition, rhs::A, ::Type{Factor}; kwargs...) where {A <: AbstractVector{<:AbstractFloat}} # return get_decomposition(d) \ rhs return get_inv_decomposition(d) * rhs end function linear_solve(d::Decomposition, rhs::A, ::Type{PseInv}; kwargs...) where {A <: AbstractVector{<:AbstractFloat}} #get_decomposition(d) * rhs return get_decomposition(d) * rhs end linear_solve(d::Decomposition, rhs::A; tullio_threading = true) where {A <: AbstractArray} = linear_solve(d, rhs, get_parametric_type(d), tullio_threading = tullio_threading) end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
4434
export VectorFeature, VectorFourierFeature, VectorNeuronFeature export build_features """ $(TYPEDEF) Contains information to build and sample RandomFeatures mapping from N-D -> M-D $(TYPEDFIELDS) """ struct VectorFeature{S <: AbstractString, SF <: ScalarFunction} <: RandomFeature "Number of features" n_features::Int "Dimension of output" output_dim::Int "Sampler of the feature distribution" feature_sampler::Sampler "ScalarFunction mapping R -> R" scalar_function::SF "Current `Sample` from sampler" feature_sample::ParameterDistribution "hyperparameters in Feature (and not in Sampler)" feature_parameters::Union{Dict{String}, Nothing} end """ $(TYPEDSIGNATURES) gets the output dimension (equals 1 for scalar-valued features) """ get_output_dim(rf::VectorFeature) = rf.output_dim # common constructors """ $(TYPEDSIGNATURES) basic constructor for a `VectorFeature' """ function VectorFeature( n_features::Int, output_dim::Int, feature_sampler::Sampler, scalar_fun::SF; feature_parameters::Dict{S} = Dict("sigma" => 1), ) where {S <: AbstractString, SF <: ScalarFunction} if "xi" ∉ get_name(get_parameter_distribution(feature_sampler)) throw( ArgumentError( " Named parameter \"xi\" not found in names of parameter_distribution. " * " \n Please provide the name \"xi\" to the distribution used to sample the features", ), ) end if "sigma" ∉ keys(feature_parameters) @info(" Required feature parameter key \"sigma\" not defined, continuing with default value \"sigma\" = 1 ") feature_parameters["sigma"] = 1.0 end samp = sample(feature_sampler, n_features) return VectorFeature{S, SF}(n_features, output_dim, feature_sampler, scalar_fun, samp, feature_parameters) end #these call the above constructor """ $(TYPEDSIGNATURES) Constructor for a `VectorFeature` with cosine features """ function VectorFourierFeature( n_features::Int, output_dim::Int, sampler::Sampler; feature_parameters::Dict{S} = Dict("sigma" => sqrt(2.0)), ) where {S <: AbstractString} return VectorFeature(n_features, output_dim, sampler, Cosine(); feature_parameters = feature_parameters) end """ $(TYPEDSIGNATURES) Constructor for a `VectorFeature` with activation-function features (default ReLU) """ function VectorNeuronFeature( n_features::Int, output_dim::Int, sampler::Sampler; activation_fun::ScalarActivation = Relu(), kwargs..., ) return VectorFeature(n_features, output_dim, sampler, activation_fun; kwargs...) end """ $(TYPEDSIGNATURES) builds features (possibly batched) from an input matrix of size (input dimension,number of samples) output of dimension (number of samples, output dimension, number features) """ function build_features( rf::VectorFeature, inputs::M, # input_dim x n_sample batch_feature_idx::V, ) where {M <: AbstractMatrix, V <: AbstractVector} # build: sigma * scalar_function(xi * input + b) samp = get_feature_sample(rf) input_dim = size(inputs, 1) output_dim = get_output_dim(rf) #TODO: What we want: # xi = get_distribution(samp)["xi"][:,:,batch_feature_idx] # input_dim x output_dim x n_feature_batch # for now, as matrix distributions aren't yet supported, xi is flattened, so we reshape xi_flat = get_distribution(samp)["xi"][:, batch_feature_idx] # (input_dim x output_dim) x n_feature_batch sampler = get_feature_sampler(rf) pd = get_parameter_distribution(sampler) xi = reshape(xi_flat, input_dim, output_dim, size(xi_flat, 2)) features = zeros(size(inputs, 2), size(xi, 2), size(xi, 3)) @tullio features[n, p, b] = inputs[d, n] * xi[d, p, b] # n_samples x output_dim x n_feature_batch is_biased = "bias" ∈ get_name(samp) if is_biased bias = get_distribution(samp)["bias"][:, batch_feature_idx] # dim_output x n_features @tullio features[n, p, b] += bias[p, b] end sf = get_scalar_function(rf) features .= apply_scalar_function.(Ref(sf), features) # BOTTLENECK OF build_features. sigma = get_feature_parameters(rf)["sigma"] # scalar @. features *= sigma return features # n_sample x n_feature_batch x output_dim end build_features(rf::VectorFeature, inputs::M) where {M <: AbstractMatrix} = build_features(rf, inputs, collect(1:get_n_features(rf)))
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
852
using Test TEST_PLOT_FLAG = !isempty(get(ENV, "TEST_PLOT_FLAG", "")) if TEST_PLOT_FLAG using Plots, ColorSchemes end function include_test(_module) println("Starting tests for $_module") t = @elapsed include(joinpath(_module, "runtests.jl")) println("Completed tests for $_module, $(round(Int, t)) seconds elapsed") return nothing end @testset "RandomFeatures" begin all_tests = isempty(ARGS) || "all" in ARGS ? true : false function has_submodule(sm) any(ARGS) do a a == sm && return true first(split(a, '/')) == sm && return true return false end end for submodule in ["Utilities", "Samplers", "Features", "Methods"] if all_tests || has_submodule(submodule) || "RandomFeatures" in ARGS include_test(submodule) end end end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
13248
using Test using StableRNGs using StatsBase using LinearAlgebra using Random using Distributions using Tullio using RandomFeatures.ParameterDistributions using RandomFeatures.Samplers using RandomFeatures.Features seed = 2202 @testset "Features" begin @testset "ScalarFunctions" begin af_list = [ Relu(), Lrelu(), Gelu(), Elu(), Selu(), Heaviside(), SmoothHeaviside(), Sawtooth(), Softplus(), Tansig(), Sigmoid(), ] # very rough tests that these are activation functions for af in af_list @test isa(af, ScalarActivation) x_test_neg = collect(-1:0.1:-0.1) x_test_pos = collect(0:0.1:1) println("Testing ", af) @test all(apply_scalar_function(af, x_test_neg) .<= log(2)) # small for negative x if !isa(af, Sawtooth) @test all( apply_scalar_function(af, x_test_pos[2:end]) - apply_scalar_function(af, x_test_pos[1:(end - 1)]) .>= 0, ) # monotone increasing for positive x else x_test_0_0pt5 = collect(0:0.1:0.5) x_test_0pt5_1 = collect(0.5:0.1:1) @test all( apply_scalar_function(af, x_test_0_0pt5[2:end]) - apply_scalar_function(af, x_test_0_0pt5[1:(end - 1)]) .>= 0, ) @test all( apply_scalar_function(af, x_test_0pt5_1[2:end]) - apply_scalar_function(af, x_test_0pt5_1[1:(end - 1)]) .<= 0, ) end end # others sf = Features.Cosine() # as Distributions also has a Cosine() println("Testing ", sf) @test isa(sf, ScalarFunction) x_test = collect(-1:0.1:1) @test all(abs.(apply_scalar_function(sf, x_test) - cos.(x_test)) .< 2 * eps()) end @testset "Scalar: Constructors" begin n_features = 20 relu = Relu() rng = StableRNG(seed) #setup sampler xi distributions μ_c = 0.0 σ_c = 2.0 pd_err = constrained_gaussian("test", μ_c, σ_c, -Inf, Inf) feature_sampler_err = FeatureSampler(pd_err, rng = copy(rng)) pd = constrained_gaussian("xi", μ_c, σ_c, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = copy(rng)) # postive constraints for sigma sigma_fixed_err = Dict("not sigma" => 10.0) # Error checks @test_throws ArgumentError ScalarFeature( n_features, feature_sampler_err, # causes error relu, ) @test_logs ( :info, " Required feature parameter key \"sigma\" not defined, continuing with default value \"sigma\" = 1 ", ) ScalarFeature(n_features, feature_sampler, relu, feature_parameters = sigma_fixed_err) # ScalarFeature and getters feature_sampler = FeatureSampler(pd, rng = copy(rng)) # to reset the rng sf_test = ScalarFeature(n_features, feature_sampler, relu) @test get_n_features(sf_test) == n_features @test get_feature_parameters(sf_test) == Dict("sigma" => 1.0) @test get_output_dim(sf_test) == 1 @test get_feature_parameters(sf_test)["sigma"] == sqrt(1) test_sample = sample(copy(rng), feature_sampler, n_features) sf_test_sample = get_feature_sample(sf_test) @test get_distribution(sf_test_sample)["xi"] == get_distribution(test_sample)["xi"] @test get_distribution(sf_test_sample)["bias"] == get_distribution(test_sample)["bias"] @test get_all_constraints(sf_test_sample) == get_all_constraints(test_sample) @test get_name(sf_test_sample) == get_name(test_sample) sf_test_sampler = get_feature_sampler(sf_test) sff_test = ScalarFourierFeature(n_features, feature_sampler) snf_test = ScalarNeuronFeature(n_features, feature_sampler) @test isa(get_scalar_function(sff_test), Features.Cosine) @test get_feature_parameters(sff_test)["sigma"] == sqrt(2.0) @test isa(get_scalar_function(snf_test), Relu) end @testset "Scalar: build features" begin n_features = 20 rng = StableRNG(seed) μ_c = 0.0 σ_c = 2.0 pd = constrained_gaussian("xi", μ_c, σ_c, -Inf, Inf) feature_sampler_1d = FeatureSampler(pd, rng = copy(rng)) sigma_value = 10.0 sigma_fixed = Dict("sigma" => sigma_value) sff_1d_test = ScalarFourierFeature(n_features, feature_sampler_1d, feature_parameters = sigma_fixed) # 1D input space -> 1D output space inputs_1d = reshape(collect(-1:0.01:1), (1, length(collect(-1:0.01:1)))) n_samples_1d = length(inputs_1d) features_1d = build_features(sff_1d_test, inputs_1d) rng1 = copy(rng) samp_xi = reshape(sample(rng1, pd, n_features), (1, n_features)) samp_unif = reshape(rand(rng1, Uniform(0, 2 * pi), n_features), (1, n_features)) inputs_1d_T = permutedims(inputs_1d, (2, 1)) rf_test = sigma_value * cos.(inputs_1d_T * samp_xi .+ samp_unif) @test size(features_1d) == (n_samples_1d, 1, n_features) # we store internally with output_dim = 1 @test all(abs.(rf_test - features_1d[:, 1, :]) .< 10 * eps()) # sufficiently big to deal with inaccuracy of cosine # 10D input space -> 1D output space # generate a bunch of random samples as data points n_samples = 200 inputs_10d = rand(MvNormal(zeros(10), convert(Matrix, SymTridiagonal(2 * ones(10), 0.5 * ones(9)))), n_samples) # 10 x n_samples # 10D indep gaussians on input space as feature distribution pd_10d = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(repeat([Normal(μ_c, σ_c)], 10)), "constraint" => repeat([no_constraint()], 10), "name" => "xi", ), ) feature_sampler_10d = FeatureSampler(pd_10d, rng = copy(rng)) sff_10d_test = ScalarNeuronFeature(n_features, feature_sampler_10d, feature_parameters = sigma_fixed) features_10d = build_features(sff_10d_test, inputs_10d) rng2 = copy(rng) samp_xi = reshape(sample(rng2, pd_10d, n_features), (10, n_features)) samp_unif = reshape(rand(rng2, Uniform(0, 2 * pi), n_features), (1, n_features)) inputs_10d_T = permutedims(inputs_10d, (2, 1)) rf_test2 = sigma_value * max.(inputs_10d_T * samp_xi .+ samp_unif, 0) @test size(features_10d) == (n_samples, 1, n_features) # we store internall with output_dim = 1 @test all(abs.(rf_test2 - features_10d[:, 1, :]) .< 1e3 * eps()) # sufficiently big to deal with inaccuracy of relu end @testset "Vector: Constructors" begin n_features = 20 input_dim = 5 output_dim = 2 relu = Relu() rng = StableRNG(seed) #just to test error flag μ_c = 0.0 σ_c = 2.0 pd_err = constrained_gaussian("test", μ_c, σ_c, -Inf, Inf, repeats = output_dim) feature_sampler_err = FeatureSampler(pd_err, output_dim, rng = copy(rng)) #setup sampler xi distributions: dist = MatrixNormal(zeros(input_dim, output_dim), Diagonal(ones(input_dim)), Diagonal(ones(output_dim))) #produces 5 x 2 matrix samples pd = ParameterDistribution( Dict( "distribution" => Parameterized(dist), "constraint" => repeat([no_constraint()], input_dim * output_dim), #flattened "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, output_dim, rng = copy(rng)) # postive constraints for sigma sigma_fixed_err = Dict("not sigma" => 10.0) # Error checks @test_throws ArgumentError VectorFeature( n_features, output_dim, feature_sampler_err, # causes error relu, ) @test_logs ( :info, " Required feature parameter key \"sigma\" not defined, continuing with default value \"sigma\" = 1 ", ) VectorFeature(n_features, output_dim, feature_sampler, relu, feature_parameters = sigma_fixed_err) # VectorFeature and getters feature_sampler = FeatureSampler(pd, output_dim, rng = copy(rng)) # to reset the rng vf_test = VectorFeature(n_features, output_dim, feature_sampler, relu) @test get_n_features(vf_test) == n_features @test get_feature_parameters(vf_test) == Dict("sigma" => 1.0) @test get_output_dim(vf_test) == output_dim @test get_feature_parameters(vf_test)["sigma"] == sqrt(1) test_sample = sample(copy(rng), feature_sampler, n_features) vf_test_sample = get_feature_sample(vf_test) @test get_distribution(vf_test_sample)["xi"] == get_distribution(test_sample)["xi"] @test get_distribution(vf_test_sample)["bias"] == get_distribution(test_sample)["bias"] @test get_all_constraints(vf_test_sample) == get_all_constraints(test_sample) @test get_name(vf_test_sample) == get_name(test_sample) vf_test_sampler = get_feature_sampler(vf_test) vff_test = VectorFourierFeature(n_features, output_dim, feature_sampler) vnf_test = VectorNeuronFeature(n_features, output_dim, feature_sampler) @test isa(get_scalar_function(vff_test), Features.Cosine) @test get_feature_parameters(vff_test)["sigma"] == sqrt(2.0) @test isa(get_scalar_function(vnf_test), Relu) end @testset "Vector: build features" begin n_features = 20 input_dim = 5 output_dim = 2 rng = StableRNG(seed) #setup sampler xi distributions: dist = MatrixNormal(zeros(input_dim, output_dim), Diagonal(ones(input_dim)), Diagonal(ones(output_dim))) #produces 5 x 2 matrix samples pd = ParameterDistribution( Dict( "distribution" => Parameterized(dist), "constraint" => repeat([no_constraint()], input_dim * output_dim), "name" => "xi", ), ) feature_sampler_5d = FeatureSampler(pd, output_dim, rng = copy(rng)) sigma_value = 10.0 sigma_fixed = Dict("sigma" => sigma_value) vff_5d_2d_test = VectorFourierFeature(n_features, output_dim, feature_sampler_5d, feature_parameters = sigma_fixed) # and a flat one dist = MvNormal(zeros(input_dim * output_dim), Diagonal(ones(input_dim * output_dim))) #produces 10-length vector samples pd = ParameterDistribution( Dict( "distribution" => Parameterized(dist), "constraint" => repeat([no_constraint()], input_dim * output_dim), "name" => "xi", ), ) feature_sampler_10dflat = FeatureSampler(pd, output_dim, rng = copy(rng)) vff_10dflat_test = VectorFourierFeature(n_features, output_dim, feature_sampler_10dflat, feature_parameters = sigma_fixed) # 5D input space -> 2D output space n_samples = 200 inputs_5d_2d = rand(Uniform(-1, 1), (input_dim, n_samples)) features_5d_2d = build_features(vff_5d_2d_test, inputs_5d_2d) rng1 = copy(rng) samp_flat = sample(rng1, feature_sampler_5d, n_features) samp_xi_flat = get_distribution(samp_flat)["xi"] # as we flatten the samples currently in the sampler.sample. reshape with dist. samp_xi = reshape(samp_xi_flat, (input_dim, output_dim, size(samp_xi_flat, 2))) # in x out x n_feature_batch @tullio features[n, p, b] := inputs_5d_2d[d, n] * samp_xi[d, p, b] samp_bias = get_distribution(samp_flat)["bias"] @tullio features[n, p, b] += samp_bias[p, b] rf_test = sigma_value * cos.(features) @test size(features_5d_2d) == (n_samples, output_dim, n_features) # we store internally with output_dim = 1 @test all(abs.(rf_test - features_5d_2d) .< 1e3 * eps()) # sufficiently big to deal with inaccuracy of cosine features_10dflat = build_features(vff_10dflat_test, inputs_5d_2d) rng1 = copy(rng) samp_flat = sample(rng1, feature_sampler_10dflat, n_features) samp_xi_flat = get_distribution(samp_flat)["xi"] # as we flatten the samples currently in the sampler.sample. reshape with dist. samp_xi = reshape(samp_xi_flat, (input_dim, output_dim, size(samp_xi_flat, 2))) # in x out x n_feature_batch @tullio features[n, p, b] := inputs_5d_2d[d, n] * samp_xi[d, p, b] samp_bias = get_distribution(samp_flat)["bias"] @tullio features[n, p, b] += samp_bias[p, b] rf_test = sigma_value * cos.(features) # rf_test = sigma_value * cos.(inputs_5d_2d_T * samp_xi .+ samp_unif) @test size(features_10dflat) == (n_samples, output_dim, n_features) # we store internally with output_dim = 1 @test all(abs.(rf_test - features_10dflat) .< 1e3 * eps()) # sufficiently big to deal with inaccuracy of cosine end end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
30931
using Test using Distributions using StableRNGs using StatsBase using LinearAlgebra using Random using RandomFeatures.Utilities using RandomFeatures.Samplers using RandomFeatures.Features using RandomFeatures.Methods using RandomFeatures.DataContainers using RandomFeatures.ParameterDistributions seed = 2023 tol = 1e3 * eps() @testset "Methods" begin @testset "construction of RFM" begin rng = StableRNG(seed) #specify features μ_c = 0.0 σ_c = 2.0 pd = constrained_gaussian("xi", μ_c, σ_c, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = copy(rng)) n_features = 100 sigma_fixed = Dict("sigma" => 10.0) sff = ScalarFourierFeature(n_features, feature_sampler, feature_parameters = sigma_fixed) # configure the method, and fit batch_sizes_err = Dict("train" => 100, "test" => 100, "NOT_FEATURES" => 100) batch_sizes = Dict("train" => 100, "test" => 100, "feature" => 100) lambda_warn = -1 lambda = 1e-4 lambdamat_warn = ones(3, 3) # not pos def L = [0.5 0; 1.3 0.3] lambdamat = L * permutedims(L, (2, 1)) #pos def @test_throws ArgumentError RandomFeatureMethod(sff, regularization = lambda, batch_sizes = batch_sizes_err) rfm_warn = RandomFeatureMethod(sff, regularization = lambda_warn, batch_sizes = batch_sizes) @test get_regularization(rfm_warn) ≈ inv(1e12 * eps() * I) # inverted internally rfm_warn2 = RandomFeatureMethod( sff, regularization = lambdamat_warn, batch_sizes = batch_sizes, regularization_inverted = true, ) #don't invert, just make PD reg_new = get_regularization(rfm_warn2) @test isposdef(reg_new) @test minimum(eigvals(reg_new)) > 1e12 * eps() rfm = RandomFeatureMethod( sff, regularization = lambdamat, batch_sizes = batch_sizes, regularization_inverted = true, ) @test get_regularization(rfm) ≈ lambdamat rfm = RandomFeatureMethod(sff, regularization = lambdamat, batch_sizes = batch_sizes) @test get_regularization(rfm) ≈ inv(lambdamat) rfm = RandomFeatureMethod(sff, regularization = lambda, batch_sizes = batch_sizes) @test get_batch_sizes(rfm) == batch_sizes rf_test = get_random_feature(rfm) @test get_tullio_threading(rfm) == true rfm = RandomFeatureMethod(sff, tullio_threading = false) @test get_tullio_threading(rfm) == false #too arduous right now to check rf_test == sff will wait until "==" is overloaded for ParameterDistribution rfm_default = RandomFeatureMethod(sff) @test get_batch_sizes(rfm_default) == Dict("train" => 0, "test" => 0, "feature" => 0) @test get_regularization(rfm_default) ≈ inv(1e12 * eps() * I) end @testset "Fit and predict: 1-D -> 1-D" begin rng_base = StableRNG(seed) # looks like a 4th order polynomial near 0, then is damped to 0 toward +/- inf ftest(x::AbstractVecOrMat) = exp.(-0.5 * x .^ 2) .* (x .^ 4 - x .^ 3 - x .^ 2 + x .- 1) exp_range = [1, 2, 4] n_data_exp = 20 * exp_range priorL2err = zeros(length(exp_range), 3) priorweightedL2err = zeros(length(exp_range), 3) L2err = zeros(length(exp_range), 3) weightedL2err = zeros(length(exp_range), 3) # values with 1/var learning in examples/Learn_hyperparameters/1d_to_1d_regression_direct_withcov.jl σ_c_vec = [2.5903560156755194, 1.9826946095752571, 2.095420236641444] σ_c_snf_vec = [9.606414682837055, 4.406586351058134, 2.756419855446525] σ_c_ssf_vec = [2.2041952067873742, 3.0205667976224384, 4.307656997874708] for (exp_idx, n_data, σ_c, σ_c_snf, σ_c_ssf) in zip(1:length(exp_range), n_data_exp, σ_c_vec, σ_c_snf_vec, σ_c_ssf_vec) rng = copy(rng_base) #problem formulation x = rand(rng, Uniform(-3, 3), n_data) noise_sd = 0.1 noise = rand(rng, Normal(0, noise_sd), n_data) y = ftest(x) + noise io_pairs = PairedDataContainer(reshape(x, 1, :), reshape(y, 1, :), data_are_columns = true) #matrix input xtestvec = collect(-3:0.01:3) ntest = length(xtestvec) #extended domain xtest = DataContainer(reshape(xtestvec, 1, :), data_are_columns = true) ytest_nonoise = ftest(get_data(xtest)) # specify feature distributions # NB we optimize hyperparameter values σ_c in examples/Learn_hyperparameters/1d_to_1d_regression.jl # Such values may change with different ftest and different noise_sd n_features = 400 μ_c = 0.0 pd = constrained_gaussian("xi", μ_c, σ_c, -Inf, Inf) feature_sampler = FeatureSampler(pd, rng = copy(rng)) sff = ScalarFourierFeature(n_features, feature_sampler) pd_snf = constrained_gaussian("xi", μ_c, σ_c_snf, -Inf, Inf) feature_sampler_snf = FeatureSampler(pd_snf, rng = copy(rng)) snf = ScalarNeuronFeature(n_features, feature_sampler_snf) pd_ssf = constrained_gaussian("xi", μ_c, σ_c_ssf, -Inf, Inf) feature_sampler_ssf = FeatureSampler(pd_ssf, rng = copy(rng)) ssf = ScalarFeature(n_features, feature_sampler_ssf, Sigmoid()) #first case without batches lambda = noise_sd^2 rfm = RandomFeatureMethod(sff, regularization = lambda) fitted_features = fit(rfm, io_pairs) decomp = get_feature_factors(fitted_features) @test get_parametric_type(decomp) == Factor @test typeof(get_decomposition(decomp)) <: Cholesky coeffs = get_coeffs(fitted_features) #second case with batching batch_sizes = Dict("train" => 100, "test" => 100, "feature" => 100) rfm_batch = RandomFeatureMethod(sff, batch_sizes = batch_sizes, regularization = lambda) rfm_nothread = RandomFeatureMethod(sff, regularization = lambda, tullio_threading = false) fitted_batched_features = fit(rfm_batch, io_pairs) coeffs_batched = get_coeffs(fitted_batched_features) @test coeffs ≈ coeffs_batched fitted_features_nothread = fit(rfm_nothread, io_pairs) coeffs_nothread = get_coeffs(fitted_features_nothread) @test coeffs ≈ coeffs_nothread # test prediction with different features pred_mean, pred_cov = predict(rfm_batch, fitted_batched_features, xtest) if exp_idx == 1 pmtmp = zeros(size(pred_mean)) # p x n pctmp = zeros(size(pred_cov)) # p x p x n buffer = zeros(size(pctmp, 3), size(pctmp, 1), n_features) # n x p x m predict!(rfm_batch, fitted_batched_features, xtest, pmtmp, pctmp, buffer) @test all(isapprox.(pred_mean, pmtmp, atol = tol)) @test all(isapprox.(pred_cov, pctmp, atol = tol)) end rfm_relu = RandomFeatureMethod(snf, batch_sizes = batch_sizes, regularization = lambda) fitted_relu_features = fit(rfm_relu, io_pairs) pred_mean_relu, pred_cov_relu = predict(rfm_relu, fitted_relu_features, xtest) rfm_sig = RandomFeatureMethod(ssf, batch_sizes = batch_sizes, regularization = lambda) fitted_sig_features = fit(rfm_sig, io_pairs) pred_mean_sig, pred_cov_sig = predict(rfm_sig, fitted_sig_features, xtest) prior_mean, prior_cov = predict_prior(rfm_batch, xtest) # predict inputs from unfitted features prior_mean_relu, prior_cov_relu = predict_prior(rfm_relu, xtest) prior_mean_sig, prior_cov_sig = predict_prior(rfm_sig, xtest) pred_mean_nothread, pred_cov_nothread = predict(rfm_nothread, fitted_features_nothread, xtest, tullio_threading = false) @test all(isapprox.(pred_mean_nothread, pred_mean, atol = tol)) @test all(isapprox.(pred_cov_nothread, pred_cov, atol = tol)) pmr_nothread = similar(pred_mean) pcr_nothread = similar(pred_cov) buffer = zeros(size(pred_cov, 3), size(pred_cov, 1), n_features) # n x p x m predict!( rfm_nothread, fitted_features_nothread, xtest, pmr_nothread, pcr_nothread, buffer, tullio_threading = false, ) @test all(isapprox.(pmr_nothread, pred_mean, atol = tol)) @test all(isapprox.(pcr_nothread, pred_cov, atol = tol)) # enforce positivity prior_cov = max.(0, prior_cov) prior_cov_relu = max.(0, prior_cov_relu) prior_cov_sig = max.(0, prior_cov_sig) pred_cov = max.(0, pred_cov) pred_cov_relu = max.(0, pred_cov_relu) pred_cov_sig = max.(0, pred_cov_sig) # added Plots for these different predictions: if TEST_PLOT_FLAG clrs = map(x -> get(colorschemes[:hawaii], x), [0.25, 0.5, 0.75]) plt = plot( get_data(xtest)', ytest_nonoise', show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( get_data(xtest)', pred_mean', ribbon = [2 * sqrt.(pred_cov[1, 1, :]); 2 * sqrt.(pred_cov[1, 1, :])]', label = "Fourier", color = clrs[1], ) plot!( get_data(xtest)', pred_mean_relu', ribbon = [2 * sqrt.(pred_cov_relu[1, 1, :]); 2 * sqrt.(pred_cov_relu[1, 1, :])]', label = "Relu", color = clrs[2], ) plot!( get_data(xtest)', pred_mean_sig', ribbon = [2 * sqrt.(pred_cov_sig[1, 1, :]); 2 * sqrt.(pred_cov_sig[1, 1, :])]', label = "Sigmoid", color = clrs[3], ) scatter!(x, y, markershape = :x, label = "", color = "black", markersize = 6) savefig(plt, joinpath(@__DIR__, "Fit_and_predict_1D_" * string(exp_range[exp_idx]) * ".pdf")) end priorL2err[exp_idx, :] += [ sqrt(sum((ytest_nonoise - prior_mean) .^ 2)), sqrt(sum((ytest_nonoise - prior_mean_relu) .^ 2)), sqrt(sum((ytest_nonoise - prior_mean_sig) .^ 2)), ] priorweightedL2err[exp_idx, :] += [ sqrt(sum(1 ./ (prior_cov .+ noise_sd^2) .* (ytest_nonoise - prior_mean) .^ 2)), sqrt(sum(1 ./ (prior_cov_relu .+ noise_sd^2) .* (ytest_nonoise - prior_mean_relu) .^ 2)), sqrt(sum(1 ./ (prior_cov_sig .+ noise_sd^2) .* (ytest_nonoise - prior_mean_sig) .^ 2)), ] L2err[exp_idx, :] += [ sqrt(sum((ytest_nonoise - pred_mean) .^ 2)), sqrt(sum((ytest_nonoise - pred_mean_relu) .^ 2)), sqrt(sum((ytest_nonoise - pred_mean_sig) .^ 2)), ] weightedL2err[exp_idx, :] += [ sqrt(sum(1 ./ (pred_cov .+ noise_sd^2) .* (ytest_nonoise - pred_mean) .^ 2)), sqrt(sum(1 ./ (pred_cov_relu .+ noise_sd^2) .* (ytest_nonoise - pred_mean_relu) .^ 2)), sqrt(sum(1 ./ (pred_cov_sig .+ noise_sd^2) .* (ytest_nonoise - pred_mean_sig) .^ 2)), ] end println("Prior for 1d->1d:") println("L2 errors: fourier, neuron, sigmoid") println(priorL2err) #println("weighted L2 errors: fourier, neuron, sigmoid") #println(priorweightedL2err) println("Posterior for 1d->1d, with increasing data:") println("L2 errors: fourier, neuron, sigmoid") println(L2err) @test all([all(L2err[i, :] .< L2err[i - 1, :]) for i in 2:size(L2err, 1)]) ## This test is too brittle for small data #println("weighted L2 errors: fourier, neuron, sigmoid") #println(weightedL2err) #@test all([all(weightedL2err[i,:] .< weightedL2err[i-1,:]) for i=2:size(weightedL2err,1)]) end # testset "Fit and predict" @testset "Fit and predict: d-D -> 1-D" begin rng = StableRNG(seed + 1) input_dim = 6 n_features = 3000 ftest_nd_to_1d(x::AbstractMatrix) = mapslices(column -> exp(-0.1 * norm([i * c for (i, c) in enumerate(column)])^2), x, dims = 1) #problem formulation n_data = 2000 x = rand(rng, MvNormal(zeros(input_dim), I), n_data) noise_sd = 1e-6 lambda = noise_sd^2 noise = rand(rng, Normal(0, noise_sd), (1, n_data)) y = ftest_nd_to_1d(x) + noise io_pairs = PairedDataContainer(x, y) n_test = 500 xtestvec = rand(rng, MvNormal(zeros(input_dim), I), n_test) xtest = DataContainer(xtestvec) ytest_nonoise = ftest_nd_to_1d(get_data(xtest)) # specify features # note the σ_c and sigma values come from `examples/Learn_hyperparameters/nd_to_1d_regression_direct_matchingcov.jl` μ_c = 0.0 σ_c = [ 0.4234088946781989, 0.8049531151024479, 2.0175064410998393, 1.943714718437188, 2.9903379860220314, 3.3332086723624266, ] pd = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(map(sd -> Normal(μ_c, sd), σ_c)), "constraint" => repeat([no_constraint()], input_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, rng = copy(rng)) sff = ScalarFourierFeature(n_features, feature_sampler) #second case with batching batch_sizes = Dict("train" => 500, "test" => 500, "feature" => 500) rfm_batch = RandomFeatureMethod(sff, batch_sizes = batch_sizes, regularization = lambda) fitted_batched_features = fit(rfm_batch, io_pairs) # test prediction with different features prior_mean, prior_cov = predict_prior(rfm_batch, xtest) # predict inputs from unfitted features # test other prior methods. prior_cov2, features_tmp = predict_prior_cov(rfm_batch, xtest) prior_mean2 = predict_prior_mean(rfm_batch, xtest, features_tmp) @test all(isapprox.(prior_cov, prior_cov2, atol = tol)) @test all(isapprox.(prior_mean, prior_mean2, atol = tol)) priorL2err = sqrt(sum((ytest_nonoise - prior_mean) .^ 2)) priorweightedL2err = sqrt(sum(1 ./ (prior_cov .+ noise_sd^2) .* (ytest_nonoise - prior_mean) .^ 2)) println("Prior for nd->1d") println("L2 error: ", priorL2err) #println("weighted L2 error: ", priorweightedL2err) pred_mean, pred_cov = predict(rfm_batch, fitted_batched_features, xtest) # test in-place calculations pmtmp = ones(size(pred_mean)) pctmp = ones(size(pred_cov)) buffer = zeros(size(pctmp, 3), size(pctmp, 1), n_features) # n x p x m predict!(rfm_batch, fitted_batched_features, xtest, pmtmp, pctmp, buffer) @test all(isapprox.(pred_mean, pmtmp, atol = tol)) @test all(isapprox.(pred_cov, pctmp, atol = tol)) L2err = sqrt(sum((ytest_nonoise - pred_mean) .^ 2)) weightedL2err = sqrt(sum(1 ./ (pred_cov .+ noise_sd^2) .* (ytest_nonoise - pred_mean) .^ 2)) println("Posterior for nd->1d") println("L2 error: ", L2err) #println("weighted L2 error: ", weightedL2err) @test L2err < priorL2err #@test weightedL2err < priorweightedL2err if TEST_PLOT_FLAG #plot slice through one dimensions, others fixed to 0 xrange = collect(-3:0.01:3) xslice = zeros(input_dim, length(xrange)) for direction in 1:input_dim xslicenew = copy(xslice) xslicenew[direction, :] = xrange yslice = ftest_nd_to_1d(xslicenew) pred_mean_slice, pred_cov_slice = predict(rfm_batch, fitted_batched_features, DataContainer(xslicenew)) pred_cov_slice[1, 1, :] = max.(pred_cov_slice[1, 1, :], 0.0) plt = plot( xrange, yslice', show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( xrange, pred_mean_slice', ribbon = [2 * sqrt.(pred_cov_slice[1, 1, :]); 2 * sqrt.(pred_cov_slice[1, 1, :])]', label = "Fourier", color = "blue", ) savefig( plt, joinpath(@__DIR__, "Fit_and_predict_d-D_" * string(direction) * "of" * string(input_dim) * ".pdf"), ) end end end @testset "Fit and predict: 1-D -> M-D" begin rng = StableRNG(seed + 2) input_dim = 1 output_dim = 3 n_features = 300 function ftest_1d_to_3d(x::AbstractMatrix) out = zeros(3, size(x, 2)) out[1, :] = mapslices(column -> sin(norm([i * c for (i, c) in enumerate(column)])^2), x, dims = 1) out[2, :] = mapslices(column -> exp(-0.1 * norm([i * c for (i, c) in enumerate(column)])^2), x, dims = 1) out[3, :] = mapslices( column -> norm([i * c for (i, c) in enumerate(column)]) * sin(1 / norm([i * c for (i, c) in enumerate(column)])^2) - 1, x, dims = 1, ) return out end #utility function flat_to_chol(x::AbstractArray) choldim = Int(floor(sqrt(2 * length(x)))) cholmat = zeros(choldim, choldim) for i in 1:choldim for j in 1:i cholmat[i, j] = x[sum(0:(i - 1)) + j] end end return cholmat end #problem formulation n_data = 200 x = rand(rng, MvNormal(zeros(input_dim), I), n_data) # run three sims, one with diagonal noise, one with multivariate using ID reg, one with multivariate using cov reg. # TODO make non-diagonal lambdamat stable for hyperparameter learning. exp_names = ["diagonal", "correlated-lambdaconst", "diagonal-lambdamat", "correlated-lambdamat"] cov_mats = [ Diagonal((5e-2)^2 * ones(output_dim)), convert( Matrix, Tridiagonal((5e-3) * ones(output_dim - 1), (2e-2) * ones(output_dim), (5e-3) * ones(output_dim - 1)), ), Diagonal((5e-2)^2 * ones(output_dim)), convert( Matrix, Tridiagonal((5e-3) * ones(output_dim - 1), (2e-2) * ones(output_dim), (5e-3) * ones(output_dim - 1)), ), ] lambdas = [ exp((1 / output_dim) * sum(log.(eigvals(cov_mats[1])))) * I, #det(C)^{1/m}*I exp((1 / output_dim) * sum(log.(eigvals(cov_mats[2])))) * I, cov_mats[3], cov_mats[4], ] # use learnt hyperparameters from nd_to_md_regression_direct_withcov.jl hps = [ [ 0.4593643339085826, 3.4402666569048286, 0.7969152294959352, 1.6851794464936298, 3.4527613874722656, 5.854154858415093, 2.302845969371132, ], [ 0.5262518700390091, 3.101856977561892, 0.26825394655980433, 0.7441825061473302, 2.82685046470828, 1.6584531227433983, 1.7630307816260378, ], [ 1.0743245054960715, 2.431492517819835, 1.3719239685183025, 2.1201669372745564, 5.5003047613684934, 4.331847045019546, 2.2668423707079453, ], [ 0.3498665262324442, 2.9456636865429298, 0.22302714358146644, 4.1288684250215555, 0.43381960299341393, 5.405698886196184, 0.5746603230965016, ], ] for (cov_mat, lambda, hp, exp_name) in zip(cov_mats, lambdas, hps, exp_names) println(exp_name) U = ones(1, 1) cholV = flat_to_chol(hp[2:(Int(0.5 * output_dim * (output_dim + 1)) + 1)]) V = hp[1] * (cholV * permutedims(cholV, (2, 1)) + hp[1] * I) noise_dist = MvNormal(zeros(output_dim), cov_mat) noise = rand(rng, noise_dist, n_data) y = ftest_1d_to_3d(x) + noise io_pairs = PairedDataContainer(x, y) n_test = 200 # xtestvec = rand(rng, MvNormal(zeros(input_dim), I), n_test) xtestvec = rand(rng, Uniform(-2.01, 2.01), (1, n_test)) xtest = DataContainer(xtestvec) ytest_nonoise = ftest_1d_to_3d(get_data(xtest)) # numbers from examples/hyperparameter_learning/nd_to_md_regression_direct_withcov.jl M = zeros(input_dim, output_dim) dist = MatrixNormal(M, U, V) #produces matrix samples pd = ParameterDistribution( Dict( "distribution" => Parameterized(dist), "constraint" => repeat([no_constraint()], input_dim * output_dim), "name" => "xi", ), ) feature_sampler = FeatureSampler(pd, output_dim, rng = copy(rng)) vff = VectorFourierFeature(n_features, output_dim, feature_sampler) batch_sizes = Dict("train" => 500, "test" => 500, "feature" => 500) rfm_batch = RandomFeatureMethod(vff, batch_sizes = batch_sizes, regularization = lambda) fitted_batched_features = fit(rfm_batch, io_pairs) #quick test for the m>np case (changes the regularization) if exp_name == "diagonal-lambdamat" vff_tmp = VectorFourierFeature(n_test * output_dim + 1, output_dim, feature_sampler) #m > np rfm_tmp = RandomFeatureMethod(vff_tmp, regularization = lambda) # @test_logs (:info,) fit(rfm_tmp, io_pairs) loop vec throws some warning - messing this test up fit_tmp = fit(rfm_tmp, io_pairs) @test fit_tmp.regularization ≈ inv(lambda) # exp(1.0 / output_dim * log(det(lambda))) * I end # test prediction L^2 error of mean prior_mean, prior_cov = predict_prior(rfm_batch, xtest) # predict inputs from unfitted features # 2 x n, 2 x 2 x n priorL2err = sqrt.(sum((ytest_nonoise - prior_mean) .^ 2)) priorweightedL2err = [0.0] for i in 1:n_test diff = reshape(ytest_nonoise[:, i] - prior_mean[:, i], :, 1) priorweightedL2err .+= sum(permutedims(diff, (2, 1)) * inv(prior_cov[:, :, i] + cov_mat) * diff) end priorweightedL2err = sqrt.(priorweightedL2err)[:] println("Prior for 1d->3d") println("L2 error: ", priorL2err) # println("weighted L2 error: ", priorweightedL2err) pred_mean, pred_cov = predict(rfm_batch, fitted_batched_features, xtest) # and other internal methods not called by predict pred_cov_tmp, features_tmp = predictive_cov(rfm_batch, fitted_batched_features, xtest) pred_mean_tmp = predictive_mean(rfm_batch, fitted_batched_features, xtest, features_tmp) @test all(isapprox.(pred_mean, pred_mean_tmp, atol = tol)) @test all(isapprox.(pred_cov, pred_cov_tmp, atol = tol)) if exp_name ∈ ["correlated-lambdaconst", "diagonal-lambdamat"] pmtmp = similar(pred_mean) pctmp = similar(pred_cov) buffer = zeros(size(pctmp, 3), size(pctmp, 1), n_features) # n x p x m predict!(rfm_batch, fitted_batched_features, xtest, pmtmp, pctmp, buffer) @test all(isapprox.(pred_mean, pmtmp, atol = tol)) @test all(isapprox.(pred_cov, pctmp, atol = tol)) # now create features in cov and pass to mean (check these methods) pmtmp2 = similar(pred_mean) pctmp2 = similar(pred_cov) features_tmp = predictive_cov!(rfm_batch, fitted_batched_features, xtest, pctmp2, buffer) predictive_mean!(rfm_batch, fitted_batched_features, xtest, pmtmp2, features_tmp) @test all(isapprox.(pred_mean, pmtmp2, atol = tol)) @test all(isapprox.(pred_cov, pctmp2, atol = tol)) end # no threading if exp_name ∈ ["correlated-lambdamat", "diagonal-lambdamat"] rfm_nothread = RandomFeatureMethod(vff, regularization = lambda, tullio_threading = false) fitted_features_nothread = fit(rfm_nothread, io_pairs) coeffs = get_coeffs(fitted_batched_features) coeffs_nothread = get_coeffs(fitted_features_nothread) @test coeffs ≈ coeffs_nothread # it appears there is a significant difference in the linear algebra with and without threads here. tol_tmp = 1e-10 prior_mean_nothread, prior_cov_nothread = predict_prior(rfm_nothread, xtest, tullio_threading = false) # predict inputs from unfitted features @test all(isapprox.(prior_mean_nothread, prior_mean, atol = tol_tmp)) @test all(isapprox.(prior_cov_nothread, prior_cov, atol = tol_tmp)) pred_mean_nothread, pred_cov_nothread = predict(rfm_nothread, fitted_features_nothread, xtest, tullio_threading = false) @test all(isapprox.(pred_mean_nothread, pred_mean, atol = tol_tmp)) @test all(isapprox.(pred_cov_nothread, pred_cov, atol = tol_tmp)) pmr_nothread = similar(pred_mean) pcr_nothread = similar(pred_cov) buffer = zeros(size(pred_cov, 3), size(pred_cov, 1), n_features) # n x p x m predict!( rfm_nothread, fitted_features_nothread, xtest, pmr_nothread, pcr_nothread, buffer, tullio_threading = false, ) @test all(isapprox.(pmr_nothread, pred_mean, atol = tol_tmp)) @test all(isapprox.(pcr_nothread, pred_cov, atol = tol_tmp)) end #println(pred_mean) L2err = sqrt.(sum((ytest_nonoise - pred_mean) .^ 2)) weightedL2err = [0.0] #for i in 1:n_test # diff = reshape(ytest_nonoise[:, i] - pred_mean[:, i], :, 1) # weightedL2err .+= sum(permutedims(diff, (2, 1)) * inv(pred_cov[:, :, i] + cov_mat) * diff) #end #weightedL2err = sqrt.(weightedL2err)[:] println("Posterior for 1d->3d") println("L2 error: ", L2err) #println("weighted L2 error: ", weightedL2err) @test L2err < priorL2err #@test weightedL2err < priorweightedL2err if TEST_PLOT_FLAG # learning on Normal(0,1) dist, forecast on (-2.01,2.01) xrange = reshape(collect(-2.01:0.02:2.01), 1, :) yrange = ftest_1d_to_3d(xrange) pred_mean_slice, pred_cov_slice = predict(rfm_batch, fitted_batched_features, DataContainer(xrange)) for i in 1:output_dim pred_cov_slice[i, i, :] = max.(pred_cov_slice[i, i, :], 0.0) end #plot diagonal xplot = xrange[:] plt = plot( xplot, yrange[1, :], show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( xplot, yrange[2, :], show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) plot!( xplot, yrange[3, :], show = false, color = "black", linewidth = 5, size = (600, 600), legend = :topleft, label = "Target", ) scatter!(x[:], y[1, :], color = "blue", label = "", marker = :x) plot!( xplot, pred_mean_slice[1, :], ribbon = [2 * sqrt.(pred_cov_slice[1, 1, :]); 2 * sqrt.(pred_cov_slice[1, 1, :])], label = "Fourier", color = "blue", ) scatter!(x[:], y[2, :], color = "red", label = "", marker = :x) plot!( xplot, pred_mean_slice[2, :], ribbon = [2 * sqrt.(pred_cov_slice[2, 2, :]); 2 * sqrt.(pred_cov_slice[2, 2, :])], label = "Fourier", color = "red", ) scatter!(x[:], y[3, :], color = "green", label = "", marker = :x) plot!( xplot, pred_mean_slice[3, :], ribbon = [2 * sqrt.(pred_cov_slice[3, 3, :]); 2 * sqrt.(pred_cov_slice[3, 3, :])], label = "Fourier", color = "green", ) savefig(plt, joinpath(@__DIR__, "Fit_and_predict_1D_to_3D_" * exp_name * ".pdf")) end end end end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
3798
using Test using Distributions using StableRNGs using StatsBase using LinearAlgebra using Random using RandomFeatures.ParameterDistributions using RandomFeatures.Samplers seed = 2022 @testset "Samplers" begin # create a Gaussian(0,4) distribution with EKP's ParameterDistribution constructors μ_c = -4.0 σ_c = 1.0 pd = constrained_gaussian("xi", μ_c, σ_c, -Inf, 0.0) #1d output space fsampler = FeatureSampler(pd) # takes a uniform with shift as the bias unif_pd = ParameterDistribution( Dict("distribution" => Parameterized(Uniform(0, 2 * π)), "constraint" => no_constraint(), "name" => "bias"), ) fsamplerbias = FeatureSampler(pd, unif_pd)#provide bias distribution explicitly full_pd = combine_distributions([pd, unif_pd]) @test get_parameter_distribution(fsampler) == full_pd @test get_parameter_distribution(fsamplerbias) == full_pd #5d input - 3d output-space output_dim = 3 pd_3d = constrained_gaussian("xi", μ_c, σ_c, -Inf, 0.0, repeats = 5) fsampler_3d = FeatureSampler(pd_3d, output_dim) # 3d output space unif_pd_3d = ParameterDistribution( Dict( "distribution" => VectorOfParameterized(repeat([Uniform(0, 2 * π)], output_dim)), "constraint" => repeat([no_constraint()], output_dim), "name" => "bias", ), ) fsamplerbias_3d = FeatureSampler(pd_3d, unif_pd_3d)#provide bias distribution explicitly full_pd_3d = combine_distributions([pd_3d, unif_pd_3d]) @test get_parameter_distribution(fsampler_3d) == full_pd_3d @test get_parameter_distribution(fsamplerbias_3d) == full_pd_3d # and other option for settings no_bias = nothing sampler_no_bias = FeatureSampler(pd, no_bias) @test pd == get_parameter_distribution(sampler_no_bias) # test method: sample function sample_to_Sample(pd::ParameterDistribution, samp::AbstractMatrix) constrained_samp = transform_unconstrained_to_constrained(pd, samp) #now create a Samples-type distribution from the samples s_names = get_name(pd) s_slices = batch(pd) # e.g., [1, 2:3, 4:9] s_samples = [Samples(constrained_samp[slice, :]) for slice in s_slices] s_constraints = [repeat([no_constraint()], size(slice, 1)) for slice in s_slices] return combine_distributions([ ParameterDistribution(ss, sc, sn) for (ss, sc, sn) in zip(s_samples, s_constraints, s_names) ]) end # first with global rng Random.seed!(seed) sample1 = sample(fsampler) # produces a Samples ParameterDistribution Random.seed!(seed) @test sample1 == sample_to_Sample(full_pd, sample(full_pd)) n_samples = 40 Random.seed!(seed) sample2 = sample(fsampler, n_samples) Random.seed!(seed) @test sample2 == sample_to_Sample(full_pd, sample(full_pd, n_samples)) # now with two explicit rng's rng1 = Random.MersenneTwister(seed) sampler_rng1 = FeatureSampler(pd, rng = copy(rng1)) @test get_rng(sampler_rng1) == copy(rng1) sample3 = sample(sampler_rng1) @test !(get_rng(sampler_rng1) == copy(rng1)) @test sample3 == sample_to_Sample(full_pd, sample(copy(rng1), full_pd, 1)) sampler_rng1 = FeatureSampler(pd, rng = copy(rng1)) sample4 = sample(sampler_rng1, n_samples) @test sample4 == sample_to_Sample(full_pd, sample(copy(rng1), full_pd, n_samples)) #this time override use rng2 to override the default Random.GLOBAL_RNG at the point of sampling rng2 = StableRNG(seed) sample5 = sample(copy(rng2), fsampler) sample5 == sample_to_Sample(full_pd, sample(copy(rng2), full_pd, 1)) sample6 = sample(copy(rng2), fsampler, n_samples) @test sample6 == sample_to_Sample(full_pd, sample(copy(rng2), full_pd, n_samples)) end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
code
2596
using Test #using Distributions #using StableRNGs #using StatsBase using LinearAlgebra #using Random using RandomFeatures.Utilities @testset "Utilities" begin # batch generator x = [i + j for i in 1:10, j in 1:234] batch_size = 10 x1 = batch_generator(x, batch_size) #default dims=1 @test length(x1) == Int(ceil(size(x, 1) / batch_size)) @test x1[1] == x x2 = batch_generator(x, 10, dims = 2) @test length(x2) == Int(ceil(size(x, 2) / batch_size)) for i in 1:length(x2) @test x2[i] == ( i < length(x2) ? x[:, ((i - 1) * batch_size + 1):(i * batch_size)] : x[:, ((i - 1) * batch_size + 1):end] ) end x3 = batch_generator(x, 0) #default dims=1 @test length(x3) == 1 @test x3[1] == x # Decomposition - only pinv, chol and svd available M = 30 x = [i + j for i in 1:M, j in 1:M] x = 1 ./ (x + x') + 1e-3 * I # internally RHS are stored with three indices. # (n_samples, output_dim, n_features) b = ones(1, 1, M) xsolve = zeros(size(b)) xsolve[1, 1, :] = x \ b[1, 1, :] xsvd = Decomposition(x, "svd") @test get_decomposition(xsvd) == svd(x) @test get_parametric_type(xsvd) == Factor @test get_full_matrix(xsvd) == x @test get_inv_decomposition(xsvd) ≈ inv(svd(x)) xpinv = Decomposition(x, "pinv") @test isposdef(x) xchol = Decomposition(x, "cholesky") @test_throws ArgumentError Decomposition(x, "qr") xbad = [1.0 1.0; 1.0 0.0] # not pos def xbadchol = Decomposition(xbad, "cholesky") @test isposdef(get_full_matrix(xbadchol)) xsvdsolve = linear_solve(xsvd, b) xcholsolve = linear_solve(xchol, b) xpinvsolve = linear_solve(xpinv, b) @test xsvdsolve ≈ xsolve @test xcholsolve ≈ xsolve @test xpinvsolve ≈ xsolve xsvdvecsolve = linear_solve(xsvd, vec(b)) xcholvecsolve = linear_solve(xchol, vec(b)) xpinvvecsolve = linear_solve(xpinv, vec(b)) @test xsvdvecsolve ≈ vec(xsolve) @test xcholvecsolve ≈ vec(xsolve) @test xpinvvecsolve ≈ vec(xsolve) y = Float64[x for i in 1:M, x in 1:M] ypinv = Decomposition(y, "pinv") @test get_decomposition(ypinv) == pinv(y) @test get_parametric_type(ypinv) == PseInv @test get_full_matrix(ypinv) == y # to show pinv gets the right solution in a singular problem @test_throws SingularException y \ b[1, 1, :] ysolve = zeros(size(b)) ysolve[1, 1, :] = pinv(y) * b[1, 1, :] @test linear_solve(ypinv, b) ≈ ysolve ysolvevec = pinv(y) * vec(b) @test linear_solve(ypinv, vec(b)) ≈ ysolvevec end
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
1588
# RandomFeatures.jl RandomFeatures is a Julia implementation of random features for high-dimensional function emulation. It builds on an earlier Python implementation by Nick Nelsen, Maya Mutic, and Oliver Dunbar ([RandomFeatureKernel](https://github.com/odunbar/RandomFeatureKernel)). | **Documentation** | [![dev][docs-latest-img]][docs-latest-url] | |----------------------|--------------------------------------------------| | **DOI** | [![DOI][zenodo-img]][zenodo-latest-url] | | **Docs Build** | [![docs build][docs-bld-img]][docs-bld-url] | | **Unit tests** | [![unit tests][unit-tests-img]][unit-tests-url] | | **Code Coverage** | [![codecov][codecov-img]][codecov-url] | [zenodo-img]: https://zenodo.org/badge/523830850.svg [zenodo-latest-url]: https://zenodo.org/badge/latestdoi/523830850 [docs-latest-img]: https://img.shields.io/badge/docs-latest-blue.svg [docs-latest-url]: https://CliMA.github.io/RandomFeatures.jl/dev/ [docs-bld-img]: https://github.com/CliMA/RandomFeatures.jl/actions/workflows/Docs.yml/badge.svg?branch=main [docs-bld-url]: https://github.com/CliMA/RandomFeatures.jl/actions/workflows/Docs.yml [unit-tests-img]: https://github.com/CliMA/RandomFeatures.jl/actions/workflows/Tests.yml/badge.svg?branch=main [unit-tests-url]: https://github.com/CliMA/RandomFeatures.jl/actions/workflows/Tests.yml [codecov-img]: https://codecov.io/gh/CliMA/RandomFeatures.jl/branch/main/graph/badge.svg [codecov-url]: https://codecov.io/gh/CliMA/RandomFeatures.jl ### Requirements Julia version 1.6+
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
6505
# Contributing Thank you for considering contributing to `RandomFeatures`! We encourage opening issues and pull requests (PRs). ## What to contribute? - The easiest way to contribute is by using `RandomFeatures`, identifying problems and opening issues; - You can try to tackle an existing [issue](https://github.com/CliMA/RandomFeatures.jl/issues). It is best to outline your proposed solution in the issue thread before implementing it in a PR; - Write an example or tutorial. It is likely that other users may find your use of `RandomFeatures` insightful; - Improve documentation or comments if you found something hard to use; - Implement a new feature if you need it. We strongly encourage opening an issue to make sure the administrators are on board before opening a PR with an unsolicited feature addition. ## Using `git` If you are unfamiliar with `git` and version control, the following guides will be helpful: - [Atlassian (bitbucket) `git` tutorials](https://www.atlassian.com/git/tutorials). A set of tips and tricks for getting started with `git`. - [GitHub's `git` tutorials](https://try.github.io/). A set of resources from GitHub to learn `git`. ### Forks and branches Create your own fork of `RandomFeatures` [on GitHub](https://github.com/CliMA/RandomFeatures.jl) and check out your copy: ``` $ git clone https://github.com/<your-username>/RandomFeatures.jl.git $ cd RandomFeatures.jl ``` Now you have access to your fork of `RandomFeatures` through `origin`. Create a branch for your feature; this will hold your contribution: ``` $ git checkout -b <branchname> ``` #### Some useful tips - When you start working on a new feature branch, make sure you start from main by running: `git checkout main` and `git pull`. - Create a new branch from main by using `git checkout -b <branchname>`. ### Develop your feature Make sure you add tests for your code in `test/` and appropriate documentation in the code and/or in `docs/`. Before committing your changes, you can verify their behavior by running the tests, the examples, and building the documentation [locally](https://clima.github.io/RandomFeatures.jl/previews/PR157/installation_instructions/). In addition, make sure your feature follows the formatting guidelines by running ``` julia --project=.dev .dev/climaformat.jl . ``` from the `RandomFeatures.jl` directory. ### Squash and rebase When your PR is ready for review, clean up your commit history by squashing and make sure your code is current with `RandomFeatures.jl` main by rebasing. The general rule is that a PR should contain a single commit with a descriptive message. To make sure you are up to date with main, you can use the following workflow: ``` $ git checkout main $ git pull $ git checkout <name_of_local_branch> $ git rebase main ``` This may create conflicts with the local branch. The conflicted files will be outlined by git. To resolve conflicts, we have to manually edit the files (e.g. with vim). The conflicts will appear between >>>>, ===== and <<<<<. We need to delete these lines and pick what version we want to keep. To squash your commits, you can use the following command: ``` $ git rebase -i HEAD~n ``` where `n` is the number of commits you need to squash into one. Then, follow the instructions in the terminal. For example, to squash 4 commits: ``` $ git rebase -i HEAD~4 ``` will open the following file in (typically) vim: ``` pick 01d1124 <commit message 1> pick 6340aaa <commit message 2> pick ebfd367 <commit message 3> pick 30e0ccb <commit message 4> # Rebase 60709da..30e0ccb onto 60709da # # Commands: # p, pick = use commit # e, edit = use commit, but stop for amending # s, squash = use commit, but meld into previous commit # # If you remove a line here THAT COMMIT WILL BE LOST. # However, if you remove everything, the rebase will be aborted. ## ``` We want to keep the first commit and squash the last 3. We do so by changing the last three commits to `squash` and then do `:wq` on vim. ``` pick 01d1124 <commit message 1> squash 6340aaa <commit message 2> squash ebfd367 <commit message 3> squash 30e0ccb <commit message 4> # Rebase 60709da..30e0ccb onto 60709da # # Commands: # p, pick = use commit # e, edit = use commit, but stop for amending # s, squash = use commit, but meld into previous commit # # If you remove a line here THAT COMMIT WILL BE LOST. # However, if you remove everything, the rebase will be aborted. ``` Then in the next screen that appears, we can just delete all messages that we do not want to show in the commit. After this is done and we are back to the console, we have to force push. We need to force push because we rewrote the local commit history. ``` $ git push -u origin <name_of_local_branch> --force ``` You can find more information about squashing [here](https://github.com/edx/edx-platform/wiki/How-to-Rebase-a-Pull-Request#squash-your-changes). ### Unit testing Currently a number of checks are run per commit for a given PR. - `JuliaFormatter` checks if the PR is formatted with `.dev/climaformat.jl`. - `Documentation` rebuilds the documentation for the PR and checks if the docs are consistent and generate valid output. - `Unit Tests` run subsets of the unit tests defined in `tests/`, using `Pkg.test()`. The tests are run in parallel to ensure that they finish in a reasonable time. The tests only run the latest commit for a PR, branch and will kill any stale jobs on push. These tests are only run on linux (Ubuntu LTS). Unit tests are run against every new commit for a given PR, the status of the unit-tests are not checked during the merge process but act as a sanity check for developers and reviewers. Depending on the content changed in the PR, some CI checks that are not necessary will be skipped. For example doc only changes do not require the unit tests to be run. ### The merge process We use [`bors`](https://bors.tech/) to manage merging PR's in the the `RandomFeatures` repo. If you're a collaborator and have the necessary permissions, you can type `bors try` in a comment on a PR to have integration test suite run on that PR, or `bors r+` to try and merge the code. Bors ensures that all integration tests for a given PR always pass before merging into `main`. The integration tests currently run example cases in `examples/`. Any breaking changes will need to also update the `examples/`, else bors will fail.
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
1507
# RandomFeatures A julia package to construct and apply random feature methods for regression. RandomFeatures can be viewed as an approximation of kernel methods. They can be used both as a substitution in Kernel ridge regression and Gaussian Process regresison. Module | Purpose ---------------|----------------------------------------------------------------------------------------- RandomFeatures | Container of all tools Samplers | Samplers for constrained probability distributions Features | Builds feature functions from input data Methods | Fits features to output data, and prediction on new inputs Utilities | Utilities to aid batching, and matrix decompositions ## Highlights - A flexible probability distribution backend with which to sample features, with a comprehensive API - A library of modular scalar functions to choose from - Methods for solving ridge regression or Gaussian Process regression problem, with functions for producing predictive means and (co)variances using fitted features. - Examples that demonstrate using the package `EnsembleKalmanProcesses.jl` to optimize hyperparameters of the probability distribution. ## Authors `RandomFeatures.jl` is being developed by the [Climate Modeling Alliance](https://clima.caltech.edu). The main developers are Oliver R. A. Dunbar and Thomas Jackson, with acknowledgement that the code was based on a python repository developed by Oliver R. A. Dunbar, Maya Mutic, and Nicholas H. Nelsen.
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
2440
# Installation RandomFeatures.jl is a not a registered Julia package. To install perform the following in the `julia` command prompt ```julia julia> ] (v1.8) pkg> add https://github.com/CliMA/RandomFeatures.jl (v1.8) pkg> instantiate ``` This will install the latest version of the package Git repository You can run the tests via the package manager by: ```julia julia> ] (v1.8) pkg> test RandomFeatures ``` ### Cloning the repository If you are interested in getting your hands dirty and modifying the code then, you can also clone the repository and then instantiate, e.g., ``` > cd RandomFeatures.jl > julia --project -e 'using Pkg; Pkg.instantiate()' ``` !!! info "Do I need to clone the repository?" Most times, cloning the repository in not necessary. If you only want to use the package's functionality, adding the packages as a dependency on your project is enough. ### [Running the test suite](@id test-suite) You can run the package's tests: ``` > julia --project -e 'using Pkg; Pkg.test()' ``` Alternatively, you can do this from within the repository: ``` > julia --project julia> ] (RandomFeatures) pkg> test ``` !!! note "Plot outputs" Tests will output plots by setting the environment variable `TEST_PLOT_FLAG`. For example, ``` julia> ENV["TEST_PLOT_FLAG"] = true ``` ### Building the documentation locally Once the project is built, you can build the project documentation under the `docs/` sub-project: ``` > julia --project=docs/ -e 'using Pkg; Pkg.develop(PackageSpec(path=pwd())); Pkg.instantiate()' > julia --project=docs/ docs/make.jl ``` The locally rendered HTML documentation can be viewed at `docs/build/index.html` ### Running repository examples We have a selection of examples, found within the `examples/` directory to demonstrate different use of our toolbox. Each example directory contains a `Project.toml` To build with the latest `RandomFeatures.jl` release: ``` > cd examples/example-name/ > julia --project -e 'using Pkg; Pkg.instantiate()' > julia --project example-file-name.jl ``` If you wish to run a local modified version of `RandomFeatures.jl` then try the following (starting from the `RandomFeatures.jl` package root) ``` > cd examples/example-name/ > julia --project > julia> ] > (example-name)> rm RandomFeatures.jl > (example-name)> dev ../.. > (example-name)> instantiate ``` followed by ``` > julia --project example-file-name.jl ```
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
2934
# Explicit bottlenecks ### Explicit bottlenecks - By far the highest computational demand for high-dimensional and/or large data systems is the building of the system matrix, particularly the multiplication ``\Phi^T\Phi`` (for scalar) and ``\Phi_{n,i,m}\Phi_{n,j,m}``. These can be accelerated by multithreading (see below) - For large number of features, the inversion `inv(factorization(system_matrix))` is noticeable, though typically still small when in the regime of `n_features << n_samples * output_dim`. - For the vector case, the square output-dimensional regularization matrix ``\Lambda`` must be inverted. For high-dimensional spaces, diagonal approximation will avoid this. - Prediction bottlenecks are largely due to allocations and matrix multiplications. Please see our `predict!()` methods which allow for users to pass in preallocated of arrays. This is very beneficial for repeated predictions. - For systems without enough regularization, positive definiteness may need to be enforced. If done too often, it has non-negligible cost, as it involves calculating eigenvalues of the non p.d. matrix (particularly `abs(min(eigval)`) that is then added to the diagonal. It is better to add more regularization into ``\Lambda`` ### Implicit bottlenecks - The optimization of hyperparameters is a costly operation that may require construction and evaluation of thousands of `RandomFeatureMethod`s. The dimensionality (i.e. complexity) of this task will depend on how many free parameters are taken to be within a distribution though. ``\mathcal{O}(1000s)`` parameters may take even hours to optimize (on multiple threads). # Parallelism/memory - We make use of [`Tullio.jl`](https://github.com/mcabbott/Tullio.jl) which comes with in-built memory management. We are phasing out our own batches in favour of using this for now. - [`Tullio.jl`](https://github.com/mcabbott/Tullio.jl) comes with multithreading routines, Simply call the code with `julia --project -t n_threads` to take advantage of this. Depending on problem size you may wish to use your own external threading, Tullio will greedily steal threads in this case. To prevent this interference we provide a keyword argument: ```julia RandomFeatureMethod(... ; tullio_threading=false) # serial threading during the build and fit! methods predict(...; tullio_threading=false) # serial threading for prediction predict!(...; tullio_threading=false) # serial threading for in-place prediction ``` An example where `tullio_threading=false` is useful is when optimizing hyperparameters with ensemble methods (see our examples), here one could use threading/multiprocessing approaches across ensemble members to make better use of the embarassingly parallel framework (e.g. see this page for [EnsembleKalmanProcessess: Parallelism and HPC](https://clima.github.io/EnsembleKalmanProcesses.jl/dev/parallel_hpc/). !!! note We do not yet have GPU functionality
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
7190
# Setting up a Scalar Random Feature Method A basic creation of sigmoid-based scalar-valued random feature method is given as follows ```julia # user inputs required: # paired input-output data - io_pairs::PairedDataContainer # parameter distribution - pd::ParameterDistribution # number of features - n_features::Int feature_sampler = FeatureSampler(pd) sigmoid_sf = ScalarFeature(n_features, feature_sampler, Sigmoid()) rfm = RandomFeatureMethod(sigmoid_sf) fitted_features = fit(rfm, io_pairs) ``` Prediction at new inputs are made with ``` julia # user inputs required # new test inputs - i_test::DataContainer predicted_mean, predicted_var = predict(rfm, fitted_features, i_test) ``` We see the core objects - [`ParameterDistribution`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable/parameter_distributions/): a flexible container for constructing constrained parameter distributions, (from [`EnsembleKalmanProcesses.jl`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable/)) - [`(Paired)DataContainer`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable/internal_data_representation): consistent storage objects for input-output pairs or just inputs, (from [`EnsembleKalmanProcesses.jl`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable)) - `FeatureSampler`: Builds the random feature distributions from a parameter distribution - `ScalarFeature`: Builds a feature from the random feature distributions - `RandomFeatureMethod`: Sets up the learning problem (with e.g. batching, regularization) - `Fit`: Stores fitted features from the `fit` method !!! note "See some examples!" Running the [test suite](@ref test-suite) with `TEST_PLOT_FLAG = true` will produce some ``1``-D``\to 1``-D and ``d``-D ``\to 1``-D example fits produced by [`test/Methods/runtests.jl`](https://github.com/CliMA/RandomFeatures.jl/tree/main/test/Methods). These use realistic optional arguments and distributions. ## `ParameterDistributions` The simplest construction of parameter distributions is by using the `constrained_gaussian` construction. ```julia using RandomFeatures.ParameterDistributions ``` #### **Recommended** univariate and product distribution build The easiest constructors are for univariate and products ```julia # constrained_gaussian("xi", desired_mean, desired_std, lower_bound, upper_bound) one_dim_pd = constrained_gaussian("xi", 10, 5, -Inf, Inf) # Normal distribution five_dim_pd = constrained_gaussian("xi", 10, 5, 0, Inf, repeats = 5) # Log-normal (approx mean 10 & approx std 5) in each of the five dimensions ``` #### Simple multivariate distribution Simple unconstrained distribution is created as follows. ```julia using Distributions μ = zeros(3) Σ = SymTridiagonal(2 * ones(3), ones(2)) three_dim_pd = ParameterDistribution( Dict("distribution" => Parameterized(MvNormal(μ,Σ)), # the distribution "constraint" => repeat([no_constraint()],3), # constraints "name" => "xi", ), ) ``` !!! note " xi? " The name of the distribution of the features **must** be `"xi"` !!! note "Further distributions" Combined distributions can be made using the `VectorOfParameterized`, or histogram-based distributions with `Samples`. Extensive documentation of distributions and constraints is found [here](https://clima.github.io/EnsembleKalmanProcesses.jl/stable/parameter_distributions/). ## `Sampler` The random feature distribution ``\mathcal{D}`` is built of two distributions, the user-provided ``\mathcal{D}_\xi`` (`"xi"`) and a bias distribution (`"bias"`). The bias distribution is one-dimensional, and commonly uniformly distributed, so we provide an additional constructor for this case ```math \theta = (\xi,b) \sim \mathcal{D} = (\mathcal{D}_\xi, \mathcal{U}([c_\ell,c_u])) ``` Defaults ``c_\ell = 0, c_u = 2\pi``. In the code this is built as ```julia sampler = FeatureSampler( parameter_distribution; uniform_shift_bounds = [0, 2 * π], rng = Random.GLOBAL_RNG ) ``` A random number generator can be provided. The second argument can be replaced with a general ``1``-D `ParameterDistribution` with a name-field `"bias"`. ## Features: `ScalarFeature` ``d``-D ``\to 1``-D Given ``x\in\mathbb{R}^n`` input data, and ``m`` (`n_features`) features, `Features` produces samples of ```math \Phi(x;\theta_j) = \sigma f(\xi_j\cdot x + b_j),\qquad \theta_j=(\xi_j,b_j) \sim \mathcal{D}\qquad \mathrm{for}\ j=1,\dots,m ``` Note that ``\Phi \in \mathbb{R}^{n,m,p}``. Choosing``f`` as a cosine to produce fourier features ```julia sf = ScalarFourierFeature( n_features, sampler; kwargs... ) ``` ``f`` as a neuron activation produces a neuron feature (`ScalarActivation` listed [here](@ref scalar-functions)) ```julia sf = ScalarNeuronFeature( n_features, sampler; activation_fun = Relu(), kwargs... ) ``` The keyword `feature_parameters = Dict("sigma" => a)`, can be included to set the value of ``\sigma``. ## Method The `RandomFeatureMethod` sets up the training problem to learn coefficients ``\beta\in\mathbb{R}^m`` from input-output training data ``(x,y)=\{(x_i,y_i)\}_{i=1}^n``, ``y_i \in \mathbb{R}`` and parameters ``\theta = \{\theta_j\}_{j=1}^m``: ```math (\frac{1}{\lambda m}\Phi^T(x;\theta) \Phi(x;\theta) + I) \beta = \frac{1}{\lambda}\Phi^T(x;\theta)y ``` Where ``\lambda>0`` is a regularization parameter that effects the `+I`. The equation is written in this way to be consistent with the vector-output case. ```julia rfm = RandomFeatureMethod( sf; regularization = 1e12 * eps() * I, batch_sizes = ("train" => 0, "test" => 0, "feature" => 0), ) ``` One can select batch sizes to balance the space-time (memory-process) trade-off. when building and solving equations by setting values of `"train"`, test data `"test"` and number of features `"feature"`. The default is no batching (`0`). !!! warning "Conditioning" The problem is ill-conditioned without regularization. If you encounters a Singular or Positive-definite exceptions, try increasing `regularization` The solve for ``\beta`` occurs in the `fit` method. In the `Fit` object we store the system matrix, its factorization, and the inverse of the factorization. For many applications this is most efficient representation, as predictions (particularly of the covariance) are then only a matrix multiplication. ```julia fitted_features = fit( rfm, io_pairs; # (x,y) decomposition = "cholesky", ) ``` The decomposition is based off the [`LinearAlgebra.Factorize`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#man-linalg-factorizations) functions. For performance we have implemented only ("cholesky", "svd", and for ``\Lambda=0`` (not recommended) the method defaults to "pinv") ## Hyperparameters [Coming soon] !!! note Hyperparameter selection is very important for a good random feature fit. The hyperparameters are the parameters appearing in the random feature distribution ``\mathcal{D}``. We have an examples where an ensemble-based algorithm is used to optimize such parameters in [`examples/Learn_hyperparameters/`](https://github.com/CliMA/RandomFeatures.jl/tree/main/examples/Learn_hyperparameters)
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
7623
# Setting up a Vector Random Feature Method A basic creation of vector-valued Fourier-based random feature method is given as: ```julia # user inputs required: # paired input-output data - io_pairs::PairedDataContainer # parameter distribution - pd::ParameterDistribution # number of features - n_features::Int feature_sampler = FeatureSampler(pd) fourier_vf = VectorFourierFeature(n_features, feature_sampler) rfm = RandomFeatureMethod(fourier_vf) fitted_features = fit(rfm, io_pairs) ``` Prediction at new inputs are made with ``` julia # user inputs required # new test inputs - i_test::DataContainer predicted_mean, predicted_cov = predict(rfm, fitted_features, i_test) ``` We see the core objects - [`ParameterDistribution`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable/parameter_distributions/): a flexible container for constructing constrained parameter distributions, (from [`EnsembleKalmanProcesses.jl`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable/)) - [`(Paired)DataContainer`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable/internal_data_representation): consistent storage objects for input-output pairs or just inputs, (from [`EnsembleKalmanProcesses.jl`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable)) - `FeatureSampler`: Builds the random feature distributions from a parameter distribution - `VectorFourierFeature`: Special constructor of a Cosine-based `VectorFeature` from the random feature distributions - `RandomFeatureMethod`: Sets up the learning problem (with e.g. batching, regularization) - `Fit`: Stores fitted features from the `fit` method !!! note "See some examples!" Running the [test suite](@ref test-suite) with `TEST_PLOT_FLAG = true` produces a ``1``-D``\to p``-D example produced by [`test/Methods/runtests.jl`](https://github.com/CliMA/RandomFeatures.jl/tree/main/test/Methods). These use realistic optional arguments and distributions. ## `ParameterDistributions` The simplest construction of parameter distributions is by using the `constrained_gaussian` construction. ```julia using RandomFeatures.ParameterDistributions ``` #### **Recommended** univariate and product distribution build The easiest constructors are for univariate and products ```julia # constrained_gaussian("xi", desired_mean, desired_std, lower_bound, upper_bound) one_dim_pd = constrained_gaussian("xi", 10, 5, -Inf, Inf) # Normal distribution five_dim_pd = constrained_gaussian("xi", 10, 5, 0, Inf, repeats = 5) # Log-normal (approx mean 10 & approx std 5) in each of the five dimensions ``` #### Simple matrixvariate distribution Simple unconstrained distribution is created as follows. ```julia using Distributions d = 2 p = 5 M = zeros(d,p) U = Diagonal(ones(d)) V = SymTridiagonal(2 * ones(p), ones(p - 1)) two_by_five_dim_pd = ParameterDistribution( Dict("distribution" => Parameterized(MatrixNormal(M, U, V)), # the distribution "constraint" => repeat([no_constraint()], d * p), # flattened constraints "name" => "xi", ), ) ``` !!! note " xi? " The name of the distribution of the features **must** be `"xi"` !!! note "Further distributions" Combined distributions can be made using the `VectorOfParameterized`, or histogram-based distributions with `Samples`. Extensive documentation of distributions and constraints is found [`here`](https://clima.github.io/EnsembleKalmanProcesses.jl/stable/parameter_distributions/). ## `Sampler` The random feature distribution ``\mathcal{D}`` is built of two distributions, the user-provided ``\mathcal{D}_\Xi`` (`"xi"`) and a bias distribution (`"bias"`). The bias distribution is p-dimensional, and commonly uniformly distributed, so we provide an additional constructor for this case ```math \theta = (\Xi,B) \sim \mathcal{D} = (\mathcal{D}_\Xi, \mathcal{U}([c_\ell,c_u]^p)) ``` Defaults ``c_\ell = 0, c_u = 2\pi``. In the code this is built as ```julia sampler = FeatureSampler( parameter_distribution, output_dim; uniform_shift_bounds = [0,2*π], rng = Random.GLOBAL_RNG ) ``` A random number generator can be provided. The second argument can be replaced with a general ``p``-D `ParameterDistribution` with a name-field `"bias"`. ## Features: `VectorFeature` ``d``-D ``\to p``-D Given ``x\in\mathbb{R}^n`` input data, and ``m`` features, `Features` produces samples of ```math (\Phi(x;\theta_j))_\ell = (\sigma f(\Xi_j x + B_j))_\ell,\qquad \theta_j=(\Xi_j,B_j) \sim \mathcal{D}\qquad \mathrm{for}\ j=1,\dots,m \ \text{and} \ \ell=1,\dots,p. ``` Note that ``\Phi \in \mathbb{R}^{n,m,p}``. Choosing ``f`` as a cosine produces fourier features ```julia vf = VectorFourierFeature( n_features, output_dim, sampler; kwargs... ) ``` ``f`` as a neuron activation produces a neuron feature (`ScalarActivation` listed [here](@ref scalar-functions)) ```julia vf = VectorNeuronFeature( n_features, output_dim, sampler; activation_fun = Relu(), kwargs... ) ``` The keyword `feature_parameters = Dict("sigma" => a)`, can be included to set the value of ``\sigma``. ## Method The `RandomFeatureMethod` sets up the training problem to learn coefficients ``\beta\in\mathbb{R}^m`` from input-output training data ``(x,y)=\{(x_i,y_i)\}_{i=1}^n``, ``y_i \in \mathbb{R}^p`` and parameters ``\theta = \{\theta_j\}_{j=1}^m``. Regularization is provided through ``\Lambda``, a user-provided `p-by-p` positive-definite regularization matrix (or scaled identity). In Einstein summation notation the method solves the following system ```math (\frac{1}{m}\Phi_{n,i,p}(x;\theta) \, [I_{n,m} \otimes \Lambda^{-1}_{p,q}]\, \Phi_{n,j,q}(x;\theta) + I_{i,j}) \beta_j = \Phi(x;\theta)_{n,i,p}\,[ I_{n,m} \otimes \Lambda^{-1}_{p,q}]\, y_{n,p} ``` So long as ``\Lambda`` is easily invertible then this system is efficiently solved. ```julia rfm = RandomFeatureMethod( vf; regularization = 1e12 * eps() * I, batch_sizes = ("train" => 0, "test" => 0, "feature" => 0), ) ``` One can select batch sizes to balance the space-time (memory-process) trade-off. when building and solving equations by setting values of `"train"`, test data `"test"` and number of features `"feature"`. The default is no batching (`0`). !!! warning "Conditioning" The problem is ill-conditioned without regularization. If you encounters a Singular or Positive-definite exceptions or warnings, try increasing the constant scaling `regularization`. The solve for ``\beta`` occurs in the `fit` method. In the `Fit` object we store the system matrix, its factorization, and the inverse of the factorization. For many applications this is most efficient representation, as predictions (particularly of the covariance) are then only a matrix multiplication. ```julia fitted_features = fit( rfm, io_pairs; # (x,y) decomposition = "cholesky", ) ``` The decomposition is based off the [`LinearAlgebra.Factorize`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#man-linalg-factorizations) functions. For performance we have implemented only ("cholesky" (default), "svd", and for ``\Lambda=0.0`` (not recommended) the method defaults to "pinv"). ## Hyperparameters [Coming soon] !!! note Hyperparameter selection is very important for a good random feature fit. The hyperparameters are the parameters appearing in the random feature distribution ``\mathcal{D}``. We have an examples where an ensemble-based algorithm is used to optimize such parameters in [`examples/Learn_hyperparameters/`](https://github.com/CliMA/RandomFeatures.jl/tree/main/examples/Learn_hyperparameters)
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
892
# Features ```@meta CurrentModule = RandomFeatures.Features ``` ```@docs get_scalar_function get_feature_sampler get_feature_sample get_n_features get_feature_parameters get_output_dim sample(rf::RandomFeature) ``` # [Scalar Features](@id scalar-features) ```@docs ScalarFeature ScalarFourierFeature ScalarNeuronFeature build_features(rf::ScalarFeature,inputs::AbstractMatrix,atch_feature_idx::AbstractVector{Int}) ``` # [Vector Features](@id vector-features) ```@docs VectorFeature VectorFourierFeature VectorNeuronFeature build_features(rf::VectorFeature,inputs::AbstractMatrix,atch_feature_idx::AbstractVector{Int}) ``` # [Scalar Functions](@id scalar-functions) ```@docs ScalarFunction ScalarActivation apply_scalar_function ``` ```@docs Cosine Relu Lrelu Gelu Elu Selu Heaviside SmoothHeaviside Sawtooth Softplus Tansig Sigmoid ```
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
446
# Methods ```@meta CurrentModule = RandomFeatures.Methods ``` ```@docs RandomFeatureMethod Fit get_random_feature get_batch_sizes get_batch_size get_regularization sample(rfm::RandomFeatureMethod) get_feature_factors get_coeffs fit predict predict! predictive_mean predictive_mean! predictive_cov predictive_cov! predict_prior predict_prior_mean predict_prior_cov ```
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
188
# Samplers ```@meta CurrentModule = RandomFeatures.Samplers ``` ```@docs Sampler FeatureSampler get_parameter_distribution get_rng sample(rng::AbstractRNG, s::Sampler, n_draws::Int) ```
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "Apache-2.0" ]
0.3.3
d639d537c14127a70c8bd3e0158ecbccfb2a54a3
docs
257
# Utilities ```@meta CurrentModule = RandomFeatures.Utilities ``` ## Batching ```@docs batch_generator ``` ## Matrix Decomposition ```@docs Decomposition StoredInvType Factor PseInv get_decomposition get_full_matrix get_parametric_type linear_solve ```
RandomFeatures
https://github.com/CliMA/RandomFeatures.jl.git
[ "MIT" ]
0.1.0
6eba29d96bef815c6fda407240c0c4ba358f0f6f
code
596
using OpenADMIXTURE using Documenter makedocs(; modules=[OpenADMIXTURE], authors="Seyoon Ko <[email protected]> and contributors", repo="https://github.com/OpenMendel/OpenADMIXTURE.jl/blob/{commit}{path}#L{line}", sitename="OpenADMIXTURE.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://OpenMendel.github.io/OpenADMIXTURE.jl", assets=String[], ), pages=[ "Home" => "index.md", ], warnonly=true ) deploydocs(; repo="github.com/OpenMendel/OpenADMIXTURE.jl", devbranch = "main" )
OpenADMIXTURE
https://github.com/OpenMendel/OpenADMIXTURE.jl.git