Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --safe #-} module Cats.Category.Fun.Facts.Iso where open import Cats.Category open import Cats.Category.Cat using (_≈_) open import Cats.Category.Fun using (Fun ; Trans ; ≈-intro ; ≈-elim) open import Cats.Functor using (Functor) open import Cats.Trans.Iso using (NatIso) import Cats.Category.Constructions.Iso as Iso open NatIso open Trans open Iso.Iso module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} {F G : Functor C D} where open Category (Fun C D) using (_≅_) ≈→≅ : F ≈ G → F ≅ G ≈→≅ i = record { forth = Forth i ; back = Back i ; back-forth = ≈-intro (back-forth (iso i)) ; forth-back = ≈-intro (forth-back (iso i)) } ≅→≈ : F ≅ G → F ≈ G ≅→≈ i = record { iso = λ {c} → record { forth = component (forth i) c ; back = component (back i) c ; back-forth = ≈-elim (back-forth i) ; forth-back = ≈-elim (forth-back i) } ; forth-natural = natural (forth i) }
{ "alphanum_fraction": 0.5886454183, "avg_line_length": 22.8181818182, "ext": "agda", "hexsha": "68a8af839f820f11c45aae76652d4da086da5b59", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Fun/Facts/Iso.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Fun/Facts/Iso.agda", "max_line_length": 68, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Fun/Facts/Iso.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 351, "size": 1004 }
module PiFrac.NoRepeat where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import PiFrac.Syntax open import PiFrac.Opsem open import PiFrac.AuxLemmas import PartialRevNoRepeat -- Forward deterministic deterministic : ∀ {st st₁ st₂} → st ↦ st₁ → st ↦ st₂ → st₁ ≡ st₂ deterministic (↦₁ {b = b₁}) (↦₁ {b = b₂}) with base-is-prop _ b₁ b₂ ... | refl = refl deterministic ↦₂ ↦₂ = refl deterministic ↦₃ ↦₃ = refl deterministic ↦₄ ↦₄ = refl deterministic ↦₅ ↦₅ = refl deterministic ↦₆ ↦₆ = refl deterministic ↦₇ ↦₇ = refl deterministic ↦₈ ↦₈ = refl deterministic ↦₉ ↦₉ = refl deterministic ↦₁₀ ↦₁₀ = refl deterministic ↦₁₁ ↦₁₁ = refl deterministic ↦₁₂ ↦₁₂ = refl deterministic ↦η ↦η = refl deterministic ↦ε₁ ↦ε₁ = refl deterministic (↦ε₁ {eq = eq}) (↦ε₂ {neq = neq}) = ⊥-elim (neq eq) deterministic (↦ε₂ {neq = neq}) (↦ε₁ {eq = eq}) = ⊥-elim (neq eq) deterministic ↦ε₂ ↦ε₂ = refl -- Backward deterministic deterministicᵣₑᵥ : ∀ {st st₁ st₂} → st₁ ↦ st → st₂ ↦ st → st ≢ ⊠ → st₁ ≡ st₂ deterministicᵣₑᵥ {[ c ∣ _ ∣ κ ]} {⟨ c ∣ v ∣ κ ⟩} {⟨ c' ∣ v' ∣ κ' ⟩} ↦₁ r st≠⊠ with Lemma₁ r ... | refl , refl with Lemma₂ r deterministicᵣₑᵥ {[ uniti₊l ∣ _ ∣ κ ]} {⟨ _ ∣ x ∣ κ ⟩} {⟨ _ ∣ x ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ unite₊l ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ x ∣ κ ⟩} {⟨ _ ∣ inj₂ x ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ x ∣ κ ⟩} {⟨ _ ∣ inj₁ x ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ y ∣ κ ⟩} {⟨ _ ∣ inj₂ y ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ x ∣ κ ⟩} {⟨ _ ∣ inj₁ x ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ x ∣ κ ⟩} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩} ↦₁ () _ | refl , refl | refl , refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ x ∣ κ ⟩} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩} ↦₁ () _ | refl , refl | refl , refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩} {⟨ _ ∣ inj₂ (inj₁ y) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩} {⟨ _ ∣ inj₂ (inj₂ z) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ z ∣ κ ⟩} {⟨ _ ∣ inj₁ (inj₁ x) ∣ κ ⟩} ↦₁ () _ | refl , refl | refl , refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ z ∣ κ ⟩} {⟨ _ ∣ inj₁ (inj₂ y) ∣ κ ⟩} ↦₁ () _ | refl , refl | refl , refl deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ z ∣ κ ⟩} {⟨ _ ∣ inj₂ z ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ unite⋆l ∣ _ ∣ κ ]} {⟨ _ ∣ (tt , v) ∣ κ ⟩} {⟨ _ ∣ (tt , v) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ uniti⋆l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {⟨ _ ∣ v ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ swap⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ (x , y) ∣ κ ⟩} {⟨ _ ∣ (x , y) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocl⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ (x , (y , z)) ∣ κ ⟩} {⟨ _ ∣ (x , (y , z)) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ assocr⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ ((x , y) , z) ∣ κ ⟩} {⟨ _ ∣ ((x , y) , z) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]} {⟨ _ ∣ (inj₁ x , z) ∣ κ ⟩} {⟨ _ ∣ (inj₁ x , z) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]} {⟨ _ ∣ (inj₂ y , z) ∣ κ ⟩} {⟨ _ ∣ (inj₂ y , z) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]} {⟨ _ ∣ inj₁ (x , z) ∣ κ ⟩} {⟨ _ ∣ inj₁ (x , z) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]} {⟨ _ ∣ inj₂ (y , z) ∣ κ ⟩} {⟨ _ ∣ inj₂ (y , z) ∣ κ ⟩} ↦₁ ↦₁ _ | refl , refl | refl , refl = refl deterministicᵣₑᵥ {[ swap₊ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ assocl₊ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ assocr₊ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ unite⋆l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ uniti⋆l ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ swap⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ assocl⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ assocr⋆ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ dist ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ factor ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} ↦₁ () deterministicᵣₑᵥ {[ id↔ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} (↦₁ {b = ()}) deterministicᵣₑᵥ {[ c₁ ⨾ c₂ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} (↦₁ {b = ()}) deterministicᵣₑᵥ {[ c₁ ⊕ c₂ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} (↦₁ {b = ()}) deterministicᵣₑᵥ {[ c₁ ⊗ c₂ ∣ _ ∣ κ ]} {⟨ _ ∣ v ∣ κ ⟩} {[ c' ∣ v' ∣ κ' ]} (↦₁ {b = ()}) deterministicᵣₑᵥ {_} {_} {_} ↦₂ ↦₂ st≠⊠ = refl deterministicᵣₑᵥ {_} {_} {_} ↦₃ ↦₃ st≠⊠ = refl deterministicᵣₑᵥ {_} {_} {_} ↦₄ ↦₄ st≠⊠ = refl deterministicᵣₑᵥ {_} {_} {_} ↦₅ ↦₅ st≠⊠ = refl deterministicᵣₑᵥ {_} {_} {_} ↦₆ ↦₆ st≠⊠ = refl deterministicᵣₑᵥ {_} {_} {_} ↦₇ ↦₇ st≠⊠ = refl deterministicᵣₑᵥ {_} {_} {_} ↦₈ ↦₈ st≠⊠ = refl deterministicᵣₑᵥ {_} {_} {_} ↦₉ ↦₉ st≠⊠ = refl deterministicᵣₑᵥ {_} {_} {_} ↦₁₀ ↦₁₀ st≠⊠ = refl deterministicᵣₑᵥ {.([ _ ⊕ _ ∣ inj₁ _ ∣ _ ])} {_} {⟨ c ∣ v ∣ κ ⟩} ↦₁₁ r st≠⊠ with Lemma₁ r ... | refl , refl with Lemma₂ r ... | refl , refl with Lemma₃ r ... | inj₂ (inj₂ refl) with Lemma₄ r ... | inj₁ () ... | inj₂ () deterministicᵣₑᵥ {[ _ ⊕ _ ∣ inj₁ _ ∣ _ ]} {_} {_} ↦₁₁ ↦₁₁ st≠⊠ = refl deterministicᵣₑᵥ {[ _ ⊕ _ ∣ inj₂ _ ∣ _ ]} {[ _ ∣ _ ∣ _ ⊕☐• _ ]} {⟨ c ∣ v ∣ κ ⟩} ↦₁₂ r st≠⊠ with Lemma₁ r ... | refl , refl with Lemma₂ r ... | refl , refl with Lemma₃ r ... | inj₂ (inj₂ refl) with Lemma₄ r ... | inj₁ () ... | inj₂ () deterministicᵣₑᵥ {[ _ ⊕ _ ∣ inj₂ _ ∣ _ ]} {_} {_} ↦₁₂ ↦₁₂ st≠⊠ = refl deterministicᵣₑᵥ {[ ηₓ v ∣ _ ∣ _ ]} {⟨ ηₓ v ∣ tt ∣ _ ⟩} {⟨ _ ∣ v' ∣ _ ⟩} ↦η r st≠⊠ with Lemma₁ r ... | refl , refl with Lemma₂ r ... | refl , refl with v' ... | tt = refl deterministicᵣₑᵥ {[ εₓ v ∣ tt ∣ _ ]} {_} {_} (↦ε₁ {eq = refl}) (↦ε₁ {eq = refl}) st≠⊠ = refl deterministicᵣₑᵥ {⊠} {⟨ εₓ v ∣ _ , ↻ ∣ _ ⟩} {_} ↦ε₂ ↦ε₂ st≠⊠ = ⊥-elim (st≠⊠ refl) -- Non-repeating Lemma ⊠-is-stuck : ∀ {st} → st ≡ ⊠ → ∄[ st' ] (st ↦ st') ⊠-is-stuck refl = λ () open PartialRevNoRepeat (record { State = State ; _↦_ = _↦_ ; is-fail = λ st → st ≡ ⊠ ; is-fail? = (λ { ⊠ → yes refl ; ⟨ _ ∣ _ ∣ _ ⟩ → no (λ ()) ; [ _ ∣ _ ∣ _ ] → no (λ ())}) ; fail-is-stuck = ⊠-is-stuck ; deterministic = deterministic ; deterministicᵣₑᵥ = deterministicᵣₑᵥ}) public
{ "alphanum_fraction": 0.4739023443, "avg_line_length": 63.2868852459, "ext": "agda", "hexsha": "4073a0df5c61eab05872daea68aaa2d28443b758", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiFrac/NoRepeat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiFrac/NoRepeat.agda", "max_line_length": 138, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiFrac/NoRepeat.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4367, "size": 7721 }
{-# OPTIONS --type-in-type #-} module ArgsWrongOrder where open import AgdaPrelude myFun : (a : Set) -> a -> Nat -> Nat myFun _ x y = y myApp = myFun _ Zero (Nil Nat)
{ "alphanum_fraction": 0.6374269006, "avg_line_length": 17.1, "ext": "agda", "hexsha": "b7ec8b4ab479c62061e02bb9a6b323c66e22e39e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_forks_repo_path": "thesisExamples/ArgsWrongOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_issues_repo_path": "thesisExamples/ArgsWrongOrder.agda", "max_line_length": 36, "max_stars_count": 16, "max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_stars_repo_path": "thesisExamples/ArgsWrongOrder.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z", "num_tokens": 55, "size": 171 }
{-# OPTIONS --prop #-} data _≡_ {X : Set} (a : X) : X → Prop where refl : a ≡ a postulate A : Set P : Prop p : P u : P → A f : {x : A} (q : u p ≡ x) → P f refl = p -- works in 2.6.0.1
{ "alphanum_fraction": 0.4371859296, "avg_line_length": 14.2142857143, "ext": "agda", "hexsha": "70f65479b8cedf7c3c8559f598f6737a495373f3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4122-match.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4122-match.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4122-match.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 199 }
{-# OPTIONS --without-K --rewriting #-} {- favonia: On 2017/03/23, after I added back Mayer-Vietoris, it seems difficult to type check everything in one round on travis, so parts of index.agda are moved here. favonia: On 2017/05/08, I further partition the results into multiple independent index[n].agda files because the garbage collection is not really working. -} module index2stage2 where {- isomorphisms between different kinds of cohomology groups for finite CWs. -} import cw.cohomology.AxiomaticIsoCellular
{ "alphanum_fraction": 0.7555970149, "avg_line_length": 28.2105263158, "ext": "agda", "hexsha": "812141184306c70ee391021ce876391f6a6f9943", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/index2stage2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/index2stage2.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/index2stage2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 144, "size": 536 }
{-# OPTIONS --cubical --no-exact-split --safe #-} module Multidimensional.Data.Extra.Nat.Base where open import Cubical.Data.Nat sucn : (n : ℕ) → (ℕ → ℕ) sucn n = iter n suc
{ "alphanum_fraction": 0.6704545455, "avg_line_length": 22, "ext": "agda", "hexsha": "fd8cf7913d3e757fdbb6ac99ad68ce062e49675c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_forks_repo_path": "Multidimensional/Data/Extra/Nat/Base.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_issues_repo_path": "Multidimensional/Data/Extra/Nat/Base.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_stars_repo_path": "Multidimensional/Data/Extra/Nat/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 59, "size": 176 }
------------------------------------------------------------------------------ -- Testing the translation of definitions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Definition01b where postulate D : Set _≡_ : D → D → Set -- We test the translation of the definition of a unary function. foo : D → D foo d = d {-# ATP definition foo #-} postulate bar : ∀ d → d ≡ foo d {-# ATP prove bar #-}
{ "alphanum_fraction": 0.4292682927, "avg_line_length": 26.7391304348, "ext": "agda", "hexsha": "752b8ef1dd595915549d551bc489d0aba3957dd1", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Definition01b.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Definition01b.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Definition01b.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 117, "size": 615 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Numbers.ClassicalReals.RealField open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders open import Sets.EquivalenceRelations open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Fields open import Groups.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Sequences module Numbers.ClassicalReals.Sequences (ℝ : RealField) where open RealField ℝ open Setoid S open Equivalence eq open Ring R open Field F open SetoidPartialOrder pOrder open import Fields.Orders.LeastUpperBounds.Definition pOrder open import Rings.Orders.Total.Lemmas orderedRing open import Rings.Orders.Partial.Lemmas pOrderedRing open Group additiveGroup open PartiallyOrderedRing pOrderedRing open SetoidTotalOrder (TotallyOrderedRing.total orderedRing) open import Rings.InitialRing R open import Fields.Orders.Lemmas oField open import Rings.Lemmas R open import Groups.Lemmas additiveGroup open import Numbers.Intervals.Definition pOrderedRing open import Numbers.Intervals.Arithmetic pOrderedRing open import Fields.Lemmas F open import Fields.Orders.Total.Definition F orderedField : TotallyOrderedField pOrderedRing orderedField = record { oRing = orderedRing } open import Fields.Orders.Limits.Definition orderedField StrictlyIncreasing : Sequence A → Set c StrictlyIncreasing x = (n : ℕ) → (index x n) < (index x (succ n)) Increasing : Sequence A → Set (b ⊔ c) Increasing x = (n : ℕ) → ((index x n) < (index x (succ n))) || ((index x n) ∼ (index x (succ n))) sequencePredicate : (x : Sequence A) → A → Set b sequencePredicate x a = Sg ℕ (λ n → index x n ∼ a) sequenceSubset : (x : Sequence A) → subset S (sequencePredicate x) sequenceSubset sequence {x} {y} x=y (n , sn=x) = n , transitive sn=x x=y boundedSequenceBounds : (K : A) (x : Sequence A) → ((n : ℕ) → index x n < K) → UpperBound (sequenceSubset x) K boundedSequenceBounds K x pr y (n , y=xn) = inl (<WellDefined y=xn reflexive (pr n)) increasingBoundedLimit : (x : Sequence A) → Increasing x → Bounded x → A increasingBoundedLimit x increasing (K , kIsBound) with lub (sequenceSubset x) ((index x 0) , (0 , reflexive)) (K , boundedSequenceBounds K x kIsBound) ... | a , _ = a increasingBoundedConverges : (x : Sequence A) → (increasing : Increasing x) → (bounded : Bounded x) → x ~> (increasingBoundedLimit x increasing bounded) increasingBoundedConverges x increasing (K , prBound) with lub (sequenceSubset x) (Sequence.head x , (0 , reflexive)) (K , boundedSequenceBounds K x prBound) ... | lub , isLub = {!!}
{ "alphanum_fraction": 0.7643515237, "avg_line_length": 39.7464788732, "ext": "agda", "hexsha": "55094dce1daafb37c09b4a4c00363810afe6fe3e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/ClassicalReals/Sequences.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/ClassicalReals/Sequences.agda", "max_line_length": 157, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/ClassicalReals/Sequences.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 768, "size": 2822 }
------------------------------------------------------------------------ -- Code related to the paper "Up-to Techniques using Sized Types" -- -- Nils Anders Danielsson ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module README where ------------------------------------------------------------------------ -- Pointers to results from the paper -- In order to more easily find code corresponding to results from the -- paper, see the following module. Note that some of the code -- referenced below is not discussed at all in the paper. import README.Pointers-to-results-from-the-paper ------------------------------------------------------------------------ -- Some preliminaries -- Overloaded "equational" reasoning combinators. import Equational-reasoning -- Unary and binary relations. import Relation ------------------------------------------------------------------------ -- Containers -- Indexed containers. import Indexed-container -- Container combinators. import Indexed-container.Combinators -- The delay monad defined as the greatest fixpoint of an indexed -- container. import Indexed-container.Delay-monad ------------------------------------------------------------------------ -- Up-to techniques -- Up-to techniques, compatibility, size-preserving functions, and the -- companion. import Up-to -- Closure properties for Compatible and Size-preserving. -- -- (Some negative results in this module depend on code presented -- further down.) import Up-to.Closure -- Up-to techniques via. import Up-to.Via ------------------------------------------------------------------------ -- Labelled transition systems -- Labelled transition systems (LTSs). import Labelled-transition-system import Labelled-transition-system.Equational-reasoning-instances -- CCS. import Labelled-transition-system.CCS -- A labelled transition system for the delay monad. import Labelled-transition-system.Delay-monad -- An LTS from Section 6.2.5 of "Enhancements of the bisimulation -- proof method" by Pous and Sangiorgi. import Labelled-transition-system.6-2-5 ------------------------------------------------------------------------ -- Similarity -- The one-sided Step function, used to define similarity and the -- two-sided Step function. import Similarity.Step -- A parametrised coinductive definition that can be used to define -- various forms of similarity. import Similarity.General -- For more information about similarity, see "Similarity, continued" -- below. ------------------------------------------------------------------------ -- Strong bisimilarity -- The Step function, used to define strong and weak bisimilarity as -- well as expansion. import Bisimilarity.Step -- A parametrised coinductive definition that can be used to define -- strong and weak bisimilarity as well as expansion. import Bisimilarity.General -- A coinductive definition of (strong) bisimilarity. import Bisimilarity import Bisimilarity.Equational-reasoning-instances -- The classical definition of (strong) bisimilarity. import Bisimilarity.Classical import Bisimilarity.Classical.Equational-reasoning-instances -- A comparison of the two definitions of bisimilarity. import Bisimilarity.Comparison -- Some results related to strong bisimilarity for the delay monad. import Bisimilarity.Delay-monad -- Some results related to CCS, implemented without using a fixed form -- of bisimilarity. import Bisimilarity.CCS.General -- Various results or examples related to CCS, implemented using the -- coinductive definition of bisimilarity. import Bisimilarity.CCS import Bisimilarity.CCS.Examples import Bisimilarity.CCS.Examples.Natural-numbers -- Some of the results/examples above have also been implemented using -- the classical definition of bisimilarity. import Bisimilarity.CCS.Classical import Bisimilarity.CCS.Examples.Classical -- Up-to techniques for strong bisimilarity. import Bisimilarity.Up-to import Bisimilarity.Up-to.CCS import Bisimilarity.Up-to.Counterexamples -- Some results related to an LTS from Section 6.2.5 of "Enhancements -- of the bisimulation proof method" by Pous and Sangiorgi, -- implemented using the coinductive definition of bisimilarity. import Bisimilarity.6-2-5 ------------------------------------------------------------------------ -- Expansion -- A coinductive definition of the expansion ordering. import Expansion import Expansion.Equational-reasoning-instances -- Lemmas related to expansion and CCS. import Expansion.CCS -- Some results related to expansion for the delay monad. import Expansion.Delay-monad ------------------------------------------------------------------------ -- Weak bisimilarity -- A coinductive definition of weak bisimilarity. import Bisimilarity.Weak import Bisimilarity.Weak.Equational-reasoning-instances -- An alternative (non-standard) coinductive definition of weak -- bisimilarity. import Bisimilarity.Weak.Alternative import Bisimilarity.Weak.Alternative.Equational-reasoning-instances -- An alternative (non-standard) classical definition of weak -- bisimilarity. import Bisimilarity.Weak.Alternative.Classical -- A comparison of the two alternative definitions of weak -- bisimilarity. import Bisimilarity.Weak.Alternative.Comparison -- The two coinductive definitions of weak bisimilarity are pointwise -- logically equivalent. import Bisimilarity.Weak.Equivalent -- Lemmas related to weak bisimilarity and CCS. import Bisimilarity.Weak.CCS -- Examples/exercises related to CCS from "Enhancements of the -- bisimulation proof method" by Pous and Sangiorgi. import Bisimilarity.Weak.CCS.Examples -- Some results about various forms of coinductively defined weak -- bisimilarity for the delay monad. import Bisimilarity.Weak.Delay-monad -- Up-to techniques for the standard coinductive definition of weak -- bisimilarity. import Bisimilarity.Weak.Up-to import Bisimilarity.Weak.Up-to.CCS -- Up-to techniques for the delay monad and the alternative -- coinductive definition of weak bisimilarity. import Bisimilarity.Weak.Alternative.Up-to.Delay-monad ------------------------------------------------------------------------ -- Similarity, continued -- A coinductive definition of (strong) similarity. import Similarity import Similarity.Equational-reasoning-instances -- Lemmas related to strong similarity for CCS. import Similarity.CCS -- A coinductive definition of weak similarity. import Similarity.Weak import Similarity.Weak.Equational-reasoning-instances -- An up-to technique for weak similarity. import Similarity.Weak.Up-to
{ "alphanum_fraction": 0.6893700195, "avg_line_length": 26.1850393701, "ext": "agda", "hexsha": "00936431906d6703a62490e2214f81dced054cfb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "README.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "README.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1354, "size": 6651 }
-- Length-indexed lists as a recursive family -- From "Dependent Types at Work", section 3.1 module xx where open import Level renaming (suc to lsuc) open import Data.Nat hiding (_^_) open import Data.Empty.Polymorphic open import Data.Unit.Polymorphic open import Data.Maybe hiding (map ; zip) open import Data.Product hiding (map ; zip) private variable m n : ℕ ℓ ℓ′ : Level A : Set ℓ B : Set ℓ′ -- Vec : Set ℓ → ℕ → Set ℓ -- Vec A zero = ⊤ -- Vec A (suc n) = A × Vec A n -- Generalize Vec open import Function iter : A → (A → A) → ℕ → A iter z f zero = z iter z f (suc n) = f (iter z f n) -- Is iter defined somewhere standard? Vec : Set ℓ → ℕ → Set ℓ Vec A = iter ⊤ (A ×_) head : Vec A (suc n) → A head (a , _) = a tail : Vec A (suc n) → Vec A n tail (_ , as) = as map : (A → B) → Vec A n → Vec B n map {n = zero } _ _ = tt map {n = suc n} f (a , as) = f a , map {n = n} f as zip : Vec A n → Vec B n → Vec (A × B) n zip {n = zero } _ _ = tt zip {n = suc n} (a , as) (b , bs) = (a , b) , zip {n = n} as bs Fin : ℕ → Set Fin zero = ⊥ Fin (suc n) = Maybe (Fin n) f5 : Fin 5 f5 = nothing f4 : Fin 4 f4 = nothing f3 : Fin 3 f3 = nothing f2 : Fin 2 f2 = just nothing -- an element of the type f1 : Fin 1 f1 = nothing -- f0 : Fin 0 -- f0 = {!!} -- no solution found _!_ : Vec A n → Fin n → A _!_ {n = suc m} (a , _ ) nothing = a _!_ {n = suc m} (_ , as) (just i) = as ! i _!'_ : Vec A n → Fin n → A _!'_ {n = suc m} (a , _) nothing = a _!'_ {n = suc m} (_ , as) (just finm) = as !' finm {- (0 , 1 , 2 , tt) ! nothing (0 , 1 , 2 , tt) ! just nothing (0 , 1 , 2 , tt) ! just (just nothing) (0 , 1 , 2 , tt) ! just (just (just nothing)) -} -- Perfect binary leaf tree BTree : Set ℓ → ℕ → Set ℓ BTree A = iter A (λ τ → τ × τ)
{ "alphanum_fraction": 0.5410654828, "avg_line_length": 20.9534883721, "ext": "agda", "hexsha": "45ff6949b18ea45025374a642c66854be4e19279", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/xx.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/xx.agda", "max_line_length": 63, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/paper/2009-Dependent_Types_at_Work-Bove_and_Dybjer/xx.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 718, "size": 1802 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Structures for homogeneous binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Relation.Binary`. {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Relation.Binary.Structures {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality relation where open import Data.Product using (proj₁; proj₂; _,_) open import Level using (Level; _⊔_) open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) open import Relation.Binary.Consequences open import Relation.Binary.Definitions private variable ℓ₂ : Level ------------------------------------------------------------------------ -- Equivalences ------------------------------------------------------------------------ -- Note all the following equivalences refer to the equality provided -- as a module parameter at the top of this file. record IsPartialEquivalence : Set (a ⊔ ℓ) where field sym : Symmetric _≈_ trans : Transitive _≈_ -- The preorders of this library are defined in terms of an underlying -- equivalence relation, and hence equivalence relations are not -- defined in terms of preorders. -- To preserve backwards compatability, equivalence relations are -- not defined in terms of their partial counterparts. record IsEquivalence : Set (a ⊔ ℓ) where field refl : Reflexive _≈_ sym : Symmetric _≈_ trans : Transitive _≈_ reflexive : _≡_ ⇒ _≈_ reflexive P.refl = refl isPartialEquivalence : IsPartialEquivalence isPartialEquivalence = record { sym = sym ; trans = trans } record IsDecEquivalence : Set (a ⊔ ℓ) where infix 4 _≟_ field isEquivalence : IsEquivalence _≟_ : Decidable _≈_ open IsEquivalence isEquivalence public ------------------------------------------------------------------------ -- Preorders ------------------------------------------------------------------------ record IsPreorder (_∼_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where field isEquivalence : IsEquivalence -- Reflexivity is expressed in terms of the underlying equality: reflexive : _≈_ ⇒ _∼_ trans : Transitive _∼_ module Eq = IsEquivalence isEquivalence refl : Reflexive _∼_ refl = reflexive Eq.refl ∼-respˡ-≈ : _∼_ Respectsˡ _≈_ ∼-respˡ-≈ x≈y x∼z = trans (reflexive (Eq.sym x≈y)) x∼z ∼-respʳ-≈ : _∼_ Respectsʳ _≈_ ∼-respʳ-≈ x≈y z∼x = trans z∼x (reflexive x≈y) ∼-resp-≈ : _∼_ Respects₂ _≈_ ∼-resp-≈ = ∼-respʳ-≈ , ∼-respˡ-≈ ------------------------------------------------------------------------ -- Partial orders ------------------------------------------------------------------------ record IsPartialOrder (_≤_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where field isPreorder : IsPreorder _≤_ antisym : Antisymmetric _≈_ _≤_ open IsPreorder isPreorder public renaming ( ∼-respˡ-≈ to ≤-respˡ-≈ ; ∼-respʳ-≈ to ≤-respʳ-≈ ; ∼-resp-≈ to ≤-resp-≈ ) record IsDecPartialOrder (_≤_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where infix 4 _≟_ _≤?_ field isPartialOrder : IsPartialOrder _≤_ _≟_ : Decidable _≈_ _≤?_ : Decidable _≤_ open IsPartialOrder isPartialOrder public hiding (module Eq) module Eq where isDecEquivalence : IsDecEquivalence isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } open IsDecEquivalence isDecEquivalence public record IsStrictPartialOrder (_<_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where field isEquivalence : IsEquivalence irrefl : Irreflexive _≈_ _<_ trans : Transitive _<_ <-resp-≈ : _<_ Respects₂ _≈_ module Eq = IsEquivalence isEquivalence asym : Asymmetric _<_ asym {x} {y} = trans∧irr⟶asym Eq.refl trans irrefl {x = x} {y} <-respʳ-≈ : _<_ Respectsʳ _≈_ <-respʳ-≈ = proj₁ <-resp-≈ <-respˡ-≈ : _<_ Respectsˡ _≈_ <-respˡ-≈ = proj₂ <-resp-≈ asymmetric = asym {-# WARNING_ON_USAGE asymmetric "Warning: asymmetric was deprecated in v0.16. Please use asym instead." #-} record IsDecStrictPartialOrder (_<_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where infix 4 _≟_ _<?_ field isStrictPartialOrder : IsStrictPartialOrder _<_ _≟_ : Decidable _≈_ _<?_ : Decidable _<_ private module SPO = IsStrictPartialOrder isStrictPartialOrder open SPO public hiding (module Eq) module Eq where isDecEquivalence : IsDecEquivalence isDecEquivalence = record { isEquivalence = SPO.isEquivalence ; _≟_ = _≟_ } open IsDecEquivalence isDecEquivalence public ------------------------------------------------------------------------ -- Total orders ------------------------------------------------------------------------ record IsTotalOrder (_≤_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where field isPartialOrder : IsPartialOrder _≤_ total : Total _≤_ open IsPartialOrder isPartialOrder public record IsDecTotalOrder (_≤_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where infix 4 _≟_ _≤?_ field isTotalOrder : IsTotalOrder _≤_ _≟_ : Decidable _≈_ _≤?_ : Decidable _≤_ open IsTotalOrder isTotalOrder public hiding (module Eq) isDecPartialOrder : IsDecPartialOrder _≤_ isDecPartialOrder = record { isPartialOrder = isPartialOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } module Eq where isDecEquivalence : IsDecEquivalence isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } open IsDecEquivalence isDecEquivalence public -- Note that these orders are decidable. The current implementation -- of `Trichotomous` subsumes irreflexivity and asymmetry. Any reasonable -- definition capturing these three properties implies decidability -- as `Trichotomous` necessarily separates out the equality case. record IsStrictTotalOrder (_<_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where field isEquivalence : IsEquivalence trans : Transitive _<_ compare : Trichotomous _≈_ _<_ infix 4 _≟_ _<?_ _≟_ : Decidable _≈_ _≟_ = tri⟶dec≈ compare _<?_ : Decidable _<_ _<?_ = tri⟶dec< compare isDecEquivalence : IsDecEquivalence isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } module Eq = IsDecEquivalence isDecEquivalence isStrictPartialOrder : IsStrictPartialOrder _<_ isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = tri⟶irr compare ; trans = trans ; <-resp-≈ = trans∧tri⟶resp≈ Eq.sym Eq.trans trans compare } isDecStrictPartialOrder : IsDecStrictPartialOrder _<_ isDecStrictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder ; _≟_ = _≟_ ; _<?_ = _<?_ } open IsStrictPartialOrder isStrictPartialOrder public using (irrefl; asym; <-respʳ-≈; <-respˡ-≈; <-resp-≈)
{ "alphanum_fraction": 0.5858908485, "avg_line_length": 26.9700374532, "ext": "agda", "hexsha": "5aa13eab0e60cf5951062941010e777f72b8ec33", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Structures.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2185, "size": 7201 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Maybes where all the elements satisfy a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Maybe.Relation.Unary.All where open import Category.Applicative open import Category.Monad open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Maybe.Relation.Unary.Any using (Any; just) open import Data.Product as Prod using (_,_) open import Function using (id; _∘′_) open import Function.Equivalence using (_⇔_; equivalence) open import Level open import Relation.Binary.PropositionalEquality as P using (_≡_; cong) open import Relation.Unary open import Relation.Nullary import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Definition data All {a p} {A : Set a} (P : Pred A p) : Pred (Maybe A) (a ⊔ p) where just : ∀ {x} → P x → All P (just x) nothing : All P nothing ------------------------------------------------------------------------ -- Basic operations module _ {a p} {A : Set a} {P : Pred A p} where drop-just : ∀ {x} → All P (just x) → P x drop-just (just px) = px just-equivalence : ∀ {x} → P x ⇔ All P (just x) just-equivalence = equivalence just drop-just map : ∀ {q} {Q : Pred A q} → P ⊆ Q → All P ⊆ All Q map f (just px) = just (f px) map f nothing = nothing fromAny : Any P ⊆ All P fromAny (just px) = just px ------------------------------------------------------------------------ -- (un/)zip(/With) module _ {a p q r} {A : Set a} {P : Pred A p} {Q : Pred A q} {R : Pred A r} where zipWith : P ∩ Q ⊆ R → All P ∩ All Q ⊆ All R zipWith f (just px , just qx) = just (f (px , qx)) zipWith f (nothing , nothing) = nothing unzipWith : P ⊆ Q ∩ R → All P ⊆ All Q ∩ All R unzipWith f (just px) = Prod.map just just (f px) unzipWith f nothing = nothing , nothing module _ {a p q} {A : Set a} {P : Pred A p} {Q : Pred A q} where zip : All P ∩ All Q ⊆ All (P ∩ Q) zip = zipWith id unzip : All (P ∩ Q) ⊆ All P ∩ All Q unzip = unzipWith id ------------------------------------------------------------------------ -- Traversable-like functions module _ {a} p {A : Set a} {P : Pred A (a ⊔ p)} {F} (App : RawApplicative {a ⊔ p} F) where open RawApplicative App sequenceA : All (F ∘′ P) ⊆ F ∘′ All P sequenceA nothing = pure nothing sequenceA (just px) = just <$> px mapA : ∀ {q} {Q : Pred A q} → (Q ⊆ F ∘′ P) → All Q ⊆ (F ∘′ All P) mapA f = sequenceA ∘′ map f forA : ∀ {q} {Q : Pred A q} {xs} → All Q xs → (Q ⊆ F ∘′ P) → F (All P xs) forA qxs f = mapA f qxs module _ {a} p {A : Set a} {P : Pred A (a ⊔ p)} {M} (Mon : RawMonad {a ⊔ p} M) where private App = RawMonad.rawIApplicative Mon sequenceM : All (M ∘′ P) ⊆ M ∘′ All P sequenceM = sequenceA p App mapM : ∀ {q} {Q : Pred A q} → (Q ⊆ M ∘′ P) → All Q ⊆ (M ∘′ All P) mapM = mapA p App forM : ∀ {q} {Q : Pred A q} {xs} → All Q xs → (Q ⊆ M ∘′ P) → M (All P xs) forM = forA p App ------------------------------------------------------------------------ -- Seeing All as a predicate transformer module _ {a p} {A : Set a} {P : Pred A p} where dec : Decidable P → Decidable (All P) dec P-dec nothing = yes nothing dec P-dec (just x) = Dec.map just-equivalence (P-dec x) universal : Universal P → Universal (All P) universal P-universal (just x) = just (P-universal x) universal P-universal nothing = nothing irrelevant : Irrelevant P → Irrelevant (All P) irrelevant P-irrelevant (just p) (just q) = cong just (P-irrelevant p q) irrelevant P-irrelevant nothing nothing = P.refl satisfiable : Satisfiable (All P) satisfiable = nothing , nothing
{ "alphanum_fraction": 0.5321821036, "avg_line_length": 31.5867768595, "ext": "agda", "hexsha": "24d890ff20b758fe128ddc57f44ac1588a7a8cc3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Unary/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Unary/All.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Relation/Unary/All.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1186, "size": 3822 }
-- Andreas, 2017-03-30, issue #2524 -- compile abstract definitions to arbitrary Haskell code module Issue2524 where open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.String {-# FOREIGN GHC import qualified Data.Text #-} postulate NativeIO : Set → Set nativeReturn : {A : Set} → A → NativeIO A _native>>=_ : {A B : Set} → NativeIO A → (A → NativeIO B) → NativeIO B {-# BUILTIN IO NativeIO #-} {-# COMPILE GHC NativeIO = type IO #-} {-# COMPILE GHC nativeReturn = (\_ -> return :: a -> IO a) #-} {-# COMPILE GHC _native>>=_ = (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-} {-# COMPILE JS nativeReturn = function(u0) { return function(u1) { return function(x) { return function(cb) { cb(x); }; }; }; } #-} {-# COMPILE JS _native>>=_ = function(u0) { return function(u1) { return function(u2) { return function(u3) { return function(x) { return function(y) { return function(cb) { x(function (xx) { y(xx)(cb); }); }; }; }; }; }; }; } #-} postulate nativePutStrLn : String → NativeIO ⊤ primShowNat : Nat → String {-# COMPILE GHC nativePutStrLn = (\ s -> putStrLn (Data.Text.unpack s)) #-} {-# COMPILE GHC primShowNat = Data.Text.pack . show #-} {-# COMPILE JS nativePutStrLn = function (x) { return function(cb) { process.stdout.write(x + '\n'); cb(0); }; } #-} {-# COMPILE JS primShowNat = agdaRTS.primShowInteger #-} abstract record Pointer : Set where constructor mkPointer field thePointer : Nat otherInfo : Nat newPointer : Pointer newPointer = mkPointer 5 17 showPointer : Pointer → String showPointer p = primShowNat (Pointer.thePointer p) {-# COMPILE GHC Pointer = type Integer #-} {-# COMPILE GHC newPointer = 5 #-} {-# COMPILE GHC showPointer = Data.Text.pack . show #-} {-# COMPILE JS newPointer = 5 #-} {-# COMPILE JS showPointer = function(x) { return x; } #-} main : NativeIO ⊤ main = nativePutStrLn (showPointer newPointer)
{ "alphanum_fraction": 0.6363171355, "avg_line_length": 32.0491803279, "ext": "agda", "hexsha": "a46b1bfe228c00e6014b7f87fb733bf329dca6b1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2524.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2524.agda", "max_line_length": 116, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2524.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 552, "size": 1955 }
module Data.Lens.Proofs.LensLaws where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Lens.Lens open import Data.Logic open import Agda.Primitive -- First, define the lens laws ViewSet : {a b : Set} -> (l : Lens a b) -> Set ViewSet {a} {b} l = (v : b) (s : a) -> view l (set l v s) ≡ v SetView : {a b : Set} -> (l : Lens a b) -> Set SetView {a} {b} l = (s : a) -> set l (view l s) s ≡ s SetSet : {a b : Set} -> (l : Lens a b) -> Set SetSet {a} {b} l = (v1 v2 : b) (s : a) -> set l v2 (set l v1 s) ≡ set l v2 s -- Define ValidLens as a lens for which the laws hold data ValidLens (a b : Set) : Set₁ where CValidLens : (l : Lens a b) -> ViewSet l -> SetView l -> SetSet l -> ValidLens a b toLens : ValidLens a b -> Lens a b toLens (CValidLens l _ _ _) = l
{ "alphanum_fraction": 0.6020151134, "avg_line_length": 29.4074074074, "ext": "agda", "hexsha": "20f152bdfa894d785a75ecb2c120ec8a5cfde202", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/Lens/Proofs/LensLaws.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/Lens/Proofs/LensLaws.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/Lens/Proofs/LensLaws.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 299, "size": 794 }
record R {a} (A : Set a) : Set a where field some : A module Works0 where works : ∀ {a}{A : Set a} {{r : R A}} -> A works = x where open R {{...}} x = some -- If we add a dummy argument of type Set to "works" we fail, see module Fails -- below. -- But there is a chance it still works: module Works where postulate works : ∀ {a}{A : Set a} -> A test : ∀ {a}{A : Set a} {{r : R A}} -> Set -> A test B = x where open R {{...}} x = some -- Or, we could have an unsolved meta: module Unsolved where postulate works : ∀ {a}{A : Set a} {r : R A} -> A test : ∀ {a}{A : Set a} {{r : R A}} -> Set -> A test B = x where open R {{...}} x = some -- unsolved at "x" in "test B = x": -- _r_45 : R (R .A) -- This is the mysterious failure instance: module Fails where fails : ∀ {a}{A : Set a} {{r : R A}} -> Set -> A fails B = x where open R {{...}} x = some -- No variable of type R (_A_54 .some B) was found in scope -- when checking that the expression x has type .A
{ "alphanum_fraction": 0.5167286245, "avg_line_length": 19.2142857143, "ext": "agda", "hexsha": "74f154bfd6dc4fc960c62dae7f499c301461b2fc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue777.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue777.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue777.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 372, "size": 1076 }
module _ where module A where infix 2 _↑ infix 1 _↓_ data D : Set where ● : D _↑ : D → D _↓_ : D → D → D module B where data D : Set where _↓_ : D → D → D open A open B rejected : A.D rejected = ● ↑ ↓ ●
{ "alphanum_fraction": 0.5021097046, "avg_line_length": 10.3043478261, "ext": "agda", "hexsha": "0947c176fd402c99b705e687ab5376fdee0d7e01", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1436-4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1436-4.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1436-4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 237 }
-- Andreas, 2014-05-20, issue reported by Fabien Renaud module Issue1125 where f : {A- : Set} -> Set f {A-} = A- -- Should give a parse error now -- since a comment is closed -} but none opened.
{ "alphanum_fraction": 0.6582914573, "avg_line_length": 18.0909090909, "ext": "agda", "hexsha": "e5d4d740375fce3bd5b493c57b1ce6dfcf77da1e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1125.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1125.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1125.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 64, "size": 199 }
-- Andreas, 2021-01-28 documenting #4702, reported by gallais open import Agda.Builtin.Nat case_of_ : {A B : Set} → A → (A → B) → B case x of f = f x -- Needed for making `plus` pass the termination checker. -- Used to be automatic via `--auto-inline`, since 2.6.2 this flag -- is off by default. {-# INLINE case_of_ #-} plus : Nat → Nat → Nat plus m n = case m of λ { zero → n ; (suc m) → suc (plus m n) }
{ "alphanum_fraction": 0.6155660377, "avg_line_length": 22.3157894737, "ext": "agda", "hexsha": "e3edde391b1a0cba0cf143e6fc29d8568a4ab488", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue4702.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue4702.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue4702.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 143, "size": 424 }
module Numeral.Ordinal where import Lvl open import Numeral.Natural open import Syntax.Function open import Type private variable ℓ : Lvl.Level private variable T : Type{ℓ} -- Ordinal numbers up to a certain level as a type. -- 𝟎 is the zero ordinal, the smallest ordinal number. -- 𝐒 is the successor ordinal function, the smallest ordinal greater than the given argument. -- lim is the limit ordinal function, the "limit" of the given sequence. The smallest ordinal greater than all values of the given sequence. Note that this is not the usual definition of a "limit ordinal" because `lim` allows arbitrary sequences, specifically those with a maximum, resulting in an equivalent to the successor ordinal `𝐒` (TODO: If this is the case, then 𝐒 is actually unnecessary? Just define it by (lim ∘ const)? -- Note: Usually the indexing in a limit ordinal should be the class of ordinals before it, so this definition is probably unable to express all ordinals. data Ordinal(T : Type{ℓ}) : Type{ℓ} where 𝟎 : Ordinal(T) 𝐒 : Ordinal(T) → Ordinal(T) lim : (T → Ordinal(T)) → Ordinal(T) {- data Ordinal' : (ℓ : Lvl.Level) → Typeω where 𝟎 : Ordinal'(ℓ) 𝐒 : Ordinal'(ℓ) → Ordinal'(ℓ) lim : (Ordinal'(ℓ) → Ordinal'(Lvl.𝐒(ℓ))) → Ordinal'(Lvl.𝐒(ℓ)) -- When the next ordinal have the current ordinal as its index data Ordinal(T : Type{ℓ}) : Type{ℓ} where 𝟎 : Ordinal(T) lim : (T → Ordinal(T)) → Ordinal(T) -- 𝐒 is expressable through lim data Ordinal(T : Type{ℓ}) : Type{ℓ} where 𝟎 : Ordinal(T) 𝐒 : Ordinal(T) → Ordinal(T) lim : (f : T → Ordinal(T)) → ∃(IncreasingSubsequence(_<_)(f)) → Ordinal(T) -- This excludes the cases where f have a maximum, resulting in no intersection between 𝐒 and lim -} _+_ : Ordinal(T) → Ordinal(T) → Ordinal(T) x + 𝟎 = x x + 𝐒(y) = 𝐒(x + y) x + lim f = lim(y ↦ (x + f(y))) _⋅_ : Ordinal(T) → Ordinal(T) → Ordinal(T) x ⋅ 𝟎 = 𝟎 x ⋅ 𝐒(y) = (x ⋅ y) + x x ⋅ lim f = lim(y ↦ (x ⋅ f(y))) _^_ : Ordinal(T) → Ordinal(T) → Ordinal(T) x ^ 𝟎 = x x ^ 𝐒(y) = (x ^ y) ⋅ x x ^ lim f = lim(y ↦ (x ^ f(y))) open import Logic.Propositional private variable x y z x₁ x₂ y₁ y₂ z₁ z₂ : Ordinal(T) module _ {T : Type{ℓ}} where open import Functional open import Logic.Propositional -- TODO: Not sure if this is correct data _<_ : Ordinal(T) → Ordinal(T) → Type{ℓ} where minimal : ∀{x} → (𝟎 < 𝐒(x)) step : ∀{x y} → (x < y) → (𝐒(x) < 𝐒(y)) limitₗ : ∀{f}{x} → (∀{i} → (f(i) < x)) → (lim f < 𝐒(x)) limitᵣ : ∀{i}{f}{x} → (x < 𝐒(f(i))) → (x < lim f) _>_ = swap(_<_) _≤_ : Ordinal(T) → Ordinal(T) → Type x ≤ y = x < 𝐒(y) _≥_ = swap(_≤_) _≡_ : Ordinal(T) → Ordinal(T) → Type x ≡ y = (y ≤ x) ∧ (x ≤ y) open import Numeral.Natural.Induction from-ℕ : ℕ → Ordinal(T) from-ℕ = ℕ-elim 𝟎 (const 𝐒) _+ₙ_ : Ordinal(T) → ℕ → Ordinal(T) _+ₙ_ x = ℕ-elim x (const 𝐒) private variable f g : T → Ordinal(T) private variable n : T [<]-limitₗ-inv : (lim f < 𝐒(x)) → (∀{n} → (f(n) < x)) [<]-limitₗ-inv (limitₗ p) = p open import Logic.Predicate open import Type.Properties.Inhabited [<]-limitᵣ-inv : (x < lim f) → ∃(n ↦ (x < 𝐒(f(n)))) [<]-limitᵣ-inv (limitᵣ{n} p) = [∃]-intro n ⦃ p ⦄ [<]-lim-minimal : ⦃ ◊ T ⦄ → (𝟎 < lim f) [<]-lim-minimal = limitᵣ{i = [◊]-existence} minimal [<]-lim-maximum : (f(n) < lim f) [<]-of-step : (x < 𝐒(x)) [<]-lim-maximum{f}{n} = limitᵣ{n} [<]-of-step [<]-without-step : (𝐒(x) < 𝐒(y)) → (x < y) [<]-without-step (step p) = p [<]-of-step {𝟎} = minimal [<]-of-step {𝐒(x)} = step [<]-of-step [<]-of-step {lim f} = limitₗ [<]-lim-maximum [<]-transitivity : (x < y) → (y < z) → (x < z) [<]-transitivity minimal (step yz) = minimal [<]-transitivity minimal (limitᵣ {n}{f} yz) = limitᵣ {n}{f} minimal [<]-transitivity (step xy) (step yz) = step ([<]-transitivity xy yz) [<]-transitivity (step xy) (limitᵣ yz) = limitᵣ ([<]-transitivity (step xy) yz) [<]-transitivity (limitₗ xy) (step yz) = limitₗ ([<]-transitivity xy yz) [<]-transitivity (limitₗ xy) (limitᵣ yz) = limitᵣ (limitₗ ([<]-without-step([<]-transitivity (step xy) yz))) [<]-transitivity (limitᵣ xy) (limitₗ yz) = [<]-transitivity xy (step yz) [<]-transitivity (limitᵣ xy) (limitᵣ yz) = limitᵣ ([<]-transitivity (limitᵣ xy) yz) [<]-stepᵣ : (x < y) → (x < 𝐒(y)) [<]-stepᵣ minimal = minimal [<]-stepᵣ (step p) = step ([<]-stepᵣ p) [<]-stepᵣ (limitₗ p) = limitₗ ([<]-stepᵣ p) [<]-stepᵣ (limitᵣ p) = [<]-transitivity p (step [<]-lim-maximum) [<]-to-[≤] : (x < y) → (x ≤ y) [<]-to-[≤] = [<]-stepᵣ [<]-irreflexivity : ¬(x < x) [<]-irreflexivity (step p) = [<]-irreflexivity p [<]-irreflexivity (limitᵣ (limitₗ x)) = [<]-irreflexivity x [<]-asymmetry : (x < y) → (y < x) → ⊥ [<]-asymmetry xy yx = [<]-irreflexivity([<]-transitivity xy yx) [<]-without-stepₗ : (𝐒(x) < y) → (x < y) [<]-without-stepₗ (step p) = [<]-stepᵣ p [<]-without-stepₗ (limitᵣ p) = limitᵣ ([<]-without-stepₗ p) [<]-no-less-than-minimum : ¬(x < 𝟎) [<]-no-less-than-minimum () [≤]-minimal : (𝟎 ≤ x) [≤]-minimal = minimal [≤]-step : (x ≤ y) → (𝐒(x) ≤ 𝐒(y)) [≤]-step = step [≤]-reflexivity : (x ≤ x) [≤]-reflexivity = [<]-of-step [≡]-reflexivity : (x ≡ x) [≡]-reflexivity = [∧]-intro [≤]-reflexivity [≤]-reflexivity open import Logic.Propositional.Theorems [≡]-symmetry : (x ≡ y) → (y ≡ x) [≡]-symmetry = [∧]-symmetry [≡]-step : (x ≡ y) → (𝐒(x) ≡ 𝐒(y)) [≡]-step = [∧]-map step step open import Relator.Equals renaming (_≡_ to _≡ₑ_) [<]-less-than-one : ⦃ ◊ T ⦄ → (x < 𝐒(𝟎)) → (x ≡ₑ 𝟎) [<]-less-than-one minimal = [≡]-intro [<]-less-than-one (limitₗ p) with () ← p{[◊]-existence} [<][≤]-semitransitivityₗ : ⦃ ◊ T ⦄ → (x ≤ y) → (y < z) → (x < z) [<][≤]-semitransitivityₗ {_} {y} {.(lim _)} xy (limitᵣ yz) = limitᵣ ([<][≤]-semitransitivityₗ xy yz) [<][≤]-semitransitivityₗ {.𝟎} {.𝟎} {.(𝐒 _)} minimal minimal = minimal [<][≤]-semitransitivityₗ {.𝟎} {.(𝐒 _)} {.(𝐒 _)} minimal (step yz) = minimal [<][≤]-semitransitivityₗ {.𝟎} {.(lim _)} {.(𝐒 _)} minimal (limitₗ x) = minimal [<][≤]-semitransitivityₗ {.(𝐒 _)} {.(𝐒 _)} {.(𝐒 _)} (step xy) (step yz) = step ([<][≤]-semitransitivityₗ xy yz) [<][≤]-semitransitivityₗ {.(𝐒 _)} {.(lim _)} {.(𝐒 _)} (step (limitᵣ xy)) (limitₗ yz) = step ([<][≤]-semitransitivityₗ xy yz) [<][≤]-semitransitivityₗ {.(lim _)} {.𝟎} {.(𝐒 _)} (limitₗ xy) minimal with () ← xy{[◊]-existence} [<][≤]-semitransitivityₗ {.(lim _)} {.(𝐒 _)} {.(𝐒 _)} (limitₗ xy) (step yz) = limitₗ ([<][≤]-semitransitivityₗ xy yz) [<][≤]-semitransitivityₗ {.(lim _)} {.(lim _)} {.(𝐒 _)} (limitₗ xy) (limitₗ yz) = limitₗ ([<][≤]-semitransitivityₗ ([∃]-proof([<]-limitᵣ-inv xy)) yz) [≤]-transitivity : ⦃ ◊ T ⦄ → (x ≤ y) → (y ≤ z) → (x ≤ z) [≤]-transitivity = [<][≤]-semitransitivityₗ [≡]-transitivity : ⦃ ◊ T ⦄ → (x ≡ y) → (y ≡ z) → (x ≡ z) [≡]-transitivity ([∧]-intro yx xy) ([∧]-intro zy yz) = [∧]-intro ([≤]-transitivity zy yx) ([≤]-transitivity xy yz) [<][≤]-semitransitivityᵣ : ⦃ ◊ T ⦄ → (x < y) → (y ≤ z) → (x < z) [<][≤]-semitransitivityᵣ {.𝟎} {.(𝐒 𝟎)} {.(𝐒 _)} minimal (step minimal) = minimal [<][≤]-semitransitivityᵣ {.𝟎} {.(𝐒 (𝐒 _))} {.(𝐒 _)} minimal (step (step yz)) = minimal [<][≤]-semitransitivityᵣ {.𝟎} {.(𝐒 (lim _))} {.(𝐒 _)} minimal (step (limitₗ yz)) = minimal [<][≤]-semitransitivityᵣ {.𝟎} {.(𝐒 _)} {.(lim _)} minimal (step (limitᵣ yz)) = limitᵣ{[◊]-existence} minimal [<][≤]-semitransitivityᵣ {.(𝐒 _)} {.(𝐒 _)} {𝐒 z} (step xy) (step yz) = step ([<][≤]-semitransitivityᵣ xy yz) [<][≤]-semitransitivityᵣ {.(𝐒 _)} {.(𝐒 _)} {lim z} (step xy) (step (limitᵣ yz)) = limitᵣ (step ([<][≤]-semitransitivityᵣ xy yz)) [<][≤]-semitransitivityᵣ {.(lim _)} {.(𝐒 _)} {𝐒 z} (limitₗ xy) (step yz) = limitₗ ([<][≤]-semitransitivityᵣ xy yz) [<][≤]-semitransitivityᵣ {.(lim _)} {.(𝐒 _)} {lim z} (limitₗ xy) (step (limitᵣ yz)) = limitᵣ ([<][≤]-semitransitivityᵣ (limitₗ xy) (step yz)) [<][≤]-semitransitivityᵣ {x} {.(lim _)} {z} (limitᵣ xy) (limitₗ yz) = [<][≤]-semitransitivityᵣ xy (step yz) {- StrictlyIncreasingSubsequenceExistence : ∀{ℓ}{I : Type{ℓ}} → (I → Ordinal(T)) → Type StrictlyIncreasingSubsequenceExistence{I = I} (f) = ∃{Obj = ℕ → I}(g ↦ ∀{n} → (f(g(n)) < f(g(𝐒(n))))) -- TODO: Requires some kind of search for T StrictlyIncreasingSubsequenceExistence-to-no-maximum : StrictlyIncreasingSubsequenceExistence(f) → ¬ ∃(max ↦ ∀{x} → (f(x) < f(max))) StrictlyIncreasingSubsequenceExistence-to-no-maximum ([∃]-intro witness) ([∃]-intro witness₁) = [<]-asymmetry {!!} {!!} -} {- TODO: Maybe unprovable constructively [<]-classical : (x < y) ∨ ¬(x < y) [<]-classical {𝟎} {𝟎} = [∨]-introᵣ \() [<]-classical {𝟎} {𝐒 y} = [∨]-introₗ minimal [<]-classical {𝟎} {lim y} = [∨]-introₗ (limitᵣ{𝟎} minimal) [<]-classical {𝐒 x} {𝟎} = [∨]-introᵣ \() [<]-classical {𝐒 x} {𝐒 y} = [∨]-elim2 step (_∘ [<]-without-step) ([<]-classical {x} {y}) [<]-classical {𝐒 x} {lim y} with [<]-classical {x} {lim y} ... | [∨]-introₗ p = {!!} ... | [∨]-introᵣ p = {!!} [<]-classical {lim x} {𝟎} = [∨]-introᵣ \() [<]-classical {lim x} {𝐒 y} with [<]-classical {lim x} {y} ... | [∨]-introₗ (limitₗ p) = [∨]-introₗ (limitₗ ([<]-stepᵣ p)) ... | [∨]-introₗ (limitᵣ (limitₗ p)) = [∨]-introₗ (limitₗ (limitᵣ ([<]-stepᵣ p))) ... | [∨]-introᵣ p = [∨]-introᵣ (p ∘ (q ↦ {![<]-limitₗ-inv q!})) [<]-classical {lim x} {lim y} = {!!} -} {- TODO: This is true when there is no maximum for f ∀{x} → ∃(y ↦ (x < y) ∧ (f(x) < f(y))) test : (x < lim f) → (𝐒(x) < lim f) test {𝟎} (limitᵣ minimal) = limitᵣ (step {!!}) test {𝐒 x} (limitᵣ (step p)) = limitᵣ (step {!!}) test {lim x} (limitᵣ (limitₗ x₁)) = {!!} -} {- TODO: Also unprovable constructively? f either have a maximum value or is unbounded (so, this would require some kind of search?) [<]-sequence-limit : ∀{n} → (f(n) < lim g) → ((∀{n} → (f(n) < lim g)) ∨ (f(n) ≡ x)) [≤]-total : ⦃ ◊ T ⦄ → ((x ≤ y) ∨ (y ≤ x)) [≤]-total {𝟎} {_} = [∨]-introₗ minimal [≤]-total {_} {𝟎} = [∨]-introᵣ minimal [≤]-total {𝐒 x} {𝐒 y} = [∨]-elim2 step step ([≤]-total {x} {y}) [≤]-total {𝐒 x} {lim y} with [≤]-total {x} {lim y} ... | [∨]-introₗ minimal = [∨]-introₗ (step [<]-lim-minimal) ... | [∨]-introₗ (step (limitᵣ p)) = [∨]-introₗ (step (limitᵣ (step {!!}))) ... | [∨]-introₗ (limitₗ p) = [∨]-introₗ (step (limitᵣ (limitₗ (\{n} → {![<]-limitᵣ-inv (p{n})!})))) ... | [∨]-introᵣ p = [∨]-introᵣ ([<]-stepᵣ p) [≤]-total {lim x} {𝐒 y} = {!!} -- [∨]-symmetry ([≤]-total {𝐒 y} {lim x}) [≤]-total {lim x} {lim y} = {!!} -} {- [≤]-to-[<][≡] : ⦃ ◊ T ⦄ → (x ≤ y) → ((x < y) ∨ (x ≡ y)) [≤]-to-[<][≡] {𝟎} {𝟎} minimal = [∨]-introᵣ ([∧]-intro minimal minimal) [≤]-to-[<][≡] {𝟎} {𝐒 y} minimal = [∨]-introₗ minimal [≤]-to-[<][≡] {𝟎} {lim y} minimal = [∨]-introₗ [<]-lim-minimal [≤]-to-[<][≡] {𝐒 x} {𝐒 y} (step p) = [∨]-elim2 step [≡]-step ([≤]-to-[<][≡] {x}{y} p) [≤]-to-[<][≡] {𝐒 x} {lim y} (step (limitᵣ p)) with [≤]-to-[<][≡] p ... | [∨]-introₗ pp = [∨]-introₗ (limitᵣ (step pp)) ... | [∨]-introᵣ ([∧]-intro l r) = {!!} -- [∨]-introᵣ ([∧]-intro (limitₗ (\{n} → {!!})) (step (limitᵣ r))) -- [∨]-elim2 (limitᵣ ∘ step) (\([∧]-intro l r) → [∧]-intro (limitₗ {![<]-stepᵣ l!}) (step (limitᵣ r))) ([≤]-to-[<][≡] p) [≤]-to-[<][≡] {lim x} {𝟎} (limitₗ p) = [∨]-introᵣ ([∧]-intro minimal (limitₗ p)) [≤]-to-[<][≡] {lim x} {𝐒 y} (limitₗ p) = {!!} [≤]-to-[<][≡] {lim x} {lim y} (limitₗ p) = {!!} [<]-trichotomy : ⦃ ◊ T ⦄ → ((x < y) ∨ (x ≡ y) ∨ (x > y)) [<]-trichotomy {𝟎} {𝟎} = [∨]-introₗ ([∨]-introᵣ [≡]-reflexivity) [<]-trichotomy {𝟎} {𝐒 y} = [∨]-introₗ ([∨]-introₗ minimal) [<]-trichotomy {𝟎} {lim y} = [∨]-introₗ ([∨]-introₗ [<]-lim-minimal) [<]-trichotomy {𝐒 x} {𝟎} = [∨]-introᵣ minimal [<]-trichotomy {lim x} {𝟎} = [∨]-introᵣ [<]-lim-minimal [<]-trichotomy {𝐒 x} {𝐒 y} = [∨]-elim2 ([∨]-elim2 step [≡]-step) step ([<]-trichotomy {x}{y}) [<]-trichotomy {𝐒 x} {lim y} with [<]-trichotomy {x} {lim y} ... | [∨]-introₗ ([∨]-introᵣ ([∧]-intro p _)) = [∨]-introᵣ p ... | [∨]-introᵣ p = [∨]-introᵣ ([<]-stepᵣ p) ... | [∨]-introₗ ([∨]-introₗ (limitᵣ{n} p)) = {!!} [<]-trichotomy {lim x} {𝐒 y} = {!!} [<]-trichotomy {lim x} {lim y} = {!!} -} lim-of-constant : ⦃ ◊ T ⦄ → (lim(const x) ≡ 𝐒(x)) lim-of-constant = [∧]-intro (step (limitᵣ{[◊]-existence} [<]-of-step)) (limitₗ [<]-of-step) lim-of-sequence-with-maximum : ∀{max} → (∀{n} → (f(n) ≤ f(max))) → (lim f ≡ 𝐒(f(max))) lim-of-sequence-with-maximum{max = max} p = [∧]-intro (step (limitᵣ{max} [<]-of-step)) (limitₗ p) -- ∃(max ↦ (∀{n} → (f(n) ≤ f(max))) ∧ (lim f ≡ 𝐒(f(max)))) ∨ (∀{x} → (𝐒(f(x)) < lim f)) -- or maybe (∀{x y} → (f(x) + f(y) < lim f)) lim-[≤]-function : (∀{x} → (f(x) ≤ g(x))) → (lim f ≤ lim g) lim-[≤]-function p = limitₗ(limitᵣ p) lim-function : (∀{x} → (f(x) ≡ g(x))) → (lim f ≡ lim g) lim-function p = [∧]-intro (lim-[≤]-function([∧]-elimₗ p)) (lim-[≤]-function([∧]-elimᵣ p)) [+]-identityᵣ : ((x + 𝟎) ≡ x) [+]-identityᵣ = [≡]-reflexivity [+]-identityₗ : ((𝟎 + x) ≡ x) [+]-identityₗ {𝟎} = [+]-identityᵣ [+]-identityₗ {𝐒 x} = [≡]-step ([+]-identityₗ {x}) [+]-identityₗ {lim x} = lim-function [+]-identityₗ [+]-associativity : (((x + y) + z) ≡ (x + (y + z))) [+]-associativity {x}{y}{𝟎} = [≡]-reflexivity [+]-associativity {x}{y}{𝐒 z} = [≡]-step ([+]-associativity {x}{y}{z}) [+]-associativity {x}{y}{lim z} = lim-function ([+]-associativity {x}{y}{_}) [+]ₗ-[<][≤]-semifunction : (x < y) → ((x + z) ≤ (y + z)) [+]ₗ-[<][≤]-semifunction {z = 𝟎} p = [<]-to-[≤] p [+]ₗ-[<][≤]-semifunction {z = 𝐒 z} p = [≤]-step([+]ₗ-[<][≤]-semifunction {z = z} p) [+]ₗ-[<][≤]-semifunction {z = lim x} p = limitₗ (limitᵣ ([+]ₗ-[<][≤]-semifunction p)) [+]ᵣ-[<]-function : ⦃ ◊ T ⦄ → (y < z) → ((x + y) < (x + z)) [+]ᵣ-[<]-function (minimal {𝟎}) = [<]-of-step [+]ᵣ-[<]-function (minimal {𝐒 x}) = [<]-stepᵣ ([+]ᵣ-[<]-function minimal) [+]ᵣ-[<]-function (minimal {lim x}) = [<]-stepᵣ (limitᵣ{[◊]-existence} ([+]ᵣ-[<]-function minimal)) [+]ᵣ-[<]-function (step p) = step ([+]ᵣ-[<]-function p) [+]ᵣ-[<]-function (limitₗ p) = limitₗ ([+]ᵣ-[<]-function p) [+]ᵣ-[<]-function (limitᵣ p) = limitᵣ ([+]ᵣ-[<]-function p) {- [+]-operator : ⦃ ◊ T ⦄ → (x₁ ≡ x₂) → (y₁ ≡ y₂) → ((x₁ + y₁) ≡ (x₂ + y₂)) [+]-operator ([∧]-intro pxl pxr) ([∧]-intro pyl pyr) = [∧]-intro {!!} {!!} where l : (x₁ ≡ x₂) → ((x₁ + y) ≡ (x₂ + y)) l {𝟎} {x₂} ([∧]-intro pl pr) = [∧]-intro {!!} {!!} l {𝐒 x₁} {x₂} ([∧]-intro pl pr) = [∧]-intro {!!} {!!} l {lim x₁} {x₂} ([∧]-intro pl pr) = [∧]-intro {!!} {!!} r : (y₁ ≡ y₂) → ((x + y₁) ≡ (x + y₂)) r ([∧]-intro pl pr) = [∧]-intro ([+]ᵣ-[<]-function pl) ([+]ᵣ-[<]-function pr) -} open import Structure.Relator.Ordering open Structure.Relator.Ordering.Strict.Properties using (intro) Ordinal-accessibleₗ : ⦃ ◊ T ⦄ → Strict.Properties.Accessibleₗ(_<_)(x) Ordinal-accessibleₗ {n} = intro ⦃ proof{n} ⦄ where proof : ∀{y x} → ⦃ _ : (x < y) ⦄ → Strict.Properties.Accessibleₗ(_<_)(x) proof {_} {𝟎} = intro ⦃ \ ⦃ ⦄ ⦄ proof {𝐒 𝟎} {lim y} ⦃ limitₗ p ⦄ with () ← p{[◊]-existence} proof {𝐒 x} {𝐒 y} ⦃ step p ⦄ = intro ⦃ \{z} ⦃ pz ⦄ → Strict.Properties.Accessibleₗ.proof (Ordinal-accessibleₗ {x}) ⦃ [<][≤]-semitransitivityₗ pz p ⦄ ⦄ proof {𝐒(𝐒 x)} {lim y} ⦃ limitₗ p ⦄ = intro ⦃ \{z} ⦃ pz ⦄ → Strict.Properties.Accessibleₗ.proof (Ordinal-accessibleₗ {𝐒 x}) ⦃ [<][≤]-semitransitivityₗ ([∃]-proof([<]-limitᵣ-inv pz)) p ⦄ ⦄ proof {𝐒(lim x)} {lim y} ⦃ limitₗ p ⦄ = intro ⦃ \{z} ⦃ pz ⦄ → Strict.Properties.Accessibleₗ.proof (Ordinal-accessibleₗ {lim x}) ⦃ [<][≤]-semitransitivityₗ ([∃]-proof([<]-limitᵣ-inv pz)) p ⦄ ⦄ proof {lim x} {𝐒 y} ⦃ limitᵣ(step p) ⦄ = intro ⦃ \{z} ⦃ pz ⦄ → Strict.Properties.Accessibleₗ.proof Ordinal-accessibleₗ ⦃ [<][≤]-semitransitivityₗ pz p ⦄ ⦄ proof {lim x} {lim y} ⦃ limitᵣ(limitₗ p) ⦄ = intro ⦃ \{z} ⦃ pz ⦄ → Strict.Properties.Accessibleₗ.proof Ordinal-accessibleₗ ⦃ [<][≤]-semitransitivityₗ ([∃]-proof([<]-limitᵣ-inv pz)) p ⦄ ⦄ module _ where open import Functional open import Function.Iteration open import Numeral.Natural.Induction private variable n : ℕ _⋅ₙ_ : Ordinal(ℕ) → ℕ → Ordinal(ℕ) _⋅ₙ_ x = ℕ-elim 𝟎 (const(lim ∘ (_+ₙ_))) ω : Ordinal(ℕ) ω = lim from-ℕ ω² : Ordinal(ℕ) ω² = lim(ω ⋅ₙ_) ω-[<]-correctness : from-ℕ(n) < ω ω-[<]-correctness {𝟎} = limitᵣ{i = 𝟎} minimal ω-[<]-correctness {𝐒(n)} = limitᵣ{i = 𝐒(n)} (step [<]-of-step) open import Relator.Equals renaming (_≡_ to _≡ₑ_) open import Relator.Equals.Proofs open import Type.Properties.Inhabited open import Structure.Relator private variable f : ℕ → Ordinal(ℕ) instance ℕ-inhabited : ◊ ℕ ℕ-inhabited = intro ⦃ 𝟎 ⦄ strictly-increasing-sequence-when-zero : (∀{n} → (f(n) < f(𝐒(n)))) → (f(n) ≡ₑ 𝟎) → (n ≡ₑ 𝟎) strictly-increasing-sequence-when-zero {f = f}{n = 𝟎} ord p = [≡]-intro strictly-increasing-sequence-when-zero {f = f}{n = 𝐒 n} ord p with f(n) | ord{n} ... | 𝟎 | ord' with () ← [<]-irreflexivity (substitute₂ᵣ(_<_) p ord') ... | 𝐒 fn | ord' with () ← [<]-asymmetry minimal (substitute₂ᵣ(_<_) p ord') ... | lim x | ord' with () ← [<]-asymmetry [<]-lim-minimal (substitute₂ᵣ(_<_) p ord')
{ "alphanum_fraction": 0.5130799329, "avg_line_length": 46.832460733, "ext": "agda", "hexsha": "d695b8b4ab94a25ebb2812e6c5c80c2f267e46f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Ordinal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Ordinal.agda", "max_line_length": 430, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Ordinal.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 8206, "size": 17890 }
record ∃ {A : Set} (B : A → Set) : Set where field fst : A snd : B fst data ⊥ : Set where infix 3 ¬_ ¬_ : Set → Set ¬ P = P → ⊥ infixr 1 _⊎_ data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B ⊎-map : ∀ {A₁ A₂ B₁ B₂ : Set} → (A₁ → A₂) → (B₁ → B₂) → A₁ ⊎ B₁ → A₂ ⊎ B₂ ⊎-map f g (inj₁ x) = inj₁ (f x) ⊎-map f g (inj₂ y) = inj₂ (g y) record Raw-monad (M : Set → Set) : Set₁ where constructor mk infixl 5 _>>=_ field return : ∀ {A} → A → M A _>>=_ : ∀ {A B} → M A → (A → M B) → M B map : ∀ {A B} → (A → B) → M A → M B map f x = x >>= λ x → return (f x) open Raw-monad ⦃ … ⦄ -- Id is included in order to make run overloaded. record Id (A : Set) : Set where field run : A open Id infix 3 ¬¬_ record ¬¬_ (A : Set) : Set where field run : ¬ ¬ A open ¬¬_ instance double-negation-monad : Raw-monad ¬¬_ run (Raw-monad.return double-negation-monad x) = λ f → f x run (Raw-monad._>>=_ double-negation-monad x f) = λ ¬b → run x (λ a → run (f a) ¬b) excluded-middle : {A : Set} → ¬¬ (A ⊎ ¬ A) run excluded-middle ¬[a⊎¬a] = ¬[a⊎¬a] (inj₂ λ a → ¬[a⊎¬a] (inj₁ a)) postulate A : Set P : Set → Set _⇓_ : P A → A → Set _⇑ : P A → Set ¬⇓→⇑ : {x : P A} → ¬ (∃ λ y → x ⇓ y) → x ⇑ ¬¬[⇓⊎⇑] : (x : P A) → ¬ ¬ ((∃ λ y → x ⇓ y) ⊎ x ⇑) ¬¬[⇓⊎⇑] x = run (map (⊎-map (λ x → x) ¬⇓→⇑) excluded-middle)
{ "alphanum_fraction": 0.4723220705, "avg_line_length": 19.0547945205, "ext": "agda", "hexsha": "507634655e1824a8990cc242fe9c7caf11f12c84", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3518.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3518.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3518.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 687, "size": 1391 }
{-# OPTIONS --cubical --no-import-sorts #-} module Summary where import Cubical.Data.Nat using (ℕ) open import Cubical.Foundations.Prelude using (Lift; refl) open import Cubical.Foundations.Isomorphism open import Cubical.Data.Unit.Base using (Unit) open import Cubical.Data.Sigma.Base infix 1 _≅_ _≅_ = Iso open import Number.Postulates open import Number.Base open import Number.Prettyprint open ℕⁿ open ℤᶻ open ℚᶠ open ℝʳ open ℂᶜ number-≅-Σ : ∀{p} → Number p ≅ NumberInterpretation p number-≅-Σ = λ where .Iso.fun → pop .Iso.inv (x , p) → x ,, p .Iso.leftInv (x ,, p) → refl .Iso.rightInv (x , p) → refl iso00 : [ℕ] ≅ Σ[ x ∈ Cubical.Data.Nat.ℕ ] Unit iso01 : [ℕ⁺⁻] ≅ Σ[ x ∈ Cubical.Data.Nat.ℕ ] x #ⁿ 0ⁿ iso02 : [ℕ₀⁺] ≅ Σ[ x ∈ Cubical.Data.Nat.ℕ ] 0ⁿ ≤ⁿ x iso03 : [ℕ⁺] ≅ Σ[ x ∈ Cubical.Data.Nat.ℕ ] 0ⁿ <ⁿ x iso04 : [ℕ₀⁻] ≅ Σ[ x ∈ Cubical.Data.Nat.ℕ ] x ≤ⁿ 0ⁿ iso05 : [ℤ] ≅ Σ[ x ∈ ℤ.Carrier ] Lift {j = ℤℓ'} Unit iso06 : [ℤ⁺⁻] ≅ Σ[ x ∈ ℤ.Carrier ] x #ᶻ 0ᶻ iso07 : [ℤ₀⁺] ≅ Σ[ x ∈ ℤ.Carrier ] 0ᶻ ≤ᶻ x iso08 : [ℤ⁺] ≅ Σ[ x ∈ ℤ.Carrier ] 0ᶻ <ᶻ x iso09 : [ℤ⁻] ≅ Σ[ x ∈ ℤ.Carrier ] x <ᶻ 0ᶻ iso10 : [ℤ₀⁻] ≅ Σ[ x ∈ ℤ.Carrier ] x ≤ᶻ 0ᶻ iso11 : [ℚ] ≅ Σ[ x ∈ ℚ.Carrier ] Lift {j = ℚℓ'} Unit iso12 : [ℚ⁺⁻] ≅ Σ[ x ∈ ℚ.Carrier ] x #ᶠ 0ᶠ iso13 : [ℚ₀⁺] ≅ Σ[ x ∈ ℚ.Carrier ] 0ᶠ ≤ᶠ x iso14 : [ℚ⁺] ≅ Σ[ x ∈ ℚ.Carrier ] 0ᶠ <ᶠ x iso15 : [ℚ⁻] ≅ Σ[ x ∈ ℚ.Carrier ] x <ᶠ 0ᶠ iso16 : [ℚ₀⁻] ≅ Σ[ x ∈ ℚ.Carrier ] x ≤ᶠ 0ᶠ iso17 : [ℝ] ≅ Σ[ x ∈ ℝ.Carrier ] Lift {j = ℝℓ'} Unit iso18 : [ℝ⁺⁻] ≅ Σ[ x ∈ ℝ.Carrier ] x #ʳ 0ʳ iso19 : [ℝ₀⁺] ≅ Σ[ x ∈ ℝ.Carrier ] 0ʳ ≤ʳ x iso20 : [ℝ⁺] ≅ Σ[ x ∈ ℝ.Carrier ] 0ʳ <ʳ x iso21 : [ℝ⁻] ≅ Σ[ x ∈ ℝ.Carrier ] x <ʳ 0ʳ iso22 : [ℝ₀⁻] ≅ Σ[ x ∈ ℝ.Carrier ] x ≤ʳ 0ʳ iso23 : [ℂ] ≅ Σ[ x ∈ ℂ.Carrier ] Lift {j = ℂℓ'} Unit iso24 : [ℂ⁺⁻] ≅ Σ[ x ∈ ℂ.Carrier ] x #ᶜ 0ᶜ iso00 = number-≅-Σ iso01 = number-≅-Σ iso02 = number-≅-Σ iso03 = number-≅-Σ iso04 = number-≅-Σ iso05 = number-≅-Σ iso06 = number-≅-Σ iso07 = number-≅-Σ iso08 = number-≅-Σ iso09 = number-≅-Σ iso10 = number-≅-Σ iso11 = number-≅-Σ iso12 = number-≅-Σ iso13 = number-≅-Σ iso14 = number-≅-Σ iso15 = number-≅-Σ iso16 = number-≅-Σ iso17 = number-≅-Σ iso18 = number-≅-Σ iso19 = number-≅-Σ iso20 = number-≅-Σ iso21 = number-≅-Σ iso22 = number-≅-Σ iso23 = number-≅-Σ iso24 = number-≅-Σ
{ "alphanum_fraction": 0.5304804199, "avg_line_length": 30.2073170732, "ext": "agda", "hexsha": "9c5a879511ec12da902b0f39f138ff659189f312", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Summary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Summary.agda", "max_line_length": 63, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Summary.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 1337, "size": 2477 }
open import Agda.Builtin.Equality postulate A : Set F G H I J : (A : Set₁) → (A → A → Set) → Set K : ⦃ Set → Set → Set ⦄ → { Set → Set → Set } → Set syntax F A (λ x y → B) = y ⟨ A ∼ B ⟩₁ x syntax G A (λ _ y → B) = y ⟨ A ∼ B ⟩₂ syntax H A (λ x _ → B) = ⟨ B ∼ A ⟩₃ x syntax I A (λ _ _ → B) = ⟨ B ∼ A ⟩₄ syntax J A (λ x y → B) = x y ∶ A ↝ B syntax K ⦃ λ A B → C ⦄ { λ D E → F } = A B C - D E F _ : (P ⟨ (Set → Set) ∼ P (Q A) ⟩₁ Q) ≡ F (Set → Set) (λ F G → G (F A)) _ = refl _ : (P ⟨ (Set → Set) ∼ P A ⟩₂) ≡ G (Set → Set) (λ _ G → G A) _ = refl _ : (⟨ Q A ∼ (Set → Set) ⟩₃ Q) ≡ H (Set → Set) (λ F _ → F A) _ = refl _ : (⟨ A ∼ (Set → Set) ⟩₄) ≡ I (Set → Set) (λ _ _ → A) _ = refl _ : (P Q ∶ (Set → Set) ↝ P (Q A)) ≡ J (Set → Set) (λ F G → F (G A)) _ = refl _ : (x x x - x x x) ≡ K ⦃ λ _ x → x ⦄ { λ _ y → y } _ = refl
{ "alphanum_fraction": 0.3773173391, "avg_line_length": 28.65625, "ext": "agda", "hexsha": "936ddee2af837064f6037b5285e7a156d608ec47", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue394.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue394.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue394.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 446, "size": 917 }
module Generic.Lib.Data.Sets where open import Generic.Lib.Intro open import Generic.Lib.Data.Nat open import Generic.Lib.Data.Product open import Generic.Lib.Data.Pow infixl 6 _⊔ⁿ_ _⊔ⁿ_ : ∀ {n} -> Level ^ n -> Level -> Level _⊔ⁿ_ = flip $ foldPow _ _⊔_ Sets : ∀ {n} -> (αs : Level ^ n) -> Set (mapPow lsuc αs ⊔ⁿ lzero) Sets {0} _ = ⊤ Sets {suc _} (α , αs) = Set α × Sets αs FoldSets : ∀ {n β αs} -> Sets {n} αs -> Set β -> Set (αs ⊔ⁿ β) FoldSets {0} tt B = B FoldSets {suc _} (A , As) B = A -> FoldSets As B HList : ∀ {n} {αs} -> Sets {n} αs -> Set (αs ⊔ⁿ lzero) HList {0} tt = ⊤ HList {suc _} (A , As) = A × HList As applyFoldSets : ∀ {n β αs} {As : Sets {n} αs} {B : Set β} -> FoldSets As B -> HList As -> B applyFoldSets {0} y tt = y applyFoldSets {suc n} f (x , xs) = applyFoldSets (f x) xs
{ "alphanum_fraction": 0.5663507109, "avg_line_length": 30.1428571429, "ext": "agda", "hexsha": "ccb26d7ec23c11b3705f3e10b829bdb95c50a159", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Data/Sets.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Data/Sets.agda", "max_line_length": 91, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Data/Sets.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 352, "size": 844 }
module Prelude.List.Relations.Properties where open import Agda.Primitive open import Prelude.Equality open import Prelude.Nat open import Prelude.Empty open import Prelude.Unit open import Prelude.Product open import Prelude.Number open import Prelude.Decidable open import Prelude.List.Base open import Prelude.List.Relations.All open import Prelude.List.Relations.Any open import Prelude.Nat.Properties open import Prelude.Variables open import Prelude.Applicative -- All -- module _ {a b} {A : Set a} {P Q : A → Set b} (f : ∀ {x} → P x → Q x) where mapAll : ∀ {xs} → All P xs → All Q xs mapAll [] = [] mapAll (x ∷ xs) = f x ∷ mapAll xs traverseAll : ∀ {a b} {A : Set a} {B : A → Set a} {F : Set a → Set b} {{AppF : Applicative F}} → (∀ x → F (B x)) → (xs : List A) → F (All B xs) traverseAll f [] = pure [] traverseAll f (x ∷ xs) = ⦇ f x ∷ traverseAll f xs ⦈ module _ {a b} {A : Set a} {P : A → Set b} where -- Append infixr 5 _++All_ _++All_ : ∀ {xs ys} → All P xs → All P ys → All P (xs ++ ys) [] ++All qs = qs (p ∷ ps) ++All qs = p ∷ ps ++All qs -- Any -- module _ {a b} {A : Set a} {P Q : A → Set b} (f : ∀ {x} → P x → Q x) where mapAny : ∀ {xs} → Any P xs → Any Q xs mapAny (zero x) = zero (f x) mapAny (suc i) = suc (mapAny i) -- Literal overloading for Any module _ {a b} {A : Set a} {P : A → Set b} where private AnyConstraint : List A → Nat → Set (a ⊔ b) AnyConstraint [] _ = ⊥′ AnyConstraint (x ∷ _) zero = ⊤′ {a} × P x -- hack to line up levels AnyConstraint (_ ∷ xs) (suc i) = AnyConstraint xs i natToIx : ∀ (xs : List A) n → {{_ : AnyConstraint xs n}} → Any P xs natToIx [] n {{}} natToIx (x ∷ xs) zero {{_ , px}} = zero px natToIx (x ∷ xs) (suc n) = suc (natToIx xs n) instance NumberAny : ∀ {xs} → Number (Any P xs) Number.Constraint (NumberAny {xs}) = AnyConstraint xs fromNat {{NumberAny {xs}}} = natToIx xs lookupAny : ∀ {a b} {A : Set a} {P Q : A → Set b} {xs} → All P xs → Any Q xs → Σ A (λ x → P x × Q x) lookupAny (p ∷ ps) (zero q) = _ , p , q lookupAny (p ∷ ps) (suc i) = lookupAny ps i lookup∈ : ∀ {a b} {A : Set a} {P : A → Set b} {xs x} → All P xs → x ∈ xs → P x lookup∈ (p ∷ ps) (zero refl) = p lookup∈ (p ∷ ps) (suc i) = lookup∈ ps i module _ {a b} {A : Set a} {P : A → Set b} {{EqP : ∀ {x} → Eq (P x)}} where private z' : ∀ {x xs} → P x → Any P (x ∷ xs) z' = zero zero-inj : ∀ {x} {xs : List A} {p q : P x} → Any.zero {xs = xs} p ≡ z' q → p ≡ q zero-inj refl = refl sucAny-inj : ∀ {x xs} {i j : Any P xs} → Any.suc {x = x} i ≡ Any.suc {x = x} j → i ≡ j sucAny-inj refl = refl cons-inj₁ : ∀ {x xs} {p q : P x} {ps qs : All P xs} → p All.∷ ps ≡ q ∷ qs → p ≡ q cons-inj₁ refl = refl cons-inj₂ : ∀ {x xs} {p q : P x} {ps qs : All P xs} → p All.∷ ps ≡ q ∷ qs → ps ≡ qs cons-inj₂ refl = refl instance EqAny : ∀ {xs} → Eq (Any P xs) _==_ {{EqAny}} (zero p) (zero q) = decEq₁ zero-inj (p == q) _==_ {{EqAny}} (suc i) (suc j) = decEq₁ sucAny-inj (i == j) _==_ {{EqAny}} (zero _) (suc _) = no λ () _==_ {{EqAny}} (suc _) (zero _) = no λ () EqAll : ∀ {xs} → Eq (All P xs) _==_ {{EqAll}} [] [] = yes refl _==_ {{EqAll}} (x ∷ xs) (y ∷ ys) = decEq₂ cons-inj₁ cons-inj₂ (x == y) (xs == ys)
{ "alphanum_fraction": 0.5288004751, "avg_line_length": 31.7735849057, "ext": "agda", "hexsha": "2b0302b8ddc68588af35d815563ae35a7ab021aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/List/Relations/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/List/Relations/Properties.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/List/Relations/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1325, "size": 3368 }
{-# OPTIONS --without-K --safe #-} module Algebra.Linear.Structures where open import Algebra.Structures.Field public open import Algebra.Linear.Structures.VectorSpace public
{ "alphanum_fraction": 0.7966101695, "avg_line_length": 25.2857142857, "ext": "agda", "hexsha": "3a46132dce688003be4dbe15616a250a961ff3f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Structures.agda", "max_line_length": 56, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Structures.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 33, "size": 177 }
module _ (A : Set) where {-# POLARITY A #-}
{ "alphanum_fraction": 0.5555555556, "avg_line_length": 11.25, "ext": "agda", "hexsha": "321085af058c11b175b010822dd224b391045e72", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/Fail/Polarity-pragma-for-module-parameter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/Fail/Polarity-pragma-for-module-parameter.agda", "max_line_length": 24, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/Fail/Polarity-pragma-for-module-parameter.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 15, "size": 45 }
module Lvl.MultiFunctions where open import Data open import Data.Tuple open import Data.Tuple.Raise import Data.Tuple.Raiseᵣ.Functions as Raise open import Lvl -- The maximum level of a tuple list of levels. ⨆ : ∀{n} → (Level ^ n) → Level ⨆ = Raise.foldᵣ(_⊔_) 𝟎
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 22.5, "ext": "agda", "hexsha": "2cb94b936daf0a7dd0211fb18fa0027725bb7fb6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Lvl/MultiFunctions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Lvl/MultiFunctions.agda", "max_line_length": 48, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Lvl/MultiFunctions.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 90, "size": 270 }
open import FRP.JS.Nat using ( ℕ ; suc ; _+_ ) open import FRP.JS.DOM open import FRP.JS.RSet open import FRP.JS.Time using ( Time ; epoch ) open import FRP.JS.Delay using ( _ms ) open import FRP.JS.Behaviour open import FRP.JS.Bool using ( Bool ; not ; true ) open import FRP.JS.QUnit using ( TestSuite ; ok◇ ; test ; _,_ ; ε ) module FRP.JS.Test.DOM where withDOW : {A : Set} → ((w : DOW) → A) → A withDOW f = f unattached tests : TestSuite tests = ( test "≟*" ( ok◇ "[] ≟* []" (withDOW λ w → [] {w} ≟* []) , ok◇ "[] ++ [] ≟* []" (withDOW λ w → [] {left w} ++ [] ≟* []) ) , test "attr" ( ok◇ "attr class [ alpha ] ≟* attr class [ alpha ]" (withDOW λ w → attr {w} "class" [ "alpha" ] ≟* attr "class" [ "alpha" ]) , ok◇ "attr foo [ alpha ] ≟* attr foo [ alpha ]" (withDOW λ w → attr {w} "foo" [ "alpha" ] ≟* attr "foo" [ "alpha" ]) , ok◇ "attr foo [ alpha ] ++ attr bar [ alpha ] ≟* attr foo [ alpha ] ++ attr bar [ alpha ]" (withDOW λ w → attr {left w} "foo" [ "alpha" ] ++ attr "bar" [ "alpha" ] ≟* attr "foo" [ "alpha" ] ++ attr "bar" [ "alpha" ]) , ok◇ "attr class [ beta ] ≟* attr class [ alpha ]" (withDOW λ w → not* (attr {w} "class" [ "beta" ] ≟* attr "class" [ "alpha" ])) , ok◇ "attr foo [ alpha ] ≟* attr class [ alpha ]" (withDOW λ w → not* (attr {w} "foo" [ "alpha" ] ≟* attr "class" [ "alpha" ])) , ok◇ "attr foo [ alpha ] ++ attr bar [ alpha ] ≟* attr foo [ alpha ]" (withDOW λ w → not* (attr {left w} "foo" [ "alpha" ] ++ attr "bar" [ "alpha" ] ≟* attr "foo" [ "alpha" ])) ) , test "text" ( ok◇ "text [ abc ] ≟* text [ abc ]" (withDOW λ w → text {w} [ "abc" ] ≟* text [ "abc" ]) , ok◇ "text [ a ] ≟* text [ abc ]" (withDOW λ w → not* (text {w} [ "a" ] ≟* text [ "abc" ])) , ok◇ "[] ≟* text [ abc ]" (withDOW λ w → not* ([] ≟* text {w} [ "abc" ])) , ok◇ "text [ abc ] ++ [] ≟* text [ abc ]" (withDOW λ w → text {left w} [ "abc" ] ++ [] ≟* (text [ "abc" ])) , ok◇ "[] ++ text [ abc ] ≟* text [ abc ]" (withDOW λ w → [] ++ text {right w} [ "abc" ] ≟* (text [ "abc" ])) ) , test "element" ( ok◇ "element p (text [ abc ]) ≟* element p (text [ abc ])" (withDOW λ w → element "p" {w} (text [ "abc" ]) ≟* element "p" (text [ "abc" ])) , ok◇ "element p (text [ a ]) ≟* element p (text [ abc ])" (withDOW λ w → not* (element "p" {w} (text [ "a" ]) ≟* element "p" (text [ "abc" ]))) , ok◇ "element div (attr class [ alpha ] ++ text [ abc ]) ≟* element div (attr class [ alpha ] ++ text [ abc ])" (withDOW λ w → element "div" {w} (attr "class" [ "alpha" ] ++ text [ "abc" ]) ≟* element "div" {w} (attr "class" [ "alpha" ] ++ text [ "abc" ])) , ok◇ "element div (attr class [ beta ] ++ text [ abc ]) ≟* element div (attr class [ alpha ] ++ text [ abc ])" (withDOW λ w → not* (element "div" {w} (attr "class" [ "beta" ] ++ text [ "abc" ]) ≟* element "div" {w} (attr "class" [ "alpha" ] ++ text [ "abc" ]))) , ok◇ "element p (text [ abc ]) ≟* element p (text [ abc ])" (withDOW λ w → element "p" {w} (text [ "abc" ]) ≟* element "p" (text [ "abc" ])) , ok◇ "element p (text [ a ]) ++ element p (text [ b ]) ≟* element p (text [ a ])" (withDOW λ w → not* (element "p" {left w} (text [ "a" ]) ++ element "p" (text [ "b" ]) ≟* element "p" (text [ "a" ]))) ) , test "join" ( ok◇ "text (join (map [ x ] [ abc ])) ≟* text [ abc ]" (withDOW λ w → text {w} (join (map (λ s → [ s ]) [ "abc" ])) ≟* text [ "abc" ]) , ok◇ "join (map (text [ x ]) [ abc ]) ≟* text [ abc ]" (withDOW λ w → join (map (λ s → text {w} [ s ]) [ "abc" ]) ≟* text [ "abc" ]) , ok◇ "element p (join (map (attr foo [ x ]) [ alpha ]) ++ join (map (attr bar [ x ]) [ alpha ])) ≟* element p (attr foo [ alpha ] ++ attr bar [ alpha ])" (withDOW λ w → element "p" {w} (join (map (λ s → attr "foo" [ s ]) [ "alpha" ]) ++ join (map (λ s → attr "bar" [ s ]) [ "alpha" ])) ≟* element "p" (attr "foo" [ "alpha" ] ++ attr "bar" [ "alpha" ])) , ok◇ "element p (join (map (attr foo [ x ]) [ beta ]) ++ join (map (attr bar [ x ]) [ alpha ])) ≟* element p (attr foo [ alpha ] ++ attr bar [ alpha ])" (withDOW λ w → not* (element "p" {w} (join (map (λ s → attr "foo" [ s ]) [ "beta" ]) ++ join (map (λ s → attr "bar" [ s ]) [ "alpha" ])) ≟* element "p" (attr "foo" [ "alpha" ] ++ attr "bar" [ "alpha" ]))) , ok◇ "text (join (map [ x ] [ a ])) ≟* text [ abc ]" (withDOW λ w → not* (text {w} (join (map (λ s → [ s ]) [ "a" ])) ≟* text [ "abc" ])) , ok◇ "join (map (text [ x ]) [ a ]) ≟* text [ abc ]" (withDOW λ w → not* (join (map (λ s → text {w} [ s ]) [ "a" ]) ≟* text [ "abc" ])) ) )
{ "alphanum_fraction": 0.469787234, "avg_line_length": 63.5135135135, "ext": "agda", "hexsha": "2722ee783524e1e1892a164d1d45e105e47115a6", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "test/agda/FRP/JS/Test/DOM.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "test/agda/FRP/JS/Test/DOM.agda", "max_line_length": 210, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "test/agda/FRP/JS/Test/DOM.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 1863, "size": 4700 }
-- Given two abelian groups A, B -- the set of all group homomorphisms from A to B -- is itself an abelian group. -- In other words, Ab is cartesian closed. -- This is needed to show Ab is an abelian category. {-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Instances.Hom where open import Cubical.Algebra.AbGroup.Base open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Properties open import Cubical.Foundations.Prelude private variable ℓ ℓ' : Level module _ (A : AbGroup ℓ) (B : AbGroup ℓ') where -- These names are useful for the proofs private open IsGroupHom open AbGroupStr (A .snd) using () renaming (0g to 0A; _+_ to _⋆_; -_ to inv) open AbGroupStr (B .snd) using (_+_; -_; +Comm; +Assoc; +IdR ; +InvR) renaming (0g to 0B) open GroupTheory (AbGroup→Group B) using (invDistr) renaming (inv1g to inv0B) -- Some lemmas idrB : (b : B .fst) → b + 0B ≡ b idrB b = +IdR b invrB : (b : B .fst) → b + (- b) ≡ 0B invrB b = +InvR b hom0AB : (f : AbGroupHom A B) → f .fst 0A ≡ 0B hom0AB f = hom1g (AbGroupStr→GroupStr (A .snd)) (f .fst) (AbGroupStr→GroupStr (B .snd)) (f .snd .pres·) homInvAB : (f : AbGroupHom A B) → (a : A .fst) → f .fst (inv a) ≡ (- f .fst a) homInvAB f a = homInv (AbGroupStr→GroupStr (A .snd)) (f .fst) (AbGroupStr→GroupStr (B .snd)) (f .snd .pres·) a -- Zero morphism zero : AbGroupHom A B zero .fst a = 0B zero .snd .pres· a a' = sym (idrB _) zero .snd .pres1 = refl zero .snd .presinv a = sym (inv0B) -- Pointwise addition of morphisms module _ (f* g* : AbGroupHom A B) where private f = f* .fst g = g* .fst HomAdd : AbGroupHom A B HomAdd .fst = λ a → f a + g a HomAdd .snd .pres· a a' = f (a ⋆ a') + g (a ⋆ a') ≡⟨ cong (_+ g(a ⋆ a')) (f* .snd .pres· _ _) ⟩ (f a + f a') + g (a ⋆ a') ≡⟨ cong ((f a + f a') +_) (g* .snd .pres· _ _) ⟩ (f a + f a') + (g a + g a') ≡⟨ sym (+Assoc _ _ _) ⟩ f a + (f a' + (g a + g a')) ≡⟨ cong (f a +_) (+Assoc _ _ _) ⟩ f a + ((f a' + g a) + g a') ≡⟨ cong (λ b → (f a + b + g a')) (+Comm _ _) ⟩ f a + ((g a + f a') + g a') ≡⟨ cong (f a +_) (sym (+Assoc _ _ _)) ⟩ f a + (g a + (f a' + g a')) ≡⟨ +Assoc _ _ _ ⟩ (f a + g a) + (f a' + g a') ∎ HomAdd .snd .pres1 = f 0A + g 0A ≡⟨ cong (_+ g 0A) (hom0AB f*) ⟩ 0B + g 0A ≡⟨ cong (0B +_) (hom0AB g*) ⟩ 0B + 0B ≡⟨ idrB _ ⟩ 0B ∎ HomAdd .snd .presinv a = f (inv a) + g (inv a) ≡⟨ cong (_+ g (inv a)) (homInvAB f* _) ⟩ (- f a) + g (inv a) ≡⟨ cong ((- f a) +_) (homInvAB g* _) ⟩ (- f a) + (- g a) ≡⟨ +Comm _ _ ⟩ (- g a) + (- f a) ≡⟨ sym (invDistr _ _) ⟩ - (f a + g a) ∎ -- Pointwise inverse of morphism module _ (f* : AbGroupHom A B) where private f = f* .fst HomInv : AbGroupHom A B HomInv .fst = λ a → - f a HomInv .snd .pres· a a' = - f (a ⋆ a') ≡⟨ cong -_ (f* .snd .pres· _ _) ⟩ - (f a + f a') ≡⟨ invDistr _ _ ⟩ (- f a') + (- f a) ≡⟨ +Comm _ _ ⟩ (- f a) + (- f a') ∎ HomInv .snd .pres1 = - (f 0A) ≡⟨ cong -_ (f* .snd .pres1) ⟩ - 0B ≡⟨ inv0B ⟩ 0B ∎ HomInv .snd .presinv a = - f (inv a) ≡⟨ cong -_ (homInvAB f* _) ⟩ - (- f a) ∎ -- Group laws for morphisms private 0ₕ = zero _+ₕ_ = HomAdd -ₕ_ = HomInv -- Morphism addition is associative HomAdd-assoc : (f g h : AbGroupHom A B) → (f +ₕ (g +ₕ h)) ≡ ((f +ₕ g) +ₕ h) HomAdd-assoc f g h = GroupHom≡ (funExt λ a → +Assoc _ _ _) -- Morphism addition is commutative HomAdd-comm : (f g : AbGroupHom A B) → (f +ₕ g) ≡ (g +ₕ f) HomAdd-comm f g = GroupHom≡ (funExt λ a → +Comm _ _) -- zero is right identity HomAdd-zero : (f : AbGroupHom A B) → (f +ₕ zero) ≡ f HomAdd-zero f = GroupHom≡ (funExt λ a → idrB _) -- -ₕ is right inverse HomInv-invr : (f : AbGroupHom A B) → (f +ₕ (-ₕ f)) ≡ zero HomInv-invr f = GroupHom≡ (funExt λ a → invrB _) -- Abelian group structure on AbGroupHom A B open AbGroupStr HomAbGroupStr : (A : AbGroup ℓ) → (B : AbGroup ℓ') → AbGroupStr (AbGroupHom A B) HomAbGroupStr A B .0g = zero A B HomAbGroupStr A B ._+_ = HomAdd A B HomAbGroupStr A B .-_ = HomInv A B HomAbGroupStr A B .isAbGroup = makeIsAbGroup isSetGroupHom (HomAdd-assoc A B) (HomAdd-zero A B) (HomInv-invr A B) (HomAdd-comm A B) HomAbGroup : (A : AbGroup ℓ) → (B : AbGroup ℓ') → AbGroup (ℓ-max ℓ ℓ') HomAbGroup A B = AbGroupHom A B , HomAbGroupStr A B
{ "alphanum_fraction": 0.5084050841, "avg_line_length": 33.4109589041, "ext": "agda", "hexsha": "3784129bb6eda5bde67c6cbb3fdf7ddf71af0133", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/Instances/Hom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/Instances/Hom.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/Instances/Hom.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1944, "size": 4878 }
module _ where open import Agda.Builtin.Nat open import Agda.Builtin.Bool open import Agda.Builtin.Equality data Nat+Bool : Set where nat : Nat → Nat+Bool bool : Bool → Nat+Bool data P : Nat+Bool → Set where p : {x : Nat+Bool} → P x mkBool : ∀ {n b} → P (nat n) → P (bool b) mkBool {zero} _ = p {bool _} mkBool {suc _} _ = p {bool _} f : {x : Nat+Bool} → P x f = λ { {nat n} → g ; {bool b} → mkBool g } where g : P _ g = p crash : f {bool true} ≡ p {bool true} crash = refl
{ "alphanum_fraction": 0.5779092702, "avg_line_length": 18.1071428571, "ext": "agda", "hexsha": "8298ffa495698981e16c54d56ead337327ba2299", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2001.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2001.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2001.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 199, "size": 507 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.EqRelInstance where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Reduction open import Definition.Typed.EqualityRelation open import Tools.Function -- Judgmental instance of the equality relation instance eqRelInstance : EqRelSet eqRelInstance = eqRel _⊢_≡_ _⊢_≡_∷_ _⊢_≡_∷_ idᶠ idᶠ idᶠ univ sym sym sym trans trans trans conv conv wkEq wkEqTerm wkEqTerm reduction reductionₜ (refl ∘ᶠ Uⱼ) (refl ∘ᶠ ℕⱼ) (refl ∘ᶠ ℕⱼ) Π-cong Π-cong (refl ∘ᶠ zeroⱼ) suc-cong (λ x x₁ x₂ x₃ x₄ x₅ → η-eq x x₁ x₂ x₅) refl app-cong natrec-cong
{ "alphanum_fraction": 0.6104513064, "avg_line_length": 32.3846153846, "ext": "agda", "hexsha": "74b72db845b79e97139cb2412d5b2b2ad854c5a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Typed/EqRelInstance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Typed/EqRelInstance.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Typed/EqRelInstance.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 259, "size": 842 }
module NamedWhere where data _==_ {A : Set}(x : A) : A -> Set where refl : x == x data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A _++_ : {A : Set} -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) reverse : {A : Set} -> List A -> List A reverse {A} xs = rev xs [] module reverse where rev : List A -> List A -> List A rev [] ys = ys rev (x :: xs) ys = rev xs (x :: ys) rev : {A : Set} -> List A -> List A -> List A rev = reverse.rev []
{ "alphanum_fraction": 0.4718045113, "avg_line_length": 21.28, "ext": "agda", "hexsha": "c35ea618acbbc6463f2beec09da284dea4a04e57", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/NamedWhere.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/NamedWhere.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/NamedWhere.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 188, "size": 532 }
module Metalogic.Classical.Propositional.TruthSemanticsModel {ℓ} (Proposition : Set(ℓ)) where import Lvl open import Data.Boolean open import Data open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Metalogic.Classical.Propositional.Syntax{ℓ} (Proposition) renaming ( ⊤ to ⊤ₗ ; ⊥ to ⊥ₗ ; ¬_ to ¬ₗ_ ; _∧_ to _∧ₗ_ ; _∨_ to _∨ₗ_ ; _⇒_ to _⇒ₗ_ ) open import Relator.Equals open import Relator.Equals.Proofs open import Sets.BoolSet -- A model decides whether a proposition is true or false -- Also known as Interpretation, Structure, Model record Model : Set(ℓ) where field interpretProp : Proposition → Bool -- TODO: Can this be called a "theory" of propositional logic? So that instances of the type Semantics is the "models" of logic? -- TODO: Now, all the metalogic depends on booleans, which may not be satisfactory module _ where import Data.Boolean.Operators open Data.Boolean.Operators.Logic satisfaction : Model → Formula → Bool satisfaction(𝔐)(• prop) = Model.interpretProp(𝔐) (prop) satisfaction(𝔐)(⊤ₗ) = 𝑇 satisfaction(𝔐)(⊥ₗ) = 𝐹 satisfaction(𝔐)(¬ₗ φ) = ¬(satisfaction(𝔐)(φ)) satisfaction(𝔐)(φ₁ ∧ₗ φ₂) = (satisfaction(𝔐)(φ₁)) ∧ (satisfaction(𝔐)(φ₂)) satisfaction(𝔐)(φ₁ ∨ₗ φ₂) = (satisfaction(𝔐)(φ₁)) ∨ (satisfaction(𝔐)(φ₂)) satisfaction(𝔐)(φ₁ ⇒ₗ φ₂) = ¬(satisfaction(𝔐)(φ₁)) ∨ (satisfaction(𝔐)(φ₂)) -- Syntactic details with the relation symbol record SatisfactionRelation {ℓ₁}{ℓ₂} (Obj : Set(ℓ) → Set(ℓ₁)) : Set(Lvl.𝐒(ℓ Lvl.⊔ ℓ₁ Lvl.⊔ ℓ₂)) where field _⊧_ : Model → Obj(Formula) → Set(ℓ₂) open SatisfactionRelation ⦃ ... ⦄ public instance -- Satisfaction for a single formula formula-satisfaction-relation : SatisfactionRelation(id) formula-satisfaction-relation = record{_⊧_ = \𝔐 φ → satisfaction(𝔐)(φ) ≡ 𝑇} instance -- Satisfaction for a list of formulas list-satisfaction-relation : SatisfactionRelation(BoolSet{ℓ}) list-satisfaction-relation = record{_⊧_ = \𝔐 Γ → (∀{γ} → (γ ∈ Γ) → satisfaction(𝔐)(γ) ≡ 𝑇)} -- Entailment data _⊨_ (Γ : BoolSet{ℓ}(Formula)) (φ : Formula) : Set(ℓ) where [⊨]-intro : (∀{𝔐} → (𝔐 ⊧ Γ) → (𝔐 ⊧ φ)) → (Γ ⊨ φ) _⊭_ : BoolSet{ℓ}(Formula) → Formula → Set(ℓ) _⊭_ Γ φ = (_⊨_ Γ φ) → Empty{ℓ} -- Validity valid : Formula → Set(ℓ) valid = (∅ ⊨_) module Theorems where [⊤]-entailment : (∅ ⊨ ⊤ₗ) [⊤]-entailment = [⊨]-intro(const [≡]-intro) -- ∅ ⊨ ⊤ₗ -- ∀{𝔐} → (𝔐 ⊧ ∅) → (𝔐 ⊧ ⊤ₗ) -- ∀{𝔐} → (𝔐 ⊧ ∅) → (satisfaction(𝔐)(⊤ₗ) ≡ 𝑇) -- ∀{𝔐} → (∀{γ} → (γ ∈ ∅) → satisfaction(𝔐)(γ) ≡ 𝑇) → (satisfaction(𝔐)(⊤ₗ) ≡ 𝑇) -- [∧]-entailment : ∀{φ₁ φ₂} → ([ φ₁ ⊰ φ₂ ] ⊨ (φ₁ ∧ₗ φ₂)) -- [∧]-entailment{φ₁}{φ₂} = [⊨]-intro ([∈]-proof ↦ congruence₁-op(_∧_) ([∈]-proof (use)) ([∈]-proof (skip use))) -- [ φ₁ ⊰ φ₂ ] ⊨ (φ₁ ∧ φ₂) -- ∀{𝔐} → (𝔐 ⊧ [ φ₁ ⊰ φ₂ ]) → (𝔐 ⊧ (φ₁ ∧ φ₂)) -- ∀{𝔐} → (𝔐 ⊧ [ φ₁ ⊰ φ₂ ]) → (satisfaction(𝔐)(φ₁ ∧ₗ φ₂) ≡ 𝑇) -- ∀{𝔐} → (𝔐 ⊧ [ φ₁ ⊰ φ₂ ]) → (satisfaction(𝔐)(φ₁) ∧ satisfaction(𝔐)(φ₂) ≡ 𝑇) -- ∀{𝔐} → (∀{γ} → (γ ∈ [ φ₁ ⊰ φ₂ ]) → satisfaction(𝔐)(γ) ≡ 𝑇) → (satisfaction(𝔐)(φ₁) ∧ satisfaction(𝔐)(φ₂) ≡ 𝑇)
{ "alphanum_fraction": 0.5950047423, "avg_line_length": 38.1084337349, "ext": "agda", "hexsha": "10309dc1d6ce8c224a45e22f9ef04076d939fc21", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/TruthSemanticsModel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/TruthSemanticsModel.agda", "max_line_length": 128, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/TruthSemanticsModel.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1394, "size": 3163 }
module Structure.Operator.Monoid.Homomorphism where import Lvl open import Logic open import Logic.Predicate open import Structure.Function open import Structure.Function.Multi open import Structure.Operator.Monoid open import Structure.Setoid open import Type record Homomorphism {ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂} {X : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(X) ⦄ {_▫X_ : X → X → X} ( structureₗ : Monoid(_▫X_)) {Y : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(Y) ⦄ {_▫Y_ : Y → Y → Y} ( structureᵣ : Monoid(_▫Y_)) (f : X → Y) : Stmt{ℓ₁ Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓₑ₂} where constructor intro idₗ = Monoid.id(structureₗ) idᵣ = Monoid.id(structureᵣ) field ⦃ function ⦄ : Function(f) ⦃ preserve-op ⦄ : Preserving₂(f)(_▫X_)(_▫Y_) ⦃ preserve-id ⦄ : Preserving₀(f)(idₗ)(idᵣ) _→ᵐᵒⁿᵒⁱᵈ_ : ∀{ℓₗ ℓₗₑ ℓᵣ ℓᵣₑ} → MonoidObject{ℓₗ}{ℓₗₑ} → MonoidObject{ℓᵣ}{ℓᵣₑ} → Type A →ᵐᵒⁿᵒⁱᵈ B = ∃(Homomorphism(MonoidObject.monoid A)(MonoidObject.monoid B))
{ "alphanum_fraction": 0.671009772, "avg_line_length": 29.7096774194, "ext": "agda", "hexsha": "61a70270ba3c9a689eec895209f5654e7816b131", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Monoid/Homomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Monoid/Homomorphism.agda", "max_line_length": 86, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Monoid/Homomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 455, "size": 921 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathGroupoid open import lib.types.Empty open import lib.types.Nat module lib.types.TLevel where ⟨_⟩₋₁ : ℕ → ℕ₋₂ ⟨ n ⟩₋₁ = S ⟨ n ⟩₋₂ ⟨_⟩ : ℕ → ℕ₋₂ ⟨ n ⟩ = S (S ⟨ n ⟩₋₂) infixl 80 _+2+_ _+2+_ : ℕ₋₂ → ℕ₋₂ → ℕ₋₂ ⟨-2⟩ +2+ n = n S m +2+ n = S (m +2+ n) +2+-unit-r : (m : ℕ₋₂) → m +2+ ⟨-2⟩ == m +2+-unit-r ⟨-2⟩ = idp +2+-unit-r (S m) = ap S (+2+-unit-r m) +2+-βr : (m n : ℕ₋₂) → m +2+ (S n) == S (m +2+ n) +2+-βr ⟨-2⟩ n = idp +2+-βr (S m) n = ap S (+2+-βr m n) +2+-comm : (m n : ℕ₋₂) → m +2+ n == n +2+ m +2+-comm m ⟨-2⟩ = +2+-unit-r m +2+-comm m (S n) = +2+-βr m n ∙ ap S (+2+-comm m n) +2+0 : (n : ℕ₋₂) → n +2+ 0 == S (S n) +2+0 n = +2+-comm n 0 {- Inequalities -} infix 40 _<T_ infix 40 _≤T_ data _<T_ : ℕ₋₂ → ℕ₋₂ → Type₀ where ltS : {m : ℕ₋₂} → m <T (S m) ltSR : {m n : ℕ₋₂} → m <T n → m <T (S n) _≤T_ : ℕ₋₂ → ℕ₋₂ → Type₀ m ≤T n = Coprod (m == n) (m <T n) -2<T : (m : ℕ₋₂) → ⟨-2⟩ <T S m -2<T ⟨-2⟩ = ltS -2<T (S m) = ltSR (-2<T m) -2≤T : (m : ℕ₋₂) → ⟨-2⟩ ≤T m -2≤T ⟨-2⟩ = inl idp -2≤T (S m) = inr (-2<T m) <T-trans : {m n k : ℕ₋₂} → m <T n → n <T k → m <T k <T-trans lt₁ ltS = ltSR lt₁ <T-trans lt₁ (ltSR lt₂) = ltSR (<T-trans lt₁ lt₂) ≤T-refl : {m : ℕ₋₂} → m ≤T m ≤T-refl = inl idp ≤T-trans : {m n k : ℕ₋₂} → m ≤T n → n ≤T k → m ≤T k ≤T-trans {k = k} (inl p₁) lte₂ = transport (λ t → t ≤T k) (! p₁) lte₂ ≤T-trans {m = m} lte₁ (inl p₂) = transport (λ t → m ≤T t) p₂ lte₁ ≤T-trans (inr lt₁) (inr lt₂) = inr (<T-trans lt₁ lt₂) <T-ap-S : {m n : ℕ₋₂} → m <T n → S m <T S n <T-ap-S ltS = ltS <T-ap-S (ltSR lt) = ltSR (<T-ap-S lt) ≤T-ap-S : {m n : ℕ₋₂} → m ≤T n → S m ≤T S n ≤T-ap-S (inl p) = inl (ap S p) ≤T-ap-S (inr lt) = inr (<T-ap-S lt) <T-cancel-S : {m n : ℕ₋₂} → S m <T S n → m <T n <T-cancel-S ltS = ltS <T-cancel-S (ltSR lt) = <T-trans ltS lt <T-+2+-l : {m n : ℕ₋₂} (k : ℕ₋₂) → m <T n → (k +2+ m) <T (k +2+ n) <T-+2+-l ⟨-2⟩ lt = lt <T-+2+-l (S k) lt = <T-ap-S (<T-+2+-l k lt) ≤T-+2+-l : {m n : ℕ₋₂} (k : ℕ₋₂) → m ≤T n → (k +2+ m) ≤T (k +2+ n) ≤T-+2+-l k (inl p) = inl (ap (λ t → k +2+ t) p) ≤T-+2+-l k (inr lt) = inr (<T-+2+-l k lt) <T-+2+-r : {m n : ℕ₋₂} (k : ℕ₋₂) → m <T n → (m +2+ k) <T (n +2+ k) <T-+2+-r k ltS = ltS <T-+2+-r k (ltSR lt) = ltSR (<T-+2+-r k lt) ≤T-+2+-r : {m n : ℕ₋₂} (k : ℕ₋₂) → m ≤T n → (m +2+ k) ≤T (n +2+ k) ≤T-+2+-r k (inl p) = inl (ap (λ t → t +2+ k) p) ≤T-+2+-r k (inr lt) = inr (<T-+2+-r k lt) private T-get-S : ℕ₋₂ → ℕ₋₂ T-get-S ⟨-2⟩ = ⟨ 42 ⟩ T-get-S (S n) = n T-S≠⟨-2⟩-type : ℕ₋₂ → Type₀ T-S≠⟨-2⟩-type ⟨-2⟩ = Empty T-S≠⟨-2⟩-type (S n) = Unit T-S≠⟨-2⟩ : (n : ℕ₋₂) → S n ≠ ⟨-2⟩ T-S≠⟨-2⟩ n p = transport T-S≠⟨-2⟩-type p unit T-S≠ : (n : ℕ₋₂) → S n ≠ n T-S≠ ⟨-2⟩ p = T-S≠⟨-2⟩ ⟨-2⟩ p T-S≠ (S n) p = T-S≠ n (ap T-get-S p) T-S+2+≠ : (n k : ℕ₋₂) → S (k +2+ n) ≠ n T-S+2+≠ ⟨-2⟩ k p = T-S≠⟨-2⟩ (k +2+ ⟨-2⟩) p T-S+2+≠ (S n) k p = T-S+2+≠ n k (ap T-get-S (ap S (! (+2+-βr k n)) ∙ p)) <T-witness : {m n : ℕ₋₂} → (m <T n) → Σ ℕ₋₂ (λ k → S k +2+ m == n) <T-witness ltS = (⟨-2⟩ , idp) <T-witness (ltSR lt) = let w' = <T-witness lt in (S (fst w') , ap S (snd w')) ≤T-witness : {m n : ℕ₋₂} → (m ≤T n) → Σ ℕ₋₂ (λ k → k +2+ m == n) ≤T-witness (inl p) = (⟨-2⟩ , p) ≤T-witness (inr lt) = let w' = <T-witness lt in (S (fst w') , snd w') <T-to-≤T : {m n : ℕ₋₂} → m <T S n → m ≤T n <T-to-≤T ltS = inl idp <T-to-≤T (ltSR lt) = inr lt <T-to-≠ : {m n : ℕ₋₂} → (m <T n) → m ≠ n <T-to-≠ {m} {n} lt p = T-S+2+≠ m (fst w) (snd w ∙ ! p) where w = <T-witness lt =-to-≮T : {m n : ℕ₋₂} → (m == n) → ¬ (m <T n) =-to-≮T p lt = <T-to-≠ lt p <T-to-≯T : {m n : ℕ₋₂} → (m <T n) → ¬ (n <T m) <T-to-≯T lt gt = =-to-≮T idp (<T-trans lt gt) <T-to-≱T : {m n : ℕ₋₂} → (m <T n) → ¬ (n ≤T m) <T-to-≱T lt (inl p) = <T-to-≠ lt (! p) <T-to-≱T lt (inr gt) = <T-to-≯T lt gt {- -2-monotone-< : {m n : ℕ} → (m < n) → (m -2 <T n -2) -2-monotone-< ltS = ltS -2-monotone-< (ltSR lt) = ltSR (-2-monotone-< lt) -2-monotone-≤ : {m n : ℕ} → (m ≤ n) → (m -2 ≤T n -2) -2-monotone-≤ (inl p) = inl (ap _-2 p) -2-monotone-≤ (inr lt) = inr (-2-monotone-< lt) -} ⟨⟩-monotone-< : {m n : ℕ} → (m < n) → (⟨ m ⟩ <T ⟨ n ⟩) ⟨⟩-monotone-< ltS = ltS ⟨⟩-monotone-< (ltSR lt) = ltSR (⟨⟩-monotone-< lt) ⟨⟩-monotone-≤ : {m n : ℕ} → (m ≤ n) → (⟨ m ⟩ ≤T ⟨ n ⟩) ⟨⟩-monotone-≤ (inl p) = inl (ap ⟨_⟩ p) ⟨⟩-monotone-≤ (inr lt) = inr (⟨⟩-monotone-< lt) minT : ℕ₋₂ → ℕ₋₂ → ℕ₋₂ minT ⟨-2⟩ n = ⟨-2⟩ minT (S m) ⟨-2⟩ = ⟨-2⟩ minT (S m) (S n) = S (minT m n) minT≤l : (m n : ℕ₋₂) → minT m n ≤T m minT≤l ⟨-2⟩ n = inl idp minT≤l (S m) ⟨-2⟩ = -2≤T (S m) minT≤l (S m) (S n) = ≤T-ap-S (minT≤l m n) minT≤r : (m n : ℕ₋₂) → minT m n ≤T n minT≤r ⟨-2⟩ n = -2≤T n minT≤r (S m) ⟨-2⟩ = inl idp minT≤r (S m) (S n) = ≤T-ap-S (minT≤r m n) minT-out : (m n : ℕ₋₂) → Coprod (minT m n == m) (minT m n == n) minT-out ⟨-2⟩ _ = inl idp minT-out (S _) ⟨-2⟩ = inr idp minT-out (S m) (S n) with minT-out m n minT-out (S m) (S n) | inl p = inl (ap S p) minT-out (S m) (S n) | inr q = inr (ap S q) minT-out-l : {m n : ℕ₋₂} → (m ≤T n) → minT m n == m minT-out-l {m} {n} lte with minT-out m n minT-out-l lte | inl eqm = eqm minT-out-l (inl p) | inr eqn = eqn ∙ ! p minT-out-l {m} {n} (inr lt) | inr eq = ⊥-rec (<T-to-≱T (transport (λ k → m <T k) (! eq) lt) (minT≤l m n))
{ "alphanum_fraction": 0.444380514, "avg_line_length": 27.8823529412, "ext": "agda", "hexsha": "6299b969bbdf394099eff2bcfa09a4dcb386590a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/types/TLevel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/types/TLevel.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/types/TLevel.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3054, "size": 5214 }
------------------------------------------------------------------------ -- Propierties of abstract typing contexts ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Data.Context.Properties where open import Data.Fin using (Fin; zero; suc; lift; raise) open import Data.Fin.Substitution.ExtraLemmas open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Product using (_×_; _,_) open import Data.Vec as Vec using (Vec; []; _∷_) import Data.Vec.Properties as VecProps open import Function as Fun using (_∘_; flip) open import Relation.Binary.PropositionalEquality hiding (subst-∘) open ≡-Reasoning open import Relation.Unary using (Pred) open import Data.Context open import Data.Context.WellFormed ------------------------------------------------------------------------ -- Properties of abstract contexts and context extensions. -- Properties of the `map' functions. module _ {ℓ₁ ℓ₂} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} where -- pointwise equality is a congruence w.r.t. map and mapExt. map-cong : ∀ {n} {f g : ∀ {k} → T₁ k → T₂ k} → (∀ {k} → f {k} ≗ g {k}) → _≗_ {A = Ctx T₁ n} (map f) (map g) map-cong f≗g [] = refl map-cong f≗g (_∷_ t Γ) = cong₂ _∷_ (f≗g t) (map-cong f≗g Γ) mapExt-cong : ∀ {k m n} {f g : ∀ i → T₁ (i + m) → T₂ (i + n)} → (∀ {i} → f i ≗ g i) → _≗_ {A = CtxExt T₁ m k} (mapExt {T₂ = T₂} f) (mapExt g) mapExt-cong f≗g [] = refl mapExt-cong f≗g (_∷_ {l} t Γ) = cong₂ _∷_ (f≗g {l} t) (mapExt-cong f≗g Γ) module _ {ℓ} {T : Pred ℕ ℓ} where -- map and mapExt are functorial. map-id : ∀ {n} → _≗_ {A = Ctx T n} (map Fun.id) Fun.id map-id [] = refl map-id (t ∷ Γ) = cong (t ∷_) (map-id Γ) mapExt-id : ∀ {m n} → _≗_ {A = CtxExt T m n} (mapExt λ _ t → t) Fun.id mapExt-id [] = refl mapExt-id (t ∷ Γ) = cong (t ∷_) (mapExt-id Γ) module _ {ℓ₁ ℓ₂ ℓ₃} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} {T₃ : Pred ℕ ℓ₃} where map-∘ : ∀ {n} (f : ∀ {k} → T₂ k → T₃ k) (g : ∀ {k} → T₁ k → T₂ k) (Γ : Ctx T₁ n) → map {T₂ = T₃} (f ∘ g) Γ ≡ map {T₁ = T₂} f (map g Γ) map-∘ f g [] = refl map-∘ f g (t ∷ Γ) = cong (_ ∷_) (map-∘ f g Γ) mapExt-∘ : ∀ {k l m n} (f : ∀ i → T₂ (i + m) → T₃ (i + n)) (g : ∀ i → T₁ (i + l) → T₂ (i + m)) → (Γ : CtxExt T₁ l k) → mapExt {T₂ = T₃} (λ i t → f i (g i t)) Γ ≡ mapExt {T₁ = T₂} f (mapExt g Γ) mapExt-∘ f g [] = refl mapExt-∘ f g (t ∷ Γ) = cong (_ ∷_) (mapExt-∘ f g Γ) -- Lemmas about operations on contexts that require weakening of -- types. module WeakenOpsLemmas {ℓ} {T : Pred ℕ ℓ} (extension : Extension T) where -- The underlyig operations. open WeakenOps extension -- Conversion to vector representation commutes with -- concatenation. toVec-++ : ∀ {m n} (Δ : CtxExt T m n) (Γ : Ctx T m) → toVec (Δ ++ Γ) ≡ extToVec Δ (toVec Γ) toVec-++ [] Γ = refl toVec-++ (t ∷ Δ) Γ = cong ((_ ∷_) ∘ Vec.map weaken) (toVec-++ Δ Γ) -- Lookup commutes with concatenation. lookup-++ : ∀ {m n} (Δ : CtxExt T m n) (Γ : Ctx T m) x → lookup (Δ ++ Γ) x ≡ extLookup Δ (toVec Γ) x lookup-++ Δ Γ x = cong (flip Vec.lookup x) (toVec-++ Δ Γ) -- We can skip the first element when looking up others. lookup-suc : ∀ {n} t (Γ : Ctx T n) x → lookup (t ∷ Γ) (suc x) ≡ weaken (lookup Γ x) lookup-suc t Γ x = VecProps.lookup-map x weaken (toVec Γ) extLookup-suc : ∀ {k m n} t (Γ : CtxExt T m n) (ts : Vec (T m) k) x → extLookup (t ∷ Γ) ts (suc x) ≡ weaken (extLookup Γ ts x) extLookup-suc t Γ ts x = VecProps.lookup-map x weaken (extToVec Γ ts) -- We can skip a spliced-in element when looking up others. lookup-lift : ∀ {k m n} (Γ : CtxExt T m n) t (ts : Vec (T m) k) x → extLookup Γ ts x ≡ extLookup Γ (t ∷ ts) (lift n suc x) lookup-lift [] t ts x = refl lookup-lift (u ∷ Δ) t ts zero = refl lookup-lift {n = suc n} (u ∷ Δ) t ts (suc x) = begin extLookup (u ∷ Δ) ts (suc x) ≡⟨ extLookup-suc u Δ ts x ⟩ weaken (extLookup Δ ts x) ≡⟨ cong weaken (lookup-lift Δ t ts x) ⟩ weaken (extLookup Δ (t ∷ ts) (lift n suc x)) ≡⟨ sym (extLookup-suc u Δ (t ∷ ts) (lift n suc x)) ⟩ extLookup (u ∷ Δ) (t ∷ ts) (suc (lift n suc x)) ∎ -- Lookup in the prefix of a concatenation results in weakening. lookup-weaken⋆ : ∀ {m} n (Δ : CtxExt T m n) (Γ : Ctx T m) x → lookup (Δ ++ Γ) (raise n x) ≡ weaken⋆ n (lookup Γ x) lookup-weaken⋆ zero [] Γ x = refl lookup-weaken⋆ (suc n) (t ∷ Δ) Γ x = begin lookup (t ∷ Δ ++ Γ) (suc (raise n x)) ≡⟨ VecProps.lookup-map (raise n x) weaken (toVec (Δ ++ Γ)) ⟩ weaken (lookup (Δ ++ Γ) (raise n x)) ≡⟨ cong weaken (lookup-weaken⋆ n Δ Γ x) ⟩ weaken (weaken⋆ n (lookup Γ x)) ∎ -- Lemmas relating conversions of context extensions to vector -- representation with conversions of the underling entries. module ConversionLemmas {T₁ T₂ : ℕ → Set} (extension₁ : Extension T₁) (extension₂ : Extension T₂) where private module W₁ = WeakenOps extension₁ module W₂ = WeakenOps extension₂ toVec-map : ∀ {n} (f : ∀ {k} → T₁ k → T₂ k) (Γ : Ctx T₁ n) → (∀ {k} (t : T₁ k) → W₂.weaken (f t) ≡ f (W₁.weaken t)) → W₂.toVec (map f Γ) ≡ Vec.map f (W₁.toVec Γ) toVec-map f [] _ = refl toVec-map f (_∷_ t Γ) hyp = cong₂ _∷_ (hyp t) (begin Vec.map W₂.weaken (W₂.toVec (map f Γ)) ≡⟨ cong (Vec.map W₂.weaken) (toVec-map f Γ hyp) ⟩ (Vec.map W₂.weaken (Vec.map f (W₁.toVec Γ))) ≡⟨ sym (VecProps.map-∘ W₂.weaken f (W₁.toVec Γ)) ⟩ (Vec.map (W₂.weaken ∘ f) (W₁.toVec Γ)) ≡⟨ VecProps.map-cong hyp (W₁.toVec Γ) ⟩ (Vec.map (f ∘ W₁.weaken) (W₁.toVec Γ)) ≡⟨ VecProps.map-∘ f W₁.weaken (W₁.toVec Γ) ⟩ (Vec.map f (Vec.map W₁.weaken (W₁.toVec Γ))) ∎) -- Lookup commutes with re-indexing, provided that the reindexing -- function commutes with weakening. lookup-map : ∀ {n} (f : ∀ {k} → T₁ k → T₂ k) (Γ : Ctx T₁ n) x → (∀ {k} (t : T₁ k) → W₂.weaken (f t) ≡ f (W₁.weaken t)) → W₂.lookup (map f Γ) x ≡ f (W₁.lookup Γ x) lookup-map f Γ x hyp = begin W₂.lookup (map f Γ) x ≡⟨ cong (flip Vec.lookup x) (toVec-map f Γ hyp) ⟩ Vec.lookup (Vec.map f (W₁.toVec Γ)) x ≡⟨ VecProps.lookup-map x f (W₁.toVec Γ) ⟩ f (W₁.lookup Γ x) ∎ -- Lemmas about well-formed contexts and context extensions. module ContextFormationLemmas {t ℓ} {T : Pred ℕ t} (_⊢_wf : Wf T T ℓ) where open ContextFormation _⊢_wf -- Concatenation preserves well-formedness of contexts. wf-++-wfExt : ∀ {m n} {Δ : CtxExt T m n} {Γ : Ctx T m} → Γ ⊢ Δ wfExt → Γ wf → Δ ++ Γ wf wf-++-wfExt [] Γ-wf = Γ-wf wf-++-wfExt (t-wf ∷ Δ-wfExt) Γ-wf = t-wf ∷ wf-++-wfExt Δ-wfExt Γ-wf -- Splitting of well-formed contexts. wf-split : ∀ {m n} {Δ : CtxExt T m n} {Γ : Ctx T m} → Δ ++ Γ wf → Γ ⊢ Δ wfExt × Γ wf wf-split {Δ = []} Γ-wf = [] , Γ-wf wf-split {Δ = t ∷ Δ} (t-wf ∷ Δ++Γ-wf) = let Δ-wfExt , Γ-wf = wf-split Δ++Γ-wf in t-wf ∷ Δ-wfExt , Γ-wf
{ "alphanum_fraction": 0.5211305884, "avg_line_length": 37.9329896907, "ext": "agda", "hexsha": "140d2cdfb76a9553f1db7e209b17a85762026c02", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/Data/Context/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/Data/Context/Properties.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/Data/Context/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2826, "size": 7359 }
module Haskell.Prim.Monad where open import Haskell.Prim open import Haskell.Prim.Applicative open import Haskell.Prim.Either open import Haskell.Prim.Foldable open import Haskell.Prim.Functor open import Haskell.Prim.List open import Haskell.Prim.Maybe open import Haskell.Prim.Monoid open import Haskell.Prim.String open import Haskell.Prim.Tuple -------------------------------------------------- -- Monad record Monad (m : Set → Set) : Set₁ where field _>>=_ : m a → (a → m b) → m b overlap ⦃ super ⦄ : Applicative m return : a → m a return = pure _>>_ : m a → m b → m b m >> m₁ = m >>= λ _ → m₁ _=<<_ : (a → m b) → m a → m b _=<<_ = flip _>>=_ open Monad ⦃ ... ⦄ public mapM₋ : ⦃ Monad m ⦄ → ⦃ Foldable t ⦄ → (a → m b) → t a → m ⊤ mapM₋ f = foldr (λ x k → f x >> k) (pure tt) sequence₋ : ⦃ Monad m ⦄ → ⦃ Foldable t ⦄ → t (m a) → m ⊤ sequence₋ = foldr _>>_ (pure tt) instance iMonadList : Monad List iMonadList ._>>=_ = flip concatMap iMonadMaybe : Monad Maybe iMonadMaybe ._>>=_ m k = maybe Nothing k m iMonadEither : Monad (Either a) iMonadEither ._>>=_ m k = either Left k m iMonadFun : Monad (λ b → a → b) iMonadFun ._>>=_ f k r = k (f r) r iMonadTuple₂ : ⦃ Monoid a ⦄ → Monad (a ×_) iMonadTuple₂ ._>>=_ (a , x) k = first (a <>_) (k x) iMonadTuple₃ : ⦃ Monoid a ⦄ → ⦃ Monoid b ⦄ → Monad (a × b ×_) iMonadTuple₃ ._>>=_ (a , b , x) k = case k x of λ where (a₁ , b₁ , y) → a <> a₁ , b <> b₁ , y iMonadTuple₄ : ⦃ Monoid a ⦄ → ⦃ Monoid b ⦄ → ⦃ Monoid c ⦄ → Monad (λ d → Tuple (a ∷ b ∷ c ∷ d ∷ [])) iMonadTuple₄ ._>>=_ (a ∷ b ∷ c ∷ x ∷ []) k = case k x of λ where (a₁ ∷ b₁ ∷ c₁ ∷ y ∷ []) → a <> a₁ ∷ b <> b₁ ∷ c <> c₁ ∷ y ∷ [] record MonadFail (m : Set → Set) : Set₁ where field fail : String → m a overlap ⦃ super ⦄ : Monad m open MonadFail ⦃ ... ⦄ public instance MonadFailList : MonadFail List MonadFailList .fail _ = [] MonadFailMaybe : MonadFail Maybe MonadFailMaybe .fail _ = Nothing
{ "alphanum_fraction": 0.5634291378, "avg_line_length": 25.225, "ext": "agda", "hexsha": "82a53a42366fcfe9314332287816e347f59b306c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "flupe/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "flupe/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Monad.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "flupe/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Monad.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 781, "size": 2018 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module provides functionality for proving properties about -- programs written using this RWS monad. The main definitions are: -- - RWS-weakestPre, a large elimination that, given an RWS program and a -- post condition for the program, produces the weakest precondition needed -- to satisfy that post condition. Branches in code using the constructors -- `RWS-if` and friends are translated into products, with each component of -- the product corresponding to a possible branch taken. -- - RWS-Contract is the type of proofs that, given a stateful computation and -- a post condition, the weakest precondition suffices to prove that post -- condition. -- - RWS-contract proves RWS-Contract, i.e., for every stateful computation -- `m` and post condition `P`, given a proof over a pre-state `pre` the -- weakest precondition for `P` holds, then postcondition `P` holds for the -- post-state obtained from running `m` in state `pre`. module Dijkstra.RWS where open import Agda.Builtin.Equality using (_≡_; refl) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Haskell.Modules.RWS open import Haskell.Prelude private variable Ev Wr St : Set A B C : Set -- Preconditions are predicates over environments and prestates. RWS-Pre : (Ev St : Set) → Set₁ RWS-Pre Ev St = (ev : Ev) (pre : St) → Set -- Postconditions are predicates over a result, poststate, and list of outputs. RWS-Post : (Wr St A : Set) → Set₁ RWS-Post Wr St A = (x : A) (post : St) (outs : List Wr) → Set RWS-Post-⇒ : (P Q : RWS-Post Wr St A) → Set RWS-Post-⇒ P Q = ∀ r st outs → P r st outs → Q r st outs -- RWS-weakestPre computes a predicate transformer: it maps a RWS -- computation `m` and desired postcondition `Post` to the weakest precondition -- needed to prove `P` holds after running `m`. RWS-PredTrans : (Ev Wr St A : Set) → Set₁ RWS-PredTrans Ev Wr St A = RWS-Post Wr St A → RWS-Pre Ev St -- When RWS computations are sequenced, e.g., `RWS-bind m λ x → f x`, -- outputs are concatenated. The postcondition desired for the above sequence -- becomes a postcondition for `f x` in which the outputs of `m` are prepended -- to the outputs of `f x`. RWS-Post++ : ∀ {Wr St A} → RWS-Post Wr St A → List Wr → RWS-Post Wr St A RWS-Post++ P outs x post outs₁ = P x post (outs ++ outs₁) -- Consider again the sequence `RWS-bind m₁ λ x → f x`. We also translate a -- postcondition `P` for the sequence into a postcondition for `m` --- -- specifically, the post condition we want for `m` is that the weakest -- precondition for `RWS-Post++ P outs` holds, where `outs` are the outputs of -- `m`. RWS-weakestPre-bindPost : (ev : Ev) (f : A → RWS Ev Wr St B) → RWS-Post Wr St B → RWS-Post Wr St A RWS-weakestPre-ebindPost : (ev : Ev) (f : A → RWS Ev Wr St (Either C B)) → RWS-Post Wr St (Either C B) → RWS-Post Wr St (Either C A) RWS-weakestPre : (m : RWS Ev Wr St A) → RWS-PredTrans Ev Wr St A RWS-weakestPre (RWS-return x) P ev pre = P x pre [] RWS-weakestPre (RWS-bind m f) P ev pre = RWS-weakestPre m (RWS-weakestPre-bindPost ev f P) ev pre RWS-weakestPre (RWS-gets f) P ev pre = P (f pre) pre [] RWS-weakestPre (RWS-put post) P ev pre = P unit post [] RWS-weakestPre RWS-ask P ev pre = P ev pre [] RWS-weakestPre (RWS-tell outs) P ev pre = P unit pre outs RWS-weakestPre (RWS-if (clause (b ≔ c) gs)) P ev pre = (toBool b ≡ true → RWS-weakestPre c P ev pre) × (toBool b ≡ false → RWS-weakestPre (RWS-if gs) P ev pre) RWS-weakestPre (RWS-if (otherwise≔ c)) P ev pre = RWS-weakestPre c P ev pre RWS-weakestPre (RWS-either f₁ f₂ e) P ev pre = (∀ x → (e ≡ Left x) → RWS-weakestPre (f₁ x) P ev pre) × (∀ y → (e ≡ Right y) → RWS-weakestPre (f₂ y) P ev pre) RWS-weakestPre (RWS-ebind m f) P ev pre = RWS-weakestPre m (RWS-weakestPre-ebindPost ev f P) ev pre RWS-weakestPre (RWS-maybe f₁ f₂ m) P ev pre = (m ≡ nothing → RWS-weakestPre f₁ P ev pre) × (∀ j → m ≡ just j → RWS-weakestPre (f₂ j) P ev pre) RWS-weakestPre-ebindPost ev f Post (Left r) post outs = Post (Left r) post outs RWS-weakestPre-ebindPost ev f Post (Right r) post outs = ∀ c → c ≡ r → RWS-weakestPre (f c) (RWS-Post++ Post outs) ev post RWS-weakestPre-bindPost ev f Post x post outs = ∀ r → r ≡ x → RWS-weakestPre (f r) (RWS-Post++ Post outs) ev post -- The post condition `P` holds for `m` with environment `ev` and prestate `pre` RWS-Post-True : (P : RWS-Post Wr St A) (m : RWS Ev Wr St A) (ev : Ev) (pre : St) → Set RWS-Post-True P m ev pre = let (x , post , outs) = RWS-run m ev pre in P x post outs -- For every RWS computation `m`, `RWS-Contract m` is the type of proofs that, -- for all post conditions `P`, starting environments `ev` and prestates `pre`, -- to prove that `P` holds after running `m` in `ev` and `pre`, it suffices to -- provide a proof of the weakest precondition for `P` with respect to `m`, -- `ev`, and `pre`. RWS-Contract : (m : RWS Ev Wr St A) → Set₁ RWS-Contract{Ev}{Wr}{St}{A} m = (P : RWS-Post Wr St A) → (ev : Ev) (pre : St) → RWS-weakestPre m P ev pre → RWS-Post-True P m ev pre -- This proves that `RWS-weakestPre` gives a *sufficient* precondition for -- establishing a desired postcondition. Note thought that it does not prove -- that this precondition is the weakest such one; even though this is true, it -- is not important for our purposes. RWS-contract : (m : RWS Ev Wr St A) → RWS-Contract m RWS-contract (RWS-return x₁) P ev pre wp = wp RWS-contract (RWS-bind m f) P ev pre wp with RWS-contract m _ ev pre wp ...| con with RWS-run m ev pre ...| x₁ , st₁ , outs₁ = RWS-contract (f x₁) _ ev st₁ (con x₁ refl) RWS-contract (RWS-gets f) P ev pre wp = wp RWS-contract (RWS-put x₁) P ev pre wp = wp RWS-contract RWS-ask P ev pre wp = wp RWS-contract (RWS-tell x₁) P ev pre wp = wp RWS-contract{Ev}{Wr}{St}{A} (RWS-if gs) P ev pre wp = RWS-contract-if gs P ev pre wp where RWS-contract-if : (gs : Guards (RWS Ev Wr St A)) → RWS-Contract (RWS-if gs) RWS-contract-if (clause (b ≔ c) gs) P ev pre (wp₁ , wp₂) with toBool b ...| true = RWS-contract c _ ev pre (wp₁ refl) ...| false = RWS-contract-if gs _ ev pre (wp₂ refl) RWS-contract-if (otherwise≔ x) P ev pre wp = RWS-contract x P ev pre wp RWS-contract (RWS-either f₁ f₂ (Left x)) P ev pre (wp₁ , wp₂) = RWS-contract (f₁ x) _ ev pre (wp₁ x refl) RWS-contract (RWS-either f₁ f₂ (Right y)) P ev pre (wp₁ , wp₂) = RWS-contract (f₂ y) _ ev pre (wp₂ y refl) RWS-contract (RWS-ebind m f) P ev pre wp with RWS-contract m _ ev pre wp ...| con with RWS-run m ev pre ... | Left x , st₁ , outs₁ = con ... | Right y , st₁ , outs₁ = RWS-contract (f y) _ ev st₁ (con y refl) RWS-contract (RWS-maybe f₁ f₂ nothing) P ev pre (wp₁ , wp₂) = RWS-contract f₁ _ ev pre (wp₁ refl) RWS-contract (RWS-maybe f₁ f₂ (just x)) P ev pre (wp₁ , wp₂) = RWS-contract (f₂ x) _ ev pre (wp₂ x refl) -- This helper function is primarily used to take a proof concerning one -- computation `m` and show that that proof implies a property concerning a -- larger computation which contains `m`. RWS-⇒ : ∀ {P Q : RWS-Post Wr St A} → ∀ m (ev : Ev) st → RWS-weakestPre m P ev st → RWS-Post-⇒ P Q → RWS-weakestPre m Q ev st RWS-⇒ (RWS-return x) ev st pre pf = pf x st [] pre RWS-⇒ (RWS-bind m f) ev st pre pf = RWS-⇒ m ev st pre (λ r₁ st₁ outs₁ pf₁ x x≡ → RWS-⇒ (f x) ev st₁ (pf₁ x x≡) (λ r₂ st₂ outs₂ pf₂ → pf r₂ st₂ (outs₁ ++ outs₂) pf₂)) RWS-⇒ (RWS-gets f) ev st pre pf = pf _ _ _ pre RWS-⇒ (RWS-put x) ev st pre pf = pf _ _ _ pre RWS-⇒ RWS-ask ev st pre pf = pf _ _ _ pre RWS-⇒ (RWS-tell x) ev st pre pf = pf _ _ _ pre RWS-⇒ (RWS-if (otherwise≔ x)) ev st pre pf = RWS-⇒ x ev st pre pf RWS-⇒ (RWS-if (clause (b ≔ c) cs)) ev st (pre₁ , pre₂) pf = (λ pf' → RWS-⇒ c ev st (pre₁ pf') pf) , λ pf' → RWS-⇒ (RWS-if cs) ev st (pre₂ pf') pf proj₁ (RWS-⇒ (RWS-either f₁ f₂ (Left x)) ev st (pre₁ , pre₂) pf) x₁ x₁≡ = RWS-⇒ (f₁ x₁) ev st (pre₁ x₁ x₁≡) pf proj₂ (RWS-⇒ (RWS-either f₁ f₂ (Left x) ) ev st (pre₁ , pre₂) pf) y () proj₁ (RWS-⇒ (RWS-either f₁ f₂ (Right y)) ev st (pre₁ , pre₂) pf) y₁ () proj₂ (RWS-⇒ (RWS-either f₁ f₂ (Right y)) ev st (pre₁ , pre₂) pf) y₁ y₁≡ = RWS-⇒ (f₂ y₁) ev st (pre₂ y₁ y₁≡) pf RWS-⇒ (RWS-ebind m f) ev st pre pf = RWS-⇒ m ev st pre (λ { (Left x₁) st₁ outs x → pf _ _ _ x ; (Right y) st₁ outs x → λ c x₁ → RWS-⇒ (f c) ev st₁ (x c x₁) (λ r st₂ outs₁ x₂ → pf r st₂ (outs ++ outs₁) x₂) }) proj₁ (RWS-⇒ (RWS-maybe m f x) ev st (pre₁ , pre₂) pf) ≡nothing = RWS-⇒ m ev st (pre₁ ≡nothing) pf proj₂ (RWS-⇒ (RWS-maybe m f x) ev st (pre₁ , pre₂) pf) b b≡ = RWS-⇒ (f b) ev st (pre₂ b b≡) pf RWS-⇒-bind : ∀ {P : RWS-Post Wr St A} {Q : RWS-Post Wr St B} → {f : A → RWS Ev Wr St B} → ∀ m ev st → RWS-weakestPre m P ev st → RWS-Post-⇒ P (RWS-weakestPre-bindPost ev f Q) → RWS-weakestPre (RWS-bind m f) Q ev st RWS-⇒-bind m ev st con pf = RWS-⇒ m ev st con pf RWS-⇒-ebind : ∀ {P : RWS-Post Wr St (Either C A)} {Q : RWS-Post Wr St (Either C B)} → {f : A → RWS Ev Wr St (Either C B)} → ∀ m ev st → RWS-weakestPre m P ev st → RWS-Post-⇒ P (RWS-weakestPre-ebindPost ev f Q) → RWS-weakestPre (RWS-ebind m f) Q ev st RWS-⇒-ebind m ev st con pf = RWS-⇒ m ev st con pf
{ "alphanum_fraction": 0.6434563758, "avg_line_length": 44.3534883721, "ext": "agda", "hexsha": "7c9feeb64fc9e7ec1dfb9b8ed0f4e11ace353260", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Dijkstra/RWS.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Dijkstra/RWS.agda", "max_line_length": 132, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Dijkstra/RWS.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3583, "size": 9536 }
open import Agda.Builtin.Reflection open import Agda.Builtin.Bool open import Agda.Builtin.String open import Agda.Builtin.Equality open import Agda.Builtin.Unit open import Agda.Builtin.List _>>=_ = bindTC `false `true : Term `false = con (quote false) [] `true = con (quote true) [] macro macro? : Name → Term → TC ⊤ macro? x hole = isMacro x >>= λ where false → unify hole `false true → unify hole `true test₁ : macro? macro? ≡ true test₁ = refl test₂ : macro? test₁ ≡ false test₂ = refl test₃ : macro? true ≡ false test₃ = refl
{ "alphanum_fraction": 0.6797153025, "avg_line_length": 18.7333333333, "ext": "agda", "hexsha": "2efe07d894f45e30648323fa03ec1d10fe11a6f2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2182.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2182.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2182.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 178, "size": 562 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Equational.Model.Satisfaction {Σ : Signature} where open import Fragment.Equational.Theory.Base hiding (Σ) open import Fragment.Algebra.Algebra Σ open import Fragment.Algebra.Free Σ open import Fragment.Algebra.Homomorphism Σ open import Level using (Level; _⊔_) open import Data.Nat using (ℕ) open import Data.Fin using (Fin) open import Data.Product using (_,_) open import Relation.Binary using (Setoid) private variable a ℓ : Level _⊨⟨_⟩_ : ∀ {n} → (A : Algebra {a} {ℓ}) → Env A n → Eq Σ n → Set ℓ A ⊨⟨ θ ⟩ (lhs , rhs) = ∣ inst A θ ∣ lhs =[ A ] ∣ inst A θ ∣ rhs _⊨_ : ∀ {n} → Algebra {a} {ℓ} → Eq Σ n → Set (a ⊔ ℓ) _⊨_ S eq = ∀ θ → S ⊨⟨ θ ⟩ eq
{ "alphanum_fraction": 0.6572164948, "avg_line_length": 26.7586206897, "ext": "agda", "hexsha": "ea997760450b9bf79ca174a051b622c3e4ebdc79", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Equational/Model/Satisfaction.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Equational/Model/Satisfaction.agda", "max_line_length": 67, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Equational/Model/Satisfaction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 275, "size": 776 }
module Lemmachine.Response where open import Lemmachine.Response.Status public open import Data.Product open import Data.List hiding (_++_) open import Data.Nat open import Data.String data ResponseHeader : Set where _,_ : String → String → ResponseHeader {-# COMPILED_DATA ResponseHeader Lemmachine.FFI.ResponseHeader Lemmachine.FFI.ResponseHeader #-} ResponseHeaders = List ResponseHeader record Response : Set where field status : Status headers : ResponseHeaders body : String showStatus : Status → String showStatus OK = "200" showStatus Created = "201" showStatus Accepted = "202" showStatus NoContent = "204" showStatus MultipleChoices = "300" showStatus MovedPermanently = "301" showStatus SeeOther = "303" showStatus NotModified = "304" showStatus MovedTemporarily = "307" showStatus BadRequest = "400" showStatus Unauthorized = "401" showStatus Forbidden = "403" showStatus NotFound = "404" showStatus MethodNotAllowed = "405" showStatus NotAcceptable = "406" showStatus Conflict = "409" showStatus Gone = "410" showStatus PreconditionFailed = "412" showStatus RequestEntityTooLarge = "413" showStatus RequestURItooLong = "414" showStatus UnsupportedMediaType = "415" showStatus NotImplemented = "501" showStatus ServiceUnavailable = "503" defaultHtml : Status → String defaultHtml x = doctype ++ html x where doctype = "<!DOCTYPE html>" head = "<head><meta charset=utf-8 /><title>Lemmachine</title></head>" body : Status → String body x = "<body>This HTTP status (" ++ showStatus x ++ ") is brought to you by Lemmachine!</body>" html : Status → String html x = "<html lang='en'>" ++ head ++ body x ++ "</html>"
{ "alphanum_fraction": 0.7406962785, "avg_line_length": 29.2280701754, "ext": "agda", "hexsha": "3c9302fbb63a39f5d6575fee7009b2a2f55312d1", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "src/Lemmachine/Response.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "src/Lemmachine/Response.agda", "max_line_length": 100, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "src/Lemmachine/Response.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 412, "size": 1666 }
-- Andreas, 2019-10-21, issue #4148, reported by omelkonian {-# OPTIONS -v impossible:100 #-} postulate A : Set module M (I : Set) where postulate P : I → Set record R (i : I) : Set where constructor mk field f : P i open module N = M A data D : ∀ {i} → R i → Set where c : ∀ {i} {t : P i} → D (mk t) test : ∀ {i} {t : R i} → D t → Set₁ test c = Set -- WAS: internal error in a sanity check in etaExpandRecord'_ -- Should succeed
{ "alphanum_fraction": 0.5729613734, "avg_line_length": 16.0689655172, "ext": "agda", "hexsha": "b1b7ebd5e370e6367dc4a739b1e2412f7b59be32", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4148.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4148.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4148.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 167, "size": 466 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.groups.Homomorphism open import lib.groups.TensorProduct module lib.types.CRing where -- 1-approximation of commutative rings without higher coherence conditions. record CRingStructure {i} (El : Type i) : Type i where constructor ring-structure field add-group-struct : GroupStructure El open GroupStructure add-group-struct zero : El zero = ident add : El → El → El add = comp neg : El → El neg = inv field add-comm : ∀ a b → add a b == add b a one : El mult : El → El → El mult-unit-l : ∀ a → mult one a == a mult-assoc : ∀ a b c → mult (mult a b) c == mult a (mult b c) mult-comm : ∀ a b → mult a b == mult b a distr-l : ∀ a b c → mult (add a b) c == add (mult a c) (mult b c) private infix 80 _⊕_ _⊕_ = add infix 90 _⊗_ _⊗_ = mult add-assoc : ∀ a b c → (a ⊕ b) ⊕ c == a ⊕ (b ⊕ c) add-assoc = assoc abstract mult-unit-r : ∀ a → a ⊗ one == a mult-unit-r a = a ⊗ one =⟨ mult-comm a one ⟩ one ⊗ a =⟨ mult-unit-l a ⟩ a =∎ distr-r : ∀ a b c → a ⊗ (b ⊕ c) == a ⊗ b ⊕ a ⊗ c distr-r a b c = a ⊗ (b ⊕ c) =⟨ mult-comm a (add b c) ⟩ (b ⊕ c) ⊗ a =⟨ distr-l b c a ⟩ b ⊗ a ⊕ c ⊗ a =⟨ (mult-comm b a) |in-ctx (λ x → add x (mult c a)) ⟩ a ⊗ b ⊕ c ⊗ a =⟨ (mult-comm c a) |in-ctx (add (mult a b)) ⟩ a ⊗ b ⊕ a ⊗ c =∎ mult-zero-l : ∀ a → zero ⊗ a == zero mult-zero-l a = cancel-l (zero ⊗ a) $ zero ⊗ a ⊕ zero ⊗ a =⟨ ! (distr-l zero zero a) ⟩ (zero ⊕ zero) ⊗ a =⟨ unit-l zero |in-ctx (λ x → x ⊗ a) ⟩ zero ⊗ a =⟨ ! (unit-r (zero ⊗ a)) ⟩ zero ⊗ a ⊕ zero =∎ mult-zero-r : ∀ a → a ⊗ zero == zero mult-zero-r a = a ⊗ zero =⟨ mult-comm a zero ⟩ zero ⊗ a =⟨ mult-zero-l a ⟩ zero =∎ record CRing i : Type (lsucc i) where constructor ring field El : Type i {{El-level}} : has-level 0 El ring-struct : CRingStructure El open CRingStructure ring-struct public add-group : Group i add-group = group El add-group-struct add-abgroup : AbGroup i add-abgroup = add-group , add-comm mult-hom : El → add-group →ᴳ add-group mult-hom g = group-hom (mult g) (distr-r g) mult-hom-zero : mult-hom zero == cst-hom mult-hom-zero = group-hom= (λ= mult-zero-l) private module R⊗R = TensorProduct add-abgroup add-abgroup module UP = R⊗R.UniversalProperty add-abgroup mult-bilinear-map : UP.BilinearMap mult-bilinear-map = record { bmap = mult ; linearity-l = distr-l ; linearity-r = distr-r } mult-hom' : R⊗R.grp →ᴳ add-group mult-hom' = UP.extend mult-bilinear-map mult-hom'-β : ∀ a b → GroupHom.f mult-hom' (a R⊗R.⊗ b) == mult a b mult-hom'-β = UP.extend-β mult-bilinear-map Ring₀ : Type (lsucc lzero) Ring₀ = CRing lzero
{ "alphanum_fraction": 0.5442359249, "avg_line_length": 25.947826087, "ext": "agda", "hexsha": "71e1ce24958e9176b6ce2c073b84aafb162e3223", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/CRing.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/CRing.agda", "max_line_length": 76, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/CRing.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1111, "size": 2984 }
------------------------------------------------------------------------------ -- Proving properties without using pattern matching on refl ------------------------------------------------------------------------------ {-# OPTIONS --no-pattern-matching #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} module FOT.PA.Inductive2Mendelson.NoPatternMatchingOnRefl where open import PA.Inductive.Base ------------------------------------------------------------------------------ -- From PA.Inductive2Mendelson S₁ : ∀ {m n o} → m ≡ n → m ≡ o → n ≡ o S₁ h₁ h₂ = trans (sym h₁) h₂ S₂ : ∀ {m n} → m ≡ n → succ m ≡ succ n S₂ {m} h = subst (λ t → succ m ≡ succ t) h refl -- 20 May 2013. Requires the predecessor function. -- S₄ : ∀ {m n} → succ m ≡ succ n → m ≡ n
{ "alphanum_fraction": 0.4383078731, "avg_line_length": 34.04, "ext": "agda", "hexsha": "3b9205bd403de089edd732928af8eec2a9de8a7c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/PA/Inductive2Mendelson/NoPatternMatchingOnRefl.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/PA/Inductive2Mendelson/NoPatternMatchingOnRefl.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/PA/Inductive2Mendelson/NoPatternMatchingOnRefl.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 211, "size": 851 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Three : Set -- (AAA) To fix things, move this line... data One : Set where one : Nat → One data Two : Set where two : One → Two lemma′ : ∀ (m n : Nat) → (one m) ≡ (one n) → m ≡ n lemma′ m .m refl = refl lemma : ∀ (m n : Nat) → (two (one m)) ≡ (two (one n)) → m ≡ n lemma m .m refl = refl {- Error was: I'm not sure if there should be a case for the constructor refl, because I get stuck when trying to solve the following unification problems (inferred index ≟ expected index): two (one m) ≟ two (one n) when checking that the pattern refl has type two (one m) ≡ two (one n) -} -- (BBB) ... to here. data Three where three : Three
{ "alphanum_fraction": 0.6447552448, "avg_line_length": 23.064516129, "ext": "agda", "hexsha": "16fc7a5183011f20e21192cfbb3d7f5f76fd8748", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4750.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4750.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4750.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 231, "size": 715 }
open import Categories.Category open import Categories.Category.CartesianClosed {- The internal language of a given cartesian closed category. -} module Internal {o ℓ e} (𝒞 : Category o ℓ e) (cartesianClosed : CartesianClosed 𝒞) where open import Relation.Binary using (Rel) open import Data.Product using (Σ-syntax; _,_) open import Level open import Syntax open import Theory open import Categories.Category.Cartesian 𝒞 open import Categories.Category.BinaryProducts 𝒞 open import Categories.Object.Terminal 𝒞 open Category 𝒞 open CartesianClosed cartesianClosed open Cartesian cartesian open BinaryProducts products module T = Terminal terminal module _ where open PType Obj data F : Set (o ⊔ ℓ) where Inherit : forall {A B : Obj} -> A ⇒ B -> F I : Type -> F J : Type -> F -- The same as ⟦_⟧T in Semantics.agda. ⟦_⟧T′ : Type -> Obj ⟦ ⌊ A ⌋ ⟧T′ = A ⟦ Unit ⟧T′ = T.⊤ ⟦ A * A₁ ⟧T′ = ⟦ A ⟧T′ × ⟦ A₁ ⟧T′ ⟦ A => A₁ ⟧T′ = ⟦ A ⟧T′ ⇨ ⟦ A₁ ⟧T′ sorting : F -> Sorting sorting (Inherit {A} {B} f) = record { dom = ⌊ A ⌋ ; cod = ⌊ B ⌋ } sorting (I A) = record { dom = ⌊ ⟦ A ⟧T′ ⌋ ; cod = A } sorting (J A) = record { dom = A ; cod = ⌊ ⟦ A ⟧T′ ⌋ } Sg : Signature o (o ⊔ ℓ) Sg = record { Gr = Obj ; Func = F ; sorting = sorting } open Signature Sg open Term Sg open import Semantics 𝒞 cartesianClosed Sg open I (λ x → x) i : forall (A : Type) -> (⟦ ⌊ ⟦ A ⟧T′ ⌋ ⟧T) ⇒ (⟦ A ⟧T) j : forall (A : Type) -> (⟦ A ⟧T) ⇒ (⟦ ⌊ ⟦ A ⟧T′ ⌋ ⟧T) i ⌊ A ⌋ = Category.id 𝒞 i Unit = Category.id 𝒞 i (A * A₁) = (i A) ⁂ (i A₁) i (A => A₁) = λg (i A₁ ∘ (eval′ ∘ (Category.id 𝒞 ⁂ j A))) j ⌊ A ⌋ = Category.id 𝒞 j Unit = Category.id 𝒞 j (A * A₁) = j A ⁂ j A₁ j (A => A₁) = λg ((j A₁ ∘ (eval′ ∘ (Category.id 𝒞 ⁂ i A)))) S : Structure S = record { ⟦_⟧G = λ x → x ; ⟦_⟧F = λ { (Inherit f) → f ; (I A) → i A ; (J A) → j A} } open Structure S data Ax (Γ : Context) (A : Type) : Rel (Γ ⊢ A) (o ⊔ ℓ ⊔ e) where E : forall {e₁ e₂} -> ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧ -> Ax Γ A e₁ e₂ Th : Theory o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e) Th = record { Sg = Sg ; Ax = Ax } M : Model 𝒞 cartesianClosed Th M = S , λ { (E x) → x}
{ "alphanum_fraction": 0.5750237417, "avg_line_length": 25.3734939759, "ext": "agda", "hexsha": "c318186c9f3e2eeb722eeb987752c1d15060385b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "Internal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "Internal.agda", "max_line_length": 87, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "Internal.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 894, "size": 2106 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples showing how the notion of Interleaving can be used ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module README.Data.Interleaving where open import Level open import Data.List.Base hiding (filter) open import Data.List.Relation.Unary.All open import Function open import Relation.Nullary open import Relation.Unary -- In its most general form, `Interleaving` is parametrised by two relations -- `L` (for Left) and `R` (for Right). Given three lists, `xs`, `ys` and `zs`, -- a proof of `Interleaving xs ys zs` is essentially a diagram explaining how -- `zs` can be pulled apart into `xs` and `ys` in a way compatible with `L` -- and `R`. For instance: -- xs zs ys -- -- x₁ -- L x₁ z₁ -- z₁ -- x₂ -- L x₂ z₂ -- z₂ -- z₃ -- R z₃ z₁ -- y₁ -- x₃ -- L x₃ z₄ -- z₄ -- z₅ -- R z₅ y₂ -- y₂ open import Data.List.Relation.Ternary.Interleaving.Propositional -- The special case we will focus on here is the propositional case: both -- `L` and ̀R` are propositional equality. Rethinking our previous example, -- this gives us the proof that [z₁, ⋯, z₅] can be partitioned into -- [z₁, z₂, z₄] on the one hand and [z₃, z₅] in the other. -- One possible use case for such a relation is the definition of a very -- precise filter function. Provided a decidable predicate `P`, it will -- prove not only that the retained values satisfy `P` but that the ones -- that didn't make the cut satisfy the negation of P. -- We can make this formal by defining the following record type: infix 3 _≡_⊎_ record Filter {a p} {A : Set a} (P : Pred A p) (xs : List A) : Set (a ⊔ p) where constructor _≡_⊎_ field -- The result of running filter is two lists: -- * the elements we have kept -- * and the ones we have thrown away -- We leave these implicit: they can be inferred from the rest {kept} : List A {thrown} : List A -- There is a way for us to recover the original -- input by interleaving the two lists cover : Interleaving kept thrown xs -- Finally, the partition was made according to the predicate allP : All P kept all¬P : All (∁ P) thrown -- Once we have this type written down, we can write the function. -- We use an anonymous module to clean up the function's type. module _ {a p} {A : Set a} {P : Pred A p} (P? : Decidable P) where filter : ∀ xs → Filter P xs -- If the list is empty, we are done. filter [] = [] ≡ [] ⊎ [] filter (x ∷ xs) = -- otherwise we start by running filter on the tail let xs' ≡ ps ⊎ ¬ps = filter xs in -- And depending on whether `P` holds of the head, -- we cons it to the `kept` or `thrown` list. case P? x of λ where -- [1] (yes p) → consˡ xs' ≡ p ∷ ps ⊎ ¬ps (no ¬p) → consʳ xs' ≡ ps ⊎ ¬p ∷ ¬ps -- [1] See the following module for explanations of `case_of_` and -- pattern-matching lambdas import README.Case
{ "alphanum_fraction": 0.6130798969, "avg_line_length": 36.5176470588, "ext": "agda", "hexsha": "5736d95f43f65573fe9d462d79613e7022c07a96", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Data/Interleaving.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Data/Interleaving.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Data/Interleaving.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 892, "size": 3104 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.RingStructure.RingLaws where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.Homotopy.Loopspace open import Cubical.HITs.S1 hiding (_·_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (elim to sElim ; elim2 to sElim2) open import Cubical.HITs.Truncation renaming (elim to trElim) open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Data.Int renaming (_+_ to _ℤ+_ ; _·_ to _ℤ∙_ ; +Comm to +ℤ-comm ; ·Comm to ∙-comm ; +Assoc to ℤ+-assoc ; -_ to -ℤ_) hiding (_+'_ ; +'≡+) open import Cubical.Data.Nat open import Cubical.Data.Sigma private variable ℓ : Level -- Some boring lemmas ·₀≡·ℤ : (x y : ℤ) → _·₀_ {n = zero} x y ≡ x ℤ∙ y ·₀≡·ℤ (pos zero) y = refl ·₀≡·ℤ (pos (suc n)) y = cong (y ℤ+_) (·₀≡·ℤ (pos n) y) ·₀≡·ℤ (negsuc zero) (pos zero) = refl ·₀≡·ℤ (negsuc zero) (pos (suc n)) = -AntiComm 0 (pos (suc n)) ·₀≡·ℤ (negsuc zero) (negsuc n) = -AntiComm 0 (negsuc n) ·₀≡·ℤ (negsuc (suc n)) (pos m) = (cong ((_ℤ+ (pos 0 - pos m))) (·₀≡·ℤ (negsuc n) (pos m)) ∙ cong ((negsuc n ℤ∙ (pos m)) ℤ+_) (-AntiComm 0 (pos m) ∙ cong (-ℤ_) (help m))) ∙ sym (+ℤ-comm (-ℤ (pos m)) (negsuc n ℤ∙ (pos m))) where help : (m : ℕ) → (pos m - 0) ≡ pos m help zero = refl help (suc m) = refl ·₀≡·ℤ (negsuc (suc n)) (negsuc m) = +ℤ-comm (_·₀_{n = zero} (negsuc n) (negsuc m)) (pos 0 - (negsuc m)) ∙∙ cong ((pos 0 - negsuc m) ℤ+_) (·₀≡·ℤ (negsuc n) (negsuc m)) ∙∙ cong (_ℤ+ (negsuc n ℤ∙ negsuc m)) (help m) where help : (m : ℕ) → (pos 0 - negsuc m) ≡ pos (suc m) help zero = refl help (suc n) = cong sucℤ (help n) comm-·₀ : (x y : ℤ) → _·₀_ {n = 0} x y ≡ y ·₀ x comm-·₀ x y = ·₀≡·ℤ x y ∙∙ ∙-comm x y ∙∙ sym (·₀≡·ℤ y x) +'-assoc : (n m l : ℕ) → (n +' (m +' l)) ≡ ((n +' m) +' l) +'-assoc n m l = (λ i → +'≡+ n (+'≡+ m l i) i) ∙∙ +-assoc n m l ∙∙ (λ i → +'≡+ (+'≡+ n m (~ i)) l (~ i)) -- Zero multiplication ⌣ₖ-0ₖ : (n m : ℕ) → (x : coHomK n) → x ⌣ₖ (0ₖ _) ≡ 0ₖ _ ⌣ₖ-0ₖ n m x = snd (⌣ₖ∙ n m x) 0ₖ-⌣ₖ : (n m : ℕ) → (x : coHomK m) → (0ₖ _) ⌣ₖ x ≡ 0ₖ _ 0ₖ-⌣ₖ n m = funExt⁻ (cong fst (snd (⌣ₖ∙∙ n m))) ⌣ₖ-0ₖ≡0ₖ-⌣ₖ : (n m : ℕ) → ⌣ₖ-0ₖ n m (0ₖ _) ≡ 0ₖ-⌣ₖ n m (0ₖ _) ⌣ₖ-0ₖ≡0ₖ-⌣ₖ zero zero = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ zero (suc m) = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc n) zero = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc zero) (suc m) = refl ⌣ₖ-0ₖ≡0ₖ-⌣ₖ (suc (suc n)) (suc m) = refl -- Left distributivity private ⌣ₖ-distrFun : -- z ⌣ₖ (x +ₖ y) (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (m +' n) fst (⌣ₖ-distrFun n m x y) z = z ⌣ₖ (x +ₖ y) snd (⌣ₖ-distrFun n m x y) = 0ₖ-⌣ₖ m n (x +ₖ y) ⌣ₖ-distrFun2 : -- z ⌣ₖ x +ₖ z ⌣ₖ y (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (m +' n) fst (⌣ₖ-distrFun2 n m x y) z = z ⌣ₖ x +ₖ z ⌣ₖ y snd (⌣ₖ-distrFun2 n m x y) = cong₂ _+ₖ_ (0ₖ-⌣ₖ m n x) (0ₖ-⌣ₖ m n y) ∙ rUnitₖ _ _ leftDistr-⌣ₖ· : (n m : ℕ) (x y : coHomK (suc n)) → ⌣ₖ-distrFun (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2 (suc n) (suc m) x y leftDistr-⌣ₖ· n m = elim2 (λ _ _ → isOfHLevelSuc (2 + n) (hLevHelp n m _ _)) main where hLevHelp : (n m : ℕ) (x y : _) → isOfHLevel (2 + n) ( ⌣ₖ-distrFun (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2 (suc n) (suc m) x y) hLevHelp n m x y = (subst (isOfHLevel (3 + n)) (λ i → (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (suc (+-comm n m i))))) (isOfHLevel↑∙ (suc n) m)) _ _ left-fst : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ x ∣) ≡ fst (⌣ₖ-distrFun2 (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ x ∣) left-fst zero y = (funExt (λ z → sym (lUnitₖ _ (z ⌣ₖ ∣ y ∣)) ∙ λ i → ⌣ₖ-0ₖ _ _ z (~ i) +ₖ z ⌣ₖ ∣ y ∣)) left-fst (suc n) y = (funExt (λ z → sym (lUnitₖ _ (z ⌣ₖ ∣ y ∣)) ∙ λ i → ⌣ₖ-0ₖ _ _ z (~ i) +ₖ z ⌣ₖ ∣ y ∣)) right-fst : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun (suc n) (suc m) ∣ x ∣ (0ₖ _)) ≡ fst (⌣ₖ-distrFun2 (suc n) (suc m) ∣ x ∣ (0ₖ _)) right-fst n x = funExt (λ z → (cong (z ⌣ₖ_) (rUnitₖ _ ∣ x ∣) ∙∙ sym (rUnitₖ _ _) ∙∙ λ i → z ⌣ₖ ∣ x ∣ +ₖ ⌣ₖ-0ₖ _ (suc n) z (~ i))) helper : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x) → sym (lUnitₖ _ x) ∙ cong (_+ₖ x) p ≡ sym (rUnitₖ _ x) ∙ cong (x +ₖ_) p helper n x = J (λ x p → sym (lUnitₖ _ x) ∙ cong (_+ₖ x) p ≡ sym (rUnitₖ _ x) ∙ cong (x +ₖ_) p) (helper' n) where helper' : (n : ℕ) → (λ i → lUnitₖ (suc n) (0ₖ (suc n)) (~ i)) ∙ (λ i → 0ₖ (suc n) +ₖ 0ₖ (suc n)) ≡ (λ i → rUnitₖ (suc n) (0ₖ (suc n)) (~ i)) ∙ (λ i → 0ₖ (suc n) +ₖ 0ₖ (suc n)) helper' zero = refl helper' (suc n) = refl left-fst≡right-fst : (n : ℕ) → left-fst n (ptSn _) ≡ right-fst n (ptSn _) left-fst≡right-fst zero i j z = helper _ (z ⌣ₖ ∣ base ∣) (sym (⌣ₖ-0ₖ _ _ z)) i j left-fst≡right-fst (suc n) i j z = helper _ (z ⌣ₖ ∣ north ∣) (sym (⌣ₖ-0ₖ _ (suc (suc n)) z)) i j main : (a b : S₊ (suc n)) → ⌣ₖ-distrFun (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ ≡ ⌣ₖ-distrFun2 (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ main = wedgeconFun n n (λ x y → subst (λ l → isOfHLevel l ((⌣ₖ-distrFun (suc n) (suc m) ∣ x ∣ ∣ y ∣) ≡ ⌣ₖ-distrFun2 (suc n) (suc m) ∣ x ∣ ∣ y ∣)) (+-suc n (suc n)) (isOfHLevelPlus {n = 2 + n} n (hLevHelp n m ∣ x ∣ ∣ y ∣))) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (left-fst n x)) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (right-fst n x)) (cong (→∙Homogeneous≡ (isHomogeneousKn _)) (sym (left-fst≡right-fst n))) -- Distributivity for 0 dimensional cases leftDistr₀n : (n : ℕ) → (z : coHomK 0) (x y : coHomK n) → z ·₀ (x +[ n ]ₖ y) ≡ z ·₀ x +[ n ]ₖ (z ·₀ y) leftDistr₀n n (pos zero) x y = sym (rUnitₖ n (0ₖ _)) leftDistr₀n n (pos (suc z)) x y = cong ((x +ₖ y) +ₖ_) (leftDistr₀n n (pos z) x y) ∙∙ sym (assocₖ n x y (pos z ·₀ x +[ n ]ₖ (pos z ·₀ y))) ∙∙ cong (x +ₖ_) (assocₖ n y (pos z ·₀ x) (pos z ·₀ y) ∙∙ cong (_+ₖ (pos z ·₀ y)) (commₖ n y (pos z ·₀ x)) ∙∙ sym (assocₖ n (pos z ·₀ x) y (pos z ·₀ y))) ∙ assocₖ n x _ _ leftDistr₀n n (negsuc zero) x y = -distrₖ n x y leftDistr₀n n (negsuc (suc z)) x y = cong₂ (_+ₖ_) (leftDistr₀n n (negsuc z) x y) (-distrₖ n x y) ∙∙ assocₖ n ((negsuc z ·₀ x) +ₖ (negsuc z ·₀ y)) (-ₖ x) (-ₖ y) ∙∙ cong (_-ₖ y) (sym (assocₖ n (negsuc z ·₀ x) (negsuc z ·₀ y) (-ₖ x)) ∙∙ cong ((negsuc z ·₀ x) +ₖ_) (commₖ n (negsuc z ·₀ y) (-ₖ x)) ∙∙ assocₖ n (negsuc z ·₀ x) (-ₖ x) (negsuc z ·₀ y)) ∙ sym (assocₖ n (negsuc (suc z) ·₀ x) _ _) leftDistrn₀ : (n : ℕ) → (z : coHomK n) (x y : coHomK 0) → (x ℤ+ y) ·₀ z ≡ x ·₀ z +[ n ]ₖ (y ·₀ z) leftDistrn₀ n z x (pos zero) = sym (rUnitₖ n (x ·₀ z)) leftDistrn₀ n z x (pos (suc y)) = lem (x +pos y) ∙∙ cong (z +ₖ_) (leftDistrn₀ n z x (pos y) ∙ commₖ n _ _) ∙∙ assocₖ n z _ _ ∙ commₖ n _ _ where lem : (a : ℤ) → (sucℤ a) ·₀ z ≡ z +ₖ (a ·₀ z) lem (pos zero) = refl lem (pos (suc a)) = cong (z +ₖ_) (lem (pos a)) lem (negsuc zero) = sym (rCancelₖ n z) lem (negsuc (suc a)) = sym (-cancelLₖ n z (negsuc a ·₀ z)) ∙ sym (assocₖ n z (negsuc a ·₀ z) (-ₖ z)) leftDistrn₀ n z x (negsuc y) = main y where help : (x : ℤ) → predℤ x ·₀ z ≡ (x ·₀ z -ₖ z) help (pos zero) = sym (lUnitₖ n (-ₖ z)) help (pos (suc x)) = sym (-cancelLₖ n z (pos x ·₀ z)) help (negsuc x) = refl main : (y : _) → (x ℤ+ negsuc y) ·₀ z ≡ (x ·₀ z) +ₖ (negsuc y ·₀ z) main zero = help x main (suc y) = help (x +negsuc y) ∙∙ cong (_-ₖ z) (main y) ∙∙ sym (assocₖ n _ _ _) leftDistr-⌣ₖ : (n m : ℕ) (z : coHomK n) (x y : coHomK m) → z ⌣ₖ (x +ₖ y) ≡ (z ⌣ₖ x +ₖ z ⌣ₖ y) leftDistr-⌣ₖ zero m z x y = leftDistr₀n m z x y leftDistr-⌣ₖ (suc n) zero z x y = leftDistrn₀ (suc n) z x y leftDistr-⌣ₖ (suc n) (suc m) z x y = funExt⁻ (cong fst (leftDistr-⌣ₖ· m n x y)) z -- Right distributivity private ⌣ₖ-distrFun-r : -- (x +ₖ y) ⌣ₖ z (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (n +' m) fst (⌣ₖ-distrFun-r n m x y) z = (x +ₖ y) ⌣ₖ z snd (⌣ₖ-distrFun-r n m x y) = ⌣ₖ-0ₖ n m (x +ₖ y) -- ⌣ₖ-0ₖ m n (x +ₖ y) ⌣ₖ-distrFun2-r : (n m : ℕ) → (x y : coHomK n) → coHomK-ptd m →∙ coHomK-ptd (n +' m) fst (⌣ₖ-distrFun2-r n m x y) z = x ⌣ₖ z +ₖ y ⌣ₖ z snd (⌣ₖ-distrFun2-r n m x y) = cong₂ _+ₖ_ (⌣ₖ-0ₖ n m x) (⌣ₖ-0ₖ n m y) ∙ rUnitₖ _ _ rightDistr-⌣ₖ· : (n m : ℕ) (x y : coHomK (suc n)) → ⌣ₖ-distrFun-r (suc n) (suc m) x y ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) x y rightDistr-⌣ₖ· n m = elim2 (λ _ _ → isOfHLevelPath (3 + n) (isOfHLevel↑∙ (suc n) m) _ _) main where fst-left : (n : ℕ) (y : S₊ (suc n)) → fst (⌣ₖ-distrFun-r (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ y ∣) ≡ fst (⌣ₖ-distrFun2-r (suc n) (suc m) ∣ ptSn (suc n) ∣ ∣ y ∣) fst-left n y = funExt (λ z → cong (_⌣ₖ z) (lUnitₖ _ ∣ y ∣) ∙∙ sym (lUnitₖ _ (∣ y ∣ ⌣ₖ z)) ∙∙ cong (_+ₖ (∣ y ∣ ⌣ₖ z)) (sym (0ₖ-⌣ₖ _ _ z))) fst-right : (n : ℕ) (x : S₊ (suc n)) → fst (⌣ₖ-distrFun-r (suc n) (suc m) ∣ x ∣ ∣ ptSn (suc n) ∣) ≡ fst (⌣ₖ-distrFun2-r (suc n) (suc m) ∣ x ∣ ∣ ptSn (suc n) ∣) fst-right n x = funExt λ z → cong (_⌣ₖ z) (rUnitₖ _ ∣ x ∣) ∙∙ sym (rUnitₖ _ _) ∙∙ cong (∣ x ∣ ⌣ₖ z +ₖ_) (sym (0ₖ-⌣ₖ _ _ z)) left≡right : (n : ℕ) → fst-left n (ptSn (suc n)) ≡ fst-right n (ptSn (suc n)) left≡right zero = refl left≡right (suc n) = refl main : (a b : S₊ (suc n)) → ⌣ₖ-distrFun-r (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) ∣ a ∣ₕ ∣ b ∣ₕ main = wedgeconFun n n (λ x y → subst (λ l → isOfHLevel l ((⌣ₖ-distrFun-r (suc n) (suc m) ∣ x ∣ ∣ y ∣) ≡ ⌣ₖ-distrFun2-r (suc n) (suc m) ∣ x ∣ ∣ y ∣)) (+-suc n (suc n)) (isOfHLevelPlus {n = 2 + n} n (isOfHLevel↑∙ (suc n) m _ _))) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (fst-left n x)) (λ x → →∙Homogeneous≡ (isHomogeneousKn _) (fst-right n x)) (cong (→∙Homogeneous≡ (isHomogeneousKn _)) (sym (left≡right n))) rightDistr-⌣ₖ : (n m : ℕ) (x y : coHomK n) (z : coHomK m) → (x +ₖ y) ⌣ₖ z ≡ (x ⌣ₖ z +ₖ y ⌣ₖ z) rightDistr-⌣ₖ zero zero x y z = comm-·₀ (x ℤ+ y) z ∙∙ leftDistr-⌣ₖ zero zero z x y ∙∙ cong₂ _+ₖ_ (sym (comm-·₀ x z)) (sym (comm-·₀ y z)) rightDistr-⌣ₖ zero (suc m) x y z = leftDistr-⌣ₖ _ zero z x y rightDistr-⌣ₖ (suc n) zero x y z = leftDistr-⌣ₖ zero (suc n) z x y rightDistr-⌣ₖ (suc n) (suc m) x y z = (funExt⁻ (cong fst (rightDistr-⌣ₖ· n m x y))) z -- Associativity private -- We need to give the two associators as (doubly) pointed functions assocer : (n m k : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd ((suc n) +' ((suc m) +' (suc k))) ∙) fst (fst (assocer n m k x) y) z = x ⌣ₖ (y ⌣ₖ z) snd (fst (assocer n m k x) y) = cong (x ⌣ₖ_) (⌣ₖ-0ₖ _ (suc k) y) ∙ ⌣ₖ-0ₖ _ _ x snd (assocer n m k x) = ΣPathP (funExt (λ z → cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) z) ∙ ⌣ₖ-0ₖ (suc n) _ x) , help) where h : (n m k : ℕ) (x : coHomK (suc n)) → cong (_⌣ₖ_ x) (⌣ₖ-0ₖ (suc m) (suc k) (0ₖ _)) ≡ (λ i → x ⌣ₖ 0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _) i) h zero zero k x = refl h zero (suc m) k x = refl h (suc n) zero k x = refl h (suc n) (suc m) k x = refl help : PathP (λ i → (cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) i ≡ 0ₖ _) (cong (x ⌣ₖ_) (⌣ₖ-0ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) refl help = compPathR→PathP (cong (_∙ ⌣ₖ-0ₖ (suc n) ((suc m) +' (suc k)) x) (h n m k x) ∙∙ rUnit _ ∙∙ cong ((cong (x ⌣ₖ_) (0ₖ-⌣ₖ (suc m) (suc k) (0ₖ _)) ∙ ⌣ₖ-0ₖ (suc n) _ x) ∙_) (rUnit refl)) assoc2-sub : (n m k : ℕ) → _ → _ assoc2-sub n m k = subst coHomK (sym (+'-assoc n m k)) assoc2-sub-0 : (n m k : ℕ) → assoc2-sub n m k (0ₖ _) ≡ 0ₖ _ assoc2-sub-0 zero zero zero = refl assoc2-sub-0 zero zero (suc zero) = refl assoc2-sub-0 zero zero (suc (suc k)) = refl assoc2-sub-0 zero (suc zero) zero = refl assoc2-sub-0 zero (suc zero) (suc k) = refl assoc2-sub-0 zero (suc (suc m)) zero = refl assoc2-sub-0 zero (suc (suc m)) (suc k) = refl assoc2-sub-0 (suc zero) zero zero = refl assoc2-sub-0 (suc zero) zero (suc k) = refl assoc2-sub-0 (suc (suc n)) zero zero = refl assoc2-sub-0 (suc (suc n)) zero (suc k) = refl assoc2-sub-0 (suc zero) (suc m) zero = refl assoc2-sub-0 (suc (suc n)) (suc m) zero = refl assoc2-sub-0 (suc zero) (suc m) (suc k) = refl assoc2-sub-0 (suc (suc n)) (suc m) (suc k) = refl assocer2 : (n m k : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd ((suc n) +' ((suc m) +' (suc k))) ∙) fst (fst (assocer2 n m k x) y) z = subst coHomK (sym (+'-assoc (suc n) (suc m) (suc k))) ((x ⌣ₖ y) ⌣ₖ z) -- snd (fst (assocer2 zero m k x) y) = cong (subst coHomK (sym (+'-assoc 1 (suc m) (suc k)))) (⌣ₖ-0ₖ _ _ (x ⌣ₖ y)) snd (fst (assocer2 (suc n) m k x) y) = cong (subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k)))) (⌣ₖ-0ₖ _ _ (x ⌣ₖ y)) fst (snd (assocer2 zero m k x) i) z = subst coHomK (sym (+'-assoc (suc zero) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ x i ⌣ₖ z) snd (snd (assocer2 zero m k x) i) j = subst coHomK (sym (+'-assoc (suc zero) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ (⌣ₖ-0ₖ _ _ x i) j) fst (snd (assocer2 (suc n) m k x) i) z = subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ x i ⌣ₖ z) snd (snd (assocer2 (suc n) m k x) i) j = subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (⌣ₖ-0ₖ _ _ (⌣ₖ-0ₖ _ _ x i) j) assocer-helpFun : (n m : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m))) fst (assocer-helpFun n m a) b = Kn→ΩKn+1 _ (a ⌣ₖ b) snd (assocer-helpFun n m a) = cong (Kn→ΩKn+1 _) (⌣ₖ-0ₖ (suc n) (suc m) a) ∙ Kn→ΩKn+10ₖ _ assocer-helpFun2 : (n m : ℕ) → coHomK (suc n) → coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m))) fst (assocer-helpFun2 n m a) b i = (Kn→ΩKn+1 _ a i) ⌣ₖ b snd (assocer-helpFun2 n m a) i j = ⌣ₖ-0ₖ _ (suc m) (Kn→ΩKn+1 _ a j) i -- Key lemma for associativity assocer-helpFun≡ : (n m : ℕ) → (x : coHomK (suc n)) → assocer-helpFun n m x ≡ assocer-helpFun2 n m x assocer-helpFun≡ n m = trElim (λ _ → isOfHLevelPath (3 + n) (hLev-assocer-helpFun n m) _ _) λ a → →∙Homogeneous≡ (subst isHomogeneous Kn≃ΩKn+1∙ (isHomogeneousKn _)) (funExt (main n a)) where hLev-assocer-helpFun : (n m : ℕ) → isOfHLevel (3 + n) (coHomK-ptd (suc m) →∙ Ω (coHomK-ptd (3 + (n + m)))) hLev-assocer-helpFun n m = subst (isOfHLevel (3 + n)) (cong (coHomK-ptd (suc m) →∙_) (Kn≃ΩKn+1∙)) (isOfHLevel↑∙ (suc n) m) main : (n : ℕ) (a : S₊ (suc n)) (b : _) → fst (assocer-helpFun n m ∣ a ∣) b ≡ fst (assocer-helpFun2 n m ∣ a ∣) b main zero a b k i = hcomp (λ r → λ {(i = i0) → 0ₖ _ ; (i = i1) → ∣ rCancel (merid north) r (~ k) ∣ ; (k = i0) → Kn→ΩKn+1 _ (∣ a ∣ ⌣ₖ b) i ; (k = i1) → (Kn→ΩKn+1 _ ∣ a ∣ i) ⌣ₖ b}) (∣ compPath-filler (merid a) (sym (merid base)) k i ∣ ⌣ₖ b) main (suc n) a b k i = hcomp (λ r → λ {(i = i0) → 0ₖ _ ; (i = i1) → ∣ rCancel (merid north) r (~ k) ∣ ; (k = i0) → Kn→ΩKn+1 _ (∣ a ∣ ⌣ₖ b) i ; (k = i1) → (Kn→ΩKn+1 _ ∣ a ∣ i) ⌣ₖ b}) (∣ compPath-filler (merid a) (sym (merid north)) k i ∣ ⌣ₖ b) assoc-helper : (n m : ℕ) (x : coHomK (suc n)) (y : coHomK (suc m)) → Kn→ΩKn+1 _ (x ⌣ₖ y) ≡ λ i → (Kn→ΩKn+1 _ x i) ⌣ₖ y assoc-helper n m x y = funExt⁻ (cong fst (assocer-helpFun≡ n m x)) y assoc-⌣ₖ· : (n m k : ℕ) → (x : coHomK (suc n)) → assocer n m k x ≡ assocer2 n m k x assoc-⌣ₖ· n m k = trElim (λ _ → isOfHLevelPath (3 + n) (transport (λ i → isOfHLevel (3 + n) (coHomK-ptd (suc m) →∙ (coHomK-ptd (suc k) →∙ coHomK-ptd (h (~ i)) ∙))) (isOfHLevel↑∙∙ m k (suc n))) _ _) λ a → →∙Homogeneous≡ (isHomogeneous→∙ (isHomogeneousKn _)) (funExt λ b → →∙Homogeneous≡ (isHomogeneousKn _) (funExt (main n m k a b))) where h : (suc n) +' ((suc m) +' (suc k)) ≡ suc (suc (suc n + m + k)) h = cong (2 +_) (+-suc n (m + k)) ∙ λ i → suc (suc (suc (+-assoc n m k i))) main : (n m k : ℕ) (a : S₊ (suc n)) (b : coHomK (suc m)) (c : coHomK (suc k)) → ∣ a ∣ ⌣ₖ b ⌣ₖ c ≡ (subst coHomK (λ i → +'-assoc (suc n) (suc m) (suc k) (~ i)) ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) main zero m k a b c = goal a ∙ sym (funExt⁻ t ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) where t : subst coHomK (λ i → +'-assoc 1 (suc m) (suc k) (~ i)) ≡ idfun _ t = cong (subst coHomK) (isSetℕ _ _ (+'-assoc 1 (suc m) (suc k)) refl) ∙ funExt transportRefl goal : (a : _) → ∣ a ∣ ⌣ₖ b ⌣ₖ c ≡ (∣ a ∣ ⌣ₖ b) ⌣ₖ c goal base = refl goal (loop i) j = assoc-helper m k b c j i main (suc n) m k north b c = refl main (suc n) m k south b c = refl main (suc n) m k (merid a i) b c j = help2 j i where transpLem : (n m : ℕ) (p : n ≡ m) → subst coHomK p (0ₖ _) ≡ 0ₖ _ transpLem zero m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem (suc zero) m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem (suc (suc n)) m = J (λ m p → subst coHomK p (0ₖ _) ≡ 0ₖ _) refl transpLem-refl : transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) ≡ refl transpLem-refl = transportRefl refl moveTransports : (n m : ℕ) (x : coHomK n) (p : n ≡ m) (q : (suc n) ≡ suc m) → PathP (λ i → transpLem _ _ q (~ i) ≡ transpLem _ _ q (~ i)) (Kn→ΩKn+1 _ (subst coHomK p x)) (cong (subst coHomK q) (Kn→ΩKn+1 _ x)) moveTransports n m x = J (λ m p → (q : (suc n) ≡ suc m) → PathP (λ i → transpLem _ _ q (~ i) ≡ transpLem _ _ q (~ i)) (Kn→ΩKn+1 _ (subst coHomK p x)) (cong (subst coHomK q) (Kn→ΩKn+1 _ x))) λ q → transport (λ j → PathP (λ i → transpLem (suc n) (suc n) (isSetℕ _ _ refl q j) (~ i) ≡ transpLem (suc n) (suc n) (isSetℕ _ _ refl q j) (~ i)) (Kn→ΩKn+1 _ (subst coHomK refl x)) (cong (subst coHomK (isSetℕ _ _ refl q j)) (Kn→ΩKn+1 _ x))) (h2 n x) where h2 : (n : ℕ) (x : _) → PathP (λ i₁ → transpLem (suc n) (suc n) (λ _ → suc n) (~ i₁) ≡ transpLem (suc n) (suc n) (λ _ → suc n) (~ i₁)) (Kn→ΩKn+1 n (subst coHomK (λ _ → n) x)) (λ i₁ → subst coHomK (λ _ → suc n) (Kn→ΩKn+1 n x i₁)) h2 zero x k i = hcomp (λ j → λ {(i = i0) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (i = i1) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (k = i0) → Kn→ΩKn+1 _ (transportRefl x j) i ; (k = i1) → transportRefl (Kn→ΩKn+1 _ x i) (~ j)}) (Kn→ΩKn+1 _ x i) h2 (suc n) x k i = hcomp (λ j → λ {(i = i0) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (i = i1) → transportRefl (refl {x = 0ₖ _}) (~ j) k ; (k = i0) → Kn→ΩKn+1 _ (transport refl x) i ; (k = i1) → transportRefl (Kn→ΩKn+1 _ x i) (~ j)}) (Kn→ΩKn+1 _ (transportRefl x k) i) finalTransp : (n : ℕ) (a : _) → Kn→ΩKn+1 _ (subst coHomK (λ i₁ → +'-assoc (suc n) (suc m) (suc k) (~ i₁)) ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) ≡ cong (subst coHomK (λ i₁ → +'-assoc (2 + n) (suc m) (suc k) (~ i₁))) (Kn→ΩKn+1 _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) finalTransp n a = rUnit _ ∙∙ (λ i → (λ j → transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) (i ∧ j)) ∙∙ moveTransports _ _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c) (sym (+'-assoc (suc n) (suc m) (suc k))) (sym (+'-assoc (2 + n) (suc m) (suc k))) i ∙∙ λ j → transpLem (suc (suc (suc (suc (n + m + k))))) (suc (suc n +' (suc m +' suc k))) (λ i₃ → +'-assoc (2 + n) (suc m) (suc k) (~ i₃)) (i ∧ ~ j)) ∙∙ (λ i → transportRefl refl i ∙∙ cong (subst coHomK (λ i₁ → +'-assoc (2 + n) (suc m) (suc k) (~ i₁))) (Kn→ΩKn+1 _ ((∣ a ∣ ⌣ₖ b) ⌣ₖ c)) ∙∙ transportRefl refl i) ∙ sym (rUnit _) help2 : cong (λ x → (∣ x ∣) ⌣ₖ (b ⌣ₖ c)) (merid a) ≡ cong (assoc2-sub (2 + n) (suc m) (suc k)) (cong (λ x → (∣ x ∣ ⌣ₖ b) ⌣ₖ c) (merid a)) help2 = ((λ r → Kn→ΩKn+1 _ (main n m k a b c r))) ∙∙ finalTransp n a ∙∙ λ r i → subst coHomK (sym (+'-assoc (2 + n) (suc m) (suc k))) (assoc-helper _ _ (∣ a ∣ ⌣ₖ b) c r i) -- Some key distributivity lemmas -Distₗ : (n m : ℕ) (x : coHomK n) (y : coHomK m) → (-ₖ (x ⌣ₖ y)) ≡ (-ₖ x) ⌣ₖ y -Distₗ n m x y = sym (rUnitₖ _ (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ (x ⌣ₖ y)) +ₖ_) (sym (rCancelₖ _ (x ⌣ₖ y))) ∙∙ assocₖ _ (-ₖ (x ⌣ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y)) ∙∙ cong (_-ₖ (x ⌣ₖ y)) help ∙∙ sym (assocₖ _ ((-ₖ x) ⌣ₖ y) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ x) ⌣ₖ y +ₖ_) (rCancelₖ _ (x ⌣ₖ y)) ∙∙ rUnitₖ _ ((-ₖ x) ⌣ₖ y) where help : (-ₖ (x ⌣ₖ y)) +ₖ (x ⌣ₖ y) ≡ (-ₖ x) ⌣ₖ y +ₖ (x ⌣ₖ y) help = lCancelₖ _ _ ∙∙ sym (0ₖ-⌣ₖ _ _ y) ∙ cong (_⌣ₖ y) (sym (lCancelₖ _ x)) ∙∙ rightDistr-⌣ₖ _ _ (-ₖ x) x y -Distᵣ : (n m : ℕ) (x : coHomK n) (y : coHomK m) → (-ₖ (x ⌣ₖ y)) ≡ x ⌣ₖ (-ₖ y) -Distᵣ n m x y = sym (rUnitₖ _ (-ₖ (x ⌣ₖ y))) ∙∙ cong ((-ₖ (x ⌣ₖ y)) +ₖ_) (sym (rCancelₖ _ (x ⌣ₖ y))) ∙∙ assocₖ _ (-ₖ (x ⌣ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y)) ∙∙ cong (_-ₖ (x ⌣ₖ y)) help ∙∙ sym (assocₖ _ (x ⌣ₖ (-ₖ y)) (x ⌣ₖ y) (-ₖ (x ⌣ₖ y))) ∙∙ cong (x ⌣ₖ (-ₖ y) +ₖ_) (rCancelₖ _ (x ⌣ₖ y)) ∙∙ rUnitₖ _ (x ⌣ₖ (-ₖ y)) where help : (-ₖ (x ⌣ₖ y)) +ₖ (x ⌣ₖ y) ≡ x ⌣ₖ (-ₖ y) +ₖ (x ⌣ₖ y) help = lCancelₖ _ _ ∙∙ sym (⌣ₖ-0ₖ _ _ x) ∙∙ cong (x ⌣ₖ_) (sym (lCancelₖ _ y)) ∙ leftDistr-⌣ₖ _ _ x (-ₖ y) y assoc₀ : (m k : ℕ) (x : ℤ) (y : coHomK m) (z : coHomK k) → _⌣ₖ_{n = zero} x (y ⌣ₖ z) ≡ (_⌣ₖ_{n = zero} {m = m} x y) ⌣ₖ z assoc₀ m k x y z = main x where h : subst coHomK (sym (+'-assoc zero m k)) ≡ idfun _ h = cong (subst coHomK) (isSetℕ _ _ _ refl) ∙ funExt transportRefl mainPos : (x : ℕ) → _⌣ₖ_ {n = zero} (pos x) (y ⌣ₖ z) ≡ ((_⌣ₖ_ {n = zero} {m = m} (pos x) y) ⌣ₖ z) mainPos zero = sym (0ₖ-⌣ₖ _ _ z) ∙ cong (_⌣ₖ z) (sym (0ₖ-⌣ₖ _ _ y)) mainPos (suc n) = cong (y ⌣ₖ z +ₖ_) (mainPos n) ∙∙ sym (rightDistr-⌣ₖ _ _ y (_⌣ₖ_ {n = zero} {m = m} (pos n) y) z) ∙∙ (λ i → (y +ₖ (_⌣ₖ_ {n = zero} {m = m} (pos n) y)) ⌣ₖ z) main : (x : ℤ) → x ⌣ₖ y ⌣ₖ z ≡ ((_⌣ₖ_ {n = zero} {m = m} x y) ⌣ₖ z) main (pos n) = mainPos n main (negsuc n) = (λ i → _⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 i) (y ⌣ₖ z)) ∙∙ sym (-Distₗ zero _ (pos (suc n)) (y ⌣ₖ z)) ∙ cong (-ₖ_) (mainPos (suc n)) ∙∙ -Distₗ _ _ (pos (suc n) ⌣ₖ y) z ∙∙ cong (_⌣ₖ z) ((-Distₗ zero _ (pos (suc n)) y)) ∙∙ λ i → (_⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 (~ i)) y) ⌣ₖ z assoc-⌣ₖ : (n m k : ℕ) (x : coHomK n) (y : coHomK m) (z : coHomK k) → x ⌣ₖ y ⌣ₖ z ≡ subst coHomK (sym (+'-assoc n m k)) ((x ⌣ₖ y) ⌣ₖ z) assoc-⌣ₖ zero m k x y z = assoc₀ _ _ x y z ∙ sym (funExt⁻ h ((x ⌣ₖ y) ⌣ₖ z)) where h : subst coHomK (sym (+'-assoc zero m k)) ≡ idfun _ h = cong (subst coHomK) (isSetℕ _ _ _ refl) ∙ funExt transportRefl assoc-⌣ₖ (suc n) zero k x y z = help y ∙∙ sym (transportRefl ((x ⌣ₖ y) ⌣ₖ z)) ∙∙ λ i → transport (λ j → coHomK ((isSetℕ _ _ ((sym (+'-assoc (suc n) zero k))) refl (~ i) j))) ((_⌣ₖ_ {m = zero} x y) ⌣ₖ z) where helpPos : (y : ℕ) → x ⌣ₖ (_⌣ₖ_ {n = zero} (pos y) z) ≡ ((_⌣ₖ_ {m = zero} x (pos y)) ⌣ₖ z) helpPos zero = (⌣ₖ-0ₖ _ _ x) ∙∙ (sym (0ₖ-⌣ₖ _ _ z)) ∙∙ cong (_⌣ₖ z) (sym (⌣ₖ-0ₖ _ _ x)) helpPos (suc y) = leftDistr-⌣ₖ _ _ x z (_⌣ₖ_{n = zero} (pos y) z) ∙∙ cong ((x ⌣ₖ z) +ₖ_) (helpPos y) ∙∙ sym (rightDistr-⌣ₖ _ _ x (_⌣ₖ_{n = zero} (pos y) x) z) help : (y : ℤ) → x ⌣ₖ (_⌣ₖ_ {n = zero} y z) ≡ ((_⌣ₖ_ {m = zero} x y) ⌣ₖ z) help (pos n) = helpPos n help (negsuc n) = (λ i → x ⌣ₖ (_⌣ₖ_ {n = zero} (+ℤ-comm (negsuc n) 0 i) z)) ∙∙ cong (x ⌣ₖ_) (sym (-Distₗ zero _ (pos (suc n)) z)) ∙∙ sym (-Distᵣ _ _ x _) ∙∙ cong -ₖ_ (helpPos (suc n)) ∙∙ -Distₗ _ _ _ z ∙∙ cong (_⌣ₖ z) (-Distᵣ _ zero x (pos (suc n))) ∙∙ λ i → (_⌣ₖ_ {m = zero} x (+ℤ-comm (negsuc n) 0 (~ i))) ⌣ₖ z assoc-⌣ₖ (suc n) (suc m) zero x y z = (assoc-⌣ₖ (suc n) zero (suc m) x z y) ∙∙ cong (subst coHomK (sym (+'-assoc (suc n) zero (suc m)))) (sym (assoc₀ _ _ z x y)) ∙∙ (funExt⁻ (sym h) (_⌣ₖ_ {n = zero} z (x ⌣ₖ y))) where h : subst coHomK (sym (+'-assoc (suc n) (suc m) zero)) ≡ subst coHomK (λ i → +'-assoc (suc n) zero (suc m) (~ i)) h = cong (subst coHomK) (isSetℕ _ _ _ _) assoc-⌣ₖ (suc n) (suc m) (suc k) x y z = funExt⁻ (cong fst (funExt⁻ (cong fst (assoc-⌣ₖ· n m k x)) y)) z -- Ring laws for ⌣ module _ {A : Type ℓ} (n m : ℕ) where ⌣-0ₕ : (f : coHom n A) → (f ⌣ 0ₕ m) ≡ 0ₕ _ ⌣-0ₕ = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → ⌣ₖ-0ₖ n m (f x)) 0ₕ-⌣ : (f : coHom m A) → (0ₕ n ⌣ f) ≡ 0ₕ _ 0ₕ-⌣ = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → 0ₖ-⌣ₖ n m (f x)) leftDistr-⌣ : (f : coHom n A) (g h : coHom m A) → f ⌣ (g +ₕ h) ≡ f ⌣ g +ₕ f ⌣ h leftDistr-⌣ = sElim (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f → sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ g h → cong ∣_∣₂ (funExt λ x → leftDistr-⌣ₖ n m (f x) (g x) (h x)) rightDistr-⌣ : (g h : coHom n A) (f : coHom m A) → (g +ₕ h) ⌣ f ≡ g ⌣ f +ₕ h ⌣ f rightDistr-⌣ = sElim2 (λ _ _ → isSetΠ (λ _ → isOfHLevelPath 2 squash₂ _ _)) λ g h → sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → rightDistr-⌣ₖ n m (g x) (h x) (f x)) assoc-⌣ : (l : ℕ) (f : coHom n A) (g : coHom m A) (h : coHom l A) → f ⌣ g ⌣ h ≡ subst (λ x → coHom x A) (sym (+'-assoc n m l)) ((f ⌣ g) ⌣ h) assoc-⌣ l = sElim (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f → sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 squash₂ _ _) λ g → sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ h → cong ∣_∣₂ ((funExt (λ x → assoc-⌣ₖ n m l (f x) (g x) (h x) ∙ cong (subst coHomK (sym (+'-assoc n m l))) λ i → (f (transportRefl x (~ i)) ⌣ₖ g (transportRefl x (~ i))) ⌣ₖ (h (transportRefl x (~ i)))))) -- Additive unit(s) 0⌣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) → x ⌣ (0ₕ m) ≡ 0ₕ _ 0⌣ n m = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → ⌣ₖ-0ₖ n m (f x)) ⌣0 : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) → (0ₕ m) ⌣ x ≡ 0ₕ _ ⌣0 n m = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → 0ₖ-⌣ₖ m n (f x)) -- Multiplicative unit 1⌣ : ∀ {ℓ} {A : Type ℓ} → coHom 0 A 1⌣ = ∣ (λ _ → 1) ∣₂ private n+'0 : (n : ℕ) → n +' 0 ≡ n n+'0 zero = refl n+'0 (suc n) = refl lUnit⌣ₖ : (n : ℕ) (x : coHomK n) → _⌣ₖ_ {n = 0} (pos 1) x ≡ x lUnit⌣ₖ zero = λ _ → refl lUnit⌣ₖ (suc n) x = rUnitₖ _ x lUnit⌣ : ∀ {ℓ} {A : Type ℓ} (n : ℕ) (x : coHom n A) → x ⌣ 1⌣ ≡ subst (λ n → coHom n A) (sym (n+'0 n)) x lUnit⌣ zero = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt (λ x → comm-·₀ (f x) (pos 1))) ∙ sym (transportRefl ∣ f ∣₂) lUnit⌣ (suc n) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) (0ₖ-⌣ₖ zero _ (f x)) ∙ rUnitₖ _ (f x))) ∙ sym (transportRefl ∣ f ∣₂) rUnit⌣ : ∀ {ℓ} {A : Type ℓ} (n : ℕ) (x : coHom n A) → 1⌣ ⌣ x ≡ x rUnit⌣ zero = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → refl rUnit⌣ (suc n) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → rUnitₖ _ (f x)) -ₕDistᵣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (x : coHom n A) (y : coHom m A) → (-ₕ (x ⌣ y)) ≡ x ⌣ (-ₕ y) -ₕDistᵣ n m = sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (funExt λ x → -Distᵣ n m (f x) (g x)) -- TODO : Graded ring structure
{ "alphanum_fraction": 0.4787601244, "avg_line_length": 43.60804769, "ext": "agda", "hexsha": "c0f215de706c16344201fe1247fc85d56e2f5791", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ecavallo/cubical", "max_forks_repo_path": "Cubical/ZCohomology/RingStructure/RingLaws.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ecavallo/cubical", "max_issues_repo_path": "Cubical/ZCohomology/RingStructure/RingLaws.agda", "max_line_length": 143, "max_stars_count": null, "max_stars_repo_head_hexsha": "b1d105aeeab1ba9888394c6a919b99a476390b7b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ecavallo/cubical", "max_stars_repo_path": "Cubical/ZCohomology/RingStructure/RingLaws.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 14970, "size": 29261 }
data Nat : Set where zero : Nat suc : Nat → Nat interleaved mutual data Even : Nat → Set data Odd : Nat → Set -- base cases: 0 is Even, 1 is Odd constructor even-zero : Even zero odd-one : Odd (suc zero) -- step case: suc switches the even/odd-ness constructor even-suc : ∀ {n} → Odd n → Even (suc n) odd-suc : ∀ {n} → Even n → Odd (suc n)
{ "alphanum_fraction": 0.5868421053, "avg_line_length": 20, "ext": "agda", "hexsha": "9a2b124bed86aa312bef0696f2fd8ec2629d76fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue2858-EvenOdd.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2858-EvenOdd.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2858-EvenOdd.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 132, "size": 380 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Bouquet open import homotopy.PushoutSplit open import homotopy.DisjointlyPointedSet open import cw.CW module cw.WedgeOfCells {i} {n} (skel : Skeleton {i} (S n)) where Xₙ/Xₙ₋₁ : Type i Xₙ/Xₙ₋₁ = Cofiber (cw-incl-last skel) ⊙Xₙ/Xₙ₋₁ : Ptd i ⊙Xₙ/Xₙ₋₁ = ⊙[ Xₙ/Xₙ₋₁ , cfbase ] private cells : Type i cells = cells-last skel attaching : cells → (Sphere n → ⟦ skel ⟧₋₁) attaching = attaching-last skel {- this is also a cofiber -} BigWedgeSusp : Type i BigWedgeSusp = Attached {A = ⊤} {B = cells} {C = Sphere n} (λ _ _ → unit) ⊙BigWedgeSusp : Ptd i ⊙BigWedgeSusp = ⊙[ BigWedgeSusp , cfbase ] private module SphereToBigWedgeSusp (a : cells) = SuspRec {A = Sphere n} (cfbase :> BigWedgeSusp) (cfcod a) (λ s → cfglue (a , s)) module BouquetToBigWedgeSusp = BigWedgeRec {A = cells} {X = Bouquet-family cells (S n)} cfbase SphereToBigWedgeSusp.f (λ _ → idp) module BigWedgeSuspEquivQuotient = PushoutLSplit (uncurry attaching) (λ _ → unit) fst Bouquet-to-Xₙ/Xₙ₋₁ : Bouquet cells (S n) → Xₙ/Xₙ₋₁ Bouquet-to-Xₙ/Xₙ₋₁ = BigWedgeSuspEquivQuotient.split ∘ BouquetToBigWedgeSusp.f abstract Bouquet-to-Xₙ/Xₙ₋₁-in-merid-β : ∀ (a : cells) x → ap (Bouquet-to-Xₙ/Xₙ₋₁ ∘ bwin a) (merid x) == cfglue (attaching a x) ∙' ap cfcod (spoke a x) Bouquet-to-Xₙ/Xₙ₋₁-in-merid-β a x = ap-∘ BigWedgeSuspEquivQuotient.split (SphereToBigWedgeSusp.f a) (merid x) ∙ ap (ap BigWedgeSuspEquivQuotient.split) (SphereToBigWedgeSusp.merid-β a x) ∙ BigWedgeSuspEquivQuotient.split-glue-β (a , x) private Bouquet-to-BigWedgeSusp-is-equiv : is-equiv BouquetToBigWedgeSusp.f Bouquet-to-BigWedgeSusp-is-equiv = is-eq to from to-from from-to where to = BouquetToBigWedgeSusp.f module From = AttachedRec {A = ⊤} (λ _ → bwbase :> Bouquet cells (S n)) (λ a → bwin a south) (λ a s → bwglue a ∙ ap (bwin a) (merid s)) from = From.f abstract from-to : ∀ b → from (to b) == b from-to = BigWedge-elim idp (λ a → Susp-elim (bwglue a) idp (λ s → ↓-='-from-square $ ( ap-∘ from (SphereToBigWedgeSusp.f a) (merid s) ∙ ap (ap from) (SphereToBigWedgeSusp.merid-β a s) ∙ From.spoke-β a s) ∙v⊡ (tl-square (bwglue a) ⊡h vid-square))) (λ a → ↓-∘=idf-from-square from to $ ap (ap from) (BouquetToBigWedgeSusp.glue-β a) ∙v⊡ br-square (bwglue a)) to-from : ∀ c → to (from c) == c to-from = Attached-elim (λ _ → idp) (λ a → idp) (λ a s → ↓-∘=idf-in' to from $ ap (ap to) (From.spoke-β a s) ∙ ap-∙ to (bwglue a) (ap (bwin a) (merid s)) ∙ ap2 _∙_ (BouquetToBigWedgeSusp.glue-β a) ( ∘-ap to (bwin a) (merid s) ∙ SphereToBigWedgeSusp.merid-β a s)) Bouquet-equiv-BigWedgeSusp : Bouquet cells (S n) ≃ BigWedgeSusp Bouquet-equiv-BigWedgeSusp = BouquetToBigWedgeSusp.f , Bouquet-to-BigWedgeSusp-is-equiv Bouquet-equiv-Xₙ/Xₙ₋₁ : Bouquet cells (S n) ≃ Xₙ/Xₙ₋₁ Bouquet-equiv-Xₙ/Xₙ₋₁ = BigWedgeSuspEquivQuotient.split-equiv ∘e Bouquet-equiv-BigWedgeSusp Bouquet-⊙equiv-Xₙ/Xₙ₋₁ : ⊙Bouquet cells (S n) ⊙≃ ⊙Xₙ/Xₙ₋₁ Bouquet-⊙equiv-Xₙ/Xₙ₋₁ = ≃-to-⊙≃ Bouquet-equiv-Xₙ/Xₙ₋₁ idp
{ "alphanum_fraction": 0.6254170458, "avg_line_length": 34.7052631579, "ext": "agda", "hexsha": "0f595159cb8882a9ecb62028e2b428639d7db3c5", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/WedgeOfCells.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/WedgeOfCells.agda", "max_line_length": 91, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/WedgeOfCells.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1349, "size": 3297 }
{-# OPTIONS --without-K #-} module hott.level.closure where open import hott.level.closure.core public open import hott.level.closure.lift public open import hott.level.closure.extra public
{ "alphanum_fraction": 0.7905759162, "avg_line_length": 27.2857142857, "ext": "agda", "hexsha": "490cd3e68638ae54f270594b3c5202fe8708629f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "hott/level/closure.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/level/closure.agda", "max_line_length": 43, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/level/closure.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 40, "size": 191 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Refinement type: a value together with an erased proof. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Refinement where open import Level open import Data.Erased as Erased using (Erased) open import Function.Base open import Relation.Unary private variable a b p q : Level A : Set a B : Set b record Refinement {a p} (A : Set a) (P : A → Set p) : Set (a ⊔ p) where constructor _,_ field value : A proof : Erased (P value) open Refinement public -- The syntax declaration below is meant to mimick set comprehension. -- It is attached to Refinement-syntax, to make it easy to import -- Data.Refinement without the special syntax. infix 2 Refinement-syntax Refinement-syntax = Refinement syntax Refinement-syntax A (λ x → P) = [ x ∈ A ∣ P ] module _ {P : A → Set p} {Q : B → Set q} where map : (f : A → B) → ∀[ P ⇒ f ⊢ Q ] → [ a ∈ A ∣ P a ] → [ b ∈ B ∣ Q b ] map f prf (a , p) = f a , Erased.map prf p module _ {P : A → Set p} {Q : A → Set q} where refine : ∀[ P ⇒ Q ] → [ a ∈ A ∣ P a ] → [ a ∈ A ∣ Q a ] refine = map id
{ "alphanum_fraction": 0.5431309904, "avg_line_length": 27.2173913043, "ext": "agda", "hexsha": "3cabaea29bd27da2fad7ce0651664df497f8224f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Refinement.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Refinement.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Refinement.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 361, "size": 1252 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Impl.Consensus.Types -- This module defines the LBFT monad used by our (fake/simple, -- for now) "implementation", along with some utility functions -- to facilitate reasoning about it. module LibraBFT.Impl.Util.Util where open import Optics.All open import LibraBFT.Impl.Util.RWST ℓ-RoundManager public ---------------- -- LBFT Monad -- ---------------- -- Global 'LBFT'; works over the whole state. LBFT : Set → Set LBFT = RWST Unit Output RoundManager LBFT-run : ∀ {A} → LBFT A → RoundManager → (A × RoundManager × List Output) LBFT-run m = RWST-run m unit LBFT-post : ∀ {A} → LBFT A → RoundManager → RoundManager LBFT-post m rm = proj₁ (proj₂ (LBFT-run m rm)) LBFT-outs : ∀ {A} → LBFT A → RoundManager → List Output LBFT-outs m rm = proj₂ (proj₂ (LBFT-run m rm)) -- Local 'LBFT' monad; which operates only over the part of -- the state that /depends/ on the ec; not the part -- of the state that /defines/ the ec. -- -- This is very convenient to define functions that -- do not alter the ec. LBFT-ec : EpochConfig → Set → Set LBFT-ec ec = RWST Unit Output (RoundManagerWithEC ec) -- Lifting a function that does not alter the pieces that -- define the epoch config is easy liftEC : {A : Set}(f : ∀ ec → LBFT-ec ec A) → LBFT A liftEC f = rwst λ _ st → let ec = α-EC (₋rmEC st , ₋rmEC-correct st) res , stec' , acts = RWST-run (f ec) unit (₋rmWithEC st) in res , record st { ₋rmWithEC = stec' } , acts -- Type that captures a proof that a computation in the LBFT monad -- satisfies a given contract. LBFT-Contract : ∀{A} → LBFT A → (RoundManager → Set) → (RoundManager → Set) → Set LBFT-Contract f Pre Post = ∀ rm → Pre rm × Post (proj₁ (proj₂ (RWST-run f unit rm))) -- Because we made RWST work for different level State types, but broke use -- and modify' because Lens does not support different levels, we define use -- and modify' here for RoundManager. This will work as long as we can keep -- RoundManager in Set. If we ever need to make RoundManager at some higher -- Level, we will have to consider making Lens level-agnostic. Preliminary -- exploration by @cwjnkins showed this to be somewhat painful in particular -- around composition, so we are not pursuing it for now. use : ∀ {A} → Lens RoundManager A → LBFT A use f = RWST-bind get (RWST-return ∘ (_^∙ f)) modify' : ∀ {A} → Lens RoundManager A → A → LBFT Unit modify' l val = modify λ x → x [ l := val ]
{ "alphanum_fraction": 0.6576828841, "avg_line_length": 39.1369863014, "ext": "agda", "hexsha": "98da3fcbc18763504bd5de70743118f8427a40f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Util/Util.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Util/Util.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Util/Util.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 839, "size": 2857 }
{-# OPTIONS --cubical --cumulativity #-} module leibniz-equality where open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Data.Equality open import equalities open import leibniz open Leibniz liftIso : ∀ {a b} {A : Type a} {B : Type b} → Iso {a} {b} A B → Iso {ℓ-max a b} {ℓ-max a b} A B liftIso {a} f = iso fun inv (λ x i → rightInv x i) (λ x i → leftInv x i) where open Iso f module FinalEquality {A : Set} where open MainResult A ≐≅≡ : ∀ {a b} → Iso (a ≐ b) (a ≡p b) ≐≅≡ = iso j i (ptoc ∘ ji) (ptoc ∘ ij) ≐≡≡' : ∀ {a b} → (a ≐ b) ≡c (a ≡p b) ≐≡≡' = let lifted = liftIso ≐≅≡ in isoToPath lifted ≐≡≡ : _≐_ {A} ≡c _≡p_ ≐≡≡ i x y = ≐≡≡' {x} {y} i open IsEquality open equalities instance ≐-IsEquality : IsEquality {A = A} _≐_ ≐-IsEquality = eq λ {x} {y} → ≐≡≡' ∙ λ i → ≡p-IsEquality {ℓ-zero} .≣-≡-≡ {x} {y} i
{ "alphanum_fraction": 0.5813953488, "avg_line_length": 25.8, "ext": "agda", "hexsha": "8d15692bdab2bb923376b3e1d939bc360275bce5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/Equality", "max_forks_repo_path": "leibniz-equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/Equality", "max_issues_repo_path": "leibniz-equality.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/Equality", "max_stars_repo_path": "leibniz-equality.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-01T06:04:21.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-01T06:04:21.000Z", "num_tokens": 414, "size": 903 }
{-# OPTIONS --no-positivity-check #-} module IIDr where open import LF open import IID OPr : (I : Set) -> Set1 OPr I = I -> OP I One rArgs : {I : Set}(γ : OPr I)(U : I -> Set)(i : I) -> Set rArgs γ U i = Args (γ i) U -- The type of IIDrs data Ur {I : Set}(γ : OPr I)(i : I) : Set where intror : rArgs γ (Ur γ) i -> Ur γ i -- The elimination rule elim-Ur : {I : Set}(γ : OPr I)(C : (i : I) -> Ur γ i -> Set) -> ((i : I)(a : rArgs γ (Ur γ) i) -> IndHyp (γ i) (Ur γ) C a -> C i (intror a)) -> (i : I)(u : Ur γ i) -> C i u elim-Ur γ C m i (intror a) = m i a (induction (γ i) (Ur γ) C (elim-Ur γ C m) a) -- Large elimination elim-Ur₁ : {I : Set}(γ : OPr I)(C : (i : I) -> Ur γ i -> Set1) -> ((i : I)(a : rArgs γ (Ur γ) i) -> IndHyp₁ (γ i) (Ur γ) C a -> C i (intror a)) -> (i : I)(u : Ur γ i) -> C i u elim-Ur₁ γ C m i (intror a) = m i a (induction₁ (γ i) (Ur γ) C (elim-Ur₁ γ C m) a)
{ "alphanum_fraction": 0.5033259424, "avg_line_length": 31.1034482759, "ext": "agda", "hexsha": "be3cbd8b730494a8dcbb82a9874a50ba46de3969", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/IIDr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/IIDr.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/IIDr.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 394, "size": 902 }
-- Andreas, 2019-01-20, re #2597. -- Undocumented language change introduced by patch 31a5982f38 (released in 2.5.3): -- Hiding of argument now treated as part of name when inserting implicits. -- Patch introduced in src/full/Agda/TypeChecking/Implicit.hs -- -- ... | x == y && sameHiding hidingx a = impInsert $ reverse hs -- | x == y && sameHiding hidingx a = BadImplicits -- -- Intended was most likely -- | x == y && not (sameHiding hidingx a) = BadImplicits -- -- The patch makes this code legal: test : {{X : Set}} {X : Set} → Set test {X = X} = X -- Succeeds in 2.5.3. -- Fails in 2.5.2 with error: -- Unexpected implicit argument -- when checking that the clause test {X = X} = X has type -- {{X : Set}} {X = X₁ : Set} → Set
{ "alphanum_fraction": 0.6465053763, "avg_line_length": 32.347826087, "ext": "agda", "hexsha": "54918f1712fae7b8422358386c8216504f5305ca", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/HidingIsPartOfArgumentNameSince2-5-3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/HidingIsPartOfArgumentNameSince2-5-3.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/HidingIsPartOfArgumentNameSince2-5-3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 240, "size": 744 }
{-# OPTIONS --without-K #-} module NTypes.Coproduct where open import NTypes open import PathOperations open import PathStructure.Coproduct open import Types ⊎-isSet : ∀ {A : Set} {B : Set} → isSet A → isSet B → isSet (A ⊎ B) ⊎-isSet {A = A} {B = B} A-set B-set x y p q = case (λ x → (y : A ⊎ B) (p q : x ≡ y) → p ≡ q) (λ a y p q → case (λ y → (p q : inl a ≡ y) → p ≡ q) (λ a′ p q → split-eq p ⁻¹ · ap (ap inl) (A-set _ _ (lower (tr (F (inl a)) p (lift refl))) (lower (tr (F (inl a)) q (lift refl))) ) · split-eq q ) (λ _ p q → 0-elim (lower (split-path p))) y p q) (λ b y p q → case (λ y → (p q : inr b ≡ y) → p ≡ q) (λ _ p q → 0-elim (lower (split-path p))) (λ b′ p q → split-eq p ⁻¹ · ap (ap inr) (B-set _ _ (lower (tr (F (inr b)) p (lift refl))) (lower (tr (F (inr b)) q (lift refl))) ) · split-eq q ) y p q) x y p q where split-eq : {x y : A ⊎ B} → _ split-eq {x = x} {y = y} = π₂ (π₂ (π₂ (split-merge-eq {x = x} {y = y})))
{ "alphanum_fraction": 0.4440465533, "avg_line_length": 24.2826086957, "ext": "agda", "hexsha": "b4120f96cc779f36814a12aedc2f87eeb3553842", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/NTypes/Coproduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/NTypes/Coproduct.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/NTypes/Coproduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 463, "size": 1117 }
------------------------------------------------------------------------ -- Some results that could not be placed in Function-universe because -- they make use of --sized-types ------------------------------------------------------------------------ {-# OPTIONS --without-K --sized-types #-} open import Equality module Function-universe.Size {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Prelude open import Prelude.Size import Bijection eq as B open import Equivalence eq as Eq using (_≃_) open import Function-universe eq private variable S : Size-universe p q : Level P : S → Type p k : Kind -- Π-types with something from the size universe in the domain can be -- expressed using something from Type in the domain. Π-size-≃ : ((i : S) → P i) ≃ ((i : S in-type) → P (size i)) Π-size-≃ = Eq.↔→≃ (λ p i → p (size i)) (λ p i → p (record { size = i })) refl refl -- Implicit Π-types with something from the size universe in the -- domain can be expressed using something from Type in the domain. implicit-Π-size-≃ : ({i : S} → P i) ≃ ({i : S in-type} → P (size i)) implicit-Π-size-≃ = Eq.↔→≃ (λ p {i} → p {size i}) (λ p {i} → p {record { size = i }}) refl refl -- Implicit Π-types with something from the size universe in the -- domain are equivalent to explicit Π-types. implicit-Π-size-≃-Π-size : ({i : S} → P i) ≃ ((i : S) → P i) implicit-Π-size-≃-Π-size {P = P} = (∀ {i} → P i) ↔⟨ implicit-Π-size-≃ ⟩ (∀ {i} → P (size i)) ↔⟨ B.implicit-Π↔Π ⟩ (∀ i → P (size i)) ↔⟨ inverse Π-size-≃ ⟩□ (∀ i → P i) □ -- A preservation lemma for Π-types with something from the size -- universe in the domain. ∀-size-cong : {P : S → Type p} {Q : S → Type q} → Extensionality? k lzero (p ⊔ q) → (∀ i → P i ↝[ k ] Q i) → (∀ i → P i) ↝[ k ] (∀ i → Q i) ∀-size-cong {P = P} {Q = Q} ext P↝Q = (∀ i → P i) ↔⟨ Π-size-≃ ⟩ (∀ i → P (size i)) ↝⟨ ∀-cong ext (λ i → P↝Q (size i)) ⟩ (∀ i → Q (size i)) ↔⟨ inverse Π-size-≃ ⟩□ (∀ i → Q i) □ -- A preservation lemma for implicit Π-types with something from the -- size universe in the domain. implicit-∀-size-cong : {P : S → Type p} {Q : S → Type q} → Extensionality? k lzero (p ⊔ q) → (∀ {i} → P (size i) ↝[ k ] Q (size i)) → (∀ {i} → P i) ↝[ k ] (∀ {i} → Q i) implicit-∀-size-cong {P = P} {Q = Q} ext P↝Q = (∀ {i} → P i) ↔⟨ implicit-Π-size-≃ ⟩ (∀ {i} → P (size i)) ↝⟨ implicit-∀-cong ext P↝Q ⟩ (∀ {i} → Q (size i)) ↔⟨ inverse implicit-Π-size-≃ ⟩□ (∀ {i} → Q i) □
{ "alphanum_fraction": 0.5201981707, "avg_line_length": 28.8351648352, "ext": "agda", "hexsha": "790a2e31138a4234b9268309b7086d569a3f6e20", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Function-universe/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Function-universe/Size.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Function-universe/Size.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 991, "size": 2624 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Impl.OBM.Crypto hiding (verify) open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.KVMap as Map open import Util.PKCS hiding (verify) open import Util.Prelude module LibraBFT.Impl.Consensus.ConsensusTypes.TimeoutCertificate where verify : TimeoutCertificate → ValidatorVerifier → Either ErrLog Unit verify self validator = withErrCtx' ("TimeoutCertificate" ∷ "verify" ∷ "failed" ∷ []) (ValidatorVerifier.verifyAggregatedStructSignature validator (self ^∙ tcTimeout) (self ^∙ tcSignatures)) verify' : Maybe TimeoutCertificate → ValidatorVerifier → Either ErrLog Unit verify' mtc validator = maybeSMP (pure mtc) unit (` verify ` validator) -- HC-TODO : refactor this and LedgerInfoWithSignatures addSignature : Author → Signature → TimeoutCertificate → TimeoutCertificate addSignature a s tc = case Map.lookup a (tc ^∙ tcSignatures) of λ where (just _) → tc nothing → tc & tcSignatures ∙~ Map.kvm-insert-Haskell a s (tc ^∙ tcSignatures)
{ "alphanum_fraction": 0.737534626, "avg_line_length": 43.7575757576, "ext": "agda", "hexsha": "44f9f1db10bee91d6df81ddf6b16649cff454866", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/TimeoutCertificate.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/TimeoutCertificate.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/TimeoutCertificate.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 360, "size": 1444 }
module Mystuff where -- open import Axiom.Extensionality.Propositional as AEP open import Categories.Category.Cartesian.Bundle open import Categories.Category.CartesianClosed.Canonical open import Categories.Category.Core open import Categories.Category.Slice -- open import Categories.Functor open import Categories.Category.BinaryProducts -- open import Categories.Morphism open import Categories.Object.Exponential -- 𝒞 hiding (repack) open import Data.Product open import Function using (const) open import Level open import Relation.Binary.Core using (Rel) open import Relation.Binary.PropositionalEquality open Relation.Binary.PropositionalEquality.≡-Reasoning private variable a b c d e : Level -- so painful _⋆_ : ∀ {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ⋆ g = λ x → f (g x) simple : Category (suc zero) zero zero simple = record -- structure { Obj = Set × Set ; _⇒_ = _⇒_ ; _≈_ = _≡_ ; id = (λ z → z) , proj₁ ; _∘_ = _∘_ -- properties ; assoc = refl ; sym-assoc = refl ; identityˡ = refl ; identityʳ = refl ; identity² = refl -- whew, they're all trivial! ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp } where _⇒_ : Rel (Set × Set) zero (i , x) ⇒ (j , y) = (i → j) × (x × i → y) _∘_ : {A B C : Set × Set} → B ⇒ C → A ⇒ B → A ⇒ C _∘_ {i , x} {j , y} {_} (u , f) (v , g) = (λ t → u (v t)) , λ t → f (g t , v (proj₂ t)) ∘-resp : {A B C : Set × Set} {f h : B ⇒ C} {g i : A ⇒ B} → -------------------------------------------------- f ≡ h → g ≡ i → (f ∘ g) ≡ (h ∘ i) ∘-resp {A} {B} {C} {f} {h} {g} {i} x y = trans (cong (λ t → t ∘ g) x) (cong (λ t → h ∘ t) y) data t : Set where ⊤ : t !-unique-lemma : ∀ (x : t) → ⊤ ≡ x !-unique-lemma ⊤ = refl postulate -- I'm lazy. respSetC : {A B C : Set} {f h : B → C} {g i : A → B} → f ≡ h → g ≡ i → (λ a → f (g a)) ≡ (λ a → h (i a)) extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) → f ≡ g -- I need the category of Sets... SetC : Category (suc zero) zero zero SetC = record { Obj = Set ; _⇒_ = λ x y → x → y ; _≈_ = _≡_ ; id = λ x → x ; _∘_ = λ f g a → f (g a) ; assoc = refl ; sym-assoc = refl ; identityˡ = refl ; identityʳ = refl ; identity² = refl ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = respSetC } _·_ : {I : Set} {A B C : Set} → (B × I → C) → (A × I → B) → A × I → C _·_ {I} f g (x , i) = f (g(x , i) , i) fiber-of-simple : {I : Set} → Category (suc zero) zero zero fiber-of-simple {I} = record { Obj = Set ; _⇒_ = λ X Y → X × I → Y ; _≈_ = _≡_ ; id = proj₁ ; _∘_ = _·_ -- this is the Kleisli composition ; assoc = refl ; sym-assoc = refl ; identityˡ = refl ; identityʳ = refl ; identity² = refl ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = rresp } where rresp : {A B C : Set} {f h : B × I → C} {g i : A × I → B} → f ≡ h → g ≡ i → (f · g) ≡ (h · i) rresp {A} {B} {C} {f} {h} {g} {i} x y = trans (cong (λ t → t · g) x) (cong (_·_ h) y) -- each fiber of a simple fibration is cartesian fiber-of-simple-cart : ∀ {I : Set} → CartesianCategory (suc zero) zero zero fiber-of-simple-cart {I} = record { U = fiber-of-simple {I} ; cartesian = record { terminal = record { ⊤ = t ; ⊤-is-terminal = record { ! = const ⊤ ; !-unique = λ f → extensionality (λ x → !-unique-lemma (f x)) } } ; products = record { product = λ {A} {B} → record { A×B = A × B ; π₁ = λ x → proj₁ (proj₁ x) ; π₂ = λ x → proj₂ (proj₁ x) ; ⟨_,_⟩ = λ f g t → f t , g t ; project₁ = refl ; project₂ = refl ; unique = λ {refl refl → refl} } } } } -- but also the total category is cartesian. simple-cart : CartesianCategory (suc zero) zero zero simple-cart = record { U = simple ; cartesian = record { terminal = record { ⊤ = t , t ; ⊤-is-terminal = record { ! = const ⊤ , const ⊤ ; !-unique = bang-uniq } } ; products = record { product = λ {A} {B} → record { A×B = (proj₁ A × proj₁ B) , (proj₂ A × proj₂ B) ; π₁ = proj₁ , λ x → proj₁ (proj₁ x) ; π₂ = proj₂ , (λ x → proj₂ (proj₁ x)) ; ⟨_,_⟩ = ⟨_,_⟩ ; project₁ = refl ; project₂ = refl ; unique = λ {refl refl → refl} } } } } where bang-uniq : {A : Category.Obj simple} ------------------------- (f : (simple Category.⇒ A) (t , t)) → -------------------------------------- (simple Category.≈ (const ⊤ , const ⊤)) f bang-uniq {I , X} (u , k) = cong₂ Data.Product._,_ (extensionality (λ x → !-unique-lemma (u x))) (extensionality (λ x → !-unique-lemma (k x))) ⟨_,_⟩ : {A B C : Set × Set} → (simple Category.⇒ C) A → (simple Category.⇒ C) B → (simple Category.⇒ C) ((proj₁ A × proj₁ B) , (proj₂ A × proj₂ B)) ⟨_,_⟩ {A0 , A1} {B0 , B1} {C0 , C1} (u , h) (v , k) = (λ x → (u x) , (v x)) , λ x → (h x) , (k x) fib-of-simple-ccc : {I : Set} → CartesianClosed (fiber-of-simple {I}) fib-of-simple-ccc {I} = record { ⊤ = t ; _×_ = _×_ ; ! = λ x → ⊤ ; π₁ = proj₁ ⋆ proj₁ ; π₂ = proj₂ ⋆ proj₁ ; ⟨_,_⟩ = λ f g ci → (f ci) , (g ci) ; !-unique = λ f → extensionality λ x → !-unique-lemma (f x) ; π₁-comp = refl ; π₂-comp = refl ; ⟨,⟩-unique = λ {refl refl → refl} ; _^_ = λ A B → B → A ; eval = evev ; curry = λ f ci a → f (((proj₁ ci) , a) , (proj₂ ci)) ; eval-comp = refl ; curry-resp-≈ = λ {refl → refl} ; curry-unique = λ {refl → refl} } where evev : {B A : Category.Obj (fiber-of-simple {I})} → (fiber-of-simple {I} Category.⇒ ((A → B) × A)) B evev ((f , a) , i) = f a {- the arrow category has objects the morphisms of `Set` and morphisms the commutative squares A → B ↓ ↓ C → D -} arrow : Category (suc zero) zero zero arrow = record { Obj = Σ (Set × Set) (λ x → proj₁ x → proj₂ x) ; _⇒_ = arr ; _≈_ = _≡_ ; id = (λ z → z) , λ z → z ; _∘_ = λ {A} {B} {C} f g → comp {A} {B} {C} f g ; assoc = refl ; sym-assoc = refl ; identityˡ = refl ; identityʳ = refl ; identity² = refl ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = λ {refl refl → refl} } where arr : Rel (Σ (Set × Set) (λ x → proj₁ x → proj₂ x)) zero arr ((a , b) , x1) ((c , d) , y1) = (a → c) × (b → d) comp : {A B C : Σ (Set × Set) (λ x → proj₁ x → proj₂ x)} → arr B C → arr A B → arr A C comp {A} {B} {C} (f0 , f1) (g0 , g1) = (λ x → f0 (g0 x)) , λ x → f1 (g1 x) arrow-ccc : CartesianClosed arrow arrow-ccc = record { ⊤ = (t , t) , (λ _ → ⊤) ; _×_ = prod ; ! = (λ _ → ⊤) , (λ _ → ⊤) ; π₁ = proj₁ , proj₁ ; π₂ = proj₂ , proj₂ ; ⟨_,_⟩ = λ {A} {B} {C} f g → pair {A} {B} {C} f g ; !-unique = λ {A} → bang-uniq {A} ; π₁-comp = refl ; π₂-comp = refl ; ⟨,⟩-unique = λ {refl refl → refl} ; _^_ = to-the ; eval = λ {B} {A} → ev {B} {A} ; curry = λ {C} {A} {B} x → cur {C} {A} {B} x ; eval-comp = refl ; curry-resp-≈ = λ {refl → refl} ; curry-unique = {! !} } where prod : Category.Obj arrow → Category.Obj arrow → Category.Obj arrow prod ((X , Y) , u) ((A , B) , v) = ((X × A) , (Y × B)) , λ x → (u (proj₁ x)) , (v (proj₂ x)) pair : {C A B : Category.Obj arrow} → (arrow Category.⇒ C) A → (arrow Category.⇒ C) B → (arrow Category.⇒ C) (prod A B) pair {(X , Y) , u} {(A , B) , v} {(E , F) , w} (f0 , f1) (g0 , g1) = (λ x → (f0 x) , (g0 x)) , (λ x → (f1 x) , (g1 x)) bang-uniq : {A : Category.Obj arrow} → (f : (arrow Category.⇒ A) ((t , t) , (λ _ → ⊤))) → ((λ _ → ⊤) , (λ _ → ⊤)) ≡ f bang-uniq (f0 , f1) = cong₂ _,_ (extensionality λ x → !-unique-lemma (f0 x)) (extensionality (λ x → !-unique-lemma (f1 x))) to-the : Category.Obj arrow → Category.Obj arrow → Category.Obj arrow to-the ((B0 , B1) , u) ((A0 , A1) , v) = (p , (A1 → B1)) , (λ x a1 → proj₂ (proj₁ x) a1) where p : Set p = Σ ((A0 → B0) × (A1 → B1)) (λ r → (λ x → u ((proj₁ r) x)) ≡ (λ x → (proj₂ r) (v x))) -- ^ it's the pullback-hom -- λ x → u (s x) ≡ λ x → t (v x) ev : {B A : Category.Obj arrow} → (arrow Category.⇒ prod (to-the B A) A) B ev {(B0 , B1) , u} {(A0 , A1) , v} = dis , dat where dis : proj₁ (proj₁ (prod (to-the ((B0 , B1) , u) ((A0 , A1) , v)) ((A0 , A1) , v))) → B0 dis ((d , p) , a0) = (proj₁ d) a0 dat : proj₂ (proj₁ (prod (to-the ((B0 , B1) , u) ((A0 , A1) , v)) ((A0 , A1) , v))) → B1 dat (fst , snd) = fst snd cur : {C A B : Category.Obj arrow} → (arrow Category.⇒ (prod C A)) B → (arrow Category.⇒ C) (to-the B A) cur {(C0 , C1) , u} {(A0 , A1) , v} {(B0 , B1) , w} (fst , snd) = (λ x → ((λ t → fst (x , t)) , λ t → snd (u x , t)) , extensionality (λ a0 → {! !})) , (λ z z₁ → snd (z , z₁))
{ "alphanum_fraction": 0.4665593129, "avg_line_length": 31.4695945946, "ext": "agda", "hexsha": "8d21a07e2f0ef039b7ac1e06ff8df5ae67aa1e50", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tetrapharmakon/agda-categories", "max_forks_repo_path": "src/Mystuff.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tetrapharmakon/agda-categories", "max_issues_repo_path": "src/Mystuff.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tetrapharmakon/agda-categories", "max_stars_repo_path": "src/Mystuff.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3687, "size": 9315 }
{- Definition of the integers as a HIT inspired by slide 10 of (original idea due to Paolo Capriotti): http://www.cs.nott.ac.uk/~psztxa/talks/bonn18.pdf Disclaimer: this definition is very hard to work with and I have not been able to prove that it is equivalent to nat + nat or that it is a set. For a variation that relies on a different notion of equivalence (without any 2-cell) and which seems easier to work with see: https://github.com/RedPRL/redtt/blob/master/library/cool/biinv-int.red It might be interesting to port that example one day. -} {-# OPTIONS --cubical --no-import-sorts #-} module Cubical.Experiments.HInt where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Int open import Cubical.Data.Nat data ℤ : Type₀ where zero : ℤ suc : ℤ → ℤ pred : ℤ → ℤ sucpred : (n : ℤ) → suc (pred n) ≡ n predsuc : (n : ℤ) → pred (suc n) ≡ n -- Coherence: could also be written "sucpred (suc n) ≡ cong (suc (predsuc n))" coh : (n : ℤ) → Path (suc (pred (suc n)) ≡ suc n) (sucpred (suc n)) (λ i → suc (predsuc n i)) -- This is equivalent to Int: coherence : (n : Int) → Path (Path Int (sucInt (predInt (sucInt n))) (sucInt n)) (sucPred (sucInt n)) (cong sucInt (predSuc n)) coherence (pos zero) = refl coherence (pos (suc n)) = refl coherence (negsuc zero) = refl coherence (negsuc (suc zero)) = refl coherence (negsuc (suc (suc n))) = refl ℤ→Int : ℤ → Int ℤ→Int zero = pos 0 ℤ→Int (suc n) = sucInt (ℤ→Int n) ℤ→Int (pred n) = predInt (ℤ→Int n) ℤ→Int (sucpred n i) = sucPred (ℤ→Int n) i ℤ→Int (predsuc n i) = predSuc (ℤ→Int n) i ℤ→Int (coh n i j) = coherence (ℤ→Int n) i j ℕ→ℤ : ℕ → ℤ ℕ→ℤ zero = zero ℕ→ℤ (suc n) = suc (ℕ→ℤ n) negsucℕ→ℤ : ℕ → ℤ negsucℕ→ℤ zero = pred zero negsucℕ→ℤ (suc n) = pred (negsucℕ→ℤ n) Int→ℤ : Int → ℤ Int→ℤ (pos n) = ℕ→ℤ n Int→ℤ (negsuc n) = negsucℕ→ℤ n lem1 : ∀ n → Int→ℤ (sucInt n) ≡ suc (Int→ℤ n) lem1 (pos n) = refl lem1 (negsuc zero) = sym (sucpred zero) lem1 (negsuc (suc n)) = sym (sucpred (negsucℕ→ℤ n)) lem2 : ∀ n → Int→ℤ (predInt n) ≡ pred (Int→ℤ n) lem2 (pos zero) = refl lem2 (pos (suc n)) = sym (predsuc (ℕ→ℤ n)) lem2 (negsuc n) = refl -- I don't see how to fill these holes, especially the last one ℤ→Int→ℤ : ∀ (n : ℤ) → Int→ℤ (ℤ→Int n) ≡ n ℤ→Int→ℤ zero = refl ℤ→Int→ℤ (suc n) = (lem1 (ℤ→Int n)) ∙ (cong suc (ℤ→Int→ℤ n)) ℤ→Int→ℤ (pred n) = (lem2 (ℤ→Int n)) ∙ (cong pred (ℤ→Int→ℤ n)) ℤ→Int→ℤ (sucpred n i) = {!!} ℤ→Int→ℤ (predsuc n i) = {!!} ℤ→Int→ℤ (coh n i j) = {!!} Int→ℤ→Int : ∀ n → ℤ→Int (Int→ℤ n) ≡ n Int→ℤ→Int (pos zero) = refl Int→ℤ→Int (pos (suc n)) = cong sucInt (Int→ℤ→Int (pos n)) Int→ℤ→Int (negsuc zero) = refl Int→ℤ→Int (negsuc (suc n)) = cong predInt (Int→ℤ→Int (negsuc n)) Int≡ℤ : Int ≡ ℤ Int≡ℤ = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int) isSetℤ : isSet ℤ isSetℤ = subst isSet Int≡ℤ isSetInt
{ "alphanum_fraction": 0.620793069, "avg_line_length": 30.01, "ext": "agda", "hexsha": "6d0135a851ad898f4f1c871b7b0cd5f0fe567939", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Experiments/HInt.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Experiments/HInt.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Experiments/HInt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1270, "size": 3001 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Sigma open import lib.types.Bool open import lib.types.Nat open import lib.types.Fin module lib.types.Vec where infixr 5 _∷_ data Vec {i} (A : Type i) : ℕ → Type i where [] : Vec A 0 _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (S n) infix 4 _[_]=_ data _[_]=_ {i} {A : Type i} : ∀ {n} → Vec A n → ℕ → A → Type i where here : ∀ {n} {x} {xs : Vec A n} → x ∷ xs [ 0 ]= x there : ∀ {n} {m} {x y} {xs : Vec A n} (xs[m]=x : xs [ m ]= x) → y ∷ xs [ S m ]= x module _ {i} {A : Type i} where length : ∀ {n} → Vec A n → ℕ length {n = n} _ = n head : ∀ {n} → Vec A (S n) → A head (x ∷ xs) = x vtail : ∀ {n} → Vec A (S n) → Vec A n vtail (x ∷ xs) = xs lookup : ∀ {n} → Vec A n → Fin n → A lookup [] () lookup (x ∷ xs) (O , _) = x lookup (x ∷ xs) (S n , p) = lookup xs (n , <-cancel-S p) updateAt : ∀ {n} → Fin n → (A → A) → Vec A n → Vec A n updateAt (_ , _) _ [] = [] updateAt (O , _) f (x ∷ xs) = (f x) ∷ xs updateAt (S n , p) f (x ∷ xs) = x ∷ (updateAt (n , <-cancel-S p) f xs)
{ "alphanum_fraction": 0.4834673816, "avg_line_length": 25.4318181818, "ext": "agda", "hexsha": "259d7b55e666c43435cdce168da892f32708ed5e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01bbd8841f9b9b25666b91e65b196d8f472b9978", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "maxdore/hott-morse", "max_forks_repo_path": "core/lib/types/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01bbd8841f9b9b25666b91e65b196d8f472b9978", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "maxdore/hott-morse", "max_issues_repo_path": "core/lib/types/Vec.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "01bbd8841f9b9b25666b91e65b196d8f472b9978", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "maxdore/hott-morse", "max_stars_repo_path": "core/lib/types/Vec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 485, "size": 1119 }
module Data.Iterator where import Lvl open import Data hiding (empty) open import Data.Boolean open import Functional open import Numeral.Natural open import Type private variable ℓ : Lvl.Level private variable T A B : Type{ℓ} private variable a x init : T private variable f : A → B private variable n : ℕ -- TODO: Is this useful when not lazy? It cannot store data and I am not sure if the whole list is evaluated in listIterator or not (strictness) record Iterator (T : Type{ℓ}) : Type{ℓ} where coinductive field isEmpty : Bool current : if isEmpty then Unit else T -- TODO: These are essentially `Option`s but instead of storing its state, they depend on a boolean defined somewhere else step : if isEmpty then Unit else Iterator(T) open Iterator {- TODO: This is a generalization of an iterator. It could be used to define iterators for any number of dimensions or to define double-ended iterators. -- TODO: decidable-all-step may also be ∃{Obj = (Step → Bool) → Bool}(dec ↦ ∀{P} → (IsTrue(dec(P)) ↔ ∀ₗ(IsTrue ∘ P))). Not sure if it captures that (∀{s} → atEnd s) always is decidable by the smallest amount of assumptions. An example of this is when Step is finitely enumerable. record Stepper (Step : Type{ℓₛ}) ⦃ decidable-all-step : ∀{P : Step → Bool} → Decidable(∀ₗ(IsTrue ∘ P)) ⦄ (T : Type{ℓ}) : Type{ℓ} where coinductive field atEnd : Step → Bool current : if decide(∀ₗ(IsTrue ∘ atEnd)) then Unit else T step : (step : Step) → if(atEnd step) then Unit else Stepper(Step)(T) -} open import Data.Option open import Data.Boolean.Operators open Data.Boolean.Operators.Programming skip : ℕ → Iterator(T) → Iterator(T) skip 𝟎 iter = iter skip (𝐒 n) iter with isEmpty iter | step iter ... | 𝑇 | <> = iter ... | 𝐹 | sIter = skip n sIter skipExact : ℕ → Iterator(T) → Option(Iterator(T)) skipExact 𝟎 iter = Some iter skipExact (𝐒 n) iter with isEmpty iter | step iter ... | 𝑇 | <> = None ... | 𝐹 | sIter = skipExact n sIter {- TODO: Not sure if I did not get the semantics of how codata works or whether the termination checker is wrong {-# TERMINATING #-} _++_ : Iterator(T) → Iterator(T) → Iterator(T) isEmpty (a ++ b) with isEmpty a ... | 𝑇 = isEmpty b ... | 𝐹 = 𝐹 current (a ++ b) with isEmpty a | current a ... | 𝐹 | ca = ca ... | 𝑇 | <> with isEmpty b | current b ... | 𝐹 | cb = cb ... | 𝑇 | <> = <> step (a ++ b) with isEmpty a | step a ... | 𝐹 | sa = sa ++ b ... | 𝑇 | <> with isEmpty b | step b ... | 𝐹 | sb = sb ... | 𝑇 | <> = <> {-# TERMINATING #-} map : (A → B) → (Iterator(A) → Iterator(B)) isEmpty (map f iter) = isEmpty iter current (map f iter) with isEmpty iter | current iter ... | 𝑇 | <> = <> ... | 𝐹 | a = f(a) step (map f iter) with isEmpty iter | step iter ... | 𝑇 | <> = <> ... | 𝐹 | sIter = map f sIter -} empty : Iterator(T) isEmpty empty = 𝑇 current empty = <> step empty = <> prepend : T → Iterator(T) → Iterator(T) isEmpty (prepend x l) = 𝐹 current (prepend x l) = x step (prepend x l) = l open import Data.List listIterator : List(T) → Iterator(T) listIterator ∅ = empty listIterator (x ⊰ l) = prepend x (listIterator l)
{ "alphanum_fraction": 0.6452842172, "avg_line_length": 33.1473684211, "ext": "agda", "hexsha": "d4207f2e7b0463a542a77a3014e45e0dd0d34b5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Iterator.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Iterator.agda", "max_line_length": 279, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Iterator.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 982, "size": 3149 }
-- Andreas, 2016-05-04, issue 1960 reported by Nisse -- {-# OPTIONS -v tc.proj.amb:100 #-} postulate A : Set module M (_ : Set₁) where record R₁ : Set where field f : A open R₁ public open M Set record R₂ : Set where field f : A open R₂ public postulate P : A → Set x : R₁ works : P (R₁.f x) test : P (f x) -- should succeed
{ "alphanum_fraction": 0.5691489362, "avg_line_length": 12.1290322581, "ext": "agda", "hexsha": "92b2b3795f9edf405a037aa4588a0ce80681a722", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1960.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1960.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1960.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 138, "size": 376 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Delta-observational equivalence ------------------------------------------------------------------------ module Base.Change.Equivalence where open import Relation.Binary.PropositionalEquality open import Base.Change.Algebra open import Level open import Data.Unit open import Data.Product open import Function open import Base.Change.Equivalence.Base public open import Base.Change.Equivalence.EqReasoning public module _ {a} {A : Set a} {{CA : ChangeAlgebra A}} {x : A} where -- By update-nil, if dx = nil x, then x ⊞ dx ≡ x. -- As a consequence, if dx ≙ nil x, then x ⊞ dx ≡ x nil-is-⊞-unit : ∀ (dx : Δ x) → dx ≙ nil x → x ⊞ dx ≡ x nil-is-⊞-unit dx dx≙nil-x = begin x ⊞ dx ≡⟨ proof dx≙nil-x ⟩ x ⊞ (nil x) ≡⟨ update-nil x ⟩ x ∎ where open ≡-Reasoning -- Here we prove the inverse: ⊞-unit-is-nil : ∀ (dx : Δ x) → x ⊞ dx ≡ x → dx ≙ (nil x) ⊞-unit-is-nil dx x⊞dx≡x = doe $ begin x ⊞ dx ≡⟨ x⊞dx≡x ⟩ x ≡⟨ sym (update-nil x) ⟩ x ⊞ nil x ∎ where open ≡-Reasoning -- Let's show that nil x is d.o.e. to x ⊟ x nil-x-is-x⊟x : nil x ≙ x ⊟ x nil-x-is-x⊟x = ≙-sym (⊞-unit-is-nil (x ⊟ x) (update-diff x x)) -- TODO: we want to show that all functions of interest respect -- delta-observational equivalence, so that two d.o.e. changes can be -- substituted for each other freely. -- -- * That should be be true for -- functions using changes parametrically. -- -- * Moreover, d.o.e. should be respected by contexts [ ] x dx and df x [ ]; -- this is proved below on both contexts at once by -- equiv-fun-changes-respect, and its corollaries fun-change-respects and -- equiv-fun-changes-funs. -- -- * Finally, change algebra operations should respect d.o.e. But ⊞ respects -- it by definition, and ⊟ doesn't take change arguments - we will only -- need a proof for compose, when we define it. -- -- Stating the general result, though, seems hard, we should -- rather have lemmas proving that certain classes of functions respect this -- equivalence. -- This results pairs with update-diff. diff-update : ∀ {dx : Δ x} → (x ⊞ dx) ⊟ x ≙ dx diff-update {dx} = doe lemma where lemma : x ⊞ (x ⊞ dx ⊟ x) ≡ x ⊞ dx lemma = update-diff (x ⊞ dx) x -- \begin{lemma}[Equivalence cancellation] -- |v2 `ominus` v1 `doe` dv| holds if and only if |v2 = v1 `oplus` -- dv|, for any |v1, v2 `elem` V| and |dv `elem` Dt ^ v1|. -- \end{lemma} equiv-cancel-1 : ∀ x' dx → (x' ⊟ x) ≙ dx → x' ≡ x ⊞ dx equiv-cancel-1 x' dx (doe x'⊟x≙dx) = trans (sym (update-diff x' x)) x'⊟x≙dx equiv-cancel-2 : ∀ x' dx → x' ≡ x ⊞ dx → x' ⊟ x ≙ dx equiv-cancel-2 _ dx refl = diff-update module _ {a} {A : Set a} {{CA : ChangeAlgebra A}} {b} {B : Set b} {{CB : ChangeAlgebra B}} where ≙-cong₂ : ∀ {c} {C : Set c} {x y} (f : A → B → C) {dx1 dx2 dy1 dy2} → dx1 ≙ dx2 → dy1 ≙ dy2 → f (x ⊞ dx1) (y ⊞ dy1) ≡ f (x ⊞ dx2) (y ⊞ dy2) ≙-cong₂ f dx1≙dx2 dy1≙dy2 = cong₂ f (proof dx1≙dx2) (proof dy1≙dy2) ≙-incrementalization : ∀ (f : A → B) (df : Δ f) x dx → (f ⊞ df) (x ⊞ dx) ⊟ f x ≙ apply df x dx ≙-incrementalization f df x dx = equiv-cancel-2 _ _ (incrementalization f df x dx) equiv-fun-changes-respect : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df₁ df₂ : Δ f} → df₁ ≙₍ f ₎ df₂ → dx₁ ≙ dx₂ → apply df₁ x dx₁ ≙ apply df₂ x dx₂ equiv-fun-changes-respect {x} {dx₁} {dx₂} {f} {df₁} {df₂} df₁≙df₂ dx₁≙dx₂ = doe lemma where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma : f x ⊞ apply df₁ x dx₁ ≡ f x ⊞ apply df₂ x dx₂ -- Informally: use incrementalization on both sides and then apply -- congruence. lemma = begin f x ⊞ apply df₁ x dx₁ ≡⟨ sym (incrementalization f df₁ x dx₁) ⟩ (f ⊞ df₁) (x ⊞ dx₁) ≡⟨ ≙-cong (f ⊞ df₁) dx₁≙dx₂ ⟩ (f ⊞ df₁) (x ⊞ dx₂) ≡⟨ ≙-cong (λ f → f (x ⊞ dx₂)) df₁≙df₂ ⟩ (f ⊞ df₂) (x ⊞ dx₂) ≡⟨ incrementalization f df₂ x dx₂ ⟩ f x ⊞ apply df₂ x dx₂ ∎ fun-change-respects : ∀ {x : A} {dx₁ dx₂} {f : A → B} (df : Δ f) → dx₁ ≙ dx₂ → apply df x dx₁ ≙ apply df x dx₂ fun-change-respects df dx₁≙dx₂ = equiv-fun-changes-respect (≙-refl {dx = df}) dx₁≙dx₂ -- D.o.e. function changes behave like the same function (up to d.o.e.). equiv-fun-changes-funs : ∀ {x : A} {dx} {f : A → B} {df₁ df₂} → df₁ ≙₍ f ₎ df₂ → apply df₁ x dx ≙ apply df₂ x dx equiv-fun-changes-funs {dx = dx} df₁≙df₂ = equiv-fun-changes-respect df₁≙df₂ (≙-refl {dx = dx}) derivative-doe-characterization : ∀ {a : A} {da : Δ a} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → df a da ≙ f (a ⊞ da) ⊟ f a derivative-doe-characterization {a} {da} {f} {df} is-derivative = doe lemma where open ≡-Reasoning lemma : f a ⊞ df a da ≡ f a ⊞ (f (a ⊞ da) ⊟ f a) lemma = begin (f a ⊞ df a da) ≡⟨ is-derivative a da ⟩ (f (a ⊞ da)) ≡⟨ sym (update-diff (f (a ⊞ da)) (f a)) ⟩ (f a ⊞ (f (a ⊞ da) ⊟ f a)) ∎ derivative-respects-doe : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → dx₁ ≙ dx₂ → df x dx₁ ≙ df x dx₂ derivative-respects-doe {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = begin df x dx₁ ≙⟨ derivative-doe-characterization is-derivative ⟩ f (x ⊞ dx₁) ⊟ f x ≡⟨ cong (λ v → f v ⊟ f x) (proof dx₁≙dx₂) ⟩ f (x ⊞ dx₂) ⊟ f x ≙⟨ ≙-sym (derivative-doe-characterization is-derivative) ⟩ df x dx₂ ∎ where open ≙-Reasoning -- This is also a corollary of fun-changes-respect derivative-respects-doe-alt : ∀ {x : A} {dx₁ dx₂ : Δ x} {f : A → B} {df : RawChange f} (is-derivative : IsDerivative f df) → dx₁ ≙ dx₂ → df x dx₁ ≙ df x dx₂ derivative-respects-doe-alt {x} {dx₁} {dx₂} {f} {df} is-derivative dx₁≙dx₂ = fun-change-respects (DerivativeAsChange is-derivative) dx₁≙dx₂ open import Postulate.Extensionality -- An extensionality principle for delta-observational equivalence: if -- applying two function changes to the same base value and input change gives -- a d.o.e. result, then the two function changes are d.o.e. themselves. delta-ext : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x dx → apply df x dx ≙ apply dg x dx) → df ≙ dg delta-ext {f} {df} {dg} df-x-dx≙dg-x-dx = doe lemma₂ where open ≡-Reasoning -- This type signature just expands the goal manually a bit. lemma₁ : ∀ x dx → f x ⊞ apply df x dx ≡ f x ⊞ apply dg x dx lemma₁ x dx = proof $ df-x-dx≙dg-x-dx x dx lemma₂ : f ⊞ df ≡ f ⊞ dg lemma₂ = ext (λ x → lemma₁ x (nil x)) -- You could think that the function should relate equivalent changes, but -- that's a stronger hypothesis, which doesn't give you extra guarantees. But -- here's the statement and proof, for completeness: delta-ext₂ : ∀ {f : A → B} → ∀ {df dg : Δ f} → (∀ x (dx₁ dx₂ : Δ x) → dx₁ ≙₍ x ₎ dx₂ → apply df x dx₁ ≙ apply dg x dx₂) → df ≙ dg delta-ext₂ {f} {df} {dg} df-x-dx≙dg-x-dx = delta-ext (λ x dx → df-x-dx≙dg-x-dx x dx dx ≙-refl) -- We know that IsDerivative f (apply (nil f)) (by nil-is-derivative). -- That is, df = nil f -> IsDerivative f (apply df). -- Now, we try to prove that if IsDerivative f (apply df) -> df = nil f. -- But first, we prove that f ⊞ df = f. derivative-is-⊞-unit : ∀ {f : A → B} df → IsDerivative f (apply df) → f ⊞ df ≡ f derivative-is-⊞-unit {f} df fdf = begin f ⊞ df ≡⟨⟩ (λ x → f x ⊞ apply df x (nil x)) ≡⟨ ext (λ x → fdf x (nil x)) ⟩ (λ x → f (x ⊞ nil x)) ≡⟨ ext (λ x → cong f (update-nil x)) ⟩ (λ x → f x) ≡⟨⟩ f ∎ where open ≡-Reasoning -- We can restate the above as "df is a nil change". derivative-is-nil : ∀ {f : A → B} df → IsDerivative f (apply df) → df ≙ nil f derivative-is-nil df fdf = ⊞-unit-is-nil df (derivative-is-⊞-unit df fdf) derivative-is-nil-alternative : ∀ {f : A → B} df → (IsDerivative-f-df : IsDerivative f df) → DerivativeAsChange IsDerivative-f-df ≙ nil f derivative-is-nil-alternative df IsDerivative-f-df = derivative-is-nil (DerivativeAsChange IsDerivative-f-df) IsDerivative-f-df -- Theorem 2.10, appears in Base.Change.Algebra. -- nil-is-derivative : ∀ (f : A → B) → IsDerivative f (apply (nil f)) -- If we have two derivatives, they're both nil, hence they're equivalent. derivative-unique : ∀ {f : A → B} {df dg : Δ f} → IsDerivative f (apply df) → IsDerivative f (apply dg) → df ≙ dg derivative-unique {f} {df} {dg} fdf fdg = begin df ≙⟨ derivative-is-nil df fdf ⟩ nil f ≙⟨ ≙-sym (derivative-is-nil dg fdg) ⟩ dg ∎ where open ≙-Reasoning equiv-derivative-is-derivative : ∀ {f : A → B} df₁ df₂ → IsDerivative f (apply df₁) → df₁ ≙₍ f ₎ df₂ → IsDerivative f (apply df₂) equiv-derivative-is-derivative {f} df₁ df₂ IsDerivative-f-df₁ df₁≙df₂ a da = begin f a ⊞ apply df₂ a da ≡⟨ sym (incrementalization f df₂ a da) ⟩ (f ⊞ df₂) (a ⊞ da) ≡⟨ cong (λ □ → □ (a ⊞ da)) lemma ⟩ f (a ⊞ da) ∎ where open ≡-Reasoning lemma : f ⊞ df₂ ≡ f lemma = begin f ⊞ df₂ ≡⟨ proof (≙-sym df₁≙df₂) ⟩ f ⊞ df₁ ≡⟨ derivative-is-⊞-unit df₁ IsDerivative-f-df₁ ⟩ f ∎ equiv-nil-is-derivative : ∀ {f : A → B} df → nil f ≙₍ f ₎ df → IsDerivative f (apply df) equiv-nil-is-derivative {f} df = equiv-derivative-is-derivative (nil f) df (nil-is-derivative f) -- This is Lemma 2.5 in the paper. Note that the statement in the paper uses -- (incorrectly) normal equality instead of delta-observational equivalence. deriv-zero : ∀ (f : A → B) df → IsDerivative f df → ∀ v → df v (nil v) ≙ nil (f v) deriv-zero f df proof v = doe lemma where open ≡-Reasoning lemma : f v ⊞ df v (nil v) ≡ f v ⊞ nil (f v) lemma = begin f v ⊞ df v (nil v) ≡⟨ proof v (nil v) ⟩ f (v ⊞ (nil v)) ≡⟨ cong f (update-nil v) ⟩ f v ≡⟨ sym (update-nil (f v)) ⟩ f v ⊞ nil (f v) ∎ module _ {a} {A : Set a} {{CA : ChangeAlgebra A}} {b} {B : Set b} {{CB : ChangeAlgebra B}} {c} {C : Set c} {{CC : ChangeAlgebra C}} where ≙-cong₃ : ∀ {d} {D : Set d} {x y z} (f : A → B → C → D) {dx1 dx2 dy1 dy2 dz1 dz2} → dx1 ≙ dx2 → dy1 ≙ dy2 → dz1 ≙ dz2 → f (x ⊞ dx1) (y ⊞ dy1) (z ⊞ dz1) ≡ f (x ⊞ dx2) (y ⊞ dy2) (z ⊞ dz2) ≙-cong₃ f dx1≙dx2 dy1≙dy2 dz1≙dz2 = cong₂ (λ x y → x y) (cong₂ f (proof dx1≙dx2) (proof dy1≙dy2)) (proof dz1≙dz2)
{ "alphanum_fraction": 0.5591576614, "avg_line_length": 36.7016949153, "ext": "agda", "hexsha": "640b8c97e719987169a8dec25dcb25b30dbaf02e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Base/Change/Equivalence.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Base/Change/Equivalence.agda", "max_line_length": 131, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Base/Change/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 4198, "size": 10827 }
------------------------------------------------------------------------ -- A class of algebraic structures, based on non-recursive simple -- types, satisfies the property that isomorphic instances of a -- structure are equal (assuming univalence) ------------------------------------------------------------------------ -- In fact, isomorphism and equality are basically the same thing, and -- the main theorem can be instantiated with several different -- "universes", not only the one based on simple types. -- This module has been developed in collaboration with Thierry -- Coquand. {-# OPTIONS --without-K --safe #-} open import Equality module Univalence-axiom.Isomorphism-is-equality.Simple {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq as B using (_↔_) open Derived-definitions-and-properties eq renaming (lower-extensionality to lower-ext) open import Equality.Decidable-UIP eq open import Equality.Decision-procedures eq open import Equivalence eq as Eq using (_≃_) open import Function-universe eq hiding (id) renaming (_∘_ to _⊚_) open import H-level eq open import H-level.Closure eq open import Injection eq using (Injective) open import Logical-equivalence using (_⇔_; module _⇔_) open import Nat eq open import Preimage eq open import Prelude as P hiding (id) open import Univalence-axiom eq ------------------------------------------------------------------------ -- Universes with some extra stuff -- A record type packing up some assumptions. record Assumptions : Type₃ where field -- Univalence at three different levels. univ : Univalence (# 0) univ₁ : Univalence (# 1) univ₂ : Univalence (# 2) abstract -- Extensionality. ext : ∀ {ℓ} → Extensionality ℓ (# 1) ext = dependent-extensionality univ₂ univ₁ ext₁ : Extensionality (# 1) (# 1) ext₁ = ext -- Universes with some extra stuff. record Universe : Type₃ where -- Parameters. field -- Codes for something. U : Type₂ -- Interpretation of codes. El : U → Type₁ → Type₁ -- El a, seen as a predicate, respects equivalences. resp : ∀ a {B C} → B ≃ C → El a B → El a C -- The resp function respects identities (assuming univalence). resp-id : Assumptions → ∀ a {B} (x : El a B) → resp a Eq.id x ≡ x -- Derived definitions. -- A predicate that specifies what it means for an equivalence to be -- an isomorphism between two elements. Is-isomorphism : ∀ a {B C} → B ≃ C → El a B → El a C → Type₁ Is-isomorphism a eq x y = resp a eq x ≡ y -- An alternative definition of Is-isomorphism, defined using -- univalence. Is-isomorphism′ : Assumptions → ∀ a {B C} → B ≃ C → El a B → El a C → Type₁ Is-isomorphism′ ass a eq x y = subst (El a) (≃⇒≡ univ₁ eq) x ≡ y where open Assumptions ass -- Every element is isomorphic to itself, transported along the -- isomorphism. isomorphic-to-itself : (ass : Assumptions) → let open Assumptions ass in ∀ a {B C} (eq : B ≃ C) x → Is-isomorphism a eq x (subst (El a) (≃⇒≡ univ₁ eq) x) isomorphic-to-itself ass a eq x = transport-theorem (El a) (resp a) (resp-id ass a) univ₁ eq x where open Assumptions ass -- Is-isomorphism and Is-isomorphism′ are isomorphic (assuming -- univalence). isomorphism-definitions-isomorphic : (ass : Assumptions) → ∀ a {B C} (eq : B ≃ C) {x y} → Is-isomorphism a eq x y ↔ Is-isomorphism′ ass a eq x y isomorphism-definitions-isomorphic ass a eq {x} {y} = Is-isomorphism a eq x y ↝⟨ ≡⇒↝ _ $ cong (λ z → z ≡ y) $ isomorphic-to-itself ass a eq x ⟩□ Is-isomorphism′ ass a eq x y □ ------------------------------------------------------------------------ -- A universe-indexed family of classes of structures module Class (Univ : Universe) where open Universe Univ -- Codes for structures. Code : Type₃ Code = -- A code. Σ U λ a → -- A proposition. (C : Type₁) → El a C → Σ Type₁ λ P → -- The proposition should be propositional (assuming -- univalence). Assumptions → Is-proposition P -- Interpretation of the codes. The elements of "Instance c" are -- instances of the structure encoded by c. Instance : Code → Type₂ Instance (a , P) = -- A carrier type. Σ Type₁ λ C → -- An element. Σ (El a C) λ x → -- The element should satisfy the proposition. proj₁ (P C x) -- The carrier type. Carrier : ∀ c → Instance c → Type₁ Carrier _ X = proj₁ X -- The "element". element : ∀ c (X : Instance c) → El (proj₁ c) (Carrier c X) element _ X = proj₁ (proj₂ X) abstract -- One can prove that two instances of a structure are equal by -- proving that the carrier types and "elements" (suitably -- transported) are equal (assuming univalence). equality-pair-lemma : Assumptions → ∀ c {X Y : Instance c} → (X ≡ Y) ↔ ∃ λ (eq : Carrier c X ≡ Carrier c Y) → subst (El (proj₁ c)) eq (element c X) ≡ element c Y equality-pair-lemma ass (a , P) {C , x , p} {D , y , q} = ((C , x , p) ≡ (D , y , q)) ↔⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Σ-assoc ⟩ (((C , x) , p) ≡ ((D , y) , q)) ↝⟨ inverse $ ignore-propositional-component (proj₂ (P D y) ass) ⟩ ((C , x) ≡ (D , y)) ↝⟨ inverse B.Σ-≡,≡↔≡ ⟩□ (∃ λ (eq : C ≡ D) → subst (El a) eq x ≡ y) □ -- Structure isomorphisms. Isomorphic : ∀ c → Instance c → Instance c → Type₁ Isomorphic (a , _) (C , x , _) (D , y , _) = Σ (C ≃ D) λ eq → Is-isomorphism a eq x y -- The type of isomorphisms between two instances of a structure -- is isomorphic to the type of equalities between the same -- instances (assuming univalence). -- -- In short, isomorphism is isomorphic to equality. isomorphism-is-equality : Assumptions → ∀ c X Y → Isomorphic c X Y ↔ (X ≡ Y) isomorphism-is-equality ass (a , P) (C , x , p) (D , y , q) = (∃ λ (eq : C ≃ D) → resp a eq x ≡ y) ↝⟨ ∃-cong (λ eq → isomorphism-definitions-isomorphic ass a eq) ⟩ (∃ λ (eq : C ≃ D) → subst (El a) (≃⇒≡ univ₁ eq) x ≡ y) ↝⟨ inverse $ Σ-cong (≡≃≃ univ₁) (λ eq → ≡⇒↝ _ $ sym $ cong (λ eq → subst (El a) eq x ≡ y) (_≃_.left-inverse-of (≡≃≃ univ₁) eq)) ⟩ (∃ λ (eq : C ≡ D) → subst (El a) eq x ≡ y) ↝⟨ inverse $ equality-pair-lemma ass c ⟩□ (X ≡ Y) □ where open Assumptions ass c : Code c = a , P X : Instance c X = C , x , p Y : Instance c Y = D , y , q abstract -- The type of (lifted) isomorphisms between two instances of a -- structure is equal to the type of equalities between the same -- instances (assuming univalence). -- -- In short, isomorphism is equal to equality. isomorphic≡≡ : Assumptions → ∀ c {X Y} → ↑ (# 2) (Isomorphic c X Y) ≡ (X ≡ Y) isomorphic≡≡ ass c {X} {Y} = ≃⇒≡ univ₂ $ Eq.↔⇒≃ ( ↑ _ (Isomorphic c X Y) ↝⟨ B.↑↔ ⟩ Isomorphic c X Y ↝⟨ isomorphism-is-equality ass c X Y ⟩□ (X ≡ Y) □) where open Assumptions ass -- The "first part" of the from component of -- isomorphism-is-equality is equal to a simple function. proj₁-from-isomorphism-is-equality : ∀ ass c X Y → proj₁ ∘ _↔_.from (isomorphism-is-equality ass c X Y) ≡ elim (λ {X Y} _ → proj₁ X ≃ proj₁ Y) (λ _ → Eq.id) proj₁-from-isomorphism-is-equality ass _ _ _ = apply-ext ext λ eq → ≡⇒≃ (proj₁ (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (cong (λ { (x , (y , z)) → (x , y) , z }) eq))))) ≡⟨ cong (≡⇒≃ ∘ proj₁ ∘ Σ-≡,≡←≡) $ proj₁-Σ-≡,≡←≡ _ ⟩ ≡⇒≃ (proj₁ (Σ-≡,≡←≡ (cong proj₁ (cong (λ { (x , (y , z)) → (x , y) , z }) eq)))) ≡⟨ cong (≡⇒≃ ∘ proj₁ ∘ Σ-≡,≡←≡) $ cong-∘ proj₁ (λ { (x , (y , z)) → (x , y) , z }) _ ⟩ ≡⇒≃ (proj₁ (Σ-≡,≡←≡ (cong (λ { (x , (y , z)) → x , y }) eq))) ≡⟨ cong ≡⇒≃ $ proj₁-Σ-≡,≡←≡ _ ⟩ ≡⇒≃ (cong proj₁ (cong (λ { (x , (y , z)) → x , y }) eq)) ≡⟨ cong ≡⇒≃ $ cong-∘ proj₁ (λ { (x , (y , z)) → x , y }) eq ⟩ ≡⇒≃ (cong proj₁ eq) ≡⟨ elim-cong _≃_ proj₁ _ ⟩∎ elim (λ {X Y} _ → proj₁ X ≃ proj₁ Y) (λ _ → Eq.id) eq ∎ where open Assumptions ass -- In fact, the entire from component of isomorphism-is-equality -- is equal to a simple function. -- -- The proof of this lemma is somewhat complicated. A much shorter -- proof can be constructed if El (proj₁ c) (proj₁ J) is a set -- (see -- Structure-identity-principle.from-isomorphism-is-equality′). from-isomorphism-is-equality : ∀ ass c X Y → _↔_.from (isomorphism-is-equality ass c X Y) ≡ elim (λ {X Y} _ → Isomorphic c X Y) (λ { (_ , x , _) → Eq.id , resp-id ass (proj₁ c) x }) from-isomorphism-is-equality ass (a , P) (C , x , p) _ = apply-ext ext (elim¹ (λ eq → Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (cong (λ { (C , (x , p)) → (C , x) , p }) eq)))) ≡ elim (λ {X Y} _ → Isomorphic (a , P) X Y) (λ { (_ , x , _) → Eq.id , resp-id ass a x }) eq) (Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (cong (_↔_.to Σ-assoc) (refl (C , x , p)))))) ≡⟨ cong (Σ-map ≡⇒≃ f ∘ Σ-≡,≡←≡ ∘ proj₁ ∘ Σ-≡,≡←≡) $ cong-refl _ ⟩ Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (proj₁ (Σ-≡,≡←≡ (refl ((C , x) , p))))) ≡⟨ cong (Σ-map ≡⇒≃ f ∘ Σ-≡,≡←≡ ∘ proj₁) Σ-≡,≡←≡-refl ⟩ Σ-map ≡⇒≃ f (Σ-≡,≡←≡ (refl (C , x))) ≡⟨ cong (Σ-map ≡⇒≃ f) Σ-≡,≡←≡-refl ⟩ (≡⇒≃ (refl C) , f (subst-refl (El a) x)) ≡⟨ Σ-≡,≡→≡ ≡⇒≃-refl lemma₄ ⟩ (Eq.id , resp-id ass a x) ≡⟨ sym $ elim-refl (λ {X Y} _ → Isomorphic (a , P) X Y) _ ⟩∎ elim (λ {X Y} _ → Isomorphic (a , P) X Y) (λ { (_ , x , _) → Eq.id , resp-id ass a x }) (refl (C , x , p)) ∎)) where open Assumptions ass f : ∀ {D} {y : El a D} {eq : C ≡ D} → subst (El a) eq x ≡ y → resp a (≡⇒≃ eq) x ≡ y f {y = y} {eq} eq′ = _↔_.from (≡⇒↝ _ $ cong (λ z → z ≡ y) $ transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ eq) x) (_↔_.to (≡⇒↝ _ $ sym $ cong (λ eq → subst (El a) eq x ≡ y) (_≃_.left-inverse-of (≡≃≃ univ₁) eq)) eq′) lemma₁ : ∀ {ℓ} {A B C : Type ℓ} {x} (eq₁ : B ≡ A) (eq₂ : C ≡ B) → _↔_.from (≡⇒↝ _ eq₂) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡ _↔_.to (≡⇒↝ _ (sym (trans eq₂ eq₁))) x lemma₁ {x = x} eq₁ eq₂ = _↔_.from (≡⇒↝ _ eq₂) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡⟨ sym $ cong (λ f → f (_↔_.to (≡⇒↝ _ (sym eq₁)) x)) $ ≡⇒↝-sym bijection ⟩ _↔_.to (≡⇒↝ _ (sym eq₂)) (_↔_.to (≡⇒↝ _ (sym eq₁)) x) ≡⟨ sym $ cong (λ f → f x) $ ≡⇒↝-trans bijection ⟩ _↔_.to (≡⇒↝ _ (trans (sym eq₁) (sym eq₂))) x ≡⟨ sym $ cong (λ eq → _↔_.to (≡⇒↝ _ eq) x) $ sym-trans _ _ ⟩∎ _↔_.to (≡⇒↝ _ (sym (trans eq₂ eq₁))) x ∎ lemma₂ : ∀ {a} {A : Type a} {x y z : A} (x≡y : x ≡ y) (y≡z : y ≡ z) → _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym x≡y))) y≡z ≡ trans x≡y y≡z lemma₂ {y = y} {z} x≡y y≡z = elim₁ (λ x≡y → _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym x≡y))) y≡z ≡ trans x≡y y≡z) (_↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (sym (refl y)))) y≡z ≡⟨ cong (λ eq → _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) eq)) y≡z) sym-refl ⟩ _↔_.to (≡⇒↝ _ (cong (λ x → x ≡ z) (refl y))) y≡z ≡⟨ cong (λ eq → _↔_.to (≡⇒↝ _ eq) y≡z) $ cong-refl (λ x → x ≡ z) ⟩ _↔_.to (≡⇒↝ _ (refl (y ≡ z))) y≡z ≡⟨ cong (λ f → _↔_.to f y≡z) ≡⇒↝-refl ⟩ y≡z ≡⟨ sym $ trans-reflˡ _ ⟩∎ trans (refl y) y≡z ∎) x≡y lemma₃ : sym (trans (cong (λ z → z ≡ x) $ transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ (refl C)) x) (cong (λ eq → subst (El a) eq x ≡ x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))) ≡ cong (λ z → z ≡ x) (sym $ trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)) lemma₃ = sym (trans (cong (λ z → z ≡ x) _) (cong (λ eq → subst (El a) eq x ≡ x) _)) ≡⟨ cong (λ eq → sym (trans (cong (λ z → z ≡ x) (transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ (refl C)) x)) eq)) $ sym $ cong-∘ (λ z → z ≡ x) (λ eq → subst (El a) eq x) _ ⟩ sym (trans (cong (λ z → z ≡ x) _) (cong (λ z → z ≡ x) (cong (λ eq → subst (El a) eq x) _))) ≡⟨ cong sym $ sym $ cong-trans (λ z → z ≡ x) _ _ ⟩ sym (cong (λ z → z ≡ x) (trans _ (cong (λ eq → subst (El a) eq x) _))) ≡⟨ sym $ cong-sym (λ z → z ≡ x) _ ⟩ cong (λ z → z ≡ x) (sym $ trans (transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ (refl C)) x) (cong (λ eq → subst (El a) eq x) _)) ≡⟨ cong (λ eq → cong (λ z → z ≡ x) (sym $ trans eq (cong (λ eq → subst (El a) eq x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C))))) (transport-theorem-≡⇒≃-refl (El a) (resp a) (resp-id ass a) univ₁ _) ⟩ cong (λ z → z ≡ x) (sym $ trans (trans (trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)) (sym $ cong (λ eq → subst (El a) eq x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))) (cong (λ eq → subst (El a) eq x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))) ≡⟨ cong (cong (λ z → z ≡ x) ∘ sym) $ trans-[trans-sym]- _ _ ⟩∎ cong (λ z → z ≡ x) (sym $ trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)) ∎ lemma₄ : subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (f (subst-refl (El a) x)) ≡ resp-id ass a x lemma₄ = subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (f (subst-refl (El a) x)) ≡⟨ cong (subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl) $ lemma₁ _ _ ⟩ subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (_↔_.to (≡⇒↝ _ (sym (trans (cong (λ z → z ≡ x) $ transport-theorem (El a) (resp a) (resp-id ass a) univ₁ (≡⇒≃ (refl C)) x) (cong (λ eq → subst (El a) eq x ≡ x) (_≃_.left-inverse-of (≡≃≃ univ₁) (refl C)))))) (subst-refl (El a) x)) ≡⟨ cong (λ eq → subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (_↔_.to (≡⇒↝ _ eq) (subst-refl (El a) x))) lemma₃ ⟩ subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (_↔_.to (≡⇒↝ _ (cong (λ z → z ≡ x) $ sym (trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)))) (subst-refl (El a) x)) ≡⟨ cong (subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl) $ lemma₂ _ _ ⟩ subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl (trans (trans (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) (sym $ subst-refl (El a) x)) (subst-refl (El a) x)) ≡⟨ cong (λ eq → subst (λ eq → Is-isomorphism a eq x x) ≡⇒≃-refl eq) (trans-[trans-sym]- _ _) ⟩ subst (λ eq → resp a eq x ≡ x) ≡⇒≃-refl (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) ≡⟨ subst-∘ (λ z → z ≡ x) (λ eq → resp a eq x) _ ⟩ subst (λ z → z ≡ x) (cong (λ eq → resp a eq x) ≡⇒≃-refl) (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) ≡⟨ cong (λ eq → subst (λ z → z ≡ x) eq (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x))) $ sym $ sym-sym _ ⟩ subst (λ z → z ≡ x) (sym $ sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) ≡⟨ subst-trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) ⟩ trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) (trans (cong (λ eq → resp a eq x) ≡⇒≃-refl) (resp-id ass a x)) ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans (sym $ cong (λ eq → resp a eq x) ≡⇒≃-refl) (cong (λ eq → resp a eq x) ≡⇒≃-refl)) (resp-id ass a x) ≡⟨ cong (λ eq → trans eq _) $ trans-symˡ _ ⟩ trans (refl (resp a Eq.id x)) (resp-id ass a x) ≡⟨ trans-reflˡ _ ⟩∎ resp-id ass a x ∎ ------------------------------------------------------------------------ -- A universe of non-recursive, simple types -- Codes for types. infixr 20 _⊗_ infixr 15 _⊕_ infixr 10 _⇾_ data U : Type₂ where id type : U k : Type₁ → U _⇾_ _⊗_ _⊕_ : U → U → U -- Interpretation of types. El : U → Type₁ → Type₁ El id C = C El type C = Type El (k A) C = A El (a ⇾ b) C = El a C → El b C El (a ⊗ b) C = El a C × El b C El (a ⊕ b) C = El a C ⊎ El b C -- El a preserves logical equivalences. cast : ∀ a {B C} → B ⇔ C → El a B ⇔ El a C cast id eq = eq cast type eq = Logical-equivalence.id cast (k A) eq = Logical-equivalence.id cast (a ⇾ b) eq = →-cong _ (cast a eq) (cast b eq) cast (a ⊗ b) eq = cast a eq ×-cong cast b eq cast (a ⊕ b) eq = cast a eq ⊎-cong cast b eq -- El a respects equivalences. resp : ∀ a {B C} → B ≃ C → El a B → El a C resp a eq = _⇔_.to (cast a (_≃_.logical-equivalence eq)) resp⁻¹ : ∀ a {B C} → B ≃ C → El a C → El a B resp⁻¹ a eq = _⇔_.from (cast a (_≃_.logical-equivalence eq)) abstract -- The cast function respects identities (assuming extensionality). cast-id : Extensionality (# 1) (# 1) → ∀ a {B} → cast a (Logical-equivalence.id {A = B}) ≡ Logical-equivalence.id cast-id ext id = refl _ cast-id ext type = refl _ cast-id ext (k A) = refl _ cast-id ext (a ⇾ b) = cong₂ (→-cong _) (cast-id ext a) (cast-id ext b) cast-id ext (a ⊗ b) = cong₂ _×-cong_ (cast-id ext a) (cast-id ext b) cast-id ext (a ⊕ b) = cast a Logical-equivalence.id ⊎-cong cast b Logical-equivalence.id ≡⟨ cong₂ _⊎-cong_ (cast-id ext a) (cast-id ext b) ⟩ Logical-equivalence.id ⊎-cong Logical-equivalence.id ≡⟨ cong₂ (λ f g → record { to = f; from = g }) (apply-ext ext [ refl ∘ inj₁ , refl ∘ inj₂ ]) (apply-ext ext [ refl ∘ inj₁ , refl ∘ inj₂ ]) ⟩∎ Logical-equivalence.id ∎ resp-id : Extensionality (# 1) (# 1) → ∀ a {B} x → resp a (Eq.id {A = B}) x ≡ x resp-id ext a x = cong (λ eq → _⇔_.to eq x) $ cast-id ext a -- The universe above is a "universe with some extra stuff". simple : Universe simple = record { U = U ; El = El ; resp = resp ; resp-id = resp-id ∘ Assumptions.ext₁ } -- Let us use this universe below. open Universe simple using (Is-isomorphism) open Class simple -- An alternative definition of "being an isomorphism". -- -- This definition is in bijective correspondence with Is-isomorphism -- (see below). Is-isomorphism′ : ∀ a {B C} → B ≃ C → El a B → El a C → Type₁ Is-isomorphism′ id eq = λ x y → _≃_.to eq x ≡ y Is-isomorphism′ type eq = λ X Y → ↑ _ (X ≃ Y) Is-isomorphism′ (k A) eq = λ x y → x ≡ y Is-isomorphism′ (a ⇾ b) eq = Is-isomorphism′ a eq →-rel Is-isomorphism′ b eq Is-isomorphism′ (a ⊗ b) eq = Is-isomorphism′ a eq ×-rel Is-isomorphism′ b eq Is-isomorphism′ (a ⊕ b) eq = Is-isomorphism′ a eq ⊎-rel Is-isomorphism′ b eq -- An alternative definition of Isomorphic, using Is-isomorphism′ -- instead of Is-isomorphism. Isomorphic′ : ∀ c → Instance c → Instance c → Type₁ Isomorphic′ (a , _) (C , x , _) (D , y , _) = Σ (C ≃ D) λ eq → Is-isomorphism′ a eq x y -- El a preserves equivalences (assuming extensionality). -- -- Note that _≃_.logical-equivalence (cast≃ ext a eq) is -- (definitionally) equal to cast a (_≃_.logical-equivalence eq); this -- property is used below. cast≃ : Extensionality (# 1) (# 1) → ∀ a {B C} → B ≃ C → El a B ≃ El a C cast≃ ext a {B} {C} B≃C = Eq.↔⇒≃ record { surjection = record { logical-equivalence = cast a B⇔C ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where B⇔C = _≃_.logical-equivalence B≃C cst : ∀ a → El a B ≃ El a C cst id = B≃C cst type = Eq.id cst (k A) = Eq.id cst (a ⇾ b) = →-cong ext (cst a) (cst b) cst (a ⊗ b) = cst a ×-cong cst b cst (a ⊕ b) = cst a ⊎-cong cst b abstract -- The projection _≃_.logical-equivalence is homomorphic with -- respect to cast a/cst a. casts-related : ∀ a → cast a (_≃_.logical-equivalence B≃C) ≡ _≃_.logical-equivalence (cst a) casts-related id = refl _ casts-related type = refl _ casts-related (k A) = refl _ casts-related (a ⇾ b) = cong₂ (→-cong _) (casts-related a) (casts-related b) casts-related (a ⊗ b) = cong₂ _×-cong_ (casts-related a) (casts-related b) casts-related (a ⊕ b) = cong₂ _⊎-cong_ (casts-related a) (casts-related b) to∘from : ∀ x → _⇔_.to (cast a B⇔C) (_⇔_.from (cast a B⇔C) x) ≡ x to∘from x = _⇔_.to (cast a B⇔C) (_⇔_.from (cast a B⇔C) x) ≡⟨ cong₂ (λ f g → f (g x)) (cong _⇔_.to $ casts-related a) (cong _⇔_.from $ casts-related a) ⟩ _≃_.to (cst a) (_≃_.from (cst a) x) ≡⟨ _≃_.right-inverse-of (cst a) x ⟩∎ x ∎ from∘to : ∀ x → _⇔_.from (cast a B⇔C) (_⇔_.to (cast a B⇔C) x) ≡ x from∘to x = _⇔_.from (cast a B⇔C) (_⇔_.to (cast a B⇔C) x) ≡⟨ cong₂ (λ f g → f (g x)) (cong _⇔_.from $ casts-related a) (cong _⇔_.to $ casts-related a) ⟩ _≃_.from (cst a) (_≃_.to (cst a) x) ≡⟨ _≃_.left-inverse-of (cst a) x ⟩∎ x ∎ private logical-equivalence-cast≃ : (ext : Extensionality (# 1) (# 1)) → ∀ a {B C} (eq : B ≃ C) → _≃_.logical-equivalence (cast≃ ext a eq) ≡ cast a (_≃_.logical-equivalence eq) logical-equivalence-cast≃ _ _ _ = refl _ -- Alternative, shorter definition of cast≃, based on univalence. -- -- This proof does not (at the time of writing) have the property that -- _≃_.logical-equivalence (cast≃′ ass a eq) is definitionally equal -- to cast a (_≃_.logical-equivalence eq). cast≃′ : Assumptions → ∀ a {B C} → B ≃ C → El a B ≃ El a C cast≃′ ass a eq = Eq.⟨ resp a eq , resp-is-equivalence (El a) (resp a) (resp-id ext₁ a) univ₁ eq ⟩ where open Assumptions ass abstract -- The two definitions of "being an isomorphism" are "isomorphic" -- (in bijective correspondence), assuming univalence. is-isomorphism-isomorphic : Assumptions → ∀ a {B C x y} (eq : B ≃ C) → Is-isomorphism a eq x y ↔ Is-isomorphism′ a eq x y is-isomorphism-isomorphic ass id {x = x} {y} eq = (_≃_.to eq x ≡ y) □ is-isomorphism-isomorphic ass type {x = X} {Y} eq = (X ≡ Y) ↔⟨ ≡≃≃ univ ⟩ (X ≃ Y) ↝⟨ inverse B.↑↔ ⟩□ ↑ _ (X ≃ Y) □ where open Assumptions ass is-isomorphism-isomorphic ass (k A) {x = x} {y} eq = (x ≡ y) □ is-isomorphism-isomorphic ass (a ⇾ b) {x = f} {g} eq = (resp b eq ∘ f ∘ resp⁻¹ a eq ≡ g) ↝⟨ ∘from≡↔≡∘to ext₁ (cast≃ ext₁ a eq) ⟩ (resp b eq ∘ f ≡ g ∘ resp a eq) ↔⟨ inverse $ Eq.extensionality-isomorphism ext₁ ⟩ (∀ x → resp b eq (f x) ≡ g (resp a eq x)) ↝⟨ ∀-cong ext₁ (λ x → ∀-intro (λ y _ → resp b eq (f x) ≡ g y) ext₁) ⟩ (∀ x y → resp a eq x ≡ y → resp b eq (f x) ≡ g y) ↝⟨ ∀-cong ext₁ (λ _ → ∀-cong ext₁ λ _ → →-cong ext₁ (is-isomorphism-isomorphic ass a eq) (is-isomorphism-isomorphic ass b eq)) ⟩□ (∀ x y → Is-isomorphism′ a eq x y → Is-isomorphism′ b eq (f x) (g y)) □ where open Assumptions ass is-isomorphism-isomorphic ass (a ⊗ b) {x = x , u} {y , v} eq = ((resp a eq x , resp b eq u) ≡ (y , v)) ↝⟨ inverse ≡×≡↔≡ ⟩ (resp a eq x ≡ y × resp b eq u ≡ v) ↝⟨ is-isomorphism-isomorphic ass a eq ×-cong is-isomorphism-isomorphic ass b eq ⟩□ Is-isomorphism′ a eq x y × Is-isomorphism′ b eq u v □ where open Assumptions ass is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₁ x} {inj₁ y} eq = (inj₁ (resp a eq x) ≡ inj₁ y) ↝⟨ inverse B.≡↔inj₁≡inj₁ ⟩ (resp a eq x ≡ y) ↝⟨ is-isomorphism-isomorphic ass a eq ⟩□ Is-isomorphism′ a eq x y □ where open Assumptions ass is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₂ x} {inj₂ y} eq = (inj₂ (resp b eq x) ≡ inj₂ y) ↝⟨ inverse B.≡↔inj₂≡inj₂ ⟩ (resp b eq x ≡ y) ↝⟨ is-isomorphism-isomorphic ass b eq ⟩□ Is-isomorphism′ b eq x y □ where open Assumptions ass is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₁ x} {inj₂ y} eq = (inj₁ _ ≡ inj₂ _) ↝⟨ inverse $ B.⊥↔uninhabited ⊎.inj₁≢inj₂ ⟩□ ⊥ □ is-isomorphism-isomorphic ass (a ⊕ b) {x = inj₂ x} {inj₁ y} eq = (inj₂ _ ≡ inj₁ _) ↝⟨ inverse $ B.⊥↔uninhabited (⊎.inj₁≢inj₂ ∘ sym) ⟩□ ⊥ □ -- The two definitions of isomorphism are "isomorphic" (in bijective -- correspondence), assuming univalence. isomorphic-isomorphic : Assumptions → ∀ c X Y → Isomorphic c X Y ↔ Isomorphic′ c X Y isomorphic-isomorphic ass (a , _) (C , x , _) (D , y , _) = Σ (C ≃ D) (λ eq → Is-isomorphism a eq x y) ↝⟨ ∃-cong (λ eq → is-isomorphism-isomorphic ass a eq) ⟩ Σ (C ≃ D) (λ eq → Is-isomorphism′ a eq x y) □ ------------------------------------------------------------------------ -- An example: monoids monoid : Code monoid = -- Binary operation. (id ⇾ id ⇾ id) ⊗ -- Identity. id , λ { C (_∙_ , e) → -- The carrier type is a set. (Is-set C × -- Left and right identity laws. (∀ x → (e ∙ x) ≡ x) × (∀ x → (x ∙ e) ≡ x) × -- Associativity. (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z))) , -- The laws are propositional (assuming extensionality). λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (C-set , _) → ×-closure 1 (H-level-propositional ext₁ 2) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set))) }} -- The interpretation of the code is reasonable. Instance-monoid : Instance monoid ≡ Σ Type₁ λ C → Σ ((C → C → C) × C) λ { (_∙_ , e) → Is-set C × (∀ x → (e ∙ x) ≡ x) × (∀ x → (x ∙ e) ≡ x) × (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)) } Instance-monoid = refl _ -- The notion of isomorphism that we get is also reasonable. Isomorphic-monoid : ∀ {C₁ _∙₁_ e₁ laws₁ C₂ _∙₂_ e₂ laws₂} → Isomorphic monoid (C₁ , (_∙₁_ , e₁) , laws₁) (C₂ , (_∙₂_ , e₂) , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂) Isomorphic-monoid = refl _ -- Note that this definition of isomorphism is isomorphic to a more -- standard one (assuming extensionality). Isomorphism-monoid-isomorphic-to-standard : Extensionality (# 1) (# 1) → ∀ {C₁ _∙₁_ e₁ laws₁ C₂ _∙₂_ e₂ laws₂} → Isomorphic monoid (C₁ , (_∙₁_ , e₁) , laws₁) (C₂ , (_∙₂_ , e₂) , laws₂) ↔ Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y)) × to e₁ ≡ e₂ Isomorphism-monoid-isomorphic-to-standard ext {C₁} {_∙₁_} {e₁} {laws₁} {C₂} {_∙₂_} {e₂} = (Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂)) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext (proj₁ laws₁)) (λ _ → _ □) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ((λ x y → to (from x ∙₁ from y)) , to e₁) ≡ (_∙₂_ , e₂)) ↝⟨ inverse $ ∃-cong (λ _ → ≡×≡↔≡) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (λ x y → to (from x ∙₁ from y)) ≡ _∙₂_ × to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ _ → Eq.extensionality-isomorphism ext ×-cong (_ □)) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ x → (λ y → to (from x ∙₁ from y)) ≡ _∙₂_ x) × to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ _ → ∀-cong ext (λ _ → Eq.extensionality-isomorphism ext) ×-cong (_ □)) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ x y → to (from x ∙₁ from y) ≡ (x ∙₂ y)) × to e₁ ≡ e₂) ↔⟨ inverse $ ∃-cong (λ eq → Π-cong ext (Eq.↔⇒≃ eq) (λ x → Π-cong ext (Eq.↔⇒≃ eq) (λ y → ≡⇒≃ $ sym $ cong₂ (λ u v → _↔_.to eq (u ∙₁ v) ≡ (_↔_.to eq x ∙₂ _↔_.to eq y)) (_↔_.left-inverse-of eq x) (_↔_.left-inverse-of eq y))) ×-cong (_ □)) ⟩□ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y)) × to e₁ ≡ e₂) □ ------------------------------------------------------------------------ -- An example: posets poset : Code poset = -- The ordering relation. (id ⇾ id ⇾ type) , λ C _≤_ → -- The carrier type is a set. (Is-set C × -- The ordering relation is (pointwise) propositional. (∀ x y → Is-proposition (x ≤ y)) × -- Reflexivity. (∀ x → x ≤ x) × -- Transitivity. (∀ x y z → x ≤ y → y ≤ z → x ≤ z) × -- Antisymmetry. (∀ x y → x ≤ y → y ≤ x → x ≡ y)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (C-set , ≤-prop , _) → ×-closure 1 (H-level-propositional ext₁ 2) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ → H-level-propositional (lower-ext _ _ ext₁) 1) (×-closure 1 (Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ → ≤-prop _ _) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure (lower-ext (# 0) _ ext₁) 1 λ _ → Π-closure (lower-ext _ _ ext₁) 1 λ _ → Π-closure (lower-ext _ _ ext₁) 1 λ _ → ≤-prop _ _) (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → C-set)))) } -- The interpretation of the code is reasonable. (Except, perhaps, -- that the carrier type lives in Type₁ but the codomain of the -- ordering relation is Type. In the corresponding example in -- Univalence-axiom.Isomorphism-is-equality.Simple.Variant the carrier -- type lives in Type.) Instance-poset : Instance poset ≡ Σ Type₁ λ C → Σ (C → C → Type) λ _≤_ → Is-set C × (∀ x y → Is-proposition (x ≤ y)) × (∀ x → x ≤ x) × (∀ x y z → x ≤ y → y ≤ z → x ≤ z) × (∀ x y → x ≤ y → y ≤ x → x ≡ y) Instance-poset = refl _ -- The notion of isomorphism that we get is also reasonable. It is the -- usual notion of "order isomorphism", with two (main) differences: -- -- * Equivalences are used instead of bijections. However, -- equivalences and bijections coincide for sets (assuming -- extensionality). -- -- * We use equality, (λ a b → from a ≤₁ from b) ≡ _≤₂_, instead of -- "iff", ∀ a b → (a ≤₁ b) ⇔ (to a ≤₂ to b). However, the ordering -- relation is pointwise propositional, so these two expressions are -- equal (assuming univalence). Isomorphic-poset : ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in (λ a b → from a ≤₁ from b) ≡ _≤₂_ Isomorphic-poset = refl _ -- We can prove that this notion of isomorphism is isomorphic to the -- usual notion of order isomorphism (assuming univalence). Isomorphism-poset-isomorphic-to-order-isomorphism : Assumptions → ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ↔ Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y) Isomorphism-poset-isomorphic-to-order-isomorphism ass {C₁} {_≤₁_} {laws₁} {C₂} {_≤₂_} {laws₂} = (Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in (λ a b → from a ≤₁ from b) ≡ _≤₂_) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext₁ (proj₁ laws₁)) (λ _ → _ □) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (λ a b → from a ≤₁ from b) ≡ _≤₂_) ↔⟨ inverse $ ∃-cong (λ _ → Eq.extensionality-isomorphism ext₁) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a → (λ b → from a ≤₁ from b) ≡ _≤₂_ a)) ↔⟨ inverse $ ∃-cong (λ _ → ∀-cong ext₁ λ _ → Eq.extensionality-isomorphism ext₁) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a b → (from a ≤₁ from b) ≡ (a ≤₂ b))) ↔⟨ inverse $ ∃-cong (λ eq → Π-cong ext₁ (Eq.↔⇒≃ eq) λ a → Π-cong ext₁ (Eq.↔⇒≃ eq) λ b → ≡⇒≃ $ sym $ cong₂ (λ x y → (x ≤₁ y) ≡ (_↔_.to eq a ≤₂ _↔_.to eq b)) (_↔_.left-inverse-of eq a) (_↔_.left-inverse-of eq b)) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a b → (a ≤₁ b) ≡ (to a ≤₂ to b))) ↔⟨ ∃-cong (λ _ → ∀-cong ext₁ λ _ → ∀-cong ext₁ λ _ → ≡≃≃ univ) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a b → (a ≤₁ b) ≃ (to a ≤₂ to b))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext₁ λ _ → ∀-cong (lower-ext (# 0) _ ext₁) λ _ → Eq.⇔↔≃ (lower-ext _ _ ext₁) (proj₁ (proj₂ laws₁) _ _) (proj₁ (proj₂ laws₂) _ _)) ⟩□ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in (∀ a b → (a ≤₁ b) ⇔ (to a ≤₂ to b))) □ where open Assumptions ass -- The previous lemma implies that we can prove that the notion of -- isomorphism that we get is /equal/ to the usual notion of order -- isomorphism (assuming univalence). Isomorphism-poset-equal-to-order-isomorphism : Assumptions → ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ≡ Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y) Isomorphism-poset-equal-to-order-isomorphism ass {laws₁ = laws₁} {laws₂ = laws₂} = ≃⇒≡ univ₁ $ Eq.↔⇒≃ $ Isomorphism-poset-isomorphic-to-order-isomorphism ass {laws₁ = laws₁} {laws₂ = laws₂} where open Assumptions ass -- The notion of isomorphism that we get if we use Is-isomorphism′ -- instead of Is-isomorphism is also reasonable. Isomorphic′-poset : ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic′ poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d)) Isomorphic′-poset = refl _ -- If we had defined isomorphism using Is-isomorphism′ instead of -- Is-isomorphism, then we could have proved -- Isomorphism-poset-isomorphic-to-order-isomorphism without assuming -- univalence, but instead assuming extensionality. Isomorphism′-poset-isomorphic-to-order-isomorphism : Extensionality (# 1) (# 1) → ∀ {C₁ _≤₁_ laws₁ C₂ _≤₂_ laws₂} → Isomorphic′ poset (C₁ , _≤₁_ , laws₁) (C₂ , _≤₂_ , laws₂) ↔ Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ x y → (x ≤₁ y) ⇔ (to x ≤₂ to y) Isomorphism′-poset-isomorphic-to-order-isomorphism ext {C₁} {_≤₁_} {laws₁} {C₂} {_≤₂_} {laws₂} = (Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d))) ↝⟨ inverse $ Σ-cong (Eq.↔↔≃ ext (proj₁ laws₁)) (λ _ → _ □) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a b → to a ≡ b → ∀ c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (b ≤₂ d))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-intro (λ _ _ → _) ext) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a c d → to c ≡ d → ↑ _ ((a ≤₁ c) ≃ (to a ≤₂ d))) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → ∀-intro (λ _ _ → _) ext) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a c → ↑ _ ((a ≤₁ c) ≃ (to a ≤₂ to c))) ↝⟨ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → B.↑↔) ⟩ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a c → (a ≤₁ c) ≃ (to a ≤₂ to c)) ↝⟨ inverse $ ∃-cong (λ _ → ∀-cong ext λ _ → ∀-cong (lower-ext (# 0) _ ext) λ _ → Eq.⇔↔≃ (lower-ext _ _ ext) (proj₁ (proj₂ laws₁) _ _) (proj₁ (proj₂ laws₂) _ _)) ⟩□ (Σ (C₁ ↔ C₂) λ eq → let open _↔_ eq in ∀ a c → (a ≤₁ c) ⇔ (to a ≤₂ to c)) □ ------------------------------------------------------------------------ -- An example: discrete fields private -- Some lemmas used below. 0* : {C : Type₁} (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → ∀ x → (0# * x) ≡ 0# 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- x = (0# * x) ≡⟨ sym $ +0 _ ⟩ ((0# * x) + 0#) ≡⟨ cong (_+_ _) $ sym $ +- _ ⟩ ((0# * x) + (x + (- x))) ≡⟨ +-assoc _ _ _ ⟩ (((0# * x) + x) + (- x)) ≡⟨ cong (λ y → y + _) lemma ⟩ (x + (- x)) ≡⟨ +- x ⟩∎ 0# ∎ where lemma = ((0# * x) + x) ≡⟨ cong (_+_ _) $ sym $ *1 _ ⟩ ((0# * x) + (x * 1#)) ≡⟨ cong (λ y → y + (x * 1#)) $ *-comm _ _ ⟩ ((x * 0#) + (x * 1#)) ≡⟨ sym $ *+ _ _ _ ⟩ (x * (0# + 1#)) ≡⟨ cong (_*_ _) $ +-comm _ _ ⟩ (x * (1# + 0#)) ≡⟨ cong (_*_ _) $ +0 _ ⟩ (x * 1#) ≡⟨ *1 _ ⟩∎ x ∎ dec-lemma₁ : {C : Type₁} (_+_ : C → C → C) (0# : C) (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → (∀ x → Dec (x ≡ 0#)) → Decidable (_≡_ {A = C}) dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +- dec-0 x y = ⊎-map (λ x-y≡0 → x ≡⟨ sym $ +0 _ ⟩ (x + 0#) ≡⟨ cong (_+_ _) $ sym $ +- _ ⟩ (x + (y + (- y))) ≡⟨ cong (_+_ _) $ +-comm _ _ ⟩ (x + ((- y) + y)) ≡⟨ +-assoc _ _ _ ⟩ ((x + (- y)) + y) ≡⟨ cong (λ x → x + _) x-y≡0 ⟩ (0# + y) ≡⟨ +-comm _ _ ⟩ (y + 0#) ≡⟨ +0 _ ⟩∎ y ∎) (λ x-y≢0 x≡y → x-y≢0 ((x + (- y)) ≡⟨ cong (_+_ _ ∘ -_) $ sym x≡y ⟩ (x + (- x)) ≡⟨ +- _ ⟩∎ 0# ∎)) (dec-0 (x + (- y))) dec-lemma₂ : {C : Type₁} (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) (-_ : C → C) → (_⁻¹ : C → ↑ (# 1) ⊤ ⊎ C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → 0# ≢ 1# → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) → (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) → Decidable (_≡_ {A = C}) dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm *-comm *+ +0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂ = dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +- dec-0 where dec-0 : ∀ z → Dec (z ≡ 0#) dec-0 z with z ⁻¹ | ⁻¹₁ z | ⁻¹₂ z ... | inj₁ _ | hyp | _ = inj₁ (hyp (refl _)) ... | inj₂ z⁻¹ | _ | hyp = inj₂ (λ z≡0 → 0≢1 (0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- _ ⟩ (0# * z⁻¹) ≡⟨ cong (λ x → x * _) $ sym z≡0 ⟩ (z * z⁻¹) ≡⟨ hyp z⁻¹ (refl _) ⟩∎ 1# ∎)) dec-lemma₃ : {C : Type₁} (_+_ : C → C → C) (0# : C) (-_ : C → C) → (_*_ : C → C → C) (1# : C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#)) → Decidable (_≡_ {A = C}) dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- inv-xor = dec-lemma₁ _+_ 0# -_ +-assoc +-comm +0 +- (λ x → [ inj₂ ∘ proj₂ , inj₁ ∘ proj₂ ] (inv-xor x)) *-injective : {C : Type₁} (_*_ : C → C → C) (1# : C) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x * 1#) ≡ x) → ∀ x → ∃ (λ y → (x * y) ≡ 1#) → Injective (_*_ x) *-injective _*_ 1# *-assoc *-comm *1 x (x⁻¹ , xx⁻¹≡1) {y₁} {y₂} xy₁≡xy₂ = y₁ ≡⟨ lemma y₁ ⟩ (x⁻¹ * (x * y₁)) ≡⟨ cong (_*_ x⁻¹) xy₁≡xy₂ ⟩ (x⁻¹ * (x * y₂)) ≡⟨ sym $ lemma y₂ ⟩∎ y₂ ∎ where lemma : ∀ y → y ≡ (x⁻¹ * (x * y)) lemma y = y ≡⟨ sym $ *1 _ ⟩ (y * 1#) ≡⟨ *-comm _ _ ⟩ (1# * y) ≡⟨ cong (λ x → x * y) $ sym xx⁻¹≡1 ⟩ ((x * x⁻¹) * y) ≡⟨ cong (λ x → x * y) $ *-comm _ _ ⟩ ((x⁻¹ * x) * y) ≡⟨ sym $ *-assoc _ _ _ ⟩∎ (x⁻¹ * (x * y)) ∎ inverse-propositional : {C : Type₁} (_*_ : C → C → C) (1# : C) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x * 1#) ≡ x) → Is-set C → ∀ x → Is-proposition (∃ λ y → (x * y) ≡ 1#) inverse-propositional _*_ 1# *-assoc *-comm *1 C-set x = [inhabited⇒+]⇒+ 0 λ { inv → injection⁻¹-propositional (record { to = _*_ x ; injective = *-injective _*_ 1# *-assoc *-comm *1 x inv }) C-set 1# } proposition-lemma₁ : Extensionality (# 1) (# 1) → {C : Type₁} (0# : C) (_*_ : C → C → C) (1# : C) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x * 1#) ≡ x) → Is-proposition (((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) proposition-lemma₁ ext 0# _*_ 1# *-assoc *-comm *1 = [inhabited⇒+]⇒+ 0 λ { (dec , _) → let C-set = decidable⇒set dec in ×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Dec-closure-propositional (lower-ext (# 0) _ ext) C-set) (Π-closure ext 1 λ x → Π-closure ext 1 λ _ → inverse-propositional _*_ 1# *-assoc *-comm *1 C-set x) } proposition-lemma₂ : Extensionality (# 1) (# 1) → {C : Type₁} (_+_ : C → C → C) (0# : C) (-_ : C → C) → (_*_ : C → C → C) (1# : C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → Is-proposition (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#)) proposition-lemma₂ ext _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- = [inhabited⇒+]⇒+ 0 λ inv-xor → let C-set = decidable⇒set $ dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- inv-xor in Π-closure ext 1 λ x → Xor-closure-propositional (lower-ext (# 0) _ ext) (inverse-propositional _*_ 1# *-assoc *-comm *1 C-set x) C-set proposition-lemma₃ : Extensionality (# 1) (# 1) → {C : Type₁} (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) → (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → 0# ≢ 1# → Is-proposition (Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)) proposition-lemma₃ ext {C} _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1 (inv , inv₁ , inv₂) (inv′ , inv₁′ , inv₂′) = _↔_.to (ignore-propositional-component (×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → C-set) (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → C-set))) (apply-ext ext inv≡inv′) where C-set : Is-set C C-set = decidable⇒set $ dec-lemma₂ _+_ 0# _*_ 1# -_ inv +-assoc +-comm *-comm *+ +0 *1 +- 0≢1 inv₁ inv₂ 01-lemma : ∀ x y → x ≡ 0# → (x * y) ≡ 1# → ⊥ 01-lemma x y x≡0 xy≡1 = 0≢1 ( 0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- _ ⟩ (0# * y) ≡⟨ cong (λ x → x * _) $ sym x≡0 ⟩ (x * y) ≡⟨ xy≡1 ⟩∎ 1# ∎) inv≡inv′ : ∀ x → inv x ≡ inv′ x inv≡inv′ x with inv x | inv₁ x | inv₂ x | inv′ x | inv₁′ x | inv₂′ x ... | inj₁ _ | _ | _ | inj₁ _ | _ | _ = refl _ ... | inj₂ x⁻¹ | _ | hyp | inj₁ _ | hyp′ | _ = ⊥-elim $ 01-lemma x x⁻¹ (hyp′ (refl _)) (hyp x⁻¹ (refl _)) ... | inj₁ _ | hyp | _ | inj₂ x⁻¹ | _ | hyp′ = ⊥-elim $ 01-lemma x x⁻¹ (hyp (refl _)) (hyp′ x⁻¹ (refl _)) ... | inj₂ x⁻¹ | _ | hyp | inj₂ x⁻¹′ | _ | hyp′ = cong inj₂ $ *-injective _*_ 1# *-assoc *-comm *1 x (x⁻¹ , hyp x⁻¹ (refl _)) ((x * x⁻¹) ≡⟨ hyp x⁻¹ (refl _) ⟩ 1# ≡⟨ sym $ hyp′ x⁻¹′ (refl _) ⟩∎ (x * x⁻¹′) ∎) -- Discrete fields. discrete-field : Code discrete-field = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Zero. id ⊗ -- Multiplication. (id ⇾ id ⇾ id) ⊗ -- One. id ⊗ -- Minus. (id ⇾ id) ⊗ -- Multiplicative inverse (a partial operation). (id ⇾ k (↑ _ ⊤) ⊕ id) , λ { C (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) → (-- Associativity. (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × -- Commutativity. (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × -- Distributivity. (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × -- Identity laws. (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × -- Additive inverse law. (∀ x → (x + (- x)) ≡ 0#) × -- Zero and one are distinct. 0# ≢ 1# × -- Multiplicative inverse laws. (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (+-assoc , _ , +-comm , *-comm , *+ , +0 , *1 , +- , 0≢1 , ⁻¹₁ , ⁻¹₂) → let C-set : Is-set C C-set = decidable⇒set $ dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm *-comm *+ +0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂ in ×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure (lower-ext (# 0) (# 1) ext₁) 1 λ _ → ⊥-propositional) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set)))))))))) }} -- The interpretation of the code is reasonable. Instance-discrete-field : Instance discrete-field ≡ Σ Type₁ λ C → Σ ((C → C → C) × C × (C → C → C) × C × (C → C) × (C → ↑ _ ⊤ ⊎ C)) λ { (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) } Instance-discrete-field = refl _ -- The notion of isomorphism that we get is reasonable. Isomorphic-discrete-field : ∀ {C₁ _+₁_ 0₁ _*₁_ 1₁ -₁_ _⁻¹₁ laws₁ C₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ laws₂} → Isomorphic discrete-field (C₁ , (_+₁_ , 0₁ , _*₁_ , 1₁ , -₁_ , _⁻¹₁) , laws₁) (C₂ , (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ((λ x y → to (from x +₁ from y)) , to 0₁ , (λ x y → to (from x *₁ from y)) , to 1₁ , (λ x → to (-₁ from x)) , (λ x → ⊎-map P.id to (from x ⁻¹₁))) ≡ (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) Isomorphic-discrete-field = refl _ -- The definitions of discrete field introduced below do not have an -- inverse operator in their signature, so the derived notion of -- isomorphism is perhaps not obviously identical to the one above. -- However, the two notions of isomorphism are isomorphic (assuming -- extensionality). Isomorphic-discrete-field-isomorphic-to-one-without-⁻¹ : Extensionality (# 1) (# 1) → ∀ {C₁ _+₁_ 0₁ _*₁_ 1₁ -₁_ _⁻¹₁ laws₁ C₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ laws₂} → Isomorphic discrete-field (C₁ , (_+₁_ , 0₁ , _*₁_ , 1₁ , -₁_ , _⁻¹₁) , laws₁) (C₂ , (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂) , laws₂) ↔ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ((λ x y → to (from x +₁ from y)) , to 0₁ , (λ x y → to (from x *₁ from y)) , to 1₁ , (λ x → to (-₁ from x))) ≡ (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_) Isomorphic-discrete-field-isomorphic-to-one-without-⁻¹ ext {C₁} {_+₁_} {0₁} {_*₁_} {1₁} { -₁_} {_⁻¹₁} {_ , _ , _ , _ , _ , _ , _ , _ , _ , ⁻¹₁₁ , ⁻¹₁₂} {C₂} {_+₂_} {0₂} {_*₂_} {1₂} { -₂_} {_⁻¹₂} {+₂-assoc , *₂-assoc , +₂-comm , *₂-comm , *₂+₂ , +₂0₂ , *₂1₂ , +₂-₂ , 0₂≢1₂ , ⁻¹₂₁ , ⁻¹₂₂} = ∃-cong λ eq → let open _≃_ eq in (((λ x y → to (from x +₁ from y)) , to 0₁ , (λ x y → to (from x *₁ from y)) , to 1₁ , (λ x → to (-₁ from x)) , (λ x → ⊎-map P.id to (from x ⁻¹₁))) ≡ (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_ , _⁻¹₂)) ↝⟨ inverse (≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡))))) ⟩ ((λ x y → to (from x +₁ from y)) ≡ _+₂_ × to 0₁ ≡ 0₂ × (λ x y → to (from x *₁ from y)) ≡ _*₂_ × to 1₁ ≡ 1₂ × (λ x → to (-₁ from x)) ≡ -₂_ × (λ x → ⊎-map P.id to (from x ⁻¹₁)) ≡ _⁻¹₂) ↝⟨ (∃-cong λ _ → ∃-cong λ 0-homo → ∃-cong λ *-homo → ∃-cong λ 1-homo → ∃-cong λ _ → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible ⁻¹-set (⁻¹-homo eq 0-homo *-homo 1-homo)) ⟩ ((λ x y → to (from x +₁ from y)) ≡ _+₂_ × to 0₁ ≡ 0₂ × (λ x y → to (from x *₁ from y)) ≡ _*₂_ × to 1₁ ≡ 1₂ × (λ x → to (-₁ from x)) ≡ -₂_ × ⊤) ↝⟨ (_ □) ×-cong (_ □) ×-cong (_ □) ×-cong (_ □) ×-cong ×-right-identity ⟩ ((λ x y → to (from x +₁ from y)) ≡ _+₂_ × to 0₁ ≡ 0₂ × (λ x y → to (from x *₁ from y)) ≡ _*₂_ × to 1₁ ≡ 1₂ × (λ x → to (-₁ from x)) ≡ -₂_) ↝⟨ ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡ ⊚ ((_ □) ×-cong ≡×≡↔≡))) ⟩ (((λ x y → to (from x +₁ from y)) , to 0₁ , (λ x y → to (from x *₁ from y)) , to 1₁ , (λ x → to (-₁ from x))) ≡ (_+₂_ , 0₂ , _*₂_ , 1₂ , -₂_)) □ where ⁻¹-set : Is-set (C₂ → ↑ _ ⊤ ⊎ C₂) ⁻¹-set = Π-closure ext 2 λ _ → ⊎-closure 0 (↑-closure 2 (mono (≤-step (≤-step ≤-refl)) ⊤-contractible)) (decidable⇒set $ dec-lemma₂ _+₂_ 0₂ _*₂_ 1₂ -₂_ _⁻¹₂ +₂-assoc +₂-comm *₂-comm *₂+₂ +₂0₂ *₂1₂ +₂-₂ 0₂≢1₂ ⁻¹₂₁ ⁻¹₂₂) ⁻¹-homo : (eq : C₁ ≃ C₂) → let open _≃_ eq in to 0₁ ≡ 0₂ → (λ x y → to (from x *₁ from y)) ≡ _*₂_ → to 1₁ ≡ 1₂ → (λ x → ⊎-map P.id to (from x ⁻¹₁)) ≡ _⁻¹₂ ⁻¹-homo eq 0-homo *-homo 1-homo = cong proj₁ $ proposition-lemma₃ ext _+₂_ 0₂ _*₂_ 1₂ -₂_ +₂-assoc *₂-assoc +₂-comm *₂-comm *₂+₂ +₂0₂ *₂1₂ +₂-₂ 0₂≢1₂ ( (λ x → ⊎-map P.id to (from x ⁻¹₁)) , (λ x x⁻¹₁≡₁ → let lemma = (from x ⁻¹₁) ≡⟨ [_,_] {C = λ z → z ≡ ⊎-map P.id from (⊎-map P.id to z)} (λ _ → refl _) (λ _ → cong inj₂ $ sym $ left-inverse-of _) (from x ⁻¹₁) ⟩ ⊎-map P.id from (⊎-map P.id to (from x ⁻¹₁)) ≡⟨ cong (⊎-map P.id from) x⁻¹₁≡₁ ⟩∎ inj₁ (lift tt) ∎ in x ≡⟨ sym $ right-inverse-of x ⟩ to (from x) ≡⟨ cong to (⁻¹₁₁ (from x) lemma) ⟩ to 0₁ ≡⟨ 0-homo ⟩∎ 0₂ ∎) , (λ x y x⁻¹₁≡y → let lemma = (from x ⁻¹₁) ≡⟨ [_,_] {C = λ z → z ≡ ⊎-map P.id from (⊎-map P.id to z)} (λ _ → refl _) (λ _ → cong inj₂ $ sym $ left-inverse-of _) (from x ⁻¹₁) ⟩ ⊎-map P.id from (⊎-map P.id to (from x ⁻¹₁)) ≡⟨ cong (⊎-map P.id from) x⁻¹₁≡y ⟩∎ inj₂ (from y) ∎ in (x *₂ y) ≡⟨ sym $ cong (λ _*_ → x * y) *-homo ⟩ to (from x *₁ from y) ≡⟨ cong to $ ⁻¹₁₂ (from x) (from y) lemma ⟩ to 1₁ ≡⟨ 1-homo ⟩∎ 1₂ ∎) ) (_⁻¹₂ , ⁻¹₂₁ , ⁻¹₂₂) where open _≃_ eq -- In "Varieties of Constructive Mathematics" Bridges and Richman -- define a discrete field as a commutative ring with 1, decidable -- equality, and satisfying the property that non-zero elements are -- invertible. What follows is—assuming that I interpreted the -- informal definition correctly—an encoding of this definition, -- restricted so that the discrete fields are non-trivial, and using -- equality as the equality relation, and denial inequality as the -- inequality relation. discrete-field-à-la-Bridges-and-Richman : Code discrete-field-à-la-Bridges-and-Richman = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Zero. id ⊗ -- Multiplication. (id ⇾ id ⇾ id) ⊗ -- One. id ⊗ -- Minus. (id ⇾ id) , λ { C (_+_ , 0# , _*_ , 1# , -_) → (-- Associativity. (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × -- Commutativity. (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × -- Distributivity. (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × -- Identity laws. (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × -- Additive inverse law. (∀ x → (x + (- x)) ≡ 0#) × -- Zero and one are distinct. 0# ≢ 1# × -- Decidable equality. ((x y : C) → x ≡ y ⊎ x ≢ y) × -- Non-zero elements are invertible. (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (_ , *-assoc , _ , *-comm , _ , _ , *1 , _ , _ , dec , _) → let C-set : Is-set C C-set = decidable⇒set dec in ×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure (lower-ext (# 0) (# 1) ext₁) 1 λ _ → ⊥-propositional) (proposition-lemma₁ ext₁ 0# _*_ 1# *-assoc *-comm *1))))))))) }} -- The two discrete field definitions above are isomorphic (assuming -- extensionality). Instance-discrete-field-isomorphic-to-Bridges-and-Richman's : Extensionality (# 1) (# 1) → Instance discrete-field ↔ Instance discrete-field-à-la-Bridges-and-Richman Instance-discrete-field-isomorphic-to-Bridges-and-Richman's ext = ∃-cong λ C → (Σ ((C → C → C) × C × (C → C → C) × C × (C → C) × (C → ↑ _ ⊤ ⊎ C)) λ { (_+_ , 0# , _*_ , 1# , -_ , _⁻¹) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)}) ↝⟨ lemma₁ _ _ _ _ _ _ _ ⟩ (Σ ((C → C → C) × C × (C → C → C) × C × (C → C)) λ { (_+_ , 0# , _*_ , 1# , -_) → Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)}) ↝⟨ ∃-cong (λ _ → lemma₂ _ _ _ _ _ _ _ _ _ _ _) ⟩ (Σ (((C → C → C) × C × (C → C → C) × C × (C → C))) λ { (_+_ , 0# , _*_ , 1# , -_) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) }) ↝⟨ (∃-cong λ { (_+_ , 0# , _*_ , 1# , -_) → ∃-cong λ +-assoc → ∃-cong λ *-assoc → ∃-cong λ +-comm → ∃-cong λ *-comm → ∃-cong λ *+ → ∃-cong λ +0 → ∃-cong λ *1 → ∃-cong λ +- → ∃-cong λ 0≢1 → main-lemma C _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1 }) ⟩□ (Σ ((C → C → C) × C × (C → C → C) × C × (C → C)) λ { (_+_ , 0# , _*_ , 1# , -_) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × (∀ x → (x + (- x)) ≡ 0#) × 0# ≢ 1# × ((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#) }) □ where main-lemma : (C : Type₁) (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → 0# ≢ 1# → (Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#)) ↔ (((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) main-lemma C _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1 = _≃_.bijection $ Eq.⇔→≃ (proposition-lemma₃ ext _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- 0≢1) (proposition-lemma₁ ext 0# _*_ 1# *-assoc *-comm *1) to from where To = (((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) From = Σ (C → ↑ _ ⊤ ⊎ C) λ _⁻¹ → (∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0#) × (∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1#) to : From → To to (_⁻¹ , ⁻¹₁ , ⁻¹₂) = (dec , inv) where dec : Decidable (_≡_ {A = C}) dec = dec-lemma₂ _+_ 0# _*_ 1# -_ _⁻¹ +-assoc +-comm *-comm *+ +0 *1 +- 0≢1 ⁻¹₁ ⁻¹₂ inv : ∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1# inv x x≢0 with x ⁻¹ | ⁻¹₁ x | ⁻¹₂ x ... | inj₁ _ | hyp | _ = ⊥-elim $ x≢0 (hyp (refl _)) ... | inj₂ y | _ | hyp = y , hyp y (refl _) from : To → From from (dec , inv) = (_⁻¹ , ⁻¹₁ , ⁻¹₂) where _⁻¹ : C → ↑ _ ⊤ ⊎ C x ⁻¹ = ⊎-map (λ _ → _) (proj₁ ∘ inv x) (dec x 0#) ⁻¹₁ : ∀ x → (x ⁻¹) ≡ inj₁ (lift tt) → x ≡ 0# ⁻¹₁ x x⁻¹≡₁ with dec x 0# ... | inj₁ x≡0 = x≡0 ... | inj₂ x≢0 = ⊥-elim $ ⊎.inj₁≢inj₂ (sym x⁻¹≡₁) ⁻¹₂ : ∀ x y → (x ⁻¹) ≡ inj₂ y → (x * y) ≡ 1# ⁻¹₂ x y x⁻¹≡y with dec x 0# ... | inj₁ x≡0 = ⊥-elim $ ⊎.inj₁≢inj₂ x⁻¹≡y ... | inj₂ x≢0 = (x * y) ≡⟨ cong (_*_ _) $ sym $ ⊎.cancel-inj₂ x⁻¹≡y ⟩ (x * proj₁ (inv x x≢0)) ≡⟨ proj₂ (inv x x≢0) ⟩∎ 1# ∎ lemma₁ : (A B C D E F : Type₁) (G : A × B × C × D × E × F → Type₁) → Σ (A × B × C × D × E × F) G ↔ Σ (A × B × C × D × E) λ { (a , b , c , d , e) → Σ F λ f → G (a , b , c , d , e , f) } lemma₁ A B C D E F G = Σ (A × B × C × D × E × F) G ↝⟨ Σ-cong (×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) (λ _ → _ □) ⟩ (Σ (((((A × B) × C) × D) × E) × F) λ { (((((a , b) , c) , d) , e) , f) → G (a , b , c , d , e , f) }) ↝⟨ inverse Σ-assoc ⟩ (Σ ((((A × B) × C) × D) × E) λ { ((((a , b) , c) , d) , e) → Σ F λ f → G (a , b , c , d , e , f) }) ↝⟨ Σ-cong (inverse (×-assoc ⊚ ×-assoc ⊚ ×-assoc)) (λ _ → _ □) ⟩□ (Σ (A × B × C × D × E) λ { (a , b , c , d , e) → Σ F λ f → G (a , b , c , d , e , f) }) □ lemma₂ : (A B C D E F G H I J : Type₁) (K : A → Type₁) → (Σ A λ x → B × C × D × E × F × G × H × I × J × K x) ↔ (B × C × D × E × F × G × H × I × J × Σ A K) lemma₂ A B C D E F G H I J K = (Σ A λ x → B × C × D × E × F × G × H × I × J × K x) ↝⟨ ∃-cong (λ _ → ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) ⟩ (Σ A λ x → ((((((((B × C) × D) × E) × F) × G) × H) × I) × J) × K x) ↝⟨ ∃-comm ⟩ (((((((((B × C) × D) × E) × F) × G) × H) × I) × J) × Σ A K) ↝⟨ inverse (×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc ⊚ ×-assoc) ⟩□ (B × C × D × E × F × G × H × I × J × Σ A K) □ -- nLab defines a discrete field as a commutative ring satisfying the -- property that "an element is invertible xor it equals zero" -- (http://ncatlab.org/nlab/show/field). This definition can also be -- encoded in our framework (assuming that I interpreted the informal -- definitions correctly). discrete-field-à-la-nLab : Code discrete-field-à-la-nLab = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Zero. id ⊗ -- Multiplication. (id ⇾ id ⇾ id) ⊗ -- One. id ⊗ -- Minus. (id ⇾ id) , λ { C (_+_ , 0# , _*_ , 1# , -_) → (-- Associativity. (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) × (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) × -- Commutativity. (∀ x y → (x + y) ≡ (y + x)) × (∀ x y → (x * y) ≡ (y * x)) × -- Distributivity. (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) × -- Identity laws. (∀ x → (x + 0#) ≡ x) × (∀ x → (x * 1#) ≡ x) × -- Additive inverse law. (∀ x → (x + (- x)) ≡ 0#) × -- An element is invertible xor it equals zero. (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#))) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (+-assoc , *-assoc , +-comm , *-comm , _ , +0 , *1 , +- , inv-xor) → let C-set : Is-set C C-set = decidable⇒set $ dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- inv-xor in ×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → C-set) (proposition-lemma₂ ext₁ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +-)))))))) }} -- nLab's definition of discrete fields is isomorphic to the variant -- of Bridges and Richman's definition given above (assuming -- extensionality, and assuming that I interpreted the informal -- definitions correctly). nLab's-isomorphic-to-Bridges-and-Richman's : Extensionality (# 1) (# 1) → Instance discrete-field-à-la-nLab ↔ Instance discrete-field-à-la-Bridges-and-Richman nLab's-isomorphic-to-Bridges-and-Richman's ext = ∃-cong λ C → ∃-cong λ { (_+_ , 0# , _*_ , 1# , -_) → ∃-cong λ +-assoc → ∃-cong λ *-assoc → ∃-cong λ +-comm → ∃-cong λ *-comm → ∃-cong λ *+ → ∃-cong λ +0 → ∃-cong λ *1 → ∃-cong λ +- → main-lemma C _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- } where main-lemma : (C : Type₁) (_+_ : C → C → C) (0# : C) (_*_ : C → C → C) (1# : C) (-_ : C → C) → (∀ x y z → (x + (y + z)) ≡ ((x + y) + z)) → (∀ x y z → (x * (y * z)) ≡ ((x * y) * z)) → (∀ x y → (x + y) ≡ (y + x)) → (∀ x y → (x * y) ≡ (y * x)) → (∀ x y z → (x * (y + z)) ≡ ((x * y) + (x * z))) → (∀ x → (x + 0#) ≡ x) → (∀ x → (x * 1#) ≡ x) → (∀ x → (x + (- x)) ≡ 0#) → (∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#)) ↔ (0# ≢ 1# × ((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#)) main-lemma C _+_ 0# _*_ 1# -_ +-assoc *-assoc +-comm *-comm *+ +0 *1 +- = _≃_.bijection $ Eq.⇔→≃ (proposition-lemma₂ ext _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +-) (×-closure 1 (¬-propositional (lower-ext (# 0) _ ext)) (proposition-lemma₁ ext 0# _*_ 1# *-assoc *-comm *1)) to from where To = 0# ≢ 1# × ((x y : C) → x ≡ y ⊎ x ≢ y) × (∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1#) From = ∀ x → (∃ λ y → (x * y) ≡ 1#) Xor (x ≡ 0#) to : From → To to inv-xor = (0≢1 , dec , inv) where 0≢1 : 0# ≢ 1# 0≢1 0≡1 = [ (λ { (_ , 1≢0) → 1≢0 (sym 0≡1) }) , (λ { (∄y[1y≡1] , _) → ∄y[1y≡1] (1# , *1 1#) }) ] (inv-xor 1#) dec : Decidable (_≡_ {A = C}) dec = dec-lemma₃ _+_ 0# -_ _*_ 1# +-assoc *-assoc +-comm *-comm +0 *1 +- inv-xor inv : ∀ x → x ≢ 0# → ∃ λ y → (x * y) ≡ 1# inv x x≢0 = [ proj₁ , (λ { (_ , x≡0) → ⊥-elim (x≢0 x≡0) }) ] (inv-xor x) from : To → From from (0≢1 , dec , inv) x = [ (λ x≡0 → inj₂ ( (λ { (y , xy≡1) → 0≢1 (0# ≡⟨ sym $ 0* _+_ 0# _*_ 1# -_ +-assoc +-comm *-comm *+ +0 *1 +- y ⟩ (0# * y) ≡⟨ cong (λ x → x * y) $ sym x≡0 ⟩ (x * y) ≡⟨ xy≡1 ⟩∎ 1# ∎) }) , x≡0 )) , (λ x≢0 → inj₁ (inv x x≢0 , x≢0)) ] (dec x 0#) ------------------------------------------------------------------------ -- An example: vector spaces over discrete fields -- Vector spaces over a particular discrete field. vector-space : Instance discrete-field → Code vector-space (F , (_+F_ , _ , _*F_ , 1F , _ , _) , _) = -- Addition. (id ⇾ id ⇾ id) ⊗ -- Scalar multiplication. (k F ⇾ id ⇾ id) ⊗ -- Zero vector. id ⊗ -- Additive inverse. (id ⇾ id) , λ { V (_+_ , _*_ , 0V , -_) → -- The carrier type is a set. (Is-set V × -- Associativity. (∀ u v w → (u + (v + w)) ≡ ((u + v) + w)) × (∀ x y v → (x * (y * v)) ≡ ((x *F y) * v)) × -- Commutativity. (∀ u v → (u + v) ≡ (v + u)) × -- Distributivity. (∀ x u v → (x * (u + v)) ≡ ((x * u) + (x * v))) × (∀ x y v → ((x +F y) * v) ≡ ((x * v) + (y * v))) × -- Identity laws. (∀ v → (v + 0V) ≡ v) × (∀ v → (1F * v) ≡ v) × -- Inverse law. (∀ v → (v + (- v)) ≡ 0V)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (V-set , _) → ×-closure 1 (H-level-propositional ext₁ 2) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → V-set) (×-closure 1 (Π-closure ext₁ 1 λ _ → V-set) (Π-closure ext₁ 1 λ _ → V-set)))))))) }} -- The interpretation of the code is reasonable. Instance-vector-space : ∀ {F _+F_ 0F _*F_ 1F -F_ _⁻¹F laws} → Instance (vector-space (F , (_+F_ , 0F , _*F_ , 1F , -F_ , _⁻¹F) , laws)) ≡ Σ Type₁ λ V → Σ ((V → V → V) × (F → V → V) × V × (V → V)) λ { (_+_ , _*_ , 0V , -_) → Is-set V × (∀ u v w → (u + (v + w)) ≡ ((u + v) + w)) × (∀ x y v → (x * (y * v)) ≡ ((x *F y) * v)) × (∀ u v → (u + v) ≡ (v + u)) × (∀ x u v → (x * (u + v)) ≡ ((x * u) + (x * v))) × (∀ x y v → ((x +F y) * v) ≡ ((x * v) + (y * v))) × (∀ v → (v + 0V) ≡ v) × (∀ v → (1F * v) ≡ v) × (∀ v → (v + (- v)) ≡ 0V) } Instance-vector-space = refl _ -- The notion of isomorphism that we get is also reasonable. Isomorphic-vector-space : ∀ {F V₁ _+₁_ _*₁_ 0₁ -₁_ laws₁ V₂ _+₂_ _*₂_ 0₂ -₂_ laws₂} → Isomorphic (vector-space F) (V₁ , (_+₁_ , _*₁_ , 0₁ , -₁_) , laws₁) (V₂ , (_+₂_ , _*₂_ , 0₂ , -₂_) , laws₂) ≡ Σ (V₁ ≃ V₂) λ eq → let open _≃_ eq in ((λ u v → to (from u +₁ from v)) , (λ x v → to (x *₁ from v)) , to 0₁ , (λ x → to (-₁ from x))) ≡ (_+₂_ , _*₂_ , 0₂ , -₂_) Isomorphic-vector-space = refl _ ------------------------------------------------------------------------ -- An example: sets equipped with fixpoint operators set-with-fixpoint-operator : Code set-with-fixpoint-operator = (id ⇾ id) ⇾ id , λ C fix → -- The carrier type is a set. (Is-set C × -- The fixpoint operator property. (∀ f → f (fix f) ≡ fix f)) , λ ass → let open Assumptions ass in [inhabited⇒+]⇒+ 0 λ { (C-set , _) → ×-closure 1 (H-level-propositional ext₁ 2) (Π-closure ext₁ 1 λ _ → C-set) } -- Some unfolding lemmas. Instance-set-with-fixpoint-operator : Instance set-with-fixpoint-operator ≡ Σ Type₁ λ C → Σ ((C → C) → C) λ fix → Is-set C × (∀ f → f (fix f) ≡ fix f) Instance-set-with-fixpoint-operator = refl _ Isomorphic-set-with-fixpoint-operator : ∀ {C₁ fix₁ laws₁ C₂ fix₂ laws₂} → Isomorphic set-with-fixpoint-operator (C₁ , fix₁ , laws₁) (C₂ , fix₂ , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in (λ f → to (fix₁ (λ x → from (f (to x))))) ≡ fix₂ Isomorphic-set-with-fixpoint-operator = refl _ Isomorphic′-set-with-fixpoint-operator : ∀ {C₁ fix₁ laws₁ C₂ fix₂ laws₂} → Isomorphic′ set-with-fixpoint-operator (C₁ , fix₁ , laws₁) (C₂ , fix₂ , laws₂) ≡ Σ (C₁ ≃ C₂) λ eq → let open _≃_ eq in ∀ f g → (∀ x y → to x ≡ y → to (f x) ≡ g y) → to (fix₁ f) ≡ fix₂ g Isomorphic′-set-with-fixpoint-operator = refl _
{ "alphanum_fraction": 0.3888344049, "avg_line_length": 37.7136986301, "ext": "agda", "hexsha": "2ffdbe6b618fb95ecc544c51bbc5664e30831fff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Simple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Simple.agda", "max_line_length": 146, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Univalence-axiom/Isomorphism-is-equality/Simple.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 31611, "size": 82593 }
module Structure.Topology where open import Logic import Lvl open import Sets.ExtensionalPredicateSet renaming (_≡_ to _≡ₛ_) hiding (map) open import Structure.Setoid open import Type -- Definition of topological spaces via open sets. -- The interpretation is that X is the collection of points and 𝓣 is the collection of open sets of X. -- (X,𝓣) is called a topological space. -- 𝓣 is called a topology on X. record TopologicalSpace {ℓ₁ ℓ₂ ℓ₃} {X : Type{ℓ₁}} ⦃ equiv : Equiv{ℓ₁ Lvl.⊔ ℓ₃}(X) ⦄ (𝓣 : PredSet{ℓ₂}(PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X))) : Type{Lvl.𝐒(Lvl.of(X)) Lvl.⊔ Lvl.of(Type.of(𝓣))} where field contains-empty : (∅ ∈ 𝓣) contains-universe : (𝐔 ∈ 𝓣) intersection-closure : ∀{A B} → (A ∈ 𝓣) → (B ∈ 𝓣) → ((A ∩ B) ∈ 𝓣) indexed-union-closure : ∀{I : Type{ℓ₁ Lvl.⊔ ℓ₃}}{Ai : I → PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X)} → (∀{i} → (Ai(i) ∈ 𝓣)) → ((⋃ᵢ Ai) ∈ 𝓣) Open : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) → Stmt Open(A) = (A ∈ 𝓣) Closed : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) → Stmt Closed(A) = Open(∁ A) record Neighborhood (p : X) (N : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X)) : Stmt{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂ Lvl.⊔ Lvl.𝐒(ℓ₃)} where constructor intro eta-equality field O : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) ⦃ open-set ⦄ : Open(O) ⦃ covers ⦄ : O ⊆ N ⦃ contains-point ⦄ : p ∈ O open import Data open import Data.Proofs open import Data.Either as Either using (_‖_) open import Data.Either.Setoid open import Data.Boolean open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Lang.Instance open import Logic.Propositional open import Logic.Predicate open import Lvl.Proofs open import Structure.Function.Domain open import Structure.Function open import Structure.Relator.Proofs open import Structure.Relator.Properties open import Structure.Relator open import Syntax.Function open import Syntax.Transitivity module _ where open import Relator.Equals.Proofs.Equiv{T = Bool} renaming ([≡]-equiv to bool-equiv) union-closure : ∀{A B} → (A ∈ 𝓣) → (B ∈ 𝓣) → ((A ∪ B) ∈ 𝓣) union-closure {A}{B} pa pb = substitute₂(_∋_) (reflexivity(_≡_) {x = 𝓣}) (⋃ᵢ-of-bijection ([∃]-intro Lvl.Up.obj) 🝖 ⋃ᵢ-of-boolean) (indexed-union-closure f-proof) where f-proof : ∀{i} → ((if i then B else A) ∈ 𝓣) f-proof {𝐹} = pa f-proof {𝑇} = pb instance Neighborhood-unaryRelator : ∀{N} → UnaryRelator(p ↦ Neighborhood p N) UnaryRelator.substitution Neighborhood-unaryRelator xy (intro O ⦃ contains-point = p ⦄) = intro O ⦃ contains-point = substitute₁(_∈ O) xy p ⦄ -- TODO: Is it usable when defined like this? record Base {I : Type{ℓ₁ Lvl.⊔ ℓ₃}} (Bi : I → PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X)) : Stmt{Lvl.𝐒(ℓ₁ Lvl.⊔ ℓ₃)} where constructor intro field covers-space : (∀{x} → (x ∈ (⋃ᵢ Bi))) generator : (x : X) → (i₁ i₂ : I) → ⦃ _ : (x ∈ (Bi(i₁) ∩ Bi(i₂))) ⦄ → I generator-contains-point : ∀{x : X}{i₁ i₂ : I} ⦃ _ : x ∈ (Bi(i₁) ∩ Bi(i₂)) ⦄ → (x ∈ Bi(generator x i₁ i₂)) generator-subset : ∀{x : X}{i₁ i₂ : I} ⦃ _ : x ∈ (Bi(i₁) ∩ Bi(i₂)) ⦄ → (Bi(generator x i₁ i₂) ⊆ (Bi(i₁) ∩ Bi(i₂))) record ClosurePoint (A : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X)) (p : X) : Stmt{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂ Lvl.⊔ Lvl.𝐒(ℓ₃)} where constructor intro field proof : ∀{N} → ⦃ _ : Neighborhood(p)(N) ⦄ → NonEmpty(A ∩ N) instance ClosurePoint-unaryRelator : ∀{A} → UnaryRelator(ClosurePoint(A)) ClosurePoint.proof (UnaryRelator.substitution ClosurePoint-unaryRelator xy Ax) {N} ⦃ neigh-y ⦄ = [∃]-map-proof id (ClosurePoint.proof Ax {N} ⦃ substitute₁ₗ(p ↦ Neighborhood p N) xy neigh-y ⦄) InternalPoint = swap Neighborhood record LimitPoint (A : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X)) (p : X) : Stmt{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂ Lvl.⊔ Lvl.𝐒(ℓ₃)} where constructor intro field proof : ∀{N} → ⦃ _ : Neighborhood(p)(N) ⦄ → NonEmpty(A ∩ (N ∖ (• p))) -- TODO: Use how IsolatedPoint and LimitPoint are related to prove this instance postulate LimitPoint-unaryRelator : ∀{A} → UnaryRelator(LimitPoint(A)) {-LimitPoint.proof (UnaryRelator.substitution (LimitPoint-unaryRelator {A = A}) xy (intro proof)) {N} ⦃ neigh ⦄ = substitute₁(_) xy (proof ⦃ substitute₁ₗ(_) xy neigh ⦄) where instance inst : UnaryRelator(x ↦ NonEmpty(A ∩ (N ∖ (• x)))) inst = [∘]-unaryRelator {f = x ↦ A ∩ (N ∖ (• x))} ⦃ {!!} ⦄ {P = NonEmpty} ⦃ {!!} ⦄ -} record IsolatedPoint (A : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X)) (p : X) : Stmt{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂ Lvl.⊔ Lvl.𝐒(ℓ₃)} where constructor intro eta-equality field N : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) ⦃ neighborhood ⦄ : Neighborhood(p)(N) proof : ((A ∩ N) ≡ₛ (• p)) instance IsolatedPoint-unaryRelator : ∀{A} → UnaryRelator(IsolatedPoint(A)) UnaryRelator.substitution IsolatedPoint-unaryRelator xy (intro N p) = intro N ⦃ substitute₁(a ↦ Neighborhood a N) xy infer ⦄ (p 🝖 (congruence₁ (•_) ⦃ singleton-function ⦃ equiv ⦄ ⦄ xy)) Closure : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) → PredSet(X) Closure(A) = intro(ClosurePoint(A)) Interior : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) → PredSet(X) Interior(A) = intro(InternalPoint(A)) ∂ : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) → PredSet(X) ∂ A = Closure(A) ∖ Interior(A) Discrete : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) → Stmt Discrete(A) = A ⊆ intro(IsolatedPoint(A)) Dense : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) → Stmt Dense(A) = Closure(A) ⊆ A Perfect : PredSet{ℓ₁ Lvl.⊔ ℓ₃}(X) → Stmt Perfect(A) = ∀{p} → (¬ IsolatedPoint(A)(p)) open import Numeral.Natural open import Numeral.Natural.Relation.Order using (_>_) record _converges-to_ (f : ℕ → X) (L : X) : Stmt{Lvl.𝐒(ℓ₁) Lvl.⊔ ℓ₂ Lvl.⊔ Lvl.𝐒(ℓ₃)} where constructor intro field min : ∃(Neighborhood(L)) → ℕ proof : ∀{NN@([∃]-intro N) : ∃(Neighborhood(L))}{n : ℕ} → (n > min(NN)) → (f(n) ∈ N) lim : (f : ℕ → X) → ⦃ _ : ∃(f converges-to_) ⦄ → X lim f ⦃ [∃]-intro L ⦄ = L module _ {ℓₗ₁ ℓₗ₂ ℓₗ₃} {X : Type{ℓₗ₁}} ⦃ equivₗ : Equiv{ℓₗ₁ Lvl.⊔ ℓₗ₃}(X) ⦄ (𝓣ₗ : PredSet{ℓₗ₂}(PredSet{ℓₗ₁ Lvl.⊔ ℓₗ₃}(X))) ⦃ _ : TopologicalSpace{ℓₗ₁}{ℓₗ₂}{ℓₗ₃} (𝓣ₗ) ⦄ {ℓᵣ₁ ℓᵣ₂ ℓᵣ₃} {Y : Type{ℓᵣ₁}} ⦃ equivᵣ : Equiv{ℓᵣ₁ Lvl.⊔ ℓᵣ₃}(Y) ⦄ (𝓣ᵣ : PredSet{ℓᵣ₂}(PredSet{ℓᵣ₁ Lvl.⊔ ℓᵣ₃}(Y))) ⦃ _ : TopologicalSpace{ℓᵣ₁}{ℓᵣ₂}{ℓᵣ₃} (𝓣ᵣ) ⦄ where open TopologicalSpace ⦃ … ⦄ open import Logic.Predicate open import Structure.Function record ContinuousAt (f : X → Y) ⦃ _ : Function(f) ⦄ (x : X) : Stmt{Lvl.𝐒(ℓₗ₁ Lvl.⊔ ℓₗ₃ Lvl.⊔ ℓᵣ₁ Lvl.⊔ ℓᵣ₃) Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓᵣ₂} where constructor intro field map : ∃(Neighborhood(f(x))) → ∃(Neighborhood(x)) proof : ∀{NB@([∃]-intro B) : ∃(Neighborhood(f(x)))} → let ([∃]-intro A) = map(NB) in (A ⊆ unmap f(B)) Continuous : (f : X → Y) ⦃ _ : Function(f) ⦄ → Stmt{Lvl.𝐒(ℓₗ₁ Lvl.⊔ ℓₗ₃ Lvl.⊔ ℓᵣ₁ Lvl.⊔ ℓᵣ₃) Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓᵣ₂} Continuous(f) = ∀{x} → ContinuousAt f(x) module _ {ℓₗ₁ ℓₗ₂ ℓₗ₃} {X : Type{ℓₗ₁}} ⦃ equivₗ : Equiv{ℓₗ₁ Lvl.⊔ ℓₗ₃}(X) ⦄ (𝓣ₗ : PredSet{ℓₗ₂}(PredSet{ℓₗ₁ Lvl.⊔ ℓₗ₃}(X))) ⦃ _ : TopologicalSpace{ℓₗ₁}{ℓₗ₂}{ℓₗ₃} (𝓣ₗ) ⦄ {ℓᵣ₁ ℓᵣ₂ ℓᵣ₃} {Y : Type{ℓᵣ₁}} ⦃ equivᵣ : Equiv{ℓᵣ₁ Lvl.⊔ ℓᵣ₃}(Y) ⦄ (𝓣ᵣ : PredSet{ℓᵣ₂}(PredSet{ℓᵣ₁ Lvl.⊔ ℓᵣ₃}(Y))) ⦃ _ : TopologicalSpace{ℓᵣ₁}{ℓᵣ₂}{ℓᵣ₃} (𝓣ᵣ) ⦄ where open TopologicalSpace ⦃ … ⦄ open import Function.Inverse open import Structure.Function.Domain hiding (bijective) open import Structure.Function record Homeomorphism (f : X → Y) ⦃ func : Function(f) ⦄ : Stmt{Lvl.𝐒(ℓₗ₁ Lvl.⊔ ℓₗ₃ Lvl.⊔ ℓᵣ₁ Lvl.⊔ ℓᵣ₃) Lvl.⊔ ℓₗ₂ Lvl.⊔ ℓᵣ₂} where constructor intro field ⦃ invertible ⦄ : Invertible(f) ⦃ continuous ⦄ : Continuous(𝓣ₗ)(𝓣ᵣ) (f) ⦃ continuous-inverse ⦄ : Continuous(𝓣ᵣ)(𝓣ₗ) (inv f) ⦃ inv-function ⦄
{ "alphanum_fraction": 0.6070115546, "avg_line_length": 42.3111111111, "ext": "agda", "hexsha": "f9ab9224cde7a0c914e651fbf72454c0fc52a964", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Topology.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Topology.agda", "max_line_length": 195, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Topology.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3605, "size": 7616 }
module Issue14 where open import Haskell.Prelude -- Wrong name for shadowed lambda constid : a → b → b constid x = λ x → x {-# COMPILE AGDA2HS constid #-} sectionTest₁ : Nat → Nat → Nat sectionTest₁ n = _+ n sectionTest₂ : Nat → Nat → Nat sectionTest₂ section = _+ section {-# COMPILE AGDA2HS sectionTest₁ #-} {-# COMPILE AGDA2HS sectionTest₂ #-}
{ "alphanum_fraction": 0.6949152542, "avg_line_length": 17.7, "ext": "agda", "hexsha": "517492f98f7b78627dbe0243843e7b059e3079b3", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Issue14.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Issue14.agda", "max_line_length": 36, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "test/Issue14.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 108, "size": 354 }
module Data.Vec.Any.Membership.Propositional where open import Relation.Binary.PropositionalEquality open import Data.Vec open import Data.Vec.Any hiding (map) open import Function.Inverse using (_↔_) open import Function using (_∘_) open import Data.Nat open import Data.Product hiding (map) import Data.Vec.Any.Membership as Mem open import Function.Related using (↔⇒) module _ {a} {A : Set a} where private module M = Mem (setoid A) open M public hiding (lose′) ∈′→∈ : ∀ {n x}{xs : Vec A n} → x ∈′ xs → x ∈ xs ∈′→∈ {xs = .(_ ∷ _)} (here refl) = here ∈′→∈ {xs = .(_ ∷ _)} (there p) = there (∈′→∈ p) ∈→∈′ : ∀ {n x}{xs : Vec A n} → x ∈ xs → x ∈′ xs ∈→∈′ {xs = .(_ ∷ _)} here = here refl ∈→∈′ {xs = .(_ ∷ _)} (there p) = there (∈→∈′ p) ∈↔∈′ : ∀ {n x}{xs : Vec A n} → x ∈ xs ↔ x ∈′ xs ∈↔∈′ = record { to = →-to-⟶ ∈→∈′ ; from = →-to-⟶ ∈′→∈ ; inverse-of = record { left-inverse-of = left-inverse ; right-inverse-of = right-inverse } } where left-inverse : ∀ {n x}{xs : Vec A n}(p : x ∈ xs) → ∈′→∈ (∈→∈′ p) ≡ p left-inverse {xs = .(_ ∷ _)} here = refl left-inverse {xs = .(_ ∷ _)} (there p) = cong there (left-inverse p) right-inverse : ∀ {n x}{xs : Vec A n}(p : x ∈′ xs) → ∈→∈′ (∈′→∈ p) ≡ p right-inverse {xs = .(_ ∷ _)} (here refl) = refl right-inverse {xs = .(_ ∷ _)} (there p) = cong there (right-inverse p) ∈′→∈-there : ∀ {n x}{xs : Vec A n}(x∈′xs : x ∈′ xs) → ∈′→∈ (there {x = x} x∈′xs) ≡ there (∈′→∈ x∈′xs) ∈′→∈-there (here refl) = refl ∈′→∈-there (there p) rewrite ∈′→∈-there p = refl lose′ : ∀ {p}{P : A → Set p} {n x} {xs : Vec A n} → x ∈′ xs → P x → Any P xs lose′ {P = P} = M.lose′ (subst P) open import Function.Related as Related public using (Kind; Symmetric-kind) renaming (implication to subset ; reverse-implication to superset ; equivalence to set ; injection to subbag ; reverse-injection to superbag ; bijection to bag) infix 4 _∼[_]_ _∼[_]_ : ∀ {a m n}{A : Set a} → Vec A m → Kind → Vec A n → Set _ xs ∼[ k ] ys = ∀ {x} → (x ∈′ xs) Related.∼[ k ] (x ∈′ ys) bag-=⇒ : ∀ {k a m n} {A : Set a} {xs : Vec A m} {ys : Vec A n} → xs ∼[ bag ] ys → xs ∼[ k ] ys bag-=⇒ xs≈ys = ↔⇒ xs≈ys
{ "alphanum_fraction": 0.4707766213, "avg_line_length": 39.6507936508, "ext": "agda", "hexsha": "da4281e3da7c850bb96c570782d7cab88f1cb8ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tizmd/agda-vector-any", "max_forks_repo_path": "src/Data/Vec/Any/Membership/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tizmd/agda-vector-any", "max_issues_repo_path": "src/Data/Vec/Any/Membership/Propositional.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tizmd/agda-vector-any", "max_stars_repo_path": "src/Data/Vec/Any/Membership/Propositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 939, "size": 2498 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Lex.NonStrict directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Lex.NonStrict where open import Data.List.Relation.Binary.Lex.NonStrict public
{ "alphanum_fraction": 0.4891566265, "avg_line_length": 31.9230769231, "ext": "agda", "hexsha": "e59f2b75d1bd53b7a3716174c2167c71ed28917e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Lex/NonStrict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Lex/NonStrict.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Lex/NonStrict.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 66, "size": 415 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed monads ------------------------------------------------------------------------ -- Note that currently the monad laws are not included here. {-# OPTIONS --without-K --safe #-} module Category.Monad.Indexed where open import Category.Applicative.Indexed open import Function open import Level record RawIMonad {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where infixl 1 _>>=_ _>>_ _>=>_ infixr 1 _=<<_ _<=<_ field return : ∀ {i A} → A → M i i A _>>=_ : ∀ {i j k A B} → M i j A → (A → M j k B) → M i k B _>>_ : ∀ {i j k A B} → M i j A → M j k B → M i k B m₁ >> m₂ = m₁ >>= λ _ → m₂ _=<<_ : ∀ {i j k A B} → (A → M j k B) → M i j A → M i k B f =<< c = c >>= f _>=>_ : ∀ {i j k a} {A : Set a} {B C} → (A → M i j B) → (B → M j k C) → (A → M i k C) f >=> g = _=<<_ g ∘ f _<=<_ : ∀ {i j k B C a} {A : Set a} → (B → M j k C) → (A → M i j B) → (A → M i k C) g <=< f = f >=> g join : ∀ {i j k A} → M i j (M j k A) → M i k A join m = m >>= id rawIApplicative : RawIApplicative M rawIApplicative = record { pure = return ; _⊛_ = λ f x → f >>= λ f' → x >>= λ x' → return (f' x') } open RawIApplicative rawIApplicative public RawIMonadT : ∀ {i f} {I : Set i} (T : IFun I f → IFun I f) → Set (i ⊔ suc f) RawIMonadT T = ∀ {M} → RawIMonad M → RawIMonad (T M) record RawIMonadZero {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M applicativeZero : RawIApplicativeZero M open RawIMonad monad public open RawIApplicativeZero applicativeZero using (∅) public record RawIMonadPlus {i f} {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where field monad : RawIMonad M alternative : RawIAlternative M open RawIMonad monad public open RawIAlternative alternative using (∅; _∣_) public monadZero : RawIMonadZero M monadZero = record { monad = monad ; applicativeZero = RawIAlternative.applicativeZero alternative }
{ "alphanum_fraction": 0.4997688396, "avg_line_length": 28.0909090909, "ext": "agda", "hexsha": "3b9b12829ef3a2fbad1268282f739f0141365c78", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Indexed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Indexed.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/Indexed.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 779, "size": 2163 }
module Logic.Operations where import Logic.Relations as Rel import Logic.Equivalence as Eq open Eq using (Equivalence; module Equivalence) BinOp : Set -> Set BinOp A = A -> A -> A module MonoEq {A : Set}(Eq : Equivalence A) where module EqEq = Equivalence Eq open EqEq Commutative : BinOp A -> Set Commutative _+_ = (x y : A) -> (x + y) == (y + x) Associative : BinOp A -> Set Associative _+_ = (x y z : A) -> (x + (y + z)) == ((x + y) + z) LeftIdentity : A -> BinOp A -> Set LeftIdentity z _+_ = (x : A) -> (z + x) == x RightIdentity : A -> BinOp A -> Set RightIdentity z _+_ = (x : A) -> (x + z) == x module Param where Commutative : {A : Set}(Eq : Equivalence A) -> BinOp A -> Set Commutative Eq = Op.Commutative where module Op = MonoEq Eq Associative : {A : Set}(Eq : Equivalence A) -> BinOp A -> Set Associative Eq = Op.Associative where module Op = MonoEq Eq LeftIdentity : {A : Set}(Eq : Equivalence A) -> A -> BinOp A -> Set LeftIdentity Eq = Op.LeftIdentity where module Op = MonoEq Eq RightIdentity : {A : Set}(Eq : Equivalence A) -> A -> BinOp A -> Set RightIdentity Eq = Op.RightIdentity where module Op = MonoEq Eq
{ "alphanum_fraction": 0.6170568562, "avg_line_length": 26, "ext": "agda", "hexsha": "8671cbfdeeb8c0abf148e60094aa6bcf1108f7de", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Operations.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Operations.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Logic/Operations.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 395, "size": 1196 }
module _ (A : Set) (Sing : A → Set) (F : (a : A) → Sing a → Set) where test : {a : A} → Sing a → Set test s = F {!!} s -- WAS: C-c C-s inserts a, which produces a scope error -- Instead, it should insert _
{ "alphanum_fraction": 0.5625, "avg_line_length": 26, "ext": "agda", "hexsha": "069eae8cbf9a15a8634833ffa63c90b09e571278", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1073.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1073.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1073.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 74, "size": 208 }
{-# OPTIONS --cubical --no-import-sorts #-} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Function.Base using (_∋_) open import MorePropAlgebra.Bundles import Cubical.Algebra.AbGroup as Std module MorePropAlgebra.Properties.AbGroup {ℓ} (assumptions : AbGroup {ℓ}) where open AbGroup assumptions renaming (Carrier to G) import MorePropAlgebra.Properties.Group module Group'Properties = MorePropAlgebra.Properties.Group (record { AbGroup assumptions }) module Group' = Group (record { AbGroup assumptions }) ( Group') = Group ∋ (record { AbGroup assumptions }) stdIsAbGroup : Std.IsAbGroup 0g _+_ (-_) stdIsAbGroup .Std.IsAbGroup.isGroup = Group'Properties.stdIsGroup stdIsAbGroup .Std.IsAbGroup.comm = is-comm stdAbGroup : Std.AbGroup {ℓ} stdAbGroup = record { AbGroup assumptions ; isAbGroup = stdIsAbGroup }
{ "alphanum_fraction": 0.7009443861, "avg_line_length": 41.4347826087, "ext": "agda", "hexsha": "38ff777486a62f4f78f59eccb6a579ed3fb676a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/MorePropAlgebra/Properties/AbGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/MorePropAlgebra/Properties/AbGroup.agda", "max_line_length": 93, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/MorePropAlgebra/Properties/AbGroup.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 248, "size": 953 }
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module ODC {n : Level } (O : Ordinals {n} ) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core import OrdUtil open import logic open import nat import OD import ODUtil open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom open ODUtil O open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open HOD open _∧_ postulate -- mimimul and x∋minimal is an Axiom of choice minimal : (x : HOD ) → ¬ (x =h= od∅ )→ HOD -- this should be ¬ (x =h= od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( & ( minimal x ne ) ) -- minimality (may proved by ε-induction with LEM) minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) ) -- -- Axiom of choice in intutionistic logic implies the exclude middle -- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog -- pred-od : ( p : Set n ) → HOD pred-od p = record { od = record { def = λ x → (x ≡ o∅) ∧ p } ; odmax = osuc o∅; <odmax = λ x → subst (λ k → k o< osuc o∅) (sym (proj1 x)) <-osuc } ppp : { p : Set n } { a : HOD } → pred-od p ∋ a → p ppp {p} {a} d = proj2 d p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice p∨¬p p with is-o∅ ( & (pred-od p )) p∨¬p p | yes eq = case2 (¬p eq) where ps = pred-od p eqo∅ : ps =h= od∅ → & ps ≡ o∅ eqo∅ eq = subst (λ k → & ps ≡ k) ord-od∅ ( cong (λ k → & k ) (==→o≡ eq)) lemma : ps =h= od∅ → p → ⊥ lemma eq p0 = ¬x<0 {& ps} (eq→ eq record { proj1 = eqo∅ eq ; proj2 = p0 } ) ¬p : (& ps ≡ o∅) → p → ⊥ ¬p eq = lemma ( subst₂ (λ j k → j =h= k ) *iso o∅≡od∅ ( o≡→== eq )) p∨¬p p | no ¬p = case1 (ppp {p} {minimal ps (λ eq → ¬p (eqo∅ eq))} lemma) where ps = pred-od p eqo∅ : ps =h= od∅ → & ps ≡ o∅ eqo∅ eq = subst (λ k → & ps ≡ k) ord-od∅ ( cong (λ k → & k ) (==→o≡ eq)) lemma : ps ∋ minimal ps (λ eq → ¬p (eqo∅ eq)) lemma = x∋minimal ps (λ eq → ¬p (eqo∅ eq)) decp : ( p : Set n ) → Dec p -- assuming axiom of choice decp p with p∨¬p p decp p | case1 x = yes x decp p | case2 x = no x ∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x ) -- LEM ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no (λ x → t x) double-neg-eilm : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic double-neg-eilm {A} notnot with decp A -- assuming axiom of choice ... | yes p = p ... | no ¬p = ⊥-elim ( notnot ¬p ) open _⊆_ power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t = record { incl = λ {x} t∋x → double-neg-eilm (t1 t∋x) } where t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x) t1 = power→ A t PA∋t OrdP : ( x : Ordinal ) ( y : HOD ) → Dec ( Ord x ∋ y ) OrdP x y with trio< x (& y) OrdP x y | tri< a ¬b ¬c = no ¬c OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) OrdP x y | tri> ¬a ¬b c = yes c open import zfc HOD→ZFC : ZFC HOD→ZFC = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (HOD ) _∋_ _=h=_ od∅ Select isZFC = record { choice-func = choice-func ; choice = choice } where -- Axiom of choice ( is equivalent to the existence of minimal in our case ) -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] choice-func : (X : HOD ) → {x : HOD } → ¬ ( x =h= od∅ ) → ( X ∋ x ) → HOD choice-func X {x} not X∋x = minimal x not choice : (X : HOD ) → {A : HOD } → ( X∋A : X ∋ A ) → (not : ¬ ( A =h= od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimal A not
{ "alphanum_fraction": 0.5202241715, "avg_line_length": 31.8139534884, "ext": "agda", "hexsha": "ad23cf4a1a6d78fc5f551cebc29ed928a4436bcc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/zf-in-agda", "max_forks_repo_path": "src/ODC.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/zf-in-agda", "max_issues_repo_path": "src/ODC.agda", "max_line_length": 116, "max_stars_count": 5, "max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/zf-in-agda", "max_stars_repo_path": "src/ODC.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z", "num_tokens": 1754, "size": 4104 }
-- Raw terms, weakening (renaming) and substitution. {-# OPTIONS --without-K --safe #-} module Definition.Untyped where open import Tools.Nat open import Tools.Product open import Tools.List import Tools.PropositionalEquality as PE infixl 30 _∙_ infix 30 Π_▹_ infixr 22 _▹▹_ infixl 30 _ₛ•ₛ_ _•ₛ_ _ₛ•_ infix 25 _[_] infix 25 _[_]↑ -- Typing contexts (snoc-lists, isomorphic to lists). data Con (A : Set) : Set where ε : Con A -- Empty context. _∙_ : Con A → A → Con A -- Context extension. record GenT (A : Set) : Set where inductive constructor ⟦_,_⟧ field l : Nat t : A data Kind : Set where Ukind : Kind Pikind : Kind Natkind : Kind Lamkind : Kind Appkind : Kind Zerokind : Kind Suckind : Kind Natreckind : Kind data Term : Set where var : (x : Nat) → Term gen : (k : Kind) (c : List (GenT Term)) → Term -- The Grammar of our language. -- We represent the expressions of our language as de Bruijn terms. -- Variables are natural numbers interpreted as de Bruijn indices. -- Π, lam, and natrec are binders. -- Type constructors. U : Term -- Universe. U = gen Ukind [] pattern Univ u = gen (Ukind u) [] Π_▹_ : (A B : Term) → Term -- Dependent function type (B is a binder). Π A ▹ B = gen Pikind (⟦ 0 , A ⟧ ∷ ⟦ 1 , B ⟧ ∷ []) ℕ : Term -- Type of natural numbers. ℕ = gen Natkind [] -- Lambda-calculus. -- var : (x : Nat) → Term -- Variable (de Bruijn index). -- var = var lam : (t : Term) → Term -- Function abstraction (binder). lam t = gen Lamkind (⟦ 1 , t ⟧ ∷ []) _∘_ : (t u : Term) → Term -- Application. t ∘ u = gen Appkind (⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ []) -- Introduction and elimination of natural numbers. zero : Term -- Natural number zero. zero = gen Zerokind [] suc : (t : Term) → Term -- Successor. suc t = gen Suckind (⟦ 0 , t ⟧ ∷ []) natrec : (A t u v : Term) → Term -- Recursor (A is a binder). natrec A t u v = gen Natreckind (⟦ 1 , A ⟧ ∷ ⟦ 0 , t ⟧ ∷ ⟦ 0 , u ⟧ ∷ ⟦ 0 , v ⟧ ∷ []) -- Injectivity of term constructors w.r.t. propositional equality. -- If Π F G = Π H E then F = H and G = E. Π-PE-injectivity : ∀ {F G H E} → Π F ▹ G PE.≡ Π H ▹ E → F PE.≡ H × G PE.≡ E Π-PE-injectivity PE.refl = PE.refl , PE.refl -- If suc n = suc m then n = m. suc-PE-injectivity : ∀ {n m} → suc n PE.≡ suc m → n PE.≡ m suc-PE-injectivity PE.refl = PE.refl -- Neutral terms. -- A term is neutral if it has a variable in head position. -- The variable blocks reduction of such terms. data Neutral : Term → Set where var : ∀ n → Neutral (var n) ∘ₙ : ∀ {k u} → Neutral k → Neutral (k ∘ u) natrecₙ : ∀ {C c g k} → Neutral k → Neutral (natrec C c g k) -- Weak head normal forms (whnfs). -- These are the (lazy) values of our language. data Whnf : Term → Set where -- Type constructors are whnfs. Uₙ : Whnf U Πₙ : ∀ {A B} → Whnf (Π A ▹ B) ℕₙ : Whnf ℕ -- Introductions are whnfs. lamₙ : ∀ {t} → Whnf (lam t) zeroₙ : Whnf zero sucₙ : ∀ {t} → Whnf (suc t) -- Neutrals are whnfs. ne : ∀ {n} → Neutral n → Whnf n -- Whnf inequalities. -- Different whnfs are trivially distinguished by propositional equality. -- (The following statements are sometimes called "no-confusion theorems".) U≢ℕ : U PE.≢ ℕ U≢ℕ () U≢Π : ∀ {F G} → U PE.≢ Π F ▹ G U≢Π () U≢ne : ∀ {K} → Neutral K → U PE.≢ K U≢ne () PE.refl ℕ≢Π : ∀ {F G} → ℕ PE.≢ Π F ▹ G ℕ≢Π () ℕ≢ne : ∀ {K} → Neutral K → ℕ PE.≢ K ℕ≢ne () PE.refl Π≢ne : ∀ {F G K} → Neutral K → Π F ▹ G PE.≢ K Π≢ne () PE.refl zero≢suc : ∀ {n} → zero PE.≢ suc n zero≢suc () zero≢ne : ∀ {k} → Neutral k → zero PE.≢ k zero≢ne () PE.refl suc≢ne : ∀ {n k} → Neutral k → suc n PE.≢ k suc≢ne () PE.refl -- Several views on whnfs (note: not recursive). -- A whnf of type ℕ is either zero, suc t, or neutral. data Natural : Term → Set where zeroₙ : Natural zero sucₙ : ∀ {t} → Natural (suc t) ne : ∀ {n} → Neutral n → Natural n -- A (small) type in whnf is either Π A B, ℕ, or neutral. -- Large types could also be U. data Type : Term → Set where Πₙ : ∀ {A B} → Type (Π A ▹ B) ℕₙ : Type ℕ ne : ∀{n} → Neutral n → Type n -- A whnf of type Π A B is either lam t or neutral. data Function : Term → Set where lamₙ : ∀{t} → Function (lam t) ne : ∀{n} → Neutral n → Function n -- These views classify only whnfs. -- Natural, Type, and Function are a subsets of Whnf. naturalWhnf : ∀ {n} → Natural n → Whnf n naturalWhnf sucₙ = sucₙ naturalWhnf zeroₙ = zeroₙ naturalWhnf (ne x) = ne x typeWhnf : ∀ {A} → Type A → Whnf A typeWhnf Πₙ = Πₙ typeWhnf ℕₙ = ℕₙ typeWhnf (ne x) = ne x functionWhnf : ∀ {f} → Function f → Whnf f functionWhnf lamₙ = lamₙ functionWhnf (ne x) = ne x ------------------------------------------------------------------------ -- Weakening -- In the following we define untyped weakenings η : Wk. -- The typed form could be written η : Γ ≤ Δ with the intention -- that η transport a term t living in context Δ to a context Γ -- that can bind additional variables (which cannot appear in t). -- Thus, if Δ ⊢ t : A and η : Γ ≤ Δ then Γ ⊢ wk η t : wk η A. -- -- Even though Γ is "larger" than Δ we write Γ ≤ Δ to be conformant -- with subtyping A ≤ B. With subtyping, relation Γ ≤ Δ could be defined as -- ``for all x ∈ dom(Δ) have Γ(x) ≤ Δ(x)'' (in the sense of subtyping) -- and this would be the natural extension of weakenings. data Wk : Set where id : Wk -- η : Γ ≤ Γ. step : Wk → Wk -- If η : Γ ≤ Δ then step η : Γ∙A ≤ Δ. lift : Wk → Wk -- If η : Γ ≤ Δ then lift η : Γ∙A ≤ Δ∙A. -- Composition of weakening. -- If η : Γ ≤ Δ and η′ : Δ ≤ Φ then η • η′ : Γ ≤ Φ. infixl 30 _•_ _•_ : Wk → Wk → Wk id • η′ = η′ step η • η′ = step (η • η′) lift η • id = lift η lift η • step η′ = step (η • η′) lift η • lift η′ = lift (η • η′) repeat : {A : Set} → (A → A) → A → Nat → A repeat f a 0 = a repeat f a (1+ n) = f (repeat f a n) -- Weakening of variables. -- If η : Γ ≤ Δ and x ∈ dom(Δ) then wkVar ρ x ∈ dom(Γ). wkVar : (ρ : Wk) (n : Nat) → Nat wkVar id n = n wkVar (step ρ) n = 1+ (wkVar ρ n) wkVar (lift ρ) 0 = 0 wkVar (lift ρ) (1+ n) = 1+ (wkVar ρ n) -- Weakening of terms. -- If η : Γ ≤ Δ and Δ ⊢ t : A then Γ ⊢ wk η t : wk η A. mutual wkGen : (ρ : Wk) (g : List (GenT Term)) → List (GenT Term) wkGen ρ [] = [] wkGen ρ (⟦ l , t ⟧ ∷ g) = ⟦ l , (wk (repeat lift ρ l) t) ⟧ ∷ wkGen ρ g wk : (ρ : Wk) (t : Term) → Term wk ρ (var x) = var (wkVar ρ x) wk ρ (gen x c) = gen x (wkGen ρ c) -- Adding one variable to the context requires wk1. -- If Γ ⊢ t : B then Γ∙A ⊢ wk1 t : wk1 B. wk1 : Term → Term wk1 = wk (step id) -- Weakening of a neutral term. wkNeutral : ∀ {t} ρ → Neutral t → Neutral (wk ρ t) wkNeutral ρ (var n) = var (wkVar ρ n) wkNeutral ρ (∘ₙ n) = ∘ₙ (wkNeutral ρ n) wkNeutral ρ (natrecₙ n) = natrecₙ (wkNeutral ρ n) -- Weakening can be applied to our whnf views. wkNatural : ∀ {t} ρ → Natural t → Natural (wk ρ t) wkNatural ρ sucₙ = sucₙ wkNatural ρ zeroₙ = zeroₙ wkNatural ρ (ne x) = ne (wkNeutral ρ x) wkType : ∀ {t} ρ → Type t → Type (wk ρ t) wkType ρ Πₙ = Πₙ wkType ρ ℕₙ = ℕₙ wkType ρ (ne x) = ne (wkNeutral ρ x) wkFunction : ∀ {t} ρ → Function t → Function (wk ρ t) wkFunction ρ lamₙ = lamₙ wkFunction ρ (ne x) = ne (wkNeutral ρ x) wkWhnf : ∀ {t} ρ → Whnf t → Whnf (wk ρ t) wkWhnf ρ Uₙ = Uₙ wkWhnf ρ Πₙ = Πₙ wkWhnf ρ ℕₙ = ℕₙ wkWhnf ρ lamₙ = lamₙ wkWhnf ρ zeroₙ = zeroₙ wkWhnf ρ sucₙ = sucₙ wkWhnf ρ (ne x) = ne (wkNeutral ρ x) -- Non-dependent version of Π. _▹▹_ : Term → Term → Term A ▹▹ B = Π A ▹ wk1 B ------------------------------------------------------------------------ -- Substitution -- The substitution operation subst σ t replaces the free de Bruijn indices -- of term t by chosen terms as specified by σ. -- The substitution σ itself is a map from natural numbers to terms. Subst : Set Subst = Nat → Term -- Given closed contexts ⊢ Γ and ⊢ Δ, -- substitutions may be typed via Γ ⊢ σ : Δ meaning that -- Γ ⊢ σ(x) : (subst σ Δ)(x) for all x ∈ dom(Δ). -- -- The substitution operation is then typed as follows: -- If Γ ⊢ σ : Δ and Δ ⊢ t : A, then Γ ⊢ subst σ t : subst σ A. -- -- Although substitutions are untyped, typing helps us -- to understand the operation on substitutions. -- We may view σ as the infinite stream σ 0, σ 1, ... -- Extract the substitution of the first variable. -- -- If Γ ⊢ σ : Δ∙A then Γ ⊢ head σ : subst σ A. head : Subst → Term head σ = σ 0 -- Remove the first variable instance of a substitution -- and shift the rest to accommodate. -- -- If Γ ⊢ σ : Δ∙A then Γ ⊢ tail σ : Δ. tail : Subst → Subst tail σ n = σ (1+ n) -- Substitution of a variable. -- -- If Γ ⊢ σ : Δ then Γ ⊢ substVar σ x : (subst σ Δ)(x). substVar : (σ : Subst) (x : Nat) → Term substVar σ x = σ x -- Identity substitution. -- Replaces each variable by itself. -- -- Γ ⊢ idSubst : Γ. idSubst : Subst idSubst = var -- Weaken a substitution by one. -- -- If Γ ⊢ σ : Δ then Γ∙A ⊢ wk1Subst σ : Δ. wk1Subst : Subst → Subst wk1Subst σ x = wk1 (σ x) -- Lift a substitution. -- -- If Γ ⊢ σ : Δ then Γ∙A ⊢ liftSubst σ : Δ∙A. liftSubst : (σ : Subst) → Subst liftSubst σ 0 = var 0 liftSubst σ (1+ x) = wk1Subst σ x -- Transform a weakening into a substitution. -- -- If ρ : Γ ≤ Δ then Γ ⊢ toSubst ρ : Δ. toSubst : Wk → Subst toSubst pr x = var (wkVar pr x) -- Apply a substitution to a term. -- -- If Γ ⊢ σ : Δ and Δ ⊢ t : A then Γ ⊢ subst σ t : subst σ A. mutual substGen : (σ : Subst) (g : List (GenT Term)) → List (GenT Term) substGen σ [] = [] substGen σ (⟦ l , t ⟧ ∷ g) = ⟦ l , (subst (repeat liftSubst σ l) t) ⟧ ∷ substGen σ g subst : (σ : Subst) (t : Term) → Term subst σ (var x) = substVar σ x subst σ (gen x c) = gen x (substGen σ c) -- Extend a substitution by adding a term as -- the first variable substitution and shift the rest. -- -- If Γ ⊢ σ : Δ and Γ ⊢ t : subst σ A then Γ ⊢ consSubst σ t : Δ∙A. consSubst : Subst → Term → Subst consSubst σ t 0 = t consSubst σ t (1+ n) = σ n -- Singleton substitution. -- -- If Γ ⊢ t : A then Γ ⊢ sgSubst t : Γ∙A. sgSubst : Term → Subst sgSubst = consSubst idSubst -- Compose two substitutions. -- -- If Γ ⊢ σ : Δ and Δ ⊢ σ′ : Φ then Γ ⊢ σ ₛ•ₛ σ′ : Φ. _ₛ•ₛ_ : Subst → Subst → Subst _ₛ•ₛ_ σ σ′ x = subst σ (σ′ x) -- Composition of weakening and substitution. -- -- If ρ : Γ ≤ Δ and Δ ⊢ σ : Φ then Γ ⊢ ρ •ₛ σ : Φ. _•ₛ_ : Wk → Subst → Subst _•ₛ_ ρ σ x = wk ρ (σ x) -- If Γ ⊢ σ : Δ and ρ : Δ ≤ Φ then Γ ⊢ σ ₛ• ρ : Φ. _ₛ•_ : Subst → Wk → Subst _ₛ•_ σ ρ x = σ (wkVar ρ x) -- Substitute the first variable of a term with an other term. -- -- If Γ∙A ⊢ t : B and Γ ⊢ s : A then Γ ⊢ t[s] : B[s]. _[_] : (t : Term) (s : Term) → Term t [ s ] = subst (sgSubst s) t -- Substitute the first variable of a term with an other term, -- but let the two terms share the same context. -- -- If Γ∙A ⊢ t : B and Γ∙A ⊢ s : A then Γ∙A ⊢ t[s]↑ : B[s]↑. _[_]↑ : (t : Term) (s : Term) → Term t [ s ]↑ = subst (consSubst (wk1Subst idSubst) s) t
{ "alphanum_fraction": 0.5712753597, "avg_line_length": 25.4874715262, "ext": "agda", "hexsha": "f499e9b5aea49e72bafa625c21d74567c2f2c3ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Untyped.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Untyped.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Untyped.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4329, "size": 11189 }
module Productive where open import Stream open import Size open import Data.Maybe open import Data.Product open import Relation.Binary.PropositionalEquality as P PStream : Set → Set PStream A = Stream (Maybe A) mutual record Productive {A : Set} (s : PStream A) : Set where coinductive field step : EventualOutput s data EventualOutput {A : Set} (s : PStream A) : Set where here : (a : A) → s .hd ≡ just a → Productive (s .tl) → EventualOutput s there : s .hd ≡ nothing → EventualOutput (s .tl) → EventualOutput s open Productive public ProdStr : Set → Set ProdStr A = Σ[ s ∈ PStream A ] (Productive s) injS : {A : Set} → Stream A → ProdStr A injS {A} s = (toPStream s , prod s) where toPStream : Stream {∞} A → PStream A toPStream s .hd = just (s .hd) toPStream s .tl = toPStream (s .tl) prod : (s : Stream A) → Productive (toPStream s) prod s .step = here (s .hd) refl (prod (s .tl)) extract : {A : Set} → ProdStr A → Stream A extract (s , p) = extr s p where extr : {A : Set} → (s : PStream A) → Productive s → Stream A extrμ : {A : Set} → (s : PStream A) → EventualOutput s → Stream A extr {A} s p = extrμ s (p .step) extrμ {A} s (here a q p') .hd = a extrμ {A} s (here a q p') .tl = extr (s .tl) p' extrμ {A} s (there x p') = extrμ (s .tl) p' zipS : ∀{A} → ProdStr A → ProdStr A → ProdStr A zipS {A} (s , p) (t , q) = (z s t , pz p q) where z : PStream A → PStream A → PStream A cz : Maybe A → PStream A → PStream A → PStream A z s t = cz (s .hd) (s .tl) t cz (just a) s' t .hd = just a cz (just a) s' t .tl = z t s' cz nothing s' t .hd = nothing cz nothing s' t .tl = cz (s' .hd) (s' .tl) t pz : {s t : PStream A} → Productive s → Productive t → Productive (z s t) pcz : {s t : PStream A} → Productive s → Productive t → Productive (cz (s .hd) (s .tl) t) pczE : {s t : PStream A} → EventualOutput s → Productive t → EventualOutput (cz (s .hd) (s .tl) t) pz p q = pcz p q pcz p q .step = pczE (p .step) q pczE {s} (here a s₀≡a p') q with s .hd pczE {s} (here .a refl p') q | just a = here a refl (pz q p') pczE {s} (here a () p') q | nothing pczE {s} (there s₀≡∗ p') q with s .hd pczE {s} (there () p') q | just a pczE {s} (there refl p') q | nothing = there refl (pczE p' q)
{ "alphanum_fraction": 0.5619285121, "avg_line_length": 31.2467532468, "ext": "agda", "hexsha": "7aa93d60b01051e67de96db06f99e27e0f264a3c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Streams/Productive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Streams/Productive.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Streams/Productive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 923, "size": 2406 }
{-# OPTIONS --without-K --safe #-} module Relation.Ternary.Separation.Construct.Product where open import Level open import Data.Product open import Relation.Unary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Ternary.Separation open import Data.Product.Relation.Binary.Pointwise.NonDependent module _ {ℓ₁ ℓ₂} {C₁ : Set ℓ₁} {C₂ : Set ℓ₂} where _×-⊎_ : RawSep C₁ → RawSep C₂ → RawSep (C₁ × C₂) R₁ ×-⊎ R₂ = let module R₁ = RawSep R₁ module R₂ = RawSep R₂ in record { _⊎_≣_ = λ Φ₁ Φ₂ Φ → (proj₁ Φ₁) R₁.⊎ (proj₁ Φ₂) ≣ proj₁ Φ × (proj₂ Φ₁) R₂.⊎ (proj₂ Φ₂) ≣ proj₂ Φ } instance ×-rawsep : ⦃ _ : RawSep C₁ ⦄ ⦃ _ : RawSep C₂ ⦄ → RawSep (C₁ × C₂) ×-rawsep ⦃ R₁ ⦄ ⦃ R₂ ⦄ = R₁ ×-⊎ R₂ module _ {ℓ₁ ℓ₂} {C₁ : Set ℓ₁} {C₂ : Set ℓ₂} {{R₁ : RawSep C₁}} {{R₂ : RawSep C₂}} ⦃ s₁ : IsSep R₁ ⦄ ⦃ s₂ : IsSep R₂ ⦄ where instance ×-isSep : IsSep (R₁ ×-⊎ R₂) ×-isSep = record { ⊎-comm = λ where (l , r) → ⊎-comm l , ⊎-comm r ; ⊎-assoc = λ where (l₁ , r₁) (l₂ , r₂) → let _ , l₃ , l₄ = ⊎-assoc l₁ l₂ _ , r₃ , r₄ = ⊎-assoc r₁ r₂ in -, (l₃ , r₃) , l₄ , r₄ } module _ {ℓ₁ ℓ₂} {C₁ : Set ℓ₁} {C₂ : Set ℓ₂} {{R₁ : RawSep C₁}} {{R₂ : RawSep C₂}} {u₁ u₂} ⦃ s₁ : IsUnitalSep R₁ u₁ ⦄ ⦃ s₂ : IsUnitalSep R₂ u₂ ⦄ where instance ×-isUnitalSep : IsUnitalSep ×-rawsep (u₁ , u₂) ×-isUnitalSep = record { isSep = ×-isSep ; ⊎-idˡ = ⊎-idˡ , ⊎-idˡ ; ⊎-id⁻ˡ = λ where (fst , snd) → cong₂ _,_ (⊎-id⁻ˡ fst) (⊎-id⁻ˡ snd) } instance _×-ε-separation_ : UnitalSep _ _×-ε-separation_ = record { isUnitalSep = ×-isUnitalSep } module _ {ℓ₁ ℓ₂} ⦃ s₁ : Separation ℓ₁ ⦄ ⦃ s₂ : Separation ℓ₂ ⦄ where private module S₁ = Separation s₁ module S₂ = Separation s₂ ×-separation : Separation _ ×-separation = record { isSep = ×-isSep {{ _ }} {{ _ }} ⦃ Separation.isSep s₁ ⦄ ⦃ Separation.isSep s₂ ⦄ } module _ {ℓ₁ ℓ₂} {C₁ : Set ℓ₁} {C₂ : Set ℓ₂} ⦃ sep₁ : RawSep C₁ ⦄ ⦃ sep₂ : RawSep C₂ ⦄ ⦃ s₁ : IsConcattative sep₁ ⦄ ⦃ s₂ : IsConcattative sep₂ ⦄ where private module S₁ = IsConcattative s₁ module S₂ = IsConcattative s₂ instance ×-concat : IsConcattative ×-rawsep ×-concat = record { _∙_ = (λ where (a , b) (c , d) → (a S₁.∙ c , b S₂.∙ d)) ; ⊎-∙ₗ = λ where (p , q) → ⊎-∙ₗ p , ⊎-∙ₗ q } {- Some useful type-formers for this instance -} module _ {ℓ} {A : Set ℓ} {{ r : RawSep A }} {u} {{s : IsUnitalSep r u}} where data Π₁ {p} (P : Pred A p) : Pred (A × A) (ℓ ⊔ p) where fst : ∀ {a} → P a → Π₁ P (a , ε) data Π₂ {p} (P : Pred A p) : Pred (A × A) (ℓ ⊔ p) where snd : ∀ {a} → P a → Π₂ P (ε , a)
{ "alphanum_fraction": 0.5562913907, "avg_line_length": 27.18, "ext": "agda", "hexsha": "549bdcdf61e2d87d3bcce41d7aa99e2e1730c911", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Construct/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Construct/Product.agda", "max_line_length": 87, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Construct/Product.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 1291, "size": 2718 }
module syntax-util where open import cedille-types open import general-util open import constants open import json posinfo-gen : posinfo posinfo-gen = "generated" pi-gen = posinfo-gen first-position : posinfo first-position = "1" dummy-var : var dummy-var = "_dummy" id-term : term id-term = Lam ff "x" nothing (Var "x") tt-term = Lam ff "t" nothing (Lam ff "f" nothing (Var "t")) ff-term = Lam ff "t" nothing (Lam ff "f" nothing (Var "f")) compileFailType : type compileFailType = TpAbs tt "X" (Tkk KdStar) (TpVar "X") qualif-info : Set qualif-info = var × args qualif : Set qualif = trie qualif-info tag : Set tag = string × json tagged-val : Set tagged-val = string × rope × 𝕃 tag tags-to-json : 𝕃 tag → 𝕃 json tags-to-json [] = [] tags-to-json ts = [ json-object ts ] tagged-val-to-json : tagged-val → string × json tagged-val-to-json (t , v , tags) = t , json-array (json-rope v :: tags-to-json tags) tagged-vals-to-json : 𝕃 tagged-val → json tagged-vals-to-json = json-object ∘ map tagged-val-to-json make-tag : (name : string) → (values : 𝕃 tag) → (start : ℕ) → (end : ℕ) → tag make-tag name vs start end = name , json-object (("start" , json-nat start) :: ("end" , json-nat end) :: vs) posinfo-to-ℕ : posinfo → ℕ posinfo-to-ℕ pi with string-to-ℕ pi posinfo-to-ℕ pi | just n = n posinfo-to-ℕ pi | nothing = 0 -- should not happen posinfo-plus : posinfo → ℕ → posinfo posinfo-plus pi n = ℕ-to-string (posinfo-to-ℕ pi + n) posinfo-plus-str : posinfo → string → posinfo posinfo-plus-str pi s = posinfo-plus pi (string-length s) -- qualify variable by module name _#_ : string → string → string fn # v = fn ^ qual-global-str ^ v _%_ : posinfo → var → string pi % v = pi ^ qual-local-str ^ v compileFail : var compileFail = "compileFail" compileFail-qual = "" % compileFail tk-is-type : tpkd → 𝔹 tk-is-type = either-else (const tt) (const ff) tT-is-term : tmtp → 𝔹 tT-is-term = either-else (const tt) (const ff) tk-start-pos : ex-tk → posinfo term-start-pos : ex-tm → posinfo type-start-pos : ex-tp → posinfo kind-start-pos : ex-kd → posinfo term-start-pos (ExApp t x t₁) = term-start-pos t term-start-pos (ExAppTp t tp) = term-start-pos t term-start-pos (ExHole pi) = pi term-start-pos (ExLam pi x _ x₁ x₂ t) = pi term-start-pos (ExLet pi _ _ _) = pi term-start-pos (ExOpen pi _ _ _ _) = pi term-start-pos (ExParens pi t pi') = pi term-start-pos (ExVar pi x₁) = pi term-start-pos (ExBeta pi _ _) = pi term-start-pos (ExIotaPair pi _ _ _ _) = pi term-start-pos (ExIotaProj t _ _) = term-start-pos t term-start-pos (ExEpsilon pi _ _ _) = pi term-start-pos (ExPhi pi _ _ _ _) = pi term-start-pos (ExRho pi _ _ _ _ _) = pi term-start-pos (ExChi pi _ _) = pi term-start-pos (ExDelta pi _ _) = pi term-start-pos (ExSigma pi _) = pi term-start-pos (ExTheta pi _ _ _) = pi term-start-pos (ExMu pi _ _ _ _ _ _) = pi type-start-pos (ExTpAbs pi _ _ _ _ _) = pi type-start-pos (ExTpLam pi _ _ _ _) = pi type-start-pos (ExTpIota pi _ _ _ _) = pi type-start-pos (ExTpApp t t₁) = type-start-pos t type-start-pos (ExTpAppt t x) = type-start-pos t type-start-pos (ExTpArrow t _ t₁) = type-start-pos t type-start-pos (ExTpEq pi _ _ pi') = pi type-start-pos (ExTpParens pi _ pi') = pi type-start-pos (ExTpVar pi x₁) = pi type-start-pos (ExTpNoSpans t _) = type-start-pos t -- we are not expecting this on input type-start-pos (ExTpHole pi) = pi --ACG type-start-pos (ExTpLet pi _ _) = pi kind-start-pos (ExKdAbs pi _ x x₁ k) = pi kind-start-pos (ExKdArrow atk k₁) = tk-start-pos atk kind-start-pos (ExKdHole pi) = pi kind-start-pos (ExKdParens pi k pi') = pi kind-start-pos (ExKdVar pi x₁ _) = pi kind-start-pos (ExKdStar pi) = pi tk-start-pos (ExTkt t) = type-start-pos t tk-start-pos (ExTkk k) = kind-start-pos k term-end-pos : ex-tm → posinfo type-end-pos : ex-tp → posinfo kind-end-pos : ex-kd → posinfo tk-end-pos : ex-tk → posinfo lterms-end-pos : posinfo → 𝕃 lterm → posinfo args-end-pos : posinfo → ex-args → posinfo arg-end-pos : ex-arg → posinfo kvar-end-pos : posinfo → var → ex-args → posinfo params-end-pos : posinfo → ex-params → posinfo param-end-pos : ex-param → posinfo term-end-pos (ExApp t x t') = term-end-pos t' term-end-pos (ExAppTp t tp) = type-end-pos tp term-end-pos (ExHole pi) = posinfo-plus pi 1 term-end-pos (ExLam pi x _ x₁ x₂ t) = term-end-pos t term-end-pos (ExLet _ _ _ t) = term-end-pos t term-end-pos (ExOpen pi _ _ _ t) = term-end-pos t term-end-pos (ExParens pi t pi') = pi' term-end-pos (ExVar pi x) = posinfo-plus-str pi x term-end-pos (ExBeta pi _ (just (PosTm t pi'))) = pi' term-end-pos (ExBeta pi (just (PosTm t pi')) nothing) = pi' term-end-pos (ExBeta pi nothing nothing) = posinfo-plus pi 1 term-end-pos (ExIotaPair _ _ _ _ pi) = pi term-end-pos (ExIotaProj _ _ pi) = pi term-end-pos (ExEpsilon pi _ _ t) = term-end-pos t term-end-pos (ExPhi _ _ _ _ pi) = pi term-end-pos (ExRho pi _ _ _ t t') = term-end-pos t' term-end-pos (ExChi pi T t') = term-end-pos t' term-end-pos (ExDelta pi oT t) = term-end-pos t term-end-pos (ExSigma pi t) = term-end-pos t term-end-pos (ExTheta _ _ t ls) = lterms-end-pos (term-end-pos t) ls term-end-pos (ExMu _ _ _ _ _ _ pi) = pi type-end-pos (ExTpAbs pi _ _ _ _ t) = type-end-pos t type-end-pos (ExTpLam _ _ _ _ t) = type-end-pos t type-end-pos (ExTpIota _ _ _ _ tp) = type-end-pos tp type-end-pos (ExTpApp t t') = type-end-pos t' type-end-pos (ExTpAppt t x) = term-end-pos x type-end-pos (ExTpArrow t _ t') = type-end-pos t' type-end-pos (ExTpEq pi _ _ pi') = pi' type-end-pos (ExTpParens pi _ pi') = pi' type-end-pos (ExTpVar pi x) = posinfo-plus-str pi x type-end-pos (ExTpHole pi) = posinfo-plus pi 1 type-end-pos (ExTpNoSpans t pi) = pi type-end-pos (ExTpLet _ _ t) = type-end-pos t kind-end-pos (ExKdAbs pi _ x x₁ k) = kind-end-pos k kind-end-pos (ExKdArrow atk k) = kind-end-pos k kind-end-pos (ExKdHole pi) = posinfo-plus pi 1 kind-end-pos (ExKdParens pi k pi') = pi' kind-end-pos (ExKdVar pi x ys) = args-end-pos (posinfo-plus-str pi x) ys kind-end-pos (ExKdStar pi) = posinfo-plus pi 1 tk-end-pos (ExTkt T) = type-end-pos T tk-end-pos (ExTkk k) = kind-end-pos k args-end-pos pi (x :: ys) = args-end-pos (arg-end-pos x) ys args-end-pos pi [] = pi arg-end-pos (ExTmArg me t) = term-end-pos t arg-end-pos (ExTpArg T) = type-end-pos T kvar-end-pos pi v = args-end-pos (posinfo-plus-str pi v) params-end-pos pi [] = pi params-end-pos pi (p :: ps) = params-end-pos (param-end-pos p) ps param-end-pos (ExParam pi me pi' x atk pi'') = pi'' lterms-end-pos pi [] = pi lterms-end-pos pi (Lterm _ t :: ls) = lterms-end-pos (term-end-pos t) ls {- return the end position of the given term if it is there, otherwise the given posinfo -} optTerm-end-pos : posinfo → maybe pos-tm → posinfo optTerm-end-pos pi nothing = pi optTerm-end-pos pi (just (PosTm x x₁)) = x₁ optTerm-end-pos-beta : posinfo → maybe pos-tm → maybe pos-tm → posinfo optTerm-end-pos-beta pi _ (just (PosTm x pi')) = pi' optTerm-end-pos-beta pi (just (PosTm x pi')) nothing = pi' optTerm-end-pos-beta pi nothing nothing = posinfo-plus pi 1 optAs-or : maybe import-as → posinfo → var → posinfo × var optAs-or nothing pi x = pi , x optAs-or (just (ImportAs pi x)) _ _ = pi , x TpApp-tk : type → var → tpkd → type TpApp-tk tp x (Tkk _) = TpAppTp tp (TpVar x) TpApp-tk tp x (Tkt _) = TpAppTm tp (Var x) -- checking-sythesizing enum data checking-mode : Set where checking : checking-mode synthesizing : checking-mode untyped : checking-mode maybe-to-checking : {A : Set} → maybe A → checking-mode maybe-to-checking (just _) = checking maybe-to-checking nothing = synthesizing eq-checking-mode : (m₁ m₂ : checking-mode) → 𝔹 eq-checking-mode checking checking = tt eq-checking-mode synthesizing synthesizing = tt eq-checking-mode untyped untyped = tt eq-checking-mode _ _ = ff ------------------------------------------------------ -- functions intended for building terms for testing ------------------------------------------------------ mlam : var → term → term mlam x t = Lam ff x nothing t mall : var → tpkd → type → type mall = TpAbs tt mpi : var → tpkd → type → type mpi = TpAbs ff imps-to-cmds : imports → cmds imps-to-cmds = map CmdImport cmds-to-imps : cmds → imports cmds-to-imps [] = [] cmds-to-imps (CmdImport i :: cs) = i :: cmds-to-imps cs cmds-to-imps (_ :: cs) = cmds-to-imps cs ex-cmds-to-imps : ex-cmds → ex-imports ex-cmds-to-imps [] = [] ex-cmds-to-imps (ExCmdImport i :: cs) = i :: ex-cmds-to-imps cs ex-cmds-to-imps (_ :: cs) = ex-cmds-to-imps cs split-var-h : 𝕃 char → 𝕃 char × 𝕃 char split-var-h [] = [] , [] split-var-h (qual-global-chr :: xs) = [] , xs split-var-h (x :: xs) with split-var-h xs ... | xs' , ys = (x :: xs') , ys split-var : var → var × var split-var v with split-var-h (reverse (string-to-𝕃char v)) ... | xs , ys = 𝕃char-to-string (reverse ys) , 𝕃char-to-string (reverse xs) var-suffix : var → maybe var var-suffix v with split-var v ... | "" , _ = nothing ... | _ , sfx = just sfx -- unique qualif domain prefixes qual-pfxs : qualif → 𝕃 var qual-pfxs q = uniq (prefixes (trie-strings q)) where uniq : 𝕃 var → 𝕃 var uniq vs = stringset-strings (stringset-insert* empty-stringset vs) prefixes : 𝕃 var → 𝕃 var prefixes [] = [] prefixes (v :: vs) with split-var v ... | "" , sfx = vs ... | pfx , sfx = pfx :: prefixes vs unqual-prefix : qualif → 𝕃 var → var → var → var unqual-prefix q [] sfx v = v unqual-prefix q (pfx :: pfxs) sfx v with trie-lookup q (pfx # sfx) ... | just (v' , _) = if v =string v' then pfx # sfx else v ... | nothing = v unqual-bare : qualif → var → var → var unqual-bare q sfx v with trie-lookup q sfx ... | just (v' , _) = if v =string v' then sfx else v ... | nothing = v unqual-local : var → var unqual-local v = f' (string-to-𝕃char v) where f : 𝕃 char → maybe (𝕃 char) f [] = nothing f ('@' :: t) = f t maybe-or just t f (h :: t) = f t f' : 𝕃 char → string f' (meta-var-pfx :: t) = maybe-else' (f t) v (𝕃char-to-string ∘ _::_ meta-var-pfx) f' t = maybe-else' (f t) v 𝕃char-to-string unqual-all : qualif → var → string unqual-all q v with var-suffix v ... | nothing = v ... | just sfx = unqual-bare q sfx (unqual-prefix q (qual-pfxs q) sfx v) -- Given a qualified variable and a function that renames it, -- we strip away the qualification prefix, call the function, -- then prepend the prefix to the result reprefix : (var → var) → var → var reprefix f x = maybe-else' (pfx (string-to-𝕃char x) []) (f x) $ uncurry λ p s → p ^ f s where ret : 𝕃 char → 𝕃 char → maybe (var × var) ret pfx sfx = just (𝕃char-to-string (reverse pfx) , 𝕃char-to-string sfx) pfx : 𝕃 char → 𝕃 char → maybe (var × var) pfx (qual-global-chr :: xs) acc = pfx xs (qual-global-chr :: acc) maybe-or ret (qual-global-chr :: acc) xs pfx (qual-local-chr :: xs) acc = pfx xs (qual-local-chr :: acc) maybe-or ret (qual-local-chr :: acc) xs pfx (x :: xs) acc = pfx xs (x :: acc) pfx [] pfx = nothing data-to/ = reprefix ("to/" ^_) data-Is/ = reprefix ("Is/" ^_) data-is/ = reprefix ("is/" ^_) mu-Type/ = reprefix ("Type/" ^_) mu-isType/ = reprefix ("isType/" ^_) mu-isType/' = reprefix ("is" ^_) -- Generated during elaboration data-TypeF/ = reprefix ("F/" ^_) data-IndF/ = reprefix ("IndF/" ^_) data-fmap/ = reprefix ("fmap/" ^_) -- num-gt : num → ℕ → 𝕃 string num-gt n n' = maybe-else [] (λ n'' → if n'' > n' then [ n ] else []) (string-to-ℕ n) nums-gt : 𝕃 num → ℕ → 𝕃 string nums-gt [] n' = [] nums-gt (n :: ns) n' = maybe-else [] (λ n'' → if n'' > n' || iszero n'' then [ n ] else []) (string-to-ℕ n) ++ nums-gt ns n' nums-to-stringset : 𝕃 num → stringset × 𝕃 string {- Repeated numbers -} nums-to-stringset [] = empty-stringset , [] nums-to-stringset (n :: ns) with nums-to-stringset ns ...| ss , rs = if stringset-contains ss n then ss , n :: rs else stringset-insert ss n , rs optNums-to-stringset : maybe (𝕃 num) → maybe stringset × (ℕ → maybe string) optNums-to-stringset nothing = nothing , λ _ → nothing optNums-to-stringset (just ns) with nums-to-stringset ns ...| ss , [] = just ss , λ n → case nums-gt ns n of λ where [] → nothing ns-g → just ("Occurrences not found: " ^ 𝕃-to-string id ", " ns-g ^ " (total occurrences: " ^ ℕ-to-string n ^ ")") ...| ss , rs = just ss , λ n → just ("The list of occurrences contains the following repeats: " ^ 𝕃-to-string id ", " rs) def-var : ex-def → var def-var (ExDefTerm _ x _ _) = x def-var (ExDefType _ x _ _) = x -- expression descriptor data exprd : Set where TERM : exprd TYPE : exprd KIND : exprd -- TPKD : exprd ⟦_⟧ : exprd → Set ⟦ TERM ⟧ = term ⟦ TYPE ⟧ = type ⟦ KIND ⟧ = kind --⟦ TPKD ⟧ = tpkd ⟦_⟧' : exprd → Set ⟦ TERM ⟧' = ex-tm ⟦ TYPE ⟧' = ex-tp ⟦ KIND ⟧' = ex-kd --⟦ TPKD ⟧' = ex-tk exprd-name : exprd → string exprd-name TERM = "term" exprd-name TYPE = "type" exprd-name KIND = "kind" infixl 12 _-tk_ _-tk'_ _-tT_ _-tT'_ _-arg_ _-arg'_ _-tk_ : (∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧) → tpkd → tpkd f -tk Tkt T = Tkt (f T) f -tk Tkk k = Tkk (f k) _-tk'_ : ∀ {X : Set} → (∀ {ed : exprd} → ⟦ ed ⟧ → X) → tpkd → X f -tk' Tkt T = f T f -tk' Tkk k = f k _-tT_ : (∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧) → tmtp → tmtp f -tT Ttm t = Ttm (f t) f -tT Ttp T = Ttp (f T) _-tT'_ : ∀ {X : Set} → (∀ {ed : exprd} → ⟦ ed ⟧ → X) → tmtp → X f -tT' Ttm t = f t f -tT' Ttp T = f T _-arg_ : (∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧) → arg → arg f -arg Arg t = Arg (f t) f -arg ArgE tT = ArgE (f -tT tT) _-arg'_ : ∀ {X : Set} → (∀ {ed : exprd} → ⟦ ed ⟧ → X) → arg → X f -arg' Arg t = f t f -arg' ArgE tT = f -tT' tT pos-tm-to-tm : pos-tm → ex-tm pos-tm-to-tm (PosTm t pi) = t ex-case-arg-erased : ex-case-arg-sym → erased? ex-case-arg-erased ExCaseArgTm = ff ex-case-arg-erased _ = tt ex-case-ctr : ex-case → var ex-case-ctr (ExCase pi x cas t) = x start-modname : ex-file → string start-modname (ExModule _ _ _ mn _ _ _) = mn {- traverse-internal : ∀ {ed} {X} → (∀ {ed} → X → ⟦ ed ⟧ → X × ⟦ ed ⟧) → X → ⟦ ed ⟧ → ⟦ ed ⟧ traverse-internal {_} {X} f = h (fr ff) where fr : ∀ {ed} → 𝔹 → (X → ⟦ ed ⟧ → ⟦ ed ⟧) fr tt = f fr ff = λ x t → t h : ∀ {ed} → (∀ {ed} → X → ⟦ ed ⟧ → X × ⟦ ed ⟧) → X → ⟦ ed ⟧ → ⟦ ed ⟧ h {TERM} f (App t t') = ? h {TERM} f (AppE t tT) = ? h {TERM} f (Beta t t') = ? h {TERM} f (Delta T t) = ? h {TERM} f (Hole pi) = ? h {TERM} f (Internal r t) = ? h {TERM} f (IotaPair t t' x T) =? h {TERM} f (IotaProj t n) = ? h {TERM} f (Lam me x tk t) = ? h {TERM} f (LetTm me x T? t t') = ? h {TERM} f (LetTp x k T t) = ? h {TERM} f (Phi tₑ t₁ t₂) = ? h {TERM} f (Rho t x T t') = ? h {TERM} f (Sigma t) = ? h {TERM} f (Mu μ t T t~ cs) = ? h {TERM} f (Var x) = ? h {TYPE} f (TpAbs me x tk T) = ? h {TYPE} f (TpIota x T₁ T₂) = ? h {TYPE} f (TpApp T tT) = ? h {TYPE} f (TpEq t₁ t₂) = ? h {TYPE} f (TpHole pi) = ? h {TYPE} f (TpLam x tk T) = ? h {TYPE} f (TpVar x) = ? h {KIND} f KdStar = ? h {KIND} f (KdHole pi) = ? h {KIND} f (KdAbs x tk k) = ? -}
{ "alphanum_fraction": 0.619047619, "avg_line_length": 31.2568421053, "ext": "agda", "hexsha": "3fcb9609604ec2f0702fc707b05187d0de9edd31", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "zmthy/cedille", "max_forks_repo_path": "src/syntax-util.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "zmthy/cedille", "max_issues_repo_path": "src/syntax-util.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "zmthy/cedille", "max_stars_repo_path": "src/syntax-util.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5517, "size": 14847 }
module Data.Interval where data Interval (A : Set) : Set where [_▻_] : A -> A -> Interval A lowerBound : {A : Set} -> Interval A -> A lowerBound [ l ▻ u ] = l upperBound : {A : Set} -> Interval A -> A upperBound [ l ▻ u ] = u
{ "alphanum_fraction": 0.5751072961, "avg_line_length": 17.9230769231, "ext": "agda", "hexsha": "9ba4d85e5b98378ed83d6ce4c107267c5236881f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Interval.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Interval.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Interval.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 233 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Structure open import Cubical.Foundations.Structure using (typ) public open import Cubical.Foundations.GroupoidLaws Pointed : (ℓ : Level) → Type (ℓ-suc ℓ) Pointed ℓ = TypeWithStr ℓ (λ x → x) pt : ∀ {ℓ} (A∙ : Pointed ℓ) → typ A∙ pt = str Pointed₀ = Pointed ℓ-zero {- Pointed functions -} _→∙_ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ') _→∙_ A B = Σ[ f ∈ (typ A → typ B) ] f (pt A) ≡ pt B _→∙_∙ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') A →∙ B ∙ = (A →∙ B) , (λ x → pt B) , refl idfun∙ : ∀ {ℓ} (A : Pointed ℓ) → A →∙ A idfun∙ A = (λ x → x) , refl
{ "alphanum_fraction": 0.6180469716, "avg_line_length": 28.8928571429, "ext": "agda", "hexsha": "0325ae714671a739259624cafc9f048a26372ce0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/Foundations/Pointed/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/Foundations/Pointed/Base.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/Foundations/Pointed/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 343, "size": 809 }
-- Andreas, 2020-01-28, issue #4399, reported by G. Brunerie postulate A : Set data T : Set where tt : T f : {x : A} {{_ : T}} → A f {{ p }} = {!p!} -- Problem was: -- Splitting on p produced pattern {{_ = tt}} -- which was interpreted as cubical partial split. -- Expected: -- Splitting on p should produce an unnamed pattern.
{ "alphanum_fraction": 0.6231454006, "avg_line_length": 18.7222222222, "ext": "agda", "hexsha": "4c4e1e21ad3501de290a7a4d72dda968a5229e99", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4399.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4399.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4399.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 106, "size": 337 }
{-# OPTIONS --without-K #-} module container.m.from-nat.cone where open import level open import sum open import equality open import function open import sets.nat.core open import sets.nat.struct open import sets.unit open import container.core open import container.m.from-nat.core open import hott.level module _ {li la lb} (c : Container li la lb) where open Container c open import container.m.coalgebra c hiding (_≅_; module _≅_) -- X and π play the role of the "chain" as in -- Definition 8 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) module _ (Xⁱ : ℕ → I → Set (la ⊔ lb)) (πⁱ : ∀ n → Xⁱ (suc n) →ⁱ Xⁱ n) where private X : (i : I) → ℕ → Set (la ⊔ lb) X i n = Xⁱ n i π : (i : I) (n : ℕ) → X i (suc n) → X i n π i n = πⁱ n i module cones {ℓ} (𝓩 : Coalg ℓ) where private Z = proj₁ 𝓩; θ = proj₂ 𝓩 Cone₀ : Set _ Cone₀ = (n : ℕ) → Z →ⁱ Xⁱ n Cone₁ : Cone₀ → Set _ Cone₁ u = (n : ℕ) → πⁱ n ∘ⁱ u (suc n) ≡ u n Cone : Set _ Cone = Σ Cone₀ Cone₁ Cone₀-eq-iso : {u₁ u₂ : Cone₀} → ((n : ℕ)(i : I)(z : Z i) → u₁ n i z ≡ u₂ n i z) ≅ (u₁ ≡ u₂) Cone₀-eq-iso = Π-ap-iso refl≅ (λ _ → funext-isoⁱ) ·≅ strong-funext-iso Cone₁-eq-iso : {u : Cone₀}{q₁ q₂ : Cone₁ u} → ( (n : ℕ)(i : I)(z : Z i) → funext-invⁱ (q₁ n) i z ≡ funext-invⁱ (q₂ n) i z ) ≅ (q₁ ≡ q₂) Cone₁-eq-iso {u}{q₁}{q₂} = begin ( (n : ℕ)(i : I)(z : Z i) → funext-invⁱ (q₁ n) i z ≡ funext-invⁱ (q₂ n) i z ) ≅⟨ (Π-ap-iso refl≅ λ n → funext-isoⁱ) ⟩ ( (n : ℕ) → funext-invⁱ (q₁ n) ≡ funext-invⁱ (q₂ n) ) ≅⟨ ( Π-ap-iso refl≅ λ n → sym≅ (iso≡ (sym≅ funext-isoⁱ)) ) ⟩ ( (n : ℕ) → q₁ n ≡ q₂ n ) ≅⟨ strong-funext-iso ⟩ (q₁ ≡ q₂) ∎ where open ≅-Reasoning Cone-eq : {c₁ c₂ : Cone} → (p : (n : ℕ)(i : I)(z : Z i) → proj₁ c₁ n i z ≡ proj₁ c₂ n i z) → ( (n : ℕ)(i : I)(z : Z i) → funext-invⁱ (proj₂ c₁ n) i z ≡ ap (π i n) (p (suc n) i z) · funext-invⁱ (proj₂ c₂ n) i z · sym (p n i z) ) → c₁ ≡ c₂ Cone-eq {c₁}{c₂} p α = unapΣ' (p' , α') where subst-lem : {u₁ u₂ : Cone₀}(p : u₁ ≡ u₂)(q : Cone₁ u₂) → (n : ℕ)(i : I)(z : Z i) → funext-invⁱ (subst Cone₁ (sym p) q n) i z ≡ ap (π i n) (funext-invⁱ (funext-inv p (suc n)) i z) · funext-invⁱ (q n) i z · sym (funext-invⁱ (funext-inv p n) i z) subst-lem refl q n i z = sym (left-unit _) subst-lem' : {u₁ u₂ : Cone₀}(p : (n : ℕ)(i : I)(z : Z i) → u₁ n i z ≡ u₂ n i z) → (q : Cone₁ u₂)(n : ℕ)(i : I)(z : Z i) → funext-invⁱ (subst Cone₁ (sym (apply Cone₀-eq-iso p)) q n) i z ≡ ap (π i n) (p (suc n) i z) · funext-invⁱ (q n) i z · sym (p n i z) subst-lem' {u₁}{u₂} p q n i z = subst ( λ p₁ → funext-invⁱ (subst Cone₁ (sym (apply Cone₀-eq-iso p)) q n) i z ≡ ap (π i n) (p₁ (suc n) i z) · funext-invⁱ (q n) i z · sym (p₁ n i z) ) (_≅_.iso₁ Cone₀-eq-iso p) (subst-lem (apply Cone₀-eq-iso p) q n i z) p' : proj₁ c₁ ≡ proj₁ c₂ p' = apply Cone₀-eq-iso p α' : proj₂ c₁ ≡ subst Cone₁ (sym p') (proj₂ c₂) α' = apply Cone₁-eq-iso λ n i z → α n i z · sym (subst-lem' p (proj₂ c₂) n i z) unapΣ' : ∀ {i j}{A : Set i}{B : A → Set j} → {a a' : A}{b : B a}{b' : B a'} → (Σ (a ≡ a') λ q → b ≡ subst B (sym q) b') → (a , b) ≡ (a' , b') unapΣ' (refl , refl) = refl private module limit where module _ (i : I) where open Limit (X i) (π i) public isom : Cone ≅ (Z →ⁱ L) isom = Limit-univⁱ.univ-iso I Xⁱ πⁱ open limit public using (isom)
{ "alphanum_fraction": 0.4354953671, "avg_line_length": 34.5, "ext": "agda", "hexsha": "fdc72ec1f6a4ce67857cd2f9ff94715fd45de993", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m/from-nat/cone.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/m/from-nat/cone.agda", "max_line_length": 89, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m/from-nat/cone.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1637, "size": 4209 }
module LineEndings.Dos where postulate ThisWorks : Set
{ "alphanum_fraction": 0.7796610169, "avg_line_length": 14.75, "ext": "agda", "hexsha": "7e840c644332a7ace981a96db4839ac89c216a08", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/LineEndings/Dos.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/LineEndings/Dos.agda", "max_line_length": 29, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/LineEndings/Dos.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 15, "size": 59 }
-- Classical propositional logic, de Bruijn approach, final encoding module Bf.Cp where open import Lib using (List; _,_; LMem; lzero; lsuc) -- Types infixl 2 _&&_ infixl 1 _||_ infixr 0 _=>_ data Ty : Set where UNIT : Ty _=>_ : Ty -> Ty -> Ty _&&_ : Ty -> Ty -> Ty _||_ : Ty -> Ty -> Ty FALSE : Ty infixr 0 _<=>_ _<=>_ : Ty -> Ty -> Ty a <=> b = (a => b) && (b => a) NOT : Ty -> Ty NOT a = a => FALSE TRUE : Ty TRUE = FALSE => FALSE -- Context and truth judgement Cx : Set Cx = List Ty isTrue : Ty -> Cx -> Set isTrue a tc = LMem a tc -- Terms TmRepr : Set1 TmRepr = Cx -> Ty -> Set module ArrMp where record Tm (tr : TmRepr) : Set1 where infixl 1 _$_ infixr 0 lam=>_ field var : forall {tc a} -> isTrue a tc -> tr tc a lam=>_ : forall {tc a b} -> tr (tc , a) b -> tr tc (a => b) _$_ : forall {tc a b} -> tr tc (a => b) -> tr tc a -> tr tc b v0 : forall {tc a} -> tr (tc , a) a v0 = var lzero v1 : forall {tc a b} -> tr (tc , a , b) a v1 = var (lsuc lzero) v2 : forall {tc a b c} -> tr (tc , a , b , c) a v2 = var (lsuc (lsuc lzero)) open Tm {{...}} public module Mp where record Tm (tr : TmRepr) : Set1 where field pair' : forall {tc a b} -> tr tc a -> tr tc b -> tr tc (a && b) fst : forall {tc a b} -> tr tc (a && b) -> tr tc a snd : forall {tc a b} -> tr tc (a && b) -> tr tc b left : forall {tc a b} -> tr tc a -> tr tc (a || b) right : forall {tc a b} -> tr tc b -> tr tc (a || b) case' : forall {tc a b c} -> tr tc (a || b) -> tr (tc , a) c -> tr (tc , b) c -> tr tc c isArrMp : ArrMp.Tm tr open ArrMp.Tm isArrMp public syntax pair' x y = [ x , y ] syntax case' xy x y = case xy => x => y open Tm {{...}} public module Cp where record Tm (tr : TmRepr) : Set1 where infixr 0 abort=>_ field abort=>_ : forall {tc a} -> tr (tc , NOT a) FALSE -> tr tc a isMp : Mp.Tm tr open Mp.Tm isMp public open Tm {{...}} public Thm : Ty -> Set1 Thm a = forall {tr tc} {{_ : Tm tr}} -> tr tc a open Cp public
{ "alphanum_fraction": 0.4811827957, "avg_line_length": 23.7446808511, "ext": "agda", "hexsha": "d20f798668c962669016096bdbe890cf2daf9d7f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/formal-logic", "max_forks_repo_path": "src/Bf/Cp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/formal-logic", "max_issues_repo_path": "src/Bf/Cp.agda", "max_line_length": 94, "max_stars_count": 26, "max_stars_repo_head_hexsha": "2dd761bfa96ccda089888e8defa6814776fa2922", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/formal-logic", "max_stars_repo_path": "src/Bf/Cp.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-13T12:37:44.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-31T09:49:52.000Z", "num_tokens": 826, "size": 2232 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An explanation about how data types are laid out in the standard -- library. ------------------------------------------------------------------------ module README.Data where -- The top-level folder `Data` contains all the definitions of datatypes -- and their associated properties. -- Datatypes can broadly split into two categories -- i) "Basic" datatypes which do not take other datatypes as generic -- arguments (Nat, String, Fin, Bool, Char etc.) -- ii) "Container" datatypes which take other generic datatypes as -- arguments, (List, Vec, Sum, Product, Maybe, AVL trees etc.) ------------------------------------------------------------------------ -- Basic datatypes ------------------------------------------------------------------------ -- Basic datatypes are usually organised as follows: -- 1. A `Base` module which either contains the definition of the -- datatype or reimports it from the builtin modules, along with common -- functions, operations and relations over elements of the datatype. import Data.Nat.Base import Data.Integer.Base import Data.Char.Base import Data.String.Base import Data.Bool.Base -- Commonly these modules don't need to be imported directly as their -- contents is re-exported by the top level module (see below). -- 2. A `Properties` module which contains the basic properties of the -- functions, operations and relations contained in the base module. import Data.Nat.Properties import Data.Integer.Properties import Data.Char.Properties import Data.String.Properties import Data.Bool.Properties -- 3. A top-level module which re-exports the contents of the base -- module as well as various queries (i.e. decidability proofs) from the -- properties file. import Data.Nat import Data.Integer import Data.Char import Data.String import Data.Bool -- 4. A `Solver` module (for those datatypes that have an algebraic solver) -- which can be used to automatically solve equalities over the basic datatype. import Data.Nat.Solver import Data.Integer.Solver import Data.Bool.Solver -- 5. More complex operations and relations are commonly found in their -- own module beneath the top-level directory. For example: import Data.Nat.DivMod import Data.Integer.Coprimality -- Note that eventually there is a plan to re-organise the library to -- have the top-level module export a far wider range of properties and -- additional operations in order to minimise the number of imports -- needed. Currently it is necessary to import each of these separately -- however. ------------------------------------------------------------------------ -- Container datatypes ------------------------------------------------------------------------ -- 1. As with basic datatypes, a `Base` module which contains the -- definition of the datatype, along with common functions and -- operations over that data. Unlike basic datatypes, the `Base` module -- for container datatypes does not export any relations or predicates -- over the datatype (see the `Relation` section below). import Data.List.Base import Data.Maybe.Base import Data.Sum.Base -- Commonly these modules don't need to be imported directly as their -- contents is re-exported by the top level module (see below). -- 2. As with basic datatypes, a `Properties` module which contains the -- basic properties of the functions, operations and contained in the -- base module. import Data.List.Properties import Data.Maybe.Properties import Data.Sum.Properties -- 3. As with basic datatypes, a top-level module which re-exports the -- contents of the base module. In some cases this may also contain -- additional functions which could not be placed into the corresponding -- Base module because of cyclic dependencies. import Data.List import Data.Maybe import Data.Sum -- 4. A `Relation.Binary` folder where binary relations over the datatypes -- are stored. Because relations over container datatypes often depend on -- relations over the parameter datatype, this differs from basic datatypes -- where the binary relations are usually defined in the `Base` module, e.g. -- equality over the type `List A` depends on equality over type `A`. -- For example the `Pointwise` relation that takes a relation over the -- underlying type A and lifts it to the container parameterised can be found -- as follows: import Data.List.Relation.Binary.Pointwise import Data.Maybe.Relation.Binary.Pointwise import Data.Sum.Relation.Binary.Pointwise -- Another useful subfolder in the `Data.X.Relation.Binary` folders is the -- `Data.X.Relation.Binary.Equality` folder which contains various forms of -- equality over the datatype. -- 5. A `Relation.Unary` folder where unary relations, or predicates, -- over the datatypes are stored. These can be viewed as properties -- over a single list. -- For example a common, useful example is `Data.X.Relation.Unary.Any` -- that contains the types of proofs that at least one element in the -- container satisfies some predicate/property. import Data.List.Relation.Unary.Any import Data.Vec.Relation.Unary.Any import Data.Maybe.Relation.Unary.Any -- Alternatively the `Data.X.Relation.Unary.All` module contains the -- type of proofs that all elements in the container satisfy some -- property. import Data.List.Relation.Unary.All import Data.Vec.Relation.Unary.All import Data.Maybe.Relation.Unary.All -- 6. A `Categorical` module/folder that contains categorical -- interpretations of the datatype. import Data.List.Categorical import Data.Maybe.Categorical import Data.Sum.Categorical.Left import Data.Sum.Categorical.Right -- 7. A `Function` folder that contains lifting of various types of -- functions (e.g. injections, surjections, bijections, inverses) to -- the datatype. import Data.Sum.Function.Propositional import Data.Sum.Function.Setoid import Data.Product.Function.Dependent.Propositional import Data.Product.Function.Dependent.Setoid ------------------------------------------------------------------------ -- Full list of documentation for the Data folder ------------------------------------------------------------------------ -- Some examples showing where the natural numbers/integers and some -- related operations and properties are defined, and how they can be -- used: import README.Data.Nat import README.Data.Nat.Induction import README.Data.Integer -- Some examples showing how the AVL tree module can be used. import README.Data.AVL -- Some examples showing how List module can be used. import README.Data.List -- Some examples showing how the Fresh list can be used. import README.Data.List.Fresh -- Using List's Interleaving to define a fully certified filter function. import README.Data.Interleaving -- Example of an encoding of record types with manifest fields and "with". import README.Data.Record -- Example use case for a trie: a wee generic lexer import README.Data.Trie.NonDependent -- Examples how (indexed) containers and constructions over them (free -- monad, least fixed point, etc.) can be used import README.Data.Container.FreeMonad import README.Data.Container.Indexed
{ "alphanum_fraction": 0.7150791447, "avg_line_length": 34.7922705314, "ext": "agda", "hexsha": "792f3fba719f3bdb476ecf01637610d289fb7465", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Data.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Data.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Data.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1476, "size": 7202 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Finite sets defined in terms of Data.Star ------------------------------------------------------------------------ module Data.Star.Fin where open import Data.Star open import Data.Star.Nat as ℕ using (ℕ) open import Data.Star.Pointer open import Data.Unit -- Finite sets are undecorated pointers into natural numbers. Fin : ℕ → Set Fin = Any (λ _ → ⊤) (λ _ → ⊤) -- "Constructors". zero : ∀ {n} → Fin (ℕ.suc n) zero = this tt suc : ∀ {n} → Fin n → Fin (ℕ.suc n) suc = that tt
{ "alphanum_fraction": 0.5008460237, "avg_line_length": 22.7307692308, "ext": "agda", "hexsha": "add8e5047e088c7a4f538e965f78623c4b241e88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Star/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Star/Fin.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Star/Fin.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 149, "size": 591 }
------------------------------------------------------------------------ -- Closure properties for Compatible and Size-preserving ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Up-to.Closure where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude as P open import Prelude.Size open import Bijection equality-with-J using (_↔_) open import Function-universe equality-with-J hiding (id; _∘_) import Bisimilarity open import Indexed-container hiding (Bisimilarity) open import Indexed-container.Combinators hiding (id; _∘_) open import Labelled-transition-system import Labelled-transition-system.CCS open import Relation import Similarity import Similarity.CCS as SC open import Up-to private module CCS {ℓ} (Name : Type ℓ) where open Labelled-transition-system.CCS Name public open module B = Bisimilarity CCS public open module S = Similarity CCS public using (Similarity) ------------------------------------------------------------------------ -- Closure properties for Compatible -- The results in this section are closely related to -- Proposition 6.3.21 in Pous and Sangiorgi's "Enhancements of the -- bisimulation proof method". -- The function flip Compatible F is closed under _⊗_, assuming that F -- is monotone. Compatible-⊗ : ∀ {ℓ} {I : Type ℓ} {C₁ C₂ : Container I I} {F : Trans ℓ I} → Monotone F → Compatible C₁ F → Compatible C₂ F → Compatible (C₁ ⊗ C₂) F Compatible-⊗ {C₁ = C₁} {C₂} {F} mono comp₁ comp₂ {R = R} = F (⟦ C₁ ⊗ C₂ ⟧ R) ⊆⟨ mono (⟦⊗⟧↔ _ C₁ C₂) ⟩ F (⟦ C₁ ⟧ R ∩ ⟦ C₂ ⟧ R) ⊆⟨ (λ x → mono proj₁ x , mono proj₂ x) ⟩ F (⟦ C₁ ⟧ R) ∩ F (⟦ C₂ ⟧ R) ⊆⟨ Σ-map comp₁ comp₂ ⟩ ⟦ C₁ ⟧ (F R) ∩ ⟦ C₂ ⟧ (F R) ⊆⟨ _⇔_.from (⟦⊗⟧↔ _ C₁ C₂) ⟩∎ ⟦ C₁ ⊗ C₂ ⟧ (F R) ∎ -- The function flip Compatible F is closed under reindex₁ f, assuming -- that F is monotone and f-symmetric. Compatible-reindex₁ : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {F : Trans ℓ I} {f : I → I} → Monotone F → Symmetric f F → Compatible C F → Compatible (reindex₁ f C) F Compatible-reindex₁ {C = C} {F} {f} mono hyp comp {R = R} = F (⟦ reindex₁ f C ⟧ R) ⊆⟨ mono (⟦reindex₁⟧↔ _ C) ⟩ F (⟦ C ⟧ (R ∘ f)) ⊆⟨ comp ⟩ ⟦ C ⟧ (F (R ∘ f)) ⊆⟨ map C (hyp _) ⟩ ⟦ C ⟧ (F R ∘ f) ⊆⟨ _⇔_.from (⟦reindex₁⟧↔ _ C) ⟩∎ ⟦ reindex₁ f C ⟧ (F R) ∎ -- The function flip Compatible F is closed under reindex₂ f, assuming -- that F is f-symmetric. Compatible-reindex₂ : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {F : Trans ℓ I} {f : I → I} → Symmetric f F → Compatible C F → Compatible (reindex₂ f C) F Compatible-reindex₂ {C = C} {F} {f} hyp comp {R = R} = F (⟦ reindex₂ f C ⟧ R) ⊆⟨⟩ F (⟦ C ⟧ R ∘ f) ⊆⟨ hyp _ ⟩ F (⟦ C ⟧ R) ∘ f ⊆⟨ comp ⟩ ⟦ C ⟧ (F R) ∘ f ⊆⟨ id ⟩∎ ⟦ reindex₂ f C ⟧ (F R) ∎ -- The function flip Compatible F is closed under reindex f, assuming -- that F is monotone and f-symmetric. Compatible-reindex : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {F : Trans ℓ I} {f : I → I} → Monotone F → Symmetric f F → Compatible C F → Compatible (reindex f C) F Compatible-reindex {C = C} {F} {f} mono hyp = Compatible C F ↝⟨ Compatible-reindex₁ mono hyp ⟩ Compatible (reindex₁ f C) F ↝⟨ Compatible-reindex₂ hyp ⟩ Compatible (reindex₂ f (reindex₁ f C)) F ↔⟨⟩ Compatible (reindex f C) F □ -- The function flip Compatible F is closed under _⟷_, assuming that F -- is monotone and symmetric. Compatible-⟷ : ∀ {ℓ} {I : Type ℓ} {C₁ C₂ : Container (I × I) (I × I)} {F : Trans₂ ℓ I} → Monotone F → Symmetric swap F → Compatible C₁ F → Compatible C₂ F → Compatible (C₁ ⟷ C₂) F Compatible-⟷ {C₁ = C₁} {C₂} {F} mono sym = curry ( Compatible C₁ F × Compatible C₂ F ↝⟨ Σ-map id (Compatible-reindex mono sym) ⟩ Compatible C₁ F × Compatible (reindex swap C₂) F ↝⟨ uncurry (Compatible-⊗ mono) ⟩ Compatible (C₁ ⊗ reindex swap C₂) F ↔⟨⟩ Compatible (C₁ ⟷ C₂) F □) -- An instance of the result above: If F is monotone and symmetric, -- and compatible for strong similarity for some LTS, then F is -- compatible for strong bisimilarity for this LTS. compatible-for-similarity→compatible-for-bisimilarity : ∀ {ℓ} {lts : LTS ℓ} {F} → Monotone F → Symmetric swap F → Compatible (Similarity.StepC lts) F → Compatible (Bisimilarity.StepC lts) F compatible-for-similarity→compatible-for-bisimilarity mono sym comp = Compatible-⟷ mono sym comp comp ------------------------------------------------------------------------ -- Closure properties for Size-preserving -- The function flip Size-preserving F is closed under reindex, -- assuming that F is f-symmetric for an involutory function f. -- -- Note that the assumptions are different from the ones asked for in -- Compatible-reindex: monotonicity of F has been replaced by the -- assumption that f is an involution. Size-preserving-reindex : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {F : Trans ℓ I} {f : I → I} → f ∘ f ≡ id → Symmetric f F → Size-preserving C F → Size-preserving (reindex f C) F Size-preserving-reindex {C = C} {F} {f} inv hyp pres {R = R} {i = i} R⊆ = F R ⊆⟨ (λ {x} → subst (λ g → F (R ∘ g) x) (sym inv)) ⟩ F (R ∘ f ∘ f) ⊆⟨ hyp _ ⟩ F (R ∘ f) ∘ f ⊆⟨ pres ( R ∘ f ⊆⟨ R⊆ ⟩ ν (reindex f C) i ∘ f ⊆⟨ _⇔_.to (ν-reindex⇔ inv) ⟩ ν C i ∘ f ∘ f ⊆⟨ (λ {x} → subst (λ g → ν C i (g x)) inv) ⟩∎ ν C i ∎) ⟩ ν C i ∘ f ⊆⟨ _⇔_.from (ν-reindex⇔ inv) ⟩∎ ν (reindex f C) i ∎ -- Some negative results: -- -- * For inhabited name types it is not in general the case that a -- monotone and symmetric function F that is size-preserving for -- similarity for CCS is also size-preserving for bisimilarity for -- CCS. -- -- * It is not in general the case that if F is monotone and -- symmetric, and size-preserving for strong similarity for some -- LTS, then F is size-preserving for strong bisimilarity for this -- LTS. -- -- * The function flip Size-preserving F is not closed under _⟷_ for -- all F, not even those that are monotone and symmetric. -- -- * Furthermore flip Size-preserving F is not closed under _⊗_ for -- all F, not even those that are monotone. ¬-Size-preserving-⟷/⊗ : ∀ {ℓ} → ({Name : Type ℓ} → let open CCS Name in Name → ¬ ({F : Trans₂ ℓ (Proc ∞)} → Monotone F → Symmetric swap F → Size-preserving S.StepC F → Size-preserving B.StepC F)) × ¬ (∀ {lts : LTS ℓ} {F} → Monotone F → Symmetric swap F → Size-preserving (Similarity.StepC lts) F → Size-preserving (Bisimilarity.StepC lts) F) × ¬ ({I : Type ℓ} {C₁ C₂ : Container (I × I) (I × I)} {F : Trans₂ ℓ I} → Monotone F → Symmetric swap F → Size-preserving C₁ F → Size-preserving C₂ F → Size-preserving (C₁ ⟷ C₂) F) × ¬ ({I : Type ℓ} {C₁ C₂ : Container I I} {F : Trans ℓ I} → Monotone F → Size-preserving C₁ F → Size-preserving C₂ F → Size-preserving (C₁ ⊗ C₂) F) ¬-Size-preserving-⟷/⊗ {ℓ} = Lemmas.contradiction₂ , Lemmas.contradiction₃ (lift tt) , Lemmas.contradiction₄ (lift tt) , Lemmas.contradiction₅ (lift tt) where module Lemmas {Name : Type ℓ} (a : Name) where open CCS Name public ≤≥≁ = SC.≤≥≁ a m₁ = proj₁ ≤≥≁ m₂ = proj₁ (proj₂ ≤≥≁) F : Trans₂ ℓ (Proc ∞) F R = R ∪ (_≡ (m₁ , m₂)) ∪ (_≡ (m₂ , m₁)) mono : Monotone F mono R⊆S = ⊎-map R⊆S id symm : Symmetric swap F symm R = F (R ⁻¹) ⊆⟨⟩ R ⁻¹ ∪ (_≡ (m₁ , m₂)) ∪ (_≡ (m₂ , m₁)) ⊆⟨ ⊎-map id P.[ inj₂ ∘ lemma , inj₁ ∘ lemma ] ⟩ R ⁻¹ ∪ (_≡ (m₁ , m₂)) ⁻¹ ∪ (_≡ (m₂ , m₁)) ⁻¹ ⊆⟨ id ⟩∎ F R ⁻¹ ∎ where lemma : {p₁ p₂ : Proc ∞ × Proc ∞} → p₁ ≡ swap p₂ → swap p₁ ≡ p₂ lemma refl = refl pres : Size-preserving S.StepC F pres {R = R} {i = i} R⊆ = F R ⊆⟨⟩ R ∪ (_≡ (m₁ , m₂)) ∪ (_≡ (m₂ , m₁)) ⊆⟨ [ R⊆ , helper ] ⟩∎ Similarity i ∎ where helper : ∀ {p} → p ≡ (m₁ , m₂) ⊎ p ≡ (m₂ , m₁) → Similarity i p helper (inj₁ refl) = proj₁ (proj₂ (proj₂ ≤≥≁)) helper (inj₂ refl) = proj₁ (proj₂ (proj₂ (proj₂ ≤≥≁))) contradiction = Size-preserving B.StepC F ↝⟨ (λ hyp → _⇔_.to (monotone→⇔ _ mono) hyp) ⟩ F (Bisimilarity ∞) ⊆ Bisimilarity ∞ ↝⟨ _$ inj₂ (inj₁ refl) ⟩ m₁ ∼ m₂ ↝⟨ proj₂ (proj₂ (proj₂ (proj₂ ≤≥≁))) ⟩□ ⊥ □ contradiction₂ = ({F : Trans₂ ℓ (Proc ∞)} → Monotone F → Symmetric swap F → Size-preserving S.StepC F → Size-preserving B.StepC F) ↝⟨ (λ closed → closed mono symm pres) ⟩ Size-preserving B.StepC F ↝⟨ contradiction ⟩□ ⊥ □ contradiction₃ = (∀ {lts : LTS ℓ} {F} → Monotone F → Symmetric swap F → Size-preserving (Similarity.StepC lts) F → Size-preserving (Bisimilarity.StepC lts) F) ↝⟨ (λ closed mono sym pres → closed mono sym pres) ⟩ ({F : Trans₂ ℓ (Proc ∞)} → Monotone F → Symmetric swap F → Size-preserving S.StepC F → Size-preserving B.StepC F) ↝⟨ contradiction₂ ⟩□ ⊥ □ contradiction₄ = ({I : Type ℓ} {C₁ C₂ : Container (I × I) (I × I)} {F : Trans₂ ℓ I} → Monotone F → Symmetric swap F → Size-preserving C₁ F → Size-preserving C₂ F → Size-preserving (C₁ ⟷ C₂) F) ↝⟨ (λ closed mono symm pres → closed mono symm pres pres) ⟩ (∀ {lts : LTS ℓ} {F} → Monotone F → Symmetric swap F → Size-preserving (Similarity.StepC lts) F → Size-preserving (Bisimilarity.StepC lts) F) ↝⟨ contradiction₃ ⟩□ ⊥ □ contradiction₅ = ({I : Type ℓ} {C₁ C₂ : Container I I} {F : Trans ℓ I} → Monotone F → Size-preserving C₁ F → Size-preserving C₂ F → Size-preserving (C₁ ⊗ C₂) F) ↝⟨ (λ closed → closed mono pres) ⟩ (Size-preserving (reindex swap S.StepC) F → Size-preserving B.StepC F) ↝⟨ _$ Size-preserving-reindex refl symm pres ⟩ Size-preserving B.StepC F ↝⟨ contradiction ⟩□ ⊥ □
{ "alphanum_fraction": 0.5340655249, "avg_line_length": 37.1764705882, "ext": "agda", "hexsha": "196f91f523777791d6f9b80cd5795a5397cd6a91", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Up-to/Closure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Up-to/Closure.agda", "max_line_length": 117, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Up-to/Closure.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3787, "size": 10744 }
module CTL.Modalities.AG where open import FStream.Core open import Library -- Certainly forever : s₀ ⊧ φ ⇔ ∀ s₀ R s₁ R ... ∀ i . sᵢ ⊧ φ {-# NO_POSITIVITY_CHECK #-} -- Not necessary from Agda 2.6 upwards record AG' {i : Size} {ℓ₁ ℓ₂} {C : Container ℓ₁} (props : FStream' C (Set ℓ₂)) : Set (ℓ₁ ⊔ ℓ₂) where coinductive field nowA : head props laterA : {j : Size< i} → A (fmap AG' (inF (tail props))) open AG' public AG : ∀ {i : Size} {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂) AG props = APred AG' (inF props) mutual AGₛ' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream' C (Set ℓ₂) → FStream' {i} C (Set (ℓ₁ ⊔ ℓ₂)) head (AGₛ' props) = AG' props tail (AGₛ' props) = AGₛ (tail props) AGₛ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂) → FStream {i} C (Set (ℓ₁ ⊔ ℓ₂)) inF (AGₛ props) = fmap AGₛ' (inF props)
{ "alphanum_fraction": 0.5841924399, "avg_line_length": 30.1034482759, "ext": "agda", "hexsha": "99f03d86335280cbd93a3f7990b0d1a52b397369", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "CTL/Modalities/AG.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "CTL/Modalities/AG.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "CTL/Modalities/AG.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 389, "size": 873 }
module Symmetric where open import Level hiding ( suc ; zero ) open import Algebra open import Algebra.Structures open import Data.Fin hiding ( _<_ ; _≤_ ; _-_ ; _+_ ) open import Data.Fin.Properties hiding ( <-trans ; ≤-trans ) renaming ( <-cmp to <-fcmp ) open import Data.Product open import Data.Fin.Permutation open import Function hiding (id ; flip) open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function.LeftInverse using ( _LeftInverseOf_ ) open import Function.Equality using (Π) open import Data.Nat -- using (ℕ; suc; zero; s≤s ; z≤n ) open import Data.Nat.Properties -- using (<-trans) open import Relation.Binary.PropositionalEquality open import Data.List using (List; []; _∷_ ; length ; _++_ ; head ) renaming (reverse to rev ) open import nat fid : {p : ℕ } → Fin p → Fin p fid x = x -- Data.Fin.Permutation.id pid : {p : ℕ } → Permutation p p pid = permutation fid fid record { left-inverse-of = λ x → refl ; right-inverse-of = λ x → refl } -- Data.Fin.Permutation.flip pinv : {p : ℕ } → Permutation p p → Permutation p p pinv {p} P = permutation (_⟨$⟩ˡ_ P) (_⟨$⟩ʳ_ P ) record { left-inverse-of = λ x → inverseʳ P ; right-inverse-of = λ x → inverseˡ P } record _=p=_ {p : ℕ } ( x y : Permutation p p ) : Set where field peq : ( q : Fin p ) → x ⟨$⟩ʳ q ≡ y ⟨$⟩ʳ q open _=p=_ prefl : {p : ℕ } { x : Permutation p p } → x =p= x peq (prefl {p} {x}) q = refl psym : {p : ℕ } { x y : Permutation p p } → x =p= y → y =p= x peq (psym {p} {x} {y} eq ) q = sym (peq eq q) ptrans : {p : ℕ } { x y z : Permutation p p } → x =p= y → y =p= z → x =p= z peq (ptrans {p} {x} {y} x=y y=z ) q = trans (peq x=y q) (peq y=z q) peqˡ : {p : ℕ }{ x y : Permutation p p } → x =p= y → (q : Fin p) → x ⟨$⟩ˡ q ≡ y ⟨$⟩ˡ q peqˡ {p} {x} {y} eq q = begin x ⟨$⟩ˡ q ≡⟨ sym ( inverseˡ y ) ⟩ y ⟨$⟩ˡ (y ⟨$⟩ʳ ( x ⟨$⟩ˡ q )) ≡⟨ cong (λ k → y ⟨$⟩ˡ k ) (sym (peq eq _ )) ⟩ y ⟨$⟩ˡ (x ⟨$⟩ʳ ( x ⟨$⟩ˡ q )) ≡⟨ cong (λ k → y ⟨$⟩ˡ k ) ( inverseʳ x ) ⟩ y ⟨$⟩ˡ q ∎ where open ≡-Reasoning presp : { p : ℕ } {x y u v : Permutation p p } → x =p= y → u =p= v → (x ∘ₚ u) =p= (y ∘ₚ v) presp {p} {x} {y} {u} {v} x=y u=v = record { peq = λ q → lemma4 q } where lemma4 : (q : Fin p) → ((x ∘ₚ u) ⟨$⟩ʳ q) ≡ ((y ∘ₚ v) ⟨$⟩ʳ q) lemma4 q = trans (cong (λ k → Inverse.to u Π.⟨$⟩ k) (peq x=y q) ) (peq u=v _ ) passoc : { p : ℕ } (x y z : Permutation p p) → ((x ∘ₚ y) ∘ₚ z) =p= (x ∘ₚ (y ∘ₚ z)) passoc x y z = record { peq = λ q → refl } p-inv : { p : ℕ } {i j : Permutation p p} → i =p= j → (q : Fin p) → pinv i ⟨$⟩ʳ q ≡ pinv j ⟨$⟩ʳ q p-inv {p} {i} {j} i=j q = begin i ⟨$⟩ˡ q ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (inverseʳ j) ) ⟩ i ⟨$⟩ˡ ( j ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ cong (λ k → i ⟨$⟩ˡ k) (sym (peq i=j _ )) ⟩ i ⟨$⟩ˡ ( i ⟨$⟩ʳ ( j ⟨$⟩ˡ q )) ≡⟨ inverseˡ i ⟩ j ⟨$⟩ˡ q ∎ where open ≡-Reasoning Symmetric : ℕ → Group Level.zero Level.zero Symmetric p = record { Carrier = Permutation p p ; _≈_ = _=p=_ ; _∙_ = _∘ₚ_ ; ε = pid ; _⁻¹ = pinv ; isGroup = record { isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = record {refl = prefl ; trans = ptrans ; sym = psym } ; ∙-cong = presp } ; assoc = passoc } ; identity = ( (λ q → record { peq = λ q → refl } ) , (λ q → record { peq = λ q → refl } )) } ; inverse = ( (λ x → record { peq = λ q → inverseʳ x} ) , (λ x → record { peq = λ q → inverseˡ x} )) ; ⁻¹-cong = λ i=j → record { peq = λ q → p-inv i=j q } } }
{ "alphanum_fraction": 0.5162983425, "avg_line_length": 41.1363636364, "ext": "agda", "hexsha": "3b79dd8b579ee50159a0be1a9a619dfa38a845fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/Galois", "max_forks_repo_path": "src/Symmetric.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/Galois", "max_issues_repo_path": "src/Symmetric.agda", "max_line_length": 131, "max_stars_count": 1, "max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/Galois", "max_stars_repo_path": "src/Symmetric.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z", "num_tokens": 1513, "size": 3620 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Rings.Definition open import Rings.IntegralDomains.Definition open import Vectors open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Definition open import Sets.EquivalenceRelations open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.UniqueFactorisationDomains.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where open import Rings.Units.Definition R open import Rings.Irreducibles.Definition intDom open import Rings.Associates.Definition intDom open import Rings.Primes.Definition intDom open import Rings.Divisible.Definition R open import Rings.Divisible.Lemmas R open import Rings.UniqueFactorisationDomains.Definition intDom open Ring R open Setoid S open Equivalence eq ufdImpliesUfd' : UFD → UFD' UFD'.factorisation (ufdImpliesUfd' x) = UFD.factorisation x Prime.isPrime (UFD'.irreduciblesArePrime (ufdImpliesUfd' ufd) {r} irreducible) a b (s , ab=rs) rNotDivA = {!!} where -- we can't factorise a, it might be a unit :( factA : Factorisation {a} (λ p → rNotDivA (divisibleWellDefined reflexive (symmetric p) (everythingDividesZero r))) {!!} factA = UFD.factorisation ufd {a} {!!} {!!} fact1 : Factorisation {r} {!!} {!!} fact1 = {!!} fact2 : Factorisation {r} {!!} {!!} fact2 = {!!} Prime.nonzero (UFD'.irreduciblesArePrime (ufdImpliesUfd' x) irreducible) = Irreducible.nonzero irreducible Prime.nonunit (UFD'.irreduciblesArePrime (ufdImpliesUfd' x) irreducible) = Irreducible.nonunit irreducible private lemma2 : UFD' → {r : A} → .(nonzero : (r ∼ 0R) → False) .(nonunit : (Unit r) → False) → (f1 f2 : Factorisation {r} nonzero nonunit) → factorisationEquality f1 f2 lemma2 x nonzero nonunit record { len = lenA ; factorise = factoriseA ; factoriseIsFactorisation = factoriseIsFactorisationA ; factoriseIsIrreducibles = factoriseIsIrreduciblesA ; distinct = distinctA } record { len = lenB ; factorise = factoriseB ; factoriseIsFactorisation = factoriseIsFactorisationB ; factoriseIsIrreducibles = factoriseIsIrreduciblesB ; distinct = distinctB } with ℕDecideEquality lenA lenB lemma2 x nonzero nonunit record { len = zero ; factorise = [] ; factoriseIsFactorisation = factoriseIsFactorisationA ; factoriseIsIrreducibles = factoriseIsIrreduciblesA ; distinct = distinctA } record { len = .0 ; factorise = [] ; factoriseIsFactorisation = factoriseIsFactorisationB ; factoriseIsIrreducibles = factoriseIsIrreduciblesB ; distinct = distinctB } | inl refl = record {} lemma2 ufd' {r} nonzero nonunit record { len = (succ len) ; factorise = (a1 ,, n1) ,- factoriseA ; factoriseIsFactorisation = factoriseIsFactorisationA ; factoriseIsIrreducibles = factoriseIsIrreduciblesA ; distinct = distinctA } record { len = .(succ len) ; factorise = factoriseB ; factoriseIsFactorisation = factoriseIsFactorisationB ; factoriseIsIrreducibles = factoriseIsIrreduciblesB ; distinct = distinctB } | inl refl = {!!} where a1Prime : Prime a1 a1Prime = UFD'.irreduciblesArePrime ufd' (_&&_.fst factoriseIsIrreduciblesA) a1DivR : a1 ∣ r a1DivR = {!!} ... | inr neq = {!!} ufd'ImpliesUfd : UFD' → UFD UFD.factorisation (ufd'ImpliesUfd x) = UFD'.factorisation x UFD.uniqueFactorisation (ufd'ImpliesUfd x) {r} nonzero nonunit f1 f2 = lemma2 x nonzero nonunit f1 f2
{ "alphanum_fraction": 0.7446991404, "avg_line_length": 60.1724137931, "ext": "agda", "hexsha": "8aa666027ff1ad34342a3a30051aa80b5522c488", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/UniqueFactorisationDomains/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/UniqueFactorisationDomains/Lemmas.agda", "max_line_length": 434, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/UniqueFactorisationDomains/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1086, "size": 3490 }
module Numeral.Matrix.Proofs where import Lvl open import Syntax.Number open import Data open import Data.Boolean open import Data.Boolean.Stmt open import Data.Boolean.Stmt.Proofs open import Data.Tuple as Tuple using (_⨯_ ; _,_) import Functional as Fn open import Function.Equals open import Lang.Inspect open import Logic.Predicate open import Logic.Propositional open import Logic.Propositional.Theorems open import Numeral.Finite open import Numeral.Finite.Bound open import Numeral.Finite.Oper open import Numeral.Finite.Oper.Comparisons open import Numeral.Finite.Oper.Comparisons.Proofs open import Numeral.Finite.Proofs open import Numeral.Matrix as Matrix using (Matrix ; SquareMatrix) open import Numeral.Natural open import Numeral.CoordinateVector as Vector using (Vector) import Numeral.CoordinateVector.Proofs as Vector open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_ ; _≢_ to _≢ₑ_) open import Relator.Equals.Proofs.Equivalence open import Structure.Function open import Structure.Operator.Group open import Structure.Operator.Monoid open import Structure.Operator.Properties open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Function open import Syntax.Implication open import Syntax.Transitivity open import Type private variable ℓ ℓₑ : Lvl.Level private variable T A B : Type{ℓ} module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where private variable s : ℕ ⨯ ℕ private variable w h n : ℕ private variable x y z : 𝕟(n) private variable id id₁ id₂ zero elem 𝟎ₛ 𝟏ₛ : T private variable f g inv : T → T private variable _▫_ _▫₁_ _▫₂_ _+ₛ_ _⋅ₛ_ : T → T → T private variable v v₁ v₂ : Vector(n)(T) private variable M : Matrix(s)(T) instance matrix-equiv : Equiv(Matrix(s)(T)) Equiv._≡_ matrix-equiv (Matrix.mat proj₁) (Matrix.mat proj₂) = proj₁ ⊜ proj₂ Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence matrix-equiv)) = reflexivity(_⊜_) Symmetry.proof (Equivalence.symmetry (Equiv.equivalence matrix-equiv)) = symmetry(_⊜_) Transitivity.proof (Equivalence.transitivity (Equiv.equivalence matrix-equiv)) = transitivity(_⊜_) instance matrix-map₂-binaryOperator : ⦃ oper : BinaryOperator(_▫_) ⦄ → BinaryOperator(Matrix.map₂{s = s}(_▫_)) BinaryOperator.congruence (matrix-map₂-binaryOperator {_▫_ = _▫_} ⦃ oper ⦄) (intro p) (intro q) = intro (congruence₂(_▫_) ⦃ oper ⦄ p q) instance matrix-map₂-identityₗ : ⦃ ident : Identityₗ(_▫_)(id) ⦄ → Identityₗ(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) Identityₗ.proof (matrix-map₂-identityₗ {_▫_ = _▫_} {id = id}) = intro(identityₗ(_▫_)(id)) instance matrix-map₂-identityᵣ : ⦃ ident : Identityᵣ(_▫_)(id) ⦄ → Identityᵣ(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) Identityᵣ.proof (matrix-map₂-identityᵣ {_▫_ = _▫_} {id = id}) = intro(identityᵣ(_▫_)(id)) instance matrix-map₂-identity : ⦃ ident : Identity(_▫_)(id) ⦄ → Identity(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) matrix-map₂-identity = intro instance matrix-map₂-absorberₗ : ⦃ absorb : Absorberₗ(_▫_)(id) ⦄ → Absorberₗ(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) Absorberₗ.proof (matrix-map₂-absorberₗ {_▫_ = _▫_} {id = id}) = intro(absorberₗ(_▫_)(id)) instance matrix-map₂-absorberᵣ : ⦃ absorb : Absorberᵣ(_▫_)(id) ⦄ → Absorberᵣ(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) Absorberᵣ.proof (matrix-map₂-absorberᵣ {_▫_ = _▫_} {id = id}) = intro(absorberᵣ(_▫_)(id)) instance matrix-map₂-absorber : ⦃ absorb : Absorber(_▫_)(id) ⦄ → Absorber(Matrix.map₂{s = s}(_▫_)) (Matrix.fill(id)) matrix-map₂-absorber = intro instance matrix-map₂-commutativity : ⦃ comm : Commutativity(_▫_) ⦄ → Commutativity(Matrix.map₂{s = s}(_▫_)) Commutativity.proof (matrix-map₂-commutativity {_▫_ = _▫_}) = intro(commutativity(_▫_)) instance matrix-map₂-associativity : ⦃ assoc : Associativity(_▫_) ⦄ → Associativity(Matrix.map₂{s = s}(_▫_)) Associativity.proof (matrix-map₂-associativity {_▫_ = _▫_}) = intro(associativity(_▫_)) instance matrix-map₂-map-inverseFunctionₗ : ⦃ ident : Identityₗ(_▫_)(id) ⦄ ⦃ inver : InverseFunctionₗ(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunctionₗ(Matrix.map₂{s = s}(_▫_)) ⦃ [∃]-intro _ ⦄ (Matrix.map inv) InverseFunctionₗ.proof (matrix-map₂-map-inverseFunctionₗ {_▫_ = _▫_} {inv = inv}) = intro (inverseFunctionₗ(_▫_) ⦃ [∃]-intro _ ⦄ (inv)) instance matrix-map₂-map-inverseFunctionᵣ : ⦃ ident : Identityᵣ(_▫_)(id) ⦄ ⦃ inver : InverseFunctionᵣ(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunctionᵣ(Matrix.map₂{s = s}(_▫_)) ⦃ [∃]-intro _ ⦄ (Matrix.map inv) InverseFunctionᵣ.proof (matrix-map₂-map-inverseFunctionᵣ {_▫_ = _▫_} {inv = inv}) = intro (inverseFunctionᵣ(_▫_) ⦃ [∃]-intro _ ⦄ (inv)) instance matrix-map₂-map-inverseFunction : ⦃ ident : Identity(_▫_)(id) ⦄ ⦃ inver : InverseFunction(_▫_) ⦃ [∃]-intro _ ⦄ (inv) ⦄ → InverseFunction(Matrix.map₂{s = s}(_▫_)) ⦃ [∃]-intro _ ⦄ (Matrix.map inv) matrix-map₂-map-inverseFunction = intro instance matrix-map-function : ⦃ func : Function(f) ⦄ → Function(Matrix.map{s = s} (f)) Function.congruence matrix-map-function (intro p) = intro(congruence₁ _ p) instance matrix-map₂-monoid : ⦃ monoid : Monoid(_▫_) ⦄ → Monoid(Matrix.map₂{s = s}(_▫_)) Monoid.identity-existence matrix-map₂-monoid = [∃]-intro(Matrix.fill(_)) instance matrix-map₂-group : ⦃ group : Group(_▫_) ⦄ → Group(Matrix.map₂{s = s}(_▫_)) Group.monoid matrix-map₂-group = matrix-map₂-monoid Group.inverse-existence matrix-map₂-group = [∃]-intro _ diagMat-element-zero : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ zero) ↔ ((x ≢ₑ y) ∨ (Vector.proj v(x) ≡ zero)) diagMat-element-zero {zero = zero}{𝐒 n}{v = v}{x = x}{y = y} = [↔]-intro ([↔]-to-[←] [→ₗ][∨][∧]-preserving ([∧]-intro l₁ l₂)) r ⦗ [↔]-transitivity ⦘ᵣ [∨]-mapₗ-[↔] ([↔]-transitivity false-true-opposites ([↔]-symmetry([¬]-unaryOperator [≡][≡?]-equivalence))) where l₁ : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ zero) ← IsFalse(x ≡? y) l₁ p with 𝐹 ← (x ≡? y) = reflexivity(_≡_) l₂ : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ zero) ← (Vector.proj v(x) ≡ zero) l₂ p with (x ≡? y) ... | 𝑇 = p ... | 𝐹 = reflexivity(_≡_) r : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ zero) → (IsFalse(x ≡? y) ∨ (Vector.proj v(x) ≡ zero)) r p with (x ≡? y) ... | 𝑇 = [∨]-introᵣ p ... | 𝐹 = [∨]-introₗ [⊤]-intro diagMat-element-vector : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ Vector.proj v(x)) ↔ ((x ≡ₑ y) ∨ (Vector.proj v(x) ≡ zero)) diagMat-element-vector {zero = zero}{𝐒 n}{v = v}{x = x}{y = y} = [↔]-intro ([↔]-to-[←] [→ₗ][∨][∧]-preserving ([∧]-intro l₁ l₂)) r ⦗ [↔]-transitivity ⦘ᵣ [∨]-mapₗ-[↔] ([↔]-symmetry [≡][≡?]-equivalence) where l₁ : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ Vector.proj v(x)) ← IsTrue(x ≡? y) l₁ p with 𝑇 ← (x ≡? y) = reflexivity(_≡_) l₂ : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ Vector.proj v(x)) ← (Vector.proj v(x) ≡ zero) l₂ p with (x ≡? y) ... | 𝑇 = reflexivity(_≡_) ... | 𝐹 = symmetry(_≡_) p r : (Matrix.proj (SquareMatrix.diagMat zero v) (x , y) ≡ Vector.proj v(x)) → (IsTrue(x ≡? y) ∨ (Vector.proj v(x) ≡ zero)) r p with (x ≡? y) ... | 𝑇 = [∨]-introₗ [⊤]-intro ... | 𝐹 = [∨]-introᵣ (symmetry(_≡_) p) scalarMat-element-zero : (Matrix.proj (SquareMatrix.scalarMat zero elem) (x , y) ≡ zero) ↔ ((x ≢ₑ y) ∨ (elem ≡ zero)) scalarMat-element-zero {zero = zero}{elem = elem}{x = x}{y = y} = Matrix.proj (SquareMatrix.scalarMat zero elem) (x , y) ≡ zero ⇔-[] Matrix.proj (SquareMatrix.diagMat zero (Vector.fill elem)) (x , y) ≡ zero ⇔-[ diagMat-element-zero ] (x ≢ₑ y) ∨ (Vector.proj (Vector.fill elem)(x) ≡ zero) ⇔-[] (x ≢ₑ y) ∨ (elem ≡ zero) ⇔-end scalarMat-element-scalar : (Matrix.proj (SquareMatrix.scalarMat zero elem) (x , y) ≡ elem) ↔ ((x ≡ₑ y) ∨ (elem ≡ zero)) scalarMat-element-scalar {zero = zero}{elem = elem}{x = x}{y = y} = Matrix.proj (SquareMatrix.scalarMat zero elem) (x , y) ≡ elem ⇔-[] Matrix.proj (SquareMatrix.diagMat zero (Vector.fill elem)) (x , y) ≡ Vector.fill elem(x) ⇔-[ diagMat-element-vector ] (x ≡ₑ y) ∨ (Vector.proj (Vector.fill elem)(x) ≡ zero) ⇔-[] (x ≡ₑ y) ∨ (elem ≡ zero) ⇔-end map₂-tail : Vector.tail(Vector.map₂(_▫_) v₁ v₂) ≡ Vector.map₂(_▫_) (Vector.tail v₁) (Vector.tail v₂) _⊜_.proof (map₂-tail {d = 𝐒(d)}) = reflexivity(_≡_) -- TODO: Probably not neccessary : row-tail : ∀{M : Matrix(𝐒(w) , 𝐒(h))(T)}{i} → Vector.tail(Matrix.row {s = (𝐒(w) , 𝐒(h))} M (𝐒(i))) ≡ Matrix.row {s = (w , h)}(Matrix.minor M(𝟎 , 𝟎))(i) col-scalarMat-is-indexProject : ∀{false true : T}{i : 𝕟(n)} → (Matrix.col(SquareMatrix.scalarMat {d = n} false true)(i) ≡ Vector.indexProject i true false) _⊜_.proof (col-scalarMat-is-indexProject {i = i}) {x} with (i ≡? x) ... | 𝑇 = reflexivity(_≡_) ... | 𝐹 = reflexivity(_≡_) row-scalarMat-is-indexProject : ∀{false true : T}{i : 𝕟(n)} → (Matrix.row(SquareMatrix.scalarMat {d = n} false true)(i) ≡ Vector.indexProject i true false) _⊜_.proof (row-scalarMat-is-indexProject {i = i}) {x} with (i ≡? x) | (x ≡? i) | commutativity ⦃ [≡]-equiv ⦄ (_≡?_) {i}{x} ... | 𝑇 | 𝑇 | [≡]-intro = reflexivity(_≡_) ... | 𝑇 | 𝐹 | () ... | 𝐹 | 𝑇 | () ... | 𝐹 | 𝐹 | [≡]-intro = reflexivity(_≡_) module _ ⦃ oper₁ : BinaryOperator(_+ₛ_) ⦄ ⦃ oper₂ : BinaryOperator(_⋅ₛ_) ⦄ ⦃ ident₁ : Identityᵣ(_+ₛ_)(𝟎ₛ) ⦄ ⦃ ident₂ : Identityᵣ(_⋅ₛ_)(𝟏ₛ) ⦄ ⦃ absor₂ : Absorberᵣ(_⋅ₛ_)(𝟎ₛ) ⦄ where instance postulate matrix-multPattern-identityᵣ : Identityᵣ{T₁ = Matrix(s) T}(Matrix.multPattern(_+ₛ_)(_⋅ₛ_) 𝟎ₛ) (SquareMatrix.scalarMat 𝟎ₛ 𝟏ₛ) {-_⊜_.proof (Identityᵣ.proof (matrix-multPattern-identityᵣ ) {M}) {x , y} = Matrix.proj (Matrix.multPattern(_+ₛ_)(_⋅ₛ_) 𝟎ₛ M (SquareMatrix.scalarMat 𝟎ₛ 𝟏ₛ)) (x , y) 🝖[ _≡_ ]-[] Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.map₂(_⋅ₛ_) (Matrix.row(M)(y)) (Matrix.col(SquareMatrix.scalarMat 𝟎ₛ 𝟏ₛ)(x))) 🝖[ _≡_ ]-[ congruence₁(Vector.foldᵣ(_+ₛ_) 𝟎ₛ) (congruence₂ᵣ(Vector.map₂(_⋅ₛ_))(Matrix.row M(y)) (col-scalarMat-is-indexProject {false = 𝟎ₛ}{true = 𝟏ₛ}{i = x})) ] Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.map₂(_⋅ₛ_) (Matrix.row(M)(y)) (Vector.indexProject x 𝟏ₛ 𝟎ₛ)) 🝖[ _≡_ ]-[ congruence₁(Vector.foldᵣ(_+ₛ_) 𝟎ₛ) (Vector.map₂-indexProject-identityᵣ {v = Matrix.row(M)(y)}{i = x}) ] Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.indexProject x (Vector.proj(Matrix.row(M)(y))(x)) 𝟎ₛ) 🝖[ _≡_ ]-[] Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.indexProject x (Matrix.proj M(x , y)) 𝟎ₛ) 🝖[ _≡_ ]-[ {!!} ] Matrix.proj M(x , y) ⋅ₛ (Vector.foldᵣ(_+ₛ_) 𝟎ₛ (Vector.indexProject x 𝟏ₛ 𝟎ₛ)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅ₛ_)(_) {!!} ] Matrix.proj M(x , y) ⋅ₛ 𝟏ₛ 🝖[ _≡_ ]-[ identityᵣ(_⋅ₛ_)(𝟏ₛ) ] Matrix.proj M(x , y) 🝖-end -} module _ ⦃ oper₁ : BinaryOperator(_+ₛ_) ⦄ ⦃ oper₂ : BinaryOperator(_⋅ₛ_) ⦄ ⦃ ident₁ : Identityₗ(_▫₁_)(id₁) ⦄ ⦃ ident₂ : Identityₗ(_▫₂_)(id₂) ⦄ ⦃ absor₂ : Absorberₗ(_⋅ₛ_)(𝟎ₛ) ⦄ where instance postulate matrix-multPattern-identityₗ : Identityₗ{T₂ = Matrix(n , n) T}(Matrix.multPattern(_▫₂_)(_▫₁_) id₁) (SquareMatrix.scalarMat id₂ id₁) module _ ⦃ oper₁ : BinaryOperator(_+ₛ_) ⦄ ⦃ oper₂ : BinaryOperator(_⋅ₛ_) ⦄ ⦃ ident₁ : Identity(_▫₁_)(id₁) ⦄ ⦃ ident₂ : Identity(_▫₂_)(id₂) ⦄ ⦃ absor₂ : Absorber(_⋅ₛ_)(𝟎ₛ) ⦄ where instance postulate matrix-multPattern-identity : Identity{T = Matrix(n , n) T}(Matrix.multPattern(_▫₂_)(_▫₁_) id₁) (SquareMatrix.scalarMat id₂ id₁) {- instance matrix-map₂-distributivityᵣ : ⦃ dist : Distributivityᵣ(_▫₁_)(_▫₂_) ⦄ → Distributivityᵣ(Matrix.multPattern(_▫₂_)(_▫₁_) id) (Matrix.map₂{s = s}(_▫₂_)) _⊜_.proof (Distributivityᵣ.proof (matrix-map₂-distributivityᵣ {_▫₁_} {_▫₂_} {id = id}) {a} {b} {c}) {x , y} = Matrix.proj(Matrix.multPattern(_▫₂_) (_▫₁_) id (Matrix.map₂(_▫₂_) a b) c) (x , y) 🝖[ _≡_ ]-[] Vector.foldᵣ(_▫₂_) id (Vector.map₂ (_▫₁_) (Matrix.row(Matrix.map₂(_▫₂_) a b)(y)) (Matrix.col(c)(x))) 🝖[ _≡_ ]-[] Vector.foldᵣ(_▫₂_) id (Vector.map₂(_▫₁_) (λ x₁ → (Matrix.proj a (x₁ , y)) ▫₂ (Matrix.proj b (x₁ , y))) (λ y₁ → Matrix.proj c (x , y₁))) 🝖[ _≡_ ]-[ {!!} ] (Vector.foldᵣ(_▫₂_) id (Vector.map₂ _▫₁_ (λ x₁ → Matrix.proj a (x₁ , y)) (λ y₁ → Matrix.proj c (x , y₁)))) ▫₂ (Vector.foldᵣ(_▫₂_) id (Vector.map₂(_▫₁_) (λ x₁ → Matrix.proj b (x₁ , y)) (λ y₁ → Matrix.proj c (x , y₁)))) 🝖[ _≡_ ]-[] (Vector.foldᵣ(_▫₂_) id (Vector.map₂ (_▫₁_) (Matrix.row(a)(y)) (Matrix.col(c)(x)))) ▫₂ (Vector.foldᵣ(_▫₂_) id (Vector.map₂ (_▫₁_) (Matrix.row(b)(y)) (Matrix.col(c)(x)))) 🝖[ _≡_ ]-[] Matrix.proj(Matrix.map₂(_▫₂_) (Matrix.multPattern(_▫₂_)(_▫₁_) id a c) (Matrix.multPattern(_▫₂_)(_▫₁_) id b c)) (x , y) 🝖-end -}
{ "alphanum_fraction": 0.6053691275, "avg_line_length": 56.3445378151, "ext": "agda", "hexsha": "1871cab6d693ae7f7be9db117b7d0e8abae540a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Matrix/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Matrix/Proofs.agda", "max_line_length": 276, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Matrix/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5296, "size": 13410 }
module Logic.Linear.Properties where open import Logic.Linear using (LinearProp; _⊢_; Proof ; _^⊥; _⊗_; _⊕_; _&_; _⅋_; _⊸_; _≡_; e!_; e?_ ; ^⊥-i; ⊗-i; ⊕-i₁; ⊕-i₂; &-i; ⅋-i; e?-i₁; e?-i₂; e!-i; e?-e; swap ) open import Data.Nat using (ℕ; zero; suc) open import Data.Fin using (Fin; zero; suc) open import Data.Vec using (Vec; []; _∷_; _++_; map) one : {n : ℕ} → Fin (suc (suc n)) one = suc zero two : {n : ℕ} → Fin (suc (suc (suc n))) two = suc one three : {n : ℕ} → Fin (suc (suc (suc (suc n)))) three = suc two -- Proof of distributivity of _⊗_ over _⊕_: p ⊗ (q ⊕ r) ≡ (p ⊗ q) ⊕ (p ⊗ r). ⊕⊗-distrib : ∀ {a} {A : Set a} (S : LinearProp A → Set a) {p q r : LinearProp A} → Proof S (p ⊗ (q ⊕ r) ≡ (p ⊗ q) ⊕ (p ⊗ r)) ⊕⊗-distrib {_} {_} S {p} {q} {r} = &-i left⊸right right⊸left where left⊸right : S ⊢ (p ⊗ (q ⊕ r) ⊸ p ⊗ q ⊕ p ⊗ r ∷ []) left⊸right = ⅋-i (⅋-i (swap zero one q&r)) where q&r : S ⊢ (q ^⊥ & r ^⊥ ∷ p ^⊥ ∷ p ⊗ q ⊕ p ⊗ r ∷ []) q&r = &-i q-side r-side where q-side : S ⊢ (q ^⊥ ∷ p ^⊥ ∷ p ⊗ q ⊕ p ⊗ r ∷ []) q-side = swap one two (swap zero one disj) where conj : S ⊢ (p ⊗ q ∷ p ^⊥ ∷ q ^⊥ ∷ []) conj = ⊗-i (^⊥-i p) (^⊥-i q) disj : S ⊢ (p ⊗ q ⊕ p ⊗ r ∷ q ^⊥ ∷ p ^⊥ ∷ []) disj = ⊕-i₁ (swap one two conj) r-side : S ⊢ (r ^⊥ ∷ p ^⊥ ∷ p ⊗ q ⊕ p ⊗ r ∷ []) r-side = swap one two (swap zero one disj) where conj : S ⊢ (p ⊗ r ∷ p ^⊥ ∷ r ^⊥ ∷ []) conj = ⊗-i (^⊥-i p) (^⊥-i r) disj : S ⊢ (p ⊗ q ⊕ p ⊗ r ∷ r ^⊥ ∷ p ^⊥ ∷ []) disj = ⊕-i₂ (swap one two conj) right⊸left : S ⊢ (p ⊗ q ⊕ p ⊗ r ⊸ p ⊗ (q ⊕ r) ∷ []) right⊸left = ⅋-i (&-i q-side r-side) where q-side : S ⊢ (p ^⊥ ⅋ q ^⊥ ∷ p ⊗ (q ⊕ r) ∷ []) q-side = ⅋-i (swap one two (swap zero one conj)) where disj : S ⊢ (q ⊕ r ∷ q ^⊥ ∷ []) disj = ⊕-i₁ (^⊥-i q) conj : S ⊢ (p ⊗ (q ⊕ r) ∷ p ^⊥ ∷ q ^⊥ ∷ []) conj = ⊗-i (^⊥-i p) disj r-side : S ⊢ (p ^⊥ ⅋ r ^⊥ ∷ p ⊗ (q ⊕ r) ∷ []) r-side = ⅋-i (swap one two (swap zero one conj)) where disj : S ⊢ (q ⊕ r ∷ r ^⊥ ∷ []) disj = ⊕-i₂ (^⊥-i r) conj : S ⊢ (p ⊗ (q ⊕ r) ∷ p ^⊥ ∷ r ^⊥ ∷ []) conj = ⊗-i (^⊥-i p) disj -- Proof of isomorphism of e!_ through _&_ and _⊗_: e! (p & q) ≡ (e! p) ⊗ (e! q). e!-iso : ∀ {a} {A : Set a} (S : LinearProp A → Set a) {p q : LinearProp A} → Proof S (e! (p & q) ≡ (e! p) ⊗ (e! q)) e!-iso {_} {_} S {p} {q} = &-i left⊸right right⊸left where left⊸right : S ⊢ (e! (p & q) ⊸ e! p ⊗ e! q ∷ []) left⊸right = ⅋-i (e?-e (swap zero two conj)) where p-side : S ⊢ (p ∷ e? (p ^⊥ ⊕ q ^⊥) ∷ []) p-side = swap zero one (e?-i₂ disj) where disj : S ⊢ (p ^⊥ ⊕ q ^⊥ ∷ p ∷ []) disj = ⊕-i₁ (swap zero one (^⊥-i p)) q-side : S ⊢ (q ∷ e? (p ^⊥ ⊕ q ^⊥) ∷ []) q-side = swap zero one (e?-i₂ disj) where disj : S ⊢ (p ^⊥ ⊕ q ^⊥ ∷ q ∷ []) disj = ⊕-i₂ (swap zero one (^⊥-i q)) conj : S ⊢ (e! p ⊗ e! q ∷ e? (p ^⊥ ⊕ q ^⊥) ∷ e? (p ^⊥ ⊕ q ^⊥) ∷ []) conj = ⊗-i (e!-i p-side) (e!-i q-side) right⊸left : S ⊢ (e! p ⊗ e! q ⊸ e! (p & q) ∷ []) right⊸left = ⅋-i (⅋-i swapped) where p-side : S ⊢ (p ∷ e? (p ^⊥) ∷ e? (q ^⊥) ∷ []) p-side = swap zero two (e?-i₁ init) where init : S ⊢ (e? (p ^⊥) ∷ p ∷ []) init = e?-i₂ (swap zero one (^⊥-i p)) q-side : S ⊢ (q ∷ e? (p ^⊥) ∷ e? (q ^⊥) ∷ []) q-side = swap zero one (swap one two (e?-i₁ init)) where init : S ⊢ (e? (q ^⊥) ∷ q ∷ []) init = e?-i₂ (swap zero one (^⊥-i q)) conj : S ⊢ (p & q ∷ e? (p ^⊥) ∷ e? (q ^⊥) ∷ []) conj = &-i p-side q-side swapped : S ⊢ (e? (p ^⊥) ∷ e? (q ^⊥) ∷ e! (p & q) ∷ []) swapped = swap one two (swap zero one (e!-i conj)) -- Proof of mapping of _⊗_ and _⅋_: p ⊗ (q ⅋ r) ⊸ (p ⊗ q) ⅋ r. ⊗⅋-map : ∀ {a} {A : Set a} (S : LinearProp A → Set a) {p q r : LinearProp A} → Proof S (p ⊗ (q ⅋ r) ⊸ (p ⊗ q) ⅋ r) ⊗⅋-map {_} {_} S {p} {q} {r} = ⅋-i (⅋-i (swap zero two disj)) where pq-side : S ⊢ (q ^⊥ ∷ p ⊗ q ∷ p ^⊥ ∷ []) pq-side = swap zero one (swap one two (⊗-i (^⊥-i p) (^⊥-i q))) r-side : S ⊢ (r ^⊥ ∷ r ∷ []) r-side = swap zero one (^⊥-i r) conj : S ⊢ (q ^⊥ ⊗ r ^⊥ ∷ p ⊗ q ∷ p ^⊥ ∷ r ∷ []) conj = ⊗-i pq-side r-side disj : S ⊢ (p ⊗ q ⅋ r ∷ (q ^⊥ ⊗ r ^⊥) ∷ p ^⊥ ∷ []) disj = ⅋-i (swap one two (swap zero one (swap two three conj)))
{ "alphanum_fraction": 0.3983721456, "avg_line_length": 40.9537037037, "ext": "agda", "hexsha": "5f2317feb6418b829d1ead546c7ee5038bd5a2eb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9ce2e8b0e801b3c68b7e00731f57bc322d89f222", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "brunoczim/linear-logic", "max_forks_repo_path": "src/Logic/Linear/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9ce2e8b0e801b3c68b7e00731f57bc322d89f222", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "brunoczim/linear-logic", "max_issues_repo_path": "src/Logic/Linear/Properties.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "9ce2e8b0e801b3c68b7e00731f57bc322d89f222", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "brunoczim/linear-logic", "max_stars_repo_path": "src/Logic/Linear/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2322, "size": 4423 }
------------------------------------------------------------------------------ -- In the Agda standard library, gcd 0 0 = 0. ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.GCD.GCD00-SL where open import Data.Nat.GCD open import Data.Product open import Relation.Binary.PropositionalEquality open GCD hiding ( refl ) ------------------------------------------------------------------------------ gcd00 : proj₁ (gcd 0 0) ≡ 0 gcd00 = refl -- A different proof. gcd00' : GCD 0 0 0 gcd00' = base
{ "alphanum_fraction": 0.4242424242, "avg_line_length": 27.9230769231, "ext": "agda", "hexsha": "d49c8302ee8c6f6fbf871cbe100164a02531ee1f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/GCD/GCD00-SL.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/GCD/GCD00-SL.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/GCD/GCD00-SL.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 146, "size": 726 }
module SystemF where open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Fin as Fin using (Fin; zero; suc) open import Function as Fun using (_∘_) open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong; cong₂; cong-app; sym) open Eq.≡-Reasoning -- ------------------------------------------------------------------------ infixr 7 _⇒_ infix 9 `_ data Type (n : ℕ) : Set where `_ : Fin n → Type n _⇒_ : Type n → Type n → Type n `∀ : Type (1 + n) → Type n ⇒-cong : ∀ { n } { τ₁¹ τ₁² τ₂¹ τ₂² : Type n } → τ₁¹ ≡ τ₂¹ → τ₁² ≡ τ₂² -- ---------------------- → τ₁¹ ⇒ τ₁² ≡ τ₂¹ ⇒ τ₂² ⇒-cong ≡τ¹ ≡τ² = cong₂ _⇒_ ≡τ¹ ≡τ² `∀-cong : ∀ { n } { τ₁ τ₂ : Type (1 + n) } → τ₁ ≡ τ₂ -- ------------- → `∀ τ₁ ≡ `∀ τ₂ `∀-cong ≡τ = cong `∀ ≡τ -- ------------------------------------------------------------------------ open import Sigma.Subst.Core open import Sigma.Renaming.Base ren-τ : ∀ { m n } → Ren m n → Type m → Type n ren-τ ρ (` α) = ` ρ α ren-τ ρ (τ₁ ⇒ τ₂) = ren-τ ρ τ₁ ⇒ ren-τ ρ τ₂ ren-τ ρ (`∀ τ) = `∀ (ren-τ (ρ ⇑) τ) _⇑τ : ∀ { m n } → Sub (Type n) m → Sub (Type (1 + n)) (1 + m) σ ⇑τ = ` zero ∷ (ren-τ ↑ ∘ σ) sub-τ : ∀ { m n } → Sub (Type n) m → Type m → Type n sub-τ σ (` α) = σ α sub-τ σ (τ₁ ⇒ τ₂) = sub-τ σ τ₁ ⇒ sub-τ σ τ₂ sub-τ σ (`∀ τ) = `∀ (sub-τ (σ ⇑τ) τ) -- ------------------------------------------------------------------------ open import Sigma.Subst.Properties using (extensionality) open import Sigma.Renaming.Properties using (∘-⇑-distrib; ⇑-id) -- ------------------------------------------------------------------------ -- Congruences -- ------------------------------------------------------------------------ ren-τ-cong : ∀ { m n } { ρ₁ ρ₂ : Ren m n } → ρ₁ ≡ ρ₂ -- ------- → ren-τ ρ₁ ≡ ren-τ ρ₂ ren-τ-cong ρ₁≡ρ₂ = cong ren-τ ρ₁≡ρ₂ ⇑τ-cong : ∀ { m n } { σ₁ σ₂ : Sub (Type n) m } → σ₁ ≡ σ₂ -- ------------ → σ₁ ⇑τ ≡ σ₂ ⇑τ ⇑τ-cong σ₁≡σ₂ = cong _⇑τ σ₁≡σ₂ -- ⇑τ✶-cong sub-τ-cong : ∀ { m n } { σ₁ σ₂ : Sub (Type n) m } → σ₁ ≡ σ₂ -- -------- → sub-τ σ₁ ≡ sub-τ σ₂ sub-τ-cong σ₁≡σ₂ = cong sub-τ σ₁≡σ₂ -- ------------------------------------------------------------------------ -- Coincidence Laws -- ------------------------------------------------------------------------ -- Every renaming can form a subsitution ⇑τ-coincidence : ∀ { m n } (ρ : Ren m n) → `_ ∘ (ρ ⇑) ≡ (`_ ∘ ρ) ⇑τ ⇑τ-coincidence ρ = extensionality lemma where lemma : ∀ x → ` ((ρ ⇑) x) ≡ ((`_ ∘ ρ) ⇑τ) x lemma zero = refl lemma (suc x) = refl ren-τ-coincidence : ∀ { m n } (ρ : Ren m n) → ren-τ ρ ≡ sub-τ (`_ ∘ ρ) ren-τ-coincidence ρ = extensionality (lemma ρ) where lemma : ∀ { m n } (ρ : Ren m n) → ∀ τ → ren-τ ρ τ ≡ sub-τ (`_ ∘ ρ) τ lemma ρ (` α) = refl lemma ρ (τ₁ ⇒ τ₂) = ⇒-cong (lemma ρ τ₁) (lemma ρ τ₂) lemma ρ (`∀ τ) = `∀-cong ( begin ren-τ (ρ ⇑) τ ≡⟨ lemma (ρ ⇑) τ ⟩ sub-τ (`_ ∘ (ρ ⇑)) τ ≡⟨ cong-app (sub-τ-cong (⇑τ-coincidence ρ)) τ ⟩ sub-τ ((`_ ∘ ρ) ⇑τ) τ ∎) -- ------------------------------------------------------------------------ -- Identity laws -- ------------------------------------------------------------------------ ⇑τ-id : ∀ { n : ℕ } → ((`_ { n }) ⇑τ) ≡ `_ { n = 1 + n } ⇑τ-id = extensionality (lemma) where lemma : ∀ { n : ℕ } x → ((`_ { n }) ⇑τ) x ≡ ` x lemma zero = refl lemma (suc x) = refl ren-τ-idᵣ : ∀ { n } → ren-τ (id { n }) ≡ Fun.id ren-τ-idᵣ = extensionality lemma where lemma : ∀ { n } τ → ren-τ (id { n }) τ ≡ τ lemma (` α) = refl lemma (τ₁ ⇒ τ₂) = ⇒-cong (lemma τ₁) (lemma τ₂) lemma (`∀ τ) = `∀-cong ( begin ren-τ (id ⇑) τ ≡⟨ cong-app (ren-τ-cong ⇑-id) τ ⟩ ren-τ id τ ≡⟨ lemma τ ⟩ τ ∎) sub-τ-idₗ : ∀ { m n } (σ : Sub (Type n) m) → sub-τ σ ∘ `_ ≡ σ sub-τ-idₗ σ = extensionality lemma where lemma : ∀ x → sub-τ σ (` x) ≡ σ x lemma zero = refl lemma (suc x) = refl -- The functional form of the Monad Law: Right Identity sub-τ-idᵣ : ∀ { n } → sub-τ (`_ {n}) ≡ Fun.id sub-τ-idᵣ = extensionality lemma where lemma : ∀ { n } τ → sub-τ (`_ {n}) τ ≡ τ lemma (` α) = refl lemma (τ₁ ⇒ τ₂) = ⇒-cong (lemma τ₁) (lemma τ₂) lemma (`∀ τ) = `∀-cong ( begin sub-τ ((`_) ⇑τ) τ ≡⟨ cong-app (sub-τ-cong ⇑τ-id) τ ⟩ sub-τ (`_) τ ≡⟨ lemma τ ⟩ τ ∎) -- ------------------------------------------------------------------------ -- Monad Law : Compositionality -- ------------------------------------------------------------------------ -- Lemmas required to prove the law: -- sub-τ σ₂ ∘ sub-τ σ₁ ≡ sub-τ (sub-τ σ₂ ∘ σ₁) ∘-ren-τ-distrib : ∀ { m n k } ( ρ₁ : Ren m n ) ( ρ₂ : Ren n k ) → ren-τ ρ₂ ∘ ren-τ ρ₁ ≡ ren-τ (ρ₂ ∘ ρ₁) ∘-ren-τ-distrib ρ₁ ρ₂ = extensionality (lemma ρ₁ ρ₂) where lemma : ∀ { m n k } ( ρ₁ : Ren m n ) ( ρ₂ : Ren n k ) → ∀ τ → ren-τ ρ₂ (ren-τ ρ₁ τ) ≡ ren-τ (ρ₂ ∘ ρ₁) τ lemma ρ₁ ρ₂ (` α) = refl lemma ρ₁ ρ₂ (τ₁ ⇒ τ₂) = ⇒-cong (lemma ρ₁ ρ₂ τ₁) (lemma ρ₁ ρ₂ τ₂) lemma ρ₁ ρ₂ (`∀ τ) = `∀-cong ( begin ren-τ (ρ₂ ⇑) (ren-τ (ρ₁ ⇑) τ) ≡⟨ lemma (ρ₁ ⇑) (ρ₂ ⇑) τ ⟩ ren-τ (ρ₂ ⇑ ∘ ρ₁ ⇑) τ ≡⟨ cong-app (ren-τ-cong (∘-⇑-distrib ρ₁ ρ₂)) τ ⟩ ren-τ ((ρ₂ ∘ ρ₁) ⇑) τ ∎) ∘-⇑-ren-τ-distrib : ∀ { m n k } (σ : Sub (Type n) m) (ρ : Ren n k) → ren-τ (ρ ⇑) ∘ (σ ⇑τ) ≡ (ren-τ ρ ∘ σ) ⇑τ ∘-⇑-ren-τ-distrib σ ρ = extensionality lemma where lemma : ∀ x → ren-τ (ρ ⇑) ((σ ⇑τ) x) ≡ ((ren-τ ρ ∘ σ) ⇑τ) x lemma zero = refl lemma (suc x) = begin ren-τ (ρ ⇑) ((σ ⇑τ) (suc x)) ≡⟨⟩ ren-τ (ρ ⇑) (ren-τ ↑ (σ x)) ≡⟨ cong-app (∘-ren-τ-distrib ↑ (ρ ⇑)) (σ x) ⟩ ren-τ (ρ ⇑ ∘ ↑) (σ x) ≡⟨ cong-app (sym (∘-ren-τ-distrib ρ ↑)) (σ x) ⟩ ren-τ ↑ (ren-τ ρ (σ x)) ≡⟨⟩ ((ren-τ ρ ∘ σ) ⇑τ) (suc x) ∎ -- ∘-⇑✶-ren-τ-distrib ∘-⇑-τ-distrib : ∀ { m n k } (σ : Sub (Type k) n) (ρ : Ren m n) → (σ ⇑τ) ∘ (ρ ⇑) ≡ (σ ∘ ρ) ⇑τ ∘-⇑-τ-distrib σ ρ = extensionality lemma where lemma : ∀ x → (σ ⇑τ) ((ρ ⇑) x) ≡ ((σ ∘ ρ) ⇑τ) x lemma zero = refl lemma (suc x) = refl ∘-sub-ren-τ-distrib : ∀ { m n k } (σ : Sub (Type k) n) (ρ : Ren m n) → sub-τ σ ∘ ren-τ ρ ≡ sub-τ (σ ∘ ρ) ∘-sub-ren-τ-distrib σ ρ = extensionality (lemma σ ρ) where lemma : ∀ { m n k } (σ : Sub (Type k) n) (ρ : Ren m n) → ∀ τ → sub-τ σ (ren-τ ρ τ) ≡ sub-τ (σ ∘ ρ) τ lemma σ ρ (` α) = refl lemma σ ρ (τ₁ ⇒ τ₂) = ⇒-cong (lemma σ ρ τ₁) (lemma σ ρ τ₂) lemma σ ρ (`∀ τ) = `∀-cong ( begin sub-τ (σ ⇑τ) (ren-τ (ρ ⇑) τ) ≡⟨ lemma (σ ⇑τ) (ρ ⇑) τ ⟩ sub-τ ((σ ⇑τ) ∘ (ρ ⇑)) τ ≡⟨ cong-app (sub-τ-cong (∘-⇑-τ-distrib σ ρ)) τ ⟩ sub-τ ((σ ∘ ρ) ⇑τ) τ ∎) ∘-ren-sub-τ-distrib : ∀ { m n k } (σ : Sub (Type n) m) (ρ : Ren n k) → ren-τ ρ ∘ sub-τ σ ≡ sub-τ (ren-τ ρ ∘ σ) ∘-ren-sub-τ-distrib σ ρ = extensionality (lemma σ ρ) where lemma : ∀ { m n k } (σ : Sub (Type n) m) (ρ : Ren n k) → ∀ τ → ren-τ ρ (sub-τ σ τ) ≡ sub-τ (ren-τ ρ ∘ σ) τ lemma σ ρ (` α) = refl lemma σ ρ (τ₁ ⇒ τ₂) = ⇒-cong (lemma σ ρ τ₁) (lemma σ ρ τ₂) lemma σ ρ (`∀ τ) = `∀-cong ( begin ren-τ (ρ ⇑) (sub-τ (σ ⇑τ) τ) ≡⟨ lemma (σ ⇑τ) (ρ ⇑) τ ⟩ sub-τ (ren-τ (ρ ⇑) ∘ (σ ⇑τ)) τ ≡⟨ cong-app (sub-τ-cong (∘-⇑-ren-τ-distrib σ ρ)) τ ⟩ sub-τ ((ren-τ ρ ∘ σ) ⇑τ) τ ∎) ∘-⇑-sub-τ-distrib : ∀ { m n k } (σ₁ : Sub (Type n) m) (σ₂ : Sub (Type k) n) → sub-τ (σ₂ ⇑τ) ∘ σ₁ ⇑τ ≡ (sub-τ σ₂ ∘ σ₁) ⇑τ ∘-⇑-sub-τ-distrib σ₁ σ₂ = extensionality lemma where lemma : ∀ x → sub-τ (σ₂ ⇑τ) ((σ₁ ⇑τ) x) ≡ ((sub-τ σ₂ ∘ σ₁) ⇑τ) x lemma zero = refl lemma (suc x) = begin sub-τ (σ₂ ⇑τ) ((σ₁ ⇑τ) (suc x)) ≡⟨⟩ sub-τ (σ₂ ⇑τ) (ren-τ ↑ (σ₁ x)) ≡⟨ cong-app (∘-sub-ren-τ-distrib (σ₂ ⇑τ) ↑) (σ₁ x) ⟩ sub-τ ((σ₂ ⇑τ) ∘ ↑) (σ₁ x) ≡⟨⟩ sub-τ (ren-τ ↑ ∘ σ₂) (σ₁ x) ≡⟨ cong-app (sym (∘-ren-sub-τ-distrib σ₂ ↑)) (σ₁ x) ⟩ ren-τ ↑ (sub-τ σ₂ (σ₁ x)) ≡⟨⟩ ((sub-τ σ₂ ∘ σ₁) ⇑τ) (suc x) ∎ ∘-sub-τ-distrib : ∀ { m n k } ( σ₁ : Sub (Type n) m ) ( σ₂ : Sub (Type k) n ) → sub-τ σ₂ ∘ sub-τ σ₁ ≡ sub-τ (sub-τ σ₂ ∘ σ₁) ∘-sub-τ-distrib σ₁ σ₂ = extensionality (lemma σ₁ σ₂) where lemma : ∀ { m n k } ( σ₁ : Sub (Type n) m ) ( σ₂ : Sub (Type k) n ) → ∀ τ → sub-τ σ₂ (sub-τ σ₁ τ) ≡ sub-τ (sub-τ σ₂ ∘ σ₁) τ lemma σ₁ σ₂ (` α) = refl lemma σ₁ σ₂ (τ₁ ⇒ τ₂) = ⇒-cong (lemma σ₁ σ₂ τ₁) (lemma σ₁ σ₂ τ₂) lemma σ₁ σ₂ (`∀ τ) = `∀-cong ( begin sub-τ (σ₂ ⇑τ) (sub-τ (σ₁ ⇑τ) τ) ≡⟨ lemma (σ₁ ⇑τ) (σ₂ ⇑τ) τ ⟩ sub-τ (sub-τ (σ₂ ⇑τ) ∘ (σ₁ ⇑τ)) τ ≡⟨ cong-app (sub-τ-cong (∘-⇑-sub-τ-distrib σ₁ σ₂)) τ ⟩ sub-τ ((sub-τ σ₂ ∘ σ₁) ⇑τ) τ ∎) -- ------------------------------------------------------------------------ -- Supplementary Laws -- ------------------------------------------------------------------------ ∘-sub-τ : ∀ { m n k l } ( σ₁ : Sub (Type n) m ) ( σ₂ : Sub (Type k) n ) (σ₃ : Sub (Type l) k) → sub-τ σ₃ ∘ (sub-τ σ₂ ∘ σ₁) ≡ sub-τ (sub-τ σ₃ ∘ σ₂) ∘ σ₁ ∘-sub-τ σ₁ σ₂ σ₃ = begin sub-τ σ₃ ∘ (sub-τ σ₂ ∘ σ₁) ≡⟨⟩ (sub-τ σ₃ ∘ sub-τ σ₂) ∘ σ₁ ≡⟨ cong (_∘ σ₁) (∘-sub-τ-distrib σ₂ σ₃) ⟩ sub-τ (sub-τ σ₃ ∘ σ₂) ∘ σ₁ ∎ -- ------------------------------------------------------------------------ -- infixl 7 _·_ _[_] -- infix 9 #_ -- data Term (n : ℕ) (m : ℕ) : Set where -- #_ : Fin n → Term n m -- ƛ : Term (1 + n) m → Term n m -- _·_ : Term n m → Term n m → Term n m -- _[_] : Term n m → Type m → Term n m -- Λ : Term n (1 + m) → Term n m
{ "alphanum_fraction": 0.4032641256, "avg_line_length": 29.247734139, "ext": "agda", "hexsha": "1faa62943054e75ed9f3d6a3c9bcf6aaabe45527", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-sigma", "max_forks_repo_path": "examples/SystemF.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-sigma", "max_issues_repo_path": "examples/SystemF.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-sigma", "max_stars_repo_path": "examples/SystemF.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4393, "size": 9681 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Empty open import lib.types.Group open import lib.types.LoopSpace open import lib.types.Nat open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.TLevel open import lib.types.Truncation open import lib.groups.GroupProduct open import lib.groups.Homomorphism open import lib.groups.Isomorphism open import lib.groups.LoopSpace open import lib.groups.TruncationGroup open import lib.groups.Unit module lib.groups.HomotopyGroup where {- Higher homotopy groups -} module _ {i} where πS : (n : ℕ) (X : Ptd i) → Group i πS n X = Trunc-group (Ω^S-group-structure n X) π'S : (n : ℕ) (X : Ptd i) → Group i π'S n X = Trunc-group (Ω^'S-group-structure n X) fundamental-group : (X : Ptd i) → Group i fundamental-group X = πS 0 X module _ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} where πS-fmap : X ⊙→ Y → (πS n X →ᴳ πS n Y) πS-fmap F = Trunc-group-fmap (Ω^S-group-structure-fmap n F) π'S-fmap : X ⊙→ Y → (π'S n X →ᴳ π'S n Y) π'S-fmap F = Trunc-group-fmap (Ω^'S-group-structure-fmap n F) πS-emap : (X ⊙≃ Y) → (πS n X ≃ᴳ πS n Y) πS-emap e = Trunc-group-emap (Ω^S-group-structure-emap n e) π'S-emap : (X ⊙≃ Y) → (π'S n X ≃ᴳ π'S n Y) π'S-emap e = Trunc-group-emap (Ω^'S-group-structure-emap n e) {- π_(n+1) of a space is π_n of its loop space -} abstract πS-Ω-split-iso : ∀ {i} (n : ℕ) (X : Ptd i) → πS (S n) X ≃ᴳ πS n (⊙Ω X) πS-Ω-split-iso n X = group-hom (Trunc-fmap (Ω^-Ω-split (S n) X)) (Trunc-elim (λ p → Trunc-elim (λ q → ap [_] (Ω^S-Ω-split-∙ n X p q)))) , Trunc-isemap {n = 0} (Ω^-Ω-split-is-equiv (S n) X) {- We can shift the truncation inside the loop in the definition of π -} module _ {i} where private record Ω^STruncPreIso (n : ℕ) (m : ℕ₋₂) (k : ℕ₋₂) (X : Ptd i) : Type i where field F : ⊙Ω^ (S n) (⊙Trunc k X) ⊙→ ⊙Trunc m (⊙Ω^ (S n) X) pres-comp : ∀ (p q : Ω^ (S n) (⊙Trunc k X)) → fst F (Ω^S-∙ n p q) == Trunc-fmap2 (Ω^S-∙ n) (fst F p) (fst F q) e : is-equiv (fst F) Ω^S-Trunc-preiso : (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → Ω^STruncPreIso n m (⟨ S n ⟩₋₂ +2+ m) X Ω^S-Trunc-preiso O m X = record { F = (–> (Trunc=-equiv [ pt X ] [ pt X ]) , idp); pres-comp = Trunc=-∙-comm; e = snd (Trunc=-equiv [ pt X ] [ pt X ]) } Ω^S-Trunc-preiso (S n) m X = let r : Ω^STruncPreIso n (S m) (⟨ S n ⟩₋₂ +2+ S m) X r = Ω^S-Trunc-preiso n (S m) X H = (–> (Trunc=-equiv [ idp^ (S n) ] [ idp^ (S n) ]) , idp) G = ⊙Ω-fmap (Ω^STruncPreIso.F r) in transport (λ k → Ω^STruncPreIso (S n) m k X) (+2+-βr ⟨ S n ⟩₋₂ m) (record { F = H ⊙∘ G; pres-comp = λ p q → ap (fst H) (Ω^S-fmap-∙ 0 (Ω^STruncPreIso.F r) p q) ∙ (Trunc=-∙-comm (fst G p) (fst G q)); e = snd (Trunc=-equiv [ idp^ (S n) ] [ idp^ (S n) ] ∘e Ω^-emap 1 (Ω^STruncPreIso.F r , Ω^STruncPreIso.e r))}) Ω^S-group-Trunc-fuse-diag-iso : (n : ℕ) (X : Ptd i) → Ω^S-group n (⊙Trunc ⟨ S n ⟩ X) ≃ᴳ πS n X Ω^S-group-Trunc-fuse-diag-iso n X = group-hom (fst F) pres-comp , e where r = transport (λ k → Ω^STruncPreIso n 0 k X) (+2+0 ⟨ S n ⟩₋₂) (Ω^S-Trunc-preiso n 0 X) open Ω^STruncPreIso r {- favonia: the same lemma for the alternative homotopy groups is trivial. -} Ω^'S-group-Trunc-fuse-diag-iso : (n : ℕ) (X : Ptd i) → Ω^'S-group n (⊙Trunc ⟨ S n ⟩ X) ≃ᴳ π'S n X Ω^'S-group-Trunc-fuse-diag-iso O X = ≃-to-≃ᴳ (Trunc=-equiv [ pt X ] [ pt X ]) Trunc=-∙-comm Ω^'S-group-Trunc-fuse-diag-iso (S n) X = Ω^'S-group-Trunc-fuse-diag-iso n (⊙Ω X) ∘eᴳ Ω^'S-group-emap n {X = ⊙Ω (⊙Trunc ⟨ S (S n) ⟩ X)} (≃-to-⊙≃ (Trunc=-equiv [ pt X ] [ pt X ]) idp) abstract πS-Trunc-fuse-≤-iso : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (⟨ S n ⟩ ≤T m) → πS n (⊙Trunc m X) ≃ᴳ πS n X πS-Trunc-fuse-≤-iso n m X Sn≤m = πS n (⊙Trunc m X) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso n (⊙Trunc m X) ⁻¹ᴳ ⟩ Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) ≃ᴳ⟨ Ω^S-group-emap n (≃-to-⊙≃ (Trunc-fuse-≤ (de⊙ X) Sn≤m) idp) ⟩ Ω^S-group n (⊙Trunc ⟨ S n ⟩ X) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso n X ⟩ πS n X ≃ᴳ∎ π'S-Trunc-fuse-≤-iso : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (⟨ S n ⟩ ≤T m) → π'S n (⊙Trunc m X) ≃ᴳ π'S n X π'S-Trunc-fuse-≤-iso n m X Sn≤m = π'S n (⊙Trunc m X) ≃ᴳ⟨ Ω^'S-group-Trunc-fuse-diag-iso n (⊙Trunc m X) ⁻¹ᴳ ⟩ Ω^'S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) ≃ᴳ⟨ Ω^'S-group-emap n (≃-to-⊙≃ (Trunc-fuse-≤ (de⊙ X) Sn≤m) idp) ⟩ Ω^'S-group n (⊙Trunc ⟨ S n ⟩ X) ≃ᴳ⟨ Ω^'S-group-Trunc-fuse-diag-iso n X ⟩ π'S n X ≃ᴳ∎ πS-Trunc-fuse->-iso : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ S n ⟩) → πS n (⊙Trunc m X) ≃ᴳ 0ᴳ πS-Trunc-fuse->-iso n m X m<n = πS n (⊙Trunc m X) ≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso n (⊙Trunc m X) ⁻¹ᴳ ⟩ Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) ≃ᴳ⟨ contr-iso-0ᴳ _ $ inhab-prop-is-contr (Group.ident (Ω^S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)))) {{Ω^-level -1 (S n) _ $ Trunc-preserves-level ⟨ S n ⟩ $ raise-level-≤T (transport (λ k → m ≤T k) (+2+-comm -1 ⟨ S n ⟩₋₂) (<T-to-≤T m<n)) (Trunc-level {n = m})}} ⟩ 0ᴳ ≃ᴳ∎ π'S-Trunc-fuse->-iso : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ S n ⟩) → π'S n (⊙Trunc m X) ≃ᴳ 0ᴳ π'S-Trunc-fuse->-iso n m X m<n = π'S n (⊙Trunc m X) ≃ᴳ⟨ Ω^'S-group-Trunc-fuse-diag-iso n (⊙Trunc m X) ⁻¹ᴳ ⟩ Ω^'S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)) ≃ᴳ⟨ contr-iso-0ᴳ _ $ inhab-prop-is-contr (Group.ident (Ω^'S-group n (⊙Trunc ⟨ S n ⟩ (⊙Trunc m X)))) {{Ω^'-is-prop (S n) _ $ Trunc-preserves-level ⟨ S n ⟩ $ raise-level-≤T (<T-to-≤T m<n) (Trunc-level {n = m})}} ⟩ 0ᴳ ≃ᴳ∎ -- XXX Naming conventions? πS->level-econv : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ S n ⟩) → {{_ : has-level m (de⊙ X)}} → πS n X ≃ᴳ 0ᴳ πS->level-econv n m X lt = πS n X ≃ᴳ⟨ πS-emap n (⊙unTrunc-equiv X ⊙⁻¹) ⟩ πS n (⊙Trunc m X) ≃ᴳ⟨ πS-Trunc-fuse->-iso n m X lt ⟩ 0ᴳ ≃ᴳ∎ π'S->level-econv : ∀ {i} (n : ℕ) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ S n ⟩) → {{_ : has-level m (de⊙ X)}} → π'S n X ≃ᴳ 0ᴳ π'S->level-econv n m X lt = π'S n X ≃ᴳ⟨ π'S-emap n (⊙unTrunc-equiv X ⊙⁻¹) ⟩ π'S n (⊙Trunc m X) ≃ᴳ⟨ π'S-Trunc-fuse->-iso n m X lt ⟩ 0ᴳ ≃ᴳ∎ {- πₙ(X × Y) == πₙ(X) × πₙ(Y) -} module _ {i j} (n : ℕ) (X : Ptd i) (Y : Ptd j) where πS-× : πS n (X ⊙× Y) ≃ᴳ πS n X ×ᴳ πS n Y πS-× = Trunc-group-× _ _ ∘eᴳ Trunc-group-emap (Ω^S-group-structure-× n X Y) π'S-× : π'S n (X ⊙× Y) ≃ᴳ π'S n X ×ᴳ π'S n Y π'S-× = Trunc-group-× _ _ ∘eᴳ Trunc-group-emap (Ω^'S-group-structure-× n X Y)
{ "alphanum_fraction": 0.5069064748, "avg_line_length": 35.2791878173, "ext": "agda", "hexsha": "ee0cc95550c3795c73ac07a2287efed4fe098b6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/HomotopyGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/HomotopyGroup.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/HomotopyGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3449, "size": 6950 }
module _ where module A where infixl 0 _+_ data D : Set where • : D _+_ : D → D → D module B where infixr 0 _+_ data D : Set where • : D _+_ : D → D → D open A open B Foo : A.D Foo = • + • + •
{ "alphanum_fraction": 0.480349345, "avg_line_length": 9.5416666667, "ext": "agda", "hexsha": "a3d6e9b24c842a0df79c65490e3d33740de9a400", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1436-20.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1436-20.agda", "max_line_length": 20, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1436-20.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 93, "size": 229 }
module Oscar.Class.Substitute where open import Oscar.Class.Substitution open import Oscar.Data.Equality open import Oscar.Function open import Oscar.Relation open import Oscar.Level record Substitute {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) {d} (D : A → Set d) : Set (a ⊔ b ⊔ c ⊔ d) where field ⦃ substitution ⦄ : Substitution B C _◃_ : ∀ {m n} → (B m → C n) → m ⟨ D ⟩→ n ◃-identity : ∀ {m} → (x : D m) → ε ◃ x ≡ x ◃-associativity : ∀ {l m n} (f : B l → C m) (g : B m → C n) (t : D l) → (g ◇ f) ◃ t ≡ g ◃ (f ◃ t) ◃-extensionality : ∀ {m n} {f g : B m → C n} → f ≡̇ g → f ◃_ ≡̇ g ◃_ open Substitute ⦃ … ⦄ public {-# DISPLAY Substitute._◃_ _ = _◃_ #-} instance Substitute-id : ∀ {a} {A : Set a} {bcd} {BCD : A → Set bcd} → Substitute BCD BCD BCD Substitute.substitution Substitute-id = Substitution-id Substitute._◃_ Substitute-id = id Substitute.◃-identity Substitute-id _ = refl Substitute.◃-associativity Substitute-id _ _ _ = refl Substitute.◃-extensionality Substitute-id f≡̇g = f≡̇g -- record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) {d} (D : A → Set d) : Set (a ⊔ b ⊔ c ⊔ d) where -- field -- _◃_ : ∀ {m n} → (B m → C n) → m ⟨ D ⟩→ n -- ε : ∀ {m} → B m → C m -- ◃-identity : ∀ {m} → (x : D m) → ε ◃ x ≡ x -- _◇_ : ∀ {l m n} → (g : B m → C n) (f : B l → C m) → B l → C n -- ◃-associativity : ∀ {l m n} → {f : B m → C n} {g : B l → C m} (t : D l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) -- ◃-extensionality : ∀ {m n} {f g : B m → C n} → f ≡̇ g → f ◃_ ≡̇ g ◃_ -- {- -- Unifies : ∀ {m} (s t : A m) → Property m -- Unifies s t f = f ◃ s ≡ f ◃ t -- -} -- open Substitution ⦃ … ⦄ public -- -- record Substitution {a} {A : Set a} {b} (S : A → A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where -- -- field -- -- _◃_ : ∀ {m n} → S m n → m ⟨ C ⟩→ n -- -- ε : ∀ {m} → S m m -- -- ◃-identity : ∀ {m} → (x : C m) → ε ◃ x ≡ x -- -- _◇_ : ∀ {l m n} → S m n → S l m → S l n -- -- field -- -- ◃-associativity : ∀ {l m n} → {f : S m n} {g : S l m} (t : C l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) -- -- ◃-extensionality : ∀ {m n} {f g : S m n} → f ≡ g → f ◃_ ≡̇ g ◃_ -- -- open Substitution ⦃ … ⦄ public -- -- -- record Substitution {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where -- -- -- field -- -- -- _◃_ : ∀ {m n} → (B m → C n) → m ⟨ C ⟩→ n -- -- -- ε : ∀ {m} → B m → C m -- -- -- ◃-identity : ∀ {m} → (x : C m) → ε ◃ x ≡ x -- -- -- _◇_ : ∀ {l m n} → (f : B m → C n) (g : B l → C m) → B l → C n -- -- -- _◇_ f g = (f ◃_) ∘ g -- -- -- field -- -- -- ◃-associativity : ∀ {l m n} → {f : B m → C n} {g : B l → C m} (t : C l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t) -- -- -- ◃-extensionality : ∀ {m n} {f g : B m → C n} → f ≡̇ g → f ◃_ ≡̇ g ◃_ -- -- -- {- -- -- -- Unifies : ∀ {m} (s t : A m) → Property m -- -- -- Unifies s t f = f ◃ s ≡ f ◃ t -- -- -- -} -- -- -- open Substitution ⦃ … ⦄ public -- -- -- instance Substitution⋆ : ∀ {a} {A : Set a} {bc} {BC : A → Set bc} → Substitution BC BC -- -- -- Substitution._◃_ Substitution⋆ = id -- -- -- Substitution.ε Substitution⋆ = id -- -- -- Substitution.◃-identity Substitution⋆ _ = refl -- -- -- Substitution.◃-associativity Substitution⋆ _ = refl -- -- -- Substitution.◃-extensionality Substitution⋆ f≡̇g x = f≡̇g x
{ "alphanum_fraction": 0.4529888856, "avg_line_length": 39.630952381, "ext": "agda", "hexsha": "1da84d002549e905f63b2d5bfeab67f3f266187f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Substitute.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Substitute.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Substitute.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1524, "size": 3329 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where all elements satisfy a given property ------------------------------------------------------------------------ module Data.List.All where open import Data.List as List hiding (map; all) open import Data.List.Any as Any using (here; there) open Any.Membership-≡ using (_∈_; _⊆_) open import Function open import Level open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Unary using (Decidable) renaming (_⊆_ to _⋐_) open import Relation.Binary.PropositionalEquality -- All P xs means that all elements in xs satisfy P. infixr 5 _∷_ data All {a p} {A : Set a} (P : A → Set p) : List A → Set (p ⊔ a) where [] : All P [] _∷_ : ∀ {x xs} (px : P x) (pxs : All P xs) → All P (x ∷ xs) head : ∀ {a p} {A : Set a} {P : A → Set p} {x xs} → All P (x ∷ xs) → P x head (px ∷ pxs) = px tail : ∀ {a p} {A : Set a} {P : A → Set p} {x xs} → All P (x ∷ xs) → All P xs tail (px ∷ pxs) = pxs lookup : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} → All P xs → (∀ {x : A} → x ∈ xs → P x) lookup [] () lookup (px ∷ pxs) (here refl) = px lookup (px ∷ pxs) (there x∈xs) = lookup pxs x∈xs tabulate : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → (∀ {x} → x ∈ xs → P x) → All P xs tabulate {xs = []} hyp = [] tabulate {xs = x ∷ xs} hyp = hyp (here refl) ∷ tabulate (hyp ∘ there) map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} → P ⋐ Q → All P ⋐ All Q map g [] = [] map g (px ∷ pxs) = g px ∷ map g pxs all : ∀ {a p} {A : Set a} {P : A → Set p} → Decidable P → Decidable (All P) all p [] = yes [] all p (x ∷ xs) with p x all p (x ∷ xs) | yes px = Dec.map′ (_∷_ px) tail (all p xs) all p (x ∷ xs) | no ¬px = no (¬px ∘ head)
{ "alphanum_fraction": 0.4973175966, "avg_line_length": 32.1379310345, "ext": "agda", "hexsha": "4ac8448d0daba9dfbdaa92a6758934084d184977", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/List/All.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/List/All.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/List/All.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 675, "size": 1864 }
{-# OPTIONS --universe-polymorphism #-} module Literals where open import Common.Nat open import Common.Float open import Common.Char open import Common.String open import Common.Unit open import Common.IO afloat : Float afloat = 1.23 astring : String astring = "abc" achar : Char achar = 'd' anat : Nat anat = 123 main : IO Unit main = printFloat afloat ,, putStr astring ,, printChar achar ,, printNat anat ,, putStrLn ""
{ "alphanum_fraction": 0.6892778993, "avg_line_length": 15.2333333333, "ext": "agda", "hexsha": "134368b49efd862e7101a59851a6a693de70c01d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Literals.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Literals.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Literals.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 136, "size": 457 }