Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.CofiberSequence
open import cohomology.Exactness
open import cohomology.FunctionOver
open import cohomology.Theory
open import cohomology.ProductRepr
open import cohomology.WedgeCofiber
{- Finite additivity is provable (and in a stronger form) without using
- the additivity axiom. For any m ≥ 0,
Cⁿ(Σᵐ(X ∨ Y)) == Cⁿ(ΣᵐX) × Cⁿ(ΣᵐY)
- and over this path
\ - ∙ Cⁿ(Σᵐwinl) corresponds to fst : Cⁿ(ΣᵐX) × Cⁿ(ΣᵐY) → Cⁿ(ΣᵐX),
- ∙ Cⁿ(Σᵐwinr) corresponds to snd : Cⁿ(ΣᵐX) × Cⁿ(ΣᵐY) → Cⁿ(ΣᵐY),
- ∙ Cⁿ(Σᵐ(Wedge-rec winl* winr* wglue*)) : Cⁿ(ΣᵐZ) → Cⁿ(Σᵐ(X ∨ Y))
corresponds to Cⁿ(Σᵐwinl*) × Cⁿ(Σᵐwinr*).
-}
module cohomology.Wedge {i} (CT : CohomologyTheory i) where
module CSusp^Wedge (n : ℤ) (X Y : Ptd i) (m : ℕ) where
open WedgeCofiber X Y
open CohomologyTheory CT
open import cohomology.ConstantFunction CT
private
βl : CF-hom n (⊙susp^-fmap m ⊙winl) ∘ᴳ
CF-hom n (⊙susp^-fmap m ⊙projl)
== idhom _
βl = ! (CF-comp n (⊙susp^-fmap m ⊙projl)
(⊙susp^-fmap m ⊙winl))
∙ ap (CF-hom n)
(! (⊙susp^-fmap-∘ m ⊙projl ⊙winl)
∙ ⊙susp^-fmap-idf m _)
∙ CF-ident n
βr : CF-hom n (⊙susp^-fmap m ⊙winr) ∘ᴳ
CF-hom n (⊙susp^-fmap m ⊙projr)
== idhom _
βr = ! (CF-comp n (⊙susp^-fmap m ⊙projr)
(⊙susp^-fmap m ⊙winr))
∙ ap (CF-hom n)
(! (⊙susp^-fmap-∘ m ⊙projr ⊙winr)
∙ ap (⊙susp^-fmap m) ⊙projr-winr
∙ ⊙susp^-fmap-idf m _)
∙ CF-ident n
where
⊙projr-winr : ⊙projr ⊙∘ ⊙winr == ⊙idf _
⊙projr-winr = ⊙λ= (λ _ → idp) $
∙-unit-r _ ∙ ap-! projr wglue ∙ ap ! Projr.glue-β
open ProductRepr
(CF-hom n (⊙susp^-fmap m ⊙projl))
(CF-hom n (⊙susp^-fmap m ⊙projr))
(CF-hom n (⊙susp^-fmap m ⊙winl))
(CF-hom n (⊙susp^-fmap m ⊙winr))
(app= (ap GroupHom.f βl))
(app= (ap GroupHom.f βr))
(transport
(λ {(_ , f , g) → is-exact (CF n g) (CF n f)})
(suspend^-cof= m ⊙winr ⊙projl
(pair= CofWinr.⊙path CofWinr.cfcod-over))
(C-exact n (⊙susp^-fmap m ⊙winr)))
(transport
(λ {(_ , f , g) → is-exact (CF n g) (CF n f)})
(suspend^-cof= m ⊙winl ⊙projr
(pair= CofWinl.⊙path CofWinl.cfcod-over))
(C-exact n (⊙susp^-fmap m ⊙winl)))
public
wedge-rec-over : {Z : Ptd i}
(winl* : fst X → fst Z) (winr* : fst Y → fst Z)
(wglue* : winl* (snd X) == winr* (snd Y)) (pt : winl* (snd X) == snd Z)
→ CF-hom n (⊙susp^-fmap m (WedgeRec.f winl* winr* wglue* , pt))
== ×ᴳ-hom-in (CF-hom n (⊙susp^-fmap m (winl* , pt)))
(CF-hom n (⊙susp^-fmap m (winr* , ! wglue* ∙ pt)))
[ (λ K → C n (⊙Susp^ m Z) →ᴳ K) ↓ iso ]
wedge-rec-over winl* winr* wglue* pt = codomain-over-iso _ _ _ _ $
codomain-over-equiv
(fst (CF n (⊙susp^-fmap m (WedgeRec.f winl* winr* wglue* , pt)))) _
▹ ap2 (λ f g z → (f z , g z))
(ap GroupHom.f $ ! $
ap (CF-hom n) (⊙susp^-fmap-∘ m (rec , pt) ⊙winl)
∙ CF-comp n (⊙susp^-fmap m (rec , pt)) (⊙susp^-fmap m ⊙winl))
(ap GroupHom.f $ ! $
ap (CF-hom n) (ap (⊙susp^-fmap m) (pair= idp (! pt-lemma))
∙ ⊙susp^-fmap-∘ m (rec , pt) ⊙winr)
∙ CF-comp n (⊙susp^-fmap m (rec , pt)) (⊙susp^-fmap m ⊙winr))
where
rec = WedgeRec.f winl* winr* wglue*
pt-lemma : ap rec (! wglue) ∙ pt == ! wglue* ∙ pt
pt-lemma = ap (λ w → w ∙ pt) $
ap-! rec wglue ∙ ap ! (WedgeRec.glue-β winl* winr* wglue*)
wedge-in-over : {Z : Ptd i}
(f : fst (⊙Susp^ m Z ⊙→ ⊙Susp^ m (⊙Wedge X Y)))
→ CF-hom n f
== ×ᴳ-sum-hom (C-abelian n _)
(CF-hom n (⊙susp^-fmap m ⊙projl ⊙∘ f))
(CF-hom n (⊙susp^-fmap m ⊙projr ⊙∘ f))
[ (λ G → G →ᴳ C n (⊙Susp^ m Z)) ↓ iso ]
wedge-in-over f =
lemma (C-abelian n _) (C-abelian n _) inl-over inr-over
▹ ap2 (×ᴳ-sum-hom (C-abelian n _))
(! (CF-comp n (⊙susp^-fmap m ⊙projl) f))
(! (CF-comp n (⊙susp^-fmap m ⊙projr) f))
where
lemma : {G H K L : Group i}
(aG : is-abelian G) (aL : is-abelian L) {p : G == H ×ᴳ K}
{φ : H →ᴳ G} {ψ : K →ᴳ G} {χ : G →ᴳ L}
→ φ == ×ᴳ-inl [ (λ J → H →ᴳ J) ↓ p ]
→ ψ == ×ᴳ-inr {G = H} [ (λ J → K →ᴳ J) ↓ p ]
→ χ == ×ᴳ-sum-hom aL (χ ∘ᴳ φ) (χ ∘ᴳ ψ) [ (λ J → J →ᴳ L) ↓ p ]
lemma {H = H} {K = K} aG aL {p = idp} {χ = χ} idp idp =
ap (λ α → χ ∘ᴳ α) (×ᴳ-sum-hom-η H K aG)
∙ ! (∘-×ᴳ-sum-hom aG aL χ (×ᴳ-inl {G = H}) (×ᴳ-inr {G = H}))
| {
"alphanum_fraction": 0.4983720425,
"avg_line_length": 37.1532258065,
"ext": "agda",
"hexsha": "b93d73892b9d147ecad5f3a2107c8b5386031985",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "cohomology/Wedge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "cohomology/Wedge.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "cohomology/Wedge.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2183,
"size": 4607
} |
-- Andreas, 2014-01-17 Issue 1402
-- where clauses after a pointless rewrite
open import Common.Equality
postulate eq : Set1 ≡ Set1
test : Set1
test rewrite eq = bla
where bla = Set
-- should succeed (or maybe alert the user of the pointless rewrite)
| {
"alphanum_fraction": 0.7354085603,
"avg_line_length": 19.7692307692,
"ext": "agda",
"hexsha": "67453dc2c38e58e5330307005ed8caa1d0b563fc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1402.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1402.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1402.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 71,
"size": 257
} |
open import SystemT
open import Data.List using ([])
module Examples where
-- λ x . x
ex1 : [] ⊢ base ⟶ base
ex1 = lam (var i0)
-- λ x . λ y . y
ex2 : [] ⊢ base ⟶ base ⟶ base
ex2 = lam (lam (var i0))
-- λ x . λ y . x
ex3 : [] ⊢ base ⟶ base ⟶ base
ex3 = lam (lam (var (iS i0)))
| {
"alphanum_fraction": 0.5150501672,
"avg_line_length": 17.5882352941,
"ext": "agda",
"hexsha": "4fd81072f7b27afc2c66d33003e65005c67e4ff7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "ayberkt/system-t-normalization",
"max_forks_repo_path": "examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "ayberkt/system-t-normalization",
"max_issues_repo_path": "examples.agda",
"max_line_length": 32,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "ayberkt/system-t-normalization",
"max_stars_repo_path": "examples.agda",
"max_stars_repo_stars_event_max_datetime": "2016-06-25T03:40:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-24T14:36:42.000Z",
"num_tokens": 122,
"size": 299
} |
{-
Counting how many structured finite sets with a given cardinal
https://github.com/EgbertRijke/OEIS-A000001
-}
{-# OPTIONS --safe #-}
module Cubical.Experiments.CountingFiniteStructure where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Data.Nat
open import Cubical.Data.Bool
open import Cubical.Data.Sigma
open import Cubical.Data.FinSet
open import Cubical.Data.FinSet.Induction
open import Cubical.Data.FinSet.Constructors
open import Cubical.Data.FinType
open import Cubical.Data.FinType.FiniteStructure
private
variable
ℓ : Level
-- convenient abbreviation
isFinStrCard : (S : FinSet ℓ-zero → FinSet ℓ) (n : ℕ) → isFinType 0 (FinSetWithStrOfCard S n)
isFinStrCard S n = isFinTypeFinSetWithStrOfCard S n
-- structure that there is no structure
TrivialStr : FinSet ℓ → FinSet ℓ
TrivialStr _ = 𝟙
-- structure that "picking an element in that set"
IdentityStr : FinSet ℓ → FinSet ℓ
IdentityStr X = X
-- finite semi-groups
FinSemiGroupStr : FinSet ℓ → FinSet ℓ
FinSemiGroupStr X .fst =
Σ[ p ∈ (X .fst → X .fst → X .fst) ] ((x y z : X .fst) → p (p x y) z ≡ p x (p y z))
FinSemiGroupStr X .snd =
isFinSetΣ (_ , isFinSetΠ2 X (λ _ → X) (λ _ _ → X))
(λ p → _ , isFinSetΠ3 X (λ _ → X) (λ _ _ → X) (λ _ _ _ → _ , isFinSet≡ X _ _))
-- finite groups
FinGroupStr : FinSet ℓ → FinSet ℓ
FinGroupStr X .fst =
Σ[ e ∈ X .fst ]
Σ[ inv ∈ (X .fst → X .fst) ]
Σ[ p ∈ (X .fst → X .fst → X .fst) ]
((x y z : X .fst) → p (p x y) z ≡ p x (p y z))
× ((x : X .fst)
→ (p x e ≡ x) × (p e x ≡ x) × (p (inv x) x ≡ e) × (p x (inv x) ≡ e))
FinGroupStr X .snd =
isFinSetΣ X (λ _ → _ ,
isFinSetΣ (_ , isFinSetΠ X (λ _ → X)) (λ _ → _ ,
isFinSetΣ (_ , isFinSetΠ2 X (λ _ → X) (λ _ _ → X)) (λ _ → _ ,
isFinSet× (_ , isFinSetΠ3 X (λ _ → X) (λ _ _ → X) (λ _ _ _ → _ , isFinSet≡ X _ _)) (_ ,
isFinSetΠ X (λ _ → _ ,
isFinSet× (_ , isFinSet≡ X _ _) (_ ,
isFinSet× (_ , isFinSet≡ X _ _) (_ ,
isFinSet× (_ , isFinSet≡ X _ _) (_ , isFinSet≡ X _ _))))))))
-- two rather trivial numbers
-- but the computation is essentially not that trivial
-- Time: 5 ms
a2 : ℕ
a2 = card (_ , isFinStrCard TrivialStr 2)
-- this is already hard to compute
-- Time: 443 ms
b2 : ℕ
b2 = card (_ , isFinStrCard IdentityStr 2)
-- the number of finite semi-groups
numberOfFinSemiGroups : ℕ → ℕ
numberOfFinSemiGroups n = card (_ , isFinStrCard FinSemiGroupStr n)
-- two trivial cases of semi-groups
-- Time: 29 ms
n0 : ℕ
n0 = numberOfFinSemiGroups 0
-- Time: 2,787ms
n1 : ℕ
n1 = numberOfFinSemiGroups 1
-- the number of finite semi-groups with cardinal 2
-- it should be 5
-- would you like to try?
n2 : ℕ
n2 = numberOfFinSemiGroups 2
-- OEIS-A000001
-- I think you'd better not evaluate this function with n > 1
numberOfFinGroups : ℕ → ℕ
numberOfFinGroups n = card (_ , isFinStrCard FinGroupStr n)
-- group with one element
-- Time: 26,925ms
g1 : ℕ
g1 = numberOfFinGroups 1
-- Rijke's challenge
-- seemed to big to do an exhaustive search
g4 : ℕ
g4 = numberOfFinGroups 4
| {
"alphanum_fraction": 0.6448087432,
"avg_line_length": 26.5897435897,
"ext": "agda",
"hexsha": "ba1d56845bdab88c4aa4f2177202e85048557604",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Experiments/CountingFiniteStructure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Experiments/CountingFiniteStructure.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Experiments/CountingFiniteStructure.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1111,
"size": 3111
} |
module Types where
import Level
open import Data.Unit as Unit renaming (tt to ∗)
open import Data.List as List
open import Categories.Category using (Category)
open import Function
open import Relation.Binary.PropositionalEquality as PE hiding ([_]; subst)
open import Relation.Binary using (module IsEquivalence; Setoid; module Setoid)
open ≡-Reasoning
Kind = ⊤
import Common.Context Kind as Context
open import Common.Context Kind
using (Ctx; Var; zero; ctx-cat; ctx-bin-coproducts; _≅V_; ≅V-setoid; Vrefl; Vsym; Vtrans)
renaming (succ to succ′)
open import Categories.Object.BinaryCoproducts ctx-cat
open BinaryCoproducts ctx-bin-coproducts
postulate
η-≡ : {A : Set} {B : A → Set}
{f₁ : (x : A) → B x}{f₂ : (y : A) → B y} →
((x : A) → f₁ x ≡ f₂ x) → f₁ ≡ f₂
TyCtx = Ctx
TyVar : Ctx → Set
TyVar Γ = Var Γ ∗
succ : ∀{Γ} (x : TyVar Γ) → TyVar (∗ ∷ Γ)
succ = Context.succ ∗
open Categories.Category.Category ctx-cat
renaming ( _⇒_ to _▹_
; _≡_ to _≈_
; _∘_ to _●_
; id to ctx-id
)
-- | Type syntax
data Type (Γ : TyCtx) : Set where
var : (x : TyVar Γ) → Type Γ
_⊕_ : (t₁ : Type Γ) (t₂ : Type Γ) → Type Γ
μ : (t : Type (_ ∷ Γ)) → Type Γ
_⊗_ : (t₁ : Type Γ) (t₂ : Type Γ) → Type Γ
_⇒_ : (t₁ : Type []) (t₂ : Type Γ) → Type Γ
ν : (t : Type (_ ∷ Γ)) → Type Γ
-- | Congruence for types
data _≅T_ {Γ Γ' : Ctx} : Type Γ → Type Γ' → Set where
var : ∀{x : TyVar Γ} {x' : TyVar Γ'} → (x ≅V x') → var x ≅T var x'
_⊕_ : ∀{t₁ t₂ : Type Γ} {t₁' t₂' : Type Γ'} →
(t₁ ≅T t₁') → (t₂ ≅T t₂') →
(t₁ ⊕ t₂) ≅T (t₁' ⊕ t₂')
_⊗_ : ∀{t₁ t₂ : Type Γ} {t₁' t₂' : Type Γ'} →
(t₁ ≅T t₁') → (t₂ ≅T t₂') →
(t₁ ⊗ t₂) ≅T (t₁' ⊗ t₂')
μ : ∀{t : Type (∗ ∷ Γ)} {t' : Type (∗ ∷ Γ')} →
(t ≅T t') →
(μ t) ≅T (μ t')
_⇒_ : ∀{t₁ t₁' : Type []} {t₂ : Type Γ} {t₂' : Type Γ'} →
(t₁ ≅T t₁') → (t₂ ≅T t₂') →
(t₁ ⇒ t₂) ≅T (t₁' ⇒ t₂')
ν : ∀{t : Type (∗ ∷ Γ)} {t' : Type (∗ ∷ Γ')} →
(t ≅T t') →
(ν t) ≅T (ν t')
Trefl : ∀ {Γ : Ctx} {t : Type Γ} → t ≅T t
Trefl {t = var x} = var e.refl
where
module s = Setoid
module e = IsEquivalence (s.isEquivalence ≅V-setoid)
Trefl {t = t₁ ⊕ t₂} = Trefl ⊕ Trefl
Trefl {t = μ t} = μ Trefl
Trefl {t = t ⊗ t₁} = Trefl ⊗ Trefl
Trefl {t = t ⇒ t₁} = Trefl ⇒ Trefl
Trefl {t = ν t} = ν Trefl
Tsym : ∀ {Γ Γ' : Ctx} {t : Type Γ} {t' : Type Γ'} → t ≅T t' → t' ≅T t
Tsym (var u) = var (Vsym u)
Tsym (u₁ ⊕ u₂) = Tsym u₁ ⊕ Tsym u₂
Tsym (u₁ ⊗ u₂) = Tsym u₁ ⊗ Tsym u₂
Tsym (μ u) = μ (Tsym u)
Tsym (u₁ ⇒ u₂) = Tsym u₁ ⇒ Tsym u₂
Tsym (ν u) = ν (Tsym u)
Ttrans : ∀ {Γ₁ Γ₂ Γ₃ : Ctx} {t₁ : Type Γ₁} {t₂ : Type Γ₂} {t₃ : Type Γ₃} →
t₁ ≅T t₂ → t₂ ≅T t₃ → t₁ ≅T t₃
Ttrans (var u₁) (var u₂) = var (Vtrans u₁ u₂)
Ttrans (u₁ ⊕ u₂) (u₃ ⊕ u₄) = Ttrans u₁ u₃ ⊕ Ttrans u₂ u₄
Ttrans (u₁ ⊗ u₂) (u₃ ⊗ u₄) = Ttrans u₁ u₃ ⊗ Ttrans u₂ u₄
Ttrans (μ u₁) (μ u₂) = μ (Ttrans u₁ u₂)
Ttrans (u₁ ⇒ u₂) (u₃ ⇒ u₄) = Ttrans u₁ u₃ ⇒ Ttrans u₂ u₄
Ttrans (ν u₁) (ν u₂) = ν (Ttrans u₁ u₂)
≡→≅T : ∀ {Γ : Ctx} {t₁ t₂ : Type Γ} →
t₁ ≡ t₂ → t₁ ≅T t₂
≡→≅T {Γ} {t₁} {.t₁} refl = Trefl
-- Note: makes the equality homogeneous in Γ
≅T-setoid : ∀ {Γ} → Setoid _ _
≅T-setoid {Γ} = record
{ Carrier = Type Γ
; _≈_ = _≅T_
; isEquivalence = record
{ refl = Trefl ; sym = Tsym ; trans = Ttrans }
}
import Relation.Binary.EqReasoning as EqR
module ≅T-Reasoning where
module _ {Γ : Ctx} where
open EqR (≅T-setoid {Γ}) public
hiding (_≡⟨_⟩_) renaming (_≈⟨_⟩_ to _≅T⟨_⟩_; begin_ to beginT_; _∎ to _∎T)
-- | Variable renaming in types
rename : {Γ Δ : TyCtx} → (ρ : Γ ▹ Δ) → Type Γ → Type Δ
rename ρ (var x) = var (ρ ∗ x)
rename ρ (t₁ ⊕ t₂) = rename ρ t₁ ⊕ rename ρ t₂
rename {Γ} {Δ} ρ (μ t) = μ (rename ρ' t)
where
ρ' : (∗ ∷ Γ) ▹ (∗ ∷ Δ)
ρ' = ctx-id {[ ∗ ]} ⧻ ρ
rename ρ (t₁ ⊗ t₂) = rename ρ t₁ ⊗ rename ρ t₂
rename ρ (t₁ ⇒ t₂) = t₁ ⇒ rename ρ t₂
rename {Γ} {Δ} ρ (ν t) = ν (rename ρ' t)
where
ρ' : (∗ ∷ Γ) ▹ (∗ ∷ Δ)
ρ' = ctx-id {[ ∗ ]} ⧻ ρ
-------------------------
---- Generating structure on contexts (derived from renaming)
weaken : {Γ : TyCtx} (Δ : TyCtx) → Type Γ -> Type (Δ ∐ Γ)
weaken {Γ} Δ = rename {Γ} {Δ ∐ Γ} (i₂ {Δ} {Γ})
exchange : (Γ Δ : TyCtx) → Type (Γ ∐ Δ) -> Type (Δ ∐ Γ)
exchange Γ Δ = rename [ i₂ {Δ} {Γ} , i₁ {Δ} {Γ} ]
contract : {Γ : TyCtx} → Type (Γ ∐ Γ) -> Type Γ
contract = rename [ ctx-id , ctx-id ]
-- weaken-id-empty-ctx : (Δ : TyCtx) (t : GType) → weaken {[]} Δ t ≡ t
-- weaken-id-empty-ctx = ?
Subst : TyCtx → TyCtx → Set
Subst Γ Δ = TyVar Γ → Type Δ
id-subst : ∀{Γ : TyCtx} → Subst Γ Γ
id-subst x = var x
extend : ∀{Γ Δ : TyCtx} → Subst Γ Δ → Type Δ → (Subst (∗ ∷ Γ) Δ)
extend σ a zero = a
extend σ _ (succ′ _ x) = σ x
single-subst : ∀{Γ : TyCtx} → Type Γ → (Subst (∗ ∷ Γ) Γ)
single-subst a zero = a
single-subst _ (succ′ _ x) = var x
lift : ∀{Γ Δ} → Subst Γ Δ → Subst (∗ ∷ Γ) (∗ ∷ Δ)
lift σ = extend (weaken [ ∗ ] ∘ σ) (var zero)
-- | Simultaneous substitution
subst : {Γ Δ : TyCtx} → (σ : Subst Γ Δ) → Type Γ → Type Δ
subst σ (var x) = σ x
subst σ (t₁ ⊕ t₂) = subst σ t₁ ⊕ subst σ t₂
subst {Γ} {Δ} σ (μ t) = μ (subst (lift σ) t)
subst σ (t₁ ⊗ t₂) = subst σ t₁ ⊗ subst σ t₂
subst σ (t₁ ⇒ t₂) = t₁ ⇒ subst σ t₂
subst {Γ} {Δ} σ (ν t) = ν (subst (lift σ) t)
subst₀ : {Γ : TyCtx} → Type Γ → Type (∗ ∷ Γ) → Type Γ
subst₀ {Γ} a = subst (extend id-subst a)
rename′ : {Γ Δ : TyCtx} → (ρ : Γ ▹ Δ) → Type Γ → Type Δ
rename′ ρ = subst (var ∘ (ρ ∗))
-- | Ground type
GType = Type []
-- | Unfold lfp
unfold-μ : (Type [ ∗ ]) → GType
unfold-μ a = subst₀ (μ a) a
-- | Unfold gfp
unfold-ν : (Type [ ∗ ]) → GType
unfold-ν a = subst₀ (ν a) a
--------------------------------------------------
---- Examples
unit' : GType
unit' = ν (var zero)
Nat : Type []
Nat = μ ((weaken [ ∗ ] unit') ⊕ x)
where x = var zero
Str-Fun : {Γ : TyCtx} → Type Γ → Type (∗ ∷ Γ)
Str-Fun a = (weaken [ ∗ ] a ⊗ x)
where x = var zero
Str : {Γ : TyCtx} → Type Γ → Type Γ
Str a = ν (Str-Fun a)
postulate
lem : ∀ {Γ : Ctx} (a : Type Γ) (σ : Subst Γ Γ) →
lift (extend σ a) ≡ extend (lift σ) (weaken [ ∗ ] a)
lem2 : ∀ {Γ : Ctx} →
ctx-id {[ ∗ ]} ⧻ i₂ {[ ∗ ]} {Γ} ≡ i₂ {[ ∗ ]} {∗ ∷ Γ}
{-
lem {Γ} b σ =
begin
lift (extend σ b)
≡⟨ refl ⟩
extend (weaken [ ∗ ] ∘ (extend σ b)) (var zero)
≡⟨ {!!} ⟩
extend (extend (weaken [ ∗ ] ∘ σ) (var zero))
(rename {Γ} {[ ∗ ] ∐ Γ} (i₂ {[ ∗ ]} {Γ}) b)
≡⟨ refl ⟩
extend (extend (weaken [ ∗ ] ∘ σ) (var zero)) (weaken [ ∗ ] b)
≡⟨ refl ⟩
extend (lift σ) (weaken [ ∗ ] b)
∎
-}
lem3 : ∀ {Γ : Ctx} (a : Type (∗ ∷ Γ)) →
rename (ctx-id {[ ∗ ]} ⧻ i₂ {[ ∗ ]} {Γ}) a ≡ weaken [ ∗ ] a
lem3 {Γ} a =
begin
rename (ctx-id {[ ∗ ]} ⧻ i₂ {[ ∗ ]} {Γ}) a
≡⟨ cong (λ x → rename x a) lem2 ⟩
rename {(∗ ∷ Γ)} {∗ ∷ ∗ ∷ Γ} (i₂ {[ ∗ ]}) a
≡⟨ refl ⟩
rename {(∗ ∷ Γ)} {[ ∗ ] ∐ (∗ ∷ Γ)} (i₂ {[ ∗ ]}) a
≡⟨ refl ⟩
weaken [ ∗ ] a
∎
lemma : ∀ {Γ : Ctx} {a b : Type Γ} {σ : Subst Γ Γ} →
subst (extend σ b) (weaken [ ∗ ] a) ≅T subst σ a
lemma {a = var x} = Trefl
lemma {a = a₁ ⊕ a₂} = lemma {a = a₁} ⊕ lemma {a = a₂}
lemma {Γ} {μ a} {b} {σ} = μ r
where
σ' : Subst (∗ ∷ Γ) (∗ ∷ Γ)
σ' = lift σ
b' : Type (∗ ∷ Γ)
b' = weaken [ ∗ ] b
a' = rename (ctx-id {[ ∗ ]} ⧻ i₂ {[ ∗ ]} {Γ}) a
x : subst (extend σ' b') a' ≅T subst σ' a
x = Ttrans
(≡→≅T (cong (λ y → subst (extend σ' b') y) (lem3 a)))
(lemma {∗ ∷ Γ} {a} {b'} {σ'})
r : subst (lift (extend σ b)) a' ≅T subst (lift σ) a
r = Ttrans (≡→≅T (cong (λ y → subst y a') (lem b σ))) x
lemma {a = a₁ ⊗ a₂} = lemma {a = a₁} ⊗ lemma {a = a₂}
lemma {a = a₁ ⇒ a₂} = Trefl ⇒ lemma {a = a₂}
lemma {Γ} {ν a} {b} {σ} = ν r
where
σ' : Subst (∗ ∷ Γ) (∗ ∷ Γ)
σ' = lift σ
b' : Type (∗ ∷ Γ)
b' = weaken [ ∗ ] b
a' = rename (ctx-id {[ ∗ ]} ⧻ i₂ {[ ∗ ]} {Γ}) a
x : subst (extend σ' b') a' ≅T subst σ' a
x = Ttrans
(≡→≅T (cong (λ y → subst (extend σ' b') y) (lem3 a)))
(lemma {∗ ∷ Γ} {a} {b'} {σ'})
r : subst (lift (extend σ b)) a' ≅T subst (lift σ) a
r = Ttrans (≡→≅T (cong (λ y → subst y a') (lem b σ))) x
lift-id-is-id-ext : ∀ {Γ : Ctx} (x : TyVar (∗ ∷ Γ)) →
(lift (id-subst {Γ})) x ≡ id-subst x
lift-id-is-id-ext zero = refl
lift-id-is-id-ext (succ′ ∗ x) = refl
lift-id-is-id : ∀ {Γ : Ctx} → lift (id-subst {Γ}) ≡ id-subst
lift-id-is-id = η-≡ lift-id-is-id-ext
id-subst-id : ∀ {Γ : Ctx} {a : Type Γ} →
subst id-subst a ≅T a
id-subst-id {a = var x} = var Vrefl
id-subst-id {a = a ⊕ a₁} = id-subst-id ⊕ id-subst-id
id-subst-id {a = μ a} =
μ (Ttrans (≡→≅T (cong (λ u → subst u a) lift-id-is-id)) id-subst-id)
id-subst-id {a = a ⊗ a₁} = id-subst-id ⊗ id-subst-id
id-subst-id {a = a ⇒ a₁} = Trefl ⇒ id-subst-id
id-subst-id {a = ν a} =
ν (Ttrans (≡→≅T (cong (λ u → subst u a) lift-id-is-id)) id-subst-id)
lemma₂ : ∀ {Γ : Ctx} {a b : Type Γ} →
subst (extend id-subst b) (weaken [ ∗ ] a) ≅T a
lemma₂ {Γ} {a} {b} = Ttrans (lemma {Γ} {a} {b} {σ = id-subst}) id-subst-id
unfold-str : ∀{a : Type []} → (unfold-ν (Str-Fun a)) ≅T (a ⊗ Str a)
unfold-str {a} = lemma₂ ⊗ Trefl
LFair : {Γ : TyCtx} → Type Γ → Type Γ → Type Γ
LFair a b = ν (μ ((w a ⊗ x) ⊕ (w b ⊗ y)))
where
x = var zero
y = var (succ zero)
Δ = ∗ ∷ [ ∗ ]
w = weaken Δ
| {
"alphanum_fraction": 0.4803502554,
"avg_line_length": 31.0453074434,
"ext": "agda",
"hexsha": "2bea7f337d8b11441bb5d95d27802718536d22cd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/SimpleOTT/Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/SimpleOTT/Types.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/SimpleOTT/Types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4402,
"size": 9593
} |
-- Simple test to check if constraint solving for injective
-- functions is working.
module Injectivity where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
{-# BUILTIN NATPLUS _+_ #-}
infixr 40 _::_
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B
foldr f z [] = z
foldr f z (x :: xs) = f x (foldr f z xs)
data U : Set where
nat : U
list : U -> U
El : U -> Set
El nat = Nat
El (list a) = List (El a)
sum : {a : U} -> El a -> Nat
sum {nat} n = n
sum {list a} xs = foldr (\a b -> sum a + b) zero xs
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
test₁ = sum (1 :: 2 :: 3 :: [])
ok₁ : test₁ == 6
ok₁ = refl
test₂ = sum ((1 :: []) :: (3 :: 5 :: []) :: [])
ok₂ : test₂ == 9
ok₂ = refl
| {
"alphanum_fraction": 0.4964028777,
"avg_line_length": 18.7115384615,
"ext": "agda",
"hexsha": "c9aafa6d9ee1effab2cdc4dc7e0777f3a1172ce1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Injectivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Injectivity.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Injectivity.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 365,
"size": 973
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.SumFin.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Empty using (⊥; ⊥-elim) public
open import Cubical.Data.Unit using (tt) renaming (Unit to ⊤) public
open import Cubical.Data.Sum using (_⊎_; inl; inr) public
open import Cubical.Data.Nat
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
private variable k : ℕ
Fin : ℕ → Type₀
Fin zero = ⊥
Fin (suc n) = ⊤ ⊎ (Fin n)
pattern fzero = inl tt
pattern fsuc n = inr n
finj : Fin k → Fin (suc k)
finj {suc k} fzero = fzero
finj {suc k} (fsuc n) = fsuc (finj {k} n)
toℕ : Fin k → ℕ
toℕ {suc k} (inl tt) = zero
toℕ {suc k} (inr x) = suc (toℕ {k} x)
toℕ-injective : {m n : Fin k} → toℕ m ≡ toℕ n → m ≡ n
toℕ-injective {suc k} {fzero} {fzero} _ = refl
toℕ-injective {suc k} {fzero} {fsuc x} p = ⊥-elim (znots p)
toℕ-injective {suc k} {fsuc m} {fzero} p = ⊥-elim (snotz p)
toℕ-injective {suc k} {fsuc m} {fsuc x} p = cong fsuc (toℕ-injective (injSuc p))
-- Thus, Fin k is discrete
discreteFin : Discrete (Fin k)
discreteFin fj fk with discreteℕ (toℕ fj) (toℕ fk)
... | yes p = yes (toℕ-injective p)
... | no ¬p = no (λ p → ¬p (cong toℕ p))
isSetFin : isSet (Fin k)
isSetFin = Discrete→isSet discreteFin
| {
"alphanum_fraction": 0.6606864275,
"avg_line_length": 27.8695652174,
"ext": "agda",
"hexsha": "9df85e0e61a1b1355fcf4123a6f9f0afec58abf8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/SumFin/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/SumFin/Base.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/SumFin/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 516,
"size": 1282
} |
module Issue318 where
data Bool : Set where
module A where
data _≤_ : Bool → Bool → Set where
open A hiding (_≤_)
data _≤_ : Bool → Bool → Set where | {
"alphanum_fraction": 0.6753246753,
"avg_line_length": 15.4,
"ext": "agda",
"hexsha": "b50c6f297dd0cf647d588ac39b680cf169580ba9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue318.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue318.agda",
"max_line_length": 36,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/fail/Issue318.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 49,
"size": 154
} |
module NestedProjectRoots where
import Imports.A
| {
"alphanum_fraction": 0.86,
"avg_line_length": 12.5,
"ext": "agda",
"hexsha": "a4e479ea7f3115eea32377405b47b11c5d002e10",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/customised/NestedProjectRoots.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/customised/NestedProjectRoots.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/customised/NestedProjectRoots.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 11,
"size": 50
} |
{-# OPTIONS --guardedness-preserving-type-constructors #-}
module TypeConstructorsWhichPreserveGuardedness4 where
open import Common.Coinduction
data Rec (A : ∞ Set) : Set where
fold : ♭ A → Rec A
D : Set
D = Rec (♯ (D → D))
-- _·_ : D → D → D
-- fold f · x = f x
-- ω : D
-- ω = fold (λ x → x · x)
-- Ω : D
-- Ω = ω · ω
| {
"alphanum_fraction": 0.5757575758,
"avg_line_length": 15.7142857143,
"ext": "agda",
"hexsha": "5e6af3942ab4110874fbfe9365a8c2b54477b311",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness4.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness4.agda",
"max_line_length": 58,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness4.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 125,
"size": 330
} |
{-# OPTIONS --cubical --safe #-}
module Class where
open import Cubical.Core.Everything
open import Function.Base using (id; _$_)
private
variable
A B C : Set
ℓ ℓ′ ℓ″ : Level
-- Custom non-dependent definition, since the one in the prelude is too general
_∘_ : {A : Set ℓ} {B : Set ℓ′} {C : Set ℓ″} → (B → C) → (A → B) → A → C
(f ∘ g) x = f (g x)
infixr 9 _∘_
record Functor (F : Set → Set₁) : Set₂ where
field
fmap : (A → B) → F A → F B
fmap-id-legit : (m : F A) → fmap id m ≡ m
fmap-compose-legit
: (m : F A)
→ (f : B → C)
→ (g : A → B)
→ fmap (f ∘ g) m ≡ fmap f (fmap g m)
_<$>_ : (A → B) → F A → F B
f <$> x = fmap f x
open Functor
record Applicative (F : Set → Set₁) : Set₂ where
infixl 4 _<*>_
field
functor : Functor F
pure : A → F A
_<*>_ : F (A → B) → F A → F B
app-identity : (v : F A) → (pure id <*> v) ≡ v
app-compose
: (u : F (B → C))
→ (v : F (A → B))
→ (w : F A)
→ (pure _∘_ <*> u <*> v <*> w) ≡ (u <*> (v <*> w))
app-homo
: (f : A → B)
→ (x : A)
→ (pure f <*> pure x) ≡ pure (f x)
app-intchg
: (u : F (A → B))
→ (y : A)
→ (u <*> pure y) ≡ (pure (_$ y) <*> u)
open Functor functor public
record Monad (M : Set → Set₁) : Set₂ where
infixl 1 _>>=_
field
applicative : Applicative M
_>>=_ : M A → (A → M B) → M B
open Applicative applicative public
return : A → M A
return = pure
field
monad-left-id
: (a : A)
→ (f : A → M B)
→ (return a >>= f) ≡ f a
monad-right-id
: (m : M A)
→ (m >>= return) ≡ m
monad-assoc
: (m : M A)
→ (f : A → M B)
→ (g : B → M C)
→ (m >>= f >>= g) ≡ (m >>= (λ x → f x >>= g))
| {
"alphanum_fraction": 0.4471590909,
"avg_line_length": 21.4634146341,
"ext": "agda",
"hexsha": "49f3c127b15a601953f6106af52c13b8207962c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mb64/cubical-free-monads",
"max_forks_repo_path": "Class.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mb64/cubical-free-monads",
"max_issues_repo_path": "Class.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "13364fa4af25720bf1d73bf960e8c04ebb34762f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mb64/cubical-free-monads",
"max_stars_repo_path": "Class.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-17T17:53:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-17T17:53:44.000Z",
"num_tokens": 696,
"size": 1760
} |
{-
The equivalent "goodness" of can w.r.t. the rmerge reduction.
The lemma proved in this file is
can-irr : ∀ {BV} {FV} θ₁ θ₂ q →
CorrectBinding q BV FV →
(distinct' (proj₁ FV) (proj₁ (Dom θ₂))) →
Can q θ₁ ≡ Can q (θ₁ ← θ₂)
That is, the result of the Can function will not change
provided that the program does not refer to any variables
in the new environment.
-}
module Esterel.Lang.CanFunction.MergePotentialRuleCan where
open import utility
open import Esterel.Lang
open import Esterel.Lang.Binding
open import Esterel.Lang.CanFunction
open import Esterel.Lang.CanFunction.Base
open import Esterel.Context
open import Esterel.Context.Properties
using (plug ; unplug)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open import Data.Bool
using (Bool ; true ; false ; if_then_else_)
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.List
using (List ; [] ; _∷_ ; _++_ ; map ; concatMap)
open import Data.List.Properties
using (map-id)
open import Data.List.Any
using (Any ; any ; here ; there)
open import Data.List.Any.Properties
using ()
renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ)
open import Data.Maybe
using (Maybe ; just ; nothing)
open import Data.Nat
using (ℕ ; zero ; suc ; _≟_ ; _+_)
open import Data.Nat.Properties.Simple
using (+-comm)
open import Data.Product
using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Function
using (_∘_ ; _∋_ ; id)
open import Relation.Nullary
using (¬_ ; Dec ; yes ; no)
open import Relation.Nullary.Decidable
using (⌊_⌋)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; trans ; sym ; cong ; subst)
open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM
open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM
open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM
open ListSet Data.Nat._≟_
using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge
; set-subtract-notin
; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed)
can-new-irr : ∀ {BV} {FV} θ₁ θ₂ θo q →
CorrectBinding q BV FV →
(∀ S' → S' ∈ (proj₁ FV) → (S' ∉ proj₁ (Dom θ₂)) ⊎ (S' ∈ proj₁ (Dom θo))) →
Can q (θ₁ ← θo) ≡ Can q ((θ₁ ← θ₂) ← θo)
canθ-new-irr : ∀ {BV} {FV} sigs S θ₁ θ₂ θo q →
CorrectBinding q BV FV →
(∀ S' → S' ∈ (proj₁ FV) →
((S' ∉ proj₁ (Dom θ₂)) ⊎ (S' ∈ proj₁ (Dom θo))) ⊎
S' ∈ map (_+_ S) (SigMap.keys sigs)) →
Canθ sigs S q (θ₁ ← θo) ≡ Canθ sigs S q ((θ₁ ← θ₂) ← θo)
can-new-irr θ₁ θ₂ θo nothin CBnothing S-prop = refl
can-new-irr θ₁ θ₂ θo pause CBpause S-prop = refl
can-new-irr θ₁ θ₂ θo (signl S q) (CBsig cbq) S-prop
rewrite canθ-new-irr (Env.sig ([S]-env S)) 0 θ₁ θ₂ θo q cbq
(λ S' S'∈FV →
Data.Sum.map
(S-prop S')
(subst (S' ∈_) (sym (map-id (proj₁ (Dom ([S]-env S))))) ∘
(λ S'∈[S] →
subst (_∈ proj₁ (Dom ([S]-env S)))
(sym (∈:: S'∈[S]))
(Env.sig-∈-single S Signal.unknown)))
(set-subtract-split {ys = Signal.unwrap S ∷ []} S'∈FV))
= refl
can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent {FVp = FVp} cbp cbq) S-prop
with S-prop (Signal.unwrap S) (here refl)| Env.Sig∈ S (θ₁ ← θo) | Env.Sig∈ S ((θ₁ ← θ₂) ← θo)
... | inj₂ S∈Domθo | no S∉domθ₁←θo | S∈domθ₁←θ₂←θo? =
⊥-elim (S∉domθ₁←θo (Env.sig-←-monoʳ S θo θ₁ S∈Domθo))
... | inj₂ S∈Domθo | yes S∈domθ₁←θo | no S∉domθ₁←θ₂←θo =
⊥-elim (S∉domθ₁←θ₂←θo (Env.sig-←-monoʳ S θo (θ₁ ← θ₂) S∈Domθo))
... | inj₂ S∈Domθo | yes S∈domθ₁←θo | yes S∈domθ₁←θ₂←θo
rewrite SigMap.∈-get-U-irr-m S (Env.sig θ₁) (Env.sig (θ₁ ← θ₂)) (Env.sig θo)
S∈domθ₁←θo S∈domθ₁←θ₂←θo S∈Domθo
with Env.sig-stats {S} ((θ₁ ← θ₂) ← θo) S∈domθ₁←θ₂←θo
... | Signal.present = can-new-irr θ₁ θ₂ θo p cbp
(λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp)))
... | Signal.absent = can-new-irr θ₁ θ₂ θo q cbq
(λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq))
... | Signal.unknown
rewrite can-new-irr θ₁ θ₂ θo p cbp
(λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp)))
| can-new-irr θ₁ θ₂ θo q cbq
(λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq))
= refl
can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent {FVp = FVp} cbp cbq) S-prop
| inj₁ S∉Domθ₂ | yes S∈domθ₁←θo | yes S∈domθ₁←θ₂←θo
with Env.sig-←⁻ {θ₁} {θo} S S∈domθ₁←θo
... | inj₂ S∈Domθo
rewrite SigMap.∈-get-U-irr-m S (Env.sig θ₁) (Env.sig (θ₁ ← θ₂)) (Env.sig θo)
S∈domθ₁←θo S∈domθ₁←θ₂←θo S∈Domθo
with Env.sig-stats {S} ((θ₁ ← θ₂) ← θo) S∈domθ₁←θ₂←θo
... | Signal.present = can-new-irr θ₁ θ₂ θo p cbp
(λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp)))
... | Signal.absent = can-new-irr θ₁ θ₂ θo q cbq
(λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq))
... | Signal.unknown
rewrite can-new-irr θ₁ θ₂ θo p cbp
(λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp)))
| can-new-irr θ₁ θ₂ θo q cbq
(λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq))
= refl
can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent {FVp = FVp} cbp cbq) S-prop
| inj₁ S∉Domθ₂ | yes S∈domθ₁←θo | yes S∈domθ₁←θ₂←θo
| inj₁ S∈domθ₁ with Env.sig-←-irr-get {θ₁} {θ₂} {S} S∈domθ₁ S∉Domθ₂
... | a , b rewrite SigMap.get-U-both-irr-m S (Env.sig θ₁) (Env.sig (θ₁ ← θ₂)) (Env.sig θo) S∈domθ₁ a S∈domθ₁←θo S∈domθ₁←θ₂←θo b
with Env.sig-stats {S} ((θ₁ ← θ₂) ← θo) S∈domθ₁←θ₂←θo
... | Signal.present = can-new-irr θ₁ θ₂ θo p cbp
(λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp)))
... | Signal.absent = can-new-irr θ₁ θ₂ θo q cbq
(λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq))
... | Signal.unknown
rewrite can-new-irr θ₁ θ₂ θo p cbp
(λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp)))
| can-new-irr θ₁ θ₂ θo q cbq
(λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq))
= refl
can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent cbp cbq) S-prop
| inj₁ S∉Domθ₂ | yes S∈domθ₁←θo | no S∉domθ₁←θ₂←θo
rewrite SigMap.keys-assoc-comm (Env.sig θ₁) (Env.sig θ₂) (Env.sig θo)
= ⊥-elim (S∉domθ₁←θ₂←θo (SigMap.U-mono {m = Env.sig (θ₁ ← θo)} {k = S} S∈domθ₁←θo))
can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent cbp cbq) S-prop
| inj₁ S∉Domθ₂ | no S∉domθ₁←θo | yes S∈domθ₁←θ₂←θo
with Env.sig-←⁻ {θ₁ ← θo} {θ₂} S
(subst (Signal.unwrap S ∈_)
(SigMap.keys-assoc-comm (Env.sig θ₁) (Env.sig θ₂) (Env.sig θo))
S∈domθ₁←θ₂←θo)
... | (inj₁ S∈Domθ₁←θo) = ⊥-elim (S∉domθ₁←θo S∈Domθ₁←θo)
... | (inj₂ S∈Domθ₂) = ⊥-elim (S∉Domθ₂ S∈Domθ₂)
can-new-irr θ₁ θ₂ θo (present S ∣⇒ p ∣⇒ q) (CBpresent {FVp = FVp} cbp cbq) S-prop
| inj₁ S∉Domθ₂ | no S∉domθ₁←θo | no S∉domθ₁←θ₂←θo
rewrite can-new-irr θ₁ θ₂ θo p cbp
(λ S' S'∈FVp → S-prop S' (++ʳ (Signal.unwrap S ∷ []) (++ˡ S'∈FVp)))
| can-new-irr θ₁ θ₂ θo q cbq
(λ S' S'∈FVq → S-prop S' (++ʳ (Signal.unwrap S ∷ proj₁ FVp) S'∈FVq))
= refl
can-new-irr θ₁ θ₂ θo (emit S) CBemit S-prop = refl
can-new-irr θ₁ θ₂ θo (p ∥ q) (CBpar {FVp = FVp} cbp cbq BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq) S-prop
rewrite can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ˡ S'∈FVp))
| can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (proj₁ FVp) S'∈FVq))
= refl
can-new-irr θ₁ θ₂ θo (loop q) (CBloop cbq BV≠FV) S-prop =
can-new-irr θ₁ θ₂ θo q cbq S-prop
can-new-irr θ₁ θ₂ θo (loopˢ p q) (CBloopˢ {BVp = BVp} {FVp = FVp} CBp CBq BVp≠FVq BVq≠FVq) S-prop
rewrite can-new-irr θ₁ θ₂ θo p CBp (λ S' S'∈FVp → S-prop S' (++ˡ S'∈FVp))
| can-new-irr θ₁ θ₂ θo q CBq (λ S' S'∈FVq → S-prop S' (++ʳ (proj₁ FVp) S'∈FVq))
= refl
can-new-irr θ₁ θ₂ θo (p >> q) (CBseq {BVp = BVp} {FVp = FVp} cbp cbq BVp≠FVq) S-prop
with can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ˡ S'∈FVp))
... | can-p-θ₁←θo≡can-p-θ₁←θ₂←θo
with any (Code._≟_ Code.nothin) (Canₖ p (θ₁ ← θo))
| any (Code._≟_ Code.nothin) (Canₖ p ((θ₁ ← θ₂) ← θo))
... | yes nothin∈can-p-θ₁←θo | yes nothin∈can-p-θ₁←θ₂←θo
rewrite can-p-θ₁←θo≡can-p-θ₁←θ₂←θo
| can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (proj₁ FVp) S'∈FVq))
= refl
... | yes nothin∈can-p-θ₁←θo | no nothin∉can-p-θ₁←θ₂←θo
= ⊥-elim (nothin∉can-p-θ₁←θ₂←θo
(subst (λ xs → Code.nothin ∈ proj₁ (proj₂ xs))
can-p-θ₁←θo≡can-p-θ₁←θ₂←θo
nothin∈can-p-θ₁←θo))
... | no nothin∉can-p-θ₁←θo | yes nothin∈can-p-θ₁←θ₂←θo
= ⊥-elim (nothin∉can-p-θ₁←θo
(subst (λ xs → Code.nothin ∈ proj₁ (proj₂ xs))
(sym can-p-θ₁←θo≡can-p-θ₁←θ₂←θo)
nothin∈can-p-θ₁←θ₂←θo))
... | no nothin∉can-p-θ₁←θo | no nothin∉can-p-θ₁←θ₂←θo
rewrite can-p-θ₁←θo≡can-p-θ₁←θ₂←θo = refl
can-new-irr θ₁ θ₂ θo (suspend q S) (CBsusp cbq [S]≠BVp) S-prop =
can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FV → S-prop S' (there S'∈FV))
can-new-irr θ₁ θ₂ θo (exit n) CBexit S-prop = refl
can-new-irr θ₁ θ₂ θo (trap q) (CBtrap cbq) S-prop
rewrite can-new-irr θ₁ θ₂ θo q cbq S-prop
= refl
can-new-irr θ₁ θ₂ θo (shared s ≔ e in: q) (CBshared {FV = FV} cbq) S-prop
rewrite set-subtract-[] (proj₁ FV)
| can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FV → S-prop S' (++ʳ (proj₁ (FVₑ e)) S'∈FV))
= refl
can-new-irr θ₁ θ₂ θo (s ⇐ e) CBsset S-prop = refl
can-new-irr θ₁ θ₂ θo (var x ≔ e in: q) (CBvar {FV = FV} cbq) S-prop
rewrite set-subtract-[] (proj₁ FV)
= can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FV → S-prop S' (++ʳ (proj₁ (FVₑ e)) S'∈FV))
can-new-irr θ₁ θ₂ θo (x ≔ e) CBvset S-prop = refl
can-new-irr θ₁ θ₂ θo (if x ∣⇒ p ∣⇒ q) (CBif {FVp = FVp} cbp cbq) S-prop
rewrite can-new-irr θ₁ θ₂ θo p cbp (λ S' S'∈FVp → S-prop S' (++ˡ S'∈FVp))
| can-new-irr θ₁ θ₂ θo q cbq (λ S' S'∈FVq → S-prop S' (++ʳ (proj₁ FVp) S'∈FVq))
= refl
can-new-irr θ₁ θ₂ θo (ρ⟨ θ , A ⟩· q) (CBρ {FV = FV} cbq) S-prop
rewrite canθ-new-irr (Env.sig θ) 0 θ₁ θ₂ θo q cbq
(λ S' S'∈FV →
Data.Sum.map
(S-prop S')
(subst (S' ∈_) (sym (map-id (proj₁ (Dom θ)))))
(set-subtract-split {ys = proj₁ (Dom θ)} S'∈FV))
= refl
canθ-new-irr-S-prop-accumulate : ∀ {xs ys zs} S status θo →
(∀ S' → S' ∈ xs →
(S' ∉ ys ⊎ S' ∈ proj₁ (Dom θo)) ⊎
S' ∈ (S + 0 ∷ map (_+_ S) (map suc zs))) →
∀ S' → S' ∈ xs →
(S' ∉ ys ⊎ S' ∈ proj₁ (Dom (θo ← [ (S ₛ) ↦ status ]))) ⊎
S' ∈ map (_+_ (suc S)) zs
canθ-new-irr-S-prop-accumulate {zs = zs} S status θo S-prop S' S'∈xs with S-prop S' S'∈xs
... | inj₁ (inj₁ S'∉ys) = inj₁ (inj₁ S'∉ys)
... | inj₁ (inj₂ S'∈Domθo) =
inj₁ (inj₂ (Env.sig-←-monoˡ (S' ₛ) θo [ (S ₛ) ↦ status ] S'∈Domθo))
... | inj₂ (here refl) rewrite +-comm S 0 =
inj₁ (inj₂ (Env.sig-←-monoʳ (S ₛ) [ S ₛ ↦ status ] θo (Env.sig-∈-single (S ₛ) status)))
... | inj₂ (there S'∈map-+-S-suc-zs)
rewrite map-+-compose-suc S zs
= inj₂ S'∈map-+-S-suc-zs
canθ-new-irr {BV} {FV} [] S θ₁ θ₂ θo q cbq S-prop =
can-new-irr θ₁ θ₂ θo q cbq S-prop'
where
S-prop' : ∀ S' → S' ∈ proj₁ FV → S' ∉ proj₁ (Dom θ₂) ⊎ S' ∈ proj₁ (Dom θo)
S-prop' S' S'∈FV with S-prop S' S'∈FV
... | inj₁ S'∉Domθ₂⊎S'∈Domθo = S'∉Domθ₂⊎S'∈Domθo
... | inj₂ ()
canθ-new-irr (nothing ∷ sigs) S θ₁ θ₂ θo q cbq S-prop =
canθ-new-irr sigs (suc S) θ₁ θ₂ θo q cbq
(λ S' S'∈FV →
Data.Sum.map id (subst (S' ∈_) (map-+-compose-suc S (SigMap.keys sigs)))
(S-prop S' S'∈FV))
canθ-new-irr (just Signal.present ∷ sigs) S θ₁ θ₂ θo q cbq S-prop
rewrite sym (Env.←-assoc θ₁ θo ([S]-env-present (S ₛ)))
| sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env-present (S ₛ)))
= canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env-present (S ₛ)) q cbq
(canθ-new-irr-S-prop-accumulate S Signal.present θo S-prop)
canθ-new-irr (just Signal.absent ∷ sigs) S θ₁ θ₂ θo q cbq S-prop
rewrite sym (Env.←-assoc θ₁ θo ([S]-env-absent (S ₛ)))
| sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env-absent (S ₛ)))
= canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env-absent (S ₛ)) q cbq
(canθ-new-irr-S-prop-accumulate S Signal.absent θo S-prop)
canθ-new-irr (just Signal.unknown ∷ sigs) S θ₁ θ₂ θo q cbq S-prop
with any (_≟_ S) (Canθₛ sigs (suc S) q ((θ₁ ← θo) ← [S]-env (S ₛ)))
| any (_≟_ S) (Canθₛ sigs (suc S) q (((θ₁ ← θ₂) ← θo) ← [S]-env (S ₛ)))
... | yes S∈canθ-sigs-q-θ₁←θo←[S] | yes S∈canθ-sigs-q-θ₁←θ₂←θo←[S]
rewrite sym (Env.←-assoc θ₁ θo ([S]-env (S ₛ)))
| sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env (S ₛ)))
= canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env (S ₛ)) q cbq
(canθ-new-irr-S-prop-accumulate S Signal.unknown θo S-prop)
... | no S∉canθ-sigs-q-θ₁←θo←[S] | no S∉canθ-sigs-q-θ₁←θ₂←θo←[S]
rewrite sym (Env.←-assoc θ₁ θo ([S]-env-absent (S ₛ)))
| sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env-absent (S ₛ)))
= canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env-absent (S ₛ)) q cbq
(canθ-new-irr-S-prop-accumulate S Signal.absent θo S-prop)
... | yes S∈canθ-sigs-q-θ₁←θo←[S] | no S∉canθ-sigs-q-θ₁←θ₂←θo←[S]
rewrite sym (Env.←-assoc θ₁ θo ([S]-env (S ₛ)))
| sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env (S ₛ)))
| canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env (S ₛ)) q cbq
(canθ-new-irr-S-prop-accumulate S Signal.unknown θo S-prop)
= ⊥-elim
(S∉canθ-sigs-q-θ₁←θ₂←θo←[S]
S∈canθ-sigs-q-θ₁←θo←[S])
... | no S∉canθ-sigs-q-θ₁←θo←[S] | yes S∈canθ-sigs-q-θ₁←θ₂←θo←[S]
rewrite sym (Env.←-assoc θ₁ θo ([S]-env (S ₛ)))
| sym (Env.←-assoc (θ₁ ← θ₂) θo ([S]-env (S ₛ)))
| canθ-new-irr sigs (suc S) θ₁ θ₂ (θo ← [S]-env (S ₛ)) q cbq
(canθ-new-irr-S-prop-accumulate S Signal.unknown θo S-prop)
= ⊥-elim
(S∉canθ-sigs-q-θ₁←θo←[S]
S∈canθ-sigs-q-θ₁←θ₂←θo←[S])
can-irr : ∀ {BV} {FV} θ₁ θ₂ q →
CorrectBinding q BV FV →
(distinct' (proj₁ FV) (proj₁ (Dom θ₂))) →
Can q θ₁ ≡ Can q (θ₁ ← θ₂)
can-irr θ₁ θ₂ q cbq FV≠Domθ₂
with can-new-irr θ₁ θ₂ Env.[]env q cbq (λ S' S'∈FV → inj₁ (FV≠Domθ₂ S' S'∈FV))
... | eq rewrite cong (Can q) (Env.←-comm Env.[]env θ₁ distinct-empty-left)
| cong (Can q) (Env.←-comm Env.[]env (θ₁ ← θ₂) distinct-empty-left)
= eq
| {
"alphanum_fraction": 0.5686790924,
"avg_line_length": 46.5660377358,
"ext": "agda",
"hexsha": "500cf338e0a86cd85390fd32274db1d8d435a34b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleCan.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleCan.agda",
"max_line_length": 128,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleCan.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 7189,
"size": 14808
} |
------------------------------------------------------------------------
-- Properties related to Fin, and operations making use of these
-- properties (or other properties not available in Data.Fin)
------------------------------------------------------------------------
module Data.Fin.Props where
open import Data.Fin
open import Data.Nat as N
using (ℕ; zero; suc; s≤s; z≤n)
renaming (_≤_ to _ℕ≤_; _<_ to _ℕ<_; _+_ to _ℕ+_)
open N.≤-Reasoning
import Data.Nat.Properties as N
open import Data.Function
open import Relation.Nullary
open import Relation.Unary
open import Relation.Binary
open import Relation.Binary.FunctionSetoid
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; cong; subst)
open import Category.Functor
open import Category.Applicative
------------------------------------------------------------------------
-- Properties
private
drop-suc : ∀ {o} {m n : Fin o} →
suc m ≡ (Fin (suc o) ∶ suc n) → m ≡ n
drop-suc refl = refl
preorder : ℕ → Preorder
preorder n = PropEq.preorder (Fin n)
setoid : ℕ → Setoid
setoid n = PropEq.setoid (Fin n)
strictTotalOrder : ℕ → StrictTotalOrder
strictTotalOrder n = record
{ carrier = Fin n
; _≈_ = _≡_
; _<_ = _<_
; isStrictTotalOrder = record
{ isEquivalence = PropEq.isEquivalence
; trans = N.<-trans
; compare = cmp
; <-resp-≈ = PropEq.resp₂ _<_
}
}
where
cmp : ∀ {n} → Trichotomous _≡_ (_<_ {n})
cmp zero zero = tri≈ (λ()) refl (λ())
cmp zero (suc j) = tri< (s≤s z≤n) (λ()) (λ())
cmp (suc i) zero = tri> (λ()) (λ()) (s≤s z≤n)
cmp (suc i) (suc j) with cmp i j
... | tri< lt ¬eq ¬gt = tri< (s≤s lt) (¬eq ∘ drop-suc) (¬gt ∘ N.≤-pred)
... | tri> ¬lt ¬eq gt = tri> (¬lt ∘ N.≤-pred) (¬eq ∘ drop-suc) (s≤s gt)
... | tri≈ ¬lt eq ¬gt = tri≈ (¬lt ∘ N.≤-pred) (cong suc eq) (¬gt ∘ N.≤-pred)
decSetoid : ℕ → DecSetoid
decSetoid n = StrictTotalOrder.decSetoid (strictTotalOrder n)
infix 4 _≟_
_≟_ : {n : ℕ} → Decidable {Fin n} _≡_
_≟_ {n} = DecSetoid._≟_ (decSetoid n)
to-from : ∀ n → toℕ (fromℕ n) ≡ n
to-from zero = refl
to-from (suc n) = cong suc (to-from n)
bounded : ∀ {n} (i : Fin n) → toℕ i ℕ< n
bounded zero = s≤s z≤n
bounded (suc i) = s≤s (bounded i)
prop-toℕ-≤ : ∀ {n} (x : Fin n) → toℕ x ℕ≤ N.pred n
prop-toℕ-≤ zero = z≤n
prop-toℕ-≤ (suc {n = zero} ())
prop-toℕ-≤ (suc {n = suc n} i) = s≤s (prop-toℕ-≤ i)
nℕ-ℕi≤n : ∀ n i → n ℕ-ℕ i ℕ≤ n
nℕ-ℕi≤n n zero = begin n ∎
nℕ-ℕi≤n zero (suc ())
nℕ-ℕi≤n (suc n) (suc i) = begin
n ℕ-ℕ i ≤⟨ nℕ-ℕi≤n n i ⟩
n ≤⟨ N.n≤1+n n ⟩
suc n ∎
inject-lemma : ∀ {n} {i : Fin n} (j : Fin′ i) →
toℕ (inject j) ≡ toℕ j
inject-lemma {i = zero} ()
inject-lemma {i = suc i} zero = refl
inject-lemma {i = suc i} (suc j) = cong suc (inject-lemma j)
inject+-lemma : ∀ m k → m ≡ toℕ (inject+ k (fromℕ m))
inject+-lemma zero k = refl
inject+-lemma (suc m) k = cong suc (inject+-lemma m k)
inject₁-lemma : ∀ {m} (i : Fin m) → toℕ (inject₁ i) ≡ toℕ i
inject₁-lemma zero = refl
inject₁-lemma (suc i) = cong suc (inject₁-lemma i)
inject≤-lemma : ∀ {m n} (i : Fin m) (le : m ℕ≤ n) →
toℕ (inject≤ i le) ≡ toℕ i
inject≤-lemma zero (N.s≤s le) = refl
inject≤-lemma (suc i) (N.s≤s le) = cong suc (inject≤-lemma i le)
≺⇒<′ : _≺_ ⇒ N._<′_
≺⇒<′ (n ≻toℕ i) = N.≤⇒≤′ (bounded i)
<′⇒≺ : N._<′_ ⇒ _≺_
<′⇒≺ {n} N.≤′-refl = subst (λ i → i ≺ suc n) (to-from n)
(suc n ≻toℕ fromℕ n)
<′⇒≺ (N.≤′-step m≤′n) with <′⇒≺ m≤′n
<′⇒≺ (N.≤′-step m≤′n) | n ≻toℕ i =
subst (λ i → i ≺ suc n) (inject₁-lemma i) (suc n ≻toℕ (inject₁ i))
------------------------------------------------------------------------
-- Operations
infixl 6 _+′_
_+′_ : ∀ {m n} (i : Fin m) (j : Fin n) → Fin (N.pred m ℕ+ n)
i +′ j = inject≤ (i + j) (N._+-mono_ (prop-toℕ-≤ i) ≤-refl)
where open Poset N.poset renaming (refl to ≤-refl)
-- reverse {n} "i" = "n ∸ 1 ∸ i".
reverse : ∀ {n} → Fin n → Fin n
reverse {zero} ()
reverse {suc n} i = inject≤ (n ℕ- i) (N.n∸m≤n (toℕ i) (suc n))
-- If there is an injection from a set to a finite set, then equality
-- of the set can be decided.
eq? : ∀ {S n} →
Injection S (PropEq.setoid (Fin n)) → Decidable (Setoid._≈_ S)
eq? inj x y with to ⟨$⟩ x ≟ to ⟨$⟩ y where open Injection inj
... | yes tox≡toy = yes (Injection.injective inj tox≡toy)
... | no tox≢toy = no (tox≢toy ∘ pres (Injection.to inj))
-- Quantification over finite sets commutes with applicative functors.
sequence : ∀ {F n} {P : Pred (Fin n)} → RawApplicative F →
(∀ i → F (P i)) → F (∀ i → P i)
sequence {F} RA = helper _ _
where
open RawApplicative RA
helper : ∀ n (P : Pred (Fin n)) → (∀ i → F (P i)) → F (∀ i → P i)
helper zero P ∀iPi = pure (λ())
helper (suc n) P ∀iPi =
combine <$> ∀iPi zero ⊛ helper n (λ n → P (suc n)) (∀iPi ∘ suc)
where
combine : P zero → (∀ i → P (suc i)) → ∀ i → P i
combine z s zero = z
combine z s (suc i) = s i
private
-- Included just to show that sequence above has an inverse (under
-- an equivalence relation with two equivalence classes, one with
-- all inhabited sets and the other with all uninhabited sets).
sequence⁻¹ : ∀ {F A} {P : Pred A} → RawFunctor F →
F (∀ i → P i) → ∀ i → F (P i)
sequence⁻¹ RF F∀iPi i = (λ f → f i) <$> F∀iPi
where open RawFunctor RF
| {
"alphanum_fraction": 0.5276759531,
"avg_line_length": 32.2840236686,
"ext": "agda",
"hexsha": "66e3aa7c0e241ecaea85d180130d22237d25a798",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Fin/Props.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Fin/Props.agda",
"max_line_length": 82,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Fin/Props.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 2168,
"size": 5456
} |
{-# OPTIONS --safe #-}
module Cubical.Categories.Limits where
open import Cubical.Categories.Limits.Limits public
open import Cubical.Categories.Limits.BinProduct public
open import Cubical.Categories.Limits.BinCoproduct public
open import Cubical.Categories.Limits.Initial public
open import Cubical.Categories.Limits.Terminal public
open import Cubical.Categories.Limits.Pullback public
| {
"alphanum_fraction": 0.8461538462,
"avg_line_length": 39,
"ext": "agda",
"hexsha": "63083fac5901c1d5055a2502527c8d13d4dc75fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Categories/Limits.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Categories/Limits.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Categories/Limits.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 82,
"size": 390
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.Mirror.StructurallySmaller.StructurallySmaller where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Program.Mirror.Type
------------------------------------------------------------------------------
{-# TERMINATING #-}
foo : ∀ {ts} → Tree ts → D
foo (tree d fnil) = d
foo (tree d (fcons Tt Fts)) = foo (tree d Fts)
{-# TERMINATING #-}
bar : ∀ {ts} → Tree ts → D
bar (tree d fnil) = d
bar (tree d (fcons Tt Fts)) = helper (bar Tt) (bar (tree d Fts))
where
postulate helper : D → D → D
{-# TERMINATING #-}
bar₁ : ∀ ts → Tree ts → D
bar₁ .(node d []) (tree d fnil) = d
bar₁ .(node d (t ∷ ts)) (tree d (fcons {t} {ts} Tt Fts))
= helper (bar₁ t Tt) (bar₁ (node d ts) (tree d Fts))
where
postulate helper : D → D → D
| {
"alphanum_fraction": 0.5322245322,
"avg_line_length": 29.1515151515,
"ext": "agda",
"hexsha": "c7c93d6ea0174dde82388c20e15141d4fbe72898",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmaller.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmaller.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/Mirror/StructurallySmaller/StructurallySmaller.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 291,
"size": 962
} |
open import Oscar.Prelude
open import Oscar.Data.¶
module Oscar.Data.Descender where
-- m ≤ n, counting down from n-1 to m
data Descender⟨_⟩ {a} (A : ¶ → Ø a) (m : ¶) : ¶ → Ø a where
∅ : Descender⟨ A ⟩ m m
_,_ : ∀ {n} → A n → Descender⟨ A ⟩ m n → Descender⟨ A ⟩ m (↑ n)
Vec'⟨_⟩ = λ {a} (A : Ø a) N → Descender⟨ (λ _ → A) ⟩ 0 N
⟨_⟩¶⟨_≤_↓⟩ = Descender⟨_⟩
AList⟨_⟩ = ⟨_⟩¶⟨_≤_↓⟩
| {
"alphanum_fraction": 0.5378590078,
"avg_line_length": 25.5333333333,
"ext": "agda",
"hexsha": "ad5ac8050caf69cc4bc6460625a999133efc420c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Descender.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Descender.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Descender.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 189,
"size": 383
} |
module Ferros.Resource.Untyped where
open import Ferros.Resource.Untyped.Base public
| {
"alphanum_fraction": 0.8390804598,
"avg_line_length": 21.75,
"ext": "agda",
"hexsha": "6e045c8bbcf35ec08bbde3a74b54bd5de59f5965",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8759d36ac9ec24c53f226a60fa3811eb1d4e5d93",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "auxoncorp/ferros-spec",
"max_forks_repo_path": "Ferros/Resource/Untyped.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8759d36ac9ec24c53f226a60fa3811eb1d4e5d93",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "auxoncorp/ferros-spec",
"max_issues_repo_path": "Ferros/Resource/Untyped.agda",
"max_line_length": 48,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "8759d36ac9ec24c53f226a60fa3811eb1d4e5d93",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "auxoncorp/ferros-spec",
"max_stars_repo_path": "Ferros/Resource/Untyped.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-27T23:18:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-09-11T01:06:56.000Z",
"num_tokens": 20,
"size": 87
} |
module Selective.Simulate where
open import Selective.ActorMonad public
open import Selective.SimulationEnvironment
open import Selective.EnvironmentOperations
open import Prelude
open import Data.List.All.Properties using (++⁺)
open import Data.Nat.Properties using (≤-reflexive ; ≤-step)
open import Data.Product using (Σ ; _,_ ; _×_ ; Σ-syntax)
open Actor
open ValidActor
open Env
open FoundReference
open LiftedReferences
open UpdatedInbox
open ValidMessageList
open NamedInbox
open _comp↦_∈_
open NameSupply
open NameSupplyStream
data Trace (i : Size) : Set₂
record ∞Trace (i : Size) : Set₂ where
coinductive
constructor delay_
field force : {j : Size< i} → Trace j
data Trace (i : Size) where
TraceStop : (env : Env) → Done env → Trace i
_∷_ : (x : Env) (xs : ∞Trace i) → Trace i
reduce-unbound-return : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Return act →
ActorHasNoContinuation act →
Env
reduce-unbound-return env Focused AtReturn no-cont = block-focused env Focused (BlockedReturn AtReturn no-cont)
reduce-bound-return : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Return act →
ActorHasContinuation act →
Env
reduce-bound-return env@record {
acts = actor@record { computation = Return v ⟶ (f ∷ cont) } ∷ rest
; actors-valid = actor-valid ∷ rest-valid
} Focused AtReturn HasContinuation =
let
actor' : Actor
actor' = replace-actorM actor ((f v .force) ⟶ cont)
env' : Env
env' = replace-focused
env
Focused
actor'
(rewrap-valid-actor AreSame actor-valid)
in env'
reduce-bind : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Bind act →
Env
reduce-bind env@record { acts = actor@record { computation = (m ∞>>= f) ⟶ cont } ∷ rest ; actors-valid = actor-valid ∷ rest-valid } Focused AtBind =
let
actor' : Actor
actor' = replace-actorM actor ((m .force) ⟶ (f ∷ cont))
env' : Env
env' = replace-focused
env
Focused
actor'
(rewrap-valid-actor AreSame actor-valid)
in env'
reduce-spawn : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Spawn act →
Env
reduce-spawn env@record {
acts = actor@record { computation = Spawn {NewIS} {B} act ⟶ cont } ∷ rest
; actors-valid = actor-valid ∷ rest-valid
} Focused AtSpawn =
let
new-name : Name
new-name = env .name-supply .supply .name
new-store-entry : NamedInbox
new-store-entry = inbox# new-name [ NewIS ]
env' : Env
env' = add-top (act ⟶ []) env
valid' : ValidActor (env' .store) actor
valid' = valid-actor-suc (env .name-supply .supply) actor-valid
env'' : Env
env'' = top-actor-to-back env'
actor' : Actor
actor' = add-reference actor new-store-entry (Return _ ⟶ cont)
valid'' : ValidActor (env'' .store) actor'
valid'' = add-reference-valid RefAdded valid' [p: zero ][handles: ⊆-refl ]
env''' : Env
env''' = replace-focused env'' Focused actor' valid''
in env'''
reduce-send : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Send act →
Env
reduce-send env@record {
acts = actor@record { computation = Send {ToIS = ToIS} canSendTo (SendM tag fields) ⟶ cont } ∷ rest
; actors-valid = actor-valid ∷ rest-valid
} Focused AtSend =
let
to-reference : FoundReference (store env) ToIS
to-reference = lookup-reference-act actor-valid canSendTo
namedFields = name-fields-act (store env) actor fields actor-valid
actor' : Actor
actor' = replace-actorM actor (Return _ ⟶ cont)
withM : Env
withM = replace-focused
env
Focused
actor'
(rewrap-valid-actor AreSame actor-valid)
message = NamedM
(translate-message-pointer to-reference tag)
namedFields
message-is-valid : message-valid (env .store) message
message-is-valid = make-pointers-compatible
(env .store)
(actor .pre)
(actor .references)
(actor .pre-eq-refs)
fields
(actor-valid .references-have-pointer)
updater = add-message message message-is-valid
withUpdatedInbox : Env
withUpdatedInbox = update-inbox-env
withM
(underlying-pointer to-reference)
updater
in withUpdatedInbox
reduce-receive-without-message : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Receive act →
(p : has-inbox (env .store) act) →
inbox-for-actor (env .env-inboxes) act p [] →
Env
reduce-receive-without-message env Focused AtReceive p ifa = block-focused env Focused (BlockedReceive AtReceive p ifa)
reduce-receive-with-message : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Receive act →
(p : has-inbox (env .store) act) →
∀ inbox →
all-messages-valid (env .store) inbox →
InboxInState NonEmpty inbox →
inbox-for-actor (env .env-inboxes) act p inbox →
Env
reduce-receive-with-message env@record {
acts = actor@record { computation = (Receive ⟶ cont) } ∷ rest
; actors-valid = actor-valid ∷ rest-valid
} Focused AtReceive p (nm ∷ messages) (nmv ∷ vms) HasMessage ifa =
let
inboxesAfter = update-inbox
(env .store)
(env .env-inboxes)
(env .messages-valid)
(actor-valid .actor-has-inbox)
remove-message
actor' : Actor
actor' = add-references-rewrite
actor
(named-inboxes nm)
{unname-message nm}
(add-references++
nm
nmv
(pre actor))
(Return (unname-message nm) ⟶ cont)
actor-valid' : ValidActor (env .store) actor'
actor-valid' = record {
actor-has-inbox = actor-valid .actor-has-inbox
; references-have-pointer = valid++ nm nmv (actor-valid .references-have-pointer)
}
env' : Env
env' = let
updated = update-inbox (env .store) (env .env-inboxes) (env .messages-valid) (actor-valid .actor-has-inbox) remove-message
unblock-split = unblock-actors updated (env .blocked) (env .blocked-valid) (env .blocked-no-progress)
open UnblockedActors
in record
{ acts = actor' ∷ unblock-split .unblocked ++ rest
; blocked = unblock-split .still-blocked
; store = env .store
; env-inboxes = updated .updated-inboxes
; name-supply = env .name-supply
; actors-valid = actor-valid' ∷ ++⁺ (unblock-split .unblocked-valid) rest-valid
; blocked-valid = unblock-split .blocked-valid
; messages-valid = updated .inboxes-valid
; blocked-no-progress = unblock-split .blocked-no-prog
}
in env'
reduce-receive : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Receive act →
Env
reduce-receive env@record { acts = actor ∷ rest ; actors-valid = actor-valid ∷ _ } Focused AtReceive = choose-reduction (get-inbox env (actor-valid .actor-has-inbox))
where
open GetInbox
choose-reduction : (gi : GetInbox (env .store) (env .env-inboxes) (actor-valid .actor-has-inbox)) → Env
choose-reduction gi@record { messages = [] } =
reduce-receive-without-message env Focused AtReceive _ (gi .right-inbox)
choose-reduction gi@record { messages = _ ∷ _ } =
reduce-receive-with-message env Focused AtReceive _ (gi .messages) (gi .valid) HasMessage (gi .right-inbox)
reduce-self : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Self act →
Env
reduce-self env@record { acts = actor@record {
computation = Self ⟶ cont } ∷ _
; actors-valid = actor-valid ∷ _
} Focused AtSelf =
let
actor' : Actor
actor' = add-reference actor inbox# (actor .name) [ (actor .inbox-shape) ] ((Return _) ⟶ cont)
actor-valid' : ValidActor (env .store) actor'
actor-valid' = add-reference-valid RefAdded actor-valid [p: (actor-valid .actor-has-inbox) ][handles: ⊆-refl ]
env' : Env
env' = replace-focused
env
Focused
actor'
actor-valid'
in env'
reduce-selective-with-message : {act : Actor} → (env : Env) → Focus act env →
(aac : ActorAtConstructor Selective act) →
(point : has-inbox (env .store) act) →
∀ inbox →
all-messages-valid (env .store) inbox →
inbox-for-actor (env .env-inboxes) act point inbox →
{split : SplitList inbox} →
{p : (filter-named (selected-filter act aac)) (SplitList.el split) ≡ true} →
InboxInFilterState {filter = filter-named (selected-filter act aac)} inbox (Found split p) →
Env
reduce-selective-with-message env@record {
acts = actor@record { computation = SelectiveReceive filter ⟶ cont } ∷ rest
; actors-valid = actor-valid ∷ rest-valid
} Focused AtSelective point inb amv ifa (HasMessage split ok) =
let updated = update-inbox (env .store) (env .env-inboxes) (env .messages-valid) (actor-valid .actor-has-inbox) (remove-found-message filter)
unblock-split = unblock-actors updated (env .blocked) (env .blocked-valid) (env .blocked-no-progress)
open SplitList
received-nm = split .el
added-references = named-inboxes received-nm
received-message = unname-message received-nm
received-valid : message-valid (env .store) received-nm
received-valid = split-all-el inb amv split
adds-correct-references : map shape added-references ++ (actor .pre) ≡ add-references (actor .pre) received-message
adds-correct-references = add-references++ received-nm received-valid (actor .pre)
new-continuation = Return sm: received-message [ ok ] ⟶ cont
act' : Actor
act' = add-references-rewrite actor added-references {received-message} adds-correct-references new-continuation
act-valid' : ValidActor (env .store) act'
act-valid' = record {
actor-has-inbox = actor-valid .actor-has-inbox
; references-have-pointer = valid++ received-nm received-valid (actor-valid .references-have-pointer)
}
open UnblockedActors
in record
{ acts = act' ∷ unblock-split .unblocked ++ rest
; blocked = unblock-split .still-blocked
; store = env .store
; env-inboxes = updated-inboxes updated
; name-supply = env .name-supply
; actors-valid = act-valid' ∷ ++⁺ (unblock-split .unblocked-valid) rest-valid
; blocked-valid = unblock-split .blocked-valid
; messages-valid = inboxes-valid updated
; blocked-no-progress = unblock-split .blocked-no-prog
}
reduce-selective-without-message : {act : Actor} → (env : Env) → Focus act env →
(aac : ActorAtConstructor Selective act) →
(point : has-inbox (env .store) act) →
∀ inbox →
{ps : All (misses-filter (filter-named (selected-filter act aac))) inbox} →
inbox-for-actor (env .env-inboxes) act point inbox →
InboxInFilterState inbox (Nothing ps) →
Env
reduce-selective-without-message env Focused AtSelective point inbox ifa iifs =
block-focused env Focused (BlockedSelective AtSelective point inbox ifa iifs)
reduce-selective : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Selective act →
Env
reduce-selective env@record {
acts = actor@record { computation = SelectiveReceive filter ⟶ _ } ∷ _
; actors-valid = actor-valid ∷ _
} Focused AtSelective =
let inb = get-inbox env (actor-valid .actor-has-inbox)
in choose-reduction inb (find-split (inb .messages) (filter-named filter))
where
open GetInbox
choose-reduction : (gi : GetInbox (env .store) (env .env-inboxes) (actor-valid .actor-has-inbox)) → FoundInList (gi .messages) (filter-named filter) → Env
choose-reduction gi (Found split x) = reduce-selective-with-message env Focused AtSelective _ (gi .messages) (gi .valid) (gi .right-inbox) (HasMessage split x)
choose-reduction gi (Nothing ps) = reduce-selective-without-message env Focused AtSelective _ (gi .messages) (gi .right-inbox) (IsEmpty ps)
reduce-strengthen : {act : Actor} → (env : Env) → Focus act env →
ActorAtConstructor Strengthen act →
Env
reduce-strengthen env@record {
acts = actor@record { computation = Strengthen {ys} inc ⟶ cont } ∷ _
; actors-valid = actor-valid ∷ _
} Focused AtStrengthen =
let
lifted-references = lift-references inc (references actor) (pre-eq-refs actor)
actor' : Actor
actor' = lift-actor actor (lifted-references .contained) (lifted-references .contained-eq-inboxes) (Return _ ⟶ cont)
actor-valid' : ValidActor (env .store) actor'
actor-valid' = lift-valid-actor (CanBeLifted lifted-references) actor-valid
env' : Env
env' = replace-focused
env
Focused
actor'
actor-valid'
in env'
reduce : {act : Actor} → (env : Env) → Focus act env → Env
reduce env@record { acts = record { computation = (Return val ⟶ []) } ∷ _ } Focused =
reduce-unbound-return env Focused AtReturn (NoContinuation {v = val})
reduce env@record { acts = record { computation = (Return val ⟶ (_ ∷ _)) } ∷ _ } Focused =
reduce-bound-return env Focused AtReturn (HasContinuation {v = val})
reduce env@record { acts = record { computation = ((m ∞>>= f) ⟶ _)} ∷ _ } Focused =
reduce-bind env Focused AtBind
reduce env@record { acts = record { computation = (Spawn act ⟶ cont) } ∷ _ } Focused =
reduce-spawn env Focused AtSpawn
reduce env@record { acts = record { computation = (Send canSendTo msg ⟶ cont) } ∷ _ } Focused =
reduce-send env Focused AtSend
reduce env@record { acts = record { computation = (Receive ⟶ cont) } ∷ _ } Focused =
reduce-receive env Focused AtReceive
reduce env@record { acts = record { computation = (SelectiveReceive filter ⟶ cont) } ∷ _ } Focused =
reduce-selective env Focused AtSelective
reduce env@record { acts = record { computation = (Self ⟶ cont) } ∷ _ } Focused =
reduce-self env Focused AtSelf
reduce env@record { acts = record { computation = (Strengthen inc ⟶ cont) } ∷ _ } Focused =
reduce-strengthen env Focused AtStrengthen
simulate : Env → ∞Trace ∞
simulate env@record { acts = [] ; actors-valid = [] } = delay TraceStop env AllBlocked
simulate env@record { acts = _ ∷ _ ; actors-valid = _ ∷ _ } = keep-stepping (reduce env Focused)
where
open ∞Trace
keep-stepping : Env → ∞Trace ∞
keep-stepping env .force = env ∷ simulate env
| {
"alphanum_fraction": 0.5983287619,
"avg_line_length": 44.6638176638,
"ext": "agda",
"hexsha": "a9b4a950f323998a6c7dbc8207dfcd8cb4aef037",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/singly-typed-actors",
"max_forks_repo_path": "src/Selective/Simulate.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/singly-typed-actors",
"max_issues_repo_path": "src/Selective/Simulate.agda",
"max_line_length": 166,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/thesis",
"max_stars_repo_path": "src/Selective/Simulate.agda",
"max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z",
"num_tokens": 3987,
"size": 15677
} |
module Oscar.Data.Vec.Core where
open import Data.Vec public using (Vec; []; _∷_)
| {
"alphanum_fraction": 0.7142857143,
"avg_line_length": 16.8,
"ext": "agda",
"hexsha": "932a1b2d60d966a5f4c03684a88518852c5ca257",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Vec/Core.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Vec/Core.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Vec/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 24,
"size": 84
} |
module OlderBasicILP.Indirect.Gentzen where
open import OlderBasicILP.Indirect public
-- Derivations, as Gentzen-style natural deduction trees.
mutual
data Tm : Set where
VAR : ℕ → Tm
LAM : Tm → Tm
APP : Tm → Tm → Tm
MULTIBOX : Cx Tm → Tm → Tm
DOWN : Tm → Tm
PAIR : Tm → Tm → Tm
FST : Tm → Tm
SND : Tm → Tm
UNIT : Tm
infix 3 _⊢_
data _⊢_ (Γ : Cx (Ty Tm)) : Ty Tm → Set where
var : ∀ {A} → A ∈ Γ → Γ ⊢ A
lam : ∀ {A B} → Γ , A ⊢ B → Γ ⊢ A ▻ B
app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B
multibox : ∀ {n A} {SS : VCx Tm n} {Ξ : VCx (Ty Tm) n}
→ Γ ⊢⋆ SS ⦂⋆ Ξ → (u : SS ⦂⋆ Ξ ⊢ A)
→ Γ ⊢ [ u ] ⦂ A
down : ∀ {A T} → Γ ⊢ T ⦂ A → Γ ⊢ A
pair : ∀ {A B} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
fst : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ A
snd : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ B
unit : Γ ⊢ ⊤
infix 3 _⊢⋆_
_⊢⋆_ : Cx (Ty Tm) → Cx (Ty Tm) → Set
Γ ⊢⋆ ∅ = 𝟙
Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A
[_] : ∀ {A Γ} → Γ ⊢ A → Tm
[ var i ] = VAR [ i ]ⁱ
[ lam t ] = LAM [ t ]
[ app t u ] = APP [ t ] [ u ]
[ multibox ts u ] = MULTIBOX [ ts ]⋆ [ u ]
[ down t ] = DOWN [ t ]
[ pair t u ] = PAIR [ t ] [ u ]
[ fst t ] = FST [ t ]
[ snd t ] = SND [ t ]
[ unit ] = UNIT
[_]⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Cx Tm
[_]⋆ {∅} ∙ = ∅
[_]⋆ {Ξ , A} (ts , t) = [ ts ]⋆ , [ t ]
-- Monotonicity with respect to context inclusion.
mutual
mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (lam t) = lam (mono⊢ (keep η) t)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η (multibox ts u) = multibox (mono⊢⋆ η ts) u
mono⊢ η (down t) = down (mono⊢ η t)
mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u)
mono⊢ η (fst t) = fst (mono⊢ η t)
mono⊢ η (snd t) = snd (mono⊢ η t)
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
-- Shorthand for variables.
V₀ : Tm
V₀ = VAR 0
V₁ : Tm
V₁ = VAR 1
V₂ : Tm
V₂ = VAR 2
v₀ : ∀ {A Γ} → Γ , A ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ} → (Γ , A) , B ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ} → ((Γ , A) , B) , C ⊢ A
v₂ = var i₂
-- Reflexivity.
refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
-- Deduction theorem is built-in.
-- Detachment theorem.
DET : Tm → Tm
DET T = APP T V₀
det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
-- Cut and multicut.
CUT : Tm → Tm → Tm
CUT T U = APP (LAM U) T
MULTICUT : Cx Tm → Tm → Tm
MULTICUT ∅ U = U
MULTICUT (TS , T) U = APP (MULTICUT TS (LAM U)) T
cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B
cut t u = app (lam u) t
multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
-- Transitivity.
trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″
trans⊢⋆ {∅} ts ∙ = ∙
trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u
-- Contraction.
CCONT : Tm
CCONT = LAM (LAM (APP (APP V₁ V₀) V₀))
CONT : Tm → Tm
CONT T = DET (APP CCONT (LAM (LAM T)))
ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B
cont t = det (app ccont (lam (lam t)))
-- Exchange, or Schönfinkel’s C combinator.
CEXCH : Tm
CEXCH = LAM (LAM (LAM (APP (APP V₂ V₀) V₁)))
EXCH : Tm → Tm
EXCH T = DET (DET (APP CEXCH (LAM (LAM T))))
cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C
exch t = det (det (app cexch (lam (lam t))))
-- Composition, or Schönfinkel’s B combinator.
CCOMP : Tm
CCOMP = LAM (LAM (LAM (APP V₂ (APP V₁ V₀))))
COMP : Tm → Tm → Tm
COMP T U = DET (APP (APP CCOMP (LAM T)) (LAM U))
ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
-- Useful theorems in functional form.
DIST : Tm → Tm → Tm
DIST T U = MULTIBOX ((∅ , T) , U) (APP (DOWN V₁) (DOWN V₀))
UP : Tm → Tm
UP T = MULTIBOX (∅ , T) V₀
DISTUP : Tm → Tm → Tm
DISTUP T U = DIST T (UP U)
BOX : Tm → Tm
BOX T = MULTIBOX ∅ T
UNBOX : Tm → Tm → Tm
UNBOX T U = APP (LAM U) T
dist : ∀ {A B T U Γ}
→ (t : Γ ⊢ T ⦂ (A ▻ B)) → (u : Γ ⊢ U ⦂ A)
→ Γ ⊢ APP (DOWN V₁) (DOWN V₀) ⦂ B
dist t u = multibox ((∙ , t) , u) (app (down v₁) (down v₀))
up : ∀ {A T Γ}
→ Γ ⊢ T ⦂ A
→ Γ ⊢ V₀ ⦂ T ⦂ A
up t = multibox (∙ , t) v₀
distup : ∀ {A B T U Γ}
→ (t : Γ ⊢ T ⦂ (U ⦂ A ▻ B)) → (u : Γ ⊢ U ⦂ A)
→ Γ ⊢ APP (DOWN V₁) (DOWN V₀) ⦂ B
distup t u = dist t (up u)
box : ∀ {A Γ}
→ (t : ∅ ⊢ A)
→ Γ ⊢ [ t ] ⦂ A
box t = multibox ∙ t
unbox : ∀ {A C T U Γ}
→ Γ ⊢ T ⦂ A → Γ , T ⦂ A ⊢ U ⦂ C
→ Γ ⊢ U ⦂ C
unbox t u = app (lam u) t
-- Useful theorems in combinatory form.
CI : Tm
CI = LAM V₀
CK : Tm
CK = LAM (LAM V₁)
CS : Tm
CS = LAM (LAM (LAM (APP (APP V₂ V₀) (APP V₁ V₀))))
CDIST : Tm
CDIST = LAM (LAM (DIST V₁ V₀))
CUP : Tm
CUP = LAM (UP V₀)
CDOWN : Tm
CDOWN = LAM (DOWN V₀)
CDISTUP : Tm
CDISTUP = LAM (LAM (DIST V₁ (UP V₀)))
CUNBOX : Tm
CUNBOX = LAM (LAM (APP V₀ V₁))
CPAIR : Tm
CPAIR = LAM (LAM (PAIR V₁ V₀))
CFST : Tm
CFST = LAM (FST V₀)
CSND : Tm
CSND = LAM (SND V₀)
ci : ∀ {A Γ} → Γ ⊢ A ▻ A
ci = lam v₀
ck : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A
ck = lam (lam v₁)
cs : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀))))
cdist : ∀ {A B T U Γ}
→ Γ ⊢ T ⦂ (A ▻ B) ▻ U ⦂ A ▻ APP (DOWN V₁) (DOWN V₀) ⦂ B
cdist = lam (lam (dist v₁ v₀))
cup : ∀ {A T Γ} → Γ ⊢ T ⦂ A ▻ V₀ ⦂ T ⦂ A
cup = lam (up v₀)
cdown : ∀ {A T Γ} → Γ ⊢ T ⦂ A ▻ A
cdown = lam (down v₀)
cdistup : ∀ {A B T U Γ}
→ Γ ⊢ T ⦂ (U ⦂ A ▻ B) ▻ U ⦂ A ▻ APP (DOWN V₁) (DOWN V₀) ⦂ B
cdistup = lam (lam (dist v₁ (up v₀)))
cunbox : ∀ {A C T Γ} → Γ ⊢ T ⦂ A ▻ (T ⦂ A ▻ C) ▻ C
cunbox = lam (lam (app v₀ v₁))
cpair : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A ∧ B
cpair = lam (lam (pair v₁ v₀))
cfst : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ A
cfst = lam (fst v₀)
csnd : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ B
csnd = lam (snd v₀)
-- Closure under context concatenation.
concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
-- Substitution.
mutual
[_≔_]_ : ∀ {A B Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢ B → Γ ∖ i ⊢ B
[ i ≔ s ] var j with i ≟∈ j
[ i ≔ s ] var .i | same = s
[ i ≔ s ] var ._ | diff j = var j
[ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t)
[ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] multibox ts u = multibox ([ i ≔ s ]⋆ ts) u
[ i ≔ s ] down t = down ([ i ≔ s ] t)
[ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u)
[ i ≔ s ] fst t = fst ([ i ≔ s ] t)
[ i ≔ s ] snd t = snd ([ i ≔ s ] t)
[ i ≔ s ] unit = unit
[_≔_]⋆_ : ∀ {Ξ A Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢⋆ Ξ → Γ ∖ i ⊢⋆ Ξ
[_≔_]⋆_ {∅} i s ∙ = ∙
[_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t
| {
"alphanum_fraction": 0.426804404,
"avg_line_length": 22.9190031153,
"ext": "agda",
"hexsha": "bd6feb6296792fb54f9f028e81231893fe180609",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "OlderBasicILP/Indirect/Gentzen.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "OlderBasicILP/Indirect/Gentzen.agda",
"max_line_length": 69,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "OlderBasicILP/Indirect/Gentzen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 3778,
"size": 7357
} |
module Luau.Type.ToString where
open import FFI.Data.String using (String; _++_)
open import Luau.Type using (Type; nil; _⇒_; none; any; number; _∪_; _∩_; normalizeOptional)
{-# TERMINATING #-}
typeToString : Type → String
typeToStringᵁ : Type → String
typeToStringᴵ : Type → String
typeToString nil = "nil"
typeToString (S ⇒ T) = "(" ++ (typeToString S) ++ ") -> " ++ (typeToString T)
typeToString none = "none"
typeToString any = "any"
typeToString number = "number"
typeToString (S ∪ T) with normalizeOptional(S ∪ T)
typeToString (S ∪ T) | ((S′ ⇒ T′) ∪ nil) = "(" ++ typeToString (S′ ⇒ T′) ++ ")?"
typeToString (S ∪ T) | (S′ ∪ nil) = typeToString S′ ++ "?"
typeToString (S ∪ T) | (S′ ∪ T′) = "(" ++ typeToStringᵁ (S ∪ T) ++ ")"
typeToString (S ∪ T) | T′ = typeToString T′
typeToString (S ∩ T) = "(" ++ typeToStringᴵ (S ∩ T) ++ ")"
typeToStringᵁ (S ∪ T) = (typeToStringᵁ S) ++ " | " ++ (typeToStringᵁ T)
typeToStringᵁ T = typeToString T
typeToStringᴵ (S ∩ T) = (typeToStringᴵ S) ++ " & " ++ (typeToStringᴵ T)
typeToStringᴵ T = typeToString T
| {
"alphanum_fraction": 0.6263107722,
"avg_line_length": 37.4642857143,
"ext": "agda",
"hexsha": "e7a7c1c07b2ae4391b8d84f37a82989243c14b12",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/Type/ToString.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/Type/ToString.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/Type/ToString.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 376,
"size": 1049
} |
{-# OPTIONS --allow-unsolved-metas #-}
module fin where
open import Data.Fin hiding (_<_ ; _≤_ )
open import Data.Fin.Properties hiding ( <-trans )
open import Data.Nat
open import logic
open import nat
open import Relation.Binary.PropositionalEquality
-- toℕ<n
fin<n : {n : ℕ} {f : Fin n} → toℕ f < n
fin<n {_} {zero} = s≤s z≤n
fin<n {suc n} {suc f} = s≤s (fin<n {n} {f})
-- toℕ≤n
fin≤n : {n : ℕ} (f : Fin (suc n)) → toℕ f ≤ n
fin≤n {_} zero = z≤n
fin≤n {suc n} (suc f) = s≤s (fin≤n {n} f)
pred<n : {n : ℕ} {f : Fin (suc n)} → n > 0 → Data.Nat.pred (toℕ f) < n
pred<n {suc n} {zero} (s≤s z≤n) = s≤s z≤n
pred<n {suc n} {suc f} (s≤s z≤n) = fin<n
fin<asa : {n : ℕ} → toℕ (fromℕ< {n} a<sa) ≡ n
fin<asa = toℕ-fromℕ< nat.a<sa
-- fromℕ<-toℕ
toℕ→from : {n : ℕ} {x : Fin (suc n)} → toℕ x ≡ n → fromℕ n ≡ x
toℕ→from {0} {zero} refl = refl
toℕ→from {suc n} {suc x} eq = cong (λ k → suc k ) ( toℕ→from {n} {x} (cong (λ k → Data.Nat.pred k ) eq ))
0≤fmax : {n : ℕ } → (# 0) Data.Fin.≤ fromℕ< {n} a<sa
0≤fmax = subst (λ k → 0 ≤ k ) (sym (toℕ-fromℕ< a<sa)) z≤n
0<fmax : {n : ℕ } → (# 0) Data.Fin.< fromℕ< {suc n} a<sa
0<fmax = subst (λ k → 0 < k ) (sym (toℕ-fromℕ< a<sa)) (s≤s z≤n)
-- toℕ-injective
i=j : {n : ℕ} (i j : Fin n) → toℕ i ≡ toℕ j → i ≡ j
i=j {suc n} zero zero refl = refl
i=j {suc n} (suc i) (suc j) eq = cong ( λ k → suc k ) ( i=j i j (cong ( λ k → Data.Nat.pred k ) eq) )
-- raise 1
fin+1 : { n : ℕ } → Fin n → Fin (suc n)
fin+1 zero = zero
fin+1 (suc x) = suc (fin+1 x)
open import Data.Nat.Properties as NatP hiding ( _≟_ )
fin+1≤ : { i n : ℕ } → (a : i < n) → fin+1 (fromℕ< a) ≡ fromℕ< (<-trans a a<sa)
fin+1≤ {0} {suc i} (s≤s z≤n) = refl
fin+1≤ {suc n} {suc (suc i)} (s≤s (s≤s a)) = cong (λ k → suc k ) ( fin+1≤ {n} {suc i} (s≤s a) )
fin+1-toℕ : { n : ℕ } → { x : Fin n} → toℕ (fin+1 x) ≡ toℕ x
fin+1-toℕ {suc n} {zero} = refl
fin+1-toℕ {suc n} {suc x} = cong (λ k → suc k ) (fin+1-toℕ {n} {x})
open import Relation.Nullary
open import Data.Empty
fin-1 : { n : ℕ } → (x : Fin (suc n)) → ¬ (x ≡ zero ) → Fin n
fin-1 zero ne = ⊥-elim (ne refl )
fin-1 {n} (suc x) ne = x
fin-1-sx : { n : ℕ } → (x : Fin n) → fin-1 (suc x) (λ ()) ≡ x
fin-1-sx zero = refl
fin-1-sx (suc x) = refl
fin-1-xs : { n : ℕ } → (x : Fin (suc n)) → (ne : ¬ (x ≡ zero )) → suc (fin-1 x ne ) ≡ x
fin-1-xs zero ne = ⊥-elim ( ne refl )
fin-1-xs (suc x) ne = refl
-- suc-injective
-- suc-eq : {n : ℕ } {x y : Fin n} → Fin.suc x ≡ Fin.suc y → x ≡ y
-- suc-eq {n} {x} {y} eq = subst₂ (λ j k → j ≡ k ) {!!} {!!} (cong (λ k → Data.Fin.pred k ) eq )
-- this is refl
lemma3 : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt)
lemma3 (s≤s lt) = refl
-- fromℕ<-toℕ
lemma12 : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m
lemma12 {zero} {suc m} (s≤s z≤n) zero refl = refl
lemma12 {suc n} {suc m} (s≤s n<m) (suc f) refl = cong suc ( lemma12 {n} {m} n<m f refl )
open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
open import Data.Fin.Properties
-- <-irrelevant
<-nat=irr : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n
<-nat=irr {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl
<-nat=irr {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( <-nat=irr {i} {i} {n} refl )
lemma8 : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n
lemma8 {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl
lemma8 {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8 {i} {i} {n} refl )
-- fromℕ<-irrelevant
lemma10 : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ< i<n ≡ fromℕ< j<n
lemma10 {n} refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ< k ) (lemma8 refl ))
lemma31 : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c
lemma31 {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8 refl)
-- toℕ-fromℕ<
lemma11 : {n m : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x
lemma11 {n} {m} {x} n<m = begin
toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m))
≡⟨ toℕ-fromℕ< _ ⟩
toℕ x
∎ where
open ≡-Reasoning
| {
"alphanum_fraction": 0.4969208906,
"avg_line_length": 35.7796610169,
"ext": "agda",
"hexsha": "5bb370bc7bfc7599262b2726c457afeda2071051",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/Galois",
"max_forks_repo_path": "src/fin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/Galois",
"max_issues_repo_path": "src/fin.agda",
"max_line_length": 115,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/Galois",
"max_stars_repo_path": "src/fin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z",
"num_tokens": 2122,
"size": 4222
} |
module SingleSorted.Context where
-- An attempt to define more structured context
-- that directly support the cartesian structure
data Context : Set where
ctx-empty : Context
ctx-slot : Context
ctx-concat : Context → Context → Context
-- the variables in a context
data var : Context → Set where
var-var : var ctx-slot
var-inl : ∀ {Γ Δ} → var Γ → var (ctx-concat Γ Δ)
var-inr : ∀ {Γ Δ} → var Δ → var (ctx-concat Γ Δ)
-- It is absurd to have a variable in the empty context
ctx-empty-absurd : ∀ {ℓ} {A : Set ℓ} → var ctx-empty → A
ctx-empty-absurd ()
| {
"alphanum_fraction": 0.6771929825,
"avg_line_length": 28.5,
"ext": "agda",
"hexsha": "011081ecb2961fe8512445d28584656235cfb71c",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SingleSorted/Context.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SingleSorted/Context.agda",
"max_line_length": 56,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SingleSorted/Context.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 166,
"size": 570
} |
{-# OPTIONS --cubical --safe --guardedness #-}
module Data.PolyP.RecursionSchemes where
open import Function hiding (_⟨_⟩_)
open import Data.Sum
open import Data.Sigma
open import Level
open import Data.Unit
open import Data.Nat
open import Data.Vec.Iterated
open import Data.Empty
open import WellFounded
open import Literals.Number
open import Data.Fin.Indexed.Literals
open import Data.Fin.Indexed.Properties
open import Data.Fin.Indexed
open import Data.Nat.Literals
open import Data.Maybe
open import Path
open import Data.PolyP.Universe
---------------------------------------------------------------------------------
--
-- Helpers for Termination
--
---------------------------------------------------------------------------------
-- This is just the identity type. We need to use it because, if --without-K is
-- turned on, Agda will only use an argument to a function to prove structural
-- descent if that argument is a concrete data type.
--
-- wont-pass : (x : Bool) → (if x then ℕ else ℕ) → ℕ
-- wont-pass false zero = zero
-- wont-pass false (suc n) = wont-pass true n
-- wont-pass true zero = zero
-- wont-pass true (suc n) = wont-pass false n
--
-- Even though we're clearly structurally descending on the second argument
-- there, Agda won't use it unless we make it concrete, like so:
--
-- will-pass : (x : Bool) → <! (if x then ℕ else ℕ) !> → ℕ
-- will-pass false [! zero !] = zero
-- will-pass false [! suc n !] = will-pass true [! n !]
-- will-pass true [! zero !] = zero
-- will-pass true [! suc n !] = will-pass false [! n !]
record <!_!> (A : Type) : Type where
eta-equality
constructor [!_!]
field !! : A
open <!_!>
-- For the map and cata functions to be structurally
-- terminating, we can't do things like:
--
-- cata f = f ∘ fmap (cata f) ∘ unwrap
--
-- So instead we need to carry a stack of all of the functors
-- we're under at any given point, and pattern match on that to
-- tell whether we should do f or fmap f.
data Layers (n : ℕ) : ℕ → Type₁ where
[] : Layers n n
_∷_ : Functor (1 + m) →
Layers n m →
Layers n (1 + m)
_++∙_ : Layers n m → Params n → Params m
[] ++∙ ys = ys
(x ∷ xs) ++∙ ys = let zs = xs ++∙ ys in μ x zs ∷ zs
infixr 5 _∷_ _++∙_
---------------------------------------------------------------------------------
--
-- Mapping
--
---------------------------------------------------------------------------------
module Mapping {m} {As Bs : Params m} (f : (i : Fin m) → As [ i ] → Bs [ i ]) where
mapRec : ∀ (F : Functor n) (Fs : Layers m n) →
<! ⟦ F ⟧ (Fs ++∙ As) !> → ⟦ F ⟧ (Fs ++∙ Bs)
mapRec (F ⊕ G) Fs [! inl x !] = inl (mapRec F Fs [! x !])
mapRec (F ⊕ G) Fs [! inr x !] = inr (mapRec G Fs [! x !])
mapRec (F ⊗ G) Fs [! x , y !] = mapRec F Fs [! x !] , mapRec G Fs [! y !]
mapRec μ⟨ F ⟩ Fs [! ⟨ xs ⟩ !] = ⟨ mapRec F (F ∷ Fs) [! xs !] ⟩
mapRec (! i ) [] [! xs !] = f i xs
mapRec (! f0 ) (F ∷ Fs) [! ⟨ xs ⟩ !] = ⟨ mapRec F (F ∷ Fs) [! xs !] ⟩
mapRec (! (fs i)) (F ∷ Fs) [! xs !] = mapRec (! i) Fs [! xs !]
mapRec ① Fs _ = tt
mapParamAt : (i : Fin n) → (As [ i ] → A) → (j : Fin n) → As [ j ] → As [ i ]≔ A [ j ]
mapParamAt f0 f f0 x = f x
mapParamAt f0 f (fs _) x = x
mapParamAt (fs _) f f0 x = x
mapParamAt (fs i) f (fs j) x = mapParamAt i f j x
map : ∀ F → (i : Fin n) → (As [ i ] → A) → ⟦ F ⟧ As → ⟦ F ⟧ (As [ i ]≔ A)
map F i f xs = Mapping.mapRec (mapParamAt i f) F [] [! xs !]
module MapComp
{m} {As Bs Cs : Params m}
(f : (i : Fin m) → Bs [ i ] → Cs [ i ])
(g : (i : Fin m) → As [ i ] → Bs [ i ])
where
open Mapping
mapComp : ∀ (F : Functor n) (Fs : Layers m n) (xs : <! ⟦ F ⟧ (Fs ++∙ As) !>) →
mapRec f F Fs [! mapRec g F Fs xs !] ≡ mapRec (λ i → f i ∘ g i) F Fs xs
mapComp (F ⊕ G) Fs [! inl x !] = cong inl (mapComp F Fs [! x !])
mapComp (F ⊕ G) Fs [! inr x !] = cong inr (mapComp G Fs [! x !])
mapComp (F ⊗ G) Fs [! x , y !] = cong₂ _,_ (mapComp F Fs [! x !]) (mapComp G Fs [! y !])
mapComp μ⟨ F ⟩ Fs [! ⟨ x ⟩ !] = cong ⟨_⟩ (mapComp F (F ∷ Fs) [! x !])
mapComp (! i) [] [! xs !] = refl
mapComp (! f0) (F ∷ Fs) [! ⟨ x ⟩ !] = cong ⟨_⟩ (mapComp F (F ∷ Fs) [! x !])
mapComp (! (fs i)) (F ∷ Fs) [! xs !] = mapComp (! i) Fs [! xs !]
mapComp ① Fs xs = refl
map-comp : ∀ (F : Functor (suc n)) → (f : B → C) → (g : A → B) → (x : ⟦ F ⟧ (A ∷ As)) →
map F f0 f (map F f0 g x) ≡ map F f0 (f ∘ g) x
map-comp F f g x =
MapComp.mapComp (mapParamAt f0 f) (mapParamAt f0 g) F [] [! x !] ;
cong (λ c → Mapping.mapRec c F [] [! x !])
(funExt λ { f0 → refl ; (fs x) → refl } )
module MapId {m} {As : Params m}
where
open Mapping {m = m} {As = As} {Bs = As}
mapId : ∀ (F : Functor n) (Fs : Layers m n) (xs : <! ⟦ F ⟧ (Fs ++∙ As) !>) →
mapRec (λ _ x → x) F Fs xs ≡ xs .!!
mapId (F ⊕ G) Fs [! inl x !] = cong inl (mapId F Fs [! x !])
mapId (F ⊕ G) Fs [! inr x !] = cong inr (mapId G Fs [! x !])
mapId (F ⊗ G) Fs [! x , y !] = cong₂ _,_ (mapId F Fs [! x !]) (mapId G Fs [! y !])
mapId μ⟨ F ⟩ Fs [! ⟨ x ⟩ !] = cong ⟨_⟩ (mapId F (F ∷ Fs) [! x !])
mapId (! i) [] [! xs !] = refl
mapId (! f0) (F ∷ Fs) [! ⟨ x ⟩ !] = cong ⟨_⟩ (mapId F (F ∷ Fs) [! x !])
mapId (! (fs i)) (F ∷ Fs) [! xs !] = mapId (! i) Fs [! xs !]
mapId ① Fs xs = refl
map-id : (F : Functor (suc n)) → (x : ⟦ F ⟧ (A ∷ As)) → map F f0 id x ≡ x
map-id F x =
cong
(λ c → Mapping.mapRec c F [] [! x !])
(funExt (λ { f0 → refl ; (fs i) → refl})) ;
MapId.mapId F [] [! x !]
---------------------------------------------------------------------------------
--
-- Categorical
--
---------------------------------------------------------------------------------
module Categorical (F : Functor (suc n)) (As : Params n) where
infix 4 _≗_
_≗_ : (A → B) → (A → B) → Set _
f ≗ g = ∀ x → f x ≡ g x
{-# INLINE _≗_ #-}
Alg : Type₁
Alg = Σ[ A ⦂ Type ] × (⟦ F ⟧ (A ∷ As) → A)
-- Hom
_⟶_ : Alg → Alg → Type
(A , a) ⟶ (B , b) = Σ[ h ⦂ (A → B) ] × (h ∘ a ≗ b ∘ map F f0 h)
variable
X Y Z : Alg
_∙_ : (Y ⟶ Z) → (X ⟶ Y) → (X ⟶ Z)
(f ∙ g) .fst = f .fst ∘ g .fst
_∙_ {Y = Y} {Z = Z} {X = X} f g .snd x =
cong (f .fst) (g .snd x) ;
f .snd (map F f0 (g .fst) x) ;
cong (Z .snd) (map-comp F (f .fst) (g .fst) x)
id′ : X ⟶ X
id′ .fst = id
id′ {X = X} .snd x = cong (X .snd) (sym (map-id F x))
---------------------------------------------------------------------------------
--
-- Catamorphisms
--
---------------------------------------------------------------------------------
module Cata {k} {F : Functor (suc k)} {As : Params k} (alg : ⟦ F ⟧ (A ∷ As) → A) where
cataRec : (G : Functor n) (Gs : Layers (suc m) n) →
<! ⟦ G ⟧ (Gs ++∙ μ F As ∷ Bs) !> → ⟦ G ⟧ (Gs ++∙ A ∷ Bs)
cataRec (G₁ ⊕ G₂) Gs [! inl x !] = inl (cataRec G₁ Gs [! x !])
cataRec (G₁ ⊕ G₂) Gs [! inr x !] = inr (cataRec G₂ Gs [! x !])
cataRec (G₁ ⊗ G₂) Gs [! x , y !] = cataRec G₁ Gs [! x !] , cataRec G₂ Gs [! y !]
cataRec μ⟨ G ⟩ Gs [! ⟨ x ⟩ !] = ⟨ cataRec G (G ∷ Gs) [! x !] ⟩
cataRec (! f0 ) [] [! ⟨ x ⟩ !] = alg (cataRec F [] [! x !])
cataRec (! (fs i)) [] [! x !] = x
cataRec (! (fs i)) (G ∷ Gs) [! x !] = cataRec (! i) Gs [! x !]
cataRec (! f0 ) (G ∷ Gs) [! ⟨ x ⟩ !] = ⟨ cataRec G (G ∷ Gs) [! x !] ⟩
cataRec ① Gs [! _ !] = tt
module _ {F : Functor (suc n)} {As : Params n} where
cata : (⟦ F ⟧ (A ∷ As) → A) → μ F As → A
cata alg xs = Cata.cataRec alg {Bs = As} (! f0) [] [! xs !]
module CataId {k} {F : Functor (suc k)} {As : Params k} where
cataRecId : (G : Functor n) (Gs : Layers (suc m) n) →
(x : <! ⟦ G ⟧ (Gs ++∙ μ F As ∷ Bs) !>) → Cata.cataRec ⟨_⟩ G Gs x ≡ !! x
cataRecId (G₁ ⊕ G₂) Gs [! inl x !] = cong inl (cataRecId G₁ Gs [! x !])
cataRecId (G₁ ⊕ G₂) Gs [! inr x !] = cong inr (cataRecId G₂ Gs [! x !])
cataRecId (G₁ ⊗ G₂) Gs [! x , y !] = cong₂ _,_ (cataRecId G₁ Gs [! x !]) (cataRecId G₂ Gs [! y !])
cataRecId μ⟨ G ⟩ Gs [! ⟨ x ⟩ !] = cong ⟨_⟩ (cataRecId G (G ∷ Gs) [! x !])
cataRecId (! f0 ) [] [! ⟨ x ⟩ !] = cong ⟨_⟩ (cataRecId F [] [! x !])
cataRecId (! (fs i)) [] [! x !] = refl
cataRecId (! (fs i)) (G ∷ Gs) [! x !] = cataRecId (! i) Gs [! x !]
cataRecId (! f0 ) (G ∷ Gs) [! ⟨ x ⟩ !] = cong ⟨_⟩ ( cataRecId G (G ∷ Gs) [! x !] )
cataRecId ① Gs [! _ !] = refl
module _ {F : Functor (suc n)} {As : Params n} where
cataId : (x : μ F As) → cata ⟨_⟩ x ≡ x
cataId x = CataId.cataRecId (! f0) [] [! x !]
---------------------------------------------------------------------------------
--
-- Eliminators
--
---------------------------------------------------------------------------------
module Eliminator {As : Params k}
{F : Functor (suc k)}
(P : μ F As → Type)
(f : (x : ⟦ F ⟧ ((∃ x × P x) ∷ As)) → P ⟨ map F f0 fst x ⟩)
where
open import Path
open Mapping
open Cata
alg : ⟦ F ⟧ ((∃ x × P x) ∷ As) → ∃ x × P x
alg x = ⟨ map F f0 fst x ⟩ , f x
mutual
elimRec : (G : Functor n) (Gs : Layers (suc m) n) →
(x : <! ⟦ G ⟧ (Gs ++∙ μ F As ∷ Bs) !>) →
mapRec (mapParamAt f0 fst) G Gs [! cataRec alg G Gs x !] ≡ !! x
elimRec (G₁ ⊕ G₂) Gs [! inl x !] = cong inl (elimRec G₁ Gs [! x !])
elimRec (G₁ ⊕ G₂) Gs [! inr x !] = cong inr (elimRec G₂ Gs [! x !])
elimRec (G₁ ⊗ G₂) Gs [! x , y !] = cong₂ _,_ (elimRec G₁ Gs [! x !]) (elimRec G₂ Gs [! y !])
elimRec μ⟨ G ⟩ Gs [! ⟨ x ⟩ !] = cong ⟨_⟩ (elimRec G (G ∷ Gs) [! x !])
elimRec (! f0 ) [] [! ⟨ x ⟩ !] = cong ⟨_⟩ (elimRec F [] [! x !])
elimRec (! (fs i)) [] [! x !] = refl
elimRec (! (fs i)) (G ∷ Gs) [! x !] = elimRec (! i) Gs [! x !]
elimRec (! f0 ) (G ∷ Gs) [! ⟨ x ⟩ !] = cong ⟨_⟩ (elimRec G (G ∷ Gs) [! x !])
elimRec ① Gs [! _ !] = refl
elim : ∀ x → P x
elim x = subst P (elimRec {Bs = As} (! f0) [] [! x !]) (snd (cata alg x))
module _ {F : Functor (suc n)} where
elim : (P : μ F As → Type) →
((x : ⟦ F ⟧ ((∃ x × P x) ∷ As)) → P ⟨ map F f0 fst x ⟩) →
(x : μ F As) → P x
elim = Eliminator.elim
module AlgIsomorphism {F : Functor (suc n)} {As : Params n} where
Alg : Type → Type
Alg A = ⟦ F ⟧ (A ∷ As) → A
AsAlg : Type₁
AsAlg = ∀ A → Alg A → A
open import Function.Isomorphism
toAlg : μ F As → AsAlg
toAlg xs A alg = cata alg xs
{-# INLINE toAlg #-}
fromAlg : AsAlg → μ F As
fromAlg f = f _ ⟨_⟩
{-# INLINE fromAlg #-}
rinv : (x : μ F As) → fromAlg (toAlg x) ≡ x
rinv = cataId
-- think you need parametricity for this
-- linv : (x : AsAlg) (A : Type) (alg : Alg A) → toAlg (fromAlg x) A alg ≡ x A alg
-- linv x A alg = {!!}
-- isom : AsAlg ⇔ μ F As
-- isom .fun = fromAlg
-- isom .inv = toAlg
-- isom .rightInv = rinv
-- isom .leftInv x = funExt λ A → funExt λ alg → linv x A alg
---------------------------------------------------------------------------------
--
-- Anamorphisms
--
---------------------------------------------------------------------------------
-- Coinductive fixpoint
record ν (F : Functor (suc n)) (As : Params n) : Type where
coinductive; constructor ⟪_⟫
field unfold : ⟦ F ⟧ (ν F As ∷ As)
open ν public
-- The "proper" anamorphism, which is coinductive.
module AnaInf {k} {F : Functor (suc k)} {As : Params k} (coalg : A → ⟦ F ⟧ (A ∷ As)) where
mutual
anaRec : (G : Functor n) (Gs : Layers (suc m) n) →
<! ⟦ G ⟧ (Gs ++∙ A ∷ Bs) !> → <! ⟦ G ⟧ (Gs ++∙ ν F As ∷ Bs) !>
anaRec (G₁ ⊕ G₂) Gs [! inl x !] .!! = inl (anaRec G₁ Gs [! x !] .!!)
anaRec (G₁ ⊕ G₂) Gs [! inr x !] .!! = inr (anaRec G₂ Gs [! x !] .!!)
anaRec (G₁ ⊗ G₂) Gs [! x , y !] .!! .fst = anaRec G₁ Gs [! x !] .!!
anaRec (G₁ ⊗ G₂) Gs [! x , y !] .!! .snd = anaRec G₂ Gs [! y !] .!!
anaRec μ⟨ G ⟩ Gs [! ⟨ x ⟩ !] .!! = ⟨ anaRec G (G ∷ Gs) [! x !] .!! ⟩
anaRec (! f0 ) [] [! x !] .!! = ana x
anaRec (! (fs i)) [] [! x !] .!! = x
anaRec (! (fs i)) (G ∷ Gs) [! x !] .!! = anaRec (! i) Gs [! x !] .!!
anaRec (! f0 ) (G ∷ Gs) [! ⟨ x ⟩ !] .!! = ⟨ anaRec G (G ∷ Gs) [! x !] .!! ⟩
anaRec ① Gs [! _ !] .!! = tt
ana : A → ν F As
ana x .unfold = anaRec F [] [! coalg x !] .!!
module AnaInfDisplay {F : Functor (suc n)} {As : Params n} where
ana : (A → ⟦ F ⟧ (A ∷ As)) → A → ν F As
ana = AnaInf.ana
open AnaInfDisplay public
-- The terminating anamorphism: uses well-founded recursion to ensure we're
-- building a finite type.
module AnaTerm {B : Type} {_<_ : B → B → Type} (<-wellFounded : WellFounded _<_)
{k} {F : Functor (suc k)}
{As : Params k}
(coalg : (x : B) → ⟦ F ⟧ ((∃ y × (y < x)) ∷ As)) where
pr-anaAcc : (x : B) → Acc _<_ x → μ F As
pr-anaAcc x (acc wf) = ⟨ map F f0 (λ { (x , p) → pr-anaAcc x (wf x p) }) (coalg x) ⟩
pr-ana : B → μ F As
pr-ana x = pr-anaAcc x (<-wellFounded x)
module AnaTermDisplay
{A : Type}
{_<_ : A → A → Type}
{F : Functor (suc n)}
{As : Params n}
where
pr-ana : WellFounded _<_ →
((x : A) → ⟦ F ⟧ ((∃ y × (y < x)) ∷ As)) → A → μ F As
pr-ana wf = AnaTerm.pr-ana wf
module Truncate {B : Type} {_<_ : B → B → Type} (<-wellFounded : WellFounded _<_)
{k} {F : Functor (suc k)}
{As : Params k} (step : (x : B) -> ⟦ F ⟧ (ν F As ∷ As) → ⟦ F ⟧ ((ν F As × ∃ y × (y < x)) ∷ As)) where
truncAcc : (x : B) → Acc _<_ x → ν F As → μ F As
truncAcc x (acc wf) xs = ⟨ map F f0 (λ { (ys , z , z<x) → truncAcc z (wf z z<x) ys}) (step x (xs .unfold)) ⟩
trunc : B → ν F As → μ F As
trunc x = truncAcc x (<-wellFounded x)
module TruncDisplay
{A : Type}
{_<_ : A → A → Type}
{F : Functor (suc n)}
{As : Params n} where
trunc : WellFounded _<_ →
((x : A) -> ⟦ F ⟧ (ν F As ∷ As) → ⟦ F ⟧ ((ν F As × ∃ y × (y < x)) ∷ As)) →
A → ν F As → μ F As
trunc wf step = Truncate.trunc wf step
| {
"alphanum_fraction": 0.436459431,
"avg_line_length": 38.163538874,
"ext": "agda",
"hexsha": "795a9ba3008dd26aa577746d04fa7c62850cf023",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/PolyP/RecursionSchemes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/PolyP/RecursionSchemes.agda",
"max_line_length": 117,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/PolyP/RecursionSchemes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 5668,
"size": 14235
} |
module SystemF.WellTyped where
open import Prelude hiding (id; erase)
open import SystemF.Syntax public
open import SystemF.Substitutions
open import Data.Vec hiding ([_])
open import Data.Vec.Properties
open import Data.Product
infix 4 _⊢_∈_
data _⊢_∈_ {ν n} (Γ : Ctx ν n) : Term ν n → Type ν → Set where
var : (x : Fin n) → Γ ⊢ var x ∈ lookup x Γ
Λ : ∀ {t a} → (ctx-weaken Γ) ⊢ t ∈ a → Γ ⊢ Λ t ∈ ∀' a
λ' : ∀ {t b} → (a : Type ν) → a ∷ Γ ⊢ t ∈ b → Γ ⊢ λ' a t ∈ a →' b
_[_] : ∀ {t a} → Γ ⊢ t ∈ ∀' a → (b : Type ν) → Γ ⊢ t [ b ] ∈ a tp[/tp b ]
_·_ : ∀ {f t a b} → Γ ⊢ f ∈ (a →' b) → Γ ⊢ t ∈ a → Γ ⊢ f · t ∈ b
_⊢_∉_ : ∀ {ν n} → (Γ : Ctx ν n) → Term ν n → Type ν → Set
_⊢_∉_ Γ t τ = ¬ Γ ⊢ t ∈ τ
erase : ∀ {ν n} {Γ : Ctx ν n} {t τ} → Γ ⊢ t ∈ τ → Term ν n
erase (var x) = var x
erase (Λ {t} x) = Λ t
erase (λ' {t} a x) = λ' a t
erase (_[_] {t} x b) = t
erase (_·_ {f} x x₁) = f
⊢f·a-inversion : ∀ {ν n f t b} {Γ : Ctx ν n} → Γ ⊢ f · t ∈ b →
∃ λ a → Γ ⊢ f ∈ a →' b × Γ ⊢ t ∈ a
⊢f·a-inversion (_·_ f∈a→b t∈a) = , (f∈a→b , t∈a)
⊢tc[a]-inversion : ∀ {ν n tc a' b} {Γ : Ctx ν n} → Γ ⊢ tc [ b ] ∈ a' → ∃ λ a → Γ ⊢ tc ∈ ∀' a
⊢tc[a]-inversion (_[_] tc∈∀'a b) = , tc∈∀'a
unique-type : ∀ {ν n} {Γ : Ctx ν n} {t τ τ'} → Γ ⊢ t ∈ τ → Γ ⊢ t ∈ τ' → τ ≡ τ'
unique-type (var x) (var .x) = refl
unique-type (Λ l) (Λ r) = cong ∀' (unique-type l r)
unique-type (λ' a l) (λ' .a r) = cong (λ b → a →' b) (unique-type l r)
unique-type (l [ b ]) (r [ .b ]) = cong (λ{ (∀' fa) → fa tp[/tp b ]; a → a}) (unique-type l r)
unique-type (f · e) (f' · e') = cong (λ{ (a →' b) → b; a → a }) (unique-type f f')
unique-type′ : ∀ {ν n} {Γ : Ctx ν n} {t τ τ'} → Γ ⊢ t ∈ τ → τ ≢ τ' → Γ ⊢ t ∉ τ'
unique-type′ ⊢t∈τ neq ⊢t∈τ' = neq $ unique-type ⊢t∈τ ⊢t∈τ'
-- Collections of typing derivations for well-typed terms.
data _⊢ⁿ_∈_ {m n} (Γ : Ctx n m) :
∀ {k} → Vec (Term n m) k → Vec (Type n) k → Set where
[] : Γ ⊢ⁿ [] ∈ []
_∷_ : ∀ {t a k} {ts : Vec (Term n m) k} {as : Vec (Type n) k} →
Γ ⊢ t ∈ a → Γ ⊢ⁿ ts ∈ as → Γ ⊢ⁿ t ∷ ts ∈ (a ∷ as)
-- Lookup a well-typed term in a collection thereof.
lookup-⊢ : ∀ {m n k} {Γ : Ctx n m} {ts : Vec (Term n m) k}
{as : Vec (Type n) k} →
(x : Fin k) → Γ ⊢ⁿ ts ∈ as → Γ ⊢ lookup x ts ∈ lookup x as
lookup-⊢ zero (⊢t ∷ ⊢ts) = ⊢t
lookup-⊢ (suc x) (⊢t ∷ ⊢ts) = lookup-⊢ x ⊢ts
| {
"alphanum_fraction": 0.4668649108,
"avg_line_length": 39.8983050847,
"ext": "agda",
"hexsha": "97d86f080a0ffeb1144dfc28d4c98e103501b665",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/WellTyped.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/WellTyped.agda",
"max_line_length": 94,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/WellTyped.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 1163,
"size": 2354
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Pointed.Homotopy where
{-
This module defines two kinds of pointed homotopies,
∙∼ and ∙∼P, and proves their equivalence
-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Fiberwise
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Pointed.Base
open import Cubical.Foundations.Pointed.Properties
open import Cubical.Homotopy.Base
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' : Level
module _ {A : Pointed ℓ} {B : typ A → Type ℓ'} {ptB : B (pt A)} where
⋆ = pt A
-- pointed homotopy as pointed Π. This is just a Σ-type, see ∙∼Σ
_∙∼_ : (f g : Π∙ A B ptB) → Type (ℓ-max ℓ ℓ')
(f₁ , f₂) ∙∼ (g₁ , g₂) = Π∙ A (λ x → f₁ x ≡ g₁ x) (f₂ ∙ g₂ ⁻¹)
-- pointed homotopy with PathP. Also a Σ-type, see ∙∼PΣ
_∙∼P_ : (f g : Π∙ A B ptB) → Type (ℓ-max ℓ ℓ')
(f₁ , f₂) ∙∼P (g₁ , g₂) = Σ[ h ∈ f₁ ∼ g₁ ] PathP (λ i → h ⋆ i ≡ ptB) f₂ g₂
-- Proof that f ∙∼ g ≃ f ∙∼P g
-- using equivalence of the total map of φ
private
module _ (f g : Π∙ A B ptB) (H : f .fst ∼ g .fst) where
-- convenient notation
f₁ = fst f
f₂ = snd f
g₁ = fst g
g₂ = snd g
-- P is the predicate on a homotopy H to be pointed of the ∙∼ kind
P : Type ℓ'
P = H ⋆ ≡ f₂ ∙ g₂ ⁻¹
-- Q is the predicate on a homotopy H to be pointed of the ∙∼P kind
Q : Type ℓ'
Q = PathP (λ i → H ⋆ i ≡ ptB) f₂ g₂
-- simplify the notation even more to see that P≡Q
-- is just a jingle of paths
p = H ⋆
r = f₂
s = g₂
P≡Q : P ≡ Q
P≡Q = p ≡ r ∙ s ⁻¹
≡⟨ isoToPath (symIso p (r ∙ s ⁻¹)) ⟩
r ∙ s ⁻¹ ≡ p
≡⟨ cong (r ∙ s ⁻¹ ≡_) (rUnit p ∙∙ cong (p ∙_) (sym (rCancel s)) ∙∙ assoc p s (s ⁻¹)) ⟩
r ∙ s ⁻¹ ≡ (p ∙ s) ∙ s ⁻¹
≡⟨ sym (ua (compr≡Equiv r (p ∙ s) (s ⁻¹))) ⟩
r ≡ p ∙ s
≡⟨ ua (compl≡Equiv (p ⁻¹) r (p ∙ s)) ⟩
p ⁻¹ ∙ r ≡ p ⁻¹ ∙ (p ∙ s)
≡⟨ cong (p ⁻¹ ∙ r ≡_ ) (assoc (p ⁻¹) p s ∙∙ (cong (_∙ s) (lCancel p)) ∙∙ sym (lUnit s)) ⟩
p ⁻¹ ∙ r ≡ s
≡⟨ cong (λ z → p ⁻¹ ∙ z ≡ s) (rUnit r) ⟩
p ⁻¹ ∙ (r ∙ refl) ≡ s
≡⟨ cong (_≡ s) (sym (doubleCompPath-elim' (p ⁻¹) r refl)) ⟩
p ⁻¹ ∙∙ r ∙∙ refl ≡ s
≡⟨ sym (ua (Square≃doubleComp r s p refl)) ⟩
PathP (λ i → p i ≡ ptB) r s ∎
-- φ is a fiberwise transformation (H : f ∼ g) → P H → Q H
-- φ is even a fiberwise equivalence by P≡Q
φ : P → Q
φ = transport P≡Q
-- The total map corresponding to φ
totφ : (f g : Π∙ A B ptB) → f ∙∼ g → f ∙∼P g
totφ f g p .fst = p .fst
totφ f g p .snd = φ f g (p .fst) (p .snd)
-- transformation of the homotopies using totφ
∙∼→∙∼P : (f g : Π∙ A B ptB) → (f ∙∼ g) → (f ∙∼P g)
∙∼→∙∼P f g = totφ f g
-- Proof that ∙∼ and ∙∼P are equivalent using the fiberwise equivalence φ
∙∼≃∙∼P : (f g : Π∙ A B ptB) → (f ∙∼ g) ≃ (f ∙∼P g)
∙∼≃∙∼P f g = Σ-cong-equiv-snd (λ H → transportEquiv (P≡Q f g H))
-- inverse of ∙∼→∙∼P extracted from the equivalence
∙∼P→∙∼ : {f g : Π∙ A B ptB} → f ∙∼P g → f ∙∼ g
∙∼P→∙∼ {f = f} {g = g} = invEq (∙∼≃∙∼P f g)
-- ∙∼≃∙∼P transformed to a path
∙∼≡∙∼P : (f g : Π∙ A B ptB) → (f ∙∼ g) ≡ (f ∙∼P g)
∙∼≡∙∼P f g = ua (∙∼≃∙∼P f g)
-- Verifies that the pointed homotopies actually correspond
-- to their Σ-type versions
_∙∼Σ_ : (f g : Π∙ A B ptB) → Type (ℓ-max ℓ ℓ')
f ∙∼Σ g = Σ[ H ∈ f .fst ∼ g .fst ] (P f g H)
_∙∼PΣ_ : (f g : Π∙ A B ptB) → Type (ℓ-max ℓ ℓ')
f ∙∼PΣ g = Σ[ H ∈ f .fst ∼ g .fst ] (Q f g H)
∙∼≡∙∼Σ : (f g : Π∙ A B ptB) → f ∙∼ g ≡ f ∙∼Σ g
∙∼≡∙∼Σ f g = refl
∙∼P≡∙∼PΣ : (f g : Π∙ A B ptB) → f ∙∼P g ≡ f ∙∼PΣ g
∙∼P≡∙∼PΣ f g = refl
| {
"alphanum_fraction": 0.5139774399,
"avg_line_length": 33.9833333333,
"ext": "agda",
"hexsha": "fc3ea2bb82328056e2896b3fef6ff56e62b64581",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/cubical",
"max_forks_repo_path": "Cubical/Foundations/Pointed/Homotopy.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/cubical",
"max_issues_repo_path": "Cubical/Foundations/Pointed/Homotopy.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/cubical",
"max_stars_repo_path": "Cubical/Foundations/Pointed/Homotopy.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1944,
"size": 4078
} |
open import Prelude
open import core
module lemmas-matching where
-- matching produces unique answers for arrows, sums, and products
▸arr-unicity : ∀{ t t2 t3 } →
t ▸arr t2 →
t ▸arr t3 →
t2 == t3
▸arr-unicity MAHole MAHole = refl
▸arr-unicity MAArr MAArr = refl
-- if an arrow matches, then it's consistent with the least restrictive
-- function type
matchconsisthole : ∀{t t'} →
t ▸arr t' →
t ~ (⦇-⦈ ==> ⦇-⦈)
matchconsisthole MAHole = TCHole2
matchconsisthole MAArr = TCArr TCHole1 TCHole1
match-consist : ∀{τ1 τ2} → τ1 ▸arr τ2 → (τ2 ~ τ1)
match-consist MAHole = TCHole1
match-consist MAArr = TCRefl
match-unicity : ∀{ τ τ1 τ2} → τ ▸arr τ1 → τ ▸arr τ2 → τ1 == τ2
match-unicity MAHole MAHole = refl
match-unicity MAArr MAArr = refl
| {
"alphanum_fraction": 0.6028202115,
"avg_line_length": 30.3928571429,
"ext": "agda",
"hexsha": "b07c4dc969e8d2bb5b12c16e6ef8cdf794cf5de5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "lemmas-matching.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "lemmas-matching.agda",
"max_line_length": 73,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "lemmas-matching.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 318,
"size": 851
} |
-- Reported by Christian Sattler on 2019-12-07
open import Agda.Primitive
postulate
i : Level
X : Set i
mutual
j : Level
j = _
Y : Set j
Y = X
-- WAS: unsolved constraint i = _2
-- SHOULD: succeed with everything solved
| {
"alphanum_fraction": 0.6624472574,
"avg_line_length": 13.1666666667,
"ext": "agda",
"hexsha": "90ad91b95c75f6c05806a90ca4548a1525a1a368",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue4269.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4269.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4269.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 79,
"size": 237
} |
module Warnings where
-- empty rewrite pragma
{-# REWRITE #-}
-- termination checking error
A : Set
A = A
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
-- deprecated BUILTIN ZERO
{-# BUILTIN ZERO zero #-}
-- An open goal
g : Set
g = {!!}
| {
"alphanum_fraction": 0.6200716846,
"avg_line_length": 12.6818181818,
"ext": "agda",
"hexsha": "2b9ff552c6fc9013f1f69566f1d1a8e04f6dff7c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Warnings.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Warnings.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Warnings.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 77,
"size": 279
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A universe which includes several kinds of "relatedness" for sets,
-- such as equivalences, surjections and bijections
------------------------------------------------------------------------
module Function.Related where
open import Level
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq using (Equivalence)
open import Function.Injection as Inj using (Injection; _↣_)
open import Function.Inverse as Inv using (Inverse; _↔_)
open import Function.LeftInverse as LeftInv using (LeftInverse)
open import Function.Surjection as Surj using (Surjection)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- Wrapper types
-- Synonyms which are used to make _∼[_]_ below "constructor-headed"
-- (which implies that Agda can deduce the universe code from an
-- expression matching any of the right-hand sides).
record _←_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor lam
field app-← : B → A
open _←_ public
record _↢_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor lam
field app-↢ : B ↣ A
open _↢_ public
------------------------------------------------------------------------
-- Relatedness
-- There are several kinds of "relatedness".
-- The idea to include kinds other than equivalence and bijection came
-- from Simon Thompson and Bengt Nordström. /NAD
data Kind : Set where
implication reverse-implication
equivalence
injection reverse-injection
left-inverse surjection
bijection
: Kind
-- Interpretation of the codes above. The code "bijection" is
-- interpreted as Inverse rather than Bijection; the two types are
-- equivalent.
infix 4 _∼[_]_
_∼[_]_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Kind → Set ℓ₂ → Set _
A ∼[ implication ] B = A → B
A ∼[ reverse-implication ] B = A ← B
A ∼[ equivalence ] B = Equivalence (P.setoid A) (P.setoid B)
A ∼[ injection ] B = Injection (P.setoid A) (P.setoid B)
A ∼[ reverse-injection ] B = A ↢ B
A ∼[ left-inverse ] B = LeftInverse (P.setoid A) (P.setoid B)
A ∼[ surjection ] B = Surjection (P.setoid A) (P.setoid B)
A ∼[ bijection ] B = Inverse (P.setoid A) (P.setoid B)
-- A non-infix synonym.
Related : Kind → ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _
Related k A B = A ∼[ k ] B
-- The bijective equality implies any kind of relatedness.
↔⇒ : ∀ {k x y} {X : Set x} {Y : Set y} →
X ∼[ bijection ] Y → X ∼[ k ] Y
↔⇒ {implication} = _⟨$⟩_ ∘ Inverse.to
↔⇒ {reverse-implication} = lam ∘′ _⟨$⟩_ ∘ Inverse.from
↔⇒ {equivalence} = Inverse.equivalence
↔⇒ {injection} = Inverse.injection
↔⇒ {reverse-injection} = lam ∘′ Inverse.injection ∘ Inv.sym
↔⇒ {left-inverse} = Inverse.left-inverse
↔⇒ {surjection} = Inverse.surjection
↔⇒ {bijection} = id
-- Actual equality also implies any kind of relatedness.
≡⇒ : ∀ {k ℓ} {X Y : Set ℓ} → X ≡ Y → X ∼[ k ] Y
≡⇒ P.refl = ↔⇒ Inv.id
------------------------------------------------------------------------
-- Special kinds of kinds
-- Kinds whose interpretation is symmetric.
data Symmetric-kind : Set where
equivalence bijection : Symmetric-kind
-- Forgetful map.
⌊_⌋ : Symmetric-kind → Kind
⌊ equivalence ⌋ = equivalence
⌊ bijection ⌋ = bijection
-- The proof of symmetry can be found below.
-- Kinds whose interpretation include a function which "goes in the
-- forward direction".
data Forward-kind : Set where
implication equivalence injection
left-inverse surjection bijection : Forward-kind
-- Forgetful map.
⌊_⌋→ : Forward-kind → Kind
⌊ implication ⌋→ = implication
⌊ equivalence ⌋→ = equivalence
⌊ injection ⌋→ = injection
⌊ left-inverse ⌋→ = left-inverse
⌊ surjection ⌋→ = surjection
⌊ bijection ⌋→ = bijection
-- The function.
⇒→ : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋→ ] Y → X → Y
⇒→ {implication} = id
⇒→ {equivalence} = _⟨$⟩_ ∘ Equivalence.to
⇒→ {injection} = _⟨$⟩_ ∘ Injection.to
⇒→ {left-inverse} = _⟨$⟩_ ∘ LeftInverse.to
⇒→ {surjection} = _⟨$⟩_ ∘ Surjection.to
⇒→ {bijection} = _⟨$⟩_ ∘ Inverse.to
-- Kinds whose interpretation include a function which "goes backwards".
data Backward-kind : Set where
reverse-implication equivalence reverse-injection
left-inverse surjection bijection : Backward-kind
-- Forgetful map.
⌊_⌋← : Backward-kind → Kind
⌊ reverse-implication ⌋← = reverse-implication
⌊ equivalence ⌋← = equivalence
⌊ reverse-injection ⌋← = reverse-injection
⌊ left-inverse ⌋← = left-inverse
⌊ surjection ⌋← = surjection
⌊ bijection ⌋← = bijection
-- The function.
⇒← : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋← ] Y → Y → X
⇒← {reverse-implication} = app-←
⇒← {equivalence} = _⟨$⟩_ ∘ Equivalence.from
⇒← {reverse-injection} = _⟨$⟩_ ∘ Injection.to ∘ app-↢
⇒← {left-inverse} = _⟨$⟩_ ∘ LeftInverse.from
⇒← {surjection} = _⟨$⟩_ ∘ Surjection.from
⇒← {bijection} = _⟨$⟩_ ∘ Inverse.from
-- Kinds whose interpretation include functions going in both
-- directions.
data Equivalence-kind : Set where
equivalence left-inverse surjection bijection : Equivalence-kind
-- Forgetful map.
⌊_⌋⇔ : Equivalence-kind → Kind
⌊ equivalence ⌋⇔ = equivalence
⌊ left-inverse ⌋⇔ = left-inverse
⌊ surjection ⌋⇔ = surjection
⌊ bijection ⌋⇔ = bijection
-- The functions.
⇒⇔ : ∀ {k x y} {X : Set x} {Y : Set y} →
X ∼[ ⌊ k ⌋⇔ ] Y → X ∼[ equivalence ] Y
⇒⇔ {equivalence} = id
⇒⇔ {left-inverse} = LeftInverse.equivalence
⇒⇔ {surjection} = Surjection.equivalence
⇒⇔ {bijection} = Inverse.equivalence
-- Conversions between special kinds.
⇔⌊_⌋ : Symmetric-kind → Equivalence-kind
⇔⌊ equivalence ⌋ = equivalence
⇔⌊ bijection ⌋ = bijection
→⌊_⌋ : Equivalence-kind → Forward-kind
→⌊ equivalence ⌋ = equivalence
→⌊ left-inverse ⌋ = left-inverse
→⌊ surjection ⌋ = surjection
→⌊ bijection ⌋ = bijection
←⌊_⌋ : Equivalence-kind → Backward-kind
←⌊ equivalence ⌋ = equivalence
←⌊ left-inverse ⌋ = left-inverse
←⌊ surjection ⌋ = surjection
←⌊ bijection ⌋ = bijection
------------------------------------------------------------------------
-- Opposites
-- For every kind there is an opposite kind.
_op : Kind → Kind
implication op = reverse-implication
reverse-implication op = implication
equivalence op = equivalence
injection op = reverse-injection
reverse-injection op = injection
left-inverse op = surjection
surjection op = left-inverse
bijection op = bijection
-- For every morphism there is a corresponding reverse morphism of the
-- opposite kind.
reverse : ∀ {k a b} {A : Set a} {B : Set b} →
A ∼[ k ] B → B ∼[ k op ] A
reverse {implication} = lam
reverse {reverse-implication} = app-←
reverse {equivalence} = Eq.sym
reverse {injection} = lam
reverse {reverse-injection} = app-↢
reverse {left-inverse} = Surj.fromRightInverse
reverse {surjection} = Surjection.right-inverse
reverse {bijection} = Inv.sym
------------------------------------------------------------------------
-- Equational reasoning
-- Equational reasoning for related things.
module EquationalReasoning where
private
refl : ∀ {k ℓ} → Reflexive (Related k {ℓ})
refl {implication} = id
refl {reverse-implication} = lam id
refl {equivalence} = Eq.id
refl {injection} = Inj.id
refl {reverse-injection} = lam Inj.id
refl {left-inverse} = LeftInv.id
refl {surjection} = Surj.id
refl {bijection} = Inv.id
trans : ∀ {k ℓ₁ ℓ₂ ℓ₃} →
Trans (Related k {ℓ₁} {ℓ₂})
(Related k {ℓ₂} {ℓ₃})
(Related k {ℓ₁} {ℓ₃})
trans {implication} = flip _∘′_
trans {reverse-implication} = λ f g → lam (app-← f ∘ app-← g)
trans {equivalence} = flip Eq._∘_
trans {injection} = flip Inj._∘_
trans {reverse-injection} = λ f g → lam (Inj._∘_ (app-↢ f) (app-↢ g))
trans {left-inverse} = flip LeftInv._∘_
trans {surjection} = flip Surj._∘_
trans {bijection} = flip Inv._∘_
sym : ∀ {k ℓ₁ ℓ₂} →
Sym (Related ⌊ k ⌋ {ℓ₁} {ℓ₂})
(Related ⌊ k ⌋ {ℓ₂} {ℓ₁})
sym {equivalence} = Eq.sym
sym {bijection} = Inv.sym
infix 2 _∎
infixr 2 _∼⟨_⟩_ _↔⟨_⟩_ _↔⟨⟩_ _≡⟨_⟩_
_∼⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} →
X ∼[ k ] Y → Y ∼[ k ] Z → X ∼[ k ] Z
_ ∼⟨ X↝Y ⟩ Y↝Z = trans X↝Y Y↝Z
-- Isomorphisms can be combined with any other kind of relatedness.
_↔⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} →
X ↔ Y → Y ∼[ k ] Z → X ∼[ k ] Z
X ↔⟨ X↔Y ⟩ Y⇔Z = X ∼⟨ ↔⇒ X↔Y ⟩ Y⇔Z
_↔⟨⟩_ : ∀ {k x y} (X : Set x) {Y : Set y} →
X ∼[ k ] Y → X ∼[ k ] Y
X ↔⟨⟩ X⇔Y = X⇔Y
_≡⟨_⟩_ : ∀ {k ℓ z} (X : Set ℓ) {Y : Set ℓ} {Z : Set z} →
X ≡ Y → Y ∼[ k ] Z → X ∼[ k ] Z
X ≡⟨ X≡Y ⟩ Y⇔Z = X ∼⟨ ≡⇒ X≡Y ⟩ Y⇔Z
_∎ : ∀ {k x} (X : Set x) → X ∼[ k ] X
X ∎ = refl
-- For a symmetric kind and a fixed universe level we can construct a
-- setoid.
setoid : Symmetric-kind → (ℓ : Level) → Setoid _ _
setoid k ℓ = record
{ Carrier = Set ℓ
; _≈_ = Related ⌊ k ⌋
; isEquivalence =
record {refl = _ ∎; sym = sym; trans = _∼⟨_⟩_ _}
} where open EquationalReasoning
-- For an arbitrary kind and a fixed universe level we can construct a
-- preorder.
preorder : Kind → (ℓ : Level) → Preorder _ _ _
preorder k ℓ = record
{ Carrier = Set ℓ
; _≈_ = _↔_
; _∼_ = Related k
; isPreorder = record
{ isEquivalence = Setoid.isEquivalence (setoid bijection ℓ)
; reflexive = ↔⇒
; trans = _∼⟨_⟩_ _
}
} where open EquationalReasoning
------------------------------------------------------------------------
-- Some induced relations
-- Every unary relation induces a preorder and, for symmetric kinds,
-- an equivalence. (No claim is made that these relations are unique.)
InducedRelation₁ : Kind → ∀ {a s} {A : Set a} →
(A → Set s) → A → A → Set _
InducedRelation₁ k S = λ x y → S x ∼[ k ] S y
InducedPreorder₁ : Kind → ∀ {a s} {A : Set a} →
(A → Set s) → Preorder _ _ _
InducedPreorder₁ k S = record
{ _≈_ = P._≡_
; _∼_ = InducedRelation₁ k S
; isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = reflexive ∘
Setoid.reflexive (setoid bijection _) ∘
P.cong S
; trans = trans
}
} where open Preorder (preorder _ _)
InducedEquivalence₁ : Symmetric-kind → ∀ {a s} {A : Set a} →
(A → Set s) → Setoid _ _
InducedEquivalence₁ k S = record
{ _≈_ = InducedRelation₁ ⌊ k ⌋ S
; isEquivalence = record {refl = refl; sym = sym; trans = trans}
} where open Setoid (setoid _ _)
-- Every binary relation induces a preorder and, for symmetric kinds,
-- an equivalence. (No claim is made that these relations are unique.)
InducedRelation₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b} →
(A → B → Set s) → B → B → Set _
InducedRelation₂ k _S_ = λ x y → ∀ {z} → (z S x) ∼[ k ] (z S y)
InducedPreorder₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b} →
(A → B → Set s) → Preorder _ _ _
InducedPreorder₂ k _S_ = record
{ _≈_ = P._≡_
; _∼_ = InducedRelation₂ k _S_
; isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = λ x≡y {z} →
reflexive $
Setoid.reflexive (setoid bijection _) $
P.cong (_S_ z) x≡y
; trans = λ i↝j j↝k → trans i↝j j↝k
}
} where open Preorder (preorder _ _)
InducedEquivalence₂ : Symmetric-kind →
∀ {a b s} {A : Set a} {B : Set b} →
(A → B → Set s) → Setoid _ _
InducedEquivalence₂ k _S_ = record
{ _≈_ = InducedRelation₂ ⌊ k ⌋ _S_
; isEquivalence = record
{ refl = refl
; sym = λ i↝j → sym i↝j
; trans = λ i↝j j↝k → trans i↝j j↝k
}
} where open Setoid (setoid _ _)
| {
"alphanum_fraction": 0.5601391248,
"avg_line_length": 31.9457364341,
"ext": "agda",
"hexsha": "2a08835bfe426b276a840da9132cdd0963b2481b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Function/Related.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Function/Related.agda",
"max_line_length": 75,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Function/Related.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 4241,
"size": 12363
} |
{-# OPTIONS --cubical --no-sized-types --guardedness --safe #-}
module Issue3564 where
record Stream (A : Set) : Set where
coinductive
field head : A
field tail : Stream A
open Stream
data A : Set where a : A
someA : Stream A
head someA = a
tail someA = someA
-- WAS: termination check failed
-- NOW: OK
| {
"alphanum_fraction": 0.678343949,
"avg_line_length": 17.4444444444,
"ext": "agda",
"hexsha": "a645a42e89ba69d0e2c55589e8dc9760480c6d2d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3564.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3564.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3564.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 94,
"size": 314
} |
------------------------------------------------------------------------------
-- The gcd is a common divisor
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Program.GCD.Partial.CommonDivisor where
open import LTC-PCF.Base
open import LTC-PCF.Base.Properties
open import LTC-PCF.Data.Nat
open import LTC-PCF.Data.Nat.Divisibility.NotBy0
open import LTC-PCF.Data.Nat.Divisibility.NotBy0.Properties
open import LTC-PCF.Data.Nat.Induction.NonAcc.Lexicographic
open import LTC-PCF.Data.Nat.Inequalities
open import LTC-PCF.Data.Nat.Inequalities.EliminationProperties
open import LTC-PCF.Data.Nat.Inequalities.Properties
open import LTC-PCF.Data.Nat.Properties
open import LTC-PCF.Program.GCD.Partial.ConversionRules
open import LTC-PCF.Program.GCD.Partial.Definitions
open import LTC-PCF.Program.GCD.Partial.GCD
open import LTC-PCF.Program.GCD.Partial.Totality
------------------------------------------------------------------------------
-- Some cases of the gcd-∣₁.
-- We don't prove that
--
-- gcd-∣₁ : ... → (gcd m n) ∣ m
-- because this proof should be defined mutually recursive with the
-- proof
--
-- gcd-∣₂ : ... → (gcd m n) ∣ n.
--
-- Therefore, instead of proving
--
-- gcdCD : ... → CD m n (gcd m n)
--
-- using these proofs (i.e. the conjunction of them), we proved it
-- using well-founded induction.
-- gcd 0 (succ n) ∣ 0.
gcd-0S-∣₁ : ∀ {n} → N n → gcd zero (succ₁ n) ∣ zero
gcd-0S-∣₁ {n} Nn = subst (λ x → x ∣ zero)
(sym (gcd-0S n))
(S∣0 Nn)
-- gcd (succ₁ m) 0 ∣ succ₁ m.
gcd-S0-∣₁ : ∀ {m} → N m → gcd (succ₁ m) zero ∣ succ₁ m
gcd-S0-∣₁ {m} Nm = subst (λ x → x ∣ succ₁ m)
(sym (gcd-S0 m))
(∣-refl-S Nm)
-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ m, when succ₁ m ≯ succ₁ n.
gcd-S≯S-∣₁ :
∀ {m n} → N m → N n →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m) →
succ₁ m ≯ succ₁ n →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ m
gcd-S≯S-∣₁ {m} {n} Nm Nn ih Sm≯Sn =
subst (λ x → x ∣ succ₁ m)
(sym (gcd-S≯S m n Sm≯Sn))
ih
-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ m when succ₁ m > succ₁ n.
-- We use gcd-∣₂.
-- We apply the theorem that if m∣n and m∣o then m∣(n+o).
gcd-S>S-∣₁ :
∀ {m n} → N m → N n →
(gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n)) →
(gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n) →
succ₁ m > succ₁ n →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ m
{- Proof:
1. gcd (Sm ∸ Sn) Sn | (Sm ∸ Sn) IH
2. gcd (Sm ∸ Sn) Sn | Sn gcd-∣₂
3. gcd (Sm ∸ Sn) Sn | (Sm ∸ Sn) + Sn m∣n→m∣o→m∣n+o 1,2
4. Sm > Sn Hip
5. gcd (Sm ∸ Sn) Sn | Sm arith-gcd-m>n₂ 3,4
6. gcd Sm Sn = gcd (Sm ∸ Sn) Sn gcd eq. 4
7. gcd Sm Sn | Sm subst 5,6
-}
gcd-S>S-∣₁ {m} {n} Nm Nn ih gcd-∣₂ Sm>Sn =
-- The first substitution is based on
-- gcd (succ₁ m) (succ₁ n) = gcd (succ₁ m ∸ succ₁ n) (succ₁ n).
subst (λ x → x ∣ succ₁ m)
(sym (gcd-S>S m n Sm>Sn))
-- The second substitution is based on
-- m = (m ∸ n) + n.
(subst (λ y → gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ y)
(x>y→x∸y+y≡x (nsucc Nm) (nsucc Nn) Sm>Sn)
(x∣y→x∣z→x∣y+z
{gcd (succ₁ m ∸ succ₁ n) (succ₁ n)}
{succ₁ m ∸ succ₁ n}
{succ₁ n}
(gcd-N Sm-Sn-N (nsucc Nn) (λ p → ⊥-elim (S≢0 (∧-proj₂ p))))
Sm-Sn-N
(nsucc Nn)
ih
gcd-∣₂
)
)
where
Sm-Sn-N : N (succ₁ m ∸ succ₁ n)
Sm-Sn-N = ∸-N (nsucc Nm) (nsucc Nn)
------------------------------------------------------------------------------
-- Some case of the gcd-∣₂
-- We don't prove that gcd-∣₂ : ... → gcd m n ∣ n. The reason is
-- the same to don't prove gcd-∣₁ : ... → gcd m n ∣ m.
-- gcd 0 (succ₁ n) ∣₂ succ₁ n.
gcd-0S-∣₂ : ∀ {n} → N n → gcd zero (succ₁ n) ∣ succ₁ n
gcd-0S-∣₂ {n} Nn = subst (λ x → x ∣ succ₁ n)
(sym (gcd-0S n))
(∣-refl-S Nn)
-- gcd (succ₁ m) 0 ∣ 0.
gcd-S0-∣₂ : ∀ {m} → N m → gcd (succ₁ m) zero ∣ zero
gcd-S0-∣₂ {m} Nm = subst (λ x → x ∣ zero)
(sym (gcd-S0 m))
(S∣0 Nm)
-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ n when succ₁ m > succ₁ n.
gcd-S>S-∣₂ :
∀ {m n} → N m → N n →
(gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n) →
succ₁ m > succ₁ n →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ n
gcd-S>S-∣₂ {m} {n} Nm Nn ih Sm>Sn =
subst (λ x → x ∣ succ₁ n)
(sym (gcd-S>S m n Sm>Sn))
ih
-- gcd (succ₁ m) (succ₁ n) ∣ succ₁ n when succ₁ m ≯ succ₁ n.
-- We use gcd-∣₁.
-- We apply the theorem that if m∣n and m∣o then m∣(n+o).
gcd-S≯S-∣₂ :
∀ {m n} → N m → N n →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m)) →
(gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m) →
succ₁ m ≯ succ₁ n →
gcd (succ₁ m) (succ₁ n) ∣ succ₁ n
{- Proof:
1. gcd Sm (Sn ∸ Sm) | (Sn ∸ Sm) IH
2 gcd Sm (Sn ∸ Sm) | Sm gcd-∣₁
3. gcd Sm (Sn ∸ Sm) | (Sn ∸ Sm) + Sm m∣n→m∣o→m∣n+o 1,2
4. Sm ≯ Sn Hip
5. gcd (Sm ∸ Sn) Sn | Sm arith-gcd-m≤n₂ 3,4
6. gcd Sm Sn = gcd Sm (Sn ∸ Sm) gcd eq. 4
7. gcd Sm Sn | Sn subst 5,6
-}
gcd-S≯S-∣₂ {m} {n} Nm Nn ih gcd-∣₁ Sm≯Sn =
-- The first substitution is based on gcd m n = gcd m (n ∸ m).
subst (λ x → x ∣ succ₁ n)
(sym (gcd-S≯S m n Sm≯Sn))
-- The second substitution is based on
-- n = (n ∸ m) + m.
(subst (λ y → gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ y)
(x≤y→y∸x+x≡y (nsucc Nm) (nsucc Nn) (x≯y→x≤y (nsucc Nm) (nsucc Nn) Sm≯Sn))
(x∣y→x∣z→x∣y+z
{gcd (succ₁ m) (succ₁ n ∸ succ₁ m)}
{succ₁ n ∸ succ₁ m}
{succ₁ m}
(gcd-N (nsucc Nm) Sn-Sm-N (λ p → ⊥-elim (S≢0 (∧-proj₁ p))))
Sn-Sm-N
(nsucc Nm)
ih
gcd-∣₁
)
)
where
Sn-Sm-N : N (succ₁ n ∸ succ₁ m)
Sn-Sm-N = ∸-N (nsucc Nn) (nsucc Nm)
------------------------------------------------------------------------------
-- The gcd is CD.
-- We will prove that gcdCD : ... → CD m n (gcd m n).
-- The gcd 0 (succ₁ n) is CD.
gcd-0S-CD : ∀ {n} → N n → CD zero (succ₁ n) (gcd zero (succ₁ n))
gcd-0S-CD Nn = (gcd-0S-∣₁ Nn , gcd-0S-∣₂ Nn)
-- The gcd (succ₁ m) 0 is CD.
gcd-S0-CD : ∀ {m} → N m → CD (succ₁ m) zero (gcd (succ₁ m) zero)
gcd-S0-CD Nm = (gcd-S0-∣₁ Nm , gcd-S0-∣₂ Nm)
-- The gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is CD.
gcd-S>S-CD :
∀ {m n} → N m → N n →
(CD (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) →
succ₁ m > succ₁ n →
CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))
gcd-S>S-CD {m} {n} Nm Nn acc Sm>Sn =
(gcd-S>S-∣₁ Nm Nn acc-∣₁ acc-∣₂ Sm>Sn , gcd-S>S-∣₂ Nm Nn acc-∣₂ Sm>Sn)
where
acc-∣₁ : gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n)
acc-∣₁ = ∧-proj₁ acc
acc-∣₂ : gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n
acc-∣₂ = ∧-proj₂ acc
-- The gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is CD.
gcd-S≯S-CD :
∀ {m n} → N m → N n →
(CD (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) →
succ₁ m ≯ succ₁ n →
CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n))
gcd-S≯S-CD {m} {n} Nm Nn acc Sm≯Sn =
(gcd-S≯S-∣₁ Nm Nn acc-∣₁ Sm≯Sn , gcd-S≯S-∣₂ Nm Nn acc-∣₂ acc-∣₁ Sm≯Sn)
where
acc-∣₁ : gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m
acc-∣₁ = ∧-proj₁ acc
acc-∣₂ : gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m)
acc-∣₂ = ∧-proj₂ acc
-- The gcd m n when m > n is CD.
gcd-x>y-CD :
∀ {m n} → N m → N n →
(∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → CD o p (gcd o p)) →
m > n →
x≢0≢y m n →
CD m n (gcd m n)
gcd-x>y-CD nzero Nn _ 0>n _ = ⊥-elim (0>x→⊥ Nn 0>n)
gcd-x>y-CD (nsucc Nm) nzero _ _ _ = gcd-S0-CD Nm
gcd-x>y-CD (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn _ =
gcd-S>S-CD Nm Nn ih Sm>Sn
where
-- Inductive hypothesis.
ih : CD (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))
ih = ah {succ₁ m ∸ succ₁ n}
{succ₁ n}
(∸-N (nsucc Nm) (nsucc Nn))
(nsucc Nn)
([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn)
(λ p → ⊥-elim (S≢0 (∧-proj₂ p)))
-- The gcd m n when m ≯ n is CD.
gcd-x≯y-CD :
∀ {m n} → N m → N n →
(∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → CD o p (gcd o p)) →
m ≯ n →
x≢0≢y m n →
CD m n (gcd m n)
gcd-x≯y-CD nzero nzero _ _ h = ⊥-elim (h (refl , refl))
gcd-x≯y-CD nzero (nsucc Nn) _ _ _ = gcd-0S-CD Nn
gcd-x≯y-CD (nsucc _) nzero _ Sm≯0 _ = ⊥-elim (S≯0→⊥ Sm≯0)
gcd-x≯y-CD (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn _ = gcd-S≯S-CD Nm Nn ih Sm≯Sn
where
-- Inductive hypothesis.
ih : CD (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))
ih = ah {succ₁ m}
{succ₁ n ∸ succ₁ m}
(nsucc Nm)
(∸-N (nsucc Nn) (nsucc Nm))
([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn)
(λ p → ⊥-elim (S≢0 (∧-proj₁ p)))
-- The gcd is CD.
gcdCD : ∀ {m n} → N m → N n → x≢0≢y m n → CD m n (gcd m n)
gcdCD = Lexi-wfind A h
where
A : D → D → Set
A i j = x≢0≢y i j → CD i j (gcd i j)
h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) →
A i j
h Ni Nj ah = case (gcd-x>y-CD Ni Nj ah) (gcd-x≯y-CD Ni Nj ah) (x>y∨x≯y Ni Nj)
| {
"alphanum_fraction": 0.4728198732,
"avg_line_length": 34.3607142857,
"ext": "agda",
"hexsha": "7978afc2fc6410294265010175b55dd78094c052",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/CommonDivisor.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/CommonDivisor.agda",
"max_line_length": 88,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Program/GCD/Partial/CommonDivisor.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 4052,
"size": 9621
} |
module Numeral.Natural.Function.GreatestCommonDivisor.Extended where
import Lvl
open import Data
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Logic.Propositional
open import Numeral.Integer as ℤ
open import Numeral.Integer.Oper
open import Numeral.Integer.Proofs hiding (_≤_)
open import Numeral.Natural as ℕ
open import Numeral.Natural.Function.GreatestCommonDivisor
import Numeral.Natural.Oper as ℕ
open import Numeral.Natural.Oper.FlooredDivision
open import Numeral.Natural.Oper.Modulo
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Classical
open import Syntax.Number
open import Type
-- TODO: Does the same algorithm work in the naturals? https://math.stackexchange.com/questions/237372/finding-positive-b%C3%A9zout-coefficients https://math.stackexchange.com/questions/1230224/positive-solutions-of-893x-2432y-19?rq=1
gcdExt : ℕ → ℕ → (ℕ ⨯ ℤ ⨯ ℤ)
gcdExt a b = gcdFold(\{a (𝐒 b) _ (succ min) _ (x , y) → (y , (x − ((+ₙ(a ⌊/⌋ ℕ.𝐒(b))) ⋅ y)))}) (\_ _ _ _ _ → Tuple.swap) (1 , 0) a b
open import Logic.IntroInstances
open import Logic.Predicate
open import Numeral.Natural.Inductions
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper.DivMod.Proofs
open import Numeral.Natural.Oper.Modulo.Proofs
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Function
open import Structure.Function.Domain
open import Structure.Function.Multi
open import Structure.Operator
open import Structure.Operator.Proofs.Util
open import Structure.Operator.Properties
open import Syntax.Function
open import Syntax.Transitivity
private variable a b d : ℕ
gcd-gcdExt-equal : (gcd a b ≡ Tuple.left(gcdExt a b))
gcd-gcdExt-equal {a}{b} = Gcd-unique {a}{b} Gcd-gcd Gcd-gcdFold
-- Also called: Bézout's identity, extended Euclid's algorithm.
gcd-linearCombination-existence : ∃{Obj = ℤ ⨯ ℤ}(\{(x , y) → (((+ₙ a) ⋅ x) + ((+ₙ b) ⋅ y) ≡ +ₙ(gcd a b))})
gcd-linearCombination-existence {a}{b} = [ℕ]-strong-induction {φ = b ↦ ∀{a} → ∃{Obj = ℤ ⨯ ℤ}(\{(x , y) → (((+ₙ a) ⋅ x) + ((+ₙ b) ⋅ y) ≡ +ₙ(gcd a b))})} base step {b}{a} where
base : ∀{a} → ∃{Obj = ℤ ⨯ ℤ}(\{(x , y) → (((+ₙ a) ⋅ x) + (0 ⋅ y) ≡ +ₙ(gcd a 0))})
∃.witness (base {a}) = (1 , 0)
∃.proof (base {ℕ.𝟎}) = [≡]-intro
∃.proof (base {ℕ.𝐒 a}) = [≡]-intro
step : ∀{i} → (∀{j} → (j ≤ i) → ∀{a} → ∃{Obj = ℤ ⨯ ℤ}(\{(x , y) → (((+ₙ a) ⋅ x) + ((+ₙ j) ⋅ y) ≡ +ₙ(gcd a j))})) → ∀{a} → ∃{Obj = ℤ ⨯ ℤ}(\{(x , y) → (((+ₙ a) ⋅ x) + ((+𝐒ₙ i) ⋅ y) ≡ +ₙ(gcd a (ℕ.𝐒(i))))})
∃.witness (step {i} prev {a}) with [≥]-or-[<] {a}{ℕ.𝐒(i)}
... | [∨]-introₗ ia with [∃]-intro (x , y) ← prev{a mod ℕ.𝐒(i)} ([≤]-without-[𝐒] (mod-maxᵣ {a = a})) {ℕ.𝐒(i)} = (y , ((x − ((+ₙ(a ⌊/⌋ ℕ.𝐒(i))) ⋅ y))))
... | [∨]-introᵣ (succ ai) with [∃]-intro (x , y) ← prev{a} ai {ℕ.𝐒(i)} = (y , x)
∃.proof (step {i} prev {a}) with [≥]-or-[<] {a}{ℕ.𝐒(i)}
... | [∨]-introₗ ia with [∃]-intro (x , y) ⦃ p ⦄ ← prev{a mod ℕ.𝐒(i)} ([≤]-without-[𝐒] (mod-maxᵣ {a = a})) {ℕ.𝐒(i)} =
((+ₙ a) ⋅ y) + ((+𝐒ₙ i) ⋅ (x − ((+ₙ(a ⌊/⌋ ℕ.𝐒(i))) ⋅ y))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)((+ₙ a) ⋅ y) (distributivityₗ(_⋅_)(_−_) {+𝐒ₙ i}{x}{(+ₙ(a ⌊/⌋ ℕ.𝐒(i))) ⋅ y}) ]
((+ₙ a) ⋅ y) + (((+𝐒ₙ i) ⋅ x) − ((+𝐒ₙ i) ⋅ ((+ₙ(a ⌊/⌋ ℕ.𝐒(i))) ⋅ y))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)((+ₙ a) ⋅ y) (congruence₂ᵣ(_−_)((+𝐒ₙ i) ⋅ x) p1) ]
((+ₙ a) ⋅ y) + (((+𝐒ₙ i) ⋅ x) − ((+ₙ(a ℕ.−₀ (a mod ℕ.𝐒(i)))) ⋅ y)) 🝖[ _≡_ ]-[ One.commuteₗ-assocᵣ{a = (+ₙ a) ⋅ y}{b = (+𝐒ₙ i) ⋅ x} ]
((+𝐒ₙ i) ⋅ x) + (((+ₙ a) ⋅ y) − ((+ₙ(a ℕ.−₀ (a mod ℕ.𝐒(i)))) ⋅ y)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)((+𝐒ₙ i) ⋅ x) (distributivityᵣ(_⋅_)(_−_) {+ₙ a}{_}{y}) ]-sym
((+𝐒ₙ i) ⋅ x) + (((+ₙ a) − (+ₙ(a ℕ.−₀ (a mod ℕ.𝐒(i))))) ⋅ y) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)((+𝐒ₙ i) ⋅ x) (congruence₂ₗ(_⋅_)(y) p2) ]
((+𝐒ₙ i) ⋅ x) + ((+ₙ(a mod ℕ.𝐒(i))) ⋅ y) 🝖[ _≡_ ]-[ p ]
+ₙ(gcd (ℕ.𝐒(i)) (a mod ℕ.𝐒(i))) 🝖-end
where
p0 =
(ℕ.𝐒 i) ℕ.⋅ (a ⌊/⌋ ℕ.𝐒(i)) 🝖[ _≡_ ]-[ commutativity(ℕ._⋅_) {ℕ.𝐒 i}{a ⌊/⌋ ℕ.𝐒(i)} ]
(a ⌊/⌋ ℕ.𝐒(i)) ℕ.⋅ (ℕ.𝐒 i) 🝖[ _≡_ ]-[ OneTypeTwoOp.moveᵣ-to-invOp {b = a mod ℕ.𝐒(i)}{c = a} (([⌊/⌋][mod]-is-division-with-remainder {y = i})) ]
a ℕ.−₀ (a mod ℕ.𝐒(i)) 🝖-end
p1 =
(+𝐒ₙ i) ⋅ ((+ₙ(a ⌊/⌋ ℕ.𝐒(i))) ⋅ y) 🝖[ _≡_ ]-[ associativity(_⋅_) {+𝐒ₙ i} ]-sym
((+𝐒ₙ i) ⋅ (+ₙ(a ⌊/⌋ ℕ.𝐒(i)))) ⋅ y 🝖[ _≡_ ]-[]
((+ₙ(ℕ.𝐒 i)) ⋅ (+ₙ(a ⌊/⌋ ℕ.𝐒(i)))) ⋅ y 🝖[ _≡_ ]-[ congruence₂ₗ(_⋅_)(y) (preserving₂(+ₙ_)(ℕ._⋅_)(_⋅_) {ℕ.𝐒 i}) ]-sym
(+ₙ((ℕ.𝐒 i) ℕ.⋅ (a ⌊/⌋ ℕ.𝐒(i)))) ⋅ y 🝖[ _≡_ ]-[ congruence₂ₗ(_⋅_)(y) (congruence₁(+ₙ_) p0) ]
(+ₙ(a ℕ.−₀ (a mod ℕ.𝐒(i)))) ⋅ y 🝖-end
p2 =
(+ₙ a) − (+ₙ(a ℕ.−₀ (a mod ℕ.𝐒(i)))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_−_)(+ₙ a) ([+ₙ][−₀][−]-preserving (mod-maxₗ {a}{ℕ.𝐒(i)})) ]
(+ₙ a) − ((+ₙ a) − (+ₙ(a mod ℕ.𝐒(i)))) 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(+ₙ a) (preserving₂(−_)(_+_)(_+_) {+ₙ a}{−(+ₙ(a mod ℕ.𝐒(i)))}) ]
(+ₙ a) + ((−(+ₙ a)) − (−(+ₙ(a mod ℕ.𝐒(i))))) 🝖[ _≡_ ]-[ associativity(_+_) {+ₙ a}{−(+ₙ a)} ]-sym
((+ₙ a) − (+ₙ a)) − (−(+ₙ(a mod ℕ.𝐒(i)))) 🝖[ _≡_ ]-[ congruence₂(_+_) (inverseFunctionᵣ(_+_)(−_) {+ₙ a}) (involution(−_)) ]
0 + (+ₙ(a mod ℕ.𝐒(i))) 🝖[ _≡_ ]-[ identityₗ(_+_)(0) ]
+ₙ(a mod ℕ.𝐒(i)) 🝖[ _≡_ ]-end
... | [∨]-introᵣ (succ ai) with [∃]-intro (x , y) ⦃ p ⦄ ← prev{a} ai {ℕ.𝐒(i)} = commutativity(_+_) {(+ₙ a) ⋅ y}{(+ₙ ℕ.𝐒(i)) ⋅ x} 🝖 p
| {
"alphanum_fraction": 0.5085110195,
"avg_line_length": 62.7078651685,
"ext": "agda",
"hexsha": "674853f8ed8f08e05e7de36ad6ef278e447ad112",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor/Extended.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor/Extended.agda",
"max_line_length": 234,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Function/GreatestCommonDivisor/Extended.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2881,
"size": 5581
} |
module Issue2229Reexport2 where
open import Issue2229Base public
| {
"alphanum_fraction": 0.8787878788,
"avg_line_length": 16.5,
"ext": "agda",
"hexsha": "be355d841f54d5e4f5597e6d14a9a8d9956b21a4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2229Reexport2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2229Reexport2.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2229Reexport2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 17,
"size": 66
} |
module View where
open import Data.Unit
open import Data.Char
open import Data.Maybe
open import Data.Container.Indexed
open import Signature
open import Model
open import IO.Primitive
------------------------------------------------------------------------
postulate
view : Model → IO ⊤
data VtyEvent : Set where
key : Char → VtyEvent
enter : VtyEvent
vtyToCmd : VtyEvent → (m : Mode) → Maybe (Command Hårss m)
vtyToCmd (key 'j') cmd = just (moveP down)
vtyToCmd (key 'k') cmd = just (moveP up)
vtyToCmd (key 'a') cmd = just (promptP addFeed)
vtyToCmd (key '\t') cmd = just (promptP search)
vtyToCmd (key 'R') cmd = just fetchP
vtyToCmd _ cmd = nothing
vtyToCmd enter (input p) = just doneP
vtyToCmd (key '\t') (input search) = just searchNextP
vtyToCmd (key c) (input p) = just (putCharP c)
| {
"alphanum_fraction": 0.5774336283,
"avg_line_length": 29.1612903226,
"ext": "agda",
"hexsha": "67447d0b5ba84f098fb7895641ae05d40e35f9f2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "stevana/haarss",
"max_forks_repo_path": "prototype/command-response/View.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "stevana/haarss",
"max_issues_repo_path": "prototype/command-response/View.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "stevana/haarss",
"max_stars_repo_path": "prototype/command-response/View.agda",
"max_stars_repo_stars_event_max_datetime": "2015-07-30T11:43:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T11:43:26.000Z",
"num_tokens": 263,
"size": 904
} |
{- Basic combinators, basic permutations, and their relation -}
module CombPerm where
import Data.Fin as F
--
open import Data.Unit
open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; _>_ )
open import Data.Sum using (inj₁ ; inj₂ ; _⊎_)
open import Data.Vec
open import Function using ( id ) renaming (_∘_ to _○_)
open import Relation.Binary -- to make certain goals look nicer
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning )
open ≡-Reasoning
-- start re-splitting things up, as this is getting out of hand
open import FT -- Finite Types
open import VecHelpers
open import NatSimple
open import Eval
open import Permutations
-- This should really go elsewhere!
finToVal : {n : ℕ} → F.Fin n → ⟦ fromℕ n ⟧
finToVal F.zero = inj₁ tt
finToVal (F.suc n) = inj₂ (finToVal n)
valToFin : {n : ℕ} → ⟦ fromℕ n ⟧ → F.Fin n
valToFin {zero} ()
valToFin {suc n} (inj₁ tt) = F.zero
valToFin {suc n} (inj₂ v) = F.suc (valToFin v)
finToValToFin : {n : ℕ} → (v : ⟦ fromℕ n ⟧) → finToVal (valToFin v) ≡ v
finToValToFin {zero} ()
finToValToFin {suc n} (inj₁ tt) = refl -- (inj₁ tt)
finToValToFin {suc n} (inj₂ v) = cong inj₂ (finToValToFin v)
valToFinToVal : {n : ℕ} → (i : F.Fin n) → valToFin (finToVal i) ≡ i
valToFinToVal F.zero = refl -- F.zero
valToFinToVal (F.suc i) = cong F.suc (valToFinToVal i)
-- construct a combinator which represents the swapping of the i-th and
-- (i+1)-th 'bit' of a finite type.
-- Best to think of this as an 'elementary permutation', in the same way
-- we have 'elementary matrices' (which turn out to be permutations when they
-- are unitary).
swapi : {n : ℕ} → F.Fin n → (fromℕ (suc n)) ⇛ (fromℕ (suc n))
swapi {zero} ()
swapi {suc n} F.zero = assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛
swapi {suc n} (F.suc i) = id⇛ ⊕ swapi {n} i
swapiPerm : {n : ℕ} → F.Fin n → Permutation (suc n)
swapiPerm {zero} ()
swapiPerm {suc n} F.zero = F.suc F.zero ∷ idP
swapiPerm {suc n} (F.suc i) = F.zero ∷ swapiPerm {n} i
swapiAct : {n : ℕ} {A : Set} → (i : F.Fin n) → (v : Vec A (suc n)) →
permute (swapiPerm i) v ≡ insert (remove (F.inject₁ i) v) (F.suc i) (v !! (F.inject₁ i))
swapiAct {zero} () v
swapiAct {suc n} F.zero (x ∷ y ∷ v) = cong (λ z → y ∷ x ∷ z) (idP-id v)
swapiAct {suc n} (F.suc i) (x ∷ v) = cong (_∷_ x) (swapiAct i v)
-- swapUpTo i permutes the combinator left by one up to i
-- if possible values are X a b c Y d e, swapUpTo 3's possible outputs
-- are a b c X Y d e
swapUpTo : {n : ℕ} → F.Fin n → (fromℕ (suc n)) ⇛ (fromℕ (suc n))
swapUpTo F.zero = id⇛
swapUpTo (F.suc i) = (id⇛ ⊕ swapUpTo i) ◎ swapi F.zero
-- 1 i times, 0 for the rest
1iP : {n : ℕ} → F.Fin n → Permutation (suc n)
1iP F.zero = idP
1iP (F.suc i) = (F.suc F.zero) ∷ 1iP i
-- The permutation we need:
-- [i, 0, 0, 0, 0, ...]
swapUpToPerm : {n : ℕ} → F.Fin n → Permutation (suc n)
swapUpToPerm F.zero = idP
swapUpToPerm (F.suc j) = (F.inject₁ (F.suc j)) ∷ idP
-- swapDownFrom i permutes the combinator right by one up to i (the reverse
-- of swapUpTo)
swapDownFrom : {n : ℕ} → F.Fin n → (fromℕ (suc n)) ⇛ (fromℕ (suc n))
swapDownFrom F.zero = id⇛
swapDownFrom (F.suc i) = swapi F.zero ◎ (id⇛ ⊕ swapDownFrom i)
-- The permutation we need:
-- [1, 1, 1, ..., 1, 0, 0, 0, ...]
-- |--i-1 times---|
swapDownFromPerm : {n : ℕ} → F.Fin n → Permutation (suc n)
swapDownFromPerm = 1iP
-- swapDownFromPerm F.zero = idP
-- swapDownFromPerm (F.suc i) = (F.suc F.zero) ∷ swapDownFromPerm i
-- swapm i returns a combinator that swaps 0 and i
swapm : {n : ℕ} → F.Fin n → (fromℕ n) ⇛ (fromℕ n)
swapm F.zero = id⇛
swapm (F.suc i) = swapDownFrom i ◎ swapi i ◎ swapUpTo i
swapOne : {n : ℕ} → (i : F.Fin n) → Permutation n
swapOne F.zero = idP
swapOne {suc zero} (F.suc ())
swapOne {suc (suc n)} (F.suc i) = (F.suc F.zero) ∷ swapOne i
-- which should correspond to this permutation!!
swapmPerm : {n : ℕ} → F.Fin n → Permutation n
swapmPerm F.zero = idP
swapmPerm {suc n} (F.suc i) = F.suc i ∷ swapOne i
permToComb : {n : ℕ} → Permutation n → (fromℕ n ⇛ fromℕ n)
permToComb [] = id⇛
permToComb (F.zero ∷ p) = id⇛ ⊕ permToComb p
permToComb (F.suc n ∷ p) = swapm (F.suc n) ◎ (id⇛ ⊕ permToComb p)
swap01 : (n : ℕ) → Permutation n
swap01 zero = []
swap01 (suc zero) = F.zero ∷ []
swap01 (suc (suc n)) = F.suc (F.zero) ∷ idP
vmap-insert : {n : ℕ} {A B : Set} {x : A} → (v : Vec A n) → (f : A → B) → (i : F.Fin (suc n)) → vmap f (insert v i x) ≡ insert (vmap f v) i (f x)
vmap-insert {zero} [] f F.zero = refl
vmap-insert {zero} [] f (F.suc ())
vmap-insert {suc n} v f F.zero = refl
vmap-insert {suc n} {x = x} (y ∷ v) f (F.suc i) = cong (_∷_ (f y)) (vmap-insert v f i)
vmap-permute : {n : ℕ} {A B : Set} → (p : Permutation n) → (v : Vec A n) → (f : A → B) → vmap f (permute p v) ≡ permute p (vmap f v)
vmap-permute {zero} [] [] f = refl
vmap-permute {suc n} (i ∷ p) (x ∷ v) f = trans (vmap-insert (permute p v) f i) (cong (λ y → insert y i (f x)) (vmap-permute p v f))
evalPerm : {n : ℕ} → Permutation n → F.Fin n → F.Fin n
evalPerm {zero} _ ()
evalPerm {suc n} p k = lookup k (permute p (allFin (suc n)))
testP5 : Vec (F.Fin five) five
testP5 = permute (swapmPerm (F.inject (F.fromℕ three))) (allFin five)
push-f-through : {n : ℕ} {A B : Set} → (f : A → B) → (j : F.Fin n) → (p : Permutation n) → (g : F.Fin n → A) → f (lookup j (permute p (tabulate g))) ≡ lookup j (permute p (tabulate (f ○ g)))
push-f-through {zero} f () p g
push-f-through {suc n} f j p g = begin
f (lookup j (permute p (tabulate g))) ≡⟨ sym (map!! f (permute p (tabulate g)) j) ⟩
lookup j (vmap f (permute p (tabulate g))) ≡⟨ cong (lookup j) (vmap-permute p (tabulate g) f) ⟩
lookup j (permute p (vmap f (tabulate g))) ≡⟨ cong (λ x → lookup j (permute p x)) (mapTab f g) ⟩
lookup j (permute p (tabulate (f ○ g))) ∎
-- Just to make a lot of the proofs look nicer
vId : {n : ℕ} → Vec (F.Fin n) n
vId = tabulate id
vS : {n : ℕ} → Vec (F.Fin (suc n)) n
vS = tabulate F.suc
vSS : {n : ℕ} → Vec (F.Fin (suc (suc n))) n
vSS = tabulate (F.suc ○ F.suc)
swapiCorrect : {n : ℕ} → (i : F.Fin n) → (j : F.Fin (1 + n)) → evalComb (swapi i) (finToVal j) ≡ finToVal (evalPerm (swapiPerm i) j)
swapiCorrect {zero} () _
swapiCorrect {suc n} F.zero F.zero = refl
swapiCorrect {suc zero} F.zero (F.suc F.zero) = refl
swapiCorrect {suc zero} F.zero (F.suc (F.suc ()))
swapiCorrect {suc zero} (F.suc ()) j
swapiCorrect {suc (suc n)} (F.suc i) F.zero = refl
swapiCorrect {suc (suc n)} F.zero (F.suc F.zero) = refl
swapiCorrect {suc (suc n)} F.zero (F.suc (F.suc j)) = cong finToVal
let F2 = F.suc ○ F.suc in
begin
F2 j
≡⟨ cong F2 (sym (lookupTab {f = id} j)) ⟩
F2 (lookup j (tabulate id))
≡⟨ cong (λ x → F2 (lookup j x)) (sym (idP-id (tabulate id))) ⟩
F2 (lookup j (permute idP (tabulate id)))
≡⟨ push-f-through F2 j idP id ⟩
lookup j (permute idP (tabulate F2)) ∎
swapiCorrect {suc (suc n)} (F.suc i) (F.suc j) =
begin
evalComb (swapi (F.suc i)) (finToVal (F.suc j))
≡⟨ refl ⟩
inj₂ (evalComb (swapi i) (finToVal j))
≡⟨ cong inj₂ (swapiCorrect {suc n} i j) ⟩
inj₂ (finToVal (evalPerm (swapiPerm i) j))
≡⟨ refl ⟩
inj₂ (finToVal (lookup j (permute (swapiPerm i) (tabulate id))))
≡⟨ refl ⟩
finToVal (F.suc (lookup j (permute (swapiPerm i) (tabulate id))))
≡⟨ cong finToVal (push-f-through F.suc j (swapiPerm i) id) ⟩
finToVal (lookup j (permute (swapiPerm i) (tabulate F.suc))) ∎
-- JC: Need seriously better names for the next 3 lemmas!!
lookup-insert : {n : ℕ} {A : Set} → (v : Vec A (suc n)) → {i : F.Fin (suc n)} → {a : A} →
lookup F.zero (insert v (F.suc i) a) ≡ lookup F.zero v
lookup-insert (x ∷ v) = refl
lookup-insert′ : {n : ℕ} {A : Set} (i : F.Fin (suc n)) {a : A} → (v : Vec A n) →
lookup i (insert v i a) ≡ a
lookup-insert′ F.zero [] = refl
lookup-insert′ (F.suc ()) []
lookup-insert′ F.zero (x ∷ v) = refl
lookup-insert′ (F.suc i) (x ∷ v) = lookup-insert′ i v
-- this is what is needed in swapDownCorrect, but would be true for any j < i instead of F.suc F.zero < F.suc i
lookup-insert′′ : {n : ℕ} {A : Set} {a : A} → (i : F.Fin n) → (v : Vec A (suc n)) →
lookup (F.suc i) v ≡ lookup (F.suc (F.suc i)) (insert v (F.suc F.zero) a)
lookup-insert′′ {zero} () v
lookup-insert′′ {suc n} i (x ∷ v) = refl
-- this should be unified with the previous
lookup-insert3 : {n : ℕ} {A : Set} {a : A} → (i : F.Fin n) → (v : Vec A n) →
lookup i v ≡ lookup (F.suc i) (insert v (F.inject₁ i) a)
lookup-insert3 {zero} () v
lookup-insert3 {suc n} F.zero (x ∷ v) = refl
lookup-insert3 {suc n} (F.suc i) (x ∷ v) = lookup-insert3 i v
lookup+1-insert-remove : {n : ℕ} {A : Set} {a : A} → (i : F.Fin n) → (v : Vec A (suc n)) →
lookup (F.inject₁ i) (insert (remove (F.inject₁ i) v) (F.suc i) a) ≡ lookup (F.suc i) v
lookup+1-insert-remove {zero} () _
lookup+1-insert-remove {suc n} F.zero (x ∷ x₁ ∷ v) = refl
lookup+1-insert-remove {suc n} (F.suc i) (x ∷ v) = lookup+1-insert-remove i v
-- insert (remove (F.inject₁ (F.suc i)) (tabulate id)) (F.suc (F.suc i)) (F.inject₁ (F.suc i)) !! (F.inject₁ (F.suc i))
lookup-idP-id : {n : ℕ} → (i : F.Fin n) → lookup i (permute idP vId) ≡ i
lookup-idP-id i = trans (cong (lookup i) (idP-id vId)) (lookupTab i)
swapUpToAct : {n : ℕ} {A : Set} → (i : F.Fin n) → (v : Vec A (suc n)) →
permute (swapUpToPerm i) v ≡ insert (remove F.zero v) (F.inject₁ i) (v !! F.zero)
swapUpToAct F.zero v = trans (idP-id v) (remove0 v)
swapUpToAct (F.suc i) (x ∷ v) = cong (λ z → insert z (F.suc (F.inject₁ i)) x) (idP-id v)
swapDownFromVec : {n : ℕ} {A : Set} → (i : F.Fin (suc n)) → Vec A (suc n) →
Vec A (suc n)
swapDownFromVec i v = (v !! i) ∷ remove i v
swapDownFromAct : {n : ℕ} → {A : Set} → (i : F.Fin n) → (v : Vec A (suc n)) →
permute (swapDownFromPerm i) v ≡
swapDownFromVec (F.inject₁ i) v
swapDownFromAct {zero} () _
swapDownFromAct {suc n} F.zero (x ∷ v) =
begin
permute (swapDownFromPerm F.zero) (x ∷ v)
≡⟨ refl ⟩
permute idP (x ∷ v)
≡⟨ idP-id (x ∷ v) ⟩
swapDownFromVec F.zero (x ∷ v) ∎
swapDownFromAct {suc zero} (F.suc ()) _
swapDownFromAct {suc (suc n)} (F.suc i) (x ∷ y ∷ v) =
begin
permute (swapDownFromPerm (F.suc i)) (x ∷ y ∷ v)
≡⟨ refl ⟩
permute (F.suc F.zero ∷ 1iP i) (x ∷ y ∷ v)
≡⟨ refl ⟩
insert (permute (swapDownFromPerm i) (y ∷ v)) (F.suc F.zero) x
≡⟨ cong (λ q → insert q (F.suc F.zero) x) (swapDownFromAct i (y ∷ v)) ⟩
insert (swapDownFromVec (F.inject₁ i) (y ∷ v)) (F.suc F.zero) x
≡⟨ refl ⟩
((y ∷ v) !! (F.inject₁ i)) ∷ x ∷ remove (F.inject₁ i) (y ∷ v)
≡⟨ refl ⟩
swapDownFromVec (F.inject₁ (F.suc i)) (x ∷ y ∷ v) ∎
swapmVec : {n : ℕ} {A : Set} → F.Fin n → Vec A n → Vec A n
swapmVec {zero} () _
swapmVec {suc n} F.zero v = v
swapmVec {suc zero} (F.suc ()) _
swapmVec {suc (suc n)} (F.suc i) (x ∷ v) =
(v !! i) ∷ (insert (remove i v) i x)
swapOneVec : {n : ℕ} {A : Set} → F.Fin n → Vec A n → Vec A n
swapOneVec {zero} () _
swapOneVec {suc n} F.zero v = v
swapOneVec {suc n} (F.suc i) v = (v !! (F.suc i)) ∷ (remove (F.suc i) v)
swapOneAct : {n : ℕ} {A : Set} → (i : F.Fin n) → (v : Vec A n) →
permute (swapOne i) v ≡ swapOneVec i v
swapOneAct {zero} () _
swapOneAct {suc n} F.zero (x ∷ v) = cong (_∷_ x) (idP-id v)
swapOneAct {suc zero} (F.suc ()) v
swapOneAct {suc (suc n)} (F.suc F.zero) (x ∷ y ∷ v) = cong (λ z → y ∷ x ∷ z) (idP-id v)
swapOneAct {suc (suc n)} (F.suc (F.suc i)) (x ∷ v) =
begin
permute (swapOne (F.suc (F.suc i))) (x ∷ v)
≡⟨ refl ⟩
insert (permute (swapOne (F.suc i)) v) (F.suc F.zero) x
≡⟨ cong (λ y → insert y (F.suc F.zero) x) (swapOneAct (F.suc i) v) ⟩
insert (swapOneVec (F.suc i) v) (F.suc F.zero) x
≡⟨ refl ⟩ -- lots of β reduction
((x ∷ v) !! (F.suc (F.suc i))) ∷ (remove (F.suc (F.suc i)) (x ∷ v))
≡⟨ refl ⟩
swapOneVec (F.suc (F.suc i)) (x ∷ v)
∎
swapmAct : {n : ℕ} {A : Set} → (i : F.Fin n) → (v : Vec A n) →
permute (swapmPerm i) v ≡ swapmVec i v
swapmAct {zero} () _
swapmAct {suc n} F.zero (x ∷ v) =
begin
permute (swapmPerm F.zero) (x ∷ v)
≡⟨ idP-id (x ∷ v) ⟩
swapmVec F.zero (x ∷ v) ∎
swapmAct {suc zero} (F.suc ()) _
swapmAct {suc (suc n)} (F.suc F.zero) (x ∷ y ∷ v) = cong (λ z → y ∷ x ∷ z) (idP-id v)
swapmAct {suc (suc n)} (F.suc (F.suc i)) (x ∷ y ∷ v) =
begin
permute (swapmPerm (F.suc (F.suc i))) (x ∷ y ∷ v)
≡⟨ refl ⟩
permute (F.suc (F.suc i) ∷ swapOne (F.suc i)) (x ∷ y ∷ v)
≡⟨ refl ⟩
insert (permute (swapOne (F.suc i)) (y ∷ v)) (F.suc (F.suc i)) x
≡⟨ cong (λ z → insert z (F.suc (F.suc i)) x) (swapOneAct (F.suc i) (y ∷ v)) ⟩
insert (swapOneVec (F.suc i) (y ∷ v)) (F.suc (F.suc i)) x
≡⟨ refl ⟩ -- by lots of beta on both sides
((y ∷ v) !! (F.suc i)) ∷ (insert (remove (F.suc i) (y ∷ v)) (F.suc i) x)
≡⟨ refl ⟩
swapmVec (F.suc (F.suc i)) (x ∷ y ∷ v) ∎
swapi≡swap01 : {n : ℕ} → (j : F.Fin (suc (suc n))) → evalComb (assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛) (finToVal j) ≡ finToVal (evalPerm (swap01 (suc (suc n))) j)
swapi≡swap01 F.zero = refl
swapi≡swap01 (F.suc F.zero) = refl
swapi≡swap01 (F.suc (F.suc j)) = sym (trans
(cong (λ x → finToVal (x !! j)) (idP-id _))
(cong finToVal (lookupTab j)))
-- this is the raw swap01 vector
swap01vec : {n : ℕ} → Vec (F.Fin (2 + n)) (2 + n)
swap01vec = F.suc F.zero ∷ F.zero ∷ vSS
-- this is the one we 'naturally' get via permutation
swap01vec′ : (n : ℕ) → Vec (F.Fin (2 + n)) (2 + n)
swap01vec′ n = permute (swap01 (suc (suc n))) vId
-- but they are the same!
swap01Correct : (n : ℕ) → swap01vec′ n ≡ swap01vec {n}
swap01Correct zero = refl
swap01Correct (suc n) = cong (λ x → F.suc F.zero ∷ F.zero ∷ x) (idP-id _)
newlemma6 : {m n : ℕ} → (i : F.Fin n) → (v : Vec (F.Fin m) n) →
(vmap F.suc (insert (vmap F.suc v) (F.inject₁ i) F.zero)) ∘̬′ swap01vec
≡ insert (vmap F.suc (vmap F.suc v)) (F.inject₁ i) F.zero
newlemma6 F.zero (x ∷ v) =
let suc2v = vmap F.suc (vmap F.suc v) in
begin
vmap F.suc (insert (vmap F.suc (x ∷ v)) F.zero F.zero) ∘̬′ swap01vec
≡⟨ refl ⟩
(F.suc F.zero ∷ F.suc (F.suc x) ∷ suc2v) ∘̬′ swap01vec
≡⟨ refl ⟩
F.zero ∷ ((F.suc (F.suc x) ∷ suc2v) ∘̬′ swap01vec)
≡⟨ refl ⟩
F.zero ∷ (vSS !! x) ∷ (suc2v ∘̬′ swap01vec)
≡⟨ cong (λ x → F.zero ∷ x ∷ suc2v ∘̬′ swap01vec) (lookupTab x) ⟩
F.zero ∷ F.suc (F.suc x) ∷ (suc2v ∘̬′ swap01vec)
≡⟨ cong (λ q → F.zero ∷ F.suc (F.suc x) ∷ q) (map2+id v) ⟩
F.zero ∷ F.suc (F.suc x) ∷ suc2v
≡⟨ refl ⟩
insert (vmap F.suc (vmap F.suc (x ∷ v))) F.zero F.zero ∎
newlemma6 (F.suc i) (x ∷ v) =
let v′ = insert (vmap F.suc v) (F.inject₁ i) F.zero in
begin
vmap F.suc (insert (vmap F.suc (x ∷ v)) (F.inject₁ (F.suc i)) F.zero) ∘̬′ swap01vec
≡⟨ refl ⟩
(tabulate (F.suc ○ F.suc) !! x) ∷ ((vmap F.suc v′) ∘̬′ swap01vec)
≡⟨ cong (λ q → q ∷ ((vmap F.suc v′) ∘̬′ swap01vec)) (lookupTab x) ⟩
F.suc (F.suc x) ∷ ((vmap F.suc v′) ∘̬′ swap01vec)
≡⟨ cong (_∷_ (F.suc (F.suc x))) (newlemma6 i v) ⟩
F.suc (F.suc x) ∷ insert (vmap F.suc (vmap F.suc v)) (F.inject₁ i) F.zero
≡⟨ refl ⟩
insert (vmap F.suc (vmap F.suc (x ∷ v))) (F.inject₁ (F.suc i)) F.zero ∎
---
--- testing
tests01 : Vec (F.Fin five) five
tests01 = permute (swap01 five) (allFin five)
tests02 : (fromℕ five ⇛ fromℕ five)
tests02 = permToComb (swap01 five)
tests03 : Vec ⟦ PLUS ONE (PLUS ONE (PLUS ONE (PLUS ONE (PLUS ONE ZERO)))) ⟧ five
tests03 = tabulate (λ i → evalComb tests02 (finToVal i))
l6test1 : _
l6test1 = (vmap F.suc (insert (tabulate {4} F.suc) (F.suc (F.suc F.zero)) F.zero)) ∘̬ (F.suc F.zero ∷ F.zero ∷ tabulate (F.suc ○ F.suc))
l6test1b : _
l6test1b = permute (swapUpToPerm {5} (F.suc (F.suc (F.suc F.zero)))) (tabulate id)
test1a : Vec _ 5 -- Vec (F.Fin 5) 5
--test1a = (insert (tabulate {4} F.suc) (F.suc F.zero) F.zero)
test1a = (vmap F.suc (insert (tabulate {4} F.suc) (F.suc F.zero) F.zero))
∘̬ (F.suc F.zero ∷ F.zero ∷ tabulate (λ x → F.suc (F.suc x)))
test1b : Vec _ 5
test1b = insert (tabulate (F.suc ○ F.suc)) (F.suc F.zero) F.zero
aPerm : Permutation six
aPerm = (F.suc (F.suc (F.suc F.zero))) ∷ (F.suc F.zero) ∷ (F.suc F.zero) ∷ F.zero ∷ F.zero ∷ F.zero ∷ []
test5 : Vec (F.Fin six) six
test5 = permute aPerm (tabulate id)
combToVec : {n : ℕ} → (fromℕ n) ⇛ (fromℕ n) → Vec (F.Fin n) n
combToVec c = tabulate (valToFin ○ (evalComb c) ○ finToVal)
test6a : Vec (F.Fin six) six
test6a = combToVec (swapUpTo (F.suc F.zero))
test6b : Vec (F.Fin six) six
test6b = permute (swapUpToPerm (F.suc F.zero)) (tabulate id)
test7a : Vec (F.Fin six) six
test7a = combToVec (swapUpTo (F.zero))
test7b : Vec (F.Fin six) six
test7b = permute (swapUpToPerm (F.zero)) (tabulate id)
test8a : Vec (F.Fin six) six
test8a = combToVec (swapUpTo (F.suc (F.suc (F.suc (F.zero)))))
test8b : Vec (F.Fin six) six
test8b = permute (swapUpToPerm (F.suc (F.suc (F.suc F.zero)))) (tabulate id)
test9 : Vec (F.Fin six) six
test9 = permute (swapOne (F.suc (F.suc (F.suc F.zero)))) (tabulate id)
test10 : Vec (F.Fin six) six
test10 = permute (swapmPerm (F.suc (F.suc (F.suc F.zero)))) (tabulate id)
| {
"alphanum_fraction": 0.5744263807,
"avg_line_length": 40.9103773585,
"ext": "agda",
"hexsha": "66cc953afea740c453443b281a2f71709ea24ff7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/CombPerm.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/CombPerm.agda",
"max_line_length": 190,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/CombPerm.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 7427,
"size": 17346
} |
{-# OPTIONS --cubical --safe #-}
module Container.List.Isomorphism where
open import Prelude
open import Container
open import Container.List
open import Data.Fin
open import Data.List using (tabulate; length ; _!_) renaming (_∷_ to _L∷_; [] to L[]; List to 𝕃)
open import Data.List.Properties
ℒ→𝕃 : List A → 𝕃 A
ℒ→𝕃 = uncurry tabulate
𝕃→ℒ : 𝕃 A → List A
𝕃→ℒ xs .fst = length xs
𝕃→ℒ xs .snd i = xs ! i
ℒ→𝕃→ℒ : ∀ n (xs : Fin n → A) → 𝕃→ℒ (ℒ→𝕃 (n , xs)) ≡ (n , xs)
ℒ→𝕃→ℒ n xs i .fst = tab-length n xs i
ℒ→𝕃→ℒ n xs i .snd = tab-id n xs i
𝕃→ℒ→𝕃 : ∀ (xs : 𝕃 A) → ℒ→𝕃 (𝕃→ℒ xs) ≡ xs
𝕃→ℒ→𝕃 L[] _ = L[]
𝕃→ℒ→𝕃 (x L∷ xs) i = x L∷ 𝕃→ℒ→𝕃 xs i
𝕃⇔ℒ : 𝕃 A ⇔ List A
𝕃⇔ℒ .fun = 𝕃→ℒ
𝕃⇔ℒ .inv = ℒ→𝕃
𝕃⇔ℒ .rightInv = uncurry ℒ→𝕃→ℒ
𝕃⇔ℒ .leftInv = 𝕃→ℒ→𝕃
| {
"alphanum_fraction": 0.5921409214,
"avg_line_length": 23.0625,
"ext": "agda",
"hexsha": "f80465d8c15bce0d4c6f08051b703e5a411284b1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Container/List/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Container/List/Isomorphism.agda",
"max_line_length": 97,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Container/List/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 432,
"size": 738
} |
-- Andreas, 2018-07-21, issue #3161
-- Insert space before brace if preceeded by `-`.
-- (Symmetric case was already fixed in #269).
data Pol : Set where
+ - : Pol
f : {x : Pol} → Set
f {x} = {!x!} -- Split on x here
| {
"alphanum_fraction": 0.5990990991,
"avg_line_length": 22.2,
"ext": "agda",
"hexsha": "7cddaf75e4e9b84a95b171918939bbfa26b5ea6c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3161.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3161.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3161.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 77,
"size": 222
} |
{-# OPTIONS --safe #-}
module Cubical.Relation.Nullary.DecidablePropositions where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_)
open import Cubical.Data.Bool
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary.Base
open import Cubical.Relation.Nullary.Properties
private
variable
ℓ ℓ' : Level
DecProp : (ℓ : Level) → Type (ℓ-suc ℓ)
DecProp ℓ = Σ[ P ∈ hProp ℓ ] Dec (P .fst)
isSetDecProp : isSet (DecProp ℓ)
isSetDecProp = isOfHLevelΣ 2 isSetHProp (λ P → isProp→isSet (isPropDec (P .snd)))
-- the following is an alternative formulation of decidable propositions
-- it separates the boolean value from more proof-relevant part
-- so it performs better when doing computation
isDecProp : Type ℓ → Type ℓ
isDecProp P = Σ[ t ∈ Bool ] P ≃ Bool→Type t
DecProp' : (ℓ : Level) → Type (ℓ-suc ℓ)
DecProp' ℓ = Σ[ P ∈ Type ℓ ] isDecProp P
-- properties of the alternative formulation
isDecProp→isProp : {P : Type ℓ} → isDecProp P → isProp P
isDecProp→isProp h = isOfHLevelRespectEquiv 1 (invEquiv (h .snd)) isPropBool→Type
isDecProp→Dec : {P : Type ℓ} → isDecProp P → Dec P
isDecProp→Dec h = EquivPresDec (invEquiv (h .snd)) DecBool→Type
isPropIsDecProp : {P : Type ℓ} → isProp (isDecProp P)
isPropIsDecProp p q =
Σ≡PropEquiv (λ _ → isOfHLevel⁺≃ᵣ 0 isPropBool→Type) .fst
(Bool→TypeInj _ _ (invEquiv (p .snd) ⋆ q .snd))
isDecPropRespectEquiv : {P : Type ℓ} {Q : Type ℓ'}
→ P ≃ Q → isDecProp Q → isDecProp P
isDecPropRespectEquiv e (t , e') = t , e ⋆ e'
| {
"alphanum_fraction": 0.71600253,
"avg_line_length": 31.62,
"ext": "agda",
"hexsha": "69b7ec8506e05436fe7ad598ca077c0a4d594f03",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Relation/Nullary/DecidablePropositions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Relation/Nullary/DecidablePropositions.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Relation/Nullary/DecidablePropositions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 567,
"size": 1581
} |
-- Andreas, 2011-09-21, reported by Nisse
-- {-# OPTIONS -v tc.lhs.unify:25 #-}
module Issue292-23 where
data ⊤ : Set where
tt : ⊤
data D : (A : Set) → A → Set₁ where
d : (A : Set) (x : A) → D A x
data P : (x : ⊤) → D ⊤ x → Set₁ where
p : (x : ⊤) → P x (d ⊤ x)
Foo : P tt (d ⊤ tt) → Set₁
Foo (p .tt) = Set
-- should work
-- bug was caused by a use of ureduce instead of reduce | {
"alphanum_fraction": 0.5466321244,
"avg_line_length": 22.7058823529,
"ext": "agda",
"hexsha": "e9f5ed1744f5dab19364af3f3501ef72398e93a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue292-23.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue292-23.agda",
"max_line_length": 55,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue292-23.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 160,
"size": 386
} |
module Everything where
import Basic
import Category
import Functor
import Nat
import Yoneda
import Adjoint
import Monad
import TAlgebra
| {
"alphanum_fraction": 0.8550724638,
"avg_line_length": 12.5454545455,
"ext": "agda",
"hexsha": "39b05d1d1f831a775db4a8a76f7e82e37f440f8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "myuon/agda-cate",
"max_forks_repo_path": "Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "myuon/agda-cate",
"max_issues_repo_path": "Everything.agda",
"max_line_length": 23,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "59004994acdbc65fb4f8abf0baa1777a8dbe758e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "myuon/agda-cate",
"max_stars_repo_path": "Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-02T07:30:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-28T04:59:31.000Z",
"num_tokens": 33,
"size": 138
} |
-- Andreas, 2016-07-29, issue #1720 reported by Mietek Bak
postulate
A B : Set
a0 : A
b0 : B
record R (a1 : A) (b1 : B) : Set where
field fa : A
a : A
a = {!!}
field fb : B
b : B
b = {!!}
field f : A
-- Problem:
-- Interaction points are doubled.
| {
"alphanum_fraction": 0.5345454545,
"avg_line_length": 11.4583333333,
"ext": "agda",
"hexsha": "8e2f0d9ea4c9ce1a2030ed237057ed445ff69e22",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1720-2.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1720-2.agda",
"max_line_length": 58,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1720-2.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 108,
"size": 275
} |
module L.Base.Unit.Core where
-- Import the unit type and its only element tt : ⊤
open import Agda.Builtin.Unit renaming (tt to ⋆) public
⊤-elim : ∀{c} (C : ⊤ → Set c) → C ⋆ → (a : ⊤) → C a
⊤-elim = λ C c a → c
| {
"alphanum_fraction": 0.5887850467,
"avg_line_length": 23.7777777778,
"ext": "agda",
"hexsha": "884e4480f42d00b9076636051e5edb88315cbba5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Unit/Core.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Unit/Core.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Unit/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 86,
"size": 214
} |
-- {-# OPTIONS -v tc.cc:12 -v tc.cover.splittree:10 #-}
-- {-# OPTIONS -v tc.cover.strategy:100 -v tc.cover.precomputed:100 #-}
-- {-# OPTIONS -v tc.cover.split.con:20 #-}
module CoverStrategy where
import Common.Level
open import Common.Prelude renaming (Nat to ℕ)
data _∼_ : ℕ → ℕ → Set where
pr : ∀ {n} → suc n ∼ n
eq : ∀ {n} → n ∼ n
max : ∀ {m n} → m ∼ n → ℕ
max (pr {n}) = suc n
max (eq {n}) = n
data Tree : ℕ → Set where
node : ∀ {hˡ hʳ} (bal : hˡ ∼ hʳ) → Tree (max bal)
-- 'test' only passes if we split first on 'Tree hˡ' and then on 'hˡ ∼ hʳ'
-- This refutes a split strategy that prefers all-constructor columns
-- over those with catch-alls.
test : ∀ {hˡ hʳ} → Tree hˡ → hˡ ∼ hʳ → Set
test (node pr) pr = ℕ
test (node eq) pr = ℕ
test x eq = ℕ
{- We cannot split on 'Tree hˡ' if we have already split on 'hˡ ∼ hʳ'
bla : ∀ {hˡ hʳ} → Tree hˡ → hˡ ∼ hʳ → Set
bla nod pr = {!nod!}
bla nod eq = {!!}
-}
| {
"alphanum_fraction": 0.5859124867,
"avg_line_length": 27.5588235294,
"ext": "agda",
"hexsha": "b03ad0f4b958b011c06a11ebdea9ae94403c7d14",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/CoverStrategy.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/CoverStrategy.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/succeed/CoverStrategy.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 364,
"size": 937
} |
{-# OPTIONS --without-K --safe #-}
-- 'Traditionally', meaning in nLab and in
-- "Lectures on n-Categories and Cohomology" by Baez and Shulman
-- https://arxiv.org/abs/math/0608420
-- (-2)-Categories are defined to be just a single value, with trivial Hom
-- But that's hardly a definition of a class of things, it's a definition of
-- a single structure! What we want is the definition of a class which turns
-- out to be (essentially) unique. Rather like the reals are (essentially) the
-- only ordered complete archimedean field.
-- So we will take a -2-Category to be a full-fledge Category, but where
-- 1. |Obj| is (Categorically) contractible
-- 2. |Hom| is connected (all arrows are equal)
-- Note that we don't need to say anything at all about ≈
module Categories.Minus2-Category where
open import Level
open import Categories.Category
open import Data.Product using (Σ)
import Categories.Morphism as M
private
variable
o ℓ e : Level
record -2-Category : Set (suc (o ⊔ ℓ ⊔ e)) where
field
cat : Category o ℓ e
open Category cat public
open M cat using (_≅_)
field
Obj-Contr : Σ Obj (λ x → (y : Obj) → x ≅ y)
Hom-Conn : {x y : Obj} {f g : x ⇒ y} → f ≈ g
| {
"alphanum_fraction": 0.6890547264,
"avg_line_length": 31.7368421053,
"ext": "agda",
"hexsha": "cb3ff8fa9679b48e65965f64f244d794c540fa5d",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Minus2-Category.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Minus2-Category.agda",
"max_line_length": 78,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Minus2-Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 360,
"size": 1206
} |
{-# OPTIONS --cumulativity #-}
open import Agda.Primitive
postulate
X : Set
P : (A : Set) → A → Set
id : ∀ a (A : Set a) → A → A
works : P (X → X) (id (lsuc lzero) X)
fails : P _ (id (lsuc lzero) X)
| {
"alphanum_fraction": 0.509009009,
"avg_line_length": 20.1818181818,
"ext": "agda",
"hexsha": "89b6dde26df172a4d7cc46be05ef1ca7574d91c6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4090.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4090.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4090.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 88,
"size": 222
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Interval.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
data Interval : Type₀ where
zero : Interval
one : Interval
seg : zero ≡ one
isContrInterval : isContr Interval
isContrInterval = (zero , (λ x → rem x))
where
rem : (x : Interval) → zero ≡ x
rem zero = refl
rem one = seg
rem (seg i) j = seg (i ∧ j)
funExtInterval : ∀ {ℓ} (A B : Type ℓ) (f g : A → B) → ((x : A) → f x ≡ g x) → f ≡ g
funExtInterval A B f g p = λ i x → hmtpy x (seg i)
where
hmtpy : A → Interval → B
hmtpy x zero = f x
hmtpy x one = g x
hmtpy x (seg i) = p x i
intervalElim : (A : Interval → Type₀) (x : A zero) (y : A one)
(p : PathP (λ i → A (seg i)) x y) → (x : Interval) → A x
intervalElim A x y p zero = x
intervalElim A x y p one = y
intervalElim A x y p (seg i) = p i
-- Note that this is not definitional (it is not proved by refl)
intervalEta : ∀ {A : Type₀} (f : Interval → A) → intervalElim _ (f zero) (f one) (λ i → f (seg i)) ≡ f
intervalEta f i zero = f zero
intervalEta f i one = f one
intervalEta f i (seg j) = f (seg j)
| {
"alphanum_fraction": 0.5922165821,
"avg_line_length": 29.55,
"ext": "agda",
"hexsha": "a454a7fb92c6843782421ae0fa0e7741b6cbf6a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Interval/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Interval/Base.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Interval/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 427,
"size": 1182
} |
-- Andreas, 2012-05-14, issue reported by Nisse
-- {-# OPTIONS -v term:20 #-}
module Issue636 where
open import Common.Coinduction
data ⊥ : Set where
data D : Set where
c : ∞ D → D
d : D
d = c (♯ d)
not-d : D → ⊥
not-d (c x) = not-d (♭ x)
bad : ⊥
bad = not-d d
| {
"alphanum_fraction": 0.5762081784,
"avg_line_length": 13.45,
"ext": "agda",
"hexsha": "a60a644f07438cea2b913e1b208b03eef76465dc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue636.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue636.agda",
"max_line_length": 47,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue636.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 106,
"size": 269
} |
module xxx where
open import Agda.Builtin.Unit using (⊤)
open import IO as IO hiding (_>>=_; _>>_)
import IO.Primitive as Primitive
open import hcio as HCIO
main : Primitive.IO ⊤
main = run do
IO.putStrLn "enter file name:"
f ← HCIO.getLine
IO.putStrLn "enter file contents"
c ← HCIO.getLine
IO.writeFile f c
c' ← IO.readFiniteFile f
IO.putStrLn c'
std ← IO.readFiniteFile "spacetrack-data-2021-05-31.txt"
IO.putStrLn std
IO.putStrLn "Bye"
| {
"alphanum_fraction": 0.6507936508,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "141081047b2e566d741bb4c96cda4c9d6ff0760c",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/examples-that-run/xxx/src-agda/xxx.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/examples-that-run/xxx/src-agda/xxx.agda",
"max_line_length": 58,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/examples-that-run/xxx/src-agda/xxx.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 151,
"size": 504
} |
{-# OPTIONS --without-K #-}
module GPerm where
-- Definition of a general permutation, and some combinators.
-- This is the 'abstract' view, in terms of functions. Contrast with the
-- concrete view in term of vectors (and restricted to Enumerable sets)
-- In some sense, even better would be to consider 'weak' permutations
-- as exactly _≃_. Having both side be syntactically equal is weird, as we
-- are exactly trying to liberate ourselves from that!
-- In other words, we won't actually use GPerm anywhere.
open import Level using (_⊔_)
open import Data.Sum using (_⊎_)
open import Data.Product using (_×_)
open import Equiv
open import TypeEquiv
GPerm : Set → Set
GPerm A = A ≃ A
-- composition. Stick to Set₀.
_⊙_ : {A : Set} → GPerm A → GPerm A → GPerm A
_⊙_ = trans≃
-- parallel composition.
_⊕_ : {A C : Set} → GPerm A → GPerm C → GPerm (A ⊎ C)
_⊕_ = path⊎
-- tensor product
_⊗_ : {A B : Set} → GPerm A → GPerm B → GPerm (A × B)
_⊗_ = path×
| {
"alphanum_fraction": 0.6603396603,
"avg_line_length": 27.8055555556,
"ext": "agda",
"hexsha": "ca82d4ef60694b494821782b24b5c7f8d3ccee48",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/GPerm.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/GPerm.agda",
"max_line_length": 76,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/GPerm.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 305,
"size": 1001
} |
------------------------------------------------------------------------
-- Definitions of "free in" and "closed", along with some properties
------------------------------------------------------------------------
open import Atom
module Free-variables (atoms : χ-atoms) where
open import Dec
open import Equality.Propositional.Cubical
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (const; swap)
open import Bag-equivalence equality-with-J as B using (_∈_)
open import Bijection equality-with-J as Bijection using (_↔_)
import Erased.Cubical equality-with-paths as E
open import Equivalence equality-with-J as Eq using (_≃_)
open import Finite-subset.Listed equality-with-paths as S
using (Finite-subset-of)
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional equality-with-paths as T
using (∥_∥)
open import List equality-with-J using (_++_; foldr)
open import Chi atoms
open import Propositional atoms
open import Substitution atoms
open import Values atoms
open χ-atoms atoms
private
variable
A : Type
bs : List Br
c c′ : Const
e e₁ e₂ e′ e″ : Exp
es : List Exp
x y : Var
xs xs′ : A
private
-- Two variants of V._≟_.
_≟V₁_ : (x y : Var) → Dec T.∥ x ≡ y ∥
_≟V₁_ = T.decidable→decidable-∥∥ V._≟_
_≟V₂_ : (x y : Var) → E.Dec-Erased T.∥ x ≡ y ∥
x ≟V₂ y = E.Dec→Dec-Erased (x ≟V₁ y)
------------------------------------------------------------------------
-- Definitions
-- Free variables.
infix 4 _∈FV_
data _∈FV_ (x : Var) : Exp → Type where
apply-left : ∀ {e₁ e₂} → x ∈FV e₁ → x ∈FV apply e₁ e₂
apply-right : ∀ {e₁ e₂} → x ∈FV e₂ → x ∈FV apply e₁ e₂
lambda : ∀ {y e} → x ≢ y → x ∈FV e → x ∈FV lambda y e
case-head : ∀ {e bs} → x ∈FV e → x ∈FV case e bs
case-body : ∀ {e bs c xs e′} →
x ∈FV e′ → branch c xs e′ ∈ bs → ¬ x ∈ xs →
x ∈FV case e bs
rec : ∀ {y e} → x ≢ y → x ∈FV e → x ∈FV rec y e
var : ∀ {y} → x ≡ y → x ∈FV var y
const : ∀ {c es e} → x ∈FV e → e ∈ es → x ∈FV const c es
-- Closed, except that the given variables may occur.
Closed′ : List Var → Exp → Type
Closed′ xs e = ∀ x → ¬ x ∈ xs → ¬ x ∈FV e
-- The property of being closed.
Closed : Exp → Type
Closed = Closed′ []
-- Closed expressions.
Closed-exp : Type
Closed-exp = ∃ Closed
------------------------------------------------------------------------
-- Inversion lemmas for _∈_
∈apply : (x ∈FV apply e₁ e₂) ≃ (x ∈FV e₁ ⊎ x ∈FV e₂)
∈apply = Eq.↔→≃
(λ { (apply-left x∈) → inj₁ x∈
; (apply-right x∈) → inj₂ x∈
})
[ apply-left , apply-right ]
[ (λ _ → refl) , (λ _ → refl) ]
(λ { (apply-left _) → refl
; (apply-right _) → refl
})
∈lambda : (x ∈FV lambda y e) ≃ (x ≢ y × x ∈FV e)
∈lambda = Eq.↔→≃
(λ { (lambda x≢y x∈e) → x≢y , x∈e })
(uncurry lambda)
(λ _ → refl)
(λ { (lambda _ _) → refl })
∈case :
(x ∈FV case e bs) ≃
(x ∈FV e ⊎
∃ λ c → ∃ λ xs → ∃ λ e′ → x ∈FV e′ × branch c xs e′ ∈ bs × ¬ x ∈ xs)
∈case = Eq.↔→≃
(λ { (case-head x∈) → inj₁ x∈
; (case-body x∈ b∈ x∉) → inj₂ (_ , _ , _ , x∈ , b∈ , x∉)
})
[ case-head , (λ (_ , _ , _ , x∈ , b∈ , x∉) → case-body x∈ b∈ x∉) ]
[ (λ _ → refl) , (λ _ → refl) ]
(λ { (case-head _) → refl
; (case-body _ _ _) → refl
})
∈rec : (x ∈FV rec y e) ≃ (x ≢ y × x ∈FV e)
∈rec = Eq.↔→≃
(λ { (rec x≢y x∈e) → x≢y , x∈e })
(uncurry rec)
(λ _ → refl)
(λ { (rec _ _) → refl })
∈var : (x ∈FV var y) ≃ (x ≡ y)
∈var = Eq.↔→≃
(λ { (var x≡y) → x≡y })
var
(λ _ → refl)
(λ { (var _) → refl })
∈const : (x ∈FV const c es) ≃ (∃ λ e → x ∈FV e × e ∈ es)
∈const = Eq.↔→≃
(λ { (const ∈e ∈es) → _ , ∈e , ∈es })
(λ (_ , ∈e , ∈es) → const ∈e ∈es)
(λ _ → refl)
(λ { (const _ _) → refl })
------------------------------------------------------------------------
-- Characterisation lemmas for Closed′
Closed′-apply≃ :
Closed′ xs (apply e₁ e₂) ≃ (Closed′ xs e₁ × Closed′ xs e₂)
Closed′-apply≃ {xs = xs} {e₁ = e₁} {e₂ = e₂} =
Closed′ xs (apply e₁ e₂) ↔⟨⟩
(∀ x → ¬ x ∈ xs → ¬ x ∈FV apply e₁ e₂) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈apply) ⟩
(∀ x → ¬ x ∈ xs → ¬ (x ∈FV e₁ ⊎ x ∈FV e₂)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬⊎↔¬×¬ ext) ⟩
(∀ x → ¬ x ∈ xs → (¬ x ∈FV e₁ × ¬ x ∈FV e₂)) ↔⟨ (∀-cong ext λ _ → ΠΣ-comm) ⟩
(∀ x → (¬ x ∈ xs → ¬ x ∈FV e₁) × (¬ x ∈ xs → ¬ x ∈FV e₂)) ↔⟨ ΠΣ-comm ⟩
(∀ x → ¬ x ∈ xs → ¬ x ∈FV e₁) × (∀ x → ¬ x ∈ xs → ¬ x ∈FV e₂) ↔⟨⟩
Closed′ xs e₁ × Closed′ xs e₂ □
Closed′-lambda≃ :
Closed′ xs (lambda x e) ≃ Closed′ (x ∷ xs) e
Closed′-lambda≃ {xs = xs} {x = x} {e = e} =
Closed′ xs (lambda x e) ↔⟨⟩
(∀ y → ¬ y ∈ xs → ¬ y ∈FV lambda x e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈lambda) ⟩
(∀ y → ¬ y ∈ xs → ¬ (y ≢ x × y ∈FV e)) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → currying) ⟩
(∀ y → ¬ y ∈ xs → y ≢ x → ¬ y ∈FV e) ↔⟨ (∀-cong ext λ _ → Π-comm) ⟩
(∀ y → y ≢ x → ¬ y ∈ xs → ¬ y ∈FV e) ↔⟨ (∀-cong ext λ _ → inverse currying) ⟩
(∀ y → y ≢ x × ¬ y ∈ xs → ¬ y ∈FV e) ↝⟨ (∀-cong ext λ _ → →-cong₁ {k₁ = equivalence} ext $ inverse $ ¬⊎↔¬×¬ ext) ⟩
(∀ y → ¬ (y ≡ x ⊎ y ∈ xs) → ¬ y ∈FV e) ↔⟨⟩
Closed′ (x ∷ xs) e □
Closed′-rec≃ :
Closed′ xs (rec x e) ≃ Closed′ (x ∷ xs) e
Closed′-rec≃ {xs = xs} {x = x} {e = e} =
Closed′ xs (rec x e) ↔⟨⟩
(∀ y → ¬ y ∈ xs → ¬ y ∈FV rec x e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈rec) ⟩
(∀ y → ¬ y ∈ xs → ¬ (y ≢ x × y ∈FV e)) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → currying) ⟩
(∀ y → ¬ y ∈ xs → y ≢ x → ¬ y ∈FV e) ↔⟨ (∀-cong ext λ _ → Π-comm) ⟩
(∀ y → y ≢ x → ¬ y ∈ xs → ¬ y ∈FV e) ↔⟨ (∀-cong ext λ _ → inverse currying) ⟩
(∀ y → y ≢ x × ¬ y ∈ xs → ¬ y ∈FV e) ↝⟨ (∀-cong ext λ _ → →-cong₁ {k₁ = equivalence} ext $ inverse $ ¬⊎↔¬×¬ ext) ⟩
(∀ y → ¬ (y ≡ x ⊎ y ∈ xs) → ¬ y ∈FV e) ↔⟨⟩
Closed′ (x ∷ xs) e □
Closed′-case≃ :
Closed′ xs (case e bs) ≃
(Closed′ xs e ×
∀ {c ys e} → branch c ys e ∈ bs → Closed′ (ys ++ xs) e)
Closed′-case≃ {xs = xs} {e = e} {bs = bs} =
Closed′ xs (case e bs) ↔⟨⟩
(∀ x → ¬ x ∈ xs → ¬ x ∈FV case e bs) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈case) ⟩
(∀ x → ¬ x ∈ xs →
¬ (x ∈FV e ⊎
∃ λ c → ∃ λ ys → ∃ λ e′ →
x ∈FV e′ × branch c ys e′ ∈ bs × ¬ x ∈ ys)) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬⊎↔¬×¬ ext) ⟩
(∀ x → ¬ x ∈ xs →
¬ x ∈FV e ×
¬ ∃ λ c → ∃ λ ys → ∃ λ e′ →
x ∈FV e′ × branch c ys e′ ∈ bs × ¬ x ∈ ys) ↔⟨ ΠΣ-comm F.∘
(∀-cong ext λ _ → ΠΣ-comm) ⟩
(∀ x → ¬ x ∈ xs → ¬ x ∈FV e) ×
(∀ x → ¬ x ∈ xs →
¬ ∃ λ c → ∃ λ ys → ∃ λ e′ →
x ∈FV e′ × branch c ys e′ ∈ bs × ¬ x ∈ ys) ↝⟨ ∃-cong lemma ⟩
(∀ x → ¬ x ∈ xs → ¬ x ∈FV e) ×
(∀ {c ys e} → branch c ys e ∈ bs → ∀ x → ¬ x ∈ ys ++ xs → ¬ x ∈FV e) ↔⟨⟩
Closed′ xs e ×
(∀ {c ys e} → branch c ys e ∈ bs → Closed′ (ys ++ xs) e) □
where
lemma = λ hyp →
(∀ x → ¬ x ∈ xs →
¬ ∃ λ c → ∃ λ ys → ∃ λ e →
x ∈FV e × branch c ys e ∈ bs × ¬ x ∈ ys) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ →
(∀-cong ext λ _ →
(∀-cong ext λ _ →
(∀-cong ext λ _ →
currying F.∘
Π-comm F.∘
currying) F.∘
currying) F.∘
currying) F.∘
currying) ⟩
(∀ x → ¬ x ∈ xs → ∀ c ys e →
branch c ys e ∈ bs → ¬ x ∈ ys → ¬ x ∈FV e) ↔⟨ (∀-cong ext λ _ →
(∀-cong ext λ _ →
(∀-cong ext λ _ →
(∀-cong ext λ _ →
(∀-cong ext λ _ →
inverse currying) F.∘
currying) F.∘
Π-comm) F.∘
Π-comm) F.∘
Π-comm) F.∘
Π-comm F.∘
inverse currying ⟩
(∀ c ys e → branch c ys e ∈ bs →
∀ x → ¬ x ∈ xs × ¬ x ∈ ys → ¬ x ∈FV e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
∀-cong ext λ _ → ∀-cong ext λ _ → →-cong₁ ext $ inverse $
¬⊎↔¬×¬ {k = equivalence} ext) ⟩
(∀ c ys e → branch c ys e ∈ bs →
∀ x → ¬ (x ∈ xs ⊎ x ∈ ys) → ¬ x ∈FV e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
∀-cong ext λ _ → ∀-cong ext λ _ → →-cong₁ ext $ ¬-cong ext
⊎-comm) ⟩
(∀ c ys e → branch c ys e ∈ bs →
∀ x → ¬ (x ∈ ys ⊎ x ∈ xs) → ¬ x ∈FV e) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ →
∀-cong ext λ _ → ∀-cong ext λ _ → →-cong₁ ext $ ¬-cong ext $ inverse $
B.Any-++ _ _ _) ⟩
(∀ c ys e → branch c ys e ∈ bs →
∀ x → ¬ x ∈ ys ++ xs → ¬ x ∈FV e) ↔⟨ inverse $
(∀-cong ext λ _ →
(∀-cong ext λ _ → Bijection.implicit-Π↔Π) F.∘
Bijection.implicit-Π↔Π) F.∘
Bijection.implicit-Π↔Π ⟩□
(∀ {c ys e} → branch c ys e ∈ bs →
∀ x → ¬ x ∈ ys ++ xs → ¬ x ∈FV e) □
Closed′-const≃ :
Closed′ xs (const c es) ≃ (∀ e → e ∈ es → Closed′ xs e)
Closed′-const≃ {xs = xs} {c = c} {es = es} =
Closed′ xs (const c es) ↔⟨⟩
(∀ x → ¬ x ∈ xs → ¬ x ∈FV const c es) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈const) ⟩
(∀ x → ¬ x ∈ xs → ¬ ∃ λ e → x ∈FV e × e ∈ es) ↔⟨ currying F.∘
(∀-cong ext λ _ →
currying) F.∘
Π-comm F.∘
(∀-cong ext λ _ →
inverse currying F.∘
(∀-cong ext λ _ →
Π-comm F.∘
currying) F.∘
currying) F.∘
inverse currying ⟩
(∀ e → e ∈ es → ∀ x → ¬ x ∈ xs → ¬ x ∈FV e) ↔⟨⟩
(∀ e → e ∈ es → Closed′ xs e) □
Closed′-var≃ : Closed′ xs (var x) ≃ ∥ x ∈ xs ∥
Closed′-var≃ {xs = xs} {x = x} =
Closed′ xs (var x) ↔⟨⟩
(∀ y → ¬ y ∈ xs → ¬ y ∈FV var x) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ → ¬-cong ext ∈var) ⟩
(∀ y → ¬ y ∈ xs → ¬ y ≡ x) ↝⟨ (∀-cong ext λ _ → →-cong₁ ext $ inverse T.¬∥∥↔¬) ⟩
(∀ y → ¬ ∥ y ∈ xs ∥ → ¬ y ≡ x) ↝⟨ (∀-cong ext λ _ → inverse $
→≃¬→¬
(λ _ _ → T.truncation-is-proposition)
(λ _ → Dec-map
(from-equivalence $ inverse S.∥∈∥≃∈-from-List)
(S.member? _≟V₁_ _ _))
ext) ⟩
(∀ y → y ≡ x → ∥ y ∈ xs ∥) ↝⟨ (∀-cong ext λ _ → →-cong₁ ext ≡-comm) ⟩
(∀ y → x ≡ y → ∥ y ∈ xs ∥) ↝⟨ inverse $ ∀-intro _ ext ⟩□
∥ x ∈ xs ∥ □
------------------------------------------------------------------------
-- Some properties
-- Closed is propositional.
Closed-propositional : ∀ {e} → Is-proposition (Closed e)
Closed-propositional =
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
¬-propositional ext
-- Closed-exp is a set.
Closed-exp-set : Is-set Closed-exp
Closed-exp-set =
Σ-closure 2 Exp-set (λ _ → mono₁ 1 Closed-propositional)
-- Two closed expressions are equal if the underlying expressions are
-- equal.
closed-equal-if-expressions-equal :
{e₁ e₂ : Closed-exp} → proj₁ e₁ ≡ proj₁ e₂ → e₁ ≡ e₂
closed-equal-if-expressions-equal eq =
Σ-≡,≡→≡ eq (Closed-propositional _ _)
-- Constructor applications are closed.
mutual
const→closed : ∀ {e} → Constructor-application e → Closed e
const→closed (const c cs) x x∉[] (const x∈e e∈es) =
consts→closed cs e∈es x x∉[] x∈e
consts→closed : ∀ {e es} →
Constructor-applications es → e ∈ es → Closed e
consts→closed [] ()
consts→closed (c ∷ cs) (inj₁ refl) = const→closed c
consts→closed (c ∷ cs) (inj₂ e∈es) = consts→closed cs e∈es
-- Closed e implies Closed′ xs e, for any xs.
Closed→Closed′ : ∀ {xs e} → Closed e → Closed′ xs e
Closed→Closed′ cl x _ = cl x (λ ())
-- If a variable is free in e [ x ← e′ ], then it is either free in e,
-- or it is distinct from x and free in e′.
mutual
subst-∈FV : ∀ x e {x′ e′} →
x′ ∈FV e [ x ← e′ ] → x′ ∈FV e × x′ ≢ x ⊎ x′ ∈FV e′
subst-∈FV x (apply e₁ e₂) (apply-left p) = ⊎-map (Σ-map apply-left id) id (subst-∈FV x e₁ p)
subst-∈FV x (apply e₁ e₂) (apply-right p) = ⊎-map (Σ-map apply-right id) id (subst-∈FV x e₂ p)
subst-∈FV x (lambda y e) (lambda x′≢y p) with x V.≟ y
subst-∈FV x (lambda y e) (lambda x′≢y p) | yes x≡y = inj₁ (lambda x′≢y p , x′≢y ∘ flip trans x≡y)
subst-∈FV x (lambda y e) (lambda x′≢y p) | no _ = ⊎-map (Σ-map (lambda x′≢y) id) id (subst-∈FV x e p)
subst-∈FV x (case e bs) (case-head p) = ⊎-map (Σ-map case-head id) id (subst-∈FV x e p)
subst-∈FV x (case e bs) (case-body p ps x′∉xs) = ⊎-map (Σ-map (λ (p : ∃ λ _ → ∃ λ _ → ∃ λ _ → _ × _ × _) →
let _ , _ , _ , ps , p , ∉ = p in
case-body p ps ∉)
id)
id
(subst-∈FV-B⋆ bs p ps x′∉xs)
subst-∈FV x (rec y e) p with x V.≟ y
subst-∈FV x (rec y e) (rec x′≢y p) | yes x≡y = inj₁ (rec x′≢y p , x′≢y ∘ flip trans x≡y)
subst-∈FV x (rec y e) (rec x′≢y p) | no x≢y = ⊎-map (Σ-map (rec x′≢y) id) id (subst-∈FV x e p)
subst-∈FV x (var y) p with x V.≟ y
subst-∈FV x (var y) p | yes x≡y = inj₂ p
subst-∈FV x (var y) (var x′≡y) | no x≢y = inj₁ (var x′≡y , x≢y ∘ flip trans x′≡y ∘ sym)
subst-∈FV x (const c es) (const p ps) = ⊎-map (Σ-map (λ { (_ , ps , p) → const p ps }) id) id
(subst-∈FV-⋆ es p ps)
subst-∈FV-⋆ : ∀ {x x′ e e′} es →
x′ ∈FV e → e ∈ es [ x ← e′ ]⋆ →
(∃ λ e → e ∈ es × x′ ∈FV e) × x′ ≢ x ⊎ x′ ∈FV e′
subst-∈FV-⋆ [] p ()
subst-∈FV-⋆ (e ∷ es) p (inj₁ refl) = ⊎-map (Σ-map (λ p → _ , inj₁ refl , p) id) id (subst-∈FV _ e p)
subst-∈FV-⋆ (e ∷ es) p (inj₂ q) = ⊎-map (Σ-map (Σ-map id (Σ-map inj₂ id)) id) id (subst-∈FV-⋆ es p q)
subst-∈FV-B⋆ : ∀ {x x′ e e′ c xs} bs →
x′ ∈FV e → branch c xs e ∈ bs [ x ← e′ ]B⋆ → ¬ x′ ∈ xs →
(∃ λ c → ∃ λ xs → ∃ λ e →
branch c xs e ∈ bs × x′ ∈FV e × ¬ x′ ∈ xs) × x′ ≢ x
⊎
x′ ∈FV e′
subst-∈FV-B⋆ [] p ()
subst-∈FV-B⋆ {x} (branch c xs e ∷ bs) p (inj₁ eq) q with V.member x xs
subst-∈FV-B⋆ {x} (branch c xs e ∷ bs) p (inj₁ refl) q | yes x∈xs = inj₁ ((c , xs , e , inj₁ refl , p , q) , λ x′≡x →
q (subst (_∈ _) (sym x′≡x) x∈xs))
subst-∈FV-B⋆ {x} (branch c xs e ∷ bs) p (inj₁ refl) q | no x∉xs = ⊎-map (Σ-map (λ p → _ , _ , _ , inj₁ refl , p , q) id)
id
(subst-∈FV _ e p)
subst-∈FV-B⋆ (b ∷ bs) p (inj₂ ps) q =
⊎-map (Σ-map (Σ-map _ (Σ-map _ (Σ-map _ (Σ-map inj₂ id)))) id) id
(subst-∈FV-B⋆ bs p ps q)
------------------------------------------------------------------------
-- Various closure properties (or similar properties) for Closed′
Closed′-closed-under-apply :
∀ {xs e₁ e₂} →
Closed′ xs e₁ → Closed′ xs e₂ → Closed′ xs (apply e₁ e₂)
Closed′-closed-under-apply = curry $ _≃_.from Closed′-apply≃
Closed′-closed-under-lambda :
∀ {x xs e} →
Closed′ (x ∷ xs) e → Closed′ xs (lambda x e)
Closed′-closed-under-lambda = _≃_.from Closed′-lambda≃
Closed′-closed-under-rec :
∀ {x xs e} →
Closed′ (x ∷ xs) e → Closed′ xs (rec x e)
Closed′-closed-under-rec = _≃_.from Closed′-rec≃
Closed′-closed-under-case :
∀ {xs e bs} →
Closed′ xs e →
(∀ {c ys e} → branch c ys e ∈ bs → Closed′ (ys ++ xs) e) →
Closed′ xs (case e bs)
Closed′-closed-under-case = curry $ _≃_.from Closed′-case≃
Closed′-closed-under-const :
∀ {xs c es} →
(∀ e → e ∈ es → Closed′ xs e) →
Closed′ xs (const c es)
Closed′-closed-under-const = _≃_.from Closed′-const≃
Closed′-closed-under-var : ∀ {x xs} → x ∈ xs → Closed′ xs (var x)
Closed′-closed-under-var = _≃_.from Closed′-var≃ ∘ T.∣_∣
Closed′-closed-under-subst :
∀ {x xs e e′} →
Closed′ (x ∷ xs) e →
Closed′ xs e′ →
Closed′ xs (e [ x ← e′ ])
Closed′-closed-under-subst cl-e cl-e′ y y∉xs =
[ uncurry (λ y∈e y≢x → cl-e y [ y≢x , y∉xs ] y∈e)
, cl-e′ y y∉xs
] ∘ subst-∈FV _ _
------------------------------------------------------------------------
-- Computing free or fresh variables
-- One can construct a finite set containing exactly the free
-- variables in a term.
mutual
free :
(e : Exp) →
∃ λ (fs : Finite-subset-of Var) → ∀ x → (x S.∈ fs) ⇔ (x ∈FV e)
free (apply e₁ e₂) =
Σ-zip S._∪_
(λ {fs₁ fs₂} hyp₁ hyp₂ x →
x S.∈ fs₁ S.∪ fs₂ ↔⟨ S.∈∪≃ ⟩
x S.∈ fs₁ T.∥⊎∥ x S.∈ fs₂ ↝⟨ T.Dec→∥∥⇔ (Dec-⊎ (S.member? _≟V₁_ _ _)
(S.member? _≟V₁_ _ _)) ⟩
x S.∈ fs₁ ⊎ x S.∈ fs₂ ↝⟨ hyp₁ x ⊎-cong hyp₂ x ⟩
x ∈FV e₁ ⊎ x ∈FV e₂ ↔⟨ inverse ∈apply ⟩□
x ∈FV apply e₁ e₂ □)
(free e₁) (free e₂)
free (lambda x e) =
Σ-map (S.delete _≟V₂_ x)
(λ {fs} hyp y →
y S.∈ S.delete _≟V₂_ x fs ↔⟨ S.∈delete≃ _≟V₂_ ⟩
y ≢ x × y S.∈ fs ↝⟨ (∃-cong λ _ → hyp y) ⟩
y ≢ x × y ∈FV e ↔⟨ inverse ∈lambda ⟩□
y ∈FV lambda x e □)
(free e)
free (case e bs) =
Σ-zip S._∪_
(λ {fs₁ fs₂} hyp₁ hyp₂ x →
x S.∈ fs₁ S.∪ fs₂ ↔⟨ S.∈∪≃ ⟩
x S.∈ fs₁ T.∥⊎∥ x S.∈ fs₂ ↝⟨ T.Dec→∥∥⇔ (Dec-⊎ (S.member? _≟V₁_ _ _)
(S.member? _≟V₁_ _ _)) ⟩
x S.∈ fs₁ ⊎ x S.∈ fs₂ ↝⟨ hyp₁ x ⊎-cong hyp₂ x ⟩
(x ∈FV e ⊎
∃ λ c → ∃ λ xs → ∃ λ e′ →
x ∈FV e′ × branch c xs e′ ∈ bs × ¬ x ∈ xs) ↔⟨ inverse ∈case ⟩□
x ∈FV case e bs □)
(free e) (free-B⋆ bs)
free (rec x e) =
Σ-map (S.delete _≟V₂_ x)
(λ {fs} hyp y →
y S.∈ S.delete _≟V₂_ x fs ↔⟨ S.∈delete≃ _≟V₂_ ⟩
y ≢ x × y S.∈ fs ↝⟨ (∃-cong λ _ → hyp y) ⟩
y ≢ x × y ∈FV e ↔⟨ inverse ∈rec ⟩□
y ∈FV rec x e □)
(free e)
free (var x) =
S.singleton x
, λ y →
y S.∈ S.singleton x ↔⟨ S.∈singleton≃ ⟩
T.∥ y ≡ x ∥ ↔⟨ T.∥∥↔ V.Name-set ⟩
y ≡ x ↔⟨ inverse ∈var ⟩□
y ∈FV var x □
free (const c es) =
Σ-map id
(λ {fs} hyp x →
x S.∈ fs ↝⟨ hyp x ⟩
(∃ λ e → x ∈FV e × e ∈ es) ↔⟨ inverse ∈const ⟩□
x ∈FV const c es □)
(free-⋆ es)
free-⋆ :
(es : List Exp) →
∃ λ (fs : Finite-subset-of Var) →
∀ x → (x S.∈ fs) ⇔ (∃ λ e → x ∈FV e × e ∈ es)
free-⋆ [] =
S.[]
, λ x →
x S.∈ S.[] ↔⟨ S.∈[]≃ ⟩
⊥ ↔⟨ inverse ×-right-zero ⟩
Exp × ⊥₀ ↔⟨ (∃-cong λ _ → inverse ×-right-zero) ⟩
(∃ λ e → x ∈FV e × ⊥) ↔⟨⟩
(∃ λ e → x ∈FV e × e ∈ []) □
free-⋆ (e ∷ es) =
Σ-zip S._∪_
(λ {fs₁ fs₂} hyp₁ hyp₂ x →
x S.∈ fs₁ S.∪ fs₂ ↔⟨ S.∈∪≃ ⟩
x S.∈ fs₁ T.∥⊎∥ x S.∈ fs₂ ↝⟨ T.Dec→∥∥⇔ (Dec-⊎ (S.member? _≟V₁_ _ _)
(S.member? _≟V₁_ _ _)) ⟩
x S.∈ fs₁ ⊎ x S.∈ fs₂ ↝⟨ hyp₁ x ⊎-cong hyp₂ x ⟩
x ∈FV e ⊎ (∃ λ e′ → x ∈FV e′ × e′ ∈ es) ↔⟨ inverse $
(drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $
singleton-contractible _)
⊎-cong
F.id ⟩
x ∈FV e × (∃ λ e′ → e′ ≡ e) ⊎ (∃ λ e′ → x ∈FV e′ × e′ ∈ es) ↔⟨ ∃-comm ⊎-cong F.id ⟩
(∃ λ e′ → x ∈FV e × e′ ≡ e) ⊎ (∃ λ e′ → x ∈FV e′ × e′ ∈ es) ↔⟨ inverse ∃-⊎-distrib-left ⟩
(∃ λ e′ → (x ∈FV e × e′ ≡ e) ⊎ (x ∈FV e′ × e′ ∈ es)) ↔⟨ (∃-cong λ _ →
(×-cong₁ λ e′≡e → ≡⇒↝ equivalence $ cong (_ ∈FV_) $ sym
e′≡e)
⊎-cong
F.id) ⟩
(∃ λ e′ → (x ∈FV e′ × e′ ≡ e) ⊎ (x ∈FV e′ × e′ ∈ es)) ↔⟨ (∃-cong λ _ → inverse ×-⊎-distrib-left) ⟩
(∃ λ e′ → x ∈FV e′ × (e′ ≡ e ⊎ e′ ∈ es)) ↔⟨⟩
(∃ λ e′ → x ∈FV e′ × e′ ∈ e ∷ es) □)
(free e) (free-⋆ es)
free-B :
(b : Br) →
∃ λ (fs : Finite-subset-of Var) →
∀ x →
(x S.∈ fs) ⇔
(∃ λ c → ∃ λ xs → ∃ λ e →
x ∈FV e × branch c xs e ≡ b × ¬ x ∈ xs)
free-B (branch c xs e) =
Σ-map (λ fs → S.minus _≟V₂_ fs (S.from-List xs))
(λ {fs} hyp x →
x S.∈ S.minus _≟V₂_ fs (S.from-List xs) ↔⟨ S.∈minus≃ ⟩
x S.∈ fs × x S.∉ S.from-List xs ↔⟨ (∃-cong λ _ → ¬-cong ext $ inverse
S.∥∈∥≃∈-from-List) ⟩
x S.∈ fs × ¬ T.∥ x ∈ xs ∥ ↔⟨ (∃-cong λ _ → T.¬∥∥↔¬) ⟩
x S.∈ fs × ¬ x ∈ xs ↝⟨ hyp x ×-cong F.id ⟩
x ∈FV e × ¬ x ∈ xs ↔⟨ (inverse $ drop-⊤-right λ _ →
×-left-identity F.∘ ×-left-identity) ⟩
(x ∈FV e × ¬ x ∈ xs) × ⊤ × ⊤ × ⊤ ↔⟨ (∃-cong λ _ → inverse $
(_⇔_.to contractible⇔↔⊤ $ singleton-contractible _)
×-cong
(_⇔_.to contractible⇔↔⊤ $ singleton-contractible _)
×-cong
(_⇔_.to contractible⇔↔⊤ $ singleton-contractible _)) ⟩
(x ∈FV e × ¬ x ∈ xs) ×
(∃ λ c′ → c′ ≡ c) × (∃ λ xs′ → xs′ ≡ xs) × (∃ λ e′ → e′ ≡ e) ↔⟨ (∃-cong λ _ →
(∃-cong λ _ →
(∃-cong λ _ →
∃-comm F.∘
(∃-cong λ _ → ∃-comm)) F.∘
∃-comm F.∘
(∃-cong λ _ → inverse Σ-assoc)) F.∘
inverse Σ-assoc) ⟩
(x ∈FV e × ¬ x ∈ xs) ×
(∃ λ c′ → ∃ λ xs′ → ∃ λ e′ → c′ ≡ c × xs′ ≡ xs × e′ ≡ e) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-comm) F.∘
(∃-cong λ _ → ∃-comm) F.∘
∃-comm ⟩
(∃ λ c′ → ∃ λ xs′ → ∃ λ e′ →
(x ∈FV e × ¬ x ∈ xs) × (c′ ≡ c × xs′ ≡ xs × e′ ≡ e)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
(∃-cong λ _ → ×-comm) F.∘
inverse Σ-assoc) ⟩
(∃ λ c′ → ∃ λ xs′ → ∃ λ e′ →
x ∈FV e × (c′ ≡ c × xs′ ≡ xs × e′ ≡ e) × ¬ x ∈ xs) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
∃-cong λ (_ , xs′≡xs , _) → ≡⇒↝ _ $ cong (¬_ ∘ (_ ∈_)) $ sym
xs′≡xs) ⟩
(∃ λ c′ → ∃ λ xs′ → ∃ λ e′ →
x ∈FV e × (c′ ≡ c × xs′ ≡ xs × e′ ≡ e) × ¬ x ∈ xs′) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ →
×-cong₁ λ ((_ , _ , e′≡e) , _) → ≡⇒↝ _ $ cong (_ ∈FV_) $ sym
e′≡e) ⟩
(∃ λ c′ → ∃ λ xs′ → ∃ λ e′ →
x ∈FV e′ × (c′ ≡ c × xs′ ≡ xs × e′ ≡ e) × ¬ x ∈ xs′) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ×-cong₁ λ _ →
lemma) ⟩□
(∃ λ c′ → ∃ λ xs′ → ∃ λ e′ →
x ∈FV e′ × branch c′ xs′ e′ ≡ branch c xs e × ¬ x ∈ xs′) □)
(free e)
where
lemma :
c′ ≡ c × xs′ ≡ xs × e′ ≡ e ⇔ branch c′ xs′ e′ ≡ branch c xs e
lemma ._⇔_.to (c′≡c , xs′≡xs , e′≡e) =
cong₂ (uncurry branch) (cong₂ _,_ c′≡c xs′≡xs) e′≡e
lemma ._⇔_.from eq =
cong (λ { (branch c _ _) → c }) eq
, cong (λ { (branch _ xs _) → xs }) eq
, cong (λ { (branch _ _ e) → e }) eq
free-B⋆ :
(bs : List Br) →
∃ λ (fs : Finite-subset-of Var) →
∀ x →
(x S.∈ fs) ⇔
(∃ λ c → ∃ λ xs → ∃ λ e →
x ∈FV e × branch c xs e ∈ bs × ¬ x ∈ xs)
free-B⋆ [] =
S.[]
, λ x →
x S.∈ S.[] ↔⟨ S.∈[]≃ ⟩
⊥ ↔⟨ (inverse $
×-right-zero {ℓ₁ = lzero} F.∘
∃-cong λ _ →
×-right-zero {ℓ₁ = lzero} F.∘
∃-cong λ _ →
×-right-zero {ℓ₁ = lzero} F.∘
∃-cong λ _ →
×-right-zero {ℓ₁ = lzero} F.∘
∃-cong λ _ →
×-left-zero) ⟩
Const × (∃ λ xs → ∃ λ e → x ∈FV e × ⊥ × ¬ x ∈ xs) ↔⟨⟩
(∃ λ c → ∃ λ xs → ∃ λ e →
x ∈FV e × branch c xs e ∈ [] × ¬ x ∈ xs) □
free-B⋆ (b ∷ bs) =
Σ-zip S._∪_
(λ {fs₁ fs₂} hyp₁ hyp₂ x →
x S.∈ fs₁ S.∪ fs₂ ↔⟨ S.∈∪≃ ⟩
x S.∈ fs₁ T.∥⊎∥ x S.∈ fs₂ ↝⟨ T.Dec→∥∥⇔ (Dec-⊎ (S.member? _≟V₁_ _ _)
(S.member? _≟V₁_ _ _)) ⟩
x S.∈ fs₁ ⊎ x S.∈ fs₂ ↝⟨ hyp₁ x ⊎-cong hyp₂ x ⟩
(∃ λ c → ∃ λ xs → ∃ λ e →
x ∈FV e × branch c xs e ≡ b × ¬ x ∈ xs) ⊎
(∃ λ c → ∃ λ xs → ∃ λ e →
x ∈FV e × branch c xs e ∈ bs × ¬ x ∈ xs) ↔⟨ (inverse $
∃-⊎-distrib-left F.∘
∃-cong λ _ →
∃-⊎-distrib-left F.∘
∃-cong λ _ →
∃-⊎-distrib-left F.∘
∃-cong λ _ →
∃-⊎-distrib-left F.∘
∃-cong λ _ →
∃-⊎-distrib-right) ⟩
(∃ λ c → ∃ λ xs → ∃ λ e →
x ∈FV e ×
(branch c xs e ≡ b ⊎ branch c xs e ∈ bs) ×
¬ x ∈ xs) ↔⟨⟩
(∃ λ c → ∃ λ xs → ∃ λ e →
x ∈FV e × branch c xs e ∈ b ∷ bs × ¬ x ∈ xs) □)
(free-B b) (free-B⋆ bs)
-- It is possible to find a variable that is neither free in a given
-- expression, nor a member of a given finite set.
fresh′ :
(xs : Finite-subset-of Var) (e : Exp) →
∃ λ (x : Var) → ¬ x ∈FV e × x S.∉ xs
fresh′ xs e =
Σ-map id
(λ {x} →
x S.∉ proj₁ (free e) S.∪ xs ↔⟨ ¬-cong ext S.∈∪≃ ⟩
¬ (x S.∈ proj₁ (free e) T.∥⊎∥ x S.∈ xs) ↔⟨ T.¬∥∥↔¬ ⟩
¬ (x S.∈ proj₁ (free e) ⊎ x S.∈ xs) ↝⟨ ¬⊎↔¬×¬ _ ⟩
x S.∉ proj₁ (free e) × x S.∉ xs ↔⟨ ¬-cong-⇔ ext (proj₂ (free e) x) ×-cong F.id ⟩□
¬ x ∈FV e × x S.∉ xs □)
(V.fresh (proj₁ (free e) S.∪ xs))
-- It is possible to find a variable that is not free in a given
-- expression.
fresh : (e : Exp) → ∃ λ (x : Var) → ¬ x ∈FV e
fresh e = Σ-map id proj₁ (fresh′ S.[] e)
-- If two expressions have the same free variables (ignoring any
-- variables in xs), then fresh′ xs returns the same fresh variable
-- for both expressions.
fresh′-unique :
(∀ x → x S.∉ xs → x ∈FV e₁ ⇔ x ∈FV e₂) →
proj₁ (fresh′ xs e₁) ≡ proj₁ (fresh′ xs e₂)
fresh′-unique {xs = xs} {e₁ = e₁} {e₂ = e₂} same =
proj₁ (V.fresh (proj₁ (free e₁) S.∪ xs)) ≡⟨ (cong (proj₁ ∘ V.fresh) $
_≃_.from S.extensionality λ x →
x S.∈ proj₁ (free e₁) S.∪ xs ↝⟨ lemma x e₁ ⟩
x S.∉ xs × x ∈FV e₁ T.∥⊎∥ x S.∈ xs ↝⟨ ∃-cong (same x) T.∥⊎∥-cong F.id ⟩
x S.∉ xs × x ∈FV e₂ T.∥⊎∥ x S.∈ xs ↝⟨ inverse $ lemma x e₂ ⟩□
x S.∈ proj₁ (free e₂) S.∪ xs □) ⟩∎
proj₁ (V.fresh (proj₁ (free e₂) S.∪ xs)) ∎
where
lemma : ∀ _ _ → _ ⇔ _
lemma x e =
x S.∈ proj₁ (free e) S.∪ xs ↔⟨ S.∈∪≃ ⟩
x S.∈ proj₁ (free e) T.∥⊎∥ x S.∈ xs ↝⟨ proj₂ (free e) x T.∥⊎∥-cong F.id ⟩
x ∈FV e T.∥⊎∥ x S.∈ xs ↔⟨ T.∥⊎∥≃¬×∥⊎∥ $ T.Dec→Dec-∥∥ $ S.member? _≟V₁_ x xs ⟩□
x S.∉ xs × x ∈FV e T.∥⊎∥ x S.∈ xs □
-- If two expressions have the same free variables, then fresh returns
-- the same fresh variable for both expressions.
fresh-unique :
(∀ x → x ∈FV e₁ ⇔ x ∈FV e₂) →
proj₁ (fresh e₁) ≡ proj₁ (fresh e₂)
fresh-unique same = fresh′-unique (λ x _ → same x)
------------------------------------------------------------------------
-- Decision procedures
-- These decision procedures could presumably be implemented using
-- free.
-- The free variable relation, _∈FV_, is decidable.
mutual
_∈?_ : ∀ x e → Dec (x ∈FV e)
x ∈? apply e₁ e₂ with x ∈? e₁
x ∈? apply e₁ e₂ | yes x∈e₁ = yes (apply-left x∈e₁)
x ∈? apply e₁ e₂ | no x∉e₁ = ⊎-map apply-right
(λ x∉e₂ → λ { (apply-left x∈e₁) → x∉e₁ x∈e₁
; (apply-right x∈e₂) → x∉e₂ x∈e₂
})
(x ∈? e₂)
x ∈? lambda y e with x V.≟ y
x ∈? lambda y e | yes x≡y = no (λ { (lambda x≢y _) → x≢y x≡y })
x ∈? lambda y e | no x≢y = ⊎-map (lambda x≢y)
(λ x∉e → λ { (lambda _ x∈e) → x∉e x∈e })
(x ∈? e)
x ∈? rec y e with x V.≟ y
x ∈? rec y e | yes x≡y = no (λ { (rec x≢y _) → x≢y x≡y })
x ∈? rec y e | no x≢y = ⊎-map (rec x≢y)
(λ x∉e → λ { (rec _ x∈e) → x∉e x∈e })
(x ∈? e)
x ∈? var y with x V.≟ y
x ∈? var y | yes x≡y = yes (var x≡y)
x ∈? var y | no x≢y = no (λ { (var x≡y) → x≢y x≡y })
x ∈? const c es = ⊎-map (λ { (_ , e∈es , x∈e) → const x∈e e∈es })
(λ x∉es → λ { (const x∈e e∈es) →
x∉es (_ , e∈es , x∈e) })
(x ∈?-⋆ es)
x ∈? case e bs with x ∈? e
x ∈? case e bs | yes x∈e = yes (case-head x∈e)
x ∈? case e bs | no x∉e = ⊎-map (λ { (_ , _ , _ , xs→e∈bs , x∈e , x∉xs) →
case-body x∈e xs→e∈bs x∉xs })
(λ x∉bs → λ { (case-head x∈e) → x∉e x∈e
; (case-body x∈e xs→e∈bs x∉xs) →
x∉bs (_ , _ , _ , xs→e∈bs , x∈e , x∉xs)
})
(x ∈?-B⋆ bs)
_∈?-⋆_ : ∀ x es → Dec (∃ λ e → e ∈ es × x ∈FV e)
x ∈?-⋆ [] = no (λ { (_ , () , _) })
x ∈?-⋆ (e ∷ es) with x ∈? e
x ∈?-⋆ (e ∷ es) | yes x∈e = yes (_ , inj₁ refl , x∈e)
x ∈?-⋆ (e ∷ es) | no x∉e =
⊎-map (Σ-map id (Σ-map inj₂ id))
(λ x∉es → λ { (_ , inj₁ refl , x∈e) → x∉e x∈e
; (_ , inj₂ e∈es , x∈e) → x∉es (_ , e∈es , x∈e)
})
(x ∈?-⋆ es)
_∈?-B⋆_ :
∀ x bs →
Dec (∃ λ c → ∃ λ xs → ∃ λ e →
branch c xs e ∈ bs × x ∈FV e × ¬ x ∈ xs)
x ∈?-B⋆ [] = no λ { (_ , _ , _ , () , _) }
x ∈?-B⋆ (branch c xs e ∷ bs) with x ∈?-B⋆ bs
x ∈?-B⋆ (branch c xs e ∷ bs) | yes x∈bs =
yes (Σ-map id (Σ-map id (Σ-map id (Σ-map inj₂ id))) x∈bs)
x ∈?-B⋆ (branch c xs e ∷ bs) | no x∉bs with V.member x xs
x ∈?-B⋆ (branch c xs e ∷ bs) | no x∉bs | yes x∈xs =
no (λ { (_ , _ , _ , inj₁ refl , _ , x∉xs) → x∉xs x∈xs
; (_ , _ , _ , inj₂ e∈es , x∈e , x∉xs) →
x∉bs (_ , _ , _ , e∈es , x∈e , x∉xs)
})
x ∈?-B⋆ (branch c xs e ∷ bs) | no x∉bs | no x∉xs =
⊎-map (λ x∈e → _ , _ , _ , inj₁ refl , x∈e , x∉xs)
(λ x∉e → λ { (_ , _ , _ , inj₁ refl , x∈e , _) → x∉e x∈e
; (_ , _ , _ , inj₂ e∈es , x∈e , x∉xs) →
x∉bs (_ , _ , _ , e∈es , x∈e , x∉xs)
})
(x ∈? e)
-- The Closed′ relation is decidable.
mutual
closed′? : ∀ e xs → Dec (Closed′ xs e)
closed′? (apply e₁ e₂) xs with closed′? e₁ xs
closed′? (apply e₁ e₂) xs | no ¬cl₁ = no (¬cl₁ ∘ (λ cl₁ x x∉xs → cl₁ x x∉xs ∘ apply-left))
closed′? (apply e₁ e₂) xs | yes cl₁ = ⊎-map (Closed′-closed-under-apply cl₁)
(_∘ (λ cl₂ x x∉xs → cl₂ x x∉xs ∘ apply-right))
(closed′? e₂ xs)
closed′? (lambda x e) xs = ⊎-map Closed′-closed-under-lambda
(λ ¬cl cl → ¬cl (λ y y∉x∷xs y∈e → cl y (y∉x∷xs ∘ inj₂)
(lambda (y∉x∷xs ∘ inj₁) y∈e)))
(closed′? e (x ∷ xs))
closed′? (rec x e) xs = ⊎-map Closed′-closed-under-rec
(λ ¬cl cl → ¬cl (λ y y∉x∷xs y∈e → cl y (y∉x∷xs ∘ inj₂)
(rec (y∉x∷xs ∘ inj₁) y∈e)))
(closed′? e (x ∷ xs))
closed′? (var x) xs = ⊎-map Closed′-closed-under-var
(λ x∉xs cl → cl x x∉xs (var refl))
(V.member x xs)
closed′? (const c es) xs = ⊎-map Closed′-closed-under-const
(λ ¬cl cl → ¬cl (λ _ e∈es x x∉xs x∈e →
cl x x∉xs (const x∈e e∈es)))
(closed′?-⋆ es xs)
closed′? (case e bs) xs with closed′? e xs
closed′? (case e bs) xs | no ¬cl-e = no (λ cl → ¬cl-e (λ x x∉xs →
cl x x∉xs ∘ case-head))
closed′? (case e bs) xs | yes cl-e =
⊎-map (Closed′-closed-under-case cl-e)
(λ ¬cl-bs cl → ¬cl-bs (λ b∈bs x x∉ys++xs x∈e →
let ¬[x∈ys⊎x∈xs] = x∉ys++xs ∘ _↔_.from (B.Any-++ _ _ _) in
cl x (¬[x∈ys⊎x∈xs] ∘ inj₂)
(case-body x∈e b∈bs (¬[x∈ys⊎x∈xs] ∘ inj₁))))
(closed′?-B⋆ bs xs)
closed′?-⋆ : ∀ es xs → Dec (∀ e → e ∈ es → Closed′ xs e)
closed′?-⋆ [] xs = yes (λ _ ())
closed′?-⋆ (e ∷ es) xs with closed′? e xs
closed′?-⋆ (e ∷ es) xs | no ¬cl-e = no (λ cl →
¬cl-e (cl _ (inj₁ refl)))
closed′?-⋆ (e ∷ es) xs | yes cl-e =
⊎-map (λ cl-es e → [ (λ e′≡e x x∉xs → subst (λ e → ¬ x ∈FV e)
(sym e′≡e)
(cl-e x x∉xs))
, cl-es e
])
(λ ¬cl-es cl → ¬cl-es (λ e → cl e ∘ inj₂))
(closed′?-⋆ es xs)
closed′?-B⋆ :
∀ bs xs →
Dec (∀ {c ys e} → branch c ys e ∈ bs → Closed′ (ys ++ xs) e)
closed′?-B⋆ [] xs = yes (λ ())
closed′?-B⋆ (branch c ys e ∷ bs) xs with closed′?-B⋆ bs xs
closed′?-B⋆ (branch c ys e ∷ bs) xs | no ¬cl-bs =
no (λ cl → ¬cl-bs (cl ∘ inj₂))
closed′?-B⋆ (branch c ys e ∷ bs) xs | yes cl-bs =
⊎-map (λ cl-e {c′} {ys′} {e′} →
[ (λ b′≡b x x∉ys++xs′ x∈e′ →
cl-e x (subst (λ ys → ¬ x ∈ ys ++ xs) (ys-lemma b′≡b)
x∉ys++xs′)
(subst (x ∈FV_) (e-lemma b′≡b) x∈e′))
, cl-bs
])
(λ ¬cl-e cl → ¬cl-e (cl (inj₁ refl)))
(closed′? e (ys ++ xs))
where
e-lemma :
∀ {c ys e c′ ys′ e′} →
branch c ys e ≡ branch c′ ys′ e′ → e ≡ e′
e-lemma refl = refl
ys-lemma :
∀ {c ys e c′ ys′ e′} →
branch c ys e ≡ branch c′ ys′ e′ → ys ≡ ys′
ys-lemma refl = refl
-- The Closed relation is decidable.
closed? : ∀ e → Dec (Closed e)
closed? e = closed′? e []
------------------------------------------------------------------------
-- Substituting something for a variable that is not free
-- If x is not free in e, then nothing happens when a term is
-- substituted for x in e.
mutual
subst-∉ : ∀ x e {e′} → ¬ x ∈FV e → e [ x ← e′ ] ≡ e
subst-∉ x (apply e₁ e₂) x∉ = cong₂ apply (subst-∉ x e₁ (x∉ ∘ apply-left))
(subst-∉ x e₂ (x∉ ∘ apply-right))
subst-∉ x (lambda y e) x∉ with x V.≟ y
subst-∉ x (lambda y e) x∉ | yes _ = refl
subst-∉ x (lambda y e) x∉ | no x≢y = cong (lambda y) (subst-∉ x e (x∉ ∘ lambda x≢y))
subst-∉ x (case e bs) x∉ = cong₂ case (subst-∉ x e (x∉ ∘ case-head))
(subst-∉-B⋆ x bs _ (λ { (_ , _ , _ , ∈bs , x∈ , x∉xs) →
x∉ (case-body x∈ ∈bs x∉xs) }))
subst-∉ x (rec y e) x∉ with x V.≟ y
subst-∉ x (rec y e) x∉ | yes _ = refl
subst-∉ x (rec y e) x∉ | no x≢y = cong (rec y) (subst-∉ x e (x∉ ∘ rec x≢y))
subst-∉ x (var y) x∉ with x V.≟ y
subst-∉ x (var y) x∉ | yes x≡y = ⊥-elim (x∉ (var x≡y))
subst-∉ x (var y) x∉ | no _ = refl
subst-∉ x (const c es) x∉ = cong (const c) (subst-∉-⋆ x es
(x∉ ∘ (λ { (_ , ps , p) → const p ps })))
subst-∉-⋆ :
∀ x es {e′} →
¬ (∃ λ e → e ∈ es × x ∈FV e) →
es [ x ← e′ ]⋆ ≡ es
subst-∉-⋆ x [] x∉ = refl
subst-∉-⋆ x (e ∷ es) x∉ = cong₂ _∷_ (subst-∉ x e (λ x∈ → x∉ (_ , inj₁ refl , x∈)))
(subst-∉-⋆ x es (x∉ ∘ Σ-map id (Σ-map inj₂ id)))
subst-∉-B⋆ :
∀ x bs e′ →
¬ (∃ λ c → ∃ λ xs → ∃ λ e →
branch c xs e ∈ bs × x ∈FV e × ¬ x ∈ xs) →
bs [ x ← e′ ]B⋆ ≡ bs
subst-∉-B⋆ x [] _ x∉ = refl
subst-∉-B⋆ x (branch c xs e ∷ bs) _ x∉
with V.member x xs
| subst-∉-B⋆ x bs _
(x∉ ∘ Σ-map id (Σ-map id (Σ-map id (Σ-map inj₂ id))))
... | yes x∈xs | eq = cong₂ _∷_ refl eq
... | no x∉xs | eq = cong₂ (λ e bs → branch c xs e ∷ bs)
(subst-∉ x e λ x∈e →
x∉ (_ , _ , _ , inj₁ refl , x∈e , x∉xs))
eq
-- If e is closed, then nothing happens when a term is substituted for
-- x in e.
subst-closed : ∀ x e′ {e} → Closed e → e [ x ← e′ ] ≡ e
subst-closed _ _ c = subst-∉ _ _ (c _ (λ ()))
-- An n-ary variant of the previous lemma.
substs-closed :
∀ e → Closed e → ∀ ps →
foldr (λ ye → _[ proj₁ ye ← proj₂ ye ]) e ps ≡ e
substs-closed e cl [] = refl
substs-closed e cl ((y , e′) ∷ ps) =
foldr (λ { (y , e) → _[ y ← e ] }) e ps [ y ← e′ ] ≡⟨ cong _[ y ← e′ ] (substs-closed e cl ps) ⟩
e [ y ← e′ ] ≡⟨ subst-closed _ _ cl ⟩∎
e ∎
------------------------------------------------------------------------
-- Evaluation and free variables
-- If a value contains a free variable, then every term that evaluates
-- to this value also contains the given free variable.
mutual
⇓-does-not-introduce-variables :
∀ {x v e} → e ⇓ v → x ∈FV v → x ∈FV e
⇓-does-not-introduce-variables lambda q = q
⇓-does-not-introduce-variables (const ps) (const x∈v v∈vs)
with ⇓⋆-does-not-introduce-variables ps (_ , v∈vs , x∈v)
... | _ , e∈es , x∈e = const x∈e e∈es
⇓-does-not-introduce-variables (apply {e = e} p₁ p₂ p₃) q
with subst-∈FV _ e (⇓-does-not-introduce-variables p₃ q)
... | inj₂ x∈v₂ = apply-right
(⇓-does-not-introduce-variables p₂ x∈v₂)
... | inj₁ (x∈e , x≢x′) = apply-left
(⇓-does-not-introduce-variables p₁
(lambda x≢x′ x∈e))
⇓-does-not-introduce-variables (rec {e = e} p) q
with subst-∈FV _ e (⇓-does-not-introduce-variables p q)
... | inj₂ x∈rec = x∈rec
... | inj₁ (x∈e , x≢x′) = rec x≢x′ x∈e
⇓-does-not-introduce-variables {x} {w}
(case {e = e} {bs = bs} {c = c} {es = es} {xs = xs} {e′ = e′} {e″ = e″} p₁ p₂ p₃ p₄) =
x ∈FV w ↝⟨ ⇓-does-not-introduce-variables p₄ ⟩
x ∈FV e″ ↝⟨ lemma₁ p₃ ⟩
(x ∈FV e′ × ¬ x ∈ xs) ⊎ ∃ (λ e″₁ → e″₁ ∈ es × x ∈FV e″₁) ↝⟨ ⊎-map id (λ { (_ , ps , p) → const p ps }) ⟩
(x ∈FV e′ × ¬ x ∈ xs) ⊎ x ∈FV const c es ↝⟨ ⊎-map (λ p → lemma₂ p₂ , p) (⇓-does-not-introduce-variables p₁) ⟩
(branch c xs e′ ∈ bs × x ∈FV e′ × ¬ x ∈ xs) ⊎ x ∈FV e ↝⟨ [ (λ { (ps , p , q) → case-body p ps q }) , case-head ] ⟩
x ∈FV case e bs □
where
lemma₁ : ∀ {e e′ x xs es} →
e [ xs ← es ]↦ e′ → x ∈FV e′ →
(x ∈FV e × ¬ x ∈ xs) ⊎ ∃ λ e″ → e″ ∈ es × x ∈FV e″
lemma₁ {e′ = e′} {x} [] =
x ∈FV e′ ↝⟨ (λ p → inj₁ (p , (λ ()))) ⟩□
x ∈FV e′ × ¬ x ∈ [] ⊎ _ □
lemma₁ {e} {x = x}
(∷_ {x = y} {xs = ys} {e′ = e′} {es′ = es′} {e″ = e″} p) =
x ∈FV e″ [ y ← e′ ] ↝⟨ subst-∈FV _ _ ⟩
x ∈FV e″ × x ≢ y ⊎ x ∈FV e′ ↝⟨ ⊎-map (Σ-map (lemma₁ p) id) id ⟩
(x ∈FV e × ¬ x ∈ ys ⊎ ∃ λ e‴ → e‴ ∈ es′ × x ∈FV e‴) × x ≢ y
⊎
x ∈FV e′ ↝⟨ [ uncurry (λ p x≢y → ⊎-map (Σ-map id (λ x∉ys → [ x≢y , x∉ys ]))
(Σ-map id (Σ-map inj₂ id))
p)
, (λ p → inj₂ (_ , inj₁ refl , p))
] ⟩□
x ∈FV e × ¬ x ∈ y ∷ ys ⊎ (∃ λ e″ → e″ ∈ e′ ∷ es′ × x ∈FV e″) □
lemma₂ : ∀ {c bs xs e} → Lookup c bs xs e → branch c xs e ∈ bs
lemma₂ here = inj₁ refl
lemma₂ (there _ p) = inj₂ (lemma₂ p)
⇓⋆-does-not-introduce-variables :
∀ {x es vs} →
es ⇓⋆ vs →
(∃ λ v → v ∈ vs × x ∈FV v) →
(∃ λ e → e ∈ es × x ∈FV e)
⇓⋆-does-not-introduce-variables [] = id
⇓⋆-does-not-introduce-variables (p ∷ ps) (v , inj₁ refl , q) =
_ , inj₁ refl , ⇓-does-not-introduce-variables p q
⇓⋆-does-not-introduce-variables (p ∷ ps) (v , inj₂ v∈ , q) =
Σ-map id (Σ-map inj₂ id)
(⇓⋆-does-not-introduce-variables ps (v , v∈ , q))
-- A closed term's value is closed.
closed⇓closed : ∀ {e v xs} → e ⇓ v → Closed′ xs e → Closed′ xs v
closed⇓closed {e} {v} {xs} p q x x∉xs =
x ∈FV v ↝⟨ ⇓-does-not-introduce-variables p ⟩
x ∈FV e ↝⟨ q x x∉xs ⟩□
⊥ □
------------------------------------------------------------------------
-- More properties
-- A constructor for closed expressions.
apply-cl : Closed-exp → Closed-exp → Closed-exp
apply-cl (e₁ , cl-e₁) (e₂ , cl-e₂) =
apply e₁ e₂
, (Closed′-closed-under-apply
(Closed→Closed′ cl-e₁)
(Closed→Closed′ cl-e₂))
-- A certain "swapping" lemma does not hold.
no-swapping :
¬ (∀ x y e e′ e″ →
x ≢ y →
Closed e′ →
Closed (e″ [ x ← e′ ]) →
e [ x ← e′ ] [ y ← e″ [ x ← e′ ] ] ≡ e [ y ← e″ ] [ x ← e′ ])
no-swapping hyp = distinct (hyp x′ y′ e₁′ e₂′ e₃′ x≢y cl₁ cl₂)
where
x′ = V.name 0
y′ = V.name 1
e₁′ : Exp
e₁′ = lambda x′ (var y′)
e₂′ : Exp
e₂′ = const (C.name 0) []
e₃′ : Exp
e₃′ = var x′
x≢y : x′ ≢ y′
x≢y = V.distinct-codes→distinct-names (λ ())
cl₁ : Closed e₂′
cl₁ = from-⊎ (closed? e₂′)
cl₂ : Closed (e₃′ [ x′ ← e₂′ ])
cl₂ with x′ V.≟ x′
... | no x≢x = ⊥-elim (x≢x refl)
... | yes _ = cl₁
lhs : e₁′ [ x′ ← e₂′ ] [ y′ ← e₃′ [ x′ ← e₂′ ] ] ≡ lambda x′ e₂′
lhs with x′ V.≟ x′
... | no x≢x = ⊥-elim (x≢x refl)
... | yes _ with y′ V.≟ x′
... | yes y≡x = ⊥-elim (x≢y (sym y≡x))
... | no _ with y′ V.≟ y′
... | no y≢y = ⊥-elim (y≢y refl)
... | yes _ = refl
rhs : e₁′ [ y′ ← e₃′ ] [ x′ ← e₂′ ] ≡ lambda x′ (var x′)
rhs with y′ V.≟ x′
... | yes y≡x = ⊥-elim (x≢y (sym y≡x))
... | no _ with y′ V.≟ y′
... | no y≢y = ⊥-elim (y≢y refl)
... | yes _ with x′ V.≟ x′
... | no x≢x = ⊥-elim (x≢x refl)
... | yes _ = refl
distinct : e₁′ [ x′ ← e₂′ ] [ y′ ← e₃′ [ x′ ← e₂′ ] ] ≢
e₁′ [ y′ ← e₃′ ] [ x′ ← e₂′ ]
distinct rewrite lhs | rhs = λ ()
-- Another swapping lemma does hold.
module _
(x≢y : x ≢ y)
(x∉e″ : ¬ x ∈FV e″)
(y∉e′ : ¬ y ∈FV e′)
where
mutual
swap : ∀ e → e [ x ← e′ ] [ y ← e″ ] ≡ e [ y ← e″ ] [ x ← e′ ]
swap (apply e₁ e₂) = cong₂ apply (swap e₁) (swap e₂)
swap (lambda z e) with x V.≟ z | y V.≟ z
… | yes _ | yes _ = refl
… | yes _ | no _ = refl
… | no _ | yes _ = refl
… | no _ | no _ = cong (lambda z) (swap e)
swap (case e bs) = cong₂ case (swap e) (swap-B⋆ bs)
swap (rec z e) with x V.≟ z | y V.≟ z
… | yes _ | yes _ = refl
… | yes _ | no _ = refl
… | no _ | yes _ = refl
… | no _ | no _ = cong (rec z) (swap e)
swap (var z) with x V.≟ z | y V.≟ z
… | yes x≡z | yes y≡z =
⊥-elim $ x≢y (trans x≡z (sym y≡z))
… | yes x≡z | no _ =
e′ [ y ← e″ ] ≡⟨ subst-∉ _ _ y∉e′ ⟩
e′ ≡⟨ sym $ var-step-≡ x≡z ⟩∎
var z [ x ← e′ ] ∎
… | no _ | yes y≡z =
var z [ y ← e″ ] ≡⟨ var-step-≡ y≡z ⟩
e″ ≡⟨ sym $ subst-∉ _ _ x∉e″ ⟩∎
e″ [ x ← e′ ] ∎
… | no x≢z | no y≢z =
var z [ y ← e″ ] ≡⟨ var-step-≢ y≢z ⟩
var z ≡⟨ sym $ var-step-≢ x≢z ⟩∎
var z [ x ← e′ ] ∎
swap (const c es) = cong (const c) (swap-⋆ es)
swap-B :
∀ b → b [ x ← e′ ]B [ y ← e″ ]B ≡ b [ y ← e″ ]B [ x ← e′ ]B
swap-B (branch c zs e) with V.member x zs | V.member y zs
… | yes x∈zs | yes y∈zs =
branch c zs e [ y ← e″ ]B ≡⟨ branch-step-∈ y∈zs ⟩
branch c zs e ≡⟨ sym $ branch-step-∈ x∈zs ⟩∎
branch c zs e [ x ← e′ ]B ∎
… | yes x∈zs | no y∉zs =
branch c zs e [ y ← e″ ]B ≡⟨ branch-step-∉ y∉zs ⟩
branch c zs (e [ y ← e″ ]) ≡⟨ sym $ branch-step-∈ x∈zs ⟩∎
branch c zs (e [ y ← e″ ]) [ x ← e′ ]B ∎
… | no x∉zs | yes y∈zs =
branch c zs (e [ x ← e′ ]) [ y ← e″ ]B ≡⟨ branch-step-∈ y∈zs ⟩
branch c zs (e [ x ← e′ ]) ≡⟨ sym $ branch-step-∉ x∉zs ⟩∎
branch c zs e [ x ← e′ ]B ∎
… | no x∉zs | no y∉zs =
branch c zs (e [ x ← e′ ]) [ y ← e″ ]B ≡⟨ branch-step-∉ y∉zs ⟩
branch c zs (e [ x ← e′ ] [ y ← e″ ]) ≡⟨ cong (branch c zs) (swap e) ⟩
branch c zs (e [ y ← e″ ] [ x ← e′ ]) ≡⟨ sym $ branch-step-∉ x∉zs ⟩∎
branch c zs (e [ y ← e″ ]) [ x ← e′ ]B ∎
swap-⋆ :
∀ es → es [ x ← e′ ]⋆ [ y ← e″ ]⋆ ≡ es [ y ← e″ ]⋆ [ x ← e′ ]⋆
swap-⋆ [] = refl
swap-⋆ (e ∷ es) = cong₂ _∷_ (swap e) (swap-⋆ es)
swap-B⋆ :
∀ bs → bs [ x ← e′ ]B⋆ [ y ← e″ ]B⋆ ≡ bs [ y ← e″ ]B⋆ [ x ← e′ ]B⋆
swap-B⋆ [] = refl
swap-B⋆ (b ∷ bs) = cong₂ _∷_ (swap-B b) (swap-B⋆ bs)
| {
"alphanum_fraction": 0.3470091065,
"avg_line_length": 43.9433164129,
"ext": "agda",
"hexsha": "4bb75b4d076fe4863b3a86e85da3d6a465d6643e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Free-variables.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Free-variables.agda",
"max_line_length": 140,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Free-variables.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 19587,
"size": 51941
} |
{-# OPTIONS --cubical --safe #-}
module README where
--------------------------------------------------------------------------------
-- Section 1: Introduction
--------------------------------------------------------------------------------
-- 0, 1, and 2 types
import Data.Empty using (⊥)
import Data.Unit using (⊤)
import Data.Bool using (Bool)
-- Dependent Sum and Product
import Data.Sigma using (Σ)
import Data.Pi using (Π)
-- Disjoint Union
import Data.Sum using (_⊎_)
import Data.Sum.Properties using (sumAsSigma)
-- Definition 1: Path types
import Path using (_≡_)
-- Definition 2: Homotopy Levels
import HLevels using (isContr; isProp; isSet)
-- Definition 3: Fibres
import Function.Fiber using (fiber)
-- Definition 4: Equivalences
import Equiv using (isEquiv; _≃_)
-- Definition 5: Decidable
import Relation.Nullary.Decidable using (Dec)
-- Definition 6: Discrete
import Relation.Nullary.Discrete using (Discrete)
import Relation.Nullary.Discrete.Properties using (Discrete→isSet)
-- Definition 8: Propositional Truncation
import HITs.PropositionalTruncation using (∥_∥)
import HITs.PropositionalTruncation using (rec; rec→set)
--------------------------------------------------------------------------------
-- Section 2: Finiteness Predicates
--------------------------------------------------------------------------------
-- Definition 9: Split Enumerability
import Cardinality.Finite.SplitEnumerable.Container using (ℰ!)
-- Container based definition is isomophic to inductive
import Cardinality.Finite.SplitEnumerable.Isomorphism using (𝕃⇔ℒ⟨ℰ!⟩)
-- Definition 10: Container
import Container using (Container; ⟦_⟧)
-- Definition 11: List
import Container.List using (List)
-- Definition 12: Fin
import Data.Fin.Base using (Fin)
-- Definition 13: Surjections
import Function.Surjective using (_↠!_; _↠_)
-- Lemma 1
import Cardinality.Finite.SplitEnumerable using (ℰ!⇔Fin↠!)
-- Lemma 2
import Function.Surjective.Properties using (Discrete-distrib-surj)
-- Lemma 3
import Cardinality.Finite.SplitEnumerable using (ℰ!⇒Discrete)
-- Definition 14: Manifest Bishop Finiteness
import Cardinality.Finite.ManifestBishop.Container using (ℬ)
-- Container based definition is isomophic to inductive
import Cardinality.Finite.ManifestBishop.Isomorphism using (𝕃⇔ℒ⟨ℬ⟩)
-- Definition 15: Unique Membership
import Container.Membership using (_∈!_)
-- Lemma 4
import Cardinality.Finite.ManifestBishop using (ℬ⇔Fin≃)
-- Definition 16: Cardinal Finiteness
import Cardinality.Finite.Cardinal using (𝒞; 𝒞≃Fin≃)
-- Lemma 5
import Cardinality.Finite.Cardinal using (cardinality)
-- Lemma 6
import Cardinality.Finite.Cardinal using (𝒞⇒Discrete)
-- Definition 17: Manifest Enumerability
import Cardinality.Finite.ManifestEnumerable.Container using (ℰ)
-- Container based definition is isomorphic to inductive
import Cardinality.Finite.ManifestEnumerable.Isomorphism using (𝕃⇔ℒ⟨ℰ⟩)
-- Lemma 7
import Cardinality.Finite.ManifestEnumerable using (ℰ⇔Fin↠)
-- Definition 18: S¹
open import Cubical.HITs.S1 using (S¹)
-- Lemma 8
import Cardinality.Finite.ManifestEnumerable using (ℰ⟨S¹⟩)
-- Definition 19: Kuratowski finite subset
import Algebra.Construct.Free.Semilattice using (𝒦)
-- Definition 20: Membership of 𝒦
import Algebra.Construct.Free.Semilattice.Relation.Unary using (_∈_)
-- Definition 21: Kuratowski finiteness
import Cardinality.Finite.Kuratowski using (𝒦ᶠ)
-- Lemma 9
import Cardinality.Finite.Kuratowski using (isProp𝒦ᶠ)
-- Lemma 10
import Cardinality.Finite.Kuratowski using (𝒦ᶠ⟨S¹⟩)
--------------------------------------------------------------------------------
-- Section 3: Relations Between Each Finiteness Definition
--------------------------------------------------------------------------------
-- Lemma 11
import Cardinality.Finite.ManifestBishop using (ℰ!⇒ℬ)
-- Lemma 12
import Cardinality.Finite.ManifestBishop using (ℬ⇒ℰ!)
-- Lemma 13
import Cardinality.Finite.ManifestEnumerable using (ℰ!⇒ℰ)
-- Lemma 14
import Cardinality.Finite.ManifestEnumerable using (ℰ⇒ℰ!)
-- Lemma 15
import Cardinality.Finite.Cardinal using (ℬ⇒𝒞)
-- Theorem 1
import Cardinality.Finite.Cardinal using (𝒞⇒ℬ)
-- Definition 22: List Permutations
import Data.List.Relation.Binary.Permutation using (_↭_)
-- Lemma 16
import Cardinality.Finite.Kuratowski using (𝒞⇔𝒦×Discrete)
--------------------------------------------------------------------------------
-- Section 4: Relations Between Each Finiteness Definition
--------------------------------------------------------------------------------
-- Lemma 17
import Cardinality.Finite.SplitEnumerable using (ℰ!⟨⊥⟩; ℰ!⟨⊤⟩; ℰ!⟨2⟩)
-- Lemma 18
import Cardinality.Finite.SplitEnumerable using (_|Σ|_)
-- Lemma 19
import Cardinality.Finite.ManifestBishop using (_|Π|_)
-- Lemma 20
import Cardinality.Finite.Cardinal using (𝒞⇒Choice)
-- Resulting closures on 𝒞:
import Cardinality.Finite.Cardinal using
(_∥Σ∥_; _∥⊎∥_; _∥Π∥_; _∥→∥_; _∥×∥_; _∥⇔∥_; 𝒞⟨⊥⟩; 𝒞⟨⊤⟩; 𝒞⟨Bool⟩)
-- Theorem 2:
import Cardinality.Finite.Cardinal.Category using (finSetCategory)
-- Quotients are effective
import Cubical.HITs.SetQuotients.Properties using (isEquivRel→isEffective)
-- Theorem 3:
import Cardinality.Finite.Cardinal.Category using
( finSetHasProducts
; finSetHasExp
; finSetHasPullbacks
; finSetTerminal
; finSetInitial
; finSetCoeq
; module PullbackSurjProofs
)
-- Same for hSets
import Categories.HSets using
( hSetProd
; hSetExp
; hSetHasPullbacks
; hSetTerminal
; hSetInitial
; hSetCoeq
; module PullbackSurjProofs
)
--------------------------------------------------------------------------------
-- Section 5: Countably Infinite Types
--------------------------------------------------------------------------------
-- Definition 23: Streams
import Codata.Stream using (Stream)
-- Definition 24: Split Countability
import Cardinality.Infinite.Split using (ℰ!)
-- Definition 25: Countability
import Cardinality.Infinite.Split using (ℰ)
-- Lemma 21
import Cardinality.Infinite.Split using (ℰ⇒Discrete)
-- Theorem 4
import Cardinality.Infinite.Split using (_|Σ|_)
-- Theorem 5
import Cardinality.Infinite.Split using (|star|)
--------------------------------------------------------------------------------
-- Section 6: Search
--------------------------------------------------------------------------------
-- Definition 26: Omniscience
import Relation.Nullary.Omniscience using (Omniscient)
-- Definition 27: Exhaustibility
import Relation.Nullary.Omniscience using (Exhaustible)
import Cardinality.Finite.Kuratowski using (𝒦ᶠ⇒Exhaustible)
import Relation.Nullary.Omniscience using (Omniscient→Exhaustible)
import Cardinality.Finite.ManifestEnumerable using (ℰ⇒Omniscient)
import Cardinality.Finite.Kuratowski using (𝒦ᶠ⇒Prop-Omniscient)
import Data.Pauli using (Pauli)
import Data.Pauli using (assoc-·)
import Data.Pauli using (not-spec)
| {
"alphanum_fraction": 0.6608910891,
"avg_line_length": 28.2633744856,
"ext": "agda",
"hexsha": "154c0d6f583f885bfbb0f5efbdfd06b75a832f41",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/README.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/README.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/README.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1857,
"size": 6868
} |
-- 2010-10-14
-- {-# OPTIONS -v term:20 #-}
module FakeProjectionsDoNotPreserveGuardedness where
import Common.Level
open import Common.Coinduction
-- Products
infixr 4 _,_
infixr 2 _×_
-- fake product with projections
postulate
_×_ : (A B : Set) → Set
_,_ : {A B : Set}(a : A)(b : B) → A × B
proj₁ : {A B : Set}(p : A × B) → A
proj₂ : {A B : Set}(p : A × B) → B
-- Streams
infixr 5 _∷_
data Stream (A : Set) : Set where
_∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A
mutual
repeat : {A : Set}(a : A) → Stream A
repeat a = a ∷ proj₂ (repeat' a)
repeat' : {A : Set}(a : A) → A × ∞ (Stream A)
repeat' a = a , ♯ repeat a
| {
"alphanum_fraction": 0.56394453,
"avg_line_length": 18.5428571429,
"ext": "agda",
"hexsha": "68fbd9d58936063f1be3f7518fd5b30b2f59e443",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/FakeProjectionsDoNotPreserveGuardedness.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/FakeProjectionsDoNotPreserveGuardedness.agda",
"max_line_length": 52,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/FakeProjectionsDoNotPreserveGuardedness.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 261,
"size": 649
} |
-- Export only the experiments that are expected to compile (without
-- any holes)
module Cubical.Experiments.Everything where
open import Cubical.Experiments.Brunerie public
open import Cubical.Experiments.EscardoSIP public
open import Cubical.Experiments.Generic public
open import Cubical.Experiments.NatMinusTwo
open import Cubical.Experiments.IsoInt
open import Cubical.Experiments.HAEquivInt
open import Cubical.Experiments.Problem
open import Cubical.Experiments.FunExtFromUA public
open import Cubical.Experiments.HoTT-UF
open import Cubical.Experiments.ZCohomologyOld.Base
open import Cubical.Experiments.ZCohomologyOld.KcompPrelims
open import Cubical.Experiments.ZCohomologyOld.Properties
| {
"alphanum_fraction": 0.8659058488,
"avg_line_length": 41.2352941176,
"ext": "agda",
"hexsha": "570538491bd225e206048cb645be0f39e33f0fcf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XiaohuWang0921/cubical",
"max_forks_repo_path": "Cubical/Experiments/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XiaohuWang0921/cubical",
"max_issues_repo_path": "Cubical/Experiments/Everything.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "XiaohuWang0921/cubical",
"max_stars_repo_path": "Cubical/Experiments/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 172,
"size": 701
} |
module StreamEnc where
open import Data.Unit hiding (_≤_)
open import Data.Nat
open import Data.Product
open import Data.Sum
open import Relation.Binary.PropositionalEquality as P
open ≡-Reasoning
≤-step : ∀{k n} → k ≤ n → k ≤ suc n
≤-step z≤n = z≤n
≤-step (s≤s p) = s≤s (≤-step p)
pred-≤ : ∀{k n} → suc k ≤ n → k ≤ n
pred-≤ (s≤s p) = ≤-step p
Str : Set → Set
Str A = ℕ → A
hd : ∀{A} → Str A → A
hd s = s 0
tl : ∀{A} → Str A → Str A
tl s n = s (suc n)
_ω : ∀{A} → A → Str A
(a ω) n = a
_∷_ : ∀{A} → A → Str A → Str A
(a ∷ s) 0 = a
(a ∷ s) (suc n) = s n
module Mealy (A B : Set) where
M : Set → Set
M X = A → B × X
M₁ : {X Y : Set} → (X → Y) → M X → M Y
M₁ f g a =
let (b , x) = g a
in (b , f x)
𝓜 : Set
𝓜 = Str A → Str B
d : 𝓜 → M 𝓜
d f a = (f (a ω) 0 , (λ s n → f (a ∷ s) (suc n)))
corec : ∀{X} → (c : X → M X) → X → 𝓜
corec c x s zero = proj₁ (c x (hd s))
corec c x s (suc n) = corec c (proj₂ (c x (hd s))) (tl s) n
compute' : ∀{X} (c : X → M X) (x : X) →
∀ a → d (corec c x) a ≡ M₁ (corec c) (c x) a
compute' c x a =
begin
d (corec c x) a
≡⟨ refl ⟩
((corec c x) (a ω) 0 , λ s n → (corec c x) (a ∷ s) (suc n))
≡⟨ refl ⟩
(proj₁ (c x (hd (a ω)))
, λ s n → corec c (proj₂ (c x (hd (a ∷ s)))) (tl (a ∷ s)) n)
≡⟨ refl ⟩
(proj₁ (c x a) , λ s n → corec c (proj₂ (c x a)) (λ n → s n) n)
≡⟨ refl ⟩
(proj₁ (c x a) , λ s n → corec c (proj₂ (c x a)) s n)
≡⟨ refl ⟩
(proj₁ (c x a) , λ s → corec c (proj₂ (c x a)) s)
≡⟨ refl ⟩
(proj₁ (c x a) , corec c (proj₂ (c x a)))
≡⟨ refl ⟩
M₁ (corec c) (c x) a
∎
compute : ∀{X} (c : X → M X) (x : X) →
d (corec c x) ≡ M₁ (corec c) (c x)
compute c x =
begin
d (corec c x)
≡⟨ refl ⟩
(λ a → d (corec c x) a)
≡⟨ refl ⟩ -- Same as in compute'
(λ a → M₁ (corec c) (c x) a)
≡⟨ refl ⟩
M₁ (corec c) (c x)
∎
module MealyT (A B : Set) (a₀ : A) where
M : Set → Set
M X = ⊤ ⊎ (A → B × X)
M₁ : {X Y : Set} → (X → Y) → M X → M Y
M₁ f (inj₁ x) = inj₁ x
M₁ f (inj₂ g) =
inj₂ (λ a →
let (b , x) = g a
in (b , f x))
Mono : (Str A → Str (⊤ ⊎ B)) → Set
-- Mono f = ∀ n → (∃ λ s → ∃ λ b → f s n ≡ inj₂ b) →
-- ∀ s → ∀ k → k ≤ n → (∃ λ b → f s k ≡ inj₂ b)
Mono f = ∀ n → ∀ s₁ b₁ → f s₁ n ≡ inj₂ b₁ →
∀ s → ∀ k → k ≤ n → (∃ λ b → f s k ≡ inj₂ b)
𝓜₁ : Set
𝓜₁ = Str A → Str (⊤ ⊎ B)
𝓜 : Set
𝓜 = Σ[ f ∈ 𝓜₁ ] (Mono f)
d : 𝓜 → M 𝓜
d (f , m) = F (f (a₀ ω) 0) refl
where
F : (u : ⊤ ⊎ B) → (f (a₀ ω) 0) ≡ u → M 𝓜
F (inj₁ tt) _ = inj₁ tt
F (inj₂ b) p = inj₂ (λ a →
let (b' , p') = m 0 (a₀ ω) b p (a ω) 0 z≤n
f' = λ s n → f (a ∷ s) (suc n)
m' : Mono f'
m' = λ {n s₁ b₁ p₁ s k k≤n →
m (suc n) (a ∷ s₁) b₁ p₁ (a ∷ s) (suc k) (s≤s k≤n)}
in b' , f' , m')
corec₁ : ∀{X} → (c : X → M X) → X → 𝓜₁
corec₁ c x s n with c x
corec₁ c x s n | inj₁ tt = inj₁ tt
corec₁ c x s zero | inj₂ g = inj₂ (proj₁ (g (hd s)))
corec₁ c x s (suc n) | inj₂ g = corec₁ c (proj₂ (g (hd s))) (tl s) n
corec₂ : ∀{X} → (c : X → M X) (x : X) → Mono (corec₁ c x)
corec₂ c x n s₁ b₁ p₁ s k k≤n with c x
corec₂ c x n s₁ b₁ () s k k≤n | inj₁ tt
corec₂ c x n s₁ b₁ p₁ s zero k≤n | inj₂ g = (proj₁ (g (hd s)) , refl)
corec₂ c x n s₁ b₁ p₁ s (suc k) sk≤n | inj₂ g = {!!}
-- corec₂ c
-- (proj₂ (g (hd s)))
-- n
-- (tl s)
-- (proj₁ (g (hd s)))
-- {!!}
-- (tl s) k (pred-≤ sk≤n)
-- compute' : ∀{X} (c : X → M X) (x : X) →
-- ∀ a → d (corec c x) a ≡ M₁ (corec c) (c x) a
-- compute' c x a =
-- begin
-- d (corec c x) a
-- ≡⟨ refl ⟩
-- ((corec c x) (a ω) 0 , λ s n → (corec c x) (a ∷ s) (suc n))
-- ≡⟨ refl ⟩
-- (proj₁ (c x (hd (a ω)))
-- , λ s n → corec c (proj₂ (c x (hd (a ∷ s)))) (tl (a ∷ s)) n)
-- ≡⟨ refl ⟩
-- (proj₁ (c x a) , λ s n → corec c (proj₂ (c x a)) (λ n → s n) n)
-- ≡⟨ refl ⟩
-- (proj₁ (c x a) , λ s n → corec c (proj₂ (c x a)) s n)
-- ≡⟨ refl ⟩
-- (proj₁ (c x a) , λ s → corec c (proj₂ (c x a)) s)
-- ≡⟨ refl ⟩
-- (proj₁ (c x a) , corec c (proj₂ (c x a)))
-- ≡⟨ refl ⟩
-- M₁ (corec c) (c x) a
-- ∎
-- compute : ∀{X} (c : X → M X) (x : X) →
-- d (corec c x) ≡ M₁ (corec c) (c x)
-- compute c x =
-- begin
-- d (corec c x)
-- ≡⟨ refl ⟩
-- (λ a → d (corec c x) a)
-- ≡⟨ refl ⟩ -- Same as in compute'
-- (λ a → M₁ (corec c) (c x) a)
-- ≡⟨ refl ⟩
-- M₁ (corec c) (c x)
-- ∎
| {
"alphanum_fraction": 0.395329087,
"avg_line_length": 26.4606741573,
"ext": "agda",
"hexsha": "d096e15e2f67090b5493f6f6ffec49dc2f8823d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Streams/StreamEnc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Streams/StreamEnc.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Streams/StreamEnc.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2352,
"size": 4710
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Equality over container extensions parametrised by some setoid
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Data.Container.Relation.Binary.Equality.Setoid {c e} (S : Setoid c e) where
open import Level using (_⊔_; suc)
open import Relation.Binary
open import Data.Container.Core
open import Data.Container.Relation.Binary.Pointwise
import Data.Container.Relation.Binary.Pointwise.Properties as Pw
private
module S = Setoid S
open S using (_≈_) renaming (Carrier to X)
------------------------------------------------------------------------
-- Definition of equality
module _ {s p} (C : Container s p) where
Eq : Rel (⟦ C ⟧ X) (e ⊔ s ⊔ p)
Eq = Pointwise C _≈_
------------------------------------------------------------------------
-- Relational properties
refl : Reflexive Eq
refl = Pw.refl C _ S.refl
sym : Symmetric Eq
sym = Pw.sym C _ S.sym
trans : Transitive Eq
trans = Pw.trans C _ S.trans
isEquivalence : IsEquivalence Eq
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
setoid : Setoid (s ⊔ p ⊔ c) (s ⊔ p ⊔ e)
setoid = record
{ isEquivalence = isEquivalence
}
| {
"alphanum_fraction": 0.5356104651,
"avg_line_length": 25.0181818182,
"ext": "agda",
"hexsha": "d2a6157777f01306a72c888b250b569db98d59b2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Equality/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Equality/Setoid.agda",
"max_line_length": 82,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Equality/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 331,
"size": 1376
} |
--{-# OPTIONS --rewriting #-}
--{-# OPTIONS --exact-split #-}
--{-# OPTIONS --show-implicit #-}
--{-# OPTIONS --allow-unsolved-metas #-}
module NaturalDeduction where
open import OscarPrelude
open import Delay
open import Successor
open import Membership
open import DecidableMembership renaming (DecidableMembership to RDecidableMembership)
open import VariableName
open import FunctionName
open import PredicateName
open import Arity
open import Vector
open import 𝕃ist
open import TermByFunctionNames
open import Term
--open import TermUnification
open import MGU-revised
open import HasNegation
open import Formula
open import IsFormula
open import 𝓕ormula
open import HasNeitherNor
open import IsLiteralFormula
open import LiteralFormula
open import IsPropositionalFormula
open import 𝓐ssertion
open import 𝓢equent
open import Sequent
open import 𝑱udgement
open import IsLiteralSequent
open import LiteralSequent
open import Problem
open import IsLiteralProblem
open import LiteralProblem
open import Element
open import Elements
open import TruthValue
open import Interpretation
open import HasSatisfaction
open import InterpretationEqualityExceptAtVariableName
open import HasDecidableSatisfaction
open import Validation
open import HasDecidableValidation
open import HasSubstantiveDischarge
open import HasDecidableSubstantiveDischarge
open import HasVacuousDischarge
open import HasSalvation
open import SubstantiveDischargeIsConsistent
open import SubstantiveDischargeIsReflexive
open import HasDecidableVacuousDischarge
open import HasDecidableSalvation
open import TermCode
open import TermNode
open import FindTermNode
open import Theorem1
-- infixr 1 ,_
-- pattern ,_ p = _ , p
-- pattern ◁pattern c₁∈xs c₁≽s c₂∈xs c₂≽~s = , (((, (c₁∈xs , c₁≽s)) , (, (c₂∈xs , c₂≽~s))))
-- negationEliminationRule : (I : Interpretation) (φ : Formula) → I ⊨ ~ (~ φ) → I ⊨ φ
-- negationEliminationRule I φ (¬[I⊭φ×I⊭φ] , _) with I ⊨? φ
-- … | yes I⊨φ = I⊨φ
-- … | no I⊭φ = ⊥-elim $ ¬[I⊭φ×I⊭φ] $ I⊭φ , I⊭φ
-- -- justifieds simplification and ... more?
-- simplificationRule₁ : (I : Interpretation) (φ₁ φ₂ : Formula) → I ⊨ Formula.logical φ₁ φ₂ → I ⊨ Formula.logical φ₁ φ₁
-- simplificationRule₁ I φ₁ φ₂ x = (fst x) , (fst x)
-- simplificationRule₂ : (I : Interpretation) (φ₁ φ₂ : Formula) → I ⊨ Formula.logical φ₁ φ₂ → I ⊨ Formula.logical φ₂ φ₂
-- simplificationRule₂ I φ₁ φ₂ x = snd x , snd x
-- -- logical (logical (logical p p) q) (logical (logical p p) q)
-- {-
-- conditionalizationRule : (I : Interpretation) (p q : Formula) → I ⊨ q → I ⊨ (p ⊃ q ╱ (p ∷ []) )
-- conditionalizationRule I p q ⊨q (_ , _) = let prf = λ { (_ , ⊭q) → ⊭q ⊨q} in prf , prf
-- --let ⊨p = {!-⊨p p (here [])!} in (λ { (x , ~q) → ~q ⊨q}) , (λ { (x , y) → y ⊨q})
-- -}
-- modusPonens : (I : Interpretation) (p q : Formula) → I ⊨ p → I ⊨ (p ⊃ q) → I ⊨ q
-- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) with I ⊨? q
-- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | yes x = x
-- modusPonens I p q P (~[~p&~p&~q] , ~[~p&~p&~q]²) | no x = ⊥-elim (~[~p&~p&~q] ((λ { (x₁ , y) → y P}) , (λ x₁ → x x₁)))
-- -- -- -- -- -- data SkolemFormula {ι : Size} (α : Alphabet) : Set where
-- -- -- -- -- -- atomic : Predication α → SkolemFormula α
-- -- -- -- -- -- logical : {ι¹ : Size< ι} → SkolemFormula {ι¹} α → {ι² : Size< ι} → SkolemFormula {ι²} α → SkolemFormula {ι} α
-- -- -- -- -- -- record Alphabet₊ᵥ (α : Alphabet) : Set where
-- -- -- -- -- -- constructor α₊ᵥ⟨_⟩
-- -- -- -- -- -- field
-- -- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- -- .one-variable-is-added : (number ∘ variables $ alphabet) ≡ suc (number ∘ variables $ α)
-- -- -- -- -- -- .there-are-no-functions-of-maximal-arity : number (functions alphabet) zero ≡ zero
-- -- -- -- -- -- .shifted-function-matches : ∀ {ytira₀ ytira₁} → finToNat ytira₁ ≡ finToNat ytira₀ → number (functions alphabet) (suc ytira₁) ≡ number (functions α) ytira₀
-- -- -- -- -- -- open Alphabet₊ᵥ
-- -- -- -- -- -- record Alphabet₊ₛ (α : Alphabet) : Set where
-- -- -- -- -- -- constructor α₊ₛ⟨_⟩
-- -- -- -- -- -- field
-- -- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- -- open Alphabet₊ₛ
-- -- -- -- -- -- {-
-- -- -- -- -- -- toSkolemFormula
-- -- -- -- -- -- ∀x(F x v₀ v₁) ⟿ F v₀ v₁ v₂
-- -- -- -- -- -- ∃x(F x v₀ v₁) ⟿ F (s₀͍₂ v₀ v₁) v₀ v₁
-- -- -- -- -- -- ∀x(F x (s₀͍₂ v₀ v₁) v₁) ⟿ F v₀ (s₀͍₂ v₁ v₂) v₂
-- -- -- -- -- -- ∃x(F x (s₀͍₂ v₀ v₁) v₁) ⟿ F (s₀͍₂ v₀ v₁) (s₁͍₂ v₁ v₂) v₂
-- -- -- -- -- -- F v₀ ⊗ G v₀ ⟿ F v₀ ⊗ G v₀
-- -- -- -- -- -- ∀x(F x v₀ v₁) ⊗ ∀x(G x (s₀͍₂ x v₁) v₁) ⟿ F v₀ v₂ v₃ ⊗ G v₁ (s₀͍₂ v₀ v₃) v₃
-- -- -- -- -- -- ∀x(F x v₀ v₁) ⊗ ∃x(G x (s₀͍₂ x v₁) v₁) ⟿ F v₀ v₁ v₂ ⊗ G (s₀͍₁ v₂) (s₁͍₂ (s₀͍₂ v₂) v₂) v₂
-- -- -- -- -- -- Φ₀ = ∃x(G x (s₀͍₂ x v₁) v₁) has alphabet of 2 variables, skolem functions: 0, 0, 1
-- -- -- -- -- -- this is existential {α₊ₛ} Φ₁, where
-- -- -- -- -- -- Φ₁ = G (s₀͍₂ v₀ v₁) (s₁͍₂ (s₀͍₂ v₀ v₁)) v₁
-- -- -- -- -- -- α₊ₛ = ⟨ 2 , 0 ∷ 0 ∷ 2 ∷ [] ⟩
-- -- -- -- -- -- maybe Φ₋₁ = ∀y∃x(G x (s₀͍₂ x v₀) v₀)
-- -- -- -- -- -- and Φ₋₂ = ∀z∀y∃x(G x (s₀͍₂ x z) z), finally having no free variables, but nevertheless having skolem functions! these are user-defined functions, so this notion of Alphabet is somehow wrong. we have also left out constants (i.e. user-defined skolem-functions of arity 0)
-- -- -- -- -- -- Instead, take the alphabet as defining
-- -- -- -- -- -- a stack of free variables
-- -- -- -- -- -- a matrix (triangle?) of skolem functions
-- -- -- -- -- -- Let's try to reverse Φ₁ from a Skolem to a 1st-order formula. Is there a unique way to do it?
-- -- -- -- -- -- Φ₀' = ∀x(G (s₀͍₂ x v₀) (s₁͍₂ (s₀͍₂ x v₀)) v₀
-- -- -- -- -- -- Nope!
-- -- -- -- -- -- toSkolemFormula of
-- -- -- -- -- -- -}
-- -- -- -- -- -- -- toSkolemFormula (logical Φ₁ Φ₂) ⟿
-- -- -- -- -- -- -- let α' , φ₁ = toSkolemFormula Φ₁
-- -- -- -- -- -- -- Φ₂' = transcodeToAugmentedAlphabet Φ₂ α'
-- -- -- -- -- -- -- α'' , φ₂' = toSkolemFormula Φ₂'
-- -- -- -- -- -- -- φ₁' = transcodeToAugmentedAlphabet φ₁ α''
-- -- -- -- -- -- {-
-- -- -- -- -- -- given Δv = #varibles α' - #variables α
-- -- -- -- -- -- for every variable v in α, v in Φ, v stays the same in Φ'
-- -- -- -- -- -- for the added variable v⁺ in α₊ - α, v⁺ in Φ, v⁺ ⟿ v⁺ + Δv in transcode (universal {α₊} Φ)
-- -- -- -- -- -- α'₊ = α' + 1 variable
-- -- -- -- -- -- -}
-- -- -- -- -- -- -- record AddVariable (A : Alphabet → Set) : Set where
-- -- -- -- -- -- -- field
-- -- -- -- -- -- -- addVariableToAlphabet : {α : Alphabet} → A α → {α₊ : Alphabet} → Alphabet₊ᵥ α₊ → A α₊
-- -- -- -- -- -- -- instance
-- -- -- -- -- -- -- AddVariableFirstOrderFormula : AddVariable FirstOrderFormula
-- -- -- -- -- -- -- AddVariableFirstOrderFormula = {!!}
-- -- -- -- -- -- -- #variables = number ∘ variables
-- -- -- -- -- -- -- #functions_ofArity_ : Alphabet → Nat → Nat
-- -- -- -- -- -- -- #functions α⟨ V⟨ #variables ⟩ , S⟨ #functions ⟩ ⟩ ofArity arity = if′ lessNat arity (suc #variables) then #functions (natToFin arity) else 0
-- -- -- -- -- -- -- record _⊇_ (α' α : Alphabet) : Set where
-- -- -- -- -- -- -- field
-- -- -- -- -- -- -- at-least-as-many-variables : #variables α' ≥ #variables α
-- -- -- -- -- -- -- at-least-as-many-functions : ∀ {arity} → arity < #variables α → #functions α' ofArity arity ≥ #functions α ofArity arity
-- -- -- -- -- -- -- record AddAlphabet (α-top α-bottom : Alphabet) : Set where
-- -- -- -- -- -- -- field
-- -- -- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- -- -- record Transcodeable (A : Alphabet → Set) : Set where
-- -- -- -- -- -- -- field
-- -- -- -- -- -- -- transcode : {α' α : Alphabet} → ⦃ _ : α' ⊇ α ⦄ → A α → A α'
-- -- -- -- -- -- -- open Transcodeable ⦃ … ⦄
-- -- -- -- -- -- -- record TransferAlphabet {α' α : Alphabet} (α'⊇α : α' ⊇ α) (α₊ : Alphabet₊ᵥ α) (Φ : FirstOrderFormula (alphabet α₊)) : Set where
-- -- -- -- -- -- -- field
-- -- -- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- -- -- firstOrderFormula : FirstOrderFormula alphabet
-- -- -- -- -- -- -- instance
-- -- -- -- -- -- -- TranscodeablePredication : Transcodeable Predication
-- -- -- -- -- -- -- TranscodeablePredication = {!!}
-- -- -- -- -- -- -- TranscodeableAlphabet+Variable : Transcodeable Alphabet₊ᵥ
-- -- -- -- -- -- -- TranscodeableAlphabet+Variable = {!!}
-- -- -- -- -- -- -- TranscodeableSkolemFormula : Transcodeable SkolemFormula
-- -- -- -- -- -- -- TranscodeableSkolemFormula = {!!}
-- -- -- -- -- -- -- TranscodeableFirstOrderFormula : Transcodeable FirstOrderFormula
-- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (atomic p) = atomic (transcode p)
-- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (logical Φ₁ Φ₂) = logical (transcode Φ₁) (transcode Φ₂)
-- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula {α'} {α} ⦃ α'⊇α ⦄ (universal {α₊} Φ) = {!!} -- universal {_} {_} {transcode α₊} (transcode Φ)
-- -- -- -- -- -- -- Transcodeable.transcode TranscodeableFirstOrderFormula (existential Φ) = {!!}
-- -- -- -- -- -- -- --(α' α : Alphabet) (α'⊇α : α' ⊇ α) (α₊ : Alphabet+Variable α) (Φ : FirstOrderFormula (alphabet α₊)) → Σ _ λ (α''' : Alphabet) → FirstOrderFormula α'''
-- -- -- -- -- -- -- --FirstOrderFormula (alphabet α₊)
-- -- -- -- -- -- -- {-
-- -- -- -- -- -- -- -}
-- -- -- -- -- -- -- -- --transcodeIntoAugmentedAlphabet :
-- -- -- -- -- -- -- -- --toSkolemFormula : {α : Alphabet} → FirstOrderFormula α → Σ _ λ (α¹ : AugmentedAlphabet α) → SkolemFormula (alphabet α¹)
-- -- -- -- -- -- -- -- --record IsEquivalentFormulas {α₀ : Alphabet} (φ₀ : SkolemFormula α₀) {α₁ : Alphabet} (Φ₁ : FirstOrderFormula α₁) : Set where
-- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- .atomicCase : {p : Predication α₀} → φ₀ ≡ atomic p → Φ₁ ≡ atomic p
-- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- record Alphabet+Alphabet (α₀ α₁ α₂ : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- alphabet :
-- -- -- -- -- -- -- -- -- -- ∀xφ₁(x) ⊗ φ₂ ⟿ ∀x(φ₁ ⊗ φ₂)
-- -- -- -- -- -- -- -- -- -- hasQuantifiers : FirstOrderFormula α → Bool
-- -- -- -- -- -- -- -- -- --record Skolemization {α : Alphabet} (φ : FirstOrderFormula α) : Set where
-- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- -- -- -- -- -- skolemization : SkolemFormula alphabet
-- -- -- -- -- -- -- -- -- record _IsAugmentationOf_ (α₁ α₀ : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- record AugmentedAlphabet (α : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- constructor ⟨_⟩
-- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- alphabet : Alphabet
-- -- -- -- -- -- -- -- -- ..laws : alphabet ≡ α
-- -- -- -- -- -- -- -- -- open AugmentedAlphabet
-- -- -- -- -- -- -- -- -- trivialAugmentation : (α : Alphabet) → AugmentedAlphabet α
-- -- -- -- -- -- -- -- -- trivialAugmentation = {!!}
-- -- -- -- -- -- -- -- -- record DisjointRelativeUnion {α : Alphabet} (α¹ α² : AugmentedAlphabet α) : Set where
-- -- -- -- -- -- -- -- -- constructor ⟨_⟩
-- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- augmentation : AugmentedAlphabet α
-- -- -- -- -- -- -- -- -- .laws : {!!}
-- -- -- -- -- -- -- -- -- open DisjointRelativeUnion
-- -- -- -- -- -- -- -- -- disjointRelativeUnion : {α : Alphabet} → (α¹ α² : AugmentedAlphabet α) → DisjointRelativeUnion α¹ α²
-- -- -- -- -- -- -- -- -- disjointRelativeUnion = {!!}
-- -- -- -- -- -- -- -- -- -- inAugmentedAlphabet : {α : Alphabet} → (α¹ : AugmentedAlphabet α) → SkolemFormula α → SkolemFormula (alphabet α¹)
-- -- -- -- -- -- -- -- -- -- inAugmentedAlphabet = {!!}
-- -- -- -- -- -- -- -- -- -- toSkolemFormula : {α : Alphabet} → FirstOrderFormula α → Σ _ λ (α¹ : AugmentedAlphabet α) → SkolemFormula (alphabet α¹)
-- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (atomic 𝑃) = trivialAugmentation α₀ , atomic 𝑃
-- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (logical φ₁ φ₂) with toSkolemFormula φ₁ | toSkolemFormula φ₂
-- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (logical φ₁ φ₂) | α¹ , Φ₁ | α² , Φ₂ = augmentation (disjointRelativeUnion α¹ α²) , logical {!inAugmentedAlphabet (augmentation (disjointRelativeUnion α¹ α²)) Φ₁!} {!Φ₂!}
-- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (universal x) = {!!}
-- -- -- -- -- -- -- -- -- -- toSkolemFormula {α₀} (existential x) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : ∀ {alphabet₀} → QFormula alphabet₀ → Σ _ λ alphabet₁ → NQFormula alphabet₁
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (atomic name terms) = alphabet₀ , atomic name terms
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (logical formula₁ formula₂) with toNQFormula formula₁ | toNQFormula formula₂
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- … | alphabet₁ , nqFormula₁ | alphabet₂ , nqFormula₂ = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (universal formula) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (existential formula) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- --VariableName = Fin ∘ |v|
-- -- -- -- -- -- -- -- -- -- -- -- -- --FunctionArity = Fin ∘ suc ∘ size
-- -- -- -- -- -- -- -- -- -- -- -- -- --FunctionName = λ alphabet ytira → Fin (|f| alphabet ytira)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩
-- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- |v| : Nat -- number of variables
-- -- -- -- -- -- -- -- -- -- -- -- -- -- |f| : Fin (suc |v|) → Nat -- number of functions of each arity, |v| through 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- open Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- VariableName = Fin ∘ |v|
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionArity = Fin ∘ suc ∘ |v|
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName = λ alphabet ytira → Fin (|f| alphabet ytira)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term {i : Size} (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- variable : VariableName alphabet → Term alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : ∀ {arity : FunctionArity alphabet} →
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- FunctionName alphabet (natToFin (|v| alphabet) - arity) →
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∀ {j : Size< i} → Vec (Term {j} alphabet) (finToNat arity) →
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term {i} alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateArity = Nat
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- PredicateName = Nat
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a zeroth-order formula? (i.e. no quantifiers)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data NQFormula {i : Size} (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName → ∀ {arity} → Vec (Term alphabet) arity → NQFormula alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} → NQFormula {j} alphabet → {k : Size< i} → NQFormula {k} alphabet → NQFormula {i} alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedByVariable (alphabet₀ alphabet₁ : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- one-variable-is-added : |v| alphabet₁ ≡ suc (|v| alphabet₀)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function-domain-is-zero-at-new-variable : |f| alphabet₁ zero ≡ 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- shifted-function-matches : ∀ {ytira₀ ytira₁} → finToNat ytira₁ ≡ finToNat ytira₀ → |f| alphabet₁ (suc ytira₁) ≡ |f| alphabet₀ ytira₀
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentVariables (alphabet₀ : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet₁ : Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentation : AugmentedByVariable alphabet₀ alphabet₁
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- open AugmentVariables
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : (alphabet : Alphabet) → AugmentVariables alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables ⟨ |v| , |f| ⟩ =
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- { alphabet₁ = ⟨ suc |v| , (λ { zero → zero ; (suc ytira) → |f| ytira}) ⟩
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; augmentation =
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- { one-variable-is-added = refl
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; function-domain-is-zero-at-new-variable = refl
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ; shifted-function-matches = cong |f| ∘ finToNat-inj } }
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- |f|₀ = |f|₀ + 1
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Alphabet → Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions ⟨ |v| , |f| ⟩ = ⟨ |v| , (λ { zero → suc (|f| zero) ; (suc ytira) → |f| (suc ytira) }) ⟩
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data QFormula {i : Size} (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- atomic : PredicateName → ∀ {arity} → Vec (Term alphabet) arity → QFormula alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- logical : {j : Size< i} → QFormula {j} alphabet → {k : Size< i} → QFormula {k} alphabet → QFormula {i} alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- universal : QFormula (alphabet₁ (augmentVariables alphabet)) → QFormula alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- existential : QFormula (augmentFunctions alphabet) → QFormula alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Assignment (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- μ : VariableName alphabet → Domain
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑓 : ∀ {arity} → FunctionName alphabet arity → Vec Domain (finToNat arity) → Domain
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm : ∀ {i alphabet} → Assignment alphabet → Term {i} alphabet → Domain
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm ⟨ μ , _ ⟩ (variable x) = μ x
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateTerm 𝑎@(⟨ μ , 𝑓 ⟩) (function f x) = 𝑓 f (evaluateTerm 𝑎 <$> x)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Interpretation (alphabet : Alphabet) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constructor ⟨_,_⟩
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- open Assignment
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑎 : Assignment alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 𝑃 : PredicateName → ∀ {arity} → Vec Domain arity → Bool
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula : ∀ {i alphabet} → Interpretation alphabet → NQFormula {i} alphabet → Bool
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula ⟨ 𝑎 , 𝑃 ⟩ (atomic name terms) = 𝑃 name $ evaluateTerm 𝑎 <$> terms
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- evaluateNQFormula I (logical formula₁ formula₂) = not (evaluateNQFormula I formula₁) && not (evaluateNQFormula I formula₂)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula : ∀ {alphabet₀} → QFormula alphabet₀ → Σ _ λ alphabet₁ → NQFormula alphabet₁
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (atomic name terms) = alphabet₀ , atomic name terms
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (logical formula₁ formula₂) with toNQFormula formula₁ | toNQFormula formula₂
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- … | alphabet₁ , nqFormula₁ | alphabet₂ , nqFormula₂ = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (universal formula) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- toNQFormula {alphabet₀} (existential formula) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record IsADisjointUnionOfNQFormulas
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {alphabet₁ alphabet₂ alphabet₁₊₂ : Alphabet}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₁ : NQFormula alphabet₁)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₂ : NQFormula alphabet₂)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (formula₁₊₂ : NQFormula alphabet₁₊₂)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- alphabet-size : |v| alphabet₁₊₂ ≡ |v| alphabet₁ + |v| alphabet₂
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --|f| alphabet₁₊₂ ytira
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ----record AlphabetSummed (alphabet₀ alphabet₁ : Alphabet)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets : Alphabet → Alphabet → Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --addAlphabets ⟨ |v|₁ , |f|₁ ⟩ ⟨ |v|₂ , |f|₂ ⟩ = ⟨ (|v|₁ + |v|₂) , (λ x → if′ finToNat x ≤? |v|₁ && finToNat x ≤? |v|₂ then {!!} else {!!}) ⟩
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup : ∀ {alphabet₁} → Formula alphabet₁ → ∀ {alphabet₂} → Formula alphabet₂ → Σ _ λ alphabet₁₊₂ → Formula alphabet₁₊₂ × Formula alphabet₁₊₂
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- sup {⟨ |v|₁ , |a|₁ , |f|₁ ⟩} φ₁ {⟨ |v|₂ , |a|₂ , |f|₂ ⟩} φ₂ = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf : ∀ {alphabet} → Formula alphabet → Σ _ λ alphabet+ → Formula₀ alphabet+
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- pnf = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {-
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --universal (P 0) = ∀ x → P x
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (∀ x ∃ y (P x y)) ∨ (∀ x ∃ y (P x y))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- P x₀ (s₀͍₁ x₀) ∨ P x₁ (s₁͍₁ x₁)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| : (arity : Arity) → Vec ℕ (suc |a|) → Vec ℕ (++arity (max arity |a|))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- extended|f| = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a variable to the alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables : Alphabet → Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentVariables = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN : ∀ {n} → Fin n → (Fin n → Nat) → Fin n → Nat
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- increaseTabulationAtN = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {-
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record AugmentedFunctions {|a| : Arity} (arity : Arity) (|f| : Vec ℕ (++arity |a|)) : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA : ℕ
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- maxA-law : max arity |a| ≡ maxA
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ++|f| : Vec ℕ maxA
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- f-law : increaseTabulationAt arity (indexVec |f|)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- {-
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- define
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ⊗ b ≡ False a and False b
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- now, we can define
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ¬a = a ⊗ a ≡ False a and False a
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ∨ b = ¬(a ⊗ b) ≡ False (False a and False b) and False (False a and False b)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a ∧ b = ¬(¬a ∨ ¬b) = ¬(¬(¬a ⊗ ¬b)) = ¬a ⊗ ¬b = False (False a and False a) and False (False b and False b)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- a → b = ¬a ∨ b = (a ⊗ a) ∨ b = ¬((a ⊗ a) ⊗ b) = ((a ⊗ a) ⊗ b) ⊗ ((a ⊗ a) ⊗ b)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- conversion to prenex
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∀xF ⊗ G ⟿ ∃x(F ⊗ wk(G))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ∃xF ⊗ G ⟿ ∀x(F ⊗ wk(G))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F ⊗ ∀xG ⟿ ∃x(wk(F) ⊗ G)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- F ⊗ ∃xG ⟿ ∀x(wk(F) ⊗ G)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- ========================
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- (a ⊗ ∀xB) ⊗ c ⟿ ∃x(wk(a) ⊗ B) ⊗ c ⟿ ∀x((wk(a) ⊗ B) ⊗ wk(c))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF : (arity : Arity) → ∀ {|a| : Arity} → Vec ℕ (++arity |a|) → Vec ℕ (++arity (max arity |a|))
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f|
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- with decBool (lessNat |a| arity)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x with compare arity |a|
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.(suc (k + arity))} |f| | yes x | less (diff k refl) = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl with lessNat arity arity
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {.arity} |f| | yes x | equal refl | false = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF zero {.zero} |f| | yes true | equal refl | true = {!!} ∷ []
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF (suc arity) {.(suc arity)} |f| | yes true | equal refl | true = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | yes x | greater gt = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x with decBool (lessNat arity |a|)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x₁ | yes x = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentF arity {|a|} |f| | no x₁ | no x = {!!}
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- = case arity <? |a| of λ { false → {!!} ; true → {!!} }
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- add a function of a given arity to the alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions : Arity → Alphabet → Alphabet
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- augmentFunctions arity ⟨ |v| , |a| , |f| ⟩ = ⟨ |v| , max arity |a| , augmentF arity |f| ⟩
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Alphabet : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data DomainSignifier : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- free : Nat → DomainSignifier
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartiallyAppliedFunction : Nat → Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- constant : PartiallyAppliedFunction 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : ∀ {n} → PartiallyAppliedFunction 0 → PartiallyAppliedFunction (suc n)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Term = PartiallyAppliedFunction 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data PartialyAppliedPredicate : Nat → Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- statement : PartialyAppliedPredicate 0
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- partial : ∀
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Language : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Name = String
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- record Function : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- field
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- name : Name
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- number-of-arguments : Nat
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Vec
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Function : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Term : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- function : Function →
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- data Sentence : Set where
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- predication : Name →
-- -- -- -- -- -- {-
-- -- -- -- -- -- record Variables : Set where
-- -- -- -- -- -- constructor V⟨_⟩
-- -- -- -- -- -- field
-- -- -- -- -- -- number : Nat
-- -- -- -- -- -- open Variables
-- -- -- -- -- -- record Functions (υ : Variables) : Set where
-- -- -- -- -- -- constructor S⟨_⟩
-- -- -- -- -- -- field
-- -- -- -- -- -- number : Fin (suc (number υ)) → Nat
-- -- -- -- -- -- open Functions
-- -- -- -- -- -- record Alphabet : Set where
-- -- -- -- -- -- constructor α⟨_,_⟩
-- -- -- -- -- -- field
-- -- -- -- -- -- variables : Variables
-- -- -- -- -- -- functions : Functions variables
-- -- -- -- -- -- open Alphabet
-- -- -- -- -- -- record Variable (α : Alphabet) : Set where
-- -- -- -- -- -- constructor v⟨_⟩
-- -- -- -- -- -- field
-- -- -- -- -- -- name : Fin (number (variables α))
-- -- -- -- -- -- open Variable
-- -- -- -- -- -- record Function (α : Alphabet) : Set where
-- -- -- -- -- -- constructor s⟨_,_⟩
-- -- -- -- -- -- field
-- -- -- -- -- -- arity : Fin ∘ suc ∘ number ∘ variables $ α
-- -- -- -- -- -- name : Fin $ number (functions α) arity
-- -- -- -- -- -- open Function
-- -- -- -- -- -- data Term (𝑽 : Nat) : Set where
-- -- -- -- -- -- variable : Fin 𝑽 → Term 𝑽
-- -- -- -- -- -- function : (𝑓 : Function α) → {ι₋₁ : Size< ι₀} → Vec (Term {ι₋₁} α) (finToNat (arity 𝑓)) →
-- -- -- -- -- -- Term {ι₀} α
-- -- -- -- -- -- record Predication (alphabet : Alphabet) : Set where
-- -- -- -- -- -- constructor P⟨_,_,_⟩
-- -- -- -- -- -- field
-- -- -- -- -- -- name : Nat
-- -- -- -- -- -- arity : Nat
-- -- -- -- -- -- terms : Vec (Term alphabet) arity
-- -- -- -- -- -- open Predication
-- -- -- -- -- -- -}
-- -- module NotUsed where
-- -- -- thought it might be easier to use this
-- -- module UsingContainerList where
-- -- record TermNode : Set
-- -- where
-- -- inductive
-- -- field
-- -- children : List (TermCode × TermNode)
-- -- number : Nat
-- -- open TermNode
-- -- _child∈_ : TermCode → TermNode → Set
-- -- _child∈_ 𝔠 𝔫 = Any ((𝔠 ≡_) ∘ fst) (children 𝔫)
-- -- -- this still has a lambda problem, albeit weirder
-- -- module RememberChildren where
-- -- record TermNode : Set
-- -- where
-- -- inductive
-- -- field
-- -- tests : List TermCode
-- -- children : ∀ {𝔠} → 𝔠 ∈ tests → TermNode
-- -- number : Nat
-- -- open TermNode
-- -- addChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 ∉ tests 𝔫 → TermNode → TermNode
-- -- addChild {𝔠} 𝔫 𝔠∉tests𝔫 𝔫' =
-- -- record 𝔫
-- -- { tests = 𝔠 ∷ tests 𝔫
-- -- ; children = λ
-- -- { (here _) → 𝔫'
-- -- ; (there _ 𝔠'∈tests) → children 𝔫 𝔠'∈tests }}
-- -- setChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 ∈ tests 𝔫 → TermNode → TermNode
-- -- setChild {𝔠} 𝔫 𝔠∈tests𝔫 𝔫' =
-- -- record 𝔫
-- -- { children = λ {𝔠'} 𝔠'∈tests𝔫' → ifYes 𝔠' ≟ 𝔠 then 𝔫' else children 𝔫 𝔠'∈tests𝔫' }
-- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity Nat
-- -- storeTermCodes [] 𝔑 = return 𝔑
-- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 =
-- -- 𝔫 ← get -|
-- -- case 𝔠 ∈? tests 𝔫 of λ
-- -- { (no 𝔠∉tests) →
-- -- let 𝔑' , 𝔫' = runIdentity $
-- -- runStateT
-- -- (storeTermCodes 𝔠s $ suc 𝔑)
-- -- (record
-- -- { tests = []
-- -- ; children = λ ()
-- -- ; number = suc 𝔑 }) in
-- -- put (addChild 𝔫 𝔠∉tests 𝔫') ~|
-- -- return 𝔑'
-- -- ; (yes 𝔠∈tests) →
-- -- let 𝔑' , 𝔫' = runIdentity $
-- -- runStateT
-- -- (storeTermCodes 𝔠s $ suc 𝔑)
-- -- (children 𝔫 𝔠∈tests) in
-- -- put (setChild 𝔫 𝔠∈tests 𝔫') ~|
-- -- return 𝔑' }
-- -- topNode : TermNode
-- -- topNode = record { tests = [] ; children = λ () ; number = 0 }
-- -- example-store : TermNode
-- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodes example-TermCodes 0) topNode
-- -- foo : TermNode × TermNode
-- -- foo =
-- -- {!example-store!} ,
-- -- {!snd ∘ runIdentity $ runStateT (storeTermCodes example-TermCodes 10) example-store!}
-- -- -- using a lambda for the children results in extra unnecessary structure when adding to an existing node; perhaps using an explicit mapping? or use another field to state what codes are present in the mapping?
-- -- module NoParents where
-- -- mutual
-- -- record TermNode : Set
-- -- where
-- -- inductive
-- -- field
-- -- children : TermCode → Maybe TermNode -- Map TermCode TermNode
-- -- self : TermCode
-- -- number : Nat
-- -- record TopTermNode : Set
-- -- where
-- -- inductive
-- -- field
-- -- children : TermCode → Maybe TermNode
-- -- open TermNode
-- -- open TopTermNode
-- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity ⊤
-- -- storeTermCodes [] _ = return tt
-- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 =
-- -- 𝔫 ← get -|
-- -- case children 𝔫 𝔠 of λ
-- -- { nothing →
-- -- put
-- -- (record 𝔫
-- -- { children =
-- -- λ 𝔠' →
-- -- ifYes 𝔠' ≟ 𝔠 then
-- -- just ∘ snd ∘ runIdentity $
-- -- (runStateT
-- -- (storeTermCodes 𝔠s (suc 𝔑))
-- -- (record
-- -- { self = 𝔠
-- -- ; children = const nothing
-- -- ; number = suc 𝔑 }))
-- -- else
-- -- children 𝔫 𝔠' } ) ~|
-- -- return tt
-- -- ; (just 𝔫') →
-- -- put (record 𝔫
-- -- { children =
-- -- λ 𝔠' →
-- -- ifYes 𝔠' ≟ 𝔠 then
-- -- just ∘ snd ∘ runIdentity $
-- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫'
-- -- else
-- -- children 𝔫 𝔠' }) ~|
-- -- return tt }
-- -- storeTermCodesAtTop : List TermCode → Nat → StateT TopTermNode Identity ⊤
-- -- storeTermCodesAtTop [] _ = return tt
-- -- storeTermCodesAtTop (𝔠 ∷ 𝔠s) 𝔑 =
-- -- 𝔫 ← get -|
-- -- case children 𝔫 𝔠 of λ
-- -- { nothing →
-- -- put
-- -- (record 𝔫
-- -- { children =
-- -- λ 𝔠' →
-- -- ifYes 𝔠' ≟ 𝔠 then
-- -- just ∘ snd ∘ runIdentity $
-- -- (runStateT
-- -- (storeTermCodes 𝔠s (suc 𝔑))
-- -- (record
-- -- { self = 𝔠
-- -- ; children = const nothing
-- -- ; number = suc 𝔑 }))
-- -- else
-- -- children 𝔫 𝔠' } ) ~|
-- -- return tt
-- -- ; (just 𝔫') →
-- -- put (record 𝔫
-- -- { children =
-- -- λ 𝔠' →
-- -- ifYes 𝔠' ≟ 𝔠 then
-- -- just ∘ snd ∘ runIdentity $
-- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫'
-- -- else
-- -- children 𝔫 𝔠' }) ~|
-- -- return tt }
-- -- initialTopNode : TopTermNode
-- -- initialTopNode = record { children = const nothing }
-- -- example-store : TopTermNode
-- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 0) initialTopNode
-- -- foo : TopTermNode × TopTermNode
-- -- foo =
-- -- {!example-store!} ,
-- -- {!snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 10) example-store!}
-- -- -- it's tricky to keep the parents up to date when the children change (viz adolescence)
-- -- module FirstTryWithParent where
-- -- mutual
-- -- record TermNode : Set
-- -- where
-- -- inductive
-- -- field
-- -- parent : TopTermNode ⊎ TermNode
-- -- self : TermCode
-- -- children : TermCode → Maybe TermNode -- Map TermCode TermNode
-- -- number : Nat
-- -- record TopTermNode : Set
-- -- where
-- -- inductive
-- -- field
-- -- children : TermCode → Maybe TermNode
-- -- open TermNode
-- -- open TopTermNode
-- -- storeTermCodes : List TermCode → Nat → StateT TermNode Identity ⊤
-- -- storeTermCodes [] _ = return tt
-- -- storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 =
-- -- 𝔫 ← get -|
-- -- case children 𝔫 𝔠 of λ
-- -- { nothing →
-- -- put
-- -- (record 𝔫
-- -- { children =
-- -- λ 𝔠' →
-- -- ifYes 𝔠' ≟ 𝔠 then
-- -- just ∘ snd ∘ runIdentity $
-- -- (runStateT
-- -- (storeTermCodes 𝔠s (suc 𝔑))
-- -- (record
-- -- { parent = right 𝔫
-- -- ; self = 𝔠
-- -- ; children = const nothing
-- -- ; number = suc 𝔑 }))
-- -- else
-- -- children 𝔫 𝔠' } ) ~|
-- -- return tt
-- -- ; (just 𝔫') →
-- -- put (record 𝔫
-- -- { children =
-- -- λ 𝔠' →
-- -- ifYes 𝔠' ≟ 𝔠 then
-- -- just ∘ snd ∘ runIdentity $
-- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫'
-- -- else
-- -- children 𝔫 𝔠' }) ~|
-- -- return tt }
-- -- storeTermCodesAtTop : List TermCode → Nat → StateT TopTermNode Identity ⊤
-- -- storeTermCodesAtTop [] _ = return tt
-- -- storeTermCodesAtTop (𝔠 ∷ 𝔠s) 𝔑 =
-- -- 𝔫 ← get -|
-- -- case children 𝔫 𝔠 of λ
-- -- { nothing →
-- -- put
-- -- (record 𝔫
-- -- { children =
-- -- λ 𝔠' →
-- -- ifYes 𝔠' ≟ 𝔠 then
-- -- just ∘ snd ∘ runIdentity $
-- -- (runStateT
-- -- (storeTermCodes 𝔠s (suc 𝔑))
-- -- (record
-- -- { parent = left 𝔫
-- -- ; self = 𝔠
-- -- ; children = const nothing
-- -- ; number = suc 𝔑 }))
-- -- else
-- -- children 𝔫 𝔠' } ) ~|
-- -- return tt
-- -- ; (just 𝔫') →
-- -- put (record 𝔫
-- -- { children =
-- -- λ 𝔠' →
-- -- ifYes 𝔠' ≟ 𝔠 then
-- -- just ∘ snd ∘ runIdentity $
-- -- runStateT (storeTermCodes 𝔠s 𝔑) 𝔫'
-- -- else
-- -- children 𝔫 𝔠' }) ~|
-- -- return tt }
-- -- initialTopNode : TopTermNode
-- -- initialTopNode = record { children = const nothing }
-- -- example-store : TopTermNode
-- -- example-store = snd ∘ runIdentity $ runStateT (storeTermCodesAtTop example-TermCodes 0) initialTopNode
-- -- foo : TopTermNode
-- -- foo = {!example-store!}
-- --
-- --
-- -- _⟪_⟫_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
-- -- A → (A → B → C) → B → C
-- -- x ⟪ f ⟫ y = f x y
-- --
-- -- {-
-- -- infixr 9 _∘₂′_
-- -- _∘₂′_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
-- -- (C → D) → (A → B → C) → (A → B → D)
-- -- _∘₂′_ = _∘′_ ∘ _∘′_
-- -- {-# INLINE _∘₂′_ #-}
-- --
-- -- infixr 9 _∘₂′_
-- -- _∘₂′_ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
-- -- (C → D) → (A → B → C) → (A → B → D)
-- -- _∘₂′_ = _∘′_ ∘ _∘′_
-- -- {-# INLINE _∘₂′_ #-}
-- -- -}
-- -- {-
-- -- infixr 9 _∘₂_
-- -- _∘₂_ : ∀ {a b c d} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} {D : ∀ x → B x → C x
-- -- (f : ∀ {x} (y : B x) → C x y) (g : ∀ x → B x) →
-- -- ∀ x → C x (g x)
-- -- _∘₂_ = _∘′_ ∘ _∘′_
-- -- {-# INLINE _∘₂′_ #-}
-- -- -}
| {
"alphanum_fraction": 0.4016018857,
"avg_line_length": 48.9129411765,
"ext": "agda",
"hexsha": "91df8322b1df7651668d4a9c9a4040f0a90a862a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/NaturalDeduction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/NaturalDeduction.agda",
"max_line_length": 292,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/NaturalDeduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 14029,
"size": 41576
} |
open import Level using (Level; _⊔_)
open import Function using (id; case_of_)
open import Data.Nat using (ℕ; suc)
open import Data.Fin using (Fin; suc; zero)
open import Data.Vec as Vec using (Vec) renaming (_∷_ to _,_; [] to ∅)
open import Data.List using (_∷_; [])
open import Data.List as List using (List; _++_) renaming (_∷_ to _,_; [] to ∅)
open import Data.Product as Product using (∃; _×_; _,_)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; sym; cong)
module IntuitionisticLogic (U : Set) (⟦_⟧ᵁ : U → Set) where
infix 30 _⊗_
infixr 20 _⇒_
data Type : Set where
el : (A : U) → Type
_⊗_ : Type → Type → Type
_⇒_ : Type → Type → Type
module Implicit where
infix 4 _⊢_
data _⊢_ : ∀ {k} (Γ : Vec Type k) (A : Type) → Set where
var : ∀ {k} {Γ : Vec Type k} (x : Fin k) → Γ ⊢ Vec.lookup x Γ
abs : ∀ {A B} {k} {Γ : Vec Type k} → A , Γ ⊢ B → Γ ⊢ A ⇒ B
app : ∀ {A B} {k} {Γ : Vec Type k} → Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B
pair : ∀ {A B} {k} {Γ : Vec Type k} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ⊗ B
case : ∀ {A B C} {k} {Γ : Vec Type k} → Γ ⊢ A ⊗ B → A , B , Γ ⊢ C → Γ ⊢ C
swap : ∀ {A B} {k} {Γ : Vec Type k} → Γ ⊢ A ⊗ B ⇒ B ⊗ A
swap = abs (case (var zero) (pair (var (suc zero)) (var zero)))
Vec-exch : ∀ {k} (i : Fin k) → Vec Type (suc k) → Vec Type (suc k)
Vec-exch zero (A , B , Γ) = B , A , Γ
Vec-exch (suc i) (A , Γ) = A , (Vec-exch i Γ)
lemma-var : ∀ {k} {Γ : Vec Type (suc k)} → ∀ i x → ∃ λ y → Vec.lookup x Γ ≡ Vec.lookup y (Vec-exch i Γ)
lemma-var {Γ = A , B , Γ} zero zero = suc zero , refl
lemma-var {Γ = A , B , Γ} zero (suc zero) = zero , refl
lemma-var {Γ = A , B , Γ} zero (suc (suc x)) = suc (suc x) , refl
lemma-var {Γ = A , Γ} (suc i) zero = zero , refl
lemma-var {Γ = A , Γ} (suc i) (suc x) = Product.map suc id (lemma-var {Γ = Γ} i x)
exch : ∀ {k} {Γ : Vec Type (suc k)} {A} → ∀ i → Γ ⊢ A → Vec-exch i Γ ⊢ A
exch {Γ = Γ} i (var x) with lemma-var {Γ = Γ} i x
exch {Γ = Γ} i (var x) | y , p rewrite p = var y
exch i (abs t) = abs (exch (suc i) t)
exch i (app s t) = app (exch i s) (exch i t)
exch i (pair s t) = pair (exch i s) (exch i t)
exch i (case s t) = case (exch i s) (exch (suc (suc i)) t)
module Explicit where
infix 4 _⊢_
data _⊢_ : ∀ (X : List Type) (A : Type) → Set where
var : ∀ {A} → A , ∅ ⊢ A
abs : ∀ {X A B} → A , X ⊢ B → X ⊢ A ⇒ B
app : ∀ {X Y A B} → X ⊢ A ⇒ B → Y ⊢ A → X ++ Y ⊢ B
pair : ∀ {X Y A B} → X ⊢ A → Y ⊢ B → X ++ Y ⊢ A ⊗ B
case : ∀ {X Y A B C} → X ⊢ A ⊗ B → A , B , Y ⊢ C → X ++ Y ⊢ C
weak : ∀ {X Y A} → X ⊢ A → X ++ Y ⊢ A
cont : ∀ {X A B} → A , A , X ⊢ B → A , X ⊢ B
exch : ∀ {X Y Z W A} → (X ++ Z) ++ (Y ++ W) ⊢ A
→ (X ++ Y) ++ (Z ++ W) ⊢ A
exch₀ : ∀ {X A B C} → B , A , X ⊢ C → A , B , X ⊢ C
exch₀ {X} {A} {B} = exch {∅} {A , ∅} {B , ∅} {X}
swap : ∀ {X A B} → X ⊢ A ⊗ B ⇒ B ⊗ A
swap {X} {A} {B} = abs (case var (exch₀ (pair var (weak {A , ∅} {X} var))))
record Reify {a b : Level} (A : Set a) (B : Set b) : Set (a ⊔ b) where
field
⟦_⟧ : A → B
instance
ReifyType : Reify Type Set
ReifyType = record { ⟦_⟧ = ⟦_⟧ }
where
⟦_⟧ : Type → Set
⟦ el A ⟧ = ⟦ A ⟧ᵁ
⟦ A ⊗ B ⟧ = ⟦ A ⟧ × ⟦ B ⟧
⟦ A ⇒ B ⟧ = ⟦ A ⟧ → ⟦ B ⟧
data Ctxt : ∀ (X : List Set) → Set₁ where
∅ : Ctxt ∅
_,_ : ∀ {A X} → A → Ctxt X → Ctxt (A , X)
open Reify {{...}} using (⟦_⟧)
instance
ReifyCtxt : Reify (List Type) (List Set)
ReifyCtxt = record { ⟦_⟧ = List.map ⟦_⟧ }
Ctxt-insert : {A : Type} {X Y : List Type} → ⟦ A ⟧ → Ctxt ⟦ X ++ Y ⟧ → Ctxt ⟦ X ++ (A , Y) ⟧
Ctxt-insert {A} {∅} {Y} A′ E = A′ , E
Ctxt-insert {A} {B , X} {Y} A′ (B′ , E) = B′ , Ctxt-insert {A} {X} {Y} A′ E
Ctxt-exch : {X Y Z W : List Type} → Ctxt ⟦ (X ++ Y) ++ (Z ++ W) ⟧ → Ctxt ⟦ (X ++ Z) ++ (Y ++ W) ⟧
Ctxt-exch {X = ∅} {Y = ∅} {Z} {W} E = E
Ctxt-exch {X = ∅} {Y = A , Y} {Z} {W} (A′ , E) = Ctxt-insert {A} {Z} {Y ++ W} A′ (Ctxt-exch {∅} {Y} {Z} {W} E)
Ctxt-exch {X = A , X} {Y} {Z} {W} (A′ , E) = A′ , Ctxt-exch {X} {Y} {Z} {W} E
Ctxt-split : {X Y : List Type} → Ctxt ⟦ X ++ Y ⟧ → Ctxt ⟦ X ⟧ × Ctxt ⟦ Y ⟧
Ctxt-split {∅} {Y} E = ∅ , E
Ctxt-split {A , X} {Y} (A′ , E) with Ctxt-split {X} {Y} E
... | Eˣ , Eʸ = ((A′ , Eˣ) , Eʸ)
reify : {A : Type} {X : List Type} → X ⊢ A → (Ctxt ⟦ X ⟧ → ⟦ A ⟧)
reify var (x , ∅) = x
reify (abs t) E = λ x → reify t (x , E)
reify (app s t) E with Ctxt-split E
... | Eˢ , Eᵗ = (reify s Eˢ) (reify t Eᵗ)
reify (pair s t) E with Ctxt-split E
... | Eˢ , Eᵗ = (reify s Eˢ , reify t Eᵗ)
reify (case s t) E with Ctxt-split E
... | Eˢ , Eᵗ = case reify s Eˢ of λ{ (x , y) → reify t (x , y , Eᵗ)}
reify (weak {X} s) E with Ctxt-split {X} E
... | Eˢ , Eᵗ = reify s Eˢ
reify (cont t) (x , E) = reify t (x , x , E)
reify (exch {X} {Y} {Z} {W} t) E = reify t (Ctxt-exch {X} {Y} {Z} {W} E)
[_] : {A : Type} {X : List Type} → X ⊢ A → (Ctxt ⟦ X ⟧ → ⟦ A ⟧)
[_] = reify
swap′ : ∀ {A B} → ⟦ A ⟧ × ⟦ B ⟧ → ⟦ B ⟧ × ⟦ A ⟧
swap′ {A} {B} = [ swap {∅} {A} {B} ] ∅
| {
"alphanum_fraction": 0.4400987279,
"avg_line_length": 39.6015037594,
"ext": "agda",
"hexsha": "193d04150ed4cffcaa58844c841b10f1cacdbcdb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b880cf25ed8e81b9a965ea9aad18377008d68a9f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wenkokke/msla2014",
"max_forks_repo_path": "src/IntuitionisticLogic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b880cf25ed8e81b9a965ea9aad18377008d68a9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wenkokke/msla2014",
"max_issues_repo_path": "src/IntuitionisticLogic.agda",
"max_line_length": 112,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "b880cf25ed8e81b9a965ea9aad18377008d68a9f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wenkokke/msla2014",
"max_stars_repo_path": "src/IntuitionisticLogic.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-29T09:07:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-17T23:04:39.000Z",
"num_tokens": 2509,
"size": 5267
} |
{-# OPTIONS --copatterns #-}
{-# OPTIONS -v tc.constr.findInScope:15 #-}
-- One-place functors (decorations) on Set
module Control.Bug-Loop where
open import Function using (id; _∘_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Control.Functor
open IsFunctor {{...}}
record IsDecoration (D : Set → Set) : Set₁ where
field
traverse : ∀ {F} {{ functor : IsFunctor F }} {A B} →
(A → F B) → D A → F (D B)
traverse-id : ∀ {A} →
traverse {F = λ A → A} {A = A} id ≡ id
traverse-∘ :
∀ {F G} {{ funcF : IsFunctor F}} {{ funcG : IsFunctor G}} →
∀ {A B C} {f : A → F B} {g : B → G C} →
traverse ((map g) ∘ f) ≡ map {{funcF}} (traverse g) ∘ traverse f
isFunctor : IsFunctor D
isFunctor = record
{ ops = record { map = traverse }
; laws = record { map-id = traverse-id
; map-∘ = traverse-∘
}
}
open IsDecoration
idIsDecoration : IsDecoration (λ A → A)
traverse idIsDecoration f = f
traverse-id idIsDecoration = refl
traverse-∘ idIsDecoration = refl
compIsDecoration : ∀ {D E} → IsDecoration D → IsDecoration E → IsDecoration (λ A → D (E A))
traverse (compIsDecoration d e) f = traverse d (traverse e f)
traverse-id (compIsDecoration d e) = begin
traverse d (traverse e id)
≡⟨ cong (traverse d) (traverse-id e) ⟩
traverse d id
≡⟨ traverse-id d ⟩
id
∎
traverse-∘ (compIsDecoration d e) {{funcF = funcF}} {{funcG = funcG}} {f = f} {g = g} = begin
traverse (compIsDecoration d e) (map g ∘ f)
≡⟨⟩
traverse d (traverse e (map g ∘ f))
≡⟨ cong (traverse d) (traverse-∘ e) ⟩
traverse d (map (traverse e g) ∘ traverse e f)
≡⟨ traverse-∘ d ⟩
map (traverse d (traverse e g)) ∘ traverse d (traverse e f)
≡⟨⟩
map (traverse (compIsDecoration d e) g) ∘ traverse (compIsDecoration d e) f
∎
| {
"alphanum_fraction": 0.5894848646,
"avg_line_length": 28.1044776119,
"ext": "agda",
"hexsha": "4a64e279e64489e5f4ab1c771659db3bde235eaf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Bug-Loop.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Bug-Loop.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Bug-Loop.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 656,
"size": 1883
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
module lib.types.Empty where
Empty-rec : ∀ {i} {A : Type i} → (Empty → A)
Empty-rec = Empty-elim
⊥-rec : ∀ {i} {A : Type i} → (⊥ → A)
⊥-rec = Empty-rec
Empty-is-prop : is-prop Empty
Empty-is-prop = has-level-in Empty-elim
instance
Empty-level : {n : ℕ₋₂} → has-level (S n) Empty
Empty-level = prop-has-level-S Empty-is-prop
Empty-is-set : is-set Empty
Empty-is-set = raise-level -1 Empty-is-prop
⊥-is-prop = Empty-is-prop
⊥-is-set = Empty-is-set
⊥-level = Empty-level
| {
"alphanum_fraction": 0.6408839779,
"avg_line_length": 20.8846153846,
"ext": "agda",
"hexsha": "6b1772595140144d034b6d3e3a8e73e35240c26b",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Empty.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Empty.agda",
"max_line_length": 49,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Empty.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 185,
"size": 543
} |
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
postulate
A : Set
a : A
record Eq (a : A) : Set where
constructor mkEq
field
v : A
p : a ≡ v
open Eq
record S : Set1 where
constructor mkS
field
u : A
e : Eq u
open Eq e public
open S
test : ∀ (b : A) → S
u (test b) = b
v (e (test b)) = a
p (e (test b)) = refl
| {
"alphanum_fraction": 0.5138121547,
"avg_line_length": 12.9285714286,
"ext": "agda",
"hexsha": "8e8f87787a5c553b728e56c10de69fa71bfeb26c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue2806.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue2806.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue2806.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 157,
"size": 362
} |
-- Jesper, 2018-11-29: Instances with explicit arguments will never be
-- used, so declaring them should give a warning.
postulate
X : Set
instance _ : Set → X -- this should give a warning
it : {{_ : X}} → X
it {{x}} = x
-- OTOH, this is fine as the instance can be used inside the module
module _ (A : Set) where
postulate instance instX : X
test : X
test = it
| {
"alphanum_fraction": 0.6631299735,
"avg_line_length": 22.1764705882,
"ext": "agda",
"hexsha": "3511b0226337a8aabe42b5dc320175949186917d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/WarningInstanceWithExplicitArg.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/WarningInstanceWithExplicitArg.agda",
"max_line_length": 70,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/WarningInstanceWithExplicitArg.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 116,
"size": 377
} |
-- {-# OPTIONS -v tc.cover.split.con:20 #-}
open import Common.Prelude renaming (Nat to ℕ)
open import Common.Equality
infix 3 ¬_
¬_ : Set → Set
¬ P = P → ⊥
-- Decidable relations.
data Dec (P : Set) : Set where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
_≟_ : (m n : ℕ) → Dec (m ≡ n)
zero ≟ zero = yes refl
zero ≟ suc n = no λ()
suc m ≟ zero = no λ()
suc m ≟ suc n with m ≟ n
suc m ≟ suc .m | yes refl = yes refl
suc m ≟ suc n | no prf = no (λ x → prf (cong pred x))
data Ty : Set where
data Cxt : Set where
ε : Cxt
_,_ : (Γ : Cxt) (a : Ty) → Cxt
len : Cxt → ℕ
len ε = 0
len (Γ , _) = suc (len Γ)
-- De Bruijn index
mutual
Var : Cxt → Ty → Set
Var Γ a = Var' a Γ
data Var' (a : Ty) : (Γ : Cxt) → Set where
zero : ∀ {Γ} → Var (Γ , a) a
suc : ∀ {Γ b} (x : Var Γ a) → Var (Γ , b) a
-- De Bruijn Level
Lev = ℕ
-- Valid de Bruijn levels.
data LookupLev : (x : Lev) (Γ : Cxt) (a : Ty) (i : Var Γ a) → Set where
lookupZero : ∀ {Γ a} →
LookupLev (len Γ) (Γ , a) a zero
lookupSuc : ∀ {Γ a b x i} →
LookupLev x Γ a i →
LookupLev x (Γ , b) a (suc i)
record ValidLev (x : Lev) (Γ : Cxt) : Set where
constructor validLev
field
{type } : Ty
{index} : Var Γ type
valid : LookupLev x Γ type index
weakLev : ∀ {x Γ a} → ValidLev x Γ → ValidLev x (Γ , a)
weakLev (validLev d) = validLev (lookupSuc d)
-- Looking up a de Bruijn level.
lookupLev : ∀ (x : Lev) (Γ : Cxt) → Dec (ValidLev x Γ)
lookupLev x ε = no λ { (validLev ()) }
lookupLev x (Γ , a) with x ≟ len Γ
lookupLev ._ (Γ , a) | yes refl = yes (validLev lookupZero)
lookupLev x (Γ , a) | no _ with lookupLev x Γ
lookupLev x (Γ , a) | no ¬p | yes d = yes (weakLev d)
lookupLev x (Γ , a) | no ¬p | no ¬d = no contra
where
contra : ¬ ValidLev x (Γ , a)
contra (validLev (lookupSuc valid)) = ?
{- Unbound indices showing up in error message:
I'm not sure if there should be a case for the constructor
lookupZero, because I get stuck when trying to solve the following
unification problems (inferred index ≟ expected index):
len Γ ≟ @8
Γ , a ≟ @7 , @4
a ≟ type
zero ≟ index
when checking the definition of contra -}
| {
"alphanum_fraction": 0.5709721588,
"avg_line_length": 23.8152173913,
"ext": "agda",
"hexsha": "d3dfbc2d108294d48e4aa5f07b693a46a2f4e8cf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue985.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue985.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue985.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 868,
"size": 2191
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Susp.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Path
open import Cubical.Data.Bool
open import Cubical.HITs.Join
open import Cubical.HITs.Susp.Base
open Iso
Susp-iso-joinBool : ∀ {ℓ} {A : Type ℓ} → Iso (Susp A) (join A Bool)
fun Susp-iso-joinBool north = inr true
fun Susp-iso-joinBool south = inr false
fun Susp-iso-joinBool (merid a i) = (sym (push a true) ∙ push a false) i
inv Susp-iso-joinBool (inr true ) = north
inv Susp-iso-joinBool (inr false) = south
inv Susp-iso-joinBool (inl _) = north
inv Susp-iso-joinBool (push a true i) = north
inv Susp-iso-joinBool (push a false i) = merid a i
rightInv Susp-iso-joinBool (inr true ) = refl
rightInv Susp-iso-joinBool (inr false) = refl
rightInv Susp-iso-joinBool (inl a) = sym (push a true)
rightInv Susp-iso-joinBool (push a true i) j = push a true (i ∨ ~ j)
rightInv Susp-iso-joinBool (push a false i) j
= hcomp (λ k → λ { (i = i0) → push a true (~ j)
; (i = i1) → push a false k
; (j = i1) → push a false (i ∧ k) })
(push a true (~ i ∧ ~ j))
leftInv Susp-iso-joinBool north = refl
leftInv Susp-iso-joinBool south = refl
leftInv (Susp-iso-joinBool {A = A}) (merid a i) j
= hcomp (λ k → λ { (i = i0) → transp (λ _ → Susp A) (k ∨ j) north
; (i = i1) → transp (λ _ → Susp A) (k ∨ j) (merid a k)
; (j = i1) → merid a (i ∧ k) })
(transp (λ _ → Susp A) j north)
Susp≃joinBool : ∀ {ℓ} {A : Type ℓ} → Susp A ≃ join A Bool
Susp≃joinBool = isoToEquiv Susp-iso-joinBool
Susp≡joinBool : ∀ {ℓ} {A : Type ℓ} → Susp A ≡ join A Bool
Susp≡joinBool = isoToPath Susp-iso-joinBool
congSuspEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≃ B → Susp A ≃ Susp B
congSuspEquiv {ℓ} {A} {B} h = isoToEquiv isom
where isom : Iso (Susp A) (Susp B)
Iso.fun isom north = north
Iso.fun isom south = south
Iso.fun isom (merid a i) = merid (fst h a) i
Iso.inv isom north = north
Iso.inv isom south = south
Iso.inv isom (merid a i) = merid (invEq h a) i
Iso.rightInv isom north = refl
Iso.rightInv isom south = refl
Iso.rightInv isom (merid a i) j = merid (retEq h a j) i
Iso.leftInv isom north = refl
Iso.leftInv isom south = refl
Iso.leftInv isom (merid a i) j = merid (secEq h a j) i
suspToPropElim : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Susp A → Type ℓ'} (a : A)
→ ((x : Susp A) → isProp (B x))
→ B north
→ (x : Susp A) → B x
suspToPropElim a isProp Bnorth north = Bnorth
suspToPropElim {B = B} a isProp Bnorth south = subst B (merid a) Bnorth
suspToPropElim {B = B} a isProp Bnorth (merid a₁ i) =
isOfHLevel→isOfHLevelDep 1 isProp Bnorth (subst B (merid a) Bnorth) (merid a₁) i
suspToPropElim2 : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Susp A → Susp A → Type ℓ'} (a : A)
→ ((x y : Susp A) → isProp (B x y))
→ B north north
→ (x y : Susp A) → B x y
suspToPropElim2 _ _ Bnorth north north = Bnorth
suspToPropElim2 {B = B} a _ Bnorth north south = subst (B north) (merid a) Bnorth
suspToPropElim2 {B = B} a isprop Bnorth north (merid x i) =
isProp→PathP (λ i → isprop north (merid x i))
Bnorth (subst (B north) (merid a) Bnorth) i
suspToPropElim2 {B = B} a _ Bnorth south north = subst (λ x → B x north) (merid a) Bnorth
suspToPropElim2 {B = B} a _ Bnorth south south = subst (λ x → B x x) (merid a) Bnorth
suspToPropElim2 {B = B} a isprop Bnorth south (merid x i) =
isProp→PathP (λ i → isprop south (merid x i))
(subst (λ x → B x north) (merid a) Bnorth)
(subst (λ x → B x x) (merid a) Bnorth) i
suspToPropElim2 {B = B} a isprop Bnorth (merid x i) north =
isProp→PathP (λ i → isprop (merid x i) north)
Bnorth (subst (λ x → B x north) (merid a) Bnorth) i
suspToPropElim2 {B = B} a isprop Bnorth (merid x i) south =
isProp→PathP (λ i → isprop (merid x i) south)
(subst (B north) (merid a) Bnorth)
(subst (λ x → B x x) (merid a) Bnorth) i
suspToPropElim2 {B = B} a isprop Bnorth (merid x i) (merid y j) =
isSet→SquareP (λ i j → isOfHLevelSuc 1 (isprop _ _))
(isProp→PathP (λ i₁ → isprop north (merid y i₁)) Bnorth
(subst (B north) (merid a) Bnorth))
(isProp→PathP (λ i₁ → isprop south (merid y i₁))
(subst (λ x₁ → B x₁ north) (merid a) Bnorth)
(subst (λ x₁ → B x₁ x₁) (merid a) Bnorth))
(isProp→PathP (λ i₁ → isprop (merid x i₁) north) Bnorth
(subst (λ x₁ → B x₁ north) (merid a) Bnorth))
(isProp→PathP (λ i₁ → isprop (merid x i₁) south)
(subst (B north) (merid a) Bnorth)
(subst (λ x₁ → B x₁ x₁) (merid a) Bnorth)) i j
{- Clever proof:
suspToPropElim2 a isProp Bnorth =
suspToPropElim a (λ x → isOfHLevelΠ 1 λ y → isProp x y)
(suspToPropElim a (λ x → isProp north x) Bnorth)
-}
| {
"alphanum_fraction": 0.5955882353,
"avg_line_length": 46.1428571429,
"ext": "agda",
"hexsha": "b03c56a2ced7ec54b885a4e33a661f3f7a5d0431",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/HITs/Susp/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/HITs/Susp/Properties.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/HITs/Susp/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1885,
"size": 5168
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Fancy display functions for List-based tables
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Text.Tabular.List where
open import Data.String using (String)
open import Data.List.Base
import Data.Nat.Properties as ℕₚ
open import Data.Product using (-,_; proj₂)
open import Data.Vec.Base as Vec using (Vec)
open import Data.Vec.Bounded.Base as Vec≤ using (Vec≤)
open import Function.Base
open import Text.Tabular.Base
import Text.Tabular.Vec as Show
display : TabularConfig → List Alignment → List (List String) → List String
display c a rows = Show.display c alignment rectangle where
alignment : Vec Alignment _
alignment = Vec≤.padRight Left
$ Vec≤.≤-cast (ℕₚ.m⊓n≤m _ _)
$ Vec≤.take _ (Vec≤.fromList a)
rectangle : Vec (Vec String _) _
rectangle = Vec.fromList
$ map (Vec≤.padRight "")
$ proj₂
$ Vec≤.rectangle
$ map (λ row → -, Vec≤.fromList row) rows
| {
"alphanum_fraction": 0.581915846,
"avg_line_length": 31.0277777778,
"ext": "agda",
"hexsha": "8a007bbeb3a02223892d08ea9c477847cb62326e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Text/Tabular/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Text/Tabular/List.agda",
"max_line_length": 75,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Text/Tabular/List.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 270,
"size": 1117
} |
-- Andreas, Ulf, 2015-06-03
-- Issue 473 was not fixed for records without constructor
record _×_ A B : Set where
constructor _,_
field
fst : A
snd : B
open _×_
data Nat : Set where
zero : Nat
suc : Nat → Nat
data Zero : Nat → Set where
zero : Zero zero
data Zero₂ : Nat → Nat → Set where
zero : Zero₂ zero zero
f₁ : (p : Nat × Nat) → Zero₂ (fst p) (snd p) → Set
f₁ (.zero , .zero) zero = Nat -- works
-- f₁ .(zero , zero) zero = Nat -- fails
f₂ : (p : Nat × Nat) → Zero (fst p) → Set
f₂ (.zero , y) zero = Nat -- works
-- foo .?? zero -- fails (nothing to write in place of ??)
f₃ : {p : Nat × Nat} → Zero (fst p) → Set
f₃ zero = Nat
f₄ : {p : Nat × (Nat × Nat)} → Zero (fst (snd p)) → Set
f₄ zero = Nat
f₅ : {p : Nat × Nat} → Zero₂ (fst p) (snd p) → Set
f₅ zero = Nat
data I : Set where
i : I
record Box (A B : Set) : Set where
-- no constructor [_]
field contents : A
[_] : ∀{A B} → A → Box A B
[ a ] = record { contents = a }
data D : Set → Set₁ where
d₁ : (R : Set) → D R
d₂ : (i : I) (R : I → Set) → D (R i) → D (Box I (R i))
data S : (R : Set) → R → D R → Set₁ where
s : (j : I) (R : I → Set) (p : D (R j)) →
S (Box I (R j)) [ j ] (d₂ j R p)
postulate
P : I → Set
Fails : {e : Box I (P i)} → S (Box I (P i)) e (d₂ i P (d₁ (P i))) → Set₁
Fails (s .i .P .(d₁ (P i))) = Set
-- Refuse to solve heterogeneous constraint p : D (P (Box.contents e))
-- =?= d₁ (P i) : D (P i)
-- when checking that the pattern s .i .P .(d₁ (P i)) has type
-- S (Box I (P i)) e (d₂ i P (d₁ (P i)))
| {
"alphanum_fraction": 0.5231660232,
"avg_line_length": 23.5454545455,
"ext": "agda",
"hexsha": "2c1ec35da281de8cd8f7defd0d61fb6224d8ecb0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue473b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue473b.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue473b.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 623,
"size": 1554
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Monoid.MorphismProperties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Function using (_∘_; id)
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Functions.Embedding
open import Cubical.Data.Sigma
open import Cubical.Algebra
open import Cubical.Algebra.Properties
open import Cubical.Algebra.Monoid.Morphism
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Pointed
open import Cubical.Algebra.Semigroup.Properties using (isPropIsSemigroup)
open import Cubical.Relation.Binary.Reasoning.Equality
open Iso
private
variable
ℓ ℓ′ ℓ′′ : Level
L : Monoid ℓ
M : Monoid ℓ′
N : Monoid ℓ′′
isPropIsMonoidHom : ∀ (M : Monoid ℓ) (N : Monoid ℓ′) f → isProp (IsMonoidHom M N f)
isPropIsMonoidHom M N f (ismonoidhom aOp aId) (ismonoidhom bOp bId) =
cong₂ ismonoidhom
(isPropHomomorphic₂ (Monoid.is-set N) f (Monoid._•_ M) (Monoid._•_ N) aOp bOp)
(isPropHomomorphic₀ (Monoid.is-set N) f (Monoid.ε M) (Monoid.ε N) aId bId)
isSetMonoidHom : isSet (M ⟶ᴴ N)
isSetMonoidHom {M = M} {N = N} = isOfHLevelRespectEquiv 2 equiv
(isSetΣ (isSetΠ λ _ → is-set N)
(λ f → isProp→isSet (isPropIsMonoidHom M N f)))
where
open Monoid
equiv : (Σ[ g ∈ (⟨ M ⟩ → ⟨ N ⟩) ] IsMonoidHom M N g) ≃ MonoidHom M N
equiv = isoToEquiv (iso (λ (g , m) → monoidhom g m) (λ (monoidhom g m) → g , m) (λ _ → refl) λ _ → refl)
isMonoidHomComp : {f : ⟨ L ⟩ → ⟨ M ⟩} {g : ⟨ M ⟩ → ⟨ N ⟩}
→ IsMonoidHom L M f → IsMonoidHom M N g → IsMonoidHom L N (g ∘ f)
isMonoidHomComp {g = g} (ismonoidhom fOp fId) (ismonoidhom gOp gId) =
ismonoidhom (λ _ _ → cong g (fOp _ _) ∙ gOp _ _) (cong g fId ∙ gId)
private
isMonoidHomComp′ : (f : L ⟶ᴴ M) (g : M ⟶ᴴ N)
→ IsMonoidHom L N (MonoidHom.fun g ∘ MonoidHom.fun f)
isMonoidHomComp′ (monoidhom f (ismonoidhom fOp fId)) (monoidhom g (ismonoidhom gOp gId)) =
ismonoidhom (λ _ _ → cong g (fOp _ _) ∙ gOp _ _) (cong g fId ∙ gId)
compMonoidHom : (L ⟶ᴴ M) → (M ⟶ᴴ N) → (L ⟶ᴴ N)
compMonoidHom f g = monoidhom _ (isMonoidHomComp′ f g)
compMonoidEquiv : L ≃ᴴ M → M ≃ᴴ N → L ≃ᴴ N
compMonoidEquiv f g = monoidequiv (compEquiv f.eq g.eq) (isMonoidHomComp′ f.hom g.hom)
where
module f = MonoidEquiv f
module g = MonoidEquiv g
isMonoidHomId : (M : Monoid ℓ) → IsMonoidHom M M id
isMonoidHomId M = record
{ preservesOp = λ _ _ → refl
; preservesId = refl
}
idMonoidHom : (M : Monoid ℓ) → (M ⟶ᴴ M)
idMonoidHom M = record
{ fun = id
; isHom = isMonoidHomId M
}
idMonoidEquiv : (M : Monoid ℓ) → M ≃ᴴ M
idMonoidEquiv M = record
{ eq = idEquiv ⟨ M ⟩
; isHom = isMonoidHomId M
}
-- Isomorphism inversion
isMonoidHomInv : (eqv : M ≃ᴴ N) → IsMonoidHom N M (invEq (MonoidEquiv.eq eqv))
isMonoidHomInv {M = M} {N = N} (monoidequiv eq (ismonoidhom hOp hId)) = ismonoidhom
(λ x y → isInj-f (
f (f⁻¹ (x N.• y)) ≡⟨ retEq eq _ ⟩
x N.• y ≡˘⟨ cong₂ N._•_ (retEq eq x) (retEq eq y) ⟩
f (f⁻¹ x) N.• f (f⁻¹ y) ≡˘⟨ hOp (f⁻¹ x) (f⁻¹ y) ⟩
f (f⁻¹ x M.• f⁻¹ y) ∎))
(isInj-f (
f (f⁻¹ N.ε) ≡⟨ retEq eq _ ⟩
N.ε ≡˘⟨ hId ⟩
f M.ε ∎))
where
module M = Monoid M
module N = Monoid N
f = equivFun eq
f⁻¹ = invEq eq
isInj-f : {x y : ⟨ M ⟩} → f x ≡ f y → x ≡ y
isInj-f {x} {y} = invEq (_ , isEquiv→isEmbedding (eq .snd) x y)
invMonoidHom : M ≃ᴴ N → (N ⟶ᴴ M)
invMonoidHom eq = record { isHom = isMonoidHomInv eq }
invMonoidEquiv : M ≃ᴴ N → N ≃ᴴ M
invMonoidEquiv eq = record
{ eq = invEquiv (MonoidEquiv.eq eq)
; isHom = isMonoidHomInv eq
}
monoidHomEq : {f g : M ⟶ᴴ N} → MonoidHom.fun f ≡ MonoidHom.fun g → f ≡ g
monoidHomEq {M = M} {N = N} {monoidhom f fm} {monoidhom g gm} p i =
monoidhom (p i) (p-hom i)
where
p-hom : PathP (λ i → IsMonoidHom M N (p i)) fm gm
p-hom = toPathP (isPropIsMonoidHom M N _ _ _)
monoidEquivEq : {f g : M ≃ᴴ N} → MonoidEquiv.eq f ≡ MonoidEquiv.eq g → f ≡ g
monoidEquivEq {M = M} {N = N} {monoidequiv f fm} {monoidequiv g gm} p i =
monoidequiv (p i) (p-hom i)
where
p-hom : PathP (λ i → IsMonoidHom M N (p i .fst)) fm gm
p-hom = toPathP (isPropIsMonoidHom M N _ _ _)
module MonoidΣTheory {ℓ} where
RawMonoidStructure : Type ℓ → Type ℓ
RawMonoidStructure X = (X → X → X) × X
RawMonoidEquivStr = AutoEquivStr RawMonoidStructure
rawMonoidUnivalentStr : UnivalentStr _ RawMonoidEquivStr
rawMonoidUnivalentStr = autoUnivalentStr RawMonoidStructure
MonoidAxioms : (M : Type ℓ) → RawMonoidStructure M → Type ℓ
MonoidAxioms M (_•_ , ε) = IsSemigroup M _•_ × Identity ε _•_
MonoidStructure : Type ℓ → Type ℓ
MonoidStructure = AxiomsStructure RawMonoidStructure MonoidAxioms
MonoidΣ : Type (ℓ-suc ℓ)
MonoidΣ = TypeWithStr ℓ MonoidStructure
isPropMonoidAxioms : (M : Type ℓ) (s : RawMonoidStructure M) → isProp (MonoidAxioms M s)
isPropMonoidAxioms M (_•_ , ε) = isPropΣ isPropIsSemigroup
λ isSemiM → isPropIdentity (IsSemigroup.is-set isSemiM) _•_ ε
MonoidEquivStr : StrEquiv MonoidStructure ℓ
MonoidEquivStr = AxiomsEquivStr RawMonoidEquivStr MonoidAxioms
MonoidAxiomsIsoIsMonoid : {M : Type ℓ} (s : RawMonoidStructure M) →
Iso (MonoidAxioms M s) (IsMonoid M (s .fst) (s .snd))
fun (MonoidAxiomsIsoIsMonoid s) (x , y) = ismonoid x y
inv (MonoidAxiomsIsoIsMonoid s) (ismonoid x y) = (x , y)
rightInv (MonoidAxiomsIsoIsMonoid s) _ = refl
leftInv (MonoidAxiomsIsoIsMonoid s) _ = refl
MonoidAxioms≡IsMonoid : {M : Type ℓ} (s : RawMonoidStructure M) →
MonoidAxioms M s ≡ IsMonoid M (s .fst) (s .snd)
MonoidAxioms≡IsMonoid s = isoToPath (MonoidAxiomsIsoIsMonoid s)
Monoid→MonoidΣ : Monoid ℓ → MonoidΣ
Monoid→MonoidΣ (mkmonoid M _•_ ε isMonoidM) =
M , (_•_ , ε) , MonoidAxiomsIsoIsMonoid (_•_ , ε) .inv isMonoidM
MonoidΣ→Monoid : MonoidΣ → Monoid ℓ
MonoidΣ→Monoid (M , (_•_ , ε) , isMonoidM) =
mkmonoid M _•_ ε (MonoidAxiomsIsoIsMonoid (_•_ , ε) .fun isMonoidM)
MonoidIsoMonoidΣ : Iso (Monoid ℓ) MonoidΣ
MonoidIsoMonoidΣ =
iso Monoid→MonoidΣ MonoidΣ→Monoid (λ _ → refl) (λ _ → refl)
monoidUnivalentStr : UnivalentStr MonoidStructure MonoidEquivStr
monoidUnivalentStr = axiomsUnivalentStr _ isPropMonoidAxioms rawMonoidUnivalentStr
MonoidΣPath : (M N : MonoidΣ) → (M ≃[ MonoidEquivStr ] N) ≃ (M ≡ N)
MonoidΣPath = SIP monoidUnivalentStr
MonoidEquivΣ : (M N : Monoid ℓ) → Type ℓ
MonoidEquivΣ M N = Monoid→MonoidΣ M ≃[ MonoidEquivStr ] Monoid→MonoidΣ N
MonoidIsoΣPath : {M N : Monoid ℓ} → Iso (MonoidEquiv M N) (MonoidEquivΣ M N)
fun MonoidIsoΣPath (monoidequiv eq (ismonoidhom hOp hId)) = (eq , hOp , hId)
inv MonoidIsoΣPath (eq , hOp , hId) = monoidequiv eq (ismonoidhom hOp hId)
rightInv MonoidIsoΣPath _ = refl
leftInv MonoidIsoΣPath _ = refl
MonoidPath : (M N : Monoid ℓ) → (MonoidEquiv M N) ≃ (M ≡ N)
MonoidPath M N =
MonoidEquiv M N ≃⟨ isoToEquiv MonoidIsoΣPath ⟩
MonoidEquivΣ M N ≃⟨ MonoidΣPath _ _ ⟩
Monoid→MonoidΣ M ≡ Monoid→MonoidΣ N ≃⟨ isoToEquiv (invIso (congIso MonoidIsoMonoidΣ)) ⟩
M ≡ N ■
RawMonoidΣ : Type (ℓ-suc ℓ)
RawMonoidΣ = TypeWithStr ℓ RawMonoidStructure
Monoid→RawMonoidΣ : Monoid ℓ → RawMonoidΣ
Monoid→RawMonoidΣ (mkmonoid A _•_ ε _) = A , _•_ , ε
InducedMonoid : (M : Monoid ℓ) (N : RawMonoidΣ) (e : M .Monoid.Carrier ≃ N .fst) →
RawMonoidEquivStr (Monoid→RawMonoidΣ M) N e → Monoid ℓ
InducedMonoid M N e r =
MonoidΣ→Monoid (inducedStructure rawMonoidUnivalentStr (Monoid→MonoidΣ M) N (e , r))
InducedMonoidPath : (M : Monoid ℓ) (N : RawMonoidΣ) (e : M .Monoid.Carrier ≃ N .fst)
(E : RawMonoidEquivStr (Monoid→RawMonoidΣ M) N e) →
M ≡ InducedMonoid M N e E
InducedMonoidPath M N e E =
MonoidPath M (InducedMonoid M N e E) .fst (monoidequiv e (ismonoidhom (E .fst) (E .snd)))
-- We now extract the important results from the above module
open MonoidΣTheory public using (InducedMonoid; InducedMonoidPath)
isPropIsMonoid : {M : Type ℓ} {_•_ : Op₂ M} {ε : M} → isProp (IsMonoid M _•_ ε)
isPropIsMonoid {_•_ = _•_} {ε} =
subst isProp (MonoidΣTheory.MonoidAxioms≡IsMonoid (_•_ , ε))
(MonoidΣTheory.isPropMonoidAxioms _ (_•_ , ε))
MonoidPath : (M ≃ᴴ N) ≃ (M ≡ N)
MonoidPath {M = M} {N} = MonoidΣTheory.MonoidPath M N
open Monoid
uaMonoid : M ≃ᴴ N → M ≡ N
uaMonoid = equivFun MonoidPath
carac-uaMonoid : {M N : Monoid ℓ} (f : M ≃ᴴ N) → cong Carrier (uaMonoid f) ≡ ua (MonoidEquiv.eq f)
carac-uaMonoid (monoidequiv f m) =
(refl ∙∙ ua f ∙∙ refl) ≡˘⟨ rUnit (ua f) ⟩
ua f ∎
Monoid≡ : (M N : Monoid ℓ) → (
Σ[ p ∈ ⟨ M ⟩ ≡ ⟨ N ⟩ ]
Σ[ q ∈ PathP (λ i → p i → p i → p i) (_•_ M) (_•_ N) ]
Σ[ r ∈ PathP (λ i → p i) (ε M) (ε N) ]
PathP (λ i → IsMonoid (p i) (q i) (r i)) (isMonoid M) (isMonoid N))
≃ (M ≡ N)
Monoid≡ M N = isoToEquiv (iso
(λ (p , q , r , s) i → mkmonoid (p i) (q i) (r i) (s i))
(λ p → cong Carrier p , cong _•_ p , cong ε p , cong isMonoid p)
(λ _ → refl) (λ _ → refl))
caracMonoid≡ : {M N : Monoid ℓ} (p q : M ≡ N) → cong Carrier p ≡ cong Carrier q → p ≡ q
caracMonoid≡ {M = M} {N} p q t = cong (fst (Monoid≡ M N)) (Σ≡Prop (λ _ →
isPropΣ
(isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set N) _ _) λ _ → isPropΣ
(isOfHLevelPathP' 1 (is-set N) _ _) λ _ →
isOfHLevelPathP 1 isPropIsMonoid _ _)
t)
uaMonoidId : (M : Monoid ℓ) → uaMonoid (idMonoidEquiv M) ≡ refl
uaMonoidId M = caracMonoid≡ _ _ (carac-uaMonoid (idMonoidEquiv M) ∙ uaIdEquiv)
uaCompMonoidEquiv : {L M N : Monoid ℓ} (f : L ≃ᴴ M) (g : M ≃ᴴ N)
→ uaMonoid (compMonoidEquiv f g) ≡ uaMonoid f ∙ uaMonoid g
uaCompMonoidEquiv f g = caracMonoid≡ _ _ (
cong Carrier (uaMonoid (compMonoidEquiv f g))
≡⟨ carac-uaMonoid (compMonoidEquiv f g) ⟩
ua (eq (compMonoidEquiv f g))
≡⟨ uaCompEquiv _ _ ⟩
ua (eq f) ∙ ua (eq g)
≡˘⟨ cong (_∙ ua (eq g)) (carac-uaMonoid f) ⟩
cong Carrier (uaMonoid f) ∙ ua (eq g)
≡˘⟨ cong (cong Carrier (uaMonoid f) ∙_) (carac-uaMonoid g) ⟩
cong Carrier (uaMonoid f) ∙ cong Carrier (uaMonoid g)
≡˘⟨ cong-∙ Carrier (uaMonoid f) (uaMonoid g) ⟩
cong Carrier (uaMonoid f ∙ uaMonoid g) ∎)
where open MonoidEquiv
| {
"alphanum_fraction": 0.6286266925,
"avg_line_length": 38.775,
"ext": "agda",
"hexsha": "e8e8eec236afcb7d03e0cc8829493e7162a1d2e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Monoid/MorphismProperties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Monoid/MorphismProperties.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Monoid/MorphismProperties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4473,
"size": 10857
} |
module json where
open import lib
open import general-util
data json : Set where
json-null : json
json-raw : rope → json
json-string : string → json
json-nat : nat → json
json-array : 𝕃 json → json
json-object : trie json → json
json-escape-string : string → string
json-escape-string str = 𝕃char-to-string $ rec $ string-to-𝕃char str where
rec : 𝕃 char → 𝕃 char
rec [] = []
rec ('\b' :: chars) = '\\' :: 'b' :: rec chars
rec ('\f' :: chars) = '\\' :: 'f' :: rec chars
rec ('\n' :: chars) = '\\' :: 'n' :: rec chars
rec ('\r' :: chars) = '\\' :: 'r' :: rec chars
rec ('\t' :: chars) = '\\' :: 't' :: rec chars
rec ('"' :: chars) = '\\' :: '"' :: rec chars
rec ('\\' :: chars) = '\\' :: '\\' :: rec chars
rec (char :: chars) = char :: rec chars
{-# TERMINATING #-}
json-to-rope : json → rope
json-to-rope json-null = [[ "null" ]]
json-to-rope (json-raw rope) = rope
json-to-rope (json-string string) = [[ "\"" ]] ⊹⊹ [[ json-escape-string string ]] ⊹⊹ [[ "\"" ]]
json-to-rope (json-nat nat) = [[ ℕ-to-string nat ]]
json-to-rope (json-array array) = [[ "[" ]] ⊹⊹ 𝕃-to-rope json-to-rope "," array ⊹⊹ [[ "]" ]]
json-to-rope (json-object t) = [[ "{" ]] ⊹⊹ 𝕃-to-rope key-to-rope "," (trie-strings t) ⊹⊹ [[ "}" ]] where
key-to-rope : string → rope
key-to-rope key with trie-lookup t key
...| just value = [[ "\"" ]] ⊹⊹ [[ json-escape-string key ]] ⊹⊹ [[ "\":" ]] ⊹⊹ json-to-rope value
...| nothing = [[ "\"" ]] ⊹⊹ [[ json-escape-string key ]] ⊹⊹ [[ "\":null" ]] -- shouldn't happen
json-new : 𝕃 (string × json) → json
json-new pairs = json-object $ foldr insert empty-trie pairs where
insert : string × json → trie json → trie json
insert (key , value) trie = trie-insert trie key value
| {
"alphanum_fraction": 0.5494505495,
"avg_line_length": 39.2954545455,
"ext": "agda",
"hexsha": "e98cfe0f94c6a3265ba0fd2319dcfea28831dd54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CarlOlson/cedille",
"max_forks_repo_path": "src/json.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CarlOlson/cedille",
"max_issues_repo_path": "src/json.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CarlOlson/cedille",
"max_stars_repo_path": "src/json.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 588,
"size": 1729
} |
-- Andreas, 2017-07-05, issue #2626 raised by cartazio
-- shrunk by gallais
-- There was an assignTerm inspite of
-- dontAssignMetas (issued by checking inequations involving ⊔ˢ)
-- {-# OPTIONS -v tc:45 #-}
{-# OPTIONS --allow-unsolved-metas #-}
module Issue2626 where
open import Agda.Builtin.Equality
open import Agda.Builtin.Size
data D : (sz : Size) → Set where
c : (q s : Size) → D (q ⊔ˢ s)
postulate
foo : c _ _ ≡ c _ _
| {
"alphanum_fraction": 0.6750572082,
"avg_line_length": 20.8095238095,
"ext": "agda",
"hexsha": "86aac6ecc239b08e6bf1cb957d31ab12daf16878",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2626.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2626.agda",
"max_line_length": 64,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2626.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 143,
"size": 437
} |
module Example where
import Level
open import Signature
open import Function
open import Data.Empty
open import Data.Unit
open import Data.Nat
open import Data.Fin
open import Data.Product as Prod renaming (Σ to ⨿)
open import Data.Sum as Sum
open import Relation.Nullary
open import Relation.Unary hiding (_⇒_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open ≡-Reasoning
postulate
ext : Extensionality Level.zero Level.zero
------
-- Examples
-----
module NatProg where
Σ : Sig
∥ Σ ∥ = Fin 3
ar Σ zero = Fin 0 -- 0
ar Σ (suc zero) = Fin 1 -- succ
ar Σ (suc (suc _)) = Fin 1 -- nat
open import Terms Σ
V = ℕ
Z S N : ∥ Σ ∥
Z = # 0
S = # 1
N = # 2
z : T V
z = μ (ι (Z , (λ ())))
s nat : T V → T V
s t = μ (ι (S , (λ _ → t)))
nat t = μ (ι (N , (λ _ → t)))
z∞ : T∞ V
z∞ = χ z
s∞ nat∞ : ∀{X} → T∞ X → T∞ X
s∞ t = μ∞ (ι∞ (S , (λ _ → t)))
nat∞ t = μ∞ (ι∞ (N , (λ _ → t)))
inf : T∞ ⊥
inf = corec (λ x → inj₁ (S , (λ _ → tt))) tt
inf-nat : T∞ ⊥
inf-nat = nat∞ inf
open import Program Σ V
-- | Program consisting of
-- ⇒ nat(0)
-- nat(n) ⇒ nat(s n)
P : Program
P = ((0 , (λ ())) , ( , clauses))
where
clauses : Fin 2 → Clause
clauses zero = (0 , (λ ())) ⊢ nat z
clauses (suc _) = (1 , b) ⊢ nat (s n)
where
n = η 0
b : Fin 1 → T V
b _ = nat n
open import Herbrand Σ V P
lem : ¬ (∃ λ σ → (inf ~ app∞ σ (χ (geth-ν P (# 0)))))
lem (σ , p) with out~ p
lem (σ , p) | () , _
bad-ν : inf-nat ∈ Herbrand-ν
bw-closed bad-ν = inj₁ p
where
p : (i : dom-ν P) {σ : V → T∞ ⊥} →
inf-nat ~ (app∞ σ (χ (geth-ν P i))) →
(j : dom (getb-ν P i)) →
app∞ σ (χ (get (getb-ν P i) j)) ∈ Herbrand-ν
{-
p i {σ} p j with out inf-nat | out (σ 0) | out~ p
p i p j | inj₁ (zero , α) | v | r = {!!}
p i p j | inj₁ (suc zero , α) | v | r = {!!}
p i p j | inj₁ (suc (suc _) , α) | v | r = {!!}
p i p j | inj₂ () | v | r
-}
p i {σ} p j with out (σ 0) | out~ p
p zero p () | u | refl , r
p (suc i) p zero | inj₁ (zero , _) | refl , r = {!!}
p (suc i) p zero | inj₁ (suc zero , _) | refl , r = {!!}
p (suc i) p zero | inj₁ (suc (suc _) , proj₂) | refl , r = {!!}
p (suc i) p zero | inj₂ () | refl , r
p (suc _) p (suc ()) | u | refl , r
{-
f : ?
f i {σ} p j with out~ p
... | u = ?
-}
bad : inf-nat ∈ Herbrand-μ
bad = coind-μ bad-ν
{-
module BitList where
Σ : Sig
∥ Σ ∥ = Fin 6
ar Σ zero = Fin 0 -- 0
ar Σ (suc zero) = Fin 0 -- 1
ar Σ (suc (suc zero)) = Fin 1 -- bit(x)
ar Σ (suc (suc (suc zero))) = Fin 1 -- blist(x)
ar Σ (suc (suc (suc (suc zero)))) = Fin 0 -- nil
ar Σ (suc (suc (suc (suc (suc f))))) = Fin 2 -- cons(x,y)
open import Terms Σ
V = ℕ
Z O Bit BList Nil Cons : ∥ Σ ∥
Z = # 0
O = # 1
Bit = # 2
BList = # 3
Nil = # 4
Cons = # 5
z o nil : T V
z = μ (ι (Z , (λ ())))
o = μ (ι (O , (λ ())))
nil = μ (ι (Nil , (λ ())))
bit blist : T V → T V
bit t = μ (ι (Bit , (λ _ → t)))
blist t = μ (ι (BList , (λ _ → t)))
bin-branch : {X : Set} → X → X → Fin 2 → X
bin-branch x y zero = x
bin-branch x y (suc _) = y
cons-br-distr : ∀{X Y} (t s : X) (f : X → Y) →
f ∘ bin-branch t s ≡ bin-branch (f t) (f s)
cons-br-distr t s f = ext p
where
p : (i : Fin 2) → f (bin-branch t s i) ≡ bin-branch (f t) (f s) i
p zero = refl
p (suc _) = refl
cons : T V → T V → T V
cons t s = μ (ι (Cons , bin-branch t s))
bit0 bit1 : T V
bit0 = bit z
bit1 = bit o
open import Program Σ V
-- | Program consisting of
-- ⇒ bit(0)
-- ⇒ bit(1)
-- ⇒ blist(nil)
-- bit(x), blist(y) ⇒ blist(cons(x,y))
P : Program
P = , clauses
where
clauses : Fin 4 → Clause
clauses zero = (0 , (λ ())) ⊢ bit0
clauses (suc zero) = (0 , (λ ())) ⊢ bit1
clauses (suc (suc zero)) = (0 , (λ ())) ⊢ nil
clauses (suc (suc (suc c))) = (2 , b) ⊢ blist (cons (η 0) (η 1))
where
b : Fin 2 → T V
b zero = bit (η 0)
b (suc i) = blist (η 1)
open import Rewrite Σ V P
X S bitX : T V
X = η 0
S = blist (cons X (cons X nil))
bitX = bit X
bitX-val : Val bitX
bitX-val zero () x
bitX-val (suc zero) () x
bitX-val (suc (suc zero)) () x
bitX-val (suc (suc (suc _))) zero ()
bitX-val (suc (suc (suc _))) (suc _) ()
step1 : S ⟿ bitX
step1 = rew-step (# 3) (# 0) {σ} σ-match
where
σ : Subst V V
σ zero = X
σ (suc zero) = cons X nil
σ (suc (suc n)) = η (suc (suc n))
σ-match : matches (geth P (# 3)) S σ
σ-match =
begin
app σ (blist (cons X (η 1)))
≡⟨ refl ⟩
μ (T₁ σ (blist (cons X (η 1))))
≡⟨ refl ⟩
μ (T₁ σ (μ (ι (BList , (λ _ → (cons X (η 1)))))))
≡⟨ refl ⟩
μ (μ (ι (BList , (λ _ → T₁ σ (cons X (η 1))))))
≡⟨ refl ⟩
μ (μ (ι (BList , (λ _ → T₁ σ (μ (ι (Cons , bin-branch X (η 1))))))))
≡⟨ refl ⟩
μ (μ (ι (BList , (λ _ → μ (ι (Cons , T₁ σ ∘ (bin-branch X (η 1))))))))
≡⟨ cong (λ u → μ (μ (ι (BList , (λ _ → μ (ι (Cons , u)))))))
(cons-br-distr X (η 1) (T₁ σ)) ⟩
μ (μ (ι (BList , (λ _ →
μ (ι (Cons , (bin-branch (T₁ σ X) (T₁ σ (η 1)))))))))
≡⟨ refl ⟩
μ (μ (ι (BList , (λ _ →
μ (ι (Cons , (bin-branch (η (σ 0)) (η (σ 1)))))))))
≡⟨ cong (λ u → μ (μ (ι (BList , (λ _ → μ (ι (Cons , u)))))))
(sym (cons-br-distr (σ 0) (σ 1) η)) ⟩
μ (μ (ι (BList , (λ _ →
μ (ι (Cons , (η ∘ (bin-branch (σ 0) (σ 1)))))))))
≡⟨ refl ⟩
blist (cons (σ 0) (σ 1))
≡⟨ refl ⟩
blist (cons X (cons X nil))
≡⟨ refl ⟩
S
∎
term1 : S ↓ bitX
term1 = step bitX bitX (val bitX-val) step1
-- Problem: The substitution needs to match _all_ leaves!!!
-}
| {
"alphanum_fraction": 0.424696873,
"avg_line_length": 25.5836734694,
"ext": "agda",
"hexsha": "1c0ad3acf58efa84553cf3a2ad9ced9369f50afc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "LP/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "LP/Example.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "LP/Example.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2582,
"size": 6268
} |
open import Prelude
open import Nat
open import core
module binders-disjoint-checks where
-- these are fairly mechanical lemmas that show that the
-- judgementally-defined binders-disjoint is really a type-directed
-- function
mutual
lem-bdσ-lam : ∀{σ x τ d} → binders-disjoint-σ σ (·λ_[_]_ x τ d) → binders-disjoint-σ σ d
lem-bdσ-lam BDσId = BDσId
lem-bdσ-lam (BDσSubst x₁ bd) = BDσSubst (lem-bd-lam x₁) (lem-bdσ-lam bd)
lem-bd-lam : ∀{ d1 x τ1 d} → binders-disjoint d1 (·λ_[_]_ x τ1 d) → binders-disjoint d1 d
lem-bd-lam BDConst = BDConst
lem-bd-lam BDVar = BDVar
lem-bd-lam (BDLam bd (UBLam2 x₂ x₃)) = BDLam (lem-bd-lam bd) x₃
lem-bd-lam (BDHole x₁) = BDHole (lem-bdσ-lam x₁)
lem-bd-lam (BDNEHole x₁ bd) = BDNEHole (lem-bdσ-lam x₁) (lem-bd-lam bd)
lem-bd-lam (BDAp bd bd₁) = BDAp (lem-bd-lam bd) (lem-bd-lam bd₁)
lem-bd-lam (BDCast bd) = BDCast (lem-bd-lam bd)
lem-bd-lam (BDFailedCast bd) = BDFailedCast (lem-bd-lam bd)
mutual
lem-bdσ-hole : ∀{d u σ σ'} → binders-disjoint-σ σ ⦇⌜ d ⌟⦈⟨ u , σ' ⟩ → binders-disjoint-σ σ d
lem-bdσ-hole BDσId = BDσId
lem-bdσ-hole (BDσSubst x bd) = BDσSubst (lem-bd-hole x) (lem-bdσ-hole bd)
lem-bd-hole : ∀{d1 d u σ} → binders-disjoint d1 ⦇⌜ d ⌟⦈⟨ u , σ ⟩ → binders-disjoint d1 d
lem-bd-hole BDConst = BDConst
lem-bd-hole BDVar = BDVar
lem-bd-hole (BDLam bd (UBNEHole x₁ x₂)) = BDLam (lem-bd-hole bd) x₂
lem-bd-hole (BDHole x) = BDHole (lem-bdσ-hole x)
lem-bd-hole (BDNEHole x bd) = BDNEHole (lem-bdσ-hole x) (lem-bd-hole bd)
lem-bd-hole (BDAp bd bd₁) = BDAp (lem-bd-hole bd) (lem-bd-hole bd₁)
lem-bd-hole (BDCast bd) = BDCast (lem-bd-hole bd)
lem-bd-hole (BDFailedCast bd) = BDFailedCast (lem-bd-hole bd)
mutual
lem-bdσ-cast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ (d ⟨ τ1 ⇒ τ2 ⟩) → binders-disjoint-σ σ d
lem-bdσ-cast BDσId = BDσId
lem-bdσ-cast (BDσSubst x bd) = BDσSubst (lem-bd-cast x) (lem-bdσ-cast bd)
lem-bd-cast : ∀{d1 d τ1 τ2} → binders-disjoint d1 (d ⟨ τ1 ⇒ τ2 ⟩) → binders-disjoint d1 d
lem-bd-cast BDConst = BDConst
lem-bd-cast BDVar = BDVar
lem-bd-cast (BDLam bd (UBCast x₁)) = BDLam (lem-bd-cast bd) x₁
lem-bd-cast (BDHole x) = BDHole (lem-bdσ-cast x)
lem-bd-cast (BDNEHole x bd) = BDNEHole (lem-bdσ-cast x) (lem-bd-cast bd)
lem-bd-cast (BDAp bd bd₁) = BDAp (lem-bd-cast bd) (lem-bd-cast bd₁)
lem-bd-cast (BDCast bd) = BDCast (lem-bd-cast bd)
lem-bd-cast (BDFailedCast bd) = BDFailedCast (lem-bd-cast bd)
mutual
lem-bdσ-failedcast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) → binders-disjoint-σ σ d
lem-bdσ-failedcast BDσId = BDσId
lem-bdσ-failedcast (BDσSubst x bd) = BDσSubst (lem-bd-failedcast x) (lem-bdσ-failedcast bd)
lem-bd-failedcast : ∀{d1 d τ1 τ2} → binders-disjoint d1 (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) → binders-disjoint d1 d
lem-bd-failedcast BDConst = BDConst
lem-bd-failedcast BDVar = BDVar
lem-bd-failedcast (BDLam bd (UBFailedCast x₁)) = BDLam (lem-bd-failedcast bd) x₁
lem-bd-failedcast (BDHole x) = BDHole (lem-bdσ-failedcast x)
lem-bd-failedcast (BDNEHole x bd) = BDNEHole (lem-bdσ-failedcast x) (lem-bd-failedcast bd)
lem-bd-failedcast (BDAp bd bd₁) = BDAp (lem-bd-failedcast bd) (lem-bd-failedcast bd₁)
lem-bd-failedcast (BDCast bd) = BDCast (lem-bd-failedcast bd)
lem-bd-failedcast (BDFailedCast bd) = BDFailedCast (lem-bd-failedcast bd)
mutual
lem-bdσ-into-cast : ∀{σ d τ1 τ2} → binders-disjoint-σ σ d → binders-disjoint-σ σ (d ⟨ τ1 ⇒ τ2 ⟩)
lem-bdσ-into-cast BDσId = BDσId
lem-bdσ-into-cast (BDσSubst x bd) = BDσSubst (lem-bd-into-cast x) (lem-bdσ-into-cast bd)
lem-bd-into-cast : ∀{d1 d2 τ1 τ2} → binders-disjoint d1 d2 → binders-disjoint d1 (d2 ⟨ τ1 ⇒ τ2 ⟩)
lem-bd-into-cast BDConst = BDConst
lem-bd-into-cast BDVar = BDVar
lem-bd-into-cast (BDLam bd x₁) = BDLam (lem-bd-into-cast bd) (UBCast x₁)
lem-bd-into-cast (BDHole x) = BDHole (lem-bdσ-into-cast x)
lem-bd-into-cast (BDNEHole x bd) = BDNEHole (lem-bdσ-into-cast x) (lem-bd-into-cast bd)
lem-bd-into-cast (BDAp bd bd₁) = BDAp (lem-bd-into-cast bd) (lem-bd-into-cast bd₁)
lem-bd-into-cast (BDCast bd) = BDCast (lem-bd-into-cast bd)
lem-bd-into-cast (BDFailedCast bd) = BDFailedCast (lem-bd-into-cast bd)
| {
"alphanum_fraction": 0.6514059958,
"avg_line_length": 51.2261904762,
"ext": "agda",
"hexsha": "dfb56e6feb00feb0467bbae1fe9a9bc5ce11596e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "binders-disjoint-checks.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "binders-disjoint-checks.agda",
"max_line_length": 106,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "binders-disjoint-checks.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 1886,
"size": 4303
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Left inverses
------------------------------------------------------------------------
module Function.LeftInverse where
open import Data.Product
open import Level
import Relation.Binary.EqReasoning as EqReasoning
open import Relation.Binary
open import Function.Equality as Eq
using (_⟶_; _⟨$⟩_) renaming (_∘_ to _⟪∘⟫_)
open import Function.Equivalence using (Equivalence)
open import Function.Injection using (Injective; Injection)
import Relation.Binary.PropositionalEquality as P
-- Left and right inverses.
_LeftInverseOf_ :
∀ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} →
To ⟶ From → From ⟶ To → Set _
_LeftInverseOf_ {From = From} f g = ∀ x → f ⟨$⟩ (g ⟨$⟩ x) ≈ x
where open Setoid From
_RightInverseOf_ :
∀ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} →
To ⟶ From → From ⟶ To → Set _
f RightInverseOf g = g LeftInverseOf f
-- The set of all left inverses between two setoids.
record LeftInverse {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) (To : Setoid t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
field
to : From ⟶ To
from : To ⟶ From
left-inverse-of : from LeftInverseOf to
private
open module F = Setoid From
open module T = Setoid To
open EqReasoning From
injective : Injective to
injective {x} {y} eq = begin
x ≈⟨ F.sym (left-inverse-of x) ⟩
from ⟨$⟩ (to ⟨$⟩ x) ≈⟨ Eq.cong from eq ⟩
from ⟨$⟩ (to ⟨$⟩ y) ≈⟨ left-inverse-of y ⟩
y ∎
injection : Injection From To
injection = record { to = to; injective = injective }
equivalence : Equivalence From To
equivalence = record
{ to = to
; from = from
}
to-from : ∀ {x y} → to ⟨$⟩ x T.≈ y → from ⟨$⟩ y F.≈ x
to-from {x} {y} to-x≈y = begin
from ⟨$⟩ y ≈⟨ Eq.cong from (T.sym to-x≈y) ⟩
from ⟨$⟩ (to ⟨$⟩ x) ≈⟨ left-inverse-of x ⟩
x ∎
-- The set of all right inverses between two setoids.
RightInverse : ∀ {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) (To : Setoid t₁ t₂) → Set _
RightInverse From To = LeftInverse To From
-- The set of all left inverses from one set to another. (Read A ↞ B
-- as "surjection from B to A".)
infix 3 _↞_
_↞_ : ∀ {f t} → Set f → Set t → Set _
From ↞ To = LeftInverse (P.setoid From) (P.setoid To)
-- Identity and composition.
id : ∀ {s₁ s₂} {S : Setoid s₁ s₂} → LeftInverse S S
id {S = S} = record
{ to = Eq.id
; from = Eq.id
; left-inverse-of = λ _ → Setoid.refl S
}
infixr 9 _∘_
_∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂}
{F : Setoid f₁ f₂} {M : Setoid m₁ m₂} {T : Setoid t₁ t₂} →
LeftInverse M T → LeftInverse F M → LeftInverse F T
_∘_ {F = F} f g = record
{ to = to f ⟪∘⟫ to g
; from = from g ⟪∘⟫ from f
; left-inverse-of = λ x → begin
from g ⟨$⟩ (from f ⟨$⟩ (to f ⟨$⟩ (to g ⟨$⟩ x))) ≈⟨ Eq.cong (from g) (left-inverse-of f (to g ⟨$⟩ x)) ⟩
from g ⟨$⟩ (to g ⟨$⟩ x) ≈⟨ left-inverse-of g x ⟩
x ∎
}
where
open LeftInverse
open EqReasoning F
| {
"alphanum_fraction": 0.5316533497,
"avg_line_length": 30.1296296296,
"ext": "agda",
"hexsha": "c4be351c4a876c582340e5942e29fe2070ae700f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Function/LeftInverse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Function/LeftInverse.agda",
"max_line_length": 109,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Function/LeftInverse.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1108,
"size": 3254
} |
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Canonical model equipment for Kripke-style semantics.
module BasicIS4.Equipment.KripkeDyadicCanonical where
open import BasicIS4.Syntax.Common public
module Syntax
(_⊢_ : Cx² Ty Ty → Ty → Set)
(mono²⊢ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ A → Π′ ⊢ A)
(up : ∀ {A Π} → Π ⊢ (□ A) → Π ⊢ (□ □ A))
(down : ∀ {A Π} → Π ⊢ (□ A) → Π ⊢ A)
(lift : ∀ {A Γ Δ} → (Γ ⁏ Δ) ⊢ A → (□⋆ Γ ⁏ Δ) ⊢ (□ A))
where
-- Worlds.
Worldᶜ : Set
Worldᶜ = Cx² Ty Ty
-- Intuitionistic accessibility.
infix 3 _≤ᶜ_
_≤ᶜ_ : Worldᶜ → Worldᶜ → Set
_≤ᶜ_ = _⊆²_
refl≤ᶜ : ∀ {w} → w ≤ᶜ w
refl≤ᶜ = refl⊆²
trans≤ᶜ : ∀ {w w′ w″} → w ≤ᶜ w′ → w′ ≤ᶜ w″ → w ≤ᶜ w″
trans≤ᶜ = trans⊆²
bot≤ᶜ : ∀ {w} → ∅² ≤ᶜ w
bot≤ᶜ = bot⊆²
-- The canonical modal accessibility, based on the T axiom.
infix 3 _Rᶜ_
_Rᶜ_ : Worldᶜ → Worldᶜ → Set
w Rᶜ w′ = ∀ {A} → w ⊢ (□ A) → w′ ⊢ A
reflRᶜ : ∀ {w} → w Rᶜ w
reflRᶜ = down
transRᶜ : ∀ {w w′ w″} → w Rᶜ w′ → w′ Rᶜ w″ → w Rᶜ w″
transRᶜ ζ ζ′ = ζ′ ∘ ζ ∘ up
botRᶜ : ∀ {w} → ∅² Rᶜ w
botRᶜ = mono²⊢ bot≤ᶜ ∘ down
liftRᶜ : ∀ {Γ Δ} → Γ ⁏ Δ Rᶜ □⋆ Γ ⁏ Δ
liftRᶜ = down ∘ lift ∘ down
-- Composition of accessibility.
infix 3 _≤⨾Rᶜ_
_≤⨾Rᶜ_ : Worldᶜ → Worldᶜ → Set
_≤⨾Rᶜ_ = _≤ᶜ_ ⨾ _Rᶜ_
infix 3 _R⨾≤ᶜ_
_R⨾≤ᶜ_ : Worldᶜ → Worldᶜ → Set
_R⨾≤ᶜ_ = _Rᶜ_ ⨾ _≤ᶜ_
refl≤⨾Rᶜ : ∀ {w} → w ≤⨾Rᶜ w
refl≤⨾Rᶜ {w} = w , (refl≤ᶜ , reflRᶜ)
reflR⨾≤ᶜ : ∀ {w} → w R⨾≤ᶜ w
reflR⨾≤ᶜ {w} = w , (reflRᶜ , refl≤ᶜ)
-- Persistence condition, after Iemhoff; included by Ono.
--
-- w′ v′ → v′
-- ◌───R───● → ●
-- │ → ╱
-- ≤ ξ,ζ → R
-- │ → ╱
-- ● → ●
-- w → w
≤⨾R→Rᶜ : ∀ {v′ w} → w ≤⨾Rᶜ v′ → w Rᶜ v′
≤⨾R→Rᶜ (w′ , (ξ , ζ)) = ζ ∘ mono²⊢ ξ
-- Brilliance condition, after Iemhoff.
--
-- v′ → v′
-- ● → ●
-- │ → ╱
-- ζ,ξ ≤ → R
-- │ → ╱
-- ●───R───◌ → ●
-- w v → w
R⨾≤→Rᶜ : ∀ {w v′} → w R⨾≤ᶜ v′ → w Rᶜ v′
R⨾≤→Rᶜ (v , (ζ , ξ)) = mono²⊢ ξ ∘ ζ
-- Minor persistence condition, included by Božić and Došen.
--
-- w′ v′ → v′
-- ◌───R───● → ●
-- │ → │
-- ≤ ξ,ζ → ≤
-- │ → │
-- ● → ●───R───◌
-- w → w v
--
-- w″ → w″
-- ● → ●
-- │ → │
-- ξ′,ζ′ ≤ → │
-- │ → │
-- ●───R───◌ → ≤
-- │ v′ → │
-- ξ,ζ ≤ → │
-- │ → │
-- ●───R───◌ → ●───────R───────◌
-- w v → w v″
≤⨾R→R⨾≤ᶜ : ∀ {v′ w} → w ≤⨾Rᶜ v′ → w R⨾≤ᶜ v′
≤⨾R→R⨾≤ᶜ {v′} ξ,ζ = v′ , (≤⨾R→Rᶜ ξ,ζ , refl≤ᶜ)
transR⨾≤ᶜ : ∀ {w′ w w″} → w R⨾≤ᶜ w′ → w′ R⨾≤ᶜ w″ → w R⨾≤ᶜ w″
transR⨾≤ᶜ {w′} (v , (ζ , ξ)) (v′ , (ζ′ , ξ′)) = let v″ , (ζ″ , ξ″) = ≤⨾R→R⨾≤ᶜ (w′ , (ξ , ζ′))
in v″ , (transRᶜ ζ ζ″ , trans≤ᶜ ξ″ ξ′)
≤→Rᶜ : ∀ {v′ w} → w ≤ᶜ v′ → w Rᶜ v′
≤→Rᶜ {v′} ξ = ≤⨾R→Rᶜ (v′ , (ξ , reflRᶜ))
-- Minor brilliance condition, included by Ewald and Alechina et al.
--
-- v′ → w′ v′
-- ● → ◌───R───●
-- │ → │
-- ζ,ξ ≤ → ≤
-- │ → │
-- ●───R───◌ → ●
-- w v → w
--
-- v′ w″ → v″ w″
-- ◌───R───● → ◌───────R───────●
-- │ → │
-- ≤ ξ′,ζ′ → │
-- v │ → │
-- ◌───R───● → ≤
-- │ w′ → │
-- ≤ ξ,ζ → │
-- │ → │
-- ● → ●
-- w → w
R⨾≤→≤⨾Rᶜ : ∀ {w v′} → w R⨾≤ᶜ v′ → w ≤⨾Rᶜ v′
R⨾≤→≤⨾Rᶜ {w} ζ,ξ = w , (refl≤ᶜ , R⨾≤→Rᶜ ζ,ξ)
trans≤⨾Rᶜ : ∀ {w′ w w″} → w ≤⨾Rᶜ w′ → w′ ≤⨾Rᶜ w″ → w ≤⨾Rᶜ w″
trans≤⨾Rᶜ {w′} (v , (ξ , ζ)) (v′ , (ξ′ , ζ′)) = let v″ , (ξ″ , ζ″) = R⨾≤→≤⨾Rᶜ (w′ , (ζ , ξ′))
in v″ , (trans≤ᶜ ξ ξ″ , transRᶜ ζ″ ζ′)
≤→Rᶜ′ : ∀ {w v′} → w ≤ᶜ v′ → w Rᶜ v′
≤→Rᶜ′ {w} ξ = R⨾≤→Rᶜ (w , (reflRᶜ , ξ))
-- Infimum (greatest lower bound) of accessibility.
--
-- w′
-- ●
-- │
-- ≤ ξ,ζ
-- │
-- ◌───R───●
-- w v
infix 3 _≤⊓Rᶜ_
_≤⊓Rᶜ_ : Worldᶜ → Worldᶜ → Set
_≤⊓Rᶜ_ = _≤ᶜ_ ⊓ _Rᶜ_
infix 3 _R⊓≤ᶜ_
_R⊓≤ᶜ_ : Worldᶜ → Worldᶜ → Set
_R⊓≤ᶜ_ = _Rᶜ_ ⊓ _≤ᶜ_
≤⊓R→R⊓≤ᶜ : ∀ {w′ v} → w′ ≤⊓Rᶜ v → v R⊓≤ᶜ w′
≤⊓R→R⊓≤ᶜ (w , (ξ , ζ)) = w , (ζ , ξ)
R⊓≤→≤⊓Rᶜ : ∀ {w′ v} → v R⊓≤ᶜ w′ → w′ ≤⊓Rᶜ v
R⊓≤→≤⊓Rᶜ (w , (ζ , ξ)) = w , (ξ , ζ)
-- Supremum (least upper bound) of accessibility.
--
-- w′ v′
-- ●───R───◌
-- │
-- ξ,ζ ≤
-- │
-- ●
-- v
infix 3 _≤⊔Rᶜ_
_≤⊔Rᶜ_ : Worldᶜ → Worldᶜ → Set
_≤⊔Rᶜ_ = _≤ᶜ_ ⊔ _Rᶜ_
infix 3 _R⊔≤ᶜ_
_R⊔≤ᶜ_ : Worldᶜ → Worldᶜ → Set
_R⊔≤ᶜ_ = _Rᶜ_ ⊔ _≤ᶜ_
≤⊔R→R⊔≤ᶜ : ∀ {w′ v} → w′ ≤⊔Rᶜ v → v R⊔≤ᶜ w′
≤⊔R→R⊔≤ᶜ (v′ , (ξ , ζ)) = v′ , (ζ , ξ)
R⊔≤→≤⊔Rᶜ : ∀ {w′ v} → v R⊔≤ᶜ w′ → w′ ≤⊔Rᶜ v
R⊔≤→≤⊔Rᶜ (v′ , (ζ , ξ)) = v′ , (ξ , ζ)
-- Infimum-to-supremum condition, included by Ewald.
--
-- w′ → w′ v′
-- ● → ●───R───◌
-- │ → │
-- ≤ ξ,ζ → ≤
-- │ → │
-- ◌───R───● → ●
-- w v → v
-- NOTE: This could be more precise.
≤⊓R→≤⊔Rᶜ : ∀ {v w′} → w′ ≤⊓Rᶜ v → v ≤⊔Rᶜ w′
≤⊓R→≤⊔Rᶜ {v} {w′} (w , (ξ , ζ)) =
(w′ ⧺² v) , (weak⊆²⧺₂ , mono²⊢ (weak⊆²⧺₁ v) ∘ down)
-- Supremum-to-infimum condition.
--
-- w′ v′ → w′
-- ●───R───◌ → ●
-- │ → │
-- ξ,ζ ≤ → ≤
-- │ → │
-- ● → ◌───R───●
-- v → w v
-- NOTE: This could be more precise.
≤⊔R→≤⊓Rᶜ : ∀ {w′ v} → v ≤⊔Rᶜ w′ → w′ ≤⊓Rᶜ v
≤⊔R→≤⊓Rᶜ (v′ , (ξ , ζ)) = ∅² , (bot≤ᶜ , botRᶜ)
| {
"alphanum_fraction": 0.29125,
"avg_line_length": 25.4980079681,
"ext": "agda",
"hexsha": "20acf3535af8c94d9aa0185d4b06bb44f290fcb1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Equipment/KripkeDyadicCanonical.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Equipment/KripkeDyadicCanonical.agda",
"max_line_length": 95,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Equipment/KripkeDyadicCanonical.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 3693,
"size": 6400
} |
{-
Definition of the Klein bottle as a HIT
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.KleinBottle.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
open import Cubical.Data.Int public renaming (_+_ to _+Int_ ; +-assoc to +Int-assoc; +-comm to +Int-comm)
open import Cubical.Data.Prod
open import Cubical.Data.Sigma
open import Cubical.HITs.S1
open import Cubical.HITs.PropositionalTruncation
open import Cubical.HITs.KleinBottle.Base
loop1 : S¹ → KleinBottle
loop1 base = point
loop1 (loop i) = line1 i
invS¹Loop : S¹ → Set
invS¹Loop base = S¹
invS¹Loop (loop i) = invS¹Path i
loop1Inv : (s : S¹) → loop1 (inv s) ≡ loop1 s
loop1Inv base = line2
loop1Inv (loop i) = square i
twist : (s : S¹) → PathP (λ i → invS¹Path i) s (inv s)
twist s i = glue (λ {(i = i0) → s; (i = i1) → inv s}) (inv s)
twistBaseLoop : (s : S¹) → invS¹Loop s
twistBaseLoop base = base
twistBaseLoop (loop i) = twist base i
kleinBottle≃Σ : KleinBottle ≃ Σ S¹ invS¹Loop
kleinBottle≃Σ = isoToEquiv (iso fro to froTo toFro)
where
fro : KleinBottle → Σ S¹ invS¹Loop
fro point = (base , base)
fro (line1 i) = (base , loop i)
fro (line2 j) = (loop (~ j) , twist base (~ j))
fro (square i j) = (loop (~ j) , twist (loop i) (~ j))
toLoopFiller : (j : I) → ua invS¹Equiv j → I → KleinBottle
toLoopFiller j g l =
hfill
(λ l → λ
{ (j = i0) → loop1Inv g l
; (j = i1) → loop1 g
})
(inS (loop1 (unglue (j ∨ ~ j) g)))
l
to : Σ S¹ invS¹Loop → KleinBottle
to (base , s) = loop1 s
to (loop j , g) = toLoopFiller j g i1
toFro : (a : KleinBottle) → to (fro a) ≡ a
toFro point = refl
toFro (line1 i) = refl
toFro (line2 j) k = lUnit line2 (~ k) j
toFro (square i j) k = lUnit (square i) (~ k) j
froLoop1 : (s : S¹) → fro (loop1 s) ≡ (base , s)
froLoop1 base = refl
froLoop1 (loop i) = refl
froLoop1Inv :
PathP (λ k → (s : S¹) → froLoop1 (inv s) k ≡ froLoop1 s k)
(λ s l → fro (loop1Inv s l))
(λ s l → loop (~ l) , twist s (~ l))
froLoop1Inv k base l = loop (~ l) , twist base (~ l)
froLoop1Inv k (loop i) l = loop (~ l) , twist (loop i) (~ l)
froTo : (a : Σ S¹ invS¹Loop) → fro (to a) ≡ a
froTo (base , s) = froLoop1 s
froTo (loop j , g) k =
hcomp
(λ l → λ
{ (j = i0) → froLoop1Inv k g l
; (j = i1) → froLoop1 g k
; (k = i0) → fro (toLoopFiller j g l)
; (k = i1) →
( loop (j ∨ ~ l)
, glue
(λ
{ (j = i0) (l = i1) → g
; (j = i1) → g
; (l = i0) → unglue (j ∨ ~ j) g
})
(unglue (j ∨ ~ j) g)
)
})
(froLoop1 (unglue (j ∨ ~ j) g) k)
isGroupoidKleinBottle : isGroupoid KleinBottle
isGroupoidKleinBottle =
transport (λ i → isGroupoid (ua kleinBottle≃Σ (~ i)))
(isOfHLevelΣ 3 isGroupoidS¹
(λ s →
recPropTrunc
(isPropIsOfHLevel 3 (invS¹Loop s))
(λ p → subst (λ s → isGroupoid (invS¹Loop s)) p isGroupoidS¹)
(isConnectedS¹ s)))
-- Transport across the following is too slow :(
ΩKlein≡Int² : Path KleinBottle point point ≡ Int × Int
ΩKlein≡Int² =
Path KleinBottle point point
≡⟨ (λ i → basePath i ≡ basePath i) ⟩
Path (Σ S¹ invS¹Loop) (base , base) (base , base)
≡⟨ sym (ua Σ≡) ⟩
Σ ΩS¹ (λ p → PathP (λ j → invS¹Loop (p j)) base base)
≡⟨ (λ i → Σ ΩS¹ (λ p → PathP (λ j → invS¹Loop (p (j ∨ i))) (twistBaseLoop (p i)) base)) ⟩
Σ ΩS¹ (λ _ → ΩS¹)
≡⟨ sym A×B≡A×ΣB ⟩
ΩS¹ × ΩS¹
≡⟨ (λ i → ΩS¹≡Int i × ΩS¹≡Int i) ⟩
Int × Int ∎
where
basePath : PathP (λ i → ua kleinBottle≃Σ i) point (base , base)
basePath i = glue (λ {(i = i0) → point; (i = i1) → base , base}) (base , base)
-- We can at least define the winding function directly and get results on small examples
windingKlein : Path KleinBottle point point → Int × Int
windingKlein p = (z₀ , z₁)
where
step₀ : Path (Σ S¹ invS¹Loop) (base , base) (base , base)
step₀ = (λ i → kleinBottle≃Σ .fst (p i))
z₀ : Int
z₀ = winding (λ i → kleinBottle≃Σ .fst (p i) .fst)
z₁ : Int
z₁ = winding
(transport
(λ i → PathP (λ j → invS¹Loop (step₀ (j ∨ i) .fst)) (twistBaseLoop (step₀ i .fst)) base)
(cong snd step₀))
_ : windingKlein line1 ≡ (pos 0 , pos 1)
_ = refl
_ : windingKlein line2 ≡ (negsuc 0 , pos 0)
_ = refl
_ : windingKlein (line1 ∙ line2) ≡ (negsuc 0 , negsuc 0)
_ = refl
_ : windingKlein (line1 ∙ line2 ∙ line1) ≡ (negsuc 0 , pos 0)
_ = refl
| {
"alphanum_fraction": 0.5941090453,
"avg_line_length": 29.1890243902,
"ext": "agda",
"hexsha": "f0066e83763d3ccecea546f78f8fb4ebed6c56e0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/KleinBottle/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/KleinBottle/Properties.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/KleinBottle/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1906,
"size": 4787
} |
-- An ATP hint must be used with functions.
-- This error is detected by TypeChecking.Rules.Decl.
module ATPBadHint2 where
data Bool : Set where
false true : Bool
{-# ATP hint Bool #-}
| {
"alphanum_fraction": 0.7120418848,
"avg_line_length": 17.3636363636,
"ext": "agda",
"hexsha": "09f054616bfd65ea80777571553a03ed7537c466",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/fail/ATPBadHint2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/fail/ATPBadHint2.agda",
"max_line_length": 53,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/fail/ATPBadHint2.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 47,
"size": 191
} |
-- Instances of semantic kits
module Semantics.Substitution.Instances where
open import Syntax.Types
open import Syntax.Context renaming (_,_ to _,,_)
open import Syntax.Terms
open import Syntax.Substitution.Kits
open import Syntax.Substitution.Instances
open import Semantics.Types
open import Semantics.Context
open import Semantics.Terms
open import Semantics.Substitution.Kits
open import Semantics.Substitution.Traversal
open import CategoryTheory.Categories using (ext)
open import CategoryTheory.NatTrans
open import CategoryTheory.Functor
open import CategoryTheory.Monad
open import CategoryTheory.Comonad
open import CategoryTheory.Instances.Reactive renaming (top to ⊤)
open import TemporalOps.Diamond
open import TemporalOps.Box
open import TemporalOps.Common.Rewriting
open import Data.Sum
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.HeterogeneousEquality as ≅ using (_≅_)
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
open ≡-Reasoning
private module F-□ = Functor F-□
open Comonad W-□
-- Denotation of variable kits
⟦𝒱ar⟧ : ⟦Kit⟧ 𝒱ar
⟦𝒱ar⟧ = record
{ ⟦_⟧ = ⟦_⟧-var
; ⟦𝓋⟧ = λ A Δ → refl
; ⟦𝓉⟧ = ⟦𝓉⟧-var
; ⟦𝓌⟧ = λ B T → refl
; ⟦𝒶⟧ = ⟦𝒶⟧-var
}
where
open Kit 𝒱ar
⟦_⟧-var : ∀{A Γ} → Var Γ A → ⟦ Γ ⟧ₓ ⇴ ⟦ A ⟧ⱼ
⟦ top ⟧-var n (_ , ⟦A⟧) = ⟦A⟧
⟦ pop v ⟧-var n (⟦Γ⟧ , _) = ⟦ v ⟧-var n ⟦Γ⟧
⟦𝓉⟧-var : ∀{A Γ} → (x : Var Γ A)
-> ⟦ 𝓉 x ⟧ₘ ≈ ⟦ x ⟧-var
⟦𝓉⟧-var {A now} top = refl
⟦𝓉⟧-var {A always} top = refl
⟦𝓉⟧-var {A now} (pop x) = ⟦𝓉⟧-var x
⟦𝓉⟧-var {A always} (pop x) = ⟦𝓉⟧-var x
⟦𝒶⟧-var : ∀{A Δ} → (x : Var Δ (A always))
-> F-□.fmap ⟦ 𝒶 x ⟧-var ∘ ⟦ Δ ˢ⟧□ ≈ δ.at ⟦ A ⟧ₜ ∘ ⟦ x ⟧-var
⟦𝒶⟧-var top = refl
⟦𝒶⟧-var (pop {B = B now} x) = ⟦𝒶⟧-var x
⟦𝒶⟧-var (pop {B = B always} x) = ⟦𝒶⟧-var x
-- Denotation of term kits
⟦𝒯erm⟧ : ⟦Kit⟧ 𝒯erm
⟦𝒯erm⟧ = record
{ ⟦_⟧ = ⟦_⟧ₘ
; ⟦𝓋⟧ = λ A Δ → refl
; ⟦𝓉⟧ = λ T → refl
; ⟦𝓌⟧ = ⟦𝓌⟧-term
; ⟦𝒶⟧ = ⟦𝒶⟧-term
}
where
open Kit 𝒯erm
open ⟦Kit⟧ ⟦𝒱ar⟧
open K
open ⟦K⟧ ⟦𝒱ar⟧
⟦𝓌⟧-term : ∀ B {Δ A} → (M : Term Δ A)
-> ⟦ 𝓌 {B} M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ π₁
⟦𝓌⟧-term B {Δ} M {n} {⟦Δ⟧ , ⟦B⟧}
rewrite traverse-sound ⟦𝒱ar⟧ (_⁺_ {B} (idₛ 𝒱ar) 𝒱ar) M {n} {⟦Δ⟧ , ⟦B⟧}
| ⟦⁺⟧ B {Δ} (idₛ 𝒱ar) {n} {⟦Δ⟧ , ⟦B⟧}
| ⟦idₛ⟧ {Δ} {n} {⟦Δ⟧} = refl
⟦𝒶⟧-term : ∀{A Δ} (M : Δ ⊢ A always)
-> F-□.fmap ⟦ 𝒶 M ⟧ₘ ∘ ⟦ Δ ˢ⟧□ ≈ δ.at ⟦ A ⟧ₜ ∘ ⟦ M ⟧ₘ
⟦𝒶⟧-term {A} {∙} (var ())
⟦𝒶⟧-term {A} {∙} (stable M) = refl
⟦𝒶⟧-term {A} {Δ ,, B now} (var (pop x)) = ⟦𝒶⟧-term (var x)
⟦𝒶⟧-term {A} {Δ ,, B now} (stable M) = ⟦𝒶⟧-term {A} {Δ} (stable M)
⟦𝒶⟧-term {.B} {Δ ,, B always} (var top) = refl
⟦𝒶⟧-term {A} {Δ ,, B always} (var (pop x)) {n} {⟦Δ⟧ , □⟦B⟧} = ext lemma
where
lemma : ∀ l -> ⟦ traverse 𝒱ar (_⁺_ {B always} (idₛ 𝒱ar) 𝒱ar) (𝒶 (var x)) ⟧ₘ l (⟦ Δ ˢ⟧□ n ⟦Δ⟧ l , □⟦B⟧)
≡ ⟦ var x ⟧ₘ n ⟦Δ⟧
lemma l rewrite traverse-sound ⟦𝒱ar⟧ (_⁺_ {B always} (idₛ 𝒱ar) 𝒱ar) (𝒶 (var x)) {l} {⟦ Δ ˢ⟧□ n ⟦Δ⟧ l , □⟦B⟧}
| ⟦⁺⟧ (B always) {Δ ˢ} (idₛ 𝒱ar) {l} {⟦ Δ ˢ⟧□ n ⟦Δ⟧ l , □⟦B⟧}
| ⟦idₛ⟧ {Δ ˢ} {l} {⟦ Δ ˢ⟧□ n ⟦Δ⟧ l}
| □-≡ n l (⟦𝒶⟧-term (var x) {n} {⟦Δ⟧}) l = refl
⟦𝒶⟧-term {A} {Δ ,, B always} (stable M) {n} {⟦Δ⟧ , □⟦B⟧} = ext λ x → ext (lemma2 x)
where
lemma1 : ∀ Δ (n l m : ℕ) (⟦Δ⟧ : ⟦ Δ ⟧ₓ n)
-> (F-□.fmap ⟦ Δ ˢ ˢ⟧□ ∘ ⟦ Δ ˢ⟧□) n ⟦Δ⟧ l m
≡ (F-□.fmap ⟦ Δ ˢ ˢ⟧ ∘ ⟦ Δ ˢ⟧□) n ⟦Δ⟧ m
lemma1 Δ n l m ⟦Δ⟧ rewrite □-≡ l m (□-≡ n l (⟦ˢ⟧□-twice Δ {n} {⟦Δ⟧}) l) m
= □-≡ n m (⟦ˢ⟧-comm Δ) m
lemma2 : ∀ l j
-> (F-□.fmap ⟦ 𝒶 {Δ ,, B always} (stable M) ⟧ₘ ∘ ⟦ Δ ,, B always ˢ⟧□) n (⟦Δ⟧ , □⟦B⟧) l j
≡ (δ.at ⟦ A ⟧ₜ ∘ ⟦ stable {Δ ,, B always} M ⟧ₘ) n (⟦Δ⟧ , □⟦B⟧) l j
lemma2 l j =
begin
⟦ subst (λ x → x ,, B always ⊢ A now) (ˢ-idemp′ Δ) M ⟧ₘ j (⟦ Δ ˢ ˢ⟧□ l (⟦ Δ ˢ⟧□ n ⟦Δ⟧ l) j , □⟦B⟧)
≡⟨ cong (λ x → ⟦ subst (λ x → x ,, B always ⊢ A now) (ˢ-idemp′ Δ) M ⟧ₘ j (x , □⟦B⟧)) (lemma1 Δ n l j ⟦Δ⟧) ⟩
⟦ subst (λ x → x ,, B always ⊢ A now) (ˢ-idemp′ Δ) M ⟧ₘ j (⟦ Δ ˢ ˢ⟧ j (⟦ Δ ˢ⟧□ n ⟦Δ⟧ j) , □⟦B⟧)
≡⟨ cong (λ x → ⟦ subst (λ x → x ,, B always ⊢ A now) (ˢ-idemp′ Δ) M ⟧ₘ j (x , □⟦B⟧)) (⟦ˢ⟧-rew Δ n j ⟦Δ⟧) ⟩
⟦ subst (λ x → x ,, B always ⊢ A now) (ˢ-idemp′ Δ) M ⟧ₘ j (rew (⟦ˢ⟧-idemp Δ j) (⟦ Δ ˢ⟧□ n ⟦Δ⟧ j) , □⟦B⟧)
≅⟨ full-eq j M-eq (≅.sym (rew-to-≅ (⟦ˢ⟧-idemp Δ j))) □⟦B⟧ ⟩
⟦ M ⟧ₘ j (⟦ Δ ˢ⟧□ n ⟦Δ⟧ j , □⟦B⟧)
∎
where
ˢ-idemp′ : ∀ Γ -> Γ ˢ ≡ Γ ˢ ˢ
ˢ-idemp′ Γ = sym (ˢ-idemp Γ)
⟦ˢ⟧-idemp : ∀ Δ n -> ⟦ Δ ˢ ⟧ₓ n ≡ ⟦ Δ ˢ ˢ ⟧ₓ n
⟦ˢ⟧-idemp Δ n = cong (λ x → ⟦ x ⟧ₓ n) (ˢ-idemp′ Δ)
rew-lemma : ∀ Δ A n l ⟦Δ⟧ □⟦A⟧
-> (rew (cong (λ x → ⟦ x ⟧ₓ l) (ˢ-idemp′ Δ)) (⟦ Δ ˢ⟧□ n ⟦Δ⟧ l) , □⟦A⟧)
≡ rew (cong (λ x → ⟦ x ⟧ₓ l) (ˢ-idemp′ (Δ ,, A always))) (⟦ Δ ˢ⟧□ n ⟦Δ⟧ l , □⟦A⟧)
rew-lemma Δ A n l ⟦Δ⟧ □⟦A⟧ rewrite ˢ-idemp Δ = refl
⟦ˢ⟧-rew : ∀ Δ n l ⟦Δ⟧ -> ⟦ Δ ˢ ˢ⟧ l (⟦ Δ ˢ⟧□ n ⟦Δ⟧ l)
≡ rew (⟦ˢ⟧-idemp Δ l) (⟦ Δ ˢ⟧□ n ⟦Δ⟧ l)
⟦ˢ⟧-rew ∙ n l ⟦Δ⟧ = refl
⟦ˢ⟧-rew (Δ ,, A now) n l (⟦Δ⟧ , ⟦A⟧) = ⟦ˢ⟧-rew Δ n l ⟦Δ⟧
⟦ˢ⟧-rew (Δ ,, A always) n l (⟦Δ⟧ , □⟦A⟧)
rewrite ⟦ˢ⟧-rew Δ n l ⟦Δ⟧
| rew-lemma Δ A n l ⟦Δ⟧ □⟦A⟧ = refl
M-eq : subst (λ x → x ,, B always ⊢ A now) (ˢ-idemp′ Δ) M ≅ M
M-eq = ≅.≡-subst-removable (λ x → x ,, B always ⊢ A now) (ˢ-idemp′ Δ) M
full-eq : ∀ j {M₁ : Δ ˢ ˢ ,, B always ⊢ A now}
{M₂ : Δ ˢ ,, B always ⊢ A now}
{⟦Δ⟧₁ : ⟦ Δ ˢ ˢ ⟧ₓ j} {⟦Δ⟧₂ : ⟦ Δ ˢ ⟧ₓ j}
(p-M : M₁ ≅ M₂) (p-⟦Δ⟧ : ⟦Δ⟧₁ ≅ ⟦Δ⟧₂) □⟦B⟧
-> ⟦ M₁ ⟧ₘ j (⟦Δ⟧₁ , □⟦B⟧) ≅ ⟦ M₂ ⟧ₘ j (⟦Δ⟧₂ , □⟦B⟧)
full-eq j p-M p-⟦Δ⟧ □⟦B⟧ rewrite ˢ-idemp Δ
= ≅.cong₂ ((λ x y → ⟦ x ⟧ₘ j (y , □⟦B⟧))) p-M p-⟦Δ⟧
| {
"alphanum_fraction": 0.4325358852,
"avg_line_length": 39.9363057325,
"ext": "agda",
"hexsha": "fecb5e080ba9b7b8eaff224aba304392bc43bbfa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Semantics/Substitution/Instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Semantics/Substitution/Instances.agda",
"max_line_length": 120,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Semantics/Substitution/Instances.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 3482,
"size": 6270
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A larger example for sublists (propositional case):
-- Simply-typed lambda terms with globally unique variables
-- (both bound and free ones).
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Sublist.Propositional.Example.UniqueBoundVariables (Base : Set) where
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; subst; module ≡-Reasoning)
open ≡-Reasoning
open import Data.List.Base using (List; []; _∷_; [_])
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.All using (Null; [])
open import Data.List.Relation.Binary.Sublist.Propositional using
( _⊆_; []; _∷_; _∷ʳ_
; ⊆-refl; ⊆-trans; minimum
; from∈; to∈; lookup
; ⊆-pushoutˡ; RawPushout
; Disjoint; DisjointUnion
; separateˡ; Separation
)
open import Data.List.Relation.Binary.Sublist.Propositional.Properties using
( ∷ˡ⁻
; ⊆-trans-assoc
; from∈∘to∈; from∈∘lookup; lookup-⊆-trans
; ⊆-pushoutˡ-is-wpo
; Disjoint→DisjointUnion; DisjointUnion→Disjoint
; Disjoint-sym; DisjointUnion-inj₁; DisjointUnion-inj₂; DisjointUnion-[]ʳ
; weakenDisjoint; weakenDisjointUnion; shrinkDisjointˡ
; disjoint⇒disjoint-to-union; DisjointUnion-fromAny∘toAny-∷ˡ⁻
; equalize-separators
)
open import Data.Product using (_,_; proj₁; proj₂)
-- Simple types over a set Base of base types.
data Ty : Set where
base : (o : Base) → Ty
_⇒_ : (a b : Ty) → Ty
-- Typing contexts are lists of types.
Cxt = List Ty
variable
a b : Ty
Γ Δ : Cxt
x y : a ∈ Γ
-- The familiar intrinsically well-typed formulation of STLC
-- where a de Bruijn index x is a pointer into the context.
module DeBruijn where
data Tm (Δ : Cxt) : (a : Ty) → Set where
var : (x : a ∈ Δ) → Tm Δ a
abs : (t : Tm (a ∷ Δ) b) → Tm Δ (a ⇒ b)
app : (t : Tm Δ (a ⇒ b)) (u : Tm Δ a) → Tm Δ b
-- We formalize now intrinsically well-typed STLC with
-- named variables that are globally unique, i.e.,
-- each variable can be bound at most once.
-- List of bound variables of a term.
BVars = List Ty
variable
B : BVars
noBV : Null B
-- There is a single global context Γ of all variables used in the terms.
-- Each list of bound variables B is a sublist of Γ.
variable
β βₜ βᵤ yβ β\y : B ⊆ Γ
-- Named terms are parameterized by a sublist β : B ⊆ Γ of bound variables.
-- Variables outside B can occur as free variables in a term.
--
-- * Variables x do not contain any bound variables (Null B).
--
-- * The bound variables of an application (t u) is the disjoint union
-- of the bound variables βₜ of t and βᵤ of u.
--
-- * The bound variables β of an abstraction λyt is the disjoint union
-- of the single variable y and the bound variables β\y of t.
module UniquelyNamed where
data Tm (β : B ⊆ Γ) : (a : Ty) → Set where
var : (noBV : Null B)
(x : a ∈ Γ)
→ Tm β a
abs : (y : a ∈ Γ)
(y# : DisjointUnion (from∈ y) β\y β)
(t : Tm β\y b)
→ Tm β (a ⇒ b)
app : (t : Tm βₜ (a ⇒ b))
(u : Tm βᵤ a)
(t#u : DisjointUnion βₜ βᵤ β)
→ Tm β b
pattern var! x = var [] x
-- Bound variables β : B ⊆ Γ can be considered in a larger context Γ′
-- obtained by γ : Γ ⊆ Γ′. The embedding β′ : B ⊆ Γ′ is simply the
-- composition of β and γ, and terms can be coerced recursively:
weakenBV : ∀ {Γ B Γ′} {β : B ⊆ Γ} (γ : Γ ⊆ Γ′) →
Tm β a → Tm (⊆-trans β γ) a
weakenBV γ (var noBV x) = var noBV (lookup γ x)
weakenBV γ (app t u t#u) = app (weakenBV γ t) (weakenBV γ u) (weakenDisjointUnion γ t#u)
weakenBV γ (abs y y# t) = abs y′ y′# (weakenBV γ t)
where
y′ = lookup γ y
-- Typing: y′# : DisjointUnion (from∈ y′) (⊆-trans β\y γ) (⊆-trans β γ)
y′# = subst (λ □ → DisjointUnion □ _ _) (sym (from∈∘lookup _ _)) (weakenDisjointUnion γ y#)
-- We bring de Bruijn terms into scope as Exp.
open DeBruijn renaming (Tm to Exp)
open UniquelyNamed
variable
t u : Tm β a
f e : Exp Δ a
-- Relating de Bruijn terms and uniquely named terms.
--
-- The judgement δ ⊢ e ~ β ▷ t relates a de Bruijn term e with potentially free variables δ : Δ ⊆ Γ
-- to a named term t with exact bound variables β : B ⊆ Γ. The intention is to relate exactly
-- the terms with the same meaning.
--
-- The judgement will imply the disjointness of Δ and B.
variable
δ yδ : Δ ⊆ Γ
data _⊢_~_▷_ {Γ Δ : Cxt} (δ : Δ ⊆ Γ) : ∀{a} (e : Exp Δ a) {B} (β : B ⊆ Γ) (t : Tm β a) → Set where
-- Free de Bruijn index x : a ∈ Δ is related to free variable y : a ∈ Γ
-- if δ : Δ ⊆ Γ maps x to y.
var : ∀{y} (δx≡y : lookup δ x ≡ y) (δ#β : Disjoint δ β)
→ δ ⊢ var x ~ β ▷ var! y
-- Unnamed lambda δ ⊢ λ.e is related to named lambda y,β ▷ λy.t
-- if body y,δ ⊢ e is related to body β ▷ t.
abs : (y#δ : DisjointUnion (from∈ y) δ yδ)
→ (y#β : DisjointUnion (from∈ y) β yβ)
→ yδ ⊢ e ~ β ▷ t
→ δ ⊢ abs e ~ yβ ▷ abs y y#β t
-- Application δ ⊢ f e is related to application βₜ,βᵤ ▷ t u
-- if function δ ⊢ f is related to βₜ ▷ t
-- and argument δ ⊢ e is related to βᵤ ▷ u.
app : δ ⊢ f ~ βₜ ▷ t
→ δ ⊢ e ~ βᵤ ▷ u
→ (t#u : DisjointUnion βₜ βᵤ β)
→ δ ⊢ app f e ~ β ▷ app t u t#u
-- A dependent substitution lemma for ~.
-- Trivial, but needed because term equality t : Tm β a ≡ t′ : Tm β′ a is heterogeneous,
-- or, more precisely, indexed by a sublist equality β ≡ β′.
subst~ : ∀ {a Δ Γ B} {δ δ′ : Δ ⊆ Γ} {β β′ : B ⊆ Γ}
{e : Exp Δ a} {t : Tm β a} {t′ : Tm β′ a}
(δ≡δ′ : δ ≡ δ′)
(β≡β′ : β ≡ β′)
(t≡t′ : subst (λ □ → Tm □ a) β≡β′ t ≡ t′) →
δ ⊢ e ~ β ▷ t →
δ′ ⊢ e ~ β′ ▷ t′
subst~ refl refl refl d = d
-- The judgement δ ⊢ e ~ β ▷ t relative to Γ
-- can be transported to a bigger context γ : Γ ⊆ Γ′.
weaken~ : ∀{a Δ B Γ Γ′} {δ : Δ ⊆ Γ} {β : B ⊆ Γ} {e : Exp Δ a} {t : Tm β a} (γ : Γ ⊆ Γ′)
(let δ′ = ⊆-trans δ γ)
(let β′ = ⊆-trans β γ)
(let t′ = weakenBV γ t) →
δ ⊢ e ~ β ▷ t →
δ′ ⊢ e ~ β′ ▷ t′
weaken~ γ (var refl δ#β) = var (lookup-⊆-trans γ _) (weakenDisjoint γ δ#β)
weaken~ γ (abs y#δ y#β d) = abs y′#δ′ y′#β′ (weaken~ γ d)
where
y′#δ′ = subst (λ □ → DisjointUnion □ _ _) (sym (from∈∘lookup _ _)) (weakenDisjointUnion γ y#δ)
y′#β′ = subst (λ □ → DisjointUnion □ _ _) (sym (from∈∘lookup _ _)) (weakenDisjointUnion γ y#β)
weaken~ γ (app dₜ dᵤ t#u) = app (weaken~ γ dₜ) (weaken~ γ dᵤ) (weakenDisjointUnion γ t#u)
-- Lemma: If δ ⊢ e ~ β ▷ t, then
-- the (potentially) free variables δ of the de Bruijn term e
-- are disjoint from the bound variables β of the named term t.
disjoint-fv-bv : δ ⊢ e ~ β ▷ t → Disjoint δ β
disjoint-fv-bv (var _ δ#β) = δ#β
disjoint-fv-bv {β = yβ} (abs y⊎δ y⊎β d) = δ#yβ
where
δ#y = Disjoint-sym (DisjointUnion→Disjoint y⊎δ)
yδ#β = disjoint-fv-bv d
δ⊆yδ,eq = DisjointUnion-inj₂ y⊎δ
δ⊆yδ = proj₁ δ⊆yδ,eq
eq = proj₂ δ⊆yδ,eq
δ#β = subst (λ □ → Disjoint □ _) eq (shrinkDisjointˡ δ⊆yδ yδ#β)
δ#yβ = disjoint⇒disjoint-to-union δ#y δ#β y⊎β
disjoint-fv-bv (app dₜ dᵤ βₜ⊎βᵤ) = disjoint⇒disjoint-to-union δ#βₜ δ#βᵤ βₜ⊎βᵤ
where
δ#βₜ = disjoint-fv-bv dₜ
δ#βᵤ = disjoint-fv-bv dᵤ
-- Translating de Bruijn terms to uniquely named terms.
--
-- Given a de Bruijn term Δ ⊢ e : a, we seek to produce a named term β ▷ t : a
-- that is related to the de Bruijn term. On the way, we have to compute the
-- global context Γ that hosts all free and bound variables of t.
-- Record (NamedOf e) collects all the outputs of the translation of e.
record NamedOf (e : Exp Δ a) : Set where
constructor mkNamedOf
field
{glob} : Cxt -- Γ
emb : Δ ⊆ glob -- δ : Δ ⊆ Γ
{bv} : BVars -- B
bound : bv ⊆ glob -- β : B ⊆ Γ
{tm} : Tm bound a -- t : Tm β a
relate : emb ⊢ e ~ bound ▷ tm -- δ ⊢ e ~ β ▷ t
-- The translation.
dB→Named : (e : Exp Δ a) → NamedOf e
-- For the translation of a variable x : a ∈ Δ, we can pick Γ := Δ and B := [].
-- Δ and B are obviously disjoint subsets of Γ.
dB→Named (var x) = record
{ emb = ⊆-refl -- Γ := Δ
; bound = minimum _ -- no bound variables
; relate = var refl (DisjointUnion→Disjoint DisjointUnion-[]ʳ)
}
-- For the translation of an abstraction
--
-- abs (t : Exp (a ∷ Δ) b) : Exp Δ (a ⇒ b)
--
-- we recursively have Γ, B and β : B ⊆ Γ with z,δ : (a ∷ Δ) ⊆ Γ
-- and know that B # a∷Δ.
--
-- We keep Γ and produce embedding δ : Δ ⊆ Γ and bound variables z ⊎ β.
dB→Named {Δ = Δ} {a = a ⇒ b} (abs e) with dB→Named e
... | record{ glob = Γ; emb = zδ; bound = β; relate = d } =
record
{ glob = Γ
; emb = δ̇
; bound = proj₁ (proj₂ z⊎β)
; relate = abs [a]⊆Γ⊎δ (proj₂ (proj₂ z⊎β)) d
}
where
-- Typings:
-- zδ : a ∷ Δ ⊆ Γ
-- β : bv ⊆ Γ
zδ#β = disjoint-fv-bv d
z : a ∈ Γ
z = to∈ zδ
[a]⊆Γ = from∈ z
δ̇ = ∷ˡ⁻ zδ
[a]⊆Γ⊎δ = DisjointUnion-fromAny∘toAny-∷ˡ⁻ zδ
[a]⊆aΔ : [ a ] ⊆ (a ∷ Δ)
[a]⊆aΔ = refl ∷ minimum _
eq : ⊆-trans [a]⊆aΔ zδ ≡ [a]⊆Γ
eq = sym (from∈∘to∈ _)
z#β : Disjoint [a]⊆Γ β
z#β = subst (λ □ → Disjoint □ β) eq (shrinkDisjointˡ [a]⊆aΔ zδ#β)
z⊎β = Disjoint→DisjointUnion z#β
-- For the translation of an application (f e) we have by induction hypothesis
-- two independent extensions δ₁ : Δ ⊆ Γ₁ and δ₂ : Δ ⊆ Γ₂
-- and two bound variable lists β₁ : B₁ ⊆ Γ₁ and β₂ : B₂ ⊆ Γ₂.
-- We need to find a common global context Γ such that
--
-- (a) δ : Δ ⊆ Γ and
-- (b) the bound variables embed disjointly as β₁″ : B₁ ⊆ Γ and β₂″ : B₂ ⊆ Γ.
--
-- (a) δ is (eventually) found via a weak pushout of δ₁ and δ₂, giving
-- ϕ₁ : Γ₁ ⊆ Γ₁₂ and ϕ₂ : Γ₂ ⊆ Γ₁₂.
--
-- (b) The bound variable embeddings
--
-- β₁′ = β₁ϕ₁ : B₁ ⊆ Γ₁₂ and
-- β₂′ = β₂ϕ₂ : B₂ ⊆ Γ₁₂ and
--
-- may be overlapping, but we can separate them by enlarging the global context
-- to Γ with two embeddings
--
-- γ₁ : Γ₁₂ ⊆ Γ
-- γ₂ : Γ₁₂ ⊆ Γ
--
-- such that
--
-- β₁″ = β₁′γ₁ : B₁ ⊆ Γ
-- β₂″ = β₂′γ₂ : B₂ ⊆ Γ
--
-- are disjoint. Since Δ is disjoint to both B₁ and B₂ we have equality of
--
-- δ₁ϕ₁γ₁ : Δ ⊆ Γ
-- δ₂ϕ₂γ₂ : Δ ⊆ Γ
--
-- Thus, we can return either of them as δ.
dB→Named (app f e) with dB→Named f | dB→Named e
... | mkNamedOf {Γ₁} δ₁ β₁ {t} d₁ | mkNamedOf {Γ₂} δ₂ β₂ {u} d₂ =
mkNamedOf δ̇ β̇ (app d₁″ d₂″ β₁″⊎β₂″)
where
-- Disjointness of δᵢ and βᵢ from induction hypotheses.
δ₁#β₁ = disjoint-fv-bv d₁
δ₂#β₂ = disjoint-fv-bv d₂
-- join δ₁ and δ₂ via weak pushout
po = ⊆-pushoutˡ δ₁ δ₂
Γ₁₂ = RawPushout.upperBound po
ϕ₁ = RawPushout.leg₁ po
ϕ₂ = RawPushout.leg₂ po
δ₁′ = ⊆-trans δ₁ ϕ₁
δ₂′ = ⊆-trans δ₂ ϕ₂
β₁′ = ⊆-trans β₁ ϕ₁
β₂′ = ⊆-trans β₂ ϕ₂
δ₁′#β₁′ : Disjoint δ₁′ β₁′
δ₁′#β₁′ = weakenDisjoint ϕ₁ δ₁#β₁
δ₂′#β₂′ : Disjoint δ₂′ β₂′
δ₂′#β₂′ = weakenDisjoint ϕ₂ δ₂#β₂
δ₁′≡δ₂′ : δ₁′ ≡ δ₂′
δ₁′≡δ₂′ = ⊆-pushoutˡ-is-wpo δ₁ δ₂
δ₂′#β₁′ : Disjoint δ₂′ β₁′
δ₂′#β₁′ = subst (λ □ → Disjoint □ β₁′) δ₁′≡δ₂′ δ₁′#β₁′
-- separate β₁ and β₂
sep : Separation β₁′ β₂′
sep = separateˡ β₁′ β₂′
γ₁ = Separation.separator₁ sep
γ₂ = Separation.separator₂ sep
β₁″ = Separation.separated₁ sep
β₂″ = Separation.separated₂ sep
-- produce their disjoint union
uni = Disjoint→DisjointUnion (Separation.disjoint sep)
β̇ = proj₁ (proj₂ uni)
β₁″⊎β₂″ : DisjointUnion β₁″ β₂″ β̇
β₁″⊎β₂″ = proj₂ (proj₂ uni)
ι₁ = DisjointUnion-inj₁ β₁″⊎β₂″
ι₂ = DisjointUnion-inj₂ β₁″⊎β₂″
-- after separation, the FVs are still disjoint from the BVs.
δ₁″ = ⊆-trans δ₂′ γ₁
δ₂″ = ⊆-trans δ₂′ γ₂
δ₁″≡δ₂″ : δ₁″ ≡ δ₂″
δ₁″≡δ₂″ = equalize-separators δ₂′#β₁′ δ₂′#β₂′
δ₁″#β₁″ : Disjoint δ₁″ β₁″
δ₁″#β₁″ = weakenDisjoint γ₁ δ₂′#β₁′
δ₂″#β₂″ : Disjoint δ₂″ β₂″
δ₂″#β₂″ = weakenDisjoint γ₂ δ₂′#β₂′
δ̇ = δ₂″
δ₂″#β₁″ : Disjoint δ₂″ β₁″
δ₂″#β₁″ = subst (λ □ → Disjoint □ β₁″) δ₁″≡δ₂″ δ₁″#β₁″
δ̇#β̇ : Disjoint δ̇ β̇
δ̇#β̇ = disjoint⇒disjoint-to-union δ₂″#β₁″ δ₂″#β₂″ β₁″⊎β₂″
-- Combined weakening from Γᵢ to Γ
γ₁′ = ⊆-trans ϕ₁ γ₁
γ₂′ = ⊆-trans ϕ₂ γ₂
-- Weakening and converting the first derivation.
d₁′ : ⊆-trans δ₁ γ₁′ ⊢ f ~ ⊆-trans β₁ γ₁′ ▷ weakenBV γ₁′ t
d₁′ = weaken~ γ₁′ d₁
δ₁≤δ̇ : ⊆-trans δ₁ γ₁′ ≡ ⊆-trans δ₂′ γ₂
δ₁≤δ̇ = begin
⊆-trans δ₁ γ₁′ ≡⟨ ⊆-trans-assoc ⟩
⊆-trans δ₁′ γ₁ ≡⟨ cong (λ □ → ⊆-trans □ γ₁) δ₁′≡δ₂′ ⟩
⊆-trans δ₂′ γ₁ ≡⟨⟩
δ₁″ ≡⟨ δ₁″≡δ₂″ ⟩
δ₂″ ≡⟨⟩
δ̇ ∎
β₁≤β₁″ : ⊆-trans β₁ γ₁′ ≡ β₁″
β₁≤β₁″ = ⊆-trans-assoc
d₁″ : δ̇ ⊢ f ~ β₁″ ▷ subst (λ □ → Tm □ _) β₁≤β₁″ (weakenBV γ₁′ t)
d₁″ = subst~ δ₁≤δ̇ β₁≤β₁″ refl d₁′
-- Weakening and converting the second derivation.
d₂′ : ⊆-trans δ₂ γ₂′ ⊢ e ~ ⊆-trans β₂ γ₂′ ▷ weakenBV γ₂′ u
d₂′ = weaken~ γ₂′ d₂
β₂≤β₂″ : ⊆-trans β₂ γ₂′ ≡ β₂″
β₂≤β₂″ = ⊆-trans-assoc
δ₂≤δ̇ : ⊆-trans δ₂ γ₂′ ≡ δ̇
δ₂≤δ̇ = ⊆-trans-assoc
d₂″ : δ̇ ⊢ e ~ β₂″ ▷ subst (λ □ → Tm □ _) β₂≤β₂″ (weakenBV γ₂′ u)
d₂″ = subst~ δ₂≤δ̇ β₂≤β₂″ refl d₂′
| {
"alphanum_fraction": 0.565495448,
"avg_line_length": 32.181598063,
"ext": "agda",
"hexsha": "76a2f4a72888c7856f0b707d0ba2b887abf72c1b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Example/UniqueBoundVariables.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Example/UniqueBoundVariables.agda",
"max_line_length": 105,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Propositional/Example/UniqueBoundVariables.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 5617,
"size": 13291
} |
{-# OPTIONS --rewriting #-}
module Properties.TypeNormalization where
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_)
open import Luau.Subtyping using (Tree; Language; ¬Language; function; scalar; unknown; left; right; function-ok₁; function-ok₂; function-err; function-tgt; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; function-scalar; _,_)
open import Luau.TypeNormalization using (_∪ⁿ_; _∩ⁿ_; _∪ᶠ_; _∪ⁿˢ_; _∩ⁿˢ_; normalize)
open import Luau.Subtyping using (_<:_; _≮:_; witness; never)
open import Properties.Subtyping using (<:-trans; <:-refl; <:-unknown; <:-never; <:-∪-left; <:-∪-right; <:-∪-lub; <:-∩-left; <:-∩-right; <:-∩-glb; <:-∩-symm; <:-function; <:-function-∪-∩; <:-function-∩-∪; <:-function-∪; <:-everything; <:-union; <:-∪-assocl; <:-∪-assocr; <:-∪-symm; <:-intersect; ∪-distl-∩-<:; ∪-distr-∩-<:; <:-∪-distr-∩; <:-∪-distl-∩; ∩-distl-∪-<:; <:-∩-distl-∪; <:-∩-distr-∪; scalar-∩-function-<:-never; scalar-≢-∩-<:-never)
-- Normal forms for types
data FunType : Type → Set
data Normal : Type → Set
data FunType where
_⇒_ : ∀ {S T} → Normal S → Normal T → FunType (S ⇒ T)
_∩_ : ∀ {F G} → FunType F → FunType G → FunType (F ∩ G)
data Normal where
_⇒_ : ∀ {S T} → Normal S → Normal T → Normal (S ⇒ T)
_∩_ : ∀ {F G} → FunType F → FunType G → Normal (F ∩ G)
_∪_ : ∀ {S T} → Normal S → Scalar T → Normal (S ∪ T)
never : Normal never
unknown : Normal unknown
data OptScalar : Type → Set where
never : OptScalar never
number : OptScalar number
boolean : OptScalar boolean
string : OptScalar string
nil : OptScalar nil
-- Top function type
fun-top : ∀ {F} → (FunType F) → (F <: (never ⇒ unknown))
fun-top (S ⇒ T) = <:-function <:-never <:-unknown
fun-top (F ∩ G) = <:-trans <:-∩-left (fun-top F)
-- function types are inhabited
fun-function : ∀ {F} → FunType F → Language F function
fun-function (S ⇒ T) = function
fun-function (F ∩ G) = (fun-function F , fun-function G)
fun-≮:-never : ∀ {F} → FunType F → (F ≮: never)
fun-≮:-never F = witness function (fun-function F) never
-- function types aren't scalars
fun-¬scalar : ∀ {F S t} → (s : Scalar S) → FunType F → Language F t → ¬Language S t
fun-¬scalar s (S ⇒ T) function = scalar-function s
fun-¬scalar s (S ⇒ T) (function-ok₁ p) = scalar-function-ok s
fun-¬scalar s (S ⇒ T) (function-ok₂ p) = scalar-function-ok s
fun-¬scalar s (S ⇒ T) (function-err p) = scalar-function-err s
fun-¬scalar s (S ⇒ T) (function-tgt p) = scalar-function-tgt s
fun-¬scalar s (F ∩ G) (p₁ , p₂) = fun-¬scalar s G p₂
¬scalar-fun : ∀ {F S} → FunType F → (s : Scalar S) → ¬Language F (scalar s)
¬scalar-fun (S ⇒ T) s = function-scalar s
¬scalar-fun (F ∩ G) s = left (¬scalar-fun F s)
scalar-≮:-fun : ∀ {F S} → FunType F → Scalar S → S ≮: F
scalar-≮:-fun F s = witness (scalar s) (scalar s) (¬scalar-fun F s)
unknown-≮:-fun : ∀ {F} → FunType F → unknown ≮: F
unknown-≮:-fun F = witness (scalar nil) unknown (¬scalar-fun F nil)
-- Normalization produces normal types
normal : ∀ T → Normal (normalize T)
normalᶠ : ∀ {F} → FunType F → Normal F
normal-∪ⁿ : ∀ {S T} → Normal S → Normal T → Normal (S ∪ⁿ T)
normal-∩ⁿ : ∀ {S T} → Normal S → Normal T → Normal (S ∩ⁿ T)
normal-∪ⁿˢ : ∀ {S T} → Normal S → OptScalar T → Normal (S ∪ⁿˢ T)
normal-∩ⁿˢ : ∀ {S T} → Normal S → Scalar T → OptScalar (S ∩ⁿˢ T)
normal-∪ᶠ : ∀ {F G} → FunType F → FunType G → FunType (F ∪ᶠ G)
normal nil = never ∪ nil
normal (S ⇒ T) = (normal S) ⇒ (normal T)
normal never = never
normal unknown = unknown
normal boolean = never ∪ boolean
normal number = never ∪ number
normal string = never ∪ string
normal (S ∪ T) = normal-∪ⁿ (normal S) (normal T)
normal (S ∩ T) = normal-∩ⁿ (normal S) (normal T)
normalᶠ (S ⇒ T) = S ⇒ T
normalᶠ (F ∩ G) = F ∩ G
normal-∪ⁿ S (T₁ ∪ T₂) = (normal-∪ⁿ S T₁) ∪ T₂
normal-∪ⁿ S never = S
normal-∪ⁿ S unknown = unknown
normal-∪ⁿ never (T ⇒ U) = T ⇒ U
normal-∪ⁿ never (G₁ ∩ G₂) = G₁ ∩ G₂
normal-∪ⁿ unknown (T ⇒ U) = unknown
normal-∪ⁿ unknown (G₁ ∩ G₂) = unknown
normal-∪ⁿ (R ⇒ S) (T ⇒ U) = normalᶠ (normal-∪ᶠ (R ⇒ S) (T ⇒ U))
normal-∪ⁿ (R ⇒ S) (G₁ ∩ G₂) = normalᶠ (normal-∪ᶠ (R ⇒ S) (G₁ ∩ G₂))
normal-∪ⁿ (F₁ ∩ F₂) (T ⇒ U) = normalᶠ (normal-∪ᶠ (F₁ ∩ F₂) (T ⇒ U))
normal-∪ⁿ (F₁ ∩ F₂) (G₁ ∩ G₂) = normalᶠ (normal-∪ᶠ (F₁ ∩ F₂) (G₁ ∩ G₂))
normal-∪ⁿ (S₁ ∪ S₂) (T₁ ⇒ T₂) = normal-∪ⁿ S₁ (T₁ ⇒ T₂) ∪ S₂
normal-∪ⁿ (S₁ ∪ S₂) (G₁ ∩ G₂) = normal-∪ⁿ S₁ (G₁ ∩ G₂) ∪ S₂
normal-∩ⁿ S never = never
normal-∩ⁿ S unknown = S
normal-∩ⁿ S (T ∪ U) = normal-∪ⁿˢ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U )
normal-∩ⁿ never (T ⇒ U) = never
normal-∩ⁿ unknown (T ⇒ U) = T ⇒ U
normal-∩ⁿ (R ⇒ S) (T ⇒ U) = (R ⇒ S) ∩ (T ⇒ U)
normal-∩ⁿ (R ∩ S) (T ⇒ U) = (R ∩ S) ∩ (T ⇒ U)
normal-∩ⁿ (R ∪ S) (T ⇒ U) = normal-∩ⁿ R (T ⇒ U)
normal-∩ⁿ never (T ∩ U) = never
normal-∩ⁿ unknown (T ∩ U) = T ∩ U
normal-∩ⁿ (R ⇒ S) (T ∩ U) = (R ⇒ S) ∩ (T ∩ U)
normal-∩ⁿ (R ∩ S) (T ∩ U) = (R ∩ S) ∩ (T ∩ U)
normal-∩ⁿ (R ∪ S) (T ∩ U) = normal-∩ⁿ R (T ∩ U)
normal-∪ⁿˢ S never = S
normal-∪ⁿˢ never number = never ∪ number
normal-∪ⁿˢ unknown number = unknown
normal-∪ⁿˢ (R ⇒ S) number = (R ⇒ S) ∪ number
normal-∪ⁿˢ (R ∩ S) number = (R ∩ S) ∪ number
normal-∪ⁿˢ (R ∪ number) number = R ∪ number
normal-∪ⁿˢ (R ∪ boolean) number = normal-∪ⁿˢ R number ∪ boolean
normal-∪ⁿˢ (R ∪ string) number = normal-∪ⁿˢ R number ∪ string
normal-∪ⁿˢ (R ∪ nil) number = normal-∪ⁿˢ R number ∪ nil
normal-∪ⁿˢ never boolean = never ∪ boolean
normal-∪ⁿˢ unknown boolean = unknown
normal-∪ⁿˢ (R ⇒ S) boolean = (R ⇒ S) ∪ boolean
normal-∪ⁿˢ (R ∩ S) boolean = (R ∩ S) ∪ boolean
normal-∪ⁿˢ (R ∪ number) boolean = normal-∪ⁿˢ R boolean ∪ number
normal-∪ⁿˢ (R ∪ boolean) boolean = R ∪ boolean
normal-∪ⁿˢ (R ∪ string) boolean = normal-∪ⁿˢ R boolean ∪ string
normal-∪ⁿˢ (R ∪ nil) boolean = normal-∪ⁿˢ R boolean ∪ nil
normal-∪ⁿˢ never string = never ∪ string
normal-∪ⁿˢ unknown string = unknown
normal-∪ⁿˢ (R ⇒ S) string = (R ⇒ S) ∪ string
normal-∪ⁿˢ (R ∩ S) string = (R ∩ S) ∪ string
normal-∪ⁿˢ (R ∪ number) string = normal-∪ⁿˢ R string ∪ number
normal-∪ⁿˢ (R ∪ boolean) string = normal-∪ⁿˢ R string ∪ boolean
normal-∪ⁿˢ (R ∪ string) string = R ∪ string
normal-∪ⁿˢ (R ∪ nil) string = normal-∪ⁿˢ R string ∪ nil
normal-∪ⁿˢ never nil = never ∪ nil
normal-∪ⁿˢ unknown nil = unknown
normal-∪ⁿˢ (R ⇒ S) nil = (R ⇒ S) ∪ nil
normal-∪ⁿˢ (R ∩ S) nil = (R ∩ S) ∪ nil
normal-∪ⁿˢ (R ∪ number) nil = normal-∪ⁿˢ R nil ∪ number
normal-∪ⁿˢ (R ∪ boolean) nil = normal-∪ⁿˢ R nil ∪ boolean
normal-∪ⁿˢ (R ∪ string) nil = normal-∪ⁿˢ R nil ∪ string
normal-∪ⁿˢ (R ∪ nil) nil = R ∪ nil
normal-∩ⁿˢ never number = never
normal-∩ⁿˢ never boolean = never
normal-∩ⁿˢ never string = never
normal-∩ⁿˢ never nil = never
normal-∩ⁿˢ unknown number = number
normal-∩ⁿˢ unknown boolean = boolean
normal-∩ⁿˢ unknown string = string
normal-∩ⁿˢ unknown nil = nil
normal-∩ⁿˢ (R ⇒ S) number = never
normal-∩ⁿˢ (R ⇒ S) boolean = never
normal-∩ⁿˢ (R ⇒ S) string = never
normal-∩ⁿˢ (R ⇒ S) nil = never
normal-∩ⁿˢ (R ∩ S) number = never
normal-∩ⁿˢ (R ∩ S) boolean = never
normal-∩ⁿˢ (R ∩ S) string = never
normal-∩ⁿˢ (R ∩ S) nil = never
normal-∩ⁿˢ (R ∪ number) number = number
normal-∩ⁿˢ (R ∪ boolean) number = normal-∩ⁿˢ R number
normal-∩ⁿˢ (R ∪ string) number = normal-∩ⁿˢ R number
normal-∩ⁿˢ (R ∪ nil) number = normal-∩ⁿˢ R number
normal-∩ⁿˢ (R ∪ number) boolean = normal-∩ⁿˢ R boolean
normal-∩ⁿˢ (R ∪ boolean) boolean = boolean
normal-∩ⁿˢ (R ∪ string) boolean = normal-∩ⁿˢ R boolean
normal-∩ⁿˢ (R ∪ nil) boolean = normal-∩ⁿˢ R boolean
normal-∩ⁿˢ (R ∪ number) string = normal-∩ⁿˢ R string
normal-∩ⁿˢ (R ∪ boolean) string = normal-∩ⁿˢ R string
normal-∩ⁿˢ (R ∪ string) string = string
normal-∩ⁿˢ (R ∪ nil) string = normal-∩ⁿˢ R string
normal-∩ⁿˢ (R ∪ number) nil = normal-∩ⁿˢ R nil
normal-∩ⁿˢ (R ∪ boolean) nil = normal-∩ⁿˢ R nil
normal-∩ⁿˢ (R ∪ string) nil = normal-∩ⁿˢ R nil
normal-∩ⁿˢ (R ∪ nil) nil = nil
normal-∪ᶠ (R ⇒ S) (T ⇒ U) = (normal-∩ⁿ R T) ⇒ (normal-∪ⁿ S U)
normal-∪ᶠ (R ⇒ S) (G ∩ H) = normal-∪ᶠ (R ⇒ S) G ∩ normal-∪ᶠ (R ⇒ S) H
normal-∪ᶠ (E ∩ F) G = normal-∪ᶠ E G ∩ normal-∪ᶠ F G
scalar-∩-fun-<:-never : ∀ {F S} → FunType F → Scalar S → (F ∩ S) <: never
scalar-∩-fun-<:-never (T ⇒ U) S = scalar-∩-function-<:-never S
scalar-∩-fun-<:-never (F ∩ G) S = <:-trans (<:-intersect <:-∩-left <:-refl) (scalar-∩-fun-<:-never F S)
flipper : ∀ {S T U} → ((S ∪ T) ∪ U) <: ((S ∪ U) ∪ T)
flipper = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) <:-∪-assocl)
∩-<:-∩ⁿ : ∀ {S T} → Normal S → Normal T → (S ∩ T) <: (S ∩ⁿ T)
∩ⁿ-<:-∩ : ∀ {S T} → Normal S → Normal T → (S ∩ⁿ T) <: (S ∩ T)
∩-<:-∩ⁿˢ : ∀ {S T} → Normal S → Scalar T → (S ∩ T) <: (S ∩ⁿˢ T)
∩ⁿˢ-<:-∩ : ∀ {S T} → Normal S → Scalar T → (S ∩ⁿˢ T) <: (S ∩ T)
∪ᶠ-<:-∪ : ∀ {F G} → FunType F → FunType G → (F ∪ᶠ G) <: (F ∪ G)
∪ⁿ-<:-∪ : ∀ {S T} → Normal S → Normal T → (S ∪ⁿ T) <: (S ∪ T)
∪-<:-∪ⁿ : ∀ {S T} → Normal S → Normal T → (S ∪ T) <: (S ∪ⁿ T)
∪ⁿˢ-<:-∪ : ∀ {S T} → Normal S → OptScalar T → (S ∪ⁿˢ T) <: (S ∪ T)
∪-<:-∪ⁿˢ : ∀ {S T} → Normal S → OptScalar T → (S ∪ T) <: (S ∪ⁿˢ T)
∩-<:-∩ⁿ S never = <:-∩-right
∩-<:-∩ⁿ S unknown = <:-∩-left
∩-<:-∩ⁿ S (T ∪ U) = <:-trans <:-∩-distl-∪ (<:-trans (<:-union (∩-<:-∩ⁿ S T) (∩-<:-∩ⁿˢ S U)) (∪-<:-∪ⁿˢ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U)) )
∩-<:-∩ⁿ never (T ⇒ U) = <:-∩-left
∩-<:-∩ⁿ unknown (T ⇒ U) = <:-∩-right
∩-<:-∩ⁿ (R ⇒ S) (T ⇒ U) = <:-refl
∩-<:-∩ⁿ (R ∩ S) (T ⇒ U) = <:-refl
∩-<:-∩ⁿ (R ∪ S) (T ⇒ U) = <:-trans <:-∩-distr-∪ (<:-trans (<:-union (∩-<:-∩ⁿ R (T ⇒ U)) (<:-trans <:-∩-symm (∩-<:-∩ⁿˢ (T ⇒ U) S))) (<:-∪-lub <:-refl <:-never))
∩-<:-∩ⁿ never (T ∩ U) = <:-∩-left
∩-<:-∩ⁿ unknown (T ∩ U) = <:-∩-right
∩-<:-∩ⁿ (R ⇒ S) (T ∩ U) = <:-refl
∩-<:-∩ⁿ (R ∩ S) (T ∩ U) = <:-refl
∩-<:-∩ⁿ (R ∪ S) (T ∩ U) = <:-trans <:-∩-distr-∪ (<:-trans (<:-union (∩-<:-∩ⁿ R (T ∩ U)) (<:-trans <:-∩-symm (∩-<:-∩ⁿˢ (T ∩ U) S))) (<:-∪-lub <:-refl <:-never))
∩ⁿ-<:-∩ S never = <:-never
∩ⁿ-<:-∩ S unknown = <:-∩-glb <:-refl <:-unknown
∩ⁿ-<:-∩ S (T ∪ U) = <:-trans (∪ⁿˢ-<:-∪ (normal-∩ⁿ S T) (normal-∩ⁿˢ S U)) (<:-trans (<:-union (∩ⁿ-<:-∩ S T) (∩ⁿˢ-<:-∩ S U)) ∩-distl-∪-<:)
∩ⁿ-<:-∩ never (T ⇒ U) = <:-never
∩ⁿ-<:-∩ unknown (T ⇒ U) = <:-∩-glb <:-unknown <:-refl
∩ⁿ-<:-∩ (R ⇒ S) (T ⇒ U) = <:-refl
∩ⁿ-<:-∩ (R ∩ S) (T ⇒ U) = <:-refl
∩ⁿ-<:-∩ (R ∪ S) (T ⇒ U) = <:-trans (∩ⁿ-<:-∩ R (T ⇒ U)) (<:-∩-glb (<:-trans <:-∩-left <:-∪-left) <:-∩-right)
∩ⁿ-<:-∩ never (T ∩ U) = <:-never
∩ⁿ-<:-∩ unknown (T ∩ U) = <:-∩-glb <:-unknown <:-refl
∩ⁿ-<:-∩ (R ⇒ S) (T ∩ U) = <:-refl
∩ⁿ-<:-∩ (R ∩ S) (T ∩ U) = <:-refl
∩ⁿ-<:-∩ (R ∪ S) (T ∩ U) = <:-trans (∩ⁿ-<:-∩ R (T ∩ U)) (<:-∩-glb (<:-trans <:-∩-left <:-∪-left) <:-∩-right)
∩-<:-∩ⁿˢ never number = <:-∩-left
∩-<:-∩ⁿˢ never boolean = <:-∩-left
∩-<:-∩ⁿˢ never string = <:-∩-left
∩-<:-∩ⁿˢ never nil = <:-∩-left
∩-<:-∩ⁿˢ unknown T = <:-∩-right
∩-<:-∩ⁿˢ (R ⇒ S) T = scalar-∩-fun-<:-never (R ⇒ S) T
∩-<:-∩ⁿˢ (F ∩ G) T = scalar-∩-fun-<:-never (F ∩ G) T
∩-<:-∩ⁿˢ (R ∪ number) number = <:-∩-right
∩-<:-∩ⁿˢ (R ∪ boolean) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never boolean number (λ ())))
∩-<:-∩ⁿˢ (R ∪ string) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never string number (λ ())))
∩-<:-∩ⁿˢ (R ∪ nil) number = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R number) (scalar-≢-∩-<:-never nil number (λ ())))
∩-<:-∩ⁿˢ (R ∪ number) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never number boolean (λ ())))
∩-<:-∩ⁿˢ (R ∪ boolean) boolean = <:-∩-right
∩-<:-∩ⁿˢ (R ∪ string) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never string boolean (λ ())))
∩-<:-∩ⁿˢ (R ∪ nil) boolean = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R boolean) (scalar-≢-∩-<:-never nil boolean (λ ())))
∩-<:-∩ⁿˢ (R ∪ number) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never number string (λ ())))
∩-<:-∩ⁿˢ (R ∪ boolean) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never boolean string (λ ())))
∩-<:-∩ⁿˢ (R ∪ string) string = <:-∩-right
∩-<:-∩ⁿˢ (R ∪ nil) string = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R string) (scalar-≢-∩-<:-never nil string (λ ())))
∩-<:-∩ⁿˢ (R ∪ number) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never number nil (λ ())))
∩-<:-∩ⁿˢ (R ∪ boolean) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never boolean nil (λ ())))
∩-<:-∩ⁿˢ (R ∪ string) nil = <:-trans <:-∩-distr-∪ (<:-∪-lub (∩-<:-∩ⁿˢ R nil) (scalar-≢-∩-<:-never string nil (λ ())))
∩-<:-∩ⁿˢ (R ∪ nil) nil = <:-∩-right
∩ⁿˢ-<:-∩ never T = <:-never
∩ⁿˢ-<:-∩ unknown T = <:-∩-glb <:-unknown <:-refl
∩ⁿˢ-<:-∩ (R ⇒ S) T = <:-never
∩ⁿˢ-<:-∩ (F ∩ G) T = <:-never
∩ⁿˢ-<:-∩ (R ∪ number) number = <:-∩-glb <:-∪-right <:-refl
∩ⁿˢ-<:-∩ (R ∪ boolean) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ string) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ nil) number = <:-trans (∩ⁿˢ-<:-∩ R number) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ number) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ boolean) boolean = <:-∩-glb <:-∪-right <:-refl
∩ⁿˢ-<:-∩ (R ∪ string) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ nil) boolean = <:-trans (∩ⁿˢ-<:-∩ R boolean) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ number) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ boolean) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ string) string = <:-∩-glb <:-∪-right <:-refl
∩ⁿˢ-<:-∩ (R ∪ nil) string = <:-trans (∩ⁿˢ-<:-∩ R string) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ number) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ boolean) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ string) nil = <:-trans (∩ⁿˢ-<:-∩ R nil) (<:-intersect <:-∪-left <:-refl)
∩ⁿˢ-<:-∩ (R ∪ nil) nil = <:-∩-glb <:-∪-right <:-refl
∪ᶠ-<:-∪ (R ⇒ S) (T ⇒ U) = <:-trans (<:-function (∩-<:-∩ⁿ R T) (∪ⁿ-<:-∪ S U)) <:-function-∪-∩
∪ᶠ-<:-∪ (R ⇒ S) (G ∩ H) = <:-trans (<:-intersect (∪ᶠ-<:-∪ (R ⇒ S) G) (∪ᶠ-<:-∪ (R ⇒ S) H)) ∪-distl-∩-<:
∪ᶠ-<:-∪ (E ∩ F) G = <:-trans (<:-intersect (∪ᶠ-<:-∪ E G) (∪ᶠ-<:-∪ F G)) ∪-distr-∩-<:
∪-<:-∪ᶠ : ∀ {F G} → FunType F → FunType G → (F ∪ G) <: (F ∪ᶠ G)
∪-<:-∪ᶠ (R ⇒ S) (T ⇒ U) = <:-trans <:-function-∪ (<:-function (∩ⁿ-<:-∩ R T) (∪-<:-∪ⁿ S U))
∪-<:-∪ᶠ (R ⇒ S) (G ∩ H) = <:-trans <:-∪-distl-∩ (<:-intersect (∪-<:-∪ᶠ (R ⇒ S) G) (∪-<:-∪ᶠ (R ⇒ S) H))
∪-<:-∪ᶠ (E ∩ F) G = <:-trans <:-∪-distr-∩ (<:-intersect (∪-<:-∪ᶠ E G) (∪-<:-∪ᶠ F G))
∪ⁿˢ-<:-∪ S never = <:-∪-left
∪ⁿˢ-<:-∪ never number = <:-refl
∪ⁿˢ-<:-∪ never boolean = <:-refl
∪ⁿˢ-<:-∪ never string = <:-refl
∪ⁿˢ-<:-∪ never nil = <:-refl
∪ⁿˢ-<:-∪ unknown number = <:-∪-left
∪ⁿˢ-<:-∪ unknown boolean = <:-∪-left
∪ⁿˢ-<:-∪ unknown string = <:-∪-left
∪ⁿˢ-<:-∪ unknown nil = <:-∪-left
∪ⁿˢ-<:-∪ (R ⇒ S) number = <:-refl
∪ⁿˢ-<:-∪ (R ⇒ S) boolean = <:-refl
∪ⁿˢ-<:-∪ (R ⇒ S) string = <:-refl
∪ⁿˢ-<:-∪ (R ⇒ S) nil = <:-refl
∪ⁿˢ-<:-∪ (R ∩ S) number = <:-refl
∪ⁿˢ-<:-∪ (R ∩ S) boolean = <:-refl
∪ⁿˢ-<:-∪ (R ∩ S) string = <:-refl
∪ⁿˢ-<:-∪ (R ∩ S) nil = <:-refl
∪ⁿˢ-<:-∪ (R ∪ number) number = <:-union <:-∪-left <:-refl
∪ⁿˢ-<:-∪ (R ∪ boolean) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ string) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ nil) number = <:-trans (<:-union (∪ⁿˢ-<:-∪ R number) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ number) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ boolean) boolean = <:-union <:-∪-left <:-refl
∪ⁿˢ-<:-∪ (R ∪ string) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ nil) boolean = <:-trans (<:-union (∪ⁿˢ-<:-∪ R boolean) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ number) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ boolean) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ string) string = <:-union <:-∪-left <:-refl
∪ⁿˢ-<:-∪ (R ∪ nil) string = <:-trans (<:-union (∪ⁿˢ-<:-∪ R string) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ number) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ boolean) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ string) nil = <:-trans (<:-union (∪ⁿˢ-<:-∪ R nil) <:-refl) flipper
∪ⁿˢ-<:-∪ (R ∪ nil) nil = <:-union <:-∪-left <:-refl
∪-<:-∪ⁿˢ T never = <:-∪-lub <:-refl <:-never
∪-<:-∪ⁿˢ never number = <:-refl
∪-<:-∪ⁿˢ never boolean = <:-refl
∪-<:-∪ⁿˢ never string = <:-refl
∪-<:-∪ⁿˢ never nil = <:-refl
∪-<:-∪ⁿˢ unknown number = <:-unknown
∪-<:-∪ⁿˢ unknown boolean = <:-unknown
∪-<:-∪ⁿˢ unknown string = <:-unknown
∪-<:-∪ⁿˢ unknown nil = <:-unknown
∪-<:-∪ⁿˢ (R ⇒ S) number = <:-refl
∪-<:-∪ⁿˢ (R ⇒ S) boolean = <:-refl
∪-<:-∪ⁿˢ (R ⇒ S) string = <:-refl
∪-<:-∪ⁿˢ (R ⇒ S) nil = <:-refl
∪-<:-∪ⁿˢ (R ∩ S) number = <:-refl
∪-<:-∪ⁿˢ (R ∩ S) boolean = <:-refl
∪-<:-∪ⁿˢ (R ∩ S) string = <:-refl
∪-<:-∪ⁿˢ (R ∩ S) nil = <:-refl
∪-<:-∪ⁿˢ (R ∪ number) number = <:-∪-lub <:-refl <:-∪-right
∪-<:-∪ⁿˢ (R ∪ boolean) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl)
∪-<:-∪ⁿˢ (R ∪ string) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl)
∪-<:-∪ⁿˢ (R ∪ nil) number = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R number) <:-refl)
∪-<:-∪ⁿˢ (R ∪ number) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl)
∪-<:-∪ⁿˢ (R ∪ boolean) boolean = <:-∪-lub <:-refl <:-∪-right
∪-<:-∪ⁿˢ (R ∪ string) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl)
∪-<:-∪ⁿˢ (R ∪ nil) boolean = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R boolean) <:-refl)
∪-<:-∪ⁿˢ (R ∪ number) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl)
∪-<:-∪ⁿˢ (R ∪ boolean) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl)
∪-<:-∪ⁿˢ (R ∪ string) string = <:-∪-lub <:-refl <:-∪-right
∪-<:-∪ⁿˢ (R ∪ nil) string = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R string) <:-refl)
∪-<:-∪ⁿˢ (R ∪ number) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl)
∪-<:-∪ⁿˢ (R ∪ boolean) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl)
∪-<:-∪ⁿˢ (R ∪ string) nil = <:-trans flipper (<:-union (∪-<:-∪ⁿˢ R nil) <:-refl)
∪-<:-∪ⁿˢ (R ∪ nil) nil = <:-∪-lub <:-refl <:-∪-right
∪ⁿ-<:-∪ S never = <:-∪-left
∪ⁿ-<:-∪ S unknown = <:-∪-right
∪ⁿ-<:-∪ never (T ⇒ U) = <:-∪-right
∪ⁿ-<:-∪ unknown (T ⇒ U) = <:-∪-left
∪ⁿ-<:-∪ (R ⇒ S) (T ⇒ U) = ∪ᶠ-<:-∪ (R ⇒ S) (T ⇒ U)
∪ⁿ-<:-∪ (R ∩ S) (T ⇒ U) = ∪ᶠ-<:-∪ (R ∩ S) (T ⇒ U)
∪ⁿ-<:-∪ (R ∪ S) (T ⇒ U) = <:-trans (<:-union (∪ⁿ-<:-∪ R (T ⇒ U)) <:-refl) (<:-∪-lub (<:-∪-lub (<:-trans <:-∪-left <:-∪-left) <:-∪-right) (<:-trans <:-∪-right <:-∪-left))
∪ⁿ-<:-∪ never (T ∩ U) = <:-∪-right
∪ⁿ-<:-∪ unknown (T ∩ U) = <:-∪-left
∪ⁿ-<:-∪ (R ⇒ S) (T ∩ U) = ∪ᶠ-<:-∪ (R ⇒ S) (T ∩ U)
∪ⁿ-<:-∪ (R ∩ S) (T ∩ U) = ∪ᶠ-<:-∪ (R ∩ S) (T ∩ U)
∪ⁿ-<:-∪ (R ∪ S) (T ∩ U) = <:-trans (<:-union (∪ⁿ-<:-∪ R (T ∩ U)) <:-refl) (<:-∪-lub (<:-∪-lub (<:-trans <:-∪-left <:-∪-left) <:-∪-right) (<:-trans <:-∪-right <:-∪-left))
∪ⁿ-<:-∪ S (T ∪ U) = <:-∪-lub (<:-trans (∪ⁿ-<:-∪ S T) (<:-union <:-refl <:-∪-left)) (<:-trans <:-∪-right <:-∪-right)
∪-<:-∪ⁿ S never = <:-∪-lub <:-refl <:-never
∪-<:-∪ⁿ S unknown = <:-unknown
∪-<:-∪ⁿ never (T ⇒ U) = <:-∪-lub <:-never <:-refl
∪-<:-∪ⁿ unknown (T ⇒ U) = <:-unknown
∪-<:-∪ⁿ (R ⇒ S) (T ⇒ U) = ∪-<:-∪ᶠ (R ⇒ S) (T ⇒ U)
∪-<:-∪ⁿ (R ∩ S) (T ⇒ U) = ∪-<:-∪ᶠ (R ∩ S) (T ⇒ U)
∪-<:-∪ⁿ (R ∪ S) (T ⇒ U) = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) (<:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ R (T ⇒ U)) <:-refl)))
∪-<:-∪ⁿ never (T ∩ U) = <:-∪-lub <:-never <:-refl
∪-<:-∪ⁿ unknown (T ∩ U) = <:-unknown
∪-<:-∪ⁿ (R ⇒ S) (T ∩ U) = ∪-<:-∪ᶠ (R ⇒ S) (T ∩ U)
∪-<:-∪ⁿ (R ∩ S) (T ∩ U) = ∪-<:-∪ᶠ (R ∩ S) (T ∩ U)
∪-<:-∪ⁿ (R ∪ S) (T ∩ U) = <:-trans <:-∪-assocr (<:-trans (<:-union <:-refl <:-∪-symm) (<:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ R (T ∩ U)) <:-refl)))
∪-<:-∪ⁿ never (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ never T) <:-refl)
∪-<:-∪ⁿ unknown (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ unknown T) <:-refl)
∪-<:-∪ⁿ (R ⇒ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ⇒ S) T) <:-refl)
∪-<:-∪ⁿ (R ∩ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ∩ S) T) <:-refl)
∪-<:-∪ⁿ (R ∪ S) (T ∪ U) = <:-trans <:-∪-assocl (<:-union (∪-<:-∪ⁿ (R ∪ S) T) <:-refl)
normalize-<: : ∀ T → normalize T <: T
<:-normalize : ∀ T → T <: normalize T
<:-normalize nil = <:-∪-right
<:-normalize (S ⇒ T) = <:-function (normalize-<: S) (<:-normalize T)
<:-normalize never = <:-refl
<:-normalize unknown = <:-refl
<:-normalize boolean = <:-∪-right
<:-normalize number = <:-∪-right
<:-normalize string = <:-∪-right
<:-normalize (S ∪ T) = <:-trans (<:-union (<:-normalize S) (<:-normalize T)) (∪-<:-∪ⁿ (normal S) (normal T))
<:-normalize (S ∩ T) = <:-trans (<:-intersect (<:-normalize S) (<:-normalize T)) (∩-<:-∩ⁿ (normal S) (normal T))
normalize-<: nil = <:-∪-lub <:-never <:-refl
normalize-<: (S ⇒ T) = <:-function (<:-normalize S) (normalize-<: T)
normalize-<: never = <:-refl
normalize-<: unknown = <:-refl
normalize-<: boolean = <:-∪-lub <:-never <:-refl
normalize-<: number = <:-∪-lub <:-never <:-refl
normalize-<: string = <:-∪-lub <:-never <:-refl
normalize-<: (S ∪ T) = <:-trans (∪ⁿ-<:-∪ (normal S) (normal T)) (<:-union (normalize-<: S) (normalize-<: T))
normalize-<: (S ∩ T) = <:-trans (∩ⁿ-<:-∩ (normal S) (normal T)) (<:-intersect (normalize-<: S) (normalize-<: T))
| {
"alphanum_fraction": 0.5054919264,
"avg_line_length": 52.0880195599,
"ext": "agda",
"hexsha": "cbd8139fa8f8ca34d2bbd498ec148b47f3eae425",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sthagen/Roblox-luau",
"max_forks_repo_path": "prototyping/Properties/TypeNormalization.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sthagen/Roblox-luau",
"max_issues_repo_path": "prototyping/Properties/TypeNormalization.agda",
"max_line_length": 443,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f1b46f4b967f11fabe666da1de0e71b225368260",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Libertus-Lab/luau",
"max_stars_repo_path": "prototyping/Properties/TypeNormalization.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-06T08:03:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-06T08:03:00.000Z",
"num_tokens": 11533,
"size": 21304
} |
-- Soundness proofs of structural lemmas and substitution
module Semantics.Substitution.Soundness where
open import Syntax.Types
open import Syntax.Context renaming (_,_ to _,,_)
open import Syntax.Terms
open import Syntax.Substitution.Kits
open import Syntax.Substitution.Instances
open import Syntax.Substitution.Lemmas
open import Semantics.Types
open import Semantics.Context
open import Semantics.Terms
open import Semantics.Substitution.Kits
open import Semantics.Substitution.Traversal
open import Semantics.Substitution.Instances
open import Semantics.Bind
open import CategoryTheory.Categories using (Category ; ext)
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans
open import CategoryTheory.Monad
open import CategoryTheory.Comonad
open import CategoryTheory.Linear
open import CategoryTheory.Instances.Reactive renaming (top to ⊤)
open import TemporalOps.Diamond
open import TemporalOps.Box
open import TemporalOps.OtherOps
open import TemporalOps.StrongMonad
open import TemporalOps.Linear
open import Data.Sum
open import Data.Product using (_,_)
open import Relation.Binary.PropositionalEquality as ≡
using (_≡_ ; refl ; sym ; trans ; cong ; cong₂ ; subst)
open ≡.≡-Reasoning
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
open ⟦K⟧ ⟦𝒯erm⟧
-- | Interpretation of various types of substitution as context morphisms
-- Denotation of term substitutions
⟦_⟧ₛ : ∀{Γ Δ} -> Subst Term Γ Δ -> ⟦ Δ ⟧ₓ ⇴ ⟦ Γ ⟧ₓ
⟦ σ ⟧ₛ = ⟦subst⟧ σ
-- Denotation of OPEs
⟦_⟧⊆ : ∀{Γ Δ} -> Γ ⊆ Δ -> ⟦ Δ ⟧ₓ ⇴ ⟦ Γ ⟧ₓ
⟦ s ⟧⊆ = ⟦ s ⊆ₛ 𝒯erm ⟧ₛ
-- Denotation of context exchange
⟦exch⟧ : ∀ Γ Γ′ Γ″ {A B} -> ⟦ Γ ⌊ B ⌋ Γ′ ⌊ A ⌋ Γ″ ⟧ₓ ⇴ ⟦ Γ ⌊ A ⌋ Γ′ ⌊ B ⌋ Γ″ ⟧ₓ
⟦exch⟧ Γ Γ′ Γ″ = ⟦ exₛ 𝒯ermₛ Γ Γ′ Γ″ ⟧ₛ
-- Denotation of context contraction
⟦contr⟧ : ∀ Γ Γ′ Γ″ {A} -> ⟦ Γ ⌊ A ⌋ Γ′ ⌊⌋ Γ″ ⟧ₓ ⇴ ⟦ Γ ⌊ A ⌋ Γ′ ⌊ A ⌋ Γ″ ⟧ₓ
⟦contr⟧ Γ Γ′ Γ″ = ⟦ contr-lₛ 𝒯ermₛ Γ Γ′ Γ″ ⟧ₛ
-- Denotation of middle context substitution
⟦_⌊⌋ₛ_⊢ₛ_⟧ : ∀ Γ Γ′ {A} -> Γ ⌊⌋ Γ′ ⊢ A -> ⟦ Γ ⌊⌋ Γ′ ⟧ₓ ⇴ ⟦ Γ ⌊ A ⌋ Γ′ ⟧ₓ
⟦ Γ ⌊⌋ₛ Γ′ ⊢ₛ M ⟧ = ⟦ sub-midₛ 𝒯ermₛ Γ Γ′ M ⟧ₛ
-- Denotational soundness of top substitution
⟦sub-topₛ⟧ : ∀ {Γ A} -> (M : Γ ⊢ A)
-> ⟦ sub-topₛ 𝒯ermₛ M ⟧ₛ ≈ ⟨ id , ⟦ M ⟧ₘ ⟩
⟦sub-topₛ⟧ {Γ} M {n} {⟦Γ⟧} rewrite ⟦idₛ⟧ {Γ} {n} {⟦Γ⟧} = refl
-- | Soundness theorems
-- | Concrete soundness theorems for structural lemmas and substitution
-- | are instances of the general traversal soundness proof
-- Substituting traversal is sound
substitute-sound : ∀{Γ Δ A} (σ : Subst Term Γ Δ) (M : Γ ⊢ A)
-> ⟦ substitute σ M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ ⟦ σ ⟧ₛ
substitute-sound σ M = traverse-sound ⟦𝒯erm⟧ σ M
substitute′-sound : ∀{Γ Δ A} (σ : Subst Term Γ Δ) (M : Γ ⊨ A)
-> ⟦ substitute′ σ M ⟧ᵐ ≈ ⟦ M ⟧ᵐ ∘ ⟦ σ ⟧ₛ
substitute′-sound σ M = traverse′-sound ⟦𝒯erm⟧ σ M
-- Weakening lemma is sound
weakening-sound : ∀{Γ Δ A} (s : Γ ⊆ Δ) (M : Γ ⊢ A)
-> ⟦ weakening s M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ ⟦ s ⟧⊆
weakening-sound s = substitute-sound (s ⊆ₛ 𝒯erm)
-- Exchange lemma is sound
exchange-sound : ∀{Γ Γ′ Γ″ A B C} (M : Γ ⌊ A ⌋ Γ′ ⌊ B ⌋ Γ″ ⊢ C)
-> ⟦ exchange Γ Γ′ Γ″ M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ (⟦exch⟧ Γ Γ′ Γ″)
exchange-sound {Γ} {Γ′} {Γ″} = substitute-sound (exₛ 𝒯ermₛ Γ Γ′ Γ″)
-- Contraction lemma is sound
contraction-sound : ∀{Γ Γ′ Γ″ A B} (M : Γ ⌊ A ⌋ Γ′ ⌊ A ⌋ Γ″ ⊢ B)
-> ⟦ contraction Γ Γ′ Γ″ M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ (⟦contr⟧ Γ Γ′ Γ″)
contraction-sound {Γ} {Γ′} {Γ″} = substitute-sound (contr-lₛ 𝒯ermₛ Γ Γ′ Γ″)
-- Substitution lemma is sound
substitution-sound : ∀{Γ Γ′ A B} (M : Γ ⌊⌋ Γ′ ⊢ A) (N : Γ ⌊ A ⌋ Γ′ ⊢ B)
-> ⟦ substitution Γ Γ′ M N ⟧ₘ ≈ ⟦ N ⟧ₘ ∘ ⟦ Γ ⌊⌋ₛ Γ′ ⊢ₛ M ⟧
substitution-sound {Γ} {Γ′} M = substitute-sound (sub-midₛ 𝒯ermₛ Γ Γ′ M)
-- Substitution lemma is sound
substitution′-sound : ∀{Γ Γ′ A B} (M : Γ ⌊⌋ Γ′ ⊢ A) (N : Γ ⌊ A ⌋ Γ′ ⊨ B)
-> ⟦ substitution′ Γ Γ′ M N ⟧ᵐ ≈ ⟦ N ⟧ᵐ ∘ ⟦ Γ ⌊⌋ₛ Γ′ ⊢ₛ M ⟧
substitution′-sound {Γ} {Γ′} M N = traverse′-sound ⟦𝒯erm⟧ (sub-midₛ 𝒯ermₛ Γ Γ′ M) N
-- Top substitution is sound (full categorical proof)
subst-sound : ∀{Γ A B} (M : Γ ⊢ A) (N : Γ ,, A ⊢ B)
-> ⟦ [ M /] N ⟧ₘ ≈ ⟦ N ⟧ₘ ∘ ⟨ id , ⟦ M ⟧ₘ ⟩
subst-sound M N {n} {a} rewrite sym (⟦sub-topₛ⟧ M {n} {a}) =
substitute-sound (sub-topₛ 𝒯ermₛ M) N
-- Top substitution is sound (full categorical proof)
subst′-sound : ∀{Γ A B} (M : Γ ⊢ A) (N : Γ ,, A ⊨ B)
-> ⟦ [ M /′] N ⟧ᵐ ≈ ⟦ N ⟧ᵐ ∘ ⟨ id , ⟦ M ⟧ₘ ⟩
subst′-sound M N {n} {a} rewrite sym (⟦sub-topₛ⟧ M {n} {a}) =
traverse′-sound ⟦𝒯erm⟧ (sub-topₛ 𝒯ermₛ M) N
open K 𝒯erm
open Monad M-◇
open Comonad W-□
open Functor F-□ renaming (fmap to □-f)
open Functor F-◇ renaming (fmap to ◇-f)
private module F-◇ = Functor F-◇
-- Lemma used in the soundness proof of computational substitution
subst″-sound-lemma : ∀ Γ {A B} (n k l : ℕ)
-> (D : Γ ˢ ,, A now ⊨ B now)
-> (⟦Γ⟧ : ⟦ Γ ⟧ₓ n) (⟦A⟧ : ⟦ A ⟧ₜ l)
-> ⟦ substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ l (⟦ Γ ˢ ˢ⟧□ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k) l , ⟦A⟧)
≡ ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧)
subst″-sound-lemma Γ {A} n k l D ⟦Γ⟧ ⟦A⟧
rewrite substitute′-sound ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D {l} {⟦ Γ ˢ ˢ⟧□ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k) l , ⟦A⟧}
| ⟦↑⟧ (A now) (Γ ˢˢₛ 𝒯erm) {l} {⟦ Γ ˢ ˢ⟧□ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k) l , ⟦A⟧}
| □-≡ k l (□-≡ n k (⟦ˢ⟧□-twice Γ {n} {⟦Γ⟧}) k) l
| □-≡ k l (⟦ˢˢ⟧ Γ {n} {⟦Γ⟧}) l = refl
subst″-sound : ∀{Γ A B} (C : Γ ⊨ A now) (D : Γ ˢ ,, A now ⊨ B now)
-> ⟦ ⟨ C /⟩ D ⟧ᵐ ≈ bindEvent Γ ⟦ C ⟧ᵐ ⟦ D ⟧ᵐ
subst″-sound {Γ}{A}{B} (pure M) D {n} {⟦Γ⟧}
rewrite traverse′-sound ⟦𝒯erm⟧ (sub-topˢₛ 𝒯ermₛ M) D {n} {⟦Γ⟧}
| ⟦subst⟧-Γˢ⊆Γ Γ {n} {⟦Γ⟧} | ⟦ˢ⟧-factor Γ {n} {⟦Γ⟧} = refl
subst″-sound {Γ}{A}{B} (letSig_InC_ {A = G} S C) D {n} {⟦Γ⟧}
rewrite subst″-sound C (substitute′ (idₛ 𝒯erm ⁺ 𝒯erm ↑ 𝒯erm) D) {n} {⟦Γ⟧ , ⟦ S ⟧ₘ n ⟦Γ⟧}
=
begin
bindEvent (Γ ,, G always) ⟦ C ⟧ᵐ ⌞ ⟦ substitute′ ((_⁺_ {G always} (idₛ 𝒯erm) 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ ⌟ n (⟦Γ⟧ , ⟦ S ⟧ₘ n ⟦Γ⟧)
≡⟨ bind-to->>= (Γ ,, G always) ⟦ C ⟧ᵐ ⟦ substitute′ ((_⁺_ {G always} (idₛ 𝒯erm) 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ n (⟦Γ⟧ , ⟦ S ⟧ₘ n ⟦Γ⟧) ⟩
⟦ C ⟧ᵐ n (⟦Γ⟧ , ⟦ S ⟧ₘ n ⟦Γ⟧)
>>= (λ l ⟦A⟧ → ⟦ substitute′ (idₛ 𝒯erm ⁺ 𝒯erm ↑ 𝒯erm) D ⟧ᵐ l ((⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦ S ⟧ₘ n ⟦Γ⟧) , ⟦A⟧))
≡⟨ cong (λ x → (⟦ C ⟧ᵐ n (⟦Γ⟧ , ⟦ S ⟧ₘ n ⟦Γ⟧) >>= x))
(ext λ l → ext λ ⟦A⟧ →
begin
⟦ substitute′ (idₛ 𝒯erm ⁺ 𝒯erm ↑ 𝒯erm) D ⟧ᵐ l ((⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦ S ⟧ₘ n ⟦Γ⟧) , ⟦A⟧)
≡⟨ substitute′-sound (_↑_ {A now} (_⁺_ {G always} (idₛ 𝒯erm) 𝒯erm) 𝒯erm) D {l} {((⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦ S ⟧ₘ n ⟦Γ⟧) , ⟦A⟧)} ⟩
⟦ D ⟧ᵐ l (⟦ (_↑_ {A now} {Γ = Γ ˢ} (_⁺_ {G always} (idₛ 𝒯erm) 𝒯erm) 𝒯erm) ⟧ₛ l ((⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦ S ⟧ₘ n ⟦Γ⟧) , ⟦A⟧))
≡⟨ cong (⟦ D ⟧ᵐ l) (⟦↑⟧ (A now) {Γ ˢ ,, G always} (_⁺_ {G always} (idₛ 𝒯erm) 𝒯erm) {l} {(⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦ S ⟧ₘ n ⟦Γ⟧) , ⟦A⟧}) ⟩
⟦ D ⟧ᵐ l (⟦ _⁺_ {G always} {Γ = Γ ˢ} (idₛ 𝒯erm) 𝒯erm ⟧ₛ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦ S ⟧ₘ n ⟦Γ⟧) , ⟦A⟧)
≡⟨ cong (λ x → ⟦ D ⟧ᵐ l (x , ⟦A⟧)) (⟦⁺⟧ (G always) {Γ ˢ} (idₛ 𝒯erm) {l} {⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦ S ⟧ₘ n ⟦Γ⟧}) ⟩
⟦ D ⟧ᵐ l (⟦ idₛ {Γ ˢ} 𝒯erm ⟧ₛ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , ⟦A⟧)
≡⟨ cong (λ x → ⟦ D ⟧ᵐ l (x , ⟦A⟧)) (⟦idₛ⟧ {Γ ˢ} {l} {⟦ Γ ˢ⟧□ n ⟦Γ⟧ l}) ⟩
⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧)
∎
)
⟩
⟦ letSig S InC C ⟧ᵐ n ⟦Γ⟧
>>= (λ l ⟦A⟧ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
≡⟨ sym (bind-to->>= Γ ⟦ letSig S InC C ⟧ᵐ ⟦ D ⟧ᵐ n ⟦Γ⟧) ⟩
bindEvent Γ ⟦ letSig S InC C ⟧ᵐ ⟦ D ⟧ᵐ n ⟦Γ⟧
∎
subst″-sound {Γ}{A}{B} (letEvt_In_ {A = G} E C) D {n} {⟦Γ⟧} =
begin
⟦ ⟨ letEvt E In C /⟩ D ⟧ᵐ n ⟦Γ⟧
≡⟨ bind-to->>= Γ ⟦ E ⟧ₘ ⟦ ⟨ C /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ n ⟦Γ⟧ ⟩
⟦ E ⟧ₘ n ⟦Γ⟧
>>= (λ k ⟦A⟧ → ⟦ ⟨ C /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧))
≡⟨ cong (λ x → ⟦ E ⟧ₘ n ⟦Γ⟧ >>= x)
(ext λ k → ext λ ⟦A⟧ → (begin
⟦ ⟨ C /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧)
≡⟨ subst″-sound C (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) {k} {⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧} ⟩
bindEvent (Γ ˢ ,, G now) ⟦ C ⟧ᵐ
⟦ substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧)
≡⟨ bind-to->>= (Γ ˢ ,, G now) ⟦ C ⟧ᵐ ⟦ substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧) ⟩
⟦ C ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧)
>>= (λ l ⟦A⟧₁ → ⟦ substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ l (⟦ Γ ˢ ˢ⟧□ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k) l , ⟦A⟧₁))
≡⟨ cong (λ x → ⟦ C ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧) >>= x)
(ext λ l → ext λ ⟦A⟧₁ → subst″-sound-lemma Γ n k l D ⟦Γ⟧ ⟦A⟧₁) ⟩
⟦ C ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧)
>>= (λ l ⟦A⟧₁ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧₁))
∎)) ⟩
⟦ E ⟧ₘ n ⟦Γ⟧
>>= (λ k ⟦A⟧ → ⟦ C ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧)
>>= λ l ⟦A⟧ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
≡⟨ sym (>>=-assoc (⟦ E ⟧ₘ n ⟦Γ⟧) _ _) ⟩
(⟦ E ⟧ₘ n ⟦Γ⟧
>>= λ k ⟦A⟧ → ⟦ C ⟧ᵐ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧ k , ⟦A⟧))
>>= (λ l ⟦A⟧ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
≡⟨ cong (λ x -> x >>= _) (sym (bind-to->>= Γ ⟦ E ⟧ₘ ⟦ C ⟧ᵐ n ⟦Γ⟧)) ⟩
(⟦ letEvt E In C ⟧ᵐ n ⟦Γ⟧
>>= (λ l ⟦A⟧ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧)))
≡⟨ sym (bind-to->>= Γ ⟦ letEvt E In C ⟧ᵐ ⟦ D ⟧ᵐ n ⟦Γ⟧) ⟩
bindEvent Γ ⟦ letEvt E In C ⟧ᵐ ⟦ D ⟧ᵐ n ⟦Γ⟧
∎
subst″-sound {Γ}{A}{B} (select_↦_||_↦_||both↦_ {A = G}{H} E₁ C₁ E₂ C₂ C₃) D {n} {⟦Γ⟧} =
begin
⟦ ⟨ select E₁ ↦ C₁ || E₂ ↦ C₂ ||both↦ C₃ /⟩ D ⟧ᵐ n ⟦Γ⟧
≡⟨⟩
⟦ select E₁ ↦ ⟨ C₁ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D)
|| E₂ ↦ ⟨ C₂ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D)
||both↦ ⟨ C₃ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ n ⟦Γ⟧
≡⟨⟩
bindEvent Γ (⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫) (handle
⟦ ⟨ C₁ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ
⟦ ⟨ C₂ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ
⟦ ⟨ C₃ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ) n ⟦Γ⟧
≡⟨ bind-to->>= Γ (⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫) (handle
⟦ ⟨ C₁ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ
⟦ ⟨ C₂ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ
⟦ ⟨ C₃ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ) n ⟦Γ⟧ ⟩
⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n ⟦Γ⟧
>>= (λ l ⟦A⟧ → handle
⟦ ⟨ C₁ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ
⟦ ⟨ C₂ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ
⟦ ⟨ C₃ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
≡⟨ cong (λ x → ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n ⟦Γ⟧ >>= x) (ext λ m → ext λ c → lemma m c) ⟩
⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n ⟦Γ⟧
>>= (λ m c → handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ m (⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , c)
>>= λ l ⟦A⟧ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
≡⟨ sym (>>=-assoc (⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n ⟦Γ⟧) _ _) ⟩
(⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n ⟦Γ⟧
>>= λ m c -> handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ m (⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , c))
>>= (λ l ⟦A⟧ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
≡⟨ cong (λ x -> x >>= _) (sym (bind-to->>= Γ (⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫)
(handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n ⟦Γ⟧)) ⟩
bindEvent Γ (⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫)
(handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n ⟦Γ⟧
>>= (λ l ⟦A⟧ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
≡⟨ sym (bind-to->>= Γ (bindEvent Γ (⟪_,_⟫ ⟦ E₁ ⟧ₘ ⟦ E₂ ⟧ₘ) (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ))
⟦ D ⟧ᵐ n ⟦Γ⟧) ⟩
bindEvent Γ (bindEvent Γ ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ)) ⟦ D ⟧ᵐ n ⟦Γ⟧
∎
where
lemma : ∀ m c
-> handle
⟦ ⟨ C₁ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ
⟦ ⟨ C₂ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ
⟦ ⟨ C₃ /⟩ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) ⟧ᵐ m (⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , c)
≡ (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ m (⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , c)
>>= λ l ⟦A⟧ → ⟦ D ⟧ᵐ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
lemma m (inj₁ (inj₁ (⟦A⟧ , ⟦◇B⟧)))
rewrite subst″-sound C₁ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) {m} {(⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , ⟦A⟧) , ⟦◇B⟧}
| bind-to->>= (Γ ˢ ,, G now ,, Event H now) ⟦ C₁ ⟧ᵐ ⟦ substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ m ((⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , ⟦A⟧) , ⟦◇B⟧)
| (ext λ l → ext λ ⟦C⟧ → subst″-sound-lemma Γ n m l D ⟦Γ⟧ ⟦C⟧)
= refl
lemma m (inj₁ (inj₂ (⟦◇A⟧ , ⟦B⟧)))
rewrite subst″-sound C₂ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) {m} {(⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , ⟦◇A⟧) , ⟦B⟧}
| bind-to->>= (Γ ˢ ,, Event G now ,, H now) ⟦ C₂ ⟧ᵐ ⟦ substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ m ((⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , ⟦◇A⟧) , ⟦B⟧)
| (ext λ l → ext λ ⟦C⟧ → subst″-sound-lemma Γ n m l D ⟦Γ⟧ ⟦C⟧)
= refl
lemma m (inj₂ (⟦A⟧ , ⟦B⟧))
rewrite subst″-sound C₃ (substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D) {m} {(⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , ⟦A⟧) , ⟦B⟧}
| bind-to->>= (Γ ˢ ,, G now ,, H now) ⟦ C₃ ⟧ᵐ ⟦ substitute′ ((Γ ˢˢₛ 𝒯erm) ↑ 𝒯erm) D ⟧ᵐ m ((⟦ Γ ˢ⟧□ n ⟦Γ⟧ m , ⟦A⟧) , ⟦B⟧)
| (ext λ l → ext λ ⟦C⟧ → subst″-sound-lemma Γ n m l D ⟦Γ⟧ ⟦C⟧)
= refl
| {
"alphanum_fraction": 0.4481085589,
"avg_line_length": 48.4963235294,
"ext": "agda",
"hexsha": "69f5559499938c6cb00516cbc8e88e38c1c3a50a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Semantics/Substitution/Soundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Semantics/Substitution/Soundness.agda",
"max_line_length": 142,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Semantics/Substitution/Soundness.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 7873,
"size": 13191
} |
module Category.Monad.Maybe.Typeclass where
open import Category.Monad
open import Data.Maybe
record MaybeMonad (M : Set → Set) : Set₁ where
field
no : ∀ {A} → M A
yes : ∀ {A} → A → M A
open MaybeMonad
maybe-monad-ops : MaybeMonad Maybe
no maybe-monad-ops = nothing
yes maybe-monad-ops = just
| {
"alphanum_fraction": 0.6915584416,
"avg_line_length": 20.5333333333,
"ext": "agda",
"hexsha": "09f48d124a9f992ffc5819507b1bd5c05f03331b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Category/Monad/Maybe/Typeclass.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Category/Monad/Maybe/Typeclass.agda",
"max_line_length": 46,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Category/Monad/Maybe/Typeclass.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 94,
"size": 308
} |
module Lib.Nat where
open import Lib.Bool
open import Lib.Logic
open import Lib.Id
data Nat : Set where
zero : Nat
suc : Nat -> Nat
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
infixr 50 _*_
infixr 40 _+_
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
lem-plus-zero : (n : Nat) -> n + 0 ≡ n
lem-plus-zero zero = refl
lem-plus-zero (suc n) = cong suc (lem-plus-zero n)
lem-plus-suc : (n m : Nat) -> n + suc m ≡ suc (n + m)
lem-plus-suc zero m = refl
lem-plus-suc (suc n) m = cong suc (lem-plus-suc n m)
lem-plus-commute : (n m : Nat) -> n + m ≡ m + n
lem-plus-commute n zero = lem-plus-zero _
lem-plus-commute n (suc m) with n + suc m | lem-plus-suc n m
... | .(suc (n + m)) | refl = cong suc (lem-plus-commute n m)
_*_ : Nat -> Nat -> Nat
zero * m = zero
suc n * m = m + n * m
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat -> Nat -> Bool
zero == zero = true
zero == suc _ = false
suc _ == zero = false
suc n == suc m = n == m
{-# BUILTIN NATEQUALS _==_ #-}
NonZero : Nat -> Set
NonZero zero = False
NonZero (suc _) = True
| {
"alphanum_fraction": 0.5694200351,
"avg_line_length": 21.0740740741,
"ext": "agda",
"hexsha": "b9691d81977f99c578225348863e178069e91326",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "examples/simple-lib/Lib/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "examples/simple-lib/Lib/Nat.agda",
"max_line_length": 61,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/simple-lib/Lib/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 416,
"size": 1138
} |
{-# OPTIONS --without-K --safe #-}
module Util.Relation.Binary.LogicalEquivalence where
open import Relation.Binary using (IsEquivalence ; Setoid)
open import Util.Prelude
private
variable
α β γ : Level
A B C : Set α
infix 4 _↔_
record _↔_ (A : Set α) (B : Set β) : Set (α ⊔ℓ β) where
field
forth : A → B
back : B → A
open _↔_ public
↔-refl : A ↔ A
↔-refl .forth = id
↔-refl .back = id
↔-reflexive : A ≡ B → A ↔ B
↔-reflexive refl = ↔-refl
↔-sym : A ↔ B → B ↔ A
↔-sym A↔B .forth = A↔B .back
↔-sym A↔B .back = A↔B .forth
↔-trans : A ↔ B → B ↔ C → A ↔ C
↔-trans A↔B B↔C .forth = B↔C .forth ∘ A↔B .forth
↔-trans A↔B B↔C .back = A↔B .back ∘ B↔C .back
↔-isEquivalence : IsEquivalence (_↔_ {α})
↔-isEquivalence = record
{ refl = ↔-refl
; sym = ↔-sym
; trans = ↔-trans
}
↔-setoid : ∀ α → Setoid (lsuc α) α
↔-setoid α .Setoid.Carrier = Set α
↔-setoid α .Setoid._≈_ = _↔_
↔-setoid α .Setoid.isEquivalence = ↔-isEquivalence
| {
"alphanum_fraction": 0.5846313603,
"avg_line_length": 16.8947368421,
"ext": "agda",
"hexsha": "b0724c446b7c49115ef633356fc346aa2ff2ff2a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Util/Relation/Binary/LogicalEquivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Util/Relation/Binary/LogicalEquivalence.agda",
"max_line_length": 58,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Util/Relation/Binary/LogicalEquivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 428,
"size": 963
} |
module Categories.Families where
open import Library
open import Categories
open Cat
Fam : Set → Cat
Fam I = record {
Obj = I → Set;
Hom = λ A B → ∀ {i} → A i → B i;
iden = id;
comp = λ f g → f ∘ g;
idl = refl;
idr = refl;
ass = refl}
| {
"alphanum_fraction": 0.5680933852,
"avg_line_length": 15.1176470588,
"ext": "agda",
"hexsha": "7fefc55804ef0391dfba7f8631cf0e51456ef3d4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Categories/Families.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Categories/Families.agda",
"max_line_length": 35,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Categories/Families.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 95,
"size": 257
} |
-- Functors on Set
module Control.Functor where
open import Function using (id; flip) renaming (_∘′_ to _∘_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
-- Operations of a functor.
module T-FunctorOps (F : Set → Set) where
-- Type of the map function.
T-map = ∀ {A B} → (A → B) → F A → F B
T-for = ∀ {A B} → F A → (A → B) → F B
record FunctorOps (F : Set → Set) : Set₁ where
open T-FunctorOps F
-- The map function.
field
map : T-map
-- Alternative notations.
for : T-for
for = flip map
infixr 5 _<$>_ _<&>_
_<$>_ = map
_<&>_ = for
-- Laws of a functor.
module T-FunctorLaws {F : Set → Set} (ops : FunctorOps F) where
open FunctorOps ops public
-- First functor law: identity. ∀ (m : F A) → id <$> m ≡ m
T-map-id = ∀ {A : Set} →
map {A = A} id ≡ id
-- Second functor law: composition. ∀ (m : F A) → (g ∘ f) <$> m ≡ g <$> (f <$> m)
T-map-∘ = ∀ {A B C} {f : A → B} {g : B → C} →
map (g ∘ f) ≡ map g ∘ map f
record FunctorLaws {F : Set → Set} (ops : FunctorOps F) : Set₁ where
open T-FunctorLaws ops
field
map-id : T-map-id
map-∘ : T-map-∘
-- Functoriality.
record IsFunctor (F : Set → Set) : Set₁ where
field
ops : FunctorOps F
laws : FunctorLaws ops
open FunctorOps ops public
open FunctorLaws laws public
record Functor : Set₁ where
constructor functor
field
F : Set → Set
F! : IsFunctor F
open IsFunctor F! public
-- Id is a functor.
idIsFunctor : IsFunctor (λ A → A)
idIsFunctor = record
{ ops = record { map = λ f → f }
; laws = record { map-id = refl ; map-∘ = refl }
}
Id : Functor
Id = record { F = λ A → A ; F! = idIsFunctor }
-- Functors compose.
-- open FunctorOps {{...}}
-- open FunctorLaws {{...}}
compIsFunctor : ∀ {F G} → IsFunctor F → IsFunctor G → IsFunctor (λ A → F (G A))
compIsFunctor f g = record
{ ops = record { map = λ h → F.map (G.map h) }
; laws = record { map-id = trans (cong F.map G.map-id) F.map-id
; map-∘ = map-comp
}
}
where
module F = IsFunctor f
module G = IsFunctor g
map-comp : ∀ {A B C} {h : A → B} {i : B → C} →
F.map (G.map (i ∘ h)) ≡ F.map (G.map i) ∘ F.map (G.map h)
map-comp {h = h}{i = i} = begin
F.map (G.map (i ∘ h))
≡⟨ cong F.map G.map-∘ ⟩
F.map (G.map i ∘ G.map h)
≡⟨ F.map-∘ ⟩
F.map (G.map i) ∘ F.map (G.map h)
∎
Comp : Functor → Functor → Functor
Comp (functor F F!) (functor G G!) = functor (λ A → F (G A)) (compIsFunctor F! G!)
-- The constant functor.
constIsFunctor : ∀ A → IsFunctor (λ _ → A)
constIsFunctor A = record
{ ops = record { map = λ f x → x }
; laws = record { map-id = refl ; map-∘ = refl }
}
Const : (A : Set) → Functor
Const A = functor (λ _ → A) (constIsFunctor A)
| {
"alphanum_fraction": 0.5504067917,
"avg_line_length": 21.9147286822,
"ext": "agda",
"hexsha": "4ff78b180de6dc3f377f6eaa723dc9baf5ef2f74",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Functor.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1030,
"size": 2827
} |
module Homotopy where
infixr 20 _◎_
open import Data.Product
------------------------------------------------------------------------------
-- Level 0
-- Start with this set and its elements
data B : Set where
ZERO : B
ONE : B
PLUS : B → B → B
TIMES : B → B → B
------------------------------------------------------------------------------
-- Level 1
-- Now we introduce Id_B. Given b1 : B, b2 : B, we have the types
-- Id_B(b1,b2) of equivalences
data Id_B : B × B → Set where
unite₊ : { b : B } → Id_B (PLUS ZERO b , b)
uniti₊ : { b : B } → Id_B (b , PLUS ZERO b)
swap₊ : { b₁ b₂ : B } → Id_B (PLUS b₁ b₂ , PLUS b₂ b₁)
assocl₊ : { b₁ b₂ b₃ : B } → Id_B (PLUS b₁ (PLUS b₂ b₃) , PLUS (PLUS b₁ b₂) b₃)
assocr₊ : { b₁ b₂ b₃ : B } → Id_B (PLUS (PLUS b₁ b₂) b₃ , PLUS b₁ (PLUS b₂ b₃))
unite⋆ : { b : B } → Id_B (TIMES ONE b , b)
uniti⋆ : { b : B } → Id_B (b , TIMES ONE b)
swap⋆ : { b₁ b₂ : B } → Id_B (TIMES b₁ b₂ , TIMES b₂ b₁)
assocl⋆ : { b₁ b₂ b₃ : B } →
Id_B (TIMES b₁ (TIMES b₂ b₃) , TIMES (TIMES b₁ b₂) b₃)
assocr⋆ : { b₁ b₂ b₃ : B } →
Id_B (TIMES (TIMES b₁ b₂) b₃ , TIMES b₁ (TIMES b₂ b₃))
dist : { b₁ b₂ b₃ : B } →
Id_B (TIMES (PLUS b₁ b₂) b₃ , PLUS (TIMES b₁ b₃) (TIMES b₂ b₃))
factor : { b₁ b₂ b₃ : B } →
Id_B (PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) , TIMES (PLUS b₁ b₂) b₃)
id⟷ : { b : B } → Id_B (b , b)
sym : { b₁ b₂ : B } → Id_B (b₁ , b₂) → Id_B (b₂ , b₁)
_◎_ : { b₁ b₂ b₃ : B } → Id_B (b₁ , b₂) → Id_B (b₂ , b₃) → Id_B (b₁ , b₃)
_⊕_ : { b₁ b₂ b₃ b₄ : B } →
Id_B (b₁ , b₃) → Id_B (b₂ , b₄) → Id_B (PLUS b₁ b₂ , PLUS b₃ b₄)
_⊗_ : { b₁ b₂ b₃ b₄ : B } →
Id_B (b₁ , b₃) → Id_B (b₂ , b₄) → Id_B (TIMES b₁ b₂ , TIMES b₃ b₄)
-- values
data BVAL : B → Set where
UNIT : BVAL ONE
LEFT : {b₁ b₂ : B} → BVAL b₁ → BVAL (PLUS b₁ b₂)
RIGHT : {b₁ b₂ : B} → BVAL b₂ → BVAL (PLUS b₁ b₂)
PAIR : {b₁ b₂ : B} → BVAL b₁ → BVAL b₂ → BVAL (TIMES b₁ b₂)
mutual
eval : {b₁ b₂ : B} → Id_B (b₁ , b₂) → BVAL b₁ → BVAL b₂
eval unite₊ (LEFT ())
eval unite₊ (RIGHT v) = v
eval uniti₊ v = RIGHT v
eval swap₊ (LEFT v) = RIGHT v
eval swap₊ (RIGHT v) = LEFT v
eval assocl₊ (LEFT v) = LEFT (LEFT v)
eval assocl₊ (RIGHT (LEFT v)) = LEFT (RIGHT v)
eval assocl₊ (RIGHT (RIGHT v)) = RIGHT v
eval assocr₊ (LEFT (LEFT v)) = LEFT v
eval assocr₊ (LEFT (RIGHT v)) = RIGHT (LEFT v)
eval assocr₊ (RIGHT v) = RIGHT (RIGHT v)
eval unite⋆ (PAIR UNIT v) = v
eval uniti⋆ v = PAIR UNIT v
eval swap⋆ (PAIR v1 v2) = PAIR v2 v1
eval assocl⋆ (PAIR v1 (PAIR v2 v3)) = PAIR (PAIR v1 v2) v3
eval assocr⋆ (PAIR (PAIR v1 v2) v3) = PAIR v1 (PAIR v2 v3)
eval dist (PAIR (LEFT v1) v3) = LEFT (PAIR v1 v3)
eval dist (PAIR (RIGHT v2) v3) = RIGHT (PAIR v2 v3)
eval factor (LEFT (PAIR v1 v3)) = PAIR (LEFT v1) v3
eval factor (RIGHT (PAIR v2 v3)) = PAIR (RIGHT v2) v3
eval id⟷ v = v
eval (sym c) v = evalB c v
eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v)
eval (c₁ ⊕ c₂) (LEFT v) = LEFT (eval c₁ v)
eval (c₁ ⊕ c₂) (RIGHT v) = RIGHT (eval c₂ v)
eval (c₁ ⊗ c₂) (PAIR v₁ v₂) = PAIR (eval c₁ v₁) (eval c₂ v₂)
evalB : {b₁ b₂ : B} → Id_B (b₁ , b₂) → BVAL b₂ → BVAL b₁
evalB unite₊ v = RIGHT v
evalB uniti₊ (LEFT ())
evalB uniti₊ (RIGHT v) = v
evalB swap₊ (LEFT v) = RIGHT v
evalB swap₊ (RIGHT v) = LEFT v
evalB assocl₊ (LEFT (LEFT v)) = LEFT v
evalB assocl₊ (LEFT (RIGHT v)) = RIGHT (LEFT v)
evalB assocl₊ (RIGHT v) = RIGHT (RIGHT v)
evalB assocr₊ (LEFT v) = LEFT (LEFT v)
evalB assocr₊ (RIGHT (LEFT v)) = LEFT (RIGHT v)
evalB assocr₊ (RIGHT (RIGHT v)) = RIGHT v
evalB unite⋆ v = PAIR UNIT v
evalB uniti⋆ (PAIR UNIT v) = v
evalB swap⋆ (PAIR v1 v2) = PAIR v2 v1
evalB assocl⋆ (PAIR (PAIR v1 v2) v3) = PAIR v1 (PAIR v2 v3)
evalB assocr⋆ (PAIR v1 (PAIR v2 v3)) = PAIR (PAIR v1 v2) v3
evalB dist (LEFT (PAIR v1 v3)) = PAIR (LEFT v1) v3
evalB dist (RIGHT (PAIR v2 v3)) = PAIR (RIGHT v2) v3
evalB factor (PAIR (LEFT v1) v3) = LEFT (PAIR v1 v3)
evalB factor (PAIR (RIGHT v2) v3) = RIGHT (PAIR v2 v3)
evalB id⟷ v = v
evalB (sym c) v = eval c v
evalB (c₁ ◎ c₂) v = evalB c₁ (evalB c₂ v)
evalB (c₁ ⊕ c₂) (LEFT v) = LEFT (evalB c₁ v)
evalB (c₁ ⊕ c₂) (RIGHT v) = RIGHT (evalB c₂ v)
evalB (c₁ ⊗ c₂) (PAIR v₁ v₂) = PAIR (evalB c₁ v₁) (evalB c₂ v₂)
------------------------------------------------------------------------------
-- Level 2
-- Now we introduce Id_{Id_B}. Given c1 : Id_B(b1,b2) and c2 :
-- Id_B(b1,b2), we have the type of equivalences that show that c1 and
-- c2 are isomorphic.
--
-- We want:
--
-- data Id_Id_B : {b₁ b₂ : B} → Id_B (b₁ , b₂) × Id_B (b₁ , b₂) → Set where
-- ...
-- but before we do that we need to embed the combinators as values that can
-- be manipulated using combinators
-- define the category Int C whose objects are pairs (B,B) and which has an
-- inverse recip sending (B1,B2) to (B2,B1) and then the compact closed
-- eta/epsilon where eta : I -> (A+,A-) * (recip (A+,A-))
-- the embedding send B to (B,I)
-- INT B has as objects pairs of B objects
{--
data Id_BB : (B × B) × (B × B) → Set where
intarr : { b₁ b₂ b₃ b₄ : B } → Id_BB ((b₁ , b₂) , (b₃ , b₄))
embedArr : { b₁ b₂ b₃ b₄ : B } →
Id_BB ((b₁ , b₂) , (b₃ , b₄)) → Id_B ((b₁ , b₄) , (b₂ , b₃))
embedArr x = ?
Iuniti₊ : { b : B } → Id_BB (b , PLUS ZERO b)
Iswap₊ : { b₁ b₂ : B } → Id_BB (PLUS b₁ b₂ , PLUS b₂ b₁)
Iassocl₊ : { b₁ b₂ b₃ : B } → Id_BB (PLUS b₁ (PLUS b₂ b₃) , PLUS (PLUS b₁ b₂) b₃)
Iassocr₊ : { b₁ b₂ b₃ : B } → Id_BB (PLUS (PLUS b₁ b₂) b₃ , PLUS b₁ (PLUS b₂ b₃))
Iunite⋆ : { b : B } → Id_BB (TIMES ONE b , b)
Iuniti⋆ : { b : B } → Id_BB (b , TIMES ONE b)
Iswap⋆ : { b₁ b₂ : B } → Id_BB (TIMES b₁ b₂ , TIMES b₂ b₁)
Iassocl⋆ : { b₁ b₂ b₃ : B } →
Id_BB (TIMES b₁ (TIMES b₂ b₃) , TIMES (TIMES b₁ b₂) b₃)
Iassocr⋆ : { b₁ b₂ b₃ : B } →
Id_BB (TIMES (TIMES b₁ b₂) b₃ , TIMES b₁ (TIMES b₂ b₃))
Idist : { b₁ b₂ b₃ : B } →
Id_BB (TIMES (PLUS b₁ b₂) b₃ , PLUS (TIMES b₁ b₃) (TIMES b₂ b₃))
Ifactor : { b₁ b₂ b₃ : B } →
Id_BB (PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) , TIMES (PLUS b₁ b₂) b₃)
Iid⟷ : { b : B } → Id_BB (b , b)
Isym : { b₁ b₂ : B } → Id_BB (b₁ , b₂) → Id_BB (b₂ , b₁)
_I◎_ : { b₁ b₂ b₃ : B } → Id_BB (b₁ , b₂) → Id_BB (b₂ , b₃) → Id_BB (b₁ , b₃)
_I⊕_ : { b₁ b₂ b₃ b₄ : B } →
Id_BB (b₁ , b₃) → Id_BB (b₂ , b₄) → Id_BB (PLUS b₁ b₂ , PLUS b₃ b₄)
_I⊗_ : { b₁ b₂ b₃ b₄ : B } →
Id_BB (b₁ , b₃) → Id_BB (b₂ , b₄) → Id_BB (TIMES b₁ b₂ , TIMES b₃ b₄)
data BRVAL : BR → Set where
UNITR : BRVAL ONER
LEFTR : {b₁ b₂ : BR} → BRVAL b₁ → BRVAL (PLUSR b₁ b₂)
RIGHTR : {b₁ b₂ : BR} → BRVAL b₂ → BRVAL (PLUSR b₁ b₂)
PAIRR : {b₁ b₂ : BR} → BRVAL b₁ → BRVAL b₂ → BRVAL (TIMESR b₁ b₂)
RECIPR : {b : BR} → BRVAL b → BRVAL (RECIP b)
embedT : B → BR
embedT ZERO = ZEROR
embedT ONE = ONER
embedT (PLUS b₁ b₂) = PLUSR (embedT b₁) (embedT b₂)
embedT (TIMES b₁ b₂) = TIMESR (embedT b₁) (embedT b₂)
embedV : {b : B} → BVAL b → BRVAL (embedT b)
embedV UNIT = UNITR
embedV (LEFT v) = LEFTR (embedV v)
embedV (RIGHT v) = RIGHTR (embedV v)
embedV (PAIR v₁ v₂) = PAIRR (embedV v₁) (embedV v₂)
embedC : {b₁ b₂ : B} →
Id_B (b₁ , b₂) → BRVAL (TIMESR (RECIP (embedT b₁)) (embedT b₂))
embedC unite₊ = ?
embedC uniti₊ = ?
embedC swap₊ = ?
embedC assocl₊ = ?
embedC assocr₊ = ?
embedC unite⋆ = ?
embedC uniti⋆ = ?
embedC swap⋆ = ?
embedC assocl⋆ = ?
embedC assocr⋆ = ?
embedC dist = ?
embedC factor = ?
embedC id⟷ = ?
embedC (sym c) = ?
embedC (c₁ ◎ c₂) = ?
embedC (c₁ ⊕ c₂) = ?
embedC (c₁ ⊗ c₂) = ?
--}
| {
"alphanum_fraction": 0.5380193363,
"avg_line_length": 36.7980769231,
"ext": "agda",
"hexsha": "7b7c6e54cbd814f848a6a9cb1a66e8be81d4daa6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/Homotopy.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/Homotopy.agda",
"max_line_length": 83,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/Homotopy.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3473,
"size": 7654
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Setoids.Subset
open import Setoids.Setoids
open import Setoids.Orders.Partial.Definition
open import Fields.Fields
open import Rings.Orders.Total.Lemmas
open import Rings.Orders.Partial.Definition
open import Rings.Definition
open import Fields.Orders.LeastUpperBounds.Definition
open import Fields.Orders.Total.Definition
open import Sets.EquivalenceRelations
module Numbers.ClassicalReals.RealField.Lemmas {a b c : _} {A : Set a} {S : Setoid {_} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} (pOrderedRing : PartiallyOrderedRing R pOrder) {orderNontrivialX orderNontrivialY : A} (orderNontrivial : orderNontrivialX < orderNontrivialY) where
open Ring R
open Group additiveGroup
open Setoid S
open Equivalence eq
open SetoidPartialOrder pOrder
open import Rings.Orders.Partial.Lemmas pOrderedRing
open PartiallyOrderedRing pOrderedRing
IsInterval : {d : _} {pred : A → Set d} (subset : subset S pred) → Set (a ⊔ c ⊔ d)
IsInterval {pred = pred} subset = (x y : A) → (x<y : x < y) → pred x → pred y → (c : A) → (x < c) → (c < y) → pred c
-- Example: (a, b) is an interval
openBallPred : A → A → A → Set c
openBallPred a b x = (a < x) && (x < b)
openBallSubset : (a b : A) → subset S (openBallPred a b)
openBallSubset a b {x} {y} x=y (a<x ,, x<y) = <WellDefined reflexive x=y a<x ,, <WellDefined x=y reflexive x<y
openBallInterval : (a b : A) → IsInterval (openBallSubset a b)
openBallInterval a b x y x<y (a<x ,, x<b) (a<y ,, y<b) c x<c c<y = <Transitive a<x x<c ,, <Transitive c<y y<b
nonemptyBoundedIntervalHasLubImpliesAllLub : ({d : _} {pred : A → Set d} {subset : subset S pred} (interval : IsInterval subset) → (nonempty : Sg A pred) → (boundedAbove : Sg A (UpperBound pOrder subset)) → Sg A (LeastUpperBound pOrder subset)) → {d : _} → {pred : A → Set d} → (sub : subset S pred) → (nonempty : Sg A pred) → (boundedAbove : Sg A (UpperBound pOrder sub)) → Sg A (LeastUpperBound pOrder sub)
nonemptyBoundedIntervalHasLubImpliesAllLub axiom {d} {pred} sub (member , predMember) (bound , isBound) = lub , lubIsLub
where
intervalPredicate : A → Set (a ⊔ b ⊔ c ⊔ d)
intervalPredicate a = Sg A (λ k → ((a < k) || (a ∼ k)) && pred k)
intervalIsSubset : subset S intervalPredicate
intervalIsSubset {x} {y} x=y (bigger , (inl x<bigger ,, biggerWorks)) = (bigger , (inl (<WellDefined x=y reflexive x<bigger) ,, biggerWorks))
intervalIsSubset {x} {y} x=y (bigger , (inr x=bigger ,, biggerWorks)) = (bigger , (inr (transitive (symmetric x=y) x=bigger) ,, biggerWorks))
intervalIsInterval : IsInterval intervalIsSubset
intervalIsInterval x y x<y (dominateX , (x<dominateX ,, predDominateX)) (dominateY , (inl y<dominateY ,, predDominateY)) c x<c c<y = dominateY , (inl (<Transitive c<y y<dominateY) ,, predDominateY)
intervalIsInterval x y x<y (dominateX , (x<dominateX ,, predDominateX)) (dominateY , (inr y=dominateY ,, predDominateY)) c x<c c<y = dominateY , (inl (<WellDefined reflexive y=dominateY c<y) ,, predDominateY)
intervalNonempty : Sg A intervalPredicate
intervalNonempty = ((member + orderNontrivialX) + inverse orderNontrivialY) , (member , (inl (<WellDefined (transitive groupIsAbelian +Associative) identLeft (orderRespectsAddition (moveInequality' orderNontrivial) member)) ,, predMember))
intervalBounded : Sg A (UpperBound pOrder intervalIsSubset)
intervalBounded = bound , ans
where
ans : (y : A) → intervalPredicate y → (y < bound) || (y ∼ bound)
ans y (boundY , (y<boundY ,, predY)) with isBound boundY predY
ans y (boundY , (inl y<boundY ,, predY)) | inl boundY<Bound = inl (<Transitive y<boundY boundY<Bound)
ans y (boundY , (inr y=boundY ,, predY)) | inl boundY<Bound = inl (<WellDefined (symmetric y=boundY) reflexive boundY<Bound)
ans y (boundY , (inl y<boundY ,, predY)) | inr boundY=Bound = inl (<WellDefined reflexive boundY=Bound y<boundY)
ans y (boundY , (inr y=boundY ,, predY)) | inr boundY=Bound = inr (transitive y=boundY boundY=Bound)
intervalLub : Sg A (LeastUpperBound pOrder intervalIsSubset)
intervalLub = axiom intervalIsInterval intervalNonempty intervalBounded
lub : A
lub with intervalLub
... | b , _ = b
lubProof : LeastUpperBound pOrder intervalIsSubset lub
lubProof with intervalLub
... | b , pr = pr
ubImpliesUbSub : {x : A} → UpperBound pOrder sub x → UpperBound pOrder intervalIsSubset x
ubImpliesUbSub {x} ub y (bound , (y<bound ,, predBound)) with ub bound predBound
ubImpliesUbSub {x} ub y (bound , (inl y<bound ,, predBound)) | inl bound<x = inl (<Transitive y<bound bound<x)
ubImpliesUbSub {x} ub y (bound , (inr y=bound ,, predBound)) | inl bound<x = inl (<WellDefined (symmetric y=bound) reflexive bound<x)
ubImpliesUbSub {x} ub y (bound , (inl y<bound ,, predBound)) | inr bound=x = inl (<WellDefined reflexive bound=x y<bound)
ubImpliesUbSub {x} ub y (bound , (inr y=bound ,, predBound)) | inr bound=x = inr (transitive y=bound bound=x)
ubSubImpliesUb : {x : A} → UpperBound pOrder intervalIsSubset x → UpperBound pOrder sub x
ubSubImpliesUb {x} ub y predY with ub y (y , (inr reflexive ,, predY))
ubSubImpliesUb {x} ub y predY | inl t<x = inl t<x
ubSubImpliesUb {x} ub y predY | inr t=x = inr t=x
lubIsLub : LeastUpperBound pOrder sub lub
LeastUpperBound.upperBound lubIsLub = ubSubImpliesUb (LeastUpperBound.upperBound lubProof)
LeastUpperBound.leastUpperBound lubIsLub y yIsUpperBound = LeastUpperBound.leastUpperBound lubProof y (ubImpliesUbSub yIsUpperBound)
| {
"alphanum_fraction": 0.6977065011,
"avg_line_length": 70.7195121951,
"ext": "agda",
"hexsha": "8039d2dbcf3d85f9fe3fc3eb264850b2179f9c7b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/ClassicalReals/RealField/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/ClassicalReals/RealField/Lemmas.agda",
"max_line_length": 408,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/ClassicalReals/RealField/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1888,
"size": 5799
} |
module UniDB.Morph.StarPrime where
open import UniDB.Spec
open import UniDB.Morph.Depth
mutual
data Star* (Ξ : MOR) : MOR where
refl : {γ : Dom} → Star* Ξ γ γ
incl : {γ₁ γ₂ : Dom} (ξs : Star+ Ξ γ₁ γ₂) → Star* Ξ γ₁ γ₂
data Star+ (Ξ : MOR) : MOR where
step : {γ₁ γ₂ γ₃ : Dom} (ξs : Star* Ξ γ₁ γ₂) (ξ : Ξ γ₂ γ₃) → Star+ Ξ γ₁ γ₃
module _ {Ξ : MOR} where
mutual
step` : {Ξ : MOR} {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζs : Star* Ξ γ₂ γ₃) → Star+ Ξ γ₁ γ₃
step` ξ refl = step refl ξ
step` ξ (incl ζ) = step+ ξ ζ
step+ : {Ξ : MOR} {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζs : Star+ Ξ γ₂ γ₃) → Star+ Ξ γ₁ γ₃
step+ ξ (step ζs ζ) = step (incl (step` ξ ζs)) ζ
mutual
comp** : {γ₁ γ₂ γ₃ : Dom} (ξs : Star* Ξ γ₁ γ₂) (ζs : Star* Ξ γ₂ γ₃) → Star* Ξ γ₁ γ₃
comp** ξs refl = ξs
comp** ξs (incl ζs) = incl (comp*+ ξs ζs)
comp*+ : {γ₁ γ₂ γ₃ : Dom} (ξs : Star* Ξ γ₁ γ₂) (ζs : Star+ Ξ γ₂ γ₃) → Star+ Ξ γ₁ γ₃
comp*+ ξs (step ζs ζ) = step (comp** ξs ζs) ζ
mutual
comp+* : {γ₁ γ₂ γ₃ : Dom} (ξs : Star+ Ξ γ₁ γ₂) (ζs : Star* Ξ γ₂ γ₃) → Star+ Ξ γ₁ γ₃
comp+* ξs refl = ξs
comp+* ξs (incl ζs) = comp++ ξs ζs
comp++ : {γ₁ γ₂ γ₃ : Dom} (ξs : Star+ Ξ γ₁ γ₂) (ζs : Star+ Ξ γ₂ γ₃) → Star+ Ξ γ₁ γ₃
comp++ ξs (step ζs ζ) = step (incl (comp+* ξs ζs)) ζ
module _ {Ξ : MOR} {{upΞ : Up Ξ}} where
mutual
instance
iUpStar* : Up (Star* Ξ)
_↑₁ {{iUpStar*}} refl = refl
_↑₁ {{iUpStar*}} (incl ξs) = incl (ξs ↑₁)
_↑_ {{iUpStar*}} ξ 0 = ξ
_↑_ {{iUpStar*}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁
↑-zero {{iUpStar*}} ξ = refl
↑-suc {{iUpStar*}} ξ δ⁺ = refl
iUpStar+ : Up (Star+ Ξ)
_↑₁ {{iUpStar+}} (step ξs ξ) = step (ξs ↑₁) (ξ ↑₁)
_↑_ {{iUpStar+}} ξ 0 = ξ
_↑_ {{iUpStar+}} ξ (suc δ⁺) = ξ ↑ δ⁺ ↑₁
↑-zero {{iUpStar+}} ξ = refl
↑-suc {{iUpStar+}} ξ δ⁺ = refl
| {
"alphanum_fraction": 0.5002669514,
"avg_line_length": 32.8596491228,
"ext": "agda",
"hexsha": "ba84ad11e8fc92f2226844dccf878da7e0621e73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Morph/StarPrime.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Morph/StarPrime.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Morph/StarPrime.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 997,
"size": 1873
} |
-- Andreas, 2015-12-28, issue reported by effectfully
-- {-# OPTIONS -v tc.data.fits:15 -v tc.conv.sort:30 -v tc.conv.nat:30 #-}
open import Common.Level
postulate
fun : Level → Level
data Test : Set (fun lzero) where
c : Test → Test
-- The primitive lzero in argument of neutral is what matters here.
-- Agda reported:
-- The type of the constructor does not fit in the sort of the
-- datatype, since Set (fun lzero) is not less or equal than
-- Set (fun lzero)
-- Upon inspection of non-prettyTCM Terms, one side had turned
-- `lzero` into `Level (Max [])`, whereas it remained `Def lzero []`
-- on the other side.
-- Should work now.
| {
"alphanum_fraction": 0.6855828221,
"avg_line_length": 29.6363636364,
"ext": "agda",
"hexsha": "3e188ca9fb472973b10171b8ae72401628a242a0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1757.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1757.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1757.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 186,
"size": 652
} |
-- 2014-04-06 Andreas, issue reported by flickyfrans
-- {-# OPTIONS --show-implicit -v tc.section.apply:60 #-}
open import Common.Level renaming (lsuc to suc)
record RawMonad {α β : Level} (M : {γ : Level} → Set γ → Set γ) : Set (suc (α ⊔ β)) where
infixl 1 _>>=_
field
return' : {A : Set α} → A → M A
_>>=_ : {A : Set α} {B : Set β} → M A → (A → M B) → M B
module MonoMonad {α} = RawMonad {α} {α}
module MM = MonoMonad {{...}}
-- return : {α : Level} {M : {γ : Level} → Set γ → Set γ} {{m : RawMonad {α} {α} M }} {A : Set α} → A → M A
return : _
return = MM.return'
-- WAS: Panic: deBruijn index out of scope: 2 in context [M,α]
-- when checking that the expression MM.return' has type _15
-- CAUSE: Ill-formed section telescope produced by checkSectionApplication.
-- NOW: Works.
| {
"alphanum_fraction": 0.6007462687,
"avg_line_length": 30.9230769231,
"ext": "agda",
"hexsha": "eabfb3fc8c569808ffbfe1c24433ff005699ea8f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1094.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1094.agda",
"max_line_length": 107,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1094.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 277,
"size": 804
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties of reflexive closures
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Relation.Binary.Construct.Closure.Reflexive.Properties where
open import Data.Product as Prod
open import Data.Sum.Base as Sum
open import Function.Equivalence using (_⇔_; equivalence)
open import Function using (id)
open import Level
open import Relation.Binary
open import Relation.Binary.Construct.Closure.Reflexive
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl)
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary.Sum using (_⊎-dec_)
open import Relation.Unary using (Pred)
private
variable
a b ℓ p q : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Relational properties
module _ {P : Rel A p} {Q : Rel B q} where
=[]⇒ : ∀ {f : A → B} → P =[ f ]⇒ Q → Refl P =[ f ]⇒ Refl Q
=[]⇒ x [ x∼y ] = [ x x∼y ]
=[]⇒ x refl = refl
module _ {_~_ : Rel A ℓ} where
sym : Symmetric _~_ → Symmetric (Refl _~_)
sym ~-sym [ x∼y ] = [ ~-sym x∼y ]
sym ~-sym refl = refl
trans : Transitive _~_ → Transitive (Refl _~_)
trans ~-trans [ x∼y ] [ x∼y₁ ] = [ ~-trans x∼y x∼y₁ ]
trans ~-trans [ x∼y ] refl = [ x∼y ]
trans ~-trans refl [ x∼y ] = [ x∼y ]
trans ~-trans refl refl = refl
antisym : ∀ {ℓ'} (_≈_ : Rel A ℓ') → Reflexive _≈_ →
Asymmetric _~_ → Antisymmetric _≈_ (Refl _~_)
antisym _≈_ ref asym [ x∼y ] [ y∼x ] = contradiction x∼y (asym y∼x)
antisym _≈_ ref asym [ x∼y ] refl = ref
antisym _≈_ ref asym refl _ = ref
total : Trichotomous _≡_ _~_ → Total (Refl _~_)
total compare x y with compare x y
... | tri< a _ _ = inj₁ [ a ]
... | tri≈ _ refl _ = inj₁ refl
... | tri> _ _ c = inj₂ [ c ]
fromSum : ∀ {a b} → a ≡ b ⊎ a ~ b → Refl _~_ a b
fromSum (inj₁ refl) = refl
fromSum (inj₂ y) = [ y ]
toSum : ∀ {a b} → Refl _~_ a b → a ≡ b ⊎ a ~ b
toSum [ x∼y ] = inj₂ x∼y
toSum refl = inj₁ refl
⊎⇔Refl : ∀ {a b} → (a ≡ b ⊎ a ~ b) ⇔ Refl _~_ a b
⊎⇔Refl = equivalence fromSum toSum
dec : Decidable {A = A} _≡_ → Decidable _~_ → Decidable (Refl _~_)
dec ≡-dec ~-dec a b = Dec.map ⊎⇔Refl (≡-dec a b ⊎-dec ~-dec a b)
decidable : Trichotomous _≡_ _~_ → Decidable (Refl _~_)
decidable ~-tri a b with ~-tri a b
... | tri< a~b _ _ = yes [ a~b ]
... | tri≈ _ refl _ = yes refl
... | tri> ¬a ¬b _ = no λ { refl → ¬b refl ; [ p ] → ¬a p }
respˡ : ∀ {P : REL A B p} → P Respectsˡ _~_ → P Respectsˡ (Refl _~_)
respˡ p-respˡ-~ [ x∼y ] = p-respˡ-~ x∼y
respˡ _ refl = id
respʳ : ∀ {P : REL B A p} → P Respectsʳ _~_ → P Respectsʳ (Refl _~_)
respʳ = respˡ
module _ {_~_ : Rel A ℓ} {P : Pred A p} where
resp : P Respects _~_ → P Respects (Refl _~_)
resp p-resp-~ [ x∼y ] = p-resp-~ x∼y
resp _ refl = id
module _ {_~_ : Rel A ℓ} {P : Rel A p} where
resp₂ : P Respects₂ _~_ → P Respects₂ (Refl _~_)
resp₂ = Prod.map respˡ respʳ
------------------------------------------------------------------------
-- Structures
module _ {_~_ : Rel A ℓ} where
isPreorder : Transitive _~_ → IsPreorder _≡_ (Refl _~_)
isPreorder ~-trans = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = λ { refl → refl }
; trans = trans ~-trans
}
isPartialOrder : IsStrictPartialOrder _≡_ _~_ → IsPartialOrder _≡_ (Refl _~_)
isPartialOrder O = record
{ isPreorder = isPreorder O.trans
; antisym = antisym _≡_ refl O.asym
} where module O = IsStrictPartialOrder O
isDecPartialOrder : IsDecStrictPartialOrder _≡_ _~_ → IsDecPartialOrder _≡_ (Refl _~_)
isDecPartialOrder O = record
{ isPartialOrder = isPartialOrder O.isStrictPartialOrder
; _≟_ = O._≟_
; _≤?_ = dec O._≟_ O._<?_
} where module O = IsDecStrictPartialOrder O
isTotalOrder : IsStrictTotalOrder _≡_ _~_ → IsTotalOrder _≡_ (Refl _~_)
isTotalOrder O = record
{ isPartialOrder = isPartialOrder isStrictPartialOrder
; total = total compare
} where open IsStrictTotalOrder O
isDecTotalOrder : IsStrictTotalOrder _≡_ _~_ → IsDecTotalOrder _≡_ (Refl _~_)
isDecTotalOrder O = record
{ isTotalOrder = isTotalOrder O
; _≟_ = _≟_
; _≤?_ = dec _≟_ _<?_
} where open IsStrictTotalOrder O
| {
"alphanum_fraction": 0.5649520488,
"avg_line_length": 33.0071942446,
"ext": "agda",
"hexsha": "2ae820f18337f47644b26c3939441a73550fd01d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Closure/Reflexive/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Closure/Reflexive/Properties.agda",
"max_line_length": 88,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Closure/Reflexive/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1655,
"size": 4588
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Sets.EquivalenceRelations
module Setoids.Setoids where
record Setoid {a} {b} (A : Set a) : Set (a ⊔ lsuc b) where
infix 1 _∼_
field
_∼_ : A → A → Set b
eq : Equivalence _∼_
open Equivalence eq
~refl : {r : A} → (r ∼ r)
~refl {r} = reflexive {r}
record Quotient {a} {b} {c} {A : Set a} {image : Set b} (S : Setoid {a} {c} A) : Set (a ⊔ b ⊔ c) where
open Setoid S
field
map : A → image
mapWellDefined : {x y : A} → x ∼ y → map x ≡ map y
mapSurjective : Surjection map
mapInjective : {x y : A} → map x ≡ map y → x ∼ y
record SetoidToSet {a b c : _} {A : Set a} (S : Setoid {a} {c} A) (quotient : Set b) : Set (a ⊔ b ⊔ c) where
open Setoid S
field
project : A → quotient
wellDefined : (x y : A) → (x ∼ y) → project x ≡ project y
surj : Surjection project
inj : (x y : A) → project x ≡ project y → x ∼ y
open Setoid
reflSetoid : {a : _} (A : Set a) → Setoid A
_∼_ (reflSetoid A) a b = a ≡ b
Equivalence.reflexive (eq (reflSetoid A)) = refl
Equivalence.symmetric (eq (reflSetoid A)) {b} {.b} refl = refl
Equivalence.transitive (eq (reflSetoid A)) {b} {.b} {.b} refl refl = refl
record SetoidInjection {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
open Setoid S renaming (_∼_ to _∼A_)
open Setoid T renaming (_∼_ to _∼B_)
field
wellDefined : {x y : A} → x ∼A y → (f x) ∼B (f y)
injective : {x y : A} → (f x) ∼B (f y) → x ∼A y
reflSetoidWellDefined : {a b c : _} {A : Set a} (S : Setoid {a} {b} A) (C : Set c) (f : C → A) → {x y : C} → x ≡ y → Setoid._∼_ S (f x) (f y)
reflSetoidWellDefined S C f refl = Equivalence.reflexive (Setoid.eq S)
record SetoidSurjection {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
open Setoid S renaming (_∼_ to _∼A_)
open Setoid T renaming (_∼_ to _∼B_)
field
wellDefined : {x y : A} → x ∼A y → (f x) ∼B (f y)
surjective : {x : B} → Sg A (λ a → f a ∼B x)
record SetoidBijection {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
field
inj : SetoidInjection S T f
surj : SetoidSurjection S T f
wellDefined : {x y : A} → Setoid._∼_ S x y → Setoid._∼_ T (f x) (f y)
wellDefined = SetoidInjection.wellDefined inj
record SetoidsBiject {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) : Set (a ⊔ b ⊔ c ⊔ d) where
field
bij : A → B
bijIsBijective : SetoidBijection S T bij
setoidInjComp : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {g : A → B} {h : B → C} → (gB : SetoidInjection S T g) (hB : SetoidInjection T U h) → SetoidInjection S U (h ∘ g)
SetoidInjection.wellDefined (setoidInjComp gI hI) x~y = SetoidInjection.wellDefined hI (SetoidInjection.wellDefined gI x~y)
SetoidInjection.injective (setoidInjComp gI hI) hgx~hgy = SetoidInjection.injective gI (SetoidInjection.injective hI hgx~hgy)
setoidSurjComp : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {g : A → B} {h : B → C} → (gB : SetoidSurjection S T g) (hB : SetoidSurjection T U h) → SetoidSurjection S U (h ∘ g)
SetoidSurjection.wellDefined (setoidSurjComp gI hI) x~y = SetoidSurjection.wellDefined hI (SetoidSurjection.wellDefined gI x~y)
SetoidSurjection.surjective (setoidSurjComp gI hI) {x} with SetoidSurjection.surjective hI {x}
SetoidSurjection.surjective (setoidSurjComp gI hI) {x} | a , prA with SetoidSurjection.surjective gI {a}
SetoidSurjection.surjective (setoidSurjComp {U = U} gI hI) {x} | a , prA | b , prB = b , Equivalence.transitive (Setoid.eq U) (SetoidSurjection.wellDefined hI prB) prA
where
open Setoid U
setoidBijComp : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {g : A → B} {h : B → C} → (gB : SetoidBijection S T g) (hB : SetoidBijection T U h) → SetoidBijection S U (h ∘ g)
SetoidBijection.inj (setoidBijComp gB hB) = setoidInjComp (SetoidBijection.inj gB) (SetoidBijection.inj hB)
SetoidBijection.surj (setoidBijComp gB hB) = setoidSurjComp (SetoidBijection.surj gB) (SetoidBijection.surj hB)
setoidIdIsBijective : {a b : _} {A : Set a} {S : Setoid {a} {b} A} → SetoidBijection S S (λ i → i)
SetoidInjection.wellDefined (SetoidBijection.inj (setoidIdIsBijective {A = A})) = id
SetoidInjection.injective (SetoidBijection.inj (setoidIdIsBijective {A = A})) = id
SetoidSurjection.wellDefined (SetoidBijection.surj (setoidIdIsBijective {A = A})) = id
SetoidSurjection.surjective (SetoidBijection.surj (setoidIdIsBijective {S = S})) {x} = x , Equivalence.reflexive (Setoid.eq S)
record SetoidInvertible {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
field
fWellDefined : {x y : A} → Setoid._∼_ S x y → Setoid._∼_ T (f x) (f y)
inverse : B → A
inverseWellDefined : {x y : B} → Setoid._∼_ T x y → Setoid._∼_ S (inverse x) (inverse y)
isLeft : (b : B) → Setoid._∼_ T (f (inverse b)) b
isRight : (a : A) → Setoid._∼_ S (inverse (f a)) a
setoidBijectiveImpliesInvertible : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {f : A → B} (bij : SetoidBijection S T f) → SetoidInvertible S T f
SetoidInvertible.fWellDefined (setoidBijectiveImpliesInvertible bij) x~y = SetoidInjection.wellDefined (SetoidBijection.inj bij) x~y
SetoidInvertible.inverse (setoidBijectiveImpliesInvertible bij) x with SetoidSurjection.surjective (SetoidBijection.surj bij) {x}
SetoidInvertible.inverse (setoidBijectiveImpliesInvertible bij) x | a , b = a
SetoidInvertible.inverseWellDefined (setoidBijectiveImpliesInvertible bij) {x} {y} x~y with SetoidSurjection.surjective (SetoidBijection.surj bij) {x}
SetoidInvertible.inverseWellDefined (setoidBijectiveImpliesInvertible {T = T} bij) {x} {y} x~y | a , prA with SetoidSurjection.surjective (SetoidBijection.surj bij) {y}
... | b , prB = SetoidInjection.injective (SetoidBijection.inj bij) (Equivalence.transitive (Setoid.eq T) prA (Equivalence.transitive (Setoid.eq T) x~y (Equivalence.symmetric (Setoid.eq T) prB)))
where
open Setoid T
SetoidInvertible.isLeft (setoidBijectiveImpliesInvertible bij) b with SetoidSurjection.surjective (SetoidBijection.surj bij) {b}
... | a , prA = prA
SetoidInvertible.isRight (setoidBijectiveImpliesInvertible {f = f} bij) b with SetoidSurjection.surjective (SetoidBijection.surj bij) {f b}
... | fb , prFb = SetoidInjection.injective (SetoidBijection.inj bij) prFb
setoidInvertibleImpliesBijective : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {f : A → B} (inv : SetoidInvertible S T f) → SetoidBijection S T f
SetoidInjection.wellDefined (SetoidBijection.inj (setoidInvertibleImpliesBijective inv)) x~y = SetoidInvertible.fWellDefined inv x~y
SetoidInjection.injective (SetoidBijection.inj (setoidInvertibleImpliesBijective {S = S} {f = f} inv)) {x} {y} pr = Equivalence.transitive (Setoid.eq S) (Equivalence.symmetric (Setoid.eq S) (SetoidInvertible.isRight inv x)) (Equivalence.transitive (Setoid.eq S) (SetoidInvertible.inverseWellDefined inv pr) (SetoidInvertible.isRight inv y))
where
open Setoid S
SetoidSurjection.wellDefined (SetoidBijection.surj (setoidInvertibleImpliesBijective inv)) x~y = SetoidInvertible.fWellDefined inv x~y
SetoidSurjection.surjective (SetoidBijection.surj (setoidInvertibleImpliesBijective inv)) {x} = SetoidInvertible.inverse inv x , SetoidInvertible.isLeft inv x
inverseInvertible : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {f : A → B} (inv1 : SetoidInvertible S T f) → SetoidInvertible T S (SetoidInvertible.inverse inv1)
SetoidInvertible.fWellDefined (inverseInvertible record { fWellDefined = fWellDefined ; inverse = inverse ; inverseWellDefined = inverseWellDefined ; isLeft = isLeft ; isRight = isRight }) x=y = inverseWellDefined x=y
SetoidInvertible.inverse (inverseInvertible {f = f} record { fWellDefined = fWellDefined ; inverse = inverse ; inverseWellDefined = inverseWellDefined ; isLeft = isLeft ; isRight = isRight }) = f
SetoidInvertible.inverseWellDefined (inverseInvertible record { fWellDefined = fWellDefined ; inverse = inverse ; inverseWellDefined = inverseWellDefined ; isLeft = isLeft ; isRight = isRight }) = fWellDefined
SetoidInvertible.isLeft (inverseInvertible record { fWellDefined = fWellDefined ; inverse = inverse ; inverseWellDefined = inverseWellDefined ; isLeft = isLeft ; isRight = isRight }) = isRight
SetoidInvertible.isRight (inverseInvertible record { fWellDefined = fWellDefined ; inverse = inverse ; inverseWellDefined = inverseWellDefined ; isLeft = isLeft ; isRight = isRight }) = isLeft
| {
"alphanum_fraction": 0.675181678,
"avg_line_length": 68.803030303,
"ext": "agda",
"hexsha": "9221fe3b0b2c3b2f895897a92d39d5b1e38d5481",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Setoids.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Setoids.agda",
"max_line_length": 340,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Setoids.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3506,
"size": 9082
} |
-- Andreas, 2012-06-30, case reported by Noam Zeilbereger
module Issue670 where
infix 4 _≡_
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN SUC suc #-}
{-# BUILTIN ZERO zero #-}
record T : Set where
field
x : Nat
.eq : x ≡ x
foo : T
foo = record { x = 0 ; eq = refl }
bar : T
bar = record { x = 0 ; eq = {!refl!} }
-- give should succeed
| {
"alphanum_fraction": 0.5517970402,
"avg_line_length": 16.8928571429,
"ext": "agda",
"hexsha": "70c5e9c4c99339bdb19f8174b5f983223c9f9a31",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/interaction/Issue670.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/interaction/Issue670.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/interaction/Issue670.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 172,
"size": 473
} |
module ConsoleLib where
open import NativeIO public
open import SizedIO.Console public hiding (main) renaming (translateIOConsole to run)
open import Size
open import SizedIO.Base
open import Data.List
WriteString : (s : String) → IOConsole ∞ Unit
WriteString s = Exec (putStrLn s)
GetLine : IOConsole ∞ String
GetLine = Exec getLine
ConsoleProg : Set
ConsoleProg = NativeIO Unit
| {
"alphanum_fraction": 0.7844155844,
"avg_line_length": 22.6470588235,
"ext": "agda",
"hexsha": "6501cea4d42f2d646fb913083a849552cfcf2962",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/ConsoleLib.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/ConsoleLib.agda",
"max_line_length": 86,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/ConsoleLib.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 98,
"size": 385
} |
-- Andreas, 2014-08-30, reported by asr
-- All of the following corecursive functions from Data.Stream
-- should pass the termination checker.
{-# OPTIONS --cubical-compatible --guardedness #-}
-- {-# OPTIONS -v term:20 #-}
open import Common.Coinduction
open import Common.Prelude renaming (Nat to ℕ) hiding (_∷_; map)
infixr 5 _∷_
data Stream (A : Set) : Set where
_∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A
map : ∀ {A B} → (A → B) → Stream A → Stream B
map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs)
zipWith : ∀ {A B C} →
(A → B → C) → Stream A → Stream B → Stream C
zipWith _∙_ (x ∷ xs) (y ∷ ys) = (x ∙ y) ∷ ♯ zipWith _∙_ (♭ xs) (♭ ys)
drop : ∀ {A} → ℕ → Stream A → Stream A
drop zero xs = xs
drop (suc n) (x ∷ xs) = drop n (♭ xs)
repeat : ∀ {A} → A → Stream A
repeat x = x ∷ ♯ repeat x
iterate : ∀ {A} → (A → A) → A → Stream A
iterate f x = x ∷ ♯ iterate f (f x)
-- Interleaves the two streams.
infixr 5 _⋎_
_⋎_ : ∀ {A} → Stream A → Stream A → Stream A
(x ∷ xs) ⋎ ys = x ∷ ♯ (ys ⋎ ♭ xs)
mutual
-- Takes every other element from the stream, starting with the
-- first one.
evens : ∀ {A} → Stream A → Stream A
evens (x ∷ xs) = x ∷ ♯ odds (♭ xs)
-- Takes every other element from the stream, starting with the
-- second one.
odds : ∀ {A} → Stream A → Stream A
odds (x ∷ xs) = evens (♭ xs)
| {
"alphanum_fraction": 0.5687593423,
"avg_line_length": 25.2452830189,
"ext": "agda",
"hexsha": "27285870192545e0252e0ee7213c8c05aa6a7407",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue1264.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue1264.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue1264.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 510,
"size": 1338
} |
{-# OPTIONS --safe #-}
module Definition.Conversion.Symmetry where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Conversion
open import Definition.Conversion.Stability
open import Definition.Conversion.Soundness
open import Definition.Conversion.Conversion
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Equality
open import Definition.Typed.Consequences.Reduction
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.Substitution
open import Definition.Typed.Consequences.SucCong
open import Tools.Product
import Tools.PropositionalEquality as PE
mutual
-- Symmetry of algorithmic equality of neutrals
sym~↑! : ∀ {t u A Γ Δ l} → ⊢ Γ ≡ Δ
→ Γ ⊢ t ~ u ↑! A ^ l
→ ∃ λ B → Γ ⊢ A ≡ B ^ [ ! , l ] × Δ ⊢ u ~ t ↑! B ^ l
sym~↑! Γ≡Δ (var-refl x x≡y) =
let ⊢A = syntacticTerm x
in _ , refl ⊢A
, var-refl (PE.subst (λ y → _ ⊢ var y ∷ _ ^ _) x≡y (stabilityTerm Γ≡Δ x))
(PE.sym x≡y)
sym~↑! Γ≡Δ (app-cong {rF = !} t~u x) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ t~u
F′ , G′ , ΠF′G′≡B = Π≡A A≡B whnfB
F≡F′ , rF≡rF′ , lF≡lF' , lG≡lG' , G≡G′ = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x ^ _) ΠF′G′≡B A≡B)
in _ , substTypeEq G≡G′ (soundnessConv↑Term x)
, app-cong (PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) ΠF′G′≡B u~t)
(convConvTerm (symConv↑Term Γ≡Δ x) (stabilityEq Γ≡Δ F≡F′))
sym~↑! Γ≡Δ (app-cong {rF = %} t~u x) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ t~u
F′ , G′ , ΠF′G′≡B = Π≡A A≡B whnfB
F≡F′ , rF≡rF′ , lF≡lF' , lG≡lG' , G≡G′ = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x ^ _) ΠF′G′≡B A≡B)
in _ , substTypeEq G≡G′ (proj₂ (proj₂ (soundness~↑% x)))
, app-cong (PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) ΠF′G′≡B u~t)
(sym~↑% Γ≡Δ (conv~↑% x (stabilityEq (reflConEq ⊢Γ) F≡F′)))
sym~↑! Γ≡Δ (natrec-cong x x₁ x₂ t~u) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ t~u
B≡ℕ = ℕ≡A A≡B whnfB
F≡G = stabilityEq (Γ≡Δ ∙ refl (univ (ℕⱼ ⊢Γ))) (soundnessConv↑ x)
F[0]≡G[0] = substTypeEq F≡G (refl (zeroⱼ ⊢Δ))
in _ , substTypeEq (soundnessConv↑ x) (soundness~↓! t~u)
, natrec-cong (symConv↑ (Γ≡Δ ∙ (refl (univ (ℕⱼ ⊢Γ)))) x)
(convConvTerm (symConv↑Term Γ≡Δ x₁) F[0]≡G[0])
(convConvTerm (symConv↑Term Γ≡Δ x₂) (sucCong F≡G))
(PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ u~t)
sym~↑! Γ≡Δ (Emptyrec-cong x t~u) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
u~t = sym~↑% Γ≡Δ t~u
-- F≡G = stabilityEq Γ≡Δ (soundnessConv↑ x)
in _ , soundnessConv↑ x
, Emptyrec-cong (symConv↑ Γ≡Δ x) u~t
sym~↑! Γ≡Δ (Id-cong X x x₁) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ X
U≡B = U≡A-whnf A≡B whnfB
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B u~t
in _ , refl (Ugenⱼ ⊢Γ) , Id-cong A'≡A
(convConvTerm (symConv↑Term Γ≡Δ x) (univ (soundness~↓! (stability~↓! Γ≡Δ X))))
(convConvTerm (symConv↑Term Γ≡Δ x₁) (univ (soundness~↓! (stability~↓! Γ≡Δ X))))
sym~↑! Γ≡Δ (Id-ℕ X x) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ X
U≡B = ℕ≡A A≡B whnfB
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B u~t
in _ , refl (Ugenⱼ ⊢Γ) , Id-ℕ A'≡A (symConv↑Term Γ≡Δ x)
sym~↑! Γ≡Δ (Id-ℕ0 X) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ X
U≡B = ℕ≡A A≡B whnfB
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B u~t
in _ , refl (Ugenⱼ ⊢Γ) , Id-ℕ0 A'≡A
sym~↑! Γ≡Δ (Id-ℕS x X) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ X
U≡B = ℕ≡A A≡B whnfB
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B u~t
in _ , refl (Ugenⱼ ⊢Γ) , Id-ℕS (symConv↑Term Γ≡Δ x) A'≡A
sym~↑! Γ≡Δ (Id-U X x) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ X
U≡B = U≡A-whnf A≡B whnfB
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B u~t
in _ , refl (Ugenⱼ ⊢Γ) , Id-U A'≡A (symConv↑Term Γ≡Δ x)
sym~↑! Γ≡Δ (Id-Uℕ X) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ X
U≡B = U≡A-whnf A≡B whnfB
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B u~t
in _ , refl (Ugenⱼ ⊢Γ) , Id-Uℕ A'≡A
sym~↑! Γ≡Δ (Id-UΠ x X) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ X
U≡B = U≡A-whnf A≡B whnfB
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B u~t
in _ , refl (Ugenⱼ ⊢Γ) , Id-UΠ (symConv↑Term Γ≡Δ x) A'≡A
sym~↑! Γ≡Δ (cast-cong X x x₁ x₂ x₃) =
let U , whnfU , U≡U' , A'~A = sym~↓! Γ≡Δ X
B'~B = symConv↑Term Γ≡Δ x
U≡B = U≡A-whnf U≡U' whnfU
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B A'~A
in
_ , univ (soundnessConv↑Term x), cast-cong A'≡A B'~B
(convConvTerm (symConv↑Term Γ≡Δ x₁) (univ (soundness~↓! (stability~↓! Γ≡Δ X))))
(stabilityTerm Γ≡Δ x₃) (stabilityTerm Γ≡Δ x₂)
sym~↑! Γ≡Δ (cast-ℕ X x x₁ x₂) =
let U , whnfU , U≡U' , A'~A = sym~↓! Γ≡Δ X
B'~B = symConv↑Term Γ≡Δ x
U≡B = U≡A-whnf U≡U' whnfU
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B A'~A
in _ , univ (soundness~↓! X) , cast-ℕ A'≡A (symConv↑Term Γ≡Δ x) (stabilityTerm Γ≡Δ x₂) (stabilityTerm Γ≡Δ x₁)
sym~↑! Γ≡Δ (cast-ℕℕ X x x₁) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
N , whnfN , N≡N' , t'~t = sym~↓! Γ≡Δ X
ℕ≡B = ℕ≡A N≡N' whnfN
t'≡t = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) ℕ≡B t'~t
in _ , refl (univ (ℕⱼ ⊢Γ)) , cast-ℕℕ t'≡t (stabilityTerm Γ≡Δ x₁) (stabilityTerm Γ≡Δ x)
sym~↑! Γ≡Δ (cast-Π x X x₁ x₂ x₃) =
let U , whnfU , U≡U' , A'~A = sym~↓! Γ≡Δ X
B'~B = symConv↑Term Γ≡Δ x
U≡B = U≡A-whnf U≡U' whnfU
A'≡A = PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B A'~A
in _ , univ (soundness~↓! X) , cast-Π B'~B A'≡A
(convConvTerm (symConv↑Term Γ≡Δ x₁) (univ (soundnessConv↑Term (stabilityConv↑Term Γ≡Δ x))))
(stabilityTerm Γ≡Δ x₃) (stabilityTerm Γ≡Δ x₂)
sym~↑! Γ≡Δ (cast-Πℕ x x₁ x₂ x₃) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
in _ , refl (univ (ℕⱼ ⊢Γ)) , cast-Πℕ (symConv↑Term Γ≡Δ x)
(convConvTerm (symConv↑Term Γ≡Δ x₁) (univ (soundnessConv↑Term (stabilityConv↑Term Γ≡Δ x))))
(stabilityTerm Γ≡Δ x₃) (stabilityTerm Γ≡Δ x₂)
sym~↑! Γ≡Δ (cast-ℕΠ x x₁ x₂ x₃) = _ , univ (soundnessConv↑Term x) , cast-ℕΠ (symConv↑Term Γ≡Δ x) (symConv↑Term Γ≡Δ x₁)
(stabilityTerm Γ≡Δ x₃) (stabilityTerm Γ≡Δ x₂)
sym~↑! Γ≡Δ (cast-ΠΠ%! x x₁ x₂ x₃ x₄) = _ , univ (soundnessConv↑Term x₁) ,
cast-ΠΠ%! (symConv↑Term Γ≡Δ x) (symConv↑Term Γ≡Δ x₁)
(convConvTerm (symConv↑Term Γ≡Δ x₂) (univ (soundnessConv↑Term (stabilityConv↑Term Γ≡Δ x))))
(stabilityTerm Γ≡Δ x₄) (stabilityTerm Γ≡Δ x₃)
sym~↑! Γ≡Δ (cast-ΠΠ!% x x₁ x₂ x₃ x₄) = _ , univ (soundnessConv↑Term x₁) ,
cast-ΠΠ!% (symConv↑Term Γ≡Δ x) (symConv↑Term Γ≡Δ x₁)
(convConvTerm (symConv↑Term Γ≡Δ x₂) (univ (soundnessConv↑Term (stabilityConv↑Term Γ≡Δ x))))
(stabilityTerm Γ≡Δ x₄) (stabilityTerm Γ≡Δ x₃)
sym~↑% : ∀ {t u A Γ Δ l} → ⊢ Γ ≡ Δ
→ Γ ⊢ t ~ u ↑% A ^ l
→ Δ ⊢ u ~ t ↑% A ^ l
sym~↑% Γ≡Δ (%~↑ ⊢k ⊢l) = %~↑ (stabilityTerm Γ≡Δ ⊢l) (stabilityTerm Γ≡Δ ⊢k)
sym~↑ : ∀ {t u A rA Γ Δ l} → ⊢ Γ ≡ Δ
→ Γ ⊢ t ~ u ↑ A ^ [ rA , l ]
→ ∃ λ B → Γ ⊢ A ≡ B ^ [ rA , l ] × Δ ⊢ u ~ t ↑ B ^ [ rA , l ]
sym~↑ Γ≡Δ (~↑! x) =
let B , A≡B , x′ = sym~↑! Γ≡Δ x
in B , A≡B , ~↑! x′
sym~↑ {A = A} Γ≡Δ (~↑% x) =
let x′ = sym~↑% Γ≡Δ x
⊢A , _ , _ = syntacticEqTerm (proj₂ (proj₂ (soundness~↑% x)))
in A , refl ⊢A , ~↑% x′
-- Symmetry of algorithmic equality of neutrals of types in WHNF.
sym~↓! : ∀ {t u A Γ Δ l} → ⊢ Γ ≡ Δ → Γ ⊢ t ~ u ↓! A ^ l
→ ∃ λ B → Whnf B × Γ ⊢ A ≡ B ^ [ ! , l ] × Δ ⊢ u ~ t ↓! B ^ l
sym~↓! Γ≡Δ ([~] A₁ D whnfA k~l) =
let B , A≡B , k~l′ = sym~↑! Γ≡Δ k~l
_ , ⊢B = syntacticEq A≡B
B′ , whnfB′ , D′ = whNorm ⊢B
A≡B′ = trans (sym (subset* D)) (trans A≡B (subset* (red D′)))
in B′ , whnfB′ , A≡B′ , [~] B (stabilityRed* Γ≡Δ (red D′)) whnfB′ k~l′
-- Symmetry of algorithmic equality of types.
symConv↑ : ∀ {A B r Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↑] B ^ r → Δ ⊢ B [conv↑] A ^ r
symConv↑ Γ≡Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) =
[↑] B′ A′ (stabilityRed* Γ≡Δ D′) (stabilityRed* Γ≡Δ D) whnfB′ whnfA′
(symConv↓ Γ≡Δ A′<>B′)
-- Symmetry of algorithmic equality of types in WHNF.
symConv↓ : ∀ {A B r Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↓] B ^ r → Δ ⊢ B [conv↓] A ^ r
symConv↓ Γ≡Δ (U-refl PE.refl x) =
let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ
in U-refl PE.refl ⊢Δ
symConv↓ Γ≡Δ (univ x) = univ (symConv↓Term Γ≡Δ x)
-- Symmetry of algorithmic equality of terms.
symConv↑Term : ∀ {t u A Γ Δ l} → ⊢ Γ ≡ Δ → Γ ⊢ t [conv↑] u ∷ A ^ l → Δ ⊢ u [conv↑] t ∷ A ^ l
symConv↑Term Γ≡Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) =
[↑]ₜ B u′ t′ (stabilityRed* Γ≡Δ D) (stabilityRed*Term Γ≡Δ d′)
(stabilityRed*Term Γ≡Δ d) whnfB whnfu′ whnft′ (symConv↓Term Γ≡Δ t<>u)
-- Symmetry of algorithmic equality of terms in WHNF.
symConv↓Term : ∀ {t u A Γ Δ l} → ⊢ Γ ≡ Δ → Γ ⊢ t [conv↓] u ∷ A ^ l → Δ ⊢ u [conv↓] t ∷ A ^ l
symConv↓Term Γ≡Δ (U-refl x x₁) =
let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in U-refl (PE.sym x) ⊢Δ
symConv↓Term Γ≡Δ (ne t~u) =
let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ
B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ t~u
U≡B = U≡A-whnf A≡B whnfB
in ne (PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) U≡B (proj₂ (proj₂ (proj₂ (sym~↓! Γ≡Δ t~u)))))
symConv↓Term Γ≡Δ (ℕ-refl x) =
let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ
in ℕ-refl ⊢Δ
symConv↓Term Γ≡Δ (Empty-refl x _) =
let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ
in Empty-refl x ⊢Δ
symConv↓Term Γ≡Δ (∃-cong PE.refl x A<>B A<>B₁) =
let F≡H = soundnessConv↑Term A<>B
_ , ⊢H = syntacticEq (stabilityEq Γ≡Δ (univ F≡H))
in ∃-cong PE.refl ⊢H (symConv↑Term Γ≡Δ A<>B)
(symConv↑Term (Γ≡Δ ∙ univ F≡H) A<>B₁)
symConv↓Term Γ≡Δ (Π-cong PE.refl PE.refl PE.refl PE.refl l< l<' x A<>B A<>B₁) =
let F≡H = soundnessConv↑Term A<>B
_ , ⊢H = syntacticEq (stabilityEq Γ≡Δ (univ F≡H))
in Π-cong PE.refl PE.refl PE.refl PE.refl l< l<' ⊢H (symConv↑Term Γ≡Δ A<>B)
(symConv↑Term (Γ≡Δ ∙ univ F≡H) A<>B₁)
symConv↓Term Γ≡Δ (ℕ-ins t~u) =
let B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ t~u
B≡ℕ = ℕ≡A A≡B whnfB
in ℕ-ins (PE.subst (λ x → _ ⊢ _ ~ _ ↓! x ^ _) B≡ℕ u~t)
symConv↓Term Γ≡Δ (ne-ins t u x t~u) =
let B , whnfB , A≡B , u~t = sym~↓! Γ≡Δ t~u
in ne-ins (stabilityTerm Γ≡Δ u) (stabilityTerm Γ≡Δ t) x u~t
symConv↓Term Γ≡Δ (zero-refl x) =
let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ
in zero-refl ⊢Δ
symConv↓Term Γ≡Δ (suc-cong t<>u) = suc-cong (symConv↑Term Γ≡Δ t<>u)
symConv↓Term Γ≡Δ (η-eq l< l<' x x₁ x₂ y y₁ t<>u) =
η-eq l< l<' (stability Γ≡Δ x) (stabilityTerm Γ≡Δ x₂) (stabilityTerm Γ≡Δ x₁)
y₁ y (symConv↑Term (Γ≡Δ ∙ refl x) t<>u)
-- Symmetry of algorithmic equality of types with preserved context.
symConv : ∀ {A B r Γ} → Γ ⊢ A [conv↑] B ^ r → Γ ⊢ B [conv↑] A ^ r
symConv A<>B =
let ⊢Γ = wfEq (soundnessConv↑ A<>B)
in symConv↑ (reflConEq ⊢Γ) A<>B
-- Symmetry of algorithmic equality of terms with preserved context.
symConvTerm : ∀ {t u A Γ l} → Γ ⊢ t [conv↑] u ∷ A ^ l → Γ ⊢ u [conv↑] t ∷ A ^ l
symConvTerm t<>u =
let ⊢Γ = wfEqTerm (soundnessConv↑Term t<>u)
in symConv↑Term (reflConEq ⊢Γ) t<>u
| {
"alphanum_fraction": 0.493205757,
"avg_line_length": 49.3531746032,
"ext": "agda",
"hexsha": "1f38c3ef64f39da6ac72247f3aed4b419ed94ca1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Symmetry.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Symmetry.agda",
"max_line_length": 142,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Symmetry.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 6045,
"size": 12437
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Functions.Definition
open import Functions.Lemmas
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.Lemmas
open import Sets.Cardinality.Finite.Definition
open import Semirings.Definition
open import Sets.CantorBijection.CantorBijection
open import Orders.Total.Definition
module Sets.Cardinality where
open import Semirings.Lemmas ℕSemiring
record CountablyInfiniteSet {a : _} (A : Set a) : Set a where
field
counting : A → ℕ
countingIsBij : Bijection counting
data Countable {a : _} (A : Set a) : Set a where
finite : FiniteSet A → Countable A
infinite : CountablyInfiniteSet A → Countable A
ℕCountable : CountablyInfiniteSet ℕ
ℕCountable = record { counting = id ; countingIsBij = invertibleImpliesBijection (record { inverse = id ; isLeft = λ b → refl ; isRight = λ a → refl}) }
doubleLemma : (a b : ℕ) → 2 *N a ≡ 2 *N b → a ≡ b
doubleLemma a b pr = productCancelsLeft 2 a b (le 1 refl) pr
evenCannotBeOdd : (a b : ℕ) → 2 *N a ≡ succ (2 *N b) → False
evenCannotBeOdd zero b ()
evenCannotBeOdd (succ a) zero pr rewrite Semiring.commutative ℕSemiring a 0 | Semiring.commutative ℕSemiring a (succ a) = naughtE (equalityCommutative (succInjective pr))
evenCannotBeOdd (succ a) (succ b) pr = evenCannotBeOdd a b pr''
where
pr' : a +N a ≡ (b +N succ b)
pr' rewrite Semiring.commutative ℕSemiring a 0 | Semiring.commutative ℕSemiring b 0 | Semiring.commutative ℕSemiring a (succ a) = succInjective (succInjective pr)
pr'' : 2 *N a ≡ succ (2 *N b)
pr'' rewrite Semiring.commutative ℕSemiring a 0 | Semiring.commutative ℕSemiring b 0 | Semiring.commutative ℕSemiring (succ b) b = pr'
aMod2 : (a : ℕ) → Sg ℕ (λ i → (2 *N i ≡ a) || (succ (2 *N i) ≡ a))
aMod2 zero = (0 , inl refl)
aMod2 (succ a) with aMod2 a
aMod2 (succ a) | b , inl x = b , inr (applyEquality succ x)
aMod2 (succ a) | b , inr x = (succ b) , inl pr
where
pr : succ (b +N succ (b +N 0)) ≡ succ a
pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) | Semiring.commutative ℕSemiring (b +N 0) b = applyEquality succ x
sqrtFloor : (a : ℕ) → Sg (ℕ && ℕ) (λ pair → ((_&&_.fst pair) *N (_&&_.fst pair) +N (_&&_.snd pair) ≡ a) && ((_&&_.snd pair) <N 2 *N (_&&_.fst pair) +N 1))
sqrtFloor zero = (0 ,, 0) , (refl ,, le zero refl)
sqrtFloor (succ n) with sqrtFloor n
sqrtFloor (succ n) | (a ,, b) , pr with TotalOrder.totality ℕTotalOrder b (2 *N a)
sqrtFloor (succ n) | (a ,, b) , pr | inl (inl x) = (a ,, succ b) , (p ,, q)
where
p : a *N a +N succ b ≡ succ n
p rewrite Semiring.commutative ℕSemiring (a *N a) (succ b) | Semiring.commutative ℕSemiring b (a *N a) = applyEquality succ (_&&_.fst pr)
q : succ b <N (a +N (a +N 0)) +N 1
q rewrite Semiring.commutative ℕSemiring (a +N (a +N 0)) (succ 0) | Semiring.commutative ℕSemiring a 0 = succPreservesInequality x
sqrtFloor (succ n) | (a ,, b) , (_ ,, pr) | inl (inr x) rewrite Semiring.commutative ℕSemiring (a +N (a +N 0)) (succ 0) = exFalso (noIntegersBetweenXAndSuccX (a +N (a +N 0)) x pr)
sqrtFloor (succ n) | (a ,, b) , pr | inr x = (succ a ,, 0) , (q ,, succIsPositive _)
where
p : a +N a *N succ a ≡ n
p rewrite x | Semiring.commutative ℕSemiring a 0 | Semiring.commutative ℕSemiring (a +N a) (succ 0) | Semiring.commutative ℕSemiring (a *N a) (succ a +N a) | multiplicationNIsCommutative a (succ a) | Semiring.commutative ℕSemiring (a *N a) (a +N a) | Semiring.+Associative ℕSemiring a a (a *N a) = _&&_.fst pr
q : succ ((a +N a *N succ a) +N 0) ≡ succ n
q rewrite Semiring.commutative ℕSemiring (a +N a *N succ a) 0 = applyEquality succ p
pairUnionIsCountable : {a b : _} {A : Set a} {B : Set b} → (X : CountablyInfiniteSet A) → (Y : CountablyInfiniteSet B) → CountablyInfiniteSet (A || B)
CountablyInfiniteSet.counting (pairUnionIsCountable X Y) (inl r) = 2 *N (CountablyInfiniteSet.counting X r)
CountablyInfiniteSet.counting (pairUnionIsCountable X Y) (inr s) = succ (2 *N (CountablyInfiniteSet.counting Y s))
Bijection.inj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) {inl x} {inl y} pr rewrite Semiring.commutative ℕSemiring (CountablyInfiniteSet.counting X x) 0 | Semiring.commutative ℕSemiring (CountablyInfiniteSet.counting X y) 0 | doubleIsAddTwo (CountablyInfiniteSet.counting X x) | doubleIsAddTwo (CountablyInfiniteSet.counting X y) = applyEquality inl (Bijection.inj (CountablyInfiniteSet.countingIsBij X) inter)
where
inter : CountablyInfiniteSet.counting X x ≡ CountablyInfiniteSet.counting X y
inter = doubleLemma (CountablyInfiniteSet.counting X x) (CountablyInfiniteSet.counting X y) pr
Bijection.inj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) {inl x} {inr y} pr = exFalso (evenCannotBeOdd (CountablyInfiniteSet.counting X x) (CountablyInfiniteSet.counting Y y) pr)
Bijection.inj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) {inr x} {inl y} pr = exFalso (evenCannotBeOdd (CountablyInfiniteSet.counting X y) (CountablyInfiniteSet.counting Y x) (equalityCommutative pr))
Bijection.inj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) {inr x} {inr y} pr = applyEquality inr (Bijection.inj (CountablyInfiniteSet.countingIsBij Y) (doubleLemma (CountablyInfiniteSet.counting Y x) (CountablyInfiniteSet.counting Y y) (succInjective pr) ))
Bijection.surj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) b with aMod2 b
Bijection.surj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) b | a , inl x with Bijection.surj (CountablyInfiniteSet.countingIsBij X) a
Bijection.surj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) b | a , inl x | r , pr = inl r , ans
where
ans : 2 *N CountablyInfiniteSet.counting X r ≡ b
ans rewrite pr = x
Bijection.surj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) b | a , inr x with Bijection.surj (CountablyInfiniteSet.countingIsBij Y) a
Bijection.surj (CountablyInfiniteSet.countingIsBij (pairUnionIsCountable X Y)) b | a , inr x | r , pr = inr r , ans
where
ans : succ (2 *N CountablyInfiniteSet.counting Y r) ≡ b
ans rewrite pr = x
firstEqualityOfPair : {a b : _} {A : Set a} {B : Set b} → {x1 x2 : A} → {y1 y2 : B} → (x1 ,, y1) ≡ (x2 ,, y2) → x1 ≡ x2
firstEqualityOfPair {x1} {x2} {y1} {y2} refl = refl
secondEqualityOfPair : {a b : _} {A : Set a} {B : Set b} → {x1 x2 : A} → {y1 y2 : B} → (x1 ,, y1) ≡ (x2 ,, y2) → y1 ≡ y2
secondEqualityOfPair {x1} {x2} {y1} {y2} refl = refl
reflPair : {a b : _} {A : Set a} {B : Set b} {x1 x2 : A} {y1 y2 : B} → (x1 ≡ x2) → (y1 ≡ y2) → (x1 ,, y1) ≡ x2 ,, y2
reflPair refl refl = refl
bijectionOfCountableSetIsCountable : {a b : _} {A : Set a} {B : Set b} → (X : CountablyInfiniteSet A) {f : A → B} → (bij : Bijection f) → CountablyInfiniteSet B
CountablyInfiniteSet.counting (bijectionOfCountableSetIsCountable X {f} record { inj = inj ; surj = surj }) b with surj b
CountablyInfiniteSet.counting (bijectionOfCountableSetIsCountable record { counting = counting ; countingIsBij = countingIsBij } {f} record { inj = inj ; surj = surj }) b | a , pr = counting a
Bijection.inj (CountablyInfiniteSet.countingIsBij (bijectionOfCountableSetIsCountable X {f} record { inj = inj ; surj = surj })) {m} {n} m=n with surj m
Bijection.inj (CountablyInfiniteSet.countingIsBij (bijectionOfCountableSetIsCountable X {f} record { inj = inj ; surj = surj })) {m} {n} m=n | a , b with surj n
... | c , d = transitivity (equalityCommutative b) (transitivity (applyEquality f (Bijection.inj (CountablyInfiniteSet.countingIsBij X) m=n)) d)
Bijection.surj (CountablyInfiniteSet.countingIsBij (bijectionOfCountableSetIsCountable X {f} record { inj = inj ; surj = surj })) b with Bijection.surj (CountablyInfiniteSet.countingIsBij X) b
Bijection.surj (CountablyInfiniteSet.countingIsBij (bijectionOfCountableSetIsCountable X {f} record { inj = inj ; surj = surj })) b | a , pr = f a , s
where
s : CountablyInfiniteSet.counting (bijectionOfCountableSetIsCountable X {f} record { inj = inj ; surj = surj }) (f a) ≡ b
s with surj (f a)
s | t , u = transitivity (applyEquality (CountablyInfiniteSet.counting X) (inj u)) pr
N^2Countable : CountablyInfiniteSet (ℕ && ℕ)
CountablyInfiniteSet.counting N^2Countable x = Invertible.inverse (bijectionImpliesInvertible (cantorBijection)) x
CountablyInfiniteSet.countingIsBij N^2Countable = invertibleImpliesBijection (inverseIsInvertible (bijectionImpliesInvertible cantorBijection))
tupleRmap : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → (f : B → C) → (A && B) → (A && C)
tupleRmap f (a ,, b) = (a ,, f b)
tupleLmap : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → (f : A → C) → (A && B) → (C && B)
tupleLmap f (a ,, b) = (f a ,, b)
bijectionOnRightOfProduct : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → {f : B → C} → Bijection f → Bijection (tupleRmap {A = A} f)
Bijection.inj (bijectionOnRightOfProduct {A = A} {B} {C} {f} bij) {fst ,, snd} {fst₁ ,, snd₁} gx=gy rewrite firstEqualityOfPair gx=gy | Bijection.inj bij (secondEqualityOfPair gx=gy) = refl
Bijection.surj (bijectionOnRightOfProduct {A = A} {B} {C} {f} bij) (fst ,, snd) with Bijection.surj bij snd
Bijection.surj (bijectionOnRightOfProduct {A = A} {B} {C} {f} bij) (fst ,, snd) | b , pr = (fst ,, b) , reflPair refl pr
bijectionOnLeftOfProduct : {a b c : _} {A : Set a} {B : Set b} {C : Set c} → {f : A → C} → Bijection f → Bijection (tupleLmap {B = B} f)
Bijection.inj (bijectionOnLeftOfProduct {A = A} {B} {C} {f} bij) {a ,, b} {c ,, d} gx=gy rewrite secondEqualityOfPair gx=gy | Bijection.inj bij (firstEqualityOfPair gx=gy) = refl
Bijection.surj (bijectionOnLeftOfProduct {A = A} {B} {C} {f} bij) (fst ,, snd) with Bijection.surj bij fst
Bijection.surj (bijectionOnLeftOfProduct {A = A} {B} {C} {f} bij) (fst ,, snd) | a , b = (a ,, snd) , reflPair b refl
pairProductIsCountable : {a b : _} {A : Set a} {B : Set b} → (X : CountablyInfiniteSet A) → (Y : CountablyInfiniteSet B) → CountablyInfiniteSet (A && B)
pairProductIsCountable {A = A} {B = B} X Y = bijectionOfCountableSetIsCountable N^2Countable {(tupleLmap m) ∘ (tupleRmap n)} bijF
where
bijM = (bijectionImpliesInvertible (CountablyInfiniteSet.countingIsBij X))
bijN = (bijectionImpliesInvertible (CountablyInfiniteSet.countingIsBij Y))
m : ℕ → A
m = Invertible.inverse bijM
n : ℕ → B
n = Invertible.inverse bijN
bM : Bijection m
bM = invertibleImpliesBijection (record { inverse = CountablyInfiniteSet.counting X ; isLeft = Invertible.isRight bijM ; isRight = Invertible.isLeft bijM })
bN : Bijection n
bN = invertibleImpliesBijection (record { inverse = CountablyInfiniteSet.counting Y ; isLeft = Invertible.isRight bijN ; isRight = Invertible.isLeft bijN })
bijF : Bijection ((tupleLmap {A = ℕ} {B = B} {C = A} m) ∘ (tupleRmap {A = ℕ} {B = ℕ} {C = B} n))
bijF = bijectionComp {f = tupleRmap {A = ℕ} {B = ℕ} {C = B} n} {g = tupleLmap {A = ℕ} {B = B} {C = A} m} (bijectionOnRightOfProduct (invertibleImpliesBijection (bijectionImpliesInvertible bN))) (bijectionOnLeftOfProduct bM)
-- injectionToNMeansCountable : {a : _} {A : Set a} {f : A → ℕ} → Injection f → InfiniteSet A → Countable A
-- injectionToNMeansCountable {f = f} inj record { isInfinite = isInfinite } = {!!}
| {
"alphanum_fraction": 0.6929467916,
"avg_line_length": 74.4342105263,
"ext": "agda",
"hexsha": "7c6703eb05b72d084621162e489c1fb02f607abd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/Cardinality.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/Cardinality.agda",
"max_line_length": 431,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/Cardinality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 4137,
"size": 11314
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Ring.DirectProd where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Algebra.Ring.Base
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
module _
(A'@(A , Ar) : Ring ℓ)
(B'@(B , Br) : Ring ℓ')
where
open RingStr Ar using ()
renaming
( 0r to 0A
; 1r to 1A
; _+_ to _+A_
; -_ to -A_
; _·_ to _·A_
; +Assoc to +AAssoc
; +Identity to +AIdentity
; +Lid to +ALid
; +Rid to +ARid
; +Inv to +AInv
; +Linv to +ALinv
; +Rinv to +ARinv
; +Comm to +AComm
; ·Assoc to ·AAssoc
; ·Identity to ·AIdentity
; ·Lid to ·ALid
; ·Rid to ·ARid
; ·Rdist+ to ·ARdist+
; ·Ldist+ to ·ALdist+
; is-set to isSetA )
open RingStr Br using ()
renaming
( 0r to 0B
; 1r to 1B
; _+_ to _+B_
; -_ to -B_
; _·_ to _·B_
; +Assoc to +BAssoc
; +Identity to +BIdentity
; +Lid to +BLid
; +Rid to +BRid
; +Inv to +BInv
; +Linv to +BLinv
; +Rinv to +BRinv
; +Comm to +BComm
; ·Assoc to ·BAssoc
; ·Identity to ·BIdentity
; ·Lid to ·BLid
; ·Rid to ·BRid
; ·Rdist+ to ·BRdist+
; ·Ldist+ to ·BLdist+
; is-set to isSetB )
DirectProd-Ring : Ring (ℓ-max ℓ ℓ')
fst DirectProd-Ring = A × B
RingStr.0r (snd DirectProd-Ring) = 0A , 0B
RingStr.1r (snd DirectProd-Ring) = 1A , 1B
(snd DirectProd-Ring RingStr.+ (a , b)) (a' , b') = (a +A a') , (b +B b')
(snd DirectProd-Ring RingStr.· (a , b)) (a' , b') = (a ·A a') , (b ·B b')
(RingStr.- snd DirectProd-Ring) (a , b) = (-A a) , (-B b)
RingStr.isRing (snd DirectProd-Ring) =
makeIsRing (isSet× isSetA isSetB)
(λ x y z i → +AAssoc (fst x) (fst y) (fst z) i , +BAssoc (snd x) (snd y) (snd z) i)
(λ x i → (+ARid (fst x) i) , (+BRid (snd x) i))
(λ x i → (+ARinv (fst x) i) , +BRinv (snd x) i)
(λ x y i → (+AComm (fst x) (fst y) i) , (+BComm (snd x) (snd y) i))
(λ x y z i → (·AAssoc (fst x) (fst y) (fst z) i) , (·BAssoc (snd x) (snd y) (snd z) i))
(λ x i → (·ARid (fst x) i) , (·BRid (snd x) i))
(λ x i → (·ALid (fst x) i) , (·BLid (snd x) i))
(λ x y z i → (·ARdist+ (fst x) (fst y) (fst z) i) , (·BRdist+ (snd x) (snd y) (snd z) i))
(λ x y z i → (·ALdist+ (fst x) (fst y) (fst z) i) , (·BLdist+ (snd x) (snd y) (snd z) i))
module Coproduct-Equiv
{Xr@(X , Xstr) : Ring ℓ}
{Yr@(Y , Ystr) : Ring ℓ'}
{X'r@(X' , X'str) : Ring ℓ''}
{Y'r@(Y' , Y'str) : Ring ℓ'''}
where
open Iso
open IsRingHom
open RingStr
_+X×X'_ : X × X' → X × X' → X × X'
_+X×X'_ = _+_ (snd (DirectProd-Ring Xr X'r))
_+Y×Y'_ : Y × Y' → Y × Y' → Y × Y'
_+Y×Y'_ = _+_ (snd (DirectProd-Ring Yr Y'r))
_·X×X'_ : X × X' → X × X' → X × X'
_·X×X'_ = _·_ (snd (DirectProd-Ring Xr X'r))
_·Y×Y'_ : Y × Y' → Y × Y' → Y × Y'
_·Y×Y'_ = _·_ (snd (DirectProd-Ring Yr Y'r))
re×re' : (re : RingEquiv Xr Yr) → (re' : RingEquiv X'r Y'r) → (X × X') ≃ (Y × Y')
re×re' re re' = ≃-× (fst re) (fst re')
Coproduct-Equiv-12 : (re : RingEquiv Xr Yr) → (re' : RingEquiv X'r Y'r) →
RingEquiv (DirectProd-Ring Xr X'r) (DirectProd-Ring Yr Y'r)
fst (Coproduct-Equiv-12 re re') = re×re' re re'
snd (Coproduct-Equiv-12 re re') = makeIsRingHom fun-pres1 fun-pres+ fun-pres·
where
fun-pres1 : (fst (re×re' re re')) (1r Xstr , 1r X'str) ≡ (1r (Yr .snd) , 1r (Y'r .snd))
fun-pres1 = ≡-× (pres1 (snd re)) (pres1 (snd re'))
fun-pres+ : (x1 x2 : X × X') → (fst (re×re' re re')) (x1 +X×X' x2) ≡ (( (fst (re×re' re re')) x1) +Y×Y' ( (fst (re×re' re re')) x2))
fun-pres+ (x1 , x'1) (x2 , x'2) = ≡-× (pres+ (snd re) x1 x2) (pres+ (snd re') x'1 x'2)
fun-pres· : (x1 x2 : X × X') → (fst (re×re' re re')) (x1 ·X×X' x2) ≡ (( (fst (re×re' re re')) x1) ·Y×Y' ( (fst (re×re' re re')) x2))
fun-pres· (x1 , x'1) (x2 , x'2) = ≡-× (pres· (snd re) x1 x2) (pres· (snd re') x'1 x'2)
| {
"alphanum_fraction": 0.4977397097,
"avg_line_length": 33.8951612903,
"ext": "agda",
"hexsha": "974d9688cbb3edefc8bde9dbbb5f9f51955bb3d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/cubical",
"max_forks_repo_path": "Cubical/Algebra/Ring/DirectProd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/cubical",
"max_issues_repo_path": "Cubical/Algebra/Ring/DirectProd.agda",
"max_line_length": 136,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/cubical",
"max_stars_repo_path": "Cubical/Algebra/Ring/DirectProd.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1847,
"size": 4203
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Sets.EquivalenceRelations
open import Setoids.Setoids
module Setoids.Union.Definition {a b : _} {A : Set a} (S : Setoid {a} {b} A) where
open Setoid S
open Equivalence eq
open import Setoids.Subset S
unionPredicate : {c d : _} {pred1 : A → Set c} {pred2 : A → Set d} (s1 : subset pred1) (s2 : subset pred2) → A → Set (c ⊔ d)
unionPredicate {pred1 = pred1} {pred2} s1 s2 a = pred1 a || pred2 a
union : {c d : _} {pred1 : A → Set c} {pred2 : A → Set d} (s1 : subset pred1) (s2 : subset pred2) → subset (unionPredicate s1 s2)
union s1 s2 {x1} {x2} x1=x2 (inl x) = inl (s1 x1=x2 x)
union s1 s2 {x1} {x2} x1=x2 (inr x) = inr (s2 x1=x2 x)
| {
"alphanum_fraction": 0.654822335,
"avg_line_length": 39.4,
"ext": "agda",
"hexsha": "bdfb31d179eeb276d00fe4a8a04919a479ba32bc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Union/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Union/Definition.agda",
"max_line_length": 129,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Union/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 306,
"size": 788
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Everything where
import Cubical.HITs.Cylinder
import Cubical.HITs.Hopf
import Cubical.HITs.Interval
import Cubical.HITs.Ints.BiInvInt
import Cubical.HITs.Ints.DeltaInt
import Cubical.HITs.Ints.HAEquivInt
import Cubical.HITs.Ints.IsoInt
import Cubical.HITs.Ints.QuoInt
import Cubical.HITs.Join
import Cubical.HITs.ListedFiniteSet
import Cubical.HITs.Pushout
import Cubical.HITs.Modulo
import Cubical.HITs.S1
import Cubical.HITs.S2
import Cubical.HITs.S3
import Cubical.HITs.Rational
import Cubical.HITs.Susp
import Cubical.HITs.SmashProduct
import Cubical.HITs.Torus
import Cubical.HITs.PropositionalTruncation
import Cubical.HITs.SetTruncation
import Cubical.HITs.GroupoidTruncation
import Cubical.HITs.2GroupoidTruncation
import Cubical.HITs.SetQuotients
import Cubical.HITs.FiniteMultiset
import Cubical.HITs.Sn
import Cubical.HITs.RPn
import Cubical.HITs.Truncation
import Cubical.HITs.Colimit
import Cubical.HITs.MappingCones
import Cubical.HITs.InfNat
import Cubical.HITs.KleinBottle
import Cubical.HITs.DunceCap
import Cubical.HITs.Localization
import Cubical.HITs.Nullification
import Cubical.HITs.AssocList
| {
"alphanum_fraction": 0.8545765612,
"avg_line_length": 29.225,
"ext": "agda",
"hexsha": "90557e9a2019f7724fdbc07f7d747261794ba1fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/HITs/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/HITs/Everything.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/HITs/Everything.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 386,
"size": 1169
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.Common.FOL.Existential.RequiredWitness where
-- We need to use the existential witness in some proofs based on the
-- non-empty domain hypothesis.
------------------------------------------------------------------------------
postulate
D : Set
D≢∅ : D -- Non-empty domain.
-- The existential quantifier type on D.
data ∃ (P : D → Set) : Set where
∃-intro : ∀ {x} → P x → ∃ P
-- Theorem: Let A be a formula. If x is not free in A then ⊢ (∃x)A ↔ A
-- (Mendelson, 1997, proposition 2.18 (b), p. 70).
-- A version of the right-to-left implication.
l→r : {A : Set} → A → ∃ (λ _ → A)
l→r a = ∃-intro {x = D≢∅} a
------------------------------------------------------------------------------
-- References
--
-- Mendelson, Elliott (1997). Introduction to Mathematical Logic. 4th
-- ed. Chapman & Hall.
| {
"alphanum_fraction": 0.5025125628,
"avg_line_length": 30.1515151515,
"ext": "agda",
"hexsha": "54ae861a8622adf2ae6cee6c2aa08557b2bec7cb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/Common/FOL/Existential/RequiredWitness.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/Common/FOL/Existential/RequiredWitness.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/Common/FOL/Existential/RequiredWitness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 264,
"size": 995
} |
Subsets and Splits