Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.HSpace where -- This is just an approximation because -- not all higher cells are killed. record HSpaceStructure {i} (X : Ptd i) : Type i where constructor hSpaceStructure field ⊙μ : (X ⊙× X) ⊙→ X μ : de⊙ X → de⊙ X → de⊙ X μ = curry (fst ⊙μ) field ⊙unit-l : ⊙μ ⊙∘ ⊙×-inr X X ⊙∼ ⊙idf X ⊙unit-r : ⊙μ ⊙∘ ⊙×-inl X X ⊙∼ ⊙idf X unit-l : ∀ x → μ (pt X) x == x unit-l = fst ⊙unit-l unit-r : ∀ x → μ x (pt X) == x unit-r = fst ⊙unit-r coh : unit-l (pt X) == unit-r (pt X) coh = ! (↓-idf=cst-out (snd ⊙unit-l) ∙ ∙-unit-r _) ∙ (↓-idf=cst-out (snd ⊙unit-r) ∙ ∙-unit-r _) record AlternativeHSpaceStructure {i} (X : Ptd i) : Type i where constructor hSpaceStructure field μ : de⊙ X → de⊙ X → de⊙ X unit-l : ∀ x → μ (pt X) x == x unit-r : ∀ x → μ x (pt X) == x coh : unit-l (pt X) == unit-r (pt X) ⊙μ : (X ⊙× X) ⊙→ X ⊙μ = uncurry μ , unit-l (pt X) ⊙unit-l : ⊙μ ⊙∘ ⊙×-inr X X ⊙∼ ⊙idf X ⊙unit-l = unit-l , ↓-idf=cst-in' idp ⊙unit-r : ⊙μ ⊙∘ ⊙×-inl X X ⊙∼ ⊙idf X ⊙unit-r = unit-r , ↓-idf=cst-in' coh from-alt-h-space : ∀ {i} {X : Ptd i} → AlternativeHSpaceStructure X → HSpaceStructure X from-alt-h-space hss = record {AlternativeHSpaceStructure hss} to-alt-h-space : ∀ {i} {X : Ptd i} → HSpaceStructure X → AlternativeHSpaceStructure X to-alt-h-space hss = record {HSpaceStructure hss} module ConnectedHSpace {i} {X : Ptd i} {{_ : is-connected 0 (de⊙ X)}} (hX : HSpaceStructure X) where open HSpaceStructure hX public {- Given that [X] is 0-connected, to prove that each [μ x] is an equivalence we only need to prove that one of them is. But for [x] = [pt X], [μ x] is the identity so we’re done. -} l-is-equiv : ∀ x → is-equiv (λ y → μ y x) l-is-equiv = prop-over-connected {a = pt X} (λ x → (is-equiv (λ y → μ y x) , is-equiv-is-prop)) (transport! is-equiv (λ= unit-r) (idf-is-equiv _)) r-is-equiv : ∀ x → is-equiv (λ y → μ x y) r-is-equiv = prop-over-connected {a = pt X} (λ x → (is-equiv (λ y → μ x y) , is-equiv-is-prop)) (transport! is-equiv (λ= unit-l) (idf-is-equiv _)) l-equiv : de⊙ X → de⊙ X ≃ de⊙ X l-equiv x = _ , l-is-equiv x r-equiv : de⊙ X → de⊙ X ≃ de⊙ X r-equiv x = _ , r-is-equiv x
{ "alphanum_fraction": 0.566695728, "avg_line_length": 28.675, "ext": "agda", "hexsha": "ee980bb529804a6ec4258ebf8d3cb24b71835a6e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/HSpace.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/HSpace.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/HSpace.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 942, "size": 2294 }
module Examples where data Nat : Set where zero : Nat suc : Nat -> Nat data Bool : Set where true : Bool false : Bool if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x if false then x else y = y not : Bool -> Bool not x = if x then false else true isZero : Nat -> Bool isZero zero = true isZero (suc _) = false F : Bool -> Set F true = Nat F false = Bool f : (x : Bool) -> F x -> F (not x) f true n = isZero n f false b = if b then zero else suc zero test : Bool test = f ? zero
{ "alphanum_fraction": 0.5981132075, "avg_line_length": 15.5882352941, "ext": "agda", "hexsha": "d92b2c050073aacf92ac66b52992ccbc160405e1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "notes/talks/MetaVars/Examples.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "notes/talks/MetaVars/Examples.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "notes/talks/MetaVars/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 182, "size": 530 }
module Foundation.Level0 where {- it : ∀ {a} {A : Set a} {{x : A}} → A it {{x}} = x {-# INLINE it #-} -} private module Data where data ⊥ : Set where module _ where open import Foundation.Bottom open import Foundation.Primitive instance isBottom-Data : ∀ {a} → IsBottom Data.⊥ a IsBottom.⊥-elim isBottom-Data () instance Bottom-Data : ∀ {a} → Bottom 𝟘 a Bottom.⊥ Bottom-Data = Data.⊥ Bottom.isBottom Bottom-Data = isBottom-Data open import Agda.Builtin.Equality module _ where open import Foundation.Equivalence isEquivalence-Builtin : ∀ {a} {A : Set a} → IsEquivalence {A = A} _≡_ IsEquivalence.reflexivity isEquivalence-Builtin x = refl IsEquivalence.symmetry isEquivalence-Builtin x .x refl = refl IsEquivalence.transitivity isEquivalence-Builtin x .x z refl x₂ = x₂ instance _ = isEquivalence-Builtin equivalence-Builtin : ∀ {a} {A : Set a} → Equivalence A a Equivalence._≈_ equivalence-Builtin = _≡_ instance _ = equivalence-Builtin
{ "alphanum_fraction": 0.6952573158, "avg_line_length": 22.5227272727, "ext": "agda", "hexsha": "ea902cd82f53539b91cf891d0042cfdc1cba622a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Foundation/Level0.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Foundation/Level0.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Foundation/Level0.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 317, "size": 991 }
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup where open import Cubical.Algebra.AbGroup.Base public open import Cubical.Algebra.AbGroup.Properties public
{ "alphanum_fraction": 0.8036809816, "avg_line_length": 27.1666666667, "ext": "agda", "hexsha": "36bee0ff6b64c555de8f84092649a383c604bd2d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 36, "size": 163 }
open import Agda.Builtin.Equality module _ (F : Set₁ → Set₁) where f : (B : Set₁) → B ≡ F Set → Set f B eq = {!eq!} -- WAS: splitting on eq produces -- f .(_ Set) refl = {!!} -- with unsolved metavariables -- SHOULD: instead produce -- f .(F Set) refl = {!!}
{ "alphanum_fraction": 0.5793357934, "avg_line_length": 19.3571428571, "ext": "agda", "hexsha": "ebbf1f237a6ae09e143edf731915d2e53b8b2f83", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2969.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2969.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2969.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 94, "size": 271 }
{-# OPTIONS --safe #-} module CF.Syntax.DeBruijn where open import Level open import Data.Bool open import Data.Product open import Data.Integer open import Data.List hiding (null) open import Data.List.Relation.Unary.All open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Unary hiding (_⊢_) open import Relation.Binary.Structures using (IsPreorder) open import Relation.Binary.PropositionalEquality using (isEquivalence) open import CF.Types open import CF.Contexts.Lexical using (Ctx; module DeBruijn; Closed) public open import CF.Syntax using (BinOp; module BinOp) public open DeBruijn public open BinOp public mutual data Exp : Ty → Pred Ctx 0ℓ where unit : ∀[ Exp void ] num : ℤ → ∀[ Exp int ] bool : Bool → ∀[ Exp bool ] ifthenelse : ∀[ Exp bool ⇒ Exp a ⇒ Exp a ⇒ Exp a ] var' : ∀[ Var a ⇒ Exp a ] bop : BinOp a b c → ∀[ Exp a ⇒ Exp b ⇒ Exp c ] Exps = λ as Γ → All (λ a → Exp a Γ) as mutual data Stmt (r : Ty) : Pred Ctx 0ℓ where asgn : ∀[ Var a ⇒ Exp a ⇒ Stmt r ] run : ∀[ Exp a ⇒ Stmt r ] ifthenelse : ∀[ Exp bool ⇒ Stmt r ⇒ Stmt r ⇒ Stmt r ] while : ∀[ Exp bool ⇒ Stmt r ⇒ Stmt r ] block : ∀[ Block r ⇒ Stmt r ] data Block (r : Ty) : Pred Ctx 0ℓ where _⍮⍮_ : ∀[ Stmt r ⇒ Block r ⇒ Block r ] nil : ∀[ Block r ]
{ "alphanum_fraction": 0.6118656183, "avg_line_length": 29.7659574468, "ext": "agda", "hexsha": "e9a25a6ace3748ead7ff999e0bb9378f3e33ae4a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/CF/Syntax/DeBruijn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/CF/Syntax/DeBruijn.agda", "max_line_length": 75, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/CF/Syntax/DeBruijn.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 424, "size": 1399 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors ------------------------------------------------------------------------ -- This implementation is designed for reasoning about dynamic -- vectors which may increase or decrease in size. -- See `Data.Vec.Functional` for an alternative implementation as -- functions from finite sets, which is more suitable for reasoning -- about fixed sized vectors and for when ease of retrevial is -- important. {-# OPTIONS --without-K --safe #-} module Data.Vec where open import Level open import Data.Bool.Base import Data.Nat.Properties as ℕₚ open import Data.Vec.Bounded.Base as Vec≤ using (Vec≤; ≤-cast; fromVec) open import Relation.Nullary open import Relation.Unary private variable a p : Level A : Set a ------------------------------------------------------------------------ -- Publicly re-export the contents of the base module open import Data.Vec.Base public ------------------------------------------------------------------------ -- Additional operations module _ {P : A → Set p} (P? : Decidable P) where filter : ∀ {n} → Vec A n → Vec≤ A n filter [] = Vec≤.[] filter (a ∷ as) with does (P? a) ... | true = a Vec≤.∷ filter as ... | false = ≤-cast (ℕₚ.n≤1+n _) (filter as) takeWhile : ∀ {n} → Vec A n → Vec≤ A n takeWhile [] = Vec≤.[] takeWhile (a ∷ as) with does (P? a) ... | true = a Vec≤.∷ takeWhile as ... | false = Vec≤.[] dropWhile : ∀ {n} → Vec A n → Vec≤ A n dropWhile Vec.[] = Vec≤.[] dropWhile (a Vec.∷ as) with does (P? a) ... | true = ≤-cast (ℕₚ.n≤1+n _) (dropWhile as) ... | false = fromVec (a Vec.∷ as)
{ "alphanum_fraction": 0.5248392753, "avg_line_length": 29, "ext": "agda", "hexsha": "2ac8cee8302a2b074171da417a5627b24172c92c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 466, "size": 1711 }
open import parse-tree open import string module run (ptr : ParseTreeRec) where open import lib open import datatypes open ParseTreeRec ptr module deriv where data RunElement : 𝕃 char → Set where Id : string → RunElement [] InputChar : (c : char) → RunElement (c :: []) ParseTree : {l : 𝕃 char}{s : string}{pt : ParseTreeT} → isParseTree pt l s → RunElement l infixr 6 _::'_ data Run : (ls : 𝕃 char) → Set where []' : Run [] _::'_ : {lc elc : 𝕃 char} → RunElement elc → Run lc → Run (elc ++ lc) length-run : {lc : 𝕃 char} → Run lc → ℕ length-run []' = 0 length-run (x ::' xs) = suc (length-run xs) RunElement-to-string : {lc : 𝕃 char} → RunElement lc → string RunElement-to-string (Id s) = ("id:" ^ s) RunElement-to-string (InputChar c) = "#" ^ (char-to-string c) RunElement-to-string (ParseTree{pt = pt} ipt) = (ParseTreeToString pt) Run-to-string : {lc : 𝕃 char} → Run lc → string Run-to-string []' = "\n" Run-to-string (e ::' r) = (RunElement-to-string e) ^ " " ^ (Run-to-string r) assocRun : (ls : 𝕃 (𝕃 char))(lc : 𝕃 char) → Run ((concat ls) ++ lc) × ℕ → Run (foldr _++_ lc ls) × ℕ assocRun ls lc (r , n) rewrite concat-foldr ls lc = r , n record rewriteRules : Set where field len-dec-rewrite : {lc : 𝕃 char} → (r : Run lc) → maybe (Run lc × ℕ) --(λ r' → length-run r' < length-run r ≡ tt)) module noderiv where data RunElement : Set where Id : string → RunElement InputChar : (c : char) → RunElement ParseTree : ParseTreeT → RunElement Posinfo : ℕ → RunElement Run : Set Run = 𝕃 RunElement _::'_ : RunElement → Run → Run _::'_ = _::_ []' : Run []' = [] length-run : Run → ℕ length-run = length RunElement-to-string : RunElement → string RunElement-to-string (Id s) = ("id:" ^ s) RunElement-to-string (InputChar c) = "#" ^ (char-to-string c) RunElement-to-string (ParseTree pt) = (ParseTreeToString pt) RunElement-to-string (Posinfo n) = "pos:" ^ ℕ-to-string n Run-to-string : Run → string Run-to-string [] = "\n" Run-to-string (e :: r) = (RunElement-to-string e) ^ " " ^ (Run-to-string r) record rewriteRules : Set where field len-dec-rewrite : Run → maybe (Run × ℕ) empty-string : string empty-string = ""
{ "alphanum_fraction": 0.6032656664, "avg_line_length": 28.6835443038, "ext": "agda", "hexsha": "bebc2b69a0b8864be360d750c5f9a0a787dd3cb7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/run.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/run.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/run.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 760, "size": 2266 }
------------------------------------------------------------------------------ -- Miscellaneous properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.MiscellaneousATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.List.PropertiesATP open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Data.List open import FOTC.Data.List.PropertiesATP open import FOTC.Program.SortList.Properties.Totality.BoolATP open import FOTC.Program.SortList.SortList ------------------------------------------------------------------------------ -- This is a weird result but recall that "the relation ≤ between -- lists is only an ordering if nil is excluded" (Burstall 1969, -- p. 46). -- xs≤[] : ∀ {is} → ListN is → OrdList is → ≤-Lists is [] -- xs≤[] nilLN _ = ≤-Lists-[] [] -- xs≤[] (lncons {i} {is} Ni LNis) LOconsL = -- prf $ xs≤[] LNis (subList-OrdList Ni LNis LOconsL) -- where -- postulate prf : ≤-Lists is [] → --IH. -- ≤-Lists (i ∷ is) [] -- {-# ATP prove prf ≤-ItemList-Bool ordList-Bool x&&y≡true→x≡true #-} x≤ys→x≤zs→x≤ys++zs : ∀ {i js ks} → N i → ListN js → ListN ks → ≤-ItemList i js → ≤-ItemList i ks → ≤-ItemList i (js ++ ks) x≤ys→x≤zs→x≤ys++zs {i} {ks = ks} Ni lnnil LNks _ i≤k = subst (≤-ItemList i) (sym (++-leftIdentity ks)) i≤k x≤ys→x≤zs→x≤ys++zs {i} {ks = ks} Ni (lncons {j} {js} Nj LNjs) LNks i≤j∷js i≤k = prf (x≤ys→x≤zs→x≤ys++zs Ni LNjs LNks (&&-list₂-t₂ helper₁ helper₂ helper₃) i≤k) where helper₁ : Bool (le i j) helper₁ = le-Bool Ni Nj helper₂ : Bool (le-ItemList i js) helper₂ = le-ItemList-Bool Ni LNjs helper₃ : le i j && le-ItemList i js ≡ true helper₃ = trans (sym (le-ItemList-∷ i j js)) i≤j∷js postulate prf : ≤-ItemList i (js ++ ks) → ≤-ItemList i ((j ∷ js) ++ ks) {-# ATP prove prf &&-list₂-t helper₁ helper₂ helper₃ #-} xs≤ys→xs≤zs→xs≤ys++zs : ∀ {is js ks} → ListN is → ListN js → ListN ks → ≤-Lists is js → ≤-Lists is ks → ≤-Lists is (js ++ ks) xs≤ys→xs≤zs→xs≤ys++zs lnnil LNjs LNks _ _ = le-Lists-[] _ xs≤ys→xs≤zs→xs≤ys++zs {js = js} {ks} (lncons {i} {is} Ni LNis) LNjs LNks i∷is≤js i∷is≤ks = prf ((xs≤ys→xs≤zs→xs≤ys++zs LNis LNjs LNks (&&-list₂-t₂ helper₁ helper₂ helper₃) (&&-list₂-t₂ helper₄ helper₅ helper₆))) where helper₁ = le-ItemList-Bool Ni LNjs helper₂ = le-Lists-Bool LNis LNjs helper₃ = trans (sym (le-Lists-∷ i is js)) i∷is≤js helper₄ = le-ItemList-Bool Ni LNks helper₅ = le-Lists-Bool LNis LNks helper₆ = trans (sym (le-Lists-∷ i is ks)) i∷is≤ks postulate prf : ≤-Lists is (js ++ ks) → ≤-Lists (i ∷ is) (js ++ ks) {-# ATP prove prf x≤ys→x≤zs→x≤ys++zs &&-list₂-t helper₁ helper₂ helper₃ helper₄ helper₅ helper₆ #-} xs≤zs→ys≤zs→xs++ys≤zs : ∀ {is js ks} → ListN is → ListN js → ListN ks → ≤-Lists is ks → ≤-Lists js ks → ≤-Lists (is ++ js) ks xs≤zs→ys≤zs→xs++ys≤zs {js = js} {ks} lnnil LNjs LNks is≤ks js≤ks = subst (λ t → ≤-Lists t ks) (sym (++-leftIdentity js)) js≤ks xs≤zs→ys≤zs→xs++ys≤zs {js = js} {ks} (lncons {i} {is} Ni LNis) LNjs LNks i∷is≤ks js≤ks = prf (xs≤zs→ys≤zs→xs++ys≤zs LNis LNjs LNks (&&-list₂-t₂ helper₁ helper₂ helper₃) js≤ks) where helper₁ = le-ItemList-Bool Ni LNks helper₂ = le-Lists-Bool LNis LNks helper₃ = trans (sym (le-Lists-∷ i is ks)) i∷is≤ks postulate prf : ≤-Lists (is ++ js) ks → ≤-Lists ((i ∷ is) ++ js) ks {-# ATP prove prf &&-list₂-t helper₁ helper₂ helper₃ #-} ------------------------------------------------------------------------------ -- References -- -- Burstall, R. M. (1969). Proving properties of programs by -- structural induction. The Computer Journal 12.1, pp. 41–48.
{ "alphanum_fraction": 0.5268203606, "avg_line_length": 40.9439252336, "ext": "agda", "hexsha": "e665ea94b9476d415454c5db0385ea0fdc0441ba", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/MiscellaneousATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/MiscellaneousATP.agda", "max_line_length": 101, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/MiscellaneousATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1517, "size": 4381 }
------------------------------------------------------------------------ -- Examples/exercises related to CCS from "Enhancements of the -- bisimulation proof method" by Pous and Sangiorgi -- -- Implemented using coinductive definitions of strong and weak -- bisimilarity and expansion. ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude hiding (module W; step-→) module Bisimilarity.Weak.CCS.Examples {ℓ} {Name : Type ℓ} where open import Equality.Propositional open import Function-universe equality-with-J hiding (id; _∘_) open import Bisimilarity.CCS import Bisimilarity.Equational-reasoning-instances import Bisimilarity.Weak.CCS as WL import Bisimilarity.Weak.Equational-reasoning-instances open import Equational-reasoning import Expansion.CCS as EL import Expansion.Equational-reasoning-instances open import Labelled-transition-system.CCS Name open import Bisimilarity CCS using (_∼_; ∼:_) open import Bisimilarity.Weak CCS as W open import Expansion CCS as E import Labelled-transition-system.Equational-reasoning-instances CCS as Dummy mutual -- Example 6.5.4. 6-5-4 : ∀ {i a b} → [ i ] ! name a ∙ (b ∙) ∣ ! co a ∙ ≈ (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ 6-5-4 {i} {a} {b} = W.⟨ lr , rl ⟩ where lemma = (! a ∙ ∣ ! b ∙) ∣ b ∙ ∼⟨ symmetric ∣-assoc ⟩ ! a ∙ ∣ (! b ∙ ∣ b ∙) ∼⟨ symmetric ∣-right-identity ∣-cong 6-1-2 ⟩■ (! a ∙ ∣ ∅) ∣ ! b ∙ lr : ∀ {P μ} → ! name a ∙ (b ∙) ∣ ! co a ∙ [ μ ]⟶ P → ∃ λ Q → (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ [ μ ]⇒̂ Q × [ i ] P ≈′ Q lr (par-left {P′ = P} tr) = case 6-1-3-2 tr of λ where (inj₁ (.(b ∙) , action , P∼!ab∣b)) → P ∣ ! co a ∙ ∼⟨ P∼!ab∣b ∣-cong reflexive ⟩ (! name a ∙ (b ∙) ∣ b ∙) ∣ ! co a ∙ ∼⟨ swap-rightmost ⟩ (! name a ∙ (b ∙) ∣ ! co a ∙) ∣ b ∙ ∼′⟨ 6-5-4′ WL.∣-cong′ reflexive ⟩ ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙) ∣ b ∙ ∼⟨ swap-rightmost ⟩ ∼: ((! a ∙ ∣ ! b ∙) ∣ b ∙) ∣ ! co a ∙ ∼⟨ lemma ∣-cong reflexive ⟩■ ((! a ∙ ∣ ∅) ∣ ! b ∙) ∣ ! co a ∙ W.⇐̂[ name a ] ←⟨ ⟶: par-left (par-left (replication (par-right action))) ⟩■ (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ (inj₂ (_ , .(b ∙) , _ , .a , action , ab[a̅]⟶ , _)) → ⊥-elim (names-are-not-inverted ab[a̅]⟶) lr (par-right {Q′ = Q} tr) = case 6-1-3-2 tr of λ where (inj₁ (.∅ , action , Q∼!a̅∣∅)) → ! name a ∙ (b ∙) ∣ Q ∼⟨ reflexive ∣-cong Q∼!a̅∣∅ ⟩ ! name a ∙ (b ∙) ∣ (! co a ∙ ∣ ∅) ∼⟨ ∣-assoc ⟩ (! name a ∙ (b ∙) ∣ ! co a ∙) ∣ ∅ ∼′⟨ 6-5-4′ WL.∣-cong′ reflexive ⟩ ∼: ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙) ∣ ∅ ∼⟨ symmetric ∣-assoc ⟩■ (! a ∙ ∣ ! b ∙) ∣ (! co a ∙ ∣ ∅) W.⇐̂[ name (co a) ] ←⟨ ⟶: par-right (replication (par-right action)) ⟩■ (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ (inj₂ (_ , .∅ , _ , .(co a) , action , a̅[a̅̅]⟶ , _)) → ⊥-elim (names-are-not-inverted a̅[a̅̅]⟶) lr (par-τ {P′ = P} {Q′ = Q} tr₁ tr₂) = case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where (inj₁ (.(b ∙) , action , P∼!ab∣b) , inj₁ (R , tr , Q∼!a̅∣R)) → P ∣ Q ∼⟨ P∼!ab∣b ∣-cong Q∼!a̅∣R ⟩ (! name a ∙ (b ∙) ∣ b ∙) ∣ (! co a ∙ ∣ R) ∼≡⟨ cong (λ R → _ ∣ (_ ∣ R)) (·-only⟶ tr) ⟩ (! name a ∙ (b ∙) ∣ b ∙) ∣ (! co a ∙ ∣ ∅) ∼⟨ swap-in-the-middle ⟩ (! name a ∙ (b ∙) ∣ ! co a ∙) ∣ (b ∙ ∣ ∅) ∼′⟨ 6-5-4′ WL.∣-cong′ reflexive ⟩ ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙) ∣ (b ∙ ∣ ∅) ∼⟨ swap-in-the-middle ⟩ ∼: ((! a ∙ ∣ ! b ∙) ∣ b ∙) ∣ (! co a ∙ ∣ ∅) ∼⟨ lemma ∣-cong reflexive ⟩■ ((! a ∙ ∣ ∅) ∣ ! b ∙) ∣ (! co a ∙ ∣ ∅) W.⇐̂[ τ ] ←⟨ par-τ (par-left (replication (par-right action))) (replication (par-right action)) ⟩■ (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ (_ , inj₂ (() , _)) (inj₂ (() , _) , _) rl-lemma : ∀ {Q μ} → (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ [ μ ]⟶ Q → (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼ Q × (μ ≡ name a ⊎ μ ≡ name b ⊎ μ ≡ name (co a) ⊎ μ ≡ τ) rl-lemma (par-left (par-left {P′ = P} tr)) = case 6-1-3-2 tr of λ where (inj₁ (.∅ , action , P∼!a∣∅)) → ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ (symmetric ∣-right-identity ∣-cong reflexive) ∣-cong reflexive ⟩ ((! a ∙ ∣ ∅) ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ (symmetric P∼!a∣∅ ∣-cong reflexive) ∣-cong reflexive ⟩■ (P ∣ ! b ∙) ∣ ! co a ∙) , inj₁ refl (inj₂ (refl , .∅ , _ , .a , action , a[a̅]⟶ , _)) → ⊥-elim (names-are-not-inverted a[a̅]⟶) rl-lemma (par-left (par-right {Q′ = P} tr)) = case 6-1-3-2 tr of λ where (inj₁ (.∅ , action , P∼!b∣∅)) → ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ (reflexive ∣-cong symmetric ∣-right-identity) ∣-cong reflexive ⟩ (! a ∙ ∣ (! b ∙ ∣ ∅)) ∣ ! co a ∙ ∼⟨ (reflexive ∣-cong symmetric P∼!b∣∅) ∣-cong reflexive ⟩■ (! a ∙ ∣ P) ∣ ! co a ∙) , inj₂ (inj₁ refl) (inj₂ (_ , .∅ , _ , .b , action , b[b̅]⟶ , _)) → ⊥-elim (names-are-not-inverted b[b̅]⟶) rl-lemma (par-left (par-τ {P′ = P} {Q′ = Q} tr₁ tr₂)) = case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where (inj₁ (.∅ , action , P∼!a∣∅) , inj₁ (.∅ , action , Q∼!b∣∅)) → ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ symmetric (∣-right-identity ∣-cong ∣-right-identity) ∣-cong reflexive ⟩ ((! a ∙ ∣ ∅) ∣ (! b ∙ ∣ ∅)) ∣ ! co a ∙ ∼⟨ symmetric (P∼!a∣∅ ∣-cong Q∼!b∣∅) ∣-cong reflexive ⟩■ (P ∣ Q) ∣ ! co a ∙) , inj₂ (inj₂ (inj₂ refl)) (inj₂ (() , _) , _) (_ , inj₂ (() , _)) rl-lemma (par-right {Q′ = Q} tr) = case 6-1-3-2 tr of λ where (inj₁ (.∅ , action , Q∼!a̅∣∅)) → ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ reflexive ∣-cong symmetric ∣-right-identity ⟩ (! a ∙ ∣ ! b ∙) ∣ (! co a ∙ ∣ ∅) ∼⟨ reflexive ∣-cong symmetric Q∼!a̅∣∅ ⟩■ (! a ∙ ∣ ! b ∙) ∣ Q) , inj₂ (inj₂ (inj₁ refl)) (inj₂ (_ , .∅ , _ , .(co a) , action , a̅[a̅̅]⟶ , _)) → ⊥-elim (names-are-not-inverted a̅[a̅̅]⟶) rl-lemma (par-τ {Q′ = Q} (par-left {P′ = P} tr₁) tr₂) = case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where (inj₁ (.∅ , action , P∼!a∣∅) , inj₁ (R , tr , Q∼!a̅∣R)) → ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ symmetric ((∣-right-identity ∣-cong reflexive) ∣-cong ∣-right-identity) ⟩ ((! a ∙ ∣ ∅) ∣ ! b ∙) ∣ (! co a ∙ ∣ ∅) ∼≡⟨ cong (λ R → _ ∣ (_ ∣ R)) (sym $ ·-only⟶ tr) ⟩ ((! a ∙ ∣ ∅) ∣ ! b ∙) ∣ (! co a ∙ ∣ R) ∼⟨ symmetric ((P∼!a∣∅ ∣-cong reflexive) ∣-cong Q∼!a̅∣R) ⟩■ (P ∣ ! b ∙) ∣ Q) , inj₂ (inj₂ (inj₂ refl)) (inj₂ (() , _) , _) (_ , inj₂ (() , _)) rl-lemma (par-τ {Q′ = Q} (par-right {Q′ = P} tr₁) tr₂) = case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where (inj₁ (.∅ , action , P∼!b∣∅) , inj₁ (R , tr , Q∼!a̅∣R)) → ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ symmetric ((reflexive ∣-cong ∣-right-identity) ∣-cong ∣-right-identity) ⟩ (! a ∙ ∣ (! b ∙ ∣ ∅)) ∣ (! co a ∙ ∣ ∅) ∼≡⟨ cong (λ R → _ ∣ (_ ∣ R)) (sym $ ·-only⟶ tr) ⟩ (! a ∙ ∣ (! b ∙ ∣ ∅)) ∣ (! co a ∙ ∣ R) ∼⟨ symmetric ((reflexive ∣-cong P∼!b∣∅) ∣-cong Q∼!a̅∣R) ⟩■ (! a ∙ ∣ P) ∣ Q) , inj₂ (inj₂ (inj₂ refl)) (inj₂ (() , _) , _) (_ , inj₂ (() , _)) rl : ∀ {Q μ} → (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ [ μ ]⟶ Q → ∃ λ P → ! name a ∙ (b ∙) ∣ ! co a ∙ [ μ ]⇒̂ P × [ i ] P ≈′ Q rl {Q} tr = case rl-lemma tr of λ where (!a∣!b∣!a̅∼Q , inj₁ refl) → ! name a ∙ (b ∙) ∣ ! co a ∙ →⟨ ⟶: par-left (replication (par-right action)) ⟩■ W.⇒̂[ name a ] (! name a ∙ (b ∙) ∣ b ∙) ∣ ! co a ∙ ∼⟨ swap-rightmost ⟩ (! name a ∙ (b ∙) ∣ ! co a ∙) ∣ b ∙ ∼′⟨ 6-5-4′ WL.∣-cong′ reflexive ⟩ ((! a ∙ ∣ ! b ∙) ∣ ! co a ∙) ∣ b ∙ ∼⟨ swap-rightmost ⟩ ((! a ∙ ∣ ! b ∙) ∣ b ∙) ∣ ! co a ∙ ∼⟨ symmetric ∣-assoc ∣-cong reflexive ⟩ (! a ∙ ∣ (! b ∙ ∣ b ∙)) ∣ ! co a ∙ ∼⟨ (reflexive ∣-cong 6-1-2) ∣-cong reflexive ⟩ ∼: (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ !a∣!b∣!a̅∼Q ⟩■ Q (!a∣!b∣!a̅∼Q , inj₂ (inj₁ refl)) → ! name a ∙ (b ∙) ∣ ! co a ∙ →⟨ par-τ (replication (par-right action)) (replication (par-right action)) ⟩ (! name a ∙ (b ∙) ∣ (b ∙)) ∣ (! co a ∙ ∣ ∅) →⟨ ⟶: par-left (par-right action) ⟩■ W.⇒̂[ name b ] (! name a ∙ (b ∙) ∣ ∅) ∣ (! co a ∙ ∣ ∅) ∼⟨ ∣-right-identity ∣-cong ∣-right-identity ⟩ (! name a ∙ (b ∙)) ∣ ! co a ∙ ∼′⟨ 6-5-4′ ⟩ ∼: (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ !a∣!b∣!a̅∼Q ⟩■ Q (!a∣!b∣!a̅∼Q , inj₂ (inj₂ (inj₁ refl))) → ! name a ∙ (b ∙) ∣ ! co a ∙ →⟨ ⟶: par-right (replication (par-right action)) ⟩■ W.⇒̂[ name (co a) ] ! name a ∙ (b ∙) ∣ (! co a ∙ ∣ ∅) ∼⟨ reflexive ∣-cong ∣-right-identity ⟩ ! name a ∙ (b ∙) ∣ ! co a ∙ ∼′⟨ 6-5-4′ ⟩ ∼: (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ !a∣!b∣!a̅∼Q ⟩■ Q (!a∣!b∣!a̅∼Q , inj₂ (inj₂ (inj₂ refl))) → ! name a ∙ (b ∙) ∣ ! co a ∙ ■ W.⇒̂[ τ ] ! name a ∙ (b ∙) ∣ ! co a ∙ ∼′⟨ 6-5-4′ ⟩ ∼: (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ ∼⟨ !a∣!b∣!a̅∼Q ⟩■ Q 6-5-4′ : ∀ {i a b} → [ i ] ! name a ∙ (b ∙) ∣ ! co a ∙ ≈′ (! a ∙ ∣ ! b ∙) ∣ ! co a ∙ force 6-5-4′ = 6-5-4 -- The first part of Exercise 6.5.8. 6-5-8-1 : ∀ a {P Q} → ⟨ν proj₁ a ⟩ (name a ∙ P ∣ name (co a) ∙ Q) ≳ ⟨ν proj₁ a ⟩ (P ∣ Q) 6-5-8-1 a {P} {Q} = E.⟨ lr , rl ⟩ where lr : ∀ {μ R} → ⟨ν proj₁ a ⟩ (name a ∙ P ∣ name (co a) ∙ Q) [ μ ]⟶ R → ∃ λ R′ → ⟨ν proj₁ a ⟩ (P ∣ Q) [ μ ]⟶̂ R′ × R ≳′ R′ lr (restriction a∉μ (par-left action)) = ⊥-elim (a∉μ refl) lr (restriction a∉μ (par-right action)) = ⊥-elim (a∉μ refl) lr (restriction a∉μ (par-τ {Q′ = R} action tr)) = ⟨ν proj₁ a ⟩ (P ∣ R) ∼≡⟨ cong (λ R → ⟨ν _ ⟩ (_ ∣ R)) (·-only⟶ tr) ⟩■ ⟨ν proj₁ a ⟩ (P ∣ Q) ⟵̂[ τ ] ⟨ν proj₁ a ⟩ (P ∣ Q) ■ rl : ∀ {μ R′} → ⟨ν proj₁ a ⟩ (P ∣ Q) [ μ ]⟶ R′ → ∃ λ R → ⟨ν proj₁ a ⟩ (name a ∙ P ∣ name (co a) ∙ Q) [ μ ]⇒ R × R ≳′ R′ rl {μ} (restriction {P′ = R} a∉μ P∣Q⟶R) = ⟨ν proj₁ a ⟩ (name a ∙ P ∣ name (co a) ∙ Q) →⟨ ⟶: restriction _ (par-τ action action) ⟩ ⟨ν proj₁ a ⟩ (P ∣ Q) →⟨ ⟶: restriction a∉μ P∣Q⟶R ⟩■ E.⇒[ μ ] ⟨ν proj₁ a ⟩ R ■ -- One interpretation of the second part of Exercise 6.5.8 is -- contradictory, assuming that Name is inhabited. ¬-6-5-8-2 : Name → ¬ (∀ {a b P} → ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) ≈ ! name b ∙ ⟨ν proj₁ a ⟩ P) ¬-6-5-8-2 x = (∀ {a b P} → ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) ≈ ! name b ∙ ⟨ν proj₁ a ⟩ P) ↝⟨ (λ hyp → hyp {a = a} {b = co a}) ⟩ (! ⟨ν proj₁ a ⟩ (name (co a) ∙ (a ∙) ∣ co a ∙) ≈ ! name (co a) ∙ ⟨ν proj₁ a ⟩ ∅) ↝⟨ (λ hyp → Σ-map id proj₁ $ W.right-to-left hyp (replication (par-right action))) ⟩ ∃ (! ⟨ν proj₁ a ⟩ (name (co a) ∙ (a ∙) ∣ co a ∙) [ name (co a) ]⇒̂_) ↝⟨ !P⇒̂ ∘ proj₂ ⟩□ ⊥ □ where a = x , true P = ⟨ν proj₁ a ⟩ (name (co a) ∙ (a ∙) ∣ co a ∙) P⟶ : ∀ {μ Q} → ¬ P [ μ ]⟶ Q P⟶ (restriction x≢x (par-left action)) = ⊥-elim (x≢x refl) P⟶ (restriction x≢x (par-right action)) = ⊥-elim (x≢x refl) P⟶ (restriction _ (par-τ action tr)) = names-are-not-inverted tr !P⟶ : ∀ {μ Q} → ¬ ! P [ μ ]⟶ Q !P⟶ (replication (par-left tr)) = !P⟶ tr !P⟶ (replication (par-right tr)) = P⟶ tr !P⟶ (replication (par-τ _ tr)) = P⟶ tr !P⇒ : ∀ {Q} → ! P ⇒ Q → Q ≡ ! P !P⇒ done = refl !P⇒ (step _ tr _) = ⊥-elim (!P⟶ tr) !P[]⇒ : ∀ {μ Q} → ¬ ! P [ μ ]⇒ Q !P[]⇒ (steps trs tr _) rewrite !P⇒ trs = !P⟶ tr !P⇒̂ : ∀ {b Q} → ¬ ! P [ name b ]⇒̂ Q !P⇒̂ (silent () _) !P⇒̂ (non-silent _ tr) = !P[]⇒ tr -- Another interpretation of the second part of Exercise 6.5.8 can be -- proved. 6-5-8-2 : ∀ {i a b P} → proj₁ a ≢ proj₁ b → [ i ] ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) ≈ ! name b ∙ ⟨ν proj₁ a ⟩ P 6-5-8-2 {i} {a} {b} {P} a≢b = W.⟨ lr , rl ⟩ where 6-5-8-2′ : [ i ] ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) ≈′ ! name b ∙ ⟨ν proj₁ a ⟩ P force 6-5-8-2′ = 6-5-8-2 a≢b lr : ∀ {Q μ} → ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) [ μ ]⟶ Q → ∃ λ Q′ → ! name b ∙ ⟨ν proj₁ a ⟩ P [ μ ]⇒̂ Q′ × [ i ] Q ≈′ Q′ lr {Q} tr = case 6-1-3-2 tr of λ where (inj₁ (_ , restriction a≢b (par-left action) , Q∼!νa[ba∣a̅P]∣νa[a∣a̅P])) → Q ∼⟨ Q∼!νa[ba∣a̅P]∣νa[a∣a̅P] ⟩ ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) ∣ ⟨ν proj₁ a ⟩ (a ∙ ∣ name (co a) ∙ P) ∼⟨ (_ ■) EL.∣-cong 6-5-8-1 _ ⟩ ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) ∣ ⟨ν proj₁ a ⟩ (∅ ∣ P) ∼⟨ 6-5-8-2′ WL.∣-cong′ convert {a = ℓ} (⟨ν refl ⟩-cong ∣-left-identity) ⟩■ ! name b ∙ ⟨ν proj₁ a ⟩ P ∣ ⟨ν proj₁ a ⟩ P W.⇐̂[ name b ] ←⟨ ⟶: replication (par-right action) ⟩■ ! name b ∙ ⟨ν proj₁ a ⟩ P (inj₁ (_ , restriction _ (par-τ action tr) , _)) → ⊥-elim ( $⟨ tr ⟩ name (co a) · _ [ name (co b) ]⟶ _ ↝⟨ ·-only ⟩ name (co a) ≡ name (co b) ↝⟨ cancel-name ⟩ co a ≡ co b ↝⟨ cong proj₁ ⟩ proj₁ a ≡ proj₁ b ↝⟨ a≢b ⟩□ ⊥ □) (inj₁ (_ , restriction a≢a (par-right action) , _)) → ⊥-elim (a≢a refl) (inj₂ (refl , _ , _ , _ , restriction _ (par-left action) , restriction _ (par-left tr) , _)) → ⊥-elim (names-are-not-inverted tr) (inj₂ (refl , _ , _ , _ , restriction _ (par-right action) , restriction _ (par-right tr) , _)) → ⊥-elim (names-are-not-inverted tr) (inj₂ (refl , _ , _ , _ , restriction a≢b (par-left action) , restriction _ (par-right tr) , _)) → $⟨ tr ⟩ name (co a) ∙ P [ name (co b) ]⟶ _ ↝⟨ cong proj₁ ∘ cancel-name ∘ ·-only ⟩ proj₁ a ≡ proj₁ b ↝⟨ a≢b ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ _ □ (inj₂ (refl , _ , _ , c , restriction a≢c (par-right tr) , restriction _ (par-left action) , _)) → $⟨ tr ⟩ name (co a) ∙ P [ name c ]⟶ _ ↝⟨ cong proj₁ ∘ cancel-name ∘ ·-only ⟩ proj₁ a ≡ proj₁ c ↝⟨ a≢c ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ _ □ rl : ∀ {Q′ μ} → ! name b ∙ ⟨ν proj₁ a ⟩ P [ μ ]⟶ Q′ → ∃ λ Q → ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) [ μ ]⇒̂ Q × [ i ] Q ≈′ Q′ rl {Q′} tr = case 6-1-3-2 tr of λ where (inj₁ (_ , action , Q′∼!bνaP∣νaP)) → ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) →⟨ ⟶: replication (par-right (restriction a≢b (par-left action))) ⟩■ W.⇒̂[ name b ] ! ⟨ν proj₁ a ⟩ (name b ∙ (a ∙) ∣ name (co a) ∙ P) ∣ ⟨ν proj₁ a ⟩ (a ∙ ∣ name (co a) ∙ P) ∼′⟨ 6-5-8-2′ WL.∣-cong′ convert {a = ℓ} (6-5-8-1 a) ⟩ ! name b ∙ ⟨ν proj₁ a ⟩ P ∣ ⟨ν proj₁ a ⟩ (∅ ∣ P) ∼⟨ (_ ■) ∣-cong ⟨ν refl ⟩-cong ∣-left-identity ⟩ ∼: ! name b ∙ ⟨ν proj₁ a ⟩ P ∣ ⟨ν proj₁ a ⟩ P ∼⟨ symmetric Q′∼!bνaP∣νaP ⟩■ Q′ (inj₂ (refl , _ , _ , _ , action , tr , _)) → ⊥-elim (names-are-not-inverted tr)
{ "alphanum_fraction": 0.3728834281, "avg_line_length": 41.3106060606, "ext": "agda", "hexsha": "510fe5b1a7651bf289a4b5780478e027222a15ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Weak/CCS/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Weak/CCS/Examples.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Weak/CCS/Examples.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7650, "size": 16359 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.elims.CofPushoutSection module cohomology.MayerVietoris {i} where {- Mayer-Vietoris Sequence: Given a span X ←f– Z –g→ Y, the cofiber space of the natural map [reglue : X ∨ Y → X ⊔_Z Y] (defined below) is equivalent to the suspension of Z. -} {- Relevant functions -} module MayerVietorisFunctions (ps : ⊙Span {i} {i} {i}) where open ⊙Span ps module Reglue = ⊙WedgeRec (⊙left ps) (⊙right ps) reglue : X ∨ Y → de⊙ (⊙Pushout ps) reglue = Reglue.f ⊙reglue : X ⊙∨ Y ⊙→ ⊙Pushout ps ⊙reglue = Reglue.⊙f module MVDiff = SuspRec {C = Susp (X ∨ Y)} north north (λ z → merid (winl (fst f z)) ∙ ! (merid (winr (fst g z)))) mv-diff : Susp (de⊙ Z) → Susp (X ∨ Y) mv-diff = MVDiff.f ⊙mv-diff : ⊙Susp Z ⊙→ ⊙Susp (X ⊙∨ Y) ⊙mv-diff = (mv-diff , idp) {- We use path induction (via [⊙pushout-J]) to assume that the basepoint preservation paths of the span maps are [idp]. The module [MayerVietorisBase] contains the proof of the theorem for this case. -} module MayerVietorisBase {A B : Type i} (Z : Ptd i) (f : de⊙ Z → A) (g : de⊙ Z → B) where X = ⊙[ A , f (pt Z) ] Y = ⊙[ B , g (pt Z) ] ps = ⊙span X Y Z (f , idp) (g , idp) F : Z ⊙→ X F = (f , idp) G : Z ⊙→ Y G = (g , idp) open MayerVietorisFunctions ps {- Definition of the maps into : Cofiber reglue → ΣZ out : ΣZ → Cofiber reglue -} private into-glue-square : Square idp idp (ap (extract-glue ∘ reglue) wglue) (merid (pt Z)) into-glue-square = connection ⊡v∙ ! (ap-∘ extract-glue reglue wglue ∙ ap (ap extract-glue) (Reglue.glue-β ∙ !-! (glue (pt Z))) ∙ ExtractGlue.glue-β (pt Z)) module IntoGlue = WedgeElim {P = λ xy → north == extract-glue (reglue xy)} (λ _ → idp) (λ _ → merid (pt Z)) (↓-cst=app-from-square into-glue-square) into-glue = IntoGlue.f module Into = CofiberRec {f = reglue} north extract-glue into-glue private out-glue-and-square : (z : de⊙ Z) → Σ (cfbase' reglue == cfbase' reglue) (λ p → Square (cfglue (winl (f z))) p (ap cfcod (glue z)) (cfglue (winr (g z)))) out-glue-and-square z = fill-square-top _ _ _ out-glue = fst ∘ out-glue-and-square out-square = snd ∘ out-glue-and-square module Out = SuspRec {C = Cofiber reglue} cfbase cfbase out-glue into = Into.f out = Out.f abstract {- [out] is a right inverse for [into] -} private into-out-sq : (z : de⊙ Z) → Square idp (ap into (ap out (merid z))) (merid z) (merid (pt Z)) into-out-sq z = (ap (ap into) (Out.merid-β z) ∙v⊡ (! (Into.glue-β (winl (f z)))) ∙h⊡ ap-square into (out-square z) ⊡h∙ (Into.glue-β (winr (g z)))) ⊡v∙ (∘-ap into cfcod (glue z) ∙ ExtractGlue.glue-β z) into-out : ∀ σ → into (out σ) == σ into-out = Susp-elim idp (merid (pt Z)) (λ z → ↓-∘=idf-from-square into out (into-out-sq z)) {- [out] is a left inverse for [into] -} {- [out] is left inverse on codomain part of cofiber space, - i.e. [out (into (cfcod γ)) == cfcod γ] -} private out-into-cod-square : (z : de⊙ Z) → Square (cfglue' reglue (winl (f z))) (ap (out ∘ extract-glue {s = ⊙Span-to-Span ps}) (glue z)) (ap cfcod (glue z)) (cfglue (winr (g z))) out-into-cod-square z = (ap-∘ out extract-glue (glue z) ∙ ap (ap out) (ExtractGlue.glue-β z) ∙ Out.merid-β z) ∙v⊡ out-square z module OutIntoCod = PushoutElim {d = ⊙Span-to-Span ps} {P = λ γ → out (into (cfcod γ)) == cfcod γ} (λ x → cfglue (winl x)) (λ y → cfglue (winr y)) (λ z → ↓-='-from-square (out-into-cod-square z)) out-into-cod = OutIntoCod.f out-into : ∀ κ → out (into κ) == κ out-into = CofPushoutSection.elim (λ _ → unit) (λ _ → idp) idp out-into-cod (↓-='-from-square ∘ λ x → (ap-∘ out into (cfglue (winl x)) ∙ ap (ap out) (Into.glue-β (winl x))) ∙v⊡ connection ⊡v∙ ! (ap-idf (glue (winl x)))) (↓-='-from-square ∘ λ y → (ap-∘ out into (cfglue (winr y)) ∙ ap (ap out) (Into.glue-β (winr y)) ∙ Out.merid-β (pt Z) ∙ square-top-unique (out-square (pt Z)) (! (ap-cst cfbase wglue) ∙v⊡ natural-square cfglue wglue ⊡v∙ (ap-∘ cfcod reglue wglue ∙ ap (ap cfcod) (Reglue.glue-β ∙ !-! (glue (pt Z)))))) ∙v⊡ connection ⊡v∙ ! (ap-idf (glue (winr y)))) {- equivalence and path -} eq : Cofiber reglue ≃ Susp (de⊙ Z) eq = equiv into out into-out out-into ⊙eq : ⊙Cofiber ⊙reglue ⊙≃ ⊙Susp Z ⊙eq = ≃-to-⊙≃ eq idp {- Transporting [cfcod reglue] over the equivalence -} cfcod-comm-sqr : CommSquare (cfcod' reglue) extract-glue (idf _) into cfcod-comm-sqr = comm-sqr λ _ → idp {- Transporting [extract-glue] over the equivalence. -} ext-comm-sqr : CommSquare extract-glue mv-diff into (idf _) ext-comm-sqr = comm-sqr $ ! ∘ fn-lemma where fn-lemma : ∀ κ → mv-diff (into κ) == extract-glue κ fn-lemma = CofPushoutSection.elim (λ _ → unit) (λ _ → idp) idp (Pushout-elim (λ x → merid (winl x)) (λ y → merid (winr y)) (↓-='-from-square ∘ λ z → (ap-∘ mv-diff extract-glue (glue z) ∙ ap (ap mv-diff) (ExtractGlue.glue-β z) ∙ MVDiff.merid-β z) ∙v⊡ (lt-square (merid (winl (f z))) ⊡h rt-square (merid (winr (g z)))) ⊡v∙ ! (ap-cst south (glue z)))) (↓-='-from-square ∘ λ x → (ap-∘ mv-diff into (cfglue (winl x)) ∙ ap (ap mv-diff) (Into.glue-β (winl x))) ∙v⊡ connection ⊡v∙ ! (ExtractGlue.glue-β (winl x))) (↓-='-from-square ∘ λ y → (ap-∘ mv-diff into (cfglue (winr y)) ∙ ap (ap mv-diff) (Into.glue-β (winr y)) ∙ MVDiff.merid-β (pt Z) ∙ ap (λ w → merid w ∙ ! (merid (winr (g (pt Z))))) wglue ∙ !-inv-r (merid (winr (g (pt Z))))) ∙v⊡ connection ⊡v∙ ! (ExtractGlue.glue-β (winr y))) {- Main results -} module MayerVietoris (ps : ⊙Span {i} {i} {i}) where private record Results (ps : ⊙Span {i} {i} {i}) : Type (lsucc i) where open ⊙Span ps open MayerVietorisFunctions ps public field ⊙eq : ⊙Cofiber ⊙reglue ⊙≃ ⊙Susp Z cfcod-comm-sqr : CommSquare (cfcod' reglue) extract-glue (idf _) (fst (⊙–> ⊙eq)) ext-comm-sqr : CommSquare extract-glue mv-diff (fst (⊙–> ⊙eq)) (idf _) results : Results ps results = ⊙pushout-J Results base-results ps where base-results : ∀ {A} {B} Z (f : de⊙ Z → A) (g : de⊙ Z → B) → Results (⊙span _ _ Z (f , idp) (g , idp)) base-results Z f g = record { ⊙eq = ⊙eq; cfcod-comm-sqr = cfcod-comm-sqr; ext-comm-sqr = ext-comm-sqr} where open MayerVietorisBase Z f g open Results results public
{ "alphanum_fraction": 0.5338971106, "avg_line_length": 30.5818965517, "ext": "agda", "hexsha": "2cfe9db03407f10c3e0ee02911e19ef063a84a0e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/MayerVietoris.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/MayerVietoris.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/MayerVietoris.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2748, "size": 7095 }
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Lists.Lists open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Numbers.Naturals.Semiring open import Numbers.BinaryNaturals.Definition open import Orders.Partial.Definition open import Orders.Total.Definition open import Semirings.Definition module Numbers.BinaryNaturals.Order where data Compare : Set where Equal : Compare FirstLess : Compare FirstGreater : Compare private badCompare : Equal ≡ FirstLess → False badCompare () badCompare' : Equal ≡ FirstGreater → False badCompare' () badCompare'' : FirstLess ≡ FirstGreater → False badCompare'' () _<BInherited_ : BinNat → BinNat → Compare a <BInherited b with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) (a <BInherited b) | inl (inl x) = FirstLess (a <BInherited b) | inl (inr x) = FirstGreater (a <BInherited b) | inr x = Equal private go<Bcomp : Compare → BinNat → BinNat → Compare go<Bcomp Equal [] [] = Equal go<Bcomp Equal [] (zero :: b) = go<Bcomp Equal [] b go<Bcomp Equal [] (one :: b) = FirstLess go<Bcomp Equal (zero :: a) [] = go<Bcomp Equal a [] go<Bcomp Equal (zero :: a) (zero :: b) = go<Bcomp Equal a b go<Bcomp Equal (zero :: a) (one :: b) = go<Bcomp FirstLess a b go<Bcomp Equal (one :: a) [] = FirstGreater go<Bcomp Equal (one :: a) (zero :: b) = go<Bcomp FirstGreater a b go<Bcomp Equal (one :: a) (one :: b) = go<Bcomp Equal a b go<Bcomp FirstGreater [] [] = FirstGreater go<Bcomp FirstGreater [] (zero :: b) = go<Bcomp FirstGreater [] b go<Bcomp FirstGreater [] (one :: b) = FirstLess go<Bcomp FirstGreater (zero :: a) [] = FirstGreater go<Bcomp FirstGreater (zero :: a) (zero :: b) = go<Bcomp FirstGreater a b go<Bcomp FirstGreater (zero :: a) (one :: b) = go<Bcomp FirstLess a b go<Bcomp FirstGreater (one :: a) [] = FirstGreater go<Bcomp FirstGreater (one :: a) (zero :: b) = go<Bcomp FirstGreater a b go<Bcomp FirstGreater (one :: a) (one :: b) = go<Bcomp FirstGreater a b go<Bcomp FirstLess [] b = FirstLess go<Bcomp FirstLess (zero :: a) [] = go<Bcomp FirstLess a [] go<Bcomp FirstLess (one :: a) [] = FirstGreater go<Bcomp FirstLess (zero :: a) (zero :: b) = go<Bcomp FirstLess a b go<Bcomp FirstLess (zero :: a) (one :: b) = go<Bcomp FirstLess a b go<Bcomp FirstLess (one :: a) (zero :: b) = go<Bcomp FirstGreater a b go<Bcomp FirstLess (one :: a) (one :: b) = go<Bcomp FirstLess a b _<Bcomp_ : BinNat → BinNat → Compare a <Bcomp b = go<Bcomp Equal a b private lemma1 : {s : Compare} → (n : BinNat) → go<Bcomp s n n ≡ s lemma1 {Equal} [] = refl lemma1 {Equal} (zero :: n) = lemma1 n lemma1 {Equal} (one :: n) = lemma1 n lemma1 {FirstLess} [] = refl lemma1 {FirstLess} (zero :: n) = lemma1 n lemma1 {FirstLess} (one :: n) = lemma1 n lemma1 {FirstGreater} [] = refl lemma1 {FirstGreater} (zero :: n) = lemma1 n lemma1 {FirstGreater} (one :: n) = lemma1 n lemma : {s : Compare} → (n : BinNat) → go<Bcomp s (incr n) n ≡ FirstGreater lemma {Equal} [] = refl lemma {Equal} (zero :: n) = lemma1 n lemma {Equal} (one :: n) = lemma {FirstLess} n lemma {FirstLess} [] = refl lemma {FirstLess} (zero :: n) = lemma1 n lemma {FirstLess} (one :: n) = lemma {FirstLess} n lemma {FirstGreater} [] = refl lemma {FirstGreater} (zero :: n) = lemma1 {FirstGreater} n lemma {FirstGreater} (one :: n) = lemma {FirstLess} n succLess : (n : ℕ) → (NToBinNat (succ n)) <Bcomp (NToBinNat n) ≡ FirstGreater succLess zero = refl succLess (succ n) with NToBinNat n succLess (succ n) | [] = refl succLess (succ n) | zero :: bl = lemma {FirstLess} bl succLess (succ n) | one :: bl = lemma1 {FirstGreater} (incr bl) compareRefl : (n : BinNat) → n <Bcomp n ≡ Equal compareRefl [] = refl compareRefl (zero :: n) = compareRefl n compareRefl (one :: n) = compareRefl n zeroLess : (n : BinNat) → ((canonical n ≡ []) → False) → [] <Bcomp n ≡ FirstLess zeroLess [] pr = exFalso (pr refl) zeroLess (zero :: n) pr with inspect (canonical n) zeroLess (zero :: n) pr | [] with≡ x rewrite x = exFalso (pr refl) zeroLess (zero :: n) pr | (x₁ :: y) with≡ x = zeroLess n λ i → nonEmptyNotEmpty (transitivity (equalityCommutative x) i) zeroLess (one :: n) pr = refl zeroLess' : (n : BinNat) → ((canonical n ≡ []) → False) → n <Bcomp [] ≡ FirstGreater zeroLess' [] pr = exFalso (pr refl) zeroLess' (zero :: n) pr with inspect (canonical n) zeroLess' (zero :: n) pr | [] with≡ x rewrite x = exFalso (pr refl) zeroLess' (zero :: n) pr | (x₁ :: y) with≡ x = zeroLess' n (λ i → nonEmptyNotEmpty (transitivity (equalityCommutative x) i)) zeroLess' (one :: n) pr = refl abstract canonicalFirst : (n m : BinNat) (state : Compare) → go<Bcomp state n m ≡ go<Bcomp state (canonical n) m canonicalFirst [] m Equal = refl canonicalFirst (zero :: n) m Equal with inspect (canonical n) canonicalFirst (zero :: n) [] Equal | [] with≡ x rewrite x = transitivity (canonicalFirst n [] Equal) (applyEquality (λ i → go<Bcomp Equal i []) {canonical n} x) canonicalFirst (zero :: n) (zero :: ms) Equal | [] with≡ x rewrite x | canonicalFirst n ms Equal | x = refl canonicalFirst (zero :: n) (one :: ms) Equal | [] with≡ x rewrite x | canonicalFirst n ms FirstLess | x = refl canonicalFirst (zero :: n) [] Equal | (x₁ :: y) with≡ x rewrite x | canonicalFirst n [] Equal | x = refl canonicalFirst (zero :: n) (zero :: ms) Equal | (x₁ :: y) with≡ x rewrite x | canonicalFirst n ms Equal | x = refl canonicalFirst (zero :: n) (one :: ms) Equal | (x₁ :: y) with≡ x rewrite x | canonicalFirst n ms FirstLess | x = refl canonicalFirst (one :: n) [] Equal = refl canonicalFirst (one :: n) (zero :: m) Equal = canonicalFirst n m FirstGreater canonicalFirst (one :: n) (one :: m) Equal = canonicalFirst n m Equal canonicalFirst [] m FirstLess = refl canonicalFirst (zero :: n) [] FirstLess with inspect (canonical n) canonicalFirst (zero :: n) [] FirstLess | [] with≡ x rewrite x | canonicalFirst n [] FirstLess | x = refl canonicalFirst (zero :: n) [] FirstLess | (x₁ :: y) with≡ x rewrite x | canonicalFirst n [] FirstLess | x = refl canonicalFirst (zero :: n) (zero :: m) FirstLess with inspect (canonical n) canonicalFirst (zero :: n) (zero :: m) FirstLess | [] with≡ x rewrite x | canonicalFirst n m FirstLess | x = refl canonicalFirst (zero :: n) (zero :: m) FirstLess | (x₁ :: y) with≡ x rewrite x | canonicalFirst n m FirstLess | x = refl canonicalFirst (zero :: n) (one :: m) FirstLess with inspect (canonical n) canonicalFirst (zero :: n) (one :: m) FirstLess | [] with≡ x rewrite x | canonicalFirst n m FirstLess | x = refl canonicalFirst (zero :: n) (one :: m) FirstLess | (x₁ :: y) with≡ x rewrite x | canonicalFirst n m FirstLess | x = refl canonicalFirst (one :: n) [] FirstLess = refl canonicalFirst (one :: n) (zero :: m) FirstLess = canonicalFirst n m FirstGreater canonicalFirst (one :: n) (one :: m) FirstLess = canonicalFirst n m FirstLess canonicalFirst [] m FirstGreater = refl canonicalFirst (zero :: n) m FirstGreater with inspect (canonical n) canonicalFirst (zero :: n) [] FirstGreater | [] with≡ x rewrite x = refl canonicalFirst (zero :: n) (zero :: ms) FirstGreater | [] with≡ x rewrite x | canonicalFirst n ms FirstGreater | x = refl canonicalFirst (zero :: n) (one :: ms) FirstGreater | [] with≡ x rewrite x | canonicalFirst n ms FirstLess | x = refl canonicalFirst (zero :: n) [] FirstGreater | (x₁ :: y) with≡ x rewrite x = refl canonicalFirst (zero :: n) (zero :: ms) FirstGreater | (x₁ :: y) with≡ x rewrite x | canonicalFirst n ms FirstGreater | x = refl canonicalFirst (zero :: n) (one :: ms) FirstGreater | (x₁ :: y) with≡ x rewrite x | canonicalFirst n ms FirstLess | x = refl canonicalFirst (one :: n) [] FirstGreater = refl canonicalFirst (one :: n) (zero :: m) FirstGreater = canonicalFirst n m FirstGreater canonicalFirst (one :: n) (one :: m) FirstGreater = canonicalFirst n m FirstGreater private greater0Lemma : (n : BinNat) → go<Bcomp FirstGreater n [] ≡ FirstGreater greater0Lemma [] = refl greater0Lemma (zero :: n) = refl greater0Lemma (one :: n) = refl canonicalSecond : (n m : BinNat) (state : Compare) → go<Bcomp state n m ≡ go<Bcomp state n (canonical m) canonicalSecond n [] Equal = refl canonicalSecond [] (zero :: m) Equal with inspect (canonical m) canonicalSecond [] (zero :: m) Equal | [] with≡ x rewrite x | canonicalSecond [] m Equal | x = refl canonicalSecond [] (zero :: m) Equal | (x₁ :: y) with≡ x rewrite x | canonicalSecond [] m Equal | x = refl canonicalSecond (zero :: n) (zero :: m) Equal with inspect (canonical m) canonicalSecond (zero :: n) (zero :: m) Equal | [] with≡ x rewrite x | canonicalSecond n m Equal | x = refl canonicalSecond (zero :: n) (zero :: m) Equal | (x₁ :: y) with≡ x rewrite x | canonicalSecond n m Equal | x = refl canonicalSecond (one :: n) (zero :: m) Equal with inspect (canonical m) canonicalSecond (one :: n) (zero :: m) Equal | [] with≡ x rewrite x | canonicalSecond n m FirstGreater | x = greater0Lemma n canonicalSecond (one :: n) (zero :: m) Equal | (x₁ :: y) with≡ x rewrite x | canonicalSecond n m FirstGreater | x = refl canonicalSecond [] (one :: m) Equal = refl canonicalSecond (zero :: n) (one :: m) Equal = canonicalSecond n m FirstLess canonicalSecond (one :: n) (one :: m) Equal = canonicalSecond n m Equal canonicalSecond n [] FirstLess = refl canonicalSecond [] (zero :: m) FirstLess = refl canonicalSecond (x :: n) (zero :: m) FirstLess with inspect (canonical m) canonicalSecond (zero :: n) (zero :: m) FirstLess | [] with≡ x rewrite x | canonicalSecond n m FirstLess | x = refl canonicalSecond (one :: n) (zero :: m) FirstLess | [] with≡ x rewrite x | canonicalSecond n m FirstGreater | x = greater0Lemma n canonicalSecond (zero :: n) (zero :: m) FirstLess | (x₁ :: bl) with≡ pr rewrite pr | canonicalSecond n m FirstLess | pr = refl canonicalSecond (one :: n) (zero :: m) FirstLess | (x₁ :: bl) with≡ pr rewrite pr | canonicalSecond n m FirstGreater | pr = refl canonicalSecond [] (one :: m) FirstLess = refl canonicalSecond (zero :: n) (one :: m) FirstLess = canonicalSecond n m FirstLess canonicalSecond (one :: n) (one :: m) FirstLess = canonicalSecond n m FirstLess canonicalSecond n [] FirstGreater = refl canonicalSecond [] (zero :: m) FirstGreater with inspect (canonical m) canonicalSecond [] (zero :: m) FirstGreater | [] with≡ x rewrite x | canonicalSecond [] m FirstGreater | x = refl canonicalSecond [] (zero :: m) FirstGreater | (x₁ :: y) with≡ x rewrite x | canonicalSecond [] m FirstGreater | x = refl canonicalSecond (zero :: n) (zero :: m) FirstGreater with inspect (canonical m) canonicalSecond (zero :: n) (zero :: m) FirstGreater | [] with≡ x rewrite x | canonicalSecond n m FirstGreater | x = greater0Lemma n canonicalSecond (zero :: n) (zero :: m) FirstGreater | (x₁ :: y) with≡ x rewrite x | canonicalSecond n m FirstGreater | x = refl canonicalSecond (one :: n) (zero :: m) FirstGreater with inspect (canonical m) canonicalSecond (one :: n) (zero :: m) FirstGreater | [] with≡ x rewrite x | canonicalSecond n m FirstGreater | x = greater0Lemma n canonicalSecond (one :: n) (zero :: m) FirstGreater | (x₁ :: y) with≡ x rewrite x | canonicalSecond n m FirstGreater | x = refl canonicalSecond [] (one :: m) FirstGreater = refl canonicalSecond (zero :: n) (one :: m) FirstGreater = canonicalSecond n m FirstLess canonicalSecond (one :: n) (one :: m) FirstGreater = canonicalSecond n m FirstGreater equalContaminated : (n m : BinNat) → go<Bcomp FirstLess n m ≡ Equal → False equalContaminated' : (n m : BinNat) → go<Bcomp FirstGreater n m ≡ Equal → False equalContaminated (zero :: n) [] pr = equalContaminated n [] pr equalContaminated (zero :: n) (zero :: m) pr = equalContaminated n m pr equalContaminated (zero :: n) (one :: m) pr = equalContaminated n m pr equalContaminated (one :: n) (zero :: m) pr = equalContaminated' n m pr equalContaminated (one :: n) (one :: m) pr = equalContaminated n m pr equalContaminated' [] (zero :: m) pr = equalContaminated' [] m pr equalContaminated' (zero :: n) (zero :: m) pr = equalContaminated' n m pr equalContaminated' (zero :: n) (one :: m) pr = equalContaminated n m pr equalContaminated' (one :: n) (zero :: m) pr = equalContaminated' n m pr equalContaminated' (one :: n) (one :: m) pr = equalContaminated' n m pr comparisonEqual : (a b : BinNat) → (a <Bcomp b ≡ Equal) → canonical a ≡ canonical b comparisonEqual [] [] pr = refl comparisonEqual [] (zero :: b) pr with inspect (canonical b) comparisonEqual [] (zero :: b) pr | [] with≡ p rewrite p = refl comparisonEqual [] (zero :: b) pr | (x :: r) with≡ p rewrite zeroLess b (λ i → nonEmptyNotEmpty (transitivity (equalityCommutative p) i)) = exFalso (badCompare (equalityCommutative pr)) comparisonEqual (zero :: a) [] pr with inspect (canonical a) comparisonEqual (zero :: a) [] pr | [] with≡ x rewrite x = refl comparisonEqual (zero :: a) [] pr | (x₁ :: y) with≡ x rewrite zeroLess' a (λ i → nonEmptyNotEmpty (transitivity (equalityCommutative x) i)) = exFalso (badCompare' (equalityCommutative pr)) comparisonEqual (zero :: a) (zero :: b) pr with inspect (canonical a) comparisonEqual (zero :: a) (zero :: b) pr | [] with≡ x with inspect (canonical b) comparisonEqual (zero :: a) (zero :: b) pr | [] with≡ pr2 | [] with≡ pr3 rewrite pr2 | pr3 = refl comparisonEqual (zero :: a) (zero :: b) pr | [] with≡ pr2 | (x₂ :: y) with≡ pr3 rewrite pr2 | pr3 | comparisonEqual a b pr = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative pr3) pr2)) comparisonEqual (zero :: a) (zero :: b) pr | (c :: cs) with≡ pr2 with inspect (canonical b) comparisonEqual (zero :: a) (zero :: b) pr | (c :: cs) with≡ pr2 | [] with≡ pr3 rewrite pr2 | pr3 | comparisonEqual a b pr = exFalso (nonEmptyNotEmpty (transitivity (equalityCommutative pr2) pr3)) comparisonEqual (zero :: a) (zero :: b) pr | (c :: cs) with≡ pr2 | (x₁ :: y) with≡ pr3 rewrite pr2 | pr3 | comparisonEqual a b pr = applyEquality (zero ::_) (transitivity (equalityCommutative pr2) pr3) comparisonEqual (zero :: a) (one :: b) pr = exFalso (equalContaminated a b pr) comparisonEqual (one :: a) (zero :: b) pr = exFalso (equalContaminated' a b pr) comparisonEqual (one :: a) (one :: b) pr = applyEquality (one ::_) (comparisonEqual a b pr) equalSymmetric : (n m : BinNat) → n <Bcomp m ≡ Equal → m <Bcomp n ≡ Equal equalSymmetric [] [] n=m = refl equalSymmetric [] (zero :: m) n=m rewrite equalSymmetric [] m n=m = refl equalSymmetric (zero :: n) [] n=m rewrite equalSymmetric n [] n=m = refl equalSymmetric (zero :: n) (zero :: m) n=m = equalSymmetric n m n=m equalSymmetric (zero :: n) (one :: m) n=m = exFalso (equalContaminated n m n=m) equalSymmetric (one :: n) (zero :: m) n=m = exFalso (equalContaminated' n m n=m) equalSymmetric (one :: n) (one :: m) n=m = equalSymmetric n m n=m equalToFirstGreater : (state : Compare) → (a b : BinNat) → go<Bcomp Equal a b ≡ FirstGreater → go<Bcomp state a b ≡ FirstGreater equalToFirstGreater FirstGreater [] (zero :: b) pr = equalToFirstGreater FirstGreater [] b pr equalToFirstGreater FirstGreater (zero :: a) [] pr = refl equalToFirstGreater FirstGreater (zero :: a) (zero :: b) pr = equalToFirstGreater FirstGreater a b pr equalToFirstGreater FirstGreater (zero :: a) (one :: b) pr = pr equalToFirstGreater FirstGreater (one :: a) [] pr = refl equalToFirstGreater FirstGreater (one :: a) (zero :: b) pr = pr equalToFirstGreater FirstGreater (one :: a) (one :: b) pr = equalToFirstGreater FirstGreater a b pr equalToFirstGreater Equal a b pr = pr equalToFirstGreater FirstLess [] (zero :: b) pr = equalToFirstGreater FirstLess [] b pr equalToFirstGreater FirstLess (zero :: a) [] pr = equalToFirstGreater FirstLess a [] pr equalToFirstGreater FirstLess (zero :: a) (zero :: b) pr = equalToFirstGreater FirstLess a b pr equalToFirstGreater FirstLess (zero :: a) (one :: b) pr = pr equalToFirstGreater FirstLess (one :: a) [] pr = refl equalToFirstGreater FirstLess (one :: a) (zero :: b) pr = pr equalToFirstGreater FirstLess (one :: a) (one :: b) pr = equalToFirstGreater FirstLess a b pr equalToFirstLess : (state : Compare) → (a b : BinNat) → go<Bcomp Equal a b ≡ FirstLess → go<Bcomp state a b ≡ FirstLess equalToFirstLess FirstLess [] b pr = refl equalToFirstLess FirstLess (zero :: a) [] pr = equalToFirstLess FirstLess a [] pr equalToFirstLess FirstLess (zero :: a) (zero :: b) pr = equalToFirstLess FirstLess a b pr equalToFirstLess FirstLess (zero :: a) (one :: b) pr = pr equalToFirstLess FirstLess (one :: a) (zero :: b) pr = pr equalToFirstLess FirstLess (one :: a) (one :: b) pr = equalToFirstLess FirstLess a b pr equalToFirstLess Equal a b pr = pr equalToFirstLess FirstGreater [] (zero :: b) pr = equalToFirstLess FirstGreater [] b pr equalToFirstLess FirstGreater [] (one :: b) pr = refl equalToFirstLess FirstGreater (zero :: a) [] pr = transitivity (t a) (equalToFirstLess FirstGreater a [] pr) where t : (a : BinNat) → FirstGreater ≡ go<Bcomp FirstGreater a [] t [] = refl t (zero :: a) = refl t (one :: a) = refl equalToFirstLess FirstGreater (zero :: a) (zero :: b) pr = equalToFirstLess FirstGreater a b pr equalToFirstLess FirstGreater (zero :: a) (one :: b) pr = pr equalToFirstLess FirstGreater (one :: a) (zero :: b) pr = pr equalToFirstLess FirstGreater (one :: a) (one :: b) pr = equalToFirstLess FirstGreater a b pr zeroNotSucc : (n : ℕ) (b : BinNat) → (canonical b ≡ []) → (binNatToN b ≡ succ n) → False zeroNotSucc n b b=0 b>0 rewrite binNatToNZero' b b=0 = naughtE b>0 chopFirstBit : (m n : BinNat) {b : Bit} (s : Compare) → go<Bcomp s (b :: m) (b :: n) ≡ go<Bcomp s m n chopFirstBit m n {zero} Equal = refl chopFirstBit m n {one} Equal = refl chopFirstBit m n {zero} FirstLess = refl chopFirstBit m n {one} FirstLess = refl chopFirstBit m n {zero} FirstGreater = refl chopFirstBit m n {one} FirstGreater = refl chopDouble : (a b : BinNat) (i : Bit) → (i :: a) <BInherited (i :: b) ≡ a <BInherited b chopDouble a b i with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) chopDouble a b zero | inl (inl a<b) with TotalOrder.totality ℕTotalOrder (2 *N binNatToN a) (2 *N binNatToN b) chopDouble a b zero | inl (inl a<b) | inl (inl x) = refl chopDouble a b zero | inl (inl a<b) | inl (inr b<a) = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder b<a (lessRespectsMultiplicationLeft (binNatToN a) (binNatToN b) 2 a<b (le 1 refl)))) chopDouble a b zero | inl (inl a<b) | inr a=b rewrite productCancelsLeft 2 (binNatToN a) (binNatToN b) (le 1 refl) a=b = exFalso (TotalOrder.irreflexive ℕTotalOrder a<b) chopDouble a b one | inl (inl a<b) with TotalOrder.totality ℕTotalOrder (2 *N binNatToN a) (2 *N binNatToN b) chopDouble a b one | inl (inl a<b) | inl (inl 2a<2b) = refl chopDouble a b one | inl (inl a<b) | inl (inr 2b<2a) = exFalso (TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive (ℕTotalOrder) a<b (cancelInequalityLeft {2} 2b<2a))) chopDouble a b one | inl (inl a<b) | inr 2a=2b rewrite productCancelsLeft 2 (binNatToN a) (binNatToN b) (le 1 refl) 2a=2b = exFalso (TotalOrder.irreflexive (ℕTotalOrder) a<b) chopDouble a b zero | inl (inr b<a) with TotalOrder.totality ℕTotalOrder (2 *N binNatToN a) (2 *N binNatToN b) chopDouble a b zero | inl (inr b<a) | inl (inl 2a<2b) = exFalso (TotalOrder.irreflexive (ℕTotalOrder) (TotalOrder.<Transitive (ℕTotalOrder) b<a (cancelInequalityLeft {2} {binNatToN a} {binNatToN b} 2a<2b))) chopDouble a b zero | inl (inr b<a) | inl (inr 2b<2a) = refl chopDouble a b zero | inl (inr b<a) | inr 2a=2b rewrite productCancelsLeft 2 (binNatToN a) (binNatToN b) (le 1 refl) 2a=2b = exFalso (TotalOrder.irreflexive (ℕTotalOrder) b<a) chopDouble a b one | inl (inr b<a) with TotalOrder.totality ℕTotalOrder (2 *N binNatToN a) (2 *N binNatToN b) chopDouble a b one | inl (inr b<a) | inl (inl 2a<2b) = exFalso (TotalOrder.irreflexive (ℕTotalOrder) (TotalOrder.<Transitive (ℕTotalOrder) b<a (cancelInequalityLeft {2} 2a<2b))) chopDouble a b one | inl (inr b<a) | inl (inr x) = refl chopDouble a b one | inl (inr b<a) | inr 2a=2b rewrite productCancelsLeft 2 (binNatToN a) (binNatToN b) (le 1 refl) 2a=2b = exFalso (TotalOrder.irreflexive (ℕTotalOrder) b<a) chopDouble a b i | inr x with TotalOrder.totality ℕTotalOrder (binNatToN (i :: a)) (binNatToN (i :: b)) chopDouble a b zero | inr a=b | inl (inl a<b) rewrite a=b = exFalso (TotalOrder.irreflexive (ℕTotalOrder) a<b) chopDouble a b one | inr a=b | inl (inl a<b) rewrite a=b = exFalso (TotalOrder.irreflexive (ℕTotalOrder) a<b) chopDouble a b zero | inr a=b | inl (inr b<a) rewrite a=b = exFalso (TotalOrder.irreflexive (ℕTotalOrder) b<a) chopDouble a b one | inr a=b | inl (inr b<a) rewrite a=b = exFalso (TotalOrder.irreflexive (ℕTotalOrder) b<a) chopDouble a b _ | inr a=b | inr x = refl succNotLess : {n : ℕ} → succ n <N n → False succNotLess {succ n} (le x proof) = succNotLess {n} (le x (succInjective (transitivity (applyEquality succ (transitivity (Semiring.commutative ℕSemiring (succ x) (succ n)) (transitivity (applyEquality succ (transitivity (Semiring.commutative ℕSemiring n (succ x)) (applyEquality succ (Semiring.commutative ℕSemiring x n)))) (Semiring.commutative ℕSemiring (succ (succ n)) x)))) proof))) <BIsInherited : (a b : BinNat) → a <BInherited b ≡ a <Bcomp b <BIsInherited [] b with TotalOrder.totality ℕTotalOrder 0 (binNatToN b) <BIsInherited [] b | inl (inl x) with inspect (binNatToN b) <BIsInherited [] b | inl (inl x) | 0 with≡ pr rewrite binNatToNZero b pr | pr = exFalso (TotalOrder.irreflexive (ℕTotalOrder) x) <BIsInherited [] b | inl (inl x) | (succ bl) with≡ pr rewrite pr = equalityCommutative (zeroLess b λ p → zeroNotSucc bl b p pr) <BIsInherited [] b | inr 0=b rewrite canonicalSecond [] b Equal | binNatToNZero b (equalityCommutative 0=b) = refl <BIsInherited (a :: as) [] with TotalOrder.totality ℕTotalOrder (binNatToN (a :: as)) 0 <BIsInherited (a :: as) [] | inl (inr x) with inspect (binNatToN (a :: as)) <BIsInherited (a :: as) [] | inl (inr x) | zero with≡ pr rewrite binNatToNZero (a :: as) pr | pr = exFalso (TotalOrder.irreflexive (ℕTotalOrder) x) <BIsInherited (a :: as) [] | inl (inr x) | succ y with≡ pr rewrite pr = equalityCommutative (zeroLess' (a :: as) λ i → zeroNotSucc y (a :: as) i pr) <BIsInherited (a :: as) [] | inr x rewrite canonicalFirst (a :: as) [] Equal | binNatToNZero (a :: as) x = refl <BIsInherited (zero :: a) (zero :: b) = transitivity (chopDouble a b zero) (<BIsInherited a b) <BIsInherited (zero :: a) (one :: b) with TotalOrder.totality ℕTotalOrder (binNatToN (zero :: a)) (binNatToN (one :: b)) <BIsInherited (zero :: a) (one :: b) | inl (inl 2a<2b+1) with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) <BIsInherited (zero :: a) (one :: b) | inl (inl 2a<2b+1) | inl (inl a<b) = equalityCommutative (equalToFirstLess FirstLess a b (equalityCommutative indHyp)) where t : a <BInherited b ≡ FirstLess t with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) t | inl (inl x) = refl t | inl (inr x) = exFalso (TotalOrder.irreflexive (ℕTotalOrder) (TotalOrder.<Transitive (ℕTotalOrder) x a<b)) t | inr x rewrite x = exFalso (TotalOrder.irreflexive (ℕTotalOrder) a<b) indHyp : FirstLess ≡ go<Bcomp Equal a b indHyp = transitivity (equalityCommutative t) (<BIsInherited a b) <BIsInherited (zero :: a) (one :: b) | inl (inl 2a<2b+1) | inl (inr b<a) = exFalso (noIntegersBetweenXAndSuccX {2 *N binNatToN a} (2 *N binNatToN b) (lessRespectsMultiplicationLeft (binNatToN b) (binNatToN a) 2 b<a (le 1 refl)) 2a<2b+1) <BIsInherited (zero :: a) (one :: b) | inl (inl 2a<2b+1) | inr a=b rewrite a=b | canonicalFirst a b FirstLess | canonicalSecond (canonical a) b FirstLess | transitivity (equalityCommutative (binToBin a)) (transitivity (applyEquality NToBinNat a=b) (binToBin b)) = equalityCommutative (lemma1 (canonical b)) <BIsInherited (zero :: a) (one :: b) | inl (inr 2b+1<2a) with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) <BIsInherited (zero :: a) (one :: b) | inl (inr 2b+1<2a) | inl (inl a<b) = exFalso (TotalOrder.irreflexive (ℕTotalOrder) (TotalOrder.<Transitive (ℕTotalOrder) 2b+1<2a (TotalOrder.<Transitive (ℕTotalOrder) (lessRespectsMultiplicationLeft (binNatToN a) (binNatToN b) 2 a<b (le 1 refl)) (le zero refl)))) <BIsInherited (zero :: a) (one :: b) | inl (inr 2b+1<2a) | inl (inr b<a) = equalityCommutative (equalToFirstGreater FirstLess a b (equalityCommutative indHyp)) where t : a <BInherited b ≡ FirstGreater t with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) t | inl (inl x) = exFalso (TotalOrder.irreflexive (ℕTotalOrder) (TotalOrder.<Transitive (ℕTotalOrder) x b<a)) t | inl (inr x) = refl t | inr x rewrite x = exFalso (TotalOrder.irreflexive (ℕTotalOrder) b<a) indHyp : FirstGreater ≡ go<Bcomp Equal a b indHyp = transitivity (equalityCommutative t) (<BIsInherited a b) <BIsInherited (zero :: a) (one :: b) | inl (inr 2b+1<2a) | inr a=b rewrite a=b = exFalso (succNotLess 2b+1<2a) <BIsInherited (zero :: a) (one :: b) | inr 2a=2b+1 = exFalso (parity (binNatToN b) (binNatToN a) (equalityCommutative 2a=2b+1)) <BIsInherited (one :: a) (zero :: b) with TotalOrder.totality ℕTotalOrder (binNatToN (one :: a)) (binNatToN (zero :: b)) <BIsInherited (one :: a) (zero :: b) | inl (inl 2a+1<2b) with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) <BIsInherited (one :: a) (zero :: b) | inl (inl 2a+1<2b) | inl (inl a<b) = equalityCommutative (equalToFirstLess FirstGreater a b (equalityCommutative indHyp)) where t : a <BInherited b ≡ FirstLess t with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) t | inl (inr x) = exFalso (TotalOrder.irreflexive (ℕTotalOrder) (TotalOrder.<Transitive (ℕTotalOrder) x a<b)) t | inl (inl x) = refl t | inr x rewrite x = exFalso (TotalOrder.irreflexive (ℕTotalOrder) a<b) indHyp : FirstLess ≡ go<Bcomp Equal a b indHyp = transitivity (equalityCommutative t) (<BIsInherited a b) <BIsInherited (one :: a) (zero :: b) | inl (inl 2a+1<2b) | inl (inr b<a) = exFalso (TotalOrder.irreflexive (ℕTotalOrder) (TotalOrder.<Transitive (ℕTotalOrder) 2a+1<2b (TotalOrder.<Transitive (ℕTotalOrder) (lessRespectsMultiplicationLeft (binNatToN b) (binNatToN a) 2 b<a (le 1 refl)) (le zero refl)))) <BIsInherited (one :: a) (zero :: b) | inl (inl 2a+1<2b) | inr a=b rewrite a=b = exFalso (succNotLess 2a+1<2b) <BIsInherited (one :: a) (zero :: b) | inl (inr 2b<2a+1) with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) <BIsInherited (one :: a) (zero :: b) | inl (inr 2b<2a+1) | inl (inl a<b) = exFalso (noIntegersBetweenXAndSuccX {2 *N binNatToN b} (2 *N binNatToN a) (lessRespectsMultiplicationLeft (binNatToN a) (binNatToN b) 2 a<b (le 1 refl)) 2b<2a+1) <BIsInherited (one :: a) (zero :: b) | inl (inr 2b<2a+1) | inl (inr b<a) = equalityCommutative (equalToFirstGreater FirstGreater a b (equalityCommutative indHyp)) where t : a <BInherited b ≡ FirstGreater t with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) t | inl (inl x) = exFalso (TotalOrder.irreflexive (ℕTotalOrder) (TotalOrder.<Transitive (ℕTotalOrder) x b<a)) t | inl (inr x) = refl t | inr x rewrite x = exFalso (TotalOrder.irreflexive (ℕTotalOrder) b<a) indHyp : FirstGreater ≡ go<Bcomp Equal a b indHyp = transitivity (equalityCommutative t) (<BIsInherited a b) <BIsInherited (one :: a) (zero :: b) | inl (inr 2b<2a+1) | inr a=b rewrite a=b | canonicalFirst a b FirstGreater | canonicalSecond (canonical a) b FirstGreater | transitivity (equalityCommutative (binToBin a)) (transitivity (applyEquality NToBinNat a=b) (binToBin b)) = equalityCommutative (lemma1 (canonical b)) <BIsInherited (one :: a) (zero :: b) | inr x = exFalso (parity (binNatToN a) (binNatToN b) x) <BIsInherited (one :: a) (one :: b) = transitivity (chopDouble a b one) (<BIsInherited a b) _<B_ : BinNat → BinNat → Set a <B b = (a <Bcomp b) ≡ FirstLess translate : (a b : BinNat) → (a <B b) → (binNatToN a) <N (binNatToN b) translate a b a<b with <BIsInherited a b ... | r with TotalOrder.totality ℕTotalOrder (binNatToN a) (binNatToN b) ... | inl (inl x) = x ... | inl (inr x) = exFalso (badCompare'' (transitivity (equalityCommutative a<b) (equalityCommutative r))) ... | inr x = exFalso (badCompare (transitivity r a<b)) private totality : (a b : BinNat) → ((a <B b) || (b <B a)) || (canonical a ≡ canonical b) totality [] [] = inr refl totality [] (zero :: b) with totality [] b ... | inl (inl x) = inl (inl x) ... | inl (inr x) = inl (inr x) ... | inr x with canonical b ... | [] = inr refl totality [] (one :: b) = inl (inl refl) totality (zero :: a) [] with totality a [] ... | inl (inl x) = inl (inl x) ... | inl (inr x) = inl (inr x) ... | inr x with canonical a ... | [] = inr refl totality (zero :: a) (zero :: b) with totality a b ... | inl (inl x) = inl (inl x) ... | inl (inr x) = inl (inr x) ... | inr x rewrite x = inr refl totality (zero :: a) (one :: b) with totality a b ... | inl (inl x) = inl (inl (equalToFirstLess FirstLess a b x)) ... | inr x rewrite canonicalSecond a b FirstLess | canonicalFirst a (canonical b) FirstLess | x = inl (inl (lemma1 (canonical b))) ... | inl (inr x) with equalToFirstLess FirstGreater b a x ... | r = inl (inr r) totality (one :: a) [] = inl (inr refl) totality (one :: a) (zero :: b) with totality a b ... | inr x rewrite canonicalSecond b a FirstLess | canonicalFirst b (canonical a) FirstLess | x = inl (inr (lemma1 (canonical b))) ... | inl (inr x) = inl (inr (equalToFirstLess FirstLess b a x)) ... | inl (inl x) with equalToFirstLess FirstGreater a b x ... | r = inl (inl r) totality (one :: a) (one :: b) with totality a b ... | inl (inl x) = inl (inl x) ... | inl (inr x) = inl (inr x) ... | inr x rewrite x = inr refl translate' : (a b : ℕ) → (a <N b) → (NToBinNat a) <B (NToBinNat b) translate' a b a<b with totality (NToBinNat a) (NToBinNat b) ... | inl (inl x) = x ... | inl (inr x) with translate (NToBinNat b) (NToBinNat a) x ... | m = exFalso (lessIrreflexive (lessTransitive a<b (identityOfIndiscernablesLeft _<N_ (identityOfIndiscernablesRight _<N_ m (nToN a)) (nToN b)))) translate' a b a<b | inr x rewrite NToBinNatInj a b x = exFalso (lessIrreflexive a<b) private <BTransitive : (a b c : BinNat) → (a <B b) → (b <B c) → a <B c <BTransitive a b c a<b b<c with translate' (binNatToN a) (binNatToN c) (PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) (translate a b a<b) (translate b c b<c)) ... | r rewrite binToBin a | binToBin c = transitivity (canonicalFirst a c Equal) (transitivity (canonicalSecond (canonical a) c Equal) r) -- This order fails to be total because [] is not literally equal to 0::[] . BinNatOrder : PartialOrder BinNat PartialOrder._<_ (BinNatOrder) = _<B_ PartialOrder.irreflexive (BinNatOrder) {x} bad = badCompare (transitivity (equalityCommutative (compareRefl x)) bad) PartialOrder.<Transitive (BinNatOrder) {a} {b} {c} a<b b<c = <BTransitive a b c a<b b<c
{ "alphanum_fraction": 0.6703566643, "avg_line_length": 70.4404494382, "ext": "agda", "hexsha": "517a221f53079971f7ef26f560b63436db79a116", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/BinaryNaturals/Order.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/BinaryNaturals/Order.agda", "max_line_length": 388, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/BinaryNaturals/Order.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 10731, "size": 31346 }
{-# OPTIONS --without-K --safe #-} module Categories.Adjoint.Instance.Discrete where -- The Discrete/Forgetful/Codiscrete adjoint triple between Sets and -- StrictCats. -- -- We need 'strict' functor equality to prove functionality of the -- forgetful functor (we cannot extract a propositional equality proof -- on objects from a natural isomorphism). open import Level using (Lift; lift) open import Data.Unit using (⊤; tt) import Function as Fun open import Relation.Binary.PropositionalEquality open import Categories.Adjoint open import Categories.Category using (Category) open import Categories.Category.Instance.StrictCats open import Categories.Category.Instance.Sets open import Categories.Functor renaming (id to idF) open import Categories.Functor.Equivalence import Categories.Category.Discrete as D open import Categories.Morphism.HeterogeneousIdentity open import Categories.Morphism.HeterogeneousIdentity.Properties open import Categories.NaturalTransformation as NT using (NaturalTransformation; ntHelper) -- The forgetful functor from StrictCats to Sets. Forgetful : ∀ {o ℓ e} → Functor (Cats o ℓ e) (Sets o) Forgetful {o} {ℓ} {e} = record { F₀ = Obj ; F₁ = F₀ ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ F≡G {X} → eq₀ F≡G X } where open Category open Functor open _≡F_ -- The discrete functor (strict version) Discrete : ∀ {o} → Functor (Sets o) (Cats o o o) Discrete {o} = record { F₀ = D.Discrete ; F₁ = λ f → record { F₀ = f ; F₁ = cong f ; identity = refl ; homomorphism = λ {_ _ _ p q} → cong-trans f p q ; F-resp-≈ = cong (cong f) } ; identity = record { eq₀ = λ _ → refl ; eq₁ = λ p → let open ≡-Reasoning in begin trans (cong Fun.id p) refl ≡⟨ trans-reflʳ _ ⟩ cong Fun.id p ≡⟨ cong-id p ⟩ p ∎ } ; homomorphism = λ {_ _ _ f g} → record { eq₀ = λ _ → refl ; eq₁ = λ p → let open ≡-Reasoning in begin trans (cong (g Fun.∘ f) p) refl ≡⟨ trans-reflʳ _ ⟩ cong (g Fun.∘ f) p ≡⟨ cong-∘ p ⟩ cong g (cong f p) ∎ } ; F-resp-≈ = λ {_ _ f g} f≗g → record { eq₀ = λ x → f≗g {x} ; eq₁ = λ {x} {y} p → naturality (λ x → subst (f x ≡_) (f≗g {x}) refl) } } where -- A helper lemma. -- FIXME: Should probably go into Relation.Binary.PropositionalEquality cong-trans : ∀ {A B : Set o} (f : A → B) {x y z} (p : x ≡ y) (q : y ≡ z) → cong f (trans p q) ≡ trans (cong f p) (cong f q) cong-trans f refl refl = refl -- The codiscrete functor (strict version) Codiscrete : ∀ {o} ℓ e → Functor (Sets o) (Cats o ℓ e) Codiscrete {o} ℓ e = record { F₀ = λ A → record { Obj = A ; _⇒_ = λ _ _ → Lift ℓ ⊤ ; _≈_ = λ _ _ → Lift e ⊤ ; id = lift tt ; _∘_ = λ _ _ → lift tt ; assoc = lift tt ; identityˡ = lift tt ; identityʳ = lift tt ; equiv = record { refl = lift tt ; sym = λ _ → lift tt ; trans = λ _ _ → lift tt } ; ∘-resp-≈ = λ _ _ → lift tt } ; F₁ = λ f → record { F₀ = f ; F₁ = λ _ → lift tt ; identity = lift tt ; homomorphism = lift tt ; F-resp-≈ = λ _ → lift tt } ; identity = Equiv.refl ; homomorphism = Equiv.refl ; F-resp-≈ = λ {_ _ f g} f≗g → record { eq₀ = λ x → f≗g {x} ; eq₁ = λ _ → lift tt } } where open Category (Cats o ℓ e) -- Discrete is left-adjoint to the forgetful functor from StrictCats to Sets DiscreteLeftAdj : ∀ {o} → Discrete ⊣ Forgetful {o} {o} {o} DiscreteLeftAdj {o} = record { unit = unit ; counit = counit ; zig = zig ; zag = refl } where module U = Functor Forgetful module Δ = Functor Discrete unit : NaturalTransformation idF (Forgetful ∘F Discrete) unit = NT.id counitFun : ∀ C → Functor (Δ.F₀ (U.F₀ C)) C counitFun C = let open Category C in record { F₀ = Fun.id ; F₁ = hid C ; identity = Equiv.refl ; homomorphism = λ {_ _ _ p q} → Equiv.sym (hid-trans C q p) ; F-resp-≈ = hid-cong C } counitComm : ∀ {C D} → (F : Functor C D) → counitFun D ∘F (Δ.F₁ (U.F₁ F)) ≡F F ∘F counitFun C counitComm {C} {D} F = let open Functor F open Category D open HomReasoning hiding (refl) in record { eq₀ = λ _ → refl ; eq₁ = λ {X Y} p → begin id ∘ hid D (cong F₀ p) ≈⟨ identityˡ ⟩ hid D (cong F₀ p) ≈˘⟨ F-hid F p ⟩ F₁ (hid C p) ≈˘⟨ identityʳ ⟩ F₁ (hid C p) ∘ id ∎ } counit : NaturalTransformation (Discrete ∘F Forgetful) idF counit = ntHelper record { η = counitFun ; commute = counitComm } zig : {A : Set o} → counitFun (Δ.F₀ A) ∘F (Δ.F₁ Fun.id) ≡F idF zig {A} = record { eq₀ = λ _ → refl ; eq₁ = λ{ refl → refl } } -- Codiscrete is right-adjoint to the forgetful functor from StrictCats to Sets CodiscreteRightAdj : ∀ {o ℓ e} → Forgetful ⊣ Codiscrete {o} ℓ e CodiscreteRightAdj {o} {ℓ} {e} = record { unit = unit ; counit = counit ; zig = refl ; zag = zag } where module U = Functor Forgetful module ∇ = Functor (Codiscrete ℓ e) unitFun : ∀ C → Functor C (∇.F₀ (U.F₀ C)) unitFun C = let open Category C in record { F₀ = Fun.id ; F₁ = λ _ → lift tt ; identity = lift tt ; homomorphism = lift tt ; F-resp-≈ = λ _ → lift tt } unitComm : ∀ {C D} → (F : Functor C D) → unitFun D ∘F F ≡F (∇.F₁ (U.F₁ F)) ∘F unitFun C unitComm {C} {D} F = record { eq₀ = λ _ → refl ; eq₁ = λ _ → lift tt } unit : NaturalTransformation idF (Codiscrete ℓ e ∘F Forgetful) unit = ntHelper record { η = unitFun ; commute = unitComm } counit : NaturalTransformation (Forgetful ∘F Codiscrete ℓ e) idF counit = NT.id zag : {B : Set o} → ∇.F₁ Fun.id ∘F unitFun (∇.F₀ B) ≡F idF zag {B} = record { eq₀ = λ _ → refl ; eq₁ = λ _ → lift tt }
{ "alphanum_fraction": 0.5657067196, "avg_line_length": 30.21, "ext": "agda", "hexsha": "ec607964632ffdb0e4948b42551756587d53bf0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Instance/Discrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Instance/Discrete.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Instance/Discrete.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2126, "size": 6042 }
module list-simplifier where open import level open import bool open import functions open import eq open import empty open import level open import list open import list-thms open import nat open import neq open import product open import product-thms data 𝕃ʳ : Set → Set lone where _ʳ : {A : Set} → 𝕃 A → 𝕃ʳ A _++ʳ_ : {A : Set} → 𝕃ʳ A → 𝕃ʳ A → 𝕃ʳ A mapʳ : {A B : Set} → (A → B) → 𝕃ʳ A → 𝕃ʳ B _::ʳ_ : {A : Set} → A → 𝕃ʳ A → 𝕃ʳ A []ʳ : {A : Set} → 𝕃ʳ A 𝕃⟦_⟧ : {A : Set} → 𝕃ʳ A → 𝕃 A 𝕃⟦ l ʳ ⟧ = l 𝕃⟦ t1 ++ʳ t2 ⟧ = 𝕃⟦ t1 ⟧ ++ 𝕃⟦ t2 ⟧ 𝕃⟦ mapʳ f t ⟧ = map f 𝕃⟦ t ⟧ 𝕃⟦ x ::ʳ t ⟧ = x :: 𝕃⟦ t ⟧ 𝕃⟦ []ʳ ⟧ = [] is-emptyʳ : {A : Set} → 𝕃ʳ A → 𝔹 is-emptyʳ []ʳ = tt is-emptyʳ _ = ff is-emptyʳ-≡ : {A : Set}(t : 𝕃ʳ A) → is-emptyʳ t ≡ tt → t ≡ []ʳ is-emptyʳ-≡ []ʳ p = refl is-emptyʳ-≡ (_ ++ʳ _) () is-emptyʳ-≡ (mapʳ _ _) () is-emptyʳ-≡ (_ ::ʳ _) () is-emptyʳ-≡ (_ ʳ) () 𝕃ʳ-simp-step : {A : Set}(t : 𝕃ʳ A) → 𝕃ʳ A 𝕃ʳ-simp-step ((t1a ++ʳ t1b) ++ʳ t2) = t1a ++ʳ (t1b ++ʳ t2) 𝕃ʳ-simp-step ((x ::ʳ t1) ++ʳ t2) = x ::ʳ (t1 ++ʳ t2) 𝕃ʳ-simp-step ([]ʳ ++ʳ t2) = t2 𝕃ʳ-simp-step ((l ʳ) ++ʳ t2) = if is-emptyʳ t2 then l ʳ else ((l ʳ) ++ʳ t2) 𝕃ʳ-simp-step ((mapʳ f t1) ++ʳ t2) = if is-emptyʳ t2 then mapʳ f t1 else ((mapʳ f t1) ++ʳ t2) 𝕃ʳ-simp-step (mapʳ f (t1 ++ʳ t2)) = (mapʳ f t1) ++ʳ (mapʳ f t2) 𝕃ʳ-simp-step (mapʳ f (l ʳ)) = (map f l) ʳ 𝕃ʳ-simp-step (mapʳ f (mapʳ g t)) = mapʳ (f ∘ g) t 𝕃ʳ-simp-step (mapʳ f (x ::ʳ t)) = (f x) ::ʳ (mapʳ f t) 𝕃ʳ-simp-step (mapʳ f []ʳ) = []ʳ 𝕃ʳ-simp-step (l ʳ) = l ʳ 𝕃ʳ-simp-step (x ::ʳ t) = (x ::ʳ t) 𝕃ʳ-simp-step []ʳ = []ʳ 𝕃ʳ-simp-sdev : {A : Set}(t : 𝕃ʳ A) → 𝕃ʳ A 𝕃ʳ-simp-sdev (l ʳ) = (l ʳ) 𝕃ʳ-simp-sdev (t1 ++ʳ t2) = 𝕃ʳ-simp-step ((𝕃ʳ-simp-sdev t1) ++ʳ (𝕃ʳ-simp-sdev t2)) 𝕃ʳ-simp-sdev (mapʳ f t1) = 𝕃ʳ-simp-step (mapʳ f (𝕃ʳ-simp-sdev t1)) 𝕃ʳ-simp-sdev (x ::ʳ t1) = 𝕃ʳ-simp-step (x ::ʳ (𝕃ʳ-simp-sdev t1)) 𝕃ʳ-simp-sdev []ʳ = []ʳ 𝕃ʳ-simp : {A : Set}(t : 𝕃ʳ A) → ℕ → 𝕃ʳ A 𝕃ʳ-simp t 0 = t 𝕃ʳ-simp t (suc n) = 𝕃ʳ-simp-sdev (𝕃ʳ-simp t n) 𝕃ʳ-simp-step-sound : {A : Set}(t : 𝕃ʳ A) → 𝕃⟦ t ⟧ ≡ 𝕃⟦ 𝕃ʳ-simp-step t ⟧ 𝕃ʳ-simp-step-sound ((t1a ++ʳ t1b) ++ʳ t2) = ++-assoc 𝕃⟦ t1a ⟧ 𝕃⟦ t1b ⟧ 𝕃⟦ t2 ⟧ 𝕃ʳ-simp-step-sound ((x ::ʳ t1) ++ʳ t2) = refl 𝕃ʳ-simp-step-sound ([]ʳ ++ʳ t2) = refl 𝕃ʳ-simp-step-sound ((l ʳ) ++ʳ t2) with keep (is-emptyʳ t2) 𝕃ʳ-simp-step-sound ((l ʳ) ++ʳ t2) | tt , p rewrite p | is-emptyʳ-≡ t2 p | ++[] l = refl 𝕃ʳ-simp-step-sound ((l ʳ) ++ʳ t2) | ff , p rewrite p = refl 𝕃ʳ-simp-step-sound ((mapʳ f t1) ++ʳ t2) with keep (is-emptyʳ t2) 𝕃ʳ-simp-step-sound ((mapʳ f t1) ++ʳ t2) | tt , p rewrite p | is-emptyʳ-≡ t2 p | ++[] (map f 𝕃⟦ t1 ⟧) = refl 𝕃ʳ-simp-step-sound ((mapʳ f t1) ++ʳ t2) | ff , p rewrite p = refl 𝕃ʳ-simp-step-sound (l ʳ) = refl 𝕃ʳ-simp-step-sound (mapʳ f (t1 ++ʳ t2)) = map-append f 𝕃⟦ t1 ⟧ 𝕃⟦ t2 ⟧ 𝕃ʳ-simp-step-sound (mapʳ f (l ʳ)) = refl 𝕃ʳ-simp-step-sound (mapʳ f (mapʳ g t)) = map-compose f g 𝕃⟦ t ⟧ 𝕃ʳ-simp-step-sound (mapʳ f (x ::ʳ t)) = refl 𝕃ʳ-simp-step-sound (mapʳ f []ʳ) = refl 𝕃ʳ-simp-step-sound (x ::ʳ t) = refl 𝕃ʳ-simp-step-sound []ʳ = refl 𝕃ʳ-simp-sdev-sound : {A : Set}(t : 𝕃ʳ A) → 𝕃⟦ t ⟧ ≡ 𝕃⟦ 𝕃ʳ-simp-sdev t ⟧ 𝕃ʳ-simp-sdev-sound (l ʳ) = refl 𝕃ʳ-simp-sdev-sound (t1 ++ʳ t2) rewrite sym (𝕃ʳ-simp-step-sound ((𝕃ʳ-simp-sdev t1) ++ʳ (𝕃ʳ-simp-sdev t2))) | 𝕃ʳ-simp-sdev-sound t1 | 𝕃ʳ-simp-sdev-sound t2 = refl 𝕃ʳ-simp-sdev-sound (mapʳ f t1) rewrite sym (𝕃ʳ-simp-step-sound (mapʳ f (𝕃ʳ-simp-sdev t1))) | 𝕃ʳ-simp-sdev-sound t1 = refl 𝕃ʳ-simp-sdev-sound (x ::ʳ t1) rewrite 𝕃ʳ-simp-sdev-sound t1 = refl 𝕃ʳ-simp-sdev-sound []ʳ = refl 𝕃ʳ-simp-sound : {A : Set}(t : 𝕃ʳ A)(n : ℕ) → 𝕃⟦ t ⟧ ≡ 𝕃⟦ 𝕃ʳ-simp t n ⟧ 𝕃ʳ-simp-sound t 0 = refl 𝕃ʳ-simp-sound t (suc n) rewrite sym (𝕃ʳ-simp-sdev-sound (𝕃ʳ-simp t n)) = 𝕃ʳ-simp-sound t n module test1 {A B : Set}(f : A → B)(l1 l2 : 𝕃 A) where lhs = (mapʳ f (l1 ʳ)) ++ʳ (mapʳ f (l2 ʳ)) rhs = mapʳ f ((l1 ʳ) ++ʳ (l2 ʳ)) test-tp : Set test-tp = 𝕃⟦ lhs ⟧ ≡ 𝕃⟦ rhs ⟧ test : test-tp test rewrite (𝕃ʳ-simp-sdev-sound rhs) = refl module test2 {A B : Set}(f : A → B)(l1 l2 l3 : 𝕃 A) where lhs = mapʳ f (((l1 ʳ) ++ʳ (l2 ʳ)) ++ʳ (l3 ʳ)) rhs = 𝕃ʳ-simp lhs 3 test-tp : Set test-tp = 𝕃⟦ lhs ⟧ ≡ 𝕃⟦ rhs ⟧ test : test-tp test = 𝕃ʳ-simp-sound lhs 3 one-step : 𝕃ʳ B one-step = 𝕃ʳ-simp-step lhs sdev : 𝕃ʳ B sdev = 𝕃ʳ-simp-sdev lhs
{ "alphanum_fraction": 0.5645047998, "avg_line_length": 32.3560606061, "ext": "agda", "hexsha": "a93a5272a5108752fcde21adb43e7360e9b65663", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "list-simplifier.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "list-simplifier.agda", "max_line_length": 131, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "list-simplifier.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 2583, "size": 4271 }
module Sized.SelfRef where open import Data.Product open import Data.String.Base open import Size open import SizedIO.Object open import SizedIO.IOObject open import SizedIO.ConsoleObject open import SizedIO.Base open import SizedIO.Console hiding (main) open import NativeIO data AMethod : Set where print : AMethod m1 : AMethod m2 : AMethod AResult : (c : AMethod) → Set AResult _ = Unit aI : Interface Method aI = AMethod Result aI = AResult aC : (i : Size) → Set aC i = ConsoleObject i aI -- -- Self Referential: method 'm1' calls method 'm2' -- {-# NON_TERMINATING #-} aP : ∀{i} (s : String) → aC i method (aP s) print = exec1 (putStrLn s) >> return (_ , aP s) method (aP s) m1 = exec1 (putStrLn s) >> method (aP s) m2 >>= λ{ (_ , c₀) → return (_ , c₀) } method (aP s) m2 = return (_ , aP (s ++ "->m2")) program : String → IOConsole ∞ Unit program arg = let c₀ = aP ("start̄") in method c₀ m1 >>= λ{ (_ , c₁) → --- ===> m1 called, then m2 prints out text method c₁ print >>= λ{ (_ , c₂) → exec1 (putStrLn "end") }} main : NativeIO Unit main = translateIOConsole (program "")
{ "alphanum_fraction": 0.6260794473, "avg_line_length": 19.6271186441, "ext": "agda", "hexsha": "d0a1ec46683e5c0e77962e4bff6853f8d583b065", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/Sized/SelfRef.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/Sized/SelfRef.agda", "max_line_length": 79, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/Sized/SelfRef.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 398, "size": 1158 }
module Formalization.ImperativePL where open import Data.Boolean open import Data.List import Lvl open import Numeral.Natural open import String open import Type Ident : TYPE data Lit : TYPE data Stmt : TYPE data Expr : TYPE Ty : TYPE record Context : TYPE₁ Ident = String data Lit where unit : Lit bool : Bool → Lit nat : ℕ → Lit data Expr where lit : Lit → Expr ident : Ident → Expr apply : Expr → Expr → Expr func : Ident → Ty → Expr → Expr ifelse : Expr → Expr → Expr → Expr stmts : List(Stmt) → Expr Ty = Expr data Stmt where expr : Expr → Stmt decl : Ident → Ty → Stmt def : Ident → Expr → Stmt loop : Stmt → Stmt return : ℕ → Expr → Stmt record Context where inductive field typing : Ident → Ty → TYPE open import Logic.Propositional open import Relator.Equals add : Ident → Ty → Context → Context Context.typing (add name ty ctx) a b = (Context.typing ctx a b) ∨ (a ≡ name) pattern UnitTy = ident "Unit" pattern BoolTy = ident "Bool" pattern NatTy = ident "Nat" pattern FnTy A B = apply (apply (ident "→") A) B data _⊢ₛ_,_ : Context → Context → Stmt → TYPE₁ data _⊢ₑ_,_=:_ : Context → Context → Expr → Ty → TYPE₁ data _⊢ₛ_,_ where expr : ∀{Γ₁ Γ₂}{e}{T} → (Γ₁ ⊢ₑ Γ₂ , e =: T) → (Γ₁ ⊢ₛ Γ₂ , expr e) decl : ∀{Γ}{name}{T} → (Γ ⊢ₛ (add name T Γ) , decl name T) def : ∀{Γ₁ Γ₂}{name}{e}{T} → Context.typing Γ₁ name T → (Γ₁ ⊢ₑ Γ₂ , e =: T) → (Γ₁ ⊢ₛ Γ₂ , def name e) loop : ∀{Γ₁ Γ₂}{s} → (Γ₁ ⊢ₛ Γ₂ , s) → (Γ₁ ⊢ₛ Γ₁ , loop s) data _⊢ₑ_,_=:_ where unit : ∀{Γ} → (Γ ⊢ₑ Γ , (lit unit) =: UnitTy) bool : ∀{Γ}{b} → (Γ ⊢ₑ Γ , (lit(bool b)) =: BoolTy) nat : ∀{Γ}{n} → (Γ ⊢ₑ Γ , (lit(nat n)) =: NatTy) ident : ∀{Γ}{i}{ty} → Context.typing Γ i ty → (Γ ⊢ₑ Γ , (ident i) =: ty) apply : ∀{Γ₁ Γ₂ Γ₃}{f x}{A B} → (Γ₁ ⊢ₑ Γ₂ , x =: A) → (Γ₂ ⊢ₑ Γ₃ , f =: FnTy A B) → (Γ₁ ⊢ₑ Γ₃ , (apply f x) =: B) func : ∀{Γ₁ Γ₂}{A B}{var}{body} → ((add var A Γ₁) ⊢ₑ Γ₂ , body =: B) → (Γ₁ ⊢ₑ Γ₁ , (func var A body) =: FnTy A B) ifelse : ∀{Γ₁ Γ₂ Γ₃ Γ₄}{b t f}{T} → (Γ₁ ⊢ₑ Γ₂ , b =: BoolTy) → (Γ₂ ⊢ₑ Γ₃ , t =: T) → (Γ₂ ⊢ₑ Γ₄ , f =: T) → (Γ₁ ⊢ₑ Γ₂ , (ifelse b t f) =: T) -- stmts∅ : ∀{Γ}{n} → (Γ ⊢ₑ Γ , (stmts ) =: NatTy)
{ "alphanum_fraction": 0.5558558559, "avg_line_length": 29.6, "ext": "agda", "hexsha": "c4f063191b7ad3f9137b637731b446cd997bbf04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/ImperativePL.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/ImperativePL.agda", "max_line_length": 141, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/ImperativePL.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 984, "size": 2220 }
-- Tactic for proving coprimality. -- Finds Coprime hypotheses in the context. module Tactic.Nat.Coprime where import Agda.Builtin.Nat as Builtin open import Prelude open import Control.Monad.Zero open import Control.Monad.State open import Container.List open import Container.Traversable open import Numeric.Nat open import Tactic.Reflection open import Tactic.Reflection.Parse open import Tactic.Reflection.Quote open import Tactic.Nat.Coprime.Problem open import Tactic.Nat.Coprime.Decide open import Tactic.Nat.Coprime.Reflect private Proof : Problem → Env → Set Proof Q ρ with canProve Q ... | true = ⟦ Q ⟧p ρ ... | false = ⊤ erasePrf : ∀ Q {ρ} → ⟦ Q ⟧p ρ → ⟦ Q ⟧p ρ erasePrf ([] ⊨ a ⋈ b) Ξ = eraseEquality Ξ erasePrf (ψ ∷ Γ ⊨ φ) Ξ = λ H → erasePrf (Γ ⊨ φ) (Ξ H) proof : ∀ Q ρ → Proof Q ρ proof Q ρ with canProve Q | sound Q ... | true | prf = erasePrf Q (prf refl ρ) ... | false | _ = _ -- For the error message unquoteE : List Term → Exp → Term unquoteE ρ (atom x) = fromMaybe (lit (nat 0)) (index ρ x) unquoteE ρ (e ⊗ e₁) = def₂ (quote _*_) (unquoteE ρ e) (unquoteE ρ e₁) unquoteF : List Term → Formula → Term unquoteF ρ (a ⋈ b) = def₂ (quote Coprime) (unquoteE ρ a) (unquoteE ρ b) macro auto-coprime : Tactic auto-coprime ?hole = withNormalisation true $ do goal ← inferType ?hole ensureNoMetas goal cxt ← reverse <$> getContext (_ , Hyps , Q) , ρ ← runParse (parseProblem (map unArg cxt) goal) unify ?hole (def (quote proof) $ map vArg (` Q ∷ quotedEnv ρ ∷ Hyps)) <|> do case Q of λ where (Γ ⊨ φ) → typeError (strErr "Cannot prove" ∷ termErr (unquoteF ρ φ) ∷ strErr "from" ∷ punctuate (strErr "and") (map (termErr ∘ unquoteF ρ) Γ))
{ "alphanum_fraction": 0.6246590289, "avg_line_length": 31.0677966102, "ext": "agda", "hexsha": "df2673785dc63ce8d945613da1ed98346a036562", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Coprime.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Coprime.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Coprime.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 632, "size": 1833 }
{-# OPTIONS --without-K #-} module sets.int.core where open import sum open import equality open import function import sets.nat as N open N using (ℕ; suc) open import sets.int.definition open import sets.int.utils open import sets.vec open import hott.level.closure infixl 7 _*_ infixl 6 _+_ from-nat : ℕ → ℤ from-nat n = n [-] 0 zero : ℤ zero = from-nat 0 one : ℤ one = from-nat 1 private module _ where open N add : ℕ → ℕ → ℕ → ℕ → ℤ add n n' m m' = (n + m) [-] (n' + m') add-sound : (n n' d m m' e : ℕ) → add n n' m m' ≡ add (d + n) (d + n') (e + m) (e + m') add-sound n n' d m m' e = eq-ℤ (n + m) (n' + m') (d + e) · ap₂ _[-]_ (solve 4 (exp λ d e n m → d :+ e :+ (n :+ m)) (exp λ d e n m → d :+ n :+ (e :+ m)) (d ∷∷ e ∷∷ n ∷∷ m ∷∷ ⟦⟧)) (solve 4 (exp λ d e n m → d :+ e :+ (n :+ m)) (exp λ d e n m → d :+ n :+ (e :+ m)) (d ∷∷ e ∷∷ n' ∷∷ m' ∷∷ ⟦⟧)) mul : ℕ → ℕ → ℕ → ℕ → ℤ mul n n' m m' = (n * m + n' * m') [-] (n' * m + n * m') mul-sound : (n n' d m m' e : ℕ) → mul n n' m m' ≡ mul (d + n) (d + n') (e + m) (e + m') mul-sound n n' d m m' e = eq-ℤ (n * m + n' * m') (n' * m + n * m') (d * e + d * m + n * e + d * e + d * m' + n' * e) · ap₂ _[-]_ lem₁ lem₂ where distr₂ : ∀ a b c d → (a + b) * (c + d) ≡ a * c + a * d + b * c + b * d distr₂ a b c d = right-distr a b (c + d) · ap₂ _+_ (left-distr a c d) (left-distr b c d) · sym (+-associativity (a * c + a * d) (b * c) (b * d)) lem₁ : d * e + d * m + n * e + d * e + d * m' + n' * e + (n * m + n' * m') ≡ (d + n) * (e + m) + (d + n') * (e + m') lem₁ = sym $ ap₂ _+_ (distr₂ d n e m) (distr₂ d n' e m') · solve 7 (exp λ a b c d e f g → a :+ b :+ c :+ d :+ (a :+ e :+ f :+ g)) (exp λ a b c d e f g → a :+ b :+ c :+ a :+ e :+ f :+ (d :+ g)) ((d * e) ∷∷ (d * m) ∷∷ (n * e) ∷∷ (n * m) ∷∷ (d * m') ∷∷ (n' * e) ∷∷ (n' * m') ∷∷ ⟦⟧) lem₂ : d * e + d * m + n * e + d * e + d * m' + n' * e + (n' * m + n * m') ≡ (d + n') * (e + m) + (d + n) * (e + m') lem₂ = sym $ ap₂ _+_ (distr₂ d n' e m) (distr₂ d n e m') · solve 7 (exp λ a b c d e f g → a :+ b :+ c :+ d :+ (a :+ e :+ f :+ g)) (exp λ a b c d e f g → a :+ b :+ f :+ a :+ e :+ c :+ (d :+ g)) ((d * e) ∷∷ (d * m) ∷∷ (n' * e) ∷∷ (n' * m) ∷∷ (d * m') ∷∷ (n * e) ∷∷ (n * m') ∷∷ ⟦⟧) neg : ℕ → ℕ → ℤ neg n n' = n' [-] n neg-sound : (n n' d : ℕ) → neg n n' ≡ neg (d + n) (d + n') neg-sound n n' d = eq-ℤ n' n d _+_ : ℤ → ℤ → ℤ _+_ = elim₂-ℤ hℤ add add-sound negate : ℤ → ℤ negate = elim-ℤ hℤ (neg , neg-sound) inc : ℤ → ℤ inc n = one + n dec : ℤ → ℤ dec n = negate one + n _*_ : ℤ → ℤ → ℤ _*_ = elim₂-ℤ hℤ mul mul-sound
{ "alphanum_fraction": 0.3375594295, "avg_line_length": 30.931372549, "ext": "agda", "hexsha": "931bc735e31ece43c60f1e92ce4c10e73adc47a5", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/int/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/int/core.agda", "max_line_length": 87, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/int/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 1375, "size": 3155 }
-- Note that, at the time of writing, Agda does /not/ cache interfaces -- if an internal error is encountered (at least in some cases). import Issue2447.Internal-error
{ "alphanum_fraction": 0.7573964497, "avg_line_length": 33.8, "ext": "agda", "hexsha": "c8ba5eec39c9b2e56d16c04d72640de8f838c3ad", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2447e.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2447e.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2447e.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 40, "size": 169 }
module Error-in-imported-module where open import Error-in-imported-module.M
{ "alphanum_fraction": 0.8205128205, "avg_line_length": 19.5, "ext": "agda", "hexsha": "f852b5f826e3190b54fa4f201cdd7d8e34f892bf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Error-in-imported-module.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Error-in-imported-module.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Error-in-imported-module.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 17, "size": 78 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.BlockStorage.BlockStore as BlockStore import LibraBFT.Impl.Consensus.ConsensusTypes.SyncInfo as SyncInfo import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.PendingVotes as PendingVotes import LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-1 as ECP-LBFT-OBM-Diff-1 open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.OBM.Rust.Duration as Duration open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.Impl.OBM.Time open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open import Optics.All open import Util.Hash open import Util.ByteString open import Util.PKCS open import Util.Prelude ------------------------------------------------------------------------------ open import Agda.Builtin.Float module LibraBFT.Impl.Consensus.Liveness.RoundState where ------------------------------------------------------------------------------ new : RoundStateTimeInterval → Instant → RoundState new ti i = mkRoundState {-_rsTimeInterval =-} ti {-_rsHighestCommittedRound =-} {-Round-} 0 {-_rsCurrentRound =-} {-Round-} 0 {-_rsCurrentRoundDeadline =-} i {-_rsPendingVotes =-} PendingVotes∙new {-_rsVoteSent =-} nothing ------------------------------------------------------------------------------ setupTimeoutM : Instant → LBFT Duration processLocalTimeoutM : Instant → Epoch → Round → LBFT Bool processLocalTimeoutM now obmEpoch round = do currentRound ← use (lRoundState ∙ rsCurrentRound) ifD round /= currentRound then pure false else do void (setupTimeoutM now) -- setup the next timeout ECP-LBFT-OBM-Diff-1.e_RoundState_processLocalTimeoutM obmEpoch round ------------------------------------------------------------------------------ maybeAdvanceRound : Round → SyncInfo → Maybe (Round × NewRoundReason) processCertificatesM : Instant → SyncInfo → LBFT (Maybe NewRoundEvent) processCertificatesM now syncInfo = do -- logEE ("RoundState" ∷ "processCertificatesM" {-∷ lsSI syncInfo-} ∷ []) $ do rshcr <- use (lRoundState ∙ rsHighestCommittedRound) whenD (syncInfo ^∙ siHighestCommitRound >? rshcr) $ do lRoundState ∙ rsHighestCommittedRound ∙= (syncInfo ^∙ siHighestCommitRound) logInfo fakeInfo -- InfoUpdateHighestCommittedRound (syncInfo^.siHighestCommitRound) rscr ← use (lRoundState ∙ rsCurrentRound) maybeSD (maybeAdvanceRound rscr syncInfo) (pure nothing) $ λ (pcr' , reason) → do lRoundState ∙ rsCurrentRound ∙= pcr' lRoundState ∙ rsPendingVotes ∙= PendingVotes∙new lRoundState ∙ rsVoteSent ∙= nothing timeout ← setupTimeoutM now pure (just (NewRoundEvent∙new pcr' reason timeout)) abstract processCertificatesM-abs = processCertificatesM processCertificatesM-abs-≡ : processCertificatesM-abs ≡ processCertificatesM processCertificatesM-abs-≡ = refl maybeAdvanceRound currentRound syncInfo = let newRound = SyncInfo.highestRound syncInfo + 1 in if-dec newRound >? currentRound then just (newRound , (if is-nothing (syncInfo ^∙ siHighestTimeoutCert) then QCReady else TOReady)) else nothing ------------------------------------------------------------------------------ insertVoteM : Vote → ValidatorVerifier → LBFT VoteReceptionResult insertVoteM vote verifier = do currentRound ← use (lRoundState ∙ rsCurrentRound) ifD vote ^∙ vVoteData ∙ vdProposed ∙ biRound == currentRound then PendingVotes.insertVoteM vote verifier else pure (UnexpectedRound (vote ^∙ vVoteData ∙ vdProposed ∙ biRound) currentRound) ------------------------------------------------------------------------------ recordVoteM : Vote → LBFT Unit recordVoteM v = rsVoteSent-rm ∙= just v ------------------------------------------------------------------------------ setupDeadlineM : Instant → LBFT Duration roundIndexAfterCommittedRound : Round → Round → Round getRoundDuration : ExponentialTimeInterval → Round → Duration setupTimeoutM now = do timeout ← setupDeadlineM now r ← use (lRoundState ∙ rsCurrentRound) -- act (SetTimeout timeout r) pure timeout setupDeadlineM now = do ti ← use (lRoundState ∙ rsTimeInterval) cr ← use (lRoundState ∙ rsCurrentRound) hcr ← use (lRoundState ∙ rsHighestCommittedRound) let timeout = getRoundDuration ti (roundIndexAfterCommittedRound cr hcr) lRoundState ∙ rsCurrentRoundDeadline ∙= iPlus now timeout pure timeout roundIndexAfterCommittedRound currentRound highestCommittedRound = grd‖ highestCommittedRound == 0 ≔ currentRound ∸ 1 ‖ currentRound <?ℕ highestCommittedRound + 3 ≔ 0 ‖ otherwise≔ currentRound ∸ highestCommittedRound ∸ 3 postulate -- TODO-1 : _**_, ceiling (for Floats) _**_ : Float → Float → Float ceiling : Float → U64 getRoundDuration i r = let pow = min r (i ^∙ etiMaxExponent) -- TODO/NOTE: cap on max timeout -- undermines theoretical liveness properties baseMultiplier = (i ^∙ etiExponentBase) ** {-fromIntegral-} primNatToFloat pow --durationMs = ceiling (fromIntegral (i^.etiBaseMs) * baseMultiplier) durationMs = ceiling (primFloatTimes (primNatToFloat (i ^∙ etiBaseMs)) baseMultiplier) in Duration.fromMillis durationMs
{ "alphanum_fraction": 0.6514668902, "avg_line_length": 43.8602941176, "ext": "agda", "hexsha": "84370c217e3f0a7308f5afaeb74d2e135b0f658e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/RoundState.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/RoundState.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/RoundState.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1523, "size": 5965 }
module Issue2639.DR (Z : Set) where open import Agda.Builtin.Size mutual data D (i : Size) : Set where a : D i b : R i → D i record R (i : Size) : Set where coinductive field force : {j : Size< i} → D j
{ "alphanum_fraction": 0.5665236052, "avg_line_length": 15.5333333333, "ext": "agda", "hexsha": "e9e867aa281d9ef734ff6e5be8f0a28f2d473d2d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2639/DR.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2639/DR.agda", "max_line_length": 35, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2639/DR.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 85, "size": 233 }
-- This code is based on "Parallel Parsing Processes" by Koen -- Claessen. -- This module is a variant of Parallel in which Parser uses mixed -- induction/coinduction. module Parallel2 {Tok : Set} where open import Coinduction open import Data.Bool import Data.Bool.Properties as Bool open import Algebra open import Data.Product open import Data.Function import Data.List as List open List using (List; []; _∷_) open import Data.Vec using ([]; _∷_) open import Data.Fin using (#_) open import Category.Monad.State open import Relation.Binary.PropositionalEquality open ≡-Reasoning ------------------------------------------------------------------------ -- Boring lemma private lem₁ : ∀ b₁ b₂ → b₁ ∨ b₂ ∧ b₁ ≡ b₁ lem₁ b₁ b₂ = begin b₁ ∨ b₂ ∧ b₁ ≡⟨ cong (_∨_ b₁) (B.∧-comm b₂ b₁) ⟩ b₁ ∨ b₁ ∧ b₂ ≡⟨ proj₁ B.absorptive b₁ b₂ ⟩ b₁ ∎ where module B = BooleanAlgebra Bool.booleanAlgebra ------------------------------------------------------------------------ -- Parser monad P : Set → Set P = StateT (List Tok) List ------------------------------------------------------------------------ -- Basic parsers (no CPS) -- Note that the recursive argument of symbolBind is coinductive, -- while that of returnPlus is inductive. An infinite choice is not -- acceptable, but an infinite tree of potential parsers is fine. data Parser (R : Set) : Bool → Set where symbolBind : {e : Tok → Bool} → (f : (x : Tok) → ∞ (Parser R (e x))) → Parser R false fail : Parser R false returnPlus : ∀ {e} (x : R) (p : Parser R e) → Parser R true parse : ∀ {R e} → Parser R e → P R parse (symbolBind f) [] = [] parse (symbolBind f) (x ∷ xs) = parse (♭ (f x)) xs parse fail _ = [] parse (returnPlus x p) xs = (x , xs) ∷ parse p xs cast : ∀ {R e₁ e₂} → e₁ ≡ e₂ → Parser R e₁ → Parser R e₂ cast refl = id return : ∀ {R} → R → Parser R true return x = returnPlus x fail module DirectImplementations where -- The definition of _∣_ is fine, but is the definition of _>>=_ -- acceptable? infixl 1 _>>=_ infixl 0 _∣_ _∣_ : ∀ {R e₁ e₂} → Parser R e₁ → Parser R e₂ → Parser R (e₁ ∨ e₂) symbolBind f₁ ∣ symbolBind f₂ = symbolBind (λ x → ♯ (♭ (f₁ x) ∣ ♭ (f₂ x))) fail ∣ p₂ = p₂ symbolBind f₁ ∣ fail = symbolBind f₁ returnPlus x₁ p₁ ∣ fail = returnPlus x₁ p₁ returnPlus x₁ p₁ ∣ p₂ = returnPlus x₁ (p₁ ∣ p₂) symbolBind f₁ ∣ returnPlus x₂ p₂ = returnPlus x₂ (symbolBind f₁ ∣ p₂) _>>=_ : ∀ {R₁ R₂ e₁ e₂} → Parser R₁ e₁ → (R₁ → Parser R₂ e₂) → Parser R₂ (e₁ ∧ e₂) symbolBind f₁ >>= f₂ = symbolBind (λ x → ♯ (♭ (f₁ x) >>= f₂)) fail >>= f₂ = fail returnPlus {e} x₁ p₁ >>= f₂ = cast (lem₁ _ e) (f₂ x₁ ∣ p₁ >>= f₂) -- Implementing _!>>=_ seems tricky. -- _!>>=_ : ∀ {R₁ R₂} {e₂ : R₁ → Bool} → -- Parser R₁ false → ((x : R₁) → Parser R₂ (e₂ x)) → -- Parser R₂ false -- symbolBind f !>>= p₂ = symbolBind (λ x → ♯ {!♭ (f x) !>>= p₂!}) -- fail !>>= p₂ = fail module IndirectImplementations where -- Can _>>=_ be implemented by using the productivity trick? infixl 1 _>>=_ infixl 0 _∣_ data PProg : Set → Bool → Set1 where symbolBind : ∀ {R} {e : Tok → Bool} → (f : (x : Tok) → ∞₁ (PProg R (e x))) → PProg R false fail : ∀ {R} → PProg R false returnPlus : ∀ {R e} (x : R) (p : PProg R e) → PProg R true _∣_ : ∀ {R e₁ e₂} (p₁ : PProg R e₁) (p₂ : PProg R e₂) → PProg R (e₁ ∨ e₂) _>>=_ : ∀ {R₁ R₂ e₁ e₂} (p₁ : PProg R₁ e₁) (f₂ : R₁ → PProg R₂ e₂) → PProg R₂ (e₁ ∧ e₂) data PWHNF (R : Set) : Bool → Set1 where symbolBind : {e : Tok → Bool} → (f : (x : Tok) → PProg R (e x)) → PWHNF R false fail : PWHNF R false returnPlus : ∀ {e} (x : R) (p : PWHNF R e) → PWHNF R true -- _∣_ is a program, so implementing whnf seems challenging. whnf : ∀ {R e} → PProg R e → PWHNF R e whnf (symbolBind f) = symbolBind (λ x → ♭₁ (f x)) whnf fail = fail whnf (returnPlus x p) = returnPlus x (whnf p) whnf (p₁ ∣ p₂) with whnf p₁ ... | fail = whnf p₂ ... | returnPlus x₁ p₁′ = returnPlus x₁ {!(p₁′ ∣ p₂)!} -- (p₁′ ∣ p₂) ... | symbolBind f₁ with whnf p₂ ... | symbolBind f₂ = symbolBind (λ x → f₁ x ∣ f₂ x) ... | fail = symbolBind f₁ ... | returnPlus x₂ p₂′ = returnPlus x₂ {!!} -- (symbolBind f₁ ∣ p₂′) whnf (p₁ >>= f₂) with whnf p₁ ... | symbolBind f₁ = symbolBind (λ x → f₁ x >>= f₂) ... | fail = fail ... | returnPlus x₁ p₁′ = {!f₂ x₁ ∣ p₁′ >>= f₂!} mutual value : ∀ {R e} → PWHNF R e → Parser R e value (symbolBind f) = symbolBind (λ x → ♯ ⟦ f x ⟧) value fail = fail value (returnPlus x p) = returnPlus x (value p) ⟦_⟧ : ∀ {R e} → PProg R e → Parser R e ⟦ p ⟧ = value (whnf p)
{ "alphanum_fraction": 0.5218781219, "avg_line_length": 33.1456953642, "ext": "agda", "hexsha": "47ae8a776119e343f012567ee2c6ac1d8cf80650", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/Parallel2.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/Parallel2.agda", "max_line_length": 82, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/Parallel2.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 1760, "size": 5005 }
module DerivedProps where {- open import Relation.Binary.PropositionalEquality open import Data.Nat hiding (_>_) -} open import StdLibStuff open import Syntax open import STT lem3 : {n : ℕ} {Γ-t : Ctx n} (F G : Form Γ-t $o) → ⊢ ((F => (F => G)) => (F => G)) lem3 F G = inf-V (inf-V ax-4-s ax-1-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s ax-2-s)) ax-3-s) lem4 : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ ((F => (G => H)) => (G => (F => H))) lem4 F G H = inf-V (inf-V ax-4-s ax-1-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V (inf-V ax-4-s (inf-V (inf-V ax-4-s ax-3-s) ax-2-s)) ax-2-s))) (inf-V (inf-V ax-4-s ax-3-s) (inf-V ax-4-s (inf-V ax-4-s (inf-V (inf-V ax-4-s ax-3-s) ax-2-s))))) lem5 : {n : ℕ} {Γ-t : Ctx n} (F G : Form Γ-t $o) → ⊢ ((F => G) => (~ G => ~ F)) lem5 F G = inf-V (inf-V ax-4-s ax-3-s) (inf-V ax-4-s (inf-V ax-3-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s))) lem6 : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ ((F => H) => ((F & G) => H)) lem6 F G H = inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V (inf-V ax-4-s (inf-V ax-3-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s))) ax-2-s))) ax-3-s) lem6b : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ ((G => H) => ((F & G) => H)) lem6b F G H = inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V (inf-V ax-4-s (inf-V ax-3-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s))) (inf-V (inf-V ax-4-s ax-3-s) ax-2-s)))) ax-3-s) lemb3 : {n : ℕ} {Γ-t : Ctx n} (F G : Form Γ-t $o) → ⊢ (F => ((F => G) => G)) lemb3 F G = inf-V ax-1-s (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s ax-2-s) (inf-V (inf-V ax-4-s ax-2-s) (inf-V ax-3-s (inf-V ax-4-s (inf-V (inf-V ax-4-s ax-3-s) ax-2-s)))))) lem7 : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ (F => ((G => H) => ((F => G) => H))) lem7 F G H = inf-V (inf-V ax-4-s (lem4 (F => G) (G => H) H)) (inf-V (inf-V ax-4-s (inf-V ax-4-s (lemb3 G H))) (lemb3 F G)) lem8h : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ ((H => (F => G)) => ((H => F) => (H => G))) lem8h F G H = inf-V (inf-V ax-4-s ax-1-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s ax-2-s) ax-2-s)))) (inf-V (inf-V ax-4-s ax-3-s) (inf-V ax-4-s ax-4-s))) lem8 : {n : ℕ} {Γ-t : Ctx n} (X F G H : Form Γ-t $o) → ⊢ ((F => (G => H)) => ((X => F) => ((X => G) => (X => H)))) lem8 X F G H = inf-V (inf-V ax-4-s (inf-V ax-4-s (lem8h G H X))) (inf-V (inf-V ax-4-s (lem8h F (G => H) X)) (inf-V (lem4 X (F => (G => H)) (F => (G => H))) (inf-V ax-3-s (inf-V ax-2-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s))))) lem8-3 : {n : ℕ} {Γ-t : Ctx n} (X F G H I : Form Γ-t $o) → ⊢ ((F => (G => (H => I))) => ((X => F) => ((X => G) => ((X => H) => (X => I))))) lem8-3 X F G H I = inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V ax-4-s (lem8h H I X)))) (inf-V (inf-V ax-4-s (inf-V ax-4-s (lem8h G (H => I) X))) (inf-V (inf-V ax-4-s (lem8h F (G => (H => I)) X)) (inf-V (lem4 X (F => (G => (H => I))) (F => (G => (H => I)))) (inf-V ax-3-s (inf-V ax-2-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s)))))) lemb2 : {n : ℕ} {Γ-t : Ctx n} (F : Form Γ-t $o) → ⊢ (~ (~ F) => F) lemb2 F = inf-V ax-3-s (inf-V (inf-V ax-4-s (inf-V ax-3-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s))) (inf-V ax-3-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s))) lem2h2h : {n : ℕ} {Γ-t : Ctx n} (F : Form Γ-t $o) → ⊢ (F => ~ (~ F)) lem2h2h F = inf-V ax-3-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s) lem2h2hb : {n : ℕ} {Γ-t : Ctx n} (F : Form Γ-t $o) → ⊢ (F => F) lem2h2hb F = inf-V (inf-V ax-4-s ax-1-s) ax-2-s lem2h2 : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ ((F || (G || H)) => ((F || G) || H)) lem2h2 F G H = inf-V (inf-V ax-4-s (inf-V ax-4-s (lemb2 H))) (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s ax-3-s)) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V ax-4-s (lemb2 F)))) (inf-V (inf-V ax-4-s (inf-V ax-4-s ax-3-s)) (inf-V (inf-V ax-4-s (lem4 (~ F) (~ H) G)) (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s (lem2h2h F))) (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s ax-3-s)) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V ax-4-s (lem2h2h H)))) (lem2h2hb (F || (G || H))))))))))))) lem2h1 : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ ((F => (G => H)) => ((F & G) => H)) lem2h1 F G H = inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V ax-3-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s)))) (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (lem2h2 (~ F) (~ G) H)) (inf-V (inf-V ax-4-s ax-1-s) ax-2-s)))) lemb1 : {n : ℕ} {Γ-t : Ctx n} (F G : Form Γ-t $o) → ⊢ (F => (G => (F & G))) lemb1 F G = inf-V ax-1-s (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s ax-2-s) (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s ax-2-s) (inf-V ax-3-s (inf-V ax-4-s ax-2-s)))))) lem2 : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ (((F => G) & (F => H)) => (F => (G & H))) lem2 F G H = inf-V (lem2h1 (F => G) (F => H) (F => (G & H))) (inf-V (lem8 F G H (G & H)) (lemb1 G H)) lem9 : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ ((F => G) => ((G => H) => (F => H))) lem9 F G H = inf-V (inf-V ax-4-s (lem4 F (G => H) H)) (inf-V (inf-V ax-4-s (inf-V ax-4-s (lemb3 G H))) (inf-V (lem4 F (F => G) G) (lemb3 F G))) lemb4 : {n : ℕ} {Γ-t : Ctx n} (F G : Form Γ-t $o) → ⊢ (F => (~ F => G)) lemb4 F G = inf-V (inf-V ax-4-s ax-2-s) (inf-V ax-3-s (inf-V (inf-V ax-4-s ax-1-s) ax-2-s)) lem5r : {n : ℕ} {Γ-t : Ctx n} (F G : Form Γ-t $o) → ⊢ ((~ F => ~ G) => (G => F)) lem5r F G = inf-V (inf-V ax-4-s (inf-V ax-4-s (lemb2 F))) (inf-V (inf-V ax-4-s ax-3-s) (lem2h2hb (~ F => ~ G))) lemb5 : {n : ℕ} {Γ-t : Ctx n} (F G H : Form Γ-t $o) → ⊢ ((F => H) => ((G => H) => ((F || G) => H))) lemb5 F G H = inf-V (inf-V ax-4-s (inf-V ax-4-s (lem5r H (F || G)))) (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V (lem5 (G => H) (~ H => ~ G)) (lem5 G H)))) (inf-V (inf-V ax-4-s ax-3-s) (inf-V ax-3-s (inf-V (inf-V ax-4-s (inf-V (lem5 (F => H) (~ H => ~ F)) (lem5 F H))) (inf-V ax-3-s (inf-V (lem8 (~ H) (~ F) (~ G) (~ (F || G))) (inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V (lem5 (F || G) (~ (~ F) || ~ (~ G))) (inf-V (inf-V ax-4-s (inf-V ax-4-s (lem2h2h G))) (inf-V (inf-V ax-4-s ax-3-s) (inf-V (inf-V ax-4-s (inf-V ax-4-s (lem2h2h F))) (inf-V (inf-V ax-4-s ax-3-s) (lem2h2hb (F || G))))))))) (lemb1 (~ F) (~ G)))))))))) -- --------------- lem10 : {n : ℕ} {Γ-t : Ctx n} (F : Form Γ-t $o) → ⊢ ((F => $false) => ~ F) lem10 F = inf-V ax-3-s (inf-V (inf-V ax-4-s (inf-V (lem5 (F => $false) (F => ~ F)) (inf-V ax-4-s (inf-V (inf-V ax-4-s (ax-5-s ($ this {refl}) (~ F))) (lem2h2hb (![ _ ] ($ this {refl}))))))) (inf-V ax-3-s ax-1-s)) lem11 : {n : ℕ} {Γ-t : Ctx n} (F : Form Γ-t $o) → ⊢ ($false => F) lem11 F = inf-V (inf-V ax-4-s (ax-5-s ($ this {refl}) F)) (lem2h2hb (![ _ ] ($ this {refl}))) lem12 : {n : ℕ} {Γ-t : Ctx n} {t : Type n} (F : Form Γ-t t) → ⊢ (F == F) lem12 {n} {Γ-t} {t} F = inf-V (inf-III-samectx {n} {Γ-t} {t} {t > $o} (λ z → (z · F)) (^[ t ] (![ t > $o ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) F) (inf-V (inf-III-samectx {n} {Γ-t} {t} {$o} (λ z → (z)) (![ t > $o ] (($ this {refl} · weak (weak F)) => ($ this {refl} · $ (next this) {refl}))) F) (inf-VI-s (subst (λ z → ⊢ ((($ this {refl} · z) => ($ this {refl} · weak F)))) (sub-weak-p-1 F F) (inf-V (inf-V ax-4-s ax-1-s) ax-2-s)))) lem13 : {n : ℕ} {Γ-t : Ctx n} (F G : Form Γ-t $o) → ⊢ ((G == F) => (F => G)) lem13 F G = inf-V (inf-III-samectx (λ z → ((z · F) => (F => G))) (^[ $o ] (![ $o > $o ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) G) ( inf-V (inf-III-samectx (λ z → (z => (F => G))) (![ $o > $o ] (($ this {refl} · weak (weak G)) => ($ this {refl} · $ (next this) {refl}))) F) ( subst (λ z → ⊢ ((![ $o > $o ] (($ this {refl} · z) => ($ this {refl} · weak F))) => (F => G))) (sub-weak-p-1 G F) ( inf-V ax-3-s ( inf-V (inf-V ax-4-s (inf-V (lem5 (![ $o > $o ] (($ this {refl} · weak G) => ($ this {refl} · weak F))) (((^[ $o ] ~ ($ this {refl})) · sub (^[ $o ] ~ ($ this {refl})) (weak G)) => ((^[ $o ] ~ ($ this {refl})) · sub (^[ $o ] ~ ($ this {refl})) (weak F)))) (ax-5-s (($ this {refl} · weak G) => ($ this {refl} · weak F)) (^[ $o ] ~ ($ this {refl}))))) ( inf-V ax-3-s ( subst (λ z → ⊢ ((((^[ $o ] ~ ($ this {refl})) · z) => ((^[ $o ] ~ ($ this {refl})) · sub (^[ $o ] ~ ($ this {refl})) (weak F))) => (F => G))) (sub-weak-p-1' G (^[ $o ] ~ ($ this {refl}))) ( subst (λ z → ⊢ ((((^[ $o ] ~ ($ this {refl})) · G) => ((^[ $o ] ~ ($ this {refl})) · z)) => (F => G))) (sub-weak-p-1' F (^[ $o ] ~ ($ this {refl}))) ( inf-V (inf-III-samectx (λ z → ((z => ((^[ $o ] ~ ($ this {refl})) · F)) => (F => G))) (~ ($ this {refl})) G) ( inf-V (inf-III-samectx (λ z → (((~ G) => z) => (F => G))) (~ ($ this {refl})) F) ( lem5r G F )))))))))) transitivity : {n : ℕ} {Γ-t : Ctx n} {t : Type n} (F G H : Form Γ-t t) → ⊢ ((F == G) => ((G == H) => (F == H))) transitivity F G H = inf-V (inf-III-samectx (λ z → ((z · G) => ((G == H) => (F == H)))) (^[ _ ] (![ _ > $o ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) F) ( inf-V (inf-III-samectx (λ z → (z => ((G == H) => (F == H)))) (![ _ > $o ] (($ this {refl} · weak (weak F)) => ($ this {refl} · $ (next this) {refl}))) G) ( subst (λ z → ⊢ ((![ _ > $o ] (($ this {refl} · z) => ($ this {refl} · weak G))) => ((G == H) => (F == H)))) (sub-weak-p-1 F G) ( inf-V (inf-III-samectx (λ z → ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => ((z · H) => (F == H)))) (^[ _ ] (![ _ > $o ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) G) ( inf-V (inf-III-samectx (λ z → ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => (z => (F == H)))) (![ _ > $o ] (($ this {refl} · weak (weak G)) => ($ this {refl} · $ (next this) {refl}))) H) ( subst (λ z → ⊢ ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => ((![ _ > $o ] (($ this {refl} · z) => ($ this {refl} · weak H))) => (F == H)))) (sub-weak-p-1 G H) ( inf-V (inf-III-samectx (λ z → ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => ((![ _ > $o ] (($ this {refl} · weak G) => ($ this {refl} · weak H))) => (z · H)))) (^[ _ ] (![ _ > $o ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) F) ( inf-V (inf-III-samectx (λ z → ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => ((![ _ > $o ] (($ this {refl} · weak G) => ($ this {refl} · weak H))) => z))) (![ _ > $o ] (($ this {refl} · weak (weak F)) => ($ this {refl} · $ (next this) {refl}))) H) ( subst (λ z → ⊢ ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => ((![ _ > $o ] (($ this {refl} · weak G) => ($ this {refl} · weak H))) => (![ _ > $o ] (($ this {refl} · z) => ($ this {refl} · weak H)))))) (sub-weak-p-1 F H) ( inf-V (inf-V ax-4-s (ax-6-s {_} {_} {_} {~ (![ _ ] (($ this {refl} · weak G) => ($ this {refl} · weak H)))} {($ this {refl} · weak F) => ($ this {refl} · weak H)})) ( inf-V (ax-6-s {_} {_} {_} {~ (![ _ ] (($ this {refl} · weak F) => ($ this {refl} · weak G)))} {(weak (![ _ ] (($ this {refl} · weak G) => ($ this {refl} · weak H)))) => (($ this {refl} · weak F) => ($ this {refl} · weak H))}) ( inf-VI-s ( inf-V ax-3-s ( inf-V (inf-V ax-4-s (inf-V (lem5 (![ _ ] (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G)))) (sub ($ this {refl}) (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G))))) (ax-5-s (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G))) ($ this {refl})))) ( inf-V ax-3-s ( inf-V (inf-V ax-4-s ax-3-s) ( inf-V (inf-V ax-4-s (inf-V ax-4-s (inf-V (lem5 (![ _ ] (($ this {refl} · weak-i (_ ∷ ε) _ (weak G)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak H)))) (sub ($ this {refl}) (($ this {refl} · weak-i (_ ∷ ε) _ (weak G)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak H))))) (ax-5-s (($ this {refl} · weak-i (_ ∷ ε) _ (weak G)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak H))) ($ this {refl}))))) ( inf-V (inf-V ax-4-s ax-3-s) ( subst (λ z → ⊢ (((($ this {refl}) · z) => (($ this {refl}) · (sub ($ this {refl}) (weak-i (_ ∷ ε) _ (weak G))))) => (((($ this {refl}) · (sub ($ this {refl}) (weak-i (_ ∷ ε) _ (weak G)))) => (($ this {refl}) · (sub ($ this {refl}) (weak-i (_ ∷ ε) _ (weak H))))) => (($ this {refl} · weak F) => ($ this {refl} · weak H))))) (sub-weak-p-23 F ($ this {refl})) ( subst (λ z → ⊢ (((($ this {refl}) · (weak F)) => (($ this {refl}) · z)) => (((($ this {refl}) · (sub ($ this {refl}) (weak-i (_ ∷ ε) _ (weak G)))) => (($ this {refl}) · (sub ($ this {refl}) (weak-i (_ ∷ ε) _ (weak H))))) => (($ this {refl} · weak F) => ($ this {refl} · weak H))))) (sub-weak-p-23 G ($ this {refl})) ( subst (λ z → ⊢ (((($ this {refl}) · (weak F)) => (($ this {refl}) · (weak G))) => (((($ this {refl}) · z) => (($ this {refl}) · (sub ($ this {refl}) (weak-i (_ ∷ ε) _ (weak H))))) => (($ this {refl} · weak F) => ($ this {refl} · weak H))))) (sub-weak-p-23 G ($ this {refl})) ( subst (λ z → ⊢ (((($ this {refl}) · (weak F)) => (($ this {refl}) · (weak G))) => (((($ this {refl}) · (weak G)) => (($ this {refl}) · z)) => (($ this {refl} · weak F) => ($ this {refl} · weak H))))) (sub-weak-p-23 H ($ this {refl})) ( lem9 ($ this {refl} · weak F) ($ this {refl} · weak G) ($ this {refl} · weak H) )))))))))))))))))))))) lem14 : {n : ℕ} {Γ-t : Ctx n} {t : Type n} (F G H I : Form Γ-t t) → ⊢ ((F == G) => ((G == H) => ((H == I) => (F == I)))) lem14 F G H I = inf-V (inf-V ax-4-s (inf-V ax-4-s (transitivity F H I))) (transitivity F G H) lem15 : {n : ℕ} {Γ-t : Ctx n} {t : Type n} (F G : Form Γ-t t) → ⊢ ((F == G) => (G == F)) lem15 F G = inf-V (inf-III-samectx (λ z → ((z · G) => (G == F))) (^[ _ ] (![ _ > $o ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) F) ( inf-V (inf-III-samectx (λ z → (z => (G == F))) (![ _ > $o ] (($ this {refl} · weak (weak F)) => ($ this {refl} · $ (next this) {refl}))) G) ( subst (λ z → ⊢ ((![ _ > $o ] (($ this {refl} · z) => ($ this {refl} · weak G))) => (G == F))) (sub-weak-p-1 F G) ( inf-V (inf-III-samectx (λ z → ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => (z · F))) (^[ _ ] (![ _ > $o ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) G) ( inf-V (inf-III-samectx (λ z → ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => z)) (![ _ > $o ] (($ this {refl} · weak (weak G)) => ($ this {refl} · $ (next this) {refl}))) F) ( subst (λ z → ⊢ ((![ _ > $o ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => (![ _ > $o ] (($ this {refl} · z) => ($ this {refl} · weak F))))) (sub-weak-p-1 G F) ( inf-V (ax-6-s {_} {_} {_} {~ (![ _ ] (($ this {refl} · weak F) => ($ this {refl} · weak G)))} {($ this {refl} · weak G) => ($ this {refl} · weak F)}) ( inf-VI-s ( inf-V ax-3-s ( inf-V (inf-V ax-4-s (inf-V (lem5 (![ _ ] (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G)))) (sub (^[ _ ] ~ ($ (next this) {refl} · $ this {refl})) (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G))))) (ax-5-s (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G))) (^[ _ ] ~ ($ (next this) {refl} · $ this {refl}))))) ( inf-V ax-3-s ( subst (λ z → ⊢ ((((^[ _ ] ~ ($ (next this) {refl} · $ this {refl})) · z) => ((^[ _ ] ~ ($ (next this) {refl} · $ this {refl})) · (sub (^[ _ ] ~ ($ (next this) {refl} · $ this {refl})) (weak-i (_ ∷ ε) _ (weak G))))) => (($ this {refl} · weak G) => ($ this {refl} · weak F)))) (sub-weak-p-23 F (^[ _ ] ~ ($ (next this) {refl} · $ this {refl}))) ( subst (λ z → ⊢ ((((^[ _ ] ~ ($ (next this) {refl} · $ this {refl})) · (weak F)) => ((^[ _ ] ~ ($ (next this) {refl} · $ this {refl})) · z)) => (($ this {refl} · weak G) => ($ this {refl} · weak F)))) (sub-weak-p-23 G (^[ _ ] ~ ($ (next this) {refl} · $ this {refl}))) ( inf-V (inf-III-samectx (λ z → ((z => ((^[ _ ] ~ ($ (next this) {refl} · $ this {refl})) · weak G)) => (($ this {refl} · weak G) => ($ this {refl} · weak F)))) (~ ($ (next this) {refl} · $ this {refl})) (weak F)) ( inf-V (inf-III-samectx (λ z → (((~ ($ this {refl} · weak F)) => z) => (($ this {refl} · weak G) => ($ this {refl} · weak F)))) (~ ($ (next this) {refl} · $ this {refl})) (weak G)) ( lem5r ($ this {refl} · weak F) ($ this {refl} · weak G) ))))))))))))))) substitutivity : {n : ℕ} {Γ-t : Ctx n} {t u : Type n} (F G : Form Γ-t t) (H : Form Γ-t (t > u)) → ⊢ ((F == G) => ((H · F) == (H · G))) substitutivity F G H = inf-V (inf-III-samectx (λ z → ((z · G) => ((H · F) == (H · G)))) (^[ _ ] (![ _ > _ ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) F) ( inf-V (inf-III-samectx (λ z → (z => ((H · F) == (H · G)))) (![ _ > _ ] (($ this {refl} · weak (weak F)) => ($ this {refl} · $ (next this) {refl}))) G) ( subst (λ z → ⊢ ((![ _ > _ ] (($ this {refl} · z) => ($ this {refl} · weak G))) => ((H · F) == (H · G)))) (sub-weak-p-1 F G) ( inf-V (inf-III-samectx (λ z → ((![ _ > _ ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => (z · (H · G)))) (^[ _ ] (![ _ > _ ] (($ this {refl} · $ (next (next this)) {refl}) => ($ this {refl} · $ (next this) {refl})))) ((H · F))) ( inf-V (inf-III-samectx (λ z → ((![ _ > _ ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => z)) (![ _ > _ ] (($ this {refl} · weak (weak ((H · F)))) => ($ this {refl} · $ (next this) {refl}))) ((H · G))) ( subst (λ z → ⊢ ((![ _ > _ ] (($ this {refl} · weak F) => ($ this {refl} · weak G))) => (![ _ > _ ] (($ this {refl} · z) => ($ this {refl} · weak ((H · G))))))) (sub-weak-p-1 ((H · F)) ((H · G))) ( inf-V (ax-6-s {_} {_} {_} {~ (![ _ ] (($ this {refl} · weak F) => ($ this {refl} · weak G)))} {($ this {refl} · weak ((H · F))) => ($ this {refl} · weak ((H · G)))}) ( inf-VI-s ( inf-V ax-3-s ( inf-V (inf-V ax-4-s (inf-V (lem5 (![ _ ] (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G)))) (sub (^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G))))) (ax-5-s (($ this {refl} · weak-i (_ ∷ ε) _ (weak F)) => ($ this {refl} · weak-i (_ ∷ ε) _ (weak G))) (^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl})))))) ( inf-V ax-3-s ( subst (λ z → ⊢ ((((^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) · z) => ((^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) · (sub (^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) (weak-i (_ ∷ ε) _ (weak G))))) => (($ this {refl} · weak (H · F)) => ($ this {refl} · weak (H · G))))) {-{weak F} {sub (^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) (weak-i (_ ∷ ε) _ (weak F))}-} (sub-weak-p-23 F (^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl})))) ( subst (λ z → ⊢ ((((^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) · (weak F)) => ((^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) · z)) => (($ this {refl} · weak (H · F)) => ($ this {refl} · weak (H · G))))) {-{weak G} {sub (^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) (weak-i (_ ∷ ε) _ (weak G))}-} (sub-weak-p-23 G (^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl})))) ( inf-V (inf-III-samectx (λ z → ((z => ((^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) · weak G)) => (($ this {refl} · weak (H · F)) => ($ this {refl} · weak (H · G))))) ($ (next this) {refl} · (weak (weak H) · $ this {refl})) (weak F)) ( subst (λ z → ⊢ ((($ this {refl} · (z · weak F)) => ((^[ _ ] ($ (next this) {refl} · (weak (weak H) · $ this {refl}))) · weak G)) => (($ this {refl} · weak (H · F)) => ($ this {refl} · weak (H · G))))) {-{weak H} {sub (weak F) (weak (weak H))}-} (sub-weak-p-1' (weak H) (weak F)) ( inf-V (inf-III-samectx (λ z → ((($ this {refl} · weak (H · F)) => z) => (($ this {refl} · weak (H · F)) => ($ this {refl} · weak (H · G))))) ($ (next this) {refl} · (weak (weak H) · $ this {refl})) (weak G)) ( subst (λ z → ⊢ ((($ this {refl} · (weak (H · F))) => ($ this {refl} · (z · weak G))) => (($ this {refl} · weak (H · F)) => ($ this {refl} · weak (H · G))))) {-{weak H} {sub (weak G) (weak (weak H))}-} (sub-weak-p-1' (weak H) (weak G)) ( lem2h2hb (($ this {refl} · weak (H · F)) => ($ this {refl} · (weak H · weak G))) ))))))))))))))))) lem16 : {n : ℕ} {Γ-t : Ctx n} {α β : Type n} (F₁ F₂ : Form Γ-t (α > β)) (G₁ G₂ : Form Γ-t α) → ⊢ ((F₁ == F₂) => ((G₁ == G₂) => ((F₁ · G₁) == (F₂ · G₂)))) lem16 F₁ F₂ G₁ G₂ = inf-V (inf-V (inf-V (lem8 (F₁ == F₂) ((G₁ == G₂) => ((F₁ · G₁) == (F₂ · G₁))) ((G₁ == G₂) => ((F₂ · G₁) == (F₂ · G₂))) ((G₁ == G₂) => ((F₁ · G₁) == (F₂ · G₂)))) (inf-V (lem8 (G₁ == G₂) ((F₁ · G₁) == (F₂ · G₁)) ((F₂ · G₁) == (F₂ · G₂)) ((F₁ · G₁) == (F₂ · G₂))) ( transitivity (F₁ · G₁) (F₂ · G₁) (F₂ · G₂)))) (inf-V (lem4 (G₁ == G₂) (F₁ == F₂) ((F₁ · G₁) == (F₂ · G₁))) (inf-V ax-3-s (inf-V ax-2-s ( subst (λ z → ⊢ ((F₁ == F₂) => ((F₁ · G₁) == (F₂ · z)))) (sym (sub-weak-p-1' G₁ F₂)) ( inf-V (inf-II-samectx (λ z → ((F₁ == F₂) => ((F₁ · G₁) == z))) (($ this {refl}) · weak G₁) F₂) ( subst (λ z → ⊢ ((F₁ == F₂) => ((F₁ · z) == ((^[ _ ] (($ this {refl}) · weak G₁)) · F₂)))) (sym (sub-weak-p-1' G₁ F₁)) ( inf-V (inf-II-samectx (λ z → ((F₁ == F₂) => (z == ((^[ _ ] (($ this {refl}) · weak G₁)) · F₂)))) (($ this {refl}) · weak G₁) F₁) ( substitutivity F₁ F₂ (^[ _ ] (($ this {refl}) · weak G₁)) ))))))))) (inf-V ax-3-s (inf-V ax-2-s ( subst (λ z → ⊢ ((G₁ == G₂) => ((F₂ · G₁) == (z · G₂)))) (sym (sub-weak-p-1' F₂ G₂)) ( inf-V (inf-II-samectx (λ z → ((G₁ == G₂) => ((F₂ · G₁) == z))) (weak F₂ · ($ this {refl})) G₂) ( subst (λ z → ⊢ ((G₁ == G₂) => ((z · G₁) == ((^[ _ ] (weak F₂ · ($ this {refl}))) · G₂)))) (sym (sub-weak-p-1' F₂ G₁)) ( inf-V (inf-II-samectx (λ z → ((G₁ == G₂) => (z == ((^[ _ ] (weak F₂ · ($ this {refl}))) · G₂)))) (weak F₂ · ($ this {refl})) G₁) ( substitutivity G₁ G₂ (^[ _ ] (weak F₂ · ($ this {refl}))) )))))))
{ "alphanum_fraction": 0.4273977496, "avg_line_length": 96.1201716738, "ext": "agda", "hexsha": "f18bcec33bda9c0bedb1d0c8b2142c3a43b534c8", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-15T11:51:19.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-17T20:28:10.000Z", "max_forks_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "frelindb/agsyHOL", "max_forks_repo_path": "soundness/DerivedProps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "frelindb/agsyHOL", "max_issues_repo_path": "soundness/DerivedProps.agda", "max_line_length": 644, "max_stars_count": 17, "max_stars_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "frelindb/agsyHOL", "max_stars_repo_path": "soundness/DerivedProps.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-19T20:53:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-04T14:38:28.000Z", "num_tokens": 9996, "size": 22396 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Covec type and some operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Covec where open import Size open import Codata.Thunk using (Thunk; force) open import Codata.Conat as Conat open import Codata.Conat.Bisimilarity open import Codata.Conat.Properties open import Codata.Cofin as Cofin using (Cofin; zero; suc) open import Codata.Colist as Colist using (Colist ; [] ; _∷_) open import Codata.Stream as Stream using (Stream ; _∷_) open import Function data Covec {ℓ} (A : Set ℓ) (i : Size) : Conat ∞ → Set ℓ where [] : Covec A i zero _∷_ : ∀ {n} → A → Thunk (λ i → Covec A i (n .force)) i → Covec A i (suc n) module _ {ℓ} {A : Set ℓ} where head : ∀ {n i} → Covec A i (suc n) → A head (x ∷ _) = x tail : ∀ {n} → Covec A ∞ (suc n) → Covec A ∞ (n .force) tail (_ ∷ xs) = xs .force lookup : ∀ {n} → Cofin n → Covec A ∞ n → A lookup zero = head lookup (suc k) = lookup k ∘′ tail replicate : ∀ {i} → (n : Conat ∞) → A → Covec A i n replicate zero a = [] replicate (suc n) a = a ∷ λ where .force → replicate (n .force) a cotake : ∀ {i} → (n : Conat ∞) → Stream A i → Covec A i n cotake zero xs = [] cotake (suc n) (x ∷ xs) = x ∷ λ where .force → cotake (n .force) (xs .force) infixr 5 _++_ _++_ : ∀ {i m n} → Covec A i m → Covec A i n → Covec A i (m + n) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ λ where .force → xs .force ++ ys fromColist : ∀ {i} → (xs : Colist A ∞) → Covec A i (Colist.length xs) fromColist [] = [] fromColist (x ∷ xs) = x ∷ λ where .force → fromColist (xs .force) toColist : ∀ {i n} → Covec A i n → Colist A i toColist [] = [] toColist (x ∷ xs) = x ∷ λ where .force → toColist (xs .force) fromStream : ∀ {i} → Stream A i → Covec A i infinity fromStream = cotake infinity cast : ∀ {i} {m n} → i ⊢ m ≈ n → Covec A i m → Covec A i n cast zero [] = [] cast (suc eq) (a ∷ as) = a ∷ λ where .force → cast (eq .force) (as .force) module _ {a b} {A : Set a} {B : Set b} where map : ∀ {i n} (f : A → B) → Covec A i n → Covec B i n map f [] = [] map f (a ∷ as) = f a ∷ λ where .force → map f (as .force) ap : ∀ {i n} → Covec (A → B) i n → Covec A i n → Covec B i n ap [] [] = [] ap (f ∷ fs) (a ∷ as) = (f a) ∷ λ where .force → ap (fs .force) (as .force) scanl : ∀ {i n} → (B → A → B) → B → Covec A i n → Covec B i (1 ℕ+ n) scanl c n [] = n ∷ λ where .force → [] scanl c n (a ∷ as) = n ∷ λ where .force → cast (suc λ where .force → 0ℕ+-identity) (scanl c (c n a) (as .force)) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where zipWith : ∀ {i n} → (A → B → C) → Covec A i n → Covec B i n → Covec C i n zipWith f [] [] = [] zipWith f (a ∷ as) (b ∷ bs) = f a b ∷ λ where .force → zipWith f (as .force) (bs .force)
{ "alphanum_fraction": 0.5135315737, "avg_line_length": 34.0113636364, "ext": "agda", "hexsha": "b345c8a1d6b188d0e20d97f144e0dc34d8aec916", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Covec.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1117, "size": 2993 }
module Structure.Category.Functor.Proofs where open import Data.Tuple as Tuple using (_,_) open import Functional using (_$_) open import Logic.Predicate import Lvl open import Structure.Category open import Structure.Categorical.Properties open import Structure.Category.Functor open import Structure.Category.Functor.Equiv open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Transitivity open import Type private variable ℓ ℓₗₑ ℓᵣₑ : Lvl.Level private variable Obj Obj₁ Obj₂ Obj₃ : Type{ℓ} private variable Morphism Morphism₁ Morphism₂ Morphism₃ : Obj → Obj → Type{ℓ} module _ ⦃ morphism-equiv₁ : ∀{x y} → Equiv{ℓₗₑ}(Morphism₁ x y) ⦄ ⦃ morphism-equiv₂ : ∀{x y} → Equiv{ℓᵣₑ}(Morphism₂ x y) ⦄ {cat₁ : Category(Morphism₁)} {cat₂ : Category(Morphism₂)} (F : Obj₁ → Obj₂) ⦃ functor : Functor(cat₁)(cat₂)(F) ⦄ where open Category.ArrowNotation ⦃ … ⦄ open Category ⦃ … ⦄ open Functor(functor) private open module MorphismEquivₗ {x}{y} = Equiv(morphism-equiv₁{x}{y}) using () renaming (_≡_ to _≡ₗₘ_) private open module MorphismEquivᵣ {x}{y} = Equiv(morphism-equiv₂{x}{y}) using () renaming (_≡_ to _≡ᵣₘ_) private instance _ = cat₁ private instance _ = cat₂ private variable x y : Obj₁ isomorphism-preserving : ∀{f : x ⟶ y} → Morphism.Isomorphism ⦃ \{x y} → morphism-equiv₁ {x}{y} ⦄ (_∘_)(id)(f) → Morphism.Isomorphism ⦃ \{x y} → morphism-equiv₂ {x}{y} ⦄ (_∘_)(id)(map f) ∃.witness (isomorphism-preserving ([∃]-intro g)) = map g ∃.proof (isomorphism-preserving {f = f} iso@([∃]-intro g)) = (Morphism.intro $ map g ∘ map f 🝖-[ op-preserving ]-sym map(g ∘ f) 🝖-[ congruence₁(map) (inverseₗ(f)(g)) ] map id 🝖-[ id-preserving ] id 🝖-end ) , (Morphism.intro $ map f ∘ map g 🝖-[ op-preserving ]-sym map(f ∘ g) 🝖-[ congruence₁(map) (inverseᵣ(f)(g)) ] map id 🝖-[ id-preserving ] id 🝖-end ) where open Morphism.OperModule (\{x : Obj₁} → _∘_ {x = x}) open Morphism.IdModule (\{x : Obj₁} → _∘_ {x = x})(id) open Morphism.Isomorphism(\{x : Obj₁} → _∘_ {x = x})(id)(f) instance _ = iso
{ "alphanum_fraction": 0.6515085265, "avg_line_length": 37.4918032787, "ext": "agda", "hexsha": "736df6d3ac4af6d0a26e7007197ce5a6ef47ad5c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Functor/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Functor/Proofs.agda", "max_line_length": 187, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Functor/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 815, "size": 2287 }
-- {-# OPTIONS -v tc.lhs:10 -v tc.lhs.split:50 #-} postulate A : Set record R : Set where field f : A test : _ → A test record{f = a} = a -- This could succeed, but Agda currently does not try to guess -- the type type of the record pattern from its field names.
{ "alphanum_fraction": 0.6604477612, "avg_line_length": 22.3333333333, "ext": "agda", "hexsha": "5c85aafed24f6e5cbc98c126c7afd7f7f157bdb9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/RecordPattern4.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/RecordPattern4.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/RecordPattern4.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 268 }
module Generic.Test.Eq where open import Generic.Main hiding (List; []; _∷_) open import Generic.Test.Data.Fin open import Generic.Test.Data.List open import Generic.Test.Data.Vec xs : Vec (List (Fin 4)) 3 xs = (fsuc fzero ∷ fzero ∷ []) ∷ᵥ (fsuc (fsuc fzero) ∷ []) ∷ᵥ (fzero ∷ fsuc (fsuc (fsuc fzero)) ∷ []) ∷ᵥ []ᵥ test : xs ≟ xs ≡ yes refl test = refl
{ "alphanum_fraction": 0.6410958904, "avg_line_length": 22.8125, "ext": "agda", "hexsha": "9efc097d55471e7370786ac56e31d4d38bef0767", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Test/Eq.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Test/Eq.agda", "max_line_length": 47, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Test/Eq.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 139, "size": 365 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Nullary.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Functions.Fixpoint open import Cubical.Data.Empty as ⊥ open import Cubical.HITs.PropositionalTruncation.Base private variable ℓ : Level A : Type ℓ -- Negation infix 3 ¬_ ¬_ : Type ℓ → Type ℓ ¬ A = A → ⊥ -- Decidable types (inspired by standard library) data Dec (P : Type ℓ) : Type ℓ where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P NonEmpty : Type ℓ → Type ℓ NonEmpty A = ¬ ¬ A Stable : Type ℓ → Type ℓ Stable A = NonEmpty A → A -- reexport propositional truncation for uniformity open Cubical.HITs.PropositionalTruncation.Base using (∥_∥) public SplitSupport : Type ℓ → Type ℓ SplitSupport A = ∥ A ∥ → A Collapsible : Type ℓ → Type ℓ Collapsible A = Σ[ f ∈ (A → A) ] 2-Constant f Populated ⟪_⟫ : Type ℓ → Type ℓ Populated A = (f : Collapsible A) → Fixpoint (f .fst) ⟪_⟫ = Populated PStable : Type ℓ → Type ℓ PStable A = ⟪ A ⟫ → A onAllPaths : (Type ℓ → Type ℓ) → Type ℓ → Type ℓ onAllPaths S A = (x y : A) → S (x ≡ y) Separated : Type ℓ → Type ℓ Separated = onAllPaths Stable HSeparated : Type ℓ → Type ℓ HSeparated = onAllPaths SplitSupport Collapsible≡ : Type ℓ → Type ℓ Collapsible≡ = onAllPaths Collapsible PStable≡ : Type ℓ → Type ℓ PStable≡ = onAllPaths PStable Discrete : Type ℓ → Type ℓ Discrete = onAllPaths Dec
{ "alphanum_fraction": 0.6805745554, "avg_line_length": 21.8208955224, "ext": "agda", "hexsha": "d4654dfdefd29686459095d92d44c6ecf4ff857e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Relation/Nullary/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Relation/Nullary/Base.agda", "max_line_length": 53, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Relation/Nullary/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 531, "size": 1462 }
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Symmetry where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Conversion open import Definition.Conversion.Stability open import Definition.Conversion.Soundness open import Definition.Conversion.Conversion open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Equality open import Definition.Typed.Consequences.Reduction open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Substitution open import Definition.Typed.Consequences.SucCong open import Tools.Product import Tools.PropositionalEquality as PE mutual -- Symmetry of algorithmic equality of neutrals. sym~↑ : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t ~ u ↑ A → ∃ λ B → Γ ⊢ A ≡ B × Δ ⊢ u ~ t ↑ B sym~↑ Γ≡Δ (var-refl x x≡y) = let ⊢A = syntacticTerm x in _ , refl ⊢A , var-refl (PE.subst (λ y → _ ⊢ var y ∷ _) x≡y (stabilityTerm Γ≡Δ x)) (PE.sym x≡y) sym~↑ Γ≡Δ (app-cong t~u x) = let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ B , whnfB , A≡B , u~t = sym~↓ Γ≡Δ t~u F′ , G′ , ΠF′G′≡B = Π≡A A≡B whnfB F≡F′ , G≡G′ = injectivity (PE.subst (λ x → _ ⊢ _ ≡ x) ΠF′G′≡B A≡B) in _ , substTypeEq G≡G′ (soundnessConv↑Term x) , app-cong (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) ΠF′G′≡B u~t) (convConvTerm (symConv↑Term Γ≡Δ x) (stabilityEq Γ≡Δ F≡F′)) sym~↑ Γ≡Δ (fst-cong p~r) = let B , whnfB , A≡B , r~p = sym~↓ Γ≡Δ p~r F′ , G′ , Σ≡ = Σ≡A A≡B whnfB F≡ , G≡ = Σ-injectivity (PE.subst (λ x → _ ⊢ _ ≡ x) Σ≡ A≡B) in F′ , F≡ , fst-cong (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) Σ≡ r~p) sym~↑ Γ≡Δ (snd-cong {p} {r} {F} {G} p~r) = let fst≡ = soundness~↑ (fst-cong p~r) B , whnfB , A≡B , r~p = sym~↓ Γ≡Δ p~r F′ , G′ , Σ≡ = Σ≡A A≡B whnfB r~p = PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) Σ≡ r~p F≡ , G≡ = Σ-injectivity (PE.subst (λ x → _ ⊢ _ ≡ x) Σ≡ A≡B) in G′ [ fst r ] , substTypeEq G≡ fst≡ , snd-cong r~p sym~↑ Γ≡Δ (natrec-cong x x₁ x₂ t~u) = let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ B , whnfB , A≡B , u~t = sym~↓ Γ≡Δ t~u B≡ℕ = ℕ≡A A≡B whnfB F≡G = stabilityEq (Γ≡Δ ∙ refl (ℕⱼ ⊢Γ)) (soundnessConv↑ x) F[0]≡G[0] = substTypeEq F≡G (refl (zeroⱼ ⊢Δ)) in _ , substTypeEq (soundnessConv↑ x) (soundness~↓ t~u) , natrec-cong (symConv↑ (Γ≡Δ ∙ (refl (ℕⱼ ⊢Γ))) x) (convConvTerm (symConv↑Term Γ≡Δ x₁) F[0]≡G[0]) (convConvTerm (symConv↑Term Γ≡Δ x₂) (sucCong F≡G)) (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) B≡ℕ u~t) sym~↑ Γ≡Δ (Emptyrec-cong x t~u) = let ⊢Γ , ⊢Δ , _ = contextConvSubst Γ≡Δ B , whnfB , A≡B , u~t = sym~↓ Γ≡Δ t~u B≡Empty = Empty≡A A≡B whnfB F≡G = stabilityEq Γ≡Δ (soundnessConv↑ x) in _ , soundnessConv↑ x , Emptyrec-cong (symConv↑ Γ≡Δ x) (PE.subst (λ x₁ → _ ⊢ _ ~ _ ↓ x₁) B≡Empty u~t) -- Symmetry of algorithmic equality of neutrals of types in WHNF. sym~↓ : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t ~ u ↓ A → ∃ λ B → Whnf B × Γ ⊢ A ≡ B × Δ ⊢ u ~ t ↓ B sym~↓ Γ≡Δ ([~] A₁ D whnfA k~l) = let B , A≡B , k~l′ = sym~↑ Γ≡Δ k~l _ , ⊢B = syntacticEq A≡B B′ , whnfB′ , D′ = whNorm ⊢B A≡B′ = trans (sym (subset* D)) (trans A≡B (subset* (red D′))) in B′ , whnfB′ , A≡B′ , [~] B (stabilityRed* Γ≡Δ (red D′)) whnfB′ k~l′ -- Symmetry of algorithmic equality of types. symConv↑ : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↑] B → Δ ⊢ B [conv↑] A symConv↑ Γ≡Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) = [↑] B′ A′ (stabilityRed* Γ≡Δ D′) (stabilityRed* Γ≡Δ D) whnfB′ whnfA′ (symConv↓ Γ≡Δ A′<>B′) -- Symmetry of algorithmic equality of types in WHNF. symConv↓ : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↓] B → Δ ⊢ B [conv↓] A symConv↓ Γ≡Δ (U-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in U-refl ⊢Δ symConv↓ Γ≡Δ (ℕ-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in ℕ-refl ⊢Δ symConv↓ Γ≡Δ (Empty-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in Empty-refl ⊢Δ symConv↓ Γ≡Δ (Unit-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in Unit-refl ⊢Δ symConv↓ Γ≡Δ (ne A~B) = let B , whnfB , U≡B , B~A = sym~↓ Γ≡Δ A~B B≡U = U≡A U≡B in ne (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) B≡U B~A) symConv↓ Γ≡Δ (Π-cong x A<>B A<>B₁) = let F≡H = soundnessConv↑ A<>B _ , ⊢H = syntacticEq (stabilityEq Γ≡Δ F≡H) in Π-cong ⊢H (symConv↑ Γ≡Δ A<>B) (symConv↑ (Γ≡Δ ∙ F≡H) A<>B₁) symConv↓ Γ≡Δ (Σ-cong x A<>B A<>B₁) = let F≡H = soundnessConv↑ A<>B _ , ⊢H = syntacticEq (stabilityEq Γ≡Δ F≡H) in Σ-cong ⊢H (symConv↑ Γ≡Δ A<>B) (symConv↑ (Γ≡Δ ∙ F≡H) A<>B₁) -- Symmetry of algorithmic equality of terms. symConv↑Term : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t [conv↑] u ∷ A → Δ ⊢ u [conv↑] t ∷ A symConv↑Term Γ≡Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) = [↑]ₜ B u′ t′ (stabilityRed* Γ≡Δ D) (stabilityRed*Term Γ≡Δ d′) (stabilityRed*Term Γ≡Δ d) whnfB whnfu′ whnft′ (symConv↓Term Γ≡Δ t<>u) -- Symmetry of algorithmic equality of terms in WHNF. symConv↓Term : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t [conv↓] u ∷ A → Δ ⊢ u [conv↓] t ∷ A symConv↓Term Γ≡Δ (ℕ-ins t~u) = let B , whnfB , A≡B , u~t = sym~↓ Γ≡Δ t~u B≡ℕ = ℕ≡A A≡B whnfB in ℕ-ins (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) B≡ℕ u~t) symConv↓Term Γ≡Δ (Empty-ins t~u) = let B , whnfB , A≡B , u~t = sym~↓ Γ≡Δ t~u B≡Empty = Empty≡A A≡B whnfB in Empty-ins (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) B≡Empty u~t) symConv↓Term Γ≡Δ (Unit-ins t~u) = let B , whnfB , A≡B , u~t = sym~↓ Γ≡Δ t~u B≡Unit = Unit≡A A≡B whnfB in Unit-ins (PE.subst (λ x → _ ⊢ _ ~ _ ↓ x) B≡Unit u~t) symConv↓Term Γ≡Δ (ne-ins t u x t~u) = let B , whnfB , A≡B , u~t = sym~↓ Γ≡Δ t~u in ne-ins (stabilityTerm Γ≡Δ u) (stabilityTerm Γ≡Δ t) x u~t symConv↓Term Γ≡Δ (univ x x₁ x₂) = univ (stabilityTerm Γ≡Δ x₁) (stabilityTerm Γ≡Δ x) (symConv↓ Γ≡Δ x₂) symConv↓Term Γ≡Δ (zero-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in zero-refl ⊢Δ symConv↓Term Γ≡Δ (suc-cong t<>u) = suc-cong (symConv↑Term Γ≡Δ t<>u) symConv↓Term Γ≡Δ (η-eq x₁ x₂ y y₁ t<>u) = let ⊢F , _ = syntacticΠ (syntacticTerm x₁) in η-eq (stabilityTerm Γ≡Δ x₂) (stabilityTerm Γ≡Δ x₁) y₁ y (symConv↑Term (Γ≡Δ ∙ refl ⊢F) t<>u) symConv↓Term Γ≡Δ (Σ-η ⊢p ⊢r pProd rProd fstConv sndConv) = let Δ⊢p = stabilityTerm Γ≡Δ ⊢p Δ⊢r = stabilityTerm Γ≡Δ ⊢r ⊢G = proj₂ (syntacticΣ (syntacticTerm ⊢p)) Δfst≡ = symConv↑Term Γ≡Δ fstConv Δsnd≡₁ = symConv↑Term Γ≡Δ sndConv ΔGfstt≡Gfstu = stabilityEq Γ≡Δ (substTypeEq (refl ⊢G) (soundnessConv↑Term fstConv)) Δsnd≡ = convConvTerm Δsnd≡₁ ΔGfstt≡Gfstu in Σ-η Δ⊢r Δ⊢p rProd pProd Δfst≡ Δsnd≡ symConv↓Term Γ≡Δ (η-unit [t] [u] tUnit uUnit) = let [t] = stabilityTerm Γ≡Δ [t] [u] = stabilityTerm Γ≡Δ [u] in (η-unit [u] [t] uUnit tUnit) symConv↓Term′ : ∀ {t u A Γ} → Γ ⊢ t [conv↓] u ∷ A → Γ ⊢ u [conv↓] t ∷ A symConv↓Term′ tConvU = symConv↓Term (reflConEq (wfEqTerm (soundnessConv↓Term tConvU))) tConvU -- Symmetry of algorithmic equality of types with preserved context. symConv : ∀ {A B Γ} → Γ ⊢ A [conv↑] B → Γ ⊢ B [conv↑] A symConv A<>B = let ⊢Γ = wfEq (soundnessConv↑ A<>B) in symConv↑ (reflConEq ⊢Γ) A<>B -- Symmetry of algorithmic equality of terms with preserved context. symConvTerm : ∀ {t u A Γ} → Γ ⊢ t [conv↑] u ∷ A → Γ ⊢ u [conv↑] t ∷ A symConvTerm t<>u = let ⊢Γ = wfEqTerm (soundnessConv↑Term t<>u) in symConv↑Term (reflConEq ⊢Γ) t<>u
{ "alphanum_fraction": 0.5460399227, "avg_line_length": 42.9005524862, "ext": "agda", "hexsha": "4461ba0379a4283c70ff8f130f1da402f37bf830", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/Symmetry.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/Symmetry.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/Symmetry.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3687, "size": 7765 }
module Haskell.Prim.Maybe where open import Agda.Builtin.List public open import Haskell.Prim open import Haskell.Prim.List -------------------------------------------------- -- Maybe data Maybe {ℓ} (a : Set ℓ) : Set ℓ where Nothing : Maybe a Just : a -> Maybe a maybe : ∀ {ℓ₁ ℓ₂} {a : Set ℓ₁} {b : Set ℓ₂} → b → (a → b) → Maybe a → b maybe n j Nothing = n maybe n j (Just x) = j x mapMaybe : (a -> Maybe b) -> List a -> List b mapMaybe _ [] = [] mapMaybe f (x ∷ xs) = case f x of λ where Nothing -> mapMaybe f xs (Just v) -> v ∷ (mapMaybe f xs)
{ "alphanum_fraction": 0.5454545455, "avg_line_length": 22.88, "ext": "agda", "hexsha": "d68b71e2a1d4be1ab33d4128be05a8e960e1e496", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ioanasv/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Maybe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ioanasv/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Maybe.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ioanasv/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Maybe.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z", "num_tokens": 193, "size": 572 }
module Nats where open import Agda.Builtin.Nat public renaming (Nat to ℕ; _-_ to _∸_)
{ "alphanum_fraction": 0.7303370787, "avg_line_length": 17.8, "ext": "agda", "hexsha": "5c86b0bdbb2bbbe8c398dd51c30bac1d9ab13c22", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Nats.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Nats.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Nats.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 29, "size": 89 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition of the sublist relation with respect to a -- setoid. This is a generalisation of what is commonly known as Order -- Preserving Embeddings (OPE). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} {-# OPTIONS --postfix-projections #-} open import Relation.Binary using (Setoid; Rel) module Data.List.Relation.Binary.Sublist.Setoid {c ℓ} (S : Setoid c ℓ) where open import Level using (_⊔_) open import Data.List.Base using (List; []; _∷_) import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality import Data.List.Relation.Binary.Sublist.Heterogeneous as Heterogeneous import Data.List.Relation.Binary.Sublist.Heterogeneous.Core as HeterogeneousCore import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties as HeterogeneousProperties open import Data.Product using (∃; ∃₂; _,_; proj₂) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary using (¬_; Dec; yes; no) open Setoid S renaming (Carrier to A) open SetoidEquality S ------------------------------------------------------------------------ -- Definition infix 4 _⊆_ _⊇_ _⊈_ _⊉_ _⊆_ : Rel (List A) (c ⊔ ℓ) _⊆_ = Heterogeneous.Sublist _≈_ _⊇_ : Rel (List A) (c ⊔ ℓ) xs ⊇ ys = ys ⊆ xs _⊈_ : Rel (List A) (c ⊔ ℓ) xs ⊈ ys = ¬ (xs ⊆ ys) _⊉_ : Rel (List A) (c ⊔ ℓ) xs ⊉ ys = ¬ (xs ⊇ ys) ------------------------------------------------------------------------ -- Re-export definitions and operations from heterogeneous sublists open HeterogeneousCore _≈_ using ([]; _∷_; _∷ʳ_) public open Heterogeneous {R = _≈_} hiding (Sublist; []; _∷_; _∷ʳ_) public renaming (toAny to to∈; fromAny to from∈) open Disjoint public using ([]) open DisjointUnion public using ([]) ------------------------------------------------------------------------ -- Relational properties holding for Setoid case ⊆-reflexive : _≋_ ⇒ _⊆_ ⊆-reflexive = HeterogeneousProperties.fromPointwise open HeterogeneousProperties.Reflexivity {R = _≈_} refl public using () renaming (refl to ⊆-refl) -- ⊆-refl : Reflexive _⊆_ open HeterogeneousProperties.Transitivity {R = _≈_} {S = _≈_} {T = _≈_} trans public using () renaming (trans to ⊆-trans) -- ⊆-trans : Transitive _⊆_ open HeterogeneousProperties.Antisymmetry {R = _≈_} {S = _≈_} (λ x≈y _ → x≈y) public using () renaming (antisym to ⊆-antisym) -- ⊆-antisym : Antisymmetric _≋_ _⊆_ ⊆-isPreorder : IsPreorder _≋_ _⊆_ ⊆-isPreorder = record { isEquivalence = ≋-isEquivalence ; reflexive = ⊆-reflexive ; trans = ⊆-trans } ⊆-isPartialOrder : IsPartialOrder _≋_ _⊆_ ⊆-isPartialOrder = record { isPreorder = ⊆-isPreorder ; antisym = ⊆-antisym } ⊆-preorder : Preorder c (c ⊔ ℓ) (c ⊔ ℓ) ⊆-preorder = record { isPreorder = ⊆-isPreorder } ⊆-poset : Poset c (c ⊔ ℓ) (c ⊔ ℓ) ⊆-poset = record { isPartialOrder = ⊆-isPartialOrder } ------------------------------------------------------------------------ -- Raw pushout -- -- The category _⊆_ does not have proper pushouts. For instance consider: -- -- τᵤ : [] ⊆ (u ∷ []) -- τᵥ : [] ⊆ (v ∷ []) -- -- Then, there are two unrelated upper bounds (u ∷ v ∷ []) and (v ∷ u ∷ []), -- since _⊆_ does not include permutations. -- -- Even though there are no unique least upper bounds, we can merge two -- extensions of a list, producing a minimial superlist of both. -- -- For the example, the left-biased merge would produce the pair: -- -- τᵤ′ : (u ∷ []) ⊆ (u ∷ v ∷ []) -- τᵥ′ : (v ∷ []) ⊆ (u ∷ v ∷ []) -- -- We call such a pair a raw pushout. It is then a weak pushout if the -- resulting square commutes, i.e.: -- -- ⊆-trans τᵤ τᵤ′ ~ ⊆-trans τᵥ τᵥ′ -- -- This requires a notion of equality _~_ on sublist morphisms. -- -- Further, commutation requires a similar commutation property -- for the underlying equality _≈_, namely -- -- trans x≈y (sym x≈y) == trans x≈z (sym x≈z) -- -- for some notion of equality _==_ for equality proofs _≈_. -- Such a property is given e.g. if _≈_ is proof irrelevant -- or forms a groupoid. record RawPushout {xs ys zs : List A} (τ : xs ⊆ ys) (σ : xs ⊆ zs) : Set (c ⊔ ℓ) where field {upperBound} : List A leg₁ : ys ⊆ upperBound leg₂ : zs ⊆ upperBound open RawPushout ------------------------------------------------------------------------ -- Extending corners of a raw pushout square -- Extending the right upper corner. infixr 5 _∷ʳ₁_ _∷ʳ₂_ _∷ʳ₁_ : ∀ {xs ys zs : List A} {τ : xs ⊆ ys} {σ : xs ⊆ zs} → (y : A) → RawPushout τ σ → RawPushout (y ∷ʳ τ) σ y ∷ʳ₁ rpo = record { leg₁ = refl ∷ leg₁ rpo ; leg₂ = y ∷ʳ leg₂ rpo } -- Extending the left lower corner. _∷ʳ₂_ : ∀ {xs ys zs : List A} {τ : xs ⊆ ys} {σ : xs ⊆ zs} → (z : A) → RawPushout τ σ → RawPushout τ (z ∷ʳ σ) z ∷ʳ₂ rpo = record { leg₁ = z ∷ʳ leg₁ rpo ; leg₂ = refl ∷ leg₂ rpo } -- Extending both of these corners with equal elements. ∷-rpo : ∀ {x y z : A} {xs ys zs : List A} {τ : xs ⊆ ys} {σ : xs ⊆ zs} → (x≈y : x ≈ y) (x≈z : x ≈ z) → RawPushout τ σ → RawPushout (x≈y ∷ τ) (x≈z ∷ σ) ∷-rpo x≈y x≈z rpo = record { leg₁ = sym x≈y ∷ leg₁ rpo ; leg₂ = sym x≈z ∷ leg₂ rpo } ------------------------------------------------------------------------ -- Left-biased pushout: add elements of left extension first. ⊆-pushoutˡ : ∀ {xs ys zs : List A} → (τ : xs ⊆ ys) (σ : xs ⊆ zs) → RawPushout τ σ ⊆-pushoutˡ [] σ = record { leg₁ = σ ; leg₂ = ⊆-refl } ⊆-pushoutˡ (y ∷ʳ τ) σ = y ∷ʳ₁ ⊆-pushoutˡ τ σ ⊆-pushoutˡ τ@(_ ∷ _) (z ∷ʳ σ) = z ∷ʳ₂ ⊆-pushoutˡ τ σ ⊆-pushoutˡ (x≈y ∷ τ) (x≈z ∷ σ) = ∷-rpo x≈y x≈z (⊆-pushoutˡ τ σ) -- Join two extensions, returning the upper bound and the diagonal -- of the pushout square. ⊆-joinˡ : ∀ {xs ys zs : List A} → (τ : xs ⊆ ys) (σ : xs ⊆ zs) → ∃ λ us → xs ⊆ us ⊆-joinˡ τ σ = upperBound rpo , ⊆-trans τ (leg₁ rpo) where rpo = ⊆-pushoutˡ τ σ ------------------------------------------------------------------------ -- Upper bound of two sublists xs,ys ⊆ zs record UpperBound {xs ys zs} (τ : xs ⊆ zs) (σ : ys ⊆ zs) : Set (c ⊔ ℓ) where field {theUpperBound} : List A sub : theUpperBound ⊆ zs inj₁ : xs ⊆ theUpperBound inj₂ : ys ⊆ theUpperBound open UpperBound infixr 5 _∷ₗ-ub_ _∷ᵣ-ub_ ∷ₙ-ub : ∀ {xs ys zs} {τ : xs ⊆ zs} {σ : ys ⊆ zs} {x} → UpperBound τ σ → UpperBound (x ∷ʳ τ) (x ∷ʳ σ) ∷ₙ-ub u = record { sub = _ ∷ʳ u .sub ; inj₁ = u .inj₁ ; inj₂ = u .inj₂ } _∷ₗ-ub_ : ∀ {xs ys zs} {τ : xs ⊆ zs} {σ : ys ⊆ zs} {x y} → (x≈y : x ≈ y) → UpperBound τ σ → UpperBound (x≈y ∷ τ) (y ∷ʳ σ) x≈y ∷ₗ-ub u = record { sub = refl ∷ u .sub ; inj₁ = x≈y ∷ u .inj₁ ; inj₂ = _ ∷ʳ u .inj₂ } _∷ᵣ-ub_ : ∀ {xs ys zs} {τ : xs ⊆ zs} {σ : ys ⊆ zs} {x y} → (x≈y : x ≈ y) → UpperBound τ σ → UpperBound (y ∷ʳ τ) (x≈y ∷ σ) x≈y ∷ᵣ-ub u = record { sub = refl ∷ u .sub ; inj₁ = _ ∷ʳ u .inj₁ ; inj₂ = x≈y ∷ u .inj₂ } ------------------------------------------------------------------------ -- Disjoint union -- -- Two non-overlapping sublists τ : xs ⊆ zs and σ : ys ⊆ zs -- can be joined in a unique way if τ and σ are respected. -- -- For instance, if τ : [x] ⊆ [x,y,x] and σ : [y] ⊆ [x,y,x] -- then the union will be [x,y] or [y,x], depending on whether -- τ picks the first x or the second one. -- -- NB: If the content of τ and σ were ignored then the union would not -- be unique. Expressing uniqueness would require a notion of equality -- of sublist proofs, which we do not (yet) have for the setoid case -- (however, for the propositional case). ⊆-disjoint-union : ∀ {xs ys zs} {τ : xs ⊆ zs} {σ : ys ⊆ zs} → Disjoint τ σ → UpperBound τ σ ⊆-disjoint-union [] = record { sub = [] ; inj₁ = [] ; inj₂ = [] } ⊆-disjoint-union (x ∷ₙ d) = ∷ₙ-ub (⊆-disjoint-union d) ⊆-disjoint-union (x≈y ∷ₗ d) = x≈y ∷ₗ-ub (⊆-disjoint-union d) ⊆-disjoint-union (x≈y ∷ᵣ d) = x≈y ∷ᵣ-ub (⊆-disjoint-union d)
{ "alphanum_fraction": 0.5523809524, "avg_line_length": 31.7058823529, "ext": "agda", "hexsha": "33ab4f82e2aeb9e4953d9c9a0a84b0cac8f0d402", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Setoid.agda", "max_line_length": 93, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Sublist/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 3014, "size": 8085 }
module Issue2575.M where A : Set A = Set
{ "alphanum_fraction": 0.6904761905, "avg_line_length": 8.4, "ext": "agda", "hexsha": "1d3b91efac9fafc4ca7da5b723e211a23550949f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2575/M.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2575/M.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2575/M.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 15, "size": 42 }
------------------------------------------------------------------------------ -- Testing subst using an implicit arguments for the propositional function. ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOL.ImplicitArgumentSubst where infix 7 _≡_ postulate D : Set _·_ : D → D → D zero succ pred : D succ₁ : D → D succ₁ n = succ · n pred₁ : D → D pred₁ n = pred · n -- The identity type on the universe of discourse. data _≡_ (x : D) : D → Set where refl : x ≡ x -- The propositional function is not an implicit argument. subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y subst A refl Ax = Ax -- The propositional formula is an implicit argument. subst' : {A : D → Set} → ∀ {x y} → x ≡ y → A x → A y subst' refl Ax = Ax sym : ∀ {x y} → x ≡ y → y ≡ x sym refl = refl -- Conversion rules. postulate pred-0 : pred₁ zero ≡ zero pred-S : ∀ n → pred₁ (succ₁ n) ≡ n -- The FOTC natural numbers type. data N : D → Set where nzero : N zero nsucc : ∀ {n} → N n → N (succ₁ n) -- Works using subst. pred-N : ∀ {n} → N n → N (pred₁ n) pred-N nzero = subst N (sym pred-0) nzero pred-N (nsucc {n} Nn) = subst N (sym (pred-S n)) Nn -- Fails using subst'. pred-N' : ∀ {n} → N n → N (pred₁ n) pred-N' nzero = subst' (sym pred-0) nzero pred-N' (nsucc {n} Nn) = subst' (sym (pred-S n)) Nn
{ "alphanum_fraction": 0.5018450185, "avg_line_length": 27.1, "ext": "agda", "hexsha": "9a17abcfd5bf3cea918f82344a52fb04ff9b0266", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOL/ImplicitArgumentSubst.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOL/ImplicitArgumentSubst.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOL/ImplicitArgumentSubst.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 496, "size": 1626 }
-- A variant of code reported by Andreas Abel. -- Andreas, 2014-01-07 Issue reported by Dmitriy Traytel -- Andreas, 2015-04-15 Issue resurrected with Pierre Hyvernat {-# OPTIONS --guardedness --sized-types #-} open import Common.Size open import Common.Prelude hiding (map) open import Common.Product record Stream (A : Set) : Set where coinductive field force : A × Stream A open Stream map : ∀{A B} → (A → B) → Stream A → Stream B force (map f s) = let a , as = force s in f a , map f as -- This type should be empty, as Stream A is isomorphic to ℕ → A. data D : (i : Size) → Set where lim : ∀ i → Stream (D i) → D (↑ i) -- Emptiness witness for D. empty : ∀ i → D i → ⊥ empty .(↑ i) (lim i s) = empty i (proj₁ (force s)) -- BAD: But we can construct an inhabitant. inh : Stream (D ∞) force inh = lim ∞ inh , inh -- Should be rejected by termination checker. absurd : ⊥ absurd = empty ∞ (lim ∞ inh)
{ "alphanum_fraction": 0.6482683983, "avg_line_length": 26.4, "ext": "agda", "hexsha": "6bc5ff3380230aa210f403b91af6ea73eb4a7784", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1209-1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1209-1.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1209-1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 294, "size": 924 }
module Tactic.Reflection.Quote.Class where open import Builtin.Reflection record Quotable {a} (A : Set a) : Set a where field ` : A → Term open Quotable {{...}} public
{ "alphanum_fraction": 0.6759776536, "avg_line_length": 14.9166666667, "ext": "agda", "hexsha": "29163360a70a71269dfa046435b5466a1520c953", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Reflection/Quote/Class.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Reflection/Quote/Class.agda", "max_line_length": 45, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Reflection/Quote/Class.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 53, "size": 179 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties imply others ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Consequences where open import Relation.Binary.Core open import Relation.Nullary using (yes; no) open import Relation.Unary using (∁) open import Function using (_∘_; flip) open import Data.Maybe.Base using (just; nothing) open import Data.Sum using (inj₁; inj₂) open import Data.Product using (_,_) open import Data.Empty using (⊥-elim) ------------------------------------------------------------------------ -- Substitutive properties module _ {a ℓ p} {A : Set a} {_∼_ : Rel A ℓ} (P : Rel A p) where subst⟶respˡ : Substitutive _∼_ p → P Respectsˡ _∼_ subst⟶respˡ subst {y} x'∼x Px'y = subst (flip P y) x'∼x Px'y subst⟶respʳ : Substitutive _∼_ p → P Respectsʳ _∼_ subst⟶respʳ subst {x} y'∼y Pxy' = subst (P x) y'∼y Pxy' subst⟶resp₂ : Substitutive _∼_ p → P Respects₂ _∼_ subst⟶resp₂ subst = subst⟶respʳ subst , subst⟶respˡ subst module _ {a ℓ p} {A : Set a} {∼ : Rel A ℓ} {P : A → Set p} where P-resp⟶¬P-resp : Symmetric ∼ → P Respects ∼ → (∁ P) Respects ∼ P-resp⟶¬P-resp sym resp x∼y ¬Px Py = ¬Px (resp (sym x∼y) Py) ------------------------------------------------------------------------ -- Proofs for non-strict orders module _ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_≤_ : Rel A ℓ₂} where total⟶refl : _≤_ Respects₂ _≈_ → Symmetric _≈_ → Total _≤_ → _≈_ ⇒ _≤_ total⟶refl (respʳ , respˡ) sym total {x} {y} x≈y with total x y ... | inj₁ x∼y = x∼y ... | inj₂ y∼x = respʳ x≈y (respˡ (sym x≈y) y∼x) total+dec⟶dec : _≈_ ⇒ _≤_ → Antisymmetric _≈_ _≤_ → Total _≤_ → Decidable _≈_ → Decidable _≤_ total+dec⟶dec refl antisym total _≟_ x y with total x y ... | inj₁ x≤y = yes x≤y ... | inj₂ y≤x with x ≟ y ... | yes x≈y = yes (refl x≈y) ... | no x≉y = no (λ x≤y → x≉y (antisym x≤y y≤x)) ------------------------------------------------------------------------ -- Proofs for strict orders module _ {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} where trans∧irr⟶asym : Reflexive _≈_ → Transitive _<_ → Irreflexive _≈_ _<_ → Asymmetric _<_ trans∧irr⟶asym refl trans irrefl x<y y<x = irrefl refl (trans x<y y<x) irr∧antisym⟶asym : Irreflexive _≈_ _<_ → Antisymmetric _≈_ _<_ → Asymmetric _<_ irr∧antisym⟶asym irrefl antisym x<y y<x = irrefl (antisym x<y y<x) x<y asym⟶antisym : Asymmetric _<_ → Antisymmetric _≈_ _<_ asym⟶antisym asym x<y y<x = ⊥-elim (asym x<y y<x) asym⟶irr : _<_ Respects₂ _≈_ → Symmetric _≈_ → Asymmetric _<_ → Irreflexive _≈_ _<_ asym⟶irr (respʳ , respˡ) sym asym {x} {y} x≈y x<y = asym x<y (respʳ (sym x≈y) (respˡ x≈y x<y)) tri⟶asym : Trichotomous _≈_ _<_ → Asymmetric _<_ tri⟶asym tri {x} {y} x<y x>y with tri x y ... | tri< _ _ x≯y = x≯y x>y ... | tri≈ _ _ x≯y = x≯y x>y ... | tri> x≮y _ _ = x≮y x<y tri⟶irr : Trichotomous _≈_ _<_ → Irreflexive _≈_ _<_ tri⟶irr compare {x} {y} x≈y x<y with compare x y ... | tri< _ x≉y y≮x = x≉y x≈y ... | tri> x≮y x≉y y<x = x≉y x≈y ... | tri≈ x≮y _ y≮x = x≮y x<y tri⟶dec≈ : Trichotomous _≈_ _<_ → Decidable _≈_ tri⟶dec≈ compare x y with compare x y ... | tri< _ x≉y _ = no x≉y ... | tri≈ _ x≈y _ = yes x≈y ... | tri> _ x≉y _ = no x≉y tri⟶dec< : Trichotomous _≈_ _<_ → Decidable _<_ tri⟶dec< compare x y with compare x y ... | tri< x<y _ _ = yes x<y ... | tri≈ x≮y _ _ = no x≮y ... | tri> x≮y _ _ = no x≮y trans∧tri⟶respʳ≈ : Symmetric _≈_ → Transitive _≈_ → Transitive _<_ → Trichotomous _≈_ _<_ → _<_ Respectsʳ _≈_ trans∧tri⟶respʳ≈ sym ≈-tr <-tr tri {x} {y} {z} y≈z x<y with tri x z ... | tri< x<z _ _ = x<z ... | tri≈ _ x≈z _ = ⊥-elim (tri⟶irr tri (≈-tr x≈z (sym y≈z)) x<y) ... | tri> _ _ z<x = ⊥-elim (tri⟶irr tri (sym y≈z) (<-tr z<x x<y)) trans∧tri⟶respˡ≈ : Transitive _≈_ → Transitive _<_ → Trichotomous _≈_ _<_ → _<_ Respectsˡ _≈_ trans∧tri⟶respˡ≈ ≈-tr <-tr tri {z} {_} {y} x≈y x<z with tri y z ... | tri< y<z _ _ = y<z ... | tri≈ _ y≈z _ = ⊥-elim (tri⟶irr tri (≈-tr x≈y y≈z) x<z) ... | tri> _ _ z<y = ⊥-elim (tri⟶irr tri x≈y (<-tr x<z z<y)) trans∧tri⟶resp≈ : Symmetric _≈_ → Transitive _≈_ → Transitive _<_ → Trichotomous _≈_ _<_ → _<_ Respects₂ _≈_ trans∧tri⟶resp≈ sym ≈-tr <-tr tri = trans∧tri⟶respʳ≈ sym ≈-tr <-tr tri , trans∧tri⟶respˡ≈ ≈-tr <-tr tri ------------------------------------------------------------------------ -- Without Loss of Generality module _ {a r q} {A : Set a} {_R_ : Rel A r} {Q : Rel A q} where wlog : Total _R_ → Symmetric Q → (∀ a b → a R b → Q a b) → ∀ a b → Q a b wlog r-total q-sym prf a b with r-total a b ... | inj₁ aRb = prf a b aRb ... | inj₂ bRa = q-sym (prf b a bRa) ------------------------------------------------------------------------ -- Other proofs module _ {a b p} {A : Set a} {B : Set b} {P : REL A B p} where dec⟶weaklyDec : Decidable P → WeaklyDecidable P dec⟶weaklyDec dec x y with dec x y ... | yes p = just p ... | no _ = nothing module _ {a b p q} {A : Set a} {B : Set b } {P : REL A B p} {Q : REL A B q} where map-NonEmpty : P ⇒ Q → NonEmpty P → NonEmpty Q map-NonEmpty f x = nonEmpty (f (NonEmpty.proof x))
{ "alphanum_fraction": 0.5046645138, "avg_line_length": 35.5031847134, "ext": "agda", "hexsha": "64e096a23a3a2a486936a996fef5a3b09c65e943", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Consequences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Consequences.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Consequences.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2295, "size": 5574 }
{-# OPTIONS --without-K --safe #-} -- Backwards evaluator and the fact that with eval, forms a reversible evaluator module BackwardsEval where open import Data.Unit using (tt) open import Data.Sum using (inj₁; inj₂) open import Data.Product using (_,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst) open import Singleton open import PiFrac bwd : {A B : 𝕌} → (A ⟷ B) → ⟦ B ⟧ → ⟦ A ⟧ bwd-eval : {A B : 𝕌} → (c : A ⟷ B) → (v : ⟦ A ⟧) → bwd c (eval c v) ≡ v bwd unite₊l v = inj₂ v bwd uniti₊l (inj₂ v) = v bwd unite₊r v = inj₁ v bwd uniti₊r (inj₁ v) = v bwd swap₊ (inj₁ v) = inj₂ v bwd swap₊ (inj₂ v) = inj₁ v bwd assocl₊ (inj₁ (inj₁ v)) = inj₁ v bwd assocl₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) bwd assocl₊ (inj₂ v) = inj₂ (inj₂ v) bwd assocr₊ (inj₁ v) = inj₁ (inj₁ v) bwd assocr₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) bwd assocr₊ (inj₂ (inj₂ v)) = inj₂ v bwd unite⋆l v = (tt , v) bwd uniti⋆l (tt , v) = v bwd unite⋆r v = (v , tt) bwd uniti⋆r (v , tt) = v bwd swap⋆ (v₁ , v₂) = (v₂ , v₁) bwd assocl⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) bwd assocr⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) bwd dist (inj₁ (v₁ , v₂)) = (inj₁ v₁ , v₂) bwd dist (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) bwd factor (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) bwd factor (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) bwd distl (inj₁ (v₁ , v₂)) = (v₁ , inj₁ v₂) bwd distl (inj₂ (v₁ , v₃)) = (v₁ , inj₂ v₃) bwd factorl (v₁ , inj₁ v₂) = inj₁ (v₁ , v₂) bwd factorl (v₁ , inj₂ v₃) = inj₂ (v₁ , v₃) bwd id⟷ v = v bwd (c₁ ⊚ c₂) v = bwd c₁ (bwd c₂ v) bwd (c₁ ⊕ c₂) (inj₁ v) = inj₁ (bwd c₁ v) bwd (c₁ ⊕ c₂) (inj₂ v) = inj₂ (bwd c₂ v) bwd (c₁ ⊗ c₂) (v₁ , v₂) = (bwd c₁ v₁ , bwd c₂ v₂) bwd (lift {_} {_} {v₁} c) (●₁ , v≡●₁) = (bwd c ●₁) , (trans (sym (bwd-eval c v₁)) (cong (bwd c) v≡●₁)) bwd tensorl ((w₁ , p₁) , (w₂ , p₂)) = (w₁ , w₂) , (cong₂ _,_ p₁ p₂) bwd tensorr ((v₁ , v₂) , p) = (v₁ , cong proj₁ p) , (v₂ , cong proj₂ p) bwd plusll (w , p) = (inj₁ w) , (cong inj₁ p) bwd pluslr (inj₁ w₁ , refl) = w₁ , refl bwd plusrl (w , p) = (inj₂ w) , (cong inj₂ p) bwd plusrr (inj₂ w₂ , refl) = w₂ , refl bwd fracl (f₁ , f₂) ((w₁ , w₂) , refl) = let _ = f₁ (w₁ , refl) ; _ = f₂ (w₂ , refl) in tt bwd (fracr {v₁ = v₁} {v₂ = v₂}) f = (λ _ → f ((v₁ , v₂) , refl)) , (λ _ → f ((v₁ , v₂) , refl)) bwd (η v) p = tt bwd (ε v) tt = (v , refl) , λ _ → tt bwd (ll {t} {v} {w}) (v , refl) = w , refl bwd (== c eq) v = bwd c (subst (Singleton ⟦ _ ⟧) (sym eq) v) bwd-eval unite₊l (inj₂ v) = refl bwd-eval uniti₊l v = refl bwd-eval unite₊r (inj₁ v) = refl bwd-eval uniti₊r v = refl bwd-eval swap₊ (inj₁ v) = refl bwd-eval swap₊ (inj₂ v) = refl bwd-eval assocl₊ (inj₁ v) = refl bwd-eval assocl₊ (inj₂ (inj₁ v)) = refl bwd-eval assocl₊ (inj₂ (inj₂ v)) = refl bwd-eval assocr₊ (inj₁ (inj₁ v)) = refl bwd-eval assocr₊ (inj₁ (inj₂ v)) = refl bwd-eval assocr₊ (inj₂ v) = refl bwd-eval unite⋆l (tt , v) = refl bwd-eval uniti⋆l v = refl bwd-eval unite⋆r (v , tt) = refl bwd-eval uniti⋆r v = refl bwd-eval swap⋆ (v₁ , v₂) = refl bwd-eval assocl⋆ (v₁ , (v₂ , v₃)) = refl bwd-eval assocr⋆ ((v₁ , v₂) , v₃) = refl bwd-eval dist (inj₁ v₁ , v₃) = refl bwd-eval dist (inj₂ v₂ , v₃) = refl bwd-eval factor (inj₁ (v₁ , v₃)) = refl bwd-eval factor (inj₂ (v₂ , v₃)) = refl bwd-eval distl (v₁ , inj₁ v₂) = refl bwd-eval distl (v₁ , inj₂ v₃) = refl bwd-eval factorl (inj₁ (v₁ , v₂)) = refl bwd-eval factorl (inj₂ (v₁ , v₃)) = refl bwd-eval id⟷ v = refl bwd-eval (c₁ ⊚ c₂) v = trans (cong (bwd c₁) (bwd-eval c₂ (eval c₁ v))) (bwd-eval c₁ v) bwd-eval (c₁ ⊕ c₂) (inj₁ v₁) = cong inj₁ (bwd-eval c₁ v₁) bwd-eval (c₁ ⊕ c₂) (inj₂ v₂) = cong inj₂ (bwd-eval c₂ v₂) bwd-eval (c₁ ⊗ c₂) (v₁ , v₂) = cong₂ _,_ (bwd-eval c₁ v₁) (bwd-eval c₂ v₂) bwd-eval (lift c) v = pointed-all-paths bwd-eval tensorl p = pointed-all-paths bwd-eval tensorr (p₁ , p₂) = cong₂ _,_ pointed-all-paths pointed-all-paths bwd-eval plusll p = pointed-all-paths bwd-eval pluslr p = pointed-all-paths bwd-eval plusrl p = pointed-all-paths bwd-eval plusrr p = pointed-all-paths bwd-eval fracl f = {!!} -- needs recip-all-paths bwd-eval fracr (f₁ , f₂) = {!!} bwd-eval (η v) tt = refl bwd-eval (ε v) (p , r) = cong₂ _,_ pointed-all-paths refl bwd-eval (ll {t} {v} {.w}) (w , refl) = refl bwd-eval (== c eq) p = pointed-all-paths eval-bwd : {A B : 𝕌} → (c : A ⟷ B) → (v : ⟦ B ⟧) → eval c (bwd c v) ≡ v eval-bwd unite₊l v = refl eval-bwd uniti₊l (inj₂ v) = refl eval-bwd unite₊r v = refl eval-bwd uniti₊r (inj₁ v) = refl eval-bwd swap₊ (inj₁ v) = refl eval-bwd swap₊ (inj₂ v) = refl eval-bwd assocl₊ (inj₁ (inj₁ v)) = refl eval-bwd assocl₊ (inj₁ (inj₂ v)) = refl eval-bwd assocl₊ (inj₂ v) = refl eval-bwd assocr₊ (inj₁ v) = refl eval-bwd assocr₊ (inj₂ (inj₁ v)) = refl eval-bwd assocr₊ (inj₂ (inj₂ v)) = refl eval-bwd unite⋆l v = refl eval-bwd uniti⋆l (tt , v) = refl eval-bwd unite⋆r v = refl eval-bwd uniti⋆r (v , tt) = refl eval-bwd swap⋆ (v₂ , v₁) = refl eval-bwd assocl⋆ ((v₁ , v₂) , v₃) = refl eval-bwd assocr⋆ (v₁ , (v₂ , v₃)) = refl eval-bwd dist (inj₁ (v₁ , v₂)) = refl eval-bwd dist (inj₂ (v₂ , v₃)) = refl eval-bwd factor (inj₁ v₁ , v₃) = refl eval-bwd factor (inj₂ v₂ , v₃) = refl eval-bwd distl (inj₁ (v₁ , v₂)) = refl eval-bwd distl (inj₂ (v₁ , v₃)) = refl eval-bwd factorl (v₁ , inj₁ v₂) = refl eval-bwd factorl (v₁ , inj₂ v₃) = refl eval-bwd id⟷ v = refl eval-bwd (c₁ ⊚ c₂) v = trans (cong (eval c₂) (eval-bwd c₁ (bwd c₂ v))) (eval-bwd c₂ v) eval-bwd (c₁ ⊕ c₂) (inj₁ v) = cong inj₁ (eval-bwd c₁ v) eval-bwd (c₁ ⊕ c₂) (inj₂ v) = cong inj₂ (eval-bwd c₂ v) eval-bwd (c₁ ⊗ c₂) (v₃ , v₄) = cong₂ _,_ (eval-bwd c₁ v₃) (eval-bwd c₂ v₄) eval-bwd (lift c) x = pointed-all-paths eval-bwd tensorl p = cong₂ _,_ pointed-all-paths pointed-all-paths eval-bwd tensorr p = pointed-all-paths eval-bwd plusll p = pointed-all-paths eval-bwd pluslr p = pointed-all-paths eval-bwd plusrl p = pointed-all-paths eval-bwd plusrr p = pointed-all-paths eval-bwd fracl (f₁ , f₂) = {!!} -- needs recip-all-paths eval-bwd fracr f = {!!} eval-bwd (η v) (p , r) = cong₂ _,_ pointed-all-paths refl eval-bwd (ε v) tt = refl eval-bwd (ll {t} {.v} {w}) (v , refl) = refl eval-bwd (== c eq) p = pointed-all-paths
{ "alphanum_fraction": 0.6076633372, "avg_line_length": 38.898089172, "ext": "agda", "hexsha": "1c22c798621cd2a0da031aad2e8ba3d770fb73cd", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/BackwardsEval.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/BackwardsEval.agda", "max_line_length": 102, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/BackwardsEval.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3000, "size": 6107 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Data.Integer where open import Light.Level using (Level ; Setω) open import Light.Library.Data.Empty as Empty using (Empty) open import Light.Library.Data.Natural as Natural using (ℕ) open import Light.Subtyping using (DirectSubtyping ; #_) open import Light.Library.Arithmetic using (Arithmetic) open import Light.Package using (Package) open import Light.Library.Relation.Binary using (SelfTransitive ; SelfSymmetric ; Reflexive) open import Light.Library.Relation.Binary.Equality as ≈ using (_≈_) open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableSelfEquality) import Light.Library.Relation.Decidable record Dependencies : Setω where field ⦃ natural‐package ⦄ : Package record { Natural } record Library (dependencies : Dependencies) : Setω where field ℓ ≈ℓ : Level ℤ : Set ℓ zero : ℤ successor : ℤ → ℤ predecessor : ℤ → ℤ _+_ : ℤ → ℤ → ℤ _∗_ : ℤ → ℤ → ℤ _//_ : ℤ → ℤ → ℤ _−_ : ℤ → ℤ → ℤ −_ : ℤ → ℤ from‐natural : ℕ → ℤ ⦃ equals ⦄ : DecidableSelfEquality ℤ ⦃ ≈‐transitive ⦄ : SelfTransitive (≈.self‐relation ℤ) ⦃ ≈‐symmetric ⦄ : SelfSymmetric (≈.self‐relation ℤ) ⦃ ≈‐reflexive ⦄ : Reflexive (≈.self‐relation ℤ) instance naturals‐are‐integers : DirectSubtyping ℕ ℤ naturals‐are‐integers = # from‐natural instance arithmetic : Arithmetic ℤ arithmetic = record { _+_ = _+_ ; _∗_ = _∗_ } open Library ⦃ ... ⦄ public
{ "alphanum_fraction": 0.6294536817, "avg_line_length": 37.4222222222, "ext": "agda", "hexsha": "75501c260d58c987833139e14ca2dcf92f739387", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Library/Data/Integer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Library/Data/Integer.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Library/Data/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 482, "size": 1684 }
{-# OPTIONS --without-K --safe #-} open import Algebra module Quasigroup.Properties {a ℓ} (Q : Quasigroup a ℓ) where open Quasigroup Q
{ "alphanum_fraction": 0.6879432624, "avg_line_length": 14.1, "ext": "agda", "hexsha": "cb3e02a40b161e51d6e19925600d45949ecd6c3f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_forks_repo_path": "src/Quasigroup/Properties.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_issues_repo_path": "src/Quasigroup/Properties.agda", "max_line_length": 34, "max_stars_count": 2, "max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra", "max_stars_repo_path": "src/Quasigroup/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z", "num_tokens": 42, "size": 141 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Magma.Construct.Empty where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Algebra.Magma open import Cubical.Data.Empty _◯_ : Op₂ ⊥ _◯_ () isSet⊥ : isSet ⊥ isSet⊥ = isProp→isSet isProp⊥ ⊥-isMagma : IsMagma ⊥ _◯_ ⊥-isMagma = record { is-set = isSet⊥ } ⊥-Magma : Magma ℓ-zero ⊥-Magma = record { isMagma = ⊥-isMagma }
{ "alphanum_fraction": 0.7056179775, "avg_line_length": 20.2272727273, "ext": "agda", "hexsha": "6cac95118c7e9233c3f45447bf89f5380f35e51d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Magma/Construct/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Magma/Construct/Empty.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Magma/Construct/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 173, "size": 445 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Bundles of parameters for passing to the Ring Solver ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module packages up all the stuff that's passed to the other -- modules in a convenient form. module Tactic.RingSolver.Core.Polynomial.Parameters where open import Algebra.Bundles using (RawRing) open import Data.Bool.Base using (Bool; T) open import Function open import Level open import Relation.Unary open import Tactic.RingSolver.Core.AlmostCommutativeRing -- This record stores all the stuff we need for the coefficients: -- -- * A raw ring -- * A (decidable) predicate on "zeroeness" -- -- It's used for defining the operations on the Horner normal form. record RawCoeff ℓ₁ ℓ₂ : Set (suc (ℓ₁ ⊔ ℓ₂)) where field rawRing : RawRing ℓ₁ ℓ₂ isZero : RawRing.Carrier rawRing → Bool open RawRing rawRing public -- This record stores the full information we need for converting -- to the final ring. record Homomorphism ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Set (suc (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄)) where field from : RawCoeff ℓ₁ ℓ₂ to : AlmostCommutativeRing ℓ₃ ℓ₄ module Raw = RawCoeff from open AlmostCommutativeRing to public field morphism : Raw.rawRing -Raw-AlmostCommutative⟶ to open _-Raw-AlmostCommutative⟶_ morphism renaming (⟦_⟧ to ⟦_⟧ᵣ) public field Zero-C⟶Zero-R : ∀ x → T (Raw.isZero x) → 0# ≈ ⟦ x ⟧ᵣ
{ "alphanum_fraction": 0.6500994036, "avg_line_length": 30.7959183673, "ext": "agda", "hexsha": "2e70963423a3796f1dadd782955c18048267fc97", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Parameters.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Parameters.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Parameters.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 439, "size": 1509 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Data.Either where open import Light.Library.Data.Either using (Library ; Dependencies) open import Light.Level using (_⊔_) open import Light.Variable.Levels instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where ℓf : _ ℓf = _⊔_ data Either (𝕒 : Set aℓ) (𝕓 : Set bℓ) : Set (aℓ ⊔ bℓ) where left : 𝕒 → Either 𝕒 𝕓 right : 𝕓 → Either 𝕒 𝕓
{ "alphanum_fraction": 0.6470588235, "avg_line_length": 30.7619047619, "ext": "agda", "hexsha": "a7c3bb066217d2984035ffd8e049bd9a0a28a315", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Implementation/Data/Either.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Implementation/Data/Either.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Implementation/Data/Either.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 169, "size": 646 }
module irreflexive where open import Data.Nat using (ℕ; zero; suc) open import Negation using (¬_) infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------ → zero < suc n s<s : ∀ {m n : ℕ} → m < n ------------- → suc m < suc n -- n が非反射律 ∀ n ∈ ℕ, ¬(n < n) を満たすことの証明 <-irreflexive : ∀ (n : ℕ) → ¬ (n < n) <-irreflexive zero () <-irreflexive (suc n) (s<s n<n) = <-irreflexive n n<n
{ "alphanum_fraction": 0.4906103286, "avg_line_length": 19.3636363636, "ext": "agda", "hexsha": "d19fe0599dedebce84a45fdbadc4f044064e0846", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/negation/irreflexive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/negation/irreflexive.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/negation/irreflexive.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 181, "size": 426 }
{-# OPTIONS --without-K --exact-split --safe #-} module Identity where open import Basic_Types -- ------------------------------------ -- the identity type, or path type infix 1 _≡_ data _≡_ {A : Set} : A → A → Set where refl : ∀ (a : A) → a ≡ a {-# BUILTIN EQUALITY _≡_ #-} -- path induction p-ind : ∀ {A : Set} {B : ∀ (x y : A) (p : x ≡ y) → Set} → (∀ (z : A) → B z z (refl z)) → ∀ (x y : A) (p : x ≡ y) → B x y p p-ind f z z (refl z) = f z -- notice here that, in the proof system of agda, the induction principle is -- builtin for a data type, for their constructor is given expicitly. Hence, -- one way to prove identity type is to use p-ind, which is itself proved by -- agda using implicit path induction, or we can use agda's induction expicitly -- which is the case when we construct apd and ass-p -- the groupoid structure of path type concat : ∀ {A : Set} → ∀ (x y : A) (p : x ≡ y) → ∀ (z : A) (q : y ≡ z) → x ≡ z concat {A} x x (refl x) x (refl x) = refl x infix 3 _∙_ _∙_ : ∀ {A : Set} {x y z : A} → ∀ (p : x ≡ y) (q : y ≡ z) → x ≡ z _∙_ {_} {x} {y} {z} p q = concat x y p z q inv : ∀ {A : Set} {x y : A} → ∀ (p : x ≡ y) → y ≡ x inv {_} {x} {x} (refl x) = refl x -- the groupoid structure of identities, viewed as higher paths p-ass : ∀ {A : Set} {x y z w : A} → ∀ (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → p ∙ (q ∙ r) ≡ (p ∙ q) ∙ r p-ass {_} {x} {x} {x} {x} (refl x) (refl x) (refl x) = refl (((refl x) ∙ (refl x)) ∙ (refl x)) left_unit : ∀ {A : Set} {x y : A} → ∀ (p : x ≡ y) → (refl x) ∙ p ≡ p left_unit {_} {x} {x} (refl x) = refl (refl x) right_unit : ∀ {A : Set} {x y : A} → ∀ (p : x ≡ y) → p ∙ (refl y) ≡ p right_unit {_} {x} {x} (refl x) = refl (refl x) rinv-unit : ∀ {A : Set} {x y : A} → ∀ (p : x ≡ y) → (inv p) ∙ p ≡ refl y rinv-unit {_} {x} {x} (refl x) = refl (refl x) linv-unit : ∀ {A : Set} {x y : A} → ∀ (p : x ≡ y) → p ∙ (inv p) ≡ refl x linv-unit {_} {x} {x} (refl x) = refl (refl x) invinv : ∀ {A : Set} {x y : A} → ∀ (p : x ≡ y) → inv (inv p) ≡ p invinv {_} {x} {x} (refl x) = refl (refl x) -- ------------------------------------ -- loop spaces Ω : ∀ {A : Set} (a : A) → Set Ω {_} a = a ≡ a -- commutativity on 2-dimensional loops -- prove the commutativity by proving a general result in the groupoid pwr : ∀ {A : Set} {a b c : A} {p q : a ≡ b} → ∀ (r : b ≡ c) → ∀ (α : p ≡ q) → p ∙ r ≡ q ∙ r pwr {_} {_} {b} {b} {p} {p} (refl b) (refl p) = refl (p ∙ (refl b)) pwl : ∀ {A : Set} {a b c : A} {q r : b ≡ c} → ∀ (p : a ≡ b) → ∀ (β : q ≡ r) → p ∙ q ≡ p ∙ r pwl {_} {_} {_} {_} {q} {q} p (refl q) = refl (p ∙ q) _*_ : ∀ {A : Set} {a b c : A} {p q : a ≡ b} {r s : b ≡ c} → ∀ (α : p ≡ q) (β : r ≡ s) → p ∙ r ≡ q ∙ s _*_ {_} {_} {_} {_} {p} {q} {r} {s} α β = α∙r ∙ q∙β where α∙r : p ∙ r ≡ q ∙ r α∙r = pwr r α q∙β : q ∙ r ≡ q ∙ s q∙β = pwl q β _*'_ : ∀ {A : Set} {a b c : A} {p q : a ≡ b} {r s : b ≡ c} → ∀ (α : p ≡ q) (β : r ≡ s) → p ∙ r ≡ q ∙ s _*'_ {_} {_} {_} {_} {p} {q} {r} {s} α β = p∙β ∙ α∙s where p∙β : p ∙ r ≡ p ∙ s p∙β = pwl p β α∙s : p ∙ s ≡ q ∙ s α∙s = pwr s α pwr-ru : ∀ {A : Set} {a : A} (p : a ≡ a) (α : refl a ≡ p) → pwr (refl a) α ≡ α ∙ (inv (right_unit p)) pwr-ru {_} {_} (refl a) (refl (refl a)) = refl (refl (refl a)) pwl-lu : ∀ {A : Set} {a : A} (p : a ≡ a) (α : refl a ≡ p) → pwl (refl a) α ≡ α ∙ (inv (left_unit p)) pwl-lu {_} {_} (refl a) (refl (refl a)) = refl (refl (refl a)) *≡*' : ∀ {A : Set} {a b c : A} {p q : a ≡ b} {r s : b ≡ c} → ∀ (α : p ≡ q) (β : r ≡ s) → (α * β) ≡ (α *' β) *≡*' {_} {a} {a} {a} {refl a} {refl a} {refl a} {refl a} (refl (refl a)) (refl (refl a)) = refl ((refl ((refl a) ∙ (refl a))) ∙ (refl ((refl a) ∙ (refl a)))) ∙≡* : ∀ {A : Set} {a : A} → ∀ (α β : Ω (refl a)) → α ∙ β ≡ α * β ∙≡* {_} {a} α β = inv (redua) where redul : α * β ≡ α ∙ (pwl (refl a) β) redul = (pwr (pwl (refl a) β) (pwr-ru (refl a) α)) ∙ (pwr (pwl (refl a) β) (right_unit α)) redua : α * β ≡ α ∙ β redua = (redul ∙ (pwl α (pwl-lu (refl a) β))) ∙ (pwl α (right_unit β)) *'≡∙ : ∀ {A : Set} {a : A} → ∀ (α β : Ω (refl a)) → α *' β ≡ β ∙ α *'≡∙ {_} {a} α β = redua' where redul' : α *' β ≡ β ∙ (pwr (refl a) α) redul' = (pwr (pwr (refl a) α) (pwl-lu (refl a) β)) ∙ (pwr (pwr (refl a) α) (right_unit β)) redua' : α *' β ≡ β ∙ α redua' = redul' ∙ ((pwl β (pwr-ru (refl a) α)) ∙ (pwl β (right_unit α))) -- finally, we are able to prove that the higher path group is commutative Ω²-comm : ∀ {A : Set} {a : A} → ∀ (α β : Ω (refl a)) → α ∙ β ≡ β ∙ α Ω²-comm α β = ((∙≡* α β) ∙ (*≡*' α β)) ∙ (*'≡∙ α β) -- ------------------------------------ -- functions behave functorially -- the action on paths ap : ∀ {A B : Set} {x y : A} → ∀ (f : A → B) (p : x ≡ y) → f x ≡ f y ap {_} {_} {x} {x} f (refl x) = refl (f x) -- ap acts like a functor ap∙ : ∀ {A B : Set} {x y z : A} → ∀ (f : A → B) (p : x ≡ y) (q : y ≡ z) → ap f (p ∙ q) ≡ (ap f p) ∙ (ap f q) ap∙ {_} {_} {x} {x} {x} f (refl x) (refl x) = inv (left_unit (refl (f x))) apinv : ∀ {A B : Set} {x y : A} → ∀ (f : A → B) (p : x ≡ y) → ap f (inv p) ≡ inv (ap f p) apinv {_} {_} {x} {x} f (refl x) = refl (refl (f x)) apcomp : ∀ {A B C : Set} {x y : A} → ∀ (f : A → B) (g : B → C) (p : x ≡ y) → ap g (ap f p) ≡ ap (comp g f) p apcomp {_} {_} {_} {x} {x} f g (refl x) = refl (refl (g (f x))) apid : ∀ {A : Set} {x y : A} → ∀ (p : x ≡ y) → ap id p ≡ p apid {_} {x} {x} (refl x) = refl (refl x) -- the transport action, which is action on dependent types tr : ∀ {A : Set} {B : A → Set} → ∀ {x y : A} → ∀ (p : x ≡ y) → B x → B y tr {A} {B} {x} {x} (refl x) = id <<<<<<< HEAD ======= trc : ∀ {A B : Set} {x y : A} (p : x ≡ y) (b : B) → tr {A} {λ x → B} p b ≡ b trc {_} {_} {x} {x} (refl x) b = refl b >>>>>>> a0dc66dca08059f740d9290f3d1cad1bb007d721 -- If you think about this, this is not obvious from a classical point of view. -- The existence of the transport function tells us that the dependent type -- B : A → Set is always going to be continuous, since whenever we have a path -- in the base A from x to y, and whenever we're given a point in B x, we can -- construct a value in B y, using the path in the base. -- path lifting lift : ∀ {A : Set} {B : A → Set} → ∀ {x y : A} → ∀ (p : x ≡ y) → ∀ (b : B x) → (x , b) ≡ y , (tr {A} {B} p b) lift {A} {B} {x} {x} (refl x) b = refl (x , b) -- the dependent mapping functor <<<<<<< HEAD apd : ∀ {A : Set} {B : A → Set} {x y : A} → ∀ (f : (∀ (a : A) → B a)) → ∀ (p : x ≡ y) → tr {A} {B} {x} {y} p (f x) ≡ f y apd {A} {B} {x} {x} f (refl x) = refl (tr {A} {B} {x} {x} (refl x) (f x)) -- the dependent and non-dependent ap(d) is closely related trc : ∀ {A B : Set} {x y : A} (p : x ≡ y) (b : B) → tr {A} {λ x → B} p b ≡ b trc {_} {_} {x} {x} (refl x) b = refl b -- and now we can prove the following: apd≡ap : ∀ {A B : Set} {x y : A} → ∀ (f : A → B) (p : x ≡ y) → apd f p ≡ trc p (f x) ∙ (ap f p) apd≡ap {_} {_} {x} {x} f (refl x) = refl (refl (f x)) -- some useful properties about transport tr∙ : ∀ {A : Set} {B : A → Set} {x y z : A} → ∀ (p : x ≡ y) (q : y ≡ z) → ∀ (b : B x) → tr {A} {B} q (tr {A} {B} p b) ≡ tr {A} {B} (p ∙ q) b tr∙ {_} {_} {x} {x} {x} (refl x) (refl x) b = refl b trcomp : ∀ {A B : Set} {P : B → Set} {x y : A} → ∀ (f : A → B) (p : x ≡ y) → ∀ (b : P (f x)) → tr {A} {λ a → P (f a)} p b ≡ tr {B} {P} (ap f p) b trcomp {_} {_} {_} {x} {x} f (refl x) b = refl b trhi : ∀ {A : Set} {P Q : A → Set} {x y : A} → ∀ (f : ∀ (x : A) → P x → Q x) → ∀ (p : x ≡ y) (b : P x) → f y (tr {A} {P} p b) ≡ tr {A} {Q} p (f x b) trhi {_} {_} {_} {x} {x} f (refl x) b = refl (f x b) ======= apd : ∀ {A : Set} {B : A → Set} → ∀ (f : (∀ (a : A) → B a)) → ∀ (x y : A) (p : x ≡ y) → tr {A} {B} {x} {y} p (f x) ≡ f y apd {A} {B} f x x (refl x) = refl (tr {A} {B} {x} {x} (refl x) (f x)) -- apd helps to construct a >>>>>>> a0dc66dca08059f740d9290f3d1cad1bb007d721
{ "alphanum_fraction": 0.4373987791, "avg_line_length": 39.9353233831, "ext": "agda", "hexsha": "2b98effbdd137cabbbd32446704a078c5694a0d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andyfreeyy/agda_and_math", "max_forks_repo_path": "HoTT/Identity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andyfreeyy/agda_and_math", "max_issues_repo_path": "HoTT/Identity.agda", "max_line_length": 80, "max_stars_count": 2, "max_stars_repo_head_hexsha": "76b9ef64626b6d3bbb7ace4f1a16aeb447c54328", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andyfreeyy/agda_and_math", "max_stars_repo_path": "HoTT/Identity.agda", "max_stars_repo_stars_event_max_datetime": "2020-05-24T10:56:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T09:01:42.000Z", "num_tokens": 3843, "size": 8027 }
open import Agda.Builtin.List open import Agda.Builtin.Reflection open import Agda.Builtin.Unit open import Agda.Builtin.Nat -- setup infixl 5 _>>=_ _>>=_ = bindTC defToTerm : Name → Definition → List (Arg Term) → Term defToTerm _ (function cs) as = pat-lam cs as defToTerm _ (data-cons d) as = con d as defToTerm _ _ _ = unknown derefImmediate : Term → TC Term derefImmediate (def f args) = getDefinition f >>= λ f' → returnTC (defToTerm f f' args) derefImmediate x = returnTC x macro reflect : ∀ {ℓ} {t : Set ℓ} → t → Term → TC ⊤ reflect x a = quoteTC x >>= derefImmediate >>= quoteTC >>= unify a unfold : Name → Term → TC ⊤ unfold x a = getDefinition x >>= λ d → unify a (defToTerm x d []) -- crash data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) vid vid' : ∀ n → Vec Nat n → Vec Nat n vid n [] = [] vid n (x ∷ xs) = x ∷ xs vid' = unfold vid crash : Term crash = reflect vid len : ∀ {n} → Vec Nat n → Nat len [] = 0 len (x ∷ xs) = suc (len xs) -- Forces different order in clause tel and patterns f f' : ∀ n → Vec Nat n → Vec Nat n → Nat f n xs [] = n f n xs (y ∷ ys) = n + y + len xs + len ys f' = unfold f
{ "alphanum_fraction": 0.6135021097, "avg_line_length": 22.358490566, "ext": "agda", "hexsha": "9cf0dae638c83c165bbf1685511e7fe28520dccc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2165.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2165.agda", "max_line_length": 87, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2165.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 422, "size": 1185 }
open import Agda.Primitive using (lzero; lsuc; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; setoid; cong; trans) import Function.Equality open import Relation.Binary using (Setoid) import Categories.Category import Categories.Functor import Categories.Category.Instance.Setoids import Categories.Monad.Relative import Categories.Category.Equivalence import Categories.Category.Cocartesian import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.VRenaming import SecondOrder.Term import SecondOrder.IndexedCategory import SecondOrder.RelativeKleisli module SecondOrder.Substitution {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.Signature.Signature Σ open SecondOrder.Metavariable Σ open SecondOrder.Term Σ open SecondOrder.VRenaming Σ -- substitution infix 4 _⊕_⇒ˢ_ _⊕_⇒ˢ_ : ∀ (Θ : MContext) (Γ Δ : VContext) → Set ℓ Θ ⊕ Γ ⇒ˢ Δ = ∀ {A} (x : A ∈ Γ) → Term Θ Δ A -- syntactic equality of substitutions infix 5 _≈ˢ_ _≈ˢ_ : ∀ {Θ} {Γ Δ} (σ τ : Θ ⊕ Γ ⇒ˢ Δ) → Set ℓ _≈ˢ_ {Θ} {Γ} σ τ = ∀ {A} (x : A ∈ Γ) → σ x ≈ τ x -- equality of substitutions form a setoid ≈ˢ-refl : ∀ {Θ Γ Δ} {σ : Θ ⊕ Γ ⇒ˢ Δ} → σ ≈ˢ σ ≈ˢ-refl x = ≈-refl ≈ˢ-sym : ∀ {Θ Γ Δ} {σ τ : Θ ⊕ Γ ⇒ˢ Δ} → σ ≈ˢ τ → τ ≈ˢ σ ≈ˢ-sym eq x = ≈-sym (eq x) ≈ˢ-trans : ∀ {Θ Γ Δ} {σ τ μ : Θ ⊕ Γ ⇒ˢ Δ} → σ ≈ˢ τ → τ ≈ˢ μ → σ ≈ˢ μ ≈ˢ-trans eq1 eq2 x = ≈-trans (eq1 x) (eq2 x) substitution-setoid : ∀ (Γ Δ : VContext) (Θ : MContext) → Setoid ℓ ℓ substitution-setoid Γ Δ Θ = record { Carrier = Θ ⊕ Γ ⇒ˢ Δ ; _≈_ = λ σ τ → σ ≈ˢ τ ; isEquivalence = record { refl = λ {σ} x → ≈ˢ-refl {σ = σ} x ; sym = ≈ˢ-sym ; trans = ≈ˢ-trans } } congˢ : ∀ {Θ} {Γ Δ} {A} {σ τ : Θ ⊕ Γ ⇒ˢ Δ} {x : A ∈ Γ} → σ ≈ˢ τ → σ x ≈ τ x congˢ {x = x} eq = eq x congˢ-var : ∀ {Θ} {Γ Δ} {A} {σ : Θ ⊕ Γ ⇒ˢ Δ} {x y : A ∈ Γ} → x ≡ y → σ x ≈ σ y congˢ-var refl = ≈-refl -- extension of a substitution ⇑ˢ : ∀ {Θ Γ Δ Ξ} → Θ ⊕ Γ ⇒ˢ Δ → Θ ⊕ (Γ ,, Ξ) ⇒ˢ (Δ ,, Ξ) ⇑ˢ σ (var-inl x) = [ var-inl ]ᵛ σ x ⇑ˢ σ (var-inr y) = tm-var (var-inr y) -- extension respects equality of substitutions ⇑ˢ-resp-≈ˢ : ∀ {Θ Γ Δ Ξ} {σ τ : Θ ⊕ Γ ⇒ˢ Δ} → σ ≈ˢ τ → ⇑ˢ {Ξ = Ξ} σ ≈ˢ ⇑ˢ {Ξ = Ξ} τ ⇑ˢ-resp-≈ˢ ξ (var-inl x) = []ᵛ-resp-≈ (ξ x) ⇑ˢ-resp-≈ˢ ξ (var-inr y) = ≈-refl -- the action of a renaming on a substitution infixr 6 _ᵛ∘ˢ_ _ᵛ∘ˢ_ : ∀ {Θ} {Γ Δ Ξ} (ρ : Δ ⇒ᵛ Ξ) (σ : Θ ⊕ Γ ⇒ˢ Δ) → Θ ⊕ Γ ⇒ˢ Ξ (ρ ᵛ∘ˢ σ) x = [ ρ ]ᵛ (σ x) infixl 6 _ˢ∘ᵛ_ _ˢ∘ᵛ_ : ∀ {Θ} {Γ Δ Ξ} (σ : Θ ⊕ Δ ⇒ˢ Ξ) (ρ : Γ ⇒ᵛ Δ) → Θ ⊕ Γ ⇒ˢ Ξ (σ ˢ∘ᵛ ρ) x = σ (ρ x) -- extension commutes with renaming action ⇑ˢ-resp-ˢ∘ᵛ : ∀ {Θ} {Γ Δ Ξ Ψ} {ρ : Γ ⇒ᵛ Δ} {σ : Θ ⊕ Δ ⇒ˢ Ξ} → ⇑ˢ {Ξ = Ψ} (σ ˢ∘ᵛ ρ) ≈ˢ ⇑ˢ σ ˢ∘ᵛ ⇑ᵛ ρ ⇑ˢ-resp-ˢ∘ᵛ (var-inl x) = ≈-refl ⇑ˢ-resp-ˢ∘ᵛ (var-inr x) = ≈-refl -- the action of a substitution on a term infix 6 [_]ˢ_ [_]ˢ_ : ∀ {Θ Γ Δ A} → Θ ⊕ Γ ⇒ˢ Δ → Term Θ Γ A → Term Θ Δ A [ σ ]ˢ (tm-var x) = σ x [ σ ]ˢ (tm-meta M ts) = tm-meta M (λ i → [ σ ]ˢ ts i) [ σ ]ˢ (tm-oper f es) = tm-oper f (λ i → [ ⇑ˢ σ ]ˢ es i) -- composition of substitutions infixl 7 _∘ˢ_ _∘ˢ_ : ∀ {Θ} {Γ Δ Ξ} → Θ ⊕ Δ ⇒ˢ Ξ → Θ ⊕ Γ ⇒ˢ Δ → Θ ⊕ Γ ⇒ˢ Ξ (σ ∘ˢ τ) x = [ σ ]ˢ τ x -- substitution action respects equality of terms []ˢ-resp-≈ : ∀ {Θ} {Γ Δ} {A} (σ : Θ ⊕ Γ ⇒ˢ Δ) {t u : Term Θ Γ A} → t ≈ u → [ σ ]ˢ t ≈ [ σ ]ˢ u []ˢ-resp-≈ σ (≈-≡ refl) = ≈-refl []ˢ-resp-≈ σ (≈-meta ξ) = ≈-meta (λ i → []ˢ-resp-≈ σ (ξ i)) []ˢ-resp-≈ σ (≈-oper ξ) = ≈-oper (λ i → []ˢ-resp-≈ (⇑ˢ σ) (ξ i)) -- substitution action respects equality of substitutions []ˢ-resp-≈ˢ : ∀ {Θ} {Γ Δ} {A} {σ τ : Θ ⊕ Γ ⇒ˢ Δ} (t : Term Θ Γ A) → σ ≈ˢ τ → [ σ ]ˢ t ≈ [ τ ]ˢ t []ˢ-resp-≈ˢ (tm-var x) ξ = ξ x []ˢ-resp-≈ˢ (tm-meta M ts) ξ = ≈-meta (λ i → []ˢ-resp-≈ˢ (ts i) ξ) []ˢ-resp-≈ˢ (tm-oper f es) ξ = ≈-oper (λ i → []ˢ-resp-≈ˢ (es i) (⇑ˢ-resp-≈ˢ ξ)) -- substitution actions respects both equalities []ˢ-resp-≈ˢ-≈ : ∀ {Θ} {Γ Δ} {A} {σ τ : Θ ⊕ Γ ⇒ˢ Δ} {t u : Term Θ Γ A} → σ ≈ˢ τ → t ≈ u → [ σ ]ˢ t ≈ [ τ ]ˢ u []ˢ-resp-≈ˢ-≈ {τ = τ} {t = t} ζ ξ = ≈-trans ([]ˢ-resp-≈ˢ t ζ) ([]ˢ-resp-≈ τ ξ) -- identity substitution idˢ : ∀ {Θ Γ} → Θ ⊕ Γ ⇒ˢ Γ idˢ = tm-var -- extension preserves identity ⇑ˢ-resp-idˢ : ∀ {Θ} {Γ Δ} → ⇑ˢ idˢ ≈ˢ idˢ {Θ = Θ} {Γ = Γ ,, Δ} ⇑ˢ-resp-idˢ (var-inl x) = ≈-refl ⇑ˢ-resp-idˢ (var-inr y) = ≈-refl -- the identity substution acts trivially [idˢ] : ∀ {Θ} {Γ} {A} {t : Term Θ Γ A} → [ idˢ ]ˢ t ≈ t [idˢ] {t = tm-var x} = ≈-refl [idˢ] {t = tm-meta M ts} = ≈-meta (λ i → [idˢ]) [idˢ] {t = tm-oper f es} = ≈-oper (λ i → ≈-trans ([]ˢ-resp-≈ˢ (es i) ⇑ˢ-resp-idˢ) [idˢ]) -- the identity substitution preserves equality of terms [idˢ]-resp-≈ : ∀ {Θ} {Γ} {A} {t s : Term Θ Γ A} → t ≈ s → [ idˢ ]ˢ t ≈ s [idˢ]-resp-≈ t≈s = ≈-trans ([]ˢ-resp-≈ idˢ t≈s) [idˢ] -- if a substiution is equal to the identity then it acts trivially ≈ˢ-idˢ-[]ˢ : ∀ {Θ} {Γ} {A} {σ : Θ ⊕ Γ ⇒ˢ Γ} {t : Term Θ Γ A} → σ ≈ˢ idˢ → [ σ ]ˢ t ≈ t ≈ˢ-idˢ-[]ˢ {t = t} ξ = ≈-trans ([]ˢ-resp-≈ˢ t ξ) [idˢ] -- interaction of extension and right renaming action [⇑ˢ∘ᵛ] : ∀ {Θ} {A} {Γ Δ Ξ Ψ} {σ : Θ ⊕ Δ ⇒ˢ Ξ} {ρ : Γ ⇒ᵛ Δ} (t : Term Θ (Γ ,, Ψ) A) → [ ⇑ˢ (σ ˢ∘ᵛ ρ) ]ˢ t ≈ [ ⇑ˢ σ ]ˢ [ ⇑ᵛ ρ ]ᵛ t [⇑ˢ∘ᵛ] (tm-var (var-inl x)) = ≈-refl [⇑ˢ∘ᵛ] (tm-var (var-inr x)) = ≈-refl [⇑ˢ∘ᵛ] (tm-meta M ts) = ≈-meta (λ i → [⇑ˢ∘ᵛ] (ts i)) [⇑ˢ∘ᵛ] (tm-oper f es) = ≈-oper (λ i → ≈-trans ([]ˢ-resp-≈ˢ (es i) (⇑ˢ-resp-≈ˢ ⇑ˢ-resp-ˢ∘ᵛ)) ([⇑ˢ∘ᵛ] (es i))) -- interaction of extension and left renaming action ⇑ˢ-resp-ᵛ∘ˢ : ∀ {Θ} {Γ Δ Ξ Ψ} {σ : Θ ⊕ Γ ⇒ˢ Δ} {ρ : Δ ⇒ᵛ Ξ} → ⇑ˢ {Ξ = Ψ} (ρ ᵛ∘ˢ σ) ≈ˢ ⇑ᵛ ρ ᵛ∘ˢ ⇑ˢ σ ⇑ˢ-resp-ᵛ∘ˢ (var-inl x) = ≈-trans (≈-sym [∘ᵛ]) (≈-trans ([]ᵛ-resp-≡ᵛ (λ _ → refl)) [∘ᵛ]) ⇑ˢ-resp-ᵛ∘ˢ (var-inr y) = ≈-refl [⇑ᵛ∘ˢ] : ∀ {Θ} {A} {Γ Δ Ξ Ψ} {σ : Θ ⊕ Γ ⇒ˢ Δ} {ρ : Δ ⇒ᵛ Ξ} (t : Term Θ (Γ ,, Ψ) A) → [ ⇑ˢ (ρ ᵛ∘ˢ σ) ]ˢ t ≈ [ ⇑ᵛ ρ ]ᵛ ([ ⇑ˢ σ ]ˢ t) [⇑ᵛ∘ˢ] (tm-var x) = ⇑ˢ-resp-ᵛ∘ˢ x [⇑ᵛ∘ˢ] (tm-meta M ts) = ≈-meta (λ i → [⇑ᵛ∘ˢ] (ts i)) [⇑ᵛ∘ˢ] (tm-oper f es) = ≈-oper (λ i → ≈-trans ([]ˢ-resp-≈ˢ (es i) (⇑ˢ-resp-≈ˢ ⇑ˢ-resp-ᵛ∘ˢ)) ([⇑ᵛ∘ˢ] (es i))) -- functoriality of left renaming action [ᵛ∘ˢ] : ∀ {Θ} {A} {Γ Δ Ξ} {ρ : Δ ⇒ᵛ Ξ} {σ : Θ ⊕ Γ ⇒ˢ Δ} (t : Term Θ Γ A) → [ ρ ᵛ∘ˢ σ ]ˢ t ≈ [ ρ ]ᵛ [ σ ]ˢ t [ᵛ∘ˢ] (tm-var x) = ≈-refl [ᵛ∘ˢ] (tm-meta M ts) = ≈-meta (λ i → [ᵛ∘ˢ] (ts i)) [ᵛ∘ˢ] (tm-oper f es) = ≈-oper (λ i → [⇑ᵛ∘ˢ] (es i)) -- functoriality of right renaming action [ˢ∘ᵛ] : ∀ {Θ} {A} {Γ Δ Ξ} {σ : Θ ⊕ Δ ⇒ˢ Ξ} {ρ : Γ ⇒ᵛ Δ} (t : Term Θ Γ A) → [ σ ˢ∘ᵛ ρ ]ˢ t ≈ [ σ ]ˢ [ ρ ]ᵛ t [ˢ∘ᵛ] (tm-var x) = ≈-refl [ˢ∘ᵛ] (tm-meta M ts) = ≈-meta (λ i → [ˢ∘ᵛ] (ts i)) [ˢ∘ᵛ] (tm-oper f es) = ≈-oper (λ i → [⇑ˢ∘ᵛ] (es i)) -- composition commutes with extension ⇑ˢ-resp-∘ˢ : ∀ {Θ} {Γ Δ Ξ Ψ} {σ : Θ ⊕ Γ ⇒ˢ Δ} {τ : Θ ⊕ Δ ⇒ˢ Ξ} → ⇑ˢ {Ξ = Ψ} (τ ∘ˢ σ) ≈ˢ ⇑ˢ τ ∘ˢ ⇑ˢ σ ⇑ˢ-resp-∘ˢ {σ = σ} {τ = τ} (var-inl x) = ≈-trans (≈-sym ([ᵛ∘ˢ] (σ x))) ([ˢ∘ᵛ] (σ x)) ⇑ˢ-resp-∘ˢ (var-inr y) = ≈-refl -- substitition action is functorial [∘ˢ] : ∀ {Θ} {Γ Δ Ξ} {A} {σ : Θ ⊕ Γ ⇒ˢ Δ} {τ : Θ ⊕ Δ ⇒ˢ Ξ} (t : Term Θ Γ A) → [ τ ∘ˢ σ ]ˢ t ≈ [ τ ]ˢ ([ σ ]ˢ t) [∘ˢ] (tm-var x) = ≈-refl [∘ˢ] (tm-meta M ts) = ≈-meta (λ i → [∘ˢ] (ts i)) [∘ˢ] (tm-oper f es) = ≈-oper (λ i → ≈-trans ([]ˢ-resp-≈ˢ (es i) ⇑ˢ-resp-∘ˢ) ([∘ˢ] (es i))) -- Terms form a relative monad module _ where open Categories.Category open Categories.Functor using (Functor) open Categories.Category.Instance.Setoids open Categories.Monad.Relative open Function.Equality using () renaming (setoid to Π-setoid) open Categories.Category.Equivalence using (StrongEquivalence) open import SecondOrder.IndexedCategory open import SecondOrder.RelativeKleisli -- The embedding of contexts into setoids indexed by sorts slots : Functor VContexts (IndexedCategory sort (Setoids ℓ ℓ)) slots = record { F₀ = λ Γ A → setoid (A ∈ Γ) ; F₁ = λ ρ A → record { _⟨$⟩_ = ρ ; cong = cong ρ } ; identity = λ A ξ → ξ ; homomorphism = λ {_} {_} {_} {ρ} {σ} A {_} {_} ξ → cong σ (cong ρ ξ) ; F-resp-≈ = λ ξ A ζ → trans (ξ _) (cong _ ζ) } module _ {Θ : MContext} where open Categories.Category open Categories.Functor using (Functor) open Categories.Category.Instance.Setoids open Categories.Monad.Relative open Function.Equality using () renaming (setoid to Π-setoid) open Categories.Category.Equivalence using (StrongEquivalence) open import SecondOrder.IndexedCategory open import SecondOrder.RelativeKleisli -- The relative monad of terms over contexts Term-Monad : Monad slots Term-Monad = let open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) in record { F₀ = Term-setoid Θ ; unit = λ A → record { _⟨$⟩_ = idˢ ; cong = λ ξ → ≈-≡ (cong idˢ ξ) } ; extend = λ σ A → record { _⟨$⟩_ = [ (σ _ ⟨$⟩_) ]ˢ_ ; cong = []ˢ-resp-≈ (σ _ ⟨$⟩_)} ; identityʳ = λ {_} {_} {σ} A {_} {_} ξ → func-cong (σ A) ξ ; identityˡ = λ A → ≈-trans [idˢ] ; assoc = λ {_} {_} {_} {σ} {ρ} A {_} {t} ξ → ≈-trans ([]ˢ-resp-≈ _ ξ) ([∘ˢ] t) ; extend-≈ = λ {Γ} {Δ} {σ} {ρ} ζ B {s} {t} ξ → []ˢ-resp-≈ˢ-≈ (λ x → ζ _ refl) ξ } -- the category of contexts and substitutions -- we show below that the category of contexts and substitiions is equivalent -- to the Kleisli category for the Term relative monad. However, we define -- the category of contexts and substitutions directly, as that it is easier -- to work with it Terms : Category ℓ ℓ ℓ Terms = record { Obj = VContext ; _⇒_ = Θ ⊕_⇒ˢ_ ; _≈_ = _≈ˢ_ ; id = idˢ ; _∘_ = _∘ˢ_ ; assoc = λ {Γ} {Δ} {Ξ} {Ψ} {σ} {τ} {ψ} {A} x → [∘ˢ] (σ x) ; sym-assoc = λ {Γ} {Δ} {Ξ} {Ψ} {σ} {τ} {ψ} {A} x → ≈-sym ([∘ˢ] (σ x)) ; identityˡ = λ x → [idˢ] ; identityʳ = λ x → ≈-refl ; identity² = λ x → ≈-refl ; equiv = record { refl = λ {σ} {A} → ≈ˢ-refl {σ = σ} ; sym = ≈ˢ-sym ; trans = ≈ˢ-trans } ; ∘-resp-≈ = λ f≈ˢg g≈ˢi x → []ˢ-resp-≈ˢ-≈ f≈ˢg (g≈ˢi x) } Terms-is-Kleisli : StrongEquivalence Terms (Kleisli Term-Monad) Terms-is-Kleisli = record { F = record { F₀ = λ Γ → Γ ; F₁ = λ σ A → record { _⟨$⟩_ = λ x → σ x ; cong = λ i≡j → ≈-≡ (cong σ i≡j) } ; identity = λ A eq → ≈-≡ (cong idˢ eq) ; homomorphism = λ {Γ} {Δ} {Ξ} {σ} {τ} A eq → ≈-≡ (cong (λ x → [ τ ]ˢ σ x) eq) ; F-resp-≈ = λ {Γ} {Δ} {σ} {τ} hom_eq A eq → ≈-trans (congˢ hom_eq) (≈-≡ (cong τ eq)) } ; G = let open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) in record { F₀ = λ Γ → Γ ; F₁ = λ {Γ} {Δ} σ {A} → λ x → σ A ⟨$⟩ x ; identity = λ x → ≈-refl ; homomorphism = λ x → ≈-refl ; F-resp-≈ = λ {Γ} {Δ} {σ} {τ} σ≈τ {A} x → σ≈τ A refl } ; weak-inverse = let open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) in record { F∘G≈id = record { F⇒G = record { η = λ Γ A → record { _⟨$⟩_ = idˢ ; cong = λ i≡j → ≈-≡ (cong idˢ i≡j) } ; commute = λ σ A x≡y → [idˢ]-resp-≈ (≈-≡ (cong (λ x → σ A ⟨$⟩ x) x≡y)) ; sym-commute = λ σ A x≡y → ≈-sym ([idˢ]-resp-≈ (≈-≡ (cong (λ x → σ A ⟨$⟩ x ) (sym x≡y)))) } ; F⇐G = record { η = λ Γ A → record { _⟨$⟩_ = idˢ ; cong = λ i≡j → ≈-≡ (cong idˢ i≡j) } ; commute = λ σ A x≡y → [idˢ]-resp-≈ (≈-≡ (cong (λ x → σ A ⟨$⟩ x) x≡y)) ; sym-commute = λ σ A x≡y → ≈-sym ([idˢ]-resp-≈ (≈-≡ (cong (λ x → σ A ⟨$⟩ x ) (sym x≡y)))) } ; iso = λ Γ → record { isoˡ = λ A x≡y → ≈-≡ (cong tm-var x≡y) ; isoʳ = λ A x≡y → ≈-≡ (cong tm-var x≡y) } } ; G∘F≈id = record { F⇒G = record { η = λ Γ x → tm-var x ; commute = λ σ x → [idˢ] ; sym-commute = λ σ x → ≈-sym [idˢ] } ; F⇐G = record { η = λ Γ x → tm-var x ; commute = λ σ x → [idˢ] ; sym-commute = λ σ x → ≈-sym [idˢ] } ; iso = λ Γ → record { isoˡ = λ x → ≈-refl ; isoʳ = λ x → ≈-refl } } } } -- the binary coproduct structure on Terms infixl 7 [_,_]ˢ [_,_]ˢ : ∀ {Γ Δ Ξ} (σ : Θ ⊕ Γ ⇒ˢ Ξ) (τ : Θ ⊕ Δ ⇒ˢ Ξ) → Θ ⊕ (Γ ,, Δ) ⇒ˢ Ξ [ σ , τ ]ˢ (var-inl x) = σ x [ σ , τ ]ˢ (var-inr y) = τ y inlˢ : ∀ {Γ Δ} → Θ ⊕ Γ ⇒ˢ Γ ,, Δ inlˢ x = tm-var (var-inl x) inrˢ : ∀ {Γ Δ} → Θ ⊕ Δ ⇒ˢ Γ ,, Δ inrˢ y = tm-var (var-inr y) [,]ˢ-resp-≈ˢ : ∀ {Γ Δ Ξ} {σ₁ σ₂ : Θ ⊕ Γ ⇒ˢ Ξ} {τ₁ τ₂ : Θ ⊕ Δ ⇒ˢ Ξ} → σ₁ ≈ˢ σ₂ → τ₁ ≈ˢ τ₂ → [ σ₁ , τ₁ ]ˢ ≈ˢ [ σ₂ , τ₂ ]ˢ [,]ˢ-resp-≈ˢ ζ ξ (var-inl x) = ζ x [,]ˢ-resp-≈ˢ ζ ξ (var-inr y) = ξ y uniqueˢ : ∀ {Γ Δ Ξ} {τ : Θ ⊕ Γ ,, Δ ⇒ˢ Ξ} {ρ : Θ ⊕ Γ ⇒ˢ Ξ} {σ : Θ ⊕ Δ ⇒ˢ Ξ} → τ ∘ˢ inlˢ ≈ˢ ρ → τ ∘ˢ inrˢ ≈ˢ σ → [ ρ , σ ]ˢ ≈ˢ τ uniqueˢ ξ ζ (var-inl x) = ≈-sym (ξ x) uniqueˢ ξ ζ (var-inr y) = ≈-sym (ζ y) Terms-Coproduct : Categories.Category.Cocartesian.BinaryCoproducts Terms Terms-Coproduct = let open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) in record { coproduct = λ {Γ Δ} → record { A+B = Γ ,, Δ ; i₁ = inlˢ ; i₂ = inrˢ ; [_,_] = [_,_]ˢ ; inject₁ = λ x → ≈-≡ refl ; inject₂ = λ x → ≈-≡ refl ; unique = λ {Ξ} {h} p₁ p₂ → uniqueˢ {τ = h} p₁ p₂ } } open Categories.Category.Cocartesian.BinaryCoproducts Terms-Coproduct -- the sum of subsitutions infixl 6 _+ˢ_ _+ˢ_ : ∀ {Γ₁ Γ₂ Δ₁ Δ₂} (σ : Θ ⊕ Γ₁ ⇒ˢ Δ₁) (τ : Θ ⊕ Γ₂ ⇒ˢ Δ₂) → Θ ⊕ Γ₁ ,, Γ₂ ⇒ˢ Δ₁ ,, Δ₂ σ +ˢ τ = σ +₁ τ -- reassociations of context sums assoc-l : ∀ {Γ Δ Ξ} → Θ ⊕ (Γ ,, Δ) ,, Ξ ⇒ˢ Γ ,, (Δ ,, Ξ) assoc-l (var-inl (var-inl x)) = tm-var (var-inl x) assoc-l (var-inl (var-inr y)) = tm-var (var-inr (var-inl y)) assoc-l (var-inr z) = tm-var (var-inr (var-inr z)) assoc-r : ∀ {Γ Δ Ξ} → Θ ⊕ Γ ,, (Δ ,, Ξ) ⇒ˢ (Γ ,, Δ) ,, Ξ assoc-r (var-inl x) = tm-var (var-inl (var-inl x)) assoc-r (var-inr (var-inl y)) = tm-var (var-inl (var-inr y)) assoc-r (var-inr (var-inr z)) = tm-var (var-inr z) assoc-lr : ∀ {Γ Δ Ξ} → assoc-l {Γ = Γ} {Δ = Δ} {Ξ = Ξ} ∘ˢ assoc-r {Γ = Γ} {Δ = Δ} {Ξ = Ξ} ≈ˢ idˢ assoc-lr (var-inl x) = ≈-refl assoc-lr (var-inr (var-inl y)) = ≈-refl assoc-lr (var-inr (var-inr y)) = ≈-refl assoc-rl : ∀ {Γ Δ Ξ} → assoc-r {Γ = Γ} {Δ = Δ} {Ξ = Ξ} ∘ˢ assoc-l {Γ = Γ} {Δ = Δ} {Ξ = Ξ} ≈ˢ idˢ assoc-rl (var-inl (var-inl x)) = ≈-refl assoc-rl (var-inl (var-inr x)) = ≈-refl assoc-rl (var-inr z) = ≈-refl -- summing with the empty context is the unit sum-ctx-empty-r : ∀ {Γ} → Θ ⊕ Γ ,, ctx-empty ⇒ˢ Γ sum-ctx-empty-r (var-inl x) = tm-var x sum-ctx-empty-l : ∀ {Γ} → Θ ⊕ ctx-empty ,, Γ ⇒ˢ Γ sum-ctx-empty-l (var-inr x) = tm-var x
{ "alphanum_fraction": 0.4507016473, "avg_line_length": 36.5848214286, "ext": "agda", "hexsha": "d583e88e276c1196b68fe54f62a1ddef94bd95ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/Substitution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/Substitution.agda", "max_line_length": 110, "max_stars_count": 1, "max_stars_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejbauer/formal", "max_stars_repo_path": "src/SecondOrder/Substitution.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:00.000Z", "num_tokens": 7813, "size": 16390 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Functions.Definition open import Numbers.Naturals.Semiring open import Sets.Cardinality.Finite.Definition module Sets.Cardinality.Countable.Definition where record CountablyInfiniteSet {a : _} (A : Set a) : Set a where field counting : A → ℕ countingIsBij : Bijection counting data Countable {a : _} (A : Set a) : Set a where finite : FiniteSet A → Countable A infinite : CountablyInfiniteSet A → Countable A
{ "alphanum_fraction": 0.733197556, "avg_line_length": 27.2777777778, "ext": "agda", "hexsha": "97e62cfde68856375c430c4d7918ac0420625883", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Sets/Cardinality/Countable/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Sets/Cardinality/Countable/Definition.agda", "max_line_length": 61, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Sets/Cardinality/Countable/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 134, "size": 491 }
module L.Base.Unit where -- Reexport definitions open import L.Base.Unit.Core public
{ "alphanum_fraction": 0.7906976744, "avg_line_length": 17.2, "ext": "agda", "hexsha": "b0be1eccbbe996634a1ab61c8abdc7b74e9d7aaf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Base/Unit.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Base/Unit.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Base/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19, "size": 86 }
{-# OPTIONS --sized-types #-} open import Relation.Nullary open import Relation.Binary.PropositionalEquality module flcagl (A : Set) ( _≟_ : (a b : A) → Dec ( a ≡ b ) ) where open import Data.Bool hiding ( _≟_ ) -- open import Data.Maybe open import Level renaming ( zero to Zero ; suc to succ ) open import Size module List where data List (i : Size) (A : Set) : Set where [] : List i A _∷_ : {j : Size< i} (x : A) (xs : List j A) → List i A map : ∀{i A B} → (A → B) → List i A → List i B map f [] = [] map f ( x ∷ xs)= f x ∷ map f xs foldr : ∀{i} {A B : Set} → (A → B → B) → B → List i A → B foldr c n [] = n foldr c n (x ∷ xs) = c x (foldr c n xs) any : ∀{i A} → (A → Bool) → List i A → Bool any p xs = foldr _∨_ false (map p xs) module Lang where open List record Lang (i : Size) : Set where coinductive field ν : Bool δ : ∀{j : Size< i} → A → Lang j open Lang _∋_ : ∀{i} → Lang i → List i A → Bool l ∋ [] = ν l l ∋ ( a ∷ as ) = δ l a ∋ as trie : ∀{i} (f : List i A → Bool) → Lang i ν (trie f) = f [] δ (trie f) a = trie (λ as → f (a ∷ as)) ∅ : ∀{i} → Lang i ν ∅ = false δ ∅ x = ∅ ε : ∀{i} → Lang i ν ε = true δ ε x = ∅ open import Relation.Nullary.Decidable char : ∀{i} (a : A) → Lang i ν (char a) = false δ (char a) x = if ⌊ a ≟ x ⌋ then ε else ∅ compl : ∀{i} (l : Lang i) → Lang i ν (compl l) = not (ν l) δ (compl l) x = compl (δ l x) _∪_ : ∀{i} (k l : Lang i) → Lang i ν (k ∪ l) = ν k ∨ ν l δ (k ∪ l) x = δ k x ∪ δ l x _·_ : ∀{i} (k l : Lang i) → Lang i ν (k · l) = ν k ∧ ν l δ (k · l) x = let k′l = δ k x · l in if ν k then k′l ∪ δ l x else k′l _*_ : ∀{i} (k l : Lang i ) → Lang i ν (k * l) = ν k ∧ ν l δ (_*_ {i} k l) {j} x = let k′l : Lang j k′l = _*_ {j} (δ k {j} x) l in if ν k then _∪_ {j} k′l (δ l {j} x) else k′l _* : ∀{i} (l : Lang i) → Lang i ν (l *) = true δ (l *) x = δ l x · (l *) record _≅⟨_⟩≅_ (l : Lang ∞ ) i (k : Lang ∞) : Set where coinductive field ≅ν : ν l ≡ ν k ≅δ : ∀ {j : Size< i } (a : A ) → δ l a ≅⟨ j ⟩≅ δ k a open _≅⟨_⟩≅_ ≅refl : ∀{i} {l : Lang ∞} → l ≅⟨ i ⟩≅ l ≅ν ≅refl = refl ≅δ ≅refl a = ≅refl ≅sym : ∀{i} {k l : Lang ∞} (p : l ≅⟨ i ⟩≅ k) → k ≅⟨ i ⟩≅ l ≅ν (≅sym p) = sym (≅ν p) ≅δ (≅sym p) a = ≅sym (≅δ p a) ≅trans : ∀{i} {k l m : Lang ∞} ( p : k ≅⟨ i ⟩≅ l ) ( q : l ≅⟨ i ⟩≅ m ) → k ≅⟨ i ⟩≅ m ≅ν (≅trans p q) = trans (≅ν p) (≅ν q) ≅δ (≅trans p q) a = ≅trans (≅δ p a) (≅δ q a) open import Relation.Binary ≅isEquivalence : ∀(i : Size) → IsEquivalence _≅⟨ i ⟩≅_ ≅isEquivalence i = record { refl = ≅refl; sym = ≅sym; trans = ≅trans } Bis : ∀(i : Size) → Setoid _ _ Setoid.Carrier (Bis i) = Lang ∞ Setoid._≈_ (Bis i) = _≅⟨ i ⟩≅_ Setoid.isEquivalence (Bis i) = ≅isEquivalence i -- import Relation.Binary.EqReasoning as EqR import Relation.Binary.Reasoning.Setoid as EqR ≅trans′ : ∀ i (k l m : Lang ∞) ( p : k ≅⟨ i ⟩≅ l ) ( q : l ≅⟨ i ⟩≅ m ) → k ≅⟨ i ⟩≅ m ≅trans′ i k l m p q = begin k ≈⟨ p ⟩ l ≈⟨ q ⟩ m ∎ where open EqR (Bis i) open import Data.Bool.Properties union-assoc : ∀{i} (k {l m} : Lang ∞) → ((k ∪ l) ∪ m ) ≅⟨ i ⟩≅ ( k ∪ (l ∪ m) ) ≅ν (union-assoc k) = ∨-assoc (ν k) _ _ ≅δ (union-assoc k) a = union-assoc (δ k a) union-comm : ∀{i} (l k : Lang ∞) → (l ∪ k ) ≅⟨ i ⟩≅ ( k ∪ l ) ≅ν (union-comm l k) = ∨-comm (ν l) _ ≅δ (union-comm l k) a = union-comm (δ l a) (δ k a) union-idem : ∀{i} (l : Lang ∞) → (l ∪ l ) ≅⟨ i ⟩≅ l ≅ν (union-idem l) = ∨-idem _ ≅δ (union-idem l) a = union-idem (δ l a) union-emptyl : ∀{i}{l : Lang ∞} → (∅ ∪ l ) ≅⟨ i ⟩≅ l ≅ν union-emptyl = refl ≅δ union-emptyl a = union-emptyl union-cong : ∀{i}{k k′ l l′ : Lang ∞} (p : k ≅⟨ i ⟩≅ k′) (q : l ≅⟨ i ⟩≅ l′ ) → ( k ∪ l ) ≅⟨ i ⟩≅ ( k′ ∪ l′ ) ≅ν (union-cong p q) = cong₂ _∨_ (≅ν p) (≅ν q) ≅δ (union-cong p q) a = union-cong (≅δ p a) (≅δ q a) withExample : (P : Bool → Set) (p : P true) (q : P false) → {A : Set} (g : A → Bool) (x : A) → P (g x) withExample P p q g x with g x ... | true = p ... | false = q rewriteExample : {A : Set} {P : A → Set} {x : A} (p : P x) {g : A → A} (e : g x ≡ x) → P (g x) rewriteExample p e rewrite e = p infixr 6 _∪_ infixr 7 _·_ infix 5 _≅⟨_⟩≅_ union-congl : ∀{i}{k k′ l : Lang ∞} (p : k ≅⟨ i ⟩≅ k′) → ( k ∪ l ) ≅⟨ i ⟩≅ ( k′ ∪ l ) union-congl eq = union-cong eq ≅refl union-congr : ∀{i}{k l l′ : Lang ∞} (p : l ≅⟨ i ⟩≅ l′) → ( k ∪ l ) ≅⟨ i ⟩≅ ( k ∪ l′ ) union-congr eq = union-cong ≅refl eq union-swap24 : ∀{i} ({x y z w} : Lang ∞) → (x ∪ y) ∪ z ∪ w ≅⟨ i ⟩≅ (x ∪ z) ∪ y ∪ w union-swap24 {_} {x} {y} {z} {w} = begin (x ∪ y) ∪ z ∪ w ≈⟨ union-assoc x ⟩ x ∪ y ∪ z ∪ w ≈⟨ union-congr (≅sym ( union-assoc y)) ⟩ x ∪ ((y ∪ z) ∪ w) ≈⟨ ≅sym ( union-assoc x ) ⟩ (x ∪ ( y ∪ z)) ∪ w ≈⟨ union-congl (union-congr (union-comm y z )) ⟩ ( x ∪ (z ∪ y)) ∪ w ≈⟨ union-congl (≅sym ( union-assoc x )) ⟩ ((x ∪ z) ∪ y) ∪ w ≈⟨ union-assoc (x ∪ z) ⟩ (x ∪ z) ∪ y ∪ w ∎ where open EqR (Bis _) concat-union-distribr : ∀{i} (k {l m} : Lang ∞) → k · ( l ∪ m ) ≅⟨ i ⟩≅ ( k · l ) ∪ ( k · m ) ≅ν (concat-union-distribr k) = ∧-distribˡ-∨ (ν k) _ _ ≅δ (concat-union-distribr k) a with ν k ≅δ (concat-union-distribr k {l} {m}) a | true = begin δ k a · (l ∪ m) ∪ (δ l a ∪ δ m a) ≈⟨ union-congl (concat-union-distribr _) ⟩ (δ k a · l ∪ δ k a · m) ∪ (δ l a ∪ δ m a) ≈⟨ union-swap24 ⟩ (δ k a · l ∪ δ l a) ∪ (δ k a · m ∪ δ m a) ∎ where open EqR (Bis _) ≅δ (concat-union-distribr k) a | false = concat-union-distribr (δ k a) concat-union-distribl : ∀{i} (k {l m} : Lang ∞) → ( k ∪ l ) · m ≅⟨ i ⟩≅ ( k · m ) ∪ ( l · m ) ≅ν (concat-union-distribl k {l} {m}) = ∧-distribʳ-∨ _ (ν k) _ ≅δ (concat-union-distribl k {l} {m}) a with ν k | ν l ≅δ (concat-union-distribl k {l} {m}) a | false | false = concat-union-distribl (δ k a) ≅δ (concat-union-distribl k {l} {m}) a | false | true = begin (if false ∨ true then (δ k a ∪ δ l a) · m ∪ δ m a else (δ k a ∪ δ l a) · m) ≈⟨ ≅refl ⟩ ((δ k a ∪ δ l a) · m ) ∪ δ m a ≈⟨ union-congl (concat-union-distribl _) ⟩ (δ k a · m ∪ δ l a · m) ∪ δ m a ≈⟨ union-assoc _ ⟩ (δ k a · m) ∪ ( δ l a · m ∪ δ m a ) ≈⟨ ≅refl ⟩ (if false then δ k a · m ∪ δ m a else δ k a · m) ∪ (if true then δ l a · m ∪ δ m a else δ l a · m) ∎ where open EqR (Bis _) ≅δ (concat-union-distribl k {l} {m}) a | true | false = begin (if true ∨ false then (δ k a ∪ δ l a) · m ∪ δ m a else (δ k a ∪ δ l a) · m) ≈⟨ ≅refl ⟩ ((δ k a ∪ δ l a) · m ) ∪ δ m a ≈⟨ union-congl (concat-union-distribl _) ⟩ (δ k a · m ∪ δ l a · m) ∪ δ m a ≈⟨ union-assoc _ ⟩ δ k a · m ∪ ( δ l a · m ∪ δ m a ) ≈⟨ union-congr ( union-comm _ _) ⟩ δ k a · m ∪ δ m a ∪ δ l a · m ≈⟨ ≅sym ( union-assoc _ ) ⟩ (δ k a · m ∪ δ m a) ∪ δ l a · m ≈⟨ ≅refl ⟩ ((if true then δ k a · m ∪ δ m a else δ k a · m) ∪ (if false then δ l a · m ∪ δ m a else δ l a · m)) ∎ where open EqR (Bis _) ≅δ (concat-union-distribl k {l} {m}) a | true | true = begin (if true ∨ true then (δ k a ∪ δ l a) · m ∪ δ m a else (δ k a ∪ δ l a) · m) ≈⟨ ≅refl ⟩ (δ k a ∪ δ l a) · m ∪ δ m a ≈⟨ union-congl ( concat-union-distribl _ ) ⟩ (δ k a · m ∪ δ l a · m) ∪ δ m a ≈⟨ union-assoc _ ⟩ δ k a · m ∪ ( δ l a · m ∪ δ m a ) ≈⟨ ≅sym ( union-congr ( union-congr ( union-idem _ ) ) ) ⟩ δ k a · m ∪ ( δ l a · m ∪ (δ m a ∪ δ m a) ) ≈⟨ ≅sym ( union-congr ( union-assoc _ )) ⟩ δ k a · m ∪ ( (δ l a · m ∪ δ m a ) ∪ δ m a ) ≈⟨ union-congr ( union-congl ( union-comm _ _) ) ⟩ δ k a · m ∪ ( (δ m a ∪ δ l a · m ) ∪ δ m a ) ≈⟨ ≅sym ( union-assoc _ ) ⟩ ( δ k a · m ∪ (δ m a ∪ δ l a · m )) ∪ δ m a ≈⟨ ≅sym ( union-congl ( union-assoc _ ) ) ⟩ ((δ k a · m ∪ δ m a) ∪ δ l a · m) ∪ δ m a ≈⟨ union-assoc _ ⟩ (δ k a · m ∪ δ m a) ∪ δ l a · m ∪ δ m a ≈⟨ ≅refl ⟩ ((if true then δ k a · m ∪ δ m a else δ k a · m) ∪ (if true then δ l a · m ∪ δ m a else δ l a · m)) ∎ where open EqR (Bis _) postulate concat-emptyl : ∀{i} l → ∅ · l ≅⟨ i ⟩≅ ∅ concat-emptyr : ∀{i} l → l · ∅ ≅⟨ i ⟩≅ ∅ concat-unitl : ∀{i} l → ε · l ≅⟨ i ⟩≅ l concat-unitr : ∀{i} l → l · ε ≅⟨ i ⟩≅ l star-empty : ∀{i} → ∅ * ≅⟨ i ⟩≅ ε concat-congl : ∀{i} {m l k : Lang ∞} → l ≅⟨ i ⟩≅ k → l · m ≅⟨ i ⟩≅ k · m ≅ν (concat-congl {i} {m} p ) = cong (λ x → x ∧ ( ν m )) ( ≅ν p ) ≅δ (concat-congl {i} {m} {l} {k} p ) a with ν k | ν l | ≅ν p ≅δ (concat-congl {i} {m} {l} {k} p) a | false | false | refl = concat-congl (≅δ p a) ≅δ (concat-congl {i} {m} {l} {k} p) a | true | true | refl = union-congl (concat-congl (≅δ p a)) concat-congr : ∀{i} {m l k : Lang ∞} → l ≅⟨ i ⟩≅ k → m · l ≅⟨ i ⟩≅ m · k ≅ν (concat-congr {i} {m} {_} {k} p ) = cong (λ x → ( ν m ) ∧ x ) ( ≅ν p ) ≅δ (concat-congr {i} {m} {l} {k} p ) a with ν m | ν k | ν l | ≅ν p ≅δ (concat-congr {i} {m} {l} {k} p) a | false | x | .x | refl = concat-congr p ≅δ (concat-congr {i} {m} {l} {k} p) a | true | x | .x | refl = union-cong (concat-congr p ) ( ≅δ p a ) concat-assoc : ∀{i} (k {l m} : Lang ∞) → (k · l) · m ≅⟨ i ⟩≅ k · (l · m) ≅ν (concat-assoc {i} k {l} {m} ) = ∧-assoc ( ν k ) ( ν l ) ( ν m ) ≅δ (concat-assoc {i} k {l} {m} ) a with ν k ≅δ (concat-assoc {i} k {l} {m}) a | false = concat-assoc _ ≅δ (concat-assoc {i} k {l} {m}) a | true with ν l ≅δ (concat-assoc {i} k {l} {m}) a | true | false = begin ( if false then (δ k a · l ∪ δ l a) · m ∪ δ m a else (δ k a · l ∪ δ l a) · m ) ≈⟨ ≅refl ⟩ (δ k a · l ∪ δ l a) · m ≈⟨ concat-union-distribl _ ⟩ ((δ k a · l) · m ) ∪ ( δ l a · m ) ≈⟨ union-congl (concat-assoc _) ⟩ (δ k a · l · m ) ∪ ( δ l a · m ) ≈⟨ ≅refl ⟩ δ k a · l · m ∪ (if false then δ l a · m ∪ δ m a else δ l a · m) ∎ where open EqR (Bis _) ≅δ (concat-assoc {i} k {l} {m}) a | true | true = begin (if true then (δ k a · l ∪ δ l a) · m ∪ δ m a else (δ k a · l ∪ δ l a) · m) ≈⟨ ≅refl ⟩ ((( δ k a · l ) ∪ δ l a) · m ) ∪ δ m a ≈⟨ union-congl (concat-union-distribl _ ) ⟩ ((δ k a · l) · m ∪ ( δ l a · m )) ∪ δ m a ≈⟨ union-congl ( union-congl (concat-assoc _)) ⟩ (( δ k a · l · m ) ∪ ( δ l a · m )) ∪ δ m a ≈⟨ union-assoc _ ⟩ ( δ k a · l · m ) ∪ ( ( δ l a · m ) ∪ δ m a ) ≈⟨ ≅refl ⟩ δ k a · l · m ∪ (if true then δ l a · m ∪ δ m a else δ l a · m) ∎ where open EqR (Bis _) star-concat-idem : ∀{i} (l : Lang ∞) → l * · l * ≅⟨ i ⟩≅ l * ≅ν (star-concat-idem l) = refl ≅δ (star-concat-idem l) a = begin δ ((l *) · (l *)) a ≈⟨ union-congl (concat-assoc _) ⟩ δ l a · (l * · l *) ∪ δ l a · l * ≈⟨ union-congl (concat-congr (star-concat-idem _)) ⟩ δ l a · l * ∪ δ l a · l * ≈⟨ union-idem _ ⟩ δ (l *) a ∎ where open EqR (Bis _) star-idem : ∀{i} (l : Lang ∞) → (l *) * ≅⟨ i ⟩≅ l * ≅ν (star-idem l) = refl ≅δ (star-idem l) a = begin δ ((l *) *) a ≈⟨ concat-assoc (δ l a) ⟩ δ l a · ((l *) · ((l *) *)) ≈⟨ concat-congr ( concat-congr (star-idem l )) ⟩ δ l a · ((l *) · (l *)) ≈⟨ concat-congr (star-concat-idem l ) ⟩ δ l a · l * ∎ where open EqR (Bis _) postulate star-rec : ∀{i} (l : Lang ∞) → l * ≅⟨ i ⟩≅ ε ∪ (l · l *) star-from-rec : ∀{i} (k {l m} : Lang ∞) → ν k ≡ false → l ≅⟨ i ⟩≅ k · l ∪ m → l ≅⟨ i ⟩≅ k * · m ≅ν (star-from-rec k n p) with ≅ν p ... | b rewrite n = b ≅δ (star-from-rec k {l} {m} n p) a with ≅δ p a ... | q rewrite n = begin (δ l a) ≈⟨ q ⟩ δ k a · l ∪ δ m a ≈⟨ union-congl (concat-congr (star-from-rec k {l} {m} n p)) ⟩ (δ k a · (k * · m) ∪ δ m a) ≈⟨ union-congl (≅sym (concat-assoc _)) ⟩ (δ k a · (k *)) · m ∪ δ m a ∎ where open EqR (Bis _) open List record DA (S : Set) : Set where field ν : (s : S) → Bool δ : (s : S)(a : A) → S νs : ∀{i} (ss : List.List i S) → Bool νs ss = List.any ν ss δs : ∀{i} (ss : List.List i S) (a : A) → List.List i S δs ss a = List.map (λ s → δ s a) ss open Lang lang : ∀{i} {S} (da : DA S) (s : S) → Lang i Lang.ν (lang da s) = DA.ν da s Lang.δ (lang da s) a = lang da (DA.δ da s a) open import Data.Unit hiding ( _≟_ ) open DA ∅A : DA ⊤ ν ∅A s = false δ ∅A s a = s εA : DA Bool ν εA b = b δ εA b a = false open import Relation.Nullary.Decidable data 3States : Set where init acc err : 3States charA : (a : A) → DA 3States ν (charA a) init = false ν (charA a) acc = true ν (charA a) err = false δ (charA a) init x = if ⌊ a ≟ x ⌋ then acc else err δ (charA a) acc x = err δ (charA a) err x = err complA : ∀{S} (da : DA S) → DA S ν (complA da) s = not (ν da s) δ (complA da) s a = δ da s a open import Data.Product _⊕_ : ∀{S1 S2} (da1 : DA S1) (da2 : DA S2) → DA (S1 × S2) ν (da1 ⊕ da2) (s1 , s2) = ν da1 s1 ∨ ν da2 s2 δ (da1 ⊕ da2) (s1 , s2) a = δ da1 s1 a , δ da2 s2 a powA : ∀{S} (da : DA S) → DA (List ∞ S) ν (powA da) ss = νs da ss δ (powA da) ss a = δs da ss a open _≅⟨_⟩≅_ powA-nil : ∀{i S} (da : DA S) → lang (powA da) [] ≅⟨ i ⟩≅ ∅ ≅ν (powA-nil da) = refl ≅δ (powA-nil da) a = powA-nil da powA-cons : ∀{i S} (da : DA S) {s : S} {ss : List ∞ S} → lang (powA da) (s ∷ ss) ≅⟨ i ⟩≅ lang da s ∪ lang (powA da) ss ≅ν (powA-cons da) = refl ≅δ (powA-cons da) a = powA-cons da composeA : ∀{S1 S2} (da1 : DA S1)(s2 : S2)(da2 : DA S2) → DA (S1 × List ∞ S2) ν (composeA da1 s2 da2) (s1 , ss2) = (ν da1 s1 ∧ ν da2 s2) ∨ νs da2 ss2 δ (composeA da1 s2 da2) (s1 , ss2) a = δ da1 s1 a , δs da2 (if ν da1 s1 then s2 ∷ ss2 else ss2) a -- import Relation.Binary.EqReasoning as EqR import Relation.Binary.Reasoning.Setoid as EqR composeA-gen : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) → ∀(s1 : S1)(s2 : S2)(ss : List ∞ S2) → lang (composeA da1 s2 da2) (s1 , ss) ≅⟨ i ⟩≅ lang da1 s1 · lang da2 s2 ∪ lang (powA da2) ss ≅ν (composeA-gen da1 da2 s1 s2 ss) = refl ≅δ (composeA-gen da1 da2 s1 s2 ss) a with ν da1 s1 ... | false = composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 ss a) ... | true = begin lang (composeA da1 s2 da2) (δ da1 s1 a , δ da2 s2 a ∷ δs da2 ss a) ≈⟨ composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 (s2 ∷ ss) a) ⟩ lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang (powA da2) (δs da2 (s2 ∷ ss) a) ≈⟨ union-congr (powA-cons da2) ⟩ lang da1 (δ da1 s1 a) · lang da2 s2 ∪ (lang da2 (δ da2 s2 a) ∪ lang (powA da2) (δs da2 ss a)) ≈⟨ ≅sym (union-assoc _) ⟩ (lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang da2 (δ da2 s2 a)) ∪ lang (powA da2) (δs da2 ss a) ∎ where open EqR (Bis _) postulate composeA-correct : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) s1 s2 → lang (composeA da1 s2 da2) (s1 , []) ≅⟨ i ⟩≅ lang da1 s1 · lang da2 s2 open import Data.Maybe acceptingInitial : ∀{S} (s0 : S) (da : DA S) → DA (Maybe S) ν (acceptingInitial s0 da) (just s) = ν da s δ (acceptingInitial s0 da) (just s) a = just (δ da s a) ν (acceptingInitial s0 da) nothing = true δ (acceptingInitial s0 da) nothing a = just (δ da s0 a) finalToInitial : ∀{S} (da : DA (Maybe S)) → DA (List ∞ (Maybe S)) ν (finalToInitial da) ss = νs da ss δ (finalToInitial da) ss a = let ss′ = δs da ss a in if νs da ss then δ da nothing a ∷ ss′ else ss′ starA : ∀{S}(s0 : S)(da : DA S) → DA (List ∞(Maybe S)) starA s0 da = finalToInitial (acceptingInitial s0 da) postulate acceptingInitial-just : ∀{i S} (s0 : S) (da : DA S) {s : S} → lang (acceptingInitial s0 da) (just s) ≅⟨ i ⟩≅ lang da s acceptingInitial-nothing : ∀{i S} (s0 : S) (da : DA S) → lang (acceptingInitial s0 da) nothing ≅⟨ i ⟩≅ ε ∪ lang da s0 starA-lemma : ∀{i S}(da : DA S)(s0 : S)(ss : List ∞ (Maybe S))→ lang (starA s0 da) ss ≅⟨ i ⟩≅ lang (powA (acceptingInitial s0 da)) ss · (lang da s0) * starA-correct : ∀{i S} (da : DA S) (s0 : S) → lang (starA s0 da) (nothing ∷ []) ≅⟨ i ⟩≅ (lang da s0) * record NAutomaton ( Q : Set ) ( Σ : Set ) : Set where field Nδ : Q → Σ → Q → Bool Nstart : Q → Bool Nend : Q → Bool postulate exists : { S : Set} → ( S → Bool ) → Bool nlang : ∀{i} {S} (nfa : NAutomaton S A ) (s : S → Bool ) → Lang i Lang.ν (nlang nfa s) = exists ( λ x → (s x ∧ NAutomaton.Nend nfa x )) Lang.δ (nlang nfa s) a = nlang nfa (λ x → s x ∧ (NAutomaton.Nδ nfa x a) x) nlang1 : ∀{i} {S} (nfa : NAutomaton S A ) (s : S → Bool ) → Lang i Lang.ν (nlang1 nfa s) = NAutomaton.Nend nfa {!!} Lang.δ (nlang1 nfa s) a = nlang1 nfa (λ x → s x ∧ (NAutomaton.Nδ nfa x a) x) -- nlang' : ∀{i} {S} (nfa : DA (S → Bool) ) (s : S → Bool ) → Lang i -- Lang.ν (nlang' nfa s) = DA.ν nfa s -- Lang.δ (nlang' nfa s) a = nlang' nfa (DA.δ nfa s a)
{ "alphanum_fraction": 0.4231219408, "avg_line_length": 38.7546391753, "ext": "agda", "hexsha": "08678fc5b05d7466a8da9eba993b19e6bb778d7b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/flcagl.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/flcagl.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/flcagl.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8163, "size": 18796 }
-- {-# OPTIONS -v tc.cover.cover:10 -v tc.cover.strategy:20 -v tc.cover.splittree:100 #-} -- Andreas, 2013-05-15 Reported by jesper.cockx module Issue849 where data Bool : Set where true false : Bool ¬ : Bool → Bool ¬ true = false ¬ false = true data D : Bool → Set where d1 : (x : Bool) → D x d2 : (x : Bool) → D (¬ x) data ⊥ : Set where data Test : (x : Bool) → (y : D x) → Set where c1 : (x : Bool) → Test x (d1 x) c2 : (y : D true) → Test true y -- WAS: The following function passes the coverage checker -- even though the case for "f false (d2 true)" is not covered. f : (x : Bool) → (y : D x) → Test x y f x (d1 .x) = c1 x f true y = c2 y impossible : Test false (d2 true) → ⊥ impossible () error : ⊥ error = impossible (f false (d2 true))
{ "alphanum_fraction": 0.5928297055, "avg_line_length": 22.9705882353, "ext": "agda", "hexsha": "00c2d0c32a3a21e18b93ed7fa759680711e4a67e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue849.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue849.agda", "max_line_length": 89, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue849.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 280, "size": 781 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Groups.Wedge where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.HITs.Wedge open import Cubical.HITs.SetTruncation renaming (elim to sElim ; elim2 to sElim2) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∣_∣ to ∣_∣₁) open import Cubical.Data.Nat open import Cubical.Data.Prod open import Cubical.Data.Unit open import Cubical.Algebra.Group open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.HITs.Pushout --- This module contains a proof that Hⁿ(A ⋁ B) ≅ Hⁿ(A) × Hⁿ(B), n ≥ 1 module _ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') where module I = MV (typ A) (typ B) Unit (λ _ → pt A) (λ _ → pt B) Hⁿ-⋁ : (n : ℕ) → GroupEquiv (coHomGr (suc n) (A ⋁ B)) (×coHomGr (suc n) (typ A) (typ B)) Hⁿ-⋁ zero = BijectionIsoToGroupEquiv (bij-iso (grouphom (GroupHom.fun (I.i 1)) (sElim2 (λ _ _ → isOfHLevelPath 2 (isOfHLevelΣ 2 setTruncIsSet λ _ → setTruncIsSet) _ _) λ a b → GroupHom.isHom (I.i 1) ∣ a ∣₂ ∣ b ∣₂)) (sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f inker → helper ∣ f ∣₂ (I.Ker-i⊂Im-d 0 ∣ f ∣₂ inker)) (sigmaElim (λ _ → isOfHLevelSuc 1 propTruncIsProp) λ f g → I.Ker-Δ⊂Im-i 1 (∣ f ∣₂ , g) (isOfHLevelSuc 0 (isContrHⁿ-Unit 0) _ _))) where surj-helper : (x : coHom 0 Unit) → isInIm _ _ (I.Δ 0) x surj-helper = sElim (λ _ → isOfHLevelSuc 1 propTruncIsProp) λ f → ∣ (∣ (λ _ → f tt) ∣₂ , 0ₕ) , cong ∣_∣₂ (funExt (λ _ → cong ((f tt) +ₖ_) -0ₖ ∙ rUnitₖ (f tt))) ∣₁ helper : (x : coHom 1 (A ⋁ B)) → isInIm _ _ (I.d 0) x → x ≡ 0ₕ helper x inim = pRec (setTruncIsSet _ _) (λ p → sym (snd p) ∙ MV.Im-Δ⊂Ker-d _ _ Unit (λ _ → pt A) (λ _ → pt B) 0 (fst p) (surj-helper (fst p))) inim Hⁿ-⋁ (suc n) = vSES→GroupEquiv _ _ (ses (isOfHLevelSuc 0 (isContrHⁿ-Unit n)) (isOfHLevelSuc 0 (isContrHⁿ-Unit (suc n))) (I.d (suc n)) (I.Δ (suc (suc n))) (I.i (suc (suc n))) (I.Ker-i⊂Im-d (suc n)) (I.Ker-Δ⊂Im-i (suc (suc n)))) open import Cubical.Foundations.Isomorphism wedgeConnected : ((x : typ A) → ∥ pt A ≡ x ∥) → ((x : typ B) → ∥ pt B ≡ x ∥) → (x : A ⋁ B) → ∥ (inl (pt A)) ≡ x ∥ wedgeConnected conA conB = PushoutToProp (λ _ → propTruncIsProp) (λ a → pRec propTruncIsProp (λ p → ∣ cong inl p ∣₁) (conA a)) λ b → pRec propTruncIsProp (λ p → ∣ push tt ∙ cong inr p ∣₁) (conB b)
{ "alphanum_fraction": 0.5862658012, "avg_line_length": 41.2253521127, "ext": "agda", "hexsha": "75728e08d801794fd73ece5ff207eeb982bc2b68", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1167, "size": 2927 }
{-# OPTIONS --rewriting #-} module Properties.FunctionTypes where open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import Luau.FunctionTypes using (srcⁿ; src; tgt) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; skalar) open import Properties.Contradiction using (CONTRADICTION; ¬; ⊥) open import Properties.Functions using (_∘_) open import Properties.Subtyping using (<:-refl; ≮:-refl; <:-trans-≮:; skalar-scalar; <:-impl-⊇; skalar-function-ok; language-comp) open import Properties.TypeNormalization using (FunType; Normal; never; unknown; _∩_; _∪_; _⇒_; normal; <:-normalize; normalize-<:) -- Properties of src function-err-srcⁿ : ∀ {T t} → (FunType T) → (¬Language (srcⁿ T) t) → Language T (function-err t) function-err-srcⁿ (S ⇒ T) p = function-err p function-err-srcⁿ (S ∩ T) (p₁ , p₂) = (function-err-srcⁿ S p₁ , function-err-srcⁿ T p₂) ¬function-err-srcᶠ : ∀ {T t} → (FunType T) → (Language (srcⁿ T) t) → ¬Language T (function-err t) ¬function-err-srcᶠ (S ⇒ T) p = function-err p ¬function-err-srcᶠ (S ∩ T) (left p) = left (¬function-err-srcᶠ S p) ¬function-err-srcᶠ (S ∩ T) (right p) = right (¬function-err-srcᶠ T p) ¬function-err-srcⁿ : ∀ {T t} → (Normal T) → (Language (srcⁿ T) t) → ¬Language T (function-err t) ¬function-err-srcⁿ never p = never ¬function-err-srcⁿ unknown (scalar ()) ¬function-err-srcⁿ (S ⇒ T) p = function-err p ¬function-err-srcⁿ (S ∩ T) (left p) = left (¬function-err-srcᶠ S p) ¬function-err-srcⁿ (S ∩ T) (right p) = right (¬function-err-srcᶠ T p) ¬function-err-srcⁿ (S ∪ T) (scalar ()) ¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t) ¬function-err-src {T = S ⇒ T} p = function-err p ¬function-err-src {T = nil} p = scalar-function-err nil ¬function-err-src {T = never} p = never ¬function-err-src {T = unknown} (scalar ()) ¬function-err-src {T = boolean} p = scalar-function-err boolean ¬function-err-src {T = number} p = scalar-function-err number ¬function-err-src {T = string} p = scalar-function-err string ¬function-err-src {T = S ∪ T} p = <:-impl-⊇ (<:-normalize (S ∪ T)) _ (¬function-err-srcⁿ (normal (S ∪ T)) p) ¬function-err-src {T = S ∩ T} p = <:-impl-⊇ (<:-normalize (S ∩ T)) _ (¬function-err-srcⁿ (normal (S ∩ T)) p) src-¬function-errᶠ : ∀ {T t} → (FunType T) → Language T (function-err t) → (¬Language (srcⁿ T) t) src-¬function-errᶠ (S ⇒ T) (function-err p) = p src-¬function-errᶠ (S ∩ T) (p₁ , p₂) = (src-¬function-errᶠ S p₁ , src-¬function-errᶠ T p₂) src-¬function-errⁿ : ∀ {T t} → (Normal T) → Language T (function-err t) → (¬Language (srcⁿ T) t) src-¬function-errⁿ unknown p = never src-¬function-errⁿ (S ⇒ T) (function-err p) = p src-¬function-errⁿ (S ∩ T) (p₁ , p₂) = (src-¬function-errᶠ S p₁ , src-¬function-errᶠ T p₂) src-¬function-errⁿ (S ∪ T) p = never src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t) src-¬function-err {T = S ⇒ T} (function-err p) = p src-¬function-err {T = unknown} p = never src-¬function-err {T = S ∪ T} p = src-¬function-errⁿ (normal (S ∪ T)) (<:-normalize (S ∪ T) _ p) src-¬function-err {T = S ∩ T} p = src-¬function-errⁿ (normal (S ∩ T)) (<:-normalize (S ∩ T) _ p) fun-¬scalar : ∀ {S T} (s : Scalar S) → FunType T → ¬Language T (scalar s) fun-¬scalar s (S ⇒ T) = function-scalar s fun-¬scalar s (S ∩ T) = left (fun-¬scalar s S) ¬fun-scalar : ∀ {S T t} (s : Scalar S) → FunType T → Language T t → ¬Language S t ¬fun-scalar s (S ⇒ T) function = scalar-function s ¬fun-scalar s (S ⇒ T) (function-ok p) = scalar-function-ok s ¬fun-scalar s (S ⇒ T) (function-err p) = scalar-function-err s ¬fun-scalar s (S ∩ T) (p₁ , p₂) = ¬fun-scalar s T p₂ fun-function : ∀ {T} → FunType T → Language T function fun-function (S ⇒ T) = function fun-function (S ∩ T) = (fun-function S , fun-function T) srcⁿ-¬scalar : ∀ {S T t} (s : Scalar S) → Normal T → Language T (scalar s) → (¬Language (srcⁿ T) t) srcⁿ-¬scalar s never (scalar ()) srcⁿ-¬scalar s unknown p = never srcⁿ-¬scalar s (S ⇒ T) (scalar ()) srcⁿ-¬scalar s (S ∩ T) (p₁ , p₂) = CONTRADICTION (language-comp (scalar s) (fun-¬scalar s S) p₁) srcⁿ-¬scalar s (S ∪ T) p = never src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t) src-¬scalar {T = nil} s p = never src-¬scalar {T = T ⇒ U} s (scalar ()) src-¬scalar {T = never} s (scalar ()) src-¬scalar {T = unknown} s p = never src-¬scalar {T = boolean} s p = never src-¬scalar {T = number} s p = never src-¬scalar {T = string} s p = never src-¬scalar {T = T ∪ U} s p = srcⁿ-¬scalar s (normal (T ∪ U)) (<:-normalize (T ∪ U) (scalar s) p) src-¬scalar {T = T ∩ U} s p = srcⁿ-¬scalar s (normal (T ∩ U)) (<:-normalize (T ∩ U) (scalar s) p) srcⁿ-unknown-≮: : ∀ {T U} → (Normal U) → (T ≮: srcⁿ U) → (U ≮: (T ⇒ unknown)) srcⁿ-unknown-≮: never (witness t p q) = CONTRADICTION (language-comp t q unknown) srcⁿ-unknown-≮: unknown (witness t p q) = witness (function-err t) unknown (function-err p) srcⁿ-unknown-≮: (U ⇒ V) (witness t p q) = witness (function-err t) (function-err q) (function-err p) srcⁿ-unknown-≮: (U ∩ V) (witness t p q) = witness (function-err t) (function-err-srcⁿ (U ∩ V) q) (function-err p) srcⁿ-unknown-≮: (U ∪ V) (witness t p q) = witness (scalar V) (right (scalar V)) (function-scalar V) src-unknown-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ unknown)) src-unknown-≮: {U = nil} (witness t p q) = witness (scalar nil) (scalar nil) (function-scalar nil) src-unknown-≮: {U = T ⇒ U} (witness t p q) = witness (function-err t) (function-err q) (function-err p) src-unknown-≮: {U = never} (witness t p q) = CONTRADICTION (language-comp t q unknown) src-unknown-≮: {U = unknown} (witness t p q) = witness (function-err t) unknown (function-err p) src-unknown-≮: {U = boolean} (witness t p q) = witness (scalar boolean) (scalar boolean) (function-scalar boolean) src-unknown-≮: {U = number} (witness t p q) = witness (scalar number) (scalar number) (function-scalar number) src-unknown-≮: {U = string} (witness t p q) = witness (scalar string) (scalar string) (function-scalar string) src-unknown-≮: {U = T ∪ U} p = <:-trans-≮: (normalize-<: (T ∪ U)) (srcⁿ-unknown-≮: (normal (T ∪ U)) p) src-unknown-≮: {U = T ∩ U} p = <:-trans-≮: (normalize-<: (T ∩ U)) (srcⁿ-unknown-≮: (normal (T ∩ U)) p) unknown-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ unknown)) → (U ≮: src T) unknown-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p) unknown-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q))) unknown-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ()))) unknown-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p) -- Properties of tgt tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t) tgt-function-ok {T = nil} (scalar ()) tgt-function-ok {T = T₁ ⇒ T₂} p = function-ok p tgt-function-ok {T = never} (scalar ()) tgt-function-ok {T = unknown} p = unknown tgt-function-ok {T = boolean} (scalar ()) tgt-function-ok {T = number} (scalar ()) tgt-function-ok {T = string} (scalar ()) tgt-function-ok {T = T₁ ∪ T₂} (left p) = left (tgt-function-ok p) tgt-function-ok {T = T₁ ∪ T₂} (right p) = right (tgt-function-ok p) tgt-function-ok {T = T₁ ∩ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂) function-ok-tgt : ∀ {T t} → Language T (function-ok t) → (Language (tgt T) t) function-ok-tgt (function-ok p) = p function-ok-tgt (left p) = left (function-ok-tgt p) function-ok-tgt (right p) = right (function-ok-tgt p) function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂) function-ok-tgt unknown = unknown tgt-never-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (never ⇒ U))) tgt-never-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q) never-tgt-≮: : ∀ {T U} → (T ≮: (skalar ∪ (never ⇒ U))) → (tgt T ≮: U) never-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-refl (witness (scalar s) (skalar-scalar s) q₁)) never-tgt-≮: (witness function p (q₁ , scalar-function ())) never-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂ never-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ()))) src-tgtᶠ-<: : ∀ {T U V} → (FunType T) → (U <: src T) → (tgt T <: V) → (T <: (U ⇒ V)) src-tgtᶠ-<: T p q (scalar s) r = CONTRADICTION (language-comp (scalar s) (fun-¬scalar s T) r) src-tgtᶠ-<: T p q function r = function src-tgtᶠ-<: T p q (function-ok s) r = function-ok (q s (function-ok-tgt r)) src-tgtᶠ-<: T p q (function-err s) r = function-err (<:-impl-⊇ p s (src-¬function-err r))
{ "alphanum_fraction": 0.632339758, "avg_line_length": 59.0993377483, "ext": "agda", "hexsha": "514477f1f946779239f01852752d47b6c61dca56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TheGreatSageEqualToHeaven/luau", "max_forks_repo_path": "prototyping/Properties/FunctionTypes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TheGreatSageEqualToHeaven/luau", "max_issues_repo_path": "prototyping/Properties/FunctionTypes.agda", "max_line_length": 250, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Properties/FunctionTypes.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 3433, "size": 8924 }
{-# OPTIONS --universe-polymorphism #-} -- Proof that 'Free' is a functor module Categories.Free.Functor where open import Categories.Support.PropositionalEquality open import Categories.Categories open import Categories.Category renaming (_[_∼_] to _[_~C_]) open import Categories.Free.Core open import Categories.Functor using (Functor) renaming (_≡_ to _≡F_; _∘_ to _∘F_) open import Categories.Graphs open import Data.Product open import Graphs.Graph renaming (_[_~_] to _[_~G_]; module Heterogeneous to HeterogeneousG) open import Graphs.GraphMorphism renaming (_∘_ to _∘G_) open import Data.Star open import Data.Star.Properties using (gmap-◅◅; gmap-id) open import Categories.Support.StarEquality open import Level using (_⊔_) ε∼ε : ∀{o₁ ℓ₁ e₁}{X : Graph o₁ ℓ₁ e₁} {o₂ ℓ₂ e₂}{Y : Graph o₂ ℓ₂ e₂} → (F G : GraphMorphism X Y) → F ≈ G → {x : Graph.Obj X} → Free₀ Y [ ε {x = GraphMorphism.F₀ F x} ~C ε {x = GraphMorphism.F₀ G x} ] ε∼ε {Y = Y} F G (F≈G₀ , F≈G₁) {x} = ≣-subst (λ z → Free₀ Y [ ε {x = GraphMorphism.F₀ F x} ~C ε {x = z} ]) (F≈G₀ x) (Heterogeneous.refl (Free₀ Y)) -- the below should probably work, but there's an agda bug -- XXX bug id? mokus? anybody? bueller? {- ε∼ε {Y = Y} F G F≈G {x} rewrite proj₁ F≈G x = refl where open Heterogeneous (Free₀ Y) -} _◅~◅_ : ∀ {o ℓ e}{G : Graph o ℓ e} {a₀ a₁ b₀ b₁ c₀ c₁ : Graph.Obj G} {f : G [ a₀ ↝ b₀ ]} {g : G [ a₁ ↝ b₁ ]} {fs : Free₀ G [ b₀ , c₀ ]} {gs : Free₀ G [ b₁ , c₁ ]} → G [ f ~G g ] → Free₀ G [ fs ~C gs ] → Free₀ G [ (f ◅ fs) ~C (g ◅ gs) ] _◅~◅_ {G = G} (HeterogeneousG.≈⇒~ hd) (Heterogeneous.≡⇒∼ tl) = ≡⇒∼ (hd ◅-cong tl) where open Heterogeneous (Free₀ G) open PathEquality G Free : ∀ {o ℓ e} → Functor (Graphs o ℓ e) (Categories o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)) Free {o}{ℓ}{e} = record { F₀ = Free₀ ; F₁ = Free₁ ; identity = λ {A} f → Heterogeneous.reflexive (Free₀ A) (gmap-id f) ; homomorphism = λ {X}{Y}{Z}{f}{g} → homomorphism {X}{Y}{Z}{f}{g} ; F-resp-≡ = λ {X}{Y}{F G : GraphMorphism X Y} → Free₁-resp-≡ {X}{Y}{F}{G} } where module Graphs = Category (Graphs o ℓ e) module Categories = Category (Categories o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)) .homomorphism : ∀ {X Y Z} {f : GraphMorphism X Y} {g : GraphMorphism Y Z} → Free₁ (g ∘G f) ≡F (Free₁ g ∘F Free₁ f) homomorphism ε = Heterogeneous.refl _ homomorphism {X}{Y}{Z}{f}{g}{S}{U} (_◅_ {.S}{T}{.U} h hs) = HeterogeneousG.refl Z ◅~◅ homomorphism {X}{Y}{Z}{f}{g}{T}{U} hs .Free₁-resp-≡ : ∀ {X Y} {F G : GraphMorphism X Y} → F ≈ G → Free₁ F ≡F Free₁ G Free₁-resp-≡ {X}{Y}{F}{G} F≈G {S}{.S} ε = ε∼ε F G F≈G Free₁-resp-≡ {X}{Y}{F}{G} F≈G {S}{U} (_◅_ {.S}{T}{.U} h hs) = proj₂ F≈G h ◅~◅ Free₁-resp-≡ {X}{Y}{F}{G} F≈G {T}{U} hs
{ "alphanum_fraction": 0.5688811189, "avg_line_length": 35.3086419753, "ext": "agda", "hexsha": "7623c9138c590edb9a7c44071db24b9c3bd7da2b", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Free/Functor.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Free/Functor.agda", "max_line_length": 145, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Free/Functor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1216, "size": 2860 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.LoopSpaceCircle open import homotopy.PinSn module homotopy.SphereEndomorphism where Sphere-endo : ∀ n → Type₀ Sphere-endo n = Sphere n → Sphere n ⊙Sphere-endo : ∀ n → Type₀ ⊙Sphere-endo n = ⊙Sphere n ⊙→ ⊙Sphere n {- ⊙LiftSphere-endo : ∀ {i} n → Type i ⊙LiftSphere-endo {i} n = ⊙Lift {j = i} (⊙Sphere n) ⊙→ ⊙Lift {j = i} (⊙Sphere n) -} Trunc-Sphere-endo : ∀ n → Type₀ Trunc-Sphere-endo = Trunc 0 ∘ Sphere-endo Trunc-⊙Sphere-endo : ∀ n → Type₀ Trunc-⊙Sphere-endo = Trunc 0 ∘ ⊙Sphere-endo {- Trunc-⊙LiftSphere-endo : ∀ {i} n → Type i Trunc-⊙LiftSphere-endo {i} = Trunc 0 ∘ ⊙LiftSphere-endo {i} -} {- Part 0: pointedness is free -} Trunc-⊙Sphere-endo-out : ∀ n → Trunc-⊙Sphere-endo n → Trunc-Sphere-endo n Trunc-⊙Sphere-endo-out n = Trunc-fmap fst -- For [S¹], the pointedness is free because of the commutativity of its loop space. -- favonia: maybe one can simplify the proofs through -- an intermediate type [Σ S¹ (λ x → x == x)]? private ⊙S¹-endo-in' : (base* : S¹) (loop* : base* == base*) → (⊙S¹ ⊙→ ⊙S¹) ⊙S¹-endo-in' = S¹-elim (λ loop* → S¹-rec base loop* , idp) (↓-app→cst-in λ r → ap (λ loop* → (S¹-rec base loop* , idp)) (lemma₀ r)) where abstract lemma₀ : ∀ {loop₁ loop₂} → loop₁ == loop₂ [ (λ x → x == x) ↓ loop ] → loop₁ == loop₂ lemma₀ {loop₁} {loop₂} p = anti-whisker-right loop $ loop₁ ∙ loop =⟨ ↓-idf=idf-out' p ⟩ loop ∙' loop₂ =⟨ ∙'=∙ loop loop₂ ⟩ loop ∙ loop₂ =⟨ ΩS¹-is-abelian loop loop₂ ⟩ loop₂ ∙ loop =∎ ⊙S¹-endo-in : (S¹ → S¹) → (⊙S¹ ⊙→ ⊙S¹) ⊙S¹-endo-in f = ⊙S¹-endo-in' (f base) (ap f loop) Trunc-⊙S¹-endo-in : Trunc 0 (S¹ → S¹) → Trunc 0 (⊙S¹ ⊙→ ⊙S¹) Trunc-⊙S¹-endo-in = Trunc-fmap ⊙S¹-endo-in abstract Trunc-⊙S¹-endo-in-η : ∀ f → Trunc-⊙S¹-endo-in (Trunc-⊙Sphere-endo-out 1 f) == f Trunc-⊙S¹-endo-in-η = Trunc-elim λ{(f , pt) → ap [_] $ ⊙S¹-endo-in'-shifted pt (ap f loop) ∙ ⊙λ= (S¹-rec-η f , idp)} where -- free one end to apply identification elimination ⊙S¹-endo-in'-shifted : {base* : S¹} (shift : base* == base) (loop* : base* == base*) → ⊙S¹-endo-in' base* loop* == (S¹-rec base* loop* , shift) ⊙S¹-endo-in'-shifted idp _ = idp Trunc-⊙S¹-endo-out-β : ∀ f → Trunc-⊙Sphere-endo-out 1 (Trunc-⊙S¹-endo-in f) == f Trunc-⊙S¹-endo-out-β = Trunc-elim λ f → ! (ap (λ f → [ fst (⊙S¹-endo-in f) ]) (λ= $ S¹-rec-η f)) ∙ ⊙S¹-endo-out-β (f base) (ap f loop) ∙ ap [_] (λ= $ S¹-rec-η f) where -- free [base*] to apply circle elimination ⊙S¹-endo-out-β : (base* : S¹) (loop* : base* == base*) → [ fst (⊙S¹-endo-in (S¹-rec base* loop*)) ] == [ S¹-rec base* loop* ] :> Trunc 0 (S¹ → S¹) ⊙S¹-endo-out-β = S¹-elim (λ loop* → ap (λ loop* → [ S¹-rec base loop* ]) (S¹Rec.loop-β base loop*)) prop-has-all-paths-↓ Trunc-⊙S¹-endo-out-is-equiv : is-equiv (Trunc-⊙Sphere-endo-out 1) Trunc-⊙S¹-endo-out-is-equiv = is-eq _ Trunc-⊙S¹-endo-in Trunc-⊙S¹-endo-out-β Trunc-⊙S¹-endo-in-η -- For [Sphere (S (S n))], the pointedness is free because of its connectivity. private SphereSS-conn : ∀ n → is-connected 1 (Sphere (S (S n))) SphereSS-conn n = connected-≤T (≤T-+2+-l 1 (-2≤T ⟨ n ⟩₋₂)) SphereSS-conn-path : ∀ n (x y : Sphere (S (S n))) → is-connected 0 (x == y) SphereSS-conn-path n x y = path-conn (SphereSS-conn n) SphereSS-has-all-trunc-paths : ∀ n (x y : Sphere (S (S n))) → Trunc 0 (x == y) SphereSS-has-all-trunc-paths n x y = –> (Trunc=-equiv [ x ] [ y ]) (contr-has-all-paths {{SphereSS-conn n}} [ x ] [ y ]) Trunc-⊙SphereSS-endo-in : ∀ n → Trunc-Sphere-endo (S (S n)) → Trunc-⊙Sphere-endo (S (S n)) Trunc-⊙SphereSS-endo-in n = Trunc-rec λ f → Trunc-rec (λ pt → [ f , pt ]) (SphereSS-has-all-trunc-paths n (f north) north) abstract Trunc-⊙SphereSS-endo-in-η : ∀ n f → Trunc-⊙SphereSS-endo-in n (Trunc-⊙Sphere-endo-out (S (S n)) f) == f Trunc-⊙SphereSS-endo-in-η n = Trunc-elim λ{(f , pt) → ap (Trunc-rec (λ pt → [ f , pt ])) (contr-has-all-paths {{SphereSS-conn-path n (f north) north}} (SphereSS-has-all-trunc-paths n (f north) north) [ pt ])} Trunc-⊙SphereSS-endo-out-β : ∀ n f → Trunc-⊙Sphere-endo-out (S (S n)) (Trunc-⊙SphereSS-endo-in n f) == f Trunc-⊙SphereSS-endo-out-β n = Trunc-elim λ f → Trunc-elim {P = λ pt → Trunc-⊙Sphere-endo-out (S (S n)) (Trunc-rec (λ pt → [ f , pt ]) pt) == [ f ]} (λ pt → idp) (SphereSS-has-all-trunc-paths n (f north) north) Trunc-⊙SphereSS-endo-out-is-equiv : ∀ n → is-equiv (Trunc-⊙Sphere-endo-out (S (S n))) Trunc-⊙SphereSS-endo-out-is-equiv n = is-eq (Trunc-⊙Sphere-endo-out (S (S n))) (Trunc-⊙SphereSS-endo-in n) (Trunc-⊙SphereSS-endo-out-β n) (Trunc-⊙SphereSS-endo-in-η n) -- the unified interface Trunc-⊙SphereS-endo-out-is-equiv : ∀ n → is-equiv (Trunc-⊙Sphere-endo-out (S n)) Trunc-⊙SphereS-endo-out-is-equiv 0 = Trunc-⊙S¹-endo-out-is-equiv Trunc-⊙SphereS-endo-out-is-equiv (S n) = Trunc-⊙SphereSS-endo-out-is-equiv n Trunc-⊙SphereS-endo-in : ∀ n → Trunc-Sphere-endo (S n) → Trunc-⊙Sphere-endo (S n) Trunc-⊙SphereS-endo-in n = is-equiv.g (Trunc-⊙SphereS-endo-out-is-equiv n) {- Part 1: suspension is an isomorphism -} private open import homotopy.Freudenthal SSSSk≤SSk+2+SSk : ∀ k → S (S (S (S k))) ≤T S (S k) +2+ S (S k) SSSSk≤SSk+2+SSk k = ≤T-+2+-l 0 $ ≤T-+2+-r (S (S k)) $ -2≤T k SSn≤n+2+n : ∀ n → S (S ⟨ n ⟩) ≤T ⟨ n ⟩ +2+ ⟨ n ⟩ SSn≤n+2+n n = SSSSk≤SSk+2+SSk ⟨ n ⟩₋₂ module F n = FreudenthalEquiv ⟨ n ⟩₋₁ _ (SSn≤n+2+n n) (⊙Sphere (S (S n))) {{Sphere-conn (S (S n))}} import homotopy.TruncationLoopLadder as TLL import homotopy.SuspAdjointLoop as SAL import homotopy.SuspAdjointLoopLadder as SALL import homotopy.CircleHSpace as CHS import homotopy.Pi2HSusp as Pi2 ⊙up : ∀ n → ⊙Sphere n ⊙→ ⊙Ω (⊙Sphere (S n)) ⊙up n = SAL.η (⊙Sphere n) Ω^'S-Trunc-up-is-equiv : ∀ n → is-equiv (Ω^'-fmap (S n) (⊙Trunc-fmap {n = ⟨ S n ⟩} (⊙up (S n)))) Ω^'S-Trunc-up-is-equiv O = snd (Ω-emap (Pi2.⊙eq⁻¹ CHS.⊙S¹-hSpace)) Ω^'S-Trunc-up-is-equiv (S n) = snd (Ω^'-emap (S (S n)) (F.⊙eq n)) Trunc-Ω^'S-up-is-equiv : ∀ n → is-equiv (Trunc-fmap {n = 0} (Ω^'-fmap (S n) (⊙up (S n)))) Trunc-Ω^'S-up-is-equiv n = ⊙CommSquareEquiv-preserves-equiv (TLL.ladder (S n) (⊙up (S n))) (Ω^'S-Trunc-up-is-equiv n) Trunc-post⊙∘-Ω^'S-up-is-equiv : ∀ n → is-equiv (Trunc-fmap {n = 0} ((⊙Ω^'-fmap (S n) (⊙up (S n)) ⊙∘_) :> (_ → ⊙Bool ⊙→ _))) Trunc-post⊙∘-Ω^'S-up-is-equiv n = CommSquareEquiv-preserves'-equiv (Trunc-csemap (⊙Bool→-equiv-idf-nat (⊙Ω^'-fmap (S n) (⊙up (S n))))) (Trunc-Ω^'S-up-is-equiv n) Trunc-post⊙∘-upS-is-equiv : ∀ n → is-equiv (Trunc-fmap {n = 0} ((⊙up (S n) ⊙∘_) :> (_ → ⊙Sphere (S n) ⊙→ _))) Trunc-post⊙∘-upS-is-equiv n = CommSquareEquiv-preserves'-equiv (Trunc-csemap (SALL.ladder (S n) (⊙up (S n)))) (Trunc-post⊙∘-Ω^'S-up-is-equiv n) final-fix : ∀ n → CommSquareEquiv (⊙Susp-fmap :> (⊙Sphere-endo (S n) → _)) (SAL.η _ ⊙∘_) (idf _) (–> (SAL.eq _ _)) final-fix n = comm-sqr (λ f → ! (SAL.η-natural f)) , idf-is-equiv _ , snd (SAL.eq _ _) Trunc-⊙SphereS-endo-Susp-is-equiv : ∀ n → is-equiv (Trunc-fmap ⊙Susp-fmap :> (Trunc-⊙Sphere-endo (S n) → _)) Trunc-⊙SphereS-endo-Susp-is-equiv n = CommSquareEquiv-preserves'-equiv (Trunc-csemap (final-fix n)) (Trunc-post⊙∘-upS-is-equiv n)
{ "alphanum_fraction": 0.5594793143, "avg_line_length": 38.9899497487, "ext": "agda", "hexsha": "597446915666b42c732794813b81f9b77d5b7b2d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/SphereEndomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/SphereEndomorphism.agda", "max_line_length": 121, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/SphereEndomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3379, "size": 7759 }
-- The debug output should include the text "Termination checking -- mutual block MutId 0" once, not three times. {-# OPTIONS -vterm.mutual.id:40 #-} record R : Set₁ where constructor c field A : Set _ : A → A _ = λ x → x _ : A → A _ = λ x → x _ : A → A _ = λ x → x -- Included in order to make the code fail to type-check. Bad : Set Bad = Set
{ "alphanum_fraction": 0.5983827493, "avg_line_length": 15.4583333333, "ext": "agda", "hexsha": "2b9d3de9636cb378e9710188826e0d193e580476", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3590-1.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3590-1.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3590-1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 371 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable equality over lists parameterised by some setoid ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Binary.Equality.DecSetoid {a ℓ} (DS : DecSetoid a ℓ) where import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality import Data.List.Relation.Binary.Pointwise as PW open import Level open import Relation.Binary using (Decidable) open DecSetoid DS ------------------------------------------------------------------------ -- Make all definitions from setoid equality available open SetoidEquality setoid public ------------------------------------------------------------------------ -- Additional properties infix 4 _≋?_ _≋?_ : Decidable _≋_ _≋?_ = PW.decidable _≟_ ≋-isDecEquivalence : IsDecEquivalence _≋_ ≋-isDecEquivalence = PW.isDecEquivalence isDecEquivalence ≋-decSetoid : DecSetoid a (a ⊔ ℓ) ≋-decSetoid = PW.decSetoid DS
{ "alphanum_fraction": 0.5605920444, "avg_line_length": 28.4473684211, "ext": "agda", "hexsha": "3ce35756a144d88926b78f055140b8dfc17c672c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/DecSetoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/DecSetoid.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Equality/DecSetoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 239, "size": 1081 }
module Everything where import Relation.Ternary.Separation -- The syntax and interpreter of LTLC import Typed.LTLC -- The syntax and interpreter of LTLC with strong updatable references import Typed.LTLCRef -- The syntax of a session typed language import Sessions.Syntax -- ... and its semantics import Sessions.Semantics.Runtime import Sessions.Semantics.Commands import Sessions.Semantics.Expr import Sessions.Semantics.Communication import Sessions.Semantics.Process -- the paper's session-typed program example import Examples
{ "alphanum_fraction": 0.8215613383, "avg_line_length": 23.3913043478, "ext": "agda", "hexsha": "979806c4d7956cf78cc728baf9402f1a77214c66", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Everything.agda", "max_line_length": 70, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 117, "size": 538 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Functions.Definition open import Lists.Definition open import Lists.Monad open import Boolean.Definition module Lists.Filter.AllTrue where allTrue : {a b : _} {A : Set a} (f : A → Set b) (l : List A) → Set b allTrue f [] = True' allTrue f (x :: l) = f x && allTrue f l allTrueConcat : {a b : _} {A : Set a} (f : A → Set b) (l m : List A) → allTrue f l → allTrue f m → allTrue f (l ++ m) allTrueConcat f [] m fl fm = fm allTrueConcat f (x :: l) m (fst ,, snd) fm = fst ,, allTrueConcat f l m snd fm allTrueFlatten : {a b : _} {A : Set a} (f : A → Set b) (l : List (List A)) → allTrue (λ i → allTrue f i) l → allTrue f (flatten l) allTrueFlatten f [] pr = record {} allTrueFlatten f ([] :: ls) pr = allTrueFlatten f ls (_&&_.snd pr) allTrueFlatten f ((x :: l) :: ls) ((fx ,, fl) ,, snd) = fx ,, allTrueConcat f l (flatten ls) fl (allTrueFlatten f ls snd) allTrueMap : {a b c : _} {A : Set a} {B : Set b} (pred : B → Set c) (f : A → B) (l : List A) → allTrue (pred ∘ f) l → allTrue pred (map f l) allTrueMap pred f [] pr = record {} allTrueMap pred f (x :: l) pr = _&&_.fst pr ,, allTrueMap pred f l (_&&_.snd pr) allTrueExtension : {a b : _} {A : Set a} (f g : A → Set b) (l : List A) → ({x : A} → f x → g x) → allTrue f l → allTrue g l allTrueExtension f g [] pred t = record {} allTrueExtension f g (x :: l) pred (fg ,, snd) = pred {x} fg ,, allTrueExtension f g l pred snd allTrueTail : {a b : _} {A : Set a} (pred : A → Set b) (x : A) (l : List A) → allTrue pred (x :: l) → allTrue pred l allTrueTail pred x l (fst ,, snd) = snd filter : {a : _} {A : Set a} (l : List A) (f : A → Bool) → List A filter [] f = [] filter (x :: l) f with f x filter (x :: l) f | BoolTrue = x :: filter l f filter (x :: l) f | BoolFalse = filter l f
{ "alphanum_fraction": 0.5903877662, "avg_line_length": 45.775, "ext": "agda", "hexsha": "51d971e8ac39277a6c422d60a05af032d8095ba7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Lists/Filter/AllTrue.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Lists/Filter/AllTrue.agda", "max_line_length": 140, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Lists/Filter/AllTrue.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 667, "size": 1831 }
module _ (A : Set) where record R : Set where field f : A test : R → R test r = {!r!}
{ "alphanum_fraction": 0.5555555556, "avg_line_length": 11.25, "ext": "agda", "hexsha": "c494563ca4c80f4321d370502b6f364453d67d29", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/interaction/Issue1926.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/interaction/Issue1926.agda", "max_line_length": 24, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/interaction/Issue1926.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 34, "size": 90 }
module Text.Greek.SBLGNT.Rom where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΡΩΜΑΙΟΥΣ : List (Word) ΠΡΟΣ-ΡΩΜΑΙΟΥΣ = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.1.1" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.1.1" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.1.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.1.1" ∷ word (ἀ ∷ φ ∷ ω ∷ ρ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rom.1.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.1" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.1" ∷ word (ὃ ∷ []) "Rom.1.2" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ π ∷ η ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Rom.1.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.1.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.1.2" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.2" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.2" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.1.2" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rom.1.2" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rom.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.3" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "Rom.1.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.3" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rom.1.3" ∷ word (ἐ ∷ κ ∷ []) "Rom.1.3" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.1.3" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Rom.1.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.1.3" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.4" ∷ word (ὁ ∷ ρ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.1.4" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "Rom.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.4" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Rom.1.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.1.4" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.1.4" ∷ word (ἁ ∷ γ ∷ ι ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.1.4" ∷ word (ἐ ∷ ξ ∷ []) "Rom.1.4" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.1.4" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.1.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.1.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.1.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.1.4" ∷ word (δ ∷ ι ∷ []) "Rom.1.5" ∷ word (ο ∷ ὗ ∷ []) "Rom.1.5" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.1.5" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Rom.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.5" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rom.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.5" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ὴ ∷ ν ∷ []) "Rom.1.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.1.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.5" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.5" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.5" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.1.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.5" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.6" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rom.1.6" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.6" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.1.6" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "Rom.1.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.1.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.6" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.7" ∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.7" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.7" ∷ word (Ῥ ∷ ώ ∷ μ ∷ ῃ ∷ []) "Rom.1.7" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.7" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.7" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rom.1.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.1.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.7" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Rom.1.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.1.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.7" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.1.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.7" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.1.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.1.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.7" ∷ word (Π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.1.8" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.1.8" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "Rom.1.8" ∷ word (τ ∷ ῷ ∷ []) "Rom.1.8" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.1.8" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.1.8" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.1.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.1.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rom.1.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.1.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.1.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.1.8" ∷ word (ἡ ∷ []) "Rom.1.8" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rom.1.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.1.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.1.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.8" ∷ word (ὅ ∷ ∙λ ∷ ῳ ∷ []) "Rom.1.8" ∷ word (τ ∷ ῷ ∷ []) "Rom.1.8" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "Rom.1.8" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ς ∷ []) "Rom.1.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.1.9" ∷ word (μ ∷ ο ∷ ύ ∷ []) "Rom.1.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.1.9" ∷ word (ὁ ∷ []) "Rom.1.9" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rom.1.9" ∷ word (ᾧ ∷ []) "Rom.1.9" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ω ∷ []) "Rom.1.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.1.9" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rom.1.9" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.1.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.1.9" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rom.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.9" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "Rom.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.9" ∷ word (ὡ ∷ ς ∷ []) "Rom.1.9" ∷ word (ἀ ∷ δ ∷ ι ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ π ∷ τ ∷ ω ∷ ς ∷ []) "Rom.1.9" ∷ word (μ ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rom.1.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.1.9" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "Rom.1.9" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Rom.1.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.1.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.1.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ []) "Rom.1.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.1.10" ∷ word (δ ∷ ε ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.1.10" ∷ word (ε ∷ ἴ ∷ []) "Rom.1.10" ∷ word (π ∷ ω ∷ ς ∷ []) "Rom.1.10" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Rom.1.10" ∷ word (π ∷ ο ∷ τ ∷ ὲ ∷ []) "Rom.1.10" ∷ word (ε ∷ ὐ ∷ ο ∷ δ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.1.10" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.10" ∷ word (τ ∷ ῷ ∷ []) "Rom.1.10" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.10" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.1.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.1.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.1.10" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ῶ ∷ []) "Rom.1.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.1.11" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.1.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.1.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.1.11" ∷ word (τ ∷ ι ∷ []) "Rom.1.11" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ δ ∷ ῶ ∷ []) "Rom.1.11" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Rom.1.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.1.11" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "Rom.1.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.11" ∷ word (τ ∷ ὸ ∷ []) "Rom.1.11" ∷ word (σ ∷ τ ∷ η ∷ ρ ∷ ι ∷ χ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rom.1.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.1.11" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.1.12" ∷ word (δ ∷ έ ∷ []) "Rom.1.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.1.12" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rom.1.12" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.1.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.1.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.1.12" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.1.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.1.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.1.12" ∷ word (τ ∷ ε ∷ []) "Rom.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.12" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rom.1.12" ∷ word (ο ∷ ὐ ∷ []) "Rom.1.13" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Rom.1.13" ∷ word (δ ∷ ὲ ∷ []) "Rom.1.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.1.13" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.1.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.1.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.1.13" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Rom.1.13" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ θ ∷ έ ∷ μ ∷ η ∷ ν ∷ []) "Rom.1.13" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.1.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.1.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.13" ∷ word (ἐ ∷ κ ∷ ω ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ ν ∷ []) "Rom.1.13" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rom.1.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.13" ∷ word (δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Rom.1.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.1.13" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ []) "Rom.1.13" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Rom.1.13" ∷ word (σ ∷ χ ∷ ῶ ∷ []) "Rom.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.13" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.1.13" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.13" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.13" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.13" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ν ∷ []) "Rom.1.14" ∷ word (τ ∷ ε ∷ []) "Rom.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.14" ∷ word (β ∷ α ∷ ρ ∷ β ∷ ά ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.1.14" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.14" ∷ word (τ ∷ ε ∷ []) "Rom.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.14" ∷ word (ἀ ∷ ν ∷ ο ∷ ή ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.1.14" ∷ word (ὀ ∷ φ ∷ ε ∷ ι ∷ ∙λ ∷ έ ∷ τ ∷ η ∷ ς ∷ []) "Rom.1.14" ∷ word (ε ∷ ἰ ∷ μ ∷ ί ∷ []) "Rom.1.14" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.1.15" ∷ word (τ ∷ ὸ ∷ []) "Rom.1.15" ∷ word (κ ∷ α ∷ τ ∷ []) "Rom.1.15" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Rom.1.15" ∷ word (π ∷ ρ ∷ ό ∷ θ ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Rom.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.1.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.15" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.15" ∷ word (Ῥ ∷ ώ ∷ μ ∷ ῃ ∷ []) "Rom.1.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.1.15" ∷ word (Ο ∷ ὐ ∷ []) "Rom.1.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.1.16" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.1.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.1.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.1.16" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rom.1.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.1.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.1.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.16" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rom.1.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rom.1.16" ∷ word (τ ∷ ῷ ∷ []) "Rom.1.16" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rom.1.16" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ῳ ∷ []) "Rom.1.16" ∷ word (τ ∷ ε ∷ []) "Rom.1.16" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.16" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ι ∷ []) "Rom.1.16" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Rom.1.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.1.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.1.17" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.1.17" ∷ word (ἐ ∷ κ ∷ []) "Rom.1.17" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.1.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.17" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.1.17" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.1.17" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.1.17" ∷ word (Ὁ ∷ []) "Rom.1.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.1.17" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rom.1.17" ∷ word (ἐ ∷ κ ∷ []) "Rom.1.17" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.1.17" ∷ word (ζ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.1.17" ∷ word (Ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.1.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.1.18" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ []) "Rom.1.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.18" ∷ word (ἀ ∷ π ∷ []) "Rom.1.18" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Rom.1.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.1.18" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.18" ∷ word (ἀ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rom.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.18" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Rom.1.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rom.1.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.1.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.1.18" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rom.1.18" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.18" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ ᾳ ∷ []) "Rom.1.18" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.1.18" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "Rom.1.19" ∷ word (τ ∷ ὸ ∷ []) "Rom.1.19" ∷ word (γ ∷ ν ∷ ω ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.1.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.19" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Rom.1.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.1.19" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.19" ∷ word (ὁ ∷ []) "Rom.1.19" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.1.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.19" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ έ ∷ ρ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Rom.1.19" ∷ word (τ ∷ ὰ ∷ []) "Rom.1.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.1.20" ∷ word (ἀ ∷ ό ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rom.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.20" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.1.20" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.1.20" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rom.1.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.20" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.20" ∷ word (ν ∷ ο ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Rom.1.20" ∷ word (κ ∷ α ∷ θ ∷ ο ∷ ρ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Rom.1.20" ∷ word (ἥ ∷ []) "Rom.1.20" ∷ word (τ ∷ ε ∷ []) "Rom.1.20" ∷ word (ἀ ∷ ΐ ∷ δ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.20" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "Rom.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.20" ∷ word (θ ∷ ε ∷ ι ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Rom.1.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.20" ∷ word (τ ∷ ὸ ∷ []) "Rom.1.20" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.1.20" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.1.20" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "Rom.1.21" ∷ word (γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.1.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.1.21" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.1.21" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.1.21" ∷ word (ὡ ∷ ς ∷ []) "Rom.1.21" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.1.21" ∷ word (ἐ ∷ δ ∷ ό ∷ ξ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.21" ∷ word (ἢ ∷ []) "Rom.1.21" ∷ word (η ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.1.21" ∷ word (ἐ ∷ μ ∷ α ∷ τ ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.21" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.21" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.21" ∷ word (ἐ ∷ σ ∷ κ ∷ ο ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rom.1.21" ∷ word (ἡ ∷ []) "Rom.1.21" ∷ word (ἀ ∷ σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ο ∷ ς ∷ []) "Rom.1.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.21" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Rom.1.21" ∷ word (φ ∷ ά ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.1.22" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.1.22" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ὶ ∷ []) "Rom.1.22" ∷ word (ἐ ∷ μ ∷ ω ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.23" ∷ word (ἤ ∷ ∙λ ∷ ∙λ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rom.1.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.1.23" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rom.1.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.23" ∷ word (ἀ ∷ φ ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "Rom.1.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.23" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.23" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.1.23" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rom.1.23" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.1.23" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rom.1.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.23" ∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.1.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.23" ∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ π ∷ ό ∷ δ ∷ ω ∷ ν ∷ []) "Rom.1.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.23" ∷ word (ἑ ∷ ρ ∷ π ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.23" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "Rom.1.24" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rom.1.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.1.24" ∷ word (ὁ ∷ []) "Rom.1.24" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.1.24" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.24" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.1.24" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rom.1.24" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.1.24" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rom.1.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.24" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rom.1.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.24" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.1.24" ∷ word (τ ∷ ὰ ∷ []) "Rom.1.24" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.1.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.24" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.24" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.1.25" ∷ word (μ ∷ ε ∷ τ ∷ ή ∷ ∙λ ∷ ∙λ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rom.1.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.1.25" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rom.1.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.25" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.25" ∷ word (τ ∷ ῷ ∷ []) "Rom.1.25" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ []) "Rom.1.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.25" ∷ word (ἐ ∷ σ ∷ ε ∷ β ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.25" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.25" ∷ word (τ ∷ ῇ ∷ []) "Rom.1.25" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rom.1.25" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rom.1.25" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.1.25" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Rom.1.25" ∷ word (ὅ ∷ ς ∷ []) "Rom.1.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.1.25" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.1.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.1.25" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rom.1.25" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rom.1.25" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Rom.1.26" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.1.26" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rom.1.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.1.26" ∷ word (ὁ ∷ []) "Rom.1.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.1.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.26" ∷ word (π ∷ ά ∷ θ ∷ η ∷ []) "Rom.1.26" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rom.1.26" ∷ word (α ∷ ἵ ∷ []) "Rom.1.26" ∷ word (τ ∷ ε ∷ []) "Rom.1.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.1.26" ∷ word (θ ∷ ή ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ι ∷ []) "Rom.1.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.26" ∷ word (μ ∷ ε ∷ τ ∷ ή ∷ ∙λ ∷ ∙λ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Rom.1.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.1.26" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ κ ∷ ὴ ∷ ν ∷ []) "Rom.1.26" ∷ word (χ ∷ ρ ∷ ῆ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.1.26" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rom.1.26" ∷ word (φ ∷ ύ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.26" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Rom.1.27" ∷ word (τ ∷ ε ∷ []) "Rom.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.27" ∷ word (ο ∷ ἱ ∷ []) "Rom.1.27" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ ε ∷ ς ∷ []) "Rom.1.27" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.1.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.1.27" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ κ ∷ ὴ ∷ ν ∷ []) "Rom.1.27" ∷ word (χ ∷ ρ ∷ ῆ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.1.27" ∷ word (θ ∷ η ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rom.1.27" ∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ α ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.27" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.27" ∷ word (τ ∷ ῇ ∷ []) "Rom.1.27" ∷ word (ὀ ∷ ρ ∷ έ ∷ ξ ∷ ε ∷ ι ∷ []) "Rom.1.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.1.27" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ ε ∷ ς ∷ []) "Rom.1.27" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.27" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.1.27" ∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.1.27" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.1.27" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ μ ∷ ι ∷ σ ∷ θ ∷ ί ∷ α ∷ ν ∷ []) "Rom.1.27" ∷ word (ἣ ∷ ν ∷ []) "Rom.1.27" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ []) "Rom.1.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.1.27" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ η ∷ ς ∷ []) "Rom.1.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.1.27" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.27" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.27" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.1.27" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rom.1.28" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.1.28" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.1.28" ∷ word (ἐ ∷ δ ∷ ο ∷ κ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Rom.1.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.1.28" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.1.28" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.1.28" ∷ word (ἐ ∷ ν ∷ []) "Rom.1.28" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.1.28" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rom.1.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.1.28" ∷ word (ὁ ∷ []) "Rom.1.28" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.1.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.1.28" ∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "Rom.1.28" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.1.28" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.1.28" ∷ word (τ ∷ ὰ ∷ []) "Rom.1.28" ∷ word (μ ∷ ὴ ∷ []) "Rom.1.28" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.1.28" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rom.1.29" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Rom.1.29" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ ᾳ ∷ []) "Rom.1.29" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ί ∷ ᾳ ∷ []) "Rom.1.29" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ ᾳ ∷ []) "Rom.1.29" ∷ word (κ ∷ α ∷ κ ∷ ί ∷ ᾳ ∷ []) "Rom.1.29" ∷ word (μ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.1.29" ∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rom.1.29" ∷ word (φ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Rom.1.29" ∷ word (ἔ ∷ ρ ∷ ι ∷ δ ∷ ο ∷ ς ∷ []) "Rom.1.29" ∷ word (δ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rom.1.29" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rom.1.29" ∷ word (ψ ∷ ι ∷ θ ∷ υ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ς ∷ []) "Rom.1.29" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.1.30" ∷ word (θ ∷ ε ∷ ο ∷ σ ∷ τ ∷ υ ∷ γ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.1.30" ∷ word (ὑ ∷ β ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ς ∷ []) "Rom.1.30" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ η ∷ φ ∷ ά ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rom.1.30" ∷ word (ἀ ∷ ∙λ ∷ α ∷ ζ ∷ ό ∷ ν ∷ α ∷ ς ∷ []) "Rom.1.30" ∷ word (ἐ ∷ φ ∷ ε ∷ υ ∷ ρ ∷ ε ∷ τ ∷ ὰ ∷ ς ∷ []) "Rom.1.30" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ν ∷ []) "Rom.1.30" ∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.30" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.1.30" ∷ word (ἀ ∷ σ ∷ υ ∷ ν ∷ έ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.1.31" ∷ word (ἀ ∷ σ ∷ υ ∷ ν ∷ θ ∷ έ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.1.31" ∷ word (ἀ ∷ σ ∷ τ ∷ ό ∷ ρ ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.1.31" ∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ε ∷ ή ∷ μ ∷ ο ∷ ν ∷ α ∷ ς ∷ []) "Rom.1.31" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.1.32" ∷ word (τ ∷ ὸ ∷ []) "Rom.1.32" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ μ ∷ α ∷ []) "Rom.1.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.1.32" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.1.32" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.1.32" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.1.32" ∷ word (ο ∷ ἱ ∷ []) "Rom.1.32" ∷ word (τ ∷ ὰ ∷ []) "Rom.1.32" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rom.1.32" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.1.32" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ι ∷ []) "Rom.1.32" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rom.1.32" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rom.1.32" ∷ word (ο ∷ ὐ ∷ []) "Rom.1.32" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.1.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rom.1.32" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.32" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.1.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.1.32" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ υ ∷ δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.32" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.1.32" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.1.32" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "Rom.2.1" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ο ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Rom.2.1" ∷ word (ε ∷ ἶ ∷ []) "Rom.2.1" ∷ word (ὦ ∷ []) "Rom.2.1" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ε ∷ []) "Rom.2.1" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rom.2.1" ∷ word (ὁ ∷ []) "Rom.2.1" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Rom.2.1" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.1" ∷ word (ᾧ ∷ []) "Rom.2.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.2.1" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.2.1" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.2.1" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.2.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.1" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.2.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Rom.2.1" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.1" ∷ word (ὁ ∷ []) "Rom.2.1" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Rom.2.1" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.2.2" ∷ word (δ ∷ ὲ ∷ []) "Rom.2.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.2.2" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.2" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rom.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.2.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.2.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.2.2" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rom.2.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.2.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.2.2" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.2" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rom.2.2" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.2.2" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Rom.2.3" ∷ word (δ ∷ ὲ ∷ []) "Rom.2.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.2.3" ∷ word (ὦ ∷ []) "Rom.2.3" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ε ∷ []) "Rom.2.3" ∷ word (ὁ ∷ []) "Rom.2.3" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Rom.2.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.2.3" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.3" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rom.2.3" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.3" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rom.2.3" ∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Rom.2.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.2.3" ∷ word (σ ∷ ὺ ∷ []) "Rom.2.3" ∷ word (ἐ ∷ κ ∷ φ ∷ ε ∷ ύ ∷ ξ ∷ ῃ ∷ []) "Rom.2.3" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.3" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rom.2.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.2.3" ∷ word (ἢ ∷ []) "Rom.2.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.4" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rom.2.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.2.4" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Rom.2.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.2.4" ∷ word (ἀ ∷ ν ∷ ο ∷ χ ∷ ῆ ∷ ς ∷ []) "Rom.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.2.4" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rom.2.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.2.4" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ῶ ∷ ν ∷ []) "Rom.2.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.2.4" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.4" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.2.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.2.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.2.4" ∷ word (μ ∷ ε ∷ τ ∷ ά ∷ ν ∷ ο ∷ ι ∷ ά ∷ ν ∷ []) "Rom.2.4" ∷ word (σ ∷ ε ∷ []) "Rom.2.4" ∷ word (ἄ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.2.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.2.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.2.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.2.5" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ό ∷ τ ∷ η ∷ τ ∷ ά ∷ []) "Rom.2.5" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.5" ∷ word (ἀ ∷ μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ό ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Rom.2.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Rom.2.5" ∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.5" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Rom.2.5" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.2.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rom.2.5" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rom.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.2.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ κ ∷ ρ ∷ ι ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rom.2.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.2.5" ∷ word (ὃ ∷ ς ∷ []) "Rom.2.6" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.2.6" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rom.2.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.2.6" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rom.2.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.2.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.2.7" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.2.7" ∷ word (κ ∷ α ∷ θ ∷ []) "Rom.2.7" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "Rom.2.7" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ υ ∷ []) "Rom.2.7" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ ῦ ∷ []) "Rom.2.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rom.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.7" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rom.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.7" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rom.2.7" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.2.7" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Rom.2.7" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Rom.2.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.2.8" ∷ word (δ ∷ ὲ ∷ []) "Rom.2.8" ∷ word (ἐ ∷ ξ ∷ []) "Rom.2.8" ∷ word (ἐ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rom.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.8" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Rom.2.8" ∷ word (τ ∷ ῇ ∷ []) "Rom.2.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rom.2.8" ∷ word (π ∷ ε ∷ ι ∷ θ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Rom.2.8" ∷ word (δ ∷ ὲ ∷ []) "Rom.2.8" ∷ word (τ ∷ ῇ ∷ []) "Rom.2.8" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ ᾳ ∷ []) "Rom.2.8" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ []) "Rom.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.8" ∷ word (θ ∷ υ ∷ μ ∷ ό ∷ ς ∷ []) "Rom.2.8" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ς ∷ []) "Rom.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.9" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ο ∷ χ ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "Rom.2.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.2.9" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rom.2.9" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Rom.2.9" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rom.2.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.9" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rom.2.9" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.9" ∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "Rom.2.9" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Rom.2.9" ∷ word (τ ∷ ε ∷ []) "Rom.2.9" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.9" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ο ∷ ς ∷ []) "Rom.2.9" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rom.2.10" ∷ word (δ ∷ ὲ ∷ []) "Rom.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.10" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rom.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.10" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Rom.2.10" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rom.2.10" ∷ word (τ ∷ ῷ ∷ []) "Rom.2.10" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rom.2.10" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.10" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Rom.2.10" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ῳ ∷ []) "Rom.2.10" ∷ word (τ ∷ ε ∷ []) "Rom.2.10" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.10" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ι ∷ []) "Rom.2.10" ∷ word (ο ∷ ὐ ∷ []) "Rom.2.11" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.2.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.2.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ω ∷ π ∷ ο ∷ ∙λ ∷ η ∷ μ ∷ ψ ∷ ί ∷ α ∷ []) "Rom.2.11" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rom.2.11" ∷ word (τ ∷ ῷ ∷ []) "Rom.2.11" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.2.11" ∷ word (Ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rom.2.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.2.12" ∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ω ∷ ς ∷ []) "Rom.2.12" ∷ word (ἥ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.2.12" ∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ω ∷ ς ∷ []) "Rom.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.12" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.12" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rom.2.12" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.12" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.2.12" ∷ word (ἥ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.2.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.2.12" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.12" ∷ word (κ ∷ ρ ∷ ι ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.2.12" ∷ word (ο ∷ ὐ ∷ []) "Rom.2.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.2.13" ∷ word (ο ∷ ἱ ∷ []) "Rom.2.13" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ α ∷ τ ∷ α ∷ ὶ ∷ []) "Rom.2.13" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.13" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ι ∷ []) "Rom.2.13" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rom.2.13" ∷ word (τ ∷ ῷ ∷ []) "Rom.2.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.2.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.2.13" ∷ word (ο ∷ ἱ ∷ []) "Rom.2.13" ∷ word (π ∷ ο ∷ ι ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Rom.2.13" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.13" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ω ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.2.13" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rom.2.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.2.14" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rom.2.14" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.14" ∷ word (μ ∷ ὴ ∷ []) "Rom.2.14" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.2.14" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.2.14" ∷ word (φ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.2.14" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.14" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.14" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.2.14" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.2.14" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.2.14" ∷ word (μ ∷ ὴ ∷ []) "Rom.2.14" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.2.14" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.2.14" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.2.14" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.2.14" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.2.15" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ί ∷ κ ∷ ν ∷ υ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.2.15" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.15" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Rom.2.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.15" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.15" ∷ word (γ ∷ ρ ∷ α ∷ π ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.2.15" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.15" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.2.15" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rom.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.2.15" ∷ word (σ ∷ υ ∷ μ ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rom.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.2.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.2.15" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.15" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ξ ∷ ὺ ∷ []) "Rom.2.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rom.2.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.2.15" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.2.15" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.2.15" ∷ word (ἢ ∷ []) "Rom.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.15" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rom.2.15" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.16" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rom.2.16" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rom.2.16" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rom.2.16" ∷ word (ὁ ∷ []) "Rom.2.16" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.2.16" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.16" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὰ ∷ []) "Rom.2.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.2.16" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rom.2.16" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.2.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ό ∷ ν ∷ []) "Rom.2.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.2.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.2.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.2.16" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.2.16" ∷ word (Ε ∷ ἰ ∷ []) "Rom.2.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.2.17" ∷ word (σ ∷ ὺ ∷ []) "Rom.2.17" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rom.2.17" ∷ word (ἐ ∷ π ∷ ο ∷ ν ∷ ο ∷ μ ∷ ά ∷ ζ ∷ ῃ ∷ []) "Rom.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.17" ∷ word (ἐ ∷ π ∷ α ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ ῃ ∷ []) "Rom.2.17" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.17" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rom.2.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.17" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.18" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.18" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.18" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Rom.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.18" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.18" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.18" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.2.18" ∷ word (κ ∷ α ∷ τ ∷ η ∷ χ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.2.18" ∷ word (ἐ ∷ κ ∷ []) "Rom.2.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.18" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.18" ∷ word (π ∷ έ ∷ π ∷ ο ∷ ι ∷ θ ∷ ά ∷ ς ∷ []) "Rom.2.19" ∷ word (τ ∷ ε ∷ []) "Rom.2.19" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.2.19" ∷ word (ὁ ∷ δ ∷ η ∷ γ ∷ ὸ ∷ ν ∷ []) "Rom.2.19" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.2.19" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rom.2.19" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Rom.2.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.2.19" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.19" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ε ∷ ι ∷ []) "Rom.2.19" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rom.2.20" ∷ word (ἀ ∷ φ ∷ ρ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Rom.2.20" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.2.20" ∷ word (ν ∷ η ∷ π ∷ ί ∷ ω ∷ ν ∷ []) "Rom.2.20" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.2.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.2.20" ∷ word (μ ∷ ό ∷ ρ ∷ φ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.2.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.2.20" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.2.20" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rom.2.20" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.20" ∷ word (τ ∷ ῷ ∷ []) "Rom.2.20" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.2.20" ∷ word (ὁ ∷ []) "Rom.2.21" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.2.21" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Rom.2.21" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.2.21" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.2.21" ∷ word (ο ∷ ὐ ∷ []) "Rom.2.21" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.21" ∷ word (ὁ ∷ []) "Rom.2.21" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Rom.2.21" ∷ word (μ ∷ ὴ ∷ []) "Rom.2.21" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.2.21" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.21" ∷ word (ὁ ∷ []) "Rom.2.22" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.2.22" ∷ word (μ ∷ ὴ ∷ []) "Rom.2.22" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.2.22" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.22" ∷ word (ὁ ∷ []) "Rom.2.22" ∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.2.22" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.22" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ α ∷ []) "Rom.2.22" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ υ ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.2.22" ∷ word (ὃ ∷ ς ∷ []) "Rom.2.23" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.23" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.2.23" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rom.2.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.2.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.2.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.2.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.23" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.23" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.2.23" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.2.23" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.2.23" ∷ word (τ ∷ ὸ ∷ []) "Rom.2.24" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.2.24" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rom.2.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.2.24" ∷ word (δ ∷ ι ∷ []) "Rom.2.24" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.2.24" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rom.2.24" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.2.24" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.2.24" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.2.24" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.2.24" ∷ word (Π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ὴ ∷ []) "Rom.2.25" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.2.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.2.25" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Rom.2.25" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.2.25" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.2.25" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ ς ∷ []) "Rom.2.25" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.2.25" ∷ word (δ ∷ ὲ ∷ []) "Rom.2.25" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ά ∷ τ ∷ η ∷ ς ∷ []) "Rom.2.25" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.25" ∷ word (ᾖ ∷ ς ∷ []) "Rom.2.25" ∷ word (ἡ ∷ []) "Rom.2.25" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ή ∷ []) "Rom.2.25" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.2.25" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rom.2.25" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Rom.2.25" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.2.26" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.2.26" ∷ word (ἡ ∷ []) "Rom.2.26" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rom.2.26" ∷ word (τ ∷ ὰ ∷ []) "Rom.2.26" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.2.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.26" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.26" ∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Rom.2.26" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.2.26" ∷ word (ἡ ∷ []) "Rom.2.26" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rom.2.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.2.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.2.26" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "Rom.2.26" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.27" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ῖ ∷ []) "Rom.2.27" ∷ word (ἡ ∷ []) "Rom.2.27" ∷ word (ἐ ∷ κ ∷ []) "Rom.2.27" ∷ word (φ ∷ ύ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.2.27" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rom.2.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.2.27" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.2.27" ∷ word (τ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Rom.2.27" ∷ word (σ ∷ ὲ ∷ []) "Rom.2.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.2.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.2.27" ∷ word (γ ∷ ρ ∷ ά ∷ μ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.2.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.27" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Rom.2.27" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Rom.2.27" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.2.27" ∷ word (ο ∷ ὐ ∷ []) "Rom.2.28" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.2.28" ∷ word (ὁ ∷ []) "Rom.2.28" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.28" ∷ word (τ ∷ ῷ ∷ []) "Rom.2.28" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ῷ ∷ []) "Rom.2.28" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ό ∷ ς ∷ []) "Rom.2.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.2.28" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rom.2.28" ∷ word (ἡ ∷ []) "Rom.2.28" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.28" ∷ word (τ ∷ ῷ ∷ []) "Rom.2.28" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ῷ ∷ []) "Rom.2.28" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.28" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Rom.2.28" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ή ∷ []) "Rom.2.28" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.2.29" ∷ word (ὁ ∷ []) "Rom.2.29" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.29" ∷ word (τ ∷ ῷ ∷ []) "Rom.2.29" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ῷ ∷ []) "Rom.2.29" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Rom.2.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.2.29" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ὴ ∷ []) "Rom.2.29" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rom.2.29" ∷ word (ἐ ∷ ν ∷ []) "Rom.2.29" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.2.29" ∷ word (ο ∷ ὐ ∷ []) "Rom.2.29" ∷ word (γ ∷ ρ ∷ ά ∷ μ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.2.29" ∷ word (ο ∷ ὗ ∷ []) "Rom.2.29" ∷ word (ὁ ∷ []) "Rom.2.29" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Rom.2.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.2.29" ∷ word (ἐ ∷ ξ ∷ []) "Rom.2.29" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rom.2.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.2.29" ∷ word (ἐ ∷ κ ∷ []) "Rom.2.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.2.29" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.2.29" ∷ word (Τ ∷ ί ∷ []) "Rom.3.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.3.1" ∷ word (τ ∷ ὸ ∷ []) "Rom.3.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ὸ ∷ ν ∷ []) "Rom.3.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.3.1" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Rom.3.1" ∷ word (ἢ ∷ []) "Rom.3.1" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.3.1" ∷ word (ἡ ∷ []) "Rom.3.1" ∷ word (ὠ ∷ φ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ []) "Rom.3.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.3.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Rom.3.1" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Rom.3.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.3.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rom.3.2" ∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rom.3.2" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.3.2" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.3.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.3.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.3.2" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.3.2" ∷ word (τ ∷ ὰ ∷ []) "Rom.3.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ι ∷ α ∷ []) "Rom.3.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.3.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.2" ∷ word (τ ∷ ί ∷ []) "Rom.3.3" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.3.3" ∷ word (ε ∷ ἰ ∷ []) "Rom.3.3" ∷ word (ἠ ∷ π ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ ά ∷ ν ∷ []) "Rom.3.3" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.3.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.3.3" ∷ word (ἡ ∷ []) "Rom.3.3" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "Rom.3.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.3.3" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.3.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.3" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rom.3.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.3.4" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.3.4" ∷ word (γ ∷ ι ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Rom.3.4" ∷ word (δ ∷ ὲ ∷ []) "Rom.3.4" ∷ word (ὁ ∷ []) "Rom.3.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.3.4" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ ς ∷ []) "Rom.3.4" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rom.3.4" ∷ word (δ ∷ ὲ ∷ []) "Rom.3.4" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Rom.3.4" ∷ word (ψ ∷ ε ∷ ύ ∷ σ ∷ τ ∷ η ∷ ς ∷ []) "Rom.3.4" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.3.4" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.3.4" ∷ word (Ὅ ∷ π ∷ ω ∷ ς ∷ []) "Rom.3.4" ∷ word (ἂ ∷ ν ∷ []) "Rom.3.4" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ω ∷ θ ∷ ῇ ∷ ς ∷ []) "Rom.3.4" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.3.4" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.3.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.4" ∷ word (ν ∷ ι ∷ κ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.3.4" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.4" ∷ word (τ ∷ ῷ ∷ []) "Rom.3.4" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ί ∷ []) "Rom.3.4" ∷ word (σ ∷ ε ∷ []) "Rom.3.4" ∷ word (ε ∷ ἰ ∷ []) "Rom.3.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.3.5" ∷ word (ἡ ∷ []) "Rom.3.5" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ []) "Rom.3.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.3.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.3.5" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Rom.3.5" ∷ word (τ ∷ ί ∷ []) "Rom.3.5" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.3.5" ∷ word (μ ∷ ὴ ∷ []) "Rom.3.5" ∷ word (ἄ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ς ∷ []) "Rom.3.5" ∷ word (ὁ ∷ []) "Rom.3.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.3.5" ∷ word (ὁ ∷ []) "Rom.3.5" ∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rom.3.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.3.5" ∷ word (ὀ ∷ ρ ∷ γ ∷ ή ∷ ν ∷ []) "Rom.3.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.3.5" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rom.3.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.3.5" ∷ word (μ ∷ ὴ ∷ []) "Rom.3.6" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.3.6" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Rom.3.6" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rom.3.6" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ῖ ∷ []) "Rom.3.6" ∷ word (ὁ ∷ []) "Rom.3.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.3.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.3.6" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Rom.3.6" ∷ word (ε ∷ ἰ ∷ []) "Rom.3.7" ∷ word (δ ∷ ὲ ∷ []) "Rom.3.7" ∷ word (ἡ ∷ []) "Rom.3.7" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ []) "Rom.3.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.3.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.7" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.7" ∷ word (τ ∷ ῷ ∷ []) "Rom.3.7" ∷ word (ἐ ∷ μ ∷ ῷ ∷ []) "Rom.3.7" ∷ word (ψ ∷ ε ∷ ύ ∷ σ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.3.7" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ί ∷ σ ∷ σ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.3.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.3.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rom.3.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.3.7" ∷ word (τ ∷ ί ∷ []) "Rom.3.7" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rom.3.7" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rom.3.7" ∷ word (ὡ ∷ ς ∷ []) "Rom.3.7" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Rom.3.7" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.8" ∷ word (μ ∷ ὴ ∷ []) "Rom.3.8" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.3.8" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.8" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "Rom.3.8" ∷ word (φ ∷ α ∷ σ ∷ ί ∷ ν ∷ []) "Rom.3.8" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.3.8" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.3.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.3.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.3.8" ∷ word (Π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.3.8" ∷ word (τ ∷ ὰ ∷ []) "Rom.3.8" ∷ word (κ ∷ α ∷ κ ∷ ὰ ∷ []) "Rom.3.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.3.8" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rom.3.8" ∷ word (τ ∷ ὰ ∷ []) "Rom.3.8" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ά ∷ []) "Rom.3.8" ∷ word (ὧ ∷ ν ∷ []) "Rom.3.8" ∷ word (τ ∷ ὸ ∷ []) "Rom.3.8" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rom.3.8" ∷ word (ἔ ∷ ν ∷ δ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "Rom.3.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.8" ∷ word (Τ ∷ ί ∷ []) "Rom.3.9" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.3.9" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.3.9" ∷ word (ο ∷ ὐ ∷ []) "Rom.3.9" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "Rom.3.9" ∷ word (π ∷ ρ ∷ ο ∷ ῃ ∷ τ ∷ ι ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.3.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.3.9" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rom.3.9" ∷ word (τ ∷ ε ∷ []) "Rom.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.9" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ α ∷ ς ∷ []) "Rom.3.9" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.3.9" ∷ word (ὑ ∷ φ ∷ []) "Rom.3.9" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rom.3.9" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.3.9" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.3.10" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.3.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.3.10" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Rom.3.10" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.10" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rom.3.10" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rom.3.10" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rom.3.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.3.11" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.11" ∷ word (ὁ ∷ []) "Rom.3.11" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Rom.3.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.3.11" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.11" ∷ word (ὁ ∷ []) "Rom.3.11" ∷ word (ἐ ∷ κ ∷ ζ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.3.11" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rom.3.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.3.12" ∷ word (ἐ ∷ ξ ∷ έ ∷ κ ∷ ∙λ ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Rom.3.12" ∷ word (ἅ ∷ μ ∷ α ∷ []) "Rom.3.12" ∷ word (ἠ ∷ χ ∷ ρ ∷ ε ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.3.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.3.12" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.12" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rom.3.12" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Rom.3.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.3.12" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.12" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Rom.3.12" ∷ word (ἑ ∷ ν ∷ ό ∷ ς ∷ []) "Rom.3.12" ∷ word (τ ∷ ά ∷ φ ∷ ο ∷ ς ∷ []) "Rom.3.13" ∷ word (ἀ ∷ ν ∷ ε ∷ ῳ ∷ γ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rom.3.13" ∷ word (ὁ ∷ []) "Rom.3.13" ∷ word (∙λ ∷ ά ∷ ρ ∷ υ ∷ γ ∷ ξ ∷ []) "Rom.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.13" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.3.13" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Rom.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.13" ∷ word (ἐ ∷ δ ∷ ο ∷ ∙λ ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Rom.3.13" ∷ word (ἰ ∷ ὸ ∷ ς ∷ []) "Rom.3.13" ∷ word (ἀ ∷ σ ∷ π ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Rom.3.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.3.13" ∷ word (τ ∷ ὰ ∷ []) "Rom.3.13" ∷ word (χ ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ []) "Rom.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.13" ∷ word (ὧ ∷ ν ∷ []) "Rom.3.14" ∷ word (τ ∷ ὸ ∷ []) "Rom.3.14" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rom.3.14" ∷ word (ἀ ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Rom.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.14" ∷ word (π ∷ ι ∷ κ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Rom.3.14" ∷ word (γ ∷ έ ∷ μ ∷ ε ∷ ι ∷ []) "Rom.3.14" ∷ word (ὀ ∷ ξ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.3.15" ∷ word (ο ∷ ἱ ∷ []) "Rom.3.15" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rom.3.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.15" ∷ word (ἐ ∷ κ ∷ χ ∷ έ ∷ α ∷ ι ∷ []) "Rom.3.15" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Rom.3.15" ∷ word (σ ∷ ύ ∷ ν ∷ τ ∷ ρ ∷ ι ∷ μ ∷ μ ∷ α ∷ []) "Rom.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.16" ∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ι ∷ π ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "Rom.3.16" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.16" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.3.16" ∷ word (ὁ ∷ δ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.3.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.17" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Rom.3.17" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rom.3.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.3.17" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Rom.3.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.3.18" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.18" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ς ∷ []) "Rom.3.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.18" ∷ word (ἀ ∷ π ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rom.3.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.3.18" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.3.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.18" ∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.3.19" ∷ word (δ ∷ ὲ ∷ []) "Rom.3.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.3.19" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Rom.3.19" ∷ word (ὁ ∷ []) "Rom.3.19" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.3.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.3.19" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.3.19" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.19" ∷ word (τ ∷ ῷ ∷ []) "Rom.3.19" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.3.19" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Rom.3.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.3.19" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rom.3.19" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Rom.3.19" ∷ word (φ ∷ ρ ∷ α ∷ γ ∷ ῇ ∷ []) "Rom.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.19" ∷ word (ὑ ∷ π ∷ ό ∷ δ ∷ ι ∷ κ ∷ ο ∷ ς ∷ []) "Rom.3.19" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.3.19" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rom.3.19" ∷ word (ὁ ∷ []) "Rom.3.19" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "Rom.3.19" ∷ word (τ ∷ ῷ ∷ []) "Rom.3.19" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.3.19" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "Rom.3.20" ∷ word (ἐ ∷ ξ ∷ []) "Rom.3.20" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.3.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.3.20" ∷ word (ο ∷ ὐ ∷ []) "Rom.3.20" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.3.20" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rom.3.20" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "Rom.3.20" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rom.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.3.20" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.3.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.3.20" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ς ∷ []) "Rom.3.20" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.3.20" ∷ word (Ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Rom.3.21" ∷ word (δ ∷ ὲ ∷ []) "Rom.3.21" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Rom.3.21" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.3.21" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Rom.3.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.21" ∷ word (π ∷ ε ∷ φ ∷ α ∷ ν ∷ έ ∷ ρ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Rom.3.21" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rom.3.21" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.3.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.3.21" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.3.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.3.21" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.3.21" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Rom.3.22" ∷ word (δ ∷ ὲ ∷ []) "Rom.3.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.22" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.22" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.3.22" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.3.22" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.3.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.3.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.3.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.3.22" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.3.22" ∷ word (ο ∷ ὐ ∷ []) "Rom.3.22" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.3.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.3.22" ∷ word (δ ∷ ι ∷ α ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ή ∷ []) "Rom.3.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.3.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.3.23" ∷ word (ἥ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.3.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.23" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.3.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.3.23" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rom.3.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.3.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.23" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.3.24" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ὰ ∷ ν ∷ []) "Rom.3.24" ∷ word (τ ∷ ῇ ∷ []) "Rom.3.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.3.24" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "Rom.3.24" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.3.24" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.3.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.3.24" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.3.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.3.24" ∷ word (ὃ ∷ ν ∷ []) "Rom.3.25" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ θ ∷ ε ∷ τ ∷ ο ∷ []) "Rom.3.25" ∷ word (ὁ ∷ []) "Rom.3.25" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.3.25" ∷ word (ἱ ∷ ∙λ ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.3.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.25" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.3.25" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.25" ∷ word (τ ∷ ῷ ∷ []) "Rom.3.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.3.25" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.3.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.3.25" ∷ word (ἔ ∷ ν ∷ δ ∷ ε ∷ ι ∷ ξ ∷ ι ∷ ν ∷ []) "Rom.3.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.3.25" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.3.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.3.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.3.25" ∷ word (π ∷ ά ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.3.25" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.3.25" ∷ word (π ∷ ρ ∷ ο ∷ γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Rom.3.25" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rom.3.25" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.26" ∷ word (τ ∷ ῇ ∷ []) "Rom.3.26" ∷ word (ἀ ∷ ν ∷ ο ∷ χ ∷ ῇ ∷ []) "Rom.3.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.3.26" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.3.26" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.3.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.3.26" ∷ word (ἔ ∷ ν ∷ δ ∷ ε ∷ ι ∷ ξ ∷ ι ∷ ν ∷ []) "Rom.3.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.3.26" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.3.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.3.26" ∷ word (ἐ ∷ ν ∷ []) "Rom.3.26" ∷ word (τ ∷ ῷ ∷ []) "Rom.3.26" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.3.26" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Rom.3.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.3.26" ∷ word (τ ∷ ὸ ∷ []) "Rom.3.26" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.3.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.3.26" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rom.3.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.26" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rom.3.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.3.26" ∷ word (ἐ ∷ κ ∷ []) "Rom.3.26" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.3.26" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.3.26" ∷ word (Π ∷ ο ∷ ῦ ∷ []) "Rom.3.27" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.3.27" ∷ word (ἡ ∷ []) "Rom.3.27" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Rom.3.27" ∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ ∙λ ∷ ε ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rom.3.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.27" ∷ word (π ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Rom.3.27" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.3.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.3.27" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.3.27" ∷ word (ο ∷ ὐ ∷ χ ∷ ί ∷ []) "Rom.3.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.3.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.27" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.3.27" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.3.27" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.3.28" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.3.28" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.3.28" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Rom.3.28" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rom.3.28" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Rom.3.28" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.3.28" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.3.28" ∷ word (ἢ ∷ []) "Rom.3.29" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Rom.3.29" ∷ word (ὁ ∷ []) "Rom.3.29" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.3.29" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.3.29" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "Rom.3.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.29" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.3.29" ∷ word (ν ∷ α ∷ ὶ ∷ []) "Rom.3.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.29" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.3.29" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.3.30" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rom.3.30" ∷ word (ὁ ∷ []) "Rom.3.30" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Rom.3.30" ∷ word (ὃ ∷ ς ∷ []) "Rom.3.30" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.3.30" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "Rom.3.30" ∷ word (ἐ ∷ κ ∷ []) "Rom.3.30" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.3.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.3.30" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rom.3.30" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.3.30" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.3.30" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.3.31" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.3.31" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.3.31" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.3.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.3.31" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.3.31" ∷ word (μ ∷ ὴ ∷ []) "Rom.3.31" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.3.31" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.3.31" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.3.31" ∷ word (ἱ ∷ σ ∷ τ ∷ ά ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.3.31" ∷ word (Τ ∷ ί ∷ []) "Rom.4.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.4.1" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.4.1" ∷ word (ε ∷ ὑ ∷ ρ ∷ η ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Rom.4.1" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Rom.4.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.4.1" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ ά ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Rom.4.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.4.1" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.4.1" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.4.1" ∷ word (ε ∷ ἰ ∷ []) "Rom.4.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.4.2" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Rom.4.2" ∷ word (ἐ ∷ ξ ∷ []) "Rom.4.2" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.4.2" ∷ word (ἐ ∷ δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ []) "Rom.4.2" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rom.4.2" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "Rom.4.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.4.2" ∷ word (ο ∷ ὐ ∷ []) "Rom.4.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.4.2" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rom.4.2" ∷ word (τ ∷ ί ∷ []) "Rom.4.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.4.3" ∷ word (ἡ ∷ []) "Rom.4.3" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ []) "Rom.4.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.4.3" ∷ word (Ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.4.3" ∷ word (δ ∷ ὲ ∷ []) "Rom.4.3" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Rom.4.3" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.3" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.3" ∷ word (ἐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rom.4.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.4.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.3" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.4.3" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.4" ∷ word (δ ∷ ὲ ∷ []) "Rom.4.4" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rom.4.4" ∷ word (ὁ ∷ []) "Rom.4.4" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ς ∷ []) "Rom.4.4" ∷ word (ο ∷ ὐ ∷ []) "Rom.4.4" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.4.4" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Rom.4.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.4.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.4.4" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Rom.4.4" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.4.5" ∷ word (μ ∷ ὴ ∷ []) "Rom.4.5" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rom.4.5" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rom.4.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.4.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.4.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.4.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rom.4.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.4.5" ∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ῆ ∷ []) "Rom.4.5" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.5" ∷ word (ἡ ∷ []) "Rom.4.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rom.4.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.4.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.4.5" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "Rom.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.6" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Rom.4.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.4.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.4.6" ∷ word (μ ∷ α ∷ κ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Rom.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.4.6" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rom.4.6" ∷ word (ᾧ ∷ []) "Rom.4.6" ∷ word (ὁ ∷ []) "Rom.4.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.4.6" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.6" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.4.6" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Rom.4.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.4.6" ∷ word (Μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "Rom.4.7" ∷ word (ὧ ∷ ν ∷ []) "Rom.4.7" ∷ word (ἀ ∷ φ ∷ έ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.4.7" ∷ word (α ∷ ἱ ∷ []) "Rom.4.7" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Rom.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.7" ∷ word (ὧ ∷ ν ∷ []) "Rom.4.7" ∷ word (ἐ ∷ π ∷ ε ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ φ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.4.7" ∷ word (α ∷ ἱ ∷ []) "Rom.4.7" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Rom.4.7" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.4.8" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "Rom.4.8" ∷ word (ο ∷ ὗ ∷ []) "Rom.4.8" ∷ word (ο ∷ ὐ ∷ []) "Rom.4.8" ∷ word (μ ∷ ὴ ∷ []) "Rom.4.8" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.4.8" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rom.4.8" ∷ word (Ὁ ∷ []) "Rom.4.9" ∷ word (μ ∷ α ∷ κ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rom.4.9" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.4.9" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.4.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.4.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.4.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "Rom.4.9" ∷ word (ἢ ∷ []) "Rom.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.4.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.4.9" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rom.4.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.4.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.4.9" ∷ word (Ἐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rom.4.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.9" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Rom.4.9" ∷ word (ἡ ∷ []) "Rom.4.9" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rom.4.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.9" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.4.9" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rom.4.10" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.4.10" ∷ word (ἐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rom.4.10" ∷ word (ἐ ∷ ν ∷ []) "Rom.4.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῇ ∷ []) "Rom.4.10" ∷ word (ὄ ∷ ν ∷ τ ∷ ι ∷ []) "Rom.4.10" ∷ word (ἢ ∷ []) "Rom.4.10" ∷ word (ἐ ∷ ν ∷ []) "Rom.4.10" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.4.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.4.10" ∷ word (ἐ ∷ ν ∷ []) "Rom.4.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῇ ∷ []) "Rom.4.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.4.10" ∷ word (ἐ ∷ ν ∷ []) "Rom.4.10" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.11" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Rom.4.11" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Rom.4.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Rom.4.11" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "Rom.4.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.4.11" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.4.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.4.11" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.4.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.4.11" ∷ word (ἐ ∷ ν ∷ []) "Rom.4.11" ∷ word (τ ∷ ῇ ∷ []) "Rom.4.11" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.4.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.11" ∷ word (τ ∷ ὸ ∷ []) "Rom.4.11" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.4.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.4.11" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.4.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.4.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.4.11" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.4.11" ∷ word (δ ∷ ι ∷ []) "Rom.4.11" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.4.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.11" ∷ word (τ ∷ ὸ ∷ []) "Rom.4.11" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rom.4.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.4.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.4.11" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.12" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.4.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Rom.4.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.4.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.4.12" ∷ word (ἐ ∷ κ ∷ []) "Rom.4.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Rom.4.12" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.4.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.4.12" ∷ word (σ ∷ τ ∷ ο ∷ ι ∷ χ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.4.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.4.12" ∷ word (ἴ ∷ χ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.4.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.4.12" ∷ word (ἐ ∷ ν ∷ []) "Rom.4.12" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.4.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.4.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.4.12" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.4.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.4.12" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "Rom.4.12" ∷ word (Ο ∷ ὐ ∷ []) "Rom.4.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.4.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.4.13" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.4.13" ∷ word (ἡ ∷ []) "Rom.4.13" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ []) "Rom.4.13" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.13" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Rom.4.13" ∷ word (ἢ ∷ []) "Rom.4.13" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.13" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.4.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.4.13" ∷ word (τ ∷ ὸ ∷ []) "Rom.4.13" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.4.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.4.13" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.4.13" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rom.4.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.4.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.4.13" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.4.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.4.13" ∷ word (ε ∷ ἰ ∷ []) "Rom.4.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.4.14" ∷ word (ο ∷ ἱ ∷ []) "Rom.4.14" ∷ word (ἐ ∷ κ ∷ []) "Rom.4.14" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.4.14" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ []) "Rom.4.14" ∷ word (κ ∷ ε ∷ κ ∷ έ ∷ ν ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.14" ∷ word (ἡ ∷ []) "Rom.4.14" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rom.4.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.14" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ ρ ∷ γ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.14" ∷ word (ἡ ∷ []) "Rom.4.14" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ []) "Rom.4.14" ∷ word (ὁ ∷ []) "Rom.4.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.4.15" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.4.15" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.4.15" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.15" ∷ word (ο ∷ ὗ ∷ []) "Rom.4.15" ∷ word (δ ∷ ὲ ∷ []) "Rom.4.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.4.15" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.4.15" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.4.15" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rom.4.15" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ β ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Rom.4.15" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Rom.4.16" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.4.16" ∷ word (ἐ ∷ κ ∷ []) "Rom.4.16" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.4.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.4.16" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.4.16" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Rom.4.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.4.16" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.4.16" ∷ word (β ∷ ε ∷ β ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Rom.4.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.4.16" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Rom.4.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rom.4.16" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.16" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.4.16" ∷ word (ο ∷ ὐ ∷ []) "Rom.4.16" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.16" ∷ word (ἐ ∷ κ ∷ []) "Rom.4.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.4.16" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.4.16" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.4.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.16" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.16" ∷ word (ἐ ∷ κ ∷ []) "Rom.4.16" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.4.16" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "Rom.4.16" ∷ word (ὅ ∷ ς ∷ []) "Rom.4.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.4.16" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Rom.4.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.4.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.4.16" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.4.17" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.4.17" ∷ word (Π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.4.17" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rom.4.17" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.4.17" ∷ word (τ ∷ έ ∷ θ ∷ ε ∷ ι ∷ κ ∷ ά ∷ []) "Rom.4.17" ∷ word (σ ∷ ε ∷ []) "Rom.4.17" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rom.4.17" ∷ word (ο ∷ ὗ ∷ []) "Rom.4.17" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.4.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.4.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.4.17" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.4.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.4.17" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.4.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.17" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.4.17" ∷ word (τ ∷ ὰ ∷ []) "Rom.4.17" ∷ word (μ ∷ ὴ ∷ []) "Rom.4.17" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "Rom.4.17" ∷ word (ὡ ∷ ς ∷ []) "Rom.4.17" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "Rom.4.17" ∷ word (ὃ ∷ ς ∷ []) "Rom.4.18" ∷ word (π ∷ α ∷ ρ ∷ []) "Rom.4.18" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "Rom.4.18" ∷ word (ἐ ∷ π ∷ []) "Rom.4.18" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "Rom.4.18" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.4.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.18" ∷ word (τ ∷ ὸ ∷ []) "Rom.4.18" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.4.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.4.18" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.4.18" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rom.4.18" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.4.18" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.4.18" ∷ word (τ ∷ ὸ ∷ []) "Rom.4.18" ∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rom.4.18" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.4.18" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.18" ∷ word (τ ∷ ὸ ∷ []) "Rom.4.18" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Rom.4.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.4.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.19" ∷ word (μ ∷ ὴ ∷ []) "Rom.4.19" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Rom.4.19" ∷ word (τ ∷ ῇ ∷ []) "Rom.4.19" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Rom.4.19" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ν ∷ ό ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rom.4.19" ∷ word (τ ∷ ὸ ∷ []) "Rom.4.19" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.4.19" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Rom.4.19" ∷ word (ν ∷ ε ∷ ν ∷ ε ∷ κ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Rom.4.19" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ τ ∷ α ∷ ε ∷ τ ∷ ή ∷ ς ∷ []) "Rom.4.19" ∷ word (π ∷ ο ∷ υ ∷ []) "Rom.4.19" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "Rom.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.4.19" ∷ word (ν ∷ έ ∷ κ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.4.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.4.19" ∷ word (μ ∷ ή ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Rom.4.19" ∷ word (Σ ∷ ά ∷ ρ ∷ ρ ∷ α ∷ ς ∷ []) "Rom.4.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.20" ∷ word (δ ∷ ὲ ∷ []) "Rom.4.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.4.20" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Rom.4.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.4.20" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.4.20" ∷ word (ο ∷ ὐ ∷ []) "Rom.4.20" ∷ word (δ ∷ ι ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Rom.4.20" ∷ word (τ ∷ ῇ ∷ []) "Rom.4.20" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.4.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.4.20" ∷ word (ἐ ∷ ν ∷ ε ∷ δ ∷ υ ∷ ν ∷ α ∷ μ ∷ ώ ∷ θ ∷ η ∷ []) "Rom.4.20" ∷ word (τ ∷ ῇ ∷ []) "Rom.4.20" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Rom.4.20" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.4.20" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rom.4.20" ∷ word (τ ∷ ῷ ∷ []) "Rom.4.20" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.21" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ρ ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rom.4.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.4.21" ∷ word (ὃ ∷ []) "Rom.4.21" ∷ word (ἐ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ τ ∷ α ∷ ι ∷ []) "Rom.4.21" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "Rom.4.21" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.4.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.21" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rom.4.21" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Rom.4.22" ∷ word (ἐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rom.4.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.4.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.4.22" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.4.22" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Rom.4.23" ∷ word (ἐ ∷ γ ∷ ρ ∷ ά ∷ φ ∷ η ∷ []) "Rom.4.23" ∷ word (δ ∷ ὲ ∷ []) "Rom.4.23" ∷ word (δ ∷ ι ∷ []) "Rom.4.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.4.23" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.4.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.4.23" ∷ word (ἐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Rom.4.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.4.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.4.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.24" ∷ word (δ ∷ ι ∷ []) "Rom.4.24" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.4.24" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rom.4.24" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rom.4.24" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.4.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.4.24" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.4.24" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.4.24" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.4.24" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Rom.4.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.4.24" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.4.24" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.4.24" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.4.24" ∷ word (ἐ ∷ κ ∷ []) "Rom.4.24" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.4.24" ∷ word (ὃ ∷ ς ∷ []) "Rom.4.25" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "Rom.4.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.4.25" ∷ word (τ ∷ ὰ ∷ []) "Rom.4.25" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.4.25" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.4.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.4.25" ∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Rom.4.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.4.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.4.25" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.4.25" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.4.25" ∷ word (Δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.5.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.5.1" ∷ word (ἐ ∷ κ ∷ []) "Rom.5.1" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.5.1" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Rom.5.1" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.5.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.5.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.5.1" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.5.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.5.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.5.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.5.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.1" ∷ word (δ ∷ ι ∷ []) "Rom.5.2" ∷ word (ο ∷ ὗ ∷ []) "Rom.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.5.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.5.2" ∷ word (ἐ ∷ σ ∷ χ ∷ ή ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.5.2" ∷ word (τ ∷ ῇ ∷ []) "Rom.5.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Rom.5.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.5.2" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Rom.5.2" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Rom.5.2" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.2" ∷ word (ᾗ ∷ []) "Rom.5.2" ∷ word (ἑ ∷ σ ∷ τ ∷ ή ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.2" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.5.2" ∷ word (ἐ ∷ π ∷ []) "Rom.5.2" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "Rom.5.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.2" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rom.5.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.5.2" ∷ word (ο ∷ ὐ ∷ []) "Rom.5.3" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.5.3" ∷ word (δ ∷ έ ∷ []) "Rom.5.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.3" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.5.3" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.3" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.5.3" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.5.3" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Rom.5.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.5.3" ∷ word (ἡ ∷ []) "Rom.5.3" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ς ∷ []) "Rom.5.3" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ ν ∷ []) "Rom.5.3" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.5.3" ∷ word (ἡ ∷ []) "Rom.5.4" ∷ word (δ ∷ ὲ ∷ []) "Rom.5.4" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ὴ ∷ []) "Rom.5.4" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ή ∷ ν ∷ []) "Rom.5.4" ∷ word (ἡ ∷ []) "Rom.5.4" ∷ word (δ ∷ ὲ ∷ []) "Rom.5.4" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ὴ ∷ []) "Rom.5.4" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "Rom.5.4" ∷ word (ἡ ∷ []) "Rom.5.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.5.5" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ὶ ∷ ς ∷ []) "Rom.5.5" ∷ word (ο ∷ ὐ ∷ []) "Rom.5.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ ι ∷ []) "Rom.5.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.5.5" ∷ word (ἡ ∷ []) "Rom.5.5" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "Rom.5.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.5.5" ∷ word (ἐ ∷ κ ∷ κ ∷ έ ∷ χ ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Rom.5.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.5" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.5.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rom.5.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.5.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.5" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.5" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.5.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.5" ∷ word (δ ∷ ο ∷ θ ∷ έ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.5" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.5.5" ∷ word (Ἔ ∷ τ ∷ ι ∷ []) "Rom.5.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.5.6" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.5.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.5.6" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.5.6" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rom.5.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.5.6" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rom.5.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.5.6" ∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ῶ ∷ ν ∷ []) "Rom.5.6" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rom.5.6" ∷ word (μ ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Rom.5.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.7" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.5.7" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Rom.5.7" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rom.5.7" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rom.5.7" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.5.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.7" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ ῦ ∷ []) "Rom.5.7" ∷ word (τ ∷ ά ∷ χ ∷ α ∷ []) "Rom.5.7" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rom.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.7" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ᾷ ∷ []) "Rom.5.7" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.5.7" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Rom.5.8" ∷ word (δ ∷ ὲ ∷ []) "Rom.5.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.5.8" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.8" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rom.5.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.8" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.5.8" ∷ word (ὁ ∷ []) "Rom.5.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.5.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.5.8" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rom.5.8" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rom.5.8" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.5.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.5.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.5.8" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.5.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.5.8" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rom.5.8" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Rom.5.9" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.5.9" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.5.9" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.5.9" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.5.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.5.9" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.9" ∷ word (σ ∷ ω ∷ θ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.5.9" ∷ word (δ ∷ ι ∷ []) "Rom.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.5.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.9" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rom.5.9" ∷ word (ε ∷ ἰ ∷ []) "Rom.5.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.10" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rom.5.10" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.5.10" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ∙λ ∷ ∙λ ∷ ά ∷ γ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.5.10" ∷ word (τ ∷ ῷ ∷ []) "Rom.5.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.5.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.10" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rom.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.10" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "Rom.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.10" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Rom.5.10" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.5.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.5.10" ∷ word (σ ∷ ω ∷ θ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.5.10" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.10" ∷ word (τ ∷ ῇ ∷ []) "Rom.5.10" ∷ word (ζ ∷ ω ∷ ῇ ∷ []) "Rom.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.10" ∷ word (ο ∷ ὐ ∷ []) "Rom.5.11" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.5.11" ∷ word (δ ∷ έ ∷ []) "Rom.5.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.11" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.5.11" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.11" ∷ word (τ ∷ ῷ ∷ []) "Rom.5.11" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.5.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.5.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.5.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.5.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.11" ∷ word (δ ∷ ι ∷ []) "Rom.5.11" ∷ word (ο ∷ ὗ ∷ []) "Rom.5.11" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.5.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.5.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.5.11" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.5.11" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Rom.5.12" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.5.12" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.5.12" ∷ word (δ ∷ ι ∷ []) "Rom.5.12" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.12" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rom.5.12" ∷ word (ἡ ∷ []) "Rom.5.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.5.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.5.12" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Rom.5.12" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rom.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.5.12" ∷ word (ὁ ∷ []) "Rom.5.12" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.12" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.5.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.5.12" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rom.5.12" ∷ word (ὁ ∷ []) "Rom.5.12" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.12" ∷ word (δ ∷ ι ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rom.5.12" ∷ word (ἐ ∷ φ ∷ []) "Rom.5.12" ∷ word (ᾧ ∷ []) "Rom.5.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.5.12" ∷ word (ἥ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.5.12" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rom.5.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.13" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.5.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.5.13" ∷ word (ἦ ∷ ν ∷ []) "Rom.5.13" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.13" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "Rom.5.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.5.13" ∷ word (δ ∷ ὲ ∷ []) "Rom.5.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.5.13" ∷ word (ἐ ∷ ∙λ ∷ ∙λ ∷ ο ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rom.5.13" ∷ word (μ ∷ ὴ ∷ []) "Rom.5.13" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.13" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.5.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.5.14" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.5.14" ∷ word (ὁ ∷ []) "Rom.5.14" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.5.14" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "Rom.5.14" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "Rom.5.14" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Rom.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.5.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.5.14" ∷ word (μ ∷ ὴ ∷ []) "Rom.5.14" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.5.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.5.14" ∷ word (τ ∷ ῷ ∷ []) "Rom.5.14" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.5.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.14" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.5.14" ∷ word (Ἀ ∷ δ ∷ ά ∷ μ ∷ []) "Rom.5.14" ∷ word (ὅ ∷ ς ∷ []) "Rom.5.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.5.14" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ς ∷ []) "Rom.5.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.14" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.14" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.5.15" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.5.15" ∷ word (ὡ ∷ ς ∷ []) "Rom.5.15" ∷ word (τ ∷ ὸ ∷ []) "Rom.5.15" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ π ∷ τ ∷ ω ∷ μ ∷ α ∷ []) "Rom.5.15" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.15" ∷ word (τ ∷ ὸ ∷ []) "Rom.5.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Rom.5.15" ∷ word (ε ∷ ἰ ∷ []) "Rom.5.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.15" ∷ word (τ ∷ ῷ ∷ []) "Rom.5.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.15" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.15" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.5.15" ∷ word (ο ∷ ἱ ∷ []) "Rom.5.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Rom.5.15" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rom.5.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Rom.5.15" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.5.15" ∷ word (ἡ ∷ []) "Rom.5.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.5.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.15" ∷ word (ἡ ∷ []) "Rom.5.15" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ὰ ∷ []) "Rom.5.15" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "Rom.5.15" ∷ word (τ ∷ ῇ ∷ []) "Rom.5.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.15" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.15" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rom.5.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.5.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.5.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.5.15" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ί ∷ σ ∷ σ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.16" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.5.16" ∷ word (ὡ ∷ ς ∷ []) "Rom.5.16" ∷ word (δ ∷ ι ∷ []) "Rom.5.16" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.16" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.5.16" ∷ word (δ ∷ ώ ∷ ρ ∷ η ∷ μ ∷ α ∷ []) "Rom.5.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.5.16" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.5.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.16" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rom.5.16" ∷ word (ἐ ∷ ξ ∷ []) "Rom.5.16" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.16" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ κ ∷ ρ ∷ ι ∷ μ ∷ α ∷ []) "Rom.5.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.5.16" ∷ word (δ ∷ ὲ ∷ []) "Rom.5.16" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Rom.5.16" ∷ word (ἐ ∷ κ ∷ []) "Rom.5.16" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rom.5.16" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rom.5.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.16" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ μ ∷ α ∷ []) "Rom.5.16" ∷ word (ε ∷ ἰ ∷ []) "Rom.5.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.17" ∷ word (τ ∷ ῷ ∷ []) "Rom.5.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.17" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.5.17" ∷ word (ὁ ∷ []) "Rom.5.17" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.17" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.5.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.17" ∷ word (ἑ ∷ ν ∷ ό ∷ ς ∷ []) "Rom.5.17" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Rom.5.17" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.5.17" ∷ word (ο ∷ ἱ ∷ []) "Rom.5.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.5.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rom.5.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.17" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.17" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ᾶ ∷ ς ∷ []) "Rom.5.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.17" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.5.17" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.5.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.17" ∷ word (ζ ∷ ω ∷ ῇ ∷ []) "Rom.5.17" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.5.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.17" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.5.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.17" ∷ word (Ἄ ∷ ρ ∷ α ∷ []) "Rom.5.18" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.5.18" ∷ word (ὡ ∷ ς ∷ []) "Rom.5.18" ∷ word (δ ∷ ι ∷ []) "Rom.5.18" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.18" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.5.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rom.5.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.18" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ κ ∷ ρ ∷ ι ∷ μ ∷ α ∷ []) "Rom.5.18" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.5.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.18" ∷ word (δ ∷ ι ∷ []) "Rom.5.18" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.18" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.5.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.5.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Rom.5.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.18" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.5.18" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rom.5.18" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.5.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.5.19" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.19" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ῆ ∷ ς ∷ []) "Rom.5.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.19" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.19" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rom.5.19" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Rom.5.19" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.5.19" ∷ word (ο ∷ ἱ ∷ []) "Rom.5.19" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Rom.5.19" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.19" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.5.19" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ῆ ∷ ς ∷ []) "Rom.5.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.19" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.5.19" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ι ∷ []) "Rom.5.19" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ α ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.5.19" ∷ word (ο ∷ ἱ ∷ []) "Rom.5.19" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Rom.5.19" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.5.20" ∷ word (δ ∷ ὲ ∷ []) "Rom.5.20" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ι ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rom.5.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.5.20" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ά ∷ σ ∷ ῃ ∷ []) "Rom.5.20" ∷ word (τ ∷ ὸ ∷ []) "Rom.5.20" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ π ∷ τ ∷ ω ∷ μ ∷ α ∷ []) "Rom.5.20" ∷ word (ο ∷ ὗ ∷ []) "Rom.5.20" ∷ word (δ ∷ ὲ ∷ []) "Rom.5.20" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ε ∷ ό ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rom.5.20" ∷ word (ἡ ∷ []) "Rom.5.20" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.5.20" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ π ∷ ε ∷ ρ ∷ ί ∷ σ ∷ σ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.5.20" ∷ word (ἡ ∷ []) "Rom.5.20" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.5.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.5.21" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.5.21" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ί ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.5.21" ∷ word (ἡ ∷ []) "Rom.5.21" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.5.21" ∷ word (ἐ ∷ ν ∷ []) "Rom.5.21" ∷ word (τ ∷ ῷ ∷ []) "Rom.5.21" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rom.5.21" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.5.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.5.21" ∷ word (ἡ ∷ []) "Rom.5.21" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.5.21" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rom.5.21" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.21" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.5.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.5.21" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Rom.5.21" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Rom.5.21" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.5.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.5.21" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.5.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.5.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.5.21" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.5.21" ∷ word (Τ ∷ ί ∷ []) "Rom.6.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.6.1" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.1" ∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ έ ∷ ν ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.1" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.1" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.6.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.6.1" ∷ word (ἡ ∷ []) "Rom.6.1" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.6.1" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ά ∷ σ ∷ ῃ ∷ []) "Rom.6.1" ∷ word (μ ∷ ὴ ∷ []) "Rom.6.2" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.6.2" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.6.2" ∷ word (ἀ ∷ π ∷ ε ∷ θ ∷ ά ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.2" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.2" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.6.2" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rom.6.2" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rom.6.2" ∷ word (ζ ∷ ή ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.2" ∷ word (ἐ ∷ ν ∷ []) "Rom.6.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rom.6.2" ∷ word (ἢ ∷ []) "Rom.6.3" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rom.6.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.6.3" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rom.6.3" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.6.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.6.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.6.3" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rom.6.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.6.3" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.3" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ τ ∷ ά ∷ φ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.4" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.6.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.6.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.6.4" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.6.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.6.4" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rom.6.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.6.4" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.6.4" ∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Rom.6.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.6.4" ∷ word (ἐ ∷ κ ∷ []) "Rom.6.4" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.6.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.6.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.4" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rom.6.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.6.4" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Rom.6.4" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.6.4" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.6.4" ∷ word (ἐ ∷ ν ∷ []) "Rom.6.4" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Rom.6.4" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rom.6.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.4" ∷ word (Ε ∷ ἰ ∷ []) "Rom.6.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.6.5" ∷ word (σ ∷ ύ ∷ μ ∷ φ ∷ υ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.6.5" ∷ word (γ ∷ ε ∷ γ ∷ ό ∷ ν ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.5" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.5" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.6.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.6.5" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rom.6.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.6.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.6.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.5" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.6.5" ∷ word (ἐ ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.6.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.6.6" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.6.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.6.6" ∷ word (ὁ ∷ []) "Rom.6.6" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ὸ ∷ ς ∷ []) "Rom.6.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.6" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Rom.6.6" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Rom.6.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.6.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ η ∷ θ ∷ ῇ ∷ []) "Rom.6.6" ∷ word (τ ∷ ὸ ∷ []) "Rom.6.6" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Rom.6.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.6" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.6.6" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.6.6" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.6.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.6.6" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.6" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.6.6" ∷ word (ὁ ∷ []) "Rom.6.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.6.7" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ὼ ∷ ν ∷ []) "Rom.6.7" ∷ word (δ ∷ ε ∷ δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Rom.6.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.6.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.7" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.7" ∷ word (ε ∷ ἰ ∷ []) "Rom.6.8" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.8" ∷ word (ἀ ∷ π ∷ ε ∷ θ ∷ ά ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.8" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Rom.6.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.6.8" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.6.8" ∷ word (σ ∷ υ ∷ ζ ∷ ή ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.6.8" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Rom.6.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.6.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.6.9" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rom.6.9" ∷ word (ἐ ∷ κ ∷ []) "Rom.6.9" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.6.9" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.6.9" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Rom.6.9" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.6.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.6.9" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.6.9" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "Rom.6.9" ∷ word (ὃ ∷ []) "Rom.6.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.6.10" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rom.6.10" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.10" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.6.10" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rom.6.10" ∷ word (ἐ ∷ φ ∷ ά ∷ π ∷ α ∷ ξ ∷ []) "Rom.6.10" ∷ word (ὃ ∷ []) "Rom.6.10" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.10" ∷ word (ζ ∷ ῇ ∷ []) "Rom.6.10" ∷ word (ζ ∷ ῇ ∷ []) "Rom.6.10" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.6.10" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.6.11" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.6.11" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rom.6.11" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.6.11" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.6.11" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.6.11" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.6.11" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.11" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.6.11" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.6.11" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.11" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.11" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.6.11" ∷ word (ἐ ∷ ν ∷ []) "Rom.6.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.6.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.6.11" ∷ word (Μ ∷ ὴ ∷ []) "Rom.6.12" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.6.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Rom.6.12" ∷ word (ἡ ∷ []) "Rom.6.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.6.12" ∷ word (ἐ ∷ ν ∷ []) "Rom.6.12" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.12" ∷ word (θ ∷ ν ∷ η ∷ τ ∷ ῷ ∷ []) "Rom.6.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.12" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.6.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.12" ∷ word (τ ∷ ὸ ∷ []) "Rom.6.12" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.6.12" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.6.12" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rom.6.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.6.12" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Rom.6.13" ∷ word (π ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Rom.6.13" ∷ word (τ ∷ ὰ ∷ []) "Rom.6.13" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rom.6.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.13" ∷ word (ὅ ∷ π ∷ ∙λ ∷ α ∷ []) "Rom.6.13" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.13" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.6.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.6.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rom.6.13" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.6.13" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.6.13" ∷ word (ὡ ∷ σ ∷ ε ∷ ὶ ∷ []) "Rom.6.13" ∷ word (ἐ ∷ κ ∷ []) "Rom.6.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.6.13" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.6.13" ∷ word (τ ∷ ὰ ∷ []) "Rom.6.13" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rom.6.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.13" ∷ word (ὅ ∷ π ∷ ∙λ ∷ α ∷ []) "Rom.6.13" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.6.13" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.6.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.6.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.6.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.14" ∷ word (ο ∷ ὐ ∷ []) "Rom.6.14" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.6.14" ∷ word (ο ∷ ὐ ∷ []) "Rom.6.14" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.6.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.6.14" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.6.14" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.6.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.6.14" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.6.14" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Rom.6.14" ∷ word (Τ ∷ ί ∷ []) "Rom.6.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.6.15" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.6.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.6.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.6.15" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "Rom.6.15" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.6.15" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.6.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.6.15" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.6.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Rom.6.15" ∷ word (μ ∷ ὴ ∷ []) "Rom.6.15" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.6.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.6.16" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Rom.6.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.6.16" ∷ word (ᾧ ∷ []) "Rom.6.16" ∷ word (π ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Rom.6.16" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.6.16" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.6.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.16" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ή ∷ ν ∷ []) "Rom.6.16" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Rom.6.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.6.16" ∷ word (ᾧ ∷ []) "Rom.6.16" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Rom.6.16" ∷ word (ἤ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.6.16" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.16" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rom.6.16" ∷ word (ἢ ∷ []) "Rom.6.16" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ῆ ∷ ς ∷ []) "Rom.6.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.16" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.6.16" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.6.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.17" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.17" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.6.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.6.17" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "Rom.6.17" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rom.6.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.17" ∷ word (ὑ ∷ π ∷ η ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rom.6.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.17" ∷ word (ἐ ∷ κ ∷ []) "Rom.6.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.17" ∷ word (ὃ ∷ ν ∷ []) "Rom.6.17" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ό ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rom.6.17" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ν ∷ []) "Rom.6.17" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῆ ∷ ς ∷ []) "Rom.6.17" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.6.18" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.18" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.6.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.18" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.18" ∷ word (ἐ ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ώ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rom.6.18" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.18" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rom.6.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rom.6.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.6.19" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.6.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.6.19" ∷ word (ἀ ∷ σ ∷ θ ∷ έ ∷ ν ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rom.6.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.19" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Rom.6.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.19" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.6.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.6.19" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rom.6.19" ∷ word (τ ∷ ὰ ∷ []) "Rom.6.19" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rom.6.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.19" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ α ∷ []) "Rom.6.19" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.19" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Rom.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.6.19" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.19" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ ᾳ ∷ []) "Rom.6.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.6.19" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rom.6.19" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.6.19" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.6.19" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rom.6.19" ∷ word (τ ∷ ὰ ∷ []) "Rom.6.19" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rom.6.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.19" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ α ∷ []) "Rom.6.19" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.19" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rom.6.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.19" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Rom.6.19" ∷ word (Ὅ ∷ τ ∷ ε ∷ []) "Rom.6.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.6.20" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rom.6.20" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "Rom.6.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.20" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.20" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Rom.6.20" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "Rom.6.20" ∷ word (τ ∷ ῇ ∷ []) "Rom.6.20" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rom.6.20" ∷ word (τ ∷ ί ∷ ν ∷ α ∷ []) "Rom.6.21" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.6.21" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Rom.6.21" ∷ word (ε ∷ ἴ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Rom.6.21" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Rom.6.21" ∷ word (ἐ ∷ φ ∷ []) "Rom.6.21" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rom.6.21" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.6.21" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rom.6.21" ∷ word (τ ∷ ὸ ∷ []) "Rom.6.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.6.21" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.6.21" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Rom.6.21" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.6.21" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Rom.6.22" ∷ word (δ ∷ έ ∷ []) "Rom.6.22" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.6.22" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.6.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.22" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.22" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.6.22" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.22" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.22" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.6.22" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Rom.6.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.6.22" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Rom.6.22" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.6.22" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Rom.6.22" ∷ word (τ ∷ ὸ ∷ []) "Rom.6.22" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.22" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.6.22" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Rom.6.22" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Rom.6.22" ∷ word (τ ∷ ὰ ∷ []) "Rom.6.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.6.23" ∷ word (ὀ ∷ ψ ∷ ώ ∷ ν ∷ ι ∷ α ∷ []) "Rom.6.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.6.23" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.6.23" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.6.23" ∷ word (τ ∷ ὸ ∷ []) "Rom.6.23" ∷ word (δ ∷ ὲ ∷ []) "Rom.6.23" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Rom.6.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.6.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.6.23" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "Rom.6.23" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ς ∷ []) "Rom.6.23" ∷ word (ἐ ∷ ν ∷ []) "Rom.6.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.6.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.6.23" ∷ word (τ ∷ ῷ ∷ []) "Rom.6.23" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.6.23" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.6.23" ∷ word (Ἢ ∷ []) "Rom.7.1" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rom.7.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.7.1" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.7.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.1" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.7.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Rom.7.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.7.1" ∷ word (ὁ ∷ []) "Rom.7.1" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.7.1" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "Rom.7.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.1" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Rom.7.1" ∷ word (ἐ ∷ φ ∷ []) "Rom.7.1" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Rom.7.1" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.7.1" ∷ word (ζ ∷ ῇ ∷ []) "Rom.7.1" ∷ word (ἡ ∷ []) "Rom.7.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.2" ∷ word (ὕ ∷ π ∷ α ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ς ∷ []) "Rom.7.2" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Rom.7.2" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.2" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Rom.7.2" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Rom.7.2" ∷ word (δ ∷ έ ∷ δ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.7.2" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.7.2" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.7.2" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.2" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rom.7.2" ∷ word (ὁ ∷ []) "Rom.7.2" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "Rom.7.2" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ ρ ∷ γ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.7.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.7.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.2" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.7.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.2" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "Rom.7.2" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Rom.7.3" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.7.3" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.7.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.3" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.7.3" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ α ∷ ∙λ ∷ ὶ ∷ ς ∷ []) "Rom.7.3" ∷ word (χ ∷ ρ ∷ η ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rom.7.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.7.3" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.7.3" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Rom.7.3" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "Rom.7.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.7.3" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.3" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ά ∷ ν ∷ ῃ ∷ []) "Rom.7.3" ∷ word (ὁ ∷ []) "Rom.7.3" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "Rom.7.3" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.7.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Rom.7.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.7.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.3" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.7.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.7.3" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.7.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rom.7.3" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ α ∷ ∙λ ∷ ί ∷ δ ∷ α ∷ []) "Rom.7.3" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rom.7.3" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Rom.7.3" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "Rom.7.3" ∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.7.4" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.7.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.7.4" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.7.4" ∷ word (ἐ ∷ θ ∷ α ∷ ν ∷ α ∷ τ ∷ ώ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rom.7.4" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.4" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.7.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.7.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.4" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.7.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.7.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.7.4" ∷ word (τ ∷ ὸ ∷ []) "Rom.7.4" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.7.4" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.7.4" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "Rom.7.4" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.4" ∷ word (ἐ ∷ κ ∷ []) "Rom.7.4" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.7.4" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ι ∷ []) "Rom.7.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.7.4" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.7.4" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.7.4" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rom.7.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.5" ∷ word (ἦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.7.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.5" ∷ word (τ ∷ ῇ ∷ []) "Rom.7.5" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "Rom.7.5" ∷ word (τ ∷ ὰ ∷ []) "Rom.7.5" ∷ word (π ∷ α ∷ θ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.7.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.7.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Rom.7.5" ∷ word (τ ∷ ὰ ∷ []) "Rom.7.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.7.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.5" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.7.5" ∷ word (ἐ ∷ ν ∷ η ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Rom.7.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.7.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.7.5" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.7.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.7.5" ∷ word (τ ∷ ὸ ∷ []) "Rom.7.5" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rom.7.5" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.5" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Rom.7.5" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Rom.7.6" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.6" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ γ ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.7.6" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.7.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.6" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.7.6" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.7.6" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.6" ∷ word (ᾧ ∷ []) "Rom.7.6" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ι ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.7.6" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.7.6" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.7.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.7.6" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.6" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Rom.7.6" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.7.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.7.6" ∷ word (ο ∷ ὐ ∷ []) "Rom.7.6" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Rom.7.6" ∷ word (γ ∷ ρ ∷ ά ∷ μ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.7.6" ∷ word (Τ ∷ ί ∷ []) "Rom.7.7" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.7.7" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.7.7" ∷ word (ὁ ∷ []) "Rom.7.7" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.7.7" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.7" ∷ word (μ ∷ ὴ ∷ []) "Rom.7.7" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.7.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.7.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.7.7" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rom.7.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.7.7" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ ν ∷ []) "Rom.7.7" ∷ word (ε ∷ ἰ ∷ []) "Rom.7.7" ∷ word (μ ∷ ὴ ∷ []) "Rom.7.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.7.7" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.7.7" ∷ word (τ ∷ ή ∷ ν ∷ []) "Rom.7.7" ∷ word (τ ∷ ε ∷ []) "Rom.7.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.7" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rom.7.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.7.7" ∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.7.7" ∷ word (ε ∷ ἰ ∷ []) "Rom.7.7" ∷ word (μ ∷ ὴ ∷ []) "Rom.7.7" ∷ word (ὁ ∷ []) "Rom.7.7" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.7.7" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Rom.7.7" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Rom.7.7" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.7.7" ∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ μ ∷ ὴ ∷ ν ∷ []) "Rom.7.8" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.8" ∷ word (∙λ ∷ α ∷ β ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Rom.7.8" ∷ word (ἡ ∷ []) "Rom.7.8" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.8" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.7.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.7.8" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rom.7.8" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ι ∷ ρ ∷ γ ∷ ά ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Rom.7.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.8" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.7.8" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rom.7.8" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rom.7.8" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Rom.7.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.8" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.7.8" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.8" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ά ∷ []) "Rom.7.8" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.7.9" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.9" ∷ word (ἔ ∷ ζ ∷ ω ∷ ν ∷ []) "Rom.7.9" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Rom.7.9" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.7.9" ∷ word (π ∷ ο ∷ τ ∷ έ ∷ []) "Rom.7.9" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rom.7.9" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.7.9" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rom.7.9" ∷ word (ἡ ∷ []) "Rom.7.9" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.9" ∷ word (ἀ ∷ ν ∷ έ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rom.7.9" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.7.10" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.10" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Rom.7.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.7.10" ∷ word (ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rom.7.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rom.7.10" ∷ word (ἡ ∷ []) "Rom.7.10" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Rom.7.10" ∷ word (ἡ ∷ []) "Rom.7.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.7.10" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Rom.7.10" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Rom.7.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.7.10" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rom.7.10" ∷ word (ἡ ∷ []) "Rom.7.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.11" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.11" ∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ μ ∷ ὴ ∷ ν ∷ []) "Rom.7.11" ∷ word (∙λ ∷ α ∷ β ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Rom.7.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.7.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.7.11" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rom.7.11" ∷ word (ἐ ∷ ξ ∷ η ∷ π ∷ ά ∷ τ ∷ η ∷ σ ∷ έ ∷ ν ∷ []) "Rom.7.11" ∷ word (μ ∷ ε ∷ []) "Rom.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.7.11" ∷ word (δ ∷ ι ∷ []) "Rom.7.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rom.7.11" ∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Rom.7.11" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.7.12" ∷ word (ὁ ∷ []) "Rom.7.12" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.7.12" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.7.12" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.7.12" ∷ word (ἡ ∷ []) "Rom.7.12" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Rom.7.12" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ []) "Rom.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.7.12" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ α ∷ []) "Rom.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.7.12" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ή ∷ []) "Rom.7.12" ∷ word (Τ ∷ ὸ ∷ []) "Rom.7.13" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.7.13" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "Rom.7.13" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.7.13" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rom.7.13" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.7.13" ∷ word (μ ∷ ὴ ∷ []) "Rom.7.13" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.7.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.7.13" ∷ word (ἡ ∷ []) "Rom.7.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.7.13" ∷ word (φ ∷ α ∷ ν ∷ ῇ ∷ []) "Rom.7.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.7.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.13" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ ῦ ∷ []) "Rom.7.13" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rom.7.13" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rom.7.13" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rom.7.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.7.13" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.7.13" ∷ word (κ ∷ α ∷ θ ∷ []) "Rom.7.13" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rom.7.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Rom.7.13" ∷ word (ἡ ∷ []) "Rom.7.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.7.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.7.13" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rom.7.13" ∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.7.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.7.14" ∷ word (ὁ ∷ []) "Rom.7.14" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.7.14" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "Rom.7.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.7.14" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.7.14" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.14" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ ι ∷ ν ∷ ό ∷ ς ∷ []) "Rom.7.14" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rom.7.14" ∷ word (π ∷ ε ∷ π ∷ ρ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rom.7.14" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.7.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.7.14" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rom.7.14" ∷ word (ὃ ∷ []) "Rom.7.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.15" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.7.15" ∷ word (ο ∷ ὐ ∷ []) "Rom.7.15" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ []) "Rom.7.15" ∷ word (ο ∷ ὐ ∷ []) "Rom.7.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.15" ∷ word (ὃ ∷ []) "Rom.7.15" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Rom.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.7.15" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "Rom.7.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.7.15" ∷ word (ὃ ∷ []) "Rom.7.15" ∷ word (μ ∷ ι ∷ σ ∷ ῶ ∷ []) "Rom.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.7.15" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Rom.7.15" ∷ word (ε ∷ ἰ ∷ []) "Rom.7.16" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.16" ∷ word (ὃ ∷ []) "Rom.7.16" ∷ word (ο ∷ ὐ ∷ []) "Rom.7.16" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Rom.7.16" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.7.16" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Rom.7.16" ∷ word (σ ∷ ύ ∷ μ ∷ φ ∷ η ∷ μ ∷ ι ∷ []) "Rom.7.16" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.16" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.7.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.7.16" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ς ∷ []) "Rom.7.16" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Rom.7.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.17" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.7.17" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.7.17" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Rom.7.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.7.17" ∷ word (ἡ ∷ []) "Rom.7.17" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Rom.7.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.17" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.7.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.17" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rom.7.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.7.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.7.18" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rom.7.18" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.18" ∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "Rom.7.18" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Rom.7.18" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.7.18" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.18" ∷ word (τ ∷ ῇ ∷ []) "Rom.7.18" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "Rom.7.18" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.7.18" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Rom.7.18" ∷ word (τ ∷ ὸ ∷ []) "Rom.7.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.18" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.7.18" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ί ∷ []) "Rom.7.18" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rom.7.18" ∷ word (τ ∷ ὸ ∷ []) "Rom.7.18" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.18" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.7.18" ∷ word (τ ∷ ὸ ∷ []) "Rom.7.18" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Rom.7.18" ∷ word (ο ∷ ὔ ∷ []) "Rom.7.18" ∷ word (ο ∷ ὐ ∷ []) "Rom.7.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.19" ∷ word (ὃ ∷ []) "Rom.7.19" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Rom.7.19" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Rom.7.19" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Rom.7.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.7.19" ∷ word (ὃ ∷ []) "Rom.7.19" ∷ word (ο ∷ ὐ ∷ []) "Rom.7.19" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Rom.7.19" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rom.7.19" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.7.19" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "Rom.7.19" ∷ word (ε ∷ ἰ ∷ []) "Rom.7.20" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.20" ∷ word (ὃ ∷ []) "Rom.7.20" ∷ word (ο ∷ ὐ ∷ []) "Rom.7.20" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Rom.7.20" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.7.20" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Rom.7.20" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.7.20" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.7.20" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.7.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Rom.7.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.7.20" ∷ word (ἡ ∷ []) "Rom.7.20" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Rom.7.20" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.20" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.7.20" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.7.20" ∷ word (Ε ∷ ὑ ∷ ρ ∷ ί ∷ σ ∷ κ ∷ ω ∷ []) "Rom.7.21" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Rom.7.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.7.21" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.7.21" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.21" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rom.7.21" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.7.21" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.7.21" ∷ word (τ ∷ ὸ ∷ []) "Rom.7.21" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Rom.7.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.7.21" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.7.21" ∷ word (τ ∷ ὸ ∷ []) "Rom.7.21" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rom.7.21" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Rom.7.21" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.7.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.7.22" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.22" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.7.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.7.22" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.7.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.7.22" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "Rom.7.22" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Rom.7.22" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ []) "Rom.7.23" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.23" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.7.23" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.7.23" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.7.23" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "Rom.7.23" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.7.23" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rom.7.23" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.23" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.7.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.23" ∷ word (ν ∷ ο ∷ ό ∷ ς ∷ []) "Rom.7.23" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.7.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.7.23" ∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Rom.7.23" ∷ word (μ ∷ ε ∷ []) "Rom.7.23" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.23" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.23" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.7.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.7.23" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.7.23" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.23" ∷ word (ὄ ∷ ν ∷ τ ∷ ι ∷ []) "Rom.7.23" ∷ word (ἐ ∷ ν ∷ []) "Rom.7.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.7.23" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "Rom.7.23" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.7.23" ∷ word (τ ∷ α ∷ ∙λ ∷ α ∷ ί ∷ π ∷ ω ∷ ρ ∷ ο ∷ ς ∷ []) "Rom.7.24" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.7.24" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Rom.7.24" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.7.24" ∷ word (μ ∷ ε ∷ []) "Rom.7.24" ∷ word (ῥ ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.7.24" ∷ word (ἐ ∷ κ ∷ []) "Rom.7.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.24" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.7.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.24" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rom.7.24" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rom.7.24" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.7.25" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.25" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.7.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.7.25" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.7.25" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.7.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.7.25" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.7.25" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.7.25" ∷ word (Ἄ ∷ ρ ∷ α ∷ []) "Rom.7.25" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.7.25" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.7.25" ∷ word (τ ∷ ῷ ∷ []) "Rom.7.25" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.7.25" ∷ word (ν ∷ ο ∷ ῒ ∷ []) "Rom.7.25" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ω ∷ []) "Rom.7.25" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.7.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.7.25" ∷ word (τ ∷ ῇ ∷ []) "Rom.7.25" ∷ word (δ ∷ ὲ ∷ []) "Rom.7.25" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Rom.7.25" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.7.25" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.7.25" ∷ word (Ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Rom.8.1" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Rom.8.1" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.8.1" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ κ ∷ ρ ∷ ι ∷ μ ∷ α ∷ []) "Rom.8.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.1" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.8.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.8.1" ∷ word (ὁ ∷ []) "Rom.8.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.2" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.8.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.2" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Rom.8.2" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.8.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.8.2" ∷ word (ἠ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ ω ∷ σ ∷ έ ∷ ν ∷ []) "Rom.8.2" ∷ word (σ ∷ ε ∷ []) "Rom.8.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.8.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.2" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.8.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.2" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.2" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Rom.8.2" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.3" ∷ word (ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Rom.8.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.3" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.8.3" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.3" ∷ word (ᾧ ∷ []) "Rom.8.3" ∷ word (ἠ ∷ σ ∷ θ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "Rom.8.3" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.8.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ό ∷ ς ∷ []) "Rom.8.3" ∷ word (ὁ ∷ []) "Rom.8.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.8.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.8.3" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.8.3" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Rom.8.3" ∷ word (π ∷ έ ∷ μ ∷ ψ ∷ α ∷ ς ∷ []) "Rom.8.3" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.3" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.8.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Rom.8.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.3" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rom.8.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.8.3" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ []) "Rom.8.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.8.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rom.8.3" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.3" ∷ word (τ ∷ ῇ ∷ []) "Rom.8.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "Rom.8.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.8.4" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.4" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ μ ∷ α ∷ []) "Rom.8.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.4" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.8.4" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Rom.8.4" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.4" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.8.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.4" ∷ word (μ ∷ ὴ ∷ []) "Rom.8.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.4" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.8.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.8.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.8.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.4" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.4" ∷ word (ο ∷ ἱ ∷ []) "Rom.8.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.5" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.8.5" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.8.5" ∷ word (τ ∷ ὰ ∷ []) "Rom.8.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.5" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Rom.8.5" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.8.5" ∷ word (ο ∷ ἱ ∷ []) "Rom.8.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.5" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.5" ∷ word (τ ∷ ὰ ∷ []) "Rom.8.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.5" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.5" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.6" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ η ∷ μ ∷ α ∷ []) "Rom.8.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.6" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Rom.8.6" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.6" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.6" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.6" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ η ∷ μ ∷ α ∷ []) "Rom.8.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.6" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.6" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "Rom.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.6" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Rom.8.6" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "Rom.8.7" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.7" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ η ∷ μ ∷ α ∷ []) "Rom.8.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.7" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Rom.8.7" ∷ word (ἔ ∷ χ ∷ θ ∷ ρ ∷ α ∷ []) "Rom.8.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.8.7" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rom.8.7" ∷ word (τ ∷ ῷ ∷ []) "Rom.8.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.7" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "Rom.8.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.7" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.8.7" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rom.8.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.7" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.7" ∷ word (ο ∷ ἱ ∷ []) "Rom.8.8" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.8" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Rom.8.8" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.8.8" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.8.8" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Rom.8.8" ∷ word (ο ∷ ὐ ∷ []) "Rom.8.8" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.8" ∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.8.9" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.8.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "Rom.8.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.9" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Rom.8.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.8.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.9" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.8.9" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.8.9" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.9" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rom.8.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.8.9" ∷ word (ε ∷ ἰ ∷ []) "Rom.8.9" ∷ word (δ ∷ έ ∷ []) "Rom.8.9" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rom.8.9" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.8.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.8.9" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rom.8.9" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.8.9" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.8.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.8.9" ∷ word (ε ∷ ἰ ∷ []) "Rom.8.10" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.8.10" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.10" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.8.10" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.10" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.8.10" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Rom.8.10" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rom.8.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.8.10" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Rom.8.10" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.10" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.10" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.10" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "Rom.8.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.8.10" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.8.10" ∷ word (ε ∷ ἰ ∷ []) "Rom.8.11" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.11" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.11" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.8.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.8.11" ∷ word (ἐ ∷ κ ∷ []) "Rom.8.11" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.8.11" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rom.8.11" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.8.11" ∷ word (ὁ ∷ []) "Rom.8.11" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ α ∷ ς ∷ []) "Rom.8.11" ∷ word (ἐ ∷ κ ∷ []) "Rom.8.11" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.8.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.8.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.8.11" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rom.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.11" ∷ word (τ ∷ ὰ ∷ []) "Rom.8.11" ∷ word (θ ∷ ν ∷ η ∷ τ ∷ ὰ ∷ []) "Rom.8.11" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.8.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.8.11" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.11" ∷ word (ἐ ∷ ν ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.8.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.11" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.8.11" ∷ word (Ἄ ∷ ρ ∷ α ∷ []) "Rom.8.12" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.8.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.8.12" ∷ word (ὀ ∷ φ ∷ ε ∷ ι ∷ ∙λ ∷ έ ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.12" ∷ word (ἐ ∷ σ ∷ μ ∷ έ ∷ ν ∷ []) "Rom.8.12" ∷ word (ο ∷ ὐ ∷ []) "Rom.8.12" ∷ word (τ ∷ ῇ ∷ []) "Rom.8.12" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "Rom.8.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.12" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.12" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.8.12" ∷ word (ζ ∷ ῆ ∷ ν ∷ []) "Rom.8.12" ∷ word (ε ∷ ἰ ∷ []) "Rom.8.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.13" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.13" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.8.13" ∷ word (ζ ∷ ῆ ∷ τ ∷ ε ∷ []) "Rom.8.13" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Rom.8.13" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.8.13" ∷ word (ε ∷ ἰ ∷ []) "Rom.8.13" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.8.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.8.13" ∷ word (π ∷ ρ ∷ ά ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.8.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.13" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.13" ∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ο ∷ ῦ ∷ τ ∷ ε ∷ []) "Rom.8.13" ∷ word (ζ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rom.8.13" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Rom.8.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.14" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.8.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.14" ∷ word (ἄ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.14" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.8.14" ∷ word (υ ∷ ἱ ∷ ο ∷ ί ∷ []) "Rom.8.14" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.8.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.14" ∷ word (ο ∷ ὐ ∷ []) "Rom.8.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.15" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Rom.8.15" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.15" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rom.8.15" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rom.8.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.8.15" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rom.8.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.8.15" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Rom.8.15" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.15" ∷ word (υ ∷ ἱ ∷ ο ∷ θ ∷ ε ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rom.8.15" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.15" ∷ word (ᾧ ∷ []) "Rom.8.15" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.15" ∷ word (Α ∷ β ∷ β ∷ α ∷ []) "Rom.8.15" ∷ word (ὁ ∷ []) "Rom.8.15" ∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Rom.8.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Rom.8.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.16" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.16" ∷ word (σ ∷ υ ∷ μ ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ε ∷ ῖ ∷ []) "Rom.8.16" ∷ word (τ ∷ ῷ ∷ []) "Rom.8.16" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.8.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.16" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "Rom.8.16" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rom.8.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.16" ∷ word (ε ∷ ἰ ∷ []) "Rom.8.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.17" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rom.8.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.17" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ []) "Rom.8.17" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ []) "Rom.8.17" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.8.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.17" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ []) "Rom.8.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.8.17" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.8.17" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ά ∷ σ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.8.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.17" ∷ word (σ ∷ υ ∷ ν ∷ δ ∷ ο ∷ ξ ∷ α ∷ σ ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.17" ∷ word (Λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.8.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.8.18" ∷ word (ἄ ∷ ξ ∷ ι ∷ α ∷ []) "Rom.8.18" ∷ word (τ ∷ ὰ ∷ []) "Rom.8.18" ∷ word (π ∷ α ∷ θ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.8.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.18" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.8.18" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ []) "Rom.8.18" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.8.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.8.18" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rom.8.18" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rom.8.18" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rom.8.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.8.18" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.8.18" ∷ word (ἡ ∷ []) "Rom.8.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.19" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ []) "Rom.8.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.19" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.8.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.8.19" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ν ∷ []) "Rom.8.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.8.19" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rom.8.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.19" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.19" ∷ word (τ ∷ ῇ ∷ []) "Rom.8.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.20" ∷ word (μ ∷ α ∷ τ ∷ α ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Rom.8.20" ∷ word (ἡ ∷ []) "Rom.8.20" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Rom.8.20" ∷ word (ὑ ∷ π ∷ ε ∷ τ ∷ ά ∷ γ ∷ η ∷ []) "Rom.8.20" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.8.20" ∷ word (ἑ ∷ κ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Rom.8.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.8.20" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.8.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.8.20" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ ξ ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Rom.8.20" ∷ word (ἐ ∷ φ ∷ []) "Rom.8.20" ∷ word (ἑ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "Rom.8.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.21" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Rom.8.21" ∷ word (ἡ ∷ []) "Rom.8.21" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Rom.8.21" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.21" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.8.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.21" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rom.8.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.21" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Rom.8.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.8.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.8.21" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rom.8.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.21" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rom.8.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.8.21" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ω ∷ ν ∷ []) "Rom.8.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.21" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.22" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.22" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rom.8.22" ∷ word (ἡ ∷ []) "Rom.8.22" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Rom.8.22" ∷ word (σ ∷ υ ∷ σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rom.8.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.22" ∷ word (σ ∷ υ ∷ ν ∷ ω ∷ δ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rom.8.22" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rom.8.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.22" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.8.22" ∷ word (ο ∷ ὐ ∷ []) "Rom.8.23" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.8.23" ∷ word (δ ∷ έ ∷ []) "Rom.8.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.8.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rom.8.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.8.23" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "Rom.8.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.23" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.23" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.8.23" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.8.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rom.8.23" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.23" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.23" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ζ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.23" ∷ word (υ ∷ ἱ ∷ ο ∷ θ ∷ ε ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rom.8.23" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.8.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.8.23" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.8.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.23" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.23" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.23" ∷ word (τ ∷ ῇ ∷ []) "Rom.8.24" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.24" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "Rom.8.24" ∷ word (ἐ ∷ σ ∷ ώ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.24" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ὶ ∷ ς ∷ []) "Rom.8.24" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.24" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rom.8.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.8.24" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.8.24" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ς ∷ []) "Rom.8.24" ∷ word (ὃ ∷ []) "Rom.8.24" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.24" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ []) "Rom.8.24" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.8.24" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Rom.8.24" ∷ word (ε ∷ ἰ ∷ []) "Rom.8.25" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.25" ∷ word (ὃ ∷ []) "Rom.8.25" ∷ word (ο ∷ ὐ ∷ []) "Rom.8.25" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.25" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.25" ∷ word (δ ∷ ι ∷ []) "Rom.8.25" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Rom.8.25" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.8.25" ∷ word (Ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.8.26" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.26" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.26" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.26" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.26" ∷ word (τ ∷ ῇ ∷ []) "Rom.8.26" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rom.8.26" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.26" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.26" ∷ word (τ ∷ ί ∷ []) "Rom.8.26" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ ξ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.8.26" ∷ word (κ ∷ α ∷ θ ∷ ὸ ∷ []) "Rom.8.26" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rom.8.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.8.26" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.8.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Rom.8.26" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.26" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.8.26" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ ν ∷ τ ∷ υ ∷ γ ∷ χ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rom.8.26" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ α ∷ γ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.26" ∷ word (ἀ ∷ ∙λ ∷ α ∷ ∙λ ∷ ή ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.8.26" ∷ word (ὁ ∷ []) "Rom.8.27" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.27" ∷ word (ἐ ∷ ρ ∷ α ∷ υ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.8.27" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.8.27" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rom.8.27" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Rom.8.27" ∷ word (τ ∷ ί ∷ []) "Rom.8.27" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.27" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ η ∷ μ ∷ α ∷ []) "Rom.8.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.27" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.27" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.27" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.8.27" ∷ word (ἐ ∷ ν ∷ τ ∷ υ ∷ γ ∷ χ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rom.8.27" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.8.27" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rom.8.27" ∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.28" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.28" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.28" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ σ ∷ ι ∷ []) "Rom.8.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.8.28" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.8.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rom.8.28" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ []) "Rom.8.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.8.28" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Rom.8.28" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.28" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.28" ∷ word (π ∷ ρ ∷ ό ∷ θ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.8.28" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.28" ∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.8.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.29" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rom.8.29" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ γ ∷ ν ∷ ω ∷ []) "Rom.8.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.29" ∷ word (π ∷ ρ ∷ ο ∷ ώ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rom.8.29" ∷ word (σ ∷ υ ∷ μ ∷ μ ∷ ό ∷ ρ ∷ φ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.8.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.29" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rom.8.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.29" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "Rom.8.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.8.29" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.8.29" ∷ word (τ ∷ ὸ ∷ []) "Rom.8.29" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.8.29" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.8.29" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ό ∷ τ ∷ ο ∷ κ ∷ ο ∷ ν ∷ []) "Rom.8.29" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.29" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.29" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.8.29" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rom.8.30" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.30" ∷ word (π ∷ ρ ∷ ο ∷ ώ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rom.8.30" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.8.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.30" ∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rom.8.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.30" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rom.8.30" ∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rom.8.30" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.8.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.30" ∷ word (ἐ ∷ δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Rom.8.30" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rom.8.30" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.30" ∷ word (ἐ ∷ δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Rom.8.30" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.8.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.30" ∷ word (ἐ ∷ δ ∷ ό ∷ ξ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rom.8.30" ∷ word (Τ ∷ ί ∷ []) "Rom.8.31" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.8.31" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.31" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.8.31" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rom.8.31" ∷ word (ε ∷ ἰ ∷ []) "Rom.8.31" ∷ word (ὁ ∷ []) "Rom.8.31" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.8.31" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.8.31" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.31" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.8.31" ∷ word (κ ∷ α ∷ θ ∷ []) "Rom.8.31" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.31" ∷ word (ὅ ∷ ς ∷ []) "Rom.8.32" ∷ word (γ ∷ ε ∷ []) "Rom.8.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.32" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.8.32" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "Rom.8.32" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.8.32" ∷ word (ἐ ∷ φ ∷ ε ∷ ί ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Rom.8.32" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.8.32" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.8.32" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.32" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.8.32" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rom.8.32" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rom.8.32" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rom.8.32" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "Rom.8.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.32" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Rom.8.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.8.32" ∷ word (τ ∷ ὰ ∷ []) "Rom.8.32" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rom.8.32" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.8.32" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.32" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.8.33" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.8.33" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.8.33" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.8.33" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.33" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.8.33" ∷ word (ὁ ∷ []) "Rom.8.33" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Rom.8.33" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.8.34" ∷ word (ὁ ∷ []) "Rom.8.34" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.8.34" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.8.34" ∷ word (ὁ ∷ []) "Rom.8.34" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ώ ∷ ν ∷ []) "Rom.8.34" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.8.34" ∷ word (δ ∷ ὲ ∷ []) "Rom.8.34" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ε ∷ ί ∷ ς ∷ []) "Rom.8.34" ∷ word (ὅ ∷ ς ∷ []) "Rom.8.34" ∷ word (κ ∷ α ∷ ί ∷ []) "Rom.8.34" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.8.34" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.34" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Rom.8.34" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.34" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.34" ∷ word (ὃ ∷ ς ∷ []) "Rom.8.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.8.34" ∷ word (ἐ ∷ ν ∷ τ ∷ υ ∷ γ ∷ χ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rom.8.34" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.8.34" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.34" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.8.35" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.8.35" ∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Rom.8.35" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.8.35" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.35" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "Rom.8.35" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.35" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.8.35" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ς ∷ []) "Rom.8.35" ∷ word (ἢ ∷ []) "Rom.8.35" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ο ∷ χ ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "Rom.8.35" ∷ word (ἢ ∷ []) "Rom.8.35" ∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rom.8.35" ∷ word (ἢ ∷ []) "Rom.8.35" ∷ word (∙λ ∷ ι ∷ μ ∷ ὸ ∷ ς ∷ []) "Rom.8.35" ∷ word (ἢ ∷ []) "Rom.8.35" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Rom.8.35" ∷ word (ἢ ∷ []) "Rom.8.35" ∷ word (κ ∷ ί ∷ ν ∷ δ ∷ υ ∷ ν ∷ ο ∷ ς ∷ []) "Rom.8.35" ∷ word (ἢ ∷ []) "Rom.8.35" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ []) "Rom.8.35" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.8.36" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.36" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.36" ∷ word (Ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rom.8.36" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rom.8.36" ∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.8.36" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rom.8.36" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.8.36" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rom.8.36" ∷ word (ἐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.36" ∷ word (ὡ ∷ ς ∷ []) "Rom.8.36" ∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Rom.8.36" ∷ word (σ ∷ φ ∷ α ∷ γ ∷ ῆ ∷ ς ∷ []) "Rom.8.36" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.8.37" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.37" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.8.37" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.8.37" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ν ∷ ι ∷ κ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.8.37" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.8.37" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.37" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.37" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.8.37" ∷ word (π ∷ έ ∷ π ∷ ε ∷ ι ∷ σ ∷ μ ∷ α ∷ ι ∷ []) "Rom.8.38" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.8.38" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.8.38" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.38" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.8.38" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.38" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "Rom.8.38" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.38" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Rom.8.38" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.38" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ὶ ∷ []) "Rom.8.38" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.38" ∷ word (ἐ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "Rom.8.38" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.38" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.8.38" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.38" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.8.38" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.39" ∷ word (ὕ ∷ ψ ∷ ω ∷ μ ∷ α ∷ []) "Rom.8.39" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.39" ∷ word (β ∷ ά ∷ θ ∷ ο ∷ ς ∷ []) "Rom.8.39" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Rom.8.39" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rom.8.39" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Rom.8.39" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.8.39" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.8.39" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.8.39" ∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rom.8.39" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.8.39" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.39" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "Rom.8.39" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.8.39" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.8.39" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.8.39" ∷ word (ἐ ∷ ν ∷ []) "Rom.8.39" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.8.39" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.8.39" ∷ word (τ ∷ ῷ ∷ []) "Rom.8.39" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.8.39" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.8.39" ∷ word (Ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rom.9.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.9.1" ∷ word (ἐ ∷ ν ∷ []) "Rom.9.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.9.1" ∷ word (ο ∷ ὐ ∷ []) "Rom.9.1" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.9.1" ∷ word (σ ∷ υ ∷ μ ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Rom.9.1" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rom.9.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.9.1" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ώ ∷ ς ∷ []) "Rom.9.1" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.1" ∷ word (ἐ ∷ ν ∷ []) "Rom.9.1" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.9.1" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Rom.9.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.9.2" ∷ word (∙λ ∷ ύ ∷ π ∷ η ∷ []) "Rom.9.2" ∷ word (μ ∷ ο ∷ ί ∷ []) "Rom.9.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.9.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Rom.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.2" ∷ word (ἀ ∷ δ ∷ ι ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.2" ∷ word (ὀ ∷ δ ∷ ύ ∷ ν ∷ η ∷ []) "Rom.9.2" ∷ word (τ ∷ ῇ ∷ []) "Rom.9.2" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rom.9.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.2" ∷ word (η ∷ ὐ ∷ χ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rom.9.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.9.3" ∷ word (ἀ ∷ ν ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "Rom.9.3" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.9.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.9.3" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.9.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.9.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.9.3" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.9.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.9.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "Rom.9.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.9.3" ∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ε ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.9.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.9.3" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.9.3" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ έ ∷ ς ∷ []) "Rom.9.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.9.4" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ η ∷ ∙λ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.4" ∷ word (ὧ ∷ ν ∷ []) "Rom.9.4" ∷ word (ἡ ∷ []) "Rom.9.4" ∷ word (υ ∷ ἱ ∷ ο ∷ θ ∷ ε ∷ σ ∷ ί ∷ α ∷ []) "Rom.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.4" ∷ word (ἡ ∷ []) "Rom.9.4" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rom.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.4" ∷ word (α ∷ ἱ ∷ []) "Rom.9.4" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ῆ ∷ κ ∷ α ∷ ι ∷ []) "Rom.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.4" ∷ word (ἡ ∷ []) "Rom.9.4" ∷ word (ν ∷ ο ∷ μ ∷ ο ∷ θ ∷ ε ∷ σ ∷ ί ∷ α ∷ []) "Rom.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.4" ∷ word (ἡ ∷ []) "Rom.9.4" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ί ∷ α ∷ []) "Rom.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.4" ∷ word (α ∷ ἱ ∷ []) "Rom.9.4" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ι ∷ []) "Rom.9.4" ∷ word (ὧ ∷ ν ∷ []) "Rom.9.5" ∷ word (ο ∷ ἱ ∷ []) "Rom.9.5" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Rom.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.5" ∷ word (ἐ ∷ ξ ∷ []) "Rom.9.5" ∷ word (ὧ ∷ ν ∷ []) "Rom.9.5" ∷ word (ὁ ∷ []) "Rom.9.5" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.9.5" ∷ word (τ ∷ ὸ ∷ []) "Rom.9.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.9.5" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.9.5" ∷ word (ὁ ∷ []) "Rom.9.5" ∷ word (ὢ ∷ ν ∷ []) "Rom.9.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.9.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.9.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.9.5" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.9.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.9.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.9.5" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rom.9.5" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rom.9.5" ∷ word (Ο ∷ ὐ ∷ χ ∷ []) "Rom.9.6" ∷ word (ο ∷ ἷ ∷ ο ∷ ν ∷ []) "Rom.9.6" ∷ word (δ ∷ ὲ ∷ []) "Rom.9.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.9.6" ∷ word (ἐ ∷ κ ∷ π ∷ έ ∷ π ∷ τ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rom.9.6" ∷ word (ὁ ∷ []) "Rom.9.6" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Rom.9.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.9.6" ∷ word (ο ∷ ὐ ∷ []) "Rom.9.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.9.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.9.6" ∷ word (ο ∷ ἱ ∷ []) "Rom.9.6" ∷ word (ἐ ∷ ξ ∷ []) "Rom.9.6" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rom.9.6" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.9.6" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rom.9.6" ∷ word (ο ∷ ὐ ∷ δ ∷ []) "Rom.9.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.9.7" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rom.9.7" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Rom.9.7" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "Rom.9.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.9.7" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rom.9.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.9.7" ∷ word (Ἐ ∷ ν ∷ []) "Rom.9.7" ∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Rom.9.7" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "Rom.9.7" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rom.9.7" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Rom.9.7" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Rom.9.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.9.8" ∷ word (ο ∷ ὐ ∷ []) "Rom.9.8" ∷ word (τ ∷ ὰ ∷ []) "Rom.9.8" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rom.9.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.9.8" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Rom.9.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Rom.9.8" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rom.9.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.9.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.9.8" ∷ word (τ ∷ ὰ ∷ []) "Rom.9.8" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Rom.9.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.9.8" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rom.9.8" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.9.8" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Rom.9.8" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rom.9.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.9.9" ∷ word (ὁ ∷ []) "Rom.9.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Rom.9.9" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.9" ∷ word (Κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.9.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.9.9" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Rom.9.9" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.9.9" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.9.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.9" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.9" ∷ word (τ ∷ ῇ ∷ []) "Rom.9.9" ∷ word (Σ ∷ ά ∷ ρ ∷ ρ ∷ ᾳ ∷ []) "Rom.9.9" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Rom.9.9" ∷ word (ο ∷ ὐ ∷ []) "Rom.9.10" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.9.10" ∷ word (δ ∷ έ ∷ []) "Rom.9.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.10" ∷ word (Ῥ ∷ ε ∷ β ∷ έ ∷ κ ∷ κ ∷ α ∷ []) "Rom.9.10" ∷ word (ἐ ∷ ξ ∷ []) "Rom.9.10" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.9.10" ∷ word (κ ∷ ο ∷ ί ∷ τ ∷ η ∷ ν ∷ []) "Rom.9.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Rom.9.10" ∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Rom.9.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.10" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.9.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.9.10" ∷ word (μ ∷ ή ∷ π ∷ ω ∷ []) "Rom.9.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.9.11" ∷ word (γ ∷ ε ∷ ν ∷ ν ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.9.11" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Rom.9.11" ∷ word (π ∷ ρ ∷ α ∷ ξ ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.9.11" ∷ word (τ ∷ ι ∷ []) "Rom.9.11" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "Rom.9.11" ∷ word (ἢ ∷ []) "Rom.9.11" ∷ word (φ ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.9.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.9.11" ∷ word (ἡ ∷ []) "Rom.9.11" ∷ word (κ ∷ α ∷ τ ∷ []) "Rom.9.11" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ο ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.9.11" ∷ word (π ∷ ρ ∷ ό ∷ θ ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "Rom.9.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.9.11" ∷ word (μ ∷ έ ∷ ν ∷ ῃ ∷ []) "Rom.9.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.9.12" ∷ word (ἐ ∷ ξ ∷ []) "Rom.9.12" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.9.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.9.12" ∷ word (ἐ ∷ κ ∷ []) "Rom.9.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.12" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.12" ∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rom.9.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rom.9.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.9.12" ∷ word (Ὁ ∷ []) "Rom.9.12" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Rom.9.12" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.9.12" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.12" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ο ∷ ν ∷ ι ∷ []) "Rom.9.12" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.9.13" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.13" ∷ word (Τ ∷ ὸ ∷ ν ∷ []) "Rom.9.13" ∷ word (Ἰ ∷ α ∷ κ ∷ ὼ ∷ β ∷ []) "Rom.9.13" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ []) "Rom.9.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.9.13" ∷ word (δ ∷ ὲ ∷ []) "Rom.9.13" ∷ word (Ἠ ∷ σ ∷ α ∷ ῦ ∷ []) "Rom.9.13" ∷ word (ἐ ∷ μ ∷ ί ∷ σ ∷ η ∷ σ ∷ α ∷ []) "Rom.9.13" ∷ word (Τ ∷ ί ∷ []) "Rom.9.14" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.9.14" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.9.14" ∷ word (μ ∷ ὴ ∷ []) "Rom.9.14" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ []) "Rom.9.14" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rom.9.14" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.14" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.9.14" ∷ word (μ ∷ ὴ ∷ []) "Rom.9.14" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.9.14" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.15" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Rom.9.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.9.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.9.15" ∷ word (Ἐ ∷ ∙λ ∷ ε ∷ ή ∷ σ ∷ ω ∷ []) "Rom.9.15" ∷ word (ὃ ∷ ν ∷ []) "Rom.9.15" ∷ word (ἂ ∷ ν ∷ []) "Rom.9.15" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ῶ ∷ []) "Rom.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.15" ∷ word (ο ∷ ἰ ∷ κ ∷ τ ∷ ι ∷ ρ ∷ ή ∷ σ ∷ ω ∷ []) "Rom.9.15" ∷ word (ὃ ∷ ν ∷ []) "Rom.9.15" ∷ word (ἂ ∷ ν ∷ []) "Rom.9.15" ∷ word (ο ∷ ἰ ∷ κ ∷ τ ∷ ί ∷ ρ ∷ ω ∷ []) "Rom.9.15" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Rom.9.16" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.9.16" ∷ word (ο ∷ ὐ ∷ []) "Rom.9.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.16" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rom.9.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.16" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.9.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.16" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.9.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.9.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.9.17" ∷ word (ἡ ∷ []) "Rom.9.17" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ []) "Rom.9.17" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.17" ∷ word (Φ ∷ α ∷ ρ ∷ α ∷ ὼ ∷ []) "Rom.9.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.9.17" ∷ word (Ε ∷ ἰ ∷ ς ∷ []) "Rom.9.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Rom.9.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.9.17" ∷ word (ἐ ∷ ξ ∷ ή ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ά ∷ []) "Rom.9.17" ∷ word (σ ∷ ε ∷ []) "Rom.9.17" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "Rom.9.17" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ί ∷ ξ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Rom.9.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.9.17" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rom.9.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.9.17" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ί ∷ ν ∷ []) "Rom.9.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.17" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "Rom.9.17" ∷ word (δ ∷ ι ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ῇ ∷ []) "Rom.9.17" ∷ word (τ ∷ ὸ ∷ []) "Rom.9.17" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Rom.9.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.9.17" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Rom.9.17" ∷ word (τ ∷ ῇ ∷ []) "Rom.9.17" ∷ word (γ ∷ ῇ ∷ []) "Rom.9.17" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Rom.9.18" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.9.18" ∷ word (ὃ ∷ ν ∷ []) "Rom.9.18" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rom.9.18" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ε ∷ ῖ ∷ []) "Rom.9.18" ∷ word (ὃ ∷ ν ∷ []) "Rom.9.18" ∷ word (δ ∷ ὲ ∷ []) "Rom.9.18" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Rom.9.18" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ύ ∷ ν ∷ ε ∷ ι ∷ []) "Rom.9.18" ∷ word (Ἐ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.9.19" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rom.9.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.9.19" ∷ word (Τ ∷ ί ∷ []) "Rom.9.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.9.19" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Rom.9.19" ∷ word (μ ∷ έ ∷ μ ∷ φ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.19" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.9.19" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.9.19" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.9.19" ∷ word (ἀ ∷ ν ∷ θ ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rom.9.19" ∷ word (ὦ ∷ []) "Rom.9.20" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ε ∷ []) "Rom.9.20" ∷ word (μ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ γ ∷ ε ∷ []) "Rom.9.20" ∷ word (σ ∷ ὺ ∷ []) "Rom.9.20" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.9.20" ∷ word (ε ∷ ἶ ∷ []) "Rom.9.20" ∷ word (ὁ ∷ []) "Rom.9.20" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.9.20" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.20" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.9.20" ∷ word (μ ∷ ὴ ∷ []) "Rom.9.20" ∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "Rom.9.20" ∷ word (τ ∷ ὸ ∷ []) "Rom.9.20" ∷ word (π ∷ ∙λ ∷ ά ∷ σ ∷ μ ∷ α ∷ []) "Rom.9.20" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.20" ∷ word (π ∷ ∙λ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Rom.9.20" ∷ word (Τ ∷ ί ∷ []) "Rom.9.20" ∷ word (μ ∷ ε ∷ []) "Rom.9.20" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Rom.9.20" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.9.20" ∷ word (ἢ ∷ []) "Rom.9.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.9.21" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rom.9.21" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rom.9.21" ∷ word (ὁ ∷ []) "Rom.9.21" ∷ word (κ ∷ ε ∷ ρ ∷ α ∷ μ ∷ ε ∷ ὺ ∷ ς ∷ []) "Rom.9.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.21" ∷ word (π ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Rom.9.21" ∷ word (ἐ ∷ κ ∷ []) "Rom.9.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.9.21" ∷ word (φ ∷ υ ∷ ρ ∷ ά ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.21" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rom.9.21" ∷ word (ὃ ∷ []) "Rom.9.21" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.9.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.9.21" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rom.9.21" ∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Rom.9.21" ∷ word (ὃ ∷ []) "Rom.9.21" ∷ word (δ ∷ ὲ ∷ []) "Rom.9.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.9.21" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rom.9.21" ∷ word (ε ∷ ἰ ∷ []) "Rom.9.22" ∷ word (δ ∷ ὲ ∷ []) "Rom.9.22" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rom.9.22" ∷ word (ὁ ∷ []) "Rom.9.22" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.9.22" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ί ∷ ξ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.9.22" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.9.22" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.9.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.22" ∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rom.9.22" ∷ word (τ ∷ ὸ ∷ []) "Rom.9.22" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.9.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.9.22" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Rom.9.22" ∷ word (ἐ ∷ ν ∷ []) "Rom.9.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῇ ∷ []) "Rom.9.22" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ ᾳ ∷ []) "Rom.9.22" ∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Rom.9.22" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Rom.9.22" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Rom.9.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.9.22" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rom.9.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.9.23" ∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ σ ∷ ῃ ∷ []) "Rom.9.23" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.9.23" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.9.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.9.23" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Rom.9.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.9.23" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.9.23" ∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Rom.9.23" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.9.23" ∷ word (ἃ ∷ []) "Rom.9.23" ∷ word (π ∷ ρ ∷ ο ∷ η ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rom.9.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.9.23" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rom.9.23" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Rom.9.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.24" ∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rom.9.24" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.9.24" ∷ word (ο ∷ ὐ ∷ []) "Rom.9.24" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.9.24" ∷ word (ἐ ∷ ξ ∷ []) "Rom.9.24" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Rom.9.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.9.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.24" ∷ word (ἐ ∷ ξ ∷ []) "Rom.9.24" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.9.24" ∷ word (ὡ ∷ ς ∷ []) "Rom.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.25" ∷ word (ἐ ∷ ν ∷ []) "Rom.9.25" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.25" ∷ word (Ὡ ∷ σ ∷ η ∷ ὲ ∷ []) "Rom.9.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.9.25" ∷ word (Κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ []) "Rom.9.25" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.9.25" ∷ word (ο ∷ ὐ ∷ []) "Rom.9.25" ∷ word (∙λ ∷ α ∷ ό ∷ ν ∷ []) "Rom.9.25" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.25" ∷ word (∙λ ∷ α ∷ ό ∷ ν ∷ []) "Rom.9.25" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.9.25" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.9.25" ∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rom.9.25" ∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Rom.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.26" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.26" ∷ word (ἐ ∷ ν ∷ []) "Rom.9.26" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.26" ∷ word (τ ∷ ό ∷ π ∷ ῳ ∷ []) "Rom.9.26" ∷ word (ο ∷ ὗ ∷ []) "Rom.9.26" ∷ word (ἐ ∷ ρ ∷ ρ ∷ έ ∷ θ ∷ η ∷ []) "Rom.9.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.9.26" ∷ word (Ο ∷ ὐ ∷ []) "Rom.9.26" ∷ word (∙λ ∷ α ∷ ό ∷ ς ∷ []) "Rom.9.26" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.9.26" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.9.26" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rom.9.26" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.26" ∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Rom.9.26" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.9.26" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.26" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Rom.9.27" ∷ word (δ ∷ ὲ ∷ []) "Rom.9.27" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rom.9.27" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.9.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.27" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rom.9.27" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Rom.9.27" ∷ word (ᾖ ∷ []) "Rom.9.27" ∷ word (ὁ ∷ []) "Rom.9.27" ∷ word (ἀ ∷ ρ ∷ ι ∷ θ ∷ μ ∷ ὸ ∷ ς ∷ []) "Rom.9.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.9.27" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Rom.9.27" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rom.9.27" ∷ word (ὡ ∷ ς ∷ []) "Rom.9.27" ∷ word (ἡ ∷ []) "Rom.9.27" ∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ς ∷ []) "Rom.9.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.9.27" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Rom.9.27" ∷ word (τ ∷ ὸ ∷ []) "Rom.9.27" ∷ word (ὑ ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ μ ∷ μ ∷ α ∷ []) "Rom.9.27" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.27" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rom.9.28" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.9.28" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rom.9.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.28" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ έ ∷ μ ∷ ν ∷ ω ∷ ν ∷ []) "Rom.9.28" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rom.9.28" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.9.28" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.9.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.9.28" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Rom.9.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.29" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.9.29" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ ρ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rom.9.29" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Rom.9.29" ∷ word (Ε ∷ ἰ ∷ []) "Rom.9.29" ∷ word (μ ∷ ὴ ∷ []) "Rom.9.29" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.9.29" ∷ word (Σ ∷ α ∷ β ∷ α ∷ ὼ ∷ θ ∷ []) "Rom.9.29" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ ε ∷ ν ∷ []) "Rom.9.29" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.9.29" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Rom.9.29" ∷ word (ὡ ∷ ς ∷ []) "Rom.9.29" ∷ word (Σ ∷ ό ∷ δ ∷ ο ∷ μ ∷ α ∷ []) "Rom.9.29" ∷ word (ἂ ∷ ν ∷ []) "Rom.9.29" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.9.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.29" ∷ word (ὡ ∷ ς ∷ []) "Rom.9.29" ∷ word (Γ ∷ ό ∷ μ ∷ ο ∷ ρ ∷ ρ ∷ α ∷ []) "Rom.9.29" ∷ word (ἂ ∷ ν ∷ []) "Rom.9.29" ∷ word (ὡ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Rom.9.29" ∷ word (Τ ∷ ί ∷ []) "Rom.9.30" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.9.30" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.9.30" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.9.30" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rom.9.30" ∷ word (τ ∷ ὰ ∷ []) "Rom.9.30" ∷ word (μ ∷ ὴ ∷ []) "Rom.9.30" ∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.9.30" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.9.30" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Rom.9.30" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.9.30" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.9.30" ∷ word (δ ∷ ὲ ∷ []) "Rom.9.30" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.9.30" ∷ word (ἐ ∷ κ ∷ []) "Rom.9.30" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.9.30" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rom.9.31" ∷ word (δ ∷ ὲ ∷ []) "Rom.9.31" ∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ω ∷ ν ∷ []) "Rom.9.31" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.9.31" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.9.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.9.31" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.9.31" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.9.31" ∷ word (ἔ ∷ φ ∷ θ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rom.9.31" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.9.32" ∷ word (τ ∷ ί ∷ []) "Rom.9.32" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.9.32" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.9.32" ∷ word (ἐ ∷ κ ∷ []) "Rom.9.32" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.9.32" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.9.32" ∷ word (ὡ ∷ ς ∷ []) "Rom.9.32" ∷ word (ἐ ∷ ξ ∷ []) "Rom.9.32" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.9.32" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ κ ∷ ο ∷ ψ ∷ α ∷ ν ∷ []) "Rom.9.32" ∷ word (τ ∷ ῷ ∷ []) "Rom.9.32" ∷ word (∙λ ∷ ί ∷ θ ∷ ῳ ∷ []) "Rom.9.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.9.32" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ό ∷ μ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.32" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.9.33" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.33" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Rom.9.33" ∷ word (τ ∷ ί ∷ θ ∷ η ∷ μ ∷ ι ∷ []) "Rom.9.33" ∷ word (ἐ ∷ ν ∷ []) "Rom.9.33" ∷ word (Σ ∷ ι ∷ ὼ ∷ ν ∷ []) "Rom.9.33" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Rom.9.33" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ό ∷ μ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.9.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.33" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ν ∷ []) "Rom.9.33" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rom.9.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.9.33" ∷ word (ὁ ∷ []) "Rom.9.33" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "Rom.9.33" ∷ word (ἐ ∷ π ∷ []) "Rom.9.33" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.9.33" ∷ word (ο ∷ ὐ ∷ []) "Rom.9.33" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.9.33" ∷ word (Ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.10.1" ∷ word (ἡ ∷ []) "Rom.10.1" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.10.1" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ί ∷ α ∷ []) "Rom.10.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.10.1" ∷ word (ἐ ∷ μ ∷ ῆ ∷ ς ∷ []) "Rom.10.1" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rom.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.10.1" ∷ word (ἡ ∷ []) "Rom.10.1" ∷ word (δ ∷ έ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Rom.10.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.10.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.10.1" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.10.1" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.10.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.1" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rom.10.1" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ῶ ∷ []) "Rom.10.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.10.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.10.2" ∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.10.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.10.2" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.10.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.10.2" ∷ word (ο ∷ ὐ ∷ []) "Rom.10.2" ∷ word (κ ∷ α ∷ τ ∷ []) "Rom.10.2" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.10.2" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.10.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.10.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.10.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.10.3" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.10.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.10.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.10.3" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Rom.10.3" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.10.3" ∷ word (σ ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rom.10.3" ∷ word (τ ∷ ῇ ∷ []) "Rom.10.3" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Rom.10.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.10.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.10.3" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.10.3" ∷ word (ὑ ∷ π ∷ ε ∷ τ ∷ ά ∷ γ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.10.3" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.10.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.4" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.10.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.10.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.4" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.10.4" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rom.10.4" ∷ word (τ ∷ ῷ ∷ []) "Rom.10.4" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rom.10.4" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Rom.10.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.5" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ []) "Rom.10.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.10.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.10.5" ∷ word (ἐ ∷ κ ∷ []) "Rom.10.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.10.5" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.10.5" ∷ word (ὁ ∷ []) "Rom.10.5" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Rom.10.5" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Rom.10.5" ∷ word (ζ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.10.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rom.10.5" ∷ word (ἡ ∷ []) "Rom.10.6" ∷ word (δ ∷ ὲ ∷ []) "Rom.10.6" ∷ word (ἐ ∷ κ ∷ []) "Rom.10.6" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.10.6" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Rom.10.6" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.10.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.10.6" ∷ word (Μ ∷ ὴ ∷ []) "Rom.10.6" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ ς ∷ []) "Rom.10.6" ∷ word (ἐ ∷ ν ∷ []) "Rom.10.6" ∷ word (τ ∷ ῇ ∷ []) "Rom.10.6" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rom.10.6" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.10.6" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rom.10.6" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.10.6" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Rom.10.6" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Rom.10.6" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.10.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.10.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.10.6" ∷ word (ἤ ∷ []) "Rom.10.7" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rom.10.7" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.10.7" ∷ word (ἄ ∷ β ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Rom.10.7" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Rom.10.7" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.10.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.10.7" ∷ word (ἐ ∷ κ ∷ []) "Rom.10.7" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.10.7" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.10.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.10.8" ∷ word (τ ∷ ί ∷ []) "Rom.10.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.10.8" ∷ word (Ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Rom.10.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.10.8" ∷ word (τ ∷ ὸ ∷ []) "Rom.10.8" ∷ word (ῥ ∷ ῆ ∷ μ ∷ ά ∷ []) "Rom.10.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.10.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.10.8" ∷ word (τ ∷ ῷ ∷ []) "Rom.10.8" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rom.10.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.10.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.10.8" ∷ word (τ ∷ ῇ ∷ []) "Rom.10.8" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rom.10.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.10.8" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Rom.10.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.10.8" ∷ word (τ ∷ ὸ ∷ []) "Rom.10.8" ∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Rom.10.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.10.8" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.10.8" ∷ word (ὃ ∷ []) "Rom.10.8" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.10.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.10.9" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.10.9" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Rom.10.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.10.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.10.9" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rom.10.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.10.9" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.10.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.10.9" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Rom.10.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.10.9" ∷ word (τ ∷ ῇ ∷ []) "Rom.10.9" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rom.10.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.10.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.10.9" ∷ word (ὁ ∷ []) "Rom.10.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.10.9" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.10.9" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Rom.10.9" ∷ word (ἐ ∷ κ ∷ []) "Rom.10.9" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.10.9" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ῃ ∷ []) "Rom.10.9" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rom.10.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.10" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.10" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Rom.10.10" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.10.10" ∷ word (δ ∷ ὲ ∷ []) "Rom.10.10" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.10" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Rom.10.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.10.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.11" ∷ word (ἡ ∷ []) "Rom.10.11" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ή ∷ []) "Rom.10.11" ∷ word (Π ∷ ᾶ ∷ ς ∷ []) "Rom.10.11" ∷ word (ὁ ∷ []) "Rom.10.11" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "Rom.10.11" ∷ word (ἐ ∷ π ∷ []) "Rom.10.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.10.11" ∷ word (ο ∷ ὐ ∷ []) "Rom.10.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.11" ∷ word (ο ∷ ὐ ∷ []) "Rom.10.12" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.10.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.10.12" ∷ word (δ ∷ ι ∷ α ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Rom.10.12" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Rom.10.12" ∷ word (τ ∷ ε ∷ []) "Rom.10.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.10.12" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ο ∷ ς ∷ []) "Rom.10.12" ∷ word (ὁ ∷ []) "Rom.10.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.10.12" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.10.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.10.12" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.10.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.10.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.10.12" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Rom.10.12" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rom.10.12" ∷ word (Π ∷ ᾶ ∷ ς ∷ []) "Rom.10.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.13" ∷ word (ὃ ∷ ς ∷ []) "Rom.10.13" ∷ word (ἂ ∷ ν ∷ []) "Rom.10.13" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.13" ∷ word (τ ∷ ὸ ∷ []) "Rom.10.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Rom.10.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.10.13" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.13" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Rom.10.14" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.10.14" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.14" ∷ word (ὃ ∷ ν ∷ []) "Rom.10.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.10.14" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rom.10.14" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rom.10.14" ∷ word (δ ∷ ὲ ∷ []) "Rom.10.14" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.10.14" ∷ word (ο ∷ ὗ ∷ []) "Rom.10.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.10.14" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rom.10.14" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rom.10.14" ∷ word (δ ∷ ὲ ∷ []) "Rom.10.14" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.10.14" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Rom.10.14" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Rom.10.14" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Rom.10.15" ∷ word (δ ∷ ὲ ∷ []) "Rom.10.15" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.10.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.10.15" ∷ word (μ ∷ ὴ ∷ []) "Rom.10.15" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.10.15" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.10.15" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.10.15" ∷ word (Ὡ ∷ ς ∷ []) "Rom.10.15" ∷ word (ὡ ∷ ρ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Rom.10.15" ∷ word (ο ∷ ἱ ∷ []) "Rom.10.15" ∷ word (π ∷ ό ∷ δ ∷ ε ∷ ς ∷ []) "Rom.10.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.10.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Rom.10.15" ∷ word (τ ∷ ὰ ∷ []) "Rom.10.15" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ά ∷ []) "Rom.10.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Rom.10.16" ∷ word (ο ∷ ὐ ∷ []) "Rom.10.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.10.16" ∷ word (ὑ ∷ π ∷ ή ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rom.10.16" ∷ word (τ ∷ ῷ ∷ []) "Rom.10.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Rom.10.16" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Rom.10.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.10.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.10.16" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rom.10.16" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.10.16" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Rom.10.16" ∷ word (τ ∷ ῇ ∷ []) "Rom.10.16" ∷ word (ἀ ∷ κ ∷ ο ∷ ῇ ∷ []) "Rom.10.16" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.10.16" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Rom.10.17" ∷ word (ἡ ∷ []) "Rom.10.17" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Rom.10.17" ∷ word (ἐ ∷ ξ ∷ []) "Rom.10.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ῆ ∷ ς ∷ []) "Rom.10.17" ∷ word (ἡ ∷ []) "Rom.10.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.10.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ὴ ∷ []) "Rom.10.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.10.17" ∷ word (ῥ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.10.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.10.17" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.10.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.10.18" ∷ word (μ ∷ ὴ ∷ []) "Rom.10.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.10.18" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Rom.10.18" ∷ word (μ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ γ ∷ ε ∷ []) "Rom.10.18" ∷ word (Ε ∷ ἰ ∷ ς ∷ []) "Rom.10.18" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rom.10.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.10.18" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Rom.10.18" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Rom.10.18" ∷ word (ὁ ∷ []) "Rom.10.18" ∷ word (φ ∷ θ ∷ ό ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Rom.10.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.10.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.10.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.10.18" ∷ word (τ ∷ ὰ ∷ []) "Rom.10.18" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Rom.10.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.10.18" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Rom.10.18" ∷ word (τ ∷ ὰ ∷ []) "Rom.10.18" ∷ word (ῥ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.10.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.10.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.10.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.10.19" ∷ word (μ ∷ ὴ ∷ []) "Rom.10.19" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rom.10.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.10.19" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "Rom.10.19" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.10.19" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Rom.10.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.10.19" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Rom.10.19" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ζ ∷ η ∷ ∙λ ∷ ώ ∷ σ ∷ ω ∷ []) "Rom.10.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.10.19" ∷ word (ἐ ∷ π ∷ []) "Rom.10.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.10.19" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ ι ∷ []) "Rom.10.19" ∷ word (ἐ ∷ π ∷ []) "Rom.10.19" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ ι ∷ []) "Rom.10.19" ∷ word (ἀ ∷ σ ∷ υ ∷ ν ∷ έ ∷ τ ∷ ῳ ∷ []) "Rom.10.19" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ρ ∷ γ ∷ ι ∷ ῶ ∷ []) "Rom.10.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.10.19" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Rom.10.20" ∷ word (δ ∷ ὲ ∷ []) "Rom.10.20" ∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ ο ∷ ∙λ ∷ μ ∷ ᾷ ∷ []) "Rom.10.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.10.20" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.10.20" ∷ word (Ε ∷ ὑ ∷ ρ ∷ έ ∷ θ ∷ η ∷ ν ∷ []) "Rom.10.20" ∷ word (ἐ ∷ ν ∷ []) "Rom.10.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.10.20" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Rom.10.20" ∷ word (μ ∷ ὴ ∷ []) "Rom.10.20" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.10.20" ∷ word (ἐ ∷ μ ∷ φ ∷ α ∷ ν ∷ ὴ ∷ ς ∷ []) "Rom.10.20" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rom.10.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.10.20" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Rom.10.20" ∷ word (μ ∷ ὴ ∷ []) "Rom.10.20" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.10.20" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.10.21" ∷ word (δ ∷ ὲ ∷ []) "Rom.10.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.10.21" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rom.10.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.10.21" ∷ word (Ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Rom.10.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.10.21" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rom.10.21" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ έ ∷ τ ∷ α ∷ σ ∷ α ∷ []) "Rom.10.21" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.10.21" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ά ∷ ς ∷ []) "Rom.10.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.10.21" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.10.21" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Rom.10.21" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rom.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.10.21" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.10.21" ∷ word (Λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.11.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.11.1" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.1" ∷ word (ἀ ∷ π ∷ ώ ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Rom.11.1" ∷ word (ὁ ∷ []) "Rom.11.1" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.11.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.11.1" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Rom.11.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.11.1" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.1" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.1" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.11.1" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ η ∷ ∙λ ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Rom.11.1" ∷ word (ε ∷ ἰ ∷ μ ∷ ί ∷ []) "Rom.11.1" ∷ word (ἐ ∷ κ ∷ []) "Rom.11.1" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.11.1" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "Rom.11.1" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Rom.11.1" ∷ word (Β ∷ ε ∷ ν ∷ ι ∷ α ∷ μ ∷ ί ∷ ν ∷ []) "Rom.11.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.11.2" ∷ word (ἀ ∷ π ∷ ώ ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Rom.11.2" ∷ word (ὁ ∷ []) "Rom.11.2" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.11.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.11.2" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Rom.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.11.2" ∷ word (ὃ ∷ ν ∷ []) "Rom.11.2" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ γ ∷ ν ∷ ω ∷ []) "Rom.11.2" ∷ word (ἢ ∷ []) "Rom.11.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.11.2" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Rom.11.2" ∷ word (ἐ ∷ ν ∷ []) "Rom.11.2" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Rom.11.2" ∷ word (τ ∷ ί ∷ []) "Rom.11.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.11.2" ∷ word (ἡ ∷ []) "Rom.11.2" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ή ∷ []) "Rom.11.2" ∷ word (ὡ ∷ ς ∷ []) "Rom.11.2" ∷ word (ἐ ∷ ν ∷ τ ∷ υ ∷ γ ∷ χ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Rom.11.2" ∷ word (τ ∷ ῷ ∷ []) "Rom.11.2" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.11.2" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.11.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.11.2" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rom.11.2" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Rom.11.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.11.3" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "Rom.11.3" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.11.3" ∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Rom.11.3" ∷ word (τ ∷ ὰ ∷ []) "Rom.11.3" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ά ∷ []) "Rom.11.3" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.11.3" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ σ ∷ κ ∷ α ∷ ψ ∷ α ∷ ν ∷ []) "Rom.11.3" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Rom.11.3" ∷ word (ὑ ∷ π ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ φ ∷ θ ∷ η ∷ ν ∷ []) "Rom.11.3" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rom.11.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.3" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.11.3" ∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ ν ∷ []) "Rom.11.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.11.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.11.4" ∷ word (τ ∷ ί ∷ []) "Rom.11.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.11.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.11.4" ∷ word (ὁ ∷ []) "Rom.11.4" ∷ word (χ ∷ ρ ∷ η ∷ μ ∷ α ∷ τ ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Rom.11.4" ∷ word (Κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ ο ∷ ν ∷ []) "Rom.11.4" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Rom.11.4" ∷ word (ἑ ∷ π ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rom.11.4" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "Rom.11.4" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.11.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.11.4" ∷ word (ἔ ∷ κ ∷ α ∷ μ ∷ ψ ∷ α ∷ ν ∷ []) "Rom.11.4" ∷ word (γ ∷ ό ∷ ν ∷ υ ∷ []) "Rom.11.4" ∷ word (τ ∷ ῇ ∷ []) "Rom.11.4" ∷ word (Β ∷ ά ∷ α ∷ ∙λ ∷ []) "Rom.11.4" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.11.5" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.11.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.11.5" ∷ word (τ ∷ ῷ ∷ []) "Rom.11.5" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.11.5" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Rom.11.5" ∷ word (∙λ ∷ ε ∷ ῖ ∷ μ ∷ μ ∷ α ∷ []) "Rom.11.5" ∷ word (κ ∷ α ∷ τ ∷ []) "Rom.11.5" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ο ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.11.5" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Rom.11.5" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Rom.11.5" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.6" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.6" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "Rom.11.6" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.11.6" ∷ word (ἐ ∷ ξ ∷ []) "Rom.11.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Rom.11.6" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Rom.11.6" ∷ word (ἡ ∷ []) "Rom.11.6" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.11.6" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.11.6" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.11.6" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.11.6" ∷ word (τ ∷ ί ∷ []) "Rom.11.7" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.11.7" ∷ word (ὃ ∷ []) "Rom.11.7" ∷ word (ἐ ∷ π ∷ ι ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ []) "Rom.11.7" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Rom.11.7" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.11.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.11.7" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ υ ∷ χ ∷ ε ∷ ν ∷ []) "Rom.11.7" ∷ word (ἡ ∷ []) "Rom.11.7" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.7" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ο ∷ γ ∷ ὴ ∷ []) "Rom.11.7" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ υ ∷ χ ∷ ε ∷ ν ∷ []) "Rom.11.7" ∷ word (ο ∷ ἱ ∷ []) "Rom.11.7" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.7" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "Rom.11.7" ∷ word (ἐ ∷ π ∷ ω ∷ ρ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.11.7" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.11.8" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.11.8" ∷ word (Ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rom.11.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.11.8" ∷ word (ὁ ∷ []) "Rom.11.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.11.8" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Rom.11.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ν ∷ ύ ∷ ξ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.11.8" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.11.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.11.8" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.8" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rom.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.8" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Rom.11.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.11.8" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.8" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.11.8" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Rom.11.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.11.8" ∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.11.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rom.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.9" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Rom.11.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.11.9" ∷ word (Γ ∷ ε ∷ ν ∷ η ∷ θ ∷ ή ∷ τ ∷ ω ∷ []) "Rom.11.9" ∷ word (ἡ ∷ []) "Rom.11.9" ∷ word (τ ∷ ρ ∷ ά ∷ π ∷ ε ∷ ζ ∷ α ∷ []) "Rom.11.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.9" ∷ word (π ∷ α ∷ γ ∷ ί ∷ δ ∷ α ∷ []) "Rom.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.9" ∷ word (θ ∷ ή ∷ ρ ∷ α ∷ ν ∷ []) "Rom.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.9" ∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.9" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ π ∷ ό ∷ δ ∷ ο ∷ μ ∷ α ∷ []) "Rom.11.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.11.9" ∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Rom.11.10" ∷ word (ο ∷ ἱ ∷ []) "Rom.11.10" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.11.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.11.10" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.10" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ν ∷ []) "Rom.11.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.11.10" ∷ word (ν ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.11.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.11.10" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.11.10" ∷ word (σ ∷ ύ ∷ γ ∷ κ ∷ α ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Rom.11.10" ∷ word (Λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.11.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.11.11" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.11" ∷ word (ἔ ∷ π ∷ τ ∷ α ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Rom.11.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.11.11" ∷ word (π ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.11" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.11" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "Rom.11.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.11.11" ∷ word (τ ∷ ῷ ∷ []) "Rom.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.11.11" ∷ word (ἡ ∷ []) "Rom.11.11" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rom.11.11" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.11.11" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.11" ∷ word (τ ∷ ὸ ∷ []) "Rom.11.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ζ ∷ η ∷ ∙λ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Rom.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rom.11.11" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.12" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.12" ∷ word (τ ∷ ὸ ∷ []) "Rom.11.12" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ π ∷ τ ∷ ω ∷ μ ∷ α ∷ []) "Rom.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.12" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.11.12" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rom.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.12" ∷ word (τ ∷ ὸ ∷ []) "Rom.11.12" ∷ word (ἥ ∷ τ ∷ τ ∷ η ∷ μ ∷ α ∷ []) "Rom.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.12" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.11.12" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.11.12" ∷ word (π ∷ ό ∷ σ ∷ ῳ ∷ []) "Rom.11.12" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.11.12" ∷ word (τ ∷ ὸ ∷ []) "Rom.11.12" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Rom.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.12" ∷ word (Ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.11.13" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.11.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.11.13" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.13" ∷ word (ἐ ∷ φ ∷ []) "Rom.11.13" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Rom.11.13" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.11.13" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.11.13" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Rom.11.13" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.11.13" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.11.13" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.11.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.11.13" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rom.11.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.11.13" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ ω ∷ []) "Rom.11.13" ∷ word (ε ∷ ἴ ∷ []) "Rom.11.14" ∷ word (π ∷ ω ∷ ς ∷ []) "Rom.11.14" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ζ ∷ η ∷ ∙λ ∷ ώ ∷ σ ∷ ω ∷ []) "Rom.11.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.11.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.11.14" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Rom.11.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.14" ∷ word (σ ∷ ώ ∷ σ ∷ ω ∷ []) "Rom.11.14" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ ς ∷ []) "Rom.11.14" ∷ word (ἐ ∷ ξ ∷ []) "Rom.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.14" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.15" ∷ word (ἡ ∷ []) "Rom.11.15" ∷ word (ἀ ∷ π ∷ ο ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Rom.11.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.15" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ ὴ ∷ []) "Rom.11.15" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Rom.11.15" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.11.15" ∷ word (ἡ ∷ []) "Rom.11.15" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ∙λ ∷ η ∷ μ ∷ ψ ∷ ι ∷ ς ∷ []) "Rom.11.15" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.15" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.15" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "Rom.11.15" ∷ word (ἐ ∷ κ ∷ []) "Rom.11.15" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.11.15" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.16" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.16" ∷ word (ἡ ∷ []) "Rom.11.16" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rom.11.16" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ []) "Rom.11.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.11.16" ∷ word (φ ∷ ύ ∷ ρ ∷ α ∷ μ ∷ α ∷ []) "Rom.11.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.16" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.16" ∷ word (ἡ ∷ []) "Rom.11.16" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rom.11.16" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ []) "Rom.11.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.16" ∷ word (ο ∷ ἱ ∷ []) "Rom.11.16" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ ι ∷ []) "Rom.11.16" ∷ word (Ε ∷ ἰ ∷ []) "Rom.11.17" ∷ word (δ ∷ έ ∷ []) "Rom.11.17" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.11.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.11.17" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rom.11.17" ∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ ∙λ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.11.17" ∷ word (σ ∷ ὺ ∷ []) "Rom.11.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.17" ∷ word (ἀ ∷ γ ∷ ρ ∷ ι ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Rom.11.17" ∷ word (ὢ ∷ ν ∷ []) "Rom.11.17" ∷ word (ἐ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ τ ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ ς ∷ []) "Rom.11.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.11.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.17" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ὸ ∷ ς ∷ []) "Rom.11.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.11.17" ∷ word (ῥ ∷ ί ∷ ζ ∷ η ∷ ς ∷ []) "Rom.11.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.11.17" ∷ word (π ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Rom.11.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.11.17" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Rom.11.17" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Rom.11.17" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ υ ∷ χ ∷ ῶ ∷ []) "Rom.11.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.11.18" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rom.11.18" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.18" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rom.11.18" ∷ word (ο ∷ ὐ ∷ []) "Rom.11.18" ∷ word (σ ∷ ὺ ∷ []) "Rom.11.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.11.18" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Rom.11.18" ∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.11.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.11.18" ∷ word (ἡ ∷ []) "Rom.11.18" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rom.11.18" ∷ word (σ ∷ έ ∷ []) "Rom.11.18" ∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.11.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.11.19" ∷ word (Ἐ ∷ ξ ∷ ε ∷ κ ∷ ∙λ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.11.19" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ ι ∷ []) "Rom.11.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.11.19" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.11.19" ∷ word (ἐ ∷ γ ∷ κ ∷ ε ∷ ν ∷ τ ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῶ ∷ []) "Rom.11.19" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Rom.11.20" ∷ word (τ ∷ ῇ ∷ []) "Rom.11.20" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.11.20" ∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ ∙λ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.11.20" ∷ word (σ ∷ ὺ ∷ []) "Rom.11.20" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.20" ∷ word (τ ∷ ῇ ∷ []) "Rom.11.20" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Rom.11.20" ∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ α ∷ ς ∷ []) "Rom.11.20" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.20" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ὰ ∷ []) "Rom.11.20" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ ε ∷ ι ∷ []) "Rom.11.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.11.20" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rom.11.20" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.21" ∷ word (ὁ ∷ []) "Rom.11.21" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.11.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.11.21" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.11.21" ∷ word (φ ∷ ύ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.21" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ω ∷ ν ∷ []) "Rom.11.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.11.21" ∷ word (ἐ ∷ φ ∷ ε ∷ ί ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Rom.11.21" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Rom.11.21" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Rom.11.21" ∷ word (φ ∷ ε ∷ ί ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.11.21" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Rom.11.22" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.11.22" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Rom.11.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.22" ∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Rom.11.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.11.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.11.22" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.11.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.11.22" ∷ word (π ∷ ε ∷ σ ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.11.22" ∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ ο ∷ μ ∷ ί ∷ α ∷ []) "Rom.11.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.11.22" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.22" ∷ word (σ ∷ ὲ ∷ []) "Rom.11.22" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Rom.11.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.11.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.11.22" ∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ ς ∷ []) "Rom.11.22" ∷ word (τ ∷ ῇ ∷ []) "Rom.11.22" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Rom.11.22" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Rom.11.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.22" ∷ word (σ ∷ ὺ ∷ []) "Rom.11.22" ∷ word (ἐ ∷ κ ∷ κ ∷ ο ∷ π ∷ ή ∷ σ ∷ ῃ ∷ []) "Rom.11.22" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Rom.11.23" ∷ word (δ ∷ έ ∷ []) "Rom.11.23" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.11.23" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.23" ∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ έ ∷ ν ∷ ω ∷ σ ∷ ι ∷ []) "Rom.11.23" ∷ word (τ ∷ ῇ ∷ []) "Rom.11.23" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Rom.11.23" ∷ word (ἐ ∷ γ ∷ κ ∷ ε ∷ ν ∷ τ ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.11.23" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.11.23" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.11.23" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.11.23" ∷ word (ὁ ∷ []) "Rom.11.23" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.11.23" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rom.11.23" ∷ word (ἐ ∷ γ ∷ κ ∷ ε ∷ ν ∷ τ ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Rom.11.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Rom.11.23" ∷ word (ε ∷ ἰ ∷ []) "Rom.11.24" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.24" ∷ word (σ ∷ ὺ ∷ []) "Rom.11.24" ∷ word (ἐ ∷ κ ∷ []) "Rom.11.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.11.24" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.11.24" ∷ word (φ ∷ ύ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.24" ∷ word (ἐ ∷ ξ ∷ ε ∷ κ ∷ ό ∷ π ∷ η ∷ ς ∷ []) "Rom.11.24" ∷ word (ἀ ∷ γ ∷ ρ ∷ ι ∷ ε ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Rom.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.24" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rom.11.24" ∷ word (φ ∷ ύ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.24" ∷ word (ἐ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ τ ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ ς ∷ []) "Rom.11.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.24" ∷ word (κ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Rom.11.24" ∷ word (π ∷ ό ∷ σ ∷ ῳ ∷ []) "Rom.11.24" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.11.24" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.11.24" ∷ word (ο ∷ ἱ ∷ []) "Rom.11.24" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.11.24" ∷ word (φ ∷ ύ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.24" ∷ word (ἐ ∷ γ ∷ κ ∷ ε ∷ ν ∷ τ ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.11.24" ∷ word (τ ∷ ῇ ∷ []) "Rom.11.24" ∷ word (ἰ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Rom.11.24" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rom.11.24" ∷ word (Ο ∷ ὐ ∷ []) "Rom.11.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.25" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Rom.11.25" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.11.25" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.11.25" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.11.25" ∷ word (τ ∷ ὸ ∷ []) "Rom.11.25" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.11.25" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.11.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.11.25" ∷ word (μ ∷ ὴ ∷ []) "Rom.11.25" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "Rom.11.25" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.11.25" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "Rom.11.25" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.11.25" ∷ word (π ∷ ώ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ς ∷ []) "Rom.11.25" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.11.25" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.11.25" ∷ word (τ ∷ ῷ ∷ []) "Rom.11.25" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rom.11.25" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Rom.11.25" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Rom.11.25" ∷ word (ο ∷ ὗ ∷ []) "Rom.11.25" ∷ word (τ ∷ ὸ ∷ []) "Rom.11.25" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Rom.11.25" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.11.25" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.11.25" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Rom.11.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.26" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.11.26" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Rom.11.26" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Rom.11.26" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.11.26" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.11.26" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.11.26" ∷ word (Ἥ ∷ ξ ∷ ε ∷ ι ∷ []) "Rom.11.26" ∷ word (ἐ ∷ κ ∷ []) "Rom.11.26" ∷ word (Σ ∷ ι ∷ ὼ ∷ ν ∷ []) "Rom.11.26" ∷ word (ὁ ∷ []) "Rom.11.26" ∷ word (ῥ ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.11.26" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ε ∷ ι ∷ []) "Rom.11.26" ∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rom.11.26" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.11.26" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ []) "Rom.11.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.27" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Rom.11.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.11.27" ∷ word (ἡ ∷ []) "Rom.11.27" ∷ word (π ∷ α ∷ ρ ∷ []) "Rom.11.27" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rom.11.27" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ []) "Rom.11.27" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Rom.11.27" ∷ word (ἀ ∷ φ ∷ έ ∷ ∙λ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Rom.11.27" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.11.27" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Rom.11.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.11.27" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.11.28" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.11.28" ∷ word (τ ∷ ὸ ∷ []) "Rom.11.28" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.11.28" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Rom.11.28" ∷ word (δ ∷ ι ∷ []) "Rom.11.28" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.11.28" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.11.28" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.11.28" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ο ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.11.28" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "Rom.11.28" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.11.28" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.11.28" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Rom.11.28" ∷ word (ἀ ∷ μ ∷ ε ∷ τ ∷ α ∷ μ ∷ έ ∷ ∙λ ∷ η ∷ τ ∷ α ∷ []) "Rom.11.29" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.29" ∷ word (τ ∷ ὰ ∷ []) "Rom.11.29" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.29" ∷ word (ἡ ∷ []) "Rom.11.29" ∷ word (κ ∷ ∙λ ∷ ῆ ∷ σ ∷ ι ∷ ς ∷ []) "Rom.11.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.11.29" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.11.29" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Rom.11.30" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.30" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.11.30" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Rom.11.30" ∷ word (ἠ ∷ π ∷ ε ∷ ι ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Rom.11.30" ∷ word (τ ∷ ῷ ∷ []) "Rom.11.30" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.11.30" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.11.30" ∷ word (δ ∷ ὲ ∷ []) "Rom.11.30" ∷ word (ἠ ∷ ∙λ ∷ ε ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rom.11.30" ∷ word (τ ∷ ῇ ∷ []) "Rom.11.30" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Rom.11.30" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Rom.11.30" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.11.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.31" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.11.31" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.11.31" ∷ word (ἠ ∷ π ∷ ε ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.11.31" ∷ word (τ ∷ ῷ ∷ []) "Rom.11.31" ∷ word (ὑ ∷ μ ∷ ε ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "Rom.11.31" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ ε ∷ ι ∷ []) "Rom.11.31" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.11.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rom.11.31" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.11.31" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ η ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.11.31" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ κ ∷ ∙λ ∷ ε ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rom.11.32" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.32" ∷ word (ὁ ∷ []) "Rom.11.32" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.11.32" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.11.32" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.11.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.32" ∷ word (ἀ ∷ π ∷ ε ∷ ί ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Rom.11.32" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.11.32" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.11.32" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.11.32" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ή ∷ σ ∷ ῃ ∷ []) "Rom.11.32" ∷ word (Ὦ ∷ []) "Rom.11.33" ∷ word (β ∷ ά ∷ θ ∷ ο ∷ ς ∷ []) "Rom.11.33" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Rom.11.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.33" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "Rom.11.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.33" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.11.33" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.11.33" ∷ word (ὡ ∷ ς ∷ []) "Rom.11.33" ∷ word (ἀ ∷ ν ∷ ε ∷ ξ ∷ ε ∷ ρ ∷ α ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ []) "Rom.11.33" ∷ word (τ ∷ ὰ ∷ []) "Rom.11.33" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.11.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.11.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.33" ∷ word (ἀ ∷ ν ∷ ε ∷ ξ ∷ ι ∷ χ ∷ ν ∷ ί ∷ α ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.11.33" ∷ word (α ∷ ἱ ∷ []) "Rom.11.33" ∷ word (ὁ ∷ δ ∷ ο ∷ ὶ ∷ []) "Rom.11.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.11.33" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Rom.11.34" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.11.34" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "Rom.11.34" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.11.34" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.11.34" ∷ word (ἢ ∷ []) "Rom.11.34" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.11.34" ∷ word (σ ∷ ύ ∷ μ ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.11.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.11.34" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Rom.11.34" ∷ word (ἢ ∷ []) "Rom.11.35" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.11.35" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rom.11.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.11.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.35" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ π ∷ ο ∷ δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.11.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.11.35" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.11.36" ∷ word (ἐ ∷ ξ ∷ []) "Rom.11.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.11.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.36" ∷ word (δ ∷ ι ∷ []) "Rom.11.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.11.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.11.36" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.11.36" ∷ word (τ ∷ ὰ ∷ []) "Rom.11.36" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rom.11.36" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.11.36" ∷ word (ἡ ∷ []) "Rom.11.36" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Rom.11.36" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.11.36" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.11.36" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Rom.11.36" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rom.11.36" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Rom.12.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.12.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.12.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.12.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.12.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.12.1" ∷ word (ο ∷ ἰ ∷ κ ∷ τ ∷ ι ∷ ρ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.12.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.12.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.12.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rom.12.1" ∷ word (τ ∷ ὰ ∷ []) "Rom.12.1" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.12.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.12.1" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rom.12.1" ∷ word (ζ ∷ ῶ ∷ σ ∷ α ∷ ν ∷ []) "Rom.12.1" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rom.12.1" ∷ word (ε ∷ ὐ ∷ ά ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.12.1" ∷ word (τ ∷ ῷ ∷ []) "Rom.12.1" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.12.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.12.1" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ κ ∷ ὴ ∷ ν ∷ []) "Rom.12.1" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rom.12.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.12.2" ∷ word (μ ∷ ὴ ∷ []) "Rom.12.2" ∷ word (σ ∷ υ ∷ σ ∷ χ ∷ η ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rom.12.2" ∷ word (τ ∷ ῷ ∷ []) "Rom.12.2" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "Rom.12.2" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rom.12.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.2" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ μ ∷ ο ∷ ρ ∷ φ ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "Rom.12.2" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.2" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ α ∷ ι ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.12.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.12.2" ∷ word (ν ∷ ο ∷ ό ∷ ς ∷ []) "Rom.12.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.12.2" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.2" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.12.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.12.2" ∷ word (τ ∷ ί ∷ []) "Rom.12.2" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.2" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Rom.12.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.12.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.12.2" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.2" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "Rom.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.12.2" ∷ word (ε ∷ ὐ ∷ ά ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.12.2" ∷ word (τ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ ν ∷ []) "Rom.12.2" ∷ word (Λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.12.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.12.3" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.12.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.12.3" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Rom.12.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.12.3" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ί ∷ σ ∷ η ∷ ς ∷ []) "Rom.12.3" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rom.12.3" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Rom.12.3" ∷ word (τ ∷ ῷ ∷ []) "Rom.12.3" ∷ word (ὄ ∷ ν ∷ τ ∷ ι ∷ []) "Rom.12.3" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.12.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.12.3" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.12.3" ∷ word (π ∷ α ∷ ρ ∷ []) "Rom.12.3" ∷ word (ὃ ∷ []) "Rom.12.3" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Rom.12.3" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.12.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.3" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.12.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.12.3" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.3" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.12.3" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Rom.12.3" ∷ word (ὡ ∷ ς ∷ []) "Rom.12.3" ∷ word (ὁ ∷ []) "Rom.12.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.12.3" ∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Rom.12.3" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.12.3" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.12.3" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "Rom.12.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.12.4" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.4" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "Rom.12.4" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.12.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.4" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rom.12.4" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.12.4" ∷ word (τ ∷ ὰ ∷ []) "Rom.12.4" ∷ word (δ ∷ ὲ ∷ []) "Rom.12.4" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rom.12.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rom.12.4" ∷ word (ο ∷ ὐ ∷ []) "Rom.12.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rom.12.4" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Rom.12.4" ∷ word (π ∷ ρ ∷ ᾶ ∷ ξ ∷ ι ∷ ν ∷ []) "Rom.12.4" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.12.5" ∷ word (ο ∷ ἱ ∷ []) "Rom.12.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Rom.12.5" ∷ word (ἓ ∷ ν ∷ []) "Rom.12.5" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Rom.12.5" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.12.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.12.5" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.12.5" ∷ word (κ ∷ α ∷ θ ∷ []) "Rom.12.5" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Rom.12.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ω ∷ ν ∷ []) "Rom.12.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rom.12.5" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.6" ∷ word (δ ∷ ὲ ∷ []) "Rom.12.6" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.12.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.12.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.12.6" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Rom.12.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.12.6" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ν ∷ []) "Rom.12.6" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.12.6" ∷ word (δ ∷ ι ∷ ά ∷ φ ∷ ο ∷ ρ ∷ α ∷ []) "Rom.12.6" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Rom.12.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Rom.12.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.12.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.12.6" ∷ word (ἀ ∷ ν ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Rom.12.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.12.6" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.12.6" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Rom.12.7" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rom.12.7" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.7" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.7" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ ᾳ ∷ []) "Rom.12.7" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Rom.12.7" ∷ word (ὁ ∷ []) "Rom.12.7" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Rom.12.7" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.7" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.7" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Rom.12.7" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "Rom.12.8" ∷ word (ὁ ∷ []) "Rom.12.8" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rom.12.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.8" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.8" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Rom.12.8" ∷ word (ὁ ∷ []) "Rom.12.8" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.12.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.8" ∷ word (ἁ ∷ π ∷ ∙λ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Rom.12.8" ∷ word (ὁ ∷ []) "Rom.12.8" ∷ word (π ∷ ρ ∷ ο ∷ ϊ ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.12.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.8" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ῇ ∷ []) "Rom.12.8" ∷ word (ὁ ∷ []) "Rom.12.8" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ῶ ∷ ν ∷ []) "Rom.12.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.8" ∷ word (ἱ ∷ ∙λ ∷ α ∷ ρ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "Rom.12.8" ∷ word (Ἡ ∷ []) "Rom.12.9" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "Rom.12.9" ∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ό ∷ κ ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Rom.12.9" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ υ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.9" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.9" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ό ∷ ν ∷ []) "Rom.12.9" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.12.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.12.9" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῷ ∷ []) "Rom.12.9" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.10" ∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ί ∷ ᾳ ∷ []) "Rom.12.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.12.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.12.10" ∷ word (φ ∷ ι ∷ ∙λ ∷ ό ∷ σ ∷ τ ∷ ο ∷ ρ ∷ γ ∷ ο ∷ ι ∷ []) "Rom.12.10" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.10" ∷ word (τ ∷ ι ∷ μ ∷ ῇ ∷ []) "Rom.12.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.12.10" ∷ word (π ∷ ρ ∷ ο ∷ η ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.12.10" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.11" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ῇ ∷ []) "Rom.12.11" ∷ word (μ ∷ ὴ ∷ []) "Rom.12.11" ∷ word (ὀ ∷ κ ∷ ν ∷ η ∷ ρ ∷ ο ∷ ί ∷ []) "Rom.12.11" ∷ word (τ ∷ ῷ ∷ []) "Rom.12.11" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.12.11" ∷ word (ζ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.11" ∷ word (τ ∷ ῷ ∷ []) "Rom.12.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.12.11" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.11" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.12" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "Rom.12.12" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.12" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.12" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rom.12.12" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.12" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῇ ∷ []) "Rom.12.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.12" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.12.13" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rom.12.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.12.13" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rom.12.13" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.12.13" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ ξ ∷ ε ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rom.12.13" ∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.13" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rom.12.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.12.14" ∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.12.14" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rom.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.12.14" ∷ word (μ ∷ ὴ ∷ []) "Rom.12.14" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Rom.12.14" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.12.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rom.12.15" ∷ word (χ ∷ α ∷ ι ∷ ρ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.12.15" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ε ∷ ι ∷ ν ∷ []) "Rom.12.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rom.12.15" ∷ word (κ ∷ ∙λ ∷ α ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.12.15" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Rom.12.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.12.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.12.16" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.16" ∷ word (μ ∷ ὴ ∷ []) "Rom.12.16" ∷ word (τ ∷ ὰ ∷ []) "Rom.12.16" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.16" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.12.16" ∷ word (τ ∷ α ∷ π ∷ ε ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.12.16" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ α ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.12.16" ∷ word (μ ∷ ὴ ∷ []) "Rom.12.16" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rom.12.16" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "Rom.12.16" ∷ word (π ∷ α ∷ ρ ∷ []) "Rom.12.16" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.12.16" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Rom.12.17" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rom.12.17" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "Rom.12.17" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ []) "Rom.12.17" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.17" ∷ word (π ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.12.17" ∷ word (κ ∷ α ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.17" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rom.12.17" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.12.17" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rom.12.17" ∷ word (ε ∷ ἰ ∷ []) "Rom.12.18" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Rom.12.18" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.18" ∷ word (ἐ ∷ ξ ∷ []) "Rom.12.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.12.18" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rom.12.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.12.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Rom.12.18" ∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.18" ∷ word (μ ∷ ὴ ∷ []) "Rom.12.19" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.12.19" ∷ word (ἐ ∷ κ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.12.19" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Rom.12.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.19" ∷ word (δ ∷ ό ∷ τ ∷ ε ∷ []) "Rom.12.19" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rom.12.19" ∷ word (τ ∷ ῇ ∷ []) "Rom.12.19" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῇ ∷ []) "Rom.12.19" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.12.19" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.12.19" ∷ word (Ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.12.19" ∷ word (ἐ ∷ κ ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Rom.12.19" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.12.19" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ π ∷ ο ∷ δ ∷ ώ ∷ σ ∷ ω ∷ []) "Rom.12.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.12.19" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.12.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.20" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.12.20" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ᾷ ∷ []) "Rom.12.20" ∷ word (ὁ ∷ []) "Rom.12.20" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ό ∷ ς ∷ []) "Rom.12.20" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.12.20" ∷ word (ψ ∷ ώ ∷ μ ∷ ι ∷ ζ ∷ ε ∷ []) "Rom.12.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rom.12.20" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.12.20" ∷ word (δ ∷ ι ∷ ψ ∷ ᾷ ∷ []) "Rom.12.20" ∷ word (π ∷ ό ∷ τ ∷ ι ∷ ζ ∷ ε ∷ []) "Rom.12.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rom.12.20" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.12.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.12.20" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Rom.12.20" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ α ∷ κ ∷ α ∷ ς ∷ []) "Rom.12.20" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.12.20" ∷ word (σ ∷ ω ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.12.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Rom.12.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.12.20" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rom.12.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.12.20" ∷ word (μ ∷ ὴ ∷ []) "Rom.12.21" ∷ word (ν ∷ ι ∷ κ ∷ ῶ ∷ []) "Rom.12.21" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.12.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.12.21" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ []) "Rom.12.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.12.21" ∷ word (ν ∷ ί ∷ κ ∷ α ∷ []) "Rom.12.21" ∷ word (ἐ ∷ ν ∷ []) "Rom.12.21" ∷ word (τ ∷ ῷ ∷ []) "Rom.12.21" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῷ ∷ []) "Rom.12.21" ∷ word (τ ∷ ὸ ∷ []) "Rom.12.21" ∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "Rom.12.21" ∷ word (Π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rom.13.1" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ []) "Rom.13.1" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rom.13.1" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ χ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Rom.13.1" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ σ ∷ σ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "Rom.13.1" ∷ word (ο ∷ ὐ ∷ []) "Rom.13.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.1" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.13.1" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Rom.13.1" ∷ word (ε ∷ ἰ ∷ []) "Rom.13.1" ∷ word (μ ∷ ὴ ∷ []) "Rom.13.1" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.13.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.13.1" ∷ word (α ∷ ἱ ∷ []) "Rom.13.1" ∷ word (δ ∷ ὲ ∷ []) "Rom.13.1" ∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ ι ∷ []) "Rom.13.1" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.13.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.13.1" ∷ word (τ ∷ ε ∷ τ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Rom.13.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Rom.13.1" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.13.2" ∷ word (ὁ ∷ []) "Rom.13.2" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ τ ∷ α ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.13.2" ∷ word (τ ∷ ῇ ∷ []) "Rom.13.2" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Rom.13.2" ∷ word (τ ∷ ῇ ∷ []) "Rom.13.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.13.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.13.2" ∷ word (δ ∷ ι ∷ α ∷ τ ∷ α ∷ γ ∷ ῇ ∷ []) "Rom.13.2" ∷ word (ἀ ∷ ν ∷ θ ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Rom.13.2" ∷ word (ο ∷ ἱ ∷ []) "Rom.13.2" ∷ word (δ ∷ ὲ ∷ []) "Rom.13.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Rom.13.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.13.2" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Rom.13.2" ∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.13.2" ∷ word (ο ∷ ἱ ∷ []) "Rom.13.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.3" ∷ word (ἄ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.13.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.13.3" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rom.13.3" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ς ∷ []) "Rom.13.3" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.3" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῷ ∷ []) "Rom.13.3" ∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "Rom.13.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.13.3" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.3" ∷ word (κ ∷ α ∷ κ ∷ ῷ ∷ []) "Rom.13.3" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.13.3" ∷ word (δ ∷ ὲ ∷ []) "Rom.13.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.13.3" ∷ word (φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.13.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.13.3" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rom.13.3" ∷ word (τ ∷ ὸ ∷ []) "Rom.13.3" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "Rom.13.3" ∷ word (π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Rom.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.13.3" ∷ word (ἕ ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.13.3" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Rom.13.3" ∷ word (ἐ ∷ ξ ∷ []) "Rom.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Rom.13.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.13.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.4" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ό ∷ ς ∷ []) "Rom.13.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.13.4" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Rom.13.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.13.4" ∷ word (τ ∷ ὸ ∷ []) "Rom.13.4" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Rom.13.4" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.13.4" ∷ word (δ ∷ ὲ ∷ []) "Rom.13.4" ∷ word (τ ∷ ὸ ∷ []) "Rom.13.4" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rom.13.4" ∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ ς ∷ []) "Rom.13.4" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Rom.13.4" ∷ word (ο ∷ ὐ ∷ []) "Rom.13.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.4" ∷ word (ε ∷ ἰ ∷ κ ∷ ῇ ∷ []) "Rom.13.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.13.4" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Rom.13.4" ∷ word (φ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ []) "Rom.13.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.13.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.4" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ό ∷ ς ∷ []) "Rom.13.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.13.4" ∷ word (ἔ ∷ κ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ς ∷ []) "Rom.13.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.13.4" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.13.4" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.4" ∷ word (τ ∷ ὸ ∷ []) "Rom.13.4" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rom.13.4" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rom.13.4" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Rom.13.5" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ []) "Rom.13.5" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.13.5" ∷ word (ο ∷ ὐ ∷ []) "Rom.13.5" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Rom.13.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.13.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.13.5" ∷ word (ὀ ∷ ρ ∷ γ ∷ ὴ ∷ ν ∷ []) "Rom.13.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.13.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.13.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.13.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.13.5" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Rom.13.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.13.6" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.13.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.13.6" ∷ word (φ ∷ ό ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.13.6" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rom.13.6" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ο ∷ ὶ ∷ []) "Rom.13.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.13.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.13.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.13.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Rom.13.6" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.13.6" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.13.6" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Rom.13.7" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ []) "Rom.13.7" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.13.7" ∷ word (ὀ ∷ φ ∷ ε ∷ ι ∷ ∙λ ∷ ά ∷ ς ∷ []) "Rom.13.7" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.13.7" ∷ word (φ ∷ ό ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.13.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.13.7" ∷ word (φ ∷ ό ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.13.7" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.7" ∷ word (τ ∷ ὸ ∷ []) "Rom.13.7" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.13.7" ∷ word (τ ∷ ὸ ∷ []) "Rom.13.7" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Rom.13.7" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.13.7" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rom.13.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.13.7" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Rom.13.7" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.13.7" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Rom.13.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.13.7" ∷ word (τ ∷ ι ∷ μ ∷ ή ∷ ν ∷ []) "Rom.13.7" ∷ word (Μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Rom.13.8" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Rom.13.8" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Rom.13.8" ∷ word (ε ∷ ἰ ∷ []) "Rom.13.8" ∷ word (μ ∷ ὴ ∷ []) "Rom.13.8" ∷ word (τ ∷ ὸ ∷ []) "Rom.13.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.13.8" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Rom.13.8" ∷ word (ὁ ∷ []) "Rom.13.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.8" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ ν ∷ []) "Rom.13.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.13.8" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.13.8" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Rom.13.8" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Rom.13.8" ∷ word (τ ∷ ὸ ∷ []) "Rom.13.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.13.9" ∷ word (Ο ∷ ὐ ∷ []) "Rom.13.9" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.13.9" ∷ word (Ο ∷ ὐ ∷ []) "Rom.13.9" ∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.13.9" ∷ word (Ο ∷ ὐ ∷ []) "Rom.13.9" ∷ word (κ ∷ ∙λ ∷ έ ∷ ψ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.13.9" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Rom.13.9" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.13.9" ∷ word (ε ∷ ἴ ∷ []) "Rom.13.9" ∷ word (τ ∷ ι ∷ ς ∷ []) "Rom.13.9" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.13.9" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ή ∷ []) "Rom.13.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.13.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Rom.13.9" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rom.13.9" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Rom.13.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.13.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.9" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.13.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.13.9" ∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rom.13.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.13.9" ∷ word (ὡ ∷ ς ∷ []) "Rom.13.9" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Rom.13.9" ∷ word (ἡ ∷ []) "Rom.13.10" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "Rom.13.10" ∷ word (τ ∷ ῷ ∷ []) "Rom.13.10" ∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rom.13.10" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rom.13.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.13.10" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.13.10" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Rom.13.10" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.13.10" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Rom.13.10" ∷ word (ἡ ∷ []) "Rom.13.10" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "Rom.13.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Rom.13.11" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.13.11" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Rom.13.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.13.11" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ό ∷ ν ∷ []) "Rom.13.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.13.11" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Rom.13.11" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Rom.13.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.13.11" ∷ word (ἐ ∷ ξ ∷ []) "Rom.13.11" ∷ word (ὕ ∷ π ∷ ν ∷ ο ∷ υ ∷ []) "Rom.13.11" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rom.13.11" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Rom.13.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.13.11" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.13.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.13.11" ∷ word (ἡ ∷ []) "Rom.13.11" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Rom.13.11" ∷ word (ἢ ∷ []) "Rom.13.11" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Rom.13.11" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Rom.13.11" ∷ word (ἡ ∷ []) "Rom.13.12" ∷ word (ν ∷ ὺ ∷ ξ ∷ []) "Rom.13.12" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ κ ∷ ο ∷ ψ ∷ ε ∷ ν ∷ []) "Rom.13.12" ∷ word (ἡ ∷ []) "Rom.13.12" ∷ word (δ ∷ ὲ ∷ []) "Rom.13.12" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.13.12" ∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Rom.13.12" ∷ word (ἀ ∷ π ∷ ο ∷ β ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.13.12" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.13.12" ∷ word (τ ∷ ὰ ∷ []) "Rom.13.12" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Rom.13.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.13.12" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.13.12" ∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ σ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.13.12" ∷ word (δ ∷ ὲ ∷ []) "Rom.13.12" ∷ word (τ ∷ ὰ ∷ []) "Rom.13.12" ∷ word (ὅ ∷ π ∷ ∙λ ∷ α ∷ []) "Rom.13.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.13.12" ∷ word (φ ∷ ω ∷ τ ∷ ό ∷ ς ∷ []) "Rom.13.12" ∷ word (ὡ ∷ ς ∷ []) "Rom.13.13" ∷ word (ἐ ∷ ν ∷ []) "Rom.13.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Rom.13.13" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ η ∷ μ ∷ ό ∷ ν ∷ ω ∷ ς ∷ []) "Rom.13.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.13.13" ∷ word (μ ∷ ὴ ∷ []) "Rom.13.13" ∷ word (κ ∷ ώ ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.13.13" ∷ word (μ ∷ έ ∷ θ ∷ α ∷ ι ∷ ς ∷ []) "Rom.13.13" ∷ word (μ ∷ ὴ ∷ []) "Rom.13.13" ∷ word (κ ∷ ο ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Rom.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.13.13" ∷ word (ἀ ∷ σ ∷ ε ∷ ∙λ ∷ γ ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Rom.13.13" ∷ word (μ ∷ ὴ ∷ []) "Rom.13.13" ∷ word (ἔ ∷ ρ ∷ ι ∷ δ ∷ ι ∷ []) "Rom.13.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.13.13" ∷ word (ζ ∷ ή ∷ ∙λ ∷ ῳ ∷ []) "Rom.13.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.13.14" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.13.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.13.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.13.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.13.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "Rom.13.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.13.14" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Rom.13.14" ∷ word (π ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "Rom.13.14" ∷ word (μ ∷ ὴ ∷ []) "Rom.13.14" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Rom.13.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.13.14" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Rom.13.14" ∷ word (Τ ∷ ὸ ∷ ν ∷ []) "Rom.14.1" ∷ word (δ ∷ ὲ ∷ []) "Rom.14.1" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rom.14.1" ∷ word (τ ∷ ῇ ∷ []) "Rom.14.1" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Rom.14.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rom.14.1" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.14.1" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.14.1" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.14.1" ∷ word (ὃ ∷ ς ∷ []) "Rom.14.2" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.14.2" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "Rom.14.2" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.14.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rom.14.2" ∷ word (ὁ ∷ []) "Rom.14.2" ∷ word (δ ∷ ὲ ∷ []) "Rom.14.2" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.14.2" ∷ word (∙λ ∷ ά ∷ χ ∷ α ∷ ν ∷ α ∷ []) "Rom.14.2" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Rom.14.2" ∷ word (ὁ ∷ []) "Rom.14.3" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "Rom.14.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.14.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.3" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.14.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.3" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Rom.14.3" ∷ word (ὁ ∷ []) "Rom.14.3" ∷ word (δ ∷ ὲ ∷ []) "Rom.14.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.3" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "Rom.14.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.14.3" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.14.3" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.3" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "Rom.14.3" ∷ word (ὁ ∷ []) "Rom.14.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.14.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.14.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ο ∷ []) "Rom.14.3" ∷ word (σ ∷ ὺ ∷ []) "Rom.14.4" ∷ word (τ ∷ ί ∷ ς ∷ []) "Rom.14.4" ∷ word (ε ∷ ἶ ∷ []) "Rom.14.4" ∷ word (ὁ ∷ []) "Rom.14.4" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Rom.14.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ό ∷ τ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.14.4" ∷ word (ο ∷ ἰ ∷ κ ∷ έ ∷ τ ∷ η ∷ ν ∷ []) "Rom.14.4" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.4" ∷ word (ἰ ∷ δ ∷ ί ∷ ῳ ∷ []) "Rom.14.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.14.4" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ ι ∷ []) "Rom.14.4" ∷ word (ἢ ∷ []) "Rom.14.4" ∷ word (π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Rom.14.4" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.14.4" ∷ word (δ ∷ έ ∷ []) "Rom.14.4" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ε ∷ ῖ ∷ []) "Rom.14.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.4" ∷ word (ὁ ∷ []) "Rom.14.4" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.14.4" ∷ word (σ ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rom.14.4" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Rom.14.4" ∷ word (Ὃ ∷ ς ∷ []) "Rom.14.5" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.14.5" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rom.14.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rom.14.5" ∷ word (π ∷ α ∷ ρ ∷ []) "Rom.14.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rom.14.5" ∷ word (ὃ ∷ ς ∷ []) "Rom.14.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.14.5" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Rom.14.5" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Rom.14.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rom.14.5" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.14.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.14.5" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.5" ∷ word (ἰ ∷ δ ∷ ί ∷ ῳ ∷ []) "Rom.14.5" ∷ word (ν ∷ ο ∷ ῒ ∷ []) "Rom.14.5" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ε ∷ ί ∷ σ ∷ θ ∷ ω ∷ []) "Rom.14.5" ∷ word (ὁ ∷ []) "Rom.14.6" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.14.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.14.6" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rom.14.6" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.14.6" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ []) "Rom.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.6" ∷ word (ὁ ∷ []) "Rom.14.6" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "Rom.14.6" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.14.6" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Rom.14.6" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ []) "Rom.14.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.6" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.6" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.6" ∷ word (ὁ ∷ []) "Rom.14.6" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.6" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "Rom.14.6" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.14.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.14.6" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Rom.14.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.6" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ []) "Rom.14.6" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.6" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.14.6" ∷ word (Ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rom.14.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.14.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Rom.14.7" ∷ word (ζ ∷ ῇ ∷ []) "Rom.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Rom.14.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Rom.14.7" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Rom.14.7" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rom.14.8" ∷ word (τ ∷ ε ∷ []) "Rom.14.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.8" ∷ word (ζ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.14.8" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.14.8" ∷ word (ζ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.14.8" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rom.14.8" ∷ word (τ ∷ ε ∷ []) "Rom.14.8" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.14.8" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.14.8" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.14.8" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rom.14.8" ∷ word (τ ∷ ε ∷ []) "Rom.14.8" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.14.8" ∷ word (ζ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Rom.14.8" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Rom.14.8" ∷ word (τ ∷ ε ∷ []) "Rom.14.8" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.14.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.14.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.14.8" ∷ word (ἐ ∷ σ ∷ μ ∷ έ ∷ ν ∷ []) "Rom.14.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.14.9" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.14.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.14.9" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rom.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.9" ∷ word (ἔ ∷ ζ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Rom.14.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.9" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Rom.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.9" ∷ word (ζ ∷ ώ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.14.9" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ []) "Rom.14.9" ∷ word (Σ ∷ ὺ ∷ []) "Rom.14.10" ∷ word (δ ∷ ὲ ∷ []) "Rom.14.10" ∷ word (τ ∷ ί ∷ []) "Rom.14.10" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ς ∷ []) "Rom.14.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.14.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "Rom.14.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.14.10" ∷ word (ἢ ∷ []) "Rom.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.10" ∷ word (σ ∷ ὺ ∷ []) "Rom.14.10" ∷ word (τ ∷ ί ∷ []) "Rom.14.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.14.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.14.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "Rom.14.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.14.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.14.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Rom.14.10" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.10" ∷ word (β ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.14.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.14.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.14.10" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.14.11" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.14.11" ∷ word (Ζ ∷ ῶ ∷ []) "Rom.14.11" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Rom.14.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.14.11" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.14.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.14.11" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.14.11" ∷ word (κ ∷ ά ∷ μ ∷ ψ ∷ ε ∷ ι ∷ []) "Rom.14.11" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rom.14.11" ∷ word (γ ∷ ό ∷ ν ∷ υ ∷ []) "Rom.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.11" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Rom.14.11" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ []) "Rom.14.11" ∷ word (ἐ ∷ ξ ∷ ο ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.14.11" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.11" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.14.11" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Rom.14.12" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.14.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.14.12" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rom.14.12" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.14.12" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Rom.14.12" ∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Rom.14.12" ∷ word (Μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.14.13" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.14.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.14.13" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.14.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.14.13" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.14.13" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "Rom.14.13" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.14.13" ∷ word (τ ∷ ὸ ∷ []) "Rom.14.13" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.13" ∷ word (τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Rom.14.13" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ ο ∷ μ ∷ μ ∷ α ∷ []) "Rom.14.13" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῷ ∷ []) "Rom.14.13" ∷ word (ἢ ∷ []) "Rom.14.13" ∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.14.13" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rom.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.14" ∷ word (π ∷ έ ∷ π ∷ ε ∷ ι ∷ σ ∷ μ ∷ α ∷ ι ∷ []) "Rom.14.14" ∷ word (ἐ ∷ ν ∷ []) "Rom.14.14" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.14.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.14.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.14.14" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Rom.14.14" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rom.14.14" ∷ word (δ ∷ ι ∷ []) "Rom.14.14" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.14.14" ∷ word (ε ∷ ἰ ∷ []) "Rom.14.14" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.14" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.14" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Rom.14.14" ∷ word (τ ∷ ι ∷ []) "Rom.14.14" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Rom.14.14" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.14.14" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῳ ∷ []) "Rom.14.14" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ό ∷ ν ∷ []) "Rom.14.14" ∷ word (ε ∷ ἰ ∷ []) "Rom.14.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.14.15" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "Rom.14.15" ∷ word (ὁ ∷ []) "Rom.14.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ς ∷ []) "Rom.14.15" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.14.15" ∷ word (∙λ ∷ υ ∷ π ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Rom.14.15" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.14.15" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.14.15" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "Rom.14.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.14.15" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.15" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.15" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rom.14.15" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.14.15" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Rom.14.15" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ ∙λ ∷ υ ∷ ε ∷ []) "Rom.14.15" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.14.15" ∷ word (ο ∷ ὗ ∷ []) "Rom.14.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.14.15" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Rom.14.15" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.16" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ί ∷ σ ∷ θ ∷ ω ∷ []) "Rom.14.16" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.14.16" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.14.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.14.16" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Rom.14.16" ∷ word (ο ∷ ὐ ∷ []) "Rom.14.17" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.14.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.14.17" ∷ word (ἡ ∷ []) "Rom.14.17" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Rom.14.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.14.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.14.17" ∷ word (β ∷ ρ ∷ ῶ ∷ σ ∷ ι ∷ ς ∷ []) "Rom.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.17" ∷ word (π ∷ ό ∷ σ ∷ ι ∷ ς ∷ []) "Rom.14.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.14.17" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Rom.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.17" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Rom.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.17" ∷ word (χ ∷ α ∷ ρ ∷ ὰ ∷ []) "Rom.14.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.14.17" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.14.17" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Rom.14.17" ∷ word (ὁ ∷ []) "Rom.14.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.14.18" ∷ word (ἐ ∷ ν ∷ []) "Rom.14.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Rom.14.18" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "Rom.14.18" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.14.18" ∷ word (ε ∷ ὐ ∷ ά ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.14.18" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.18" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Rom.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.18" ∷ word (δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "Rom.14.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.14.18" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Rom.14.18" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Rom.14.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.14.19" ∷ word (τ ∷ ὰ ∷ []) "Rom.14.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.14.19" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rom.14.19" ∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.14.19" ∷ word (τ ∷ ὰ ∷ []) "Rom.14.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.14.19" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Rom.14.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.14.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.14.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.14.19" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.20" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Rom.14.20" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.14.20" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ ∙λ ∷ υ ∷ ε ∷ []) "Rom.14.20" ∷ word (τ ∷ ὸ ∷ []) "Rom.14.20" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Rom.14.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.14.20" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.14.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rom.14.20" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Rom.14.20" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ά ∷ []) "Rom.14.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.14.20" ∷ word (κ ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "Rom.14.20" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.20" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Rom.14.20" ∷ word (τ ∷ ῷ ∷ []) "Rom.14.20" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.14.20" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ό ∷ μ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.14.20" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Rom.14.20" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Rom.14.21" ∷ word (τ ∷ ὸ ∷ []) "Rom.14.21" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.21" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.14.21" ∷ word (κ ∷ ρ ∷ έ ∷ α ∷ []) "Rom.14.21" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Rom.14.21" ∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.14.21" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Rom.14.21" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Rom.14.21" ∷ word (ἐ ∷ ν ∷ []) "Rom.14.21" ∷ word (ᾧ ∷ []) "Rom.14.21" ∷ word (ὁ ∷ []) "Rom.14.21" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ς ∷ []) "Rom.14.21" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.14.21" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ό ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Rom.14.21" ∷ word (ἢ ∷ []) "Rom.14.21" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.14.21" ∷ word (ἢ ∷ []) "Rom.14.21" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "Rom.14.21" ∷ word (σ ∷ ὺ ∷ []) "Rom.14.22" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.14.22" ∷ word (ἣ ∷ ν ∷ []) "Rom.14.22" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Rom.14.22" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.14.22" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.14.22" ∷ word (ἔ ∷ χ ∷ ε ∷ []) "Rom.14.22" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Rom.14.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.14.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.14.22" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.14.22" ∷ word (ὁ ∷ []) "Rom.14.22" ∷ word (μ ∷ ὴ ∷ []) "Rom.14.22" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Rom.14.22" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.14.22" ∷ word (ἐ ∷ ν ∷ []) "Rom.14.22" ∷ word (ᾧ ∷ []) "Rom.14.22" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Rom.14.22" ∷ word (ὁ ∷ []) "Rom.14.23" ∷ word (δ ∷ ὲ ∷ []) "Rom.14.23" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.14.23" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.14.23" ∷ word (φ ∷ ά ∷ γ ∷ ῃ ∷ []) "Rom.14.23" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Rom.14.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.14.23" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.14.23" ∷ word (ἐ ∷ κ ∷ []) "Rom.14.23" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.14.23" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Rom.14.23" ∷ word (δ ∷ ὲ ∷ []) "Rom.14.23" ∷ word (ὃ ∷ []) "Rom.14.23" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.14.23" ∷ word (ἐ ∷ κ ∷ []) "Rom.14.23" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.14.23" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "Rom.14.23" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Rom.14.23" ∷ word (Ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Rom.15.1" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.1" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.15.1" ∷ word (ο ∷ ἱ ∷ []) "Rom.15.1" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ο ∷ ὶ ∷ []) "Rom.15.1" ∷ word (τ ∷ ὰ ∷ []) "Rom.15.1" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Rom.15.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.15.1" ∷ word (ἀ ∷ δ ∷ υ ∷ ν ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rom.15.1" ∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.1" ∷ word (μ ∷ ὴ ∷ []) "Rom.15.1" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.1" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.15.1" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.15.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.15.2" ∷ word (τ ∷ ῷ ∷ []) "Rom.15.2" ∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Rom.15.2" ∷ word (ἀ ∷ ρ ∷ ε ∷ σ ∷ κ ∷ έ ∷ τ ∷ ω ∷ []) "Rom.15.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.2" ∷ word (τ ∷ ὸ ∷ []) "Rom.15.2" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "Rom.15.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.15.2" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ή ∷ ν ∷ []) "Rom.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.15.3" ∷ word (ὁ ∷ []) "Rom.15.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.15.3" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.15.3" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Rom.15.3" ∷ word (ἤ ∷ ρ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Rom.15.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.15.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.15.3" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.15.3" ∷ word (Ο ∷ ἱ ∷ []) "Rom.15.3" ∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Rom.15.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.15.3" ∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ ζ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.15.3" ∷ word (σ ∷ ε ∷ []) "Rom.15.3" ∷ word (ἐ ∷ π ∷ έ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Rom.15.3" ∷ word (ἐ ∷ π ∷ []) "Rom.15.3" ∷ word (ἐ ∷ μ ∷ έ ∷ []) "Rom.15.3" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Rom.15.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.15.4" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ γ ∷ ρ ∷ ά ∷ φ ∷ η ∷ []) "Rom.15.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.15.4" ∷ word (ἡ ∷ μ ∷ ε ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Rom.15.4" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Rom.15.4" ∷ word (ἐ ∷ γ ∷ ρ ∷ ά ∷ φ ∷ η ∷ []) "Rom.15.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.15.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.15.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.15.4" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Rom.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.15.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.15.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.15.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.15.4" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ῶ ∷ ν ∷ []) "Rom.15.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.15.4" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "Rom.15.4" ∷ word (ἔ ∷ χ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Rom.15.4" ∷ word (ὁ ∷ []) "Rom.15.5" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.15.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.15.5" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Rom.15.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.15.5" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.15.5" ∷ word (δ ∷ ῴ ∷ η ∷ []) "Rom.15.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.15.5" ∷ word (τ ∷ ὸ ∷ []) "Rom.15.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Rom.15.5" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.15.5" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.15.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Rom.15.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.15.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Rom.15.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.15.6" ∷ word (ὁ ∷ μ ∷ ο ∷ θ ∷ υ ∷ μ ∷ α ∷ δ ∷ ὸ ∷ ν ∷ []) "Rom.15.6" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.6" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "Rom.15.6" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.15.6" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ η ∷ τ ∷ ε ∷ []) "Rom.15.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.15.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Rom.15.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.6" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.15.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.6" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.15.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.15.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.15.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.15.6" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "Rom.15.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Rom.15.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.15.7" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.15.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.7" ∷ word (ὁ ∷ []) "Rom.15.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.15.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ο ∷ []) "Rom.15.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Rom.15.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.15.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Rom.15.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.15.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.15.8" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ν ∷ []) "Rom.15.8" ∷ word (γ ∷ ε ∷ γ ∷ ε ∷ ν ∷ ῆ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.15.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Rom.15.8" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.15.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Rom.15.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.15.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.8" ∷ word (τ ∷ ὸ ∷ []) "Rom.15.8" ∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Rom.15.8" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.15.8" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Rom.15.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.15.8" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Rom.15.8" ∷ word (τ ∷ ὰ ∷ []) "Rom.15.9" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.9" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rom.15.9" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.15.9" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.15.9" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Rom.15.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.15.9" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rom.15.9" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.15.9" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.15.9" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Rom.15.9" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.15.9" ∷ word (ἐ ∷ ξ ∷ ο ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Rom.15.9" ∷ word (σ ∷ ο ∷ ι ∷ []) "Rom.15.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.9" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ []) "Rom.15.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.9" ∷ word (τ ∷ ῷ ∷ []) "Rom.15.9" ∷ word (ὀ ∷ ν ∷ ο ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Rom.15.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Rom.15.9" ∷ word (ψ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Rom.15.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.10" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rom.15.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.15.10" ∷ word (Ε ∷ ὐ ∷ φ ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Rom.15.10" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rom.15.10" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rom.15.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.10" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Rom.15.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.15.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.11" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rom.15.11" ∷ word (Α ∷ ἰ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Rom.15.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Rom.15.11" ∷ word (τ ∷ ὰ ∷ []) "Rom.15.11" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rom.15.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.15.11" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.15.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.11" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ ε ∷ σ ∷ ά ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Rom.15.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.15.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Rom.15.11" ∷ word (ο ∷ ἱ ∷ []) "Rom.15.11" ∷ word (∙λ ∷ α ∷ ο ∷ ί ∷ []) "Rom.15.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.12" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Rom.15.12" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Rom.15.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Rom.15.12" ∷ word (Ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Rom.15.12" ∷ word (ἡ ∷ []) "Rom.15.12" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Rom.15.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.12" ∷ word (Ἰ ∷ ε ∷ σ ∷ σ ∷ α ∷ ί ∷ []) "Rom.15.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.12" ∷ word (ὁ ∷ []) "Rom.15.12" ∷ word (ἀ ∷ ν ∷ ι ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.15.12" ∷ word (ἄ ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.15.12" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.15.12" ∷ word (ἐ ∷ π ∷ []) "Rom.15.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Rom.15.12" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rom.15.12" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.15.12" ∷ word (ὁ ∷ []) "Rom.15.13" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.15.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.15.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Rom.15.13" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ σ ∷ α ∷ ι ∷ []) "Rom.15.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.13" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rom.15.13" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Rom.15.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.13" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rom.15.13" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.13" ∷ word (τ ∷ ῷ ∷ []) "Rom.15.13" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.15.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.13" ∷ word (τ ∷ ὸ ∷ []) "Rom.15.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Rom.15.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.13" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.13" ∷ word (τ ∷ ῇ ∷ []) "Rom.15.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "Rom.15.13" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.13" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Rom.15.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.15.13" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.15.13" ∷ word (Π ∷ έ ∷ π ∷ ε ∷ ι ∷ σ ∷ μ ∷ α ∷ ι ∷ []) "Rom.15.14" ∷ word (δ ∷ έ ∷ []) "Rom.15.14" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.15.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.15.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.15.14" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.15.14" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rom.15.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.15.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.15.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Rom.15.14" ∷ word (μ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ί ∷ []) "Rom.15.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.15.14" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Rom.15.14" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Rom.15.14" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Rom.15.14" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.15.14" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Rom.15.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.15.14" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.15.14" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ η ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Rom.15.15" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.15" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "Rom.15.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.15.15" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.15.15" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.15.15" ∷ word (ὡ ∷ ς ∷ []) "Rom.15.15" ∷ word (ἐ ∷ π ∷ α ∷ ν ∷ α ∷ μ ∷ ι ∷ μ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Rom.15.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.15.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.15.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Rom.15.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.15.15" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ ά ∷ ν ∷ []) "Rom.15.15" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rom.15.15" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.15.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.15.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.15.16" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ί ∷ []) "Rom.15.16" ∷ word (μ ∷ ε ∷ []) "Rom.15.16" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ὸ ∷ ν ∷ []) "Rom.15.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.15.16" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.15.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.16" ∷ word (τ ∷ ὰ ∷ []) "Rom.15.16" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rom.15.16" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Rom.15.16" ∷ word (τ ∷ ὸ ∷ []) "Rom.15.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.15.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.15.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.15.16" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.15.16" ∷ word (ἡ ∷ []) "Rom.15.16" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ο ∷ ρ ∷ ὰ ∷ []) "Rom.15.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.15.16" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.15.16" ∷ word (ε ∷ ὐ ∷ π ∷ ρ ∷ ό ∷ σ ∷ δ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.15.16" ∷ word (ἡ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Rom.15.16" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.16" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.15.16" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Rom.15.16" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "Rom.15.17" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.15.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.15.17" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Rom.15.17" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.15.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.15.17" ∷ word (τ ∷ ὰ ∷ []) "Rom.15.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.15.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.15.17" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rom.15.17" ∷ word (ο ∷ ὐ ∷ []) "Rom.15.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.15.18" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Rom.15.18" ∷ word (τ ∷ ι ∷ []) "Rom.15.18" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.15.18" ∷ word (ὧ ∷ ν ∷ []) "Rom.15.18" ∷ word (ο ∷ ὐ ∷ []) "Rom.15.18" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ι ∷ ρ ∷ γ ∷ ά ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Rom.15.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Rom.15.18" ∷ word (δ ∷ ι ∷ []) "Rom.15.18" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rom.15.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.18" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ὴ ∷ ν ∷ []) "Rom.15.18" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.15.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Rom.15.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.18" ∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "Rom.15.18" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.19" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Rom.15.19" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Rom.15.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.19" ∷ word (τ ∷ ε ∷ ρ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Rom.15.19" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.19" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Rom.15.19" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.15.19" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Rom.15.19" ∷ word (μ ∷ ε ∷ []) "Rom.15.19" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.15.19" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rom.15.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.19" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Rom.15.19" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "Rom.15.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.19" ∷ word (Ἰ ∷ ∙λ ∷ ∙λ ∷ υ ∷ ρ ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ []) "Rom.15.19" ∷ word (π ∷ ε ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Rom.15.19" ∷ word (τ ∷ ὸ ∷ []) "Rom.15.19" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.15.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.19" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.15.19" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Rom.15.20" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.20" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ τ ∷ ι ∷ μ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Rom.15.20" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.15.20" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Rom.15.20" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Rom.15.20" ∷ word (ὠ ∷ ν ∷ ο ∷ μ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Rom.15.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Rom.15.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.15.20" ∷ word (μ ∷ ὴ ∷ []) "Rom.15.20" ∷ word (ἐ ∷ π ∷ []) "Rom.15.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ό ∷ τ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.15.20" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Rom.15.20" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ῶ ∷ []) "Rom.15.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.15.21" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Rom.15.21" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Rom.15.21" ∷ word (Ο ∷ ἷ ∷ ς ∷ []) "Rom.15.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.15.21" ∷ word (ἀ ∷ ν ∷ η ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Rom.15.21" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Rom.15.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.15.21" ∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.15.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.21" ∷ word (ο ∷ ἳ ∷ []) "Rom.15.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.15.21" ∷ word (ἀ ∷ κ ∷ η ∷ κ ∷ ό ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Rom.15.21" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.15.21" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "Rom.15.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.22" ∷ word (ἐ ∷ ν ∷ ε ∷ κ ∷ ο ∷ π ∷ τ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "Rom.15.22" ∷ word (τ ∷ ὰ ∷ []) "Rom.15.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.15.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.22" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.15.22" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.15.22" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.22" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Rom.15.23" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.23" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Rom.15.23" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Rom.15.23" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rom.15.23" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.23" ∷ word (κ ∷ ∙λ ∷ ί ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "Rom.15.23" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.15.23" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ί ∷ α ∷ ν ∷ []) "Rom.15.23" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.23" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Rom.15.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.23" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.15.23" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.15.23" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.23" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.15.23" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.15.23" ∷ word (ἐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.15.23" ∷ word (ὡ ∷ ς ∷ []) "Rom.15.24" ∷ word (ἂ ∷ ν ∷ []) "Rom.15.24" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Rom.15.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.15.24" ∷ word (Σ ∷ π ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rom.15.24" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "Rom.15.24" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.15.24" ∷ word (δ ∷ ι ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.15.24" ∷ word (θ ∷ ε ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.15.24" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.24" ∷ word (ὑ ∷ φ ∷ []) "Rom.15.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.15.24" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ ε ∷ μ ∷ φ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Rom.15.24" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Rom.15.24" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Rom.15.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.15.24" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.15.24" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.15.24" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.15.24" ∷ word (ἐ ∷ μ ∷ π ∷ ∙λ ∷ η ∷ σ ∷ θ ∷ ῶ ∷ []) "Rom.15.24" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Rom.15.25" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.25" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.15.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.25" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rom.15.25" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.15.25" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.25" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rom.15.25" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.15.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.15.26" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ []) "Rom.15.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.26" ∷ word (Ἀ ∷ χ ∷ α ∷ ΐ ∷ α ∷ []) "Rom.15.26" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rom.15.26" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ []) "Rom.15.26" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Rom.15.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.15.26" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.15.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.15.26" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rom.15.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.15.26" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.26" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "Rom.15.26" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.15.27" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Rom.15.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.27" ∷ word (ὀ ∷ φ ∷ ε ∷ ι ∷ ∙λ ∷ έ ∷ τ ∷ α ∷ ι ∷ []) "Rom.15.27" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Rom.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.15.27" ∷ word (ε ∷ ἰ ∷ []) "Rom.15.27" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.15.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.27" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.15.27" ∷ word (ἐ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ώ ∷ ν ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Rom.15.27" ∷ word (τ ∷ ὰ ∷ []) "Rom.15.27" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Rom.15.27" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.15.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.27" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.27" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.27" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Rom.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.27" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Rom.15.28" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.15.28" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ς ∷ []) "Rom.15.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.28" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.15.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.15.28" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Rom.15.28" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.15.28" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.15.28" ∷ word (δ ∷ ι ∷ []) "Rom.15.28" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.15.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.28" ∷ word (Σ ∷ π ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rom.15.28" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Rom.15.29" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Rom.15.29" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Rom.15.29" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.15.29" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.29" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.29" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.15.29" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Rom.15.29" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.15.29" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.15.29" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Rom.15.30" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.30" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.30" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.15.30" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.15.30" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.30" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.15.30" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.15.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.15.30" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.15.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.30" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.15.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.15.30" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "Rom.15.30" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.15.30" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.15.30" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ ν ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ί ∷ []) "Rom.15.30" ∷ word (μ ∷ ο ∷ ι ∷ []) "Rom.15.30" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.30" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.15.30" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.15.30" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.15.30" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rom.15.30" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.15.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.15.30" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Rom.15.30" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.15.31" ∷ word (ῥ ∷ υ ∷ σ ∷ θ ∷ ῶ ∷ []) "Rom.15.31" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Rom.15.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.15.31" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.15.31" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.31" ∷ word (τ ∷ ῇ ∷ []) "Rom.15.31" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ᾳ ∷ []) "Rom.15.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.15.31" ∷ word (ἡ ∷ []) "Rom.15.31" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ []) "Rom.15.31" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.15.31" ∷ word (ἡ ∷ []) "Rom.15.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.15.31" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Rom.15.31" ∷ word (ε ∷ ὐ ∷ π ∷ ρ ∷ ό ∷ σ ∷ δ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.15.31" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.15.31" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Rom.15.31" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Rom.15.31" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.15.32" ∷ word (ἐ ∷ ν ∷ []) "Rom.15.32" ∷ word (χ ∷ α ∷ ρ ∷ ᾷ ∷ []) "Rom.15.32" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Rom.15.32" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Rom.15.32" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.15.32" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.15.32" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Rom.15.32" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Rom.15.32" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Rom.15.32" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.15.32" ∷ word (ὁ ∷ []) "Rom.15.33" ∷ word (δ ∷ ὲ ∷ []) "Rom.15.33" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.15.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.15.33" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rom.15.33" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rom.15.33" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.15.33" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.15.33" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rom.15.33" ∷ word (Σ ∷ υ ∷ ν ∷ ί ∷ σ ∷ τ ∷ η ∷ μ ∷ ι ∷ []) "Rom.16.1" ∷ word (δ ∷ ὲ ∷ []) "Rom.16.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.16.1" ∷ word (Φ ∷ ο ∷ ί ∷ β ∷ η ∷ ν ∷ []) "Rom.16.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.16.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ ν ∷ []) "Rom.16.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.1" ∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ ν ∷ []) "Rom.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.1" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ν ∷ []) "Rom.16.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.16.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rom.16.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.16.1" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.1" ∷ word (Κ ∷ ε ∷ γ ∷ χ ∷ ρ ∷ ε ∷ α ∷ ῖ ∷ ς ∷ []) "Rom.16.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Rom.16.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Rom.16.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ έ ∷ ξ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.2" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.16.2" ∷ word (ἀ ∷ ξ ∷ ί ∷ ω ∷ ς ∷ []) "Rom.16.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.16.2" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Rom.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ῆ ∷ τ ∷ ε ∷ []) "Rom.16.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Rom.16.2" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.2" ∷ word (ᾧ ∷ []) "Rom.16.2" ∷ word (ἂ ∷ ν ∷ []) "Rom.16.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.2" ∷ word (χ ∷ ρ ∷ ῄ ∷ ζ ∷ ῃ ∷ []) "Rom.16.2" ∷ word (π ∷ ρ ∷ ά ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.16.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Rom.16.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ά ∷ τ ∷ ι ∷ ς ∷ []) "Rom.16.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Rom.16.2" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Rom.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.2" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rom.16.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.16.2" ∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.3" ∷ word (Π ∷ ρ ∷ ί ∷ σ ∷ κ ∷ α ∷ ν ∷ []) "Rom.16.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.3" ∷ word (Ἀ ∷ κ ∷ ύ ∷ ∙λ ∷ α ∷ ν ∷ []) "Rom.16.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.3" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ύ ∷ ς ∷ []) "Rom.16.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.3" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.16.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.16.3" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Rom.16.4" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Rom.16.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.16.4" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Rom.16.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.16.4" ∷ word (τ ∷ ρ ∷ ά ∷ χ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Rom.16.4" ∷ word (ὑ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Rom.16.4" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Rom.16.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Rom.16.4" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.16.4" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Rom.16.4" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "Rom.16.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.4" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rom.16.4" ∷ word (α ∷ ἱ ∷ []) "Rom.16.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rom.16.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.16.4" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Rom.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.16.5" ∷ word (κ ∷ α ∷ τ ∷ []) "Rom.16.5" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Rom.16.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.16.5" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Rom.16.5" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.5" ∷ word (Ἐ ∷ π ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ ο ∷ ν ∷ []) "Rom.16.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.5" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ν ∷ []) "Rom.16.5" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.5" ∷ word (ὅ ∷ ς ∷ []) "Rom.16.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Rom.16.5" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "Rom.16.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.16.5" ∷ word (Ἀ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rom.16.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.16.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "Rom.16.5" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.6" ∷ word (Μ ∷ α ∷ ρ ∷ ι ∷ ά ∷ μ ∷ []) "Rom.16.6" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rom.16.6" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.16.6" ∷ word (ἐ ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rom.16.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.16.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.16.6" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.7" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ν ∷ ι ∷ κ ∷ ο ∷ ν ∷ []) "Rom.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.7" ∷ word (Ἰ ∷ ο ∷ υ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Rom.16.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.7" ∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.16.7" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.7" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ι ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ώ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.16.7" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.7" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ έ ∷ ς ∷ []) "Rom.16.7" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.16.7" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ η ∷ μ ∷ ο ∷ ι ∷ []) "Rom.16.7" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.16.7" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Rom.16.7" ∷ word (ο ∷ ἳ ∷ []) "Rom.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.7" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "Rom.16.7" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rom.16.7" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ ν ∷ []) "Rom.16.7" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.16.7" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.8" ∷ word (Ἀ ∷ μ ∷ π ∷ ∙λ ∷ ι ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Rom.16.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.8" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ν ∷ []) "Rom.16.8" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.8" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.16.8" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.9" ∷ word (Ο ∷ ὐ ∷ ρ ∷ β ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Rom.16.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.9" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ὸ ∷ ν ∷ []) "Rom.16.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.9" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.9" ∷ word (Σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ν ∷ []) "Rom.16.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.9" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ν ∷ []) "Rom.16.9" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.9" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.10" ∷ word (Ἀ ∷ π ∷ ε ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ν ∷ []) "Rom.16.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.10" ∷ word (δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "Rom.16.10" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.16.10" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.10" ∷ word (ἐ ∷ κ ∷ []) "Rom.16.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.16.10" ∷ word (Ἀ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Rom.16.10" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.11" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ί ∷ ω ∷ ν ∷ α ∷ []) "Rom.16.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.11" ∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ε ∷ ν ∷ ῆ ∷ []) "Rom.16.11" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.11" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.11" ∷ word (ἐ ∷ κ ∷ []) "Rom.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.16.11" ∷ word (Ν ∷ α ∷ ρ ∷ κ ∷ ί ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "Rom.16.11" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.11" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.16.11" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.16.11" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.12" ∷ word (Τ ∷ ρ ∷ ύ ∷ φ ∷ α ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Rom.16.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.12" ∷ word (Τ ∷ ρ ∷ υ ∷ φ ∷ ῶ ∷ σ ∷ α ∷ ν ∷ []) "Rom.16.12" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.16.12" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "Rom.16.12" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.16.12" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.12" ∷ word (Π ∷ ε ∷ ρ ∷ σ ∷ ί ∷ δ ∷ α ∷ []) "Rom.16.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.16.12" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ή ∷ ν ∷ []) "Rom.16.12" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Rom.16.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.16.12" ∷ word (ἐ ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Rom.16.12" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.16.12" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.13" ∷ word (Ῥ ∷ ο ∷ ῦ ∷ φ ∷ ο ∷ ν ∷ []) "Rom.16.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.13" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ὸ ∷ ν ∷ []) "Rom.16.13" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.16.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.16.13" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Rom.16.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.16.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.13" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Rom.16.13" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.14" ∷ word (Ἀ ∷ σ ∷ ύ ∷ γ ∷ κ ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ν ∷ []) "Rom.16.14" ∷ word (Φ ∷ ∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Rom.16.14" ∷ word (Ἑ ∷ ρ ∷ μ ∷ ῆ ∷ ν ∷ []) "Rom.16.14" ∷ word (Π ∷ α ∷ τ ∷ ρ ∷ ο ∷ β ∷ ᾶ ∷ ν ∷ []) "Rom.16.14" ∷ word (Ἑ ∷ ρ ∷ μ ∷ ᾶ ∷ ν ∷ []) "Rom.16.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.14" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Rom.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.16.14" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ύ ∷ ς ∷ []) "Rom.16.14" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.15" ∷ word (Φ ∷ ι ∷ ∙λ ∷ ό ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ν ∷ []) "Rom.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.15" ∷ word (Ἰ ∷ ο ∷ υ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Rom.16.15" ∷ word (Ν ∷ η ∷ ρ ∷ έ ∷ α ∷ []) "Rom.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.16.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ ν ∷ []) "Rom.16.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.15" ∷ word (Ὀ ∷ ∙λ ∷ υ ∷ μ ∷ π ∷ ᾶ ∷ ν ∷ []) "Rom.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.15" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Rom.16.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Rom.16.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.16.15" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rom.16.15" ∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Rom.16.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Rom.16.16" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.16" ∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Rom.16.16" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Rom.16.16" ∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Rom.16.16" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.16.16" ∷ word (α ∷ ἱ ∷ []) "Rom.16.16" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Rom.16.16" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Rom.16.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.16.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.16.16" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Rom.16.17" ∷ word (δ ∷ ὲ ∷ []) "Rom.16.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.16.17" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Rom.16.17" ∷ word (σ ∷ κ ∷ ο ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Rom.16.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.16.17" ∷ word (δ ∷ ι ∷ χ ∷ ο ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rom.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.17" ∷ word (τ ∷ ὰ ∷ []) "Rom.16.17" ∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ α ∷ []) "Rom.16.17" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Rom.16.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.16.17" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Rom.16.17" ∷ word (ἣ ∷ ν ∷ []) "Rom.16.17" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.16.17" ∷ word (ἐ ∷ μ ∷ ά ∷ θ ∷ ε ∷ τ ∷ ε ∷ []) "Rom.16.17" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.17" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ ί ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Rom.16.17" ∷ word (ἀ ∷ π ∷ []) "Rom.16.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.16.17" ∷ word (ο ∷ ἱ ∷ []) "Rom.16.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.16.18" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "Rom.16.18" ∷ word (τ ∷ ῷ ∷ []) "Rom.16.18" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.16.18" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Rom.16.18" ∷ word (ο ∷ ὐ ∷ []) "Rom.16.18" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Rom.16.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Rom.16.18" ∷ word (τ ∷ ῇ ∷ []) "Rom.16.18" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Rom.16.18" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Rom.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.18" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Rom.16.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.16.18" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Rom.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.18" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Rom.16.18" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ α ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ []) "Rom.16.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Rom.16.18" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Rom.16.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Rom.16.18" ∷ word (ἀ ∷ κ ∷ ά ∷ κ ∷ ω ∷ ν ∷ []) "Rom.16.18" ∷ word (ἡ ∷ []) "Rom.16.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Rom.16.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.19" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ὴ ∷ []) "Rom.16.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.16.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Rom.16.19" ∷ word (ἀ ∷ φ ∷ ί ∷ κ ∷ ε ∷ τ ∷ ο ∷ []) "Rom.16.19" ∷ word (ἐ ∷ φ ∷ []) "Rom.16.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Rom.16.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Rom.16.19" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ []) "Rom.16.19" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Rom.16.19" ∷ word (δ ∷ ὲ ∷ []) "Rom.16.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.16.19" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.19" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Rom.16.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.16.19" ∷ word (τ ∷ ὸ ∷ []) "Rom.16.19" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Rom.16.19" ∷ word (ἀ ∷ κ ∷ ε ∷ ρ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Rom.16.19" ∷ word (δ ∷ ὲ ∷ []) "Rom.16.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Rom.16.19" ∷ word (τ ∷ ὸ ∷ []) "Rom.16.19" ∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "Rom.16.19" ∷ word (ὁ ∷ []) "Rom.16.20" ∷ word (δ ∷ ὲ ∷ []) "Rom.16.20" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Rom.16.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.16.20" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Rom.16.20" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Rom.16.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Rom.16.20" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Rom.16.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Rom.16.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Rom.16.20" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Rom.16.20" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.20" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.20" ∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "Rom.16.20" ∷ word (ἡ ∷ []) "Rom.16.20" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.16.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.16.20" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.16.20" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.16.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.16.20" ∷ word (μ ∷ ε ∷ θ ∷ []) "Rom.16.20" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.20" ∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.16.21" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.16.21" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ς ∷ []) "Rom.16.21" ∷ word (ὁ ∷ []) "Rom.16.21" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ό ∷ ς ∷ []) "Rom.16.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.21" ∷ word (Λ ∷ ο ∷ ύ ∷ κ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.16.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.21" ∷ word (Ἰ ∷ ά ∷ σ ∷ ω ∷ ν ∷ []) "Rom.16.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.21" ∷ word (Σ ∷ ω ∷ σ ∷ ί ∷ π ∷ α ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Rom.16.21" ∷ word (ο ∷ ἱ ∷ []) "Rom.16.21" ∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Rom.16.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.21" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Rom.16.22" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.16.22" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Rom.16.22" ∷ word (Τ ∷ έ ∷ ρ ∷ τ ∷ ι ∷ ο ∷ ς ∷ []) "Rom.16.22" ∷ word (ὁ ∷ []) "Rom.16.22" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ς ∷ []) "Rom.16.22" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Rom.16.22" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Rom.16.22" ∷ word (ἐ ∷ ν ∷ []) "Rom.16.22" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Rom.16.22" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.16.23" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.16.23" ∷ word (Γ ∷ ά ∷ ϊ ∷ ο ∷ ς ∷ []) "Rom.16.23" ∷ word (ὁ ∷ []) "Rom.16.23" ∷ word (ξ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Rom.16.23" ∷ word (μ ∷ ο ∷ υ ∷ []) "Rom.16.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.23" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Rom.16.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.16.23" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Rom.16.23" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Rom.16.23" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Rom.16.23" ∷ word (Ἔ ∷ ρ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.16.23" ∷ word (ὁ ∷ []) "Rom.16.23" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Rom.16.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Rom.16.23" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Rom.16.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Rom.16.23" ∷ word (Κ ∷ ο ∷ ύ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "Rom.16.23" ∷ word (ὁ ∷ []) "Rom.16.23" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ς ∷ []) "Rom.16.23" ∷ word (Ἡ ∷ []) "Rom.16.24" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Rom.16.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Rom.16.24" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Rom.16.24" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Rom.16.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Rom.16.24" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Rom.16.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Rom.16.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Rom.16.24" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Rom.16.24" ∷ []
{ "alphanum_fraction": 0.3346455691, "avg_line_length": 44.5055193886, "ext": "agda", "hexsha": "4586f51aa584af75f1dd2f796362ed3a56729b7c", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/Rom.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/Rom.agda", "max_line_length": 93, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/Rom.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 219572, "size": 314476 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples showing how the case expressions can be used ------------------------------------------------------------------------ module README.Case where open import Data.Fin hiding (pred) open import Data.Maybe hiding (from-just) open import Data.Nat hiding (pred) open import Function -- Some simple examples. empty : ∀ {a} {A : Set a} → Fin 0 → A empty i = case i of λ() pred : ℕ → ℕ pred n = case n of λ { zero → zero ; (suc n) → n } from-just : ∀ {a} {A : Set a} (x : Maybe A) → From-just A x from-just x = case x return From-just _ of λ { (just x) → x ; nothing → _ } -- Note that some natural uses of case are rejected by the termination -- checker: -- -- plus : ℕ → ℕ → ℕ -- plus m n = case m of λ -- { zero → n -- ; (suc m) → suc (plus m n) -- }
{ "alphanum_fraction": 0.5039018952, "avg_line_length": 23, "ext": "agda", "hexsha": "e42f55aa22aba257004e9d303e9ec1cc85da984c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/README/Case.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/README/Case.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/README/Case.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 250, "size": 897 }
{-# OPTIONS --universe-polymorphism #-} module Categories.FunctorCategory where open import Data.Product open import Categories.Category import Categories.Functor as Cat open import Categories.Functor hiding (equiv; id; _∘_; _≡_) open import Categories.NaturalTransformation open import Categories.Product open import Categories.Square Functors : ∀ {o ℓ e} {o′ ℓ′ e′} → Category o ℓ e → Category o′ ℓ′ e′ → Category _ _ _ Functors C D = record { Obj = Functor C D ; _⇒_ = NaturalTransformation ; _≡_ = _≡_ ; _∘_ = _∘₁_ ; id = id ; assoc = λ {_} {_} {_} {_} {f} {g} {h} → assoc₁ {X = f} {g} {h} ; identityˡ = λ {_} {_} {f} → identity₁ˡ {X = f} ; identityʳ = λ {_} {_} {f} → identity₁ʳ {X = f} ; equiv = λ {F} {G} → equiv {F = F} {G = G} ; ∘-resp-≡ = λ {_} {_} {_} {f} {h} {g} {i} → ∘₁-resp-≡ {f = f} {h} {g} {i} } eval : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e}{D : Category o′ ℓ′ e′} → Functor (Product (Functors C D) C) D eval {C = C} {D = D} = record { F₀ = λ x → let F , c = x in F₀ F c; F₁ = λ { {F , c₁} {G , c₂} (ε , f) → F₁ G f D.∘ η ε _}; identity = λ { {F , c} → begin F₁ F C.id D.∘ D.id ↓⟨ D.identityʳ ⟩ F₁ F C.id ↓⟨ identity F ⟩ D.id ∎}; homomorphism = λ { {F , c₁} {G , c₂} {H , c₃} {ε₁ , f₁} {ε₂ , f₂} → begin F₁ H (f₂ C.∘ f₁) D.∘ η ε₂ c₁ D.∘ η ε₁ c₁ ↑⟨ D.assoc ⟩ (F₁ H (f₂ C.∘ f₁) D.∘ η ε₂ c₁) D.∘ η ε₁ c₁ ↓⟨ D.∘-resp-≡ˡ (begin F₁ H (C [ f₂ ∘ f₁ ]) D.∘ η ε₂ c₁ ↓⟨ D.∘-resp-≡ˡ (homomorphism H) ⟩ (F₁ H f₂ D.∘ F₁ H f₁) D.∘ η ε₂ c₁ ↓⟨ D.assoc ⟩ F₁ H f₂ D.∘ F₁ H f₁ D.∘ η ε₂ c₁ ↑⟨ D.∘-resp-≡ʳ (commute ε₂ f₁) ⟩ F₁ H f₂ D.∘ η ε₂ c₂ D.∘ F₁ G f₁ ↑⟨ D.assoc ⟩ (F₁ H f₂ D.∘ η ε₂ c₂) D.∘ F₁ G f₁ ∎) ⟩ ((F₁ H f₂ D.∘ η ε₂ c₂) D.∘ F₁ G f₁) D.∘ η ε₁ c₁ ↓⟨ D.assoc ⟩ (F₁ H f₂ D.∘ η ε₂ c₂) D.∘ F₁ G f₁ D.∘ η ε₁ c₁ ∎ }; F-resp-≡ = λ { {F , c₁} {G , c₂} {ε₁ , f₁} {ε₂ , f₂} (ε₁≡ε₂ , f₁≡f₂) → D.∘-resp-≡ (F-resp-≡ G f₁≡f₂) ε₁≡ε₂} } where module C = Category C module D = Category D open Functor open NaturalTransformation open D.HomReasoning Cat[-∘_] : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} -> Functor A B -> Functor (Functors B C) (Functors A C) Cat[-∘_] {C = C} r = record { F₀ = λ X → X Cat.∘ r ; F₁ = λ η → η ∘ʳ r ; identity = C.Equiv.refl ; homomorphism = C.Equiv.refl ; F-resp-≡ = λ x → x } where module C = Category C
{ "alphanum_fraction": 0.4534470505, "avg_line_length": 39.6338028169, "ext": "agda", "hexsha": "13671053f87694bb9e1eacd14669f651cc2492aa", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/FunctorCategory.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/FunctorCategory.agda", "max_line_length": 110, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/FunctorCategory.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1248, "size": 2814 }
{-# OPTIONS --without-K #-} open import library.Basics hiding (Type ; Σ) open import library.types.Sigma open import Sec2preliminaries module Sec3hedberg where -- Lemma 3.2 discr→pathHasConst : {X : Type} → has-dec-eq X → pathHasConst X discr→pathHasConst dec x₁ x₂ with (dec x₁ x₂) discr→pathHasConst dec x₁ x₂ | inl p = (λ _ → p) , (λ _ _ → idp) discr→pathHasConst dec x₁ x₂ | inr np = idf _ , λ p → Empty-elim (np p) -- Lemma 3.3 pathHasConst→isSet : {X : Type} → pathHasConst X → is-set X pathHasConst→isSet {X} pc x₁ x₂ = all-paths-is-prop paths-equal where claim : (y₁ y₂ : X) → (p : y₁ == y₂) → p == ! (fst (pc _ _) idp) ∙ fst (pc _ _) p claim x₁ .x₁ idp = ! (!-inv-l (fst (pc x₁ x₁) idp)) paths-equal : (p₁ p₂ : x₁ == x₂) → p₁ == p₂ paths-equal p₁ p₂ = p₁ =⟨ claim _ _ p₁ ⟩ ! (fst (pc _ _) idp) ∙ fst (pc _ _) p₁ =⟨ ap (λ q → (! (fst (pc x₁ x₁) idp)) ∙ q) (snd (pc _ _) p₁ p₂) ⟩ -- whiskering ! (fst (pc _ _) idp) ∙ fst (pc _ _) p₂ =⟨ ! (claim _ _ p₂) ⟩ p₂ ∎ -- Theorem 3.1 hedberg : {X : Type} → has-dec-eq X → is-set X hedberg = pathHasConst→isSet ∘ discr→pathHasConst -- Definition 3.4 stable : Type → Type stable X = ¬ (¬ X) → X separated : Type → Type separated X = (x₁ x₂ : X) → stable (x₁ == x₂) -- Lemma 3.5 sep→set : {X : Type} → (separated X) → ({x₁ x₂ : X} → Funext {¬ (x₁ == x₂)} {Empty}) → is-set X sep→set {X} sep ⊥-funext = pathHasConst→isSet isPc where isPc : pathHasConst X isPc x₁ x₂ = f , c where f : x₁ == x₂ → x₁ == x₂ f = (sep x₁ x₂) ∘ (λ p np → np p) c : const f c p₁ p₂ = f p₁ =⟨ idp ⟩ (sep x₁ x₂) (λ np → np p₁) =⟨ ap (sep x₁ x₂) (⊥-funext _ _ λ np → Empty-elim {A = λ _ → np p₁ == np p₂} (np p₁)) ⟩ (sep x₁ x₂) (λ np → np p₂) =⟨ idp ⟩ f p₂ ∎ -- Definition 3.6 postulate Trunc : Type → Type h-tr : (X : Type) → is-prop (Trunc X) ∣_∣ : {X : Type} → X → Trunc X rec : {X : Type} → {P : Type} → (is-prop P) → (X → P) → Trunc X → P -- the propositional β rule is derivable: trunc-β : {X : Type} → {P : Type} → (pp : is-prop P) → (f : X → P) → (x : X) → rec pp f ∣ x ∣ == f x trunc-β pp f x = prop-has-all-paths pp _ _ -- Lemma 3.7 module _ (X : Type) (P : Trunc X → Type) (h : (z : Trunc X) → is-prop (P z)) (k : (x : X) → P(∣ x ∣)) where total : Type total = Σ (Trunc X) P j : X → total j x = ∣ x ∣ , k x total-prop : is-prop total total-prop = Σ-level (h-tr X) h total-map : Trunc X → total total-map = rec total-prop j induction : (z : Trunc X) → P z induction z = transport P (prop-has-all-paths (h-tr _) _ _) (snd (total-map z)) -- comment: Trunc is functorial trunc-functorial : {X Y : Type} → (X → Y) → (Trunc X → Trunc Y) trunc-functorial {X} {Y} f = rec (h-tr Y) (∣_∣ ∘ f) -- Theorem 3.8 impred : {X : Type} → (Trunc X ↔₀₁ ((P : Type) → (is-prop P) → (X → P) → P)) impred {X} = one , two where one : Trunc X → (P : Type) → (is-prop P) → (X → P) → P one z P p-prop f = rec p-prop f z two : ((P : Type) → (is-prop P) → (X → P) → P) → Trunc X two k = k (Trunc X) (h-tr _) ∣_∣ -- Definition 3.9 splitSup : Type → Type splitSup X = Trunc X → X hseparated : Type → Type hseparated X = (x₁ x₂ : X) → splitSup (x₁ == x₂) -- Theorem 3.10 set-characterizations : {X : Type} → (pathHasConst X → is-set X) × ((is-set X → hseparated X) × (hseparated X → pathHasConst X)) set-characterizations {X} = one , two , three where one : pathHasConst X → is-set X one = pathHasConst→isSet two : is-set X → hseparated X two h = λ x₁ x₂ → rec (h x₁ x₂) (idf _) three : hseparated X → pathHasConst X three hsep x₁ x₂ = f , c where f = (hsep _ _) ∘ ∣_∣ c = λ p₁ p₂ → f p₁ =⟨ idp ⟩ hsep _ _ (∣ p₁ ∣) =⟨ ap (hsep _ _) (prop-has-all-paths (h-tr _) _ _) ⟩ hsep _ _ (∣ p₂ ∣) =⟨ idp ⟩ f p₂ ∎ -- The rest of this section is only a replication of the arguments that we have given so far (for that reason, the proofs are not given in the article). -- They do not directly follow from the statements that we have proved before, but they directly imply them. -- Of course, replication of arguments is not a good style for a formalization - -- we chose this "disadvantageous" order purely as we believe it led to a better presentation in the article. -- Lemma 3.11 pathHasConst→isSet-local : {X : Type} → {x₀ : X} → ((y : X) → hasConst (x₀ == y)) → (y : X) → is-prop (x₀ == y) pathHasConst→isSet-local {X} {x₀} pc y = all-paths-is-prop paths-equal where claim : (y : X) → (p : x₀ == y) → p == ! (fst (pc _) idp) ∙ fst (pc _) p claim .x₀ idp = ! (!-inv-l (fst (pc _) idp)) paths-equal : (p₁ p₂ : x₀ == y) → p₁ == p₂ paths-equal p₁ p₂ = p₁ =⟨ claim _ p₁ ⟩ ! (fst (pc _) idp) ∙ fst (pc _) p₁ =⟨ ap (λ q → (! (fst (pc x₀) idp)) ∙ q) (snd (pc y) p₁ p₂) ⟩ -- whiskering ! (fst (pc _) idp) ∙ fst (pc _) p₂ =⟨ ! (claim _ p₂) ⟩ p₂ ∎ -- Theorem 3.12 hedberg-local : {X : Type} → {x₀ : X} → ((y : X) → (x₀ == y) + ¬(x₀ == y)) → (y : X) → is-prop (x₀ == y) hedberg-local {X} {x₀} dec = pathHasConst→isSet-local local-pathHasConst where local-pathHasConst : (y : X) → hasConst (x₀ == y) local-pathHasConst y with (dec y) local-pathHasConst y₁ | inl p = (λ _ → p) , (λ _ _ → idp) local-pathHasConst y₁ | inr np = idf _ , (λ p → Empty-elim (np p)) -- Lemma 3.13 sep→set-local : {X : Type} → {x₀ : X} → ((y : X) → stable (x₀ == y)) → ({y : X} → Funext {¬ (x₀ == y)} {Empty}) → (y : X) → is-prop (x₀ == y) sep→set-local {X} {x₀} sep ⊥-funext = pathHasConst→isSet-local is-pathHasConst where is-pathHasConst : (y : X) → hasConst (x₀ == y) is-pathHasConst y = f , c where f : x₀ == y → x₀ == y f = (sep y) ∘ (λ p np → np p) c : const f c p₁ p₂ = f p₁ =⟨ idp ⟩ (sep _) (λ np → np p₁) =⟨ ap (sep _) (⊥-funext _ _ λ np → Empty-elim {A = λ _ → np p₁ == np p₂} (np p₁)) ⟩ (sep _) (λ np → np p₂) =⟨ idp ⟩ f p₂ ∎ -- Theorem 3.14 set-characterizations-local : {X : Type} → {x₀ : X} → (((y : X) → hasConst (x₀ == y)) → (y : X) → is-prop (x₀ == y)) × ((((y : X) → is-prop (x₀ == y)) → (y : X) → splitSup (x₀ == y)) × (((y : X) → splitSup (x₀ == y)) → (y : X) → hasConst (x₀ == y))) set-characterizations-local {X} {x₀} = one , two , three where one = pathHasConst→isSet-local two : ((y : X) → is-prop (x₀ == y)) → (y : X) → splitSup (x₀ == y) two h y = rec (h y) (idf _) three : ((y : X) → splitSup (x₀ == y)) → (y : X) → hasConst (x₀ == y) three hsep y = f , c where f = (hsep _) ∘ ∣_∣ c = λ p₁ p₂ → f p₁ =⟨ idp ⟩ (hsep _) ∣ p₁ ∣ =⟨ ap (hsep _) (prop-has-all-paths (h-tr _) _ _) ⟩ (hsep _) ∣ p₂ ∣ =⟨ idp ⟩ f p₂ ∎
{ "alphanum_fraction": 0.5099150142, "avg_line_length": 39.8870056497, "ext": "agda", "hexsha": "aaad352369318e6136795e9d470fb2b127fcdbb1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/anonymousExistence/Sec3hedberg.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/anonymousExistence/Sec3hedberg.agda", "max_line_length": 152, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/anonymousExistence/Sec3hedberg.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 2830, "size": 7060 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Raw where open import Cubical.Relation.Binary.Base public open import Cubical.Relation.Binary.Raw.Definitions public open import Cubical.Relation.Binary.Raw.Structures public open import Cubical.Relation.Binary.Raw.Bundles public
{ "alphanum_fraction": 0.8146964856, "avg_line_length": 39.125, "ext": "agda", "hexsha": "d4acd3c8353b4e10398f2570bb40d58dfab262ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Raw.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Raw.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Raw.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 70, "size": 313 }
{-# OPTIONS --allow-unsolved-metas #-} postulate Nat : Set variable A : _ F : _ → _
{ "alphanum_fraction": 0.5824175824, "avg_line_length": 11.375, "ext": "agda", "hexsha": "aa9e0805c879fb56480e8753d68dc6910e2ce67c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3301.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3301.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3301.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 91 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to Fin, and operations making use of these -- properties (or other properties not available in Data.Fin) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Properties where open import Category.Applicative using (RawApplicative) open import Category.Functor using (RawFunctor) open import Data.Bool.Base using (Bool; true; false; not; _∧_; _∨_) open import Data.Empty using (⊥-elim) open import Data.Fin.Base open import Data.Fin.Patterns open import Data.Nat.Base as ℕ using (ℕ; zero; suc; s≤s; z≤n; _∸_) import Data.Nat.Properties as ℕₚ open import Data.Unit using (tt) open import Data.Product using (∃; ∃₂; ∄; _×_; _,_; map; proj₁; uncurry; <_,_>) open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]) open import Data.Sum.Properties using ([,]-map-commute; [,]-∘-distr) open import Function.Base using (_∘_; id; _$_) open import Function.Equivalence using (_⇔_; equivalence) open import Function.Injection using (_↣_) open import Relation.Binary as B hiding (Decidable) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; refl; sym; trans; cong; subst; module ≡-Reasoning) open import Relation.Nullary.Decidable as Dec using (map′) open import Relation.Nullary.Reflects open import Relation.Nullary.Negation using (contradiction) open import Relation.Nullary using (Reflects; ofʸ; ofⁿ; Dec; _because_; does; proof; yes; no; ¬_) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Sum using (_⊎-dec_) open import Relation.Unary as U using (U; Pred; Decidable; _⊆_; Satisfiable; Universal) open import Relation.Unary.Properties using (U?) ------------------------------------------------------------------------ -- Fin ------------------------------------------------------------------------ ¬Fin0 : ¬ Fin 0 ¬Fin0 () ------------------------------------------------------------------------ -- Properties of _≡_ ------------------------------------------------------------------------ suc-injective : ∀ {o} {m n : Fin o} → Fin.suc m ≡ suc n → m ≡ n suc-injective refl = refl infix 4 _≟_ _≟_ : ∀ {n} → B.Decidable {A = Fin n} _≡_ zero ≟ zero = yes refl zero ≟ suc y = no λ() suc x ≟ zero = no λ() suc x ≟ suc y = map′ (cong suc) suc-injective (x ≟ y) ------------------------------------------------------------------------ -- Structures ≡-isDecEquivalence : ∀ {n} → IsDecEquivalence (_≡_ {A = Fin n}) ≡-isDecEquivalence = record { isEquivalence = P.isEquivalence ; _≟_ = _≟_ } ------------------------------------------------------------------------ -- Bundles ≡-preorder : ℕ → Preorder _ _ _ ≡-preorder n = P.preorder (Fin n) ≡-setoid : ℕ → Setoid _ _ ≡-setoid n = P.setoid (Fin n) ≡-decSetoid : ℕ → DecSetoid _ _ ≡-decSetoid n = record { isDecEquivalence = ≡-isDecEquivalence {n} } ------------------------------------------------------------------------ -- toℕ ------------------------------------------------------------------------ toℕ-injective : ∀ {n} {i j : Fin n} → toℕ i ≡ toℕ j → i ≡ j toℕ-injective {zero} {} {} _ toℕ-injective {suc n} {zero} {zero} eq = refl toℕ-injective {suc n} {suc i} {suc j} eq = cong suc (toℕ-injective (cong ℕ.pred eq)) toℕ-strengthen : ∀ {n} (i : Fin n) → toℕ (strengthen i) ≡ toℕ i toℕ-strengthen zero = refl toℕ-strengthen (suc i) = cong suc (toℕ-strengthen i) toℕ-raise : ∀ {m} n (i : Fin m) → toℕ (raise n i) ≡ n ℕ.+ toℕ i toℕ-raise zero i = refl toℕ-raise (suc n) i = cong suc (toℕ-raise n i) toℕ<n : ∀ {n} (i : Fin n) → toℕ i ℕ.< n toℕ<n zero = s≤s z≤n toℕ<n (suc i) = s≤s (toℕ<n i) toℕ≤pred[n] : ∀ {n} (i : Fin n) → toℕ i ℕ.≤ ℕ.pred n toℕ≤pred[n] zero = z≤n toℕ≤pred[n] (suc {n = suc n} i) = s≤s (toℕ≤pred[n] i) -- A simpler implementation of toℕ≤pred[n], -- however, with a different reduction behavior. -- If no one needs the reduction behavior of toℕ≤pred[n], -- it can be removed in favor of toℕ≤pred[n]′. toℕ≤pred[n]′ : ∀ {n} (i : Fin n) → toℕ i ℕ.≤ ℕ.pred n toℕ≤pred[n]′ i = ℕₚ.<⇒≤pred (toℕ<n i) ------------------------------------------------------------------------ -- fromℕ ------------------------------------------------------------------------ toℕ-fromℕ : ∀ n → toℕ (fromℕ n) ≡ n toℕ-fromℕ zero = refl toℕ-fromℕ (suc n) = cong suc (toℕ-fromℕ n) fromℕ-toℕ : ∀ {n} (i : Fin n) → fromℕ (toℕ i) ≡ strengthen i fromℕ-toℕ zero = refl fromℕ-toℕ (suc i) = cong suc (fromℕ-toℕ i) ------------------------------------------------------------------------ -- fromℕ< ------------------------------------------------------------------------ fromℕ<-toℕ : ∀ {m} (i : Fin m) (i<m : toℕ i ℕ.< m) → fromℕ< i<m ≡ i fromℕ<-toℕ zero (s≤s z≤n) = refl fromℕ<-toℕ (suc i) (s≤s (s≤s m≤n)) = cong suc (fromℕ<-toℕ i (s≤s m≤n)) toℕ-fromℕ< : ∀ {m n} (m<n : m ℕ.< n) → toℕ (fromℕ< m<n) ≡ m toℕ-fromℕ< (s≤s z≤n) = refl toℕ-fromℕ< (s≤s (s≤s m<n)) = cong suc (toℕ-fromℕ< (s≤s m<n)) -- fromℕ is a special case of fromℕ<. fromℕ-def : ∀ n → fromℕ n ≡ fromℕ< ℕₚ.≤-refl fromℕ-def zero = refl fromℕ-def (suc n) = cong suc (fromℕ-def n) ------------------------------------------------------------------------ -- fromℕ<″ ------------------------------------------------------------------------ fromℕ<≡fromℕ<″ : ∀ {m n} (m<n : m ℕ.< n) (m<″n : m ℕ.<″ n) → fromℕ< m<n ≡ fromℕ<″ m m<″n fromℕ<≡fromℕ<″ (s≤s z≤n) (ℕ.less-than-or-equal refl) = refl fromℕ<≡fromℕ<″ (s≤s (s≤s m<n)) (ℕ.less-than-or-equal refl) = cong suc (fromℕ<≡fromℕ<″ (s≤s m<n) (ℕ.less-than-or-equal refl)) toℕ-fromℕ<″ : ∀ {m n} (m<n : m ℕ.<″ n) → toℕ (fromℕ<″ m m<n) ≡ m toℕ-fromℕ<″ {m} {n} m<n = begin toℕ (fromℕ<″ m m<n) ≡⟨ cong toℕ (sym (fromℕ<≡fromℕ<″ (ℕₚ.≤″⇒≤ m<n) m<n)) ⟩ toℕ (fromℕ< _) ≡⟨ toℕ-fromℕ< (ℕₚ.≤″⇒≤ m<n) ⟩ m ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- cast ------------------------------------------------------------------------ toℕ-cast : ∀ {m n} .(eq : m ≡ n) (k : Fin m) → toℕ (cast eq k) ≡ toℕ k toℕ-cast {n = suc n} eq zero = refl toℕ-cast {n = suc n} eq (suc k) = cong suc (toℕ-cast (cong ℕ.pred eq) k) ------------------------------------------------------------------------ -- Properties of _≤_ ------------------------------------------------------------------------ -- Relational properties ≤-reflexive : ∀ {n} → _≡_ ⇒ (_≤_ {n}) ≤-reflexive refl = ℕₚ.≤-refl ≤-refl : ∀ {n} → Reflexive (_≤_ {n}) ≤-refl = ≤-reflexive refl ≤-trans : ∀ {n} → Transitive (_≤_ {n}) ≤-trans = ℕₚ.≤-trans ≤-antisym : ∀ {n} → Antisymmetric _≡_ (_≤_ {n}) ≤-antisym x≤y y≤x = toℕ-injective (ℕₚ.≤-antisym x≤y y≤x) ≤-total : ∀ {n} → Total (_≤_ {n}) ≤-total x y = ℕₚ.≤-total (toℕ x) (toℕ y) ≤-irrelevant : ∀ {n} → Irrelevant (_≤_ {n}) ≤-irrelevant = ℕₚ.≤-irrelevant infix 4 _≤?_ _<?_ _≤?_ : ∀ {n} → B.Decidable (_≤_ {n}) a ≤? b = toℕ a ℕₚ.≤? toℕ b _<?_ : ∀ {n} → B.Decidable (_<_ {n}) m <? n = suc (toℕ m) ℕₚ.≤? toℕ n ------------------------------------------------------------------------ -- Structures ≤-isPreorder : ∀ {n} → IsPreorder _≡_ (_≤_ {n}) ≤-isPreorder = record { isEquivalence = P.isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : ∀ {n} → IsPartialOrder _≡_ (_≤_ {n}) ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : ∀ {n} → IsTotalOrder _≡_ (_≤_ {n}) ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : ∀ {n} → IsDecTotalOrder _≡_ (_≤_ {n}) ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } ------------------------------------------------------------------------ -- Bundles ≤-preorder : ℕ → Preorder _ _ _ ≤-preorder n = record { isPreorder = ≤-isPreorder {n} } ≤-poset : ℕ → Poset _ _ _ ≤-poset n = record { isPartialOrder = ≤-isPartialOrder {n} } ≤-totalOrder : ℕ → TotalOrder _ _ _ ≤-totalOrder n = record { isTotalOrder = ≤-isTotalOrder {n} } ≤-decTotalOrder : ℕ → DecTotalOrder _ _ _ ≤-decTotalOrder n = record { isDecTotalOrder = ≤-isDecTotalOrder {n} } ------------------------------------------------------------------------ -- Properties of _<_ ------------------------------------------------------------------------ -- Relational properties <-irrefl : ∀ {n} → Irreflexive _≡_ (_<_ {n}) <-irrefl refl = ℕₚ.<-irrefl refl <-asym : ∀ {n} → Asymmetric (_<_ {n}) <-asym = ℕₚ.<-asym <-trans : ∀ {n} → Transitive (_<_ {n}) <-trans = ℕₚ.<-trans <-cmp : ∀ {n} → Trichotomous _≡_ (_<_ {n}) <-cmp zero zero = tri≈ (λ()) refl (λ()) <-cmp zero (suc j) = tri< (s≤s z≤n) (λ()) (λ()) <-cmp (suc i) zero = tri> (λ()) (λ()) (s≤s z≤n) <-cmp (suc i) (suc j) with <-cmp i j ... | tri< i<j i≢j j≮i = tri< (s≤s i<j) (i≢j ∘ suc-injective) (j≮i ∘ ℕₚ.≤-pred) ... | tri> i≮j i≢j j<i = tri> (i≮j ∘ ℕₚ.≤-pred) (i≢j ∘ suc-injective) (s≤s j<i) ... | tri≈ i≮j i≡j j≮i = tri≈ (i≮j ∘ ℕₚ.≤-pred) (cong suc i≡j) (j≮i ∘ ℕₚ.≤-pred) <-respˡ-≡ : ∀ {n} → (_<_ {n}) Respectsˡ _≡_ <-respˡ-≡ refl x≤y = x≤y <-respʳ-≡ : ∀ {n} → (_<_ {n}) Respectsʳ _≡_ <-respʳ-≡ refl x≤y = x≤y <-resp₂-≡ : ∀ {n} → (_<_ {n}) Respects₂ _≡_ <-resp₂-≡ = <-respʳ-≡ , <-respˡ-≡ <-irrelevant : ∀ {n} → Irrelevant (_<_ {n}) <-irrelevant = ℕₚ.<-irrelevant ------------------------------------------------------------------------ -- Structures <-isStrictPartialOrder : ∀ {n} → IsStrictPartialOrder _≡_ (_<_ {n}) <-isStrictPartialOrder = record { isEquivalence = P.isEquivalence ; irrefl = <-irrefl ; trans = <-trans ; <-resp-≈ = <-resp₂-≡ } <-isStrictTotalOrder : ∀ {n} → IsStrictTotalOrder _≡_ (_<_ {n}) <-isStrictTotalOrder = record { isEquivalence = P.isEquivalence ; trans = <-trans ; compare = <-cmp } ------------------------------------------------------------------------ -- Bundles <-strictPartialOrder : ℕ → StrictPartialOrder _ _ _ <-strictPartialOrder n = record { isStrictPartialOrder = <-isStrictPartialOrder {n} } <-strictTotalOrder : ℕ → StrictTotalOrder _ _ _ <-strictTotalOrder n = record { isStrictTotalOrder = <-isStrictTotalOrder {n} } ------------------------------------------------------------------------ -- Other properties <⇒≢ : ∀ {n} {i j : Fin n} → i < j → i ≢ j <⇒≢ i<i refl = ℕₚ.n≮n _ i<i ≤∧≢⇒< : ∀ {n} {i j : Fin n} → i ≤ j → i ≢ j → i < j ≤∧≢⇒< {i = zero} {zero} _ 0≢0 = contradiction refl 0≢0 ≤∧≢⇒< {i = zero} {suc j} _ _ = s≤s z≤n ≤∧≢⇒< {i = suc i} {suc j} (s≤s i≤j) 1+i≢1+j = s≤s (≤∧≢⇒< i≤j (1+i≢1+j ∘ (cong suc))) ------------------------------------------------------------------------ -- inject ------------------------------------------------------------------------ toℕ-inject : ∀ {n} {i : Fin n} (j : Fin′ i) → toℕ (inject j) ≡ toℕ j toℕ-inject {i = suc i} zero = refl toℕ-inject {i = suc i} (suc j) = cong suc (toℕ-inject j) ------------------------------------------------------------------------ -- inject+ ------------------------------------------------------------------------ toℕ-inject+ : ∀ {m} n (i : Fin m) → toℕ i ≡ toℕ (inject+ n i) toℕ-inject+ n zero = refl toℕ-inject+ n (suc i) = cong suc (toℕ-inject+ n i) ------------------------------------------------------------------------ -- inject₁ ------------------------------------------------------------------------ inject₁-injective : ∀ {n} {i j : Fin n} → inject₁ i ≡ inject₁ j → i ≡ j inject₁-injective {i = zero} {zero} i≡j = refl inject₁-injective {i = suc i} {suc j} i≡j = cong suc (inject₁-injective (suc-injective i≡j)) toℕ-inject₁ : ∀ {n} (i : Fin n) → toℕ (inject₁ i) ≡ toℕ i toℕ-inject₁ zero = refl toℕ-inject₁ (suc i) = cong suc (toℕ-inject₁ i) toℕ-inject₁-≢ : ∀ {n}(i : Fin n) → n ≢ toℕ (inject₁ i) toℕ-inject₁-≢ (suc i) = toℕ-inject₁-≢ i ∘ ℕₚ.suc-injective ------------------------------------------------------------------------ -- inject₁ and lower₁ inject₁-lower₁ : ∀ {n} (i : Fin (suc n)) (n≢i : n ≢ toℕ i) → inject₁ (lower₁ i n≢i) ≡ i inject₁-lower₁ {zero} zero 0≢0 = contradiction refl 0≢0 inject₁-lower₁ {suc n} zero _ = refl inject₁-lower₁ {suc n} (suc i) n+1≢i+1 = cong suc (inject₁-lower₁ i (n+1≢i+1 ∘ cong suc)) lower₁-inject₁′ : ∀ {n} (i : Fin n) (n≢i : n ≢ toℕ (inject₁ i)) → lower₁ (inject₁ i) n≢i ≡ i lower₁-inject₁′ zero _ = refl lower₁-inject₁′ (suc i) n+1≢i+1 = cong suc (lower₁-inject₁′ i (n+1≢i+1 ∘ cong suc)) lower₁-inject₁ : ∀ {n} (i : Fin n) → lower₁ (inject₁ i) (toℕ-inject₁-≢ i) ≡ i lower₁-inject₁ i = lower₁-inject₁′ i (toℕ-inject₁-≢ i) lower₁-irrelevant : ∀ {n} (i : Fin (suc n)) n≢i₁ n≢i₂ → lower₁ {n} i n≢i₁ ≡ lower₁ {n} i n≢i₂ lower₁-irrelevant {zero} zero 0≢0 _ = contradiction refl 0≢0 lower₁-irrelevant {suc n} zero _ _ = refl lower₁-irrelevant {suc n} (suc i) _ _ = cong suc (lower₁-irrelevant i _ _) ------------------------------------------------------------------------ -- inject≤ ------------------------------------------------------------------------ toℕ-inject≤ : ∀ {m n} (i : Fin m) (le : m ℕ.≤ n) → toℕ (inject≤ i le) ≡ toℕ i toℕ-inject≤ {_} {suc n} zero _ = refl toℕ-inject≤ {_} {suc n} (suc i) le = cong suc (toℕ-inject≤ i (ℕₚ.≤-pred le)) inject≤-refl : ∀ {n} (i : Fin n) (n≤n : n ℕ.≤ n) → inject≤ i n≤n ≡ i inject≤-refl {suc n} zero _ = refl inject≤-refl {suc n} (suc i) n≤n = cong suc (inject≤-refl i (ℕₚ.≤-pred n≤n)) inject≤-idempotent : ∀ {m n k} (i : Fin m) (m≤n : m ℕ.≤ n) (n≤k : n ℕ.≤ k) (m≤k : m ℕ.≤ k) → inject≤ (inject≤ i m≤n) n≤k ≡ inject≤ i m≤k inject≤-idempotent {_} {suc n} {suc k} zero _ _ _ = refl inject≤-idempotent {_} {suc n} {suc k} (suc i) m≤n n≤k _ = cong suc (inject≤-idempotent i (ℕₚ.≤-pred m≤n) (ℕₚ.≤-pred n≤k) _) ------------------------------------------------------------------------ -- splitAt ------------------------------------------------------------------------ -- Fin (m + n) ≃ Fin m ⊎ Fin n splitAt-inject+ : ∀ m n i → splitAt m (inject+ n i) ≡ inj₁ i splitAt-inject+ (suc m) n zero = refl splitAt-inject+ (suc m) n (suc i) rewrite splitAt-inject+ m n i = refl splitAt-raise : ∀ m n i → splitAt m (raise {n} m i) ≡ inj₂ i splitAt-raise zero n i = refl splitAt-raise (suc m) n i rewrite splitAt-raise m n i = refl inject+-raise-splitAt : ∀ m n i → [ inject+ n , raise {n} m ] (splitAt m i) ≡ i inject+-raise-splitAt zero n i = refl inject+-raise-splitAt (suc m) n zero = refl inject+-raise-splitAt (suc m) n (suc i) = begin [ inject+ n , raise {n} (suc m) ] (splitAt (suc m) (suc i)) ≡⟨ [,]-map-commute (splitAt m i) ⟩ [ suc ∘ (inject+ n) , suc ∘ (raise {n} m) ] (splitAt m i) ≡˘⟨ [,]-∘-distr {f = suc} (splitAt m i) ⟩ suc ([ inject+ n , raise {n} m ] (splitAt m i)) ≡⟨ cong suc (inject+-raise-splitAt m n i) ⟩ suc i ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- lift ------------------------------------------------------------------------ lift-injective : ∀ {m n} (f : Fin m → Fin n) → (∀ {x y} → f x ≡ f y → x ≡ y) → ∀ k {x y} → lift k f x ≡ lift k f y → x ≡ y lift-injective f inj zero eq = inj eq lift-injective f inj (suc k) {0F} {0F} eq = refl lift-injective f inj (suc k) {suc i} {suc y} eq = cong suc (lift-injective f inj k (suc-injective eq)) ------------------------------------------------------------------------ -- _≺_ ------------------------------------------------------------------------ ≺⇒<′ : _≺_ ⇒ ℕ._<′_ ≺⇒<′ (n ≻toℕ i) = ℕₚ.≤⇒≤′ (toℕ<n i) <′⇒≺ : ℕ._<′_ ⇒ _≺_ <′⇒≺ {n} ℕ.≤′-refl = subst (_≺ suc n) (toℕ-fromℕ n) (suc n ≻toℕ fromℕ n) <′⇒≺ (ℕ.≤′-step m≤′n) with <′⇒≺ m≤′n ... | n ≻toℕ i = subst (_≺ suc n) (toℕ-inject₁ i) (suc n ≻toℕ _) ------------------------------------------------------------------------ -- pred ------------------------------------------------------------------------ <⇒≤pred : ∀ {n} {i j : Fin n} → j < i → j ≤ pred i <⇒≤pred {i = suc i} {zero} j<i = z≤n <⇒≤pred {i = suc i} {suc j} (s≤s j<i) = subst (_ ℕ.≤_) (sym (toℕ-inject₁ i)) j<i ------------------------------------------------------------------------ -- _ℕ-_ ------------------------------------------------------------------------ toℕ‿ℕ- : ∀ n i → toℕ (n ℕ- i) ≡ n ∸ toℕ i toℕ‿ℕ- n zero = toℕ-fromℕ n toℕ‿ℕ- (suc n) (suc i) = toℕ‿ℕ- n i ------------------------------------------------------------------------ -- _ℕ-ℕ_ ------------------------------------------------------------------------ nℕ-ℕi≤n : ∀ n i → n ℕ-ℕ i ℕ.≤ n nℕ-ℕi≤n n zero = ℕₚ.≤-refl nℕ-ℕi≤n (suc n) (suc i) = begin n ℕ-ℕ i ≤⟨ nℕ-ℕi≤n n i ⟩ n ≤⟨ ℕₚ.n≤1+n n ⟩ suc n ∎ where open ℕₚ.≤-Reasoning ------------------------------------------------------------------------ -- punchIn ------------------------------------------------------------------------ punchIn-injective : ∀ {m} i (j k : Fin m) → punchIn i j ≡ punchIn i k → j ≡ k punchIn-injective zero _ _ refl = refl punchIn-injective (suc i) zero zero _ = refl punchIn-injective (suc i) (suc j) (suc k) ↑j+1≡↑k+1 = cong suc (punchIn-injective i j k (suc-injective ↑j+1≡↑k+1)) punchInᵢ≢i : ∀ {m} i (j : Fin m) → punchIn i j ≢ i punchInᵢ≢i (suc i) (suc j) = punchInᵢ≢i i j ∘ suc-injective ------------------------------------------------------------------------ -- punchOut ------------------------------------------------------------------------ -- A version of 'cong' for 'punchOut' in which the inequality argument can be -- changed out arbitrarily (reflecting the proof-irrelevance of that argument). punchOut-cong : ∀ {n} (i : Fin (suc n)) {j k} {i≢j : i ≢ j} {i≢k : i ≢ k} → j ≡ k → punchOut i≢j ≡ punchOut i≢k punchOut-cong zero {zero} {i≢j = 0≢0} = contradiction refl 0≢0 punchOut-cong zero {suc j} {zero} {i≢k = 0≢0} = contradiction refl 0≢0 punchOut-cong zero {suc j} {suc k} = suc-injective punchOut-cong {suc n} (suc i) {zero} {zero} _ = refl punchOut-cong {suc n} (suc i) {suc j} {suc k} = cong suc ∘ punchOut-cong i ∘ suc-injective -- An alternative to 'punchOut-cong' in the which the new inequality argument is -- specific. Useful for enabling the omission of that argument during equational -- reasoning. punchOut-cong′ : ∀ {n} (i : Fin (suc n)) {j k} {p : i ≢ j} (q : j ≡ k) → punchOut p ≡ punchOut (p ∘ sym ∘ trans q ∘ sym) punchOut-cong′ i q = punchOut-cong i q punchOut-injective : ∀ {m} {i j k : Fin (suc m)} (i≢j : i ≢ j) (i≢k : i ≢ k) → punchOut i≢j ≡ punchOut i≢k → j ≡ k punchOut-injective {_} {zero} {zero} {_} 0≢0 _ _ = contradiction refl 0≢0 punchOut-injective {_} {zero} {_} {zero} _ 0≢0 _ = contradiction refl 0≢0 punchOut-injective {_} {zero} {suc j} {suc k} _ _ pⱼ≡pₖ = cong suc pⱼ≡pₖ punchOut-injective {suc n} {suc i} {zero} {zero} _ _ _ = refl punchOut-injective {suc n} {suc i} {suc j} {suc k} i≢j i≢k pⱼ≡pₖ = cong suc (punchOut-injective (i≢j ∘ cong suc) (i≢k ∘ cong suc) (suc-injective pⱼ≡pₖ)) punchIn-punchOut : ∀ {m} {i j : Fin (suc m)} (i≢j : i ≢ j) → punchIn i (punchOut i≢j) ≡ j punchIn-punchOut {_} {zero} {zero} 0≢0 = contradiction refl 0≢0 punchIn-punchOut {_} {zero} {suc j} _ = refl punchIn-punchOut {suc m} {suc i} {zero} i≢j = refl punchIn-punchOut {suc m} {suc i} {suc j} i≢j = cong suc (punchIn-punchOut (i≢j ∘ cong suc)) punchOut-punchIn : ∀ {n} i {j : Fin n} → punchOut {i = i} {j = punchIn i j} (punchInᵢ≢i i j ∘ sym) ≡ j punchOut-punchIn zero {j} = refl punchOut-punchIn (suc i) {zero} = refl punchOut-punchIn (suc i) {suc j} = cong suc (begin punchOut (punchInᵢ≢i i j ∘ suc-injective ∘ sym ∘ cong suc) ≡⟨ punchOut-cong i refl ⟩ punchOut (punchInᵢ≢i i j ∘ sym) ≡⟨ punchOut-punchIn i ⟩ j ∎) where open ≡-Reasoning ------------------------------------------------------------------------ -- Quantification ------------------------------------------------------------------------ module _ {n p} {P : Pred (Fin (suc n)) p} where ∀-cons : P zero → Π[ P ∘ suc ] → Π[ P ] ∀-cons z s zero = z ∀-cons z s (suc i) = s i ∀-cons-⇔ : (P zero × Π[ P ∘ suc ]) ⇔ Π[ P ] ∀-cons-⇔ = equivalence (uncurry ∀-cons) < _$ zero , _∘ suc > ∃-here : P zero → ∃⟨ P ⟩ ∃-here = zero ,_ ∃-there : ∃⟨ P ∘ suc ⟩ → ∃⟨ P ⟩ ∃-there = map suc id ∃-toSum : ∃⟨ P ⟩ → P zero ⊎ ∃⟨ P ∘ suc ⟩ ∃-toSum ( zero , P₀ ) = inj₁ P₀ ∃-toSum (suc f , P₁₊) = inj₂ (f , P₁₊) ⊎⇔∃ : (P zero ⊎ ∃⟨ P ∘ suc ⟩) ⇔ ∃⟨ P ⟩ ⊎⇔∃ = equivalence [ ∃-here , ∃-there ] ∃-toSum decFinSubset : ∀ {n p q} {P : Pred (Fin n) p} {Q : Pred (Fin n) q} → Decidable Q → (∀ {f} → Q f → Dec (P f)) → Dec (Q ⊆ P) decFinSubset {zero} Q? P? = yes λ {} decFinSubset {suc n} {P = P} {Q} Q? P? with Q? zero | ∀-cons {P = λ x → Q x → P x} ... | false because [¬Q0] | cons = map′ (λ f {x} → cons (⊥-elim ∘ invert [¬Q0]) (λ x → f {x}) x) (λ f {x} → f {suc x}) (decFinSubset (Q? ∘ suc) P?) ... | true because [Q0] | cons = map′ (uncurry λ P0 rec {x} → cons (λ _ → P0) (λ x → rec {x}) x) < _$ invert [Q0] , (λ f {x} → f {suc x}) > (P? (invert [Q0]) ×-dec decFinSubset (Q? ∘ suc) P?) any? : ∀ {n p} {P : Fin n → Set p} → Decidable P → Dec (∃ P) any? {zero} {P = _} P? = no λ { (() , _) } any? {suc n} {P = P} P? = Dec.map ⊎⇔∃ (P? zero ⊎-dec any? (P? ∘ suc)) all? : ∀ {n p} {P : Pred (Fin n) p} → Decidable P → Dec (∀ f → P f) all? P? = map′ (λ ∀p f → ∀p tt) (λ ∀p {x} _ → ∀p x) (decFinSubset U? (λ {f} _ → P? f)) private -- A nice computational property of `all?`: -- The boolean component of the result is exactly the -- obvious fold of boolean tests (`foldr _∧_ true`). note : ∀ {p} {P : Pred (Fin 3) p} (P? : Decidable P) → ∃ λ z → does (all? P?) ≡ z note P? = does (P? 0F) ∧ does (P? 1F) ∧ does (P? 2F) ∧ true , refl -- If a decidable predicate P over a finite set is sometimes false, -- then we can find the smallest value for which this is the case. ¬∀⟶∃¬-smallest : ∀ n {p} (P : Pred (Fin n) p) → Decidable P → ¬ (∀ i → P i) → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j)) ¬∀⟶∃¬-smallest zero P P? ¬∀P = contradiction (λ()) ¬∀P ¬∀⟶∃¬-smallest (suc n) P P? ¬∀P with P? zero ... | false because [¬P₀] = (zero , invert [¬P₀] , λ ()) ... | true because [P₀] = map suc (map id (∀-cons (invert [P₀]))) (¬∀⟶∃¬-smallest n (P ∘ suc) (P? ∘ suc) (¬∀P ∘ (∀-cons (invert [P₀])))) -- When P is a decidable predicate over a finite set the following -- lemma can be proved. ¬∀⟶∃¬ : ∀ n {p} (P : Pred (Fin n) p) → Decidable P → ¬ (∀ i → P i) → (∃ λ i → ¬ P i) ¬∀⟶∃¬ n P P? ¬P = map id proj₁ (¬∀⟶∃¬-smallest n P P? ¬P) -- The pigeonhole principle. pigeonhole : ∀ {m n} → m ℕ.< n → (f : Fin n → Fin m) → ∃₂ λ i j → i ≢ j × f i ≡ f j pigeonhole (s≤s z≤n) f = contradiction (f zero) λ() pigeonhole (s≤s (s≤s m≤n)) f with any? (λ k → f zero ≟ f (suc k)) ... | yes (j , f₀≡fⱼ) = zero , suc j , (λ()) , f₀≡fⱼ ... | no f₀≢fₖ with pigeonhole (s≤s m≤n) (λ j → punchOut (f₀≢fₖ ∘ (j ,_ ))) ... | (i , j , i≢j , fᵢ≡fⱼ) = suc i , suc j , i≢j ∘ suc-injective , punchOut-injective (f₀≢fₖ ∘ (i ,_)) _ fᵢ≡fⱼ ------------------------------------------------------------------------ -- Categorical ------------------------------------------------------------------------ module _ {f} {F : Set f → Set f} (RA : RawApplicative F) where open RawApplicative RA sequence : ∀ {n} {P : Pred (Fin n) f} → (∀ i → F (P i)) → F (∀ i → P i) sequence {zero} ∀iPi = pure λ() sequence {suc n} ∀iPi = ∀-cons <$> ∀iPi zero ⊛ sequence (∀iPi ∘ suc) module _ {f} {F : Set f → Set f} (RF : RawFunctor F) where open RawFunctor RF sequence⁻¹ : ∀ {A : Set f} {P : Pred A f} → F (∀ i → P i) → (∀ i → F (P i)) sequence⁻¹ F∀iPi i = (λ f → f i) <$> F∀iPi ------------------------------------------------------------------------ -- If there is an injection from a type to a finite set, then the type -- has decidable equality. module _ {a} {A : Set a} where eq? : ∀ {n} → A ↣ Fin n → B.Decidable {A = A} _≡_ eq? inj = Dec.via-injection inj _≟_ ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 cmp = <-cmp {-# WARNING_ON_USAGE cmp "Warning: cmp was deprecated in v0.15. Please use <-cmp instead." #-} strictTotalOrder = <-strictTotalOrder {-# WARNING_ON_USAGE strictTotalOrder "Warning: strictTotalOrder was deprecated in v0.15. Please use <-strictTotalOrder instead." #-} -- Version 0.16 to-from = toℕ-fromℕ {-# WARNING_ON_USAGE to-from "Warning: to-from was deprecated in v0.16. Please use toℕ-fromℕ instead." #-} from-to = fromℕ-toℕ {-# WARNING_ON_USAGE from-to "Warning: from-to was deprecated in v0.16. Please use fromℕ-toℕ instead." #-} bounded = toℕ<n {-# WARNING_ON_USAGE bounded "Warning: bounded was deprecated in v0.16. Please use toℕ<n instead." #-} prop-toℕ-≤ = toℕ≤pred[n] {-# WARNING_ON_USAGE prop-toℕ-≤ "Warning: prop-toℕ-≤ was deprecated in v0.16. Please use toℕ≤pred[n] instead." #-} prop-toℕ-≤′ = toℕ≤pred[n]′ {-# WARNING_ON_USAGE prop-toℕ-≤′ "Warning: prop-toℕ-≤′ was deprecated in v0.16. Please use toℕ≤pred[n]′ instead." #-} inject-lemma = toℕ-inject {-# WARNING_ON_USAGE inject-lemma "Warning: inject-lemma was deprecated in v0.16. Please use toℕ-inject instead." #-} inject+-lemma = toℕ-inject+ {-# WARNING_ON_USAGE inject+-lemma "Warning: inject+-lemma was deprecated in v0.16. Please use toℕ-inject+ instead." #-} inject₁-lemma = toℕ-inject₁ {-# WARNING_ON_USAGE inject₁-lemma "Warning: inject₁-lemma was deprecated in v0.16. Please use toℕ-inject₁ instead." #-} inject≤-lemma = toℕ-inject≤ {-# WARNING_ON_USAGE inject≤-lemma "Warning: inject≤-lemma was deprecated in v0.16. Please use toℕ-inject≤ instead." #-} -- Version 0.17 ≤+≢⇒< = ≤∧≢⇒< {-# WARNING_ON_USAGE ≤+≢⇒< "Warning: ≤+≢⇒< was deprecated in v0.17. Please use ≤∧≢⇒< instead." #-} -- Version 1.0 ≤-irrelevance = ≤-irrelevant {-# WARNING_ON_USAGE ≤-irrelevance "Warning: ≤-irrelevance was deprecated in v1.0. Please use ≤-irrelevant instead." #-} <-irrelevance = <-irrelevant {-# WARNING_ON_USAGE <-irrelevance "Warning: <-irrelevance was deprecated in v1.0. Please use <-irrelevant instead." #-} -- Version 1.1 infixl 6 _+′_ _+′_ : ∀ {m n} (i : Fin m) (j : Fin n) → Fin (ℕ.pred m ℕ.+ n) i +′ j = inject≤ (i + j) (ℕₚ.+-monoˡ-≤ _ (toℕ≤pred[n] i)) {-# WARNING_ON_USAGE _+′_ "Warning: _+′_ was deprecated in v1.1. Please use `raise` or `inject+` from `Data.Fin` instead." #-} -- Version 1.2 fromℕ≤-toℕ = fromℕ<-toℕ {-# WARNING_ON_USAGE fromℕ≤-toℕ "Warning: fromℕ≤-toℕ was deprecated in v1.2. Please use fromℕ<-toℕ instead." #-} toℕ-fromℕ≤ = toℕ-fromℕ< {-# WARNING_ON_USAGE toℕ-fromℕ≤ "Warning: toℕ-fromℕ≤ was deprecated in v1.2. Please use toℕ-fromℕ< instead." #-} fromℕ≤≡fromℕ≤″ = fromℕ<≡fromℕ<″ {-# WARNING_ON_USAGE fromℕ≤≡fromℕ≤″ "Warning: fromℕ≤≡fromℕ≤″ was deprecated in v1.2. Please use fromℕ<≡fromℕ<″ instead." #-} toℕ-fromℕ≤″ = toℕ-fromℕ<″ {-# WARNING_ON_USAGE toℕ-fromℕ≤″ "Warning: toℕ-fromℕ≤″ was deprecated in v1.2. Please use toℕ-fromℕ<″ instead." #-} isDecEquivalence = ≡-isDecEquivalence {-# WARNING_ON_USAGE isDecEquivalence "Warning: isDecEquivalence was deprecated in v1.2. Please use ≡-isDecEquivalence instead." #-} preorder = ≡-preorder {-# WARNING_ON_USAGE preorder "Warning: preorder was deprecated in v1.2. Please use ≡-preorder instead." #-} setoid = ≡-setoid {-# WARNING_ON_USAGE setoid "Warning: setoid was deprecated in v1.2. Please use ≡-setoid instead." #-} decSetoid = ≡-decSetoid {-# WARNING_ON_USAGE decSetoid "Warning: decSetoid was deprecated in v1.2. Please use ≡-decSetoid instead." #-}
{ "alphanum_fraction": 0.4847685381, "avg_line_length": 34.8382352941, "ext": "agda", "hexsha": "f14acdf3dcfa05a5a3e36b78ffb89208428769e9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Fin/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Fin/Properties.agda", "max_line_length": 120, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Fin/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 10823, "size": 28428 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.HSpace renaming (HSpaceStructure to HSS) open import homotopy.Freudenthal open import homotopy.IterSuspensionStable open import homotopy.Pi2HSusp open import homotopy.EM1HSpace open import homotopy.EilenbergMacLane1 module homotopy.EilenbergMacLane where private -- helper kle : (n : ℕ) → ⟨ S (S n) ⟩ ≤T ⟨ n ⟩ +2+ ⟨ n ⟩ kle O = inl idp kle (S n) = ≤T-trans (≤T-ap-S (kle n)) (≤T-trans (inl (! (+2+-βr ⟨ n ⟩ ⟨ n ⟩))) (inr ltS)) -- EM(G,n) when G is π₁(A,a₀) module EMImplicit {i} {X : Ptd i} {{_ : is-connected 0 (de⊙ X)}} {{X-level : has-level 1 (de⊙ X)}} (H-X : HSS X) where private A = de⊙ X a₀ = pt X ⊙EM : (n : ℕ) → Ptd i ⊙EM O = ⊙Ω X ⊙EM (S n) = ⊙Trunc ⟨ S n ⟩ (⊙Susp^ n X) module _ (n : ℕ) where EM = de⊙ (⊙EM n) EM-level : (n : ℕ) → has-level ⟨ n ⟩ (EM n) EM-level O = has-level-apply X-level _ _ EM-level (S n) = Trunc-level instance EM-conn : (n : ℕ) → is-connected ⟨ n ⟩ (EM (S n)) EM-conn n = Trunc-preserves-conn (⊙Susp^-conn' n) {- π (S k) (EM (S n)) (embase (S n)) == π k (EM n) (embase n) where k > 0 and n = S (S n') -} module Stable (k n : ℕ) (indexing : S k ≤ S (S n)) where private SSn : ℕ SSn = S (S n) lte : ⟨ S k ⟩ ≤T ⟨ SSn ⟩ lte = ⟨⟩-monotone-≤ $ indexing Skle : S k ≤ (S n) *2 Skle = ≤-trans indexing (lemma n) where lemma : (n' : ℕ) → S (S n') ≤ (S n') *2 lemma O = inl idp lemma (S n') = ≤-trans (≤-ap-S (lemma n')) (inr ltS) private module SS = Susp^StableSucc k (S n) Skle (⊙Susp^ (S n) X) {{⊙Susp^-conn' (S n)}} abstract stable : πS (S k) (⊙EM (S SSn)) ≃ᴳ πS k (⊙EM SSn) stable = πS (S k) (⊙EM (S SSn)) ≃ᴳ⟨ πS-Trunc-fuse-≤-iso _ _ _ (≤T-ap-S lte) ⟩ πS (S k) (⊙Susp^ SSn X) ≃ᴳ⟨ SS.stable ⟩ πS k (⊙Susp^ (S n) X) ≃ᴳ⟨ πS-Trunc-fuse-≤-iso _ _ _ lte ⁻¹ᴳ ⟩ πS k (⊙EM SSn) ≃ᴳ∎ module BelowDiagonal where π₁ : (n : ℕ) → πS 0 (⊙EM (S (S n))) ≃ᴳ 0ᴳ π₁ n = contr-iso-0ᴳ (πS 0 (⊙EM (S (S n)))) (connected-at-level-is-contr {{raise-level-≤T (≤T-ap-S (≤T-ap-S (-2≤T ⟨ n ⟩₋₂))) (Trunc-level {n = 0})}}) -- some clutter here arises from the definition of <; -- any simple way to avoid this? πS-below : (k n : ℕ) → (S k < n) → πS k (⊙EM n) ≃ᴳ 0ᴳ πS-below 0 .2 ltS = π₁ 0 πS-below 0 .3 (ltSR ltS) = π₁ 1 πS-below 0 (S (S n)) (ltSR (ltSR _)) = π₁ n πS-below (S k) ._ ltS = πS-below k _ ltS ∘eᴳ Stable.stable k k (inr ltS) πS-below (S k) ._ (ltSR ltS) = πS-below k _ (ltSR ltS) ∘eᴳ Stable.stable k (S k) (inr (ltSR ltS)) πS-below (S k) ._ (ltSR (ltSR ltS)) = πS-below k _ (ltSR (ltSR ltS)) ∘eᴳ Stable.stable k (S (S k)) (inr (ltSR (ltSR ltS))) πS-below (S k) (S (S (S n))) (ltSR (ltSR (ltSR lt))) = πS-below k _ (<-cancel-S (ltSR (ltSR (ltSR lt)))) ∘eᴳ Stable.stable k n (inr (<-cancel-S (ltSR (ltSR (ltSR lt))))) module OnDiagonal where π₁ : πS 0 (⊙EM 1) ≃ᴳ πS 0 X π₁ = πS-Trunc-fuse-≤-iso 0 1 X ≤T-refl private module Π₂ = Pi2HSusp H-X π₂ : πS 1 (⊙EM 2) ≃ᴳ πS 0 X π₂ = Π₂.π₂-Susp ∘eᴳ πS-Trunc-fuse-≤-iso 1 2 (⊙Susp (de⊙ X)) ≤T-refl πS-diag : (n : ℕ) → πS n (⊙EM (S n)) ≃ᴳ πS 0 X πS-diag 0 = π₁ πS-diag 1 = π₂ πS-diag (S (S n)) = πS-diag (S n) ∘eᴳ Stable.stable (S n) n ≤-refl module AboveDiagonal where πS-above : ∀ (k n : ℕ) → (n < S k) → πS k (⊙EM n) ≃ᴳ 0ᴳ πS-above k n lt = contr-iso-0ᴳ (πS k (⊙EM n)) (inhab-prop-is-contr [ idp^ (S k) ] {{Trunc-preserves-level 0 (Ω^-level -1 (S k) _ (raise-level-≤T (lemma lt) (EM-level n)))}}) where lemma : {k n : ℕ} → n < k → ⟨ n ⟩ ≤T (⟨ k ⟩₋₂ +2+ -1) lemma ltS = inl (! (+2+-comm _ -1)) lemma (ltSR lt) = ≤T-trans (lemma lt) (inr ltS) module Spectrum where private module Π₂ = Pi2HSusp H-X spectrum0 : ⊙Ω (⊙EM 1) ⊙≃ ⊙EM 0 spectrum0 = ⊙Ω (⊙EM 1) ⊙≃⟨ ⊙Ω-⊙Trunc-comm 0 X ⟩ ⊙Trunc 0 (⊙Ω X) ⊙≃⟨ ⊙unTrunc-equiv (⊙Ω X) ⟩ ⊙Ω X ⊙≃∎ spectrum1 : ⊙Ω (⊙EM 2) ⊙≃ ⊙EM 1 spectrum1 = ⊙Ω (⊙EM 2) ⊙≃⟨ ⊙Ω-⊙Trunc-comm 1 (⊙Susp (de⊙ X)) ⟩ ⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X))) ⊙≃⟨ Π₂.⊙eq ⟩ ⊙EM 1 ⊙≃∎ sconn : (n : ℕ) → is-connected ⟨ S n ⟩ (de⊙ (⊙Susp^ (S n) X)) sconn n = ⊙Susp^-conn' (S n) module FS (n : ℕ) = FreudenthalEquiv ⟨ n ⟩₋₁ ⟨ S (S n) ⟩ (kle n) (⊙Susp^ (S n) X) {{sconn n}} Trunc-fmap-σloop-is-equiv : ∀ (n : ℕ) → is-equiv (Trunc-fmap {n = ⟨ S n ⟩} (σloop (⊙Susp^ n X))) Trunc-fmap-σloop-is-equiv O = snd (Π₂.eq ⁻¹) Trunc-fmap-σloop-is-equiv (S n) = snd (FS.eq n) spectrumSS : (n : ℕ) → ⊙Ω (⊙EM (S (S (S n)))) ⊙≃ ⊙EM (S (S n)) spectrumSS n = ⊙Ω (⊙EM (S (S (S n)))) ⊙≃⟨ ⊙Ω-⊙Trunc-comm ⟨ S (S n) ⟩ (⊙Susp^ (S (S n)) X) ⟩ ⊙Trunc ⟨ S (S n) ⟩ (⊙Ω (⊙Susp^ (S (S n)) X)) ⊙≃⟨ FS.⊙eq n ⊙⁻¹ ⟩ ⊙EM (S (S n)) ⊙≃∎ ⊙–>-spectrumSS : ∀ (n : ℕ) → ⊙–> (spectrumSS n) ◃⊙idf =⊙∘ FS.⊙encodeN n ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm ⟨ S (S n) ⟩ (⊙Susp^ (S (S n)) X)) ◃⊙idf ⊙–>-spectrumSS n = ⊙–> (spectrumSS n) ◃⊙idf =⊙∘⟨ =⊙∘-in {gs = ⊙<– (FS.⊙eq n) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm ⟨ S (S n) ⟩ (⊙Susp^ (S (S n)) X)) ◃⊙idf} $ ⊙λ= (⊙∘-unit-l _) ⟩ ⊙<– (FS.⊙eq n) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm ⟨ S (S n) ⟩ (⊙Susp^ (S (S n)) X)) ◃⊙idf =⊙∘₁⟨ 0 & 1 & FS.⊙<–-⊙eq n ⟩ FS.⊙encodeN n ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm ⟨ S (S n) ⟩ (⊙Susp^ (S (S n)) X)) ◃⊙idf ∎⊙∘ spectrum : (n : ℕ) → ⊙Ω (⊙EM (S n)) ⊙≃ ⊙EM n spectrum 0 = spectrum0 spectrum 1 = spectrum1 spectrum (S (S n)) = spectrumSS n module EMImplicitMap {i} {j} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) {{_ : is-connected 0 (de⊙ X)}} {{_ : is-connected 0 (de⊙ Y)}} {{X-level : has-level 1 (de⊙ X)}} {{Y-level : has-level 1 (de⊙ Y)}} (H-X : HSS X) (H-Y : HSS Y) where ⊙EM-fmap : ∀ n → EMImplicit.⊙EM H-X n ⊙→ EMImplicit.⊙EM H-Y n ⊙EM-fmap O = ⊙Ω-fmap f ⊙EM-fmap (S n) = ⊙Trunc-fmap (⊙Susp^-fmap n f) module SpectrumNatural {i} {X Y : Ptd i} (f : X ⊙→ Y) {{_ : is-connected 0 (de⊙ X)}} {{_ : is-connected 0 (de⊙ Y)}} {{X-level : has-level 1 (de⊙ X)}} {{Y-level : has-level 1 (de⊙ Y)}} (H-X : HSS X) (H-Y : HSS Y) where open EMImplicitMap f H-X H-Y open EMImplicit.Spectrum ⊙–>-spectrum0-natural : ⊙–> (spectrum0 H-Y) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap f) ◃⊙idf =⊙∘ ⊙Ω-fmap f ◃⊙∘ ⊙–> (spectrum0 H-X) ◃⊙idf ⊙–>-spectrum0-natural = ⊙–> (spectrum0 H-Y) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap f) ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙expand (⊙–> (⊙unTrunc-equiv (⊙Ω Y)) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm 0 Y) ◃⊙idf) ⟩ ⊙–> (⊙unTrunc-equiv (⊙Ω Y)) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm 0 Y) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap f) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙–>-⊙Ω-⊙Trunc-comm-natural-=⊙∘ 0 f ⟩ ⊙–> (⊙unTrunc-equiv (⊙Ω Y)) ◃⊙∘ ⊙Trunc-fmap (⊙Ω-fmap f) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm (S (S ⟨-2⟩)) X) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙–>-⊙unTrunc-equiv-natural-=⊙∘ (⊙Ω-fmap f) ⟩ ⊙Ω-fmap f ◃⊙∘ ⊙–> (⊙unTrunc-equiv (⊙Ω X)) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm (S (S ⟨-2⟩)) X) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙contract ⟩ ⊙Ω-fmap f ◃⊙∘ ⊙–> (spectrum0 H-X) ◃⊙idf ∎⊙∘ ⊙–>-spectrum1-natural : ⊙–> (spectrum1 H-Y) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap (⊙Susp-fmap (fst f))) ◃⊙idf =⊙∘ ⊙Trunc-fmap f ◃⊙∘ ⊙–> (spectrum1 H-X) ◃⊙idf ⊙–>-spectrum1-natural = ⊙–> (spectrum1 H-Y) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap (⊙Susp-fmap (fst f))) ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙expand (⊙–> (Pi2HSusp.⊙eq H-Y) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm 1 (⊙Susp (de⊙ Y))) ◃⊙idf) ⟩ ⊙–> (Pi2HSusp.⊙eq H-Y) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm 1 (⊙Susp (de⊙ Y))) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap (⊙Susp-fmap (fst f))) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙–>-⊙Ω-⊙Trunc-comm-natural-=⊙∘ 1 (⊙Susp-fmap (fst f)) ⟩ ⊙–> (Pi2HSusp.⊙eq H-Y) ◃⊙∘ ⊙Trunc-fmap (⊙Ω-fmap (⊙Susp-fmap (fst f))) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm 1 (⊙Susp (de⊙ X))) ◃⊙idf =⊙∘⟨ 0 & 2 & Pi2HSuspNaturality.⊙encodeN-natural f H-X H-Y ⟩ ⊙Trunc-fmap f ◃⊙∘ ⊙–> (Pi2HSusp.⊙eq H-X) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm (S (S (S ⟨-2⟩))) (⊙Susp (de⊙ X))) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙contract ⟩ ⊙Trunc-fmap f ◃⊙∘ ⊙–> (spectrum1 H-X) ◃⊙idf ∎⊙∘ ⊙–>-spectrumSS-natural : ∀ (n : ℕ) → ⊙–> (spectrumSS H-Y n) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap (⊙Susp^-fmap (S (S n)) f)) ◃⊙idf =⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap (S n) f) ◃⊙∘ ⊙–> (spectrumSS H-X n) ◃⊙idf ⊙–>-spectrumSS-natural n = ⊙–> (spectrumSS H-Y n) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap (⊙Susp^-fmap (S (S n)) f)) ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙–>-spectrumSS H-Y n ⟩ FS.⊙encodeN H-Y n ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm ⟨ S (S n) ⟩ (⊙Susp^ (S (S n)) Y)) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap (⊙Susp^-fmap (S (S n)) f)) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙–>-⊙Ω-⊙Trunc-comm-natural-=⊙∘ ⟨ S (S n) ⟩ (⊙Susp^-fmap (S (S n)) f) ⟩ FS.⊙encodeN H-Y n ◃⊙∘ ⊙Trunc-fmap (⊙Ω-fmap (⊙Susp^-fmap (S (S n)) f)) ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm ⟨ S (S n) ⟩ (⊙Susp^ (S (S n)) X)) ◃⊙idf =⊙∘⟨ 0 & 2 & FreudenthalEquivNatural.⊙encodeN-natural ⟨ n ⟩₋₁ ⟨ S (S n) ⟩ (kle n) {X = ⊙Susp^ (S n) X} {Y = ⊙Susp^ (S n) Y} (⊙Susp^-fmap (S n) f) {{sconn H-X n}} {{sconn H-Y n}} ⟩ ⊙Trunc-fmap (⊙Susp^-fmap (S n) f) ◃⊙∘ FS.⊙encodeN H-X n ◃⊙∘ ⊙–> (⊙Ω-⊙Trunc-comm ⟨ S (S n) ⟩ (⊙Susp^ (S (S n)) X)) ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙–>-spectrumSS H-X n ⟩ ⊙Trunc-fmap (⊙Susp^-fmap (S n) f) ◃⊙∘ ⊙–> (spectrumSS H-X n) ◃⊙idf ∎⊙∘ abstract ⊙–>-spectrum-natural : ∀ (n : ℕ) → ⊙–> (spectrum H-Y n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap (S n)) ◃⊙idf =⊙∘ ⊙EM-fmap n ◃⊙∘ ⊙–> (spectrum H-X n) ◃⊙idf ⊙–>-spectrum-natural 0 = ⊙–>-spectrum0-natural ⊙–>-spectrum-natural 1 = ⊙–>-spectrum1-natural ⊙–>-spectrum-natural (S (S n)) = ⊙–>-spectrumSS-natural n ⊙<–-spectrum-natural : ∀ (n : ℕ) → ⊙<– (spectrum H-Y n) ◃⊙∘ ⊙EM-fmap n ◃⊙idf =⊙∘ ⊙Ω-fmap (⊙EM-fmap (S n)) ◃⊙∘ ⊙<– (spectrum H-X n) ◃⊙idf ⊙<–-spectrum-natural n = ⊙<– (spectrum H-Y n) ◃⊙∘ ⊙EM-fmap n ◃⊙idf =⊙∘⟨ 2 & 0 & !⊙∘ $ ⊙<–-inv-r-=⊙∘ (spectrum H-X n) ⟩ ⊙<– (spectrum H-Y n) ◃⊙∘ ⊙EM-fmap n ◃⊙∘ ⊙–> (spectrum H-X n) ◃⊙∘ ⊙<– (spectrum H-X n) ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ (⊙–>-spectrum-natural n) ⟩ ⊙<– (spectrum H-Y n) ◃⊙∘ ⊙–> (spectrum H-Y n) ◃⊙∘ ⊙Ω-fmap (⊙Trunc-fmap (⊙Susp^-fmap n f)) ◃⊙∘ ⊙<– (spectrum H-X n) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙<–-inv-l-=⊙∘ (spectrum H-Y n) ⟩ ⊙Ω-fmap (⊙Trunc-fmap (⊙Susp^-fmap n f)) ◃⊙∘ ⊙<– (spectrum H-X n) ◃⊙idf ∎⊙∘ module EMExplicit {i} (G : AbGroup i) where module HSpace = EM₁HSpace G open EMImplicit {X = ⊙EM₁ (AbGroup.grp G)} {{EM₁-conn}} {{EM₁-level₁ (AbGroup.grp G)}} HSpace.H-⊙EM₁ public open BelowDiagonal public using (πS-below) πS-diag : (n : ℕ) → πS n (⊙EM (S n)) ≃ᴳ AbGroup.grp G πS-diag n = π₁-EM₁ (AbGroup.grp G) ∘eᴳ OnDiagonal.πS-diag n open AboveDiagonal public using (πS-above) abstract spectrum : (n : ℕ) → ⊙Ω (⊙EM (S n)) ⊙≃ ⊙EM n spectrum = Spectrum.spectrum spectrum-def : ∀ n → spectrum n == Spectrum.spectrum n spectrum-def n = idp
{ "alphanum_fraction": 0.4579747936, "avg_line_length": 32.2268907563, "ext": "agda", "hexsha": "51b159ab902061b4604978eddba266fa3152e5f9", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/EilenbergMacLane.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/EilenbergMacLane.agda", "max_line_length": 89, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/EilenbergMacLane.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 6361, "size": 11505 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Core definitions for Characters ------------------------------------------------------------------------ module Data.Char.Core where open import Data.Nat using (ℕ) open import Data.Bool using (Bool; true; false) ------------------------------------------------------------------------ -- The type postulate Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} ------------------------------------------------------------------------ -- Primitive operations primitive primCharToNat : Char → ℕ primCharEquality : Char → Char → Bool -- primShowChar is in Data.String.Core for break an import cycle.
{ "alphanum_fraction": 0.4293478261, "avg_line_length": 26.2857142857, "ext": "agda", "hexsha": "30815210922d4a2b1b421dc5aa6e29a390116cea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Char/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Char/Core.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Char/Core.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 119, "size": 736 }
module Imports.Bool where data Bool : Set where true false : Bool
{ "alphanum_fraction": 0.7285714286, "avg_line_length": 11.6666666667, "ext": "agda", "hexsha": "f3f5baa855e22864f28c4461722963981b02dc02", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Imports/Bool.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Imports/Bool.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Imports/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 18, "size": 70 }
module AKS.Rational where open import AKS.Rational.Base public open import AKS.Rational.Properties public
{ "alphanum_fraction": 0.8108108108, "avg_line_length": 12.3333333333, "ext": "agda", "hexsha": "3b7b94460f51157b84b736c8b849c5807402174c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Rational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Rational.agda", "max_line_length": 42, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Rational.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 25, "size": 111 }
-- Andreas, 2017-12-03, issue #2826, reported by Snicksi, shrunk by sattlerc data A : Set where a : A data B : Set where b : (x : A) → B foo : B → B foo s with a -- WAS: case splitting produces repeated variables in pattern foo s | x = {!s!} -- Expected: Something like the following -- foo (b x₁) | x = {!!}
{ "alphanum_fraction": 0.6277602524, "avg_line_length": 19.8125, "ext": "agda", "hexsha": "7cea0e7616d7cf96f9347d64677d78d6ea6523f8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2826.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2826.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2826.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 109, "size": 317 }
{-# OPTIONS --without-K #-} --open import HoTT open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.FromTo2 {i} (d : Span^2 {i}) where open Span^2 d open M d hiding (Pushout^2) open M (transpose d) using () renaming (module F₁∙ to F∙₁; f₁∙ to f∙₁; module F₃∙ to F∙₃; f₃∙ to f∙₃; v-h-span to h-v-span) open M using (Pushout^2) open To d open From d open import homotopy.3x3.FromToInit d module M2 (c : A₂₂) where coh : ∀ {i} {A : Type i} {a b c d : A} {p q : a == b} (α : p == q) {v w : b == d} {β β' : w == v} (eqβ : β == β') {t u : a == c} {ε ε' : u == t} (eqε : ε == ε') {r s : c == d} (ζ : r == s) (γ : (q , v =□ t , s)) (δ : (p , w =□ u , r)) (eq : γ == δ ∙□-i/ ! β' / ε' / ∙□-o/ ! α / ζ /) → (α , β , γ =□□ δ , ε , ζ) coh idp {β = idp} idp {ε = idp} idp idp _ _ x = x end-lemma1 : ap (right ∘ f₃∙) (glue c) == ap (from ∘ i₄∙ ∘ f₃∙) (glue c) :> E∙₂Red.T-lhs c end-lemma1 = ap (right ∘ f₃∙) (glue c) =⟨ ap-∘ right f₃∙ (glue c) ⟩ ap right (ap f₃∙ (glue c)) =⟨ ap (ap right) (F₃∙.glue-β c) ⟩ ap right (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c)) =⟨ ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) ⟩ ap (right ∘ left) (H₃₁ c) ∙ ap right (glue (f₃₂ c)) ∙ ap (right ∘ right) (H₃₃ c) =⟨ ! (from-to-r-g (f₃₂ c)) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) ⟩ ap (right ∘ left) (H₃₁ c) ∙ (ap (from ∘ i₄∙) (glue (f₃₂ c))) ∙ ap (right ∘ right) (H₃₃ c) =⟨ ! (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) ⟩ ap (from ∘ i₄∙) (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c)) =⟨ ! (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c)) ⟩ ap (from ∘ i₄∙) (ap f₃∙ (glue c)) =⟨ ∘-ap (from ∘ i₄∙) f₃∙ (glue c) ⟩ ap (from ∘ i₄∙ ∘ f₃∙) (glue c) ∎ lemma1 : ↓-='-out (apd (from-to-r ∘ f₃∙) (glue c)) == end-lemma1 lemma1 = ↓-='-out (apd (from-to-r ∘ f₃∙) (glue c)) =⟨ apd-∘'' from-to-r f₃∙ (glue c) (F₃∙.glue-β c) |in-ctx ↓-='-out ⟩ ↓-='-out (↓-ap-out= (λ b → from (to (right b)) == right b) f₃∙ (glue c) (F₃∙.glue-β c) (apd from-to-r (ap left (H₃₁ c) ∙ glue (f₃₂ c) ∙ ap right (H₃₃ c)))) =⟨ apd-∙∙`∘`∘ from-to-r left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) |in-ctx (λ u → ↓-='-out (↓-ap-out= (λ b → from (to (right b)) == right b) f₃∙ (glue c) (F₃∙.glue-β c) u)) ⟩ ↓-='-out (↓-ap-out= (λ b → from (to (right b)) == right b) f₃∙ (glue c) (F₃∙.glue-β c) (↓-ap-in _ _ (apd (λ _ → idp) (H₃₁ c)) ∙ᵈ apd from-to-r (glue (f₃₂ c)) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₃₃ c)))) =⟨ FromToR.glue-β (f₃₂ c) |in-ctx (λ u → ↓-='-out (↓-ap-out= (λ b → from (to (right b)) == right b) f₃∙ (glue c) (F₃∙.glue-β c) (↓-ap-in _ _ (apd (λ _ → idp) (H₃₁ c)) ∙ᵈ u ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₃₃ c))))) ⟩ ↓-='-out (↓-ap-out= (λ b → from (to (right b)) == right b) f₃∙ (glue c) (F₃∙.glue-β c) (↓-ap-in _ _ (apd (λ _ → idp) (H₃₁ c)) ∙ᵈ ↓-='-in (! (from-to-r-g (f₃₂ c))) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₃₃ c)))) =⟨ lemma-a _ f₃∙ (glue c) (F₃∙.glue-β c) _ ⟩ ↓-='-out (↓-ap-in _ _ (apd (λ x → idp {a = right (left x)}) (H₃₁ c)) ∙ᵈ ↓-='-in (! (from-to-r-g (f₃₂ c))) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₃₃ c))) ∙□-i/ ap-∘ right f₃∙ (glue c) ∙ ap (ap right) (F₃∙.glue-β c) / ! (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c)) ∙ ∘-ap (from ∘ i₄∙) f₃∙ (glue c) / =⟨ lemma-b (glue (f₃₂ c)) (apd (λ _ → idp) (H₃₁ c)) (! (from-to-r-g (f₃₂ c))) (apd (λ _ → idp) (H₃₃ c)) |in-ctx (λ u → u ∙□-i/ ap-∘ right f₃∙ (glue c) ∙ ap (ap right) (F₃∙.glue-β c) / ! (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c)) ∙ ∘-ap (from ∘ i₄∙) f₃∙ (glue c) /) ⟩ (↓-='-out (apd (λ x → idp {a = right (left x)}) (H₃₁ c)) ∙□h ((! (from-to-r-g (f₃₂ c))) ∙□h (↓-='-out (apd (λ _ → idp) (H₃₃ c))))) ∙□-i/ ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) / ! (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) / ∙□-i/ ap-∘ right f₃∙ (glue c) ∙ ap (ap right) (F₃∙.glue-β c) / ! (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c)) ∙ ∘-ap (from ∘ i₄∙) f₃∙ (glue c) / =⟨ coh3 |in-ctx (λ u → u ∙□-i/ ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) / ! (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) / ∙□-i/ ap-∘ right f₃∙ (glue c) ∙ ap (ap right) (F₃∙.glue-β c) / ! (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c)) ∙ ∘-ap (from ∘ i₄∙) f₃∙ (glue c) /) ⟩ ((! (from-to-r-g (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∙□-i/ ap-∙∙`∘`∘ right left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c) / ! (ap-∙∙`∘`∘ (from ∘ i₄∙) left right (H₃₁ c) (glue (f₃₂ c)) (H₃₃ c)) / ∙□-i/ ap-∘ right f₃∙ (glue c) ∙ ap (ap right) (F₃∙.glue-β c) / ! (ap (ap (from ∘ i₄∙)) (F₃∙.glue-β c)) ∙ ∘-ap (from ∘ i₄∙) f₃∙ (glue c) / =⟨ coh' ⟩ end-lemma1 ∎ where coh' : ∀ {i} {A : Type i} {x y : A} {a b c d e f g h : x == y} {p : a == b} {q : b == c} {r : c == d} {s : d == e} {t : e == f} {u : f == g} {v : g == h} → (s ∙□-i/ r / t / ∙□-i/ p ∙ q / u ∙ v /) == (a =⟨ p ⟩ b =⟨ q ⟩ c =⟨ r ⟩ d =⟨ s ⟩ e =⟨ t ⟩ f =⟨ u ⟩ g =⟨ v ⟩ h ∎) coh' {p = idp} {idp} {idp} {idp} {idp} {idp} {idp} = idp coh2 : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {x y : A} {p : x == y} → ↓-='-out (apd (λ x → idp {a = f x}) p) == idp {a = ap f p} coh2 {p = idp} = idp coh3 : (↓-='-out (apd (λ x → idp {a = right (left x)}) (H₃₁ c)) ∙□h ((! (from-to-r-g (f₃₂ c))) ∙□h (↓-='-out (apd (λ _ → idp) (H₃₃ c))))) == ((! (from-to-r-g (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) coh3 = ↓-='-out (apd (λ x → idp {a = right (left x)}) (H₃₁ c)) ∙□h ((! (from-to-r-g (f₃₂ c))) ∙□h (↓-='-out (apd (λ _ → idp) (H₃₃ c)))) =⟨ coh2 {f = right ∘ left} {p = H₃₁ c} |in-ctx (λ u → u ∙□h ((! (from-to-r-g (f₃₂ c))) ∙□h (↓-='-out (apd (λ _ → idp) (H₃₃ c))))) ⟩ idp {a = ap (right ∘ left) (H₃₁ c)} ∙□h ((! (from-to-r-g (f₃₂ c))) ∙□h (↓-='-out (apd (λ _ → idp) (H₃₃ c)))) =⟨ coh2 {f = right ∘ right} {p = H₃₃ c} |in-ctx (λ u → idp {a = ap (right ∘ left) (H₃₁ c)} ∙□h ((! (from-to-r-g (f₃₂ c))) ∙□h u)) ⟩ idp {a = ap (right ∘ left) (H₃₁ c)} ∙□h ((! (from-to-r-g (f₃₂ c))) ∙□h idp {a = ap (right ∘ right) (H₃₃ c)}) =⟨ coh4 (ap (right ∘ left) (H₃₁ c)) (ap (right ∘ right) (H₃₃ c)) (! (from-to-r-g (f₃₂ c))) ⟩ ((! (from-to-r-g (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c))) ∎ where coh4 : ∀ {i} {A : Type i} {x y z t : A} (p : x == y) (q : z == t) {s t : y == z} (r : s == t) → (idp {a = p} ∙□h (r ∙□h idp {a = q})) == (r |in-ctx (λ u → p ∙ u ∙ q)) coh4 idp idp idp = idp end-lemma3 : ap (left ∘ f₁∙) (glue c) == ap (from ∘ i₀∙ ∘ f₁∙) (glue c) end-lemma3 = ap (left ∘ f₁∙) (glue c) =⟨ ap-∘ left f₁∙ (glue c) ⟩ ap left (ap f₁∙ (glue c)) =⟨ ap (ap left) (F₁∙.glue-β c) ⟩ ap left (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c)) =⟨ ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) ⟩ ap (left ∘ left) (H₁₁ c) ∙ ap left (glue (f₁₂ c)) ∙ ap (left ∘ right) (H₁₃ c) =⟨ ! (from-to-l-g (f₁₂ c)) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c)) ⟩ ap (left ∘ left) (H₁₁ c) ∙ (ap (from ∘ i₀∙) (glue (f₁₂ c))) ∙ ap (left ∘ right) (H₁₃ c) =⟨ ! (ap-∙∙`∘`∘ (from ∘ i₀∙) left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) ⟩ ap (from ∘ i₀∙) (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c)) =⟨ ! (ap (ap (from ∘ i₀∙)) (F₁∙.glue-β c)) ⟩ ap (from ∘ i₀∙) (ap f₁∙ (glue c)) =⟨ ∘-ap (from ∘ i₀∙) f₁∙ (glue c) ⟩ ap (from ∘ i₀∙ ∘ f₁∙) (glue c) ∎ lemma3 : ↓-='-out (apd (from-to-l ∘ f₁∙) (glue c)) == end-lemma3 lemma3 = ↓-='-out (apd (from-to-l ∘ f₁∙) (glue c)) =⟨ apd-∘'' from-to-l f₁∙ (glue c) (F₁∙.glue-β c) |in-ctx ↓-='-out ⟩ ↓-='-out (↓-ap-out= (λ b → from (to (left b)) == left b) f₁∙ (glue c) (F₁∙.glue-β c) (apd from-to-l (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c)))) =⟨ lemma-a _ f₁∙ (glue c) (F₁∙.glue-β c) (apd from-to-l (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c))) ⟩ ↓-='-out (apd from-to-l (ap left (H₁₁ c) ∙ glue (f₁₂ c) ∙ ap right (H₁₃ c))) ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) / =⟨ apd-∙∙`∘`∘ from-to-l left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) |in-ctx (λ u → ↓-='-out u ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) /) ⟩ ↓-='-out (↓-ap-in _ _ (apd (λ _ → idp) (H₁₁ c)) ∙ᵈ apd from-to-l (glue (f₁₂ c)) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₁₃ c))) ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) / =⟨ FromToL.glue-β (f₁₂ c) |in-ctx (λ u → ↓-='-out (↓-ap-in _ _ (apd (λ _ → idp) (H₁₁ c)) ∙ᵈ u ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₁₃ c))) ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) /) ⟩ ↓-='-out (↓-ap-in _ _ (apd (λ _ → idp) (H₁₁ c)) ∙ᵈ ↓-='-in (! (from-to-l-g (f₁₂ c))) ∙ᵈ ↓-ap-in _ _ (apd (λ _ → idp) (H₁₃ c))) ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) / =⟨ lemma-b (glue (f₁₂ c)) (apd (λ _ → idp) (H₁₁ c)) (! (from-to-l-g (f₁₂ c))) (apd (λ _ → idp) (H₁₃ c)) |in-ctx (λ u → u ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) /) ⟩ (↓-='-out (apd (λ _ → idp) (H₁₁ c)) ∙□h ((! (from-to-l-g (f₁₂ c))) ∙□h ↓-='-out (apd (λ _ → idp) (H₁₃ c)))) ∙□-i/ ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) / ! (ap-∙∙`∘`∘ (from ∘ i₀∙) left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) / ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) / =⟨ coh2 (left ∘ left) (left ∘ right) (H₁₁ c) (! (from-to-l-g (f₁₂ c))) (H₁₃ c) |in-ctx (λ u → u ∙□-i/ ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) / ! (ap-∙∙`∘`∘ (from ∘ i₀∙) left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) / ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) /) ⟩ ((! (from-to-l-g (f₁₂ c))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c))) ∙□-i/ ap-∙∙`∘`∘ left left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c) / ! (ap-∙∙`∘`∘ (from ∘ i₀∙) left right (H₁₁ c) (glue (f₁₂ c)) (H₁₃ c)) / ∙□-i/ ap-∘ left f₁∙ (glue c) ∙ ap (ap left) (F₁∙.glue-β c) / ! (ap (ap (from ∘ to ∘ left)) (F₁∙.glue-β c)) ∙ ∘-ap (from ∘ to ∘ left) f₁∙ (glue c) / =⟨ coh3 ⟩ end-lemma3 ∎ where coh2 : ∀ {i i' j} {A : Type i} {A' : Type i'} {B : Type j} (f : A → B) (f' : A' → B) {a b : A} {a' b' : A'} (p : a == b) {s s' : f b == f' a'} (q : s == s') (r : a' == b') → (↓-='-out (apd (λ x → idp) p) ∙□h (q ∙□h (↓-='-out (apd (λ _ → idp) r)))) == (q |in-ctx (λ u → ap f p ∙ u ∙ ap f' r)) coh2 f f' idp idp idp = idp coh3 : ∀ {i} {A : Type i} {x y : A} {a b c d e f g h : x == y} {p : a == b} {q : b == c} {r : c == d} {s : d == e} {t : e == f} {u : f == g} {v : g == h} → (s ∙□-i/ r / t / ∙□-i/ p ∙ q / u ∙ v /) == (a =⟨ p ⟩ b =⟨ q ⟩ c =⟨ r ⟩ d =⟨ s ⟩ e =⟨ t ⟩ f =⟨ u ⟩ g =⟨ v ⟩ h ∎) coh3 {p = idp} {idp} {idp} {idp} {idp} {idp} {idp} = idp {- Lemma 2 -} lemma2-7 = ↓-='-out (ap↓ (ap from) (apd (glue {d = h-v-span}) (glue c))) =⟨ from-glue-glue-β c |in-ctx ↓-='-out ⟩ ↓-='-out (↓-='-in (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c /) ◃/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) /) =⟨ thing _ (From.glue-β (left (f₁₂ c))) _ ⟩ E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c / ∙□-o/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / ∎ lemma2-6 = ap□ from (↓-='-out (apd (glue {d = h-v-span}) (glue c))) =⟨ ap□-↓-='-out-β _ _ from (apd (glue {d = h-v-span}) (glue c)) ⟩ ↓-='-out (ap↓ (ap from) (apd (glue {d = h-v-span}) (glue c))) ∙□-i/ ∘-ap from (right ∘ f∙₃) (glue c) / ap-∘ from (left ∘ f∙₁) (glue c) / =⟨ lemma2-7 |in-ctx (λ u → (u ∙□-i/ ∘-ap from (right ∘ f∙₃) (glue c) / ap-∘ from (left ∘ f∙₁) (glue c) /)) ⟩ E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c / ∙□-o/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / ∙□-i/ ∘-ap from (right ∘ f∙₃) (glue c) / ap-∘ from (left ∘ f∙₁) (glue c) / ∎ lemma2-5 = ap□ from (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) =⟨ ap□-∙□-i/ from _ (E₂∙Red.lhs-i c) _ ⟩ ap□ from (↓-='-out (apd (glue {d = h-v-span}) (glue c))) ∙□-i/ ap (ap from) (E₂∙Red.lhs-i c) / ap (ap from) (E₂∙Red.rhs-i c) / =⟨ lemma2-6 |in-ctx (λ u → u ∙□-i/ ap (ap from) (E₂∙Red.lhs-i c) / ap (ap from) (E₂∙Red.rhs-i c) /) ⟩ E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c / ∙□-o/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / ∙□-i/ ∘-ap from (right ∘ f∙₃) (glue c) / ap-∘ from (left ∘ f∙₁) (glue c) / ∙□-i/ ap (ap from) (E₂∙Red.lhs-i c) / ap (ap from) (E₂∙Red.rhs-i c) / ∎ lemma2'-1 = E₂∙Red.ap-ap-coh-lhs-i c from ∙ ap (ap from) (E₂∙Red.lhs-i c) ∙ ∘-ap from (right ∘ f∙₃) (glue c) ∙ E∙₂Red.lhs-o c =⟨ eq1 {f = ap from} {q = ! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c))} { ! (F∙₃.glue-β c) |in-ctx (ap right)} {∘-ap right f∙₃ (glue c)} {p = E₂∙Red.ap-ap-coh-lhs-i c from} {∘-ap from (right ∘ f∙₃) (glue c)} {ap-∘ i∙₄ f∙₃ (glue c)} {F∙₃.glue-β c |in-ctx (ap i∙₄)} {ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)} {I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))} ⟩ (! (ap-∙∙!'`∘`∘ from (right ∘ left) (right ∘ right) (H₁₃ c) (ap right (glue (f₂₃ c))) (H₃₃ c)) ∙ ap (ap from) (! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c))) ∙ (ap (ap from) (! (F∙₃.glue-β c) |in-ctx (ap right)) ∙ (ap (ap from) (∘-ap right f∙₃ (glue c)) ∙ ∘-ap from (right ∘ f∙₃) (glue c) ∙ ap-∘ i∙₄ f∙₃ (glue c)) ∙ (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) =⟨ ap-∘^3-coh from right f∙₃ (glue c) |in-ctx (λ u → (! (ap-∙∙!'`∘`∘ from (right ∘ left) (right ∘ right) (H₁₃ c) (ap right (glue (f₂₃ c))) (H₃₃ c)) ∙ ap (ap from) (! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c))) ∙ (ap (ap from) (! (F∙₃.glue-β c) |in-ctx (ap right)) ∙ u ∙ (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))))) ⟩ (! (ap-∙∙!'`∘`∘ from (right ∘ left) (right ∘ right) (H₁₃ c) (ap right (glue (f₂₃ c))) (H₃₃ c)) ∙ ap (ap from) (! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c))) ∙ (ap (ap from) (! (F∙₃.glue-β c) |in-ctx (ap right)) ∙ ∘-ap from right (ap f∙₃ (glue c)) ∙ (F∙₃.glue-β c |in-ctx (ap i∙₄))) ∙ ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) =⟨ ap-∘-ap-coh from right (F∙₃.glue-β c) |in-ctx (λ u → (! (ap-∙∙!'`∘`∘ from (right ∘ left) (right ∘ right) (H₁₃ c) (ap right (glue (f₂₃ c))) (H₃₃ c)) ∙ ap (ap from) (! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c))) ∙ u ∙ ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))))) ⟩ (! (ap-∙∙!'`∘`∘ from (right ∘ left) (right ∘ right) (H₁₃ c) (ap right (glue (f₂₃ c))) (H₃₃ c)) ∙ ap (ap from) (! (ap-∙∙!`∘`∘ right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c))) ∙ ∘-ap from right (ap left (H₁₃ c) ∙ glue (f₂₃ c) ∙ ap right (! (H₃₃ c))) ∙ ap-∙∙!`∘`∘ i∙₄ left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c)) ∙ (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) =⟨ ap-∘-ap-∙∙!`∘`∘-coh from right left right (H₁₃ c) (glue (f₂₃ c)) (H₃₃ c) |in-ctx (λ u → u ∙ (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))))) ⟩ (∘-ap from right (glue (f₂₃ c)) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) ∙ (I∙₄.glue-β (f₂₃ c) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) =⟨ ∙-|in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) (∘-ap from right (glue (f₂₃ c))) (I∙₄.glue-β (f₂₃ c)) ⟩ ((∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c)))) ∎ where eq1 : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a b c d : A} {q : a == b} {r : b == c} {s : c == d} {g h k l m n : B} {p : g == f a} {t : f d == h} {u : h == k} {v : k == l} {w : l == m} {x : m == n} → p ∙ ap f (_ =⟨ q ⟩ _ =⟨ r ⟩ _ =⟨ s ⟩ _ ∎) ∙ t ∙ (_ =⟨ u ⟩ _ =⟨ v ⟩ _ =⟨ w ⟩ _ =⟨ x ⟩ _ ∎) == (p ∙ ap f q ∙ (ap f r ∙ (ap f s ∙ t ∙ u) ∙ v) ∙ w) ∙ x eq1 {q = idp} {idp} {idp} {p = p} {idp} {idp} {idp} {idp} {idp} = ! (∙-unit-r (p ∙ idp)) lemma2'-2 : E∙₂Red.rhs-o c ∙ ap-∘ from (left ∘ f∙₁) (glue c) ∙ ap (ap from) (E₂∙Red.rhs-i c) ∙ E₂∙Red.ap-ap-coh-rhs-i c from == (! (∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) lemma2'-2 = E∙₂Red.rhs-o c ∙ ap-∘ from (left ∘ f∙₁) (glue c) ∙ ap (ap from) (E₂∙Red.rhs-i c) ∙ E₂∙Red.ap-ap-coh-rhs-i c from =⟨ eq1 {f = ap from} {p = ! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))} { ! (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c))} { ! (F∙₁.glue-β c) |in-ctx (λ u → ap i∙₀ u)} {∘-ap i∙₀ f∙₁ (glue c)} {ap-∘ from (left ∘ f∙₁) (glue c)} {ap-∘ left f∙₁ (glue c)} {F∙₁.glue-β c |in-ctx (ap left)} {ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)} {ap-!'∙∙`∘`∘ from (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₂₁ c))) (H₃₁ c)} ⟩ (! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))) ∙ ((! (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c))) ∙ ((! (F∙₁.glue-β c) |in-ctx (λ u → ap i∙₀ u)) ∙ (∘-ap i∙₀ f∙₁ (glue c) ∙ ap-∘ from (left ∘ f∙₁) (glue c) ∙ ap (ap from) (ap-∘ left f∙₁ (glue c))) ∙ ap (ap from) (F∙₁.glue-β c |in-ctx (ap left))) ∙ ap (ap from) (ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap-!'∙∙`∘`∘ from (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₂₁ c))) (H₃₁ c)) =⟨ ap-∘^3-coh' from left f∙₁ (glue c) |in-ctx (λ u → (! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))) ∙ ((! (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c))) ∙ ((! (F∙₁.glue-β c) |in-ctx (λ u → ap i∙₀ u)) ∙ u ∙ ap (ap from) (F∙₁.glue-β c |in-ctx (ap left))) ∙ ap (ap from) (ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap-!'∙∙`∘`∘ from (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₂₁ c))) (H₃₁ c))) ⟩ (! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))) ∙ ((! (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c))) ∙ ((! (F∙₁.glue-β c) |in-ctx (ap i∙₀)) ∙ ap-∘ from left (ap f∙₁ (glue c)) ∙ ap (ap from) (F∙₁.glue-β c |in-ctx (ap left))) ∙ ap (ap from) (ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap-!'∙∙`∘`∘ from (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₂₁ c))) (H₃₁ c)) =⟨ ap-∘-ap-coh' from left (F∙₁.glue-β c) |in-ctx (λ u → (! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))) ∙ ((! (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c))) ∙ u ∙ ap (ap from) (ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap-!'∙∙`∘`∘ from (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₂₁ c))) (H₃₁ c))) ⟩ (! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))) ∙ ((! (ap-!∙∙`∘`∘ i∙₀ left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c))) ∙ ap-∘ from left (ap left (! (H₁₁ c)) ∙ glue (f₂₁ c) ∙ ap right (H₃₁ c)) ∙ ap (ap from) (ap-!∙∙`∘`∘ left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c)) ∙ ap-!'∙∙`∘`∘ from (left ∘ left) (left ∘ right) (H₁₁ c) (ap left (glue (f₂₁ c))) (H₃₁ c)) =⟨ ap-∘-ap-!∙∙`∘`∘-coh from left left right (H₁₁ c) (glue (f₂₁ c)) (H₃₁ c) |in-ctx (λ u → (! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))) ∙ u) ⟩ (! (I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → (! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)))) ∙ (ap-∘ from left (glue (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) =⟨ coh2 (glue (f₂₁ c)) (I∙₀.glue-β (f₂₁ c)) ⟩ (! (∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c)) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))) ∎ where eq1 : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a b c d e : B} {k l m n : A} {o : B} {p : a == b} {q : b == c} {r : c == d} {s : d == e} {t : e == f k} {u : k == l} {v : l == m} {w : m == n} {x : f n == o} → (_ =⟨ p ⟩ _ =⟨ q ⟩ _ =⟨ r ⟩ _ =⟨ s ⟩ _ ∎) ∙ t ∙ ap f (_ =⟨ u ⟩ _ =⟨ v ⟩ _ =⟨ w ⟩ _ ∎) ∙ x == (p ∙ (q ∙ ((r ∙ (s ∙ t ∙ ap f u) ∙ ap f v) ∙ ap f w ∙ x))) eq1 {p = idp} {idp} {idp} {idp} {t = t} {idp} {idp} {idp} {idp} = ! (∙-unit-r (t ∙ idp)) ∙ ! (∙-unit-r ((t ∙ idp) ∙ idp)) coh2 : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l} {a a' : A} (q : a == a') {h : A → B} {g : B → C} {f : (g (h a) == g (h a')) → D} {r : g (h a) == g (h a')} (p : ap (g ∘ h) q == r) → ((! p) |in-ctx f) ∙ (ap-∘ g h q |in-ctx f) == (! (∘-ap g h q ∙ p) |in-ctx f) coh2 idp p = ∙-unit-r _ lemma2-4' = ap□ from (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.ap-ap-coh-lhs-i c from / E₂∙Red.ap-ap-coh-rhs-i c from / =⟨ lemma2-5 |in-ctx (λ u → u ∙□-i/ E₂∙Red.ap-ap-coh-lhs-i c from / E₂∙Red.ap-ap-coh-rhs-i c from /) ⟩ E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-i/ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c / ∙□-o/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / ∙□-i/ ∘-ap from (right ∘ f∙₃) (glue c) / ap-∘ from (left ∘ f∙₁) (glue c) / ∙□-i/ ap (ap from) (E₂∙Red.lhs-i c) / ap (ap from) (E₂∙Red.rhs-i c) / ∙□-i/ E₂∙Red.ap-ap-coh-lhs-i c from / E₂∙Red.ap-ap-coh-rhs-i c from / =⟨ assoc (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /)) (E∙₂Red.lhs-o c) (∘-ap from (right ∘ f∙₃) (glue c)) (ap (ap from) (E₂∙Red.lhs-i c)) (E₂∙Red.ap-ap-coh-lhs-i c from) _ _ _ _ (From.glue-β (left (f₁₂ c))) _ ⟩ E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-o/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / ∙□-i/ E₂∙Red.ap-ap-coh-lhs-i c from ∙ ap (ap from) (E₂∙Red.lhs-i c) ∙ ∘-ap from (right ∘ f∙₃) (glue c) ∙ E∙₂Red.lhs-o c / E∙₂Red.rhs-o c ∙ ap-∘ from (left ∘ f∙₁) (glue c) ∙ ap (ap from) (E₂∙Red.rhs-i c) ∙ E₂∙Red.ap-ap-coh-rhs-i c from / =⟨ ∙□-i/-rewrite (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-o/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) /) lemma2'-1 lemma2'-2 ⟩ -- rewrite E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-o/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / ∙□-i/ (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) / (! (∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c)) / ∎ where assoc : ∀ {i} {A : Type i} {a b b' c : A} {u u' : a == b} {v v1 v2 v3 v4 : b == c} {w w1 w2 w3 w4 : a == b'} {x x' : b' == c} (α : (u , v =□ w , x)) (p1 : v1 == v) (p2 : v2 == v1) (p3 : v3 == v2) (p4 : v4 == v3) (q1 : w == w1) (q2 : w1 == w2) (q3 : w2 == w3) (q4 : w3 == w4) (r : u' == u) (s : x == x') → α ∙□-i/ p1 / q1 / ∙□-o/ r / s / ∙□-i/ p2 / q2 / ∙□-i/ p3 / q3 / ∙□-i/ p4 / q4 / == α ∙□-o/ r / s / ∙□-i/ p4 ∙ p3 ∙ p2 ∙ p1 / q1 ∙ q2 ∙ q3 ∙ q4 / assoc α idp idp idp idp idp idp idp idp idp idp = idp lemma2-4'' = E₂∙Red.ap-ap-coh c from (ap□ from (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.ap-ap-coh-lhs-i c from / E₂∙Red.ap-ap-coh-rhs-i c from /) =⟨ lemma2-4' |in-ctx (E₂∙Red.ap-ap-coh c from) ⟩ E₂∙Red.ap-ap-coh c from (E∙₂Red.coh! c (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ∙□-o/ From.glue-β (left (f₁₂ c)) / ! (From.glue-β (right (f₃₂ c))) / ∙□-i/ (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) |in-ctx (λ u → ap (left ∘ right) (H₁₃ c) ∙ u ∙ ! (ap (right ∘ right) (H₃₃ c))) / (! (∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c))) |in-ctx (λ u → ! (ap (left ∘ left) (H₁₁ c)) ∙ u ∙ ap (right ∘ left) (H₃₁ c))/) =⟨ lemma (∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c)) (From.glue-β (right (f₃₂ c))) (From.glue-β (left (f₁₂ c))) (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) (↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c /) ⟩ ↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c / ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ (From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) / (! (From.glue-β (left (f₁₂ c)))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c)) / ∎ lemma2-4 = ap□ from (E₂∙Red.coh c (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /)) =⟨ E₂∙Red.ap-ap-coh-β c from (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ⟩ E₂∙Red.ap-ap-coh c from (ap□ from (↓-='-out (apd (glue {d = h-v-span}) (glue c)) ∙□-i/ E₂∙Red.lhs-i c / E₂∙Red.rhs-i c /) ∙□-i/ E₂∙Red.ap-ap-coh-lhs-i c from / E₂∙Red.ap-ap-coh-rhs-i c from /) ∙□-i/ E₂∙Red.ap-ap-coh-lhs-o c from / E₂∙Red.ap-ap-coh-rhs-o c from / =⟨ lemma2-4'' |in-ctx (λ u → u ∙□-i/ E₂∙Red.ap-ap-coh-lhs-o c from / E₂∙Red.ap-ap-coh-rhs-o c from /) ⟩ ↓-='-out (apd (glue {d = v-h-span}) (glue c)) ∙□-i/ E∙₂Red.lhs-i c / E∙₂Red.rhs-i c / ∙□-o/ ∘-ap from left (glue (f₂₁ c)) ∙ I∙₀.glue-β (f₂₁ c) / ! (∘-ap from right (glue (f₂₃ c)) ∙ I∙₄.glue-β (f₂₃ c)) / ∙□-i/ (From.glue-β (right (f₃₂ c))) |in-ctx (λ u → ap (right ∘ left) (H₃₁ c) ∙ u ∙ ap (right ∘ right) (H₃₃ c)) / (! (From.glue-β (left (f₁₂ c)))) |in-ctx (λ u → ap (left ∘ left) (H₁₁ c) ∙ u ∙ ap (left ∘ right) (H₁₃ c)) / ∙□-i/ E₂∙Red.ap-ap-coh-lhs-o c from / E₂∙Red.ap-ap-coh-rhs-o c from / ∎
{ "alphanum_fraction": 0.4286045357, "avg_line_length": 58.6504854369, "ext": "agda", "hexsha": "73d104e36ca166560ef4f48a243627a3120b501e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/3x3/FromTo2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/3x3/FromTo2.agda", "max_line_length": 205, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/3x3/FromTo2.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 16462, "size": 30205 }
module _ where open import Common.Prelude open import Common.Equality record Functor (F : Set → Set) : Set₁ where field fmap : ∀ {A B} → (A → B) → F A → F B open Functor {{...}} public record Applicative (F : Set → Set) : Set₁ where field pure : ∀ {A} → A → F A _<*>_ : ∀ {A B} → F (A → B) → F A → F B instance Fun : Functor F defaultApplicativeFunctor : Functor F fmap {{defaultApplicativeFunctor}} f x = pure f <*> x open Applicative {{...}} public hiding (Fun) -- Concrete instances -- data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) vmap : ∀ {A B n} → (A → B) → Vec A n → Vec B n vmap f [] = [] vmap f (x ∷ xs) = f x ∷ vmap f xs it : ∀ {a} {A : Set a} {{_ : A}} → A it {{x}} = x pureV : ∀ {n A} → A → Vec A n pureV {zero} _ = [] pureV {suc n} x = x ∷ pureV x instance FunctorVec : ∀ {n} → Functor (λ A → Vec A n) fmap {{FunctorVec}} = vmap ApplicativeVec : ∀ {n} → Applicative (λ A → Vec A n) pure {{ApplicativeVec}} x = pureV x _<*>_ {{ApplicativeVec}} [] [] = [] _<*>_ {{ApplicativeVec}} (f ∷ fs) (x ∷ xs) = f x ∷ (fs <*> xs) Applicative.Fun ApplicativeVec = FunctorVec -- In this case there are two candidates for Functor Vec: -- FunctorVec and Applicative.Fun ApplicativeVec -- but since they are equal everything works out. testVec : ∀ {n} → Vec Nat n → Vec Nat n → Vec Nat n testVec xs ys = fmap _+_ xs <*> ys what : ∀ {n} → FunctorVec {n} ≡ it what = refl
{ "alphanum_fraction": 0.5698924731, "avg_line_length": 25.2203389831, "ext": "agda", "hexsha": "8c3d375edd349d7207a42cffbaef0859220f8e70", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/SuperClasses.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/SuperClasses.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/SuperClasses.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 539, "size": 1488 }
module _ where open import Agda.Builtin.Nat open import Agda.Builtin.Equality postulate String : Set {-# BUILTIN STRING String #-} primitive @0 ⦃ primShowNat ⦄ : Nat → String -- Wrong modality for primitive primShowNat -- Got: instance, erased -- Expected: visible, unrestricted -- when checking that the type of the primitive function primShowNat -- is Nat → String
{ "alphanum_fraction": 0.7246753247, "avg_line_length": 20.2631578947, "ext": "agda", "hexsha": "30d324d78e4d6bba8addb65cbc96075953e176b8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/WrongPrimitiveModality.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/WrongPrimitiveModality.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/WrongPrimitiveModality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 103, "size": 385 }
{-# OPTIONS --without-K #-} module PathStructure.Sigma {a b} {A : Set a} {B : A → Set b} where open import Equivalence open import PathOperations open import Transport open import Types ap₂-dep : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Set c} {x x′ : A} {y : B x} {y′ : B x′} (f : (a : A) (b : B a) → C) (p : x ≡ x′) (q : tr B p y ≡ y′) → f x y ≡ f x′ y′ ap₂-dep {B = B} f p q = J (λ x x′ p → (y : B x) (y′ : B x′) (q : tr B p y ≡ y′) → f x y ≡ f x′ y′) (λ x _ _ q → ap (f x) q) _ _ p _ _ q ap₂-dep-eq : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Set c} (f : (x : A) → B x → C) {x x′ : A} (p p′ : x ≡ x′) (pp : p ≡ p′) {y : B x} {y′ : B x′} (q : tr B p y ≡ y′) (q′ : tr B p′ y ≡ y′) (qq : tr (λ z → tr B z y ≡ y′) pp q ≡ q′) → ap₂-dep f p q ≡ ap₂-dep f p′ q′ ap₂-dep-eq {B = B} f {x = x} {x′ = x′} p p′ pp q q′ qq = J (λ p p′ pp → (y : B x) (y′ : B x′) (q : tr B p y ≡ y′) (q′ : tr B p′ y ≡ y′) (qq : tr (λ z → tr B z y ≡ y′) pp q ≡ q′) → ap₂-dep f p q ≡ ap₂-dep f p′ q′) (λ p _ _ q q′ qq → J (λ q q′ qq → ap₂-dep f p q ≡ ap₂-dep f p q′) (λ _ → refl) _ _ qq) _ _ pp _ _ _ _ qq split-path : {x y : Σ A B} → x ≡ y → Σ (π₁ x ≡ π₁ y) (λ p → tr B p (π₂ x) ≡ π₂ y) split-path {x = x} p = ap π₁ p , tr-∘ π₁ p (π₂ x) ⁻¹ · apd π₂ p merge-path : {x y : Σ A B} → Σ (π₁ x ≡ π₁ y) (λ p → tr B p (π₂ x) ≡ π₂ y) → x ≡ y merge-path pq = ap₂-dep _,_ (π₁ pq) (π₂ pq) split-merge-eq : {x y : Σ A B} → (x ≡ y) ≃ Σ (π₁ x ≡ π₁ y) (λ p → tr B p (π₂ x) ≡ π₂ y) split-merge-eq = split-path , (merge-path , λ pq → J (λ x x′ p → (y : B x) (y′ : B x′) (q : tr B p y ≡ y′) → split-path (merge-path (p , q)) ≡ p , q) (λ x y y′ q → J {A = B x} (λ _ _ q → split-path (merge-path (refl , q)) ≡ refl , q) (λ _ → refl) _ _ q) _ _ (π₁ pq) _ _ (π₂ pq)) , (merge-path , J (λ _ _ p → merge-path (split-path p) ≡ p) (λ _ → refl) _ _)
{ "alphanum_fraction": 0.4273815721, "avg_line_length": 33.701754386, "ext": "agda", "hexsha": "845b6cbcbc058a82b820aaedbbce5cec75b70a0e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vituscze/HoTT-lectures", "max_forks_repo_path": "src/PathStructure/Sigma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vituscze/HoTT-lectures", "max_issues_repo_path": "src/PathStructure/Sigma.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vituscze/HoTT-lectures", "max_stars_repo_path": "src/PathStructure/Sigma.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 985, "size": 1921 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Primitive IO: simple bindings to Haskell types and functions ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module IO.Primitive where open import Codata.Musical.Costring open import Data.Char.Base open import Data.String.Base open import Foreign.Haskell ------------------------------------------------------------------------ -- The IO monad open import Agda.Builtin.IO public using (IO) infixl 1 _>>=_ postulate return : ∀ {a} {A : Set a} → A → IO A _>>=_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B {-# COMPILE GHC return = \_ _ -> return #-} {-# COMPILE GHC _>>=_ = \_ _ _ _ -> (>>=) #-} {-# COMPILE UHC return = \_ _ x -> UHC.Agda.Builtins.primReturn x #-} {-# COMPILE UHC _>>=_ = \_ _ _ _ x y -> UHC.Agda.Builtins.primBind x y #-} ------------------------------------------------------------------------ -- Simple lazy IO -- Note that the functions below produce commands which, when -- executed, may raise exceptions. -- Note also that the semantics of these functions depends on the -- version of the Haskell base library. If the version is 4.2.0.0 (or -- later?), then the functions use the character encoding specified by -- the locale. For older versions of the library (going back to at -- least version 3) the functions use ISO-8859-1. {-# FOREIGN GHC import qualified Data.Text #-} {-# FOREIGN GHC import qualified Data.Text.IO #-} {-# FOREIGN GHC import qualified System.IO #-} {-# FOREIGN GHC import qualified Control.Exception #-} postulate getContents : IO Costring readFile : String → IO Costring writeFile : String → Costring → IO Unit appendFile : String → Costring → IO Unit putStr : Costring → IO Unit putStrLn : Costring → IO Unit -- Reads a finite file. Raises an exception if the file path refers -- to a non-physical file (like "/dev/zero"). readFiniteFile : String → IO String {-# FOREIGN GHC readFiniteFile :: Data.Text.Text -> IO Data.Text.Text readFiniteFile f = do h <- System.IO.openFile (Data.Text.unpack f) System.IO.ReadMode Control.Exception.bracketOnError (return ()) (\_ -> System.IO.hClose h) (\_ -> System.IO.hFileSize h) Data.Text.IO.hGetContents h fromColist :: MAlonzo.Code.Codata.Musical.Colist.AgdaColist a -> [a] fromColist MAlonzo.Code.Codata.Musical.Colist.Nil = [] fromColist (MAlonzo.Code.Codata.Musical.Colist.Cons x xs) = x : fromColist (MAlonzo.RTE.flat xs) toColist :: [a] -> MAlonzo.Code.Codata.Musical.Colist.AgdaColist a toColist [] = MAlonzo.Code.Codata.Musical.Colist.Nil toColist (x : xs) = MAlonzo.Code.Codata.Musical.Colist.Cons x (MAlonzo.RTE.Sharp (toColist xs)) #-} {-# COMPILE GHC getContents = fmap toColist getContents #-} {-# COMPILE GHC readFile = fmap toColist . readFile . Data.Text.unpack #-} {-# COMPILE GHC writeFile = \x -> writeFile (Data.Text.unpack x) . fromColist #-} {-# COMPILE GHC appendFile = \x -> appendFile (Data.Text.unpack x) . fromColist #-} {-# COMPILE GHC putStr = putStr . fromColist #-} {-# COMPILE GHC putStrLn = putStrLn . fromColist #-} {-# COMPILE GHC readFiniteFile = readFiniteFile #-} {-# COMPILE UHC getContents = UHC.Agda.Builtins.primGetContents #-} {-# COMPILE UHC readFile = UHC.Agda.Builtins.primReadFile #-} {-# COMPILE UHC writeFile = UHC.Agda.Builtins.primWriteFile #-} {-# COMPILE UHC appendFile = UHC.Agda.Builtins.primAppendFile #-} {-# COMPILE UHC putStr = UHC.Agda.Builtins.primPutStr #-} {-# COMPILE UHC putStrLn = UHC.Agda.Builtins.primPutStrLn #-} {-# COMPILE UHC readFiniteFile = UHC.Agda.Builtins.primReadFiniteFile #-}
{ "alphanum_fraction": 0.5907615481, "avg_line_length": 42.1578947368, "ext": "agda", "hexsha": "2dc16a010997291c4d0f713b42a40725cc836b15", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/IO/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/IO/Primitive.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/IO/Primitive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1023, "size": 4005 }
module product where open import Data.Nat using (ℕ; _*_) open import lists using (List; foldr) -- リストの要素の積 product : (List ℕ) → ℕ product xs = foldr _*_ 1 xs
{ "alphanum_fraction": 0.7, "avg_line_length": 17.7777777778, "ext": "agda", "hexsha": "17333e10a404ea3ea5f223ac7835c3f58a8d8347", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/lists/product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/lists/product.agda", "max_line_length": 37, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/lists/product.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 58, "size": 160 }
{-# OPTIONS --universe-polymorphism #-} module Issue229 where open import Common.Level data Works a b : Set (lsuc a ⊔ lsuc b) where w : (A : Set a)(B : Set b) → Works a b record Doesn'tWork a b : Set (lsuc a ⊔ lsuc b) where field A : Set a B : Set b -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Interaction/Highlighting/Generate.hs:469
{ "alphanum_fraction": 0.6747572816, "avg_line_length": 24.2352941176, "ext": "agda", "hexsha": "456ed255179faf44256e3dcf24b5a01d29fcc8a6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue229.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue229.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue229.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 127, "size": 412 }
{-# OPTIONS --safe --cubical #-} module Data.List.Kleene where open import Prelude open import Data.Fin mutual infixr 5 _&_ ∹_ infixl 5 _⁺ _⋆ record _⁺ {a} (A : Set a) : Set a where inductive constructor _&_ field head : A tail : A ⋆ data _⋆ {a} (A : Set a) : Set a where [] : A ⋆ ∹_ : A ⁺ → A ⋆ open _⁺ public mutual foldr⁺ : (A → B → B) → B → A ⁺ → B foldr⁺ f b (x & xs) = f x (foldr⋆ f b xs) foldr⋆ : (A → B → B) → B → A ⋆ → B foldr⋆ f b [] = b foldr⋆ f b (∹ xs) = foldr⁺ f b xs length⋆ : A ⋆ → ℕ length⋆ = foldr⋆ (const suc) zero length⁺ : A ⁺ → ℕ length⁺ = foldr⁺ (const suc) zero mutual _!⁺_ : (xs : A ⁺) → Fin (length⁺ xs) → A xs !⁺ f0 = xs .head xs !⁺ fs i = xs .tail !⋆ i _!⋆_ : (xs : A ⋆) → Fin (length⋆ xs) → A (∹ xs) !⋆ i = xs !⁺ i map⋆ : (A → B) → A ⋆ → B ⋆ map⋆ f = foldr⋆ (λ x xs → ∹ f x & xs) [] map⁺ : (A → B) → A ⁺ → B ⁺ map⁺ f (x & xs) = f x & map⋆ f xs mutual _⋆++⋆_ : A ⋆ → A ⋆ → A ⋆ [] ⋆++⋆ ys = ys (∹ xs) ⋆++⋆ ys = ∹ (xs ⁺++⋆ ys) _⁺++⋆_ : A ⁺ → A ⋆ → A ⁺ head (xs ⁺++⋆ ys) = head xs tail (xs ⁺++⋆ ys) = tail xs ⋆++⋆ ys
{ "alphanum_fraction": 0.4472984942, "avg_line_length": 19.1355932203, "ext": "agda", "hexsha": "33c4557286c92adcaa56ac6af4bdec361434dcc0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/List/Kleene.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/List/Kleene.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/List/Kleene.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 621, "size": 1129 }
-- Lemma for `Constructive.Axiom.Properties.Base` {-# OPTIONS --without-K --safe #-} module Constructive.Axiom.Properties.Base.Lemma where -- agda-stdlib open import Data.Empty open import Data.Nat import Data.Nat.Properties as ℕₚ open import Data.Product open import Data.Sum as Sum open import Data.Sum.Properties open import Function.Base open import Relation.Binary.PropositionalEquality open import Relation.Nullary -- agda-misc open import Constructive.Combinators open import Constructive.Common -- lemma for `ℕ-llpo⇒mp∨` ℕ≤-any-dec : ∀ {p} {P : ℕ → Set p} → DecU P → DecU (λ n → ∃ λ m → m ≤ n × P m) ℕ≤-any-dec {P = P} P? zero with P? 0 ... | inj₁ P0 = inj₁ (0 , ℕₚ.≤-refl , P0) ... | inj₂ ¬P0 = inj₂ λ {(m , m≤0 , Pm) → ¬P0 (subst P (ℕₚ.n≤0⇒n≡0 m≤0) Pm)} ℕ≤-any-dec P? (suc n) with P? 0 ... | inj₁ P0 = inj₁ (0 , (z≤n , P0)) ... | inj₂ ¬P0 with ℕ≤-any-dec (P? ∘ suc) n ℕ≤-any-dec {P = P} P? (suc n) | inj₂ ¬P0 | inj₁ (m , m≤n , Psm) = inj₁ (suc m , s≤s m≤n , Psm) ℕ≤-any-dec {P = P} P? (suc n) | inj₂ ¬P0 | inj₂ ¬∃m→m≤n×Psm = inj₂ f where f : (∃ λ m → m ≤ suc n × P m) → ⊥ f (zero , m≤sn , Pm) = ¬P0 Pm f (suc m , sm≤sn , Psm) = ¬∃m→m≤n×Psm (m , (ℕₚ.≤-pred sm≤sn , Psm)) private 1+n≰0 : ∀ n → ¬ (suc n ≤ 0) 1+n≰0 n () module _ {p} {P : ℕ → Set p} (P? : DecU P) where ℕ<-any-dec : DecU (λ n → ∃ λ m → m < n × P m) ℕ<-any-dec zero = inj₂ λ {(m , m<0 , _) → 1+n≰0 m m<0} ℕ<-any-dec (suc n) with ℕ≤-any-dec P? n ... | inj₁ (m , m≤n , Pm) = inj₁ (m , s≤s m≤n , Pm) ... | inj₂ ¬∃m→m≤n×Pm = inj₂ (contraposition f ¬∃m→m≤n×Pm) where f : (∃ λ m → suc m ≤ suc n × P m) → ∃ λ m → m ≤ n × P m f (m , sm≤sn , Pm) = m , (ℕₚ.≤-pred sm≤sn , Pm) ℕ≤-all-dec : DecU (λ n → ∀ m → m ≤ n → P m) ℕ≤-all-dec n with ℕ≤-any-dec (¬-DecU P?) n ... | inj₁ (m , m≤n , ¬Pm) = inj₂ λ ∀i→i≤n→Pi → ¬Pm (∀i→i≤n→Pi m m≤n) ... | inj₂ ¬∃m→m≤n׬Pm = inj₁ λ m m≤n → DecU⇒stable P? m λ ¬Pm → ¬∃m→m≤n׬Pm (m , m≤n , ¬Pm) module _ {p} {P : ℕ → Set p} (P? : DecU P) where ℕ<-all-dec : DecU (λ n → ∀ m → m < n → P m) ℕ<-all-dec n with ℕ<-any-dec (¬-DecU P?) n ... | inj₁ (m , m<n , ¬Pm) = inj₂ λ ∀i→i<n→Pi → ¬Pm (∀i→i<n→Pi m m<n) ... | inj₂ ¬∃m→m<n׬Pm = inj₁ λ m m<n → DecU⇒stable P? m λ ¬Pm → ¬∃m→m<n׬Pm (m , m<n , ¬Pm) -- lemma for llpo-ℕ⇒llpo lemma₁ : ∀ {p} {P : ℕ → Set p} → (∀ m n → m ≢ n → P m ⊎ P n) → ∃ (λ n → ¬ P (2 * n)) → ∃ (λ n → ¬ P (suc (2 * n))) → ⊥ lemma₁ ∀mn→m≢n→Pm⊎Pn (m , ¬P2m) (n , ¬P1+2n) with ∀mn→m≢n→Pm⊎Pn (2 * m) (suc (2 * n)) (ℕₚ.even≢odd m n) ... | inj₁ P2m = ¬P2m P2m ... | inj₂ P1+2n = ¬P1+2n P1+2n parity : ℕ → ℕ ⊎ ℕ parity zero = inj₁ zero parity (suc zero) = inj₂ zero parity (suc (suc n)) = Sum.map suc suc (parity n) parity-even : ∀ n → parity (2 * n) ≡ inj₁ n parity-even zero = refl parity-even (suc n) = begin parity (2 * (suc n)) ≡⟨ cong parity (ℕₚ.*-distribˡ-+ 2 1 n) ⟩ parity (2 + 2 * n) ≡⟨⟩ Sum.map suc suc (parity (2 * n)) ≡⟨ cong (Sum.map suc suc) (parity-even n) ⟩ Sum.map suc suc (inj₁ n) ≡⟨⟩ inj₁ (suc n) ∎ where open ≡-Reasoning parity-odd : ∀ n → parity (suc (2 * n)) ≡ inj₂ n parity-odd zero = refl parity-odd (suc n) = begin parity (suc (2 * suc n)) ≡⟨ cong (parity ∘ suc) $ ℕₚ.*-distribˡ-+ 2 1 n ⟩ parity (1 + (2 * 1 + 2 * n)) ≡⟨⟩ parity (2 + (1 + 2 * n)) ≡⟨⟩ Sum.map suc suc (parity (1 + 2 * n)) ≡⟨ cong (Sum.map suc suc) (parity-odd n) ⟩ Sum.map suc suc (inj₂ n) ≡⟨⟩ inj₂ (suc n) ∎ where open ≡-Reasoning Sum-map-injective : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {f : A → C} {g : B → D} → (∀ {u v} → f u ≡ f v → u ≡ v) → (∀ {u v} → g u ≡ g v → u ≡ v) → ∀ {x y} → Sum.map f g x ≡ Sum.map f g y → x ≡ y Sum-map-injective f-inj g-inj {inj₁ x} {inj₁ x₁} eq = cong inj₁ (f-inj (inj₁-injective eq)) Sum-map-injective f-ing g-inj {inj₂ y} {inj₂ y₁} eq = cong inj₂ (g-inj (inj₂-injective eq)) parity-injective : ∀ {m n} → parity m ≡ parity n → m ≡ n parity-injective {zero} {zero} pm≡pn = refl parity-injective {zero} {suc (suc n)} pm≡pn with parity n parity-injective {zero} {suc (suc n)} () | inj₁ _ parity-injective {zero} {suc (suc n)} () | inj₂ _ parity-injective {suc (suc m)} {zero} pm≡pn with parity m parity-injective {suc (suc m)} {zero} () | inj₁ _ parity-injective {suc (suc m)} {zero} () | inj₂ _ parity-injective {suc zero} {suc zero} pm≡pn = refl parity-injective {suc zero} {suc (suc n)} pm≡pn with parity n parity-injective {suc zero} {suc (suc n)} () | inj₁ _ parity-injective {suc zero} {suc (suc n)} () | inj₂ _ parity-injective {suc (suc m)} {suc zero} pm≡pn with parity m parity-injective {suc (suc m)} {suc zero} () | inj₁ _ parity-injective {suc (suc m)} {suc zero} () | inj₂ _ parity-injective {suc (suc m)} {suc (suc n)} pm≡pn = cong (suc ∘ suc) (parity-injective (Sum-map-injective ℕₚ.suc-injective ℕₚ.suc-injective pm≡pn)) parity-even′ : ∀ {m n} → parity m ≡ inj₁ n → m ≡ 2 * n parity-even′ {m} {n} eq = parity-injective (begin parity m ≡⟨ eq ⟩ inj₁ n ≡⟨ sym $ parity-even n ⟩ parity (2 * n) ∎) where open ≡-Reasoning parity-odd′ : ∀ {m n} → parity m ≡ inj₂ n → m ≡ 1 + 2 * n parity-odd′ {m} {n} eq = parity-injective (begin parity m ≡⟨ eq ⟩ inj₂ n ≡⟨ sym $ parity-odd n ⟩ parity (1 + 2 * n) ∎) where open ≡-Reasoning mix : ℕ ⊎ ℕ → ℕ mix = Sum.[ (λ n → 2 * n) , (λ n → 1 + 2 * n) ] parity-mix : ∀ s → parity (mix s) ≡ s parity-mix (inj₁ n) = parity-even n parity-mix (inj₂ n) = parity-odd n mix-parity : ∀ n → mix (parity n) ≡ n mix-parity n = parity-injective (parity-mix (parity n))
{ "alphanum_fraction": 0.5159809589, "avg_line_length": 38.6973684211, "ext": "agda", "hexsha": "7090b55c37738410aedfe00026cc100c9406e5ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Constructive/Axiom/Properties/Base/Lemma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Constructive/Axiom/Properties/Base/Lemma.agda", "max_line_length": 91, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Constructive/Axiom/Properties/Base/Lemma.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 2672, "size": 5882 }
module Dual where open import Prelude using (flip) open import Logic.Equivalence open import Category _op : Cat -> Cat ℂ@(cat _ _ _ _ _ _ _ _ _) op = cat Obj (\A B -> B ─→ A) id (\{_}{_}{_} -> flip _∘_) (\{_}{_} -> Eq) (\{_}{_}{_}{_}{_}{_}{_} -> flip cong) (\{_}{_}{_} -> idR) (\{_}{_}{_} -> idL) (\{_}{_}{_}{_}{_}{_}{_} -> sym assoc) where open module C = Cat ℂ {- open Poly-Cat dualObj : {ℂ : Cat} -> Obj ℂ -> Obj (ℂ op) dualObj {cat _ _ _ _ _ _ _ _ _}(obj A) = obj A undualObj : {ℂ : Cat} -> Obj (ℂ op) -> Obj ℂ undualObj {cat _ _ _ _ _ _ _ _ _}(obj A) = obj A dualdualArr : {ℂ : Cat}{A B : Obj ℂ} -> A ─→ B -> dualObj B ─→ dualObj A dualdualArr {cat _ _ _ _ _ _ _ _ _}{A = obj _}{B = obj _}(arr f) = arr f dualundualArr : {ℂ : Cat}{A : Obj ℂ}{B : Obj (ℂ op)} -> A ─→ undualObj B -> B ─→ dualObj A dualundualArr {cat _ _ _ _ _ _ _ _ _}{A = obj _}{B = obj _}(arr f) = arr f -}
{ "alphanum_fraction": 0.5183982684, "avg_line_length": 25.6666666667, "ext": "agda", "hexsha": "9f044991abb391970269ae23fcfd054bc44e8b1b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cat/Dual.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cat/Dual.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/cat/Dual.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 403, "size": 924 }
-- Andreas, 2013-03-20 -- Without termination checking disabled, the positivity checker -- will throw an error. module NoTerminationCheckPositivity where open import Common.Level module M {a}{A : Set a}(K : A → A → A) where -- F fails the termination check F : A → A F X = K X (F X) K : Set → Set → Set K X Y = X open M K data E : Set where e : F E → E -- Since F is non-terminating and hence excluded from unfolding -- in the positivity checker, it will complain unless termination -- checking is off.
{ "alphanum_fraction": 0.6853281853, "avg_line_length": 20.72, "ext": "agda", "hexsha": "f7a3b13cc95c5415e4aad0d6d7d9062b22035816", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/NoTerminationCheckPositivity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/NoTerminationCheckPositivity.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/NoTerminationCheckPositivity.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 149, "size": 518 }
{-# OPTIONS --cubical --safe --postfix-projections #-} -- This file contains an implementation of the stack-based compiler for Hutton's -- razor, as from: -- -- P. Bahr and G. Hutton, “Calculating correct compilers,” Journal of -- Functional Programming, vol. 25, no. e14, Sep. 2015, -- doi: 10.1017/S0956796815000180. -- -- The compiler is total and the evaluator is stack-safe, and furthermore we have -- proven a full isomorphism between the code representation and the AST. module Data.Dyck.Except where open import Prelude open import Data.Nat using (_+_) open import Data.Vec.Iterated using (Vec; _∷_; []; foldlN; head) private variable n : ℕ -------------------------------------------------------------------------------- -- Language for Arithmetic Expressions -------------------------------------------------------------------------------- data Expr (A : Type a) : Type a where [_] : A → Expr A _⊕_ : Expr A → Expr A → Expr A throw : Expr A catch : Expr A → Expr A → Expr A -------------------------------------------------------------------------------- -- Code for the virtual stack machine. -------------------------------------------------------------------------------- data Code (A : Type a) : ℕ → Type a where HALT : Code A 1 PUSH : A → Code A (1 + n) → Code A n ADD : Code A (1 + n) → Code A (2 + n) RAISE : Code A (1 + n) → Code A n CATCH : Code A (1 + n) → Code A (2 + n) -------------------------------------------------------------------------------- -- Conversion from a Code to a Expr (evaluation / execution) -------------------------------------------------------------------------------- code→expr⊙ : Code A n → Vec (Expr A) n → Expr A code→expr⊙ HALT (v ∷ []) = v code→expr⊙ (PUSH v is) st = code→expr⊙ is ([ v ] ∷ st) code→expr⊙ (ADD is) (t₁ ∷ t₂ ∷ st) = code→expr⊙ is (t₂ ⊕ t₁ ∷ st) code→expr⊙ (RAISE is) st = code→expr⊙ is (throw ∷ st) code→expr⊙ (CATCH is) (t₁ ∷ t₂ ∷ st) = code→expr⊙ is (catch t₂ t₁ ∷ st) code→expr : Code A zero → Expr A code→expr ds = code→expr⊙ ds [] -------------------------------------------------------------------------------- -- Conversion from a Expr to a Code (compilation) -------------------------------------------------------------------------------- expr→code⊙ : Expr A → Code A (1 + n) → Code A n expr→code⊙ [ x ] = PUSH x expr→code⊙ (xs ⊕ ys) = expr→code⊙ xs ∘ expr→code⊙ ys ∘ ADD expr→code⊙ throw = RAISE expr→code⊙ (catch xs ys) = expr→code⊙ xs ∘ expr→code⊙ ys ∘ CATCH expr→code : Expr A → Code A 0 expr→code tr = expr→code⊙ tr HALT -------------------------------------------------------------------------------- -- Execution -------------------------------------------------------------------------------- Func : Type a → ℕ → Type _ Func A zero = Maybe A Func A (suc n) = Maybe A → Func A n open import Data.Maybe.Sugar exec : Code ℕ n → Func ℕ n exec HALT = λ x → x exec (PUSH x xs) = exec xs (just x) exec (ADD xs) = λ x₂ x₁ → exec xs ⦇ x₁ + x₂ ⦈ exec (RAISE xs) = exec xs nothing exec (CATCH xs) = λ x₂ x₁ → exec xs (x₁ <|> x₂) _ : exec (expr→code (catch ([ 3 ] ⊕ throw) ([ 10 ] ⊕ [ 2 ]))) ≡ just 12 _ = refl -------------------------------------------------------------------------------- -- Proof of isomorphism -------------------------------------------------------------------------------- expr→code→expr⊙ : {is : Code A (1 + n)} {st : Vec (Expr A) n} (e : Expr A) → code→expr⊙ (expr→code⊙ e is) st ≡ code→expr⊙ is (e ∷ st) expr→code→expr⊙ [ x ] = refl expr→code→expr⊙ (xs ⊕ ys) = expr→code→expr⊙ xs ; expr→code→expr⊙ ys expr→code→expr⊙ throw = refl expr→code→expr⊙ (catch xs ys) = expr→code→expr⊙ xs ; expr→code→expr⊙ ys code→expr→code⊙ : {st : Vec (Expr A) n} (is : Code A n) → expr→code (code→expr⊙ is st) ≡ foldlN (Code A) expr→code⊙ is st code→expr→code⊙ HALT = refl code→expr→code⊙ (PUSH i is) = code→expr→code⊙ is code→expr→code⊙ (ADD is) = code→expr→code⊙ is code→expr→code⊙ (RAISE is) = code→expr→code⊙ is code→expr→code⊙ (CATCH is) = code→expr→code⊙ is prog-iso : Code A 0 ⇔ Expr A prog-iso .fun = code→expr prog-iso .inv = expr→code prog-iso .rightInv = expr→code→expr⊙ prog-iso .leftInv = code→expr→code⊙
{ "alphanum_fraction": 0.4701195219, "avg_line_length": 36.1610169492, "ext": "agda", "hexsha": "5f4b84aed73077fa069f1dbb48e308a4aa443f06", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Dyck/Except.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Dyck/Except.agda", "max_line_length": 81, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Dyck/Except.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1337, "size": 4267 }
-- {-# OPTIONS --show-implicit #-} -- in case of emergency module ldlc-algo-nosingle where open import Data.Nat renaming (_+_ to _+ᴺ_ ; _≤_ to _≤ᴺ_ ; _≥_ to _≥ᴺ_ ; _<_ to _<ᴺ_ ; _>_ to _>ᴺ_ ; _≟_ to _≟ᴺ_) open import Data.Nat.Properties renaming (_<?_ to _<ᴺ?_) open import Data.Integer renaming (_+_ to _+ᶻ_ ; _≤_ to _≤ᶻ_ ; _≥_ to _≥ᶻ_ ; _<_ to _<ᶻ_ ; _>_ to _>ᶻ_) open import Data.Integer.Properties using (⊖-≥ ; 0≤n⇒+∣n∣≡n ; +-monoˡ-≤) open import Data.Fin open import Data.Fin.Subset renaming (∣_∣ to ∣_∣ˢ) open import Data.Vec hiding (_++_ ; length) open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary.PropositionalEquality renaming (trans to ≡-trans) open import Data.Product open import Data.Sum open import aux ---------------------------------------------------------------------- module syntx where data Exp {n : ℕ} : Set data Val {n : ℕ} : Exp {n} → Set data Ty {n : ℕ} : Set data Exp {n} where Var : ℕ → Exp {n} UnitE : Exp {n} Abs : Exp {n} → Exp {n} App : {e : Exp {n}} → Exp {n} → Val e → Exp {n} LabI : Fin n → Exp {n} CaseE : {s : Subset n} {e : Exp {n}} → Val e → (f : ∀ l → l ∈ s → Exp {n}) → Exp {n} Prod : Exp {n} → Exp {n} → Exp {n} ProdV : {e : Exp {n}} → Val e → Exp {n} → Exp {n} LetP : Exp {n} → Exp {n} → Exp {n} LetE : Exp {n} → Exp {n} → Exp {n} data Val {n} where VUnit : Val UnitE VVar : {i : ℕ} → Val (Var i) VLab : {x : Fin n} → Val (LabI x) VFun : {N : Exp} → Val (Abs N) VProd : {e e' : Exp} → (v : Val e) → Val e' → Val (ProdV v e') data Ty {n} where UnitT : Ty Label : Subset n → Ty Pi : Ty {n} → Ty {n} → Ty Sigma : Ty {n} → Ty {n} → Ty CaseT : {s : Subset n} {e : Exp {n}} → Val e → (f : ∀ l → l ∈ s → Ty {n}) → Ty -- variable in expression data _∈`_ {n : ℕ} : ℕ → Exp {n} → Set where in-var : {x : ℕ} → x ∈` (Var x) in-abs : {x : ℕ} {e : Exp {n}} → x ∈` e → (ℕ.suc x) ∈` (Abs e) in-app : {x : ℕ} {e e' : Exp {n}} {v : Val e'} → x ∈` e ⊎ x ∈` e' → x ∈` App e v in-casee : {x : ℕ} {s : Subset n} {f : (∀ l → l ∈ s → Exp {n})} {e : Exp {n}} {v : Val e} → (∃₂ λ l i → x ∈` (f l i)) ⊎ x ∈` e → x ∈` CaseE v f in-prod : {x : ℕ} {e e' : Exp {n}} → x ∈` e ⊎ (ℕ.suc x) ∈` e' → x ∈` Prod e e' in-prodv : {x : ℕ} {e e' : Exp {n}} {v : Val e} → x ∈` e ⊎ x ∈` e' → x ∈` ProdV v e' -- (Pair-A-I => e' has 0 substituted away => just x, not suc x) in-letp : {x : ℕ} {e e' : Exp {n}} → x ∈` e ⊎ (ℕ.suc (ℕ.suc x)) ∈` e' → x ∈` LetP e e' in-lete : {x : ℕ} {e e' : Exp {n}} → x ∈` e ⊎ (ℕ.suc x) ∈` e' → x ∈` LetE e e' -- variable in type data _∈`ᵀ_ {n : ℕ} : ℕ → Ty {n} → Set where in-pi : {x : ℕ} {A B : Ty {n}} → n ∈`ᵀ A ⊎ n ∈`ᵀ B → n ∈`ᵀ Pi A B in-pigma : {x : ℕ} {A B : Ty {n}} → n ∈`ᵀ A ⊎ n ∈`ᵀ B → n ∈`ᵀ Sigma A B in-case : {x : ℕ} {s : Subset n} {f : ∀ l → l ∈ s → Ty {n}} {e : Exp {n}} {v : Val e} → (∃₂ λ l i → x ∈`ᵀ (f l i)) ⊎ x ∈` e → x ∈`ᵀ CaseT v f ---------------------------------------------------------------------- ---------------------------------------------------------------------- module substitution where ---- Substitution and Shifting open syntx ↑ᴺ_,_[_] : ℤ → ℕ → ℕ → ℕ ↑ᴺ d , c [ x ] with (x <ᴺ? c) ... | yes p = x ... | no ¬p = ∣ ℤ.pos x +ᶻ d ∣ ↑_,_[_] : ∀ {n} → ℤ → ℕ → Exp {n} → Exp {n} shift-val : ∀ {n d c} {e : Exp {n}} → Val e → Val (↑ d , c [ e ]) ↑ d , c [ UnitE ] = UnitE ↑ d , c [ Var x ] = Var (↑ᴺ d , c [ x ]) ↑ d , c [ Abs t ] = Abs (↑ d , (ℕ.suc c) [ t ]) ↑ d , c [ App t v ] = App (↑ d , c [ t ]) (shift-val{d = d}{c = c} v) ↑ d , c [ LabI x ] = LabI x ↑ d , c [ CaseE{e = e} V f ] = CaseE (shift-val{d = d}{c = c} V) (λ l x → ↑ d , c [ f l x ]) ↑ d , c [ Prod e e' ] = Prod (↑ d , c [ e ]) (↑ d , (ℕ.suc c) [ e' ]) ↑ d , c [ ProdV e e' ] = ProdV (shift-val{d = d}{c = c} e) (↑ d , (ℕ.suc c) [ e' ]) ↑ d , c [ LetP e e' ] = LetP (↑ d , c [ e ]) (↑ d , (ℕ.suc (ℕ.suc c)) [ e' ]) ↑ d , c [ LetE e e' ] = LetE (↑ d , c [ e ]) (↑ d , (ℕ.suc c) [ e' ]) shift-val {n} {d} {c} {.UnitE} VUnit = VUnit shift-val {n} {d} {c} {.(Var _)} VVar = VVar shift-val {n} {d} {c} {.(LabI _)} VLab = VLab shift-val {n} {d} {c} {.(Abs _)} VFun = VFun shift-val {n} {d} {c} {.(ProdV V _)} (VProd V V₁) = VProd (shift-val V) (shift-val V₁) -- shorthands ↑¹[_] : ∀ {n} → Exp {n} → Exp ↑¹[ e ] = ↑ (ℤ.pos 1) , 0 [ e ] ↑ⱽ¹[_] : ∀ {n} {e : Exp {n}} → Val e → Val (↑ (ℤ.pos 1) , 0 [ e ]) ↑ⱽ¹[_] {n} {e} v = shift-val v ↑⁻¹[_] : ∀ {n} → Exp {n} → Exp ↑⁻¹[ e ] = ↑ (ℤ.negsuc 0) , 0 [ e ] -- substitution [_↦_]_ : ∀ {n} {e : Exp {n}} → ℕ → Val e → Exp {n} → Exp {n} sub-val : ∀ {n k} {e e' : Exp {n}} {v : Val e'} → Val e → Val ([ k ↦ v ] e) [_↦_]_ {n} {e} k v (Var x) with (_≟ᴺ_ x k) ... | yes p = e ... | no ¬p = Var x [ k ↦ v ] UnitE = UnitE [ k ↦ v ] Abs e = Abs (([ ℕ.suc k ↦ shift-val{d = ℤ.pos 1}{c = 0} v ] e)) [_↦_]_ {n} {e'} k v (App{e = e₁} e v') = App ([ k ↦ v ] e) (sub-val{n}{k}{e₁}{e'}{v} v') -- ([ k ↦ v ] e₁) [ k ↦ v ] LabI x = LabI x [_↦_]_ {n} {e} k v (CaseE v' f) = CaseE (sub-val{n}{k}{e' = e}{v = v} v') (λ l x₁ → [ k ↦ v ] (f l x₁)) [ k ↦ v ] Prod e e₁ = Prod ([ k ↦ v ] e) ([ ℕ.suc k ↦ shift-val{d = ℤ.pos 1}{c = 0} v ] e₁) [_↦_]_ {n} {e} k v (ProdV v' e') = ProdV (sub-val{n}{k}{e' = e}{v = v} v') ([ ℕ.suc k ↦ shift-val{d = ℤ.pos 1}{c = 0} v ] e') [ k ↦ v ] LetP e e₁ = LetE ([ k ↦ v ] e) ([ (ℕ.suc (ℕ.suc k)) ↦ shift-val{d = ℤ.pos 2}{c = 0} v ] e₁) [ k ↦ v ] LetE e e₁ = LetE ([ k ↦ v ] e) ([ (ℕ.suc k) ↦ shift-val{d = ℤ.pos 1}{c = 0} v ] e₁) sub-val {n} {k} {.UnitE} {e'} {v} VUnit = VUnit sub-val {n} {k} {(Var i)} {e'} {v} VVar with (_≟ᴺ_ i k) ... | yes p = v ... | no ¬p = VVar sub-val {n} {k} {.(LabI _)} {e'} {v} VLab = VLab sub-val {n} {k} {.(Abs _)} {e'} {v} VFun = VFun sub-val {n} {k} {.(ProdV v' _)} {e'} {v} (VProd v' v'') = VProd (sub-val v') (sub-val v'') -- type substitution [_↦_]ᵀ_ : ∀ {n} {e : Exp {n}} → ℕ → Val e → Ty {n} → Ty {n} [ k ↦ s ]ᵀ UnitT = UnitT [ k ↦ s ]ᵀ Label x = Label x [ k ↦ s ]ᵀ Pi T T₁ = Pi ([ k ↦ s ]ᵀ T) ([ k ↦ s ]ᵀ T₁) [ k ↦ s ]ᵀ Sigma T T₁ = Sigma ([ k ↦ s ]ᵀ T) ([ k ↦ s ]ᵀ T₁) [_↦_]ᵀ_ {n} {e} k v (CaseT x f) = CaseT (sub-val{n}{k}{e' = e}{v = v} x) λ l x₁ → [ k ↦ v ]ᵀ (f l x₁) ---------------------------------------------------------------------- ---------------------------------------------------------------------- module typing where open syntx open substitution -- Type environment data TEnv {n : ℕ} : Set where [] : TEnv ⟨_,_⟩ : (T : Ty {n}) (Γ : TEnv {n}) → TEnv _++_ : {n : ℕ} → TEnv {n} → TEnv {n} → TEnv {n} [] ++ Γ' = Γ' ⟨ T , Γ ⟩ ++ Γ' = ⟨ T , Γ ++ Γ' ⟩ ++-assoc : {n : ℕ} {Γ Γ' Γ'' : TEnv {n}} → Γ ++ (Γ' ++ Γ'') ≡ (Γ ++ Γ') ++ Γ'' ++-assoc {n} {[]} {Γ'} {Γ''} = refl ++-assoc {n} {⟨ T , Γ ⟩} {Γ'} {Γ''} = cong (λ x → ⟨ T , x ⟩) (++-assoc{n}{Γ}{Γ'}{Γ''}) length : {n : ℕ} → TEnv {n} → ℕ length {n} [] = zero length {n} ⟨ T , Γ ⟩ = ℕ.suc (length Γ) data _∶_∈_ {n : ℕ} : ℕ → Ty {n} → TEnv {n} → Set where here : {T : Ty} {Γ : TEnv} → 0 ∶ T ∈ ⟨ T , Γ ⟩ there : {n : ℕ} {T₁ T₂ : Ty} {Γ : TEnv} → n ∶ T₁ ∈ Γ → (ℕ.suc n) ∶ T₁ ∈ ⟨ T₂ , Γ ⟩ ---- Algorithmic Typing -- Type environment formation data ⊢_ok {n : ℕ} : TEnv {n} → Set -- Type formation data _⊢_ {n : ℕ} : TEnv {n}→ Ty {n} → Set -- Type synthesis data _⊢_⇒_ {n : ℕ} : TEnv {n} → Exp {n} → Ty {n} → Set -- Type check data _⊢_⇐_ {n : ℕ} : TEnv {n} → Exp {n} → Ty {n} → Set -- Check subtype (⇐ instead of ⇒?) data _⇒_≤_ {n : ℕ} : TEnv {n} → Ty {n} → Ty {n} → Set -- Unfolding (e.g. CaseT ... ⇓ T) data _⊢_⇓_ {n : ℕ} : TEnv {n} → Ty {n} → Ty {n} → Set -- Conversion data _⇒_≡_ {n : ℕ} : TEnv {n} → Ty {n} → Ty {n} → Set -- Implementations data ⊢_ok {n} where empty : ⊢ [] ok entry : {Γ : TEnv {n}} {A : Ty {n}} → ⊢ Γ ok → Γ ⊢ A → ⊢ ⟨ A , Γ ⟩ ok data _⊢_ {n} where UnitF : {Γ : TEnv {n}} → ⊢ Γ ok → Γ ⊢ UnitT LabF : {Γ : TEnv {n}} {L : Subset n} → ⊢ Γ ok → Γ ⊢ Label L PiF : {Γ : TEnv {n}} {A B : Ty {n}} → Γ ⊢ A → ⟨ A , Γ ⟩ ⊢ B → Γ ⊢ Pi A B SigmaF : {Γ : TEnv {n}} {A B : Ty {n}} → Γ ⊢ A → ⟨ A , Γ ⟩ ⊢ B → Γ ⊢ Sigma A B CaseF : {Γ : TEnv {n}} {L : Subset n} {e : Exp {n}} {V : Val e} {f : ∀ l → l ∈ L → Ty {n}} {f-ok : ∀ l → (i : l ∈ L) → Γ ⊢ (f l i)} → Γ ⊢ e ⇐ Label L → Γ ⊢ CaseT V f data _⊢_⇐_ {n} where SubTypeA : {Γ : TEnv {n}} {A B : Ty {n}} {M : Exp {n}} → Γ ⊢ M ⇒ A → Γ ⇒ A ≤ B → Γ ⊢ M ⇐ B data _⇒_≤_ {n} where ASubUnit : {Γ : TEnv {n}} → Γ ⇒ UnitT ≤ UnitT ASubLabel : {Γ : TEnv {n}} {L L' : Subset n} → L ⊆ L' → Γ ⇒ Label L ≤ Label L' ASubPi : {Γ : TEnv {n}} {A A' B B' : Ty {n}} → Γ ⇒ A' ≤ A → ⟨ A' , Γ ⟩ ⇒ B ≤ B' → Γ ⇒ Pi A B ≤ Pi A' B' ASubSigma : {Γ : TEnv {n}} {A A' B B' : Ty {n}} → Γ ⇒ A ≤ A' → ⟨ A , Γ ⟩ ⇒ B ≤ B' → Γ ⇒ Sigma A B ≤ Sigma A' B' ASubCaseLL : {Γ : TEnv {n}} {B : Ty {n}} {e : Exp {n}} {V : Val e} {l : Fin n} {L L' : Subset n} {f : ∀ l → l ∈ L → Ty {n}} {ins : l ∈ L} → Γ ⊢ e ⇒ Label ⁅ l ⁆ → L' ⊆ L → Γ ⇒ (f l ins) ≤ B → Γ ⇒ CaseT V f ≤ B ASubCaseLR : {Γ : TEnv {n}} {A : Ty {n}} {e : Exp {n}} {V : Val e} {l : Fin n} {L L' : Subset n} {f : ∀ l → l ∈ L → Ty {n}} {ins : l ∈ L} → Γ ⊢ e ⇒ Label ⁅ l ⁆ → L' ⊆ L → Γ ⇒ A ≤ (f l ins) → Γ ⇒ A ≤ CaseT V f ASubCaseXL : {Γ Γ' : TEnv {n}} {B D : Ty {n}} {L : Subset n} {f : ∀ l → l ∈ L → Ty {n}} → Γ ⇒ D ≤ Label L → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⇒ (f l i) ≤ B) → (Γ' ++ ⟨ D , Γ ⟩) ⇒ CaseT (VVar{i = length Γ'}) f ≤ B ASubCaseXR : {Γ Γ' : TEnv {n}} {A D : Ty {n}} {L : Subset n} {f : ∀ l → l ∈ L → Ty {n}} → Γ ⇒ D ≤ Label L → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⇒ A ≤ (f l i)) → (Γ' ++ ⟨ D , Γ ⟩) ⇒ A ≤ CaseT (VVar{i = length Γ'}) f data _⊢_⇒_ {n} where VarA : {Γ : TEnv {n}} {A : Ty {n}} {x : ℕ} → ⊢ Γ ok → x ∶ A ∈ Γ → Γ ⊢ Var x ⇒ A UnitAI : {Γ : TEnv {n}} → ⊢ Γ ok → Γ ⊢ UnitE ⇒ UnitT LabAI : {Γ : TEnv {n}} {l : Fin n} → ⊢ Γ ok → Γ ⊢ LabI l ⇒ Label ⁅ l ⁆ LabAEl : {Γ : TEnv {n}} {B : Ty {n}} {L L' : Subset n} {l : Fin n} {ins : l ∈ L'} {f : ∀ l → l ∈ L → Exp {n}} → Γ ⊢ (LabI l) ⇒ Label L' → (s : L' ⊆ L) → Γ ⊢ (f l (s ins)) ⇒ B → Γ ⊢ CaseE (VLab{x = l}) f ⇒ B -- unification has problems with arbitrary functions, hence θ -- see https://lists.chalmers.se/pipermail/agda/2020/012293.html LabAEx : {Γ Γ' Θ : TEnv {n}} {D : Ty {n}} {L : Subset n} {f : ∀ l → l ∈ L → Exp {n}} {f-t : ∀ l → l ∈ L → Ty {n}} {eq : Θ ≡ (Γ' ++ ⟨ D , Γ ⟩)} → Γ ⇒ D ≤ Label L → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⊢ (f l i) ⇒ (f-t l i)) → Θ ⊢ CaseE (VVar{i = length Γ'}) f ⇒ CaseT (VVar{i = length Γ'}) f-t PiAI : {Γ : TEnv {n}} {A B : Ty {n}} {M : Exp {n}} → ⟨ A , Γ ⟩ ⊢ M ⇒ B → Γ ⊢ Abs M ⇒ Pi A B PiAE : {Γ : TEnv {n}} {A B D : Ty {n}} {M e : Exp {n}} {V : Val e} → Γ ⊢ M ⇒ D → Γ ⊢ D ⇓ Pi A B → Γ ⊢ e ⇐ A → Γ ⊢ ([ 0 ↦ V ]ᵀ B) → Γ ⊢ App M V ⇒ ([ 0 ↦ V ]ᵀ B) SigmaAI : {Γ : TEnv {n}} {A A' B : Ty {n}} {M N : Exp {n}} → Γ ⊢ M ⇐ A → Γ ⇒ A' ≤ A → ⟨ A' , Γ ⟩ ⊢ N ⇒ B → Γ ⊢ Prod M N ⇒ Sigma A B PairAI : {Γ : TEnv {n}} {A B : Ty {n}} {e N : Exp {n}} {V : Val e} → Γ ⊢ e ⇒ A → Γ ⊢ N ⇒ B → Γ ⊢ ProdV V N ⇒ Sigma A B SigmaAE : {Γ : TEnv {n}} {A B C D : Ty {n}} {M N : Exp {n}} → Γ ⊢ M ⇒ D → Γ ⊢ D ⇓ Sigma A B → ⟨ B , ⟨ A , Γ ⟩ ⟩ ⊢ N ⇒ C → (¬ (0 ∈`ᵀ C)) × (¬ (1 ∈`ᵀ C)) → Γ ⊢ LetP M N ⇒ C Let : {Γ : TEnv {n}} {A B : Ty {n}} {M N : Exp {n}} → ¬(0 ∈`ᵀ B) → Γ ⊢ M ⇒ A → ⟨ A , Γ ⟩ ⊢ N ⇒ B → Γ ⊢ LetE M N ⇒ B data _⊢_⇓_ {n} where AURefl-U : {Γ : TEnv {n}} → Γ ⊢ UnitT ⇓ UnitT AURefl-L : {Γ : TEnv {n}} {L : Subset n} → Γ ⊢ Label L ⇓ Label L AURefl-P : {Γ : TEnv {n}} {A B : Ty {n}} → Γ ⊢ Pi A B ⇓ Pi A B AURefl-S : {Γ : TEnv {n}} {A B : Ty {n}} → Γ ⊢ Sigma A B ⇓ Sigma A B AUCaseL : {Γ : TEnv {n}} {D : Ty {n}} {l : Fin n} {L L' : Subset n} {ins : l ∈ L} {f : ∀ l → l ∈ L → Ty {n}} {e : Exp {n}} {V : Val e} → Γ ⊢ e ⇒ Label ⁅ l ⁆ → L' ⊆ L → Γ ⊢ (f l ins) ⇓ D → Γ ⊢ CaseT V f ⇓ D AUCaseX-P : {Γ Γ' : TEnv {n}} {A D : Ty {n}} {L : Subset n} {fᴬ fᴮ fᴰ : (∀ l → l ∈ L → Ty {n})} → Γ ⇒ D ≤ Label L → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⊢ (fᴮ l i) ⇓ Pi (fᴬ l i) (fᴰ l i)) → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⇒ A ≡ (fᴬ l i)) → (Γ' ++ ⟨ D , Γ ⟩) ⊢ CaseT (VVar{i = length Γ'}) fᴮ ⇓ Pi A (CaseT (VVar{i = length Γ'}) fᴰ) AUCaseX-S : {Γ Γ' : TEnv {n}} {A D : Ty {n}} {L : Subset n} {fᴬ fᴮ fᴰ : (∀ l → l ∈ L → Ty {n})} → Γ ⇒ D ≤ Label L → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⊢ (fᴮ l i) ⇓ Sigma (fᴬ l i) (fᴰ l i)) → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⇒ A ≡ (fᴬ l i)) → (Γ' ++ ⟨ D , Γ ⟩) ⊢ CaseT (VVar{i = length Γ'}) fᴮ ⇓ Sigma A (CaseT (VVar{i = length Γ'}) fᴰ) data _⇒_≡_ {n} where AConvUnit : {Γ : TEnv {n}} → Γ ⇒ UnitT ≡ UnitT AConvLabel : {Γ : TEnv {n}} {L : Subset n} → Γ ⇒ Label L ≡ Label L AConvPi : {Γ : TEnv {n}} {A A' B B' : Ty} → Γ ⇒ A ≡ A' → ⟨ A' , Γ ⟩ ⇒ B ≡ B' → Γ ⇒ Pi A B ≡ Pi A' B' AConvSigma : {Γ : TEnv {n}} {A A' B B' : Ty} → Γ ⇒ A ≡ A' → ⟨ A , Γ ⟩ ⇒ B ≡ B' → Γ ⇒ Sigma A B ≡ Sigma A' B' AConvCaseLL : {Γ : TEnv {n}} {B : Ty {n}} {e : Exp {n}} {V : Val e} {L L' : Subset n} {f : (∀ l → l ∈ L → Ty)} {l : Fin n} {ins : l ∈ L} → Γ ⊢ e ⇒ Label ⁅ l ⁆ → L ⊆ L' → Γ ⇒ (f l ins) ≡ B → Γ ⇒ CaseT V f ≡ B AConvCaseLR : {Γ : TEnv {n}} {A : Ty {n}} {e : Exp {n}} {V : Val e} {L L' : Subset n} {f : (∀ l → l ∈ L → Ty)} {l : Fin n} {ins : l ∈ L} → Γ ⊢ e ⇒ Label ⁅ l ⁆ → L ⊆ L' → Γ ⇒ A ≡ (f l ins) → Γ ⇒ A ≡ CaseT V f AConvCaseXL : {Γ Γ' : TEnv {n}} {B D : Ty {n}} {L : Subset n} {f : ∀ l → l ∈ L → Ty {n}} → Γ ⇒ D ≤ Label L → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⇒ (f l i) ≡ B) → (Γ' ++ ⟨ D , Γ ⟩) ⇒ CaseT (VVar{i = length Γ'}) f ≡ B AConvCaseXR : {Γ Γ' : TEnv {n}} {A D : Ty {n}} {L : Subset n} {f : ∀ l → l ∈ L → Ty {n}} → Γ ⇒ D ≤ Label L → (∀ l → (i : l ∈ L) → (Γ' ++ ⟨ Label ⁅ l ⁆ , Γ ⟩) ⇒ A ≡ (f l i)) → (Γ' ++ ⟨ D , Γ ⟩) ⇒ A ≡ CaseT (VVar{i = length Γ'}) f ---------------------------------------------------------------------- ---------------------------------------------------------------------- module semantics where open syntx open substitution data _↠_ {n : ℕ} : Exp {n} → Exp {n} → Set where ξ-App : {e₁ e₁' e : Exp {n}} {v : Val e} → e₁ ↠ e₁' → App e₁ v ↠ App e₁' v ξ-LetE : {e₁ e₁' e : Exp {n}} → e₁ ↠ e₁' → LetE e₁ e ↠ LetE e₁' e ξ-Prod : {e₁ e₁' e : Exp {n}} → e₁ ↠ e₁' → Prod e₁ e ↠ Prod e₁' e ξ-ProdV : {e e₂ e₂' : Exp {n}} {v : Val e} → e₂ ↠ e₂' → ProdV v e₂ ↠ ProdV v e₂' ξ-LetP : {e₁ e₁' e₂ : Exp {n}} → e₁ ↠ e₁' → LetP e₁ e₂ ↠ LetP e₁' e₂ β-App : {e e' : Exp {n}} → (v : Val e') → (App (Abs e) v) ↠ (↑⁻¹[ ([ 0 ↦ ↑ⱽ¹[ v ] ] e) ]) β-Prod : {e e' : Exp {n}} {v : Val e} → Prod e e' ↠ ProdV v (↑⁻¹[ ([ 0 ↦ ↑ⱽ¹[ v ] ] e') ]) β-LetE : {e e' : Exp {n}} → (v : Val e) → LetE e e' ↠ (↑⁻¹[ ([ 0 ↦ ↑ⱽ¹[ v ] ] e') ]) β-LetP : {e e' e'' : Exp {n}} → (v : Val e) → (v' : Val e') → LetP (ProdV v e') e'' ↠ ↑ (ℤ.negsuc 1) , 0 [ ([ 0 ↦ ↑ⱽ¹[ v ] ] ([ 0 ↦ shift-val {n} {ℤ.pos 1} {1} v' ] e'')) ] β-LabE : {s : Subset n} {f : ∀ l → l ∈ s → Exp {n}} {x : Fin n} → (ins : x ∈ s) → CaseE (VLab{x = x}) f ↠ f x ins ---------------------------------------------------------------------- ---------------------------------------------------------------------- module progress where open syntx open substitution open typing open semantics -- To eliminate the possible typing judgement (LabAEx) for case expressions, -- we need ([] ≢ Γ' ++ ⟨ D , Γ ⟩. Agda does not know that no possible constructor -- for this equality exists, because _++_ is an arbitrary function and therefore -- "green slime" (see the link @ (LabAEx) rule). -- -- Workaround: Argue with length of environments env-len-++ : {n : ℕ} {Γ Γ' : TEnv {n}} → length (Γ ++ Γ') ≡ length Γ +ᴺ length Γ' env-len-++ {n} {[]} {Γ'} = refl env-len-++ {n} {⟨ T , Γ ⟩} {Γ'} = cong ℕ.suc (env-len-++ {n} {Γ} {Γ'}) env-len-> : {n : ℕ} {Γ : TEnv {n}} {T : Ty {n}} → length ⟨ T , Γ ⟩ >ᴺ 0 env-len-> {n} {Γ} {T} = s≤s z≤n env-len->-++ : {n : ℕ} {Γ Γ' : TEnv {n}} → length Γ' >ᴺ 0 → length (Γ ++ Γ') >ᴺ 0 env-len->-++ {n} {Γ} {⟨ T , Γ' ⟩} gt rewrite (env-len-++ {n} {Γ} {⟨ T , Γ' ⟩})= ≤-trans gt (m≤n+m (length ⟨ T , Γ' ⟩) (length Γ)) env-len-eq : {n : ℕ} {Γ : TEnv {n}} {Γ' : TEnv {n}} → Γ ≡ Γ' → length Γ ≡ length Γ' env-len-eq {n} {Γ} {.Γ} refl = refl env-empty-++ : {n : ℕ} {Γ' Γ : TEnv {n}} {D : Ty {n}} → ¬ ([] ≡ Γ' ++ ⟨ D , Γ ⟩) env-empty-++ {n} {Γ} {Γ'} {D} eq = contradiction (env-len-eq eq) (<⇒≢ (env-len->-++ (env-len->{T = D}))) -- Canonical forms canonical-forms-pi : {n : ℕ} {e : Exp {n}} {A B D : Ty {n}} → [] ⊢ e ⇒ D → [] ⊢ D ⇓ Pi A B → Val e → (∃[ e' ](e ≡ Abs e')) canonical-forms-pi {n} {.(Abs _)} {A} {B} {.(Pi _ _)} (PiAI{M = M} j) u v = M , refl canonical-forms-sigma : {n : ℕ} {e : Exp {n}} {A B D : Ty {n}} → [] ⊢ e ⇒ D → [] ⊢ D ⇓ Sigma A B → Val e → (∃{A = Exp {n}} λ e' → ∃{A = Val e'} λ v → ∃ λ e'' → e ≡ ProdV{e = e'} v e'') canonical-forms-sigma {n} {.(ProdV _ _)} {A} {B} {.(Sigma _ _)} (PairAI{e = e}{N}{V} j j₁) u v = e , (V , (N , refl)) -- Main theorem data Progress {n : ℕ} (e : Exp {n}) {T : Ty} {j : [] ⊢ e ⇒ T} : Set where step : {e' : Exp{n}} → e ↠ e' → Progress e value : Val e → Progress e progress : {n : ℕ} {e : Exp {n}} {T : Ty} → (j : [] ⊢ e ⇒ T) → Progress e {T} {j} progress {n} {Var x} {T} (VarA x₁ x₂) = value VVar progress {n} {UnitE} {.UnitT} (UnitAI x) = value VUnit progress {n} {Abs e} {.(Pi _ _)} (PiAI j) = value VFun progress {n} {App e x} {.([ 0 ↦ x ]ᵀ _)} (PiAE{A = A}{B = B}{D = D} j x₁ x₂ x₃) with progress {n} {e} {D} j ... | step x₄ = step (ξ-App x₄) ... | value x₄ with canonical-forms-pi {n} {e} {A} {B} {D} j x₁ x₄ ... | fst , snd rewrite snd = step (β-App x) progress {n} {LabI x} {.(Label ⁅ x ⁆)} (LabAI x₁) = value VLab progress {n} {Prod e e₁} {.(Sigma A B)} (SigmaAI {A = A} {B = B} (SubTypeA{A = A₁} x x₂) x₁ j) with progress {n} {e} {A₁} x ... | step x₃ = step (ξ-Prod x₃) ... | value x₃ = step (β-Prod{v = x₃}) progress {n} {ProdV x e} {.(Sigma _ _)} (PairAI{A = A} {B = B} j j₁) with progress {n} {e} {B} j₁ ... | step x₁ = step (ξ-ProdV x₁) ... | value x₁ = value (VProd x x₁) progress {n} {LetP e e₁} {T} (SigmaAE{A = A}{B = B}{D = D} j x j₁ x₁) with progress {n} {e} {D} j ... | step x₂ = step (ξ-LetP x₂) ... | value x₂ with canonical-forms-sigma {n} {e} {A} {B} {D} j x x₂ ... | fst , fst₁ , fst₂ , snd rewrite snd with x₂ ... | VProd v v₁ = step (β-LetP v v₁) progress {n} {LetE e e₁} {T} (Let{A = A} x j j₁) with progress {n} {e} {A} j ... | step x₁ = step (ξ-LetE x₁) ... | value x₁ = step (β-LetE x₁) progress {n} {CaseE {e = .(LabI _)} VLab f} {T} (LabAEl {l = _} {ins = ins} (LabAI x₁) x j₁) = step (β-LabE (x ins)) progress {n} {CaseE .VVar f} {.(CaseT VVar _)} (LabAEx{eq = eq} x x₁) = contradiction eq env-empty-++
{ "alphanum_fraction": 0.391620771, "avg_line_length": 47.7370892019, "ext": "agda", "hexsha": "cf284f9223f20b84a5e49c6633925e421d08f89b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kcaliban/ldlc", "max_forks_repo_path": "src/ldlc-algo/ldlc-algo-nosingle.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kcaliban/ldlc", "max_issues_repo_path": "src/ldlc-algo/ldlc-algo-nosingle.agda", "max_line_length": 186, "max_stars_count": null, "max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kcaliban/ldlc", "max_stars_repo_path": "src/ldlc-algo/ldlc-algo-nosingle.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9301, "size": 20336 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; trans ; subst ; cong ) module Cats.Category.Discrete {li} {I : Set li} (I-set : ∀ {i j : I} (p q : i ≡ j) → p ≡ q) where open import Data.Product using (Σ-syntax ; _,_ ; proj₁ ; proj₂) open import Data.Unit using (⊤) open import Level open import Cats.Category.Base open import Cats.Functor using (Functor) Obj : Set li Obj = I data _⇒_ : Obj → Obj → Set li where id : ∀ {A} → A ⇒ A ⇒-contr : ∀ {A B} (f : A ⇒ B) → Σ[ p ∈ A ≡ B ] (subst (_⇒ B) p f ≡ id) ⇒-contr id = refl , refl ⇒-contr′ : ∀ {A} (f : A ⇒ A) → f ≡ id ⇒-contr′ f with ⇒-contr f ... | A≡A , f≡id rewrite I-set A≡A refl = f≡id ⇒-prop : ∀ {A B} (f g : A ⇒ B) → f ≡ g ⇒-prop {A} {B} id g = sym (⇒-contr′ g) _∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C id ∘ id = id Discrete : Category li li zero Discrete = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = λ _ _ → ⊤ ; id = id ; _∘_ = _∘_ ; equiv = _ ; ∘-resp = _ ; id-r = _ ; id-l = _ ; assoc = _ } functor : ∀ {lo la l≈} {C : Category lo la l≈} → (I → Category.Obj C) → Functor Discrete C functor {C = C} f = record { fobj = f ; fmap = fmap ; fmap-resp = λ {A} {B} {g} {h} _ → C.≈.reflexive (cong fmap (⇒-prop g h)) ; fmap-id = C.≈.refl ; fmap-∘ = λ { {f = id} {id} → C.id-l } } where module C = Category C fmap : ∀ {A B} (g : A ⇒ B) → f A C.⇒ f B fmap id = C.id
{ "alphanum_fraction": 0.4979865772, "avg_line_length": 20.1351351351, "ext": "agda", "hexsha": "3d4af1906cc1430e93c6293b5dad74b04b4f7801", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Discrete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Discrete.agda", "max_line_length": 78, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Discrete.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 641, "size": 1490 }
{-# OPTIONS --cubical --safe --guardedness #-} module Cubical.Codata.M where open import Cubical.Foundations.Prelude -- TODO move module Helpers where module _ {ℓ ℓ'} {A : Type ℓ} {x : A} (P : ∀ y → x ≡ y → Type ℓ') (d : P x refl) where -- A version with y as an explicit argument can be used to make Agda -- infer the family P. J' : ∀ y (p : x ≡ y) → P y p J' y p = J P d p lem-transp : ∀ {ℓ} {A : Type ℓ} (i : I) → (B : Type ℓ) (P : A ≡ B) → (p : P i) → PathP (\ j → P j) (transp (\ k → P (~ k ∧ i)) (~ i) p) (transp (\ k → P (k ∨ i)) i p) lem-transp {A = A} i = J' _ (\ p j → transp (\ _ → A) ((~ j ∧ ~ i) ∨ (j ∧ i)) p ) transp-over : ∀ {ℓ} (A : I → Type ℓ) (i j : I) → A i → A j transp-over A i k p = transp (\ j → A ((~ j ∧ i) ∨ (j ∧ k))) (~ i ∧ ~ k) p transp-over-1 : ∀ {ℓ} (A : I → Type ℓ) (i j : I) → A i → A j transp-over-1 A i k p = transp (\ j → A ((j ∨ i) ∧ (~ j ∨ k))) (i ∧ k) p compPathD : {ℓ ℓ' : _} {X : Type ℓ} (F : X → Type ℓ') {A B C : X} (P : A ≡ B) (Q : B ≡ C) → ∀ {x y z} → (\ i → F (P i)) [ x ≡ y ] → (\ i → F (Q i)) [ y ≡ z ] → (\ i → F ((P ∙ Q) i)) [ x ≡ z ] compPathD F {A = A} P Q {x} p q i = comp (\ j → F (hfill (λ j → \ { (i = i0) → A ; (i = i1) → Q j }) (inS (P i)) j)) (λ j → \ { (i = i0) → x; (i = i1) → q j }) (p i) open Helpers IxCont : Type₀ → Type₁ IxCont X = Σ (X → Type₀) \ S → ∀ x → S x → X → Type₀ ⟦_⟧ : ∀ {X : Type₀} → IxCont X → (X → Type₀) → (X → Type₀) ⟦ (S , P) ⟧ X x = Σ (S x) \ s → ∀ y → P x s y → X y record M {X : Type₀} (C : IxCont X) (x : X) : Type₀ where coinductive field head : C .fst x tails : ∀ y → C .snd x head y → M C y open M public module _ {X : Type₀} {C : IxCont X} where private F = ⟦ C ⟧ out : ∀ x → M C x → F (M C) x out x a = (a .head) , (a .tails) mapF : ∀ {A B} → (∀ x → A x → B x) → ∀ x → F A x → F B x mapF f x (s , t) = s , \ y p → f _ (t y p) unfold : ∀ {A} (α : ∀ x → A x → F A x) → ∀ x → A x → M C x unfold α x a .head = α x a .fst unfold α x a .tails y p = unfold α y (α x a .snd y p) -- We generalize the type to avoid upsetting --guardedness by -- transporting after the corecursive call. -- Recognizing hcomp/transp as guardedness-preserving could be a better solution. unfold-η' : ∀ {A} (α : ∀ x → A x → F A x) → (h : ∀ x → A x → M C x) → (∀ (x : X) (a : A x) → out x (h x a) ≡ mapF h x (α x a)) → ∀ (x : X) (a : A x) m → h x a ≡ m → m ≡ unfold α x a unfold-η' α h eq x a m eq' = let heq = cong head (sym eq') ∙ cong fst (eq x a) in \ where i .head → heq i i .tails y p → let p0 = (transp-over-1 (\ k → C .snd x (heq k) y) i i1 p) p1 = (transp-over (\ k → C .snd x (heq k) y) i i0 p) pe = lem-transp i _ (\ k → C .snd x (heq k) y) p tl = compPathD (λ p → C .snd x p y → M C y) (cong head (sym eq')) (cong fst (eq x a)) (cong (\ f → f .tails y) (sym eq')) (cong (\ f → f .snd y) (eq x a)) in unfold-η' α h eq y (α x a .snd y p0) (m .tails y p1) (sym (\ k → tl k (pe k))) i unfold-η : ∀ {A} (α : ∀ x → A x → F A x) → (h : ∀ x → A x → M C x) → (∀ (x : X) (a : A x) → out x (h x a) ≡ mapF h x (α x a)) → ∀ (x : X) (a : A x) → h x a ≡ unfold α x a unfold-η α h eq x a = unfold-η' α h eq x a _ refl
{ "alphanum_fraction": 0.3608600049, "avg_line_length": 44.0107526882, "ext": "agda", "hexsha": "b85c44f047c3724e942ece46824186d02df3549d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Codata/M.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Codata/M.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Codata/M.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1479, "size": 4093 }
-- Andreas, 2019-04-13, issue #3692, reported by xekoukou -- Feature #1086, omission of trivially absurd clauses, -- caused wrong polarity computation. -- {-# OPTIONS -v tc.polarity:20 #-} -- {-# OPTIONS -v tc.cover.missing:100 #-} open import Agda.Builtin.Equality open import Agda.Builtin.Nat data _≤_ : (m n : Nat) → Set where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n ≤-pred : ∀ {m n} → suc m ≤ suc n → m ≤ n ≤-pred (s≤s m≤n) = m≤n data Fin : Nat → Set where fzero : (n : Nat) → Fin (suc n) fsuc : (n : Nat) (i : Fin n) → Fin (suc n) inject≤ : ∀ m n → Fin m → m ≤ n → Fin n inject≤ m (suc n) (fzero _) le = fzero _ inject≤ m (suc n) (fsuc m' i) le = fsuc _ (inject≤ m' n i (≤-pred le)) -- Agda 2.6.0 accepts inject≤ without the following clauses, -- leading to faulty acceptance of test below. -- inject≤ (suc _) zero (fzero _) () -- inject≤ (suc _) zero (fsuc _ _) () test : ∀ {m n} (i : Fin m) (m≤n m≤n' : m ≤ n) → inject≤ m n i m≤n ≡ inject≤ m n i m≤n' test i m≤n m≤n' = refl -- WAS: succeeded because of wrong polarity for inject≤ -- Expected error: -- m≤n != m≤n' of type m ≤ n -- when checking that the expression refl has type -- inject≤ m n i m≤n ≡ inject≤ m n i m≤n'
{ "alphanum_fraction": 0.57806245, "avg_line_length": 29.7380952381, "ext": "agda", "hexsha": "53142a939a928eca66052fcfc2997a1e1177644e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3692.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3692.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3692.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 499, "size": 1249 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.IntMod where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Unit open import Cubical.Data.Bool hiding (isProp≤) open import Cubical.Data.Nat renaming (_+_ to _+ℕ_) open import Cubical.Data.Nat.Mod open import Cubical.Data.Nat.Order open import Cubical.Data.Int renaming (_+_ to _+ℤ_) open import Cubical.Data.Fin open import Cubical.Data.Fin.Arithmetic open import Cubical.Data.Sigma open import Cubical.Algebra.Monoid.Base open import Cubical.Algebra.Semigroup.Base open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Instances.Unit open import Cubical.Algebra.Group.Instances.Bool open import Cubical.Algebra.Group.Instances.Int open GroupStr open IsGroup open IsMonoid ℤGroup/_ : ℕ → Group₀ ℤGroup/ zero = ℤGroup fst (ℤGroup/ suc n) = Fin (suc n) 1g (snd (ℤGroup/ suc n)) = 0 GroupStr._·_ (snd (ℤGroup/ suc n)) = _+ₘ_ inv (snd (ℤGroup/ suc n)) = -ₘ_ isGroup (snd (ℤGroup/ suc n)) = makeIsGroup isSetFin (λ x y z → sym (+ₘ-assoc x y z)) +ₘ-rUnit +ₘ-lUnit +ₘ-rCancel +ₘ-lCancel ℤGroup/1≅Unit : GroupIso (ℤGroup/ 1) UnitGroup₀ ℤGroup/1≅Unit = contrGroupIsoUnit isContrFin1 Bool≅ℤGroup/2 : GroupIso BoolGroup (ℤGroup/ 2) Iso.fun (fst Bool≅ℤGroup/2) false = 1 Iso.fun (fst Bool≅ℤGroup/2) true = 0 Iso.inv (fst Bool≅ℤGroup/2) (zero , p) = true Iso.inv (fst Bool≅ℤGroup/2) (suc zero , p) = false Iso.inv (fst Bool≅ℤGroup/2) (suc (suc x) , p) = ⊥.rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p))) Iso.rightInv (fst Bool≅ℤGroup/2) (zero , p) = Σ≡Prop (λ _ → isProp≤) refl Iso.rightInv (fst Bool≅ℤGroup/2) (suc zero , p) = Σ≡Prop (λ _ → isProp≤) refl Iso.rightInv (fst Bool≅ℤGroup/2) (suc (suc x) , p) = ⊥.rec (¬-<-zero (predℕ-≤-predℕ (predℕ-≤-predℕ p))) Iso.leftInv (fst Bool≅ℤGroup/2) false = refl Iso.leftInv (fst Bool≅ℤGroup/2) true = refl snd Bool≅ℤGroup/2 = makeIsGroupHom λ { false false → refl ; false true → refl ; true false → refl ; true true → refl} ℤGroup/2≅Bool : GroupIso (ℤGroup/ 2) BoolGroup ℤGroup/2≅Bool = invGroupIso Bool≅ℤGroup/2 -- Definition of the quotient map homomorphism ℤ → ℤGroup/ (suc n) -- as a group homomorphism. ℤ→Fin : (n : ℕ) → ℤ → Fin (suc n) ℤ→Fin n (pos x) = x mod (suc n) , mod< n x ℤ→Fin n (negsuc x) = -ₘ (suc x mod suc n , mod< n (suc x)) ℤ→Fin-presinv : (n : ℕ) (x : ℤ) → ℤ→Fin n (- x) ≡ -ₘ ℤ→Fin n x ℤ→Fin-presinv n (pos zero) = Σ≡Prop (λ _ → isProp≤) ((λ _ → zero) ∙ sym (cong fst help)) where help : (-ₘ_ {n = n} 0) ≡ 0 help = GroupTheory.inv1g (ℤGroup/ (suc n)) ℤ→Fin-presinv n (pos (suc x)) = Σ≡Prop (λ _ → isProp≤) refl ℤ→Fin-presinv n (negsuc x) = sym (GroupTheory.invInv (ℤGroup/ (suc n)) _) -ₘ1-id : (n : ℕ) → Path (Fin (suc n)) (-ₘ (1 mod (suc n) , mod< n 1)) (n mod (suc n) , mod< n n) -ₘ1-id zero = refl -ₘ1-id (suc n) = cong -ₘ_ (FinPathℕ ((1 mod suc (suc n)) , mod< (suc n) 1) 1 (modIndBase (suc n) 1 (n , +-comm n 2)) .snd) ∙ Σ≡Prop (λ _ → isProp≤) ((+inductionBase (suc n) _ (λ x _ → ((suc (suc n)) ∸ x) mod (suc (suc n))) λ _ x → x) 1 (n , (+-comm n 2))) suc-ₘ1 : (n y : ℕ) → ((suc y mod suc n) , mod< n (suc y)) -ₘ (1 mod (suc n) , mod< n 1) ≡ (y mod suc n , mod< n y) suc-ₘ1 zero y = isContr→isProp (isOfHLevelRetractFromIso 0 (fst ℤGroup/1≅Unit) isContrUnit) _ _ suc-ₘ1 (suc n) y = (λ i → ((suc y mod suc (suc n)) , mod< (suc n) (suc y)) +ₘ (-ₘ1-id (suc n) i)) ∙ Σ≡Prop (λ _ → isProp≤) (cong (_mod (2 +ℕ n)) (cong (_+ℕ (suc n) mod (2 +ℕ n)) (mod+mod≡mod (suc (suc n)) 1 y)) ∙∙ sym (mod+mod≡mod (suc (suc n)) ((1 mod suc (suc n)) +ℕ (y mod suc (suc n))) (suc n)) ∙∙ (mod-rCancel (suc (suc n)) ((1 mod suc (suc n)) +ℕ (y mod suc (suc n))) (suc n) ∙ cong (_mod (suc (suc n))) (cong (_+ℕ (suc n mod suc (suc n))) (+-comm (1 mod suc (suc n)) (y mod suc (suc n))) ∙ sym (+-assoc (y mod suc (suc n)) (1 mod suc (suc n)) (suc n mod suc (suc n)))) ∙∙ mod-rCancel (suc (suc n)) (y mod suc (suc n)) ((1 mod suc (suc n)) +ℕ (suc n mod suc (suc n))) ∙∙ (cong (_mod (2 +ℕ n)) (cong ((y mod suc (suc n)) +ℕ_) (sym (mod+mod≡mod (suc (suc n)) 1 (suc n)) ∙ zero-charac (suc (suc n))) ∙ +-comm _ 0) ∙ mod-idempotent y))) 1-ₘsuc : (n y : ℕ) → ((1 mod (suc n) , mod< n 1) +ₘ (-ₘ (((suc y mod suc n) , mod< n (suc y))))) ≡ -ₘ ((y mod suc n) , mod< n y) 1-ₘsuc n y = sym (GroupTheory.invInv (ℤGroup/ (suc n)) _) ∙ cong -ₘ_ (GroupTheory.invDistr (ℤGroup/ (suc n)) (modInd n 1 , mod< n 1) (-ₘ (modInd n (suc y) , mod< n (suc y))) ∙ cong (_-ₘ (modInd n 1 , mod< n 1)) (GroupTheory.invInv (ℤGroup/ (suc n)) (modInd n (suc y) , mod< n (suc y))) ∙ suc-ₘ1 n y) isHomℤ→Fin : (n : ℕ) → IsGroupHom (snd ℤGroup) (ℤ→Fin n) (snd (ℤGroup/ (suc n))) isHomℤ→Fin n = makeIsGroupHom λ { (pos x) y → pos+case x y ; (negsuc x) (pos y) → cong (ℤ→Fin n) (+Comm (negsuc x) (pos y)) ∙∙ pos+case y (negsuc x) ∙∙ +ₘ-comm (ℤ→Fin n (pos y)) (ℤ→Fin n (negsuc x)) ; (negsuc x) (negsuc y) → sym (cong (ℤ→Fin n) (-Dist+ (pos (suc x)) (pos (suc y)))) ∙∙ ℤ→Fin-presinv n (pos (suc x) +ℤ (pos (suc y))) ∙∙ cong -ₘ_ (pos+case (suc x) (pos (suc y))) ∙∙ GroupTheory.invDistr (ℤGroup/ (suc n)) (modInd n (suc x) , mod< n (suc x)) (modInd n (suc y) , mod< n (suc y)) ∙∙ +ₘ-comm (ℤ→Fin n (negsuc y)) (ℤ→Fin n (negsuc x))} where +1case : (y : ℤ) → ℤ→Fin n (1 +ℤ y) ≡ ℤ→Fin n 1 +ₘ ℤ→Fin n y +1case (pos zero) = sym (GroupStr.·IdR (snd (ℤGroup/ (suc n))) _) +1case (pos (suc y)) = cong (ℤ→Fin n) (+Comm 1 (pos (suc y))) ∙ Σ≡Prop (λ _ → isProp≤) (mod+mod≡mod (suc n) 1 (suc y)) +1case (negsuc zero) = Σ≡Prop (λ _ → isProp≤) refl ∙ sym (GroupStr.·InvR (snd (ℤGroup/ (suc n))) (modInd n 1 , mod< n 1)) +1case (negsuc (suc y)) = Σ≡Prop (λ _ → isProp≤) (cong fst (cong (ℤ→Fin n) (+Comm 1 (negsuc (suc y)))) ∙∙ cong fst (cong -ₘ_ (refl {x = suc y mod suc n , mod< n (suc y)})) ∙∙ cong fst (sym (1-ₘsuc n (suc y))) ∙ λ i → fst ((1 mod (suc n) , mod< n 1) +ₘ (-ₘ (((suc (suc y) mod suc n) , mod< n (suc (suc y))))))) pos+case : (x : ℕ) (y : ℤ) → ℤ→Fin n (pos x +ℤ y) ≡ ℤ→Fin n (pos x) +ₘ ℤ→Fin n y pos+case zero y = cong (ℤ→Fin n) (+Comm 0 y) ∙ sym (GroupStr.·IdL (snd (ℤGroup/ (suc n))) (ℤ→Fin n y)) pos+case (suc zero) y = +1case y pos+case (suc (suc x)) y = cong (ℤ→Fin n) (cong (_+ℤ y) (+Comm (pos (suc x)) 1) ∙ sym (+Assoc 1 (pos (suc x)) y)) ∙∙ +1case (pos (suc x) +ℤ y) ∙∙ (cong ((modInd n 1 , mod< n 1) +ₘ_) (pos+case (suc x) y) ∙∙ sym (+ₘ-assoc (modInd n 1 , mod< n 1) (modInd n (suc x) , mod< n (suc x)) (ℤ→Fin n y)) ∙∙ cong (_+ₘ ℤ→Fin n y) (lem x)) where lem : (x : ℕ) → (modInd n 1 , mod< n 1) +ₘ (modInd n (suc x) , mod< n (suc x)) ≡ ℤ→Fin n (pos (suc (suc x))) lem x = Σ≡Prop (λ _ → isProp≤) (sym (mod+mod≡mod (suc n) 1 (suc x)))
{ "alphanum_fraction": 0.5314738997, "avg_line_length": 38.6930693069, "ext": "agda", "hexsha": "c7943ad893b31cd7dacca662ad0286240ab081fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Instances/IntMod.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3298, "size": 7816 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Functor.Slice {o ℓ e} (C : Category o ℓ e) where open import Data.Product using (_,_) open import Categories.Adjoint open import Categories.Category.CartesianClosed open import Categories.Category.CartesianClosed.Locally open import Categories.Functor open import Categories.Functor.Properties open import Categories.Morphism.Reasoning C open import Categories.NaturalTransformation import Categories.Category.Slice as S import Categories.Diagram.Pullback as P import Categories.Category.Construction.Pullbacks as Pbs open Category C open HomReasoning module _ {A : Obj} where open S.SliceObj open S.Slice⇒ Base-F : ∀ {o′ ℓ′ e′} {D : Category o′ ℓ′ e′} (F : Functor C D) → Functor (S.Slice C A) (S.Slice D (Functor.F₀ F A)) Base-F {D = D} F = record { F₀ = λ { (S.sliceobj arr) → S.sliceobj (F₁ arr) } ; F₁ = λ { (S.slicearr △) → S.slicearr ([ F ]-resp-∘ △) } ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = F-resp-≈ } where module D = Category D open Functor F open S C Forgetful : Functor (Slice A) C Forgetful = record { F₀ = λ X → Y X ; F₁ = λ f → h f ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ eq → eq } BaseChange! : ∀ {B} (f : B ⇒ A) → Functor (Slice B) (Slice A) BaseChange! f = record { F₀ = λ X → sliceobj (f ∘ arr X) ; F₁ = λ g → slicearr (pullʳ (△ g)) ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ eq → eq } module _ (pullbacks : ∀ {X Y Z} (h : X ⇒ Z) (i : Y ⇒ Z) → P.Pullback C h i) where private open P C module pullbacks {X Y Z} h i = Pullback (pullbacks {X} {Y} {Z} h i) open pullbacks BaseChange* : ∀ {B} (f : B ⇒ A) → Functor (Slice A) (Slice B) BaseChange* f = record { F₀ = λ X → sliceobj (p₂ (arr X) f) ; F₁ = λ {X Y} g → slicearr {h = Pullback.p₂ (unglue (pullbacks (arr Y) f) (Pullback-resp-≈ (pullbacks (arr X) f) (△ g) refl))} (p₂∘universal≈h₂ (arr Y) f) ; identity = λ {X} → ⟺ (unique (arr X) f id-comm identityʳ) ; homomorphism = λ {X Y Z} {h i} → unique-diagram (arr Z) f (p₁∘universal≈h₁ (arr Z) f ○ assoc ○ ⟺ (pullʳ (p₁∘universal≈h₁ (arr Y) f)) ○ ⟺ (pullˡ (p₁∘universal≈h₁ (arr Z) f))) (p₂∘universal≈h₂ (arr Z) f ○ ⟺ (p₂∘universal≈h₂ (arr Y) f) ○ ⟺ (pullˡ (p₂∘universal≈h₂ (arr Z) f))) ; F-resp-≈ = λ {X Y} eq″ → unique (arr Y) f (p₁∘universal≈h₁ (arr Y) f ○ ∘-resp-≈ˡ eq″) (p₂∘universal≈h₂ (arr Y) f) } !⊣* : ∀ {B} (f : B ⇒ A) → BaseChange! f ⊣ BaseChange* f !⊣* f = record { unit = ntHelper record { η = λ X → slicearr (p₂∘universal≈h₂ (f ∘ arr X) f {eq = identityʳ}) ; commute = λ {X Y} g → unique-diagram (f ∘ arr Y) f (cancelˡ (p₁∘universal≈h₁ (f ∘ arr Y) f) ○ ⟺ (cancelʳ (p₁∘universal≈h₁ (f ∘ arr X) f)) ○ pushˡ (⟺ (p₁∘universal≈h₁ (f ∘ arr Y) f))) (pullˡ (p₂∘universal≈h₂ (f ∘ arr Y) f) ○ △ g ○ ⟺ (p₂∘universal≈h₂ (f ∘ arr X) f) ○ pushˡ (⟺ (p₂∘universal≈h₂ (f ∘ arr Y) f))) } ; counit = ntHelper record { η = λ X → slicearr (pullbacks.commute (arr X) f) ; commute = λ {X Y} g → p₁∘universal≈h₁ (arr Y) f } ; zig = λ {X} → p₁∘universal≈h₁ (f ∘ arr X) f ; zag = λ {Y} → unique-diagram (arr Y) f (pullˡ (p₁∘universal≈h₁ (arr Y) f) ○ pullʳ (p₁∘universal≈h₁ (f ∘ pullbacks.p₂ (arr Y) f) f)) (pullˡ (p₂∘universal≈h₂ (arr Y) f) ○ p₂∘universal≈h₂ (f ∘ pullbacks.p₂ (arr Y) f) f ○ ⟺ identityʳ) } pullback-functorial : ∀ {B} (f : B ⇒ A) → Functor (Slice A) C pullback-functorial f = record { F₀ = λ X → p.P X ; F₁ = λ f → p⇒ _ _ f ; identity = λ {X} → sym (p.unique X id-comm id-comm) ; homomorphism = λ {_ Y Z} → p.unique-diagram Z (p.p₁∘universal≈h₁ Z ○ ⟺ identityˡ ○ ⟺ (pullʳ (p.p₁∘universal≈h₁ Y)) ○ ⟺ (pullˡ (p.p₁∘universal≈h₁ Z))) (p.p₂∘universal≈h₂ Z ○ assoc ○ ⟺ (pullʳ (p.p₂∘universal≈h₂ Y)) ○ ⟺ (pullˡ (p.p₂∘universal≈h₂ Z))) ; F-resp-≈ = λ {_ B} {h i} eq → p.unique-diagram B (p.p₁∘universal≈h₁ B ○ ⟺ (p.p₁∘universal≈h₁ B)) (p.p₂∘universal≈h₂ B ○ ∘-resp-≈ˡ eq ○ ⟺ (p.p₂∘universal≈h₂ B)) } where p : ∀ X → Pullback f (arr X) p X = pullbacks f (arr X) module p X = Pullback (p X) p⇒ : ∀ X Y (g : Slice⇒ X Y) → p.P X ⇒ p.P Y p⇒ X Y g = Pbs.Pullback⇒.pbarr pX⇒pY where pX : Pbs.PullbackObj C A pX = record { pullback = p X } pY : Pbs.PullbackObj C A pY = record { pullback = p Y } pX⇒pY : Pbs.Pullback⇒ C A pX pY pX⇒pY = record { mor₁ = Category.id C ; mor₂ = h g ; commute₁ = identityʳ ; commute₂ = △ g }
{ "alphanum_fraction": 0.4862150812, "avg_line_length": 43.4682539683, "ext": "agda", "hexsha": "12e8fd52b5f666df0bc951791f61662297b9e65e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Slice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Slice.agda", "max_line_length": 181, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Slice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2001, "size": 5477 }
module Data.Vec.Any.Properties where open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; inspect; refl) open import Relation.Unary renaming (_⊆_ to _⋐_) using () open import Data.Product as Prod hiding (map; swap) open import Data.Vec as Vec open import Data.Vec.Any as Any open import Data.Vec.Any.Membership.Propositional --open import Data.Vec.Membership open import Data.Bool.Base using (Bool; false; true; T) open import Data.Bool.Properties open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Sum as Sum hiding (map) open import Function using (_∘_; _$_; id; flip; const) open import Function.Inverse as Inv using (_↔_) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Eq using (_⇔_ ; module Equivalence) open import Function.Related as Related using (Related) open Related.EquationalReasoning open import Relation.Binary.Sum map-id : ∀ {a p n} {A : Set a} {P : A → Set p} (f : P ⋐ P) {xs : Vec A n} → (∀ {x} (p : P x) → f p ≡ p) → (p : Any P xs) → Any.map f p ≡ p map-id f hyp (here px) = P.cong here $ hyp px map-id f hyp (there p) = P.cong there $ map-id f hyp p map-∘ : ∀ {a p q r n}{A : Set a}{P : A → Set p}{Q : A → Set q}{R : A → Set r} (f : Q ⋐ R)(g : P ⋐ Q) {xs : Vec A n}(p : Any P xs) → Any.map (f ∘ g) p ≡ Any.map f (Any.map g p) map-∘ f g (here px) = P.refl map-∘ f g (there p) = P.cong there $ map-∘ f g p map∘find′ : ∀ {a n p}{A : Set a} {P : A → Set p}{xs : Vec A n} (p : Any P xs) → let (x , x∈xs , px) = find′ p in {f : (x ≡_) ⋐ P } → f P.refl ≡ px → Any.map f x∈xs ≡ p map∘find′ (here px) hyp = P.cong here hyp map∘find′ (there pxs) hyp = P.cong there $ map∘find′ pxs hyp find′∘map : ∀ {a n p q}{A : Set a}{P : A → Set p}{Q : A → Set q}{xs : Vec A n}(p : Any P xs)(f : P ⋐ Q) → find′ (Any.map f p) ≡ Prod.map id (Prod.map id f) (find′ p) find′∘map (here px) f = P.refl find′∘map (there pxs) f rewrite find′∘map pxs f = P.refl find′-∈′ : ∀ {a n}{A : Set a}{x}{xs : Vec A n}(x∈xs : x ∈′ xs) → find′ x∈xs ≡ (x , x∈xs , P.refl) find′-∈′ (here P.refl) = P.refl find′-∈′ (there x∈xs) rewrite find′-∈′ x∈xs = P.refl lose′∘find′ : ∀ {a n p}{A : Set a} {P : A → Set p}{xs : Vec A n} (p : Any P xs) → uncurry′ lose′ (proj₂ (find′ p)) ≡ p lose′∘find′ (here px) = P.refl lose′∘find′ (there p) = P.cong there $ lose′∘find′ p find′∘lose′ : ∀ {a n p}{A : Set a} (P : A → Set p){x}{xs : Vec A n} (x∈xs : x ∈′ xs)(px : P x) → find′ {P = P} (lose′ x∈xs px) ≡ (x , x∈xs , px) find′∘lose′ P x∈xs px rewrite find′∘map x∈xs (flip (P.subst P) px) | find′-∈′ x∈xs = P.refl ∃∈-Any : ∀ {a p n}{A : Set a} {P : A → Set p}{xs : Vec A n} → (∃ λ x → x ∈′ xs × P x) → Any P xs ∃∈-Any = uncurry′ lose′ ∘ proj₂ Any↔ : ∀ {a p n}{A : Set a} {P : A → Set p}{xs : Vec A n} → (∃ λ x → x ∈′ xs × P x) ↔ Any P xs Any↔ {P = P}{xs} = record { to = P.→-to-⟶ ∃∈-Any ; from = P.→-to-⟶ (find′ {P = P}) ; inverse-of = record { left-inverse-of = λ { (x , x∈xs , px) → find′∘lose′ P x∈xs px} ; right-inverse-of = lose′∘find′ } } Any-cong : ∀ {k a p m n} {A : Set a} {P₁ P₂ : A → Set p} {xs₁ : Vec A m} {xs₂ : Vec A n} → (∀ x → Related k (P₁ x) (P₂ x)) → xs₁ ∼[ k ] xs₂ → Related k (Any P₁ xs₁) (Any P₂ xs₂) Any-cong {P₁ = P₁}{P₂}{xs₁}{xs₂} P₁∼P₂ xs₁∼xs₂ = Any P₁ xs₁ ↔⟨ sym $ Any↔ {P = P₁} ⟩ (∃ λ x → x ∈′ xs₁ × P₁ x) ∼⟨ Σ.cong Inv.id (xs₁∼xs₂ ×-cong P₁∼P₂ _) ⟩(∃ λ x → x ∈′ xs₂ × P₂ x) ↔⟨ Any↔ {P = P₂} ⟩ Any P₂ xs₂ ∎ where open import Relation.Binary.Product.Pointwise import Relation.Binary.Sigma.Pointwise as Σ swap : ∀ {a b p}{A : Set a}{B : Set b}{P : A → B → Set p} {m n}{xs : Vec A m}{ys : Vec B n} → Any (λ x → Any (P x) ys) xs → Any (λ y → (Any (flip P y) xs)) ys swap (here pys) = Any.map here pys swap (there pxys) = Any.map there $ swap pxys swap-there : ∀ {a b p}{A : Set a}{B : Set b}{P : A → B → Set p} {m n x}{xs : Vec A m}{ys : Vec B n}(any : Any (λ x → Any (P x) ys) xs) → swap (Any.map (there {x = x}) any) ≡ there (swap any) swap-there (here pys) = P.refl swap-there (there pxys) = P.cong (Any.map there) $ swap-there pxys swap-invol : ∀ {a b p}{A : Set a}{B : Set b}{P : A → B → Set p} {m n}{xs : Vec A m}{ys : Vec B n}(any : Any (λ x → Any (P x) ys) xs) → swap (swap any) ≡ any swap-invol (here (here px)) = P.refl swap-invol (here (there pys)) = P.cong (Any.map there) $ swap-invol (here pys) swap-invol (there pxys) = P.trans (swap-there (swap pxys)) $ P.cong there $ swap-invol pxys swap↔ : ∀ {a b p}{A : Set a}{B : Set b}{P : A → B → Set p} {m n}{xs : Vec A m}{ys : Vec B n} → Any (λ x → Any (P x) ys) xs ↔ Any (λ y → (Any (flip P y) xs)) ys swap↔ = record { to = P.→-to-⟶ swap ; from = P.→-to-⟶ swap ; inverse-of = record { left-inverse-of = swap-invol ; right-inverse-of = swap-invol } } ⊥↔Any⊥ : ∀ {a n}{A : Set a}{xs : Vec A n} → ⊥ ↔ Any (const ⊥) xs ⊥↔Any⊥ {A = A} = record { to = P.→-to-⟶ λ() ; from = P.→-to-⟶ (λ p → from p) ; inverse-of = record { left-inverse-of = λ() ; right-inverse-of = λ p → from p } } where from : ∀ {n}{xs : Vec A n} → Any (const ⊥) xs → ∀ {b} {B : Set b} → B from (here ()) from (there p) = from p ⊥↔Any[] : ∀ {a}{A : Set a}{P : A → Set} → ⊥ ↔ Any P [] ⊥↔Any[] = record { to = P.→-to-⟶ λ() ; from = P.→-to-⟶ λ() ; inverse-of = record { left-inverse-of = λ() ; right-inverse-of = λ() } } -- any⇔ module _ {a p q}{A : Set a}{P : A → Set p}{Q : A → Set q} where Any-⊎⁺ : ∀{n}{xs : Vec A n} → Any P xs ⊎ Any Q xs → Any (λ x → P x ⊎ Q x) xs Any-⊎⁺ = [ Any.map inj₁ , Any.map inj₂ ]′ Any-⊎⁻ : ∀{n}{xs : Vec A n} → Any (λ x → P x ⊎ Q x) xs → Any P xs ⊎ Any Q xs Any-⊎⁻ (here (inj₁ px)) = inj₁ (here px) Any-⊎⁻ (here (inj₂ qx)) = inj₂ (here qx) Any-⊎⁻ (there p) = Sum.map there there (Any-⊎⁻ p) ⊎↔ : ∀ {n}{xs : Vec A n} → (Any P xs ⊎ Any Q xs) ↔ Any (λ x → P x ⊎ Q x) xs ⊎↔ = record { to = P.→-to-⟶ Any-⊎⁺ ; from = P.→-to-⟶ Any-⊎⁻ ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = to∘from } } where from∘to : ∀ {n}{xs : Vec A n} (p : Any P xs ⊎ Any Q xs) → Any-⊎⁻ (Any-⊎⁺ p) ≡ p from∘to (inj₁ (here p)) = P.refl from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = P.refl from∘to (inj₂ (here q)) = P.refl from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = P.refl to∘from : ∀ {n}{xs : Vec A n} (p : Any (λ x → P x ⊎ Q x) xs) → Any-⊎⁺ (Any-⊎⁻ p) ≡ p to∘from (here (inj₁ p)) = P.refl to∘from (here (inj₂ q)) = P.refl to∘from (there p) with Any-⊎⁻ p | to∘from p to∘from (there .(Any.map inj₁ p)) | inj₁ p | P.refl = P.refl to∘from (there .(Any.map inj₂ q)) | inj₂ q | P.refl = P.refl module _ {a b p q} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} where Any-×⁺ : ∀ {m n}{xs : Vec A m} {ys : Vec B n} → Any P xs × Any Q ys → Any (λ x → Any (λ y → P x × Q y) ys) xs Any-×⁺ (p , q) = Any.map (λ p → Any.map (λ q → (p , q)) q) p Any-×⁻ : ∀ {m n} {xs : Vec A m}{ys : Vec B n} → Any (λ x → Any (λ y → P x × Q y) ys) xs → Any P xs × Any Q ys Any-×⁻ pq with Prod.map id (Prod.map id find′) (find′ pq) ... | (x , x∈xs , y , y∈ys , p , q) = (lose′ x∈xs p , lose′ y∈ys q) ×↔ : ∀ {m n} {xs : Vec A m}{ys : Vec B n} → (Any P xs × Any Q ys) ↔ Any (λ x → Any (λ y → P x × Q y) ys) xs ×↔ {m}{n}{xs} {ys} = record { to = P.→-to-⟶ Any-×⁺ ; from = P.→-to-⟶ Any-×⁻ ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = to∘from } } where from∘to : ∀ (pq : Any P xs × Any Q ys) → Any-×⁻ (Any-×⁺ pq) ≡ pq from∘to (p , q) rewrite find′∘map {Q = λ x → Any (λ y → P x × Q y) ys} p (λ px → Any.map (λ q → (px , q)) q) | find′∘map {Q = λ y → P (proj₁ (find′ p)) × Q y} q (λ q → proj₂ (proj₂ (find′ p)) , q) | lose′∘find′ p | lose′∘find′ q = P.refl to∘from : ∀ (pq : Any (λ x → Any (λ y → P x × Q y) ys) xs) → Any-×⁺ (Any-×⁻ pq) ≡ pq to∘from pq with find′ pq | (λ (f : (proj₁ (find′ pq) ≡_) ⋐ _) → map∘find′ pq {f}) ... | (x , x∈xs , pq′) | lem₁ with find′ pq′ | (λ (f : (proj₁ (find′ pq′) ≡_) ⋐ _) → map∘find′ pq′ {f}) ... | (y , y∈ys , p , q) | lem₂ rewrite P.sym $ map-∘ {R = λ x → Any (λ y → P x × Q y) ys} (λ p → Any.map (λ q → p , q) (lose′ y∈ys q)) (λ y → P.subst P y p) x∈xs = lem₁ _ helper where helper : Any.map (λ q → p , q) (lose′ y∈ys q) ≡ pq′ helper rewrite P.sym $ map-∘ {R = λ y → P x × Q y} (λ q → p , q) (λ y → P.subst Q y q) y∈ys = lem₂ _ P.refl module _ {a b} {A : Set a} {B : Set b} where map⁺ : ∀ {p} {P : B → Set p} {f : A → B}{n}{xs : Vec A n} → Any (P ∘ f) xs → Any P (Vec.map f xs) map⁺ (here pfx) = here pfx map⁺ (there p) = there (map⁺ p) map⁻ : ∀ {p} {P : B → Set p} {f : A → B} {n}{xs : Vec A n} → Any P (Vec.map f xs) → Any (P ∘ f) xs map⁻ {xs = []} () map⁻ {xs = x ∷ xs} (here p) = here p map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p map⁺∘map⁻ : ∀ {p} {P : B → Set p} {f : A → B}{n}{xs : Vec A n} → (p : Any P (Vec.map f xs)) → map⁺ (map⁻ p) ≡ p map⁺∘map⁻ {xs = []} () map⁺∘map⁻ {xs = x ∷ xs} (here p) = P.refl map⁺∘map⁻ {xs = x ∷ xs} (there p) = P.cong there (map⁺∘map⁻ p) map⁻∘map⁺ : ∀ {p} (P : B → Set p) {f : A → B}{n} {xs : Vec A n} → (p : Any (P ∘ f) xs) → map⁻ {P = P} (map⁺ p) ≡ p map⁻∘map⁺ P (here p) = P.refl map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p) map↔ : ∀ {p} {P : B → Set p} {f : A → B} {n}{xs : Vec A n} → Any (P ∘ f) xs ↔ Any P (Vec.map f xs) map↔ {P = P} {f = f} = record { to = P.→-to-⟶ $ map⁺ {P = P} {f = f} ; from = P.→-to-⟶ $ map⁻ {P = P} {f = f} ; inverse-of = record { left-inverse-of = map⁻∘map⁺ P ; right-inverse-of = map⁺∘map⁻ } } ------------------------------------------------------------------------ -- _++_ module _ {a p} {A : Set a} {P : A → Set p} where ++⁺ˡ : ∀ {m n}{xs : Vec A m} {ys : Vec A n} → Any P xs → Any P (xs ++ ys) ++⁺ˡ (here p) = here p ++⁺ˡ (there p) = there (++⁺ˡ p) ++⁺ʳ : ∀ {m n} (xs : Vec A m) {ys : Vec A n} → Any P ys → Any P (xs ++ ys) ++⁺ʳ [] p = p ++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p) ++⁻ : ∀ {m n} (xs : Vec A m) {ys : Vec A n} → Any P (xs ++ ys) → Any P xs ⊎ Any P ys ++⁻ [] p = inj₂ p ++⁻ (x ∷ xs) (here p) = inj₁ (here p) ++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p) ++⁺∘++⁻ : ∀{m n} (xs : Vec A m) {ys : Vec A n} (p : Any P (xs ++ ys)) → [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p) ≡ p ++⁺∘++⁻ [] p = refl ++⁺∘++⁻ (x ∷ xs) (here p) = refl ++⁺∘++⁻ (x ∷ xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p ++⁺∘++⁻ (x ∷ xs) (there p) | inj₁ p′ | ih = P.cong there ih ++⁺∘++⁻ (x ∷ xs) (there p) | inj₂ p′ | ih = P.cong there ih ++⁻∘++⁺ : ∀{m n} (xs : Vec A m) {ys : Vec A n} (p : Any P xs ⊎ Any P ys) → ++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p) ≡ p ++⁻∘++⁺ [] (inj₁ ()) ++⁻∘++⁺ [] (inj₂ p) = refl ++⁻∘++⁺ (x ∷ xs) (inj₁ (here p)) = refl ++⁻∘++⁺ (x ∷ xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl ++⁻∘++⁺ (x ∷ xs) (inj₂ p) rewrite ++⁻∘++⁺ xs (inj₂ p) = refl ++↔ : ∀{m n} {xs : Vec A m}{ys : Vec A n} → (Any P xs ⊎ Any P ys) ↔ Any P (xs ++ ys) ++↔ {xs = xs} = record { to = P.→-to-⟶ [ ++⁺ˡ , ++⁺ʳ xs ]′ ; from = P.→-to-⟶ $ ++⁻ xs ; inverse-of = record { left-inverse-of = ++⁻∘++⁺ xs ; right-inverse-of = ++⁺∘++⁻ xs } } ++-comm : ∀ {m n} (xs : Vec A m) (ys : Vec A n) → Any P (xs ++ ys) → Any P (ys ++ xs) ++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′ ∘ ++⁻ xs ++-comm∘++-comm : ∀{m n} (xs : Vec A m) {ys : Vec A n} (p : Any P (xs ++ ys)) → ++-comm ys xs (++-comm xs ys p) ≡ p ++-comm∘++-comm [] {ys} p rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = P.refl ++-comm∘++-comm (x ∷ xs) {ys} (here p) rewrite ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₂ (here p)) = P.refl ++-comm∘++-comm (x ∷ xs) (there p) with ++⁻ xs p | ++-comm∘++-comm xs p ++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p)))) | inj₁ p | P.refl rewrite ++⁻∘++⁺ ys (inj₂ p) | ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = P.refl ++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p)))) | inj₂ p | P.refl rewrite ++⁻∘++⁺ ys {ys = xs} (inj₁ p) | ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₁ p) = P.refl ++↔++ : ∀{m n} (xs : Vec A m) (ys : Vec A n) → Any P (xs ++ ys) ↔ Any P (ys ++ xs) ++↔++ xs ys = record { to = P.→-to-⟶ $ ++-comm xs ys ; from = P.→-to-⟶ $ ++-comm ys xs ; inverse-of = record { left-inverse-of = ++-comm∘++-comm xs ; right-inverse-of = ++-comm∘++-comm ys } } ------------------------------------------------------------------------ -- tabulate module _ {a p} {A : Set a} {P : A → Set p} where tabulate⁺ : ∀ {n} {f : Fin n → A} i → P (f i) → Any P (tabulate f) tabulate⁺ fzero p = here p tabulate⁺ (fsuc i) p = there (tabulate⁺ i p) tabulate⁻ : ∀ {n} {f : Fin n → A} → Any P (tabulate f) → ∃ λ i → P (f i) tabulate⁻ {zero} () tabulate⁻ {suc n} (here p) = fzero , p tabulate⁻ {suc n} (there p) = Prod.map fsuc id (tabulate⁻ p) ------------------------------------------------------------------------ -- map-with-∈. module _ {a b p} {A : Set a} {B : Set b} {P : B → Set p} where map-with-∈′⁺ : ∀ {n}{xs : Vec A n} (f : ∀ {x} → x ∈′ xs → B) → (∃₂ λ x (x∈xs : x ∈′ xs) → P (f x∈xs)) → Any P (map-with-∈′ xs f) map-with-∈′⁺ f (_ , here refl , p) = here p map-with-∈′⁺ f (_ , there x∈xs , p) = there $ map-with-∈′⁺ (f ∘ there) (_ , x∈xs , p) map-with-∈′⁻ : ∀ {n} (xs : Vec A n) (f : ∀ {x} → x ∈′ xs → B) → Any P (map-with-∈′ xs f) → ∃₂ λ x (x∈xs : x ∈′ xs) → P (f x∈xs) map-with-∈′⁻ [] f () map-with-∈′⁻ (y ∷ xs) f (here p) = (y , here refl , p) map-with-∈′⁻ (y ∷ xs) f (there p) = Prod.map id (Prod.map there id) $ map-with-∈′⁻ xs (f ∘ there) p map-with-∈′↔ : ∀{n}{xs : Vec A n} {f : ∀ {x} → x ∈′ xs → B} → (∃₂ λ x (x∈xs : x ∈′ xs) → P (f x∈xs)) ↔ Any P (map-with-∈′ xs f) map-with-∈′↔ = record { to = P.→-to-⟶ (map-with-∈′⁺ _) ; from = P.→-to-⟶ (map-with-∈′⁻ _ _) ; inverse-of = record { left-inverse-of = from∘to _ ; right-inverse-of = to∘from _ _ } } where from∘to : ∀ {n} {xs : Vec A n} (f : ∀ {x} → x ∈′ xs → B) (p : ∃₂ λ x (x∈xs : x ∈′ xs) → P (f x∈xs)) → map-with-∈′⁻ xs f (map-with-∈′⁺ f p) ≡ p from∘to f (_ , here refl , p) = refl from∘to f (_ , there x∈xs , p) rewrite from∘to (f ∘ there) (_ , x∈xs , p) = refl to∘from : ∀ {n}(xs : Vec A n) (f : ∀ {x} → x ∈′ xs → B) (p : Any P (map-with-∈′ xs f)) → map-with-∈′⁺ f (map-with-∈′⁻ xs f p) ≡ p to∘from [] f () to∘from (y ∷ xs) f (here p) = refl to∘from (y ∷ xs) f (there p) = P.cong there $ to∘from xs (f ∘ there) p ------------------------------------------------------------------------ module _ {a p} {A : Set a} {P : A → Set p} where return⁺ : ∀ {x} → P x → Any P ([ x ]) return⁺ = here return⁻ : ∀ {x} → Any P ([ x ]) → P x return⁻ (here p) = p return⁻ (there ()) return⁺∘return⁻ : ∀ {x} (p : Any P [ x ]) → return⁺ (return⁻ p) ≡ p return⁺∘return⁻ (here p) = refl return⁺∘return⁻ (there ()) return⁻∘return⁺ : ∀ {x} (p : P x) → return⁻ (return⁺ p) ≡ p return⁻∘return⁺ p = refl return↔ : ∀ {x} → P x ↔ Any P ([ x ]) return↔ = record { to = P.→-to-⟶ $ return⁺ ; from = P.→-to-⟶ $ return⁻ ; inverse-of = record { left-inverse-of = return⁻∘return⁺ ; right-inverse-of = return⁺∘return⁻ } } -- _∷_. ∷↔ : ∀ {a p n} {A : Set a} (P : A → Set p) {x} {xs : Vec A n} → (P x ⊎ Any P xs) ↔ Any P (x ∷ xs) ∷↔ P {x} {xs} = (P x ⊎ Any P xs) ↔⟨ return↔ {P = P} ⊎-cong (Any P xs ∎) ⟩ (Any P [ x ] ⊎ Any P xs) ↔⟨ ++↔ {P = P} {xs = [ x ]} ⟩ Any P (x ∷ xs) ∎
{ "alphanum_fraction": 0.4344778844, "avg_line_length": 38.0695067265, "ext": "agda", "hexsha": "5c913d991a8255cb13ce96a6610aaa90d700d58e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tizmd/agda-vector-any", "max_forks_repo_path": "src/Data/Vec/Any/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tizmd/agda-vector-any", "max_issues_repo_path": "src/Data/Vec/Any/Properties.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tizmd/agda-vector-any", "max_stars_repo_path": "src/Data/Vec/Any/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7512, "size": 16979 }
{-# OPTIONS -v tc.unquote.clause:30 #-} open import Common.Reflection open import Common.Prelude data Box : Set → Set₁ where box : (A : Set) → Box A unquoteDecl test = define (vArg test) (funDef (pi (vArg (sort (lit 0))) (abs "A" (pi (vArg (def (quote Box) (vArg (var 0 []) ∷ []))) (abs "x" (sort (lit 0)))))) (clause (vArg dot ∷ vArg (con (quote box) (vArg (var "dot") ∷ [])) ∷ []) (var 1 []) ∷ []))
{ "alphanum_fraction": 0.545034642, "avg_line_length": 21.65, "ext": "agda", "hexsha": "6c17056d9a2cd6defff6f893ee7c9ce312568c4c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1303.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue1303.agda", "max_line_length": 56, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue1303.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 163, "size": 433 }
-- A generic proof of confluence for a rewriting system with the diamond property. module Confluence where open import Prelude postulate Tm : Set _=>_ : Tm -> Tm -> Set diamond : ∀{M N P : Tm} → (M => N) → (M => P) → Σ[ Q :: Tm ] (N => Q × P => Q) data _=>*_ : Tm → Tm → Set where eval-refl : {e : Tm} → e =>* e eval-cons : {e e' e'' : Tm} → (S1 : e => e') → (D : e' =>* e'') → e =>* e'' strip : ∀{M N P : Tm} → (M => N) → (M =>* P) → Σ[ Q :: Tm ] (N =>* Q × P => Q) strip S1 eval-refl = , (eval-refl , S1) strip S1 (eval-cons S2 D) with diamond S1 S2 ... | Q' , S1' , S2' with strip S2' D ... | Q , D1 , S' = Q , ((eval-cons S1' D1) , S') confluence : ∀{M N P : Tm} → (M =>* N) → (M =>* P) → Σ[ Q :: Tm ] (N =>* Q × P =>* Q) confluence eval-refl D2 = , (D2 , eval-refl) confluence (eval-cons S1 D1) D2 with strip S1 D2 ... | M' , D3 , S3 with confluence D1 D3 ... | Q , D4 , D4' = Q , D4 , eval-cons S3 D4'
{ "alphanum_fraction": 0.4681724846, "avg_line_length": 30.4375, "ext": "agda", "hexsha": "9d5c78c188f580d91397aa36765e82dcb5501635", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "Confluence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "Confluence.agda", "max_line_length": 82, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "Confluence.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 411, "size": 974 }
{-# OPTIONS --without-K #-} -- The core properties behind exploration functions module Explore.Properties where open import Level.NP using (_⊔_; ₀; ₁; ₛ; Lift) open import Type using (★₀; ★₁; ★_) open import Function.NP using (id; _∘′_; _∘_; flip; const; Π; Cmp) open import Algebra using (Semigroup; module Semigroup; Monoid; module Monoid; CommutativeMonoid; module CommutativeMonoid) import Algebra.FunctionProperties.NP import Algebra.FunctionProperties.Derived as FPD open import Algebra.FunctionProperties.Core using (Op₂) import Algebra.FunctionProperties.Eq open Algebra.FunctionProperties.Eq.Explicits using (Injective) open import Data.Nat.NP using (_+_; _*_; _≤_; _+°_) open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂) open import Data.Sum using (_⊎_) open import Data.Zero using (𝟘) open import Data.One using (𝟙) open import Data.Two using (𝟚; ✓) open import Data.Fin using (Fin) open import Relation.Binary.NP using (module Setoid-Reasoning; _Preserves₂_⟶_⟶_) open import Relation.Binary.PropositionalEquality using (_≡_; _≗_) open import Explore.Core module FP = Algebra.FunctionProperties.NP Π module SgrpExtra {c ℓ} (sg : Semigroup c ℓ) where open Semigroup sg open Setoid-Reasoning (Semigroup.setoid sg) public C : ★ _ C = Carrier _≈°_ : ∀ {a} {A : ★ a} (f g : A → C) → ★ _ f ≈° g = ∀ x → f x ≈ g x _∙°_ : ∀ {a} {A : ★ a} (f g : A → C) → A → C (f ∙° g) x = f x ∙ g x infixl 7 _-∙-_ _-∙-_ : _∙_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ _-∙-_ = ∙-cong !_ = sym module Sgrp {c ℓ} (sg : Semigroup c ℓ) where open Semigroup sg public open SgrpExtra sg public module RawMon {c} {C : ★ c} (rawMon : C × Op₂ C) where ε = proj₁ rawMon _∙_ = proj₂ rawMon module Mon {c ℓ} (m : Monoid c ℓ) where open Monoid m public sg = semigroup open SgrpExtra semigroup public RawMon = C × Op₂ C rawMon : RawMon rawMon = ε , _∙_ module CMon {c ℓ} (cm : CommutativeMonoid c ℓ) where open CommutativeMonoid cm public sg = semigroup m = monoid open SgrpExtra sg public open FP _≈_ ∙-interchange : Interchange _∙_ _∙_ ∙-interchange = FPD.FromAssocCommCong.interchange _≈_ isEquivalence _∙_ assoc comm (λ _ → flip ∙-cong refl) module _ {ℓ a} {A : ★ a} where ExploreInd : ∀ p → Explore ℓ A → ★ (a ⊔ ₛ (ℓ ⊔ p)) ExploreInd p exp = ∀ (P : Explore ℓ A → ★ p) (Pε : P empty-explore) (P∙ : ∀ {e₀ e₁ : Explore ℓ A} → P e₀ → P e₁ → P (merge-explore e₀ e₁)) (Pf : ∀ x → P (point-explore x)) → P exp module _ {p} where point-explore-ind : (x : A) → ExploreInd p (point-explore x) point-explore-ind x _ _ _ Pf = Pf x empty-explore-ind : ExploreInd p empty-explore empty-explore-ind _ Pε _ _ = Pε merge-explore-ind : ∀ {e₀ e₁ : Explore ℓ A} → ExploreInd p e₀ → ExploreInd p e₁ → ExploreInd p (merge-explore e₀ e₁) merge-explore-ind Pe₀ Pe₁ P Pε _P∙_ Pf = (Pe₀ P Pε _P∙_ Pf) P∙ (Pe₁ P Pε _P∙_ Pf) ExploreInd₀ : Explore ℓ A → ★ _ ExploreInd₀ = ExploreInd ₀ ExploreInd₁ : Explore ℓ A → ★ _ ExploreInd₁ = ExploreInd ₁ BigOpMonInd : ∀ p {c} (M : Monoid c ℓ) → BigOpMon M A → ★ _ BigOpMonInd p {c} M exp = ∀ (P : BigOpMon M A → ★ p) (Pε : P (const ε)) (P∙ : ∀ {e₀ e₁ : BigOpMon M A} → P e₀ → P e₁ → P (λ f → e₀ f ∙ e₁ f)) (Pf : ∀ x → P (λ f → f x)) (P≈ : ∀ {e e'} → e ≈° e' → P e → P e') → P exp where open Mon M module _ (eᴬ : Explore {a} (ₛ ℓ) A) where Πᵉ : (A → ★ ℓ) → ★ ℓ Πᵉ = eᴬ (Lift 𝟙) _×_ Σᵉ : (A → ★ ℓ) → ★ ℓ Σᵉ = eᴬ (Lift 𝟘) _⊎_ module _ {ℓ a} {A : ★ a} where module _ (eᴬ : Explore (ₛ ℓ) A) where Lookup : ★ (ₛ ℓ ⊔ a) Lookup = ∀ {P : A → ★ ℓ} → Πᵉ eᴬ P → Π A P -- alternative name suggestion: tabulate Reify : ★ (a ⊔ ₛ ℓ) Reify = ∀ {P : A → ★ ℓ} → Π A P → Πᵉ eᴬ P Unfocus : ★ (a ⊔ ₛ ℓ) Unfocus = ∀ {P : A → ★ ℓ} → Σᵉ eᴬ P → Σ A P -- alternative name suggestion: inject Focus : ★ (a ⊔ ₛ ℓ) Focus = ∀ {P : A → ★ ℓ} → Σ A P → Σᵉ eᴬ P Adequate-Σ : ((A → ★ ℓ) → ★ _) → ★ _ Adequate-Σ Σᴬ = ∀ F → Σᴬ F ≡ Σ A F Adequate-Π : ((A → ★ ℓ) → ★ _) → ★ _ Adequate-Π Πᴬ = ∀ F → Πᴬ F ≡ Π A F -- This module could be parameterised by the relation on types, here _≡_ module Universal-Adequacy {ℓu ℓe ℓr ℓa} (U : ★_ ℓu)(El : U → ★_ ℓe) (_≈_ : ★_ ℓe → ★_ (ℓa ⊔ ℓe) → ★_ ℓr){A : ★_ ℓa} where Adequate-univ-sum : ((A → U) → U) → ★_ (ℓa ⊔ (ℓr ⊔ ℓu)) Adequate-univ-sum sumᴬ = ∀ f → El (sumᴬ f) ≈ Σ A (El ∘ f) Adequate-univ-product : ((A → U) → U) → ★_ (ℓa ⊔ (ℓr ⊔ ℓu)) Adequate-univ-product productᴬ = ∀ f → El (productᴬ f) ≈ Π A (El ∘ f) module Adequacy {ℓa ℓr}(_≈_ : ★₀ → ★_ ℓa → ★_ ℓr){A : ★_ ℓa} where -- Universal-Adequacy.Adequate-univ-sum ℕ Fin _≡_ Adequate-sum : Sum A → ★_(ℓa ⊔ ℓr) Adequate-sum sumᴬ = ∀ f → Fin (sumᴬ f) ≈ Σ A (Fin ∘ f) -- Universal-Adequacy.Adequate-univ-product ℕ Fin _≡_ Adequate-product : Product A → ★_(ℓa ⊔ ℓr) Adequate-product productᴬ = ∀ f → Fin (productᴬ f) ≈ Π A (Fin ∘ f) -- Universal-Adequacy.Adequate-univ-product 𝟚 ✓ _≡_ Adequate-any : (any : BigOp 𝟚 A) → ★_(ℓa ⊔ ℓr) Adequate-any anyᴬ = ∀ f → ✓ (anyᴬ f) ≈ Σ A (✓ ∘ f) -- Universal-Adequacy.Adequate-univ-product 𝟚 ✓ _≡_ Adequate-all : (all : BigOp 𝟚 A) → ★_(ℓa ⊔ ℓr) Adequate-all allᴬ = ∀ f → ✓ (allᴬ f) ≈ Π A (✓ ∘ f) module _ {m a}{M : ★ m}{A : ★ a}([⊕] : BigOp M A) where BigOpStableUnder : (p : A → A) → ★ _ BigOpStableUnder p = ∀ f → [⊕] f ≡ [⊕] (f ∘ p) -- Extensionality of a big-operator BigOp= : ★ _ BigOp= = {f g : A → M} → f ≗ g → [⊕] f ≡ [⊕] g module _ {ℓ a} {A : ★ a} (eᴬ : Explore ℓ A) where StableUnder : (A → A) → ★ _ StableUnder p = ∀ {M}(ε : M) op → BigOpStableUnder (eᴬ ε op) p -- Extensionality of an exploration function Explore= : ★ _ Explore= = ∀ {M}(ε : M) op → BigOp= (eᴬ ε op) ExploreExt = Explore= module _ {ℓ a} {A : ★ a} r (eᴬ : Explore ℓ A) where ExploreMono : ★ _ ExploreMono = ∀ {C} (_⊆_ : C → C → ★ r) {z₀ z₁} (z₀⊆z₁ : z₀ ⊆ z₁) {_∙_} (∙-mono : _∙_ Preserves₂ _⊆_ ⟶ _⊆_ ⟶ _⊆_) {f g} → (∀ x → f x ⊆ g x) → eᴬ z₀ _∙_ f ⊆ eᴬ z₁ _∙_ g ExploreMonExt : ★ _ ExploreMonExt = ∀ (m : Monoid ℓ r) {f g} → let open Mon m bigop = eᴬ ε _∙_ in f ≈° g → bigop f ≈ bigop g Exploreε : ★ _ Exploreε = ∀ (m : Monoid ℓ r) → let open Mon m in eᴬ ε _∙_ (const ε) ≈ ε ExploreLinˡ : ★ _ ExploreLinˡ = ∀ m _◎_ f k → let open Mon {ℓ} {r} m open FP _≈_ in k ◎ ε ≈ ε → _◎_ DistributesOverˡ _∙_ → eᴬ ε _∙_ (λ x → k ◎ f x) ≈ k ◎ eᴬ ε _∙_ f ExploreLinʳ : ★ _ ExploreLinʳ = ∀ m _◎_ f k → let open Mon {ℓ} {r} m open FP _≈_ in ε ◎ k ≈ ε → _◎_ DistributesOverʳ _∙_ → eᴬ ε _∙_ (λ x → f x ◎ k) ≈ eᴬ ε _∙_ f ◎ k ExploreHom : ★ _ ExploreHom = ∀ cm f g → let open CMon {ℓ} {r} cm in eᴬ ε _∙_ (f ∙° g) ≈ eᴬ ε _∙_ f ∙ eᴬ ε _∙_ g {- ExploreSwap'' : ∀ {b} → ★ _ ExploreSwap'' {b} = ∀ (monM : Monoid _) (monN : Monoid _) → let module M = Mon {_} {r} monM in let module N = Mon {_} {r} monN in ∀ {h : M.C → N.C} (h-ε : h M.ε ≈ N.ε) (h-∙ : ∀ x y → h (x M.∙ y) ≈ h x N.∙ h y) f → eᴬ ε _∙_ (h ∘ f) ≈ h (eᴬ ε _∙_ f) -} -- derived from lift-hom with the source monoid being (a → m) ExploreSwap : ∀ {b} → ★ _ ExploreSwap {b} = ∀ {B : ★ b} mon → let open Mon {_} {r} mon in ∀ {opᴮ : (B → C) → C} (opᴮ-ε : opᴮ (const ε) ≈ ε) (hom : ∀ f g → opᴮ (f ∙° g) ≈ opᴮ f ∙ opᴮ g) f → eᴬ ε _∙_ (opᴮ ∘ f) ≈ opᴮ (eᴬ ε _∙_ ∘ flip f) module _ {a} {A : ★ a} (sumᴬ : Sum A) where SumStableUnder : (A → A) → ★ _ SumStableUnder p = ∀ f → sumᴬ f ≡ sumᴬ (f ∘ p) SumStableUnderInjection : ★ _ SumStableUnderInjection = ∀ p → Injective p → SumStableUnder p SumInd : ★(₁ ⊔ a) SumInd = ∀ (P : Sum A → ★₀) (P0 : P (λ f → 0)) (P+ : ∀ {s₀ s₁ : Sum A} → P s₀ → P s₁ → P (λ f → s₀ f + s₁ f)) (Pf : ∀ x → P (λ f → f x)) → P sumᴬ SumExt : ★ _ SumExt = ∀ {f g} → f ≗ g → sumᴬ f ≡ sumᴬ g SumZero : ★ _ SumZero = sumᴬ (λ _ → 0) ≡ 0 SumLin : ★ _ SumLin = ∀ f k → sumᴬ (λ x → k * f x) ≡ k * sumᴬ f SumHom : ★ _ SumHom = ∀ f g → sumᴬ (λ x → f x + g x) ≡ sumᴬ f + sumᴬ g SumMono : ★ _ SumMono = ∀ {f g} → (∀ x → f x ≤ g x) → sumᴬ f ≤ sumᴬ g SumConst : ★ _ SumConst = ∀ x → sumᴬ (const x) ≡ sumᴬ (const 1) * x SumSwap : ★ _ SumSwap = ∀ {B : ★₀} {sumᴮ : Sum B} (sumᴮ-0 : sumᴮ (const 0) ≡ 0) (hom : ∀ f g → sumᴮ (f +° g) ≡ sumᴮ f + sumᴮ g) f → sumᴬ (sumᴮ ∘ f) ≡ sumᴮ (sumᴬ ∘ flip f) module _ {a} {A : ★ a} (countᴬ : Count A) where CountStableUnder : (A → A) → ★ _ CountStableUnder p = ∀ f → countᴬ f ≡ countᴬ (f ∘ p) CountExt : ★ _ CountExt = ∀ {f g} → f ≗ g → countᴬ f ≡ countᴬ g Unique : Cmp A → ★ _ Unique cmp = ∀ x → countᴬ (cmp x) ≡ 1 -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.492432822, "avg_line_length": 32.0561056106, "ext": "agda", "hexsha": "d48ea8e930019b505d1376d5c8d32715288c5467", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Properties.agda", "max_line_length": 123, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 4105, "size": 9713 }
module Tactic.Reflection.Telescope where open import Prelude hiding (abs) open import Builtin.Reflection open import Tactic.Reflection.DeBruijn Telescope = List (Arg Type) telView : Type → Telescope × Type telView (pi a (abs _ b)) = first (_∷_ a) (telView b) telView a = [] , a visibleArity : Type → Nat visibleArity = length ∘ filter isVisible ∘ fst ∘ telView telPi : Telescope → Type → Type telPi tel b = foldr (λ a b → pi a (abs "_" b)) b tel arity : Name → TC Nat arity f = length ∘ fst ∘ telView <$> getType f argTel : Name → TC Telescope argTel f = fst ∘ telView <$> getType f telePat : Telescope → List (Arg Pattern) telePat = map (var "_" <$_) private teleArgs′ : Nat → List (Arg Type) → List (Arg Term) teleArgs′ (suc n) (a ∷ Γ) = (var n [] <$ a) ∷ teleArgs′ n Γ teleArgs′ _ _ = [] teleArgs : Telescope → List (Arg Term) teleArgs Γ = teleArgs′ (length Γ) Γ conParams : Name → TC Nat conParams c = caseM getDefinition c of λ { (data-cons d) → getParameters d ; _ → pure 0 } conPat : Name → TC Pattern conPat c = do np ← conParams c con c ∘ telePat ∘ drop np <$> argTel c conTerm : Name → TC Term conTerm c = do np ← conParams c con c ∘ teleArgs ∘ drop np <$> argTel c
{ "alphanum_fraction": 0.6418755053, "avg_line_length": 23.7884615385, "ext": "agda", "hexsha": "20a7871deb90eb4ecbe4247aaee222e84e9a3c82", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Reflection/Telescope.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Reflection/Telescope.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Reflection/Telescope.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 398, "size": 1237 }
module Common.Char where postulate Char : Set {-# BUILTIN CHAR Char #-}
{ "alphanum_fraction": 0.6753246753, "avg_line_length": 9.625, "ext": "agda", "hexsha": "0aa1b77dae4033d7a6bc9d520a9a7eb95b2f074d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/Common/Char.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/Common/Char.agda", "max_line_length": 25, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/Common/Char.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 20, "size": 77 }
------------------------------------------------------------------------ -- Extra lemmas about substitutions ------------------------------------------------------------------------ module Data.Fin.Substitution.ExtraLemmas where open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Star using (Star; ε; _◅_; _▻_) open import Data.Vec using (Vec; _∷_; lookup; map) open import Data.Vec.All hiding (lookup; map) open import Data.Vec.Properties using (lookup-map; map-cong; map-∘) open import Function using (_∘_; _$_; flip) open import Relation.Binary.PropositionalEquality as PropEq hiding (subst) open PropEq.≡-Reasoning -- Simple extension of substitutions. -- -- FIXME: this should go into Data.Fin.Substitution. record Extension (T : ℕ → Set) : Set where infixr 5 _/∷_ field weaken : ∀ {n} → T n → T (suc n) -- Weakens Ts. -- Extension. _/∷_ : ∀ {m n} → T (suc n) → Sub T m n → Sub T (suc m) (suc n) t /∷ ρ = t ∷ map weaken ρ -- Helper module module SimpleExt {T} (simple : Simple T) where open Simple simple public extension : Extension T extension = record { weaken = weaken } open Extension extension public hiding (weaken) -- An generalized version of Data.Fin.Lemmas.Lemmas₀ -- -- FIXME: this should go into Data.Fin.Substitution.Lemmas. module ExtLemmas₀ {T} (lemmas₀ : Lemmas₀ T) where open Lemmas₀ lemmas₀ public hiding (lookup-map-weaken-↑⋆) open SimpleExt simple -- A generalized variant of Lemmas₀.lookup-map-weaken-↑⋆. lookup-map-weaken-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} {t} → lookup x (map weaken ρ ↑⋆ k) ≡ lookup (Fin.lift k suc x) ((t /∷ ρ) ↑⋆ k) lookup-map-weaken-↑⋆ zero x = refl lookup-map-weaken-↑⋆ (suc k) zero = refl lookup-map-weaken-↑⋆ (suc k) (suc x) {ρ} {t} = begin lookup x (map weaken (map weaken ρ ↑⋆ k)) ≡⟨ lookup-map x weaken _ ⟩ weaken (lookup x (map weaken ρ ↑⋆ k)) ≡⟨ cong weaken (lookup-map-weaken-↑⋆ k x) ⟩ weaken (lookup (Fin.lift k suc x) ((t /∷ ρ) ↑⋆ k)) ≡⟨ sym (lookup-map (Fin.lift k suc x) weaken _) ⟩ lookup (Fin.lift k suc x) (map weaken ((t /∷ ρ) ↑⋆ k)) ∎ -- A generalized version of Data.Fin.Lemmas.Lemmas₄ -- -- FIXME: this should go into Data.Fin.Substitution.Lemmas. module ExtLemmas₄ {T} (lemmas₄ : Lemmas₄ T) where open Lemmas₄ lemmas₄ public hiding (⊙-wk; wk-commutes) open Lemmas₃ lemmas₃ using (lookup-wk-↑⋆-⊙; /✶-↑✶′) open SimpleExt simple using (_/∷_) open ExtLemmas₀ lemmas₀ using (lookup-map-weaken-↑⋆) private ⊙-wk′ : ∀ {m n} {ρ : Sub T m n} {t} k → ρ ↑⋆ k ⊙ wk ↑⋆ k ≡ wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k ⊙-wk′ {ρ = ρ} {t} k = sym (begin wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k ≡⟨ lemma ⟩ map weaken ρ ↑⋆ k ≡⟨ cong (λ ρ′ → ρ′ ↑⋆ k) map-weaken ⟩ (ρ ⊙ wk) ↑⋆ k ≡⟨ ↑⋆-distrib k ⟩ ρ ↑⋆ k ⊙ wk ↑⋆ k ∎) where lemma = extensionality λ x → begin lookup x (wk ↑⋆ k ⊙ (t /∷ ρ) ↑⋆ k) ≡⟨ lookup-wk-↑⋆-⊙ k ⟩ lookup (Fin.lift k suc x) ((t /∷ ρ) ↑⋆ k) ≡⟨ sym (lookup-map-weaken-↑⋆ k x) ⟩ lookup x (map weaken ρ ↑⋆ k) ∎ ⊙-wk : ∀ {m n} {ρ : Sub T m n} {t} → ρ ⊙ wk ≡ wk ⊙ (t /∷ ρ) ⊙-wk = ⊙-wk′ zero wk-commutes : ∀ {m n} {ρ : Sub T m n} {t′} t → t / ρ / wk ≡ t / wk / (t′ /∷ ρ) wk-commutes {ρ = ρ} {t} = /✶-↑✶′ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ (t /∷ ρ)) ⊙-wk′ zero -- A handy helper lemma: weakening commutes with substitution. weaken-/ : ∀ {m n} {ρ : Sub T m n} {t′} t → weaken (t / ρ) ≡ weaken t / (t′ /∷ ρ) weaken-/ {ρ = ρ} {t′} t = begin weaken (t / ρ) ≡⟨ sym /-wk ⟩ t / ρ / wk ≡⟨ wk-commutes t ⟩ t / wk / (t′ /∷ ρ) ≡⟨ cong₂ _/_ /-wk refl ⟩ weaken t / (t′ /∷ ρ) ∎ -- A generalize version of Data.Fin.Lemmas.AppLemmas -- -- FIXME: this should go into Data.Fin.Substitution.Lemmas. module ExtAppLemmas {T₁ T₂} (appLemmas : AppLemmas T₁ T₂) where open AppLemmas appLemmas public hiding (wk-commutes) open SimpleExt simple using (_/∷_) private module L₄ = ExtLemmas₄ lemmas₄ wk-commutes : ∀ {m n} {ρ : Sub T₂ m n} {t′} t → t / ρ / wk ≡ t / wk / (t′ /∷ ρ) wk-commutes {ρ = ρ} {t} = ⨀→/✶ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ (t /∷ ρ)) L₄.⊙-wk -- Lemmas relating T₃ substitutions in T₁ and T₂. record LiftAppLemmas (T₁ T₂ T₃ : ℕ → Set) : Set where field lift : ∀ {n} → T₃ n → T₂ n application₁₃ : Application T₁ T₃ application₂₃ : Application T₂ T₃ lemmas₂ : Lemmas₄ T₂ lemmas₃ : Lemmas₄ T₃ private module L₂ = ExtLemmas₄ lemmas₂ module L₃ = ExtLemmas₄ lemmas₃ module A₁ = Application application₁₃ module A₂ = Application application₂₃ field -- Lifting commutes with application of T₃ substitutions. lift-/ : ∀ {m n} t {σ : Sub T₃ m n} → lift (t L₃./ σ) ≡ lift t A₂./ σ -- Lifting preserves variables. lift-var : ∀ {n} (x : Fin n) → lift (L₃.var x) ≡ L₂.var x -- Sequences of T₃ substitutions are equivalent when applied to -- T₁s if they are equivalent when applied to T₂ variables. /✶-↑✶ : ∀ {m n} (σs₁ σs₂ : Subs T₃ m n) → (∀ k x → L₂.var x A₂./✶ σs₁ L₃.↑✶ k ≡ L₂.var x A₂./✶ σs₂ L₃.↑✶ k) → ∀ k t → t A₁./✶ σs₁ L₃.↑✶ k ≡ t A₁./✶ σs₂ L₃.↑✶ k lift-lookup-⊙ : ∀ {m n k} x {σ₁ : Sub T₃ m n} {σ₂ : Sub T₃ n k} → lift (lookup x (σ₁ L₃.⊙ σ₂)) ≡ lift (lookup x σ₁) A₂./ σ₂ lift-lookup-⊙ x {σ₁} {σ₂} = begin lift (lookup x (σ₁ L₃.⊙ σ₂)) ≡⟨ cong lift (L₃.lookup-⊙ x) ⟩ lift (lookup x σ₁ L₃./ σ₂) ≡⟨ lift-/ _ ⟩ lift (lookup x σ₁) A₂./ σ₂ ∎ lift-lookup-⨀ : ∀ {m n} x (σs : Subs T₃ m n) → lift (lookup x (L₃.⨀ σs)) ≡ L₂.var x A₂./✶ σs lift-lookup-⨀ x ε = begin lift (lookup x L₃.id) ≡⟨ cong lift (L₃.lookup-id x) ⟩ lift (L₃.var x) ≡⟨ lift-var x ⟩ L₂.var x ∎ lift-lookup-⨀ x (σ ◅ ε) = begin lift (lookup x σ) ≡⟨ cong lift (sym L₃.var-/) ⟩ lift (L₃.var x L₃./ σ) ≡⟨ lift-/ _ ⟩ lift (L₃.var x) A₂./ σ ≡⟨ cong₂ A₂._/_ (lift-var x) refl ⟩ L₂.var x A₂./ σ ∎ lift-lookup-⨀ x (σ ◅ (σ′ ◅ σs′)) = begin lift (lookup x (L₃.⨀ σs L₃.⊙ σ)) ≡⟨ lift-lookup-⊙ x ⟩ lift (lookup x (L₃.⨀ σs)) A₂./ σ ≡⟨ cong₂ A₂._/_ (lift-lookup-⨀ x (σ′ ◅ σs′)) refl ⟩ L₂.var x A₂./✶ σs A₂./ σ ∎ where σs = σ′ ◅ σs′ -- Sequences of T₃ substitutions are equivalent when applied to -- T₁s if they are equivalent when applied as composites. /✶-↑✶′ : ∀ {m n} (σs₁ σs₂ : Subs T₃ m n) → (∀ k → L₃.⨀ (σs₁ L₃.↑✶ k) ≡ L₃.⨀ (σs₂ L₃.↑✶ k)) → ∀ k t → t A₁./✶ σs₁ L₃.↑✶ k ≡ t A₁./✶ σs₂ L₃.↑✶ k /✶-↑✶′ σs₁ σs₂ hyp = /✶-↑✶ σs₁ σs₂ (λ k x → begin L₂.var x A₂./✶ σs₁ L₃.↑✶ k ≡⟨ sym (lift-lookup-⨀ x (σs₁ L₃.↑✶ k)) ⟩ lift (lookup x (L₃.⨀ (σs₁ L₃.↑✶ k))) ≡⟨ cong (lift ∘ lookup x) (hyp k) ⟩ lift (lookup x (L₃.⨀ (σs₂ L₃.↑✶ k))) ≡⟨ lift-lookup-⨀ x (σs₂ L₃.↑✶ k) ⟩ L₂.var x A₂./✶ σs₂ L₃.↑✶ k ∎) -- Derived lemmas about applications of T₃ substitutions to T₁s. appLemmas : AppLemmas T₁ T₃ appLemmas = record { application = application₁₃ ; lemmas₄ = lemmas₃ ; id-vanishes = /✶-↑✶′ (ε ▻ L₃.id) ε L₃.id-↑⋆ 0 ; /-⊙ = /✶-↑✶′ (ε ▻ _ L₃.⊙ _) (ε ▻ _ ▻ _) L₃.↑⋆-distrib 0 } open ExtAppLemmas appLemmas public hiding (application; lemmas₂; lemmas₃; var; weaken; subst; simple) -- Lemmas relating T₂ and T₃ substitutions in T₁. record LiftSubLemmas (T₁ T₂ T₃ : ℕ → Set) : Set where field application₁₂ : Application T₁ T₂ liftAppLemmas : LiftAppLemmas T₁ T₂ T₃ open LiftAppLemmas liftAppLemmas hiding (/✶-↑✶; /-wk) private module L₃ = ExtLemmas₄ lemmas₃ module L₂ = ExtLemmas₄ lemmas₂ module A₁₂ = Application application₁₂ module A₁₃ = Application (AppLemmas.application appLemmas) module A₂₃ = Application application₂₃ field -- Weakening commutes with lifting. weaken-lift : ∀ {n} (t : T₃ n) → L₂.weaken (lift t) ≡ lift (L₃.weaken t) -- Applying a composition of T₂ substitutions to T₁s -- corresponds to two consecutive applications. /-⊙₂ : ∀ {m n k} {σ₁ : Sub T₂ m n} {σ₂ : Sub T₂ n k} t → t A₁₂./ σ₁ L₂.⊙ σ₂ ≡ t A₁₂./ σ₁ A₁₂./ σ₂ -- Sequences of T₃ substitutions are equivalent to T₂ -- substitutions when applied to T₁s if they are equivalent when -- applied to variables. /✶-↑✶₁ : ∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₂ m n) → (∀ k x → L₂.var x A₂₃./✶ σs₁ ↑✶ k ≡ L₂.var x L₂./✶ σs₂ L₂.↑✶ k) → ∀ k t → t A₁₃./✶ σs₁ ↑✶ k ≡ t A₁₂./✶ σs₂ L₂.↑✶ k -- Sequences of T₃ substitutions are equivalent to T₂ -- substitutions when applied to T₂s if they are equivalent when -- applied to variables. /✶-↑✶₂ : ∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₂ m n) → (∀ k x → L₂.var x A₂₃./✶ σs₁ ↑✶ k ≡ L₂.var x L₂./✶ σs₂ L₂.↑✶ k) → ∀ k t → t A₂₃./✶ σs₁ ↑✶ k ≡ t L₂./✶ σs₂ L₂.↑✶ k -- Lifting of T₃ substitutions to T₂ substitutions. liftSub : ∀ {m n} → Sub T₃ m n → Sub T₂ m n liftSub σ = map lift σ -- The two types of lifting commute. liftSub-↑⋆ : ∀ {m n} (σ : Sub T₃ m n) k → liftSub σ L₂.↑⋆ k ≡ liftSub (σ ↑⋆ k) liftSub-↑⋆ σ zero = refl liftSub-↑⋆ σ (suc k) = cong₂ _∷_ (sym (lift-var _)) (begin map L₂.weaken (liftSub σ L₂.↑⋆ k) ≡⟨ cong (map _) (liftSub-↑⋆ σ k) ⟩ map L₂.weaken (map lift (σ ↑⋆ k)) ≡⟨ sym (map-∘ _ _ _) ⟩ map (L₂.weaken ∘ lift) (σ ↑⋆ k) ≡⟨ map-cong weaken-lift _ ⟩ map (lift ∘ L₃.weaken) (σ ↑⋆ k) ≡⟨ map-∘ _ _ _ ⟩ map lift (map L₃.weaken (σ ↑⋆ k)) ∎) -- The identity substitutions are equivalent up to lifting. liftSub-id : ∀ {n} → liftSub (L₃.id {n}) ≡ L₂.id {n} liftSub-id {zero} = refl liftSub-id {suc n} = begin liftSub (L₃.id L₃.↑) ≡⟨ sym (liftSub-↑⋆ L₃.id 1) ⟩ liftSub L₃.id L₂.↑ ≡⟨ cong L₂._↑ liftSub-id ⟩ L₂.id ∎ -- Weakening is equivalent up to lifting. liftSub-wk⋆ : ∀ k {n} → liftSub (L₃.wk⋆ k {n}) ≡ L₂.wk⋆ k {n} liftSub-wk⋆ zero = liftSub-id liftSub-wk⋆ (suc k) = begin liftSub (map L₃.weaken (L₃.wk⋆ k)) ≡⟨ sym (map-∘ _ _ _) ⟩ map (lift ∘ L₃.weaken) (L₃.wk⋆ k) ≡⟨ sym (map-cong weaken-lift _) ⟩ map (L₂.weaken ∘ lift) (L₃.wk⋆ k) ≡⟨ map-∘ _ _ _ ⟩ map L₂.weaken (liftSub (L₃.wk⋆ k)) ≡⟨ cong (map _) (liftSub-wk⋆ k) ⟩ map L₂.weaken (L₂.wk⋆ k) ∎ -- Weakening is equivalent up to lifting. liftSub-wk : ∀ {n} → liftSub (L₃.wk {n}) ≡ L₂.wk {n} liftSub-wk = liftSub-wk⋆ 1 -- Single variable substitution is equivalent up to lifting. liftSub-sub : ∀ {n} (t : T₃ n) → liftSub (L₃.sub t) ≡ L₂.sub (lift t) liftSub-sub t = cong₂ _∷_ refl liftSub-id -- Lifting commutes with application to variables. var-/-liftSub-↑⋆ : ∀ {m n} (σ : Sub T₃ m n) k x → L₂.var x A₂₃./ σ ↑⋆ k ≡ L₂.var x L₂./ liftSub σ L₂.↑⋆ k var-/-liftSub-↑⋆ σ k x = begin L₂.var x A₂₃./ σ ↑⋆ k ≡⟨ cong₂ A₂₃._/_ (sym (lift-var x)) refl ⟩ lift (L₃.var x) A₂₃./ σ ↑⋆ k ≡⟨ sym (lift-/ _) ⟩ lift (L₃.var x L₃./ σ ↑⋆ k) ≡⟨ cong lift L₃.var-/ ⟩ lift (lookup x (σ ↑⋆ k)) ≡⟨ sym (lookup-map x _ _) ⟩ lookup x (liftSub (σ ↑⋆ k)) ≡⟨ sym L₂.var-/ ⟩ L₂.var x L₂./ liftSub (σ ↑⋆ k) ≡⟨ cong (L₂._/_ (L₂.var x)) (sym (liftSub-↑⋆ σ k)) ⟩ L₂.var x L₂./ liftSub σ L₂.↑⋆ k ∎ -- Lifting commutes with application. /-liftSub : ∀ {m n} t {σ : Sub T₃ m n} → t A₁₃./ σ ≡ t A₁₂./ liftSub σ /-liftSub t {σ} = /✶-↑✶₁ (ε ▻ σ) (ε ▻ liftSub σ) (var-/-liftSub-↑⋆ σ) zero t -- Weakening is equivalent up to choice of application. /-wk : ∀ {n} {t : T₁ n} → t A₁₃./ L₃.wk ≡ t A₁₂./ L₂.wk /-wk {t = t} = begin t A₁₃./ L₃.wk ≡⟨ /-liftSub t ⟩ t A₁₂./ liftSub L₃.wk ≡⟨ cong₂ A₁₂._/_ refl liftSub-wk ⟩ t A₁₂./ L₂.wk ∎ -- Single-variable substitution is equivalent up to choice of -- application. /-sub : ∀ {n} t (s : T₃ n) → t A₁₃./ L₃.sub s ≡ t A₁₂./ L₂.sub (lift s) /-sub t s = begin t A₁₃./ L₃.sub s ≡⟨ /-liftSub t ⟩ t A₁₂./ liftSub (L₃.sub s) ≡⟨ cong₂ A₁₂._/_ refl (liftSub-sub s) ⟩ t A₁₂./ L₂.sub (lift s) ∎ -- Lifting commutes with application. /-sub-↑ : ∀ {m n} t s (σ : Sub T₃ m n) → t A₁₂./ L₂.sub s A₁₃./ σ ≡ (t A₁₃./ σ ↑) A₁₂./ L₂.sub (s A₂₃./ σ) /-sub-↑ t s σ = begin t A₁₂./ L₂.sub s A₁₃./ σ ≡⟨ /-liftSub _ ⟩ t A₁₂./ L₂.sub s A₁₂./ liftSub σ ≡⟨ sym (/-⊙₂ t) ⟩ t A₁₂./ (L₂.sub s L₂.⊙ liftSub σ) ≡⟨ cong₂ A₁₂._/_ refl (L₂.sub-⊙ s) ⟩ t A₁₂./ (liftSub σ L₂.↑ L₂.⊙ L₂.sub (s L₂./ liftSub σ)) ≡⟨ /-⊙₂ t ⟩ t A₁₂./ liftSub σ L₂.↑ A₁₂./ L₂.sub (s L₂./ liftSub σ) ≡⟨ cong₂ (A₁₂._/_ ∘ A₁₂._/_ t) (liftSub-↑⋆ _ 1) (cong L₂.sub (sym (/-liftSub₂ s))) ⟩ t A₁₂./ liftSub (σ ↑) A₁₂./ L₂.sub (s A₂₃./ σ) ≡⟨ cong₂ A₁₂._/_ (sym (/-liftSub t)) refl ⟩ t A₁₃./ σ ↑ A₁₂./ L₂.sub (s A₂₃./ σ) ∎ where /-liftSub₂ : ∀ {m n} s {σ : Sub T₃ m n} → s A₂₃./ σ ≡ s L₂./ liftSub σ /-liftSub₂ s {σ} = /✶-↑✶₂ (ε ▻ σ) (ε ▻ liftSub σ) (var-/-liftSub-↑⋆ σ) zero s -- Lemmas for a term-like T₁ derived from term lemmas for T₂ record TermLikeLemmas (T₁ T₂ : ℕ → Set) : Set₁ where field app : ∀ {T₃} → Lift T₃ T₂ → ∀ {m n} → T₁ m → Sub T₃ m n → T₁ n termLemmas : TermLemmas T₂ open TermLemmas termLemmas using (termSubst) open TermSubst termSubst using (var; termLift; varLift; module Lifted) field /✶-↑✶₁ : ∀ {T₃} {lift : Lift T₃ T₂} → let open Application (record { _/_ = app lift }) using () renaming (_/✶_ to _/✶₁_) open Lifted lift using (_↑✶_) renaming (_/✶_ to _/✶₂_) in ∀ {m n} (σs₁ : Subs T₃ m n) (σs₂ : Subs T₃ m n) → (∀ k x → var x /✶₂ σs₁ ↑✶ k ≡ var x /✶₂ σs₂ ↑✶ k) → ∀ k t → t /✶₁ σs₁ ↑✶ k ≡ t /✶₁ σs₂ ↑✶ k termApplication : Application T₁ T₂ termApplication = record { _/_ = app termLift } varApplication : Application T₁ Fin varApplication = record { _/_ = app varLift } field /✶-↑✶₂ : let open Application varApplication using () renaming (_/✶_ to _/✶₁₃_) open Application termApplication using () renaming (_/✶_ to _/✶₁₂_) open Lifted varLift using () renaming (_↑✶_ to _↑✶₃_; _/✶_ to _/✶₂₃_) open TermSubst termSubst using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂₂_) in ∀ {m n} (σs₁ : Subs Fin m n) (σs₂ : Subs T₂ m n) → (∀ k x → var x /✶₂₃ σs₁ ↑✶₃ k ≡ var x /✶₂₂ σs₂ ↑✶₂ k) → ∀ k t → t /✶₁₃ σs₁ ↑✶₃ k ≡ t /✶₁₂ σs₂ ↑✶₂ k -- An instantiation of the above lemmas for T₂ substitutions in T₁s. termLiftAppLemmas : LiftAppLemmas T₁ T₂ T₂ termLiftAppLemmas = record { lift = Lift.lift termLift ; application₁₃ = termApplication ; application₂₃ = TermLemmas.application termLemmas ; lemmas₂ = TermLemmas.lemmas₄ termLemmas ; lemmas₃ = TermLemmas.lemmas₄ termLemmas ; lift-/ = λ _ → refl ; lift-var = λ _ → refl ; /✶-↑✶ = /✶-↑✶₁ } open LiftAppLemmas termLiftAppLemmas public hiding (/-wk) -- An instantiation of the above lemmas for variable substitutions -- (renamings) in T₁s. varLiftSubLemmas : LiftSubLemmas T₁ T₂ Fin varLiftSubLemmas = record { application₁₂ = termApplication ; liftAppLemmas = record { lift = Lift.lift varLift ; application₁₃ = varApplication ; application₂₃ = Lifted.application varLift ; lemmas₂ = TermLemmas.lemmas₄ termLemmas ; lemmas₃ = VarLemmas.lemmas₄ ; lift-/ = λ _ → sym (TermLemmas.app-var termLemmas) ; lift-var = λ _ → refl ; /✶-↑✶ = /✶-↑✶₁ } ; weaken-lift = λ _ → TermLemmas.weaken-var termLemmas ; /-⊙₂ = AppLemmas./-⊙ appLemmas ; /✶-↑✶₁ = /✶-↑✶₂ ; /✶-↑✶₂ = TermLemmas./✶-↑✶ termLemmas } open Application varApplication public using () renaming (_/_ to _/Var_) open LiftSubLemmas varLiftSubLemmas public hiding (/✶-↑✶₁; /✶-↑✶₂) renaming (liftAppLemmas to varLiftAppLemmas) -- Weakening of T₁s. weaken : ∀ {n} → T₁ n → T₁ (suc n) weaken t = t /Var VarSubst.wk -- A version of wk-sub-vanishes for T₁s. weaken-sub : ∀ {n t′} → (t : T₁ n) → weaken t / sub t′ ≡ t weaken-sub t = begin weaken t / sub _ ≡⟨ cong₂ _/_ /-wk refl ⟩ t / wk / sub _ ≡⟨ wk-sub-vanishes t ⟩ t ∎
{ "alphanum_fraction": 0.5268401313, "avg_line_length": 39.1376146789, "ext": "agda", "hexsha": "ed6b6d0d00329f5aef2dc099012a1873bdb6a478", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z", "max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/pts-agda", "max_forks_repo_path": "src/Data/Fin/Substitution/ExtraLemmas.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/pts-agda", "max_issues_repo_path": "src/Data/Fin/Substitution/ExtraLemmas.agda", "max_line_length": 78, "max_stars_count": 21, "max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/pts-agda", "max_stars_repo_path": "src/Data/Fin/Substitution/ExtraLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z", "num_tokens": 7365, "size": 17064 }
open import Relation.Binary.Core module PLRTree.DropLast.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Concatenation A open import List.Permutation.Base.Equivalence A open import PLRTree {A} open import PLRTree.Complete {A} open import PLRTree.Compound {A} open import PLRTree.Drop _≤_ tot≤ open import PLRTree.DropLast.Complete _≤_ tot≤ open import PLRTree.Equality {A} lemma-last-dropLast : {t : Tag}{x : A}{l r : PLRTree} → Complete (node t x l r) → (last (node t x l r) compound ∷ flatten (dropLast (node t x l r))) ∼ flatten (node t x l r) lemma-last-dropLast (perfect {l} {r} x cl cr l≃r) with l | r | l≃r ... | leaf | leaf | ≃lf = ∼x /head /head ∼[] ... | node perfect x' l' r' | node perfect x'' l'' r'' | ≃nd .x' .x'' l'≃r' l''≃r'' l'≃l'' = let _l = node perfect x' l' r' ; _r = node perfect x'' l'' r'' ; zxflfrd∼xflzfrd = ∼x /head (lemma++/ {last _r compound} {x ∷ flatten _l}) refl∼ ; xflzfrd∼xflfr = lemma++∼l {x ∷ flatten _l} (lemma-last-dropLast cr) in trans∼ zxflfrd∼xflzfrd xflzfrd∼xflfr lemma-last-dropLast (left {l} {r} x cl cr l⋘r) with l | r | l⋘r | lemma-dropLast-⋘ l⋘r ... | leaf | _ | () | _ ... | node perfect x' l' r' | _ | () | _ ... | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₁ ld⋘r with dropLast (node left x' l' r') | ld⋘r | lemma-last-dropLast cl ... | leaf | () | _ ... | node perfect _ _ _ | () | _ ... | node left x''' l''' r''' | ld⋘r' | zfldfr∼flfr = ∼x (/tail /head) /head (lemma++∼r zfldfr∼flfr) ... | node right x''' l''' r''' | ld⋘r' | zfldfr∼flfr = ∼x (/tail /head) /head (lemma++∼r zfldfr∼flfr) lemma-last-dropLast (left x cl cr l⋘r) | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₂ ld≃r with dropLast (node left x' l' r') | ld≃r | lemma-last-dropLast cl ... | leaf | () | _ ... | node perfect x''' l''' r''' | ld≃r' | zfldfr∼flfr = ∼x (/tail /head) /head (lemma++∼r zfldfr∼flfr) ... | node left _ _ _ | () | _ ... | node right _ _ _ | () | _ lemma-last-dropLast (left x cl cr l⋘r) | node right x' l' r' | leaf | () | _ lemma-last-dropLast (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₁ () lemma-last-dropLast (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₂ x'≃x''' = ∼x (/tail /head) /head (lemma++∼r (lemma-last-dropLast cl)) lemma-last-dropLast (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₁ ld⋘r with dropLast (node right x' l' r') | ld⋘r | lemma-last-dropLast cl ... | leaf | () | _ ... | node perfect _ _ _ | () | _ ... | node left x''' l''' r''' | ld⋘r' | zfldfr∼flfr = ∼x (/tail /head) /head (lemma++∼r zfldfr∼flfr) ... | node right x''' l''' r''' | ld⋘r' | zfldfr∼flfr = ∼x (/tail /head) /head (lemma++∼r zfldfr∼flfr) lemma-last-dropLast (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₂ ld≃r with dropLast (node right x' l' r') | ld≃r | lemma-last-dropLast cl ... | leaf | () | _ ... | node perfect x''' l''' r''' | ld≃r' | zfldfr∼flfr = ∼x (/tail /head) /head (lemma++∼r zfldfr∼flfr) ... | node left _ _ _ | () | _ ... | node right _ _ _ | () | _ lemma-last-dropLast (left x cl cr l⋘r) | node right x' l' r' | node left x'' l'' r'' | () | _ lemma-last-dropLast (left x cl cr l⋘r) | node right x' l' r' | node right x'' l'' r'' | () | _ lemma-last-dropLast (right {l} {r} x cl cr l⋙r) with l | r | l⋙r ... | leaf | _ | ⋙p () ... | node perfect x' leaf leaf | leaf | ⋙p (⋗lf .x') = ∼x (/tail /head) /head (∼x /head /head ∼[]) ... | node perfect x' leaf leaf | node left _ _ _ | ⋙p () ... | node perfect x' leaf leaf | node right _ _ _ | ⋙p () ... | node perfect x' l' r' | node perfect x'' l'' r'' | ⋙p (⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'') = ∼x (/tail /head) /head (lemma++∼r (lemma-last-dropLast cl)) ... | node perfect x' l' r' | node left x'' l'' r'' | ⋙l .x' .x'' l'≃r' l''⋘r'' l'⋗r'' with lemma-dropLast-⋙ (⋙l x' x'' l'≃r' l''⋘r'' l'⋗r'') ... | inj₁ l⋙rd = let _l = node perfect x' l' r' ; _r = node left x'' l'' r'' ; zxflfrd∼xflzfrd = ∼x /head (lemma++/ {last _r compound} {x ∷ flatten _l}) refl∼ ; xflzfrd∼xflfr = lemma++∼l {x ∷ flatten _l} (lemma-last-dropLast cr) in trans∼ zxflfrd∼xflzfrd xflzfrd∼xflfr ... | inj₂ () lemma-last-dropLast (right x cl cr l⋙r) | node perfect x' l' r' | node right x'' l'' r'' | ⋙r .x' .x'' l'≃r' l''⋙r'' l'≃l'' with lemma-dropLast-⋙ (⋙r x' x'' l'≃r' l''⋙r'' l'≃l'') ... | inj₁ l⋙rd = let _l = node perfect x' l' r' ; _r = node right x'' l'' r'' ; zxflfrd∼xflzfrd = ∼x /head (lemma++/ {last _r compound} {x ∷ flatten _l}) refl∼ ; xflzfrd∼xflfr = lemma++∼l {x ∷ flatten _l} (lemma-last-dropLast cr) in trans∼ zxflfrd∼xflzfrd xflzfrd∼xflfr ... | inj₂ () lemma-last-dropLast (right x cl cr l⋙r) | node left _ _ _ | _ | ⋙p () lemma-last-dropLast (right x cl cr l⋙r) | node right _ _ _ | _ | ⋙p () lemma-dropLast-∼ : {t : Tag}{x : A}{l r : PLRTree} → Complete (node t x l r) → flatten (setRoot (last (node t x l r) compound) (dropLast (node t x l r))) ∼ (flatten l ++ flatten r) lemma-dropLast-∼ (perfect {l} {r} x cl cr l≃r) with l | r | l≃r ... | leaf | leaf | ≃lf = ∼[] ... | node perfect x' l' r' | node perfect x'' l'' r'' | ≃nd .x' .x'' l'≃r' l''≃r'' l'≃l'' = let _l = node perfect x' l' r' ; _r = node perfect x'' l'' r'' ; zflfrd∼flzfrd = ∼x /head (lemma++/ {last _r compound} {flatten _l}) refl∼ ; flzfrd∼flfr = lemma++∼l {flatten _l} (lemma-last-dropLast cr) in trans∼ zflfrd∼flzfrd flzfrd∼flfr lemma-dropLast-∼ (left {l} {r} x cl cr l⋘r) with l | r | l⋘r | lemma-dropLast-⋘ l⋘r ... | leaf | _ | () | _ ... | node perfect x' l' r' | _ | () | _ ... | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₁ ld⋘r with dropLast (node left x' l' r') | ld⋘r | lemma-last-dropLast cl ... | leaf | () | _ ... | node perfect _ _ _ | () | _ ... | node left x''' l''' r''' | ld⋘r' | zfld∼fl = lemma++∼r zfld∼fl ... | node right x''' l''' r''' | ld⋘r' | zfld∼fl = lemma++∼r zfld∼fl lemma-dropLast-∼ (left x cl cr l⋘r) | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | inj₂ ld≃r with dropLast (node left x' l' r') | ld≃r | lemma-last-dropLast cl ... | leaf | () | _ ... | node perfect x''' l''' r''' | ld≃r' | zfld∼fl = lemma++∼r zfld∼fl ... | node left _ _ _ | () | _ ... | node right _ _ _ | () | _ lemma-dropLast-∼ (left x cl cr l⋘r) | node right x' l' r' | leaf | () | _ lemma-dropLast-∼ (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₁ () lemma-dropLast-∼ (left x cl cr l⋘r) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | inj₂ x'≃x''' = lemma++∼r (lemma-last-dropLast cl) lemma-dropLast-∼ (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₁ ld⋘r with dropLast (node right x' l' r') | ld⋘r | lemma-last-dropLast cl ... | leaf | () | _ ... | node perfect _ _ _ | () | _ ... | node left x''' l''' r''' | ld⋘r' | zfld∼fl = lemma++∼r zfld∼fl ... | node right x''' l''' r''' | ld⋘r' | zfld∼fl = lemma++∼r zfld∼fl lemma-dropLast-∼ (left x cl cr l⋘r) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l⋙r l''≃r'' l'⋗l'' | inj₂ ld≃r with dropLast (node right x' l' r') | ld≃r | lemma-last-dropLast cl ... | leaf | () | _ ... | node perfect x''' l''' r''' | ld≃r' | zfld∼fl = lemma++∼r zfld∼fl ... | node left _ _ _ | () | _ ... | node right _ _ _ | () | _ lemma-dropLast-∼ (left x cl cr l⋘r) | node right x' l' r' | node left x'' l'' r'' | () | _ lemma-dropLast-∼ (left x cl cr l⋘r) | node right x' l' r' | node right x'' l'' r'' | () | _ lemma-dropLast-∼ (right {l} {r} x cl cr l⋙r) with l | r | l⋙r ... | leaf | _ | ⋙p () ... | node perfect x' leaf leaf | leaf | ⋙p (⋗lf .x') = ∼x /head /head ∼[] ... | node perfect x' leaf leaf | node left _ _ _ | ⋙p () ... | node perfect x' leaf leaf | node right _ _ _ | ⋙p () ... | node perfect x' l' r' | node perfect x'' l'' r'' | ⋙p (⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'') = lemma++∼r (lemma-last-dropLast cl) ... | node perfect x' l' r' | node left x'' l'' r'' | ⋙l .x' .x'' l'≃r' l''⋘r'' l'⋗r'' with lemma-dropLast-⋙ (⋙l x' x'' l'≃r' l''⋘r'' l'⋗r'') ... | inj₁ l⋙rd = let _l = node perfect x' l' r' ; _r = node left x'' l'' r'' ; zflfrd∼flzfrd = ∼x /head (lemma++/ {last _r compound} {flatten _l}) refl∼ ; flzfrd∼flfr = lemma++∼l {flatten _l} (lemma-last-dropLast cr) in trans∼ zflfrd∼flzfrd flzfrd∼flfr ... | inj₂ () lemma-dropLast-∼ (right x cl cr l⋙r) | node perfect x' l' r' | node right x'' l'' r'' | ⋙r .x' .x'' l'≃r' l''⋙r'' l'≃l'' with lemma-dropLast-⋙ (⋙r x' x'' l'≃r' l''⋙r'' l'≃l'') ... | inj₁ l⋙rd = let _l = node perfect x' l' r' ; _r = node right x'' l'' r'' ; zflfrd∼flzfrd = ∼x /head (lemma++/ {last _r compound} {flatten _l}) refl∼ ; flzfrd∼flfr = lemma++∼l {flatten _l} (lemma-last-dropLast cr) in trans∼ zflfrd∼flzfrd flzfrd∼flfr ... | inj₂ () lemma-dropLast-∼ (right x cl cr l⋙r) | node left _ _ _ | _ | ⋙p () lemma-dropLast-∼ (right x cl cr l⋙r) | node right _ _ _ | _ | ⋙p ()
{ "alphanum_fraction": 0.5078658356, "avg_line_length": 61.6280487805, "ext": "agda", "hexsha": "a339219419480ee7bd0f7918e725d2d82f373a52", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/DropLast/Permutation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/DropLast/Permutation.agda", "max_line_length": 180, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/DropLast/Permutation.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 4264, "size": 10107 }
module Structs where open import Data.List open import Data.String open import Data.Product hiding (map) open import Relation.Binary.PropositionalEquality as PE hiding ([_]) open import Data.List.Any hiding (map) open module M {ℓ}{X : Set ℓ} = Membership (PE.setoid X ) import Level data StructEnd {ℓ} : Set ℓ where end : StructEnd data StructField {ℓ}(s : String)(t : Set ℓ) : Set ℓ where _∹_ : (x : String) → {_ : x ≡ s} → t → StructField s t FieldTypes = λ ℓ → List (String × Set ℓ) Struct : ∀{ℓ} → FieldTypes ℓ → Set ℓ Struct [] = StructEnd Struct {ℓ} ( (n , t) ∷ l) = StructField {ℓ} n t × Struct l infixr 6 _∶_∷_ data StructLit {ℓ} : FieldTypes ℓ → Set (Level.suc ℓ) where [] : StructLit [] _∶_∷_ : ∀{t : Set ℓ}{ls} → (s : String) → t → StructLit ls → StructLit ((s , t) ∷ ls) ⟨_⟩ : ∀{ℓ}{ls} → StructLit {ℓ} ls → Struct ls ⟨ [] ⟩ = end ⟨ s ∶ x ∷ xs ⟩ = _∹_ s {refl} x , ⟨ xs ⟩ instance found-it : ∀{ℓ}{X : Set ℓ}{x : X}{xs : List X} → x ∈ (x ∷ xs) found-it = here refl keep-looking : ∀{ℓ}{X : Set ℓ}{x y : X}{xs : List X} → ⦃ t : y ∈ xs ⦄ → y ∈ (x ∷ xs) keep-looking ⦃ t ⦄ = there t lookup : ∀{ℓ ℓ′}{K : Set ℓ}{V : Set ℓ′}{s} → (l : List (K × V)) → s ∈ (map proj₁ l) → V lookup [] () lookup (x ∷ l) (here refl) = proj₂ x lookup (x ∷ l) (there p) = lookup l p update : ∀{ℓ ℓ′}{K : Set ℓ}{V : Set ℓ′}{s} → (l : List (K × V)) → s ∈ (map proj₁ l) → V → List (K × V) update [] () _ update (x ∷ l) (here refl) n = (proj₁ x , n) ∷ l update (x ∷ l) (there p) n = x ∷ update l p n field-names = λ{ℓ}(ls : FieldTypes ℓ) → map proj₁ ls infixl 6 _∙_ _∙_ : ∀{ℓ}{ls : FieldTypes ℓ} → Struct ls → (s : String) ⦃ prf : s ∈ field-names ls ⦄ → lookup ls prf _∙_ {ls = []} _ x ⦃ () ⦄ _∙_ {ls = x ∷ ls} (tg ∹ v , r) ._ ⦃ here refl ⦄ = v _∙_ {ls = x ∷ ls} (k , r) x₁ ⦃ there prf ⦄ = _∙_ {ls = ls} r x₁ ⦃ prf ⦄ infixl 6 _∙_≔_ module TypeChangingAssignment where infixl 6 _∙_≔′_ _∙_≔′_ : ∀{ℓ}{ls : FieldTypes ℓ}{X : Set ℓ} → Struct ls → (s : String) ⦃ prf : s ∈ field-names ls ⦄ → X → Struct (update ls prf X) _∙_≔′_ {ls = []} s t ⦃ () ⦄ n _∙_≔′_ {ls = (q , _) ∷ ls} (_∹_ .q {refl} v , r) ._ ⦃ here refl ⦄ n = _∹_ q {refl} n , r _∙_≔′_ {ls = x ∷ ls} (t , r) k ⦃ there prf ⦄ n = t , (r ∙ k ≔′ n) memb-update : ∀{ℓ ℓ′}{K : Set ℓ}{V : Set ℓ′}{ls : List (K × V)}{k}{x : V} → ⦃ prf : k ∈ map proj₁ ls ⦄ → k ∈ map proj₁ (update ls prf x) memb-update {ls = []} ⦃ () ⦄ memb-update {ls = x ∷ ls} {{prf = here refl}} = here refl memb-update {ls = x ∷ ls} {{prf = there prf}} = there (memb-update {ls = ls} ⦃ prf ⦄) lookup-update : ∀{ℓ ℓ′}{K : Set ℓ}{V : Set ℓ′}{ls : List (K × V)}{k}{x : V} → ⦃ prf : k ∈ map proj₁ ls ⦄ → lookup (update ls prf x) (memb-update ⦃ prf ⦄) ≡ x lookup-update {ls = []} ⦃ prf = () ⦄ lookup-update {ls = x ∷ ls} ⦃ prf = here refl ⦄ = refl lookup-update {ls = x ∷ ls} ⦃ prf = there prf ⦄ = lookup-update {ls = ls} ⦃ prf ⦄ update-lookup : ∀{ℓ ℓ′}{K : Set ℓ}{V : Set ℓ′}{ls : List (K × V)}{k} → ⦃ prf : k ∈ map proj₁ ls ⦄ → update ls prf (lookup ls prf) ≡ ls update-lookup {ls = []} ⦃ () ⦄ update-lookup {ls = x ∷ ls} ⦃ here refl ⦄ = refl update-lookup {ls = x ∷ ls} ⦃ there prf ⦄ rewrite update-lookup {ls = ls} ⦃ prf ⦄ = refl _∙_≔_ : ∀{ℓ}{ls : FieldTypes ℓ} → Struct ls → (s : String) ⦃ prf : s ∈ field-names ls ⦄ → lookup ls prf → Struct ls _∙_≔_ {ls = []} s f ⦃ () ⦄ v _∙_≔_ {ls = x ∷ ls} (_∹_ ._ {refl} _ , r) ._ ⦃ here refl ⦄ v = _∹_ (proj₁ x) {refl} v , r _∙_≔_ {ls = x ∷ ls} (k , r) f ⦃ there prf ⦄ v = k , r ∙ f ≔ v spurious-update : ∀{ℓ}{ls : FieldTypes ℓ}{s : Struct ls}{f} → ⦃ prf : f ∈ field-names ls ⦄ → (s ∙ f ≔ (s ∙ f)) ≡ s spurious-update {ls = []} ⦃ () ⦄ spurious-update {ls = _ ∷ _}{_∹_ ._ {refl} _ , _} ⦃ here refl ⦄ = refl spurious-update {ls = _ ∷ _}{_∹_ ._ {refl} _ , _} ⦃ there prf ⦄ = cong (_,_ _) spurious-update read-after-update : ∀{ℓ}{ls : FieldTypes ℓ}{s : Struct ls}{f} → ⦃ prf : f ∈ field-names ls ⦄ → {v : lookup ls prf} → (s ∙ f ≔ v) ∙ f ≡ v read-after-update {ls = []} ⦃ () ⦄ read-after-update {ls = _ ∷ _}{ _∹_ ._ {refl} _ , _ } ⦃ here refl ⦄ = refl read-after-update {ls = _ ∷ _}{ _∹_ ._ {refl} _ , _ } ⦃ there prf ⦄ = read-after-update ⦃ prf ⦄ frame-inertia : ∀{ℓ}{ls : FieldTypes ℓ}{s : Struct ls}{f f′} → f ≢ f′ → ⦃ prf : f ∈ field-names ls ⦄ → ⦃ prf′ : f′ ∈ field-names ls ⦄ → {v : lookup ls prf′} → (s ∙ f′ ≔ v) ∙ f ≡ (s ∙ f) frame-inertia {ls = []} _ ⦃ () ⦄ frame-inertia {ls = _ ∷ ls}{ _∹_ ._ {refl} _ , _ } _ ⦃ here refl ⦄ ⦃ there prf′ ⦄ = refl frame-inertia {ls = _ ∷ ls}{ _∹_ ._ {refl} _ , _ } _ ⦃ there prf ⦄ ⦃ here refl ⦄ = refl frame-inertia {ls = _ ∷ ls}{ _∹_ ._ {refl} _ , _ } p ⦃ there prf ⦄ ⦃ there prf′ ⦄ = frame-inertia {ls = ls} p frame-inertia {ls = _ ∷ ls}{ _∹_ ._ {refl} _ , _ } p ⦃ here refl ⦄ ⦃ here refl ⦄ with p refl ... | () append : ∀{ℓ}{ls : FieldTypes ℓ}{ms : FieldTypes ℓ} → Struct ls → Struct ms → Struct (Data.List._++_ ls ms) append {ls = [] } s₁ s₂ = s₂ append {ls = x ∷ xs} (f , rest) s₂ = f , append rest s₂ drop-append : ∀{ℓ}{ls : FieldTypes ℓ}{ms : FieldTypes ℓ} → Struct (Data.List._++_ ls ms) → Struct ms drop-append {ls = []} m = m drop-append {ls = x ∷ xs} (f , rest) = drop-append {ls = xs} rest
{ "alphanum_fraction": 0.4920977011, "avg_line_length": 36.8741721854, "ext": "agda", "hexsha": "4ca3b967da386bc0980fb04ee80e775d01849d99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f0bbd5a32934f083ad443286c4a05ffc0369f2d3", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "liamoc/structs", "max_forks_repo_path": "Structs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f0bbd5a32934f083ad443286c4a05ffc0369f2d3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "liamoc/structs", "max_issues_repo_path": "Structs.agda", "max_line_length": 138, "max_stars_count": null, "max_stars_repo_head_hexsha": "f0bbd5a32934f083ad443286c4a05ffc0369f2d3", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "liamoc/structs", "max_stars_repo_path": "Structs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2488, "size": 5568 }