Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --with-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Equality.Erase where
open import Agda.Builtin.Equality
primitive primEraseEquality : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≡ y
| {
"alphanum_fraction": 0.6326530612,
"avg_line_length": 27.2222222222,
"ext": "agda",
"hexsha": "07faadc05bc2366ea29518570900a72dbff738fa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Erase.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Erase.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Equality/Erase.agda",
"max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z",
"num_tokens": 76,
"size": 245
} |
------------------------------------------------------------------------
-- "Reasoning" combinators
------------------------------------------------------------------------
open import Atom
module Reasoning (atoms : χ-atoms) where
open import Equality.Propositional
open import Chi atoms
open import Values atoms
infix -1 finally-⇓ _■⟨_⟩ _■⟨_⟩⋆
infixr -2 step-≡⇓ step-⇓ _⟶⟨⟩_ modus-ponens-⇓
step-≡⇓ : ∀ e₁ {e₂ e₃} → e₂ ⇓ e₃ → e₁ ≡ e₂ → e₁ ⇓ e₃
step-≡⇓ _ e₂⇓e₃ refl = e₂⇓e₃
syntax step-≡⇓ e₁ e₂⇓e₃ e₁≡e₂ = e₁ ≡⟨ e₁≡e₂ ⟩⟶ e₂⇓e₃
_⟶⟨⟩_ : ∀ e₁ {e₂} → e₁ ⇓ e₂ → e₁ ⇓ e₂
_ ⟶⟨⟩ e₁⇓e₂ = e₁⇓e₂
mutual
_■⟨_⟩ : ∀ e → Value e → e ⇓ e
_ ■⟨ lambda x e ⟩ = lambda
_ ■⟨ const c vs ⟩ = const (_ ■⟨ vs ⟩⋆)
_■⟨_⟩⋆ : ∀ es → Values es → es ⇓⋆ es
_ ■⟨ [] ⟩⋆ = []
_ ■⟨ v ∷ vs ⟩⋆ = (_ ■⟨ v ⟩) ∷ (_ ■⟨ vs ⟩⋆)
finally-⇓ : (e₁ e₂ : Exp) → e₁ ⇓ e₂ → e₁ ⇓ e₂
finally-⇓ _ _ e₁⇓e₂ = e₁⇓e₂
syntax finally-⇓ e₁ e₂ e₁⇓e₂ = e₁ ⇓⟨ e₁⇓e₂ ⟩■ e₂
modus-ponens-⇓ : ∀ e {e′ v} → e′ ⇓ v → (e′ ⇓ v → e ⇓ v) → e ⇓ v
modus-ponens-⇓ _ x f = f x
syntax modus-ponens-⇓ e x f = e ⟶⟨ f ⟩ x
mutual
trans-⇓ : ∀ {e₁ e₂ e₃} → e₁ ⇓ e₂ → e₂ ⇓ e₃ → e₁ ⇓ e₃
trans-⇓ (apply p q r) s = apply p q (trans-⇓ r s)
trans-⇓ (case p q r s) t = case p q r (trans-⇓ s t)
trans-⇓ (rec p) q = rec (trans-⇓ p q)
trans-⇓ lambda lambda = lambda
trans-⇓ (const ps) (const qs) = const (trans-⇓⋆ ps qs)
trans-⇓⋆ : ∀ {es₁ es₂ es₃} → es₁ ⇓⋆ es₂ → es₂ ⇓⋆ es₃ → es₁ ⇓⋆ es₃
trans-⇓⋆ [] [] = []
trans-⇓⋆ (p ∷ ps) (q ∷ qs) = trans-⇓ p q ∷ trans-⇓⋆ ps qs
step-⇓ : ∀ e₁ {e₂ e₃} → e₂ ⇓ e₃ → e₁ ⇓ e₂ → e₁ ⇓ e₃
step-⇓ _ e₂⇓e₃ e₁⇓e₂ = trans-⇓ e₁⇓e₂ e₂⇓e₃
syntax step-⇓ e₁ e₂⇓e₃ e₁⇓e₂ = e₁ ⇓⟨ e₁⇓e₂ ⟩ e₂⇓e₃
| {
"alphanum_fraction": 0.4489913545,
"avg_line_length": 27.9838709677,
"ext": "agda",
"hexsha": "905b0feb0af406c60287d584ce1d5d1b04c5e34c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Reasoning.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Reasoning.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 990,
"size": 1735
} |
test = Prop
| {
"alphanum_fraction": 0.6153846154,
"avg_line_length": 4.3333333333,
"ext": "agda",
"hexsha": "3a5e6afa9bcd95f1bdfe42c95b65f7682476720c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/default-flags/DefaultFlags.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/default-flags/DefaultFlags.agda",
"max_line_length": 11,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/default-flags/DefaultFlags.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 5,
"size": 13
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Decorated star-lists
------------------------------------------------------------------------
module Data.Star.Decoration where
open import Data.Star
open import Relation.Binary
open import Function
open import Data.Unit
open import Level
-- A predicate on relation "edges" (think of the relation as a graph).
EdgePred : {I : Set} → Rel I zero → Set₁
EdgePred T = ∀ {i j} → T i j → Set
data NonEmptyEdgePred {I : Set}
(T : Rel I zero) (P : EdgePred T) : Set where
nonEmptyEdgePred : ∀ {i j} {x : T i j}
(p : P x) → NonEmptyEdgePred T P
-- Decorating an edge with more information.
data DecoratedWith {I : Set} {T : Rel I zero} (P : EdgePred T)
: Rel (NonEmpty (Star T)) zero where
↦ : ∀ {i j k} {x : T i j} {xs : Star T j k}
(p : P x) → DecoratedWith P (nonEmpty (x ◅ xs)) (nonEmpty xs)
edge : ∀ {I} {T : Rel I zero} {P : EdgePred T} {i j} →
DecoratedWith {T = T} P i j → NonEmpty T
edge (↦ {x = x} p) = nonEmpty x
decoration : ∀ {I} {T : Rel I zero} {P : EdgePred T} {i j} →
(d : DecoratedWith {T = T} P i j) →
P (NonEmpty.proof (edge d))
decoration (↦ p) = p
-- Star-lists decorated with extra information. All P xs means that
-- all edges in xs satisfy P.
All : ∀ {I} {T : Rel I zero} → EdgePred T → EdgePred (Star T)
All P {j = j} xs =
Star (DecoratedWith P) (nonEmpty xs) (nonEmpty {y = j} ε)
-- We can map over decorated vectors.
gmapAll : ∀ {I} {T : Rel I zero} {P : EdgePred T}
{J} {U : Rel J zero} {Q : EdgePred U}
{i j} {xs : Star T i j}
(f : I → J) (g : T =[ f ]⇒ U) →
(∀ {i j} {x : T i j} → P x → Q (g x)) →
All P xs → All {T = U} Q (gmap f g xs)
gmapAll f g h ε = ε
gmapAll f g h (↦ x ◅ xs) = ↦ (h x) ◅ gmapAll f g h xs
-- Since we don't automatically have gmap id id xs ≡ xs it is easier
-- to implement mapAll in terms of map than in terms of gmapAll.
mapAll : ∀ {I} {T : Rel I zero} {P Q : EdgePred T} {i j} {xs : Star T i j} →
(∀ {i j} {x : T i j} → P x → Q x) →
All P xs → All Q xs
mapAll {P = P} {Q} f ps = map F ps
where
F : DecoratedWith P ⇒ DecoratedWith Q
F (↦ x) = ↦ (f x)
-- We can decorate star-lists with universally true predicates.
decorate : ∀ {I} {T : Rel I zero} {P : EdgePred T} {i j} →
(∀ {i j} (x : T i j) → P x) →
(xs : Star T i j) → All P xs
decorate f ε = ε
decorate f (x ◅ xs) = ↦ (f x) ◅ decorate f xs
-- We can append Alls. Unfortunately _◅◅_ does not quite work.
infixr 5 _◅◅◅_ _▻▻▻_
_◅◅◅_ : ∀ {I} {T : Rel I zero} {P : EdgePred T}
{i j k} {xs : Star T i j} {ys : Star T j k} →
All P xs → All P ys → All P (xs ◅◅ ys)
ε ◅◅◅ ys = ys
(↦ x ◅ xs) ◅◅◅ ys = ↦ x ◅ xs ◅◅◅ ys
_▻▻▻_ : ∀ {I} {T : Rel I zero} {P : EdgePred T}
{i j k} {xs : Star T j k} {ys : Star T i j} →
All P xs → All P ys → All P (xs ▻▻ ys)
_▻▻▻_ = flip _◅◅◅_
| {
"alphanum_fraction": 0.5003265839,
"avg_line_length": 33.2826086957,
"ext": "agda",
"hexsha": "0e954ccfad75428640cd94d3664ec3b4d36314c5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Star/Decoration.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Star/Decoration.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Star/Decoration.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1121,
"size": 3062
} |
module Issue1701.ModParamsToLose where
module Param (A : Set) where
module R (B : Set) (G : A → B) where
F = G
private
module Tmp (B : Set) (G : A → B) where
module r = R B G
open Tmp public
module Works (A : Set) where
module ParamA = Param A
open ParamA
works : (A → A) → A → A
works G = S.F
module works where
module S = r A G
| {
"alphanum_fraction": 0.5860215054,
"avg_line_length": 16.1739130435,
"ext": "agda",
"hexsha": "10c75a554c1efe786a6d1ad13c0734bb7a497375",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1701/ModParamsToLose.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1701/ModParamsToLose.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1701/ModParamsToLose.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 133,
"size": 372
} |
{- Basic definitions using Σ-types
Σ-types are defined in Core/Primitives as they are needed for Glue types.
The file contains:
- Non-dependent pair types: A × B
- Mere existence: ∃[x ∈ A] B
- Unique existence: ∃![x ∈ A] B
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Sigma.Base where
open import Cubical.Core.Primitives public
open import Cubical.Foundations.Prelude
open import Cubical.HITs.PropositionalTruncation.Base
-- Non-dependent pair types
_×_ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ')
A × B = Σ A (λ _ → B)
infixr 5 _×_
-- Mere existence
∃ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃ A B = ∥ Σ A B ∥
infix 2 ∃-syntax
∃-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃-syntax = ∃
syntax ∃-syntax A (λ x → B) = ∃[ x ∈ A ] B
-- Unique existence
∃! : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃! A B = isContr (Σ A B)
infix 2 ∃!-syntax
∃!-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
∃!-syntax = ∃!
syntax ∃!-syntax A (λ x → B) = ∃![ x ∈ A ] B
| {
"alphanum_fraction": 0.5753176044,
"avg_line_length": 20.7924528302,
"ext": "agda",
"hexsha": "13c9745ad8708f1171dd5014975461a78ebec59e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Sigma/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Sigma/Base.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Sigma/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 463,
"size": 1102
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Dagger.Instance.Rels where
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality
open import Level
open import Categories.Category.Dagger
open import Categories.Category.Instance.Rels
RelsHasDagger : ∀ {o ℓ} → HasDagger (Rels o ℓ)
RelsHasDagger = record
{ _† = flip
; †-identity = λ _ _ → (λ p → lift (sym (lower p))) , λ p → lift (sym (lower p))
; †-homomorphism = λ _ _ → map₂ swap , map₂ swap
; †-resp-≈ = flip
; †-involutive = λ _ _ _ → id , id
}
RelsDagger : ∀ o ℓ → DaggerCategory (suc o) (suc (o ⊔ ℓ)) (o ⊔ ℓ)
RelsDagger o ℓ = record
{ C = Rels o ℓ
; hasDagger = RelsHasDagger
}
| {
"alphanum_fraction": 0.6671348315,
"avg_line_length": 27.3846153846,
"ext": "agda",
"hexsha": "3f35a16c326deb12bf2db3188e8b48ad53792985",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bolt12/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bolt12/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bolt12/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Dagger/Instance/Rels.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 247,
"size": 712
} |
module Categories.Fam where
open import Level
open import Relation.Binary using (Rel)
import Relation.Binary.HeterogeneousEquality as Het
open Het using (_≅_) renaming (refl to ≣-refl)
open import Categories.Support.PropositionalEquality
open import Categories.Category
module Fam {a b : Level} where
record Fam : Set (suc a ⊔ suc b) where
constructor _,_
field
U : Set a
T : U → Set b
open Fam public
record Hom (A B : Fam) : Set (a ⊔ b) where
constructor _,_
field
f : U A → U B
φ : (x : U A) → T A x → T B (f x)
record _≡Fam_ {X Y} (f g : (Hom X Y)) : Set (a ⊔ b) where
constructor _,_
field
f≡g : {x : _} → Hom.f f x ≣ Hom.f g x
φ≡γ : {x : _} {bx : _} → Hom.φ f x bx ≅ Hom.φ g x bx
module Eq = _≡Fam_
Cat : Category (suc a ⊔ suc b) (a ⊔ b) (a ⊔ b)
Cat = record {
Obj = Fam;
_⇒_ = Hom;
_≡_ = _≡Fam_;
id = id′;
_∘_ = _∘′_;
assoc = ≣-refl , ≣-refl;
identityˡ = ≣-refl , ≣-refl;
identityʳ = ≣-refl , ≣-refl;
equiv = record {
refl = ≣-refl , ≣-refl;
sym = \ { (f≡g , φ≡γ) → ≣-sym f≡g , Het.sym φ≡γ };
trans = λ {(f≡g , φ≡γ) (g≡h , γ≡η) → ≣-trans f≡g g≡h , Het.trans φ≡γ γ≡η} };
∘-resp-≡ = ∘-resp-≡′ }
where
id′ : {A : Fam} → Hom A A
id′ = (\ x → x) , (\ x bx → bx)
_∘′_ : {A B C : Fam} → Hom B C → Hom A B → Hom A C
_∘′_ (f , φ) (g , γ) = (λ x → f (g x)) , (λ x bx → φ (g x) (γ x bx))
sym′ : ∀ {X Y} → Relation.Binary.Symmetric (_≡Fam_ {X} {Y})
sym′ {Ax , Bx} {Ay , By} {f , φ} {g , γ} (f≡g , φ≡γ) = ≣-sym f≡g , Het.sym φ≡γ
∘-resp-≡′ : {A B C : Fam} {f h : Hom B C} {g i : Hom A B} → f ≡Fam h → g ≡Fam i → (f ∘′ g) ≡Fam (h ∘′ i)
∘-resp-≡′ {f = (f , φ)} {g , γ} {h , η} {i , ι} (f≡g , φ≡γ) (h≡i , η≡ι) =
≣-trans f≡g (≣-cong g h≡i) , Het.trans φ≡γ (Het.cong₂ γ (Het.≡-to-≅ h≡i) η≡ι)
open Category Cat public
Fam : ∀ a b → Category (suc a ⊔ suc b) (a ⊔ b) (a ⊔ b)
Fam a b = Fam.Cat {a} {b}
| {
"alphanum_fraction": 0.4443418014,
"avg_line_length": 31.8382352941,
"ext": "agda",
"hexsha": "a02f75789e3792ecf17a8368e8d47a451524d0bf",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Fam.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Fam.agda",
"max_line_length": 109,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Fam.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 929,
"size": 2165
} |
record R (A : Set) : Set where
constructor c₂
field
f : A → A
g : A → A
g x = f (f x)
open R public
_ : (@0 A : Set) → R A → A → A
_ = λ A → g {A = A}
| {
"alphanum_fraction": 0.4518072289,
"avg_line_length": 12.7692307692,
"ext": "agda",
"hexsha": "c7c5ec08fd2f0126c22189082b069731c493cc8d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue4786a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue4786a.agda",
"max_line_length": 30,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue4786a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 73,
"size": 166
} |
{-# OPTIONS --without-K #-}
module SetoidEquiv where
open import Level using (Level; _⊔_)
open import Function.Equality using (_∘_; _⟶_; _⟨$⟩_)
open import Relation.Binary using (Setoid; module Setoid)
open import Relation.Binary.PropositionalEquality as P using (setoid)
open Setoid
infix 4 _≃S_
------------------------------------------------------------------------------
-- A setoid gives us a set and an equivalence relation on that set.
-- A common equivalence relation that is used on setoids is ≡
-- In general, two setoids are equivalent if:
record _≃S_ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} (A : Setoid ℓ₁ ℓ₂) (B : Setoid ℓ₃ ℓ₄) :
Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where
constructor equiv
field
f : A ⟶ B
g : B ⟶ A
α : ∀ {x y} → _≈_ B x y → _≈_ B ((f ∘ g) ⟨$⟩ x) y
β : ∀ {x y} → _≈_ A x y → _≈_ A ((g ∘ f) ⟨$⟩ x) y
-- Abbreviation for the special case in which the equivalence relation
-- is just ≡:
_≃S≡_ : ∀ {ℓ₁} → (A B : Set ℓ₁) → Set ℓ₁
A ≃S≡ B = (P.setoid A) ≃S (P.setoid B)
-- Two equivalences between setoids are themselves equivalent if
record _≋_ {ℓ₁} {A B : Set ℓ₁} (eq₁ eq₂ : A ≃S≡ B) : Set ℓ₁ where
constructor equivS
field
f≡ : ∀ (x : A) → P._≡_ (_≃S_.f eq₁ ⟨$⟩ x) (_≃S_.f eq₂ ⟨$⟩ x)
g≡ : ∀ (x : B) → P._≡_ (_≃S_.g eq₁ ⟨$⟩ x) (_≃S_.g eq₂ ⟨$⟩ x)
-- note that this appears to be redundant (especially when looking
-- at the proofs), but having both f and g is needed for inference
-- of other aspects to succeed.
id≋ : ∀ {ℓ} {A B : Set ℓ} {x : A ≃S≡ B} → x ≋ x
id≋ = record { f≡ = λ x → P.refl ; g≡ = λ x → P.refl }
sym≋ : ∀ {ℓ} {A B : Set ℓ} {x y : A ≃S≡ B} → x ≋ y → y ≋ x
sym≋ (equivS f≡ g≡) = equivS (λ a → P.sym (f≡ a)) (λ b → P.sym (g≡ b))
trans≋ : ∀ {ℓ} {A B : Set ℓ} {x y z : A ≃S≡ B} → x ≋ y → y ≋ z → x ≋ z
trans≋ (equivS f≡ g≡) (equivS h≡ i≡) =
equivS (λ a → P.trans (f≡ a) (h≡ a)) (λ b → P.trans (g≡ b) (i≡ b))
-- The set of equivalences between setoids is itself is a setoid
-- WARNING: this is not generic, but specific to ≡-Setoids of functions.
≃S-Setoid : ∀ {ℓ₁} → (A B : Set ℓ₁) → Setoid ℓ₁ ℓ₁
≃S-Setoid {ℓ₁} A B = record
{ Carrier = AS ≃S BS
; _≈_ = _≋_
; isEquivalence = record
{ refl = id≋
; sym = sym≋
; trans = trans≋
}
}
where
open _≃S_
AS = P.setoid A
BS = P.setoid B
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.513029316,
"avg_line_length": 32.7466666667,
"ext": "agda",
"hexsha": "544972810f8d84e7f1834f170c9d59352d13d202",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/SetoidEquiv.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/SetoidEquiv.agda",
"max_line_length": 79,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/SetoidEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 983,
"size": 2456
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.BlockData as BlockData
import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert
import LibraBFT.Impl.Types.BlockInfo as BlockInfo
import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier
open import LibraBFT.Impl.OBM.Crypto
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Hash
open import Util.PKCS
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.Consensus.ConsensusTypes.Block where
genBlockInfo : Block → HashValue → Version → Maybe EpochState → BlockInfo
genBlockInfo b executedStateId version nextEpochState = BlockInfo∙new
(b ^∙ bEpoch) (b ^∙ bRound) (b ^∙ bId) executedStateId version nextEpochState
isGenesisBlock : Block → Bool
isGenesisBlock b = BlockData.isGenesisBlock (b ^∙ bBlockData)
isNilBlock : Block → Bool
isNilBlock b = BlockData.isNilBlock (b ^∙ bBlockData)
makeGenesisBlockFromLedgerInfo : LedgerInfo → Either ErrLog Block
makeGenesisBlockFromLedgerInfo li = do
blockData <- BlockData.newGenesisFromLedgerInfo li
pure (Block∙new (hashBD blockData) blockData nothing)
newNil : Round → QuorumCert → Block
newNil r qc = Block∙new (hashBD blockData) blockData nothing
where blockData = BlockData.newNil r qc
newProposalFromBlockDataAndSignature : BlockData → Signature → Block
newProposalFromBlockDataAndSignature blockData signature =
Block∙new (hashBD blockData) blockData (just signature)
validateSignature : Block → ValidatorVerifier → Either ErrLog Unit
validateSignature self validator = case self ^∙ bBlockData ∙ bdBlockType of λ where
Genesis → Left fakeErr -- (ErrL (here' ["do not accept genesis from others"]))
NilBlock → QuorumCert.verify (self ^∙ bQuorumCert) validator
(Proposal _ author) → do
fromMaybeM
(Left fakeErr) -- (ErrL (here' ["Missing signature in Proposal"])))
(pure (self ^∙ bSignature)) >>= λ sig -> withErrCtx' (here' [])
(ValidatorVerifier.verify validator author (self ^∙ bBlockData) sig)
QuorumCert.verify (self ^∙ bQuorumCert) validator
where
here' : List String → List String
here' t = "Block" ∷ "validateSignatures" {-∷ lsB self-} ∷ t
verifyWellFormed : Block → Either ErrLog Unit
verifyWellFormed self = do
lcheck (not (isGenesisBlock self))
(here' ("Do not accept genesis from others" ∷ []))
let parent = self ^∙ bQuorumCert ∙ qcCertifiedBlock
lcheck (parent ^∙ biRound <? self ^∙ bRound)
(here' ("Block must have a greater round than parent's block" ∷ []))
lcheck (parent ^∙ biEpoch == self ^∙ bEpoch)
(here' ("block's parent should be in the same epoch" ∷ []))
lcheck (not (BlockInfo.hasReconfiguration parent)
∨ maybe true payloadIsEmpty (self ^∙ bPayload))
(here' ("Reconfiguration suffix should not carry payload" ∷ []))
-- timestamps go here -- Haskell removed them
lcheck (not (self ^∙ bQuorumCert ∙ qcEndsEpoch))
(here' ("Block cannot be proposed in an epoch that has ended" ∷ []))
lcheck (self ^∙ bId == hashBD (self ^∙ bBlockData))
(here' ("Block id hash mismatch" ∷ []))
where
here' : List String → List String
here' t = "Block" ∷ "verifyWellFormed" {-∷ lsB self-} ∷ t
| {
"alphanum_fraction": 0.6985975126,
"avg_line_length": 46.0853658537,
"ext": "agda",
"hexsha": "1c817c0dc3a0bb035e5e2e233ba2dfd44361ef09",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Block.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Block.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Block.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1033,
"size": 3779
} |
-- Andreas, 2013-10-21 fixed this issue
-- by refactoring Internal to spine syntax.
module Issue901 where
open import Common.Level
record Ls : Set where
constructor _,_
field
fst : Level
snd : Level
open Ls
record R (ls : Ls) : Set (lsuc (fst ls ⊔ snd ls)) where
field
A : Set (fst ls)
B : Set (snd ls)
bad : R _
bad = record { A = Set; B = Set₁ }
good : R (_ , _)
good = record { A = Set; B = Set₁ }
{- PROBLEM WAS:
"good" is fine while the body and signature of "bad" are marked in yellow.
Both are fine if we change the parameter of R to not contain levels.
The meta _1 in R _ is never eta-expanded somehow. I think this
problem will vanish if we let whnf eta-expand metas that are
projected. E.g.
fst _1
will result in
_1 := _2,_3
and then reduce to
_2
(And that would be easier to implement if Internal was a spine syntax
(with post-fix projections)). -}
| {
"alphanum_fraction": 0.6740331492,
"avg_line_length": 19.6739130435,
"ext": "agda",
"hexsha": "5a1a257f2e157346e4aabdbc0eb382d80a6167e8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue901.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue901.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue901.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 269,
"size": 905
} |
module halt where
open import Level renaming ( zero to Zero ; suc to Suc )
open import Data.Nat
open import Data.Maybe
open import Data.List hiding ([_])
open import Data.Nat.Properties
open import Relation.Nullary
open import Data.Empty
open import Data.Unit
open import Relation.Binary.Core hiding (_⇔_)
open import Relation.Binary.Definitions
open import Relation.Binary.PropositionalEquality
open import logic
record HBijection {n m : Level} (R : Set n) (S : Set m) : Set (n Level.⊔ m) where
field
fun← : S → R
fun→ : R → S
fiso← : (x : R) → fun← ( fun→ x ) ≡ x
-- normal bijection required below, but we don't need this to show the inconsistency
-- fiso→ : (x : S ) → fun→ ( fun← x ) ≡ x
injection' : {n m : Level} (R : Set n) (S : Set m) (f : R → S ) → Set (n Level.⊔ m)
injection' R S f = (x y : R) → f x ≡ f y → x ≡ y
open HBijection
diag : {S : Set } (b : HBijection ( S → Bool ) S) → S → Bool
diag b n = not (fun← b n n)
diagonal : { S : Set } → ¬ HBijection ( S → Bool ) S
diagonal {S} b = diagn1 (fun→ b (diag b) ) refl where
diagn1 : (n : S ) → ¬ (fun→ b (diag b) ≡ n )
diagn1 n dn = ¬t=f (diag b n ) ( begin
not (diag b n)
≡⟨⟩
not (not fun← b n n)
≡⟨ cong (λ k → not (k n) ) (sym (fiso← b _)) ⟩
not (fun← b (fun→ b (diag b)) n)
≡⟨ cong (λ k → not (fun← b k n) ) dn ⟩
not (fun← b n n)
≡⟨⟩
diag b n
∎ ) where open ≡-Reasoning
record TM : Set where
field
tm : List Bool → Maybe Bool
open TM
record UTM : Set where
field
utm : TM
encode : TM → List Bool
is-tm : (t : TM) → (x : List Bool) → tm utm (encode t ++ x ) ≡ tm t x
open UTM
open _∧_
open import Axiom.Extensionality.Propositional
postulate f-extensionality : { n : Level} → Axiom.Extensionality.Propositional.Extensionality n n
record Halt : Set where
field
halt : (t : TM ) → (x : List Bool ) → Bool
is-halt : (t : TM ) → (x : List Bool ) → (halt t x ≡ true ) ⇔ ( (just true ≡ tm t x ) ∨ (just false ≡ tm t x ) )
is-not-halt : (t : TM ) → (x : List Bool ) → (halt t x ≡ false ) ⇔ ( nothing ≡ tm t x )
open Halt
TNL : (halt : Halt ) → (utm : UTM) → HBijection (List Bool → Bool) (List Bool)
TNL halt utm = record {
fun← = λ tm x → Halt.halt halt (UTM.utm utm) (tm ++ x)
; fun→ = λ h → encode utm record { tm = h1 h }
; fiso← = λ h → f-extensionality (λ y → TN1 h y )
} where
open ≡-Reasoning
h1 : (h : List Bool → Bool) → (x : List Bool ) → Maybe Bool
h1 h x with h x
... | true = just true
... | false = nothing
tenc : (h : List Bool → Bool) → (y : List Bool) → List Bool
tenc h y = encode utm (record { tm = λ x → h1 h x }) ++ y
h-nothing : (h : List Bool → Bool) → (y : List Bool) → h y ≡ false → h1 h y ≡ nothing
h-nothing h y eq with h y
h-nothing h y refl | false = refl
h-just : (h : List Bool → Bool) → (y : List Bool) → h y ≡ true → h1 h y ≡ just true
h-just h y eq with h y
h-just h y refl | true = refl
TN1 : (h : List Bool → Bool) → (y : List Bool ) → Halt.halt halt (UTM.utm utm) (tenc h y) ≡ h y
TN1 h y with h y | inspect h y
... | true | record { eq = eq1 } = begin
Halt.halt halt (UTM.utm utm) (tenc h y) ≡⟨ proj2 (is-halt halt (UTM.utm utm) (tenc h y) ) (case1 (sym tm-tenc)) ⟩
true ∎ where
tm-tenc : tm (UTM.utm utm) (tenc h y) ≡ just true
tm-tenc = begin
tm (UTM.utm utm) (tenc h y) ≡⟨ is-tm utm _ y ⟩
h1 h y ≡⟨ h-just h y eq1 ⟩
just true ∎
... | false | record { eq = eq1 } = begin
Halt.halt halt (UTM.utm utm) (tenc h y) ≡⟨ proj2 (is-not-halt halt (UTM.utm utm) (tenc h y) ) (sym tm-tenc) ⟩
false ∎ where
tm-tenc : tm (UTM.utm utm) (tenc h y) ≡ nothing
tm-tenc = begin
tm (UTM.utm utm) (tenc h y) ≡⟨ is-tm utm _ y ⟩
h1 h y ≡⟨ h-nothing h y eq1 ⟩
nothing ∎
-- the rest of bijection means encoding is unique
-- fiso→ : (y : List Bool ) → encode utm record { tm = λ x → h1 (λ tm → Halt.halt halt (UTM.utm utm) tm ) x } ≡ y
TNL1 : UTM → ¬ Halt
TNL1 utm halt = diagonal ( TNL halt utm )
| {
"alphanum_fraction": 0.5300255043,
"avg_line_length": 36.8632478632,
"ext": "agda",
"hexsha": "cd8a8f386d7cb6cc2d5ead9af22d84f08d35ae34",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/halt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/halt.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/halt.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1609,
"size": 4313
} |
------------------------------------------------------------------------------
-- Properties of the inequalities
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LTC-PCF.Data.Nat.Inequalities.Properties where
open import Common.FOL.Relation.Binary.EqReasoning
open import LTC-PCF.Base
open import LTC-PCF.Base.Properties
open import LTC-PCF.Data.Nat
open import LTC-PCF.Data.Nat.Inequalities
open import LTC-PCF.Data.Nat.Inequalities.EliminationProperties
open import LTC-PCF.Data.Nat.Inequalities.ConversionRules public
open import LTC-PCF.Data.Nat.Properties
open import LTC-PCF.Data.Nat.UnaryNumbers
------------------------------------------------------------------------------
-- N.B. The elimination properties are in the module
-- LTC.Data.Nat.Inequalities.EliminationProperties.
------------------------------------------------------------------------------
-- Congruence properties
ltLeftCong : ∀ {m n o} → m ≡ n → lt m o ≡ lt n o
ltLeftCong refl = refl
ltRightCong : ∀ {m n o} → n ≡ o → lt m n ≡ lt m o
ltRightCong refl = refl
------------------------------------------------------------------------------
0≯x : ∀ {n} → N n → zero ≯ n
0≯x nzero = lt-00
0≯x (nsucc {n} Nn) = lt-S0 n
x≮x : ∀ {n} → N n → n ≮ n
x≮x nzero = lt-00
x≮x (nsucc {n} Nn) = trans (lt-SS n n) (x≮x Nn)
Sx≰0 : ∀ {n} → N n → succ₁ n ≰ zero
Sx≰0 nzero = x≮x (nsucc nzero)
Sx≰0 (nsucc {n} Nn) = trans (lt-SS (succ₁ n) zero) (lt-S0 n)
x<Sx : ∀ {n} → N n → n < succ₁ n
x<Sx nzero = lt-0S zero
x<Sx (nsucc {n} Nn) = trans (lt-SS n (succ₁ n)) (x<Sx Nn)
x<y→Sx<Sy : ∀ {m n} → m < n → succ₁ m < succ₁ n
x<y→Sx<Sy {m} {n} m<n = trans (lt-SS m n) m<n
Sx<Sy→x<y : ∀ {m n} → succ₁ m < succ₁ n → m < n
Sx<Sy→x<y {m} {n} Sm<Sn = trans (sym (lt-SS m n)) Sm<Sn
x≤x : ∀ {n} → N n → n ≤ n
x≤x nzero = lt-0S zero
x≤x (nsucc {n} Nn) = trans (lt-SS n (succ₁ n)) (x≤x Nn)
x≤y→Sx≤Sy : ∀ {m n} → m ≤ n → succ₁ m ≤ succ₁ n
x≤y→Sx≤Sy {m} {n} m≤n = trans (lt-SS m (succ₁ n)) m≤n
Sx≤Sy→x≤y : ∀ {m n} → succ₁ m ≤ succ₁ n → m ≤ n
Sx≤Sy→x≤y {m} {n} Sm≤Sn = trans (sym (lt-SS m (succ₁ n))) Sm≤Sn
x≥y→x≮y : ∀ {m n} → N m → N n → m ≥ n → m ≮ n
x≥y→x≮y nzero nzero _ = x≮x nzero
x≥y→x≮y nzero (nsucc Nn) 0≥Sn = ⊥-elim (0≥S→⊥ Nn 0≥Sn)
x≥y→x≮y (nsucc {m} Nm) nzero _ = lt-S0 m
x≥y→x≮y (nsucc {m} Nm) (nsucc {n} Nn) Sm≥Sn =
trans (lt-SS m n) (x≥y→x≮y Nm Nn (trans (sym (lt-SS n (succ₁ m))) Sm≥Sn))
x≮y→x≥y : ∀ {m n} → N m → N n → m ≮ n → m ≥ n
x≮y→x≥y nzero nzero 0≮0 = x≤x nzero
x≮y→x≥y nzero (nsucc {n} Nn) 0≮Sn = ⊥-elim (t≢f (trans (sym (lt-0S n)) 0≮Sn))
x≮y→x≥y (nsucc {m} Nm) nzero Sm≮n = lt-0S (succ₁ m)
x≮y→x≥y (nsucc {m} Nm) (nsucc {n} Nn) Sm≮Sn =
trans (lt-SS n (succ₁ m)) (x≮y→x≥y Nm Nn (trans (sym (lt-SS m n)) Sm≮Sn))
x>y∨x≤y : ∀ {m n} → N m → N n → m > n ∨ m ≤ n
x>y∨x≤y {n = n} nzero Nn = inj₂ (lt-0S n)
x>y∨x≤y (nsucc {m} Nm) nzero = inj₁ (lt-0S m)
x>y∨x≤y (nsucc {m} Nm) (nsucc {n} Nn) =
case (λ m>n → inj₁ (trans (lt-SS n m) m>n))
(λ m≤n → inj₂ (trans (lt-SS m (succ₁ n)) m≤n))
(x>y∨x≤y Nm Nn)
x≤y→x≯y : ∀ {m n} → N m → N n → m ≤ n → m ≯ n
x≤y→x≯y nzero Nn _ = 0≯x Nn
x≤y→x≯y (nsucc Nm) nzero Sm≤0 = ⊥-elim (S≤0→⊥ Nm Sm≤0)
x≤y→x≯y (nsucc {m} Nm) (nsucc {n} Nn) Sm≤Sn =
trans (lt-SS n m) (x≤y→x≯y Nm Nn (trans (sym (lt-SS m (succ₁ n))) Sm≤Sn))
x≯y→x≤y : ∀ {m n} → N m → N n → m ≯ n → m ≤ n
x≯y→x≤y {n = n} nzero Nn _ = lt-0S n
x≯y→x≤y (nsucc {m} Nm) nzero Sm≯0 = ⊥-elim (t≢f (trans (sym (lt-0S m)) Sm≯0))
x≯y→x≤y (nsucc {m} Nm) (nsucc {n} Nn) Sm≯Sn =
trans (lt-SS m (succ₁ n)) (x≯y→x≤y Nm Nn (trans (sym (lt-SS n m)) Sm≯Sn))
x>y∨x≯y : ∀ {m n} → N m → N n → m > n ∨ m ≯ n
x>y∨x≯y nzero Nn = inj₂ (0≯x Nn)
x>y∨x≯y (nsucc {m} Nm) nzero = inj₁ (lt-0S m)
x>y∨x≯y (nsucc {m} Nm) (nsucc {n} Nn) =
case (λ h → inj₁ (trans (lt-SS n m) h))
(λ h → inj₂ (trans (lt-SS n m) h))
(x>y∨x≯y Nm Nn)
x<y∨x≥y : ∀ {m n} → N m → N n → m < n ∨ m ≥ n
x<y∨x≥y Nm Nn = x>y∨x≤y Nn Nm
x<y∨x≮y : ∀ {m n} → N m → N n → m < n ∨ m ≮ n
x<y∨x≮y Nm Nn = case (λ m<n → inj₁ m<n)
(λ m≥n → inj₂ (x≥y→x≮y Nm Nn m≥n))
(x<y∨x≥y Nm Nn)
x≡y→x≤y : ∀ {m n} → N m → N n → m ≡ n → m ≤ n
x≡y→x≤y Nm _ refl = x≤x Nm
x<y→x≤y : ∀ {m n} → N m → N n → m < n → m ≤ n
x<y→x≤y Nm nzero m<0 = ⊥-elim (x<0→⊥ Nm m<0)
x<y→x≤y nzero (nsucc {n} Nn) _ = lt-0S (succ₁ n)
x<y→x≤y (nsucc {m} Nm) (nsucc {n} Nn) Sm<Sn =
x≤y→Sx≤Sy (x<y→x≤y Nm Nn (Sx<Sy→x<y Sm<Sn))
x<Sy→x≤y : ∀ {m n} → N m → N n → m < succ₁ n → m ≤ n
x<Sy→x≤y {n = n} nzero Nn 0<Sn = lt-0S n
x<Sy→x≤y (nsucc Nm) Nn Sm<Sn = Sm<Sn
x≤Sx : ∀ {m} → N m → m ≤ succ₁ m
x≤Sx Nm = x<y→x≤y Nm (nsucc Nm) (x<Sx Nm)
x<y→Sx≤y : ∀ {m n} → N m → N n → m < n → succ₁ m ≤ n
x<y→Sx≤y Nm nzero m<0 = ⊥-elim (x<0→⊥ Nm m<0)
x<y→Sx≤y nzero (nsucc {n} Nn) _ = x≤y→Sx≤Sy (lt-0S n)
x<y→Sx≤y (nsucc {m} Nm) (nsucc {n} Nn) Sm<Sn =
trans (lt-SS (succ₁ m) (succ₁ n)) Sm<Sn
Sx≤y→x<y : ∀ {m n} → N m → N n → succ₁ m ≤ n → m < n
Sx≤y→x<y Nm nzero Sm≤0 = ⊥-elim (S≤0→⊥ Nm Sm≤0)
Sx≤y→x<y nzero (nsucc {n} Nn) _ = lt-0S n
Sx≤y→x<y (nsucc {m} Nm) (nsucc {n} Nn) SSm≤Sn =
x<y→Sx<Sy (Sx≤y→x<y Nm Nn (Sx≤Sy→x≤y SSm≤Sn))
<-trans : ∀ {m n o} → N m → N n → N o → m < n → n < o → m < o
<-trans nzero nzero _ 0<0 _ = ⊥-elim (0<0→⊥ 0<0)
<-trans nzero (nsucc Nn) nzero _ Sn<0 = ⊥-elim (S<0→⊥ Sn<0)
<-trans nzero (nsucc Nn) (nsucc {o} No) _ _ = lt-0S o
<-trans (nsucc Nm) Nn nzero _ n<0 = ⊥-elim (x<0→⊥ Nn n<0)
<-trans (nsucc Nm) nzero (nsucc No) Sm<0 _ = ⊥-elim (S<0→⊥ Sm<0)
<-trans (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) Sm<Sn Sn<So =
x<y→Sx<Sy (<-trans Nm Nn No (Sx<Sy→x<y Sm<Sn) (Sx<Sy→x<y Sn<So))
≤-trans : ∀ {m n o} → N m → N n → N o → m ≤ n → n ≤ o → m ≤ o
≤-trans {o = o} nzero Nn No _ _ = lt-0S o
≤-trans (nsucc Nm) nzero No Sm≤0 _ = ⊥-elim (S≤0→⊥ Nm Sm≤0)
≤-trans (nsucc Nm) (nsucc Nn) nzero _ Sn≤0 = ⊥-elim (S≤0→⊥ Nn Sn≤0)
≤-trans (nsucc {m} Nm) (nsucc {n} Nn) (nsucc {o} No) Sm≤Sn Sn≤So =
x≤y→Sx≤Sy (≤-trans Nm Nn No (Sx≤Sy→x≤y Sm≤Sn) (Sx≤Sy→x≤y Sn≤So))
x≤x+y : ∀ {m n} → N m → N n → m ≤ m + n
x≤x+y {n = n} nzero Nn = lt-0S (zero + n)
x≤x+y {n = n} (nsucc {m} Nm) Nn =
lt (succ₁ m) (succ₁ (succ₁ m + n)) ≡⟨ lt-SS m (succ₁ m + n) ⟩
lt m (succ₁ m + n) ≡⟨ ltRightCong (+-Sx m n) ⟩
lt m (succ₁ (m + n)) ≡⟨ refl ⟩
le m (m + n) ≡⟨ x≤x+y Nm Nn ⟩
true ∎
x∸y<Sx : ∀ {m n} → N m → N n → m ∸ n < succ₁ m
x∸y<Sx {m} Nm nzero =
lt (m ∸ zero) (succ₁ m) ≡⟨ ltLeftCong (∸-x0 m) ⟩
lt m (succ₁ m) ≡⟨ x<Sx Nm ⟩
true ∎
x∸y<Sx nzero (nsucc {n} Nn) =
lt (zero ∸ succ₁ n) [1] ≡⟨ ltLeftCong (0∸x (nsucc Nn)) ⟩
lt zero [1] ≡⟨ lt-0S zero ⟩
true ∎
x∸y<Sx (nsucc {m} Nm) (nsucc {n} Nn) =
lt (succ₁ m ∸ succ₁ n) (succ₁ (succ₁ m))
≡⟨ ltLeftCong (S∸S Nm Nn) ⟩
lt (m ∸ n) (succ₁ (succ₁ m))
≡⟨ <-trans (∸-N Nm Nn) (nsucc Nm) (nsucc (nsucc Nm))
(x∸y<Sx Nm Nn) (x<Sx (nsucc Nm))
⟩
true ∎
Sx∸Sy<Sx : ∀ {m n} → N m → N n → succ₁ m ∸ succ₁ n < succ₁ m
Sx∸Sy<Sx {m} {n} Nm Nn =
lt (succ₁ m ∸ succ₁ n) (succ₁ m) ≡⟨ ltLeftCong (S∸S Nm Nn) ⟩
lt (m ∸ n) (succ₁ m) ≡⟨ x∸y<Sx Nm Nn ⟩
true ∎
x>y→x∸y+y≡x : ∀ {m n} → N m → N n → m > n → (m ∸ n) + n ≡ m
x>y→x∸y+y≡x nzero Nn 0>n = ⊥-elim (0>x→⊥ Nn 0>n)
x>y→x∸y+y≡x (nsucc {m} Nm) nzero Sm>0 =
trans (+-rightIdentity (∸-N (nsucc Nm) nzero)) (∸-x0 (succ₁ m))
x>y→x∸y+y≡x (nsucc {m} Nm) (nsucc {n} Nn) Sm>Sn =
(succ₁ m ∸ succ₁ n) + succ₁ n
≡⟨ +-leftCong (S∸S Nm Nn) ⟩
(m ∸ n) + succ₁ n
≡⟨ +-comm (∸-N Nm Nn) (nsucc Nn) ⟩
succ₁ n + (m ∸ n)
≡⟨ +-Sx n (m ∸ n) ⟩
succ₁ (n + (m ∸ n))
≡⟨ succCong (+-comm Nn (∸-N Nm Nn)) ⟩
succ₁ ((m ∸ n) + n)
≡⟨ succCong (x>y→x∸y+y≡x Nm Nn (trans (sym (lt-SS n m)) Sm>Sn)) ⟩
succ₁ m ∎
x≤y→y∸x+x≡y : ∀ {m n} → N m → N n → m ≤ n → (n ∸ m) + m ≡ n
x≤y→y∸x+x≡y {n = n} nzero Nn 0≤n =
trans (+-rightIdentity (∸-N Nn nzero)) (∸-x0 n)
x≤y→y∸x+x≡y (nsucc Nm) nzero Sm≤0 = ⊥-elim (S≤0→⊥ Nm Sm≤0)
x≤y→y∸x+x≡y (nsucc {m} Nm) (nsucc {n} Nn) Sm≤Sn =
(succ₁ n ∸ succ₁ m) + succ₁ m
≡⟨ +-leftCong (S∸S Nn Nm) ⟩
(n ∸ m) + succ₁ m
≡⟨ +-comm (∸-N Nn Nm) (nsucc Nm) ⟩
succ₁ m + (n ∸ m)
≡⟨ +-Sx m (n ∸ m) ⟩
succ₁ (m + (n ∸ m))
≡⟨ succCong (+-comm Nm (∸-N Nn Nm)) ⟩
succ₁ ((n ∸ m) + m)
≡⟨ succCong (x≤y→y∸x+x≡y Nm Nn (trans (sym (lt-SS m (succ₁ n))) Sm≤Sn)) ⟩
succ₁ n ∎
x<y→x<Sy : ∀ {m n} → N m → N n → m < n → m < succ₁ n
x<y→x<Sy Nm nzero m<0 = ⊥-elim (x<0→⊥ Nm m<0)
x<y→x<Sy nzero (nsucc {n} Nn) 0<Sn = lt-0S (succ₁ n)
x<y→x<Sy (nsucc {m} Nm) (nsucc {n} Nn) Sm<Sn =
x<y→Sx<Sy (x<y→x<Sy Nm Nn (Sx<Sy→x<y Sm<Sn))
x<Sy→x<y∨x≡y : ∀ {m n} → N m → N n → m < succ₁ n → m < n ∨ m ≡ n
x<Sy→x<y∨x≡y nzero nzero 0<S0 = inj₂ refl
x<Sy→x<y∨x≡y nzero (nsucc {n} Nn) 0<SSn = inj₁ (lt-0S n)
x<Sy→x<y∨x≡y (nsucc {m} Nm) nzero Sm<S0 =
⊥-elim (x<0→⊥ Nm (trans (sym (lt-SS m zero)) Sm<S0))
x<Sy→x<y∨x≡y (nsucc {m} Nm) (nsucc {n} Nn) Sm<SSn =
case (λ m<n → inj₁ (trans (lt-SS m n) m<n))
(λ m≡n → inj₂ (succCong m≡n))
m<n∨m≡n
where
m<n∨m≡n : m < n ∨ m ≡ n
m<n∨m≡n = x<Sy→x<y∨x≡y Nm Nn (trans (sym (lt-SS m (succ₁ n))) Sm<SSn)
x≤y→x<y∨x≡y : ∀ {m n} → N m → N n → m ≤ n → m < n ∨ m ≡ n
x≤y→x<y∨x≡y = x<Sy→x<y∨x≡y
x<y→y≡z→x<z : ∀ {m n o} → m < n → n ≡ o → m < o
x<y→y≡z→x<z m<n refl = m<n
x≡y→y<z→x<z : ∀ {m n o} → m ≡ n → n < o → m < o
x≡y→y<z→x<z refl n<o = n<o
x≥y→y>0→x∸y<x : ∀ {m n} → N m → N n → m ≥ n → n > zero → m ∸ n < m
x≥y→y>0→x∸y<x Nm nzero _ 0>0 = ⊥-elim (x>x→⊥ nzero 0>0)
x≥y→y>0→x∸y<x nzero (nsucc Nn) 0≥Sn _ = ⊥-elim (S≤0→⊥ Nn 0≥Sn)
x≥y→y>0→x∸y<x (nsucc {m} Nm) (nsucc {n} Nn) Sm≥Sn Sn>0 =
lt (succ₁ m ∸ succ₁ n) (succ₁ m)
≡⟨ ltLeftCong (S∸S Nm Nn) ⟩
lt (m ∸ n) (succ₁ m)
≡⟨ x∸y<Sx Nm Nn ⟩
true ∎
------------------------------------------------------------------------------
-- Properties about LT₂
xy<00→⊥ : ∀ {m n} → N m → N n → ¬ (Lexi m n zero zero)
xy<00→⊥ Nm Nn mn<00 = case (λ m<0 → ⊥-elim (x<0→⊥ Nm m<0))
(λ m≡0∧n<0 → ⊥-elim (x<0→⊥ Nn (∧-proj₂ m≡0∧n<0)))
mn<00
0Sx<00→⊥ : ∀ {m} → ¬ (Lexi zero (succ₁ m) zero zero)
0Sx<00→⊥ 0Sm<00 = case 0<0→⊥
(λ 0≡0∧Sm<0 → S<0→⊥ (∧-proj₂ 0≡0∧Sm<0))
0Sm<00
Sxy<0y'→⊥ : ∀ {m n n'} → ¬ (Lexi (succ₁ m) n zero n')
Sxy<0y'→⊥ Smn<0n' =
case S<0→⊥
(λ Sm≡0∧n<n' → ⊥-elim (0≢S (sym (∧-proj₁ Sm≡0∧n<n'))))
Smn<0n'
xy<x'0→x<x' : ∀ {m n} → N n → ∀ {m'} → Lexi m n m' zero → m < m'
xy<x'0→x<x' Nn mn<m'0 =
case (λ m<n → m<n)
(λ m≡n∧n<0 → ⊥-elim (x<0→⊥ Nn (∧-proj₂ m≡n∧n<0)))
mn<m'0
xy<0y'→x≡0∧y<y' : ∀ {m} → N m → ∀ {n n'} → Lexi m n zero n' →
m ≡ zero ∧ n < n'
xy<0y'→x≡0∧y<y' Nm mn<0n' = case (λ m<0 → ⊥-elim (x<0→⊥ Nm m<0))
(λ m≡0∧n<n' → m≡0∧n<n')
mn<0n'
[Sx∸Sy,Sy]<[Sx,Sy] : ∀ {m n} → N m → N n →
Lexi (succ₁ m ∸ succ₁ n) (succ₁ n) (succ₁ m) (succ₁ n)
[Sx∸Sy,Sy]<[Sx,Sy] Nm Nn = inj₁ (Sx∸Sy<Sx Nm Nn)
[Sx,Sy∸Sx]<[Sx,Sy] : ∀ {m n} → N m → N n →
Lexi (succ₁ m) (succ₁ n ∸ succ₁ m) (succ₁ m) (succ₁ n)
[Sx,Sy∸Sx]<[Sx,Sy] Nm Nn = inj₂ (refl , Sx∸Sy<Sx Nn Nm)
| {
"alphanum_fraction": 0.4436590087,
"avg_line_length": 38.4563106796,
"ext": "agda",
"hexsha": "79ed1662475f0bd444bce096f2ecdea54a9ab4e8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities/Properties.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities/Properties.agda",
"max_line_length": 87,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 6304,
"size": 11883
} |
open import MLib.Prelude.FromStdlib
open import Relation.Binary using (Rel; _Respects₂_; IsStrictTotalOrder)
open FE using (Π)
module MLib.Prelude.DFS.ViaInjection
{v v′ e}
(V-setoid : Setoid v v′)
(E : Rel (Setoid.Carrier V-setoid) e)
(E-subst : E Respects₂ (Setoid._≈_ V-setoid))
{i p} {I : Set i}
{_<_ : I → I → Set p} (isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
(injection : LeftInverse V-setoid (≡.setoid I))
where
open import MLib.Prelude.Path
import MLib.Prelude.DFS as DFS
import Data.AVL isStrictTotalOrder as Tree
open Bool using (T)
module V = Setoid V-setoid
open V using (_≈_) renaming (Carrier to V)
open Π (LeftInverse.to injection) hiding (cong) renaming (_⟨$⟩_ to toIx)
open Π (LeftInverse.from injection) hiding (cong) renaming (_⟨$⟩_ to fromIx)
open LeftInverse using (left-inverse-of)
_⇒_ : I → I → Set e
i ⇒ j = E (fromIx i) (fromIx j)
module BaseDFS = DFS _⇒_ isStrictTotalOrder
open BaseDFS public using (Graph)
open Tree using (Tree)
convertPath : ∀ {i j} → Path _⇒_ i j → Path E (fromIx i) (fromIx j)
convertPath (edge e) = edge e
convertPath (connect p₁ p₂) = connect (convertPath p₁) (convertPath p₂)
PathE-subst : ∀ {x x′ y y′} → x ≈ x′ → y ≈ y′ → Path E x y → Path E x′ y′
PathE-subst x≈x′ y≈y′ (edge e) = edge (proj₂ E-subst x≈x′ (proj₁ E-subst y≈y′ e))
PathE-subst x≈x′ y≈y′ (connect p₁ p₂) = connect (PathE-subst x≈x′ V.refl p₁) (PathE-subst V.refl y≈y′ p₂)
mkGraph : List (∃₂ E) → Graph
mkGraph = List.foldr step Tree.empty
where
step : ∃₂ E → Graph → Graph
step (x , y , e) =
let e′ = proj₂ E-subst (V.sym (left-inverse-of injection x)) (proj₁ E-subst (V.sym (left-inverse-of injection y)) e)
in Tree.insertWith (toIx x) ((toIx y , e′) ∷ []) List._++_
allTargetsFrom : Graph → (source : V) → List (∃ (Path E source))
allTargetsFrom graph source =
let resI = BaseDFS.allTargetsFrom graph (toIx source)
in List.map (uncurry (λ _ p → _ , PathE-subst (left-inverse-of injection _) V.refl (convertPath p))) resI
findDest : Graph → ∀ {dest} (isDest : ∀ i → Dec (i ≡ toIx dest)) (source : V) → Maybe (Path E source dest)
findDest graph {dest} isDest source =
let resI = BaseDFS.findDest graph isDest (toIx source)
in Maybe.map (PathE-subst (left-inverse-of injection _) (left-inverse-of injection _) ∘ convertPath) resI
findMatching : Graph → (matches : V → Bool) (source : V) → Maybe (∃ λ dest → Path E source dest × T (matches dest))
findMatching graph matches source =
let resI = BaseDFS.findMatching graph (matches ∘ fromIx) (toIx source)
in Maybe.map (λ {(_ , p , q) → _ , PathE-subst (left-inverse-of injection _) V.refl (convertPath p) , q}) resI
| {
"alphanum_fraction": 0.6762589928,
"avg_line_length": 41.265625,
"ext": "agda",
"hexsha": "ac515a216f2dda4c97f3843a830c7c0b46f0e901",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/DFS/ViaInjection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/DFS/ViaInjection.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/DFS/ViaInjection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 919,
"size": 2641
} |
open import FRP.JS.Behaviour using ( Beh ; map )
open import FRP.JS.DOM using ( DOM ; text ; element )
open import FRP.JS.RSet using ( ⟦_⟧ )
open import FRP.JS.Time using ( toUTCString ; every )
open import FRP.JS.Delay using ( _sec )
module FRP.JS.Demo.Clock where
main : ∀ {w} → ⟦ Beh (DOM w) ⟧
main = text (map toUTCString (every (1 sec))) | {
"alphanum_fraction": 0.6802325581,
"avg_line_length": 34.4,
"ext": "agda",
"hexsha": "4fb30f8ca4c0d2898cc17718a14aaa4f57b5edb5",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "demo/agda/FRP/JS/Demo/Clock.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "demo/agda/FRP/JS/Demo/Clock.agda",
"max_line_length": 53,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "demo/agda/FRP/JS/Demo/Clock.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 114,
"size": 344
} |
open import Type
module Graph.Walk {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where
import Lvl
open import Graph{ℓ₁}{ℓ₂}(V)
import Structure.Relator.Names as Names
module _ (_⟶_ : Graph) where
-- A path is matching directed edges connected to each other in a finite sequence.
-- This is essentially a list of edges where the ends match.
-- The terminology is that a walk is a sequence of connected edges and it visits all its vertices.
-- Note: Walk is a generalized "List" for categories instead of the usual List which is for monoids.
-- Note: Walk is equivalent to the reflexive-transitive closure.
data Walk : V → V → Type{ℓ₁ Lvl.⊔ ℓ₂} where
at : Names.Reflexivity(Walk)
prepend : ∀{a b c} → (a ⟶ b) → (Walk b c) → (Walk a c)
| {
"alphanum_fraction": 0.6885026738,
"avg_line_length": 41.5555555556,
"ext": "agda",
"hexsha": "2ecbe5323a80add6bb68aeff5884e41ba7dee25d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Graph/Walk.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Graph/Walk.agda",
"max_line_length": 102,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Graph/Walk.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 221,
"size": 748
} |
open import Prelude
module Implicits.Substitutions where
import Implicits.Substitutions.Context as CtxSubst
open import Implicits.Substitutions.Term
module TypeSubst where
open import Implicits.Substitutions.Type public
open import Implicits.Substitutions.MetaType public
open TypeSubst public using (_∙_; stp-weaken)
renaming (_simple/_ to _stp/tp_; _/_ to _tp/tp_; _[/_] to _tp[/tp_]; weaken to tp-weaken)
open TermTypeSubst public using ()
renaming (_/_ to _tm/tp_; _[/_] to _tm[/tp_]; weaken to tm-weaken)
open TermTermSubst public using ()
renaming (_/_ to _tm/tm_; _/Var_ to _tm/Var_; _[/_] to _tm[/tm_]; weaken to tmtm-weaken)
open CtxSubst public using (ktx-map; ictx-weaken; ctx-weaken)
renaming (_/_ to _ktx/_; _/Var_ to _ktx/Var_; weaken to ktx-weaken)
| {
"alphanum_fraction": 0.7599486521,
"avg_line_length": 37.0952380952,
"ext": "agda",
"hexsha": "ff534db2074bfd3f03dc4066b826187f9f2a1882",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Substitutions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Substitutions.agda",
"max_line_length": 91,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Substitutions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 245,
"size": 779
} |
module v01-02-induction where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
open import v01-01-basics
plus-n-O : ∀ (n : nat) → n ≡ n + 0
plus-n-O O = refl
plus-n-O (S n) rewrite sym (plus-n-O n) = refl
minus-n-n : ∀ (n : nat) → minus n n ≡ 0
minus-n-n O = refl
minus-n-n (S n) rewrite sym (minus-n-n n) = refl
mult-0-r : ∀ (n : nat) → n * 0 ≡ 0
mult-0-r O = refl
mult-0-r (S n) rewrite mult-0-r n = refl
plus-n-Sm : ∀ (n m : nat) → S (n + m) ≡ n + (S m)
plus-n-Sm O m = refl
plus-n-Sm (S n) m rewrite sym (plus-n-Sm n m) = refl
plus-comm : ∀ (n m : nat) → n + m ≡ m + n
plus-comm n O rewrite sym (plus-n-O n) = refl
plus-comm O (S m) rewrite sym (plus-n-O m) = refl
plus-comm (S n) (S m)
rewrite
sym (plus-n-Sm n m)
| sym (plus-n-Sm m n)
| plus-comm n m
= refl
plus-assoc : ∀ (n m p : nat) → n + (m + p) ≡ (n + m) + p
plus-assoc O m p = refl
plus-assoc (S n) m p -- S n + (m + p) ≡ S n + m + p
rewrite
plus-comm (S n + m) p -- S (plus n (plus m p)) ≡ plus p (S (plus n m))
| sym (plus-n-Sm p (plus n m)) -- S (plus n (plus m p)) ≡ S (plus p (plus n m))
| plus-comm p (plus n m) -- S (plus n (plus m p)) ≡ S (plus (plus n m) p)
| plus-assoc n m p -- S (plus (plus n m) p) ≡ S (plus (plus n m) p)
= refl
double : (n : nat) → nat
double O = O
double (S n) = S (S (double n))
double-plus : ∀ (n : nat) → double n ≡ n + n
double-plus O = refl
double-plus (S n) -- double (S n) ≡ S n + S n
-- S (S (double n)) ≡ S n + S n
rewrite
double-plus n -- S (S (plus n n)) ≡ S (plus n (S n))
| plus-n-Sm n n -- S (plus n (S n)) ≡ S (plus n (S n))
= refl
{-
Inconvenient in evenb def: recursive call on n - 2.
Makes inductibe proofs about evenb harder since may need IH about n - 2.
Following lemma gives alternative characterization of evenb (S n) that works better with induction.
-}
evenb-S : ∀ (n : nat) → evenb (S n) ≡ negb (evenb n)
evenb-S O = refl
evenb-S (S n) -- evenb (S (S n)) ≡ negb (evenb (S n))
-- evenb n ≡ negb (evenb (S n))
rewrite
evenb-S n -- evenb n ≡ negb (negb (evenb n))
| negb-involutive (evenb n) -- evenb n ≡ evenb n
= refl
mult-0-plus' : ∀ (n m : nat) → (0 + n) * m ≡ n * m
mult-0-plus' O m = refl
mult-0-plus' (S n) m -- (0 + S n) * m ≡ S n * m
rewrite plus-O-n {n} -- plus m (mult n m) ≡ plus m (mult n m)
= refl
plus-rearrange : ∀ (n m p q : nat)
→ (n + m) + (p + q) ≡ (m + n) + (p + q)
plus-rearrange n m p q
rewrite plus-comm n m
= refl
plus-swap : ∀ (n m p : nat)
→ n + (m + p) ≡ m + (n + p)
plus-swap n m p
rewrite
plus-assoc n m p
| plus-comm n m
| plus-assoc m n p
= refl
mult-comm : ∀ (m n : nat)
→ m * n ≡ n * m
mult-comm O n
rewrite
mult-O-l {n}
| *0 n
= refl
mult-comm (S m) n -- S m * n ≡ n * S m
rewrite -- plus n (mult m n) ≡ plus (mult n m) n
sym (mult-n-Sm n m)
| plus-comm n (mult m n)
| mult-comm m n
= refl
leb-refl : ∀ (n : nat) → true ≡ (n <=? n)
leb-refl O = refl
leb-refl (S n) = leb-refl n
zero-nbeq-S : ∀ (n : nat) → (0 =? (S n)) ≡ false
zero-nbeq-S n = refl
andb-false-r : ∀ (b : bool) → andb b false ≡ false
andb-false-r true = refl
andb-false-r false = refl
plus-ble-compat-l : ∀ (n m p : nat)
→ (n <=? m) ≡ true
→ ((p + n) <=? (p + m)) ≡ true
plus-ble-compat-l _ _ O n<=?m = n<=?m
plus-ble-compat-l n m (S p) n<=?m = plus-ble-compat-l n m p n<=?m
S-nbeq-0 : ∀ (n : nat) → ((S n) =? 0) ≡ false
S-nbeq-0 n = refl
mult-1-l : ∀ (n : nat) → 1 * n ≡ n
mult-1-l O = refl
mult-1-l (S n) rewrite mult-1-l n = refl
all3-spec : ∀ (b c : bool)
→ orb
(andb b c)
(orb (negb b)
(negb c))
≡ true
all3-spec true true = refl
all3-spec true false = refl
all3-spec false true = refl
all3-spec false false = refl
mult-plus-distr-r : ∀ (n m p : nat)
→ (n + m) * p ≡ (n * p) + (m * p)
mult-plus-distr-r O m p = refl
mult-plus-distr-r (S n) m p -- (S n + m) * p
-- ≡ S n * p + m * p
rewrite
mult-comm (S n + m) p -- mult p (S (plus n m))
-- ≡ plus (plus p (mult n p)) (mult m p)
| sym (mult-n-Sm p (plus n m)) -- plus (mult p (plus n m)) p
-- ≡ plus (plus p (mult n p)) (mult m p)
| mult-comm p (plus n m) -- plus (mult (plus n m) p) p
-- ≡ plus (plus p (mult n p)) (mult m p)
| mult-plus-distr-r n m p -- plus (plus (mult n p) (mult m p)) p
-- ≡ plus (plus p (mult n p)) (mult m p)
| plus-comm (plus (mult n p) (mult m p)) p
-- plus p (plus (mult n p) (mult m p))
-- ≡ plus (plus p (mult n p)) (mult m p)
| plus-assoc p (mult n p) (mult m p)
-- plus (plus p (mult n p)) (mult m p)
-- ≡ plus (plus p (mult n p)) (mult m p)
= refl
mult-assoc : ∀ (n m p : nat)
→ n * (m * p) ≡ (n * m) * p
mult-assoc O m p = refl
mult-assoc (S n) m p -- S n * (m * p) ≡ S n * m * p
rewrite
mult-plus-distr-r m (mult n m) p -- plus (mult m p) (mult n (mult m p)) ≡
-- plus (mult m p) (mult (mult n m) p)
| mult-assoc n m p -- plus (mult m p) (mult (mult n m) p) ≡
-- plus (mult m p) (mult (mult n m) p)
= refl
eqb-refl : ∀ (n : nat) → true ≡ (n =? n)
eqb-refl O = refl
eqb-refl (S n) = eqb-refl n
plus-swap' : ∀ (n m p : nat)
→ n + (m + p) ≡ m + (n + p)
plus-swap' n m p -- n + (m + p) ≡ m + (n + p)
rewrite
plus-assoc n m p -- plus (plus n m) p ≡ plus m (plus n p)
| plus-comm n m -- plus (plus m n) p ≡ plus m (plus n p)
| sym (plus-assoc m n p) -- plus m (plus n p) ≡ plus m (plus n p)
= refl
{-
Exercise: 3 stars, standard, especially useful (binary_commute)
Prove this diagram commutes:
incr
bin ----------------------> bin
| |
bin_to_nat | | bin_to_nat
| |
v v
nat ----------------------> nat
S
incrementing a binary number and then converting it to a (unary) natural number
yields the same result as
first converting it to a natural number and then incrementing
-}
bin-to-nat' : bin → nat
bin-to-nat' Z = 0
bin-to-nat' (B₀ x) = double (bin-to-nat' x)
bin-to-nat' (B₁ x) = 1 + (double (bin-to-nat' x))
_ : bin-to-nat' (B₀ (B₁ Z)) ≡ 2
_ = refl
_ : bin-to-nat' (incr (B₁ Z)) ≡ 1 + bin-to-nat' (B₁ Z)
_ = refl
_ : bin-to-nat' (incr (incr (B₁ Z))) ≡ 2 + bin-to-nat' (B₁ Z)
_ = refl
-- PREServes
bin-to-nat-pres-incr : (b : bin) (n : nat)
→ bin-to-nat' b ≡ n
→ bin-to-nat' (incr b) ≡ S n
bin-to-nat-pres-incr Z n b≡n -- bin-to-nat (incr Z) ≡ S n
-- 1 ≡ S n ; b≡n : 0 ≡ n
rewrite sym b≡n -- 1 ≡ 1
= refl
bin-to-nat-pres-incr (B₀ b) n b≡n -- bin-to-nat' (incr (B₀ b)) ≡ S n
-- 1 + double (bin-to-nat' b) ≡ S n
rewrite b≡n -- S n ≡ S n
= refl
bin-to-nat-pres-incr (B₁ b) n b≡n -- bin-to-nat' (incr (B₁ b)) ≡ S n
-- double (bin-to-nat' (incr b)) ≡ S n
-- b≡n : 1 + double (bin-to-nat' b) ≡ n
rewrite
sym b≡n -- double (bin-to-nat' (incr b)) ≡ S (S (double (bin-to-nat' b)))
-- | bin-to-nat-pres-incr b n b≡n
= {!!}
nat-to-bin : (n : nat) → bin
nat-to-bin n = {!!}
{-
Prove for any nat, convert it to binary; convert it back, get same nat
HINT If def of nat_to_bin uses other functions,
might need to prove lemma showing how functions relate to nat_to_bin.)
Theorem nat_bin_nat : ∀ n, bin_to_nat (nat_to_bin n) = n.
Proof.
(* FILL IN HERE *) Admitted.
(b) One might naturally expect that we should also prove the opposite direction -- that starting with a binary number, converting to a natural, and then back to binary should yield the same number we started with. However, this is not the case! Explain (in a comment) what the problem is.
(* FILL IN HERE *)
(c) Define a normalization function -- i.e., a function normalize going directly from bin to bin (i.e., not by converting to nat and back) such that, for any binary number b, converting b to a natural and then back to binary yields (normalize b). Prove it. (Warning: This part is a bit tricky -- you may end up defining several auxiliary lemmas. One good way to find out what you need is to start by trying to prove the main statement, see where you get stuck, and see if you can find a lemma -- perhaps requiring its own inductive proof -- that will allow the main proof to make progress.) Don't define this using nat_to_bin and bin_to_nat!
(* FILL IN HERE *)
-}
| {
"alphanum_fraction": 0.4877893396,
"avg_line_length": 36.0842911877,
"ext": "agda",
"hexsha": "de2a383728d1740efb56e71e03fc6bff19fcf818",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/SFHC/v01-02-induction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/SFHC/v01-02-induction.agda",
"max_line_length": 641,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/SFHC/v01-02-induction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 3299,
"size": 9418
} |
{-# OPTIONS --exact-split #-}
open import Agda.Builtin.Nat
data IsZero : Nat → Set where
isZero : IsZero 0
test : (n m : Nat) → IsZero n → IsZero m → Nat
test zero zero _ _ = zero
test (suc _) _ () _
test _ (suc _) _ ()
| {
"alphanum_fraction": 0.6177777778,
"avg_line_length": 18.75,
"ext": "agda",
"hexsha": "11113ee846883c17648137c2fd932f5c6276ca6a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2629.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2629.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2629.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 76,
"size": 225
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bag and set equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.BagAndSetEquality where
open import Algebra using (CommutativeSemiring; CommutativeMonoid)
open import Algebra.FunctionProperties using (Idempotent)
open import Category.Monad using (RawMonad)
open import Data.Empty
open import Data.Fin
open import Data.List
open import Data.List.Categorical using (monad; module MonadProperties)
import Data.List.Properties as LP
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.List.Relation.Unary.Any.Properties
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Binary.Subset.Propositional.Properties
using (⊆-preorder)
open import Data.Product as Prod hiding (map)
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Sum as Sum hiding (map)
open import Data.Sum.Properties
open import Data.Sum.Function.Propositional using (_⊎-cong_)
open import Data.Unit
open import Function
open import Function.Equality using (_⟨$⟩_)
import Function.Equivalence as FE
open import Function.Inverse as Inv using (_↔_; Inverse; inverse)
open import Function.Related as Related
using (↔⇒; ⌊_⌋; ⌊_⌋→; ⇒→; K-refl; SK-sym)
open import Function.Related.TypeIsomorphisms
open import Level using (Lift)
open import Relation.Binary
import Relation.Binary.Reasoning.Setoid as EqR
import Relation.Binary.Reasoning.Preorder as PreorderReasoning
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; _≗_; refl)
open import Relation.Nullary
open import Data.List.Membership.Propositional.Properties
------------------------------------------------------------------------
-- Definitions
open Related public using (Kind; Symmetric-kind) renaming
( implication to subset
; reverse-implication to superset
; equivalence to set
; injection to subbag
; reverse-injection to superbag
; bijection to bag
)
[_]-Order : Kind → ∀ {a} → Set a → Preorder _ _ _
[ k ]-Order A = Related.InducedPreorder₂ k {A = A} _∈_
[_]-Equality : Symmetric-kind → ∀ {a} → Set a → Setoid _ _
[ k ]-Equality A = Related.InducedEquivalence₂ k {A = A} _∈_
infix 4 _∼[_]_
_∼[_]_ : ∀ {a} {A : Set a} → List A → Kind → List A → Set _
_∼[_]_ {A = A} xs k ys = Preorder._∼_ ([ k ]-Order A) xs ys
private
module Eq {k a} {A : Set a} = Setoid ([ k ]-Equality A)
module Ord {k a} {A : Set a} = Preorder ([ k ]-Order A)
open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ})
module MP = MonadProperties
------------------------------------------------------------------------
-- Bag equality implies the other relations.
bag-=⇒ : ∀ {k a} {A : Set a} {xs ys : List A} →
xs ∼[ bag ] ys → xs ∼[ k ] ys
bag-=⇒ xs≈ys = ↔⇒ xs≈ys
------------------------------------------------------------------------
-- "Equational" reasoning for _⊆_ along with an additional relatedness
module ⊆-Reasoning where
private
module PreOrder {a} {A : Set a} = PreorderReasoning (⊆-preorder A)
open PreOrder public
hiding (_≈⟨_⟩_; _≈˘⟨_⟩_) renaming (_∼⟨_⟩_ to _⊆⟨_⟩_)
infixr 2 _∼⟨_⟩_
infix 1 _∈⟨_⟩_
_∈⟨_⟩_ : ∀ {a} {A : Set a} x {xs ys : List A} →
x ∈ xs → xs IsRelatedTo ys → x ∈ ys
x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs
_∼⟨_⟩_ : ∀ {k a} {A : Set a} xs {ys zs : List A} →
xs ∼[ ⌊ k ⌋→ ] ys → ys IsRelatedTo zs → xs IsRelatedTo zs
xs ∼⟨ xs≈ys ⟩ ys≈zs = xs ⊆⟨ ⇒→ xs≈ys ⟩ ys≈zs
------------------------------------------------------------------------
-- Congruence lemmas
------------------------------------------------------------------------
-- _∷_
module _ {a k} {A : Set a} {x y : A} {xs ys} where
∷-cong : x ≡ y → xs ∼[ k ] ys → x ∷ xs ∼[ k ] y ∷ ys
∷-cong refl xs≈ys {y} =
y ∈ x ∷ xs ↔⟨ SK-sym $ ∷↔ (y ≡_) ⟩
(y ≡ x ⊎ y ∈ xs) ∼⟨ (y ≡ x ∎) ⊎-cong xs≈ys ⟩
(y ≡ x ⊎ y ∈ ys) ↔⟨ ∷↔ (y ≡_) ⟩
y ∈ x ∷ ys ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- map
module _ {ℓ k} {A B : Set ℓ} {f g : A → B} {xs ys} where
map-cong : f ≗ g → xs ∼[ k ] ys → map f xs ∼[ k ] map g ys
map-cong f≗g xs≈ys {x} =
x ∈ map f xs ↔⟨ SK-sym $ map↔ ⟩
Any (λ y → x ≡ f y) xs ∼⟨ Any-cong (↔⇒ ∘ helper) xs≈ys ⟩
Any (λ y → x ≡ g y) ys ↔⟨ map↔ ⟩
x ∈ map g ys ∎
where
open Related.EquationalReasoning
helper : ∀ y → x ≡ f y ↔ x ≡ g y
helper y = record
{ to = P.→-to-⟶ (λ x≡fy → P.trans x≡fy ( f≗g y))
; from = P.→-to-⟶ (λ x≡gy → P.trans x≡gy (P.sym $ f≗g y))
; inverse-of = record
{ left-inverse-of = λ { P.refl → P.trans-symʳ (f≗g y) }
; right-inverse-of = λ { P.refl → P.trans-symˡ (f≗g y) }
}
}
------------------------------------------------------------------------
-- _++_
module _ {a k} {A : Set a} {xs₁ xs₂ ys₁ ys₂ : List A} where
++-cong : xs₁ ∼[ k ] xs₂ → ys₁ ∼[ k ] ys₂ →
xs₁ ++ ys₁ ∼[ k ] xs₂ ++ ys₂
++-cong xs₁≈xs₂ ys₁≈ys₂ {x} =
x ∈ xs₁ ++ ys₁ ↔⟨ SK-sym $ ++↔ ⟩
(x ∈ xs₁ ⊎ x ∈ ys₁) ∼⟨ xs₁≈xs₂ ⊎-cong ys₁≈ys₂ ⟩
(x ∈ xs₂ ⊎ x ∈ ys₂) ↔⟨ ++↔ ⟩
x ∈ xs₂ ++ ys₂ ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- concat
module _ {a k} {A : Set a} {xss yss : List (List A)} where
concat-cong : xss ∼[ k ] yss → concat xss ∼[ k ] concat yss
concat-cong xss≈yss {x} =
x ∈ concat xss ↔⟨ SK-sym concat↔ ⟩
Any (Any (x ≡_)) xss ∼⟨ Any-cong (λ _ → _ ∎) xss≈yss ⟩
Any (Any (x ≡_)) yss ↔⟨ concat↔ ⟩
x ∈ concat yss ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- _>>=_
module _ {ℓ k} {A B : Set ℓ} {xs ys} {f g : A → List B} where
>>=-cong : xs ∼[ k ] ys → (∀ x → f x ∼[ k ] g x) →
(xs >>= f) ∼[ k ] (ys >>= g)
>>=-cong xs≈ys f≈g {x} =
x ∈ (xs >>= f) ↔⟨ SK-sym >>=↔ ⟩
Any (λ y → x ∈ f y) xs ∼⟨ Any-cong (λ x → f≈g x) xs≈ys ⟩
Any (λ y → x ∈ g y) ys ↔⟨ >>=↔ ⟩
x ∈ (ys >>= g) ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- _⊛_
module _ {ℓ k} {A B : Set ℓ} {fs gs : List (A → B)} {xs ys} where
⊛-cong : fs ∼[ k ] gs → xs ∼[ k ] ys → (fs ⊛ xs) ∼[ k ] (gs ⊛ ys)
⊛-cong fs≈gs xs≈ys =
>>=-cong fs≈gs λ f →
>>=-cong xs≈ys λ x →
_ ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- _⊗_
module _ {ℓ k} {A B : Set ℓ} {xs₁ xs₂ : List A} {ys₁ ys₂ : List B} where
⊗-cong : xs₁ ∼[ k ] xs₂ → ys₁ ∼[ k ] ys₂ →
(xs₁ ⊗ ys₁) ∼[ k ] (xs₂ ⊗ ys₂)
⊗-cong xs₁≈xs₂ ys₁≈ys₂ =
⊛-cong (⊛-cong (Ord.refl {x = [ _,_ ]}) xs₁≈xs₂) ys₁≈ys₂
------------------------------------------------------------------------
-- Other properties
-- _++_ and [] form a commutative monoid, with either bag or set
-- equality as the underlying equality.
commutativeMonoid : ∀ {a} → Symmetric-kind → Set a →
CommutativeMonoid _ _
commutativeMonoid {a} k A = record
{ Carrier = List A
; _≈_ = _∼[ ⌊ k ⌋ ]_
; _∙_ = _++_
; ε = []
; isCommutativeMonoid = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = Eq.isEquivalence
; ∙-cong = ++-cong
}
; assoc = λ xs ys zs →
Eq.reflexive (LP.++-assoc xs ys zs)
}
; identityˡ = λ xs {x} → x ∈ xs ∎
; comm = λ xs ys {x} →
x ∈ xs ++ ys ↔⟨ ++↔++ xs ys ⟩
x ∈ ys ++ xs ∎
}
}
where open Related.EquationalReasoning
-- The only list which is bag or set equal to the empty list (or a
-- subset or subbag of the list) is the empty list itself.
empty-unique : ∀ {k a} {A : Set a} {xs : List A} →
xs ∼[ ⌊ k ⌋→ ] [] → xs ≡ []
empty-unique {xs = []} _ = refl
empty-unique {xs = _ ∷ _} ∷∼[] with ⇒→ ∷∼[] (here refl)
... | ()
-- _++_ is idempotent (under set equality).
++-idempotent : ∀ {a} {A : Set a} → Idempotent {A = List A} _∼[ set ]_ _++_
++-idempotent {a} xs {x} =
x ∈ xs ++ xs ∼⟨ FE.equivalence ([ id , id ]′ ∘ _⟨$⟩_ (Inverse.from $ ++↔))
(_⟨$⟩_ (Inverse.to $ ++↔) ∘ inj₁) ⟩
x ∈ xs ∎
where open Related.EquationalReasoning
-- The list monad's bind distributes from the left over _++_.
>>=-left-distributive :
∀ {ℓ} {A B : Set ℓ} (xs : List A) {f g : A → List B} →
(xs >>= λ x → f x ++ g x) ∼[ bag ] (xs >>= f) ++ (xs >>= g)
>>=-left-distributive {ℓ} xs {f} {g} {y} =
y ∈ (xs >>= λ x → f x ++ g x) ↔⟨ SK-sym $ >>=↔ ⟩
Any (λ x → y ∈ f x ++ g x) xs ↔⟨ SK-sym (Any-cong (λ _ → ++↔) (_ ∎)) ⟩
Any (λ x → y ∈ f x ⊎ y ∈ g x) xs ↔⟨ SK-sym $ ⊎↔ ⟩
(Any (λ x → y ∈ f x) xs ⊎ Any (λ x → y ∈ g x) xs) ↔⟨ >>=↔ ⟨ _⊎-cong_ ⟩ >>=↔ ⟩
(y ∈ (xs >>= f) ⊎ y ∈ (xs >>= g)) ↔⟨ ++↔ ⟩
y ∈ (xs >>= f) ++ (xs >>= g) ∎
where open Related.EquationalReasoning
-- The same applies to _⊛_.
⊛-left-distributive :
∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) xs₁ xs₂ →
(fs ⊛ (xs₁ ++ xs₂)) ∼[ bag ] (fs ⊛ xs₁) ++ (fs ⊛ xs₂)
⊛-left-distributive {B = B} fs xs₁ xs₂ = begin
fs ⊛ (xs₁ ++ xs₂) ≡⟨⟩
(fs >>= λ f → xs₁ ++ xs₂ >>= return ∘ f) ≡⟨ (MP.cong (refl {x = fs}) λ f →
MP.right-distributive xs₁ xs₂ (return ∘ f)) ⟩
(fs >>= λ f → (xs₁ >>= return ∘ f) ++
(xs₂ >>= return ∘ f)) ≈⟨ >>=-left-distributive fs ⟩
(fs >>= λ f → xs₁ >>= return ∘ f) ++
(fs >>= λ f → xs₂ >>= return ∘ f) ≡⟨⟩
(fs ⊛ xs₁) ++ (fs ⊛ xs₂) ∎
where open EqR ([ bag ]-Equality B)
private
-- If x ∷ xs is set equal to x ∷ ys, then xs and ys are not
-- necessarily set equal.
¬-drop-cons : ∀ {a} {A : Set a} {x : A} →
¬ (∀ {xs ys} → x ∷ xs ∼[ set ] x ∷ ys → xs ∼[ set ] ys)
¬-drop-cons {x = x} drop-cons
with FE.Equivalence.to x∼[] ⟨$⟩ here refl
where
x,x≈x : (x ∷ x ∷ []) ∼[ set ] [ x ]
x,x≈x = ++-idempotent [ x ]
x∼[] : [ x ] ∼[ set ] []
x∼[] = drop-cons x,x≈x
... | ()
-- However, the corresponding property does hold for bag equality.
drop-cons : ∀ {a} {A : Set a} {x : A} {xs ys} →
x ∷ xs ∼[ bag ] x ∷ ys → xs ∼[ bag ] ys
drop-cons {A = A} {x} {xs} {ys} x∷xs≈x∷ys =
⊎-left-cancellative
(∼→⊎↔⊎ x∷xs≈x∷ys)
(lemma x∷xs≈x∷ys)
(lemma (SK-sym x∷xs≈x∷ys))
where
-- TODO: Some of the code below could perhaps be exposed to users.
-- Finds the element at the given position.
index : ∀ {a} {A : Set a} (xs : List A) → Fin (length xs) → A
index [] ()
index (x ∷ xs) zero = x
index (x ∷ xs) (suc i) = index xs i
-- List membership can be expressed as "there is an index which
-- points to the element".
∈-index : ∀ {a} {A : Set a} {z}
(xs : List A) → z ∈ xs ↔ ∃ λ i → z ≡ index xs i
∈-index {z = z} [] =
z ∈ [] ↔⟨ SK-sym ⊥↔Any[] ⟩
⊥ ↔⟨ SK-sym $ inverse (λ { (() , _) }) (λ ()) (λ { (() , _) }) (λ ()) ⟩
(∃ λ (i : Fin 0) → z ≡ index [] i) ∎
where
open Related.EquationalReasoning
∈-index {z = z} (x ∷ xs) =
z ∈ x ∷ xs ↔⟨ SK-sym (∷↔ _) ⟩
(z ≡ x ⊎ z ∈ xs) ↔⟨ K-refl ⊎-cong ∈-index xs ⟩
(z ≡ x ⊎ ∃ λ i → z ≡ index xs i) ↔⟨ SK-sym $ inverse (λ { (zero , p) → inj₁ p; (suc i , p) → inj₂ (i , p) })
(λ { (inj₁ p) → zero , p; (inj₂ (i , p)) → suc i , p })
(λ { (zero , _) → refl; (suc _ , _) → refl })
(λ { (inj₁ _) → refl; (inj₂ _) → refl }) ⟩
(∃ λ i → z ≡ index (x ∷ xs) i) ∎
where
open Related.EquationalReasoning
-- The index which points to the element.
index-of : ∀ {a} {A : Set a} {z} {xs : List A} →
z ∈ xs → Fin (length xs)
index-of = proj₁ ∘ (Inverse.to (∈-index _) ⟨$⟩_)
-- The type ∃ λ z → z ∈ xs is isomorphic to Fin n, where n is the
-- length of xs.
--
-- Thierry Coquand pointed out that (a variant of) this statement is
-- a generalisation of the fact that singletons are contractible.
Fin-length : ∀ {a} {A : Set a}
(xs : List A) → (∃ λ z → z ∈ xs) ↔ Fin (length xs)
Fin-length xs =
(∃ λ z → z ∈ xs) ↔⟨ Σ.cong K-refl (∈-index xs) ⟩
(∃ λ z → ∃ λ i → z ≡ index xs i) ↔⟨ ∃∃↔∃∃ _ ⟩
(∃ λ i → ∃ λ z → z ≡ index xs i) ↔⟨ Σ.cong K-refl (inverse _ (λ _ → _ , refl) (λ { (_ , refl) → refl }) (λ _ → refl)) ⟩
(Fin (length xs) × Lift _ ⊤) ↔⟨ ×-identityʳ _ _ ⟩
Fin (length xs) ∎
where
open Related.EquationalReasoning
-- From this lemma we get that lists which are bag equivalent have
-- related lengths.
Fin-length-cong : ∀ {a} {A : Set a} {xs ys : List A} →
xs ∼[ bag ] ys → Fin (length xs) ↔ Fin (length ys)
Fin-length-cong {xs = xs} {ys} xs≈ys =
Fin (length xs) ↔⟨ SK-sym $ Fin-length xs ⟩
∃ (λ z → z ∈ xs) ↔⟨ Σ.cong K-refl xs≈ys ⟩
∃ (λ z → z ∈ ys) ↔⟨ Fin-length ys ⟩
Fin (length ys) ∎
where
open Related.EquationalReasoning
-- The index-of function commutes with applications of certain
-- inverses.
index-of-commutes :
∀ {a} {A : Set a} {z : A} {xs ys} →
(xs≈ys : xs ∼[ bag ] ys) (p : z ∈ xs) →
index-of (Inverse.to xs≈ys ⟨$⟩ p) ≡
Inverse.to (Fin-length-cong xs≈ys) ⟨$⟩ index-of p
index-of-commutes {z = z} {xs} {ys} xs≈ys p =
index-of (to xs≈ys ⟨$⟩ p) ≡⟨ lemma z p ⟩
index-of (to xs≈ys ⟨$⟩ proj₂
(from (Fin-length xs) ⟨$⟩ (to (Fin-length xs) ⟨$⟩ (z , p)))) ≡⟨⟩
index-of (proj₂ (Prod.map id (to xs≈ys ⟨$⟩_)
(from (Fin-length xs) ⟨$⟩ (to (Fin-length xs) ⟨$⟩ (z , p))))) ≡⟨⟩
to (Fin-length ys) ⟨$⟩ Prod.map id (to xs≈ys ⟨$⟩_)
(from (Fin-length xs) ⟨$⟩ index-of p) ≡⟨⟩
to (Fin-length-cong xs≈ys) ⟨$⟩ index-of p ∎
where
open P.≡-Reasoning
open Inverse
lemma :
∀ z p →
index-of (to xs≈ys ⟨$⟩ p) ≡
index-of (to xs≈ys ⟨$⟩ proj₂
(from (Fin-length xs) ⟨$⟩ (to (Fin-length xs) ⟨$⟩ (z , p))))
lemma z p with to (Fin-length xs) ⟨$⟩ (z , p)
| left-inverse-of (Fin-length xs) (z , p)
lemma .(index xs i) .(from (∈-index xs) ⟨$⟩ (i , refl)) | i | refl =
refl
-- Bag equivalence isomorphisms preserve index equality. Note that
-- this means that, even if the underlying equality is proof
-- relevant, a bag equivalence isomorphism cannot map two distinct
-- proofs, that point to the same position, to different positions.
index-equality-preserved :
∀ {a} {A : Set a} {z : A} {xs ys} {p q : z ∈ xs}
(xs≈ys : xs ∼[ bag ] ys) →
index-of p ≡ index-of q →
index-of (Inverse.to xs≈ys ⟨$⟩ p) ≡
index-of (Inverse.to xs≈ys ⟨$⟩ q)
index-equality-preserved {p = p} {q} xs≈ys eq =
index-of (Inverse.to xs≈ys ⟨$⟩ p) ≡⟨ index-of-commutes xs≈ys p ⟩
Inverse.to (Fin-length-cong xs≈ys) ⟨$⟩ index-of p ≡⟨ P.cong (Inverse.to (Fin-length-cong xs≈ys) ⟨$⟩_) eq ⟩
Inverse.to (Fin-length-cong xs≈ys) ⟨$⟩ index-of q ≡⟨ P.sym $ index-of-commutes xs≈ys q ⟩
index-of (Inverse.to xs≈ys ⟨$⟩ q) ∎
where
open P.≡-Reasoning
-- The old inspect idiom.
inspect : ∀ {a} {A : Set a} (x : A) → ∃ (x ≡_)
inspect x = x , refl
-- A function is "well-behaved" if any "left" element which is the
-- image of a "right" element is in turn not mapped to another
-- "left" element.
Well-behaved : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(A ⊎ B → A ⊎ C) → Set _
Well-behaved f =
∀ {b a a′} → f (inj₂ b) ≡ inj₁ a → f (inj₁ a) ≢ inj₁ a′
-- The type constructor _⊎_ is left cancellative for certain
-- well-behaved inverses.
⊎-left-cancellative :
∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(f : (A ⊎ B) ↔ (A ⊎ C)) →
Well-behaved (Inverse.to f ⟨$⟩_) →
Well-behaved (Inverse.from f ⟨$⟩_) →
B ↔ C
⊎-left-cancellative {A = A} = λ inv to-hyp from-hyp → inverse
(g (to inv ⟨$⟩_) to-hyp)
(g (from inv ⟨$⟩_) from-hyp)
(g∘g inv to-hyp from-hyp)
(g∘g (SK-sym inv) from-hyp to-hyp)
where
open Inverse
module _
{a b c} {A : Set a} {B : Set b} {C : Set c}
(f : A ⊎ B → A ⊎ C)
(hyp : Well-behaved f)
where
mutual
g : B → C
g b = g′ (inspect (f (inj₂ b)))
g′ : ∀ {b} → ∃ (f (inj₂ b) ≡_) → C
g′ (inj₂ c , _) = c
g′ (inj₁ a , eq) = g″ eq (inspect (f (inj₁ a)))
g″ : ∀ {a b} →
f (inj₂ b) ≡ inj₁ a → ∃ (f (inj₁ a) ≡_) → C
g″ _ (inj₂ c , _) = c
g″ eq₁ (inj₁ _ , eq₂) = ⊥-elim $ hyp eq₁ eq₂
g∘g : ∀ {b c} {B : Set b} {C : Set c}
(f : (A ⊎ B) ↔ (A ⊎ C)) →
(to-hyp : Well-behaved (to f ⟨$⟩_)) →
(from-hyp : Well-behaved (from f ⟨$⟩_)) →
∀ b → g (from f ⟨$⟩_) from-hyp (g (to f ⟨$⟩_) to-hyp b) ≡ b
g∘g f to-hyp from-hyp b = g∘g′
where
open P.≡-Reasoning
g∘g′ : g (from f ⟨$⟩_) from-hyp (g (to f ⟨$⟩_) to-hyp b) ≡ b
g∘g′ with inspect (to f ⟨$⟩ inj₂ b)
g∘g′ | inj₂ c , eq₁ with inspect (from f ⟨$⟩ inj₂ c)
g∘g′ | inj₂ c , eq₁ | inj₂ b′ , eq₂ = inj₂-injective (
inj₂ b′ ≡⟨ P.sym eq₂ ⟩
from f ⟨$⟩ inj₂ c ≡⟨ to-from f eq₁ ⟩
inj₂ b ∎)
g∘g′ | inj₂ c , eq₁ | inj₁ a , eq₂ with
inj₁ a ≡⟨ P.sym eq₂ ⟩
from f ⟨$⟩ inj₂ c ≡⟨ to-from f eq₁ ⟩
inj₂ b ∎
... | ()
g∘g′ | inj₁ a , eq₁ with inspect (to f ⟨$⟩ inj₁ a)
g∘g′ | inj₁ a , eq₁ | inj₁ a′ , eq₂ = ⊥-elim $ to-hyp eq₁ eq₂
g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ with inspect (from f ⟨$⟩ inj₂ c)
g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ | inj₂ b′ , eq₃ with
inj₁ a ≡⟨ P.sym $ to-from f eq₂ ⟩
from f ⟨$⟩ inj₂ c ≡⟨ eq₃ ⟩
inj₂ b′ ∎
... | ()
g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ | inj₁ a′ , eq₃ with inspect (from f ⟨$⟩ inj₁ a′)
g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ | inj₁ a′ , eq₃ | inj₁ a″ , eq₄ = ⊥-elim $ from-hyp eq₃ eq₄
g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ | inj₁ a′ , eq₃ | inj₂ b′ , eq₄ = inj₂-injective (
let lemma =
inj₁ a′ ≡⟨ P.sym eq₃ ⟩
from f ⟨$⟩ inj₂ c ≡⟨ to-from f eq₂ ⟩
inj₁ a ∎
in
inj₂ b′ ≡⟨ P.sym eq₄ ⟩
from f ⟨$⟩ inj₁ a′ ≡⟨ P.cong ((from f ⟨$⟩_) ∘ inj₁) $ inj₁-injective lemma ⟩
from f ⟨$⟩ inj₁ a ≡⟨ to-from f eq₁ ⟩
inj₂ b ∎)
-- Some final lemmas.
∼→⊎↔⊎ :
∀ {x : A} {xs ys} →
x ∷ xs ∼[ bag ] x ∷ ys →
∀ {z} → (z ≡ x ⊎ z ∈ xs) ↔ (z ≡ x ⊎ z ∈ ys)
∼→⊎↔⊎ {x} {xs} {ys} x∷xs≈x∷ys {z} =
(z ≡ x ⊎ z ∈ xs) ↔⟨ ∷↔ _ ⟩
z ∈ x ∷ xs ↔⟨ x∷xs≈x∷ys ⟩
z ∈ x ∷ ys ↔⟨ SK-sym (∷↔ _) ⟩
(z ≡ x ⊎ z ∈ ys) ∎
where
open Related.EquationalReasoning
lemma : ∀ {xs ys} (inv : x ∷ xs ∼[ bag ] x ∷ ys) {z} →
Well-behaved (Inverse.to (∼→⊎↔⊎ inv {z}) ⟨$⟩_)
lemma {xs} inv {b = z∈xs} {a = p} {a′ = q} hyp₁ hyp₂ with
zero ≡⟨⟩
index-of {xs = x ∷ xs} (here p) ≡⟨⟩
index-of {xs = x ∷ xs} (to (∷↔ _) ⟨$⟩ inj₁ p) ≡⟨ P.cong (index-of ∘ (to (∷↔ (_ ≡_)) ⟨$⟩_)) $ P.sym $
to-from (∼→⊎↔⊎ inv) {x = inj₁ p} hyp₂ ⟩
index-of {xs = x ∷ xs} (to (∷↔ _) ⟨$⟩ (from (∼→⊎↔⊎ inv) ⟨$⟩ inj₁ q)) ≡⟨ P.cong index-of $
right-inverse-of (∷↔ _) (from inv ⟨$⟩ here q) ⟩
index-of {xs = x ∷ xs} (to (SK-sym inv) ⟨$⟩ here q) ≡⟨ index-equality-preserved (SK-sym inv) refl ⟩
index-of {xs = x ∷ xs} (to (SK-sym inv) ⟨$⟩ here p) ≡⟨ P.cong index-of $ P.sym $
right-inverse-of (∷↔ _) (from inv ⟨$⟩ here p) ⟩
index-of {xs = x ∷ xs} (to (∷↔ _) ⟨$⟩ (from (∼→⊎↔⊎ inv) ⟨$⟩ inj₁ p)) ≡⟨ P.cong (index-of ∘ (to (∷↔ (_ ≡_)) ⟨$⟩_)) $
to-from (∼→⊎↔⊎ inv) {x = inj₂ z∈xs} hyp₁ ⟩
index-of {xs = x ∷ xs} (to (∷↔ _) ⟨$⟩ inj₂ z∈xs) ≡⟨⟩
index-of {xs = x ∷ xs} (there z∈xs) ≡⟨⟩
suc (index-of {xs = xs} z∈xs) ∎
where
open Inverse
open P.≡-Reasoning
... | ()
| {
"alphanum_fraction": 0.447029148,
"avg_line_length": 38.0248667851,
"ext": "agda",
"hexsha": "a2046d7d6ffca246f36d71f90bfced23fdb3f442",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/BagAndSetEquality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/BagAndSetEquality.agda",
"max_line_length": 128,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/BagAndSetEquality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8068,
"size": 21408
} |
open import Nat
open import Prelude
open import contexts
module core where
-- types
data htyp : Set where
num : htyp
⦇-⦈ : htyp
_==>_ : htyp → htyp → htyp
_⊕_ : htyp → htyp → htyp
_⊠_ : htyp → htyp → htyp
-- type constructors bind very tightly
infixr 25 _==>_
infixr 25 _⊕_
infixr 25 _⊠_
-- external expressions
data hexp : Set where
N : Nat → hexp
_·+_ : hexp → hexp → hexp
_·:_ : hexp → htyp → hexp
X : Nat → hexp
·λ : Nat → hexp → hexp
·λ_·[_]_ : Nat → htyp → hexp → hexp
_∘_ : hexp → hexp → hexp
inl : hexp → hexp
inr : hexp → hexp
case : hexp → Nat → hexp → Nat → hexp → hexp
⟨_,_⟩ : hexp → hexp → hexp
fst : hexp → hexp
snd : hexp → hexp
⦇-⦈[_] : Nat → hexp
⦇⌜_⌟⦈[_] : hexp → Nat → hexp
-- the type of type contexts, i.e. Γs in the judgements below
tctx : Set
tctx = htyp ctx
-- type consistency
data _~_ : (t1 t2 : htyp) → Set where
TCRefl : {τ : htyp} → τ ~ τ
TCHole1 : {τ : htyp} → τ ~ ⦇-⦈
TCHole2 : {τ : htyp} → ⦇-⦈ ~ τ
TCArr : {τ1 τ2 τ1' τ2' : htyp} →
τ1 ~ τ1' →
τ2 ~ τ2' →
τ1 ==> τ2 ~ τ1' ==> τ2'
TCSum : {τ1 τ2 τ1' τ2' : htyp} →
τ1 ~ τ1' →
τ2 ~ τ2' →
τ1 ⊕ τ2 ~ τ1' ⊕ τ2'
TCProd : {τ1 τ2 τ1' τ2' : htyp} →
τ1 ~ τ1' →
τ2 ~ τ2' →
τ1 ⊠ τ2 ~ τ1' ⊠ τ2'
-- type inconsistency
_~̸_ : htyp → htyp → Set
t1 ~̸ t2 = (t1 ~ t2) → ⊥
-- matching for arrows
data _▸arr_ : htyp → htyp → Set where
MAHole : ⦇-⦈ ▸arr ⦇-⦈ ==> ⦇-⦈
MAArr : {τ1 τ2 : htyp} → τ1 ==> τ2 ▸arr τ1 ==> τ2
-- matching for sums
data _▸sum_ : htyp → htyp → Set where
MSHole : ⦇-⦈ ▸sum ⦇-⦈ ⊕ ⦇-⦈
MSSum : {τ1 τ2 : htyp} → τ1 ⊕ τ2 ▸sum τ1 ⊕ τ2
-- matching for sums
data _▸prod_ : htyp → htyp → Set where
MPHole : ⦇-⦈ ▸prod ⦇-⦈ ⊠ ⦇-⦈
MPProd : {τ1 τ2 : htyp} → τ1 ⊠ τ2 ▸prod τ1 ⊠ τ2
-- the type of hole contexts, i.e. Δs in the judgements
hctx : Set
hctx = (htyp ctx × htyp) ctx
-- bidirectional type checking judgements for hexp
mutual
-- synthesis
data _⊢_=>_ : (Γ : tctx) (e : hexp) (τ : htyp) → Set where
SNum : {Γ : tctx} {n : Nat} →
Γ ⊢ N n => num
SPlus : {Γ : tctx} {e1 e2 : hexp} →
Γ ⊢ e1 <= num →
Γ ⊢ e2 <= num →
Γ ⊢ (e1 ·+ e2) => num
SAsc : {Γ : tctx} {e : hexp} {τ : htyp} →
Γ ⊢ e <= τ →
Γ ⊢ (e ·: τ) => τ
SVar : {Γ : tctx} {τ : htyp} {x : Nat} →
(x , τ) ∈ Γ →
Γ ⊢ X x => τ
SLam : {Γ : tctx} {e : hexp} {τ1 τ2 : htyp} {x : Nat} →
x # Γ →
(Γ ,, (x , τ1)) ⊢ e => τ2 →
Γ ⊢ ·λ x ·[ τ1 ] e => τ1 ==> τ2
SAp : {Γ : tctx} {e1 e2 : hexp} {τ τ1 τ2 : htyp} →
Γ ⊢ e1 => τ1 →
τ1 ▸arr τ2 ==> τ →
Γ ⊢ e2 <= τ2 →
Γ ⊢ (e1 ∘ e2) => τ
SPair : ∀{e1 e2 τ1 τ2 Γ} →
Γ ⊢ e1 => τ1 →
Γ ⊢ e2 => τ2 →
Γ ⊢ ⟨ e1 , e2 ⟩ => τ1 ⊠ τ2
SFst : ∀{e τ τ1 τ2 Γ} →
Γ ⊢ e => τ →
τ ▸prod τ1 ⊠ τ2 →
Γ ⊢ fst e => τ1
SSnd : ∀{e τ τ1 τ2 Γ} →
Γ ⊢ e => τ →
τ ▸prod τ1 ⊠ τ2 →
Γ ⊢ snd e => τ2
SEHole : {Γ : tctx} {u : Nat} →
Γ ⊢ ⦇-⦈[ u ] => ⦇-⦈
SNEHole : {Γ : tctx} {e : hexp} {τ : htyp} {u : Nat} →
Γ ⊢ e => τ →
Γ ⊢ ⦇⌜ e ⌟⦈[ u ] => ⦇-⦈
-- analysis
data _⊢_<=_ : (Γ : htyp ctx) (e : hexp) (τ : htyp) → Set where
ASubsume : {Γ : tctx} {e : hexp} {τ τ' : htyp} →
Γ ⊢ e => τ' →
τ ~ τ' →
Γ ⊢ e <= τ
ALam : {Γ : tctx} {e : hexp} {τ τ1 τ2 : htyp} {x : Nat} →
x # Γ →
τ ▸arr τ1 ==> τ2 →
(Γ ,, (x , τ1)) ⊢ e <= τ2 →
Γ ⊢ (·λ x e) <= τ
AInl : {Γ : tctx} {e : hexp} {τ+ τ1 τ2 : htyp} →
τ+ ▸sum (τ1 ⊕ τ2) →
Γ ⊢ e <= τ1 →
Γ ⊢ inl e <= τ+
AInr : {Γ : tctx} {e : hexp} {τ+ τ1 τ2 : htyp} →
τ+ ▸sum (τ1 ⊕ τ2) →
Γ ⊢ e <= τ2 →
Γ ⊢ inr e <= τ+
ACase : {Γ : tctx} {e e1 e2 : hexp} {τ τ+ τ1 τ2 : htyp} {x y : Nat} →
x # Γ →
y # Γ →
τ+ ▸sum (τ1 ⊕ τ2) →
Γ ⊢ e => τ+ →
(Γ ,, (x , τ1)) ⊢ e1 <= τ →
(Γ ,, (y , τ2)) ⊢ e2 <= τ →
Γ ⊢ case e x e1 y e2 <= τ
-- those types without holes
data _tcomplete : htyp → Set where
TCNum : num tcomplete
TCArr : ∀{τ1 τ2} → τ1 tcomplete → τ2 tcomplete → (τ1 ==> τ2) tcomplete
TCSum : ∀{τ1 τ2} → τ1 tcomplete → τ2 tcomplete → (τ1 ⊕ τ2) tcomplete
TCProd : ∀{τ1 τ2} → τ1 tcomplete → τ2 tcomplete → (τ1 ⊠ τ2) tcomplete
-- those external expressions without holes
data _ecomplete : hexp → Set where
ECNum : ∀{n} →
(N n) ecomplete
ECPlus : ∀{e1 e2} →
e1 ecomplete →
e2 ecomplete →
(e1 ·+ e2) ecomplete
ECAsc : ∀{τ e} →
τ tcomplete →
e ecomplete →
(e ·: τ) ecomplete
ECVar : ∀{x} →
(X x) ecomplete
ECLam1 : ∀{x e} →
e ecomplete →
(·λ x e) ecomplete
ECLam2 : ∀{x e τ} →
e ecomplete →
τ tcomplete →
(·λ x ·[ τ ] e) ecomplete
ECAp : ∀{e1 e2} →
e1 ecomplete →
e2 ecomplete →
(e1 ∘ e2) ecomplete
ECInl : ∀{e} →
e ecomplete →
(inl e) ecomplete
ECInr : ∀{e} →
e ecomplete →
(inr e) ecomplete
ECCase : ∀{e x e1 y e2} →
e ecomplete →
e1 ecomplete →
e2 ecomplete →
(case e x e1 y e2) ecomplete
ECPair : ∀{e1 e2} →
e1 ecomplete →
e2 ecomplete →
⟨ e1 , e2 ⟩ ecomplete
ECFst : ∀{e} →
e ecomplete →
(fst e) ecomplete
ECSnd : ∀{e} →
e ecomplete →
(snd e) ecomplete
-- contexts that only produce complete types
_gcomplete : tctx → Set
Γ gcomplete = (x : Nat) (τ : htyp) → (x , τ) ∈ Γ → τ tcomplete
-- ground types
data _ground : htyp → Set where
GNum : num ground
GArrHole : ⦇-⦈ ==> ⦇-⦈ ground
GSumHole : ⦇-⦈ ⊕ ⦇-⦈ ground
GProdHole : ⦇-⦈ ⊠ ⦇-⦈ ground
| {
"alphanum_fraction": 0.384262683,
"avg_line_length": 30.8721461187,
"ext": "agda",
"hexsha": "93fb98b42ac5224a3ae3d6affc36cf9da0ebc507",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "core.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2807,
"size": 6761
} |
module Function.PointwiseStructure where
open import Functional using (_∘_) renaming (const to const₁)
open import Function.Equals
open import Function.Multi.Functions
open import Logic.Predicate
open import Logic.Propositional
import Lvl
open import Structure.Function
open import Structure.Function.Multi
open import Structure.Setoid
open import Structure.Operator.Field
open import Structure.Operator.Group
open import Structure.Operator.Monoid
open import Structure.Operator.Properties
open import Structure.Operator.Vector
open import Structure.Operator
open import Structure.Relator.Properties
open import Type
private variable ℓ ℓₑ ℓₗ ℓₗₑ : Lvl.Level
private variable I S T : Type{ℓ}
private variable _+_ _⋅_ : S → S → S
-- TODO: Possible to generalize to functions with multiple arguments
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
private variable _▫_ _▫₁_ _▫₂_ : T → T → T
private variable f inv : T → T
private variable id : T
-- A component-wise function is a function when its underlying function is a function.
pointwiseFunction-function : ⦃ oper : Function(f) ⦄ → Function(pointwise(1)(1) {As = I} (f))
Function.congruence (pointwiseFunction-function {f = f}) (intro p) = intro(congruence₁(f) p)
-- A component-wise binary operator is a binary operator when its underlying binary operator is a binary operator.
pointwiseFunction-binaryOperator : ⦃ oper : BinaryOperator(_▫_) ⦄ → BinaryOperator(pointwise(1)(2) {As = I} (_▫_))
BinaryOperator.congruence (pointwiseFunction-binaryOperator {_▫_ = _▫_}) (intro p) (intro q) = intro(congruence₂(_▫_) p q)
-- A component-wise operator is associative when its underlying operator is associative.
pointwiseFunction-associativity : ⦃ assoc : Associativity(_▫_) ⦄ → Associativity(pointwise(1)(2) {As = I} (_▫_))
pointwiseFunction-associativity {_▫_ = _▫_} = intro(intro(associativity(_▫_)))
-- A component-wise operator is commutative when its underlying operator is commutative.
pointwiseFunction-commutativity : ⦃ comm : Commutativity(_▫_) ⦄ → Commutativity(pointwise(1)(2) {As = I} (_▫_))
pointwiseFunction-commutativity {_▫_ = _▫_} = intro(intro(commutativity(_▫_)))
-- A component-wise operator have a left identity of repeated elements when its underlying operator have a left identity.
pointwiseFunction-identityₗ : ⦃ identₗ : Identityₗ(_▫_)(id) ⦄ → Identityₗ(pointwise(1)(2) {As = I} (_▫_))(const₁ id)
pointwiseFunction-identityₗ {_▫_ = _▫_} {id = id} = intro(intro(identityₗ(_▫_)(id)))
-- A component-wise operator have a right identity of repeated elements when its underlying operator have a right identity.
pointwiseFunction-identityᵣ : ⦃ identᵣ : Identityᵣ(_▫_)(id) ⦄ → Identityᵣ(pointwise(1)(2) {As = I} (_▫_))(const₁ id)
pointwiseFunction-identityᵣ {_▫_ = _▫_} {id = id} = intro(intro(identityᵣ(_▫_)(id)))
-- A component-wise operator have an identity of repeated elements when its underlying operator have an identity.
pointwiseFunction-identity : ⦃ ident : Identity(_▫_)(id) ⦄ → Identity(pointwise(1)(2) {As = I} (_▫_))(const₁ id)
Identity.left pointwiseFunction-identity = pointwiseFunction-identityₗ
Identity.right pointwiseFunction-identity = pointwiseFunction-identityᵣ
pointwiseFunction-inverseFunctionₗ : ⦃ identₗ : Identityₗ(_▫_)(id) ⦄ ⦃ inverₗ : InverseFunctionₗ(_▫_) ⦃ [∃]-intro(id) ⦄ (inv) ⦄ → InverseFunctionₗ(pointwise(1)(2) {As = I} (_▫_)) ⦃ [∃]-intro _ ⦃ pointwiseFunction-identityₗ ⦄ ⦄ (pointwise(1)(1) {As = I} inv)
pointwiseFunction-inverseFunctionₗ {_▫_ = _▫_} {id = id} {inv = inv} = intro(intro(inverseFunctionₗ(_▫_) ⦃ [∃]-intro id ⦄ (inv)))
pointwiseFunction-inverseFunctionᵣ : ⦃ identᵣ : Identityᵣ(_▫_)(id) ⦄ ⦃ inverᵣ : InverseFunctionᵣ(_▫_) ⦃ [∃]-intro(id) ⦄ (inv) ⦄ → InverseFunctionᵣ(pointwise(1)(2) {As = I} (_▫_)) ⦃ [∃]-intro _ ⦃ pointwiseFunction-identityᵣ ⦄ ⦄ (pointwise(1)(1) {As = I} inv)
pointwiseFunction-inverseFunctionᵣ {_▫_ = _▫_} {id = id} {inv = inv} = intro(intro(inverseFunctionᵣ(_▫_) ⦃ [∃]-intro id ⦄ (inv)))
pointwiseFunction-inverseFunction : ⦃ ident : Identity(_▫_)(id) ⦄ ⦃ inver : InverseFunction(_▫_) ⦃ [∃]-intro(id) ⦄ (inv) ⦄ → InverseFunction(pointwise(1)(2) {As = I} (_▫_)) ⦃ [∃]-intro _ ⦃ pointwiseFunction-identity ⦄ ⦄ (pointwise(1)(1) {As = I} inv)
InverseFunction.left pointwiseFunction-inverseFunction = pointwiseFunction-inverseFunctionₗ
InverseFunction.right pointwiseFunction-inverseFunction = pointwiseFunction-inverseFunctionᵣ
-- A component-wise operator is left distributive over another component-wise operator when their underlying operators distribute.
pointwiseFunction-distributivityₗ : ⦃ distₗ : Distributivityₗ(_▫₁_)(_▫₂_) ⦄ → Distributivityₗ(pointwise(1)(2) {As = I} (_▫₁_))(pointwise(1)(2) {As = I} (_▫₂_))
pointwiseFunction-distributivityₗ = intro(intro(distributivityₗ _ _))
-- A component-wise operator is right distributive over another component-wise operator when their underlying operators distribute.
pointwiseFunction-distributivityᵣ : ⦃ distᵣ : Distributivityᵣ(_▫₁_)(_▫₂_) ⦄ → Distributivityᵣ(pointwise(1)(2) {As = I} (_▫₁_))(pointwise(1)(2) {As = I} (_▫₂_))
pointwiseFunction-distributivityᵣ = intro(intro(distributivityᵣ _ _))
pointwiseFunction-const-preserves : Preserving₂(const₁) (_▫_) (pointwise(1)(2) {As = I} (_▫_))
pointwiseFunction-const-preserves = intro(intro(reflexivity(_≡_)))
-- A component-wise operator is a monoid when its underlying operator is a monoid.
pointwiseFunction-monoid : ⦃ monoid : Monoid(_▫_) ⦄ → Monoid(pointwise(1)(2) {As = I} (_▫_))
Monoid.binary-operator pointwiseFunction-monoid = pointwiseFunction-binaryOperator
Monoid.associativity pointwiseFunction-monoid = pointwiseFunction-associativity
Monoid.identity-existence pointwiseFunction-monoid = [∃]-intro _ ⦃ pointwiseFunction-identity ⦄
-- A component-wise operator is a group when its underlying operator is a group.
pointwiseFunction-group : ⦃ group : Group(_▫_) ⦄ → Group(pointwise(1)(2) {As = I} (_▫_))
Group.monoid pointwiseFunction-group = pointwiseFunction-monoid
Group.inverse-existence pointwiseFunction-group = [∃]-intro _ ⦃ pointwiseFunction-inverseFunction ⦄
Group.inv-function pointwiseFunction-group = pointwiseFunction-function
-- A component-wise operator is a commutative group when its underlying operator is a commutative group.
pointwiseFunction-commutativeGroup : ⦃ commutativeGroup : CommutativeGroup(_▫_) ⦄ → CommutativeGroup(pointwise(1)(2) {As = I} (_▫_))
CommutativeGroup.group pointwiseFunction-commutativeGroup = pointwiseFunction-group
CommutativeGroup.commutativity pointwiseFunction-commutativeGroup = pointwiseFunction-commutativity
module _
⦃ equiv : Equiv{ℓₑ}(S) ⦄
(field-structure : Field{T = S}(_+_)(_⋅_))
where
open Field(field-structure)
-- Component-wise operators constructs a vector space from a field when using the fields as scalars and coordinate vectors as vectors.
pointwiseFunction-vectorSpace : VectorSpace(pointwise(1)(2) {As = I} (_+_))(pointwise(1)(1) ∘ (_⋅_))(_+_)(_⋅_)
VectorSpace.scalarField pointwiseFunction-vectorSpace = field-structure
VectorSpace.vectorCommutativeGroup pointwiseFunction-vectorSpace = pointwiseFunction-commutativeGroup
_⊜_.proof (BinaryOperator.congruence (VectorSpace.[⋅ₛᵥ]-binaryOperator pointwiseFunction-vectorSpace) p (intro q)) = congruence₂(_⋅_) p q
_⊜_.proof (VectorSpace.[⋅ₛ][⋅ₛᵥ]-compatibility pointwiseFunction-vectorSpace) = associativity(_⋅_)
_⊜_.proof (Identityₗ.proof (VectorSpace.[⋅ₛᵥ]-identity pointwiseFunction-vectorSpace)) = identityₗ(_⋅_)(𝟏)
_⊜_.proof (Distributivityₗ.proof (VectorSpace.[⋅ₛᵥ][+ᵥ]-distributivityₗ pointwiseFunction-vectorSpace)) = distributivityₗ(_⋅_)(_+_)
_⊜_.proof (VectorSpace.[⋅ₛᵥ][+ₛ][+ᵥ]-distributivityᵣ pointwiseFunction-vectorSpace) = distributivityᵣ(_⋅_)(_+_)
| {
"alphanum_fraction": 0.7407265285,
"avg_line_length": 69.185840708,
"ext": "agda",
"hexsha": "75106987b6863745498d691eb74526279f831342",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Function/PointwiseStructure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Function/PointwiseStructure.agda",
"max_line_length": 260,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Function/PointwiseStructure.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2559,
"size": 7818
} |
open import Oscar.Prelude
open import Oscar.Class
module Oscar.Class.Leftstar where
module Leftstar
{𝔞 𝔟 𝔣 𝔞̇ 𝔟̇}
{𝔄 : Ø 𝔞}
{𝔅 : Ø 𝔟}
{𝔉 : Ø 𝔣}
(𝔄̇ : 𝔄 → Ø 𝔞̇)
(𝔅̇ : 𝔅 → Ø 𝔟̇)
(_◂_ : 𝔉 → 𝔄 → 𝔅)
= ℭLASS (_◂_ , 𝔅̇) (∀ {x} f → 𝔄̇ x → 𝔅̇ (f ◂ x))
module _
{𝔞 𝔟 𝔣 𝔞̇ 𝔟̇}
{𝔄 : Ø 𝔞}
{𝔅 : Ø 𝔟}
{𝔉 : Ø 𝔣}
{𝔄̇ : 𝔄 → Ø 𝔞̇}
{𝔅̇ : 𝔅 → Ø 𝔟̇}
{_◂_ : 𝔉 → 𝔄 → 𝔅}
where
leftstar = Leftstar.method 𝔄̇ 𝔅̇ _◂_
open import Oscar.Class.Surjection
open import Oscar.Class.Smap
module Leftstar,smaparrow
{𝔵₁ 𝔵₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(surjection : Surjection.type 𝔛₁ 𝔛₂)
{𝔭₁ 𝔭₂} (𝔓₁ : 𝔛₂ → Ø 𝔭₁) (𝔓₂ : 𝔛₂ → Ø 𝔭₂)
{𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯)
{𝔭̇₁} (𝔓̇₁ : ∀ {a} → 𝔓₁ (surjection a) → Ø 𝔭̇₁)
{𝔭̇₂} (𝔓̇₂ : ∀ {a} → 𝔓₂ (surjection a) → Ø 𝔭̇₂)
(smaparrow : Smaparrow.type ℜ 𝔓₁ 𝔓₂ surjection surjection)
where
class = ∀ {a₁ a₂} → Leftstar.class (𝔓̇₁ {a₁}) (𝔓̇₂ {a₂}) smaparrow
type = ∀ {a₁ a₂} → Leftstar.type (𝔓̇₁ {a₁}) (𝔓̇₂ {a₂}) smaparrow
module Leftstar,smaparrow!
{𝔵₁ 𝔵₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
{𝔭₁ 𝔭₂} (𝔓₁ : 𝔛₂ → Ø 𝔭₁) (𝔓₂ : 𝔛₂ → Ø 𝔭₂)
{𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯)
{𝔭̇₁} (𝔓̇₁ : ∀ {a} → 𝔓₁ (surjection a) → Ø 𝔭̇₁)
{𝔭̇₂} (𝔓̇₂ : ∀ {a} → 𝔓₂ (surjection a) → Ø 𝔭̇₂)
⦃ _ : Smaparrow!.class ℜ 𝔓₁ 𝔓₂ ⦄
= Leftstar,smaparrow surjection 𝔓₁ 𝔓₂ ℜ 𝔓̇₁ 𝔓̇₂ smaparrow
module Leftstar,smaphomarrow
{𝔵₁ 𝔵₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
(surjection : Surjection.type 𝔛₁ 𝔛₂)
{𝔭} (𝔓 : 𝔛₂ → Ø 𝔭)
{𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯)
{𝔭̇} (𝔓̇ : ∀ {a} → 𝔓 (surjection a) → Ø 𝔭̇)
(smaparrow : Smaphomarrow.type ℜ 𝔓 surjection)
= Leftstar,smaparrow surjection 𝔓 𝔓 ℜ 𝔓̇ 𝔓̇ smaparrow
module Leftstar,smaphomarrow!
{𝔵₁ 𝔵₂} {𝔛₁ : Ø 𝔵₁} {𝔛₂ : Ø 𝔵₂}
⦃ _ : Surjection.class 𝔛₁ 𝔛₂ ⦄
{𝔭} (𝔓 : 𝔛₂ → Ø 𝔭)
{𝔯} (ℜ : 𝔛₁ → 𝔛₁ → Ø 𝔯)
{𝔭̇} (𝔓̇ : ∀ {a} → 𝔓 (surjection a) → Ø 𝔭̇)
⦃ _ : Smaphomarrow!.class ℜ 𝔓 ⦄
= Leftstar,smaphomarrow surjection 𝔓 ℜ 𝔓̇ smaparrow
| {
"alphanum_fraction": 0.5385422129,
"avg_line_length": 27.2428571429,
"ext": "agda",
"hexsha": "2592c6f4ea03128ee54f1713a8ee04f0de993074",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Leftstar.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Leftstar.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Leftstar.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1294,
"size": 1907
} |
module _ where
data _==_ {A : Set} (a : A) : A → Set where
refl : a == a
data ⊥ : Set where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
it : ∀ {a} {A : Set a} ⦃ x : A ⦄ → A
it ⦃ x ⦄ = x
f : (n : ℕ) ⦃ p : ⦃ _ : n == zero ⦄ → ⊥ ⦄ → ℕ
f n = n
g : (n : ℕ) ⦃ q : ⦃ _ : n == zero ⦄ → ⊥ ⦄ → ℕ
g n ⦃ q ⦄ = f n
h : (n : ℕ) ⦃ q : ⦃ _ : n == zero ⦄ → ⊥ ⦄ → ℕ
h n ⦃ q ⦄ = f n ⦃ it ⦄
| {
"alphanum_fraction": 0.3595800525,
"avg_line_length": 15.875,
"ext": "agda",
"hexsha": "a0b38ffa553981b6d9a156b6cf5ebebea9722de3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1322.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1322.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1322.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 226,
"size": 381
} |
------------------------------------------------------------------------------
-- Distributive laws on a binary operation: Task B
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DistributiveLaws.TaskB-AllStepsATP where
open import DistributiveLaws.Base
open import Common.FOL.Relation.Binary.EqReasoning
------------------------------------------------------------------------------
-- We prove all the proof steps of DistributiveLaws.TaskB-I using the
-- ATPs.
prop₂ : ∀ u x y z →
(x · y · (z · u)) · ((x · y · (z · u)) · (x · z · (y · u))) ≡
x · z · (y · u)
prop₂ u x y z =
xy·zu · (xy·zu · xz·yu) ≡⟨ j₁ ⟩
xy·zu · (x·zu · y·zu · xz·yu) ≡⟨ j₂ ⟩
xy·zu · (x·zu · xz·yu · (y·zu · xz·yu)) ≡⟨ j₃ ⟩
xy·zu · (xz·xu · xz·yu · (y·zu · xz·yu)) ≡⟨ j₄ ⟩
xy·zu · (xz · xu·yu · (y·zu · xz·yu)) ≡⟨ j₅ ⟩
xy·zu · (xz · xyu · (y·zu · xz·yu)) ≡⟨ j₆ ⟩
xy·zu · (xz · xyu · (yz·yu · xz·yu)) ≡⟨ j₇ ⟩
xy·zu · (xz · xyu · (yz·xz · yu)) ≡⟨ j₈ ⟩
xy·zu · (xz · xyu · (yxz · yu)) ≡⟨ j₉ ⟩
xy·zu · (xz · xyu · (yx·yu · z·yu)) ≡⟨ j₁₀ ⟩
xy·zu · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₁ ⟩
xyz · xyu · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₂ ⟩
xz·yz · xyu · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₃ ⟩
xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu)) ≡⟨ j₁₄ ⟩
xz · xyu · (yz · xyu · (y·xu · z·yu)) ≡⟨ j₁₅ ⟩
xz · xyu · (yz · xu·yu · (y·xu · z·yu)) ≡⟨ j₁₆ ⟩
xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu)) ≡⟨ j₁₇ ⟩
xz · xyu ·
(y · xu·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₁₈ ⟩
xz · xyu ·
(y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₁₉ ⟩
xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₀ ⟩
xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₁ ⟩
xz · xyu · (y·xu · y·zu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₂ ⟩
xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) ≡⟨ j₂₃ ⟩
xz · xyu · (y · xu·zu · (z·xu · z·yu · (y·xu · z·yu))) ≡⟨ j₂₄ ⟩
(xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) ≡⟨ j₂₅ ⟩
xz · xyu · (y · xu·zu · (zy·xu · z·yu)) ≡⟨ j₂₆ ⟩
xz · xyu · (y · xu·zu · (zy·xu · zy·zu)) ≡⟨ j₂₇ ⟩
xz · xyu · (y · xu·zu · (zy · xu·zu)) ≡⟨ j₂₈ ⟩
xz · xyu · (y·zy · xu·zu) ≡⟨ j₂₉ ⟩
xz · xyu · (y·zy · xzu) ≡⟨ j₃₀ ⟩
xz·xy · xzu · (y·zy · xzu) ≡⟨ j₃₁ ⟩
x·zy · xzu · (y·zy · xzu) ≡⟨ j₃₂ ⟩
x·zy · y·zy · xzu ≡⟨ j₃₃ ⟩
xy·zy · xzu ≡⟨ j₃₄ ⟩
xzy · xzu ≡⟨ j₃₅ ⟩
xz·yu ∎
where
-- Two variables abbreviations
xz = x · z
yu = y · u
yz = y · z
zy = z · y
{-# ATP definitions xz yu yz zy #-}
-- Three variables abbreviations
xyu = x · y · u
xyz = x · y · z
xzu = x · z · u
xzy = x · z · y
yxz = y · x · z
{-# ATP definitions xyu xyz xzu xzy yxz #-}
x·yu = x · (y · u)
x·zu = x · (z · u)
x·zy = x · (z · y)
{-# ATP definitions x·yu x·zu x·zy #-}
y·xu = y · (x · u)
y·yu = y · (y · u)
y·zu = y · (z · u)
y·zy = y · (z · y)
{-# ATP definitions y·xu y·yu y·zu y·zy #-}
z·xu = z · (x · u)
z·yu = z · (y · u)
{-# ATP definitions z·xu z·yu #-}
-- Four variables abbreviations
xu·yu = x · u · (y · u)
xu·zu = x · u · (z · u)
{-# ATP definitions xu·yu xu·zu #-}
xy·yz = x · y · (y · z)
xy·zu = x · y · (z · u)
xy·zy = x · y · (z · y)
{-# ATP definitions xy·yz xy·zu xy·zy #-}
xz·xu = x · z · (x · u)
xz·xy = x · z · (x · y)
xz·yu = x · z · (y · u)
xz·yz = x · z · (y · z)
{-# ATP definitions xz·xu xz·xy xz·yu xz·yz #-}
yx·yu = y · x · (y · u)
{-# ATP definition yx·yu #-}
yz·xz = y · z · (x · z)
yz·yu = y · z · (y · u)
{-# ATP definitions yz·xz yz·yu #-}
zy·xu = z · y · (x · u)
zy·zu = z · y · (z · u)
{-# ATP definitions zy·xu zy·zu #-}
-- Steps justifications
postulate j₁ : xy·zu · (xy·zu · xz·yu) ≡
xy·zu · (x·zu · y·zu · xz·yu)
{-# ATP prove j₁ #-}
postulate j₂ : xy·zu · (x·zu · y·zu · xz·yu) ≡
xy·zu · (x·zu · xz·yu · (y·zu · xz·yu))
{-# ATP prove j₂ #-}
postulate j₃ : xy·zu · (x·zu · xz·yu · (y·zu · xz·yu)) ≡
xy·zu · (xz·xu · xz·yu · (y·zu · xz·yu))
{-# ATP prove j₃ #-}
postulate j₄ : xy·zu · (xz·xu · xz·yu · (y·zu · xz·yu)) ≡
xy·zu · (xz · xu·yu · (y·zu · xz·yu))
{-# ATP prove j₄ #-}
postulate j₅ : xy·zu · (xz · xu·yu · (y·zu · xz·yu)) ≡
xy·zu · (xz · xyu · (y·zu · xz·yu))
{-# ATP prove j₅ #-}
postulate j₆ : xy·zu · (xz · xyu · (y·zu · xz·yu)) ≡
xy·zu · (xz · xyu · (yz·yu · xz·yu))
{-# ATP prove j₆ #-}
postulate j₇ : xy·zu · (xz · xyu · (yz·yu · xz·yu)) ≡
xy·zu · (xz · xyu · (yz·xz · yu))
{-# ATP prove j₇ #-}
postulate j₈ : xy·zu · (xz · xyu · (yz·xz · yu)) ≡
xy·zu · (xz · xyu · (yxz · yu))
{-# ATP prove j₈ #-}
postulate j₉ : xy·zu · (xz · xyu · (yxz · yu)) ≡
xy·zu · (xz · xyu · (yx·yu · z·yu))
{-# ATP prove j₉ #-}
postulate j₁₀ : xy·zu · (xz · xyu · (yx·yu · z·yu)) ≡
xy·zu · (xz · xyu · (y·xu · z·yu))
{-# ATP prove j₁₀ #-}
postulate j₁₁ : xy·zu · (xz · xyu · (y·xu · z·yu)) ≡
xyz · xyu · (xz · xyu · (y·xu · z·yu))
{-# ATP prove j₁₁ #-}
postulate j₁₂ : xyz · xyu · (xz · xyu · (y·xu · z·yu)) ≡
xz·yz · xyu · (xz · xyu · (y·xu · z·yu))
{-# ATP prove j₁₂ #-}
postulate j₁₃ : xz·yz · xyu · (xz · xyu · (y·xu · z·yu)) ≡
xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu))
{-# ATP prove j₁₃ #-}
postulate j₁₄ : xz · xyu · (yz · xyu) · (xz · xyu · (y·xu · z·yu)) ≡
xz · xyu · (yz · xyu · (y·xu · z·yu))
{-# ATP prove j₁₄ #-}
postulate j₁₅ : xz · xyu · (yz · xyu · (y·xu · z·yu)) ≡
xz · xyu · (yz · xu·yu · (y·xu · z·yu))
{-# ATP prove j₁₅ #-}
postulate j₁₆ : xz · xyu · (yz · xu·yu · (y·xu · z·yu)) ≡
xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu))
{-# ATP prove j₁₆ #-}
postulate
j₁₇ : xz · xyu · (y · xu·yu · (z · xu·yu) · (y·xu · z·yu)) ≡
xz · xyu ·
(y · xu·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₁₇ #-}
postulate
j₁₈ : xz · xyu ·
(y · xu·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡
xz · xyu ·
(y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₁₈ #-}
postulate
j₁₉ : xz · xyu ·
(y·xu · y·yu · (y·xu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡
xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₁₉ #-}
postulate
j₂₀ : xz · xyu · (y·xu · (y·yu · z·yu) · (z · xu·yu · (y·xu · z·yu))) ≡
xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₂₀ #-}
postulate j₂₁ : xz · xyu · (y·xu · yz·yu · (z · xu·yu · (y·xu · z·yu))) ≡
xz · xyu · (y·xu · y·zu · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₂₁ #-}
postulate j₂₂ : xz · xyu · (y·xu · y·zu · (z · xu·yu · (y·xu · z·yu))) ≡
xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu)))
{-# ATP prove j₂₂ #-}
postulate j₂₃ : xz · xyu · (y · xu·zu · (z · xu·yu · (y·xu · z·yu))) ≡
xz · xyu · (y · xu·zu · (z·xu · z·yu · (y·xu · z·yu)))
{-# ATP prove j₂₃ #-}
postulate j₂₄ : xz · xyu · (y · xu·zu · (z·xu · z·yu · (y·xu · z·yu))) ≡
(xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu))
{-# ATP prove j₂₄ #-}
postulate j₂₅ : (xz · xyu) · (y · xu·zu · (z·xu · y·xu · z·yu)) ≡
xz · xyu · (y · xu·zu · (zy·xu · z·yu))
{-# ATP prove j₂₅ #-}
postulate j₂₆ : xz · xyu · (y · xu·zu · (zy·xu · z·yu)) ≡
xz · xyu · (y · xu·zu · (zy·xu · zy·zu))
{-# ATP prove j₂₆ #-}
postulate j₂₇ : xz · xyu · (y · xu·zu · (zy·xu · zy·zu)) ≡
xz · xyu · (y · xu·zu · (zy · xu·zu))
{-# ATP prove j₂₇ #-}
postulate j₂₈ : xz · xyu · (y · xu·zu · (zy · xu·zu)) ≡
xz · xyu · (y·zy · xu·zu)
{-# ATP prove j₂₈ #-}
postulate j₂₉ : xz · xyu · (y·zy · xu·zu) ≡ xz · xyu · (y·zy · xzu)
{-# ATP prove j₂₉ #-}
postulate j₃₀ : xz · xyu · (y·zy · xzu) ≡ xz·xy · xzu · (y·zy · xzu)
{-# ATP prove j₃₀ #-}
postulate j₃₁ : xz·xy · xzu · (y·zy · xzu) ≡ x·zy · xzu · (y·zy · xzu)
{-# ATP prove j₃₁ #-}
postulate j₃₂ : x·zy · xzu · (y·zy · xzu) ≡ x·zy · y·zy · xzu
{-# ATP prove j₃₂ #-}
postulate j₃₃ : x·zy · y·zy · xzu ≡ xy·zy · xzu
{-# ATP prove j₃₃ #-}
postulate j₃₄ : xy·zy · xzu ≡ xzy · xzu
{-# ATP prove j₃₄ #-}
postulate j₃₅ : xzy · xzu ≡ xz·yu
{-# ATP prove j₃₅ #-}
| {
"alphanum_fraction": 0.3692083939,
"avg_line_length": 36.1879699248,
"ext": "agda",
"hexsha": "86a652c853ce303458969b9d34dfa5dd838a3db2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/DistributiveLaws/TaskB-AllStepsATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/DistributiveLaws/TaskB-AllStepsATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/DistributiveLaws/TaskB-AllStepsATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 4345,
"size": 9626
} |
-- Properties of quicksort
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Algorithms.List.Sort.Quick.Properties
{c l₁ l₂} (DTO : DecTotalOrder c l₁ l₂)
where
-- agda-stdlib
open import Level
open import Data.List
import Data.List.Properties as Listₚ
import Data.List.Relation.Binary.Equality.Setoid as EqualitySetoid
import Data.List.Relation.Binary.Permutation.Setoid as PermutationSetoid
open import Data.Product
import Data.Nat as ℕ
open import Data.Nat.Induction as Ind
open import Relation.Binary as B
open import Relation.Unary as U
import Relation.Unary.Properties as Uₚ
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
open import Function.Base
open import Induction.WellFounded
-- agda-misc
open import Algorithms.List.Sort.Common DTO
open import Algorithms.List.Sort.Quick
open DecTotalOrder DTO renaming (Carrier to A)
open Quicksort _≤?_
open PermutationSetoid Eq.setoid
open EqualitySetoid Eq.setoid
{-
sort-acc-cong : ∀ {xs ys rs₁ rs₂} → xs ≋ ys → sort-acc xs rs₁ ≋ sort-acc ys rs₂
sort-acc-cong {[]} {[]} {rs₁} {rs₂} xs≋ys = ≋-refl
sort-acc-cong {x ∷ xs} {y ∷ ys} {acc rs₁} {acc rs₂} (x≈y EqualitySetoid.∷ xs≋ys) =
++⁺ (sort-acc-cong {! !}) (++⁺ (x≈y ∷ []) {! !})
-}
{-
sort-acc-filter : ∀ x xs rs lt₁ lt₂ →
sort-acc (x ∷ xs) (acc rs) ≡
sort-acc (filter (_≤? x) xs) (rs _ lt₁) ++ [ x ] ++
sort-acc (filter (Uₚ.∁? (_≤? x)) xs) (rs _ lt₂)
sort-acc-filter x xs rs lt₁ lt₂ = begin
sort-acc (proj₁ (split x xs)) (rs _ _) ++ [ x ] ++
sort-acc (proj₂ (split x xs)) (rs _ _)
≡⟨ ? ⟩
sort-acc (filter (_≤? x) xs) (rs _ lt₁) ++ [ x ] ++
sort-acc (filter (Uₚ.∁? (_≤? x)) xs) (rs _ lt₂) ∎
sort-acc-permutation : ∀ xs ac → sort-acc xs ac ↭ xs
sort-acc-permutation [] ac = ↭-refl
sort-acc-permutation (x ∷ xs) (acc rs) = begin
sort-acc (x ∷ xs) (acc rs) ≈⟨ {! !} ⟩
x ∷ xs ∎
where open SetoidReasoning ↭-setoid
-}
| {
"alphanum_fraction": 0.6576846307,
"avg_line_length": 32.3225806452,
"ext": "agda",
"hexsha": "6a3873baf9f25ba76c85e9dafe1336e972487c33",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Algorithms/List/Sort/Quick/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Algorithms/List/Sort/Quick/Properties.agda",
"max_line_length": 82,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Algorithms/List/Sort/Quick/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 708,
"size": 2004
} |
{-# OPTIONS --without-K --safe #-}
-- In this module, we define the usual definition of D<: -- the one having typing and
-- subtyping mutually defined.
module DsubFull where
open import Data.List as List
open import Data.List.All as All
open import Data.Nat as ℕ
open import Data.Maybe as Maybe
open import Data.Product
open import Data.Sum
open import Data.Empty renaming (⊥ to False)
open import Data.Vec as Vec renaming (_∷_ to _‼_ ; [] to nil) hiding (_++_)
open import Function
open import Data.Maybe.Properties as Maybeₚ
open import Data.Nat.Properties as ℕₚ
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as ≡
open import DsubDef
open import Dsub renaming (_⊢_<:_ to _⊢′_<:_)
open import Utils
infix 4 _⊢_<:_ _⊢_∶_
mutual
data _⊢_∶_ : Env → Trm → Typ → Set where
var∶ : ∀ {Γ n T} →
(T∈Γ : env-lookup Γ n ≡ just T) →
Γ ⊢ var n ∶ T
Π-I : ∀ {Γ T t U} →
Γ ‣ T ! ⊢ t ∶ U →
Γ ⊢ val (Λ T ∙ t) ∶ Π T ∙ U
Π-E : ∀ {Γ n m S U} →
Γ ⊢ var n ∶ Π S ∙ U →
Γ ⊢ var m ∶ S →
Γ ⊢ n $$ m ∶ U [ m / 0 ]
⟨A⟩-I : ∀ {Γ T} →
Γ ⊢ val ⟨A= T ⟩ ∶ ⟨A: T ⋯ T ⟩
ltinn : ∀ {Γ t u T U} →
Γ ⊢ t ∶ T →
Γ ‣ T ! ⊢ u ∶ U ↑ 0 →
Γ ⊢ lt t inn u ∶ U
<∶ : ∀ {Γ t S U} →
Γ ⊢ t ∶ S →
Γ ⊢ S <: U →
Γ ⊢ t ∶ U
data _⊢_<:_ : Env → Typ → Typ → Set where
<:⊤ : ∀ {Γ T} →
Γ ⊢ T <: ⊤
⊥<: : ∀ {Γ T} →
Γ ⊢ ⊥ <: T
refl : ∀ {Γ T} →
Γ ⊢ T <: T
tran : ∀ {Γ S U} T →
(S<:T : Γ ⊢ S <: T) →
(T<:U : Γ ⊢ T <: U) →
Γ ⊢ S <: U
bnd : ∀ {Γ S U S′ U′} →
(S′<:S : Γ ⊢ S′ <: S) →
(U<:U′ : Γ ⊢ U <: U′) →
Γ ⊢ ⟨A: S ⋯ U ⟩ <: ⟨A: S′ ⋯ U′ ⟩
Π<: : ∀ {Γ S U S′ U′} →
(S′<:S : Γ ⊢ S′ <: S) →
(U<:U′ : (S′ ∷ Γ) ⊢ U <: U′) →
Γ ⊢ Π S ∙ U <: Π S′ ∙ U′
sel₁ : ∀ {Γ n S U} →
Γ ⊢ var n ∶ ⟨A: S ⋯ U ⟩ →
Γ ⊢ S <: n ∙A
sel₂ : ∀ {Γ n S U} →
Γ ⊢ var n ∶ ⟨A: S ⋯ U ⟩ →
Γ ⊢ n ∙A <: U
-- The following function shows that indeed the subtyping defined in Lemma 2 is
-- equivalent to the original subtyping.
mutual
<:⇒<:′ : ∀ {Γ S U} → Γ ⊢ S <: U → Γ ⊢′ S <: U
<:⇒<:′ <:⊤ = dtop
<:⇒<:′ ⊥<: = dbot
<:⇒<:′ refl = drefl
<:⇒<:′ (tran T S<:T T<:U) = dtrans T (<:⇒<:′ S<:T) (<:⇒<:′ T<:U)
<:⇒<:′ (bnd S′<:S U<:U′) = dbnd (<:⇒<:′ S′<:S) (<:⇒<:′ U<:U′)
<:⇒<:′ (Π<: S′<:S U<:U′) = dall (<:⇒<:′ S′<:S) (<:⇒<:′ U<:U′)
<:⇒<:′ (sel₁ n∶SU) with var∶⇒<: n∶SU
... | T′ , T′∈Γ , T′<:SU = dsel₁ T′∈Γ (dtrans _ T′<:SU (dbnd drefl dtop))
<:⇒<:′ (sel₂ n∶SU) with var∶⇒<: n∶SU
... | T′ , T′∈Γ , T′<:SU = dsel₂ T′∈Γ (dtrans _ T′<:SU (dbnd dbot drefl))
var∶⇒<: : ∀ {Γ x T} → Γ ⊢ var x ∶ T → ∃ λ T′ → env-lookup Γ x ≡ just T′ × Γ ⊢′ T′ <: T
var∶⇒<: (var∶ T∈Γ) = -, T∈Γ , drefl
var∶⇒<: (<∶ x∶T T<:U) with var∶⇒<: x∶T
... | T′ , T′∈Γ , T′<:T = T′ , T′∈Γ , dtrans _ T′<:T (<:⇒<:′ T<:U)
<:′⇒<: : ∀ {Γ S U} → Γ ⊢′ S <: U → Γ ⊢ S <: U
<:′⇒<: dtop = <:⊤
<:′⇒<: dbot = ⊥<:
<:′⇒<: drefl = refl
<:′⇒<: (dtrans T S<:T T<:U) = tran T (<:′⇒<: S<:T) (<:′⇒<: T<:U)
<:′⇒<: (dbnd S′<:S U<:U′) = bnd (<:′⇒<: S′<:S) (<:′⇒<: U<:U′)
<:′⇒<: (dall S′<:S U<:U′) = Π<: (<:′⇒<: S′<:S) (<:′⇒<: U<:U′)
<:′⇒<: (dsel₁ T∈Γ T<:SU) = sel₁ (<∶ (var∶ T∈Γ) (<:′⇒<: T<:SU))
<:′⇒<: (dsel₂ T∈Γ T<:SU) = sel₂ (<∶ (var∶ T∈Γ) (<:′⇒<: T<:SU))
| {
"alphanum_fraction": 0.3984261148,
"avg_line_length": 32.3679245283,
"ext": "agda",
"hexsha": "f99af2e2833cf7d1e419e4f04d234571d1bdc7db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "HuStmpHrrr/popl20-artifact",
"max_forks_repo_path": "agda/DsubFull.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "HuStmpHrrr/popl20-artifact",
"max_issues_repo_path": "agda/DsubFull.agda",
"max_line_length": 88,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "HuStmpHrrr/popl20-artifact",
"max_stars_repo_path": "agda/DsubFull.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z",
"num_tokens": 1860,
"size": 3431
} |
module Numeric.Nat where
open import Numeric.Nat.BinarySearch public
open import Numeric.Nat.Divide.Properties public
open import Numeric.Nat.Divide public
open import Numeric.Nat.DivMod public
open import Numeric.Nat.GCD.Extended public
open import Numeric.Nat.GCD.Properties public
open import Numeric.Nat.GCD public
open import Numeric.Nat.LCM.Properties public
open import Numeric.Nat.LCM public
open import Numeric.Nat.Modulo public
open import Numeric.Nat.Pow public
open import Numeric.Nat.Prime.Properties public
open import Numeric.Nat.Prime public
open import Numeric.Nat.Properties public
open import Numeric.Nat.Sqrt public
| {
"alphanum_fraction": 0.7047244094,
"avg_line_length": 40.1052631579,
"ext": "agda",
"hexsha": "be4d7de02ace244e53ab2f14190ca463f6c0533b",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Numeric/Nat.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Numeric/Nat.agda",
"max_line_length": 48,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Numeric/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 159,
"size": 762
} |
postulate
A : Set
data B : Set where
x : A → B
f : A → A
f = {!!} -- C-c C-c yields 'f x = ?', which fails to type check
| {
"alphanum_fraction": 0.515625,
"avg_line_length": 12.8,
"ext": "agda",
"hexsha": "91d78e3bd6bc3baaa73cbf2f40378da3dd6d4864",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3445.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3445.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3445.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 49,
"size": 128
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Data.Vec.Any.Membership instantiated with propositional equality,
-- along with some additional definitions.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Membership.Propositional {a} {A : Set a} where
open import Data.Vec using (Vec)
open import Data.Vec.Relation.Unary.Any using (Any)
open import Relation.Binary.PropositionalEquality using (setoid; subst)
import Data.Vec.Membership.Setoid as SetoidMembership
------------------------------------------------------------------------
-- Re-export contents of setoid membership
open SetoidMembership (setoid A) public hiding (lose)
------------------------------------------------------------------------
-- Other operations
lose : ∀ {p} {P : A → Set p} {x n} {xs : Vec A n} → x ∈ xs → P x → Any P xs
lose = SetoidMembership.lose (setoid A) (subst _)
| {
"alphanum_fraction": 0.515060241,
"avg_line_length": 35.5714285714,
"ext": "agda",
"hexsha": "ae706d4f9f03fe13f7f18a492b460dba37437ec9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/Propositional.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 195,
"size": 996
} |
module hello where
open import IO
main = run (putStrLn "Hello, World!") | {
"alphanum_fraction": 0.7260273973,
"avg_line_length": 14.6,
"ext": "agda",
"hexsha": "71bb0120f12ff40c6c90a131fc53ad95f0bb5f80",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "22b528084ed234fcabca89cf1ba02a2c347007bc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nhutnamhcmus/code",
"max_forks_repo_path": "Agda/hello.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "22b528084ed234fcabca89cf1ba02a2c347007bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nhutnamhcmus/code",
"max_issues_repo_path": "Agda/hello.agda",
"max_line_length": 37,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "22b528084ed234fcabca89cf1ba02a2c347007bc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nhutnamhcmus/code",
"max_stars_repo_path": "Agda/hello.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T18:33:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-12T18:33:22.000Z",
"num_tokens": 19,
"size": 73
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module stash.modalities.PushoutProduct {i j k l}
{A : Type i} {B : Type j}
{A' : Type k} {B' : Type l}
where
□-span : (f : A → B) (g : A' → B') → Span
□-span f g = span (B × A') (A × B') (A × A')
(λ { (a , a') → f a , a'})
(λ { (a , a') → a , g a' })
module PshoutProd (f : A → B) (g : A' → B') =
PushoutRec {d = □-span f g}
(λ { (b , a') → b , g a' })
(λ { (a , b') → f a , b' })
(λ { (a , a') → idp })
_□_ : (f : A → B) (g : A' → B') → Pushout (□-span f g) → B × B'
f □ g = PshoutProd.f f g
□-glue-β : (f : A → B) (g : A' → B') (a : A) (a' : A') → ap (f □ g) (glue (a , a')) == idp
□-glue-β f g a a' = PshoutProd.glue-β f g (a , a')
module _ (f : A → B) (g : A' → B') where
private
abstract
↓-□=cst-out : ∀ {a a' b b'} {p p' : (f a , g a') == (b , b')}
→ p == p' [ (λ w → (f □ g) w == (b , b')) ↓ glue (a , a') ]
→ p == p'
↓-□=cst-out {p' = idp} q = ↓-app=cst-out' q ∙ □-glue-β f g _ _
↓-□=cst-in : ∀ {a a' b b'} {p p' : (f a , g a') == (b , b')}
→ p == p'
→ p == p' [ (λ w → (f □ g) w == (b , b')) ↓ glue (a , a') ]
↓-□=cst-in {p' = idp} q = ↓-app=cst-in' (q ∙ ! (□-glue-β f g _ _))
↓-□=cst-β : ∀ {a a' b b'} {p p' : (f a , g a') == (b , b')}
(q : p == p')
→ ↓-□=cst-out (↓-□=cst-in q) == q
↓-□=cst-β {a} {a'} {p' = idp} idp = {!!} ∙ !-inv-l (□-glue-β f g a a')
□-hfiber-to : (b : B) (b' : B')
→ hfiber (f □ g) (b , b') → hfiber f b * hfiber g b'
□-hfiber-to b b' = uncurry $ Pushout-elim
(λ { (_ , a') → λ p → right (a' , snd×= p) })
(λ { (a , _) → λ p → left (a , fst×= p) }) {!!}
--
-- Here is the main theorem
--
□-hfiber : (b : B) (b' : B')
→ hfiber (f □ g) (b , b') ≃ hfiber f b * hfiber g b'
□-hfiber b b' = {!!}
| {
"alphanum_fraction": 0.3656030287,
"avg_line_length": 29.8225806452,
"ext": "agda",
"hexsha": "298bf8bb9386e6c32b50edfa4f53c4bed2cea165",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/stash/modalities/PushoutProduct.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/stash/modalities/PushoutProduct.agda",
"max_line_length": 90,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/stash/modalities/PushoutProduct.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 901,
"size": 1849
} |
module DivMod where
open import IO
open import Data.Nat
open import Data.Nat.DivMod
open import Coinduction
open import Data.String
open import Data.Fin
g : ℕ
g = 7 div 5
k : ℕ
k = toℕ (7 mod 5)
showNat : ℕ → String
showNat zero = "Z"
showNat (suc x) = "S (" ++ showNat x ++ ")"
main = run (♯ (putStrLn (showNat g)) >> ♯ (putStrLn (showNat k)))
| {
"alphanum_fraction": 0.66,
"avg_line_length": 16.6666666667,
"ext": "agda",
"hexsha": "30693668f6ff0ac8a22ff5df17643f35f3d862b0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "56928ff709dcb931cb9a48c4790e5ed3739e3032",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "andersk/agda",
"max_forks_repo_path": "test/Compiler/with-stdlib/DivMod.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "56928ff709dcb931cb9a48c4790e5ed3739e3032",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "andersk/agda",
"max_issues_repo_path": "test/Compiler/with-stdlib/DivMod.agda",
"max_line_length": 65,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "04941fb75be06039b0085ab047117625294cbc99",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "andreasabel/agda-with-old-branches",
"max_stars_repo_path": "test/Compiler/with-stdlib/DivMod.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 124,
"size": 350
} |
{-# OPTIONS --prop #-}
True : Prop
True = {P : Prop} → P → P
-- Current error (incomprehensible):
-- Set₁ != Set
-- when checking that the expression {P : Prop} → P → P has type Prop
| {
"alphanum_fraction": 0.6054054054,
"avg_line_length": 20.5555555556,
"ext": "agda",
"hexsha": "f56cf3e5610875fe2c29b5b107d528074a87a533",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/Fail/Prop-NoImpredicativity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/Prop-NoImpredicativity.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/Prop-NoImpredicativity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 55,
"size": 185
} |
module README where
------------------------------------------------------------------------
-- The Agda standard library, version 0.9
--
-- Author: Nils Anders Danielsson, with contributions from Andreas
-- Abel, Stevan Andjelkovic, Jean-Philippe Bernardy, Peter Berry,
-- Joachim Breitner, Samuel Bronson, Daniel Brown, James Chapman,
-- Liang-Ting Chen, Dominique Devriese, Dan Doel, Érdi Gergő, Helmut
-- Grohne, Simon Foster, Liyang Hu, Patrik Jansson, Alan Jeffrey,
-- Pepijn Kokke, Evgeny Kotelnikov, Eric Mertens, Darin Morrison,
-- Guilhem Moulin, Shin-Cheng Mu, Ulf Norell, Noriyuki OHKAWA, Nicolas
-- Pouillard, Andrés Sicard-Ramírez and Noam Zeilberger.
------------------------------------------------------------------------
-- This version of the library has been tested using Agda 2.4.2.1.
-- Note that no guarantees are currently made about forwards or
-- backwards compatibility, the library is still at an experimental
-- stage.
-- To make use of the library, add the path to the library’s root
-- directory (src) to the Agda search path, either using the
-- --include-path flag or by customising the Emacs mode variable
-- agda2-include-dirs (M-x customize-group RET agda2 RET).
-- To compile the library using the MAlonzo compiler you first need to
-- install some supporting Haskell code, for instance as follows:
--
-- cd ffi
-- cabal install
--
-- Currently the library does not support the Epic or JavaScript
-- compiler backends.
-- Contributions to this library are welcome (but to avoid wasted work
-- it is suggested that you discuss large changes before implementing
-- them). Please send contributions in the form of git pull requests,
-- patch bundles or ask for commmit rights to the repository. It is
-- appreciated if every patch contains a single, complete change, and
-- if the coding style used in the library is adhered to.
------------------------------------------------------------------------
-- Module hierarchy
------------------------------------------------------------------------
-- The top-level module names of the library are currently allocated
-- as follows:
--
-- • Algebra
-- Abstract algebra (monoids, groups, rings etc.), along with
-- properties needed to specify these structures (associativity,
-- commutativity, etc.), and operations on and proofs about the
-- structures.
-- • Category
-- Category theory-inspired idioms used to structure functional
-- programs (functors and monads, for instance).
-- • Coinduction
-- Support for coinduction.
-- • Data
-- Data types and properties about data types.
-- • Function
-- Combinators and properties related to functions.
-- • Foreign
-- Related to the foreign function interface.
-- • Induction
-- A general framework for induction (includes lexicographic and
-- well-founded induction).
-- • IO
-- Input/output-related functions.
-- • Irrelevance
-- Definitions related to (proscriptive) irrelevance.
-- • Level
-- Universe levels.
-- • Record
-- An encoding of record types with manifest fields and "with".
-- • Reflection
-- Support for reflection.
-- • Relation
-- Properties of and proofs about relations (mostly homogeneous
-- binary relations).
-- • Size
-- Sizes used by the sized types mechanism.
-- • Universe
-- A definition of universes.
------------------------------------------------------------------------
-- A selection of useful library modules
------------------------------------------------------------------------
-- Note that module names in source code are often hyperlinked to the
-- corresponding module. In the Emacs mode you can follow these
-- hyperlinks by typing M-. or clicking with the middle mouse button.
-- • Some data types
import Data.Bool -- Booleans.
import Data.Char -- Characters.
import Data.Empty -- The empty type.
import Data.Fin -- Finite sets.
import Data.List -- Lists.
import Data.Maybe -- The maybe type.
import Data.Nat -- Natural numbers.
import Data.Product -- Products.
import Data.Stream -- Streams.
import Data.String -- Strings.
import Data.Sum -- Disjoint sums.
import Data.Unit -- The unit type.
import Data.Vec -- Fixed-length vectors.
-- • Some types used to structure computations
import Category.Functor -- Functors.
import Category.Applicative -- Applicative functors.
import Category.Monad -- Monads.
-- • Equality
-- Propositional equality:
import Relation.Binary.PropositionalEquality
-- Convenient syntax for "equational reasoning" using a preorder:
import Relation.Binary.PreorderReasoning
-- Solver for commutative ring or semiring equalities:
import Algebra.RingSolver
-- • Properties of functions, sets and relations
-- Monoids, rings and similar algebraic structures:
import Algebra
-- Negation, decidability, and similar operations on sets:
import Relation.Nullary
-- Properties of homogeneous binary relations:
import Relation.Binary
-- • Induction
-- An abstraction of various forms of recursion/induction:
import Induction
-- Well-founded induction:
import Induction.WellFounded
-- Various forms of induction for natural numbers:
import Induction.Nat
-- • Support for coinduction
import Coinduction
-- • IO
import IO
------------------------------------------------------------------------
-- Record hierarchies
------------------------------------------------------------------------
-- When an abstract hierarchy of some sort (for instance semigroup →
-- monoid → group) is included in the library the basic approach is to
-- specify the properties of every concept in terms of a record
-- containing just properties, parameterised on the underlying
-- operations, sets etc.:
--
-- record IsSemigroup {A} (≈ : Rel A) (∙ : Op₂ A) : Set where
-- open FunctionProperties ≈
-- field
-- isEquivalence : IsEquivalence ≈
-- assoc : Associative ∙
-- ∙-cong : ∙ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
--
-- More specific concepts are then specified in terms of the simpler
-- ones:
--
-- record IsMonoid {A} (≈ : Rel A) (∙ : Op₂ A) (ε : A) : Set where
-- open FunctionProperties ≈
-- field
-- isSemigroup : IsSemigroup ≈ ∙
-- identity : Identity ε ∙
--
-- open IsSemigroup isSemigroup public
--
-- Note here that open IsSemigroup isSemigroup public ensures that the
-- fields of the isSemigroup record can be accessed directly; this
-- technique enables the user of an IsMonoid record to use underlying
-- records without having to manually open an entire record hierarchy.
-- This is not always possible, though. Consider the following definition
-- of preorders:
--
-- record IsPreorder {A : Set}
-- (_≈_ : Rel A) -- The underlying equality.
-- (_∼_ : Rel A) -- The relation.
-- : Set where
-- field
-- isEquivalence : IsEquivalence _≈_
-- -- Reflexivity is expressed in terms of an underlying equality:
-- reflexive : _≈_ ⇒ _∼_
-- trans : Transitive _∼_
--
-- module Eq = IsEquivalence isEquivalence
--
-- ...
--
-- The Eq module in IsPreorder is not opened publicly, because it
-- contains some fields which clash with fields or other definitions
-- in IsPreorder.
-- Records packing up properties with the corresponding operations,
-- sets, etc. are sometimes also defined:
--
-- record Semigroup : Set₁ where
-- infixl 7 _∙_
-- infix 4 _≈_
-- field
-- Carrier : Set
-- _≈_ : Rel Carrier
-- _∙_ : Op₂ Carrier
-- isSemigroup : IsSemigroup _≈_ _∙_
--
-- open IsSemigroup isSemigroup public
--
-- setoid : Setoid
-- setoid = record { isEquivalence = isEquivalence }
--
-- record Monoid : Set₁ where
-- infixl 7 _∙_
-- infix 4 _≈_
-- field
-- Carrier : Set
-- _≈_ : Rel Carrier
-- _∙_ : Op₂ Carrier
-- ε : Carrier
-- isMonoid : IsMonoid _≈_ _∙_ ε
--
-- open IsMonoid isMonoid public
--
-- semigroup : Semigroup
-- semigroup = record { isSemigroup = isSemigroup }
--
-- open Semigroup semigroup public using (setoid)
--
-- Note that the Monoid record does not include a Semigroup field.
-- Instead the Monoid /module/ includes a "repackaging function"
-- semigroup which converts a Monoid to a Semigroup.
-- The above setup may seem a bit complicated, but we think it makes the
-- library quite easy to work with, while also providing enough
-- flexibility.
------------------------------------------------------------------------
-- More documentation
------------------------------------------------------------------------
-- Some examples showing where the natural numbers/integers and some
-- related operations and properties are defined, and how they can be
-- used:
import README.Nat
import README.Integer
-- Some examples showing how the AVL tree module can be used.
import README.AVL
-- An example showing how the Record module can be used.
import README.Record
-- An example showing how the case expression can be used.
import README.Case
------------------------------------------------------------------------
-- Core modules
------------------------------------------------------------------------
-- Some modules have names ending in ".Core". These modules are
-- internal, and have (mostly) been created to avoid mutual recursion
-- between modules. They should not be imported directly; their
-- contents are reexported by other modules.
------------------------------------------------------------------------
-- All library modules
------------------------------------------------------------------------
-- For short descriptions of every library module, see Everything:
import Everything
-- Note that the Everything module is generated automatically. If you
-- have downloaded the library from its Git repository and want to
-- type check README then you can (try to) construct Everything by
-- running "cabal install && GenerateEverything".
-- Note that all library sources are located under src or ffi. The
-- modules README, README.* and Everything are not really part of the
-- library, so these modules are located in the top-level directory
-- instead.
| {
"alphanum_fraction": 0.6302994944,
"avg_line_length": 34.0529801325,
"ext": "agda",
"hexsha": "400220cd1e40fb9157e24120ffb12b40b22baecc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/README.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/README.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/README.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2267,
"size": 10284
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Example use case for a fresh list: sorted list
------------------------------------------------------------------------
module README.Data.List.Fresh where
open import Data.Nat
open import Data.List.Base
open import Data.List.Fresh
open import Data.List.Relation.Unary.AllPairs as AllPairs using (AllPairs)
open import Data.Product
open import Relation.Nary using (⌊_⌋; fromWitness)
-- A sorted list of natural numbers can be seen as a fresh list
-- where the notion of freshness is being smaller than all the
-- existing entries
SortedList : Set
SortedList = List# ℕ _<_
_ : SortedList
_ = cons 0 (cons 1 (cons 3 (cons 10 [] _)
(s≤s (s≤s (s≤s (s≤s z≤n))) , _))
(s≤s (s≤s z≤n) , s≤s (s≤s z≤n) , _))
(s≤s z≤n , s≤s z≤n , s≤s z≤n , _)
-- Clearly, writing these by hand can pretty quickly become quite cumbersome
-- Luckily, if the notion of freshness we are using is decidable, we can
-- make most of the proofs inferrable by using the erasure of the relation
-- rather than the relation itself!
-- We call this new type *I*SortedList because all the proofs will be implicit.
ISortedList : Set
ISortedList = List# ℕ ⌊ _<?_ ⌋
-- The same example is now much shorter. It looks pretty much like a normal list
-- except that we know for sure that it is well ordered.
ins : ISortedList
ins = 0 ∷# 1 ∷# 3 ∷# 10 ∷# []
-- Indeed we can extract the support list together with a proof that it
-- is ordered thanks to the combined action of toList converting a fresh
-- list to a pair of a list and a proof and fromWitness which "unerases"
-- a proof.
ns : List ℕ
ns = proj₁ (toList ins)
sorted : AllPairs _<_ ns
sorted = AllPairs.map (fromWitness _<_ _<?_) (proj₂ (toList ins))
-- See the following module for an applied use-case of fresh lists
open import README.Data.Trie.NonDependent
| {
"alphanum_fraction": 0.6563968668,
"avg_line_length": 33.0172413793,
"ext": "agda",
"hexsha": "ef569440613f6381ea4596e06a29021a541ed4f8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Data/List/Fresh.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Data/List/Fresh.agda",
"max_line_length": 80,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Data/List/Fresh.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 534,
"size": 1915
} |
module IID-Proof where
import Logic.ChainReasoning as Chain
open import LF
open import Identity
open import IID
open import IIDr
open import IID-Proof-Setup
open import DefinitionalEquality
Ug : {I : Set} -> OPg I -> I -> Set
Ug γ i = Ur (ε γ) i
introg : {I : Set}(γ : OPg I)(a : Args γ (Ug γ)) -> Ug γ (index γ (Ug γ) a)
introg γ a = intror (g→rArgs γ (Ug γ) a)
-- The elimination rule.
elim-Ug : {I : Set}(γ : OPg I)(C : (i : I) -> Ug γ i -> Set) ->
((a : Args γ (Ug γ)) -> IndHyp γ (Ug γ) C a -> C (index γ (Ug γ) a) (introg γ a)) ->
(i : I)(u : Ug γ i) -> C i u
elim-Ug {I} γ C m = elim-Ur (ε γ) C step -- eliminate the restricted type
where
U = Ug γ
-- we've got a method to take care of inductive occurrences for general families (m),
-- but we need something to handle the restricted encoding.
step : (i : I)(a : rArgs (ε γ) U i) -> IndHyp (ε γ i) U C a -> C i (intror a)
step i a h = conclusion
where
-- First convert the argument to a general argument
a' : Args γ U
a' = r→gArgs γ U i a
-- Next convert our induction hypothesis to an hypothesis for a general family
h' : IndHyp γ U C a'
h' = r→gIndHyp γ U C i a h
-- Our method m can be applied to the converted argument and induction
-- hypothesis. This gets us almost all the way.
lem₁ : C (index γ U a') (intror (g→rArgs γ U a'))
lem₁ = m a' h'
-- Now we just have to use the fact that the computed index is the same
-- as our input index, and that g→rArgs ∘ r→gArgs is the identity.
-- r←→gArgs-subst will perform the elimination of the identity proof.
conclusion : C i (intror a)
conclusion = r←→gArgs-subst γ U (\i a -> C i (intror a)) i a lem₁
open module Chain-≡ = Chain.Poly.Heterogenous _≡_ (\x -> refl-≡) trans-≡
-- What remains is to prove that the reduction behaviour of the elimination
-- rule is the correct one. I.e that
-- elim-Ug C m (index a) (introg a) ≡ m a (induction C (elim-Ug C m) a)
elim-Ug-reduction :
{I : Set}(γ : OPg I)(C : (i : I) -> Ug γ i -> Set)
(m : (a : Args γ (Ug γ)) -> IndHyp γ (Ug γ) C a -> C (index γ (Ug γ) a) (introg γ a))
(a : Args γ (Ug γ)) ->
elim-Ug γ C m (index γ (Ug γ) a) (introg γ a)
≡ m a (induction γ (Ug γ) C (elim-Ug γ C m) a)
elim-Ug-reduction γ C m a =
chain> elim-Ug γ C m (index γ (Ug γ) a) (introg γ a)
-- Unfolding the definition of elim-Ug we get
=== r←→gArgs-subst γ U C' i ra
(m gra (r→gih \hyp -> elim-Ug γ C m (r-ind-index hyp) (r-ind-value hyp)))
by refl-≡
-- Now (and this is the key step), since we started with a value in the
-- generalised type we know that the identity proof is refl, so
-- r←→gArgs-subst is the identity.
=== m gra (r→gih \hyp -> elim-Ug γ C m (r-ind-index hyp) (r-ind-value hyp))
by r←→gArgs-subst-identity γ U C' a _
-- We use congruence to prove separately that gra ≡ a and that the computed
-- induction hypothesis is the one we need.
=== m a (\hyp -> elim-Ug γ C m (g-ind-index hyp) (g-ind-value hyp))
by cong₂-≡' m (g←→rArgs-identity γ U a)
-- The induction hypotheses match
(η-≡ \hyp₀ hyp₁ hyp₀=hyp₁ ->
chain> r→gih (\hyp -> elim-Ug γ C m (r-ind-index hyp) (r-ind-value hyp)) hyp₀
-- Unfolding the definition of r→gih we get
=== g→rIndArg-subst γ U C i ra hyp₀
(elim-Ug γ C m (r-ind-index (g→rIndArg γ U i ra hyp₀))
(r-ind-value (g→rIndArg γ U i ra hyp₀))
)
by refl-≡
-- g→rIndArg-subst is definitionally the identity.
=== elim-Ug γ C m (r-ind-index (g→rIndArg γ U i ra hyp₀))
(r-ind-value (g→rIndArg γ U i ra hyp₀))
by g→rIndArg-subst-identity γ U C i ra hyp₀ _
-- We can turn the restricted inductive occurrence into a
-- generalised occurrence.
=== elim-Ug γ C m (IndIndex γ U gra hyp₀) (Ind γ U gra hyp₀)
by g→rIndArg-subst γ U
(\j b -> elim-Ug γ C m (r-ind-index (g→rIndArg γ U i ra hyp₀))
(r-ind-value (g→rIndArg γ U i ra hyp₀))
≡ elim-Ug γ C m j b
) i ra hyp₀ refl-≡
-- Finally we have gra ≡ a and hyp₀ ≡ hyp₁ so we're done.
=== elim-Ug γ C m (IndIndex γ U a hyp₁) (Ind γ U a hyp₁)
by cong₂-≡' (\a hyp -> elim-Ug γ C m (IndIndex γ U a hyp)
(Ind γ U a hyp)
) (g←→rArgs-identity γ U a) hyp₀=hyp₁
)
-- Writing it in a nicer way:
=== m a (induction γ (Ug γ) C (elim-Ug γ C m) a)
by refl-≡
where
U = Ug γ
i = index γ U a
ra = g→rArgs γ U a
gra = r→gArgs γ U i ra
r→gih = r→gIndHyp γ U C i ra
r-ind-index = IndIndex (ε γ i) (Ur (ε γ)) ra
r-ind-value = Ind (ε γ i) (Ur (ε γ)) ra
g-ind-index = IndIndex γ U a
g-ind-value = Ind γ U a
C' = \i a -> C i (intror a)
| {
"alphanum_fraction": 0.5387153115,
"avg_line_length": 37.6131386861,
"ext": "agda",
"hexsha": "a3fbb6687c87a199d942d927736c299f7a03d15a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof.agda",
"max_line_length": 94,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/IID-Proof.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1703,
"size": 5153
} |
module CTL.Proof.AG where
open import CTL.Modalities.AG
open import FStream.Core
open import FStream.FVec
open import Library
-- TODO Maybe beautify syntax here and elsewhere
data proofAG' {ℓ₁ ℓ₂} {C : Container ℓ₁} : {n : ℕ} →
(props : FVec' C (Set ℓ₂) n) → Set (ℓ₁ ⊔ ℓ₂) where
[]AG' : proofAG' FNil'
_▻AG'_ : ∀ {prop : Set ℓ₂} {n} {props : ⟦ C ⟧ (FVec' C (Set ℓ₂) n)} →
prop → A (fmap proofAG' props) → proofAG' (FCons' prop props)
_pre⟨_▻AG' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {m n}
{props : FVec' C (Set ℓ₂) m} {props' : FVec' C (Set ℓ₂) (suc n)}
→ proofAG' props → proofAG' props'
→ AG' {i} (props pre⟨ props' ▻⋯')
nowA ([]AG' pre⟨ (proof ▻AG' _) ▻AG') = proof
laterA ([]AG' pre⟨ (proof ▻AG' proofs) ▻AG') p =
(proofs p) pre⟨ (proof ▻AG' proofs) ▻AG'
nowA ((proof ▻AG' _) pre⟨ _ ▻AG') = proof
laterA ((_ ▻AG' proofs) pre⟨ proofs' ▻AG') p =
(proofs p) pre⟨ proofs' ▻AG'
⟨_▻AG' : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} {n}
{props : FVec' C (Set ℓ₂) (suc n)}
→ proofAG' props → AG' {i} (FNil' pre⟨ props ▻⋯')
⟨ proofs ▻AG' = []AG' pre⟨ proofs ▻AG'
data proofAG {ℓ₁ ℓ₂} {C : Container ℓ₁} : {n : ℕ} →
(props : FVec C (Set ℓ₂) n) → Set (ℓ₁ ⊔ ℓ₂) where
[]AG : proofAG FNil
ConsAG : ∀ {n} {props : ⟦ C ⟧ (Set ℓ₂ × FVec C (Set ℓ₂) n)} →
A (fmap (λ x → (proj₁ x) × (proofAG (proj₂ x))) props) → proofAG (FCons props)
-- TODO This constructor type signature is an abomination and should be somehow rewritten with proofAG, but how??
-- TODO props should be of type FVec C (Set ℓ₂) (suc n) maybe? Or is it easier this way?
mapAGlemma : ∀ {i} {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁}
{A : Set ℓ₂} {f : A → Set ℓ₃} {m n} →
(v : FVec C A m) →
(v' : FVec C A (suc n)) →
AG {i} ((vmap f v pre⟨ vmap f v' ▻⋯)) →
AG {i} (map f (v pre⟨ v' ▻⋯))
nowA (mapAGlemma FNil (FCons x) proofs p) = nowA (proofs p) -- TODO Why can't I join this with the next line?
nowA (mapAGlemma (FCons x) v proofs p) = nowA (proofs p)
laterA (mapAGlemma FNil (FCons (shape , vals)) proofs p) p₁ =
mapAGlemma (proj₂ (vals p)) (FCons (shape , vals)) (laterA (proofs p)) p₁
laterA (mapAGlemma (FCons (shape , vals)) v' proofs p) p₁ =
mapAGlemma (proj₂ (vals p)) v' (laterA (proofs p)) p₁
mapAG : ∀ {i} {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁}
{A : Set ℓ₂} {f : A → Set ℓ₃} {m n} →
{v : FVec C A m} →
{v' : FVec C A (suc n)} →
AG {i} ((vmap f v pre⟨ vmap f v' ▻⋯)) →
AG {i} (map f (v pre⟨ v' ▻⋯))
mapAG {v = v} {v' = v'} = mapAGlemma v v'
_pre⟨_▻AG : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} {m n}
{props : FVec C (Set ℓ₂) m} {props' : FVec C (Set ℓ₂) (suc n)}
→ proofAG props
→ proofAG props'
→ AG {i} (props pre⟨ props' ▻⋯)
nowA ( ([]AG pre⟨ (ConsAG proofs) ▻AG) p) = proj₁ (proofs p)
laterA ( ([]AG pre⟨ (ConsAG proofs) ▻AG) p) p₁ =
(proj₂ (proofs p) pre⟨ ConsAG proofs ▻AG) p₁
nowA ( ((ConsAG proofs) pre⟨ _ ▻AG) p) = proj₁ (proofs p)
laterA ( ((ConsAG proofs) pre⟨ proofs' ▻AG) p) p₁ =
(proj₂ (proofs p) pre⟨ proofs' ▻AG) p₁
-- The p are the inputs (positions) from the side effects.
mapPreCycle : ∀ {i} {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂}
{f : A → Set ℓ₃} {m n}
→ (v : FVec C A m) → (v' : FVec C A (suc n))
→ proofAG (vmap f v) → proofAG (vmap f v')
→ AG {i} (map f (v pre⟨ v' ▻⋯))
nowA (mapPreCycle FNil (FCons x) []AG (ConsAG proofs) p)
with proofs p
... | proof , proofs' = proof
laterA (mapPreCycle FNil (FCons (shape , vals)) []AG (ConsAG proofs) p) p'
with proofs p
... | proof , proofs'
with vals p
... | a , v = mapPreCycle v (FCons (shape , vals)) proofs' (ConsAG proofs) p'
nowA (mapPreCycle (FCons x) v' (ConsAG proofs) proofs' p) = proj₁ (proofs p)
laterA (mapPreCycle (FCons (shape , vals)) (FCons x) (ConsAG proofs) proofs' p) p₁
with proofs p
... | proof , proofs''
with vals p
... | a , v = mapPreCycle v (FCons x) proofs'' proofs' p₁
infixr 5 _▻AG_
infix 6 ⟨_▻AG
infix 7 _⟩AG
⟨_▻AG : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} {n}
→ {props : FVec C (Set ℓ₂) (suc n)}
→ proofAG props
→ AG {i} (FNil pre⟨ props ▻⋯)
⟨_▻AG = []AG pre⟨_▻AG
_⟩AG : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {prop : ⟦ C ⟧ (Set ℓ₂)}
→ A prop
→ proofAG (FCons (fmap (_, FNil) prop))
x ⟩AG = ConsAG (λ p → x p , []AG)
_▻AG_ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁}
{prop : ⟦ C ⟧ (Set ℓ₂)} {n} {props : FVec C (Set ℓ₂) n}
→ A prop → proofAG props
→ proofAG (FCons (fmap (_, props) prop))
x ▻AG v = ConsAG (λ p → (x p) , v)
| {
"alphanum_fraction": 0.5387437945,
"avg_line_length": 37.9754098361,
"ext": "agda",
"hexsha": "a4f211dd8cb2a03ae9200d36aba58163dd0150ce",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "CTL/Proof/AG.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "CTL/Proof/AG.agda",
"max_line_length": 115,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "CTL/Proof/AG.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 1983,
"size": 4633
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module LogicalFramework.Equality where
module LF where
postulate
D : Set
_≡_ : D → D → Set
refl : ∀ {x} → x ≡ x
subst : (A : D → Set) → ∀ {x y} → x ≡ y → A x → A y
sym : ∀ {x y} → x ≡ y → y ≡ x
sym {x} h = subst (λ t → t ≡ x) h refl
trans : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z
trans {x} h₁ h₂ = subst (_≡_ x) h₂ h₁
module Inductive where
open import Common.FOL.FOL-Eq
open import Common.FOL.Relation.Binary.EqReasoning
sym-er : ∀ {x y} → x ≡ y → y ≡ x
sym-er {x} h = subst (λ t → t ≡ x) h refl
trans-er : ∀ {x y z} → x ≡ y → y ≡ z → x ≡ z
trans-er {x} h₁ h₂ = subst (_≡_ x) h₂ h₁
-- NB. The proofs of sym and trans by pattern matching are in the
-- module Common.FOL.Relation.Binary.PropositionalEquality.
| {
"alphanum_fraction": 0.5310492505,
"avg_line_length": 27.4705882353,
"ext": "agda",
"hexsha": "f896e4ada0c89f08d4e34c498c6359afe26f6e98",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/thesis/report/LogicalFramework/Equality.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/thesis/report/LogicalFramework/Equality.agda",
"max_line_length": 67,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/thesis/report/LogicalFramework/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 349,
"size": 934
} |
------------------------------------------------------------------------------
-- Properties for the relation LTC
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.List.WF-Relation.LT-Cons.PropertiesI where
open import FOTC.Base
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesI
open import FOTC.Data.List.WF-Relation.LT-Cons
open import FOTC.Data.List.WF-Relation.LT-Length
------------------------------------------------------------------------------
-- LTC ⊆ LTL.
LTC→LTL : ∀ {xs ys} → List xs → LTC xs ys → LTL xs ys
LTC→LTL Lxs (x , refl) = lg-x<lg-x∷xs x Lxs
| {
"alphanum_fraction": 0.478054567,
"avg_line_length": 36.652173913,
"ext": "agda",
"hexsha": "8219f63584a8b80d76ee3f27bd46b5d936d63360",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons/PropertiesI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons/PropertiesI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/List/WF-Relation/LT-Cons/PropertiesI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 187,
"size": 843
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.List.Relation.Binary.Subset.Setoid.Properties directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Subset.Setoid.Properties where
open import Data.List.Relation.Binary.Subset.Setoid.Properties public
{-# WARNING_ON_IMPORT
"Data.List.Relation.Subset.Setoid.Properties was deprecated in v1.0.
Use Data.List.Relation.Binary.Subset.Setoid.Properties instead."
#-}
| {
"alphanum_fraction": 0.5911330049,
"avg_line_length": 33.8333333333,
"ext": "agda",
"hexsha": "d0ef874b65a37ec73bb7395508fbed4762b9c004",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Subset/Setoid/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Subset/Setoid/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Subset/Setoid/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 108,
"size": 609
} |
module _ where
module M₁ (_ : Set) where
postulate
A : Set
record R : Set₁ where
field
A : Set
module M₂ (r : R) where
open M₁ (R.A r) public
module Unused (A : Set) (_ : Set) where
open M₁ A public
postulate
r : R
open M₂ r
postulate
P : A → Set
data D : Set where
c : D
F : D → Set
F c = A
_ : ∀ x → F x → Set
_ = λ _ r → P r
| {
"alphanum_fraction": 0.5592286501,
"avg_line_length": 10.0833333333,
"ext": "agda",
"hexsha": "c7b55ecd6bacf1fb6d27a0ad1291b4dc1337b30c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue5294.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue5294.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue5294.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 142,
"size": 363
} |
{-# OPTIONS --without-K #-}
module PropsAsTypes where
data Σ {I : Set} (X : I → Set) : Set where
_,_ : (i : I) → X i → Σ X
drec-Σ : {I : Set} {X : I → Set} {A : Σ X → Set} →
((i : I) → (x : X i) → A (i , x)) →
(u : Σ X) → A u
drec-Σ f (i , x) = f i x
π₁ : {I : Set} {X : I → Set} → Σ X → I
π₁ = drec-Σ (λ i x → i)
π₂ : {I : Set} {X : I → Set} → (u : Σ X) → X (π₁ u)
π₂ = drec-Σ (λ i x → x)
_×_ : Set → Set → Set
A × B = Σ {A} λ _ → B
Prop = Set
Pred : Set → Set₁
Pred A = A → Prop
Rel : Set → Set₁
Rel A = A → A → Prop
_⊆_ : {A : Set} → Pred A → Pred A → Prop
P ⊆ Q = ∀ x → P x → Q x
_⊑_ : {A : Set} → Rel A → Rel A → Prop
R ⊑ S = ∀ {x y} → R x y → S x y
_∧_ : Prop → Prop → Prop
A ∧ B = A × B
∧-elim₁ : {A₁ A₂ : Prop} → A₁ ∧ A₂ → A₁
∧-elim₁ = π₁
∧-elim₂ : {A₁ A₂ : Prop} → A₁ ∧ A₂ → A₂
∧-elim₂ = π₂
∧-intro : {A₁ A₂ : Prop} → A₁ → A₂ → A₁ ∧ A₂
∧-intro a₁ a₂ = (a₁ , a₂)
∃ : {X : Set} → (A : X → Prop) → Prop
∃ = Σ
∃-syntax : ∀ X → (X → Prop) → Prop
∃-syntax X A = ∃ A
syntax ∃-syntax X (λ x → A) = ∃[ x ∈ X ] A
∃-intro : {X : Set} {A : X → Prop} → (x : X) → A x → ∃[ x ∈ X ] (A x)
∃-intro x a = (x , a)
∃-elim : {X : Set} {A : X → Prop} {B : Prop} →
((x : X) → A x → B) → ∃[ x ∈ X ] (A x) → B
∃-elim = drec-Σ
∃₂-elim : {X Y : Set} {A : X → Prop} {B : Y → Prop} {C : Prop} →
((x : X) (y : Y) → A x → B y → C) →
∃[ x ∈ X ] (A x) → ∃[ x ∈ Y ] (B x) → C
∃₂-elim f p q = ∃-elim (λ x p' → ∃-elim (λ y q' → f x y p' q') q) p
infix 3 _⇔_
_⇔_ : Prop → Prop → Prop
A ⇔ B = (A → B) ∧ (B → A)
equivalence : {A B : Prop} → (A → B) → (B → A) → A ⇔ B
equivalence = ∧-intro
data ⊥ : Prop where
absurd : ⊥ → ⊥
⊥-elim : {A : Prop} → ⊥ → A
⊥-elim (absurd p) = ⊥-elim p
¬ : Prop → Prop
¬ A = A → ⊥
data ⊤ : Prop where
∗ : ⊤
open import Data.Nat
open import Relation.Binary.PropositionalEquality as PE
IsSuc : ℕ → Set
IsSuc zero = ⊥
IsSuc (suc _) = ⊤
zero-not-suc : ∀ n → ¬ (suc n ≡ 0)
zero-not-suc n p = subst IsSuc p ∗
-- Easier in Agda with absurd elimination
-- suc-injective : ∀ n → ¬ (suc n ≡ n)
-- suc-injective n ()
drec-≡ : {X : Set} → {C : (x y : X) → x ≡ y → Set} →
((x : X) → C x x refl) →
∀ x y → (p : x ≡ y) → C x y p
drec-≡ f x .x refl = f x
| {
"alphanum_fraction": 0.4320603908,
"avg_line_length": 21.2452830189,
"ext": "agda",
"hexsha": "398b9c03e763fb5106959d89355d8d2e9ea0b5ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/Lecture/PropsAsTypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/Lecture/PropsAsTypes.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/Lecture/PropsAsTypes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1112,
"size": 2252
} |
module RecordUpdateSyntax where
data ⊤ : Set where
tt : ⊤
record R : Set where
field
a b : ⊤
test : R
test = record {!!} { a = tt }
| {
"alphanum_fraction": 0.5804195804,
"avg_line_length": 11.9166666667,
"ext": "agda",
"hexsha": "e1fb82794f4fc06470a0453168ad426419e8bd73",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/RecordUpdateSyntax.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/RecordUpdateSyntax.agda",
"max_line_length": 31,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/RecordUpdateSyntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 49,
"size": 143
} |
------------------------------------------------------------------------------
-- Distributive laws on a binary operation: Lemma 4
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DistributiveLaws.Lemma4-ATP where
open import DistributiveLaws.Base
------------------------------------------------------------------------------
postulate lemma-4a : ∀ x y z → ((x · x ) · y) · z ≡ (x · y) · z
{-# ATP prove lemma-4a #-}
postulate lemma-4b : ∀ x y z → (x · (y · (z · z))) ≡ x · (y · z)
{-# ATP prove lemma-4b #-}
| {
"alphanum_fraction": 0.3696551724,
"avg_line_length": 34.5238095238,
"ext": "agda",
"hexsha": "bc76ae2784ba92d56c07ec3db90378153af7d5c9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/DistributiveLaws/Lemma4-ATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/DistributiveLaws/Lemma4-ATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/DistributiveLaws/Lemma4-ATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 152,
"size": 725
} |
module Container.Bag where
open import Prelude
Bag : Set → Set
Bag A = List (Nat × A)
FunctorBag : Functor Bag
fmap {{FunctorBag}} f b = map (second f) b
union : {A : Set} {{OrdA : Ord A}} → Bag A → Bag A → Bag A
union a [] = a
union [] b = b
union ((i , x) ∷ a) ((j , y) ∷ b) with compare x y
... | less _ = (i , x) ∷ union a ((j , y) ∷ b)
... | equal _ = (i + j , x) ∷ union a b
... | greater _ = (j , y) ∷ union ((i , x) ∷ a) b
| {
"alphanum_fraction": 0.5124716553,
"avg_line_length": 23.2105263158,
"ext": "agda",
"hexsha": "d9a3616c8a9e0719be7a4ab31c6edcc0cd23475c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Container/Bag.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Container/Bag.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Container/Bag.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 177,
"size": 441
} |
{-# OPTIONS --rewriting #-}
data _==_ {A : Set} (a : A) : A → Set where
idp : a == a
{-# BUILTIN REWRITE _==_ #-}
ap : {A B : Set} (f : A → B) {x y : A} →
x == y → f x == f y
ap f idp = idp
{- Circle -}
postulate
Circle : Set
base : Circle
loop : base == base
module _ (P : Set) (base* : P) (loop* : base* == base*) where
postulate
Circle-rec : Circle → P
Circle-base-recβ : Circle-rec base == base*
{-# REWRITE Circle-base-recβ #-}
f : Circle → Circle
f = Circle-rec Circle base loop
postulate
rewr : ap (λ z → f (f z)) loop == loop
{-# REWRITE rewr #-}
test : ap (λ z → f (f z)) loop == loop
test = idp
| {
"alphanum_fraction": 0.5400313972,
"avg_line_length": 19.303030303,
"ext": "agda",
"hexsha": "87be87163d732e23464c8847e20309b0e61c1020",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue1563-6.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue1563-6.agda",
"max_line_length": 61,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue1563-6.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 229,
"size": 637
} |
-- Alternating addition (Also called the Calkin-Wilf tree representation of the rationals).
-- One bijective representation of ℚ. That is, every rational number is appearing exactly once in this representation (TODO: Some proof would be nice).
module Numeral.Rational.AlterAdd where
import Lvl
open import Data
open import Data.Boolean
open import Logic.Propositional
open import Numeral.Natural as ℕ
import Numeral.Natural.Oper as ℕ
import Numeral.Natural.Oper.Comparisons as ℕ
open import Numeral.PositiveInteger as ℕ₊
open import Numeral.PositiveInteger.Oper as ℕ₊
open import Numeral.Integer using (ℤ)
open import Syntax.Number
open import Type
module Test1 where
data Tree : ℕ₊ → ℕ₊ → Type{Lvl.𝟎} where
intro : Tree(1)(1)
left : ∀{x y} → Tree(x)(y) → Tree(x) (y ℕ₊.+ x)
right : ∀{x y} → Tree(x)(y) → Tree(x ℕ₊.+ y) (y)
-- Tree-cancellationₗ : ∀{x₁ x₂ y} → (Tree x₁ y ≡ Tree x₂ y) → (x₁ ≡ x₂)
{- TODO: Is there an algorithm that determines the path to every rational in this tree? Maybe the division algorithm:
R6 (14928,2395)
L4 (558,2395) 14928−2395⋅6 = 558
R3 (558,163) 2395−558⋅4 = 163
L2 (69,163) 558−163⋅3 = 69
R2 (69,25) 163−69⋅2 = 25
L1 (19,25) 69−25⋅2 = 19
R3 (19,6) 25-19 = 6
L5 (1,6) 19-6⋅3 = 1
In (1,1) 6−1⋅5 = 1
f(R$R$R$R$R$R $ L$L$L$L $ R$R$R $ L$L $ R$R $ L $ R$R$R $ L$L$L$L$L $ Init)
If this is the case, then just represent the tree by: (Tree = List(Bool)) or (Tree = List(Either ℕ ℕ)) or (Tree = List(ℕ)) ?-}
{-
open import Data.Option
Tree-construct : (x : ℕ₊) → (y : ℕ₊) → Tree(x)(y)
Tree-construct ℕ₊.𝟏 ℕ₊.𝟏 = intro
Tree-construct ℕ₊.𝟏 (𝐒 y) = left(Tree-construct ℕ₊.𝟏 y)
Tree-construct (𝐒 x) ℕ₊.𝟏 = right(Tree-construct x ℕ₊.𝟏)
Tree-construct(x@(ℕ₊.𝐒 _)) (y@(ℕ₊.𝐒 _)) with (x −₀ y)
... | Some z = {!right(Tree-construct(z)(y))!}
... | None = {!left (Tree-construct(x)(y ℕ.−₀ x))!}
-}
-- _+_ : Tree(a₁)(b₁) → Tree(a₂)(b₂) →
-- _⋅_ : Tree(a₁)(b₁) → Tree(a₂)(b₂) →
data ℚ : Type{Lvl.𝟎} where
𝟎 : ℚ
_/₋_ : (x : ℕ₊) → (y : ℕ₊) → ⦃ _ : Tree(x)(y) ⦄ → ℚ
_/₊_ : (x : ℕ₊) → (y : ℕ₊) → ⦃ _ : Tree(x)(y) ⦄ → ℚ
{-
_/_ : (x : ℤ) → (y : ℤ) → ℚ
_/_ 𝟎 _ = 𝟎
_/_ _ 𝟎 = 𝟎
_/_ (𝐒(x)) (𝐒(y)) with sign(x) ⋅ sign(y)
... | [−] = (x /₋ y) ⦃ Tree-construction-algorithm(x)(y) ⦄
... | [+] = (x /₊ y) ⦃ Tree-construction-algorithm(x)(y) ⦄
-}
{-
a₁/(a₁+b₁)
(a₂+b₂)/b₂
-}
{-
from-ℕ : ℕ → ℚ
from-ℕ(𝟎) = 𝟎
from-ℕ(𝐒(n)) = (𝐒(n) /₊ 1) where
instance
f : (n : ℕ) → Tree(𝐒(n))(1)
f(𝟎) = Tree-intro
f(𝐒(n)) = Tree-right(f(n))
-}
{-
floor : ℚ → ℕ
floor(x / y) = x ℕ.⌊/⌋ y
ceil : ℚ → ℕ
ceil(x / y) = x ℕ.⌈/⌉ y
-}
{-
module Test2 where
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
data Tree : Type{Lvl.𝟎} where
intro : Tree
left : Tree → Tree
right : Tree → Tree
Tree-quotient : Tree → (ℕ ⨯ ℕ)
Tree-quotient intro = (1 , 1 )
Tree-quotient (left t) with (x , y) ← Tree-quotient t = (x , x ℕ.+ y)
Tree-quotient (right t) with (x , y) ← Tree-quotient t = (x ℕ.+ y , y )
Tree-denominator : Tree → ℕ
Tree-denominator = Tuple.right ∘ Tree-quotient
Tree-numerator : Tree → ℕ
Tree-numerator = Tuple.left ∘ Tree-quotient
-}
| {
"alphanum_fraction": 0.5493790656,
"avg_line_length": 30.4684684685,
"ext": "agda",
"hexsha": "90dab902a07403a241f20aae53e1e21b38239592",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Rational/AlterAdd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Rational/AlterAdd.agda",
"max_line_length": 151,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Rational/AlterAdd.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1469,
"size": 3382
} |
------------------------------------------------------------------------
-- The values that are used by the NBE algorithm
------------------------------------------------------------------------
import Level
open import Data.Universe
module README.DependentlyTyped.NBE.Value
(Uni₀ : Universe Level.zero Level.zero)
where
import Axiom.Extensionality.Propositional as E
open import Data.Product renaming (curry to c; uncurry to uc)
open import deBruijn.Substitution.Data
open import Function using (id; _ˢ_; _$_) renaming (const to k)
import README.DependentlyTyped.NormalForm as NF; open NF Uni₀
import README.DependentlyTyped.NormalForm.Substitution as NFS
open NFS Uni₀
import README.DependentlyTyped.Term as Term; open Term Uni₀
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.PropositionalEquality.WithK as P
open P.≡-Reasoning
-- A wrapper which is used to make V̌alue "constructor-headed", which
-- in turn makes Agda infer more types for us.
infix 3 _⊢_⟨ne⟩
record _⊢_⟨ne⟩ (Γ : Ctxt) (σ : Type Γ) : Set where
constructor [_]el
field t : Γ ⊢ σ ⟨ ne ⟩
mutual
-- The values.
V̌alue′ : ∀ Γ sp (σ : IType Γ sp) → Set
V̌alue′ Γ ⋆ σ = Γ ⊢ ⋆ , σ ⟨ ne ⟩
V̌alue′ Γ el σ = Γ ⊢ el , σ ⟨ne⟩
V̌alue′ Γ (π sp₁ sp₂) σ =
Σ (V̌alue-π Γ sp₁ sp₂ σ) (W̌ell-behaved sp₁ sp₂ σ)
V̌alue : (Γ : Ctxt) (σ : Type Γ) → Set
V̌alue Γ (sp , σ) = V̌alue′ Γ sp σ
V̌alue-π : ∀ Γ sp₁ sp₂ → IType Γ (π sp₁ sp₂) → Set
V̌alue-π Γ sp₁ sp₂ σ =
(Γ₊ : Ctxt₊ Γ)
(v : V̌alue′ (Γ ++₊ Γ₊) sp₁ (ifst σ /̂I ŵk₊ Γ₊)) →
V̌alue′ (Γ ++₊ Γ₊) sp₂ (isnd σ /̂I ŵk₊ Γ₊ ↑̂ ∘̂ ŝub ⟦̌ v ⟧)
-- The use of Ctxt₊ rather than Ctxt⁺ in V̌alue-π is important: it
-- seems to make it much easier to define weakening for V̌alue.
W̌ell-behaved :
∀ {Γ} sp₁ sp₂ σ → V̌alue-π Γ sp₁ sp₂ σ → Set
W̌ell-behaved {Γ} sp₁ sp₂ σ f =
∀ Γ₊ v → (⟦̌ σ ∣ f ⟧-π /̂Val ŵk₊ Γ₊) ˢ ⟦̌ v ⟧ ≅-Value ⟦̌ f Γ₊ v ⟧
-- The semantics of a value.
⟦̌_⟧ : ∀ {Γ sp σ} → V̌alue′ Γ sp σ → Value Γ (sp , σ)
⟦̌ v ⟧ = ⟦ řeify _ v ⟧n
⟦̌_∣_⟧-π : ∀ {Γ sp₁ sp₂} σ →
V̌alue-π Γ sp₁ sp₂ σ → Value Γ (π sp₁ sp₂ , σ)
⟦̌ _ ∣ f ⟧-π = ⟦ řeify-π _ _ _ f ⟧n
-- Neutral terms can be turned into normal terms using reflection
-- followed by reification.
ňeutral-to-normal :
∀ {Γ} sp {σ} → Γ ⊢ sp , σ ⟨ ne ⟩ → Γ ⊢ sp , σ ⟨ no ⟩
ňeutral-to-normal sp t = řeify sp (řeflect sp t)
-- A normal term corresponding to variable zero.
žero : ∀ {Γ} sp σ → Γ ▻ (sp , σ) ⊢ sp , σ /̂I ŵk ⟨ no ⟩
žero sp σ = ňeutral-to-normal sp (var zero[ -, σ ])
-- Reification.
řeify : ∀ {Γ} sp {σ} → V̌alue′ Γ sp σ → Γ ⊢ sp , σ ⟨ no ⟩
řeify ⋆ t = ne ⋆ t
řeify el [ t ]el = ne el t
řeify (π sp₁ sp₂) f = řeify-π sp₁ sp₂ _ (proj₁ f)
řeify-π : ∀ {Γ} sp₁ sp₂ σ →
V̌alue-π Γ sp₁ sp₂ σ → Γ ⊢ π sp₁ sp₂ , σ ⟨ no ⟩
řeify-π {Γ} sp₁ sp₂ σ f = čast sp₁ σ $
ƛ (řeify sp₂ (f (fst σ ◅ ε) (řeflect sp₁ (var zero))))
čast : ∀ {Γ} sp₁ {sp₂} (σ : IType Γ (π sp₁ sp₂)) →
let ρ̂ = ŵk ↑̂ ∘̂ ŝub ⟦ žero sp₁ (ifst σ) ⟧n in
Γ ⊢ Type-π (fst σ) (snd σ /̂ ρ̂) ⟨ no ⟩ →
Γ ⊢ -, σ ⟨ no ⟩
čast {Γ} sp₁ σ =
P.subst (λ σ → Γ ⊢ σ ⟨ no ⟩)
(≅-Type-⇒-≡ $ π-fst-snd-ŵk-ŝub-žero sp₁ σ)
-- Reflection.
řeflect : ∀ {Γ} sp {σ} → Γ ⊢ sp , σ ⟨ ne ⟩ → V̌alue Γ (sp , σ)
řeflect ⋆ t = t
řeflect el t = [ t ]el
řeflect (π sp₁ sp₂) t =
(λ Γ₊ v → řeflect sp₂ ((t /⊢n Renaming.wk₊ Γ₊) · řeify sp₁ v)) ,
řeflect-π-well-behaved sp₁ sp₂ t
abstract
řeflect-π-well-behaved :
∀ {Γ} sp₁ sp₂ {σ} (t : Γ ⊢ π sp₁ sp₂ , σ ⟨ ne ⟩) Γ₊ v →
let t′ = ňeutral-to-normal sp₂
((t /⊢n Renaming.wk) · žero sp₁ (ifst σ)) in
(⟦ čast sp₁ σ (ƛ t′) ⟧n /̂Val ŵk₊ Γ₊) ˢ ⟦̌ v ⟧
≅-Value
⟦ ňeutral-to-normal sp₂ ((t /⊢n Renaming.wk₊ Γ₊) · řeify sp₁ v) ⟧n
řeflect-π-well-behaved sp₁ sp₂ {σ} t Γ₊ v =
let t′ = ňeutral-to-normal sp₂
((t /⊢n Renaming.wk) · žero sp₁ (ifst σ))
v′ = řeify sp₁ v
lemma′ = begin
[ ⟦ čast sp₁ σ (ƛ t′) ⟧n /̂Val ŵk₊ Γ₊ ] ≡⟨ /̂Val-cong (ňeutral-to-normal-identity-π sp₁ sp₂ t) P.refl ⟩
[ ⟦ t ⟧n /̂Val ŵk₊ Γ₊ ] ≡⟨ t /⊢n-lemma Renaming.wk₊ Γ₊ ⟩
[ ⟦ t /⊢n Renaming.wk₊ Γ₊ ⟧n ] ∎
in begin
[ (⟦ čast sp₁ σ (ƛ t′) ⟧n /̂Val ŵk₊ Γ₊) ˢ ⟦ v′ ⟧n ] ≡⟨ ˢ-cong lemma′ P.refl ⟩
[ ⟦ t /⊢n Renaming.wk₊ Γ₊ ⟧n ˢ ⟦ v′ ⟧n ] ≡⟨ P.refl ⟩
[ ⟦ (t /⊢n Renaming.wk₊ Γ₊) · v′ ⟧n ] ≡⟨ P.sym $ ňeutral-to-normal-identity sp₂ _ ⟩
[ ⟦ ňeutral-to-normal sp₂ ((t /⊢n Renaming.wk₊ Γ₊) · v′) ⟧n ] ∎
-- A given context morphism is equal to the identity.
ŵk-ŝub-žero :
∀ {Γ} sp₁ {sp₂} (σ : IType Γ (π sp₁ sp₂)) →
ŵk ↑̂ fst σ ∘̂ ŝub ⟦ žero sp₁ (ifst σ) ⟧n ≅-⇨̂ îd[ Γ ▻ fst σ ]
ŵk-ŝub-žero sp₁ σ = begin
[ ŵk ↑̂ ∘̂ ŝub ⟦ žero sp₁ (ifst σ) ⟧n ] ≡⟨ ∘̂-cong (P.refl {x = [ ŵk ↑̂ ]})
(ŝub-cong (ňeutral-to-normal-identity sp₁ (var zero))) ⟩
[ ŵk ↑̂ ∘̂ ŝub ⟦ var zero ⟧n ] ≡⟨ P.refl ⟩
[ îd ] ∎
-- A corollary of the lemma above.
π-fst-snd-ŵk-ŝub-žero :
∀ {Γ} sp₁ {sp₂} (σ : IType Γ (π sp₁ sp₂)) →
Type-π (fst σ) (snd σ /̂ ŵk ↑̂ ∘̂ ŝub ⟦ žero sp₁ (ifst σ) ⟧n) ≅-Type
(-, σ)
π-fst-snd-ŵk-ŝub-žero sp₁ σ = begin
[ Type-π (fst σ) (snd σ /̂ ŵk ↑̂ ∘̂ ŝub ⟦ žero sp₁ (ifst σ) ⟧n) ] ≡⟨ Type-π-cong $ /̂-cong (P.refl {x = [ snd σ ]})
(ŵk-ŝub-žero sp₁ σ) ⟩
[ Type-π (fst σ) (snd σ) ] ≡⟨ P.refl ⟩
[ -, σ ] ∎
-- In the semantics řeify is a left inverse of řeflect.
ňeutral-to-normal-identity :
∀ {Γ} sp {σ} (t : Γ ⊢ sp , σ ⟨ ne ⟩) →
⟦ ňeutral-to-normal sp t ⟧n ≅-Value ⟦ t ⟧n
ňeutral-to-normal-identity ⋆ t = P.refl
ňeutral-to-normal-identity el t = P.refl
ňeutral-to-normal-identity (π sp₁ sp₂) t =
ňeutral-to-normal-identity-π sp₁ sp₂ t
ňeutral-to-normal-identity-π :
∀ {Γ} sp₁ sp₂ {σ} (t : Γ ⊢ π sp₁ sp₂ , σ ⟨ ne ⟩) →
let t′ = ňeutral-to-normal sp₂
((t /⊢n Renaming.wk) · žero sp₁ (ifst σ)) in
⟦ čast sp₁ σ (ƛ t′) ⟧n ≅-Value ⟦ t ⟧n
ňeutral-to-normal-identity-π sp₁ sp₂ {σ} t =
let t′ = (t /⊢n Renaming.wk) · žero sp₁ (ifst σ)
lemma = begin
[ ⟦ ňeutral-to-normal sp₂ t′ ⟧n ] ≡⟨ ňeutral-to-normal-identity sp₂ t′ ⟩
[ ⟦ t′ ⟧n ] ≡⟨ P.refl ⟩
[ ⟦ t /⊢n Renaming.wk ⟧n ˢ ⟦ žero sp₁ (ifst σ) ⟧n ] ≡⟨ ˢ-cong (P.sym $ t /⊢n-lemma Renaming.wk)
(ňeutral-to-normal-identity sp₁ (var zero)) ⟩
[ (⟦ t ⟧n /̂Val ŵk) ˢ lookup zero ] ≡⟨ P.refl ⟩
[ uc ⟦ t ⟧n ] ∎
in begin
[ ⟦ čast sp₁ σ (ƛ (ňeutral-to-normal sp₂ t′)) ⟧n ] ≡⟨ ⟦⟧n-cong $ drop-subst-⊢n id (≅-Type-⇒-≡ $ π-fst-snd-ŵk-ŝub-žero sp₁ σ) ⟩
[ c ⟦ ňeutral-to-normal sp₂ t′ ⟧n ] ≡⟨ curry-cong lemma ⟩
[ c {C = k El ˢ isnd σ} (uc ⟦ t ⟧n) ] ≡⟨ P.refl ⟩
[ ⟦ t ⟧n ] ∎
-- An immediate consequence of the somewhat roundabout definition
-- above.
w̌ell-behaved :
∀ {Γ sp₁ sp₂ σ} (f : V̌alue Γ (π sp₁ sp₂ , σ)) →
∀ Γ₊ v → (⟦̌_⟧ {σ = σ} f /̂Val ŵk₊ Γ₊) ˢ ⟦̌ v ⟧ ≅-Value ⟦̌ proj₁ f Γ₊ v ⟧
w̌ell-behaved = proj₂
-- Values are term-like.
V̌al : Term-like _
V̌al = record
{ _⊢_ = V̌alue
; ⟦_⟧ = ⟦̌_⟧
}
open Term-like V̌al public
using ([_])
renaming ( _≅-⊢_ to _≅-V̌alue_
; drop-subst-⊢ to drop-subst-V̌alue; ⟦⟧-cong to ⟦̌⟧-cong
)
abstract
-- Unfolding lemma for ⟦̌_∣_⟧-π.
unfold-⟦̌∣⟧-π :
∀ {Γ sp₁ sp₂} σ (f : V̌alue-π Γ sp₁ sp₂ σ) →
⟦̌ σ ∣ f ⟧-π ≅-Value c ⟦̌ f (fst σ ◅ ε) (řeflect sp₁ (var zero)) ⟧
unfold-⟦̌∣⟧-π σ _ = ⟦⟧n-cong $
drop-subst-⊢n id (≅-Type-⇒-≡ $ π-fst-snd-ŵk-ŝub-žero _ σ)
-- Some congruence/conversion lemmas.
≅-⊢n-⇒-≅-Value-⋆ : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ ⋆ , σ₁ ⟨ ne ⟩}
{Γ₂ σ₂} {t₂ : Γ₂ ⊢ ⋆ , σ₂ ⟨ ne ⟩} →
t₁ ≅-⊢n t₂ → t₁ ≅-V̌alue t₂
≅-⊢n-⇒-≅-Value-⋆ P.refl = P.refl
≅-Value-⋆-⇒-≅-⊢n : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ ⋆ , σ₁ ⟨ ne ⟩}
{Γ₂ σ₂} {t₂ : Γ₂ ⊢ ⋆ , σ₂ ⟨ ne ⟩} →
t₁ ≅-V̌alue t₂ → t₁ ≅-⊢n t₂
≅-Value-⋆-⇒-≅-⊢n P.refl = P.refl
≅-⊢n-⇒-≅-Value-el : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ el , σ₁ ⟨ ne ⟩}
{Γ₂ σ₂} {t₂ : Γ₂ ⊢ el , σ₂ ⟨ ne ⟩} →
t₁ ≅-⊢n t₂ → [ t₁ ]el ≅-V̌alue [ t₂ ]el
≅-⊢n-⇒-≅-Value-el P.refl = P.refl
≅-Value-el-⇒-≅-⊢n : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ el , σ₁ ⟨ ne ⟩}
{Γ₂ σ₂} {t₂ : Γ₂ ⊢ el , σ₂ ⟨ ne ⟩} →
[ t₁ ]el ≅-V̌alue [ t₂ ]el → t₁ ≅-⊢n t₂
≅-Value-el-⇒-≅-⊢n P.refl = P.refl
abstract
,-cong : E.Extensionality Level.zero Level.zero →
∀ {Γ sp₁ sp₂ σ} {f₁ f₂ : V̌alue Γ (π sp₁ sp₂ , σ)} →
(∀ Γ₊ v → proj₁ f₁ Γ₊ v ≅-V̌alue proj₁ f₂ Γ₊ v) →
_≅-V̌alue_ {σ₁ = (π sp₁ sp₂ , σ)} f₁
{σ₂ = (π sp₁ sp₂ , σ)} f₂
,-cong ext hyp = P.cong (Term-like.[_] {_} {V̌al}) $
,-cong′ (ext λ Γ₊ → ext λ v → Term-like.≅-⊢-⇒-≡ V̌al $ hyp Γ₊ v)
(ext λ _ → ext λ _ → P.≡-irrelevant _ _)
where
,-cong′ : {A : Set} {B : A → Set}
{x₁ x₂ : A} {y₁ : B x₁} {y₂ : B x₂} →
(eq : x₁ ≡ x₂) → P.subst B eq y₁ ≡ y₂ →
_≡_ {A = Σ A B} (x₁ , y₁) (x₂ , y₂)
,-cong′ P.refl P.refl = P.refl
ňeutral-to-normal-cong :
∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ σ₁ ⟨ ne ⟩}
{Γ₂ σ₂} {t₂ : Γ₂ ⊢ σ₂ ⟨ ne ⟩} →
t₁ ≅-⊢n t₂ → ňeutral-to-normal _ t₁ ≅-⊢n ňeutral-to-normal _ t₂
ňeutral-to-normal-cong P.refl = P.refl
žero-cong : ∀ {Γ₁} {σ₁ : Type Γ₁}
{Γ₂} {σ₂ : Type Γ₂} →
σ₁ ≅-Type σ₂ → žero _ (proj₂ σ₁) ≅-⊢n žero _ (proj₂ σ₂)
žero-cong P.refl = P.refl
řeify-cong : ∀ {Γ₁ σ₁} {v₁ : V̌alue Γ₁ σ₁}
{Γ₂ σ₂} {v₂ : V̌alue Γ₂ σ₂} →
v₁ ≅-V̌alue v₂ → řeify _ v₁ ≅-⊢n řeify _ v₂
řeify-cong P.refl = P.refl
řeflect-cong : ∀ {Γ₁ σ₁} {t₁ : Γ₁ ⊢ σ₁ ⟨ ne ⟩}
{Γ₂ σ₂} {t₂ : Γ₂ ⊢ σ₂ ⟨ ne ⟩} →
t₁ ≅-⊢n t₂ → řeflect _ t₁ ≅-V̌alue řeflect _ t₂
řeflect-cong P.refl = P.refl
| {
"alphanum_fraction": 0.4542335157,
"avg_line_length": 38.2375886525,
"ext": "agda",
"hexsha": "9348711e4ce4de8e8ebf8cbc51a61d71bd4b07a3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "README/DependentlyTyped/NBE/Value.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "README/DependentlyTyped/NBE/Value.agda",
"max_line_length": 138,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "README/DependentlyTyped/NBE/Value.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 5185,
"size": 10783
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Bags of integers, for Nehemiah plugin.
--
-- This module imports postulates about bags of integers
-- with negative multiplicities as a group under additive union.
------------------------------------------------------------------------
module Structure.Bag.Nehemiah where
open import Postulate.Bag-Nehemiah public
open import Relation.Binary.PropositionalEquality
open import Algebra using (CommutativeRing)
open import Algebra.Structures
open import Data.Integer
open import Data.Integer.Properties
using ()
renaming (+-*-commutativeRing to ℤ-is-commutativeRing)
open import Data.Product
infixl 9 _\\_ -- same as Data.Map.(\\)
_\\_ : Bag → Bag → Bag
d \\ b = d ++ (negateBag b)
-- Useful properties of abelian groups
commutative : ∀ {A : Set} {f : A → A → A} {z} →
IsCommutativeMonoid _≡_ f z → (m n : A) → f m n ≡ f n m
commutative = IsCommutativeMonoid.comm
associative : ∀ {A : Set} {f : A → A → A} {z} →
IsCommutativeMonoid _≡_ f z → (k m n : A) → f (f k m) n ≡ f k (f m n)
associative abelian = IsCommutativeMonoid.assoc abelian
left-inverse : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f (neg n) n ≡ z
left-inverse abelian = proj₁ (IsAbelianGroup.inverse abelian)
right-inverse : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f n (neg n) ≡ z
right-inverse abelian = proj₂ (IsAbelianGroup.inverse abelian)
left-identity : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f z n ≡ n
left-identity abelian = proj₁ (IsMonoid.identity
(IsGroup.isMonoid (IsAbelianGroup.isGroup abelian)))
right-identity : ∀ {A : Set} {f : A → A → A} {z neg} →
IsAbelianGroup _≡_ f z neg → (n : A) → f n z ≡ n
right-identity abelian = proj₂ (IsMonoid.identity
(IsGroup.isMonoid (IsAbelianGroup.isGroup abelian)))
instance
abelian-int : IsAbelianGroup _≡_ _+_ (+ 0) (-_)
abelian-int =
CommutativeRing.+-isAbelianGroup ℤ-is-commutativeRing
abelian→comm-monoid :
∀ {A : Set} {f : A → A → A} {z neg} →
{{abel : IsAbelianGroup _≡_ f z neg}} → IsCommutativeMonoid _≡_ f z
abelian→comm-monoid {{abel}} = IsAbelianGroup.isCommutativeMonoid abel
comm-monoid-int : IsCommutativeMonoid _≡_ _+_ (+ 0)
comm-monoid-int = IsAbelianGroup.isCommutativeMonoid abelian-int
comm-monoid-bag : IsCommutativeMonoid _≡_ _++_ emptyBag
comm-monoid-bag = IsAbelianGroup.isCommutativeMonoid abelian-bag
import Data.Nat as N
import Data.Nat.Properties as NP
comm-monoid-nat : IsCommutativeMonoid _≡_ N._+_ 0
comm-monoid-nat = IsCommutativeSemiring.+-isCommutativeMonoid NP.isCommutativeSemiring
commutative-int : (m n : ℤ) → m + n ≡ n + m
commutative-int = commutative comm-monoid-int
associative-int : (k m n : ℤ) → (k + m) + n ≡ k + (m + n)
associative-int = associative comm-monoid-int
right-inv-int : (n : ℤ) → n - n ≡ + 0
right-inv-int = right-inverse abelian-int
left-id-int : (n : ℤ) → (+ 0) + n ≡ n
left-id-int = left-identity abelian-int
right-id-int : (n : ℤ) → n + (+ 0) ≡ n
right-id-int = right-identity abelian-int
commutative-bag : (a b : Bag) → a ++ b ≡ b ++ a
commutative-bag = commutative comm-monoid-bag
associative-bag : (a b c : Bag) → (a ++ b) ++ c ≡ a ++ (b ++ c)
associative-bag = associative comm-monoid-bag
right-inv-bag : (b : Bag) → b \\ b ≡ emptyBag
right-inv-bag = right-inverse abelian-bag
left-id-bag : (b : Bag) → emptyBag ++ b ≡ b
left-id-bag = left-identity abelian-bag
right-id-bag : (b : Bag) → b ++ emptyBag ≡ b
right-id-bag = right-identity abelian-bag
| {
"alphanum_fraction": 0.6456256921,
"avg_line_length": 38.8387096774,
"ext": "agda",
"hexsha": "0ba86bf0e345499cf3caf1883fb0485859edbb68",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Structure/Bag/Nehemiah.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Structure/Bag/Nehemiah.agda",
"max_line_length": 88,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Structure/Bag/Nehemiah.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 1250,
"size": 3612
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Construction.Properties.Presheaves.Cartesian {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Data.Unit
open import Data.Product using (_,_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Function.Equality using (Π) renaming (_∘_ to _∙_)
open import Relation.Binary
open import Categories.Category.Cartesian
open import Categories.Category.Construction.Presheaves
open import Categories.Category.Instance.Setoids
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.Functor.Presheaf
open import Categories.NaturalTransformation
import Categories.Object.Product as Prod
import Categories.Morphism.Reasoning as MR
open Π using (_⟨$⟩_)
module _ {o′ ℓ′ o″ ℓ″} where
Presheaves× : ∀ (A : Presheaf C (Setoids o′ ℓ′)) (A : Presheaf C (Setoids o″ ℓ″)) → Presheaf C (Setoids (o′ ⊔ o″) (ℓ′ ⊔ ℓ″))
Presheaves× A B = record
{ F₀ = λ X → ×-setoid (A.₀ X) (B.₀ X)
; F₁ = λ f → record
{ _⟨$⟩_ = λ { (a , b) → A.₁ f ⟨$⟩ a , B.₁ f ⟨$⟩ b }
; cong = λ { (eq₁ , eq₂) → Π.cong (A.₁ f) eq₁ , Π.cong (B.₁ f) eq₂ }
}
; identity = λ { (eq₁ , eq₂) → A.identity eq₁ , B.identity eq₂ }
; homomorphism = λ { (eq₁ , eq₂) → A.homomorphism eq₁ , B.homomorphism eq₂ }
; F-resp-≈ = λ { eq (eq₁ , eq₂) → A.F-resp-≈ eq eq₁ , B.F-resp-≈ eq eq₂ }
}
where module A = Functor A
module B = Functor B
module IsCartesian o′ ℓ′ where
private
module C = Category C
open C
P = Presheaves′ o′ ℓ′ C
module P = Category P
S = Setoids o′ ℓ′
module S = Category S
Presheaves-Cartesian : Cartesian P
Presheaves-Cartesian = record
{ terminal = record
{ ⊤ = record
{ F₀ = λ x → record
{ Carrier = Lift o′ ⊤
; _≈_ = λ _ _ → Lift ℓ′ ⊤
; isEquivalence = _
}
}
; ! = _
; !-unique = _
}
; products = record
{ product = λ {A B} →
let module A = Functor A
module B = Functor B
in record
{ A×B = Presheaves× A B
; π₁ = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ { (fst , _) → fst }
; cong = λ { (eq , _) → eq }
}
; commute = λ { f (eq , _) → Π.cong (A.F₁ f) eq }
}
; π₂ = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ { (_ , snd) → snd }
; cong = λ { (_ , eq) → eq }
}
; commute = λ { f (_ , eq) → Π.cong (B.F₁ f) eq }
}
; ⟨_,_⟩ = λ {F} α β →
let module F = Functor F
module α = NaturalTransformation α
module β = NaturalTransformation β
in ntHelper record
{ η = λ Y → record
{ _⟨$⟩_ = λ S → α.η Y ⟨$⟩ S , β.η Y ⟨$⟩ S
; cong = λ eq → Π.cong (α.η Y) eq , Π.cong (β.η Y) eq
}
; commute = λ f eq → α.commute f eq , β.commute f eq
}
; project₁ = λ {F α β x} eq →
let module F = Functor F
module α = NaturalTransformation α
module β = NaturalTransformation β
in Π.cong (α.η x) eq
; project₂ = λ {F α β x} eq →
let module F = Functor F
module α = NaturalTransformation α
module β = NaturalTransformation β
in Π.cong (β.η x) eq
; unique = λ {F α β δ} eq₁ eq₂ {x} eq →
let module F = Functor F
module α = NaturalTransformation α
module β = NaturalTransformation β
module δ = NaturalTransformation δ
in Setoid.sym (A.₀ x) (eq₁ (Setoid.sym (F.₀ x) eq))
, Setoid.sym (B.₀ x) (eq₂ (Setoid.sym (F.₀ x) eq))
}
}
}
module Presheaves-Cartesian = Cartesian Presheaves-Cartesian
| {
"alphanum_fraction": 0.5177816464,
"avg_line_length": 33.7899159664,
"ext": "agda",
"hexsha": "cc2c1f2d72e0b55b045dd01ef6e614329dfa3f05",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Cartesian.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Cartesian.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/Cartesian.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1264,
"size": 4021
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions of algebraic structures like monoids and rings
-- (packed in records together with sets, operations, etc.)
------------------------------------------------------------------------
-- The contents of this module should be accessed via `Algebra`.
{-# OPTIONS --without-K --safe #-}
module Algebra.Bundles where
open import Algebra.Core
open import Algebra.Structures
open import Relation.Binary
open import Function.Base
open import Level
------------------------------------------------------------------------
-- Bundles with 1 binary operation
------------------------------------------------------------------------
record RawMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
record Magma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isMagma : IsMagma _≈_ _∙_
open IsMagma isMagma public
rawMagma : RawMagma _ _
rawMagma = record { _≈_ = _≈_; _∙_ = _∙_ }
record Semigroup c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isSemigroup : IsSemigroup _≈_ _∙_
open IsSemigroup isSemigroup public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public using (rawMagma)
record Band c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isBand : IsBand _≈_ _∙_
open IsBand isBand public
semigroup : Semigroup c ℓ
semigroup = record { isSemigroup = isSemigroup }
open Semigroup semigroup public using (magma; rawMagma)
record CommutativeSemigroup c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_
open IsCommutativeSemigroup isCommutativeSemigroup public
semigroup : Semigroup c ℓ
semigroup = record { isSemigroup = isSemigroup }
open Semigroup semigroup public using (magma; rawMagma)
record Semilattice c ℓ : Set (suc (c ⊔ ℓ)) where
infixr 7 _∧_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∧_ : Op₂ Carrier
isSemilattice : IsSemilattice _≈_ _∧_
open IsSemilattice isSemilattice public
band : Band c ℓ
band = record { isBand = isBand }
open Band band public using (rawMagma; magma; semigroup)
record SelectiveMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isSelectiveMagma : IsSelectiveMagma _≈_ _∙_
open IsSelectiveMagma isSelectiveMagma public
magma : Magma c ℓ
magma = record { isMagma = isMagma }
open Magma magma public using (rawMagma)
------------------------------------------------------------------------
-- Bundles with 1 binary operation & 1 element
------------------------------------------------------------------------
-- A raw monoid is a monoid without any laws.
record RawMonoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
rawMagma : RawMagma c ℓ
rawMagma = record
{ _≈_ = _≈_
; _∙_ = _∙_
}
record Monoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
isMonoid : IsMonoid _≈_ _∙_ ε
open IsMonoid isMonoid public
semigroup : Semigroup _ _
semigroup = record { isSemigroup = isSemigroup }
rawMonoid : RawMonoid _ _
rawMonoid = record { _≈_ = _≈_; _∙_ = _∙_; ε = ε}
open Semigroup semigroup public using (rawMagma; magma)
record CommutativeMonoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε
open IsCommutativeMonoid isCommutativeMonoid public
monoid : Monoid _ _
monoid = record { isMonoid = isMonoid }
commutativeSemigroup : CommutativeSemigroup _ _
commutativeSemigroup = record { isCommutativeSemigroup = isCommutativeSemigroup }
open Monoid monoid public using (rawMagma; magma; semigroup; rawMonoid)
record IdempotentCommutativeMonoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _≈_ _∙_ ε
open IsIdempotentCommutativeMonoid isIdempotentCommutativeMonoid public
commutativeMonoid : CommutativeMonoid _ _
commutativeMonoid = record { isCommutativeMonoid = isCommutativeMonoid }
open CommutativeMonoid commutativeMonoid public
using (rawMagma; magma; semigroup; rawMonoid; monoid)
-- Idempotent commutative monoids are also known as bounded lattices.
-- Note that the BoundedLattice necessarily uses the notation inherited
-- from monoids rather than lattices.
BoundedLattice = IdempotentCommutativeMonoid
module BoundedLattice {c ℓ} (idemCommMonoid : IdempotentCommutativeMonoid c ℓ) =
IdempotentCommutativeMonoid idemCommMonoid
------------------------------------------------------------------------
-- Bundles with 1 binary operation, 1 unary operation & 1 element
------------------------------------------------------------------------
record RawGroup c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 _⁻¹
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
_⁻¹ : Op₁ Carrier
rawMonoid : RawMonoid c ℓ
rawMonoid = record
{ _≈_ = _≈_
; _∙_ = _∙_
; ε = ε
}
open RawMonoid rawMonoid public
using (rawMagma)
record Group c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 _⁻¹
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
_⁻¹ : Op₁ Carrier
isGroup : IsGroup _≈_ _∙_ ε _⁻¹
open IsGroup isGroup public
rawGroup : RawGroup _ _
rawGroup = record { _≈_ = _≈_; _∙_ = _∙_; ε = ε; _⁻¹ = _⁻¹}
monoid : Monoid _ _
monoid = record { isMonoid = isMonoid }
open Monoid monoid public using (rawMagma; magma; semigroup; rawMonoid)
record AbelianGroup c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 _⁻¹
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
_⁻¹ : Op₁ Carrier
isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹
open IsAbelianGroup isAbelianGroup public
group : Group _ _
group = record { isGroup = isGroup }
open Group group public
using (rawMagma; magma; semigroup; monoid; rawMonoid; rawGroup)
commutativeMonoid : CommutativeMonoid _ _
commutativeMonoid =
record { isCommutativeMonoid = isCommutativeMonoid }
------------------------------------------------------------------------
-- Bundles with 2 binary operations
------------------------------------------------------------------------
record Lattice c ℓ : Set (suc (c ⊔ ℓ)) where
infixr 7 _∧_
infixr 6 _∨_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∨_ : Op₂ Carrier
_∧_ : Op₂ Carrier
isLattice : IsLattice _≈_ _∨_ _∧_
open IsLattice isLattice public
setoid : Setoid _ _
setoid = record { isEquivalence = isEquivalence }
record DistributiveLattice c ℓ : Set (suc (c ⊔ ℓ)) where
infixr 7 _∧_
infixr 6 _∨_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∨_ : Op₂ Carrier
_∧_ : Op₂ Carrier
isDistributiveLattice : IsDistributiveLattice _≈_ _∨_ _∧_
open IsDistributiveLattice isDistributiveLattice public
lattice : Lattice _ _
lattice = record { isLattice = isLattice }
open Lattice lattice public using (setoid)
------------------------------------------------------------------------
-- Bundles with 2 binary operations & 1 element
------------------------------------------------------------------------
record NearSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0#
open IsNearSemiring isNearSemiring public
+-monoid : Monoid _ _
+-monoid = record { isMonoid = +-isMonoid }
open Monoid +-monoid public
using ()
renaming
( rawMagma to +-rawMagma
; magma to +-magma
; semigroup to +-semigroup
; rawMonoid to +-rawMonoid
)
*-semigroup : Semigroup _ _
*-semigroup = record { isSemigroup = *-isSemigroup }
open Semigroup *-semigroup public
using ()
renaming
( rawMagma to *-rawMagma
; magma to *-magma
)
record SemiringWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
isSemiringWithoutOne : IsSemiringWithoutOne _≈_ _+_ _*_ 0#
open IsSemiringWithoutOne isSemiringWithoutOne public
nearSemiring : NearSemiring _ _
nearSemiring = record { isNearSemiring = isNearSemiring }
open NearSemiring nearSemiring public
using
( +-rawMagma; +-magma; +-semigroup; +-rawMonoid; +-monoid
; *-rawMagma; *-magma; *-semigroup
)
+-commutativeMonoid : CommutativeMonoid _ _
+-commutativeMonoid =
record { isCommutativeMonoid = +-isCommutativeMonoid }
record CommutativeSemiringWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
isCommutativeSemiringWithoutOne :
IsCommutativeSemiringWithoutOne _≈_ _+_ _*_ 0#
open IsCommutativeSemiringWithoutOne
isCommutativeSemiringWithoutOne public
semiringWithoutOne : SemiringWithoutOne _ _
semiringWithoutOne =
record { isSemiringWithoutOne = isSemiringWithoutOne }
open SemiringWithoutOne semiringWithoutOne public
using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; nearSemiring
)
------------------------------------------------------------------------
-- Bundles with 2 binary operations & 2 elements
------------------------------------------------------------------------
record RawSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
record SemiringWithoutAnnihilatingZero c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isSemiringWithoutAnnihilatingZero :
IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1#
open IsSemiringWithoutAnnihilatingZero
isSemiringWithoutAnnihilatingZero public
+-commutativeMonoid : CommutativeMonoid _ _
+-commutativeMonoid =
record { isCommutativeMonoid = +-isCommutativeMonoid }
open CommutativeMonoid +-commutativeMonoid public
using ()
renaming
( rawMagma to +-rawMagma
; magma to +-magma
; semigroup to +-semigroup
; rawMonoid to +-rawMonoid
; monoid to +-monoid
)
*-monoid : Monoid _ _
*-monoid = record { isMonoid = *-isMonoid }
open Monoid *-monoid public
using ()
renaming
( rawMagma to *-rawMagma
; magma to *-magma
; semigroup to *-semigroup
; rawMonoid to *-rawMonoid
)
record Semiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1#
open IsSemiring isSemiring public
rawSemiring : RawSemiring _ _
rawSemiring = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; 0# = 0#
; 1# = 1#
}
semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero _ _
semiringWithoutAnnihilatingZero = record
{ isSemiringWithoutAnnihilatingZero =
isSemiringWithoutAnnihilatingZero
}
open SemiringWithoutAnnihilatingZero
semiringWithoutAnnihilatingZero public
using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; *-rawMonoid; *-monoid
)
semiringWithoutOne : SemiringWithoutOne _ _
semiringWithoutOne =
record { isSemiringWithoutOne = isSemiringWithoutOne }
open SemiringWithoutOne semiringWithoutOne public
using (nearSemiring)
record CommutativeSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier
isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1#
open IsCommutativeSemiring isCommutativeSemiring public
semiring : Semiring _ _
semiring = record { isSemiring = isSemiring }
open Semiring semiring public
using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; *-rawMonoid; *-monoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero
; rawSemiring
)
*-commutativeSemigroup : CommutativeSemigroup _ _
*-commutativeSemigroup = record
{ isCommutativeSemigroup = *-isCommutativeSemigroup
}
*-commutativeMonoid : CommutativeMonoid _ _
*-commutativeMonoid = record
{ isCommutativeMonoid = *-isCommutativeMonoid
}
commutativeSemiringWithoutOne : CommutativeSemiringWithoutOne _ _
commutativeSemiringWithoutOne = record
{ isCommutativeSemiringWithoutOne = isCommutativeSemiringWithoutOne
}
------------------------------------------------------------------------
-- Bundles with 2 binary operations, 1 unary operation & 2 elements
------------------------------------------------------------------------
-- A raw ring is a ring without any laws.
record RawRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
+-rawGroup : RawGroup c ℓ
+-rawGroup = record
{ _≈_ = _≈_
; _∙_ = _+_
; ε = 0#
; _⁻¹ = -_
}
*-rawMonoid : RawMonoid c ℓ
*-rawMonoid = record
{ _≈_ = _≈_
; _∙_ = _*_
; ε = 1#
}
record Ring c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isRing : IsRing _≈_ _+_ _*_ -_ 0# 1#
open IsRing isRing public
+-abelianGroup : AbelianGroup _ _
+-abelianGroup = record { isAbelianGroup = +-isAbelianGroup }
semiring : Semiring _ _
semiring = record { isSemiring = isSemiring }
open Semiring semiring public
using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid ; +-commutativeMonoid
; *-rawMonoid; *-monoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero
)
open AbelianGroup +-abelianGroup public
using () renaming (group to +-group)
rawRing : RawRing _ _
rawRing = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; -_ = -_
; 0# = 0#
; 1# = 1#
}
record CommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isCommutativeRing : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1#
open IsCommutativeRing isCommutativeRing public
ring : Ring _ _
ring = record { isRing = isRing }
commutativeSemiring : CommutativeSemiring _ _
commutativeSemiring =
record { isCommutativeSemiring = isCommutativeSemiring }
open Ring ring public using (rawRing; +-group; +-abelianGroup)
open CommutativeSemiring commutativeSemiring public
using
( +-rawMagma; +-magma; +-semigroup
; *-rawMagma; *-magma; *-semigroup
; +-rawMonoid; +-monoid; +-commutativeMonoid
; *-rawMonoid; *-monoid; *-commutativeMonoid
; nearSemiring; semiringWithoutOne
; semiringWithoutAnnihilatingZero; semiring
; commutativeSemiringWithoutOne
)
record BooleanAlgebra c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 ¬_
infixr 7 _∧_
infixr 6 _∨_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∨_ : Op₂ Carrier
_∧_ : Op₂ Carrier
¬_ : Op₁ Carrier
⊤ : Carrier
⊥ : Carrier
isBooleanAlgebra : IsBooleanAlgebra _≈_ _∨_ _∧_ ¬_ ⊤ ⊥
open IsBooleanAlgebra isBooleanAlgebra public
distributiveLattice : DistributiveLattice _ _
distributiveLattice = record { isDistributiveLattice = isDistributiveLattice }
open DistributiveLattice distributiveLattice public
using (setoid; lattice)
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.0
RawSemigroup = RawMagma
{-# WARNING_ON_USAGE RawSemigroup
"Warning: RawSemigroup was deprecated in v1.0.
Please use RawMagma instead."
#-}
| {
"alphanum_fraction": 0.5687403599,
"avg_line_length": 26.1424731183,
"ext": "agda",
"hexsha": "13d39f625c0363b77aff940dcc8bcc8ef6a468f0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Bundles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Bundles.agda",
"max_line_length": 83,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 6186,
"size": 19450
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Abelian.Definition
open import Groups.Homomorphisms.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Lists.Lists
open import Rings.Homomorphisms.Definition
module Rings.Polynomial.Ring {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
open Ring R
open Setoid S
open Equivalence eq
open import Groups.Polynomials.Group additiveGroup
open import Groups.Polynomials.Definition additiveGroup
open import Rings.Polynomial.Multiplication R
polyRing : Ring naivePolySetoid _+P_ _*P_
Ring.additiveGroup polyRing = polyGroup
Ring.*WellDefined polyRing {a} {b} {c} {d} = *PwellDefined {a} {b} {c} {d}
Ring.1R polyRing = 1R :: []
Ring.groupIsAbelian polyRing {x} {y} = AbelianGroup.commutative (abelian (record { commutative = Ring.groupIsAbelian R })) {x} {y}
Ring.*Associative polyRing {a} {b} {c} = *Passoc {a} {b} {c}
Ring.*Commutative polyRing {a} {b} = p*Commutative {a} {b}
Ring.*DistributesOver+ polyRing {a} {b} {c} = *Pdistrib {a} {b} {c}
Ring.identIsIdent polyRing {a} = *Pident {a}
polyInjectionIsHom : RingHom R polyRing polyInjection
RingHom.preserves1 polyInjectionIsHom = reflexive ,, record {}
RingHom.ringHom polyInjectionIsHom = reflexive ,, (reflexive ,, record {})
GroupHom.groupHom (RingHom.groupHom polyInjectionIsHom) = reflexive ,, record {}
GroupHom.wellDefined (RingHom.groupHom polyInjectionIsHom) = SetoidInjection.wellDefined polyInjectionIsInj
| {
"alphanum_fraction": 0.7514231499,
"avg_line_length": 42.7297297297,
"ext": "agda",
"hexsha": "468bf5331bbe275e2fff218275debea9cd3f405a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Polynomial/Ring.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Polynomial/Ring.agda",
"max_line_length": 130,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Polynomial/Ring.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 488,
"size": 1581
} |
{-# OPTIONS --safe #-}
module Cubical.HITs.FreeGroupoid where
open import Cubical.HITs.FreeGroupoid.Base public
open import Cubical.HITs.FreeGroupoid.GroupoidActions public
open import Cubical.HITs.FreeGroupoid.Properties public
| {
"alphanum_fraction": 0.8268398268,
"avg_line_length": 28.875,
"ext": "agda",
"hexsha": "e0318c8d04f1668f5f5c4df02cfec1b1b14db8da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/FreeGroupoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/FreeGroupoid.agda",
"max_line_length": 60,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/FreeGroupoid.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 57,
"size": 231
} |
{-# OPTIONS --cubical #-}
module _ where
open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_)
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Cubical.Sub
open import Agda.Builtin.Cubical.Sub using () renaming (Sub to _[_↦_]; primSubOut to ouc)
open import Agda.Primitive renaming (_⊔_ to ℓ-max)
open import Agda.Builtin.Sigma
transpFill : ∀ {ℓ} {A' : Set ℓ} (φ : I)
(A : (i : I) → Set ℓ [ φ ↦ (\ _ → A') ]) →
(u0 : ouc (A i0)) →
PathP (λ i → ouc (A i)) u0 (primTransp (λ i → ouc (A i)) φ u0)
transpFill φ A u0 i = primTransp (\ j → ouc (A (i ∧ j))) (~ i ∨ φ) u0
-- private
-- internalFiber : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) (y : B) → Set (ℓ-max ℓ ℓ')
-- internalFiber {A = A} f y = Σ A \ x → y ≡ f x
-- infix 4 _≃_
-- postulate
-- _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ-max ℓ ℓ')
-- equivFun : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B
-- equivProof : ∀ {la lt} (T : Set la) (A : Set lt) → (w : T ≃ A) → (a : A)
-- → ∀ ψ → (Partial ψ (internalFiber (equivFun w) a)) → internalFiber (equivFun w) a
-- {-# BUILTIN EQUIV _≃_ #-}
-- {-# BUILTIN EQUIVFUN equivFun #-}
-- {-# BUILTIN EQUIVPROOF equivProof #-}
-- -- This is a module so we can easily rename the primitives.
-- module GluePrims where
-- primitive
-- primGlue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I}
-- → (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A))
-- → Set ℓ'
-- prim^glue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I}
-- → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)}
-- → PartialP φ T → A → primGlue A T e
-- prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I}
-- → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)}
-- → primGlue A T e → A
-- -- Needed for transp in Glue.
-- primFaceForall : (I → I) → I
open import Agda.Builtin.Cubical.Glue public
renaming ( prim^glue to glue
; prim^unglue to unglue)
-- We uncurry Glue to make it a bit more pleasant to use
Glue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I}
→ (Te : Partial φ (Σ (Set ℓ') \ T → T ≃ A))
→ Set ℓ'
Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd)
module TestHComp {ℓ ℓ'} (A : Set ℓ) {φ : I} (Te : Partial φ (Σ (Set ℓ') \ T → T ≃ A))
(ψ : I) (u : I → Partial ψ (Glue A Te)) (u0 : Sub (Glue A Te) ψ (u i0) ) where
result : Glue A Te
result = glue {φ = φ} (\ { (φ = i1) → primHComp {A = Te itIsOne .fst} u (primSubOut u0) })
(primHComp {A = A} (\ i → \ { (ψ = i1) → unglue {φ = φ} (u i itIsOne)
; (φ = i1) → equivFun (Te itIsOne .snd)
(primHComp (\ j → \ { (ψ = i1) → u (i ∧ j) itIsOne
; (i = i0) → primSubOut u0 })
(primSubOut u0)) })
(unglue {φ = φ} (primSubOut u0)))
test : primHComp {A = Glue A Te} {ψ} u (primSubOut u0) ≡ result
test i = primHComp {A = Glue A Te} {ψ} u (primSubOut u0)
module TestTransp {ℓ ℓ'} (A : Set ℓ) {φ : I} (Te : Partial φ (Σ (Set ℓ') \ T → T ≃ A))
(u0 : (Glue A Te)) where
ψ = i0
a0 = unglue {φ = φ} u0
a1 = primComp (\ _ → A)
φ
(\ { i (φ = i1) → equivFun (Te itIsOne .snd) (transpFill {A' = Te itIsOne .fst} ψ (\ i → inc (Te itIsOne .fst)) u0 i) })
a0
pair : PartialP φ λ o → Helpers.fiber (Te o .snd .fst) a1
pair o = equivProof (Te o .fst) A (Te o .snd) a1 φ \ { (φ = i1) → _ , Helpers.refl }
result : Glue A Te
result = glue {φ = φ} (λ o → pair o .fst) (primHComp (\ { j (φ = i1) → pair itIsOne .snd j}) a1)
test : primTransp (\ _ → Glue A Te) ψ u0 ≡ result
test = Helpers.refl
| {
"alphanum_fraction": 0.4687579054,
"avg_line_length": 43.4395604396,
"ext": "agda",
"hexsha": "9e265f7df66723521e48e4b48991e55e9983298e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "caryoscelus/agda",
"max_forks_repo_path": "test/Succeed/Issue3399.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "caryoscelus/agda",
"max_issues_repo_path": "test/Succeed/Issue3399.agda",
"max_line_length": 129,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "caryoscelus/agda",
"max_stars_repo_path": "test/Succeed/Issue3399.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1520,
"size": 3953
} |
module #2 where
open import Data.Product
open import Data.Sum
open import Relation.Binary.PropositionalEquality
{-
Exercise 1.2. Derive the recursion principle for products recA×B using only the projections, and
verify that the definitional equalities are valid. Do the same for Σ-types.
-}
module Products { a b c }{A : Set a}{B : Set b}{C : Set c}(g : A → B → C) where
recₓ : A × B → C
recₓ x = g (proj₁ x) (proj₂ x)
rec-β : (x : A)(y : B) → recₓ (x , y) ≡ g x y
rec-β x y = refl
module Sums { a b c }{A : Set a}{B : A → Set b}{C : Set c}(g : (x : A) → B x → C) where
rec-Σ : Σ A B → C
rec-Σ x = g (proj₁ x) (proj₂ x)
rec-Σ-β : (x : A)(y : B x) → rec-Σ (x , y) ≡ g x y
rec-Σ-β x y = refl
| {
"alphanum_fraction": 0.5905292479,
"avg_line_length": 26.5925925926,
"ext": "agda",
"hexsha": "04468b9c261cb5747e68831bdee00ed4ad1dc9fc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CodaFi/HoTT-Exercises",
"max_forks_repo_path": "Chapter1/#2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CodaFi/HoTT-Exercises",
"max_issues_repo_path": "Chapter1/#2.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CodaFi/HoTT-Exercises",
"max_stars_repo_path": "Chapter1/#2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 289,
"size": 718
} |
module kiss where
open import string
open import list
open import bool
open import relations
open import product
open import unit
data formula : Set where
$ : string → formula
True : formula
Implies : formula → formula → formula
And : formula → formula → formula
ctxt : Set
ctxt = 𝕃 formula
data _⊢_ : ctxt → formula → Set where
Assume : ∀{Γ f} → (f :: Γ) ⊢ f
Weaken : ∀{Γ f f'} → Γ ⊢ f → (f' :: Γ) ⊢ f
ImpliesI : ∀{Γ f1 f2} → (f1 :: Γ) ⊢ f2 → Γ ⊢ (Implies f1 f2)
ImpliesE : ∀{Γ f1 f2} → Γ ⊢ (Implies f1 f2) → Γ ⊢ f1 → Γ ⊢ f2
TrueI : ∀{Γ} → Γ ⊢ True
AndI : ∀{Γ f1 f2} → Γ ⊢ f1 → Γ ⊢ f2 → Γ ⊢ (And f1 f2)
AndE : ∀(b : 𝔹){Γ f1 f2} → Γ ⊢ (And f1 f2) → Γ ⊢ (if b then f1 else f2)
{-
p : formula
p = $ "p"
f1 : (p :: []) ⊢ p
f1 = assume {[]}{p}
f2 : (p :: []) ⊢ (And p p)
f2 = AndI f1 f1
f3 : [] ⊢ (Implies p (And p p))
f3 = ImpliesI f2
-}
record struct : Set1 where
field W : Set
R : W → W → Set
preorderR : preorder R
V : W → string → Set
monoV : ∀{w w'} → R w w' → ∀{i} →
V w i → V w' i
reflR : reflexive R
reflR = fst preorderR
transR : transitive R
transR = snd preorderR
data world : Set where
w0 : world
w1 : world
w2 : world
data rel : world → world → Set where
r00 : rel w0 w0
r11 : rel w1 w1
r22 : rel w2 w2
r01 : rel w0 w1
r02 : rel w0 w2
rel-refl : reflexive rel
rel-refl {w0} = r00
rel-refl {w1} = r11
rel-refl {w2} = r22
rel-trans : transitive rel
rel-trans r00 r00 = r00
rel-trans r00 r01 = r01
rel-trans r00 r02 = r02
rel-trans r11 r11 = r11
rel-trans r22 r22 = r22
rel-trans r01 r11 = r01
rel-trans r02 r22 = r02
data val : world → string → Set where
v1p : val w1 "p"
v1q : val w1 "q"
v2p : val w2 "p"
v2q : val w2 "q"
mono-val : ∀{w w'} → rel w w' →
∀{i} → val w i → val w' i
mono-val r00 p = p
mono-val r11 p = p
mono-val r22 p = p
mono-val r01 ()
mono-val r02 ()
k : struct
k = record { W = world ;
R = rel ;
preorderR = (rel-refl , rel-trans) ;
V = val ;
monoV = mono-val }
open struct
_,_⊨_ : ∀(k : struct) → W k → formula → Set
k , w ⊨ ($ x) = V k w x
k , w ⊨ True = ⊤
k , w ⊨ Implies f1 f2 = ∀ {w' : W k} → R k w w' →
k , w' ⊨ f1 → k , w' ⊨ f2
k , w ⊨ And f1 f2 = k , w ⊨ f1 ∧ k , w ⊨ f2
pf-test-sem : k , w0 ⊨ Implies ($ "p") ($ "q")
pf-test-sem r00 ()
pf-test-sem r01 p = v1q
pf-test-sem r02 p = v2q
_,_⊨ctxt_ : ∀(k : struct) → W k → ctxt → Set
k , w ⊨ctxt [] = ⊤
k , w ⊨ctxt (f :: Γ) = (k , w ⊨ f) ∧ (k , w ⊨ctxt Γ)
mono⊨ : ∀{k : struct}{w1 w2 : W k}{f : formula} →
R k w1 w2 →
k , w1 ⊨ f →
k , w2 ⊨ f
mono⊨{k} {f = $ x} r p = monoV k r p
mono⊨{k} {f = True} r p = triv
mono⊨{k} {f = Implies f1 f2} r p r' p' = p (transR k r r') p'
mono⊨{k} {f = And f1 f2} r (p1 , p2) = mono⊨{f = f1} r p1 , mono⊨{f = f2} r p2
mono⊨ctxt : ∀{k : struct}{Γ : ctxt}{w1 w2 : W k} →
R k w1 w2 →
k , w1 ⊨ctxt Γ →
k , w2 ⊨ctxt Γ
mono⊨ctxt{k}{[]} _ _ = triv
mono⊨ctxt{k}{f :: Γ} r (u , v) = mono⊨{k}{f = f} r u , mono⊨ctxt{k}{Γ} r v
_⊩_ : ctxt → formula → Set1
Γ ⊩ f = ∀{k : struct}{w : W k} → k , w ⊨ctxt Γ → k , w ⊨ f
Soundness : ∀{Γ : ctxt}{f : formula} → Γ ⊢ f → Γ ⊩ f
Soundness Assume g = fst g
Soundness (Weaken p) g = Soundness p (snd g)
Soundness (ImpliesI p) g r u' = Soundness p (u' , mono⊨ctxt r g)
Soundness (ImpliesE p p') {k} g = (Soundness p g) (reflR k) (Soundness p' g)
Soundness TrueI g = triv
Soundness (AndI p p') g = (Soundness p g , Soundness p' g)
Soundness (AndE tt p) g = fst (Soundness p g)
Soundness (AndE ff p) g = snd (Soundness p g)
data _≼_ : 𝕃 formula → 𝕃 formula → Set where
≼-refl : ∀{Γ} → Γ ≼ Γ
≼-cons : ∀{Γ Γ' f} → Γ ≼ Γ' → Γ ≼ (f :: Γ')
≼-trans : ∀ {Γ Γ' Γ''} → Γ ≼ Γ' → Γ' ≼ Γ'' → Γ ≼ Γ''
≼-trans u ≼-refl = u
≼-trans u (≼-cons u') = ≼-cons (≼-trans u u')
Weaken≼ : ∀ {Γ Γ'}{f : formula} → Γ ≼ Γ' → Γ ⊢ f → Γ' ⊢ f
Weaken≼ ≼-refl p = p
Weaken≼ (≼-cons d) p = Weaken (Weaken≼ d p)
U : struct
U = record { W = ctxt ;
R = _≼_ ;
preorderR = ≼-refl , ≼-trans ;
V = λ Γ n → Γ ⊢ $ n ;
monoV = λ d p → Weaken≼ d p }
CompletenessU : ∀{f : formula}{Γ : W U} → U , Γ ⊨ f → Γ ⊢ f
SoundnessU : ∀{f : formula}{Γ : W U} → Γ ⊢ f → U , Γ ⊨ f
CompletenessU {$ x} u = u
CompletenessU {True} u = TrueI
CompletenessU {And f f'} u = AndI (CompletenessU{f} (fst u)) (CompletenessU{f'} (snd u))
CompletenessU {Implies f f'}{Γ} u =
ImpliesI
(CompletenessU {f'}
(u (≼-cons ≼-refl) (SoundnessU {f} (Assume {Γ}))))
SoundnessU {$ x} p = p
SoundnessU {True} p = triv
SoundnessU {And f f'} p = SoundnessU{f} (AndE tt p) , SoundnessU{f'} (AndE ff p)
SoundnessU {Implies f f'} p r u = SoundnessU (ImpliesE (Weaken≼ r p) (CompletenessU {f} u))
ctxt-id : ∀{Γ : ctxt} → U , Γ ⊨ctxt Γ
ctxt-id{[]} = triv
ctxt-id{f :: Γ} = SoundnessU{f} Assume , mono⊨ctxt (≼-cons ≼-refl) (ctxt-id {Γ})
Completeness : ∀{Γ : ctxt}{f : formula} → Γ ⊩ f → Γ ⊢ f
Completeness{Γ} p = CompletenessU (p{U}{Γ} (ctxt-id{Γ}))
Universality1 : ∀{Γ : ctxt}{f : formula} → Γ ⊩ f → U , Γ ⊨ f
Universality1{Γ}{f} p = SoundnessU (Completeness{Γ}{f} p)
Universality2 : ∀{Γ : ctxt}{f : formula} → U , Γ ⊨ f → Γ ⊩ f
Universality2{Γ}{f} p = Soundness (CompletenessU{f}{Γ} p)
nbe : ∀ {Γ f} → Γ ⊢ f → Γ ⊢ f
nbe {Γ} p = Completeness (Soundness p)
| {
"alphanum_fraction": 0.5185048794,
"avg_line_length": 27.9948453608,
"ext": "agda",
"hexsha": "ef49006e24df309f999cea2dde6bde4c77eea278",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "logicshan/IAL",
"max_forks_repo_path": "kiss.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "logicshan/IAL",
"max_issues_repo_path": "kiss.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2ad96390a9be5c238e73709a21533c7354cedd0c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "logicshan/IAL",
"max_stars_repo_path": "kiss.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2405,
"size": 5431
} |
{-# OPTIONS --without-K #-}
module Main where
open import Data.List
open import Midi
open import Note
open import Frog
open import Piston
main : IO Unit
main =
let channel = 0
ticksPerBeat = 4 -- 16th notes
file = "/tmp/test.mid"
-- counterpoint
song = cfcpTracks1
-- song = cfcpTracks2
-- harmony
-- song = testHTracks
in exportTracks file ticksPerBeat (map track→htrack song)
| {
"alphanum_fraction": 0.6172566372,
"avg_line_length": 18.8333333333,
"ext": "agda",
"hexsha": "1afd70eb3edd3dc8f8106a2004bd13a0ea23f3f7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "doc/icfp20/code/Main.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "doc/icfp20/code/Main.agda",
"max_line_length": 59,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "doc/icfp20/code/Main.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 120,
"size": 452
} |
module x1-Base where
data List (X : Set) : Set where
[] : List X
_∷_ : X → List X → List X
infixr 5 _∷_
foldr : ∀ {A} {B : Set} → (A → B → B) → B → List A → B
foldr f b [] = b
foldr f b (a ∷ as) = f a (foldr f b as)
data Either (A : Set) (B : Set) : Set where
left : A → Either A B
right : B → Either A B
[_,_] : ∀ {A B} {C : Set} → (A → C) → (B → C) → Either A B → C
[ f , g ] (left x) = f x
[ f , g ] (right x) = g x
-- Unhabited type
data Empty : Set where
absurd : {X : Set} → Empty → X
absurd ()
-- use Empty to define something close to negation in logic:
-- e.g., terms of type ¬ (3 > 4)
infix 3 ¬_
¬_ : Set → Set
¬ X = X → Empty
-- binary relation on a type X
Rel : Set → Set₁
Rel X = X → X → Set
-- decidable relations
Decidable : ∀ {X} → Rel X → Set
Decidable R = ∀ x y → Either (R x y) (¬ (R x y))
-- To sort a list, need two relations on elements of list:
-- equality
record Equivalence {X} (_≈_ : Rel X) : Set₁ where
field
refl : ∀ {x} → x ≈ x
sym : ∀ {x y} → x ≈ y → y ≈ x
trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
-- and ordering
record TotalOrder {X} (_≈_ : Rel X) (_≤_ : Rel X) : Set₁ where
field
antisym : ∀ {x y} → x ≤ y → y ≤ x → x ≈ y
trans : ∀ {x y z} → x ≤ y → y ≤ z → x ≤ z
total : ∀ x y → Either (x ≤ y) (y ≤ x)
reflexive : ∀ {x y} → x ≈ y → x ≤ y
equivalence : Equivalence _≈_
| {
"alphanum_fraction": 0.4936440678,
"avg_line_length": 24.8421052632,
"ext": "agda",
"hexsha": "5d0bd29ff54962c7131835407ac63a686ec39745",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x1-Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x1-Base.agda",
"max_line_length": 62,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/topic/order/2013-04-01-sorting-francesco-mazzo/x1-Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 573,
"size": 1416
} |
import Lvl
open import Structure.Operator.Vector
open import Structure.Setoid
open import Type
module Structure.Operator.Vector.Subspaces.Span
{ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ}
{V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
{S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
{_+ᵥ_ : V → V → V}
{_⋅ₛᵥ_ : S → V → V}
{_+ₛ_ _⋅ₛ_ : S → S → S}
⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄
where
open VectorSpace(vectorSpace)
open import Logic.Predicate
open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec)
open import Numeral.Finite
open import Numeral.Natural
open import Sets.ExtensionalPredicateSet as PredSet using (PredSet ; _∈_ ; [∋]-binaryRelator)
open import Structure.Container.SetLike using (SetElement)
private open module SetLikeFunctionProperties{ℓ} = Structure.Container.SetLike.FunctionProperties{C = PredSet{ℓ}(V)}{E = V}(_∈_)
open import Structure.Function.Multi
open import Structure.Operator
open import Structure.Operator.Vector.LinearCombination ⦃ vectorSpace = vectorSpace ⦄
open import Structure.Operator.Vector.LinearCombination.Proofs
open import Structure.Operator.Vector.Subspace ⦃ vectorSpace = vectorSpace ⦄
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Transitivity
private variable n : ℕ
private variable vf : Vec(n)(V)
private variable sf : Vec(n)(S)
Span : Vec(n)(V) → PredSet(V)
Span(vf) = PredSet.⊶(linearCombination(vf))
Span-subspace : ∀{vf} → Subspace(Span{n}(vf))
∃.witness (_closed-under₂_.proof (Subspace.add-closure (Span-subspace {vf = vf})) ([∃]-intro sf₁) ([∃]-intro sf₂)) = Vec.map₂(_+ₛ_) sf₁ sf₂
∃.proof (_closed-under₂_.proof (Subspace.add-closure (Span-subspace {vf = vf})) {v₁} {v₂} ([∃]-intro sf₁ ⦃ p₁ ⦄) ([∃]-intro sf₂ ⦃ p₂ ⦄)) =
linearCombination vf (Vec.map₂(_+ₛ_) sf₁ sf₂) 🝖[ _≡_ ]-[ preserving₂(linearCombination vf) (Vec.map₂(_+ₛ_)) (_+ᵥ_) ]
(linearCombination vf sf₁) +ᵥ (linearCombination vf sf₂) 🝖[ _≡_ ]-[ congruence₂(_+ᵥ_) ⦃ [+ᵥ]-binary-operator ⦄ p₁ p₂ ]
v₁ +ᵥ v₂ 🝖-end
∃.witness (_closed-under₁_.proof (Subspace.mul-closure Span-subspace {s}) ([∃]-intro sf)) = Vec.map(s ⋅ₛ_) sf
∃.proof (_closed-under₁_.proof (Subspace.mul-closure (Span-subspace {vf = vf}) {s}) {v} ([∃]-intro sf ⦃ p ⦄)) =
linearCombination vf (i ↦ s ⋅ₛ sf(i)) 🝖[ _≡_ ]-[ preserving₁(linearCombination vf) (Vec.map(s ⋅ₛ_)) (s ⋅ₛᵥ_) ]
s ⋅ₛᵥ (linearCombination vf sf) 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅ₛᵥ_)(s) p ]
s ⋅ₛᵥ v 🝖-end
| {
"alphanum_fraction": 0.66849745,
"avg_line_length": 49.0192307692,
"ext": "agda",
"hexsha": "3afecab506b438071d63829fd855a184b1d385e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/Subspaces/Span.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/Subspaces/Span.agda",
"max_line_length": 139,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/Subspaces/Span.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 955,
"size": 2549
} |
module Examples.Effects where
open import Prelude
open import Effects.Denotational
open import Effects.WellTyped EC _ec≟_
open import Effects.Substitutions EC _ec≟_
open import Implicits.Calculus.Types
-- value abstraction
module ex₁ where
f : Term 0 0 0
f = λ' unit (does io)
-- a lazy print is pure, but has a latent effect IO
⊢f : [] ⊢ f ∈ unit →[ has io & pure ] unit + pure
⊢f = λ' unit (does io)
-- when we apply the above term
-- the latent effect pops up
f·t : Term 0 0 0
f·t = f · tt
⊢f·t : [] ⊢ f·t ∈ unit + has io & pure
⊢f·t = ⊢f · tt
-- effect abstraction
module ex₂ where
f : Term 0 0 0
f = H (Λ (Λ (
λ'
(tvar zero →[ evar zero & pure ] tvar (suc zero))
(λ' (tvar zero) ((var (suc zero)) · (var zero)))
)))
wt-f : [] ⊢ f ∈
H (∀' (∀' ((
tvar zero →[ evar zero & pure ] tvar (suc zero)) →[ pure ]
(tvar zero →[ evar zero & pure ] (tvar (suc zero)))
)))
+ pure
wt-f = H (Λ (Λ (λ' (tvar zero →[ evar zero & pure ] tvar (suc zero))
(λ' (tvar zero) (var (suc zero) · var zero)))))
module ex₃ where
eff : Effects 0
eff = (has io) & (has read) & pure
-- lists of effects transtlate to tuples of Can*
test : ⟦ eff , ([] , []) ⟧efs ≡ C.rec (tc CanIO ∷ tc CanRead ∷ [])
test = refl
module ex₄ where
f : Term 0 0 0
f = Λ (λ' unit (does io))
wt-f : [] ⊢ f ∈ (∀' (unit →[ has io & pure ] unit)) + pure
wt-f = Λ (λ' unit (does io))
test : ⟦ wt-f , ([] , []) ⟧ ≡
C.Λ (C.λ' (tc unit) ((C.ρ (tc CanIO) ((C.ρ (tc CanIO) (C.new unit)) C.⟨⟩))))
test = refl
module ex₅ where
open ex₄
tapp : Term 0 0 0
tapp = f [ unit ]
wt-tapp : [] ⊢ tapp ∈ (unit →[ has io & pure ] unit) + pure
wt-tapp = wt-f [ unit ]
app : Term 0 0 0
app = tapp · tt
wt-app : [] ⊢ app ∈ unit + has io & pure
wt-app = wt-tapp · tt
| {
"alphanum_fraction": 0.5441657579,
"avg_line_length": 23.2151898734,
"ext": "agda",
"hexsha": "90c2b4107b3dc44ef02e83cb8c6e68fb105535f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Examples/Effects.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Examples/Effects.agda",
"max_line_length": 80,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Examples/Effects.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 727,
"size": 1834
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Agda.Builtin.Size
mutual
data Nat (i : Size) : Set where
zero : Nat i
suc : Nat′ i → Nat i
data Nat′ (i : Size) : Set where
[_] : {j : Size< i} → Nat j → Nat′ i
size : ∀ {i} → Nat′ i → Size
size ([_] {j} _) = {!j!}
unbox : ∀ {i} (n : Nat′ i) → Nat (size n)
unbox [ n ] = n
postulate
_ _ _ _ _ _ : Set
| {
"alphanum_fraction": 0.5172413793,
"avg_line_length": 17.9523809524,
"ext": "agda",
"hexsha": "93d9170cc805bb21d9a6b3a7d92cc47d332ccd76",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2917.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2917.agda",
"max_line_length": 41,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2917.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 148,
"size": 377
} |
{-# OPTIONS --universe-polymorphism #-}
module InstanceArguments.09-higherOrderClasses where
open import Effect.Applicative
open import Effect.Monad
open import Effect.Monad.Indexed
open import Function
lift : ∀ {a b c} {A : Set a} {C : Set c} {B : A → Set b} →
({{x : A}} → B x) → (f : C → A) → {{x : C}} → B (f x)
lift m f {{x}} = m {{f x}}
monadToApplicative : ∀ {l} {M : Set l → Set l} → RawMonad M → RawApplicative M
monadToApplicative = RawIMonad.rawIApplicative
liftAToM : ∀ {l} {V : Set l} {M : Set l → Set l} → ({{appM : RawApplicative M}} → M V) →
{{monadM : RawMonad M}} → M V
liftAToM app {{x}} = lift (λ {{appM}} → app {{appM}}) monadToApplicative {{x}}
| {
"alphanum_fraction": 0.6028985507,
"avg_line_length": 34.5,
"ext": "agda",
"hexsha": "433d951b5d1f4a0abedd0f7804fa38a6d10d1436",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 245,
"size": 690
} |
module Data.Dyck.Sized where
open import Prelude
open import Data.Nat using (_+_)
open import Data.Vec.Iterated using (Vec; _∷_; []; foldlN; head; foldl′)
open import Cubical.Foundations.Prelude using (substRefl)
open import Cubical.Data.Sigma.Properties using (Σ≡Prop)
open import Data.Nat.Properties using (isSetℕ)
private variable
n m k : ℕ
n⊙ m⊙ k⊙ : ℕ → ℕ
--------------------------------------------------------------------------------
-- Tree
--------------------------------------------------------------------------------
data Tree : Type where
⟨⟩ : Tree
_*_ : Tree → Tree → Tree
size⊙ : Tree → ℕ → ℕ
size⊙ ⟨⟩ = suc
size⊙ (xs * ys) = size⊙ xs ∘ size⊙ ys
size : Tree → ℕ
size t = size⊙ t zero
--------------------------------------------------------------------------------
-- Dyck Word
--------------------------------------------------------------------------------
infixr 6 ⟨_ ⟩_
data Dyck : ℕ → ℕ → Type where
⟩! : Dyck 1 0
⟨_ : Dyck (1 + n) m → Dyck n (1 + m)
⟩_ : Dyck (1 + n) m → Dyck (2 + n) m
--------------------------------------------------------------------------------
-- Tree to Stack
--------------------------------------------------------------------------------
tree→stack⊙ : (t : Tree) → Dyck (suc m) k → Dyck m (size⊙ t k)
tree→stack⊙ ⟨⟩ = ⟨_
tree→stack⊙ (xs * ys) = tree→stack⊙ xs ∘ tree→stack⊙ ys ∘ ⟩_
tree→stack : (t : Tree) → Dyck 0 (size t)
tree→stack tr = tree→stack⊙ tr ⟩!
--------------------------------------------------------------------------------
-- Stack to Tree
--------------------------------------------------------------------------------
stack→tree⊙ : Dyck n m → Vec Tree n → Tree
stack→tree⊙ ⟩! (v ∷ []) = v
stack→tree⊙ (⟨ is) st = stack→tree⊙ is (⟨⟩ ∷ st)
stack→tree⊙ (⟩ is) (t₁ ∷ t₂ ∷ st) = stack→tree⊙ is (t₂ * t₁ ∷ st)
stack→tree : Dyck 0 n → Tree
stack→tree ds = stack→tree⊙ ds []
--------------------------------------------------------------------------------
-- Size lemma
--------------------------------------------------------------------------------
stack→tree-size⊙ : {st : Vec Tree n} (is : Dyck n m) →
size (stack→tree⊙ is st) ≡ foldl′ size⊙ m st
stack→tree-size⊙ ⟩! = refl
stack→tree-size⊙ (⟨ is) = stack→tree-size⊙ is
stack→tree-size⊙ (⟩ is) = stack→tree-size⊙ is
--------------------------------------------------------------------------------
-- Roundtrip
--------------------------------------------------------------------------------
tree→stack→tree⊙ : {is : Dyck (1 + n) m} {st : Vec Tree n} (e : Tree) →
stack→tree⊙ (tree→stack⊙ e is) st ≡ stack→tree⊙ is (e ∷ st)
tree→stack→tree⊙ ⟨⟩ = refl
tree→stack→tree⊙ (xs * ys) = tree→stack→tree⊙ xs ; tree→stack→tree⊙ ys
foldlNN : ∀ {A : Type a} {p} (P : ℕ → ℕ → Type p) →
(f : A → ℕ → ℕ) →
(∀ {n m} → (x : A) → P (suc n) m → P n (f x m)) →
P n m →
(xs : Vec A n) → P zero (foldl′ f m xs)
foldlNN {n = zero} P f s b xs = b
foldlNN {n = suc n} P f s b (x ∷ xs) = foldlNN P f s (s x b) xs
stack→tree→stack⊙ : {st : Vec Tree n} (is : Dyck n m) →
subst (Dyck 0) (stack→tree-size⊙ is) (tree→stack (stack→tree⊙ is st))
≡ foldlNN Dyck size⊙ tree→stack⊙ is st
stack→tree→stack⊙ ⟩! = substRefl {B = Dyck 0} _
stack→tree→stack⊙ (⟨ is) = stack→tree→stack⊙ is
stack→tree→stack⊙ (⟩ is) = stack→tree→stack⊙ is
--------------------------------------------------------------------------------
-- Isomorphism
--------------------------------------------------------------------------------
STree : ℕ → Type
STree = fiber size
tree-stack : STree n ⇔ Dyck 0 n
tree-stack .fun (t , n) = subst (Dyck 0) n (tree→stack t)
tree-stack .inv st .fst = stack→tree st
tree-stack .inv st .snd = stack→tree-size⊙ st
tree-stack .leftInv (t , sz≡) =
Σ≡Prop
(λ _ → isSetℕ _ _)
(J
(λ n sz≡ → stack→tree (subst (Dyck 0) sz≡ (tree→stack t)) ≡ t)
(cong stack→tree (substRefl {B = Dyck 0} (tree→stack t)) ; tree→stack→tree⊙ t) sz≡)
tree-stack .rightInv st = stack→tree→stack⊙ st
--------------------------------------------------------------------------------
-- Finite
--------------------------------------------------------------------------------
open import Data.List
support-dyck : ∀ n m → List (Dyck n m)
support-dyck = λ n m → sup-k n m id []
module ListDyck where
Diff : Type → Type₁
Diff A = ∀ {B : Type} → (A → B) → List B → List B
infixr 5 _++′_
_++′_ : Diff A → Diff A → Diff A
xs ++′ ys = λ k → xs k ∘ ys k
mutual
sup-k : ∀ n m → Diff (Dyck n m)
sup-k n m = end n m ++′ lefts n m ++′ rights n m
lefts : ∀ n m → Diff (Dyck n m)
lefts n zero k = id
lefts n (suc m) k = sup-k (suc n) m (k ∘ ⟨_)
rights : ∀ n m → Diff (Dyck n m)
rights (suc (suc n)) m k = sup-k (suc n) m (k ∘ ⟩_)
rights _ m k = id
end : ∀ n m → Diff (Dyck n m)
end 1 0 k xs = k ⟩! ∷ xs
end _ _ k = id
open import Data.List.Membership
open import Data.Fin
cover-dyck : (x : Dyck n m) → x ∈ support-dyck n m
cover-dyck x = go _ _ x id []
where
open ListDyck
mutual
pushLefts : ∀ n m (k : Dyck n m → B) x xs → x ∈ xs → x ∈ lefts n m k xs
pushLefts n (suc m) k = pushSup (suc n) m (λ z → k (⟨ z))
pushLefts _ zero k x xs p = p
pushEnd : ∀ n m (k : Dyck n m → B) x xs → x ∈ xs → x ∈ end n m k xs
pushEnd 0 m k x xs p = p
pushEnd 1 0 k x xs (i , p) = fs i , p
pushEnd 1 (suc m) k x xs p = p
pushEnd (suc (suc n)) m k x xs p = p
pushRights : ∀ n m (k : Dyck n m → B) x xs → x ∈ xs → x ∈ rights n m k xs
pushRights (suc (suc n)) m k = pushSup (suc n) m λ z → k (⟩ z)
pushRights 1 _ _ _ _ p = p
pushRights 0 _ _ _ _ p = p
pushSup : ∀ n m (k : Dyck n m → B) x xs → x ∈ xs → x ∈ sup-k n m k xs
pushSup n m k x xs p = pushEnd n m k x (lefts n m k (rights n m k xs)) (pushLefts n m k x (rights n m k xs) (pushRights n m k x xs p))
go : ∀ n m → (x : Dyck n m) → (k : Dyck n m → A) → (xs : List A) → k x ∈ sup-k n m k xs
go .1 .0 ⟩! k xs = f0 , refl
go 0 (suc m) (⟨ x) k xs = go 1 m x (k ∘ ⟨_) xs
go 1 (suc m) (⟨ x) k xs = go 2 m x (k ∘ ⟨_) xs
go (suc n@(suc _)) (suc m) (⟨ x) k xs = go (suc (suc n)) m x (k ∘ ⟨_) (rights (suc n) (suc m) k xs)
go (suc n) m (⟩ x) k xs =
let p = go n m x (k ∘ ⟩_) xs
in pushEnd (suc n) m k (k (⟩ x)) (lefts (suc n) m k _) (pushLefts (suc n) m k (k (⟩ x)) (rights (suc n) m k xs) p)
| {
"alphanum_fraction": 0.4319498825,
"avg_line_length": 34.7010869565,
"ext": "agda",
"hexsha": "644a513ea4fd417e70e63e5120e26071575c6100",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Dyck/Sized.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Dyck/Sized.agda",
"max_line_length": 138,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Dyck/Sized.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 2301,
"size": 6385
} |
module HelpDefs where
-- open import Relation.Binary.PropositionalEquality
open import StdLibStuff
open import Syntax
open import FSC
open import STT
open import DerivedProps
m-weak-h : ∀ {n} Γ₁ Γ₂ {t} → {Γ₃ : Ctx n} → Form (Γ₃ ++ Γ₁) t → Form (Γ₃ ++ (Γ₂ r++ Γ₁)) t
m-weak-h {n} Γ₁ ε = λ f → f
m-weak-h {n} Γ₁ (t' ∷ Γ₂) {t} {Γ₃} = λ f → m-weak-h {n} (t' ∷ Γ₁) Γ₂ {t} {Γ₃} (weak-i Γ₃ Γ₁ f)
m-weak2 : ∀ {n Γ₁} Γ₂ → {t : Type n} → Form Γ₁ t → Form (Γ₂ ++ Γ₁) t
m-weak2 {n} {Γ₁} ε f = f
m-weak2 {n} {Γ₁} (t' ∷ Γ₂) f = weak (m-weak2 {n} {Γ₁} Γ₂ f)
hypos-i-h : ∀ {n Γ-t₁ Γ-t₂ Γ-t₃} → FSC-Ctx n Γ-t₁ → Form (Γ-t₃ ++ (Γ-t₂ r++ Γ-t₁)) $o → Form (Γ-t₃ ++ (Γ-t₂ r++ Γ-t₁)) $o
hypos-i-h ε = λ f → f
hypos-i-h {n} {Γ-t₁} {Γ-t₂} {Γ-t₃} (h ∷h Γ) = λ f → hypos-i-h {n} {Γ-t₁} {Γ-t₂} {Γ-t₃} Γ (m-weak-h Γ-t₁ Γ-t₂ {$o} {Γ-t₃} (m-weak2 Γ-t₃ h) => f)
hypos-i-h {n} {.(t ∷ _)} {Γ-t₂} {Γ-t₃} (t ∷ Γ) = hypos-i-h {n} {_} {t ∷ Γ-t₂} {Γ-t₃} Γ
m-weak : ∀ {n Γ₁ Γ₂ t} → Form Γ₁ t → Form (Γ₂ r++ Γ₁) t
m-weak {n} {Γ₁} {Γ₂} {t} = m-weak-h {n} Γ₁ Γ₂ {t} {ε}
hypos-i : ∀ {n Γ-t₁ Γ-t₂} → FSC-Ctx n Γ-t₁ → Form (Γ-t₂ r++ Γ-t₁) $o → Form (Γ-t₂ r++ Γ-t₁) $o
hypos-i {n} {Γ-t₁} {Γ-t₂} = hypos-i-h {n} {Γ-t₁} {Γ-t₂} {ε}
hypos : ∀ {n Γ-t} → FSC-Ctx n Γ-t → Form Γ-t $o → Form Γ-t $o
hypos {n} {Γ-t} = hypos-i {n} {Γ-t} {ε}
-- Props
eq-1-i : ∀ {n} Γ₁ Γ₂ → (t : Type n) (X₁ : Form (t ∷ Γ₁) $o) (X₂ : Form Γ₁ $o) →
X₁ ≡ weak-i {n} {$o} {t} ε Γ₁ X₂ →
m-weak-h Γ₁ Γ₂ {$o} {t ∷ ε} X₁ ≡ weak-i {n} {$o} {t} ε (Γ₂ r++ Γ₁) (m-weak-h Γ₁ Γ₂ {$o} {ε} X₂)
eq-1-i Γ₁ ε t X₁ X₂ = λ h → h
eq-1-i Γ₁ (u ∷ Γ₂) t X₁ X₂ = λ h → eq-1-i (u ∷ Γ₁) Γ₂ t (weak-i {_} {$o} {u} (t ∷ ε) Γ₁ X₁) (weak-i {_} {$o} {u} ε Γ₁ X₂) (trans (cong (weak-i {_} {$o} {u} (t ∷ ε) Γ₁) h) (weak-weak-p-1 Γ₁ t u $o X₂))
eq-1 : ∀ {n} Γ₁ Γ₂ → (t : Type n) (X : Form Γ₁ $o) →
m-weak-h Γ₁ Γ₂ {$o} {t ∷ ε} (weak-i {n} {$o} {t} ε Γ₁ X) ≡ weak-i {n} {$o} {t} ε (Γ₂ r++ Γ₁) (m-weak-h Γ₁ Γ₂ {$o} {ε} X)
eq-1 Γ₁ Γ₂ t X = eq-1-i Γ₁ Γ₂ t (weak-i {_} {$o} {t} ε Γ₁ X) X refl
eq-2-2 : ∀ n → (Γ-t Γ' : Ctx n) → (t : Type n) (X₁ : Form (t ∷ Γ-t) $o) (X₂ : Form Γ-t $o) →
weak-i {n} {$o} {t} ε Γ-t X₂ ≡ X₁ →
(h₂ : t ∷ (Γ' r++ Γ-t) ≡ (Γ' ++ (t ∷ ε)) r++ Γ-t) →
m-weak-h Γ-t (Γ' ++ (t ∷ ε)) {$o} {ε} X₂ ≡
subst (λ z → Form z $o) h₂ (m-weak-h Γ-t Γ' {$o} {t ∷ ε} X₁)
eq-2-2 n Γ-t ε t X₁ X₂ h refl = h
eq-2-2 n Γ-t (u ∷ Γ') t X₁ X₂ h h₂ = eq-2-2 n (u ∷ Γ-t) Γ' t (weak-i {_} {$o} {u} (t ∷ ε) Γ-t X₁) (weak-i {_} {$o} {u} ε Γ-t X₂) (
trans (sym (weak-weak-p-1 Γ-t t u $o X₂)) (cong (weak-i {_} {$o} {u} (t ∷ ε) Γ-t) h))
h₂
eq-2-1 : ∀ n → (Γ-t Γ' : Ctx n) → (t : Type n) (h : Form Γ-t $o) (F : Form (t ∷ (Γ' r++ Γ-t)) $o) →
(Γ'' : Ctx n)
(h₁₁ : Γ'' ≡ (Γ' ++ (t ∷ ε)) r++ Γ-t) →
(h₁₂ : t ∷ (Γ' r++ Γ-t) ≡ Γ'') →
app (app A (app N (m-weak-h Γ-t (Γ' ++ (t ∷ ε)) {$o} {ε} h))) (subst (λ z → Form z $o) h₁₁ (subst (λ z → Form z $o) h₁₂ F)) ≡
subst (λ z → Form z $o) h₁₁ (app (app A (app N (subst (λ z → Form z $o) h₁₂ (m-weak-h Γ-t Γ' {$o} {t ∷ ε} (weak-i ε Γ-t h))))) (subst (λ z → Form z $o) h₁₂ F))
eq-2-1 n Γ-t Γ' t h F .((Γ' ++ (t ∷ ε)) r++ Γ-t) refl h₁₂ = cong (λ z → app (app A (app N z)) (subst (λ z → Form z $o) h₁₂ F)) (eq-2-2 n Γ-t Γ' t (weak-i {_} {$o} {t} ε Γ-t h) h refl h₁₂)
eq-2-i : ∀ {n} Γ-t → (t : Type n) (Γ : FSC-Ctx n Γ-t) (Γ' : Ctx n) (F : Form (t ∷ (Γ' r++ Γ-t)) $o) →
(h₁ : t ∷ (ε ++ (Γ' r++ Γ-t)) ≡ (Γ' ++ (t ∷ ε)) r++ Γ-t) →
hypos-i-h {n} {Γ-t} {Γ' ++ (t ∷ ε)} {ε} Γ (subst (λ z → Form z $o) h₁ F) ≡ subst (λ z → Form z $o) h₁ (hypos-i-h {n} {Γ-t} {Γ'} {t ∷ ε} Γ F)
eq-2-i .ε t ε Γ' F h₁ = refl
eq-2-i .(u ∷ _) t (u ∷ Γ) Γ' F h₁ = eq-2-i _ t Γ (u ∷ Γ') F h₁
eq-2-i Γ-t t (h ∷h Γ) Γ' F h₁ = trans (cong (hypos-i-h {_} {Γ-t} {Γ' ++ (t ∷ ε)} {ε} Γ) (eq-2-1 _ Γ-t Γ' t h F _ h₁ refl)) (eq-2-i Γ-t t Γ Γ' (app (app A (app N (m-weak-h Γ-t Γ' {$o} {t ∷ ε} (weak-i ε Γ-t h)))) F) h₁)
eq-2 : ∀ {n Γ-t} → (t : Type n) (Γ : FSC-Ctx n Γ-t) (F : Form (t ∷ Γ-t) $o) →
hypos-i-h {n} {Γ-t} {t ∷ ε} {ε} Γ F ≡ hypos-i-h {n} {Γ-t} {ε} {t ∷ ε} Γ F
eq-2 {_} {Γ-t} t Γ F = eq-2-i {_} Γ-t t Γ ε F refl
traverse-hypos-i : ∀ {n Γ-t₁ Γ-t₂} → (F G : Form (Γ-t₂ r++ Γ-t₁) $o) (Γ : FSC-Ctx n Γ-t₁) → (⊢ (F => G)) → ⊢ (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ F => hypos-i {n} {Γ-t₁} {Γ-t₂} Γ G)
traverse-hypos-i F G ε h = h
traverse-hypos-i {n} {Γ-t₁} {Γ-t₂} F G (X ∷h Γ) h = traverse-hypos-i {n} {Γ-t₁} {Γ-t₂} (m-weak {n} {Γ-t₁} {Γ-t₂} X => F) (m-weak {n} {Γ-t₁} {Γ-t₂} X => G) Γ (inf-V ax-4-s h)
traverse-hypos-i {n} {.(t ∷ _)} {Γ-t₂} F G (t ∷ Γ) h = traverse-hypos-i {n} {_} {t ∷ Γ-t₂} F G Γ h
traverse-hypos : ∀ {n Γ-t} → (F G : Form Γ-t $o) (Γ : FSC-Ctx n Γ-t) → (⊢ (F => G)) → ⊢ (hypos Γ F => hypos Γ G)
traverse-hypos {n} {Γ-t} = traverse-hypos-i {n} {Γ-t} {ε}
traverse-hypos-pair-I-i : ∀ {n Γ-t₁ Γ-t₂} → (F G : Form (Γ-t₂ r++ Γ-t₁) $o) (Γ : FSC-Ctx n Γ-t₁) → ⊢ (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ F => (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ G => hypos-i {n} {Γ-t₁} {Γ-t₂} Γ (F & G)))
traverse-hypos-pair-I-i F G ε = lemb1 F G
traverse-hypos-pair-I-i {n} {Γ-t₁} {Γ-t₂} F G (x ∷h Γ) = inf-V (inf-V (ax-4-s {_} {_} {(hypos-i {n} {Γ-t₁} {Γ-t₂} Γ (m-weak {n} {Γ-t₁} {Γ-t₂} x => G) => (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ ((m-weak {n} {Γ-t₁} {Γ-t₂} x => F) & (m-weak {n} {Γ-t₁} {Γ-t₂} x => G))))})
(inf-V (ax-4-s {_} {_} {(hypos-i {n} {Γ-t₁} {Γ-t₂} Γ ((m-weak {n} {Γ-t₁} {Γ-t₂} x => F) & (m-weak {n} {Γ-t₁} {Γ-t₂} x => G)))}) (traverse-hypos-i {n} {Γ-t₁} {Γ-t₂} ((m-weak {n} {Γ-t₁} {Γ-t₂} x => F) & (m-weak {n} {Γ-t₁} {Γ-t₂} x => G)) (m-weak {n} {Γ-t₁} {Γ-t₂} x => (F & G)) Γ (lem2 (m-weak {n} {Γ-t₁} {Γ-t₂} x) F G))))
(traverse-hypos-pair-I-i {n} {Γ-t₁} {Γ-t₂} (m-weak {n} {Γ-t₁} {Γ-t₂} x => F) (m-weak {n} {Γ-t₁} {Γ-t₂} x => G) Γ)
traverse-hypos-pair-I-i {n} {.(t ∷ _)} {Γ-t₂} F G (t ∷ Γ) = traverse-hypos-pair-I-i {n} {_} {t ∷ Γ-t₂} F G Γ
traverse-hypos-pair-I : ∀ {n Γ-t} → (F G : Form Γ-t $o) (Γ : FSC-Ctx n Γ-t) → ⊢ (hypos Γ F => (hypos Γ G => hypos Γ (F & G)))
traverse-hypos-pair-I {n} {Γ-t} = traverse-hypos-pair-I-i {n} {Γ-t} {ε}
traverse-hypos-elim-i : ∀ {n Γ-t₁ Γ-t₂} → (F : Form (Γ-t₂ r++ Γ-t₁) $o) (Γ : FSC-Ctx n Γ-t₁) (x : HVar Γ) → ⊢ (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ (m-weak {n} {Γ-t₁} {Γ-t₂} (lookup-hyp Γ x) => F) => hypos-i {n} {Γ-t₁} {Γ-t₂} Γ F)
traverse-hypos-elim-i {n} {Γ-t₁} {Γ-t₂} F .(h ∷h Γ) (zero {._} {h} {Γ}) = traverse-hypos-i {n} {Γ-t₁} {Γ-t₂} (m-weak {n} {Γ-t₁} {Γ-t₂} h => (m-weak {n} {Γ-t₁} {Γ-t₂} h => F)) (m-weak {n} {Γ-t₁} {Γ-t₂} h => F) Γ (lem3 (m-weak {n} {Γ-t₁} {Γ-t₂} h) F)
traverse-hypos-elim-i {n} {Γ-t₁} {Γ-t₂} F .(h ∷h Γ) (succ {._} {h} {Γ} x) = inf-V ax-3-s (inf-V (inf-V (ax-4-s {_} {_} {~ (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ (m-weak {n} {Γ-t₁} {Γ-t₂} (lookup-hyp Γ x) => (m-weak {n} {Γ-t₁} {Γ-t₂} h => F)))}) (inf-V (lem5 (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ (m-weak {n} {Γ-t₁} {Γ-t₂} h => (m-weak {n} {Γ-t₁} {Γ-t₂} (lookup-hyp Γ x) => F))) (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ (m-weak {n} {Γ-t₁} {Γ-t₂} (lookup-hyp Γ x) => (m-weak {n} {Γ-t₁} {Γ-t₂} h => F)))) (traverse-hypos-i {n} {Γ-t₁} {Γ-t₂} (m-weak {n} {Γ-t₁} {Γ-t₂} h => (m-weak {n} {Γ-t₁} {Γ-t₂} (lookup-hyp Γ x) => F)) (m-weak {n} {Γ-t₁} {Γ-t₂} (lookup-hyp Γ x) => (m-weak {n} {Γ-t₁} {Γ-t₂} h => F)) Γ (lem4 (m-weak {n} {Γ-t₁} {Γ-t₂} h) (m-weak {n} {Γ-t₁} {Γ-t₂} (lookup-hyp Γ x)) F)))) (inf-V ax-3-s (traverse-hypos-elim-i {n} {Γ-t₁} {Γ-t₂} (m-weak {n} {Γ-t₁} {Γ-t₂} h => F) Γ x)))
traverse-hypos-elim-i {n} {.(t ∷ _)} {Γ-t₂} F (t ∷ Γ) (skip x) = traverse-hypos-elim-i {n} {_} {t ∷ Γ-t₂} F Γ x
traverse-hypos-elim : ∀ {n Γ-t} → (F : Form Γ-t $o) (Γ : FSC-Ctx n Γ-t) (x : HVar Γ) → ⊢ (hypos Γ (lookup-hyp Γ x => F) => hypos Γ F)
traverse-hypos-elim {n} {Γ-t} = traverse-hypos-elim-i {n} {Γ-t} {ε}
traverse-hypos-use-i : ∀ {n Γ-t₁ Γ-t₂} → (F : Form (Γ-t₂ r++ Γ-t₁) $o) (Γ : FSC-Ctx n Γ-t₁) → ⊢ (F) → ⊢ (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ F)
traverse-hypos-use-i F ε h = h
traverse-hypos-use-i {n} {Γ-t₁} {Γ-t₂} F (X ∷h Γ) h = traverse-hypos-use-i {n} {Γ-t₁} {Γ-t₂} (m-weak {n} {Γ-t₁} {Γ-t₂} X => F) Γ (inf-V ax-3-s (inf-V ax-2-s h))
traverse-hypos-use-i {n} {.(t ∷ _)} {Γ-t₂} F (t ∷ Γ) h = traverse-hypos-use-i {n} {_} {t ∷ Γ-t₂} F Γ h
traverse-hypos-use : ∀ {n Γ-t} → (F : Form Γ-t $o) (Γ : FSC-Ctx n Γ-t) → ⊢ (F) → ⊢ (hypos Γ F)
traverse-hypos-use {n} {Γ-t} = traverse-hypos-use-i {n} {Γ-t} {ε}
traverse-hypos2-i : ∀ {n Γ-t₁ Γ-t₂} → (F G H : Form (Γ-t₂ r++ Γ-t₁) $o) (Γ : FSC-Ctx n Γ-t₁) → (⊢ (F => (G => H))) → ⊢ (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ F => (hypos-i {n} {Γ-t₁} {Γ-t₂}Γ G => hypos-i {n} {Γ-t₁} {Γ-t₂} Γ H))
traverse-hypos2-i F G H ε imp = imp
traverse-hypos2-i {n} {Γ-t₁} {Γ-t₂} F G H (X ∷h Γ) imp = traverse-hypos2-i {n} {Γ-t₁} {Γ-t₂} (m-weak {n} {Γ-t₁} {Γ-t₂} X => F) (m-weak {n} {Γ-t₁} {Γ-t₂} X => G) (m-weak {n} {Γ-t₁} {Γ-t₂} X => H) Γ (inf-V (lem8 (m-weak {n} {Γ-t₁} {Γ-t₂} X) F G H) imp)
traverse-hypos2-i {n} {.(t ∷ _)} {Γ-t₂} F G H (t ∷ Γ) imp = traverse-hypos2-i {n} {_} {t ∷ Γ-t₂} F G H Γ imp
traverse-hypos2 : ∀ {n Γ-t} → (F G H : Form Γ-t $o) (Γ : FSC-Ctx n Γ-t) → (⊢ (F => (G => H))) → ⊢ (hypos Γ F => (hypos Γ G => hypos Γ H))
traverse-hypos2 {n} {Γ-t} = traverse-hypos2-i {n} {Γ-t} {ε}
traverse-hypos3-i : ∀ {n Γ-t₁ Γ-t₂} → (F G H I : Form (Γ-t₂ r++ Γ-t₁) $o) (Γ : FSC-Ctx n Γ-t₁) → (⊢ (F => (G => (H => I)))) → ⊢ (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ F => (hypos-i {n} {Γ-t₁} {Γ-t₂}Γ G => (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ H => hypos-i {n} {Γ-t₁} {Γ-t₂} Γ I)))
traverse-hypos3-i F G H I ε imp = imp
traverse-hypos3-i {n} {Γ-t₁} {Γ-t₂} F G H I (X ∷h Γ) imp = traverse-hypos3-i {n} {Γ-t₁} {Γ-t₂} (m-weak {n} {Γ-t₁} {Γ-t₂} X => F) (m-weak {n} {Γ-t₁} {Γ-t₂} X => G) (m-weak {n} {Γ-t₁} {Γ-t₂} X => H) (m-weak {n} {Γ-t₁} {Γ-t₂} X => I) Γ (inf-V (lem8-3 (m-weak {n} {Γ-t₁} {Γ-t₂} X) F G H I) imp)
traverse-hypos3-i {n} {.(t ∷ _)} {Γ-t₂} F G H I (t ∷ Γ) imp = traverse-hypos3-i {n} {_} {t ∷ Γ-t₂} F G H I Γ imp
traverse-hypos3 : ∀ {n Γ-t} → (F G H I : Form Γ-t $o) (Γ : FSC-Ctx n Γ-t) → (⊢ (F => (G => (H => I)))) → ⊢ (hypos Γ F => (hypos Γ G => (hypos Γ H => hypos Γ I)))
traverse-hypos3 {n} {Γ-t} = traverse-hypos3-i {n} {Γ-t} {ε}
traverse-=>-I-dep-i : ∀ {n Γ-t₁ Γ-t₂} → (t : Type n) (F : Form (t ∷ (Γ-t₂ r++ Γ-t₁)) $o) (Γ : FSC-Ctx n Γ-t₁) →
⊢ (![ t ] hypos-i-h {n} {Γ-t₁} {Γ-t₂} {t ∷ ε} Γ F) →
⊢ (hypos-i {n} {Γ-t₁} {Γ-t₂} Γ (![ t ] F))
traverse-=>-I-dep-i t F ε h = h
traverse-=>-I-dep-i {n} {Γ-t₁} {Γ-t₂} t F (X ∷h Γ) h = inf-V (traverse-hypos-i {n} {Γ-t₁} {Γ-t₂} (![ t ] (weak (m-weak {n} {Γ-t₁} {Γ-t₂} X) => F)) (m-weak {n} {Γ-t₁} {Γ-t₂} X => (![ t ] F)) Γ (ax-6-s {_} {_} {_} {~ (m-weak {n} {Γ-t₁} {Γ-t₂} X)} {F})) (traverse-=>-I-dep-i {n} {Γ-t₁} {Γ-t₂} t (weak (m-weak {n} {Γ-t₁} {Γ-t₂} X) => F) Γ
(subst (λ z → ⊢_ {n} {_r++_ {n} Γ-t₂ Γ-t₁} (app {n} {_>_ {_} t ($o {_})} {$o {_}} {_r++_ {n} Γ-t₂ Γ-t₁} (Π {n} {t} {_r++_ {n} Γ-t₂ Γ-t₁}) (lam {n} {$o {_}} {_r++_ {n} Γ-t₂ Γ-t₁} t ((hypos-i-h {n} {Γ-t₁} {Γ-t₂} {_∷_ {_} t (ε {_})} Γ (_=>_ {_} {_∷_ {_} t (_r++_ {n} Γ-t₂ Γ-t₁)} z F))))))
(eq-1 {n} Γ-t₁ Γ-t₂ t X) h))
traverse-=>-I-dep-i {n} {.(t' ∷ _)} {Γ-t₂} t F (t' ∷ Γ) h = traverse-=>-I-dep-i {n} {_} {t' ∷ Γ-t₂} t F Γ h
traverse-=>-I-dep : ∀ {n Γ-t} → (t : Type n) (F : Form (t ∷ Γ-t) $o) (Γ : FSC-Ctx n Γ-t) →
⊢ (![ t ] hypos (t ∷ Γ) F) → ⊢ (hypos Γ (![ t ] F))
traverse-=>-I-dep {n} {Γ-t} t F Γ h = traverse-=>-I-dep-i {n} {Γ-t} {ε} t F Γ (subst (λ z → ⊢ app Π (lam t (z))) (eq-2 t Γ F) h)
traverse-=>-I-dep'-I2 : ∀ {n Γ-t₁ Γ-t₂} → (t : Type n) (F : Form (t ∷ (Γ-t₂ r++ Γ-t₁)) $o) (G : Form (Γ-t₂ r++ Γ-t₁) $o) (Γ : FSC-Ctx n Γ-t₁) →
(⊢ (F => weak-i ε (Γ-t₂ r++ Γ-t₁) G)) →
⊢ (hypos-i-h {n} {Γ-t₁} {Γ-t₂} {t ∷ ε} Γ F => weak-i ε (Γ-t₂ r++ Γ-t₁) (hypos-i-h {n} {Γ-t₁} {Γ-t₂} {ε} Γ G))
traverse-=>-I-dep'-I2 t F G ε h = h
traverse-=>-I-dep'-I2 {n} {t' ∷ Γ-t₁} {Γ-t₂} t F G (.t' ∷ Γ) h = traverse-=>-I-dep'-I2 {n} {Γ-t₁} {t' ∷ Γ-t₂} t F G Γ h
traverse-=>-I-dep'-I2 {n} {Γ-t₁} {Γ-t₂} t F G (X ∷h Γ) h = traverse-=>-I-dep'-I2 {n} {Γ-t₁} {Γ-t₂} t (m-weak-h Γ-t₁ Γ-t₂ {$o} {t ∷ ε} (weak-i ε Γ-t₁ X) => F) (m-weak-h Γ-t₁ Γ-t₂ {$o} {ε} X => G) Γ (
subst (λ z → ⊢ ((m-weak-h Γ-t₁ Γ-t₂ {$o} {t ∷ ε} (weak-i ε Γ-t₁ X) => F) => (z => weak-i ε (Γ-t₂ r++ Γ-t₁) G))) (eq-1 Γ-t₁ Γ-t₂ t X) (inf-V ax-4-s h))
traverse-=>-I-dep'-I : ∀ {n Γ-t} → (t : Type n) (F : Form (t ∷ Γ-t) $o) (G : Form Γ-t $o) (Γ : FSC-Ctx n Γ-t) →
(⊢ (F => weak-i ε Γ-t G)) →
⊢ (hypos (t ∷ Γ) F => weak-i ε Γ-t (hypos Γ G))
traverse-=>-I-dep'-I {n} {Γ-t} t F G Γ h = subst (λ z → ⊢ (z => weak-i ε Γ-t (hypos Γ G))) (sym (eq-2 t Γ F)) (traverse-=>-I-dep'-I2 {n} {Γ-t} {ε} t F G Γ h)
traverse-=>-I-dep' : ∀ {n Γ-t} → (t : Type n) (F : Form Γ-t (t > $o)) (Γ : FSC-Ctx n Γ-t) →
⊢ hypos (t ∷ Γ) (weak F · $ this {refl}) → ⊢ (hypos Γ (!'[ t ] F))
traverse-=>-I-dep' t F Γ h = extend-context t (inf-V (traverse-=>-I-dep'-I t (weak F · $ this {refl}) (!'[ t ] F) Γ (inf-VI this (occurs-p-2 F) refl)) h)
-- -----------------------------------
traverse-hypos-eq-=>-I-i : ∀ {n Γ-t₁ Γ-t₂} → {t : Type n} → (F : Form (t ∷ (Γ-t₂ r++ Γ-t₁)) $o) (G : Form (Γ-t₂ r++ Γ-t₁) $o) (Γ : FSC-Ctx n Γ-t₁) → (⊢ (F => weak G)) → ⊢ hypos-i-h {n} {Γ-t₁} {Γ-t₂} {t ∷ ε} Γ F → ⊢ hypos-i {n} {Γ-t₁} {Γ-t₂} Γ G
traverse-hypos-eq-=>-I-i {n} {.ε} {Γ-t₂} {t} F G ε = λ z z' → extend-context t (inf-V z z')
traverse-hypos-eq-=>-I-i {n} {Γ-t₁} {Γ-t₂} {t} F G (X ∷h Γ) = λ h → traverse-hypos-eq-=>-I-i {n} {Γ-t₁} {Γ-t₂} {t} (m-weak-h {_} Γ-t₁ Γ-t₂ {_} {t ∷ ε} (m-weak2 (t ∷ ε) X) => F) (m-weak-h {_} Γ-t₁ Γ-t₂ {_} {ε} (m-weak2 ε X) => G) Γ (subst (λ z → ⊢ ((m-weak-h {_} Γ-t₁ Γ-t₂ {_} {t ∷ ε} (m-weak2 (t ∷ ε) X) => F) => (z => weak G))) (eq-1 Γ-t₁ Γ-t₂ t X) (inf-V ax-4-s h))
traverse-hypos-eq-=>-I-i {n} {t₁ ∷ Γ-t₁} {Γ-t₂} {t} F G ((.t₁) ∷ Γ) = traverse-hypos-eq-=>-I-i {n} {Γ-t₁} {t₁ ∷ Γ-t₂} {t} F G Γ
traverse-hypos-eq-=>-I'' : ∀ {n Γ-t} → {t : Type n} (F : Form (t ∷ Γ-t) $o) (G : Form Γ-t $o) (Γ : FSC-Ctx n Γ-t) →
⊢ (F => weak G) →
⊢ hypos (t ∷ Γ) F → ⊢ hypos Γ G
traverse-hypos-eq-=>-I'' {n} {Γ-t} F G Γ = λ h₁ h₂ → traverse-hypos-eq-=>-I-i {n} {Γ-t} {ε} F G Γ h₁ (subst (λ z → ⊢ z) (eq-2 _ Γ F) h₂)
tst3-ε : ∀ {n} → (Γ₁ Γ₂ : Ctx n) (F : Form Γ₁ $o)
(eq : Γ₁ ≡ Γ₂) →
⊢_ {n} {Γ₂} (subst (λ z → Form z $o) eq F) →
⊢_ {n} {Γ₁} F
tst3-ε .Γ₂ Γ₂ F refl p = p -- rewrite eq = p
tst3b : ∀ {n} → {t u : Type n} → (Γ-t₁ Γ-t₂ : Ctx n) (X : Form Γ-t₁ u) →
(eq2 : t ∷ (Γ-t₂ r++ Γ-t₁) ≡ (Γ-t₂ ++ (t ∷ ε)) r++ Γ-t₁) →
m-weak-h Γ-t₁ (Γ-t₂ ++ (t ∷ ε)) {_} {ε} X ≡
subst (λ z → Form z u) eq2 (weak-i ε (Γ-t₂ r++ Γ-t₁) (m-weak-h Γ-t₁ Γ-t₂ {_} {ε} X))
tst3b Γ-t₁ ε X refl = refl
tst3b Γ-t₁ (v ∷ Γ-t₂) X eq2 = tst3b (v ∷ Γ-t₁) Γ-t₂ (weak-i ε Γ-t₁ X) eq2
tst3'-∷h : ∀ {n Γ-t₁ Γ-t₂} → {t : Type n} (F : Form (t ∷ (Γ-t₂ r++ Γ-t₁)) $o) (Γ : FSC-Ctx n Γ-t₁) →
(X : Form Γ-t₁ $o)
(Γ1 : Ctx n)
(eq1 : Γ1 ≡ (Γ-t₂ ++ (t ∷ ε)) r++ Γ-t₁)
(eq2 : t ∷ (Γ-t₂ r++ Γ-t₁) ≡ Γ1)
(p : ⊢ hypos-i-h {n} {Γ-t₁} {Γ-t₂ ++ (t ∷ ε)} {ε} Γ (app (app A (app N (m-weak-h {n} Γ-t₁ (Γ-t₂ ++ (t ∷ ε)) {$o} {ε} X))) (subst (λ z → Form z $o) eq1 (subst (λ z → Form z $o) eq2 F)))) →
⊢ hypos-i-h {n} {Γ-t₁} {Γ-t₂ ++ (t ∷ ε)} {ε} Γ (subst (λ z → Form z $o) eq1 (app (app A (app N (subst (λ z → Form z $o) eq2 (weak-i ε (Γ-t₂ r++ Γ-t₁) (m-weak-h Γ-t₁ Γ-t₂ {$o} {ε} X))))) (subst (λ z → Form z $o) eq2 F)))
tst3'-∷h {n} {Γ-t₁} {Γ-t₂} {t} F Γ X .((Γ-t₂ ++ (t ∷ ε)) r++ Γ-t₁) refl eq2 p = subst (λ z → ⊢ hypos-i-h {n} {Γ-t₁} {Γ-t₂ ++ (t ∷ ε)} {ε} Γ (app (app A (app N z)) (subst (λ z → Form z $o) eq2 F))) (tst3b {n} {t} Γ-t₁ Γ-t₂ X eq2) p
tst3' : ∀ {n Γ-t₁ Γ-t₂} → {t : Type n} (F : Form (t ∷ (Γ-t₂ r++ Γ-t₁)) $o) (Γ : FSC-Ctx n Γ-t₁) →
(eq : t ∷ (Γ-t₂ r++ Γ-t₁) ≡ (Γ-t₂ ++ (t ∷ ε)) r++ Γ-t₁) →
⊢ hypos-i-h {n} {Γ-t₁} {Γ-t₂ ++ (t ∷ ε)} {ε} Γ (subst (λ z → Form z $o) eq F) →
⊢ hypos-i-h {n} {Γ-t₁} {Γ-t₂} {ε} Γ (![ t ] F)
tst3' {n} {ε} {Γ-t₂} {t} F ε eq = λ p → inf-VI-s (tst3-ε {n} (t ∷ (Γ-t₂ r++ ε)) ((Γ-t₂ ++ (t ∷ ε)) r++ ε) F eq p)
tst3' {n} {t' ∷ Γ-t₁} {Γ-t₂} F ((.t') ∷ Γ) eq = tst3' {n} {Γ-t₁} {t' ∷ Γ-t₂} F Γ eq
tst3' {n} {Γ-t₁} {Γ-t₂} {t} F (X ∷h Γ) eq = λ p → inf-V (traverse-hypos-i {n} {Γ-t₁} {Γ-t₂} (![ t ] (weak (~ (m-weak-h Γ-t₁ Γ-t₂ {_} {ε} X)) || F)) (m-weak-h {n} Γ-t₁ Γ-t₂ {$o} {ε} X => ![ t ] F) Γ (inf-V (inf-V ax-4-s ax-6-s) (lem2h2hb _))) (tst3' {n} {Γ-t₁} {Γ-t₂} {t} (weak (~ (m-weak-h Γ-t₁ Γ-t₂ {_} {ε} X)) || F) Γ eq (tst3'-∷h {n} {Γ-t₁} {Γ-t₂} {t} F Γ X (t ∷ (Γ-t₂ r++ Γ-t₁)) eq refl p))
traverse-hypos-eq-=>-I : ∀ {n Γ-t} → {t₁ t₂ : Type n} (F₁ F₂ : Form (t₁ ∷ Γ-t) t₂) (Γ : FSC-Ctx n Γ-t) →
⊢ hypos (t₁ ∷ Γ) (F₁ == F₂) →
⊢ hypos Γ (lam t₁ F₁ == lam t₁ F₂)
traverse-hypos-eq-=>-I {_} {Γ-t} {t₁} {t₂} F₁ F₂ Γ p = inf-V (traverse-hypos (![ t₁ ] (F₁ == F₂)) (lam t₁ F₁ == lam t₁ F₂) Γ ax-10-b-s) (tst3' {_} {Γ-t} {ε} (F₁ == F₂) Γ refl p)
| {
"alphanum_fraction": 0.4545291587,
"avg_line_length": 76.7706422018,
"ext": "agda",
"hexsha": "08ba8d1c37ffef5ff908314ac7c7b41c9caaa6fd",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-15T11:51:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-17T20:28:10.000Z",
"max_forks_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "frelindb/agsyHOL",
"max_forks_repo_path": "soundness/HelpDefs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "frelindb/agsyHOL",
"max_issues_repo_path": "soundness/HelpDefs.agda",
"max_line_length": 851,
"max_stars_count": 17,
"max_stars_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "frelindb/agsyHOL",
"max_stars_repo_path": "soundness/HelpDefs.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-19T20:53:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-04T14:38:28.000Z",
"num_tokens": 9479,
"size": 16736
} |
module Bool where
data Bool : Set where
true : Bool
false : Bool
if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y
| {
"alphanum_fraction": 0.6079545455,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "b30044698e04efcdaf162bdaf7047d5e3e31d306",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/Bool.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/Bool.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 60,
"size": 176
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Rational.Base where
open import Cubical.Relation.Nullary
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.HITs.Ints.QuoInt
open import Cubical.Data.Nat
open import Cubical.Data.Empty
open import Cubical.Data.Unit
data ℚ : Type₀ where
con : (u : ℤ) (a : ℤ) → ¬ (a ≡ pos 0) → ℚ
path : ∀ u a v b {p q} → (u *ℤ b) ≡ (v *ℤ a) → con u a p ≡ con v b q
trunc : isSet ℚ
int : ℤ → ℚ
int z = con z (pos 1) \ p → snotz (cong abs p)
| {
"alphanum_fraction": 0.6691871456,
"avg_line_length": 27.8421052632,
"ext": "agda",
"hexsha": "a2275e2d28fa25c341a896f350cbd6666ee54b60",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Rational/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Rational/Base.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Rational/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 199,
"size": 529
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
module lib.types.Paths where
{- ! is an equivalence and works on ≠ -}
module _ {i} {A : Type i} {x y : A} where
!-equiv : (x == y) ≃ (y == x)
!-equiv = equiv ! ! !-! !-!
≠-inv : (x ≠ y) → (y ≠ x)
≠-inv x≠y y=x = x≠y (! y=x)
{- Pre- and post- concatenation are equivalences -}
module _ {i} {A : Type i} {x y z : A} where
pre∙-is-equiv : (p : x == y) → is-equiv (λ (q : y == z) → p ∙ q)
pre∙-is-equiv p = is-eq (λ q → p ∙ q) (λ r → ! p ∙ r) f-g g-f
where f-g : ∀ r → p ∙ ! p ∙ r == r
f-g r = ! (∙-assoc p (! p) r) ∙ ap (λ s → s ∙ r) (!-inv-r p)
g-f : ∀ q → ! p ∙ p ∙ q == q
g-f q = ! (∙-assoc (! p) p q) ∙ ap (λ s → s ∙ q) (!-inv-l p)
pre∙-equiv : (p : x == y) → (y == z) ≃ (x == z)
pre∙-equiv p = ((λ q → p ∙ q) , pre∙-is-equiv p)
post∙-is-equiv : (p : y == z) → is-equiv (λ (q : x == y) → q ∙ p)
post∙-is-equiv p = is-eq (λ q → q ∙ p) (λ r → r ∙ ! p) f-g g-f
where f-g : ∀ r → (r ∙ ! p) ∙ p == r
f-g r = ∙-assoc r (! p) p ∙ ap (λ s → r ∙ s) (!-inv-l p) ∙ ∙-unit-r r
g-f : ∀ q → (q ∙ p) ∙ ! p == q
g-f q = ∙-assoc q p (! p) ∙ ap (λ s → q ∙ s) (!-inv-r p) ∙ ∙-unit-r q
post∙-equiv : (p : y == z) → (x == y) ≃ (x == z)
post∙-equiv p = ((λ q → q ∙ p) , post∙-is-equiv p)
pre∙'-is-equiv : (p : x == y) → is-equiv (λ (q : y == z) → p ∙' q)
pre∙'-is-equiv p = is-eq (λ q → p ∙' q) (λ r → ! p ∙' r) f-g g-f
where f-g : ∀ r → p ∙' ! p ∙' r == r
f-g r = ! (∙'-assoc p (! p) r) ∙ ap (λ s → s ∙' r) (!-inv'-r p)
∙ ∙'-unit-l r
g-f : ∀ q → ! p ∙' p ∙' q == q
g-f q = ! (∙'-assoc (! p) p q) ∙ ap (λ s → s ∙' q) (!-inv'-l p)
∙ ∙'-unit-l q
pre∙'-equiv : (p : x == y) → (y == z) ≃ (x == z)
pre∙'-equiv p = ((λ q → p ∙' q) , pre∙'-is-equiv p)
post∙'-is-equiv : (p : y == z) → is-equiv (λ (q : x == y) → q ∙' p)
post∙'-is-equiv p = is-eq (λ q → q ∙' p) (λ r → r ∙' ! p) f-g g-f
where f-g : ∀ r → (r ∙' ! p) ∙' p == r
f-g r = ∙'-assoc r (! p) p ∙ ap (λ s → r ∙' s) (!-inv'-l p)
g-f : ∀ q → (q ∙' p) ∙' ! p == q
g-f q = ∙'-assoc q p (! p) ∙ ap (λ s → q ∙' s) (!-inv'-r p)
post∙'-equiv : (p : y == z) → (x == y) ≃ (x == z)
post∙'-equiv p = ((λ q → q ∙' p) , post∙'-is-equiv p)
module _ {i j} {A : Type i} {B : Type j}
{f : A → B} {x y : A} {b : B} where
↓-app=cst-in : {p : x == y} {u : f x == b} {v : f y == b}
→ u == (ap f p ∙ v)
→ (u == v [ (λ x → f x == b) ↓ p ])
↓-app=cst-in {p = idp} q = q
↓-app=cst-out : {p : x == y} {u : f x == b} {v : f y == b}
→ (u == v [ (λ x → f x == b) ↓ p ])
→ u == (ap f p ∙ v)
↓-app=cst-out {p = idp} r = r
↓-app=cst-β : {p : x == y} {u : f x == b} {v : f y == b}
→ (q : u == (ap f p ∙ v))
→ ↓-app=cst-out {p = p} (↓-app=cst-in q) == q
↓-app=cst-β {p = idp} q = idp
↓-app=cst-η : {p : x == y} {u : f x == b} {v : f y == b}
→ (q : u == v [ (λ x → f x == b) ↓ p ])
→ ↓-app=cst-in (↓-app=cst-out q) == q
↓-app=cst-η {p = idp} q = idp
↓-app=cst-econv : {p : x == y} {u : f x == b} {v : f y == b}
→ (u == (ap f p ∙ v)) ≃ (u == v [ (λ x → f x == b) ↓ p ])
↓-app=cst-econv {p = p} = equiv ↓-app=cst-in ↓-app=cst-out
(↓-app=cst-η {p = p}) (↓-app=cst-β {p = p})
↓-cst=app-in : {p : x == y} {u : b == f x} {v : b == f y}
→ (u ∙' ap f p) == v
→ (u == v [ (λ x → b == f x) ↓ p ])
↓-cst=app-in {p = idp} q = q
↓-cst=app-out : {p : x == y} {u : b == f x} {v : b == f y}
→ (u == v [ (λ x → b == f x) ↓ p ])
→ (u ∙' ap f p) == v
↓-cst=app-out {p = idp} r = r
↓-cst=app-econv : {p : x == y} {u : b == f x} {v : b == f y}
→ ((u ∙' ap f p) == v) ≃ (u == v [ (λ x → b == f x) ↓ p ])
↓-cst=app-econv {p = idp} = equiv ↓-cst=app-in ↓-cst=app-out
(λ _ → idp) (λ _ → idp)
{- alternative versions -}
module _ {i j} {A : Type i} {B : Type j}
{f : A → B} {x y : A} {b : B} where
↓-app=cst-in' : {p : x == y} {u : f x == b} {v : f y == b}
→ u == (ap f p ∙' v)
→ (u == v [ (λ x → f x == b) ↓ p ])
↓-app=cst-in' {p = idp} {v = idp} q = q
↓-app=cst-out' : {p : x == y} {u : f x == b} {v : f y == b}
→ (u == v [ (λ x → f x == b) ↓ p ])
→ u == (ap f p ∙' v)
↓-app=cst-out' {p = idp} {v = idp} r = r
↓-app=cst-β' : {p : x == y} {u : f x == b} {v : f y == b}
→ (q : u == (ap f p ∙' v))
→ ↓-app=cst-out' {p = p} {v = v} (↓-app=cst-in' q) == q
↓-app=cst-β' {p = idp} {v = idp} q = idp
↓-app=cst-η' : {p : x == y} {u : f x == b} {v : f y == b}
→ (q : u == v [ (λ x → f x == b) ↓ p ])
→ ↓-app=cst-in' (↓-app=cst-out' q) == q
↓-app=cst-η' {p = idp} {v = idp} q = idp
↓-cst=app-in' : {p : x == y} {u : b == f x} {v : b == f y}
→ (u ∙ ap f p) == v
→ (u == v [ (λ x → b == f x) ↓ p ])
↓-cst=app-in' {p = idp} {u = idp} q = q
↓-cst=app-out' : {p : x == y} {u : b == f x} {v : b == f y}
→ (u == v [ (λ x → b == f x) ↓ p ])
→ (u ∙ ap f p) == v
↓-cst=app-out' {p = idp} {u = idp} r = r
module _ {i} {A : Type i} where
↓-app=idf-in : {f : A → A} {x y : A} {p : x == y}
{u : f x == x} {v : f y == y}
→ u ∙' p == ap f p ∙ v
→ u == v [ (λ z → f z == z) ↓ p ]
↓-app=idf-in {p = idp} q = q
↓-app=idf-out : {f : A → A} {x y : A} {p : x == y}
{u : f x == x} {v : f y == y}
→ u == v [ (λ z → f z == z) ↓ p ]
→ u ∙' p == ap f p ∙ v
↓-app=idf-out {p = idp} q = q
↓-cst=idf-in : {a : A} {x y : A} {p : x == y} {u : a == x} {v : a == y}
→ (u ∙' p) == v
→ (u == v [ (λ x → a == x) ↓ p ])
↓-cst=idf-in {p = idp} q = q
↓-cst=idf-in' : {a : A} {x y : A} {p : x == y} {u : a == x} {v : a == y}
→ (u ∙ p) == v
→ (u == v [ (λ x → a == x) ↓ p ])
↓-cst=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ q
↓-idf=cst-in : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a}
→ u == p ∙ v
→ (u == v [ (λ x → x == a) ↓ p ])
↓-idf=cst-in {p = idp} q = q
↓-idf=cst-out : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a}
→ (u == v [ (λ x → x == a) ↓ p ])
→ u == p ∙ v
↓-idf=cst-out {p = idp} q = q
↓-idf=cst-in' : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a}
→ u == p ∙' v
→ (u == v [ (λ x → x == a) ↓ p ])
↓-idf=cst-in' {p = idp} q = q ∙ ∙'-unit-l _
↓-idf=idf-in' : {x y : A} {p : x == y} {u : x == x} {v : y == y}
→ u ∙ p == p ∙' v
→ (u == v [ (λ x → x == x) ↓ p ])
↓-idf=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ q ∙ ∙'-unit-l _
↓-idf=idf-out' : {x y : A} {p : x == y} {u : x == x} {v : y == y}
→ (u == v [ (λ x → x == x) ↓ p ])
→ u ∙ p == p ∙' v
↓-idf=idf-out' {p = idp} q = ∙-unit-r _ ∙ q ∙ ! (∙'-unit-l _)
{- Nondependent identity type -}
↓-='-in : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B}
{x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ (u ∙' ap g p) == (ap f p ∙ v)
→ (u == v [ (λ x → f x == g x) ↓ p ])
↓-='-in {p = idp} q = q
↓-='-out : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B}
{x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ (u == v [ (λ x → f x == g x) ↓ p ])
→ (u ∙' ap g p) == (ap f p ∙ v)
↓-='-out {p = idp} q = q
↓-='-in' : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B}
{x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ (u ∙ ap g p) == (ap f p ∙' v)
→ (u == v [ (λ x → f x == g x) ↓ p ])
↓-='-in' {p = idp} q = ! (∙-unit-r _) ∙ q ∙ (∙'-unit-l _)
↓-='-out' : ∀ {i j} {A : Type i} {B : Type j} {f g : A → B}
{x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
→ (u == v [ (λ x → f x == g x) ↓ p ])
→ (u ∙ ap g p) == (ap f p ∙' v)
↓-='-out' {p = idp} q = (∙-unit-r _) ∙ q ∙ ! (∙'-unit-l _)
{- Identity type where the type is dependent -}
↓-=-in : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B}
{x y : A} {p : x == y} {u : g x == f x} {v : g y == f y}
→ (u ◃ apd f p) == (apd g p ▹ v)
→ (u == v [ (λ x → g x == f x) ↓ p ])
↓-=-in {B = B} {p = idp} {u} {v} q = ! (◃idp {B = B} u) ∙ q ∙ idp▹ {B = B} v
↓-=-out : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B}
{x y : A} {p : x == y} {u : g x == f x} {v : g y == f y}
→ (u == v [ (λ x → g x == f x) ↓ p ])
→ (u ◃ apd f p) == (apd g p ▹ v)
↓-=-out {B = B} {p = idp} {u} {v} q = (◃idp {B = B} u) ∙ q ∙ ! (idp▹ {B = B} v)
-- Dependent path in a type of the form [λ x → g (f x) == x]
module _ {i j} {A : Type i} {B : Type j} (g : B → A) (f : A → B) where
↓-∘=idf-in' : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y}
→ ((ap g (ap f p) ∙' v) == (u ∙ p))
→ (u == v [ (λ x → g (f x) == x) ↓ p ])
↓-∘=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ (! q) ∙ (∙'-unit-l _)
-- WIP, derive it from more primitive principles
-- ↓-∘=id-in f g {p = p} {u} {v} q =
-- ↓-=-in (u ◃ apd (λ x → g (f x)) p =⟨ apd-∘ f g p |in-ctx (λ t → u ◃ t) ⟩
-- u ◃ ↓-apd-out _ f p (apdd g p (apd f p)) =⟨ apdd-cst (λ _ b → g b) p (ap f p) (! (apd-nd f p)) |in-ctx (λ t → u ◃ ↓-apd-out _ f p t) ⟩
-- u ◃ ↓-apd-out _ f p (apd (λ t → g (π₂ t)) (pair= p (apd f p))) =⟨ apd-∘ π₂ g (pair= p (apd f p)) |in-ctx (λ t → u ◃ ↓-apd-out _ f p t) ⟩
-- u ◃ ↓-apd-out _ f p (↓-apd-out _ π₂ (pair= p (apd f p)) (apdd g (pair= p (apd f p)) (apd π₂ (pair= p (apd f p))))) =⟨ {!!} ⟩
-- apd (λ x → x) p ▹ v ∎)
-- module _ {i j} {A : Type i} {B : Type j} {x y z : A → B} where
-- lhs :
-- {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'}
-- {r : y a == z a} {r' : y a' == z a'}
-- (α : q == q' [ (λ a → x a == y a) ↓ p ])
-- (β : r ∙ ap z p == ap y p ∙' r')
-- → (q ∙' r) ∙ ap z p == ap x p ∙' q' ∙' r'
-- lhs =
-- (q ∙' r) ∙ ap z p =⟨ ? ⟩ -- assoc
-- q ∙' (r ∙ ap z p) =⟨ ? ⟩ -- β
-- q ∙' (ap y p ∙' r') =⟨ ? ⟩ -- assoc
-- (q ∙' ap y p) ∙' r' =⟨ ? ⟩ -- ∙ = ∙'
-- (q ∙ ap y p) ∙' r' =⟨ ? ⟩ -- α
-- (ap x p ∙' q') ∙' r' =⟨ ? ⟩ -- assoc
-- ap x p ∙' q' ∙' r' ∎
-- thing :
-- {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'}
-- {r : y a == z a} {r' : y a' == z a'}
-- (α : q == q' [ (λ a → x a == y a) ↓ p ])
-- (β : r ∙ ap z p == ap y p ∙' r')
-- → (_∙'2ᵈ_ {r = r} {r' = r'} α (↓-='-in' β) == ↓-='-in' {!!})
-- thing = {!!}
| {
"alphanum_fraction": 0.3336931985,
"avg_line_length": 37.4595588235,
"ext": "agda",
"hexsha": "12e994adc9b111fdb1c589955d26f81c357e2ce0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Paths.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Paths.agda",
"max_line_length": 147,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Paths.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5210,
"size": 10189
} |
-- {-# OPTIONS -v impossible:100 #-}
-- 2013-06-15 Andreas, reported by evancavallo
module Issue870 where
{- The following fails with
An internal error has occurred. Please report this as a bug.
Location of the error: src/full/Agda/TypeChecking/Rules/Term.hs:421
in Agda 2.3.3 on Ubuntu. Works fine using Set instead of Type or after tweaking the definition of test into a more sensible form. -}
Type = Set
data ⊤ : Type where
tt : ⊤
record R : Type
where
field
a : ⊤
test : ⊤ → R
test t = (λ a → record {a = a}) t
-- There was a possible __IMPOSSIBLE__ in the code for
-- guessing the record type of record{a = a}.
-- The problem was that a defined sort like Type, needs to be
-- reduced.
| {
"alphanum_fraction": 0.6938202247,
"avg_line_length": 24.5517241379,
"ext": "agda",
"hexsha": "122db3c30618378f18fefc77af3cea668f05528c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue870.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue870.agda",
"max_line_length": 132,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue870.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 210,
"size": 712
} |
module _ where
open import utility
open import sn-calculus
using (all-ready ; bound-ready)
open import Data.Product using (∃ ; Σ ; _,_ ; _×_ ; _,′_ ; proj₁ ; proj₂)
open import Relation.Binary.PropositionalEquality using (sym ; inspect ; Reveal_·_is_ ; trans)
open import Data.Empty
open import Data.Sum using (_⊎_ ; inj₁ ; inj₂)
open import Esterel.Lang
open import Esterel.Lang.Properties
open import Esterel.Context
open import Esterel.Environment as Env
open import Esterel.Lang.CanFunction
using (Canₖ ; module CodeSet ; Canₛ ; Canₛₕ ; Canθₛ ; Canθₛₕ)
open import Esterel.Lang.CanFunction.Base
using (can-shr-var-irr)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ) renaming (_≟ₛₜ_ to _≟ₛₜₛ_)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ) renaming (_≟ₛₜ_ to _≟ₛₜₛₕ_)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar ; _ᵥ)
open import Esterel.Lang.CanFunction using (Canₖ)
open import Data.Product using (_,_)
open import Relation.Nullary using (Dec ; yes ; no ; ¬_)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; trans ; sym)
import Data.FiniteMap
open import Data.List
using (List ; [] ; _∷_ ; [_] ; _++_ ; map ; concatMap ; filter)
open import Data.List.Any using (Any ; any ; here ; there)
open import Data.List.All using (All ; [] ; _∷_)
open import Data.OrderedListMap
open all-ready
open bound-ready
data blocked-s : Env → s/l → Set where
bbshr-old : ∀{θ s} →
(s∈ : Env.isShr∈ s θ) →
Env.shr-stats{s} θ s∈ ≡ SharedVar.old →
blocked-s θ (shr-ref s)
bbshr-new : ∀{θ s} →
(s∈ : Env.isShr∈ s θ) →
Env.shr-stats{s} θ s∈ ≡ SharedVar.new →
blocked-s θ (shr-ref s)
-- Note: θ and e are in the opposite order of all-ready definition.
-- We directly used Any here as a synonym. Should all-ready be the same?
blocked-e : Env → Expr → Set
blocked-e θ (plus operators) = Any (blocked-s θ) operators
data blocked : Env → Ctrl → Term → Set where
bsig-exists : ∀{θ p q A} S S∈ → (sig-stats{S} θ S∈ ≡ Signal.unknown) →
------------------------
blocked θ A (present S ∣⇒ p ∣⇒ q)
bpar-both : ∀{θ p q A} → blocked θ A p → blocked θ A q → blocked θ A (p ∥ q)
bpar-left : ∀{θ p q A} → blocked θ A p → done q → blocked θ A (p ∥ q)
bpar-right : ∀{θ p q A} → done p → blocked θ A q → blocked θ A (p ∥ q)
bseq : ∀{θ p q A} → blocked θ A p → blocked θ A (p >> q)
bloopˢ : ∀{θ p q A} → blocked θ A p → blocked θ A (loopˢ p q)
bsusp : ∀{θ p S A} → blocked θ A p → blocked θ A (suspend p S)
btrap : ∀{θ p A} → blocked θ A p → blocked θ A (trap p)
bwset : ∀{θ s e} → blocked θ WAIT (s ⇐ e)
bwemit : ∀{θ S} → blocked θ WAIT (emit S)
bshared : ∀{θ s e p A} → blocked-e θ e → blocked θ A (shared s ≔ e in: p)
bsset : ∀{θ s e A} → blocked-e θ e → blocked θ A (s ⇐ e)
bvar : ∀{θ x e p A} → blocked-e θ e → blocked θ A (var x ≔ e in: p)
bxset : ∀{θ x e A} → blocked-e θ e → blocked θ A (x ≔ e)
data manifests-as-non-constructive : Env → Ctrl → Term → Set where
mnc : ∀{p θ A} → (blocked-p : blocked θ A p)
-- absent rule cannot fire: unknown signals might be emitted at some point
→ (θS≡unknown→S∈can-p-θ :
∀ S →
(S∈Domθ : Signal.unwrap S ∈ fst (Dom θ)) →
(θS≡unknown : sig-stats {S} θ S∈Domθ ≡ Signal.unknown) →
Signal.unwrap S ∈ Canθₛ (sig θ) 0 p []env)
-- readyness rule cannot fire: unready variables might become ready
→ (θs≡old⊎θs≡new→s∈can-p-θ :
∀ s →
(s∈Domθ : SharedVar.unwrap s ∈ snd (Dom θ)) →
(θs≡old⊎θs≡new : shr-stats {s} θ s∈Domθ ≡ SharedVar.old ⊎
shr-stats {s} θ s∈Domθ ≡ SharedVar.new) →
SharedVar.unwrap s ∈ Canθₛₕ (sig θ) 0 p []env)
→ manifests-as-non-constructive θ A p
halted-blocked-disjoint : ∀ {θ p A} → halted p → blocked θ A p → ⊥
halted-blocked-disjoint hnothin ()
halted-blocked-disjoint (hexit n) ()
paused-blocked-disjoint : ∀ {θ A p} → paused p → blocked θ A p → ⊥
paused-blocked-disjoint ppause ()
paused-blocked-disjoint (pseq p/paused) (bseq p/blocked) =
paused-blocked-disjoint p/paused p/blocked
paused-blocked-disjoint (ploopˢ p/paused) (bloopˢ p/blocked) =
paused-blocked-disjoint p/paused p/blocked
paused-blocked-disjoint (ppar p/paused q/paused) (bpar-both p/blocked q/blocked) =
paused-blocked-disjoint q/paused q/blocked
paused-blocked-disjoint (ppar p/paused q/paused) (bpar-left p/blocked q/done) =
paused-blocked-disjoint p/paused p/blocked
paused-blocked-disjoint (ppar p/paused q/paused) (bpar-right p/done q/blocked) =
paused-blocked-disjoint q/paused q/blocked
paused-blocked-disjoint (psuspend p/paused) (bsusp p/blocked) =
paused-blocked-disjoint p/paused p/blocked
paused-blocked-disjoint (ptrap p/paused) (btrap p/blocked) =
paused-blocked-disjoint p/paused p/blocked
done-blocked-disjoint : ∀ {θ A p} → done p → blocked θ A p → ⊥
done-blocked-disjoint (dhalted p/halted) p/blocked = halted-blocked-disjoint p/halted p/blocked
done-blocked-disjoint (dpaused p/paused) p/blocked = paused-blocked-disjoint p/paused p/blocked
-- An expression cannot be both all-ready and blocked-e, i.e.
-- all-ready and blocked-e characterize disjoint subsets of e.
all-ready-blocked-disjoint : ∀ {e θ} → ¬ (all-ready e θ × blocked-e θ e)
all-ready-blocked-disjoint {θ = θ}
(aplus (brshr {s = s} s∈ θs≡ready ∷ e/all-ready) ,
here (bbshr-old {s = .s} s∈' θs≡old))
with trans (sym θs≡ready) (trans (Env.shr-stats-∈-irr {s} {θ} s∈ s∈') θs≡old)
... | ()
all-ready-blocked-disjoint {θ = θ}
(aplus (brshr {s = s} s∈ θs≡ready ∷ e/all-ready) ,
here (bbshr-new {s = .s} s∈' θs≡new))
with trans (sym θs≡ready) (trans (Env.shr-stats-∈-irr {s} {θ} s∈ s∈') θs≡new)
... | ()
all-ready-blocked-disjoint {θ = θ}
(aplus (px ∷ e/all-ready) ,
there e/blocked) =
all-ready-blocked-disjoint (aplus e/all-ready ,′ e/blocked)
-- A subexpression in the hole in a blocked program must be either blocked or done.
blocked-⟦⟧e : ∀ {θ p p' E A} → blocked θ A p → p ≐ E ⟦ p' ⟧e → blocked θ A p' ⊎ done p'
blocked-⟦⟧e p/blocked dehole = inj₁ p/blocked
blocked-⟦⟧e (bseq p/blocked) (deseq p≐E⟦p'⟧) = blocked-⟦⟧e p/blocked p≐E⟦p'⟧
blocked-⟦⟧e (bloopˢ p/blocked) (deloopˢ p≐E⟦p'⟧) = blocked-⟦⟧e p/blocked p≐E⟦p'⟧
blocked-⟦⟧e (bsusp p/blocked) (desuspend p≐E⟦p'⟧) = blocked-⟦⟧e p/blocked p≐E⟦p'⟧
blocked-⟦⟧e (btrap p/blocked) (detrap p≐E⟦p'⟧) = blocked-⟦⟧e p/blocked p≐E⟦p'⟧
blocked-⟦⟧e (bpar-both p/blocked q/blocked) (depar₁ p≐E⟦p'⟧) =
blocked-⟦⟧e p/blocked p≐E⟦p'⟧
blocked-⟦⟧e (bpar-left p/blocked q/done) (depar₁ p≐E⟦p'⟧) =
blocked-⟦⟧e p/blocked p≐E⟦p'⟧
blocked-⟦⟧e (bpar-right p/done q/blocked) (depar₁ p≐E⟦p'⟧) =
inj₂ (done-⟦⟧e p/done p≐E⟦p'⟧)
blocked-⟦⟧e (bpar-both p/blocked q/blocked) (depar₂ q≐E⟦p'⟧) =
blocked-⟦⟧e q/blocked q≐E⟦p'⟧
blocked-⟦⟧e (bpar-left p/blocked q/done) (depar₂ q≐E⟦p'⟧) =
inj₂ (done-⟦⟧e q/done q≐E⟦p'⟧)
blocked-⟦⟧e (bpar-right p/done q/blocked) (depar₂ q≐E⟦p'⟧) =
blocked-⟦⟧e q/blocked q≐E⟦p'⟧
blocked-el-dec : ∀ θ l -> Dec (Any (blocked-s θ) l)
blocked-el-dec θ [] = no (λ ())
blocked-el-dec θ (num n ∷ l) with blocked-el-dec θ l
blocked-el-dec θ (num n ∷ l) | yes p = yes (there p)
blocked-el-dec θ (num n ∷ l) | no ¬p = no (λ { (here ()) ; (there x) → ¬p x } )
blocked-el-dec θ (seq-ref x ∷ l) with blocked-el-dec θ l
blocked-el-dec θ (seq-ref x ∷ l) | yes p = yes (there p)
blocked-el-dec θ (seq-ref x ∷ l) | no ¬p = no (λ { (here ()) ; (there x) → ¬p x })
blocked-el-dec θ (shr-ref s ∷ l) with blocked-el-dec θ l
blocked-el-dec θ (shr-ref s ∷ l) | yes p = yes (there p)
blocked-el-dec θ (shr-ref s ∷ l) | no ¬p with Env.Shr∈ s θ
blocked-el-dec θ (shr-ref s ∷ l) | no ¬p | yes s∈θ with Env.shr-stats{s} θ s∈θ | inspect (Env.shr-stats {s} θ) s∈θ
blocked-el-dec θ (shr-ref s ∷ l) | no ¬p | yes s∈θ | SharedVar.ready | Reveal_·_is_.[ eq ] =
no (λ { (here (bbshr-old s∈θ₂ eq₂)) → lookup-s-eq θ s s∈θ s∈θ₂ eq eq₂ (λ ()) ;
(here (bbshr-new s∈θ₂ eq₂)) → lookup-s-eq θ s s∈θ s∈θ₂ eq eq₂ (λ ()) ;
(there x) → ¬p x })
blocked-el-dec θ (shr-ref s ∷ l) | no ¬p | yes s∈θ | SharedVar.new | Reveal_·_is_.[ eq ] = yes (here (bbshr-new s∈θ eq))
blocked-el-dec θ (shr-ref s ∷ l) | no ¬p | yes s∈θ | SharedVar.old | Reveal_·_is_.[ eq ] = yes (here (bbshr-old s∈θ eq))
blocked-el-dec θ (shr-ref s ∷ l) | no ¬p | no ¬s∈θ =
no (λ { (here (bbshr-old s∈ x)) → ¬s∈θ s∈ ;
(here (bbshr-new s∈ x)) → ¬s∈θ s∈ ;
(there x) → ¬p x })
blocked-e-dec : ∀ θ e -> Dec (blocked-e θ e)
blocked-e-dec θ (plus l) = blocked-el-dec θ l
blocked-dec : ∀ θ A p -> Dec (blocked θ A p)
blocked-dec θ A nothin = no (λ ())
blocked-dec θ A pause = no (λ ())
blocked-dec θ A (signl S p) = no (λ ())
blocked-dec θ A (present S ∣⇒ p ∣⇒ q) with Sig∈ S θ
blocked-dec θ A (present S ∣⇒ p ∣⇒ q) | yes SigS∈θ
with Env.sig-stats{S} θ SigS∈θ | inspect (Env.sig-stats{S} θ) SigS∈θ
blocked-dec θ A (present S ∣⇒ p ∣⇒ q) | yes SigS∈θ₁ | Signal.present | Reveal_·_is_.[ eq₁ ] =
no (λ { (bsig-exists .S SigS∈θ₂ eq₂) → lookup-S-eq θ S SigS∈θ₁ SigS∈θ₂ eq₁ eq₂ (λ ()) })
blocked-dec θ A (present S ∣⇒ p ∣⇒ q) | yes SigS∈θ₁ | Signal.absent | Reveal_·_is_.[ eq₁ ] =
no (λ { (bsig-exists .S SigS∈θ₂ eq₂) → lookup-S-eq θ S SigS∈θ₁ SigS∈θ₂ eq₁ eq₂ (λ ()) } )
blocked-dec θ A (present S ∣⇒ p ∣⇒ q) | yes SigS∈θ | Signal.unknown | Reveal_·_is_.[ eq ] =
yes (bsig-exists S SigS∈θ eq)
blocked-dec θ A (present S ∣⇒ p ∣⇒ q) | no ¬SigS∈θ =
no (λ { (bsig-exists .S S∈ _) → ¬SigS∈θ S∈ })
blocked-dec θ GO (emit S) = no (λ ())
blocked-dec θ WAIT (emit S) = yes bwemit
blocked-dec θ A (p ∥ q) with blocked-dec θ A p | blocked-dec θ A q
blocked-dec θ A (p ∥ q) | yes blockedp | yes blockedq =
yes (bpar-both blockedp blockedq)
blocked-dec θ A (p ∥ q) | yes blockedp | no ¬blockedq with done-dec q
blocked-dec θ A (p ∥ q) | yes blockedp | no ¬blockedq | yes donep =
yes (bpar-left blockedp donep)
blocked-dec θ A (p ∥ q) | yes blockedp | no ¬blockedq | no ¬donep =
no (λ { (bpar-both _ x) → ¬blockedq x ;
(bpar-left _ x) → ¬donep x ;
(bpar-right _ x) → ¬blockedq x })
blocked-dec θ A (p ∥ q) | no ¬blockedp | yes blockedq with done-dec p
blocked-dec θ A (p ∥ q) | no ¬blockedp | yes blockedq | yes donep =
yes (bpar-right donep blockedq)
blocked-dec θ A (p ∥ q) | no ¬blockedp | yes blockedq | no ¬donep =
no (λ { (bpar-both x _) → ¬blockedp x ;
(bpar-left x _) → ¬blockedp x ;
(bpar-right x _) → ¬donep x })
blocked-dec θ A (p ∥ q) | no ¬blockedp | no ¬blockedq =
no (λ { (bpar-both _ x) → ¬blockedq x ;
(bpar-left x _) → ¬blockedp x ;
(bpar-right _ x) → ¬blockedq x })
blocked-dec θ A (loop p) = no (λ ())
blocked-dec θ A (p >> q) with blocked-dec θ A p
blocked-dec θ A (p >> q) | yes blockedp = yes (bseq blockedp)
blocked-dec θ A (p >> q) | no ¬blockedp = no (λ { (bseq x) → ¬blockedp x })
blocked-dec θ A (loopˢ p q) with blocked-dec θ A p
blocked-dec θ A (loopˢ p q) | yes blockedp = yes (bloopˢ blockedp)
blocked-dec θ A (loopˢ p q) | no ¬blockedp = no (λ { (bloopˢ x) → ¬blockedp x })
blocked-dec θ A (suspend p S) with blocked-dec θ A p
blocked-dec θ A (suspend p S) | yes blockedp = yes (bsusp blockedp)
blocked-dec θ A (suspend p S) | no ¬blockedp = no (λ { (bsusp x) → ¬blockedp x })
blocked-dec θ A (trap p) with blocked-dec θ A p
blocked-dec θ A (trap p) | yes blockedp = yes (btrap blockedp)
blocked-dec θ A (trap p) | no ¬blockedp = no (λ { (btrap x) → ¬blockedp x })
blocked-dec θ A (exit x) = no (λ ())
blocked-dec θ A (shared s ≔ e in: p) with blocked-e-dec θ e
blocked-dec θ A (shared s ≔ e in: p) | yes blockede = yes (bshared blockede)
blocked-dec θ A (shared s ≔ e in: p) | no ¬blockede = no (λ { (bshared x) → ¬blockede x })
blocked-dec θ A (s ⇐ e) with blocked-e-dec θ e
blocked-dec θ A (s ⇐ e) | yes p = yes (bsset p)
blocked-dec θ GO (s ⇐ e) | no ¬p = no (λ { (bsset x) → ¬p x })
blocked-dec θ WAIT (s ⇐ e) | no ¬p = yes bwset
blocked-dec θ A (var x ≔ e in: p) with blocked-e-dec θ e
blocked-dec θ A (var x ≔ e in: p₁) | yes p = yes (bvar p)
blocked-dec θ A (var x ≔ e in: p) | no ¬p = no (λ { (bvar x₁) → ¬p x₁ })
blocked-dec θ A (x ≔ e) with blocked-e-dec θ e
blocked-dec θ A (x ≔ e) | yes p = yes (bxset p)
blocked-dec θ A (x ≔ e) | no ¬p = no (λ { (bxset x₁) → ¬p x₁ })
blocked-dec θ A (if x ∣⇒ p ∣⇒ p₁) = no (λ ())
blocked-dec θ A (ρ⟨ θ₁ , A₁ ⟩· p) = no (λ ())
| {
"alphanum_fraction": 0.6086067186,
"avg_line_length": 49.4591439689,
"ext": "agda",
"hexsha": "c14dfc5ecbf12ca9a33a5bd8ec0e20c30163804b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/blocked.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/blocked.agda",
"max_line_length": 122,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/blocked.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 5173,
"size": 12711
} |
module Properties.Functions where
infixr 5 _∘_
_∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
(f ∘ g) x = f (g x)
| {
"alphanum_fraction": 0.4876033058,
"avg_line_length": 17.2857142857,
"ext": "agda",
"hexsha": "313b0ff2f91a8d2b56ed9d4907615576452f1165",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_forks_repo_path": "prototyping/Properties/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_issues_repo_path": "prototyping/Properties/Functions.agda",
"max_line_length": 51,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Properties/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 58,
"size": 121
} |
module Numeral.Natural.Relation.Divisibility where
import Lvl
open import Functional
open import Logic
open import Logic.Propositional
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Type
-- Divisibility relation of natural numbers.
-- `(y ∣ x)` means that `y` is divisible by `x`.
-- In other words: `x/y` is an integer.
-- Or: `∃(c: ℕ). x = c⋅y`.
-- Note on the definition of Div𝐒:
-- The order (y + x) works and depends on rewriting rules of ℕ at the moment (Specifically on the commuted identity and successor rules, I think).
-- Without rewriting rules, deconstruction of Div𝐒 seems not working.
-- Example:
-- div23 : ¬(2 ∣ 3)
-- div23(Div𝐒())
-- This is a "valid" proof, but would not type-check because deconstruction from (2 ∣ 3) to (2 ∣ 1) is impossible.
-- Seems like the compiler would see (3 = 2+x), but because of definition of (_+_), only (3 = x+2) can be found.
-- Defining Div𝐒 with (x + y) inside would work, but then the definition of DivN becomes more complicated because (_⋅_) is defined in this order.
-- Note on zero divisors:
-- (0 ∣ 0) is true, and it is the only number divisible by 0.
-- Example definitions of special cases of the divisibility relation and the divisibility with remainder relation:
-- data Even : ℕ → Stmt{Lvl.𝟎} where
-- Even0 : Even(𝟎)
-- Even𝐒 : ∀{x : ℕ} → Even(x) → Even(𝐒(𝐒(x)))
-- data Odd : ℕ → Stmt{Lvl.𝟎} where
-- Odd0 : Odd(𝐒(𝟎))
-- Odd𝐒 : ∀{x : ℕ} → Odd(x) → Odd(𝐒(𝐒(x)))
data _∣_ : ℕ → ℕ → Stmt{Lvl.𝟎} where
Div𝟎 : ∀{y} → (y ∣ 𝟎)
Div𝐒 : ∀{y x} → (y ∣ x) → (y ∣ (y + x))
_∤_ : ℕ → ℕ → Stmt
y ∤ x = ¬(y ∣ x)
-- `Divisor(n)(d)` means that `d` is a divisor of `n`.
Divisor = swap(_∣_)
-- `Multiple(n)(m)` means that `m` is a multiple of `n`.
Multiple = _∣_
-- Elimination rule for (_∣_).
divides-elim : ∀{ℓ}{P : ∀{y x} → (y ∣ x) → Type{ℓ}} → (∀{y} → P(Div𝟎{y})) → (∀{y x}{p : y ∣ x} → P(p) → P(Div𝐒 p)) → (∀{y x} → (p : y ∣ x) → P(p))
divides-elim z s Div𝟎 = z
divides-elim{P = P} z s (Div𝐒 p) = s(divides-elim{P = P} z s p)
| {
"alphanum_fraction": 0.6119402985,
"avg_line_length": 41.54,
"ext": "agda",
"hexsha": "b819a653bc6981dc3d9d6fdb243ddedfcb158cfa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Relation/Divisibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Relation/Divisibility.agda",
"max_line_length": 148,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Relation/Divisibility.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 780,
"size": 2077
} |
-- 2010-10-01 Issue 342
module NonDependentConstructorType where
data Wrap : Set1 where
wrap : Set -> Wrap
bla : Set
bla = wrap
-- 2010-10-01 error is printed as (_ : Set) -> Wrap !=< Set
-- error should be printed as Set -> Wrap !=< Set | {
"alphanum_fraction": 0.6721991701,
"avg_line_length": 24.1,
"ext": "agda",
"hexsha": "f9c5cd541f42a159bde9ae00f5ea5f1e47f79a81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/NonDependentConstructorType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/NonDependentConstructorType.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/NonDependentConstructorType.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 76,
"size": 241
} |
{-# OPTIONS --without-K #-}
open import library.Basics hiding (Type ; Σ)
open import library.types.Sigma
open import library.types.Bool
open import Sec2preliminaries
open import Sec4hasConstToSplit
module Sec6hasConstToDecEq where
-- Lemma 6.1
hasConst-family-dec : {X : Type} → (x₁ x₂ : X) → ((x : X) → hasConst ((x₁ == x) + (x₂ == x))) → (x₁ == x₂) + ¬(x₁ == x₂)
hasConst-family-dec {X} x₁ x₂ hasConst-fam = solution where
f₋ : (x : X) → (x₁ == x) + (x₂ == x) → (x₁ == x) + (x₂ == x)
f₋ x = fst (hasConst-fam x)
E₋ : X → Type
E₋ x = fix (f₋ x)
E : Type
E = Σ X λ x → (E₋ x)
E-fst-determines-eq : (e₁ e₂ : E) → (fst e₁ == fst e₂) → e₁ == e₂
E-fst-determines-eq e₁ e₂ p = second-comp-triv (λ x → fixed-point (f₋ x) (snd (hasConst-fam x))) _ _ p
r : Bool → E
r true = x₁ , to-fix (f₋ x₁) (snd (hasConst-fam x₁)) (inl idp)
r false = x₂ , to-fix (f₋ x₂) (snd (hasConst-fam x₂)) (inr idp)
about-r : (r true == r false) ↔ (x₁ == x₂)
about-r = (λ p → ap fst p) , (λ p → E-fst-determines-eq _ _ p)
s : E → Bool
s (_ , inl _ , _) = true
s (_ , inr _ , _) = false
s-section-of-r : (e : E) → r(s e) == e
s-section-of-r (x , inl p , q) = E-fst-determines-eq _ _ p
s-section-of-r (x , inr p , q) = E-fst-determines-eq _ _ p
about-s : (e₁ e₂ : E) → (s e₁ == s e₂) ↔ (e₁ == e₂)
about-s e₁ e₂ = one , two where
one : (s e₁ == s e₂) → (e₁ == e₂)
one p =
e₁ =⟨ ! (s-section-of-r e₁) ⟩
r(s(e₁)) =⟨ ap r p ⟩
r(s(e₂)) =⟨ s-section-of-r e₂ ⟩
e₂ ∎
two : (e₁ == e₂) → (s e₁ == s e₂)
two p = ap s p
combine : (s (r true) == s (r false)) ↔ (x₁ == x₂)
combine = (about-s _ _) ◎ about-r
check-bool : (s (r true) == s (r false)) + ¬(s (r true) == s (r false))
check-bool = Bool-has-dec-eq _ _
solution : (x₁ == x₂) + ¬(x₁ == x₂)
solution with check-bool
solution | inl p = inl (fst combine p)
solution | inr np = inr (λ p → np (snd combine p))
-- Theorem 6.2
all-hasConst→dec-eq : ((X : Type) → hasConst X) → (X : Type) → has-dec-eq X
all-hasConst→dec-eq all-hasConst X x₁ x₂ = hasConst-family-dec x₁ x₂ (λ x → all-hasConst _)
| {
"alphanum_fraction": 0.5375586854,
"avg_line_length": 31.3235294118,
"ext": "agda",
"hexsha": "52bfdc76e510bce52b4b9de76a2ace6664fe90f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/anonymousExistence/Sec6hasConstToDecEq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/anonymousExistence/Sec6hasConstToDecEq.agda",
"max_line_length": 120,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/anonymousExistence/Sec6hasConstToDecEq.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 910,
"size": 2130
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Empty where
open import Cubical.Data.Empty.Base public
open import Cubical.Data.Empty.Properties public
| {
"alphanum_fraction": 0.7683615819,
"avg_line_length": 25.2857142857,
"ext": "agda",
"hexsha": "1c80c98041b06a97e16c185b641aa51e2ebd7854",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Empty.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Empty.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Empty.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 39,
"size": 177
} |
data D : Set where
c_c_ : D → D
test : D → D
test c x c_ = x
| {
"alphanum_fraction": 0.53125,
"avg_line_length": 10.6666666667,
"ext": "agda",
"hexsha": "dd7a51cce077dbb1741d55e3ec274d4f503b1fd1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Sections-3.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Sections-3.agda",
"max_line_length": 18,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Sections-3.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 64
} |
-- Andreas, 2017-07-28, issue #657 is fixed
-- WAS: display form problem
postulate
A : Set
x : A
record R (A : Set) : Set₁ where
field
P : A → Set
module M (r : ∀ A → R A) where
open module R′ {A} = R (r A) public
postulate
r : ∀ A → R A
open M r
p : P x
p = {!!}
-- WAS: goal displayed as R.P (r A) x
-- Expected: P x
| {
"alphanum_fraction": 0.5510204082,
"avg_line_length": 12.7037037037,
"ext": "agda",
"hexsha": "e075b34b1d4b89f0d7b8633001aaabc0bf760637",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue657.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue657.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue657.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 134,
"size": 343
} |
module UselessPrivateImport where
private
open import Common.Prelude
| {
"alphanum_fraction": 0.8472222222,
"avg_line_length": 14.4,
"ext": "agda",
"hexsha": "6bfa7aad48df252fc31a4a3e0c0b642e5d225a90",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/UselessPrivateImport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/UselessPrivateImport.agda",
"max_line_length": 33,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/UselessPrivateImport.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 16,
"size": 72
} |
module Oscar.Data.Substitunction {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Equality
open import Oscar.Data.Equality.properties
open import Oscar.Data.Fin
open import Oscar.Data.Nat
open import Oscar.Data.Term FunctionName
open import Oscar.Data.Vec
open import Oscar.Function
open import Oscar.Level
open import Oscar.Relation
-- Substitunction
_⊸_ : (m n : Nat) → Set 𝔣
m ⊸ n = Fin m → Term n
▸ : ∀ {m n} → m ⟨ Fin ⟩→ n → m ⊸ n
▸ r = i ∘ r
infix 19 _◂_ _◂s_
mutual
_◂_ : ∀ {m n} → m ⊸ n → m ⟨ Term ⟩→ n
σ̇ ◂ i 𝑥 = σ̇ 𝑥
_ ◂ leaf = leaf
σ̇ ◂ (τl fork τr) = (σ̇ ◂ τl) fork (σ̇ ◂ τr)
σ̇ ◂ (function fn τs) = function fn (σ̇ ◂s τs) where
_◂s_ : ∀ {m n} → m ⊸ n → ∀ {N} → m ⟨ Terms N ⟩→ n -- Vec (Term m) N → Vec (Term n) N
f ◂s [] = []
f ◂s (t ∷ ts) = f ◂ t ∷ f ◂s ts
_∙_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n
_∙_ f g = (f ◂_) ∘ g
mutual
◂-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → f ◂_ ≡̇ g ◂_
◂-extensionality p (i x) = p x
◂-extensionality p leaf = refl
◂-extensionality p (s fork t) = cong₂ _fork_ (◂-extensionality p s) (◂-extensionality p t)
◂-extensionality p (function fn ts) = cong (function fn) (◂s-extensionality p ts)
◂s-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → ∀ {N} → _◂s_ f {N} ≡̇ _◂s_ g
◂s-extensionality p [] = refl
◂s-extensionality p (t ∷ ts) = cong₂ _∷_ (◂-extensionality p t) (◂s-extensionality p ts)
mutual
◂-associativity : ∀ {l m} (f : l ⊸ m) {n} (g : m ⊸ n) → (g ∙ f) ◂_ ≡̇ (g ◂_) ∘ (f ◂_)
◂-associativity _ _ (i _) = refl
◂-associativity _ _ leaf = refl
◂-associativity _ _ (τ₁ fork τ₂) = cong₂ _fork_ (◂-associativity _ _ τ₁) (◂-associativity _ _ τ₂)
◂-associativity f g (function fn ts) = cong (function fn) (◂s-associativity f g ts)
◂s-associativity : ∀ {l m n} (f : l ⊸ m) (g : m ⊸ n) → ∀ {N} → (_◂s_ (g ∙ f) {N}) ≡̇ (g ◂s_) ∘ (f ◂s_)
◂s-associativity _ _ [] = refl
◂s-associativity _ _ (τ ∷ τs) = cong₂ _∷_ (◂-associativity _ _ τ) (◂s-associativity _ _ τs)
∙-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → (h ∙ g) ∙ f ≡̇ h ∙ (g ∙ f)
∙-associativity f g h x rewrite ◂-associativity g h (f x) = refl
∙-extensionality : ∀ {l m} {f₁ f₂ : l ⊸ m} → f₁ ≡̇ f₂ → ∀ {n} {g₁ g₂ : m ⊸ n} → g₁ ≡̇ g₂ → g₁ ∙ f₁ ≡̇ g₂ ∙ f₂
∙-extensionality {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = ◂-extensionality g₁≡̇g₂ (f₂ x)
ε : ∀ {m} → m ⊸ m
ε = i
mutual
◂-identity : ∀ {m} (t : Term m) → ε ◂ t ≡ t
◂-identity (i x) = refl
◂-identity leaf = refl
◂-identity (s fork t) = cong₂ _fork_ (◂-identity s) (◂-identity t)
◂-identity (function fn ts) = cong (function fn) (◂s-identity ts)
◂s-identity : ∀ {N m} (t : Vec (Term m) N) → ε ◂s t ≡ t
◂s-identity [] = refl
◂s-identity (t ∷ ts) = cong₂ _∷_ (◂-identity t) (◂s-identity ts)
∙-left-identity : ∀ {m n} (f : m ⊸ n) → ε ∙ f ≡̇ f
∙-left-identity f = ◂-identity ∘ f
∙-right-identity : ∀ {m n} (f : m ⊸ n) → f ∙ ε ≡̇ f
∙-right-identity _ _ = refl
open import Oscar.Category
semigroupoidSubstitunction : Semigroupoid _⊸_ (λ {m n} → ≡̇-setoid (λ _ → Term n))
Semigroupoid._∙_ semigroupoidSubstitunction = _∙_
Semigroupoid.∙-extensionality semigroupoidSubstitunction = ∙-extensionality
Semigroupoid.∙-associativity semigroupoidSubstitunction = ∙-associativity
semigroupoidExtensionTerm : Semigroupoid (_⟨ Term ⟩→_) (λ {m n} → ≡̇-setoid (λ _ → Term n))
Semigroupoid._∙_ semigroupoidExtensionTerm g = g ∘_
Semigroupoid.∙-extensionality semigroupoidExtensionTerm {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = g₁≡̇g₂ (f₂ x)
Semigroupoid.∙-associativity semigroupoidExtensionTerm _ _ _ _ = refl
semigroupoidExtensionTerms : ∀ N → Semigroupoid (_⟨ Terms N ⟩→_) (λ {m n} → ≡̇-setoid (λ _ → Terms N n))
Semigroupoid._∙_ (semigroupoidExtensionTerms _) g = g ∘_
Semigroupoid.∙-extensionality (semigroupoidExtensionTerms _) {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = g₁≡̇g₂ (f₂ x)
Semigroupoid.∙-associativity (semigroupoidExtensionTerms _) _ _ _ _ = refl
semifunctorSubstitute : Semifunctor semigroupoidSubstitunction semigroupoidExtensionTerm
Semifunctor.μ semifunctorSubstitute = id
Semifunctor.𝔣 semifunctorSubstitute = _◂_
Semifunctor.𝔣-extensionality semifunctorSubstitute = ◂-extensionality
Semifunctor.𝔣-commutativity semifunctorSubstitute {f = f} {g = g} = ◂-associativity f g
semifunctorSubstitutes : ∀ N → Semifunctor semigroupoidSubstitunction (semigroupoidExtensionTerms N)
Semifunctor.μ (semifunctorSubstitutes _) = id
Semifunctor.𝔣 (semifunctorSubstitutes N) f τs = f ◂s τs
Semifunctor.𝔣-extensionality (semifunctorSubstitutes _) f≡̇g = ◂s-extensionality f≡̇g
Semifunctor.𝔣-commutativity (semifunctorSubstitutes _) {f = f} {g = g} = ◂s-associativity f g
------------ subfact3 : ∀ {l m n} (f : m ⊸ n) (r : l ⟨ Fin ⟩→ m) → f ◇ (▸ r) ≡ f ∘ r
------------ subfact3 f r = refl
-- -- -- -- prop-id : ∀ {m n} {f : _ ⊸ n} {ℓ} {P : ⊸-ExtentionalProperty {ℓ} m} → proj₁ P f → proj₁ P (i ◇ f)
-- -- -- -- prop-id {_} {_} {f} {_} {P'} Pf = proj₂ P' (λ x → sym (◃-identity (f x))) Pf
-- -- -- -- ≐-cong : ∀ {m n o} {f : m ⊸ n} {g} (h : _ ⊸ o) → f ≐ g → (h ◇ f) ≐ (h ◇ g)
-- -- -- -- ≐-cong h f≐g t = cong (h ◃_) (f≐g t)
-- -- -- -- -- data AList : ℕ -> ℕ -> Set 𝔣 where
-- -- -- -- -- anil : ∀ {n} -> AList n n
-- -- -- -- -- _asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m))
-- -- -- -- -- -> AList (suc m) n
-- -- -- -- -- sub : ∀ {m n} (σ : AList m n) -> Fin m -> Term n
-- -- -- -- -- sub anil = i
-- -- -- -- -- sub (σ asnoc t' / x) = sub σ ◇ (t' for x)
-- -- -- -- -- _++_ : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> AList l n
-- -- -- -- -- ρ ++ anil = ρ
-- -- -- -- -- ρ ++ (σ asnoc t' / x) = (ρ ++ σ) asnoc t' / x
-- -- -- -- -- ++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) -> ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ
-- -- -- -- -- ++-assoc ρ σ anil = refl
-- -- -- -- -- ++-assoc ρ σ (τ asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc ρ σ τ)
-- -- -- -- -- module SubList where
-- -- -- -- -- anil-id-l : ∀ {m n} (σ : AList m n) -> anil ++ σ ≡ σ
-- -- -- -- -- anil-id-l anil = refl
-- -- -- -- -- anil-id-l (σ asnoc t' / x) = cong (λ σ -> σ asnoc t' / x) (anil-id-l σ)
-- -- -- -- -- fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> sub (ρ ++ σ) ≐ (sub ρ ◇ sub σ)
-- -- -- -- -- fact1 ρ anil v = refl
-- -- -- -- -- fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc
-- -- -- -- -- where
-- -- -- -- -- t = (t' for x) v
-- -- -- -- -- hyp-on-terms = ◃-extentionality (fact1 r s) t
-- -- -- -- -- ◃-assoc = ◃-associativity t
-- -- -- -- -- _∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m))
-- -- -- -- -- -> ∃ (AList (suc m))
-- -- -- -- -- (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x
-- -- -- -- -- open import Data.Maybe using (Maybe; nothing; just)
-- -- -- -- -- flexFlex : ∀ {m} (x y : Fin m) -> ∃ (AList m)
-- -- -- -- -- flexFlex {suc m} x y with check x y
-- -- -- -- -- ... | just y' = m , anil asnoc i y' / x
-- -- -- -- -- ... | nothing = suc m , anil
-- -- -- -- -- flexFlex {zero} () _
-- -- -- -- -- open import Oscar.Class.ThickAndThin
-- -- -- -- -- flexRigid : ∀ {m} (x : Fin m) (t : Term m) -> Maybe (∃(AList m))
-- -- -- -- -- flexRigid {suc m} x t with check x t
-- -- -- -- -- ... | just t' = just (m , anil asnoc t' / x)
-- -- -- -- -- ... | nothing = nothing
-- -- -- -- -- flexRigid {zero} () _
-- -- -- -- -- -- open import Oscar.Data.Fin using (Fin; zero; suc; thick?; Check; check; thin; module Thick)
-- -- -- -- -- -- open import Data.Fin using (Fin; suc; zero)
-- -- -- -- -- -- open import Data.Nat hiding (_≤_)
-- -- -- -- -- -- open import Relation.Binary.PropositionalEquality renaming ([_] to [[_]])
-- -- -- -- -- -- open import Function using (_∘_; id; case_of_; _$_; flip)
-- -- -- -- -- -- open import Relation.Nullary
-- -- -- -- -- -- open import Data.Product renaming (map to _***_)
-- -- -- -- -- -- open import Data.Empty
-- -- -- -- -- -- open import Data.Maybe
-- -- -- -- -- -- open import Category.Functor
-- -- -- -- -- -- open import Category.Monad
-- -- -- -- -- -- import Level
-- -- -- -- -- -- open RawMonad (Data.Maybe.monad {Level.zero})
-- -- -- -- -- -- open import Data.Sum
-- -- -- -- -- -- open import Data.Maybe using (maybe; maybe′; nothing; just; monad; Maybe)
-- -- -- -- -- -- open import Data.List renaming (_++_ to _++L_)
-- -- -- -- -- -- open ≡-Reasoning
-- -- -- -- -- -- open import Data.Vec using (Vec; []; _∷_) renaming (_++_ to _++V_; map to mapV)
-- -- -- -- -- -- open import Data.Nat using (ℕ; suc; zero)
-- -- -- -- -- -- open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂; cong; sym; trans)
-- -- -- -- -- -- open import Function using (_∘_; flip)
-- -- -- -- -- -- open import Relation.Nullary using (¬_; Dec; yes; no)
-- -- -- -- -- -- open import Data.Product using (∃; _,_; _×_)
-- -- -- -- -- -- open import Data.Empty using (⊥-elim)
-- -- -- -- -- -- open import Data.Vec using (Vec; []; _∷_)
-- -- -- -- -- -- Term-function-inj-FunctionName : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → fn₁ ≡ fn₂
-- -- -- -- -- -- Term-function-inj-FunctionName refl = refl
-- -- -- -- -- -- Term-function-inj-VecSize : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → N₁ ≡ N₂
-- -- -- -- -- -- Term-function-inj-VecSize refl = refl
-- -- -- -- -- -- Term-function-inj-Vector : ∀ {fn₁ fn₂} {n N} {ts₁ : Vec (Term n) N} {ts₂ : Vec (Term n) N} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → ts₁ ≡ ts₂
-- -- -- -- -- -- Term-function-inj-Vector refl = refl
-- -- -- -- -- -- Term-fork-inj-left : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → l₁ ≡ l₂
-- -- -- -- -- -- Term-fork-inj-left refl = refl
-- -- -- -- -- -- Term-fork-inj-right : ∀ {n} {l₁ r₁ l₂ r₂ : Term n} → l₁ fork r₁ ≡ l₂ fork r₂ → r₁ ≡ r₂
-- -- -- -- -- -- Term-fork-inj-right refl = refl
-- -- -- -- -- -- open import Relation.Binary.HeterogeneousEquality using (_≅_; refl)
-- -- -- -- -- -- Term-function-inj-HetVector : ∀ {fn₁ fn₂} {n N₁ N₂} {ts₁ : Vec (Term n) N₁} {ts₂ : Vec (Term n) N₂} → Term.function fn₁ ts₁ ≡ Term.function fn₂ ts₂ → ts₁ ≅ ts₂
-- -- -- -- -- -- Term-function-inj-HetVector refl = refl
-- -- -- -- -- -- _⊸_ : (m n : ℕ) → Set
-- -- -- -- -- -- m ⊸ n = Fin m → Term n
-- -- -- -- -- -- ▸ : ∀ {m n} → (r : Fin m → Fin n) → Fin m → Term n
-- -- -- -- -- -- ▸ r = i ∘ r
-- -- -- -- -- -- record Substitution (T : ℕ → Set) : Set where
-- -- -- -- -- -- field
-- -- -- -- -- -- _◃_ : ∀ {m n} → (f : m ⊸ n) → T m → T n
-- -- -- -- -- -- open Substitution ⦃ … ⦄ public
-- -- -- -- -- -- {-# DISPLAY Substitution._◃_ _ = _◃_ #-}
-- -- -- -- -- -- mutual
-- -- -- -- -- -- instance SubstitutionTerm : Substitution Term
-- -- -- -- -- -- Substitution._◃_ SubstitutionTerm = _◃′_ where
-- -- -- -- -- -- _◃′_ : ∀ {m n} → (f : m ⊸ n) → Term m → Term n
-- -- -- -- -- -- f ◃′ i x = f x
-- -- -- -- -- -- f ◃′ leaf = leaf
-- -- -- -- -- -- f ◃′ (s fork t) = (f ◃ s) fork (f ◃ t)
-- -- -- -- -- -- f ◃′ (function fn ts) = function fn (f ◃ ts)
-- -- -- -- -- -- instance SubstitutionVecTerm : ∀ {N} → Substitution (flip Vec N ∘ Term )
-- -- -- -- -- -- Substitution._◃_ (SubstitutionVecTerm {N}) = _◃′_ where
-- -- -- -- -- -- _◃′_ : ∀ {m n} → (f : m ⊸ n) → Vec (Term m) N → Vec (Term n) N
-- -- -- -- -- -- f ◃′ [] = []
-- -- -- -- -- -- f ◃′ (t ∷ ts) = f ◃ t ∷ f ◃ ts
-- -- -- -- -- -- _≐_ : {m n : ℕ} → (Fin m → Term n) → (Fin m → Term n) → Set
-- -- -- -- -- -- f ≐ g = ∀ x → f x ≡ g x
-- -- -- -- -- -- record SubstitutionExtensionality (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set₁ where
-- -- -- -- -- -- field
-- -- -- -- -- -- ◃ext : ∀ {m n} {f g : Fin m → Term n} → f ≐ g → (t : T m) → f ◃ t ≡ g ◃ t
-- -- -- -- -- -- open SubstitutionExtensionality ⦃ … ⦄ public
-- -- -- -- -- -- mutual
-- -- -- -- -- -- instance SubstitutionExtensionalityTerm : SubstitutionExtensionality Term
-- -- -- -- -- -- SubstitutionExtensionality.◃ext SubstitutionExtensionalityTerm = ◃ext′ where
-- -- -- -- -- -- ◃ext′ : ∀ {m n} {f g : Fin m → Term n} → f ≐ g → ∀ t → f ◃ t ≡ g ◃ t
-- -- -- -- -- -- ◃ext′ p (i x) = p x
-- -- -- -- -- -- ◃ext′ p leaf = refl
-- -- -- -- -- -- ◃ext′ p (s fork t) = cong₂ _fork_ (◃ext p s) (◃ext p t)
-- -- -- -- -- -- ◃ext′ p (function fn ts) = cong (function fn) (◃ext p ts)
-- -- -- -- -- -- instance SubstitutionExtensionalityVecTerm : ∀ {N} → SubstitutionExtensionality (flip Vec N ∘ Term)
-- -- -- -- -- -- SubstitutionExtensionality.◃ext (SubstitutionExtensionalityVecTerm {N}) = λ x → ◃ext′ x where
-- -- -- -- -- -- ◃ext′ : ∀ {m n} {f g : Fin m → Term n} → f ≐ g → ∀ {N} (t : Vec (Term m) N) → f ◃ t ≡ g ◃ t
-- -- -- -- -- -- ◃ext′ p [] = refl
-- -- -- -- -- -- ◃ext′ p (t ∷ ts) = cong₂ _∷_ (◃ext p t) (◃ext p ts)
-- -- -- -- -- -- _◇_ : ∀ {l m n : ℕ } → (f : Fin m → Term n) (g : Fin l → Term m) → Fin l → Term n
-- -- -- -- -- -- f ◇ g = (f ◃_) ∘ g
-- -- -- -- -- -- ≐-cong : ∀ {m n o} {f : m ⊸ n} {g} (h : _ ⊸ o) → f ≐ g → (h ◇ f) ≐ (h ◇ g)
-- -- -- -- -- -- ≐-cong h f≐g t = cong (h ◃_) (f≐g t)
-- -- -- -- -- -- ≐-sym : ∀ {m n} {f : m ⊸ n} {g} → f ≐ g → g ≐ f
-- -- -- -- -- -- ≐-sym f≐g = sym ∘ f≐g
-- -- -- -- -- -- module Sub where
-- -- -- -- -- -- record Fact1 (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set where
-- -- -- -- -- -- field
-- -- -- -- -- -- fact1 : ∀ {n} → (t : T n) → i ◃ t ≡ t
-- -- -- -- -- -- open Fact1 ⦃ … ⦄ public
-- -- -- -- -- -- mutual
-- -- -- -- -- -- instance Fact1Term : Fact1 Term
-- -- -- -- -- -- Fact1.fact1 Fact1Term (i x) = refl
-- -- -- -- -- -- Fact1.fact1 Fact1Term leaf = refl
-- -- -- -- -- -- Fact1.fact1 Fact1Term (s fork t) = cong₂ _fork_ (fact1 s) (fact1 t)
-- -- -- -- -- -- Fact1.fact1 Fact1Term (function fn ts) = cong (function fn) (fact1 ts)
-- -- -- -- -- -- instance Fact1TermVec : ∀ {N} → Fact1 (flip Vec N ∘ Term)
-- -- -- -- -- -- Fact1.fact1 Fact1TermVec [] = refl
-- -- -- -- -- -- Fact1.fact1 Fact1TermVec (t ∷ ts) = cong₂ _∷_ (fact1 t) (fact1 ts)
-- -- -- -- -- -- record Fact2 (T : ℕ → Set) ⦃ _ : Substitution T ⦄ : Set where
-- -- -- -- -- -- field
-- -- -- -- -- -- -- ⦃ s ⦄ : Substitution T
-- -- -- -- -- -- fact2 : ∀ {l m n} → {f : Fin m → Term n} {g : _} (t : T l) → (f ◇ g) ◃ t ≡ f ◃ (g ◃ t)
-- -- -- -- -- -- open Fact2 ⦃ … ⦄ public
-- -- -- -- -- -- mutual
-- -- -- -- -- -- instance Fact2Term : Fact2 Term
-- -- -- -- -- -- -- Fact2.s Fact2Term = SubstitutionTerm
-- -- -- -- -- -- Fact2.fact2 Fact2Term (i x) = refl
-- -- -- -- -- -- Fact2.fact2 Fact2Term leaf = refl
-- -- -- -- -- -- Fact2.fact2 Fact2Term (s fork t) = cong₂ _fork_ (fact2 s) (fact2 t)
-- -- -- -- -- -- Fact2.fact2 Fact2Term {f = f} {g = g} (function fn ts) = cong (function fn) (fact2 {f = f} {g = g} ts) -- fact2 ts
-- -- -- -- -- -- instance Fact2TermVec : ∀ {N} → Fact2 (flip Vec N ∘ Term)
-- -- -- -- -- -- -- Fact2.s Fact2TermVec = SubstitutionVecTerm
-- -- -- -- -- -- Fact2.fact2 Fact2TermVec [] = refl
-- -- -- -- -- -- Fact2.fact2 Fact2TermVec (t ∷ ts) = cong₂ _∷_ (fact2 t) (fact2 ts)
-- -- -- -- -- -- fact3 : ∀ {l m n} (f : Fin m → Term n) (r : Fin l → Fin m) → (f ◇ (▸ r)) ≡ (f ∘ r)
-- -- -- -- -- -- fact3 f r = refl
-- -- -- -- -- -- ◃ext' : ∀ {m n o} {f : Fin m → Term n}{g : Fin m → Term o}{h} → f ≐ (h ◇ g) → ∀ (t : Term _) → f ◃ t ≡ h ◃ (g ◃ t)
-- -- -- -- -- -- ◃ext' p t = trans (◃ext p t) (Sub.fact2 t)
-- -- -- -- -- -- open import Data.Maybe using (Maybe; nothing; just; functor; maybe′; maybe)
-- -- -- -- -- -- open import Category.Monad
-- -- -- -- -- -- import Level
-- -- -- -- -- -- --open RawMonad (Data.Maybe.monad {Level.zero})
-- -- -- -- -- -- open import Data.Nat using (ℕ)
-- -- -- -- -- -- _<*>_ = _⊛_
-- -- -- -- -- -- mutual
-- -- -- -- -- -- instance CheckTerm : Check Term
-- -- -- -- -- -- Check.check CheckTerm x (i y) = i <$> thick? x y
-- -- -- -- -- -- Check.check CheckTerm x leaf = just leaf
-- -- -- -- -- -- Check.check CheckTerm x (s fork t) = _fork_ <$> check x s ⊛ check x t
-- -- -- -- -- -- Check.check CheckTerm x (function fn ts) = ⦇ (function fn) (check x ts) ⦈
-- -- -- -- -- -- instance CheckTermVec : ∀ {N} → Check (flip Vec N ∘ Term)
-- -- -- -- -- -- Check.check CheckTermVec x [] = just []
-- -- -- -- -- -- Check.check CheckTermVec x (t ∷ ts) = ⦇ check x t ∷ check x ts ⦈
-- -- -- -- -- -- _for_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) → Fin (suc n) → Term n
-- -- -- -- -- -- (t' for x) y = maybe′ i t' (thick? x y)
-- -- -- -- -- -- open import Data.Product using () renaming (Σ to Σ₁)
-- -- -- -- -- -- open Σ₁ renaming (proj₁ to π₁; proj₂ to π₂)
-- -- -- -- -- -- Property⋆ : (m : ℕ) → Set1
-- -- -- -- -- -- Property⋆ m = ∀ {n} → (Fin m → Term n) → Set
-- -- -- -- -- -- Extensional : {m : ℕ} → Property⋆ m → Set
-- -- -- -- -- -- Extensional P = ∀ {m f g} → f ≐ g → P {m} f → P g
-- -- -- -- -- -- Property : (m : ℕ) → Set1
-- -- -- -- -- -- Property m = Σ₁ (Property⋆ m) Extensional
-- -- -- -- -- -- prop-id : ∀ {m n} {f : _ ⊸ n} {P : Property m} → π₁ P f → π₁ P (i ◇ f)
-- -- -- -- -- -- prop-id {_} {_} {f} {P'} Pf = π₂ P' (λ x → sym (Sub.fact1 (f x))) Pf
-- -- -- -- -- -- Unifies⋆ : ∀ {m} (s t : Term m) → Property⋆ m
-- -- -- -- -- -- Unifies⋆ s t f = f ◃ s ≡ f ◃ t
-- -- -- -- -- -- Unifies⋆V : ∀ {m N} (ss ts : Vec (Term m) N) → Property⋆ m
-- -- -- -- -- -- Unifies⋆V ss ts f = f ◃ ss ≡ f ◃ ts
-- -- -- -- -- -- open import Relation.Binary.PropositionalEquality renaming ([_] to [[_]])
-- -- -- -- -- -- open ≡-Reasoning
-- -- -- -- -- -- Unifies : ∀ {m} (s t : Term m) → Property m
-- -- -- -- -- -- Unifies s t = (λ {_} → Unifies⋆ s t) , λ {_} {f} {g} f≐g f◃s=f◃t →
-- -- -- -- -- -- begin
-- -- -- -- -- -- g ◃ s
-- -- -- -- -- -- ≡⟨ sym (◃ext f≐g s) ⟩
-- -- -- -- -- -- f ◃ s
-- -- -- -- -- -- ≡⟨ f◃s=f◃t ⟩
-- -- -- -- -- -- f ◃ t
-- -- -- -- -- -- ≡⟨ ◃ext f≐g t ⟩
-- -- -- -- -- -- g ◃ t
-- -- -- -- -- -- ∎
-- -- -- -- -- -- UnifiesV : ∀ {m} {N} (s t : Vec (Term m) N) → Property m
-- -- -- -- -- -- UnifiesV s t = (λ {_} → Unifies⋆V s t) , λ {_} {f} {g} f≐g f◃s=f◃t →
-- -- -- -- -- -- begin
-- -- -- -- -- -- g ◃ s
-- -- -- -- -- -- ≡⟨ sym (◃ext f≐g s) ⟩
-- -- -- -- -- -- f ◃ s
-- -- -- -- -- -- ≡⟨ f◃s=f◃t ⟩
-- -- -- -- -- -- f ◃ t
-- -- -- -- -- -- ≡⟨ ◃ext f≐g t ⟩
-- -- -- -- -- -- g ◃ t
-- -- -- -- -- -- ∎
-- -- -- -- -- -- _∧⋆_ : ∀{m} → (P Q : Property⋆ m) → Property⋆ m
-- -- -- -- -- -- P ∧⋆ Q = (λ f → P f × Q f)
-- -- -- -- -- -- -- open import Data.Product renaming (map to _***_)
-- -- -- -- -- -- open import Data.Product using (Σ)
-- -- -- -- -- -- open Σ
-- -- -- -- -- -- _∧_ : ∀{m} → (P Q : Property m) → Property m
-- -- -- -- -- -- P ∧ Q = (λ {_} f → π₁ P f × π₁ Q f) , λ {_} {_} {_} f≐g Pf×Qf → π₂ P f≐g (proj₁ Pf×Qf) , π₂ Q f≐g (proj₂ Pf×Qf)
-- -- -- -- -- -- _⇔⋆_ : ∀{m} → (P Q : Property⋆ m) → Set
-- -- -- -- -- -- P ⇔⋆ Q = ∀ {n} f → (P {n} f → Q f) × (Q f → P f)
-- -- -- -- -- -- _⇔_ : ∀{m} → (P Q : Property m) → Set
-- -- -- -- -- -- P ⇔ Q = ∀ {n} f → (π₁ P {n} f → π₁ Q f) × (π₁ Q f → π₁ P f)
-- -- -- -- -- -- switch⋆ : ∀ {m} (P Q : Property⋆ m) → P ⇔⋆ Q → Q ⇔⋆ P
-- -- -- -- -- -- switch⋆ _ _ P⇔Q f = proj₂ (P⇔Q f) , proj₁ (P⇔Q f)
-- -- -- -- -- -- switch : ∀ {m} (P Q : Property m) → P ⇔ Q → Q ⇔ P
-- -- -- -- -- -- switch _ _ P⇔Q f = proj₂ (P⇔Q f) , proj₁ (P⇔Q f)
-- -- -- -- -- -- open import Data.Empty
-- -- -- -- -- -- Nothing⋆ : ∀{m} → (P : Property⋆ m) → Set
-- -- -- -- -- -- Nothing⋆ P = ∀{n} f → P {n} f → ⊥
-- -- -- -- -- -- Nothing : ∀{m} → (P : Property m) → Set
-- -- -- -- -- -- Nothing P = ∀{n} f → π₁ P {n} f → ⊥
-- -- -- -- -- -- _[-◇⋆_] : ∀{m n} (P : Property⋆ m) (f : Fin m → Term n) → Property⋆ n
-- -- -- -- -- -- (P [-◇⋆ f ]) g = P (g ◇ f)
-- -- -- -- -- -- _[-◇_] : ∀{m n} (P : Property m) (f : Fin m → Term n) → Property n
-- -- -- -- -- -- P [-◇ f ] = (λ {_} g → π₁ P (g ◇ f)) , λ {_} {f'} {g'} f'≐g' Pf'◇f → π₂ P (◃ext f'≐g' ∘ f) Pf'◇f
-- -- -- -- -- -- open import Function using (_∘_; id; case_of_; _$_; flip)
-- -- -- -- -- -- open import Data.Product using (curry; uncurry)
-- -- -- -- -- -- module Properties where
-- -- -- -- -- -- fact1 : ∀ {m} {s t : Term m} → (Unifies s t) ⇔ (Unifies t s)
-- -- -- -- -- -- fact1 _ = sym , sym
-- -- -- -- -- -- fact1'⋆ : ∀ {m} {s1 s2 t1 t2 : Term m}
-- -- -- -- -- -- → Unifies⋆ (s1 fork s2) (t1 fork t2) ⇔⋆ (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2)
-- -- -- -- -- -- fact1'⋆ f = deconstr _ _ _ _ , uncurry (cong₂ _fork_)
-- -- -- -- -- -- where deconstr : ∀ {m} (s1 s2 t1 t2 : Term m)
-- -- -- -- -- -- → (s1 fork s2) ≡ (t1 fork t2)
-- -- -- -- -- -- → (s1 ≡ t1) × (s2 ≡ t2)
-- -- -- -- -- -- deconstr s1 s2 .s1 .s2 refl = refl , refl
-- -- -- -- -- -- fact1' : ∀ {m} {s1 s2 t1 t2 : Term m}
-- -- -- -- -- -- → Unifies (s1 fork s2) (t1 fork t2) ⇔ (Unifies s1 t1 ∧ Unifies s2 t2)
-- -- -- -- -- -- fact1' f = deconstr _ _ _ _ , uncurry (cong₂ _fork_)
-- -- -- -- -- -- where deconstr : ∀ {m} (s1 s2 t1 t2 : Term m)
-- -- -- -- -- -- → (s1 fork s2) ≡ (t1 fork t2)
-- -- -- -- -- -- → (s1 ≡ t1) × (s2 ≡ t2)
-- -- -- -- -- -- deconstr s1 s2 .s1 .s2 refl = refl , refl
-- -- -- -- -- -- fact1'V : ∀ {m} {t₁ t₂ : Term m} {N} {ts₁ ts₂ : Vec (Term m) N}
-- -- -- -- -- -- → UnifiesV (t₁ ∷ ts₁) (t₂ ∷ ts₂) ⇔ (Unifies t₁ t₂ ∧ UnifiesV ts₁ ts₂)
-- -- -- -- -- -- fact1'V f = deconstr _ _ _ _ , uncurry (cong₂ _∷_)
-- -- -- -- -- -- where deconstr : ∀ {m} (t₁ t₂ : Term m) {N} (ts₁ ts₂ : Vec (Term m) N)
-- -- -- -- -- -- → (t₁ Vec.∷ ts₁) ≡ (t₂ ∷ ts₂)
-- -- -- -- -- -- → (t₁ ≡ t₂) × (ts₁ ≡ ts₂)
-- -- -- -- -- -- deconstr s1 _ s2! _ refl = refl , refl -- refl , refl
-- -- -- -- -- -- fact2⋆ : ∀ {m} (P Q : Property⋆ m) → P ⇔⋆ Q → Nothing⋆ P → Nothing⋆ Q
-- -- -- -- -- -- fact2⋆ P Q iff notp f q with iff f
-- -- -- -- -- -- ... | (p2q , q2p) = notp f (q2p q)
-- -- -- -- -- -- fact2 : ∀ {m} (P Q : Property m) → P ⇔ Q → Nothing P → Nothing Q
-- -- -- -- -- -- fact2 P Q iff notp f q with iff f
-- -- -- -- -- -- ... | (p2q , q2p) = notp f (q2p q)
-- -- -- -- -- -- fact3 : ∀ {m} {P : Property m} → P ⇔ (P [-◇ i ])
-- -- -- -- -- -- fact3 f = id , id
-- -- -- -- -- -- fact4 : ∀{m n} {P : Property m} (f : _ → Term n)
-- -- -- -- -- -- → Nothing P → Nothing (P [-◇ f ])
-- -- -- -- -- -- fact4 f nop g = nop (g ◇ f)
-- -- -- -- -- -- fact5⋆ : ∀{m n} (P Q : Property⋆ _) (f : m ⊸ n) → P ⇔⋆ Q → (P [-◇⋆ f ]) ⇔⋆ (Q [-◇⋆ f ])
-- -- -- -- -- -- fact5⋆ _ _ f P⇔Q f' = P⇔Q (f' ◇ f)
-- -- -- -- -- -- fact5 : ∀{m n} (P Q : Property _) (f : m ⊸ n) → P ⇔ Q → (P [-◇ f ]) ⇔ (Q [-◇ f ])
-- -- -- -- -- -- fact5 _ _ f P⇔Q f' = P⇔Q (f' ◇ f)
-- -- -- -- -- -- fact6 : ∀{m n} P {f g : m ⊸ n} → f ≐ g → (P [-◇ f ]) ⇔ (P [-◇ g ])
-- -- -- -- -- -- fact6 P f≐g h = π₂ P (≐-cong h f≐g) , π₂ P (≐-sym (≐-cong h f≐g))
-- -- -- -- -- -- _≤_ : ∀ {m n n'} (f : Fin m → Term n) (g : Fin m → Term n') → Set
-- -- -- -- -- -- f ≤ g = ∃ λ f' → f ≐ (f' ◇ g)
-- -- -- -- -- -- module Order where
-- -- -- -- -- -- reflex : ∀ {m n} {f : Fin m → Term n} → f ≤ f
-- -- -- -- -- -- reflex = i , λ _ → sym (Sub.fact1 _)
-- -- -- -- -- -- transitivity : ∀ {l m n o} {f : Fin l → Term m}{g : _ → Term n}
-- -- -- -- -- -- {h : _ → Term o}
-- -- -- -- -- -- → f ≤ g → g ≤ h → f ≤ h
-- -- -- -- -- -- transitivity {l} {_} {_} {_} {f} {g} {h} (fg , pfg) (gh , pgh) =
-- -- -- -- -- -- fg ◇ gh , proof
-- -- -- -- -- -- where
-- -- -- -- -- -- proof : (x : Fin l) → f x ≡ (λ x' → fg ◃ (gh x')) ◃ (h x)
-- -- -- -- -- -- proof x = trans z (sym (Sub.fact2 (h x)))
-- -- -- -- -- -- where z = trans (pfg x) (cong (fg ◃_) (pgh x))
-- -- -- -- -- -- i-max : ∀ {m n} (f : Fin m → Term n) → f ≤ i
-- -- -- -- -- -- i-max f = f , λ _ → refl
-- -- -- -- -- -- dist : ∀{l m n o}{f : Fin l → Term m}{g : _ → Term n}(h : Fin o → _) → f ≤ g → (f ◇ h) ≤ (g ◇ h)
-- -- -- -- -- -- dist h (fg , pfg) = fg , λ x → trans (◃ext pfg (h x)) (Sub.fact2 (h x))
-- -- -- -- -- -- Max⋆ : ∀ {m} (P : Property⋆ m) → Property⋆ m
-- -- -- -- -- -- Max⋆ P f = P f × (∀ {n} f' → P {n} f' → f' ≤ f)
-- -- -- -- -- -- Max : ∀ {m} (P : Property m) → Property m
-- -- -- -- -- -- Max P' = (λ {_} → Max⋆ P) , λ {_} {_} {_} → lemma1
-- -- -- -- -- -- where
-- -- -- -- -- -- open Σ₁ P' renaming (proj₁ to P; proj₂ to Peq)
-- -- -- -- -- -- lemma1 : {m : ℕ} {f : Fin _ → Term m} {g : Fin _ → Term m} →
-- -- -- -- -- -- f ≐ g →
-- -- -- -- -- -- P f × ({n : ℕ} (f' : Fin _ → Term n) → P f' → f' ≤ f) →
-- -- -- -- -- -- P g × ({n : ℕ} (f' : Fin _ → Term n) → P f' → f' ≤ g)
-- -- -- -- -- -- lemma1 {_} {f} {g} f≐g (Pf , MaxPf) = Peq f≐g Pf , λ {_} → lemma2
-- -- -- -- -- -- where
-- -- -- -- -- -- lemma2 : ∀ {n} f' → P {n} f' → ∃ λ f0 → f' ≐ (f0 ◇ g)
-- -- -- -- -- -- lemma2 f' Pf' = f0 , λ x → trans (f'≐f0◇f x) (cong (f0 ◃_) (f≐g x))
-- -- -- -- -- -- where
-- -- -- -- -- -- f0 = proj₁ (MaxPf f' Pf')
-- -- -- -- -- -- f'≐f0◇f = proj₂ (MaxPf f' Pf')
-- -- -- -- -- -- module Max where
-- -- -- -- -- -- fact : ∀{m}(P Q : Property m) → P ⇔ Q → Max P ⇔ Max Q
-- -- -- -- -- -- fact {m} P Q a f =
-- -- -- -- -- -- (λ maxp → pq (proj₁ maxp) , λ f' → proj₂ maxp f' ∘ qp)
-- -- -- -- -- -- , λ maxq → qp (proj₁ maxq) , λ f' → proj₂ maxq f' ∘ pq
-- -- -- -- -- -- where
-- -- -- -- -- -- pq : {n : ℕ} {f0 : Fin m → Term n} → (π₁ P f0 → π₁ Q f0)
-- -- -- -- -- -- pq {_} {f} = proj₁ (a f)
-- -- -- -- -- -- qp : {n : ℕ} {f0 : Fin m → Term n} → (π₁ Q f0 → π₁ P f0)
-- -- -- -- -- -- qp {_} {f} = proj₂ (a f)
-- -- -- -- -- -- DClosed : ∀{m} (P : Property m) → Set
-- -- -- -- -- -- DClosed P = ∀ {n} f {o} g → f ≤ g → π₁ P {o} g → π₁ P {n} f
-- -- -- -- -- -- module DClosed where
-- -- -- -- -- -- fact1 : ∀ {m} s t → DClosed {m} (Unifies s t)
-- -- -- -- -- -- fact1 s t f g (f≤g , p) gs=gt =
-- -- -- -- -- -- begin
-- -- -- -- -- -- f ◃ s
-- -- -- -- -- -- ≡⟨ ◃ext' p s ⟩
-- -- -- -- -- -- f≤g ◃ (g ◃ s)
-- -- -- -- -- -- ≡⟨ cong (f≤g ◃_) gs=gt ⟩
-- -- -- -- -- -- f≤g ◃ (g ◃ t)
-- -- -- -- -- -- ≡⟨ sym (◃ext' p t) ⟩
-- -- -- -- -- -- f ◃ t
-- -- -- -- -- -- ∎
-- -- -- -- -- -- optimist : ∀ {l m n o} (a : Fin _ → Term n) (p : Fin _ → Term o)
-- -- -- -- -- -- (q : Fin _ → Term l) (P Q : Property m)
-- -- -- -- -- -- → DClosed P → π₁ (Max (P [-◇ a ])) p
-- -- -- -- -- -- → π₁ (Max (Q [-◇ (p ◇ a) ])) q
-- -- -- -- -- -- → π₁ (Max ((P ∧ Q) [-◇ a ])) (q ◇ p)
-- -- -- -- -- -- optimist a p q P' Q' DCP (Ppa , pMax) (Qqpa , qMax) =
-- -- -- -- -- -- (Peq (sym ∘ Sub.fact2 ∘ a) (DCP (q ◇ (p ◇ a)) (p ◇ a) (q , λ _ → refl) Ppa)
-- -- -- -- -- -- , Qeq (sym ∘ Sub.fact2 ∘ a) Qqpa )
-- -- -- -- -- -- , λ {_} → aux
-- -- -- -- -- -- where
-- -- -- -- -- -- open Σ₁ P' renaming (proj₁ to P; proj₂ to Peq)
-- -- -- -- -- -- open Σ₁ Q' renaming (proj₁ to Q; proj₂ to Qeq)
-- -- -- -- -- -- aux : ∀ {n} (f : _ → Term n) → P (f ◇ a) × Q (f ◇ a) → f ≤ (q ◇ p)
-- -- -- -- -- -- aux f (Pfa , Qfa) = h ,
-- -- -- -- -- -- λ x → trans (f≐g◇p x) (◃ext' g≐h◇q (p x))
-- -- -- -- -- -- where
-- -- -- -- -- -- one = pMax f Pfa
-- -- -- -- -- -- g = proj₁ one
-- -- -- -- -- -- f≐g◇p = proj₂ one
-- -- -- -- -- -- Qgpa : Q (g ◇ (p ◇ a))
-- -- -- -- -- -- Qgpa = Qeq (λ x → ◃ext' f≐g◇p (a x)) Qfa
-- -- -- -- -- -- g≤q = qMax g Qgpa
-- -- -- -- -- -- h = proj₁ g≤q
-- -- -- -- -- -- g≐h◇q = proj₂ g≤q
-- -- -- -- -- -- module failure-propagation where
-- -- -- -- -- -- first⋆ : ∀ {m n} (a : _ ⊸ n) (P Q : Property⋆ m) →
-- -- -- -- -- -- Nothing⋆ (P [-◇⋆ a ]) → Nothing⋆ ((P ∧⋆ Q) [-◇⋆ a ])
-- -- -- -- -- -- first⋆ a P' Q' noP-a f (Pfa , Qfa) = noP-a f Pfa
-- -- -- -- -- -- first : ∀ {m n} (a : _ ⊸ n) (P Q : Property m) →
-- -- -- -- -- -- Nothing (P [-◇ a ]) → Nothing ((P ∧ Q) [-◇ a ])
-- -- -- -- -- -- first a P' Q' noP-a f (Pfa , Qfa) = noP-a f Pfa
-- -- -- -- -- -- second⋆ : ∀ {m n o} (a : _ ⊸ n) (p : _ ⊸ o)(P : Property⋆ m)(Q : Property m) →
-- -- -- -- -- -- (Max⋆ (P [-◇⋆ a ])) p → Nothing⋆ (π₁ Q [-◇⋆ (p ◇ a)])
-- -- -- -- -- -- → Nothing⋆ ((P ∧⋆ π₁ Q) [-◇⋆ a ])
-- -- -- -- -- -- second⋆ a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa
-- -- -- -- -- -- where
-- -- -- -- -- -- f≤p = pMax f Pfa
-- -- -- -- -- -- g = proj₁ f≤p
-- -- -- -- -- -- f≐g◇p = proj₂ f≤p
-- -- -- -- -- -- Qgpa : π₁ Q' (g ◇ (p ◇ a))
-- -- -- -- -- -- Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa
-- -- -- -- -- -- second : ∀ {m n o} (a : _ ⊸ n) (p : _ ⊸ o)(P Q : Property m) →
-- -- -- -- -- -- π₁ (Max (P [-◇ a ])) p → Nothing (Q [-◇ (p ◇ a)])
-- -- -- -- -- -- → Nothing ((P ∧ Q) [-◇ a ])
-- -- -- -- -- -- second a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa
-- -- -- -- -- -- where
-- -- -- -- -- -- f≤p = pMax f Pfa
-- -- -- -- -- -- g = proj₁ f≤p
-- -- -- -- -- -- f≐g◇p = proj₂ f≤p
-- -- -- -- -- -- Qgpa : π₁ Q' (g ◇ (p ◇ a))
-- -- -- -- -- -- Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa
-- -- -- -- -- -- trivial-problem : ∀ {m n t} {f : m ⊸ n} → (Max⋆ ((Unifies⋆ t t) [-◇⋆ f ])) i
-- -- -- -- -- -- trivial-problem = refl , λ f' _ → f' , λ _ → refl
-- -- -- -- -- -- trivial-problemV : ∀ {m n N} {t : Vec (Term _) N} {f : m ⊸ n} → (Max⋆ ((Unifies⋆V t t) [-◇⋆ f ])) i
-- -- -- -- -- -- trivial-problemV = refl , λ f' _ → f' , λ _ → refl
-- -- -- -- -- -- open import Data.Sum
-- -- -- -- -- -- var-elim : ∀ {m} (x : Fin (suc m)) (t' : Term _)
-- -- -- -- -- -- → π₁ (Max ((Unifies (i x) ((▸ (thin x) ◃_) t')))) (t' for x)
-- -- -- -- -- -- var-elim x t' = first , \{_} → second
-- -- -- -- -- -- where
-- -- -- -- -- -- lemma : ∀{m}(x : Fin (suc m)) t → i ≐ ((t for x) ◇ (▸ (thin x)))
-- -- -- -- -- -- lemma x t x' = sym (cong (maybe i t) (Thick.half2 x _ x' refl))
-- -- -- -- -- -- first = begin
-- -- -- -- -- -- (t' for x) ◃ (i x) ≡⟨ cong (maybe i t') (Thick.half1 x) ⟩
-- -- -- -- -- -- t' ≡⟨ sym (Sub.fact1 t') ⟩
-- -- -- -- -- -- i ◃ t' ≡⟨ ◃ext' (lemma x t') t' ⟩
-- -- -- -- -- -- (t' for x) ◃ ((▸ (thin x) ◃_) t') ∎
-- -- -- -- -- -- second : ∀ {n} (f : _ ⊸ n) → f x ≡ f ◃ ((▸ (thin x) ◃_) t') → f ≤ (t' for x)
-- -- -- -- -- -- second f Unifiesf = (f ∘ thin x) , third
-- -- -- -- -- -- where
-- -- -- -- -- -- third : ((x' : Fin _) → f x' ≡ (f ∘ thin x) ◃ (maybe′ i t' (thick? x x')))
-- -- -- -- -- -- third x' with thick? x x' | Thick.fact1 x x' (thick? x x') refl
-- -- -- -- -- -- third .x | .nothing | inj₁ (refl , refl) =
-- -- -- -- -- -- sym (begin
-- -- -- -- -- -- (f ∘ thin x) ◃ t' ≡⟨ cong (λ g → (g ◃_) t') (sym (Sub.fact3 f (thin x))) ⟩
-- -- -- -- -- -- (f ◇ (▸ (thin x))) ◃ t' ≡⟨ Sub.fact2 {-f (▸ (thin x))-} t' ⟩
-- -- -- -- -- -- f ◃ ((▸ (thin x) ◃_) t') ≡⟨ sym Unifiesf ⟩
-- -- -- -- -- -- f x ∎)
-- -- -- -- -- -- third x' | .(just y) | inj₂ (y , ( thinxy≡x' , refl)) = sym (cong f thinxy≡x')
-- -- -- -- -- -- var-elim-i : ∀ {m} (x : Fin (suc m)) (t' : Term _)
-- -- -- -- -- -- → π₁ (Max ((Unifies (i x) ((▸ (thin x) ◃_) t')))) (i ◇ (t' for x))
-- -- -- -- -- -- var-elim-i {m} x t = prop-id {_} {_} {t for x} {Max (Unifies (i x) ((▸ (thin x) ◃_) t))} (var-elim {m} x t)
-- -- -- -- -- -- var-elim-i-≡ : ∀ {m} {t'} (x : Fin (suc m)) t1 → t1 ≡ (i ∘ thin x) ◃ t' → π₁ (Max (Unifies (i x) t1)) (i ◇ (t' for x))
-- -- -- -- -- -- var-elim-i-≡ {_} {t'} x .((i ∘ thin x) ◃ t') refl = var-elim-i x t'
-- -- -- -- -- -- ◇-assoc : ∀ {l m n o} (f : l ⊸ m) (g : n ⊸ _) (h : o ⊸ _) →
-- -- -- -- -- -- (f ◇ (g ◇ h)) ≐ ((f ◇ g) ◇ h)
-- -- -- -- -- -- ◇-assoc f g h x = sym (Sub.fact2 (h x))
-- -- -- -- -- -- bind-assoc : ∀ {l m n o} (f : l ⊸ m) (g : n ⊸ _) (h : o ⊸ _) t → (f ◇ g) ◃ (h ◃ t) ≡ (f ◇ (g ◇ h)) ◃ t
-- -- -- -- -- -- bind-assoc f g h t = sym (begin
-- -- -- -- -- -- (f ◇ (g ◇ h)) ◃ t ≡⟨ ◃ext (◇-assoc f g h) t ⟩
-- -- -- -- -- -- ((f ◇ g) ◇ h) ◃ t ≡⟨ Sub.fact2 ⦃ SubstitutionTerm ⦄ ⦃ Sub.Fact2Term ⦄ {f = (f ◇ g)} {g = h} {-(f ◇ g) h-} t ⟩
-- -- -- -- -- -- (f ◇ g) ◃ (h ◃ t)
-- -- -- -- -- -- ∎)
| {
"alphanum_fraction": 0.3949132256,
"avg_line_length": 48.5755813953,
"ext": "agda",
"hexsha": "55f872d62910d30691f3e087e9c477377066a8eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Substitunction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Substitunction.agda",
"max_line_length": 180,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Substitunction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 14084,
"size": 33420
} |
{-# OPTIONS --no-auto-inline #-}
module Haskell.Prelude where
open import Agda.Builtin.Unit public
open import Agda.Builtin.Nat as Nat public hiding (_==_; _<_; _+_; _*_; _-_)
open import Agda.Builtin.List public
open import Agda.Builtin.Bool public
open import Agda.Builtin.Char public
open import Agda.Builtin.FromString public
import Agda.Builtin.String as Str
open import Agda.Builtin.Strict
open import Agda.Builtin.Equality public
open import Agda.Builtin.Int using (pos; negsuc)
open import Haskell.Prim
open Haskell.Prim public using ( TypeError; ⊥; iNumberNat; IsTrue; IsFalse;
All; allNil; allCons; NonEmpty; lengthNat;
id; _∘_; _$_; flip; const;
if_then_else_; case_of_;
Number; fromNat; Negative; fromNeg;
a; b; c; d; e; f; m; s; t )
open import Haskell.Prim.Absurd public
open import Haskell.Prim.Applicative public
open import Haskell.Prim.Bool public
open import Haskell.Prim.Char public
open import Haskell.Prim.Bounded public
open import Haskell.RangedSets.Boundaries public
open import Haskell.RangedSets.Ranges public
open import Haskell.RangedSets.RangedSet public
open import Haskell.Prim.Double public
open import Haskell.Prim.Either public
open import Haskell.Prim.Enum public
open import Haskell.Prim.Eq public
open import Haskell.Prim.Foldable public
open import Haskell.Prim.Functor public
open import Haskell.Prim.Int public
open import Haskell.Prim.Integer public
open import Haskell.Prim.Real public
open import Haskell.Prim.List public
open import Haskell.Prim.Maybe public
open import Haskell.Prim.Monad public
open import Haskell.Prim.Monoid public
open import Haskell.Prim.Num public
open import Haskell.Prim.Ord public
open import Haskell.Prim.Show public
open import Haskell.Prim.String public
open import Haskell.Prim.Traversable public
open import Haskell.Prim.Tuple public hiding (first; second; _***_)
open import Haskell.Prim.Word public
-- Problematic features
-- - [Partial]: Could pass implicit/instance arguments to prove totality.
-- - [Float]: Or Float (Agda floats are Doubles)
-- - [Infinite]: Define colists and map to Haskell lists?
-- Missing from the Haskell Prelude:
--
-- Float [Float]
-- Rational
--
-- Real(toRational),
-- Integral(quot, rem, div, mod, quotRem, divMod, toInteger),
-- Fractional((/), recip, fromRational),
-- Floating(pi, exp, log, sqrt, (**), logBase, sin, cos, tan,
-- asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh),
-- RealFrac(properFraction, truncate, round, ceiling, floor),
-- RealFloat(floatRadix, floatDigits, floatRange, decodeFloat,
-- encodeFloat, exponent, significand, scaleFloat, isNaN,
-- isInfinite, isDenormalized, isIEEE, isNegativeZero, atan2),
--
-- subtract, even, odd, gcd, lcm, (^), (^^),
-- fromIntegral, realToFrac,
--
-- foldr1, foldl1, maximum, minimum [Partial]
--
-- until [Partial]
--
-- iterate, repeat, cycle [Infinite]
--
-- ReadS, Read(readsPrec, readList),
-- reads, readParen, read, lex,
--
-- IO, putChar, putStr, putStrLn, print,
-- getChar, getLine, getContents, interact,
-- FilePath, readFile, writeFile, appendFile, readIO, readLn,
-- IOError, ioError, userError,
--------------------------------------------------
-- Functions
infixr 0 _$!_
_$!_ : (a → b) → a → b
f $! x = primForce x f
seq : a → b → b
seq x y = const y $! x
asTypeOf : a → a → a
asTypeOf x _ = x
undefined : {@(tactic absurd) i : ⊥} → a
undefined {i = ()}
error : {@(tactic absurd) i : ⊥} → String → a
error {i = ()} err
errorWithoutStackTrace : {@(tactic absurd) i : ⊥} → String → a
errorWithoutStackTrace {i = ()} err
-------------------------------------------------
-- More List functions
-- These uses Eq, Ord, or Foldable, so can't go in Prim.List without
-- turning those dependencies around.
reverse : List a → List a
reverse = foldl (flip _∷_) []
infixl 9 _!!_ _!!ᴺ_
_!!ᴺ_ : (xs : List a) (n : Nat) → ⦃ IsTrue (n < lengthNat xs) ⦄ → a
(x ∷ xs) !!ᴺ zero = x
(x ∷ xs) !!ᴺ suc n = xs !!ᴺ n
_!!_ : (xs : List a) (n : Int) ⦃ nn : IsNonNegativeInt n ⦄ → ⦃ IsTrue (intToNat n < lengthNat xs) ⦄ → a
xs !! n = xs !!ᴺ intToNat n
lookup : ⦃ Eq a ⦄ → a → List (a × b) → Maybe b
lookup x [] = Nothing
lookup x ((x₁ , y) ∷ xs) = if x == x₁ then Just y else lookup x xs
| {
"alphanum_fraction": 0.6212992545,
"avg_line_length": 35.3007518797,
"ext": "agda",
"hexsha": "e160ea6b3aaab76d847451ee54846f32b2dfdae5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ioanasv/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ioanasv/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prelude.agda",
"max_line_length": 103,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "17cdbeb36af3d0b735c5db83bb811034c39a19cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ioanasv/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:41:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:41:34.000Z",
"num_tokens": 1297,
"size": 4695
} |
module Session where
open import Data.Bool
open import Data.Fin
open import Data.Empty
open import Data.List
open import Data.List.All
open import Data.Maybe
open import Data.Nat
open import Data.Product
open import Data.Sum
open import Data.Unit
open import Function using (_$_)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Typing
open import Syntax
open import Global
open import Channel
open import Values
data Cont (G : SCtx) (φ : TCtx) : (t : Type) → Set where
halt : ∀ {t}
→ Inactive G
→ (un-t : Unr t)
→ Cont G φ t
bind : ∀ {φ₁ φ₂ G₁ G₂ t t₂}
→ (ts : Split φ φ₁ φ₂)
→ (ss : SSplit G G₁ G₂)
→ (e₂ : Expr (t ∷ φ₁) t₂)
→ (ϱ₂ : VEnv G₁ φ₁)
→ (κ₂ : Cont G₂ φ₂ t₂)
→ Cont G φ t
bind-thunk : ∀ {φ₁ φ₂ G₁ G₂ t₂}
→ (ts : Split φ φ₁ φ₂)
→ (ss : SSplit G G₁ G₂)
→ (e₂ : Expr φ₁ t₂)
→ (ϱ₂ : VEnv G₁ φ₁)
→ (κ₂ : Cont G₂ φ₂ t₂)
→ Cont G φ TUnit
subsume : ∀ {t t₁}
→ SubT t t₁
→ Cont G φ t₁
→ Cont G φ t
data Command (G : SCtx) : Set where
Fork : ∀ {φ₁ φ₂ G₁ G₂}
→ (ss : SSplit G G₁ G₂)
→ (κ₁ : Cont G₁ φ₁ TUnit)
→ (κ₂ : Cont G₂ φ₂ TUnit)
→ Command G
Ready : ∀ {φ t G₁ G₂}
→ (ss : SSplit G G₁ G₂)
→ (v : Val G₁ t)
→ (κ : Cont G₂ φ t)
→ Command G
Halt : ∀ {t}
→ Inactive G
→ Unr t
→ Val G t
→ Command G
New : ∀ {φ}
→ (s : SType)
→ (κ : Cont G φ (TPair (TChan (SType.force s)) (TChan (SType.force (dual s)))))
→ Command G
Close : ∀ {φ G₁ G₂}
→ (ss : SSplit G G₁ G₂)
→ (v : Val G₁ (TChan send!))
→ (κ : Cont G₂ φ TUnit)
→ Command G
Wait : ∀ {φ G₁ G₂}
→ (ss : SSplit G G₁ G₂)
→ (v : Val G₁ (TChan send?))
→ (κ : Cont G₂ φ TUnit)
→ Command G
Send : ∀ {φ G₁ G₂ G₁₁ G₁₂ t s}
→ (ss : SSplit G G₁ G₂)
→ (ss-args : SSplit G₁ G₁₁ G₁₂)
→ (vch : Val G₁₁ (TChan (Typing.send t s)))
→ (v : Val G₁₂ t)
→ (κ : Cont G₂ φ (TChan (SType.force s)))
→ Command G
Recv : ∀ {φ G₁ G₂ t s}
→ (ss : SSplit G G₁ G₂)
→ (vch : Val G₁ (TChan (Typing.recv t s)))
→ (κ : Cont G₂ φ (TPair (TChan (SType.force s)) t))
→ Command G
Select : ∀ {φ G₁ G₂ s₁ s₂}
→ (ss : SSplit G G₁ G₂)
→ (lab : Selector)
→ (vch : Val G₁ (TChan (sintern s₁ s₂)))
→ (κ : Cont G₂ φ (TChan (selection lab (SType.force s₁) (SType.force s₂))))
→ Command G
Branch : ∀ {φ G₁ G₂ s₁ s₂}
→ (ss : SSplit G G₁ G₂)
→ (vch : Val G₁ (TChan (sextern s₁ s₂)))
→ (dcont : (lab : Selector) → Cont G₂ φ (TChan (selection lab (SType.force s₁) (SType.force s₂))))
→ Command G
NSelect : ∀ {φ G₁ G₂ m alt}
→ (ss : SSplit G G₁ G₂)
→ (lab : Fin m)
→ (vch : Val G₁ (TChan (sintN m alt)))
→ (κ : Cont G₂ φ (TChan (SType.force (alt lab))))
→ Command G
NBranch : ∀ {φ G₁ G₂ m alt}
→ (ss : SSplit G G₁ G₂)
→ (vch : Val G₁ (TChan (sextN m alt)))
→ (dcont : (lab : Fin m) → Cont G₂ φ (TChan (SType.force (alt lab))))
→ Command G
--
rewrite-helper : ∀ {G G1 G2 G'' φ'} → Inactive G2 → SSplit G G1 G2 → SSplit G G G'' → VEnv G2 φ' → VEnv G'' φ'
rewrite-helper ina-G2 ssp-GG1G2 ssp-GGG'' ϱ with inactive-right-ssplit ssp-GG1G2 ina-G2
... | p with rewrite-ssplit1 (sym p) ssp-GG1G2
... | ssp rewrite ssplit-function2 ssp ssp-GGG'' = ϱ
-- interpret an expression
run : ∀ {φ φ₁ φ₂ t G G₁ G₂}
→ Split φ φ₁ φ₂
→ SSplit G G₁ G₂
→ Expr φ₁ t
→ VEnv G₁ φ₁
→ Cont G₂ φ₂ t
→ Command G
run{G = G}{G₁ = G₁}{G₂ = G₂} tsp ssp (var x) ϱ κ with access ϱ x
... | Gx , Gϱ , ina , ssp12 , v rewrite inactive-right-ssplit ssp12 ina =
Ready ssp v κ
run tsp ssp (nat unr-φ i) ϱ κ =
Ready ssp (VInt i (unrestricted-venv unr-φ ϱ)) κ
run tsp ssp (unit unr-φ) ϱ κ =
Ready ssp (VUnit (unrestricted-venv unr-φ ϱ)) κ
run{φ}{φ₁}{φ₂} tsp ssp (letbind{φ₁₁}{φ₁₂}{t₁}{t₂} sp e₁ e₂) ϱ κ₂ with split-env sp ϱ | split-rotate tsp sp
... | (G₁ , G₂) , ssp-G1G2 , ϱ₁ , ϱ₂ | φ' , tsp-φ' , φ'-tsp with ssplit-compose ssp ssp-G1G2
... | Gi , ssp-3i , ssp-42 =
run tsp-φ' ssp-3i e₁ ϱ₁
(bind φ'-tsp ssp-42 e₂ ϱ₂ κ₂)
run tsp ssp (pair sp x₁ x₂) ϱ κ with split-env sp ϱ
... | (G₁' , G₂') , ss-G1G1'G2' , ϱ₁ , ϱ₂ with access ϱ₁ x₁ | access ϱ₂ x₂
... | Gv₁ , Gr₁ , ina-Gr₁ , ss-v1r1 , v₁ | Gv₂ , Gr₂ , ina-Gr₂ , ss-v2r2 , v₂ rewrite inactive-right-ssplit ss-v1r1 ina-Gr₁ | inactive-right-ssplit ss-v2r2 ina-Gr₂ =
Ready ssp (VPair ss-G1G1'G2' v₁ v₂) κ
run tsp ssp (letpair sp p e) ϱ κ with split-env sp ϱ
... | (G₁' , G₂') , ss-G1G1'G2' , ϱ₁ , ϱ₂ with access ϱ₁ p
run tsp ssp (letpair sp p e) ϱ κ | (G₁' , G₂') , ss-G1G1'G2' , ϱ₁ , ϱ₂ | Gvp , Gr , ina-Gr , ss-vpr , VPair ss-GG₁G₂ v₁ v₂ with split-rotate tsp sp
... | φ' , ts-φφ1φ' , ts-φ'φ3φ4 rewrite inactive-right-ssplit ss-vpr ina-Gr with ssplit-compose ss-G1G1'G2' ss-GG₁G₂
... | Gi , ss-G3G1Gi , ss-G1G2G2' = run (left (left ts-φ'φ3φ4)) ssp e (vcons ss-G3G1Gi v₁ (vcons ss-G1G2G2' v₂ ϱ₂)) κ
run{φ}{φ₁}{G = G}{G₁ = G₁} tsp ssp (fork e) ϱ κ with ssplit-refl-left G₁ | split-refl-left φ₁
... | Gi , ss-g1g1g2 | φ' , unr-φ' , sp-φφφ' with split-env sp-φφφ' ϱ
... | (Gp1 , Gp2) , ss-Gp , ϱ₁ , ϱ₂ with unrestricted-venv unr-φ' ϱ₂
... | ina-Gp2 with inactive-right-ssplit-transform ss-Gp ina-Gp2
... | ss-Gp' rewrite sym (ssplit-function2 ss-g1g1g2 ss-Gp') =
Fork ssp (bind-thunk sp-φφφ' ss-g1g1g2 e ϱ (halt ina-Gp2 UUnit)) κ
run tsp ssp (new unr-φ s) ϱ κ with unrestricted-venv unr-φ ϱ
... | ina rewrite inactive-left-ssplit ssp ina = New s κ
run tsp ssp (close ch) ϱ κ with access ϱ ch
... | Gch , Gϱ , ina , ssp12 , vch with vch | inactive-right-ssplit ssp12 ina
run tsp ssp (close ch) ϱ κ | Gch , Gϱ , ina , ssp12 , vch | vch' | refl = Close ssp vch' κ
run tsp ssp (wait ch) ϱ κ with access ϱ ch
... | Gch , Gϱ , ina , ssp12 , vch with vch | inactive-right-ssplit ssp12 ina
... | vch' | refl = Wait ssp vch' κ
run tsp ssp (Expr.send sp ch vv) ϱ κ with split-env sp ϱ
... | (G₁ , G₂) , ss-gg , ϱ₁ , ϱ₂ with access ϱ₁ ch
... | G₃ , G₄ , ina-G₄ , ss-g1g3g4 , vch with access ϱ₂ vv
... | G₅ , G₆ , ina-G₆ , ss-g2g5g6 , vvv with ssplit-join ss-gg ss-g1g3g4 ss-g2g5g6
... | G₁' , G₂' , ss-g1'g2' , ss-g3g5 , ss-g4g6 rewrite sym (inactive-right-ssplit ss-g1g3g4 ina-G₄) | sym (inactive-right-ssplit ss-g2g5g6 ina-G₆) = Send ssp ss-gg vch vvv κ
run tsp ssp (Expr.recv ch) ϱ κ with access ϱ ch
... | G₁ , G₂ , ina-G₂ , ss-vi , vch rewrite inactive-right-ssplit ss-vi ina-G₂ = Recv ssp vch κ
run tsp ssp (nselect lab ch) ϱ κ with access ϱ ch
... | G₁ , G₂ , ina-G₂ , ss-vi , vch rewrite inactive-right-ssplit ss-vi ina-G₂ = NSelect ssp lab vch κ
run tsp ssp (nbranch{m}{alt} sp ch ealts) ϱ κ with split-env sp ϱ
... | (G₁' , G₂') , ss-G1G1'G2' , ϱ₁ , ϱ₂ with access ϱ₁ ch
... | G₁ , G₂ , ina-G₂ , ss-vi , vch with ssplit-compose ssp ss-G1G1'G2'
... | Gi , ss-G-G1'Gi , ss-Gi-G2'-G2 with split-rotate tsp sp
... | φ' , sp-φφ1φ' , sp-φ'φ3φ4 with inactive-right-ssplit ss-vi ina-G₂
... | refl = NBranch ss-G-G1'Gi vch dcont
where
dcont : (lab : Fin m) → Cont Gi _ (TChan (SType.force (alt lab)))
dcont lab = bind sp-φ'φ3φ4 ss-Gi-G2'-G2 (ealts lab) ϱ₂ κ
run tsp ssp (select lab ch) ϱ κ with access ϱ ch
... | G₁ , G₂ , ina-G₂ , ss-vi , vch rewrite inactive-right-ssplit ss-vi ina-G₂ = Select ssp lab vch κ
run tsp ssp (branch{s₁}{s₂} sp ch e-left e-rght) ϱ κ with split-env sp ϱ
... | (G₁' , G₂') , ss-G1G1'G2' , ϱ₁ , ϱ₂ with access ϱ₁ ch
... | G₁ , G₂ , ina-G₂ , ss-vi , vch with ssplit-compose ssp ss-G1G1'G2'
... | Gi , ss-G-G1'Gi , ss-Gi-G2'-G2 with split-rotate tsp sp
... | φ' , sp-φφ1φ' , sp-φ'φ3φ4 with inactive-right-ssplit ss-vi ina-G₂
... | refl = Branch ss-G-G1'Gi vch dcont
where
dcont : (lab : Selector) → Cont Gi _ (TChan (selection lab (SType.force s₁) (SType.force s₂)))
dcont Left = bind sp-φ'φ3φ4 ss-Gi-G2'-G2 e-left ϱ₂ κ
dcont Right = bind sp-φ'φ3φ4 ss-Gi-G2'-G2 e-rght ϱ₂ κ
run tsp ssp (ulambda sp unr-φ unr-φ₃ ebody) ϱ κ with split-env sp ϱ
... | (G₁' , G₂') , ss-g1-g1'-g2' , ϱ₁ , ϱ₂ with unrestricted-venv unr-φ₃ ϱ₂
... | ina-G2' with inactive-right-ssplit ss-g1-g1'-g2' ina-G2'
... | refl = Ready ssp (VFun (inj₂ unr-φ) ϱ₁ ebody) κ
run tsp ssp (llambda sp unr-φ₂ ebody) ϱ κ with split-env sp ϱ
... | (G₁' , G₂') , ss-g1-g1'-g2' , ϱ₁ , ϱ₂ with unrestricted-venv unr-φ₂ ϱ₂
... | ina-G2' with inactive-right-ssplit ss-g1-g1'-g2' ina-G2'
... | refl = Ready ssp (VFun (inj₁ refl) ϱ₁ ebody) κ
run{φ}{φ₁}{φ₂} tsp ssp e@(rec unr-φ ebody) ϱ κ with unrestricted-venv unr-φ ϱ
... | ina-G2' with inactive-right-ssplit (ssplit-sym ssp) ina-G2'
... | refl = Ready ssp (VFun (inj₂ unr-φ) ϱ (unr-subst UFun (rght (split-all-unr unr-φ)) unr-φ e ebody)) κ
run tsp ssp (app sp efun earg) ϱ κ with split-env sp ϱ
... | (G₁ , G₂) , ss-gg , ϱ₁ , ϱ₂ with access ϱ₁ efun
... | G₃ , G₄ , ina-G₄ , ss-g1g3g4 , vfun with access ϱ₂ earg
run{φ}{φ₁}{φ₂} tsp ssp (app sp efun earg) ϱ κ | (G₁ , G₂) , ss-gg , ϱ₁ , ϱ₂ | G₃ , G₄ , ina-G₄ , ss-g1g3g4 , VFun{φ'} x ϱ₃ e | G₅ , G₆ , ina-G₆ , ss-g2g5g6 , varg with ssplit-compose4 ss-gg ss-g2g5g6
... | Gi , ss-g1-g5-gi , ss-gi-g1-g6 with ssplit-compose ssp ss-g1-g5-gi
... | Gi₁ , ss-g-g5-gi1 , ss-gi1-gi-g2 with inactive-right-ssplit ss-g1g3g4 ina-G₄
... | refl with inactive-right-ssplit ss-gi-g1-g6 ina-G₆
... | refl with split-from-disjoint φ' φ₂
... | φ₀ , sp' = Ready ss-g-g5-gi1 varg (bind sp' ss-gi1-gi-g2 e ϱ₃ κ)
run tsp ssp (subsume e t≤t') ϱ κ =
run tsp ssp e ϱ (subsume t≤t' κ)
-- apply a continuation
apply-cont : ∀ {G G₁ G₂ t φ}
→ (ssp : SSplit G G₁ G₂)
→ (κ : Cont G₂ φ t)
→ Val G₁ t
→ Command G
apply-cont ssp (halt inG un-t) v with unrestricted-val un-t v
... | inG2 with inactive-right-ssplit ssp inG
... | refl = Halt (ssplit-inactive ssp inG2 inG) un-t v
apply-cont ssp (bind ts ss e₂ ϱ₂ κ) v with ssplit-compose3 ssp ss
... | Gi , ss-GGiG4 , ss-GiG1G3 =
run (left ts) ss-GGiG4 e₂ (vcons ss-GiG1G3 v ϱ₂) κ
apply-cont ssp (bind-thunk ts ss e₂ ϱ₂ κ) v with unrestricted-val UUnit v
... | inG1 with inactive-left-ssplit ssp inG1
... | refl =
run ts ss e₂ ϱ₂ κ
apply-cont ssp (subsume t≤t' κ) v =
apply-cont ssp κ (coerce v t≤t')
extract-inactive-from-cont : ∀ {G t φ} → Unr t → Cont G φ t → ∃ λ G' → Inactive G' × SSplit G G' G
extract-inactive-from-cont{G} un-t κ = ssplit-refl-right-inactive G
-- lifting through a trivial extension
lift-val : ∀ {G t} → Val G t → Val (nothing ∷ G) t
lift-venv : ∀ {G φ} → VEnv G φ → VEnv (nothing ∷ G) φ
lift-val (VUnit x) = VUnit (::-inactive x)
lift-val (VInt i x) = VInt i (::-inactive x)
lift-val (VPair x v v₁) = VPair (ss-both x) (lift-val v) (lift-val v₁)
lift-val (VChan b vcr) = VChan b (there vcr)
lift-val (VFun lu ϱ e) = VFun lu (lift-venv ϱ) e
lift-venv (vnil ina) = vnil (::-inactive ina)
lift-venv (vcons ssp v ϱ) = vcons (ss-both ssp) (lift-val v) (lift-venv ϱ)
lift-cont : ∀ {G t φ} → Cont G φ t → Cont (nothing ∷ G) φ t
lift-cont (halt inG un-t) = halt (::-inactive inG) un-t
lift-cont (bind ts ss e₂ ϱ₂ κ) = bind ts (ss-both ss) e₂ (lift-venv ϱ₂) (lift-cont κ)
lift-cont (bind-thunk ts ss e₂ ϱ₂ κ) = bind-thunk ts (ss-both ss) e₂ (lift-venv ϱ₂) (lift-cont κ)
lift-cont (subsume t≤t' κ) = subsume t≤t' (lift-cont κ)
lift-command : ∀ {G} → Command G → Command (nothing ∷ G)
lift-command (Fork ss κ₁ κ₂) = Fork (ss-both ss) (lift-cont κ₁) (lift-cont κ₂)
lift-command (Ready ss v κ) = Ready (ss-both ss) (lift-val v) (lift-cont κ)
lift-command (Halt x unr-t v) = Halt (::-inactive x) unr-t (lift-val v)
lift-command (New s κ) = New s (lift-cont κ)
lift-command (Close ss v κ) = Close (ss-both ss) (lift-val v) (lift-cont κ)
lift-command (Wait ss v κ) = Wait (ss-both ss) (lift-val v) (lift-cont κ)
lift-command (Send ss ss-args vch v κ) = Send (ss-both ss) (ss-both ss-args) (lift-val vch) (lift-val v) (lift-cont κ)
lift-command (Recv ss vch κ) = Recv (ss-both ss) (lift-val vch) (lift-cont κ)
lift-command (Select ss lab vch κ) = Select (ss-both ss) lab (lift-val vch) (lift-cont κ)
lift-command (Branch ss vch dcont) = Branch (ss-both ss) (lift-val vch) λ lab → lift-cont (dcont lab)
lift-command (NSelect ss lab vch κ) = NSelect (ss-both ss) lab (lift-val vch) (lift-cont κ)
lift-command (NBranch ss vch dcont) = NBranch (ss-both ss) (lift-val vch) λ lab → lift-cont (dcont lab)
-- threads
data ThreadPool (G : SCtx) : Set where
tnil : (ina : Inactive G) → ThreadPool G
tcons : ∀ {G₁ G₂} → (ss : SSplit G G₁ G₂) → (cmd : Command G₁) → (tp : ThreadPool G₂) → ThreadPool G
-- tack a task to the end of a thread pool to implement round robin scheduling
tsnoc : ∀ {G Gpool Gcmd} → SSplit G Gcmd Gpool → ThreadPool Gpool → Command Gcmd → ThreadPool G
tsnoc ss (tnil ina) cmd = tcons ss cmd (tnil ina)
tsnoc ss (tcons ss₁ cmd₁ tp) cmd with ssplit-compose2 ss ss₁
... | Gi , ss-top , ss-rec = tcons (ssplit-sym ss-top) cmd₁ (tsnoc ss-rec tp cmd)
-- append thread pools
tappend : ∀ {G G1 G2} → SSplit G G1 G2 → ThreadPool G1 → ThreadPool G2 → ThreadPool G
tappend ss-top (tnil ina) tp2 rewrite inactive-left-ssplit ss-top ina = tp2
tappend ss-top (tcons ss cmd tp1) tp2 with ssplit-compose ss-top ss
... | Gi , ss-top' , ss-rec = tcons ss-top' cmd (tappend ss-rec tp1 tp2)
-- apply the inactive extension to a thread pool
lift-threadpool : ∀ {G} → ThreadPool G → ThreadPool (nothing ∷ G)
lift-threadpool (tnil ina) = tnil (::-inactive ina)
lift-threadpool (tcons ss cmd tp) = tcons (ss-both ss) (lift-command cmd) (lift-threadpool tp)
matchWaitAndGo : ∀ {G Gc Gc₁ Gc₂ Gtp Gtpwl Gtpacc φ}
→ SSplit G Gc Gtp
-- close command
→ SSplit Gc Gc₁ Gc₂ × Val Gc₁ (TChan send!) × Cont Gc₂ φ TUnit
-- focused thread pool
→ SSplit Gtp Gtpwl Gtpacc → ThreadPool Gtpwl → ThreadPool Gtpacc
→ Maybe (∃ λ G' → ThreadPool G')
matchWaitAndGo ss-top cl-info ss-tp (tnil ina) tp-acc = nothing
matchWaitAndGo ss-top cl-info ss-tp (tcons ss (Fork ss₁ κ₁ κ₂) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' (Fork ss₁ κ₁ κ₂) tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss (Ready ss₁ v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' (Ready ss₁ v κ) tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss cmd@(Halt x _ _) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss (New s κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' (New s κ) tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss cmd@(NSelect ss-args lab vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss cmd@(Select ss-args lab vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss cmd@(NBranch _ _ _) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss cmd@(Branch _ _ _) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss cmd@(Send _ ss-args vch v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss cmd@(Recv _ vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchWaitAndGo ss-top cl-info ss-tp (tcons ss (Close ss₁ v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' =
matchWaitAndGo ss-top cl-info ss-tp' tp-wl (tcons ss' (Close ss₁ v κ) tp-acc)
matchWaitAndGo ss-top (ss-cl , VChan cl-b cl-vcr , cl-κ) ss-tp (tcons ss (Wait ss₁ (VChan w-b w-vcr) κ) tp-wl) tp-acc with ssplit-compose6 ss ss₁
... | Gi , ss-g3gi , ss-g4g2 with ssplit-compose6 ss-tp ss-g3gi
... | Gi' , ss-g3gi' , ss-gtpacc with ssplit-join ss-top ss-cl ss-g3gi'
... | Gchannels , Gother , ss-top' , ss-channels , ss-others with vcr-match ss-channels cl-vcr w-vcr
matchWaitAndGo ss-top (ss-cl , VChan cl-b cl-vcr , cl-κ) ss-tp (tcons ss (Wait ss₁ (VChan w-b w-vcr) κ) tp-wl) tp-acc | Gi , ss-g3gi , ss-g4g2 | Gi' , ss-g3gi' , ss-gtpacc | Gchannels , Gother , ss-top' , ss-channels , ss-others | nothing with ssplit-compose5 ss-tp ss
... | _ , ss-tp' , ss' = matchWaitAndGo ss-top (ss-cl , VChan cl-b cl-vcr , cl-κ) ss-tp' tp-wl (tcons ss' (Wait ss₁ (VChan w-b w-vcr) κ) tp-acc)
matchWaitAndGo{Gc₂ = Gc₂} ss-top (ss-cl , VChan cl-b cl-vcr , cl-κ) ss-tp (tcons ss (Wait ss₁ (VChan w-b w-vcr) κ) tp-wl) tp-acc | Gi , ss-g3gi , ss-g4g2 | Gi' , ss-g3gi' , ss-gtpacc | Gchannels , Gother , ss-top' , ss-channels , ss-others | just x with ssplit-refl-right-inactive Gc₂
... | Gunit , ina-Gunit , ss-stopped with extract-inactive-from-cont UUnit κ
... | Gunit' , ina-Gunit' , ss-stopped' with ssplit-compose ss-gtpacc (ssplit-sym ss-g4g2)
... | Gi'' , ss-int , ss-g2gacc with ssplit-compose2 ss-others ss-int
... | Gi''' , ss-other , ss-outer-cons = just (Gother , tappend (ssplit-sym ss-other) tp-wl (tcons ss-outer-cons (Ready ss-stopped (VUnit ina-Gunit) cl-κ) (tcons ss-g2gacc (Ready ss-stopped' (VUnit ina-Gunit') κ) tp-acc)))
matchSendAndGo : ∀ {G Gc Gc₁ Gc₂ Gtp Gtpwl Gtpacc φ t s}
→ SSplit G Gc Gtp
-- read command
→ SSplit Gc Gc₁ Gc₂ × Val Gc₁ (TChan (Typing.recv t s)) × Cont Gc₂ φ (TPair (TChan (SType.force s)) t)
-- focused thread pool
→ SSplit Gtp Gtpwl Gtpacc → ThreadPool Gtpwl → ThreadPool Gtpacc
→ Maybe (∃ λ G' → ThreadPool G')
matchSendAndGo ss-top recv-info ss-tp (tnil ina) tp-acc = nothing
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(Fork ss₁ κ₁ κ₂) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(Ready ss₁ v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(Halt _ _ _) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(New s κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(NSelect ss-arg lab vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(Select ss-arg lab vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(NBranch _ _ _) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(Branch _ _ _) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(Close ss₁ v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(Wait ss₁ v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info ss-tp (tcons ss cmd@(Recv ss₁ vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchSendAndGo ss-top recv-info@(ss-rv , VChan b₁ vcr₁ , κ-rv) ss-tp (tcons ss cmd@(Send ss₁ ss-args (VChan b vcr) v κ) tp-wl) tp-acc with ssplit-compose6 ss₁ ss-args
... | Gi , ss-g1g11gi , ss-gig12g3 with ssplit-compose6 ss ss-g1g11gi
... | Gi' , ss-gtpwlg11g2 , ss-gi'gig2 with ssplit-compose6 ss-tp ss-gtpwlg11g2
... | Gi'' , ss-gtpg11gi'' , ss-gi''gi'gtpacc with ssplit-join ss-top ss-rv ss-gtpg11gi''
... | G₁' , G₂' , ss-gg1'g2' , ss-g1'gc1g11 , ss-g2'gc2gi'' with vcr-match-2-sr (ssplit2 ss-gg1'g2' ss-g1'gc1g11) vcr₁ vcr
... | just (t≤t1 , ds1≡s , GG , GG1 , GG11 , G12 , ssplit2 ss-out1 ss-out2 , vcr-recv , vcr-send) with ssplit-compose ss-gi''gi'gtpacc ss-gi'gig2
... | GSi , ss-Gi''GiGi1 , ss-Gi1G2Gtpacc with ssplit-join ss-out1 ss-out2 ss-g2'gc2gi''
... | GG1' , GG2' , ss-GG-GG1'-GG2' , ss-GG1'-GG11-Gc2 , ss-GG2'-G12-Gi'' with ssplit-rotate ss-GG2'-G12-Gi'' ss-Gi''GiGi1 ss-gig12g3
... | Gi''+ , Gi+ , ss-GG2-G12-Gi''+ , ss-Gi''+Gi+Gsi , ss-Gi+-G12-G4 with ssplit-join ss-GG-GG1'-GG2' ss-GG1'-GG11-Gc2 ss-GG2-G12-Gi''+
... | GG1'' , GG2'' , ss-GG-GG1''-GG2'' , ss-GG1''-GG11-G12 , ss-GG2''-Gc2-Gi''+ with ssplit-compose3 ss-GG-GG1''-GG2'' ss-GG2''-Gc2-Gi''+
... | _ , ss-GG-Gii-Gi''+ , ss-Gii-GG1''-Gc2 = just (GG , (tcons ss-GG-Gii-Gi''+ (Ready ss-Gii-GG1''-Gc2 (VPair ss-GG1''-GG11-G12 (VChan b₁ vcr-recv) (coerce v t≤t1)) κ-rv {-κ-rv-}) (tcons ss-Gi''+Gi+Gsi (Ready ss-Gi+-G12-G4 (VChan b vcr-send) κ) (tappend ss-Gi1G2Gtpacc tp-wl tp-acc))))
matchSendAndGo ss-top recv-info@(ss-rv , VChan b₁ vcr₁ , κ-rv) ss-tp (tcons ss cmd@(Send ss₁ ss-args (VChan b vcr) v κ) tp-wl) tp-acc | Gi , ss-g1g11gi , ss-gig12g3 | Gi' , ss-gtpwlg11g2 , ss-gi'gig2 | Gi'' , ss-gtpg11gi'' , ss-gi''gi'gtpacc | G₁' , G₂' , ss-gg1'g2' , ss-g1'gc1g11 , ss-g2'gc2gi'' | nothing with ssplit-compose5 ss-tp ss
... | Gi0 , ss-tp' , ss' = matchSendAndGo ss-top recv-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo : ∀ {G Gc Gc₁ Gc₂ Gtp Gtpwl Gtpacc φ s₁ s₂}
→ SSplit G Gc Gtp
-- select command
→ (SSplit Gc Gc₁ Gc₂ × ∃ λ lab → Val Gc₁ (TChan (sintern s₁ s₂)) × Cont Gc₂ φ (TChan (selection lab (SType.force s₁) (SType.force s₂))))
-- focused thread pool
→ SSplit Gtp Gtpwl Gtpacc → ThreadPool Gtpwl → ThreadPool Gtpacc
→ Maybe (∃ λ G' → ThreadPool G')
matchBranchAndGo ss-top select-info ss-tp (tnil ina) tp-acc = nothing
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(Fork ss₁ κ₁ κ₂) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(Ready ss₁ v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(Halt _ _ _) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(New s κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(Close ss₁ v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(Wait ss₁ v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(Send ss₁ ss-args vch v κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(Recv ss₁ vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(NSelect ss₁ lab vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(NBranch _ _ _) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top select-info ss-tp (tcons ss cmd@(Select ss₁ lab vch κ) tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top (ss-vκ , lab , VChan b₁ vcr₁ , κ) ss-tp (tcons ss (Branch ss₁ (VChan b vcr) dcont) tp-wl) tp-acc with ssplit-compose6 ss ss₁
... | Gi , ss-gtpwl-g3-gi , ss-gi-g4-g2 with ssplit-compose6 ss-tp ss-gtpwl-g3-gi
... | Gi1 , ss-gtp-g3-gi1 , ss-gi1-gi-gtpacc with ssplit-join ss-top ss-vκ ss-gtp-g3-gi1
... | Gc' , Gtp' , ss-g-gc'-gtp' , ss-gc'-gc1-g1 , ss-gtp'-gc2-gi1 with vcr-match-2-sb (ssplit2 ss-g-gc'-gtp' ss-gc'-gc1-g1) vcr₁ vcr lab
matchBranchAndGo ss-top select-info@(ss-vκ , lab , VChan b₁ vcr₁ , κ) ss-tp (tcons ss cmd@(Branch ss₁ (VChan b vcr) dcont) tp-wl) tp-acc | Gi , ss-gtpwl-g3-gi , ss-gi-g4-g2 | Gi1 , ss-gtp-g3-gi1 , ss-gi1-gi-gtpacc | Gc' , Gtp' , ss-g-gc'-gtp' , ss-gc'-gc1-g1 , ss-gtp'-gc2-gi1 | nothing with ssplit-compose5 ss-tp ss
... | Gix , ss-tp' , ss' = matchBranchAndGo ss-top select-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchBranchAndGo ss-top (ss-vκ , lab , VChan b₁ vcr₁ , κ) ss-tp (tcons ss (Branch ss₁ (VChan b vcr) dcont) tp-wl) tp-acc | Gi , ss-gtpwl-g3-gi , ss-gi-g4-g2 | Gi1 , ss-gtp-g3-gi1 , ss-gi1-gi-gtpacc | Gc' , Gtp' , ss-g-gc'-gtp' , ss-gc'-gc1-g1 , ss-gtp'-gc2-gi1 | just (ds3=s1 , ds4=s2 , GG , GG1 , GG11 , GG12 , ssplit2 ss1' ss2' , vcr-sel , vcr-bra) with ssplit-compose ss-gi1-gi-gtpacc ss-gi-g4-g2
... | Gi2 , ss-gi1-g3-gi2 , ss-gi2-g2-gtpacc with ssplit-join ss1' ss2' ss-gtp'-gc2-gi1
... | GGG1 , GGG2 , ss-GG-ggg1-ggg2 , ss-ggg1-gc1-gc2 , ss-ggg2-g1-gi1 with ssplit-compose3 ss-ggg2-g1-gi1 ss-gi1-g3-gi2
... | Gi3 , ss-ggg2-gi3-gi2 , ss-gi3-gg12-g2 = just (GG , tcons ss-GG-ggg1-ggg2 (Ready ss-ggg1-gc1-gc2 (VChan b₁ vcr-sel) κ) (tcons ss-ggg2-gi3-gi2 (Ready ss-gi3-gg12-g2 (VChan b vcr-bra) (dcont lab)) (tappend ss-gi2-g2-gtpacc tp-wl tp-acc)))
matchNBranchAndGo : ∀ {G Gc Gc₁ Gc₂ Gtp Gtpwl Gtpacc φ m alt}
→ SSplit G Gc Gtp
-- select command
→ (SSplit Gc Gc₁ Gc₂ × Σ (Fin m) λ lab → Val Gc₁ (TChan (sintN m alt)) × Cont Gc₂ φ (TChan (SType.force (alt lab))))
-- focused thread pool
→ SSplit Gtp Gtpwl Gtpacc → ThreadPool Gtpwl → ThreadPool Gtpacc
→ Maybe (∃ λ G' → ThreadPool G')
matchNBranchAndGo ss-top nselect-info ss-tp (tnil ina) tp-acc = nothing
matchNBranchAndGo ss-top (ss-vκ , lab , VChan b₁ vcr₁ , κ) ss-tp (tcons ss cmd@(NBranch ss₁ (VChan b vcr) dcont) tp-wl) tp-acc with ssplit-compose6 ss ss₁
... | Gi , ss-gtpwl-g3-gi , ss-gi-g4-g2 with ssplit-compose6 ss-tp ss-gtpwl-g3-gi
... | Gi1 , ss-gtp-g3-gi1 , ss-gi1-gi-gtpacc with ssplit-join ss-top ss-vκ ss-gtp-g3-gi1
... | Gc' , Gtp' , ss-g-gc'-gtp' , ss-gc'-gc1-g1 , ss-gtp'-gc2-gi1 with vcr-match-2-nsb (ssplit2 ss-g-gc'-gtp' ss-gc'-gc1-g1) vcr₁ vcr lab
matchNBranchAndGo ss-top nselect-info@(ss-vκ , lab , VChan b₁ vcr₁ , κ) ss-tp (tcons ss cmd@(NBranch ss₁ (VChan b vcr) dcont) tp-wl) tp-acc | Gi , ss-gtpwl-g3-gi , ss-gi-g4-g2 | Gi1 , ss-gtp-g3-gi1 , ss-gi1-gi-gtpacc | Gc' , Gtp' , ss-g-gc'-gtp' , ss-gc'-gc1-g1 , ss-gtp'-gc2-gi1 | nothing with ssplit-compose5 ss-tp ss
... | Gix , ss-tp' , ss' = matchNBranchAndGo ss-top nselect-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
matchNBranchAndGo ss-top (ss-vκ , lab , VChan b₁ vcr₁ , κ) ss-tp (tcons ss (NBranch ss₁ (VChan b vcr) dcont) tp-wl) tp-acc | Gi , ss-gtpwl-g3-gi , ss-gi-g4-g2 | Gi1 , ss-gtp-g3-gi1 , ss-gi1-gi-gtpacc | Gc' , Gtp' , ss-g-gc'-gtp' , ss-gc'-gc1-g1 , ss-gtp'-gc2-gi1 | just (m1≤m , ds3=s1 , GG , GG1 , GG11 , GG12 , ssplit2 ss1' ss2' , vcr-sel , vcr-bra) with ssplit-compose ss-gi1-gi-gtpacc ss-gi-g4-g2
... | Gi2 , ss-gi1-g3-gi2 , ss-gi2-g2-gtpacc with ssplit-join ss1' ss2' ss-gtp'-gc2-gi1
... | GGG1 , GGG2 , ss-GG-ggg1-ggg2 , ss-ggg1-gc1-gc2 , ss-ggg2-g1-gi1 with ssplit-compose3 ss-ggg2-g1-gi1 ss-gi1-g3-gi2
... | Gi3 , ss-ggg2-gi3-gi2 , ss-gi3-gg12-g2 = just (GG , tcons ss-GG-ggg1-ggg2 (Ready ss-ggg1-gc1-gc2 (VChan b₁ vcr-sel) κ) (tcons ss-ggg2-gi3-gi2 (Ready ss-gi3-gg12-g2 (VChan b vcr-bra) (dcont (inject≤ lab m1≤m))) (tappend ss-gi2-g2-gtpacc tp-wl tp-acc)))
matchNBranchAndGo ss-top nselect-info ss-tp (tcons ss cmd tp-wl) tp-acc with ssplit-compose5 ss-tp ss
... | Gi , ss-tp' , ss' = matchNBranchAndGo ss-top nselect-info ss-tp' tp-wl (tcons ss' cmd tp-acc)
| {
"alphanum_fraction": 0.6464880171,
"avg_line_length": 63.2270742358,
"ext": "agda",
"hexsha": "e67a8b15a25a2f62fbfd9c794b5d5aa87bcec794",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Session.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Session.agda",
"max_line_length": 400,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Session.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 12093,
"size": 28958
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Displayed.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Transport
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary
private
variable
ℓ ℓA ℓA' ℓ≅A ℓB ℓB' ℓ≅B ℓC ℓ≅C : Level
record UARel (A : Type ℓA) (ℓ≅A : Level) : Type (ℓ-max ℓA (ℓ-suc ℓ≅A)) where
no-eta-equality
constructor uarel
field
_≅_ : A → A → Type ℓ≅A
ua : (a a' : A) → (a ≅ a') ≃ (a ≡ a')
uaIso : (a a' : A) → Iso (a ≅ a') (a ≡ a')
uaIso a a' = equivToIso (ua a a')
≅→≡ : {a a' : A} (p : a ≅ a') → a ≡ a'
≅→≡ {a} {a'} = Iso.fun (uaIso a a')
≡→≅ : {a a' : A} (p : a ≡ a') → a ≅ a'
≡→≅ {a} {a'} = Iso.inv (uaIso a a')
ρ : (a : A) → a ≅ a
ρ a = ≡→≅ refl
open BinaryRelation
-- another constructor for UARel using contractibility of relational singletons
make-𝒮 : {A : Type ℓA} {ℓ≅A : Level} {_≅_ : A → A → Type ℓ≅A}
(ρ : isRefl _≅_) (contrTotal : contrRelSingl _≅_) → UARel A ℓ≅A
UARel._≅_ (make-𝒮 {_≅_ = _≅_} _ _) = _≅_
UARel.ua (make-𝒮 {_≅_ = _≅_} ρ c) = contrRelSingl→isUnivalent _≅_ ρ c
record DUARel {A : Type ℓA} {ℓ≅A : Level} (𝒮-A : UARel A ℓ≅A)
(B : A → Type ℓB) (ℓ≅B : Level) : Type (ℓ-max (ℓ-max ℓA ℓB) (ℓ-max ℓ≅A (ℓ-suc ℓ≅B))) where
no-eta-equality
constructor duarel
open UARel 𝒮-A
field
_≅ᴰ⟨_⟩_ : {a a' : A} → B a → a ≅ a' → B a' → Type ℓ≅B
uaᴰ : {a a' : A} (b : B a) (p : a ≅ a') (b' : B a') → (b ≅ᴰ⟨ p ⟩ b') ≃ PathP (λ i → B (≅→≡ p i)) b b'
fiberRel : (a : A) → Rel (B a) (B a) ℓ≅B
fiberRel a = _≅ᴰ⟨ ρ a ⟩_
uaᴰρ : {a : A} (b b' : B a) → b ≅ᴰ⟨ ρ a ⟩ b' ≃ (b ≡ b')
uaᴰρ {a} b b' =
compEquiv
(uaᴰ b (ρ _) b')
(substEquiv (λ q → PathP (λ i → B (q i)) b b') (retEq (ua a a) refl))
ρᴰ : {a : A} → (b : B a) → b ≅ᴰ⟨ ρ a ⟩ b
ρᴰ {a} b = invEq (uaᴰρ b b) refl
| {
"alphanum_fraction": 0.5463510848,
"avg_line_length": 29.8235294118,
"ext": "agda",
"hexsha": "83904b825c6956f13a10ec31eb03096a2c2a7372",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Displayed/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Displayed/Base.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Displayed/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1013,
"size": 2028
} |
module Numeric.Nat.Prime.FundamentalTheorem where
open import Prelude
open import Control.WellFounded
open import Container.List
open import Container.List.Permutation
open import Container.List.Properties
open import Numeric.Nat
open import Tactic.Nat
--- Some lemmas ----------
private
primeProd=1-is-empty : ∀ ps → All Prime ps → productR ps ≡ 1 → ps ≡ []
primeProd=1-is-empty [] _ _ = refl
primeProd=1-is-empty (p ∷ ps) (prime p>1 _ ∷ _) pps=1 =
let p=1 : p ≡ 1
p=1 = mul=1-l p (productR ps) pps=1
in case p=1 of λ where refl → refute p>1
0<1<2 : ∀ {n} ⦃ _ : NonZero n ⦄ → n < 2 → n ≡ 1
0<1<2 {0} ⦃ () ⦄ n<2
0<1<2 {1} n<2 = refl
0<1<2 {suc (suc _)} n<2 = refute n<2
1>0 : ∀ {n} → n > 1 → NonZero n
1>0 {0} n>1 = refute n>1
1>0 {suc _} _ = _
product-deleteIx : ∀ {a} ⦃ _ : NonZero a ⦄ (as : List Nat) (i : a ∈ as) →
productR as ≡ a * productR (deleteIx as i)
product-deleteIx (a ∷ as) zero! = refl
product-deleteIx {a} (b ∷ as) (suc i) =
b * productR as ≡⟨ b *_ $≡ product-deleteIx as i ⟩
b * productR (a ∷ deleteIx as i) ≡⟨ auto ⟩
a * productR (b ∷ deleteIx as i) ∎
--- Factorisation ---------
record Factorisation (n : Nat) : Set where
no-eta-equality
constructor mkFactors
field
factors : List Nat
factors-prime : All Prime factors
factors-sound : productR factors ≡ n
open Factorisation
mul-factors : ∀ {a b} → Factorisation a → Factorisation b → Factorisation (a * b)
mul-factors {a} {b} (mkFactors ps psP ps=a) (mkFactors qs qsP qs=b) =
mkFactors (ps ++ qs) (psP ++All qsP) $
productR (ps ++ qs) ≡⟨ product-++ ps _ ⟩
productR ps * productR qs ≡⟨ _*_ $≡ ps=a *≡ qs=b ⟩
a * b ∎
private
factorise′ : ∀ n ⦃ _ : NonZero n ⦄ → Acc _<_ n → Factorisation n
factorise′ n (acc wf) =
case isPrime n of λ where
(yes p) → mkFactors (n ∷ []) (p ∷ []) auto
(no (composite a b a>1 b>1 refl)) →
let instance _ = 1>0 a>1; _ = 1>0 b>1 in
mul-factors (factorise′ a (wf a (less-mul-l a>1 b>1)))
(factorise′ b (wf b (less-mul-r a>1 b>1)))
(tiny n<2) → mkFactors [] [] (sym (0<1<2 n<2))
find-prime : ∀ p ps → Prime p → All Prime ps → p Divides productR ps → p ∈ ps
find-prime p [] isP isPs p|1 = ⊥-elim (prime-divide-coprime p 1 1 isP refl p|1 p|1)
find-prime p (q ∷ qs) isP (qP ∷ isPs) p|qqs =
case prime-split q (productR qs) isP p|qqs of λ where
(left p|q) → zero (prime-divide-prime isP qP p|q)
(right p|qs) → suc (find-prime p qs isP isPs p|qs)
unique : (ps qs : List Nat) → All Prime ps → All Prime qs → productR ps ≡ productR qs → Permutation ps qs
unique [] qs ips iqs ps=qs = case primeProd=1-is-empty qs iqs (sym ps=qs) of λ where refl → []
unique (p ∷ ps) qs (pP ∷ psP) qsP pps=qs =
let instance _ = prime-nonzero pP
p|qs : p Divides productR qs
p|qs = factor (productR ps) (by pps=qs)
i : p ∈ qs
i = find-prime p qs pP qsP p|qs
ps=qs/p : productR ps ≡ productR (deleteIx qs i)
ps=qs/p = mul-inj₂ p _ _ (pps=qs ⟨≡⟩ product-deleteIx qs i )
in i ∷ unique ps (deleteIx qs i) psP (deleteAllIx qsP i) ps=qs/p
--- The Fundamental Theorem of arithmetic:
-- any nonzero natural number can be factored into a product of primes,
-- and the factorisation is unique up to permutation.
factorise : (n : Nat) ⦃ _ : NonZero n ⦄ → Factorisation n
factorise n = factorise′ n (wfNat n)
factors-unique : ∀ {n} (f₁ f₂ : Factorisation n) → Permutation (factors f₁) (factors f₂)
factors-unique (mkFactors ps psP ps=n) (mkFactors qs qsP qs=n) =
unique ps qs psP qsP (ps=n ⟨≡⟩ʳ qs=n)
| {
"alphanum_fraction": 0.5923202614,
"avg_line_length": 37.4693877551,
"ext": "agda",
"hexsha": "81935861a328c8408e810d0a20e3220077b0fb44",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Numeric/Nat/Prime/FundamentalTheorem.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Numeric/Nat/Prime/FundamentalTheorem.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Numeric/Nat/Prime/FundamentalTheorem.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1384,
"size": 3672
} |
open import Agda.Primitive using (_⊔_)
import Categories.Category as Category
import Categories.Category.Cartesian as Cartesian
import MultiSorted.Interpretation as Interpretation
open import MultiSorted.AlgebraicTheory
open import MultiSorted.Substitution
import MultiSorted.Product as Product
module MultiSorted.Model {o ℓ e ℓt}
{𝓈 ℴ}
{Σ : Signature {𝓈} {ℴ}}
(T : Theory ℓt Σ)
{𝒞 : Category.Category o ℓ e}
{cartesian-𝒞 : Cartesian.Cartesian 𝒞} where
-- Model of a theory
record Is-Model (I : Interpretation.Interpretation Σ cartesian-𝒞) : Set (ℓt ⊔ o ⊔ ℓ ⊔ e) where
open Theory T
open Category.Category 𝒞
open Interpretation.Interpretation I
open HomReasoning
field
model-eq : ∀ (ε : ax) → ⊨ ax-eq (ε)
-- Soundness of semantics
module _ where
open Product.Producted interp-ctx
-- first we show that substitution preserves validity
model-resp-[]s : ∀ {Γ Δ} {A} {u v : Term Γ A} {σ : Δ ⇒s Γ} →
interp-term u ≈ interp-term v → interp-term (u [ σ ]s) ≈ interp-term (v [ σ ]s)
model-resp-[]s {u = u} {v = v} {σ = σ} ξ =
begin
interp-term (u [ σ ]s) ≈⟨ interp-[]s {t = u} ⟩
(interp-term u ∘ interp-subst σ) ≈⟨ ξ ⟩∘⟨refl ⟩
(interp-term v ∘ interp-subst σ) ≈˘⟨ interp-[]s {t = v} ⟩
interp-term (v [ σ ]s) ∎
-- the soundness statement
⊢-⊨ : ∀ {ε : Equation Σ} → ⊢ ε → ⊨ ε
⊢-⊨ eq-refl = Equiv.refl
⊢-⊨ (eq-symm ξ) = ⟺ (⊢-⊨ ξ)
⊢-⊨ (eq-tran ξ θ) = ⊢-⊨ ξ ○ ⊢-⊨ θ
⊢-⊨ (eq-congr ξ) = ∘-resp-≈ʳ (unique λ i → project ○ ⟺ (⊢-⊨ (ξ i)))
⊢-⊨ (eq-axiom ε σ) = model-resp-[]s {u = ax-lhs ε} {v = ax-rhs ε} (model-eq ε)
-- Every theory has the trivial model, whose carrier is the terminal object
Trivial : Is-Model (Interpretation.Trivial Σ cartesian-𝒞)
Trivial =
let open Cartesian.Cartesian cartesian-𝒞 in
record { model-eq = λ ε → !-unique₂ }
| {
"alphanum_fraction": 0.5795856493,
"avg_line_length": 34.7192982456,
"ext": "agda",
"hexsha": "7cc22a641c625709108355f373b9b191b82d1d25",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/MultiSorted/Model.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/MultiSorted/Model.agda",
"max_line_length": 102,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/MultiSorted/Model.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 733,
"size": 1979
} |
-- There are no level literals in the concrete syntax. This file tests
-- if type errors use level literals.
module LevelLiterals where
open import Common.Level
data ⊥ : Set₁ where
DoubleNegated : ∀ {ℓ} → Set ℓ → Set
DoubleNegated A = (A → ⊥) → ⊥
| {
"alphanum_fraction": 0.7051792829,
"avg_line_length": 20.9166666667,
"ext": "agda",
"hexsha": "1823fe1849ca54fb1136021e49e2043aa1c5c188",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/LevelLiterals.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/LevelLiterals.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/LevelLiterals.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 73,
"size": 251
} |
{- Agda can check termination of Stream transducer operations.
(Created: Andreas Abel, 2008-12-01
at Agda Intensive Meeting 9 in Sendai, Japan.
I acknowledge the support by AIST and JST.)
Stream transducers have been described in:
N. Ghani, P. Hancock, and D. Pattinson,
Continuous functions on final coalgebras.
In Proc. CMCS 2006, Electr. Notes in Theoret. Comp. Sci., 2006.
They have been modelled by mixed equi-(co)inductive sized types in
A. Abel,
Mixed Inductive/Coinductive Types and Strong Normalization.
In APLAS 2007, LNCS 4807.
Here we model them by mutual data/codata and mutual recursion/corecursion.
-}
module StreamProcEat where
open import Common.Coinduction
data Stream (A : Set) : Set where
cons : A -> ∞ (Stream A) -> Stream A
-- Stream Transducer: Trans A B
-- intended semantics: Stream A -> Stream B
mutual
data Trans (A B : Set) : Set where
〈_〉 : ∞ (Trans' A B) -> Trans A B
data Trans' (A B : Set) : Set where
get : (A -> Trans' A B) -> Trans' A B
put : B -> Trans A B -> Trans' A B
out : forall {A B} -> Trans A B -> Trans' A B
out 〈 p 〉 = ♭ p
-- evaluating a stream transducer ("stream eating")
mutual
-- eat is defined by corecursion into Stream B
eat : forall {A B} -> Trans A B -> Stream A -> Stream B
eat 〈 sp 〉 as = eat' (♭ sp) as
-- eat' is defined by a local recursion on Trans' A B
eat' : forall {A B} -> Trans' A B -> Stream A -> Stream B
eat' (get f) (cons a as) = eat' (f a) (♭ as)
eat' (put b sp) as = cons b (♯ eat sp as)
-- composing two stream transducers
mutual
-- comb is defined by corecursion into Trans A B
comb : forall {A B C} -> Trans A B -> Trans B C -> Trans A C
comb 〈 p1 〉 〈 p2 〉 = 〈 ♯ comb' (♭ p1) (♭ p2) 〉
-- comb' preforms a local lexicographic recursion on (Trans' B C, Trans' A B)
comb' : forall {A B C} -> Trans' A B -> Trans' B C -> Trans' A C
comb' (put b p1) (get f) = comb' (out p1) (f b)
comb' (put b p1) (put c p2) = put c (comb p1 p2)
comb' (get f) p2 = get (\ a -> comb' (f a) p2)
| {
"alphanum_fraction": 0.6261545941,
"avg_line_length": 29.3857142857,
"ext": "agda",
"hexsha": "4208fafc924538d75c079476fa8839cf19c76d59",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/StreamProcEat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/StreamProcEat.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/StreamProcEat.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 714,
"size": 2057
} |
{-# OPTIONS --cubical --safe #-}
module HLevels where
open import Path
open import Cubical.Foundations.Everything
using (isProp
;isSet
;isContr
;isPropIsContr
;isProp→isSet
;isOfHLevel→isOfHLevelDep
;hProp
;isSetHProp
;isPropIsProp
)
public
open import Level
open import Data.Sigma
hSet : ∀ ℓ → Type (ℓsuc ℓ)
hSet ℓ = Σ (Type ℓ) isSet
| {
"alphanum_fraction": 0.6144578313,
"avg_line_length": 17.2916666667,
"ext": "agda",
"hexsha": "4ab5a541e6bb8825a3cea85a9398212a5a02346b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/HLevels.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/HLevels.agda",
"max_line_length": 42,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/HLevels.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 138,
"size": 415
} |
open import Agda.Builtin.Size
data D : Size → Set where
postulate
f : (i : Size) → D i
data P : (i : Size) → D i → Set where
c : (i j : Size) → P (i ⊔ˢ j) (f _)
| {
"alphanum_fraction": 0.5443786982,
"avg_line_length": 15.3636363636,
"ext": "agda",
"hexsha": "7c4e3757ac82559d89f27c474a3e70eff1f1cb30",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2774.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2774.agda",
"max_line_length": 37,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2774.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 70,
"size": 169
} |
open import Functional using (id)
import Structure.Logic.Classical.NaturalDeduction
module Structure.Logic.Classical.SetTheory {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ (_∈_ : Domain → Domain → Formula) where
open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic)
import Lvl
open import Data.Tuple using () renaming (_⨯_ to _⨯ₘ_ ; _,_ to _,ₘ_)
open import Functional using (_∘_)
open import Syntax.Function
open import Structure.Logic.Classical.SetTheory.SetBoundedQuantification ⦃ classicLogic ⦄ (_∈_)
open import Structure.Logic.Classical.SetTheory.Relation ⦃ classicLogic ⦄ (_∈_)
open import Structure.Logic.Constructive.Syntax.Algebra ⦃ classicLogic ⦄
open import Syntax.Transitivity
open import Type
[⊆]-reflexivity : Proof(∀ₗ(s ↦ s ⊆ s))
[⊆]-reflexivity = [∀].intro(\{_} → [∀].intro(\{_} → [→].reflexivity))
[⊆]-transitivity : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(c ↦ (a ⊆ b)∧(b ⊆ c) ⟶ (a ⊆ c)))))
[⊆]-transitivity =
([∀].intro(\{a} →
([∀].intro(\{b} →
([∀].intro(\{c} →
([→].intro(abbc ↦
([∀].intro(\{x} →
([→].transitivity
([∀].elim([∧].elimₗ abbc){x})
([∀].elim([∧].elimᵣ abbc){x})
)
))
))
))
))
))
[⊆]-transitivable : Transitivable(_⊆_)
[⊆]-transitivable = Transitivity-to-Transitivable [⊆]-transitivity
[⊆][≡ₛ]-antisymmetry : Proof(∀ₗ(x ↦ ∀ₗ(y ↦ ((x ⊇ y) ∧ (x ⊆ y)) ⟶ (x ≡ₛ y))))
[⊆][≡ₛ]-antisymmetry =
([∀].intro(\{a} →
([∀].intro(\{b} →
([→].intro(abba ↦
([∀].intro(\{x} →
([↔].intro
([→].elim([∀].elim([∧].elimₗ abba){x}))
([→].elim([∀].elim([∧].elimᵣ abba){x}))
)
))
))
))
))
[≡ₛ]-to-[⊆] : Proof(∀ₗ(x ↦ ∀ₗ(y ↦ (x ≡ₛ y) ⟶ (x ⊆ y))))
[≡ₛ]-to-[⊆] =
([∀].intro(\{x} →
([∀].intro(\{y} →
([→].intro(x≡y ↦
([∀].intro(\{a} →
[→].intro([↔].elimᵣ([∀].elim x≡y {a}))
))
))
))
))
[≡ₛ]-to-[⊇] : Proof(∀ₗ(x ↦ ∀ₗ(y ↦ (x ≡ₛ y) ⟶ (x ⊇ y))))
[≡ₛ]-to-[⊇] =
([∀].intro(\{x} →
([∀].intro(\{y} →
([→].intro(x≡y ↦
([∀].intro(\{a} →
[→].intro([↔].elimₗ([∀].elim x≡y {a}))
))
))
))
))
[⊆][≡ₛ]-equivalence : Proof(∀ₗ(x ↦ ∀ₗ(y ↦ ((x ⊇ y) ∧ (x ⊆ y)) ⟷ (x ≡ₛ y))))
[⊆][≡ₛ]-equivalence =
([∀].intro(\{x} →
([∀].intro(\{y} →
([↔].intro
(x≡y ↦
([∧].intro
([→].elim([∀].elim([∀].elim [≡ₛ]-to-[⊇] {x}){y}) (x≡y))
([→].elim([∀].elim([∀].elim [≡ₛ]-to-[⊆] {x}){y}) (x≡y))
)
)
([→].elim([∀].elim([∀].elim [⊆][≡ₛ]-antisymmetry{x}){y}))
)
))
))
[≡ₛ]-reflexivity : Proof(∀ₗ(s ↦ s ≡ₛ s))
[≡ₛ]-reflexivity = [∀].intro(\{_} → [∀].intro(\{_} → [↔].reflexivity))
[≡ₛ]-transitivity : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(c ↦ (a ≡ₛ b)∧(b ≡ₛ c) ⟶ (a ≡ₛ c)))))
[≡ₛ]-transitivity =
([∀].intro(\{a} →
([∀].intro(\{b} →
([∀].intro(\{c} →
([→].intro(abbc ↦
([∀].intro(\{x} →
(
([∀].elim([∧].elimₗ abbc){x})
🝖 ([∀].elim([∧].elimᵣ abbc){x})
)
))
))
))
))
))
[≡ₛ]-transitivable : Transitivable(_≡ₛ_)
[≡ₛ]-transitivable = Transitivity-to-Transitivable [≡ₛ]-transitivity
[≡ₛ]-symmetry : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (a ≡ₛ b) ⟶ (b ≡ₛ a))))
[≡ₛ]-symmetry =
([∀].intro(\{a} →
([∀].intro(\{b} →
([→].intro(ab ↦
([∀].intro(\{x} →
([↔].commutativity
([∀].elim ab{x})
)
))
))
))
))
[≡ₛ]-from-equiv : ∀{A B : Domain}{Af Bf : Domain → Formula} → Proof(∀ₗ(x ↦ (x ∈ A) ⟷ Af(x))) → Proof(∀ₗ(x ↦ (x ∈ B) ⟷ Bf(x))) → Proof(∀ₗ(x ↦ Af(x) ⟷ Bf(x))) → Proof(A ≡ₛ B)
[≡ₛ]-from-equiv aeq beq afbf =
([∀].intro(\{x} →
([↔].transitivity
([↔].transitivity
([∀].elim aeq)
([∀].elim afbf)
)
([↔].commutativity ([∀].elim beq))
)
))
record SetEquality : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
extensional : Proof(∀ₗ(s₁ ↦ ∀ₗ(s₂ ↦ (s₁ ≡ₛ s₂) ⟷ (s₁ ≡ s₂))))
extensionalᵣ : ∀{s₁ s₂} → Proof(s₁ ≡ₛ s₂) → Proof(s₁ ≡ s₂)
extensionalᵣ{s₁}{s₂} (proof) = [↔].elimᵣ ([∀].elim([∀].elim extensional{s₁}){s₂}) (proof)
-- TODO: Use [⊆][≡ₛ]-equivalence
[≡]-from-subset : Proof(∀ₗ(x ↦ ∀ₗ(y ↦ ((x ⊇ y) ∧ (x ⊆ y)) ⟷ (x ≡ y))))
[≡]-from-subset =
([∀].intro(\{x} →
([∀].intro(\{y} →
([↔].intro
(x≡y ↦ [∧].intro
([→].elim ([∀].elim ([∀].elim ([≡]-implies-when-reflexive [⊆]-reflexivity) {x}) {y}) (x≡y))
([→].elim ([∀].elim ([∀].elim ([≡]-implies-when-reflexive [⊆]-reflexivity) {x}) {y}) (x≡y))
)
(lr ↦
([↔].elimᵣ
([∀].elim([∀].elim extensional{x}){y})
([∀].intro(\{a} →
([↔].intro
([→].elim([∀].elim([∧].elimₗ(lr)){a}))
([→].elim([∀].elim([∧].elimᵣ(lr)){a}))
)
))
)
)
)
))
)) where
[≡]-implies-when-reflexive : ∀{_▫_ : Domain → Domain → Formula} → Proof(∀ₗ(x ↦ x ▫ x)) → Proof(∀ₗ(x ↦ ∀ₗ(y ↦ (x ≡ y) ⟶ (x ▫ y))))
[≡]-implies-when-reflexive {_▫_} ([▫]-reflexivity) =
([∀].intro(\{x} →
([∀].intro(\{y} →
([→].intro(x≡y ↦
[≡].elimᵣ{x ▫_} (x≡y) ([∀].elim [▫]-reflexivity{x})
))
))
))
-- All sets that are defined using an equivalence of contained elements are unique
unique-definition : ∀{φ : Domain → Formula} → Proof(Unique(S ↦ ∀ₗ(x ↦ (x ∈ S) ⟷ φ(x))))
unique-definition{_} =
([∀].intro(\{S₁} →
([∀].intro(\{S₂} →
([→].intro(proof ↦
([↔].elimᵣ
([∀].elim([∀].elim extensional{S₁}){S₂})
([∀].intro(\{x} →
([↔].transitivity
([∀].elim([∧].elimₗ(proof)){x})
([↔].commutativity([∀].elim([∧].elimᵣ(proof)){x}))
)
))
)
))
))
))
-- TODO: Use [⊆][≡ₛ]-antisymmetry
[⊆]-antisymmetry : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (b ⊆ a)∧(a ⊆ b) ⟶ (a ≡ b))))
[⊆]-antisymmetry =
([∀].intro(\{a} →
([∀].intro(\{b} →
([→].intro(abba ↦
([↔].elimᵣ([∀].elim([∀].elim extensional{a}){b}))
([∀].intro(\{x} →
([↔].intro
([→].elim([∀].elim([∧].elimₗ abba){x}))
([→].elim([∀].elim([∧].elimᵣ abba){x}))
)
))
))
))
))
-- Empty set
-- The set consisting of no elements.
record EmptySet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
∅ : Domain
field
[∅]-membership : Proof(∀ₗ(x ↦ x ∉ ∅))
[∅]-membership-equiv : Proof(∀ₗ(x ↦ (x ∈ ∅) ⟷ ⊥))
[∅]-membership-equiv =
([∀].intro (\{x} →
([↔].intro
([⊥].elim)
([¬].elim
([∀].elim [∅]-membership{x})
)
)
))
[∅]-subset : Proof(∀ₗ(s ↦ ∅ ⊆ s))
[∅]-subset =
([∀].intro(\{s} →
([∀].intro(\{x} →
([→].intro(xin∅ ↦
[⊥].elim ([↔].elimᵣ([∀].elim [∅]-membership-equiv {x}) (xin∅))
))
))
))
[∅]-subset-is-equal : Proof(∀ₗ(s ↦ (s ⊆ ∅) ⟶ (s ≡ₛ ∅)))
[∅]-subset-is-equal =
([∀].intro(\{s} →
([→].intro(s⊆∅ ↦
([→].elim
([∀].elim([∀].elim [⊆][≡ₛ]-antisymmetry{s}){∅})
([∧].intro
([∀].elim [∅]-subset{s})
(s⊆∅)
)
)
))
))
[⊆]-minimum : Proof(∀ₗ(min ↦ ∀ₗ(s ↦ min ⊆ s) ⟷ (min ≡ₛ ∅)))
[⊆]-minimum =
([∀].intro(\{min} →
([↔].intro
(min≡∅ ↦
([∀].intro(\{s} →
([→].elim
([∀].elim([∀].elim([∀].elim [⊆]-transitivity {min}){∅}){s})
([∧].intro
([→].elim ([∀].elim([∀].elim [≡ₛ]-to-[⊆] {min}){∅}) (min≡∅))
([∀].elim [∅]-subset {s})
)
)
))
)
(asmin⊆s ↦
([→].elim
([∀].elim [∅]-subset-is-equal{min})
([∀].elim asmin⊆s{∅})
)
)
)
))
[⊆]-minima : Proof(∀ₗ(s ↦ ∅ ⊆ s))
[⊆]-minima = [∅]-subset
[∃ₛ]-of-[∅] : ∀{P : Domain → Formula} → Proof(¬(∃ₛ ∅ P))
[∃ₛ]-of-[∅] =
([¬].intro(ep ↦
[∃ₛ]-elim(\{x} → x∈∅ ↦ _ ↦ [⊥].elim([¬].elim ([∀].elim [∅]-membership) x∈∅)) ep
))
-- Singleton set.
-- A set consisting of only a single element.
record SingletonSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
singleton : Domain → Domain
field
singleton-membership : Proof(∀ₗ(a ↦ ∀ₗ(x ↦ (x ∈ singleton(a)) ⟷ (x ≡ₛ a))))
singleton-contains-self : Proof(∀ₗ(s ↦ s ∈ singleton(s)))
singleton-contains-self =
([∀].intro(\{s} →
([↔].elimₗ
([∀].elim([∀].elim singleton-membership{s}){s})
([∀].elim [≡ₛ]-reflexivity{s})
)
))
-- Subset filtering.
-- The subset of the specified set where all elements satisfy the specified formula.
record FilterSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
filter : Domain → (Domain → Formula) → Domain
field
filter-membership : ∀{φ : Domain → Formula} → Proof(∀ₗ(s ↦ ∀ₗ(x ↦ ((x ∈ filter(s)(φ)) ⟷ ((x ∈ s) ∧ φ(x))))))
filter-subset : ∀{φ} → Proof(∀ₗ(s ↦ filter(s)(φ) ⊆ s))
filter-subset =
([∀].intro(\{s} →
([∀].intro(\{x} →
([→].intro(xinfilter ↦
[∧].elimₗ([↔].elimᵣ([∀].elim([∀].elim filter-membership{s}){x}) (xinfilter))
))
))
))
module _ ⦃ _ : EmptySet ⦄ where
open EmptySet ⦃ ... ⦄
filter-of-[∅] : ∀{φ} → Proof(filter(∅)(φ) ≡ₛ ∅)
filter-of-[∅] =
([→].elim
([∀].elim([∀].elim [⊆][≡ₛ]-antisymmetry))
([∧].intro
([∀].elim [∅]-subset)
([∀].elim filter-subset)
)
)
filter-property : ∀{φ : Domain → Formula} → Proof(∀ₗ(s ↦ ∀ₛ(filter(s)(φ)) φ))
filter-property =
([∀].intro(\{s} →
([∀].intro(\{x} →
([→].intro(xinfilter ↦
[∧].elimᵣ([↔].elimᵣ([∀].elim([∀].elim filter-membership{s}){x}) (xinfilter))
))
))
))
-- Power set.
-- The set of all subsets of the specified set.
record PowerSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
℘ : Domain → Domain
field
[℘]-membership : Proof(∀ₗ(s ↦ ∀ₗ(x ↦ (x ∈ ℘(s)) ⟷ (x ⊆ s))))
module _ ⦃ _ : EmptySet ⦄ where
open EmptySet ⦃ ... ⦄
[℘]-contains-empty : Proof(∀ₗ(s ↦ ∅ ∈ ℘(s)))
[℘]-contains-empty =
([∀].intro(\{s} →
([↔].elimₗ
([∀].elim([∀].elim [℘]-membership{s}){∅})
([∀].elim [∅]-subset{s})
)
))
module _ ⦃ _ : SingletonSet ⦄ where
open SingletonSet ⦃ ... ⦄
postulate [℘]-of-[∅] : Proof(℘(∅) ≡ₛ singleton(∅))
[℘]-contains-self : Proof(∀ₗ(s ↦ s ∈ ℘(s)))
[℘]-contains-self =
([∀].intro(\{s} →
([↔].elimₗ
([∀].elim([∀].elim [℘]-membership{s}){s})
([∀].elim [⊆]-reflexivity{s})
)
))
-- Union over arbitrary sets.
-- Constructs a set which consists of elements which are in any of the specified sets.
record SetUnionSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
⋃ : Domain → Domain
field
[⋃]-membership : Proof(∀ₗ(ss ↦ ∀ₗ(x ↦ (x ∈ ⋃(ss)) ⟷ ∃ₛ(ss)(s ↦ x ∈ s))))
postulate [⋃]-containing-max : Proof(∀ₗ(s ↦ ∀ₛ(s)(max ↦ ∀ₛ(s)(x ↦ x ⊆ max) ⟶ (⋃(s) ≡ₛ max))))
module _ ⦃ _ : EmptySet ⦄ where
open EmptySet ⦃ ... ⦄
postulate [⋃]-of-[∅] : Proof(⋃(∅) ≡ₛ ∅)
-- [⋃]-of-[∅] =
-- ([⋃]-membership
-- )
-- [∃ₛ]-of-[∅]
postulate [⋃]-subset : Proof(∀ₗ(s ↦ ∀ₛ(s)(x ↦ x ⊆ ⋃(s))))
-- Union operator.
-- Constructs a set which consists of both elements from LHS and RHS.
record UnionSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
infixl 3000 _∪_
field
_∪_ : Domain → Domain → Domain
field
[∪]-membership : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ (x ∈ (a ∪ b)) ⟷ (x ∈ a)∨(x ∈ b)))))
[∪]-commutativity : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ a ∪ b ≡ₛ b ∪ a)))
[∪]-commutativity =
([∀].intro(\{a} →
([∀].intro(\{b} →
([∀].intro(\{x} →
([↔].intro
(([↔].elimₗ ([∀].elim ([∀].elim ([∀].elim [∪]-membership)))) ∘ [∨].commutativity ∘ ([↔].elimᵣ ([∀].elim ([∀].elim ([∀].elim [∪]-membership)))))
(([↔].elimₗ ([∀].elim ([∀].elim ([∀].elim [∪]-membership)))) ∘ [∨].commutativity ∘ ([↔].elimᵣ ([∀].elim ([∀].elim ([∀].elim [∪]-membership)))))
)
))
))
))
postulate [∪]-associativity : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(c ↦ (a ∪ b) ∪ c ≡ₛ a ∪ (b ∪ c)))))
module _ ⦃ _ : EmptySet ⦄ where
open EmptySet ⦃ ... ⦄
postulate [∪]-identityₗ : Proof(∀ₗ(s ↦ ∅ ∪ s ≡ₛ s))
postulate [∪]-identityᵣ : Proof(∀ₗ(s ↦ s ∪ ∅ ≡ₛ s))
postulate [∪]-subsetₗ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ a ⊆ a ∪ b)))
postulate [∪]-subsetᵣ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ b ⊆ a ∪ b)))
postulate [∪]-of-subsetₗ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (b ⊆ a) ⟶ (a ∪ b ≡ₛ a))))
postulate [∪]-of-subsetᵣ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (a ⊆ b) ⟶ (a ∪ b ≡ₛ b))))
postulate [∪]-of-self : Proof(∀ₗ(s ↦ s ∪ s ≡ₛ s))
-- Intersection operator.
-- Constructs a set which consists of elements which are in both LHS and RHS.
record IntersectionSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
infixl 3001 _∩_
field
_∩_ : Domain → Domain → Domain
field
[∩]-membership : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ (x ∈ (a ∩ b)) ⟷ (x ∈ a)∧(x ∈ b)))))
postulate [∩]-commutativity : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ a ∩ b ≡ₛ b ∩ a)))
postulate [∩]-associativity : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(c ↦ (a ∩ b) ∩ c ≡ₛ a ∩ (b ∩ c)))))
module _ ⦃ _ : EmptySet ⦄ where
open EmptySet ⦃ ... ⦄
postulate [∩]-annihilatorₗ : Proof(∀ₗ(s ↦ ∅ ∩ s ≡ₛ ∅))
postulate [∩]-annihilatorᵣ : Proof(∀ₗ(s ↦ s ∩ ∅ ≡ₛ s))
postulate [∩]-subsetₗ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ a ∩ b ⊆ a)))
postulate [∩]-subsetᵣ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ a ∩ b ⊆ b)))
postulate [∩]-of-subsetₗ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (b ⊆ a) ⟶ (a ∩ b ≡ₛ b))))
postulate [∩]-of-subsetᵣ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (a ⊆ b) ⟶ (a ∩ b ≡ₛ a))))
postulate [∩]-of-self : Proof(∀ₗ(s ↦ s ∩ s ≡ₛ s))
-- "Without"-operator.
-- Constructs a set which consists of elements which are in LHS, but not RHS.
record WithoutSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
infixl 3002 _∖_
field
_∖_ : Domain → Domain → Domain
field
[∖]-membership : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ (x ∈ (a ∖ b)) ⟷ (x ∈ a)∧(x ∉ b)))))
postulate [∖]-of-disjoint : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ Disjoint(a)(b) ⟶ (a ∖ b ≡ₛ a)))))
module _ ⦃ _ : IntersectionSet ⦄ where
open IntersectionSet ⦃ ... ⦄
postulate [∖]-of-intersection : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ a ∖ (a ∩ b) ≡ₛ a ∖ b))))
module _ ⦃ _ : EmptySet ⦄ where
open EmptySet ⦃ ... ⦄
postulate [∖]-annihilatorₗ : Proof(∀ₗ(s ↦ ∅ ∖ s ≡ₛ ∅))
postulate [∖]-identityᵣ : Proof(∀ₗ(s ↦ s ∖ ∅ ≡ₛ s))
postulate [∖]-subset : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ (a ⊆ b) ⟶ (a ∖ b ≡ₛ ∅)))))
postulate [∖]-of-self : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ a ∖ a ≡ₛ ∅))))
module _ ⦃ _ : SingletonSet ⦄ where
open SingletonSet ⦃ ... ⦄
postulate [∖]-of-singleton : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ∀ₗ(x ↦ (x ∈ (a ∖ singleton(b))) ⟷ (x ∈ a)∧(x ≢ b)))))
-- Intersection over arbitrary sets.
-- Constructs a set which consists of elements which are in all of the specified sets.
record SetIntersectionSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
⋂ : Domain → Domain
field
[⋂]-membership : Proof(∀ₗ(ss ↦ ∀ₗ(x ↦ (x ∈ ⋂(ss)) ⟷ ∀ₛ(ss)(s ↦ x ∈ s))))
postulate [⋂]-containing-min : Proof(∀ₗ(s ↦ ∀ₛ(s)(min ↦ ∀ₛ(s)(x ↦ min ⊆ x) ⟶ (⋂(s) ≡ₛ min))))
module _ ⦃ _ : EmptySet ⦄ where
open EmptySet ⦃ ... ⦄
postulate [⋂]-containing-disjoint : Proof(∀ₗ(s ↦ ∃ₛ(s)(a ↦ ∃ₛ(s)(b ↦ Disjoint(a)(b))) ⟶ (⋂(s) ≡ₛ ∅)))
postulate [⋂]-containing-[∅] : Proof(∀ₗ(s ↦ (∅ ∈ s) ⟶ (⋂(s) ≡ₛ ∅)))
postulate [⋂]-subset : Proof(∀ₗ(s ↦ ∀ₛ(s)(x ↦ ⋂(s) ⊆ x)))
-- Set of all sets.
record UniversalSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
𝐔 : Domain
field
[𝐔]-membership : Proof(∀ₗ(x ↦ (x ∈ 𝐔)))
[𝐔]-membership-equiv : Proof(∀ₗ(x ↦ (x ∈ 𝐔) ⟷ ⊤))
[𝐔]-membership-equiv =
([∀].intro(\{x} →
([↔].intro
(_ ↦ [∀].elim [𝐔]-membership)
(_ ↦ [⊤].intro)
)
))
[𝐔]-subset : Proof(∀ₗ(x ↦ x ⊆ 𝐔))
[𝐔]-subset =
([∀].intro(\{x} →
([∀].intro(\{a} →
([→].intro(_ ↦
[∀].elim [𝐔]-membership
))
))
))
[𝐔]-superset : Proof(∀ₗ(x ↦ (x ⊇ 𝐔) ⟶ (x ≡ₛ 𝐔)))
[𝐔]-superset =
([∀].intro(\{x} →
([→].intro(superset ↦
([→].elim
([∀].elim ([∀].elim [⊆][≡ₛ]-antisymmetry))
([∧].intro
superset
([∀].elim [𝐔]-subset)
)
)
))
))
[𝐔]-contains-self : Proof(𝐔 ∈ 𝐔)
[𝐔]-contains-self = [∀].elim [𝐔]-membership
[𝐔]-nonempty : Proof(∃ₗ(x ↦ (x ∈ 𝐔)))
[𝐔]-nonempty = [∃].intro [𝐔]-contains-self
module _ ⦃ _ : FilterSet ⦄ where
open FilterSet ⦃ ... ⦄
unrestricted-comprehension-contradiction : Proof(⊥)
unrestricted-comprehension-contradiction =
([∨].elim
(contains ↦
([¬].elim
([∧].elimᵣ([↔].elimᵣ
([∀].elim([∀].elim filter-membership{𝐔}){not-in-self})
contains
))
contains
)
)
(contains-not ↦
([¬].elim
(contains-not)
([↔].elimₗ
([∀].elim([∀].elim filter-membership{𝐔}){not-in-self})
([∧].intro
([∀].elim [𝐔]-membership {not-in-self})
(contains-not)
)
)
)
)
(excluded-middle{not-in-self ∈ not-in-self})
) where
not-in-self : Domain
not-in-self = filter(𝐔) (x ↦ (x ∉ x))
record TupleSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
infixl 3002 _⨯_
field
-- Set product (Set of tuples) (Cartesian product).
_⨯_ : Domain → Domain → Domain
-- Tuple value.
-- An ordered pair of values.
_,_ : Domain → Domain → Domain
left : Domain → Domain
right : Domain → Domain
swap : Domain → Domain
swap(x) = (right(x) , left(x))
field
[⨯]-membership : Proof(∀ₗ(A ↦ ∀ₗ(B ↦ ∀ₗ(x ↦ (x ∈ (A ⨯ B)) ⟷ ∃ₛ(A)(a ↦ ∃ₛ(B)(b ↦ x ≡ (a , b))))))) -- TODO: Maybe left and right is not neccessary because one can just take the witnesses of this
left-equality : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ left(a , b) ≡ a)))
right-equality : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ right(a , b) ≡ b)))
postulate [⨯]-tuples : Proof(∀ₗ(A ↦ ∀ₗ(B ↦ ∀ₛ(A)(a ↦ ∀ₛ(B)(b ↦ (a , b) ∈ (A ⨯ B))))))
postulate swap-equality : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ swap(a , b) ≡ (b , a))))
postulate left-right-identity : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (left(a , b) , right(a , b)) ≡ (a , b))))
record QuotientSet : Type{ℓₘₗ Lvl.⊔ ℓₗ Lvl.⊔ ℓₒ} where
constructor intro
field
-- Quotient set.
-- The set of equivalence classes.
_/_ : Domain → BinaryRelator → Domain
-- Equivalence class
-- The set of elements which are equivalent to the specified one.
[_of_] : Domain → (Domain ⨯ₘ BinaryRelator) → Domain
field
[/]-membership : ∀{T}{_≅_} → Proof(∀ₗ(x ↦ (x ∈ (T / (_≅_))) ⟷ (∃ₗ(y ↦ x ≡ [ y of (T ,ₘ (_≅_)) ]))))
eqClass-membership : ∀{T}{_≅_} → Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (a ∈ [ b of (T ,ₘ (_≅_)) ]) ⟷ (a ≅ b))))
-- module Quotient {T : Domain} {_≅_ : BinaryRelator} ⦃ equivalence : Proof(Structure.Relator.Properties.Equivalence(T)(_≅_)) ⦄ where
-- open Structure.Relator.Properties
-- postulate [/]-membership : Proof(∀ₗ(x ↦ (x ∈ (T / (_≅_))) ⟷ (∃ₗ(y ↦ x ≡ [ y of T , (_≅_) ]))))
-- postulate [/]-pairwise-disjoint : Proof(∀ₗ(x ↦ (x ∈ (T / (_≅_))) ⟷ (∃ₗ(y ↦ x ≡ [ y of T , (_≅_) ]))))
-- postulate [/]-not-containing-[∅] : Proof(∀ₗ(x ↦ ∅ ∉ (T / (_≅_))))
-- postulate [/]-cover : Proof(⋃(T / (_≅_)) ≡ T)
-- postulate eqClass-membership : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (a ∈ [ b of T , (_≅_) ]) ⟷ (a ≅ b))))
-- postulate eqClass-containing-self : Proof(∀ₗ(a ↦ a ∈ [ a of T , (_≅_) ]))
-- postulate eqClass-nonempty : Proof(∀ₗ(a ↦ NonEmpty([ a of T , (_≅_) ])))
-- postulate eqClass-equal-disjoint : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ([ a of T , (_≅_) ] ≡ [ b of T , (_≅_) ]) ⟷ ¬ Disjoint([ a of T , (_≅_) ])([ b of T , (_≅_) ]))))
-- postulate eqClass-equal-equivalent : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ([ a of T , (_≅_) ] ≡ [ b of T , (_≅_) ]) ⟷ (a ≅ b))))
-- postulate eqClass-equal-containingₗ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ([ a of T , (_≅_) ] ≡ [ b of T , (_≅_) ]) ⟷ (b ∈ [ a of T , (_≅_) ]))))
-- postulate eqClass-equal-containingᵣ : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ ([ a of T , (_≅_) ] ≡ [ b of T , (_≅_) ]) ⟷ (a ∈ [ b of T , (_≅_) ]))))
| {
"alphanum_fraction": 0.4531613654,
"avg_line_length": 30.418879056,
"ext": "agda",
"hexsha": "5cdb581e21749853c42f6d884d3c490494b4e6c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory.agda",
"max_line_length": 197,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 9161,
"size": 20624
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
module Dijkstra.All where
open import Dijkstra.Syntax public
open import Dijkstra.RWS public
open import Dijkstra.RWS.Syntax public
open import Dijkstra.EitherD public
open import Dijkstra.EitherD.Syntax public
open import Dijkstra.EitherLike public
| {
"alphanum_fraction": 0.806,
"avg_line_length": 31.25,
"ext": "agda",
"hexsha": "afdd55e1bd8e35ef81d5a7bc48cc8b0fba186021",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/Dijkstra/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/Dijkstra/All.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/Dijkstra/All.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 123,
"size": 500
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Monoidal where
open import Level
open import Data.Product using (Σ; _,_)
open import Categories.Category
open import Categories.Category.Product
open import Categories.Category.Monoidal
open import Categories.Functor hiding (id)
open import Categories.NaturalTransformation hiding (id)
open import Categories.NaturalTransformation.NaturalIsomorphism
import Categories.Morphism as Mor
private
variable
o o′ ℓ ℓ′ e e′ : Level
module _ (C : MonoidalCategory o ℓ e) (D : MonoidalCategory o′ ℓ′ e′) where
private
module C = MonoidalCategory C
module D = MonoidalCategory D
open Mor D.U
-- lax monoidal functor
record IsMonoidalFunctor (F : Functor C.U D.U) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where
open Functor F
field
ε : D.U [ D.unit , F₀ C.unit ]
⊗-homo : NaturalTransformation (D.⊗ ∘F (F ⁂ F)) (F ∘F C.⊗)
module ⊗-homo = NaturalTransformation ⊗-homo
-- coherence condition
open D
open Commutation D.U
field
associativity : ∀ {X Y Z} →
[ (F₀ X ⊗₀ F₀ Y) ⊗₀ F₀ Z ⇒ F₀ (X C.⊗₀ Y C.⊗₀ Z) ]⟨
⊗-homo.η (X , Y) ⊗₁ id ⇒⟨ F₀ (X C.⊗₀ Y) ⊗₀ F₀ Z ⟩
⊗-homo.η (X C.⊗₀ Y , Z) ⇒⟨ F₀ ((X C.⊗₀ Y) C.⊗₀ Z) ⟩
F₁ C.associator.from
≈ associator.from ⇒⟨ F₀ X ⊗₀ F₀ Y ⊗₀ F₀ Z ⟩
id ⊗₁ ⊗-homo.η (Y , Z) ⇒⟨ F₀ X ⊗₀ F₀ (Y C.⊗₀ Z) ⟩
⊗-homo.η (X , Y C.⊗₀ Z)
⟩
unitaryˡ : ∀ {X} →
[ unit ⊗₀ F₀ X ⇒ F₀ X ]⟨
ε ⊗₁ id ⇒⟨ F₀ C.unit ⊗₀ F₀ X ⟩
⊗-homo.η (C.unit , X) ⇒⟨ F₀ (C.unit C.⊗₀ X) ⟩
F₁ C.unitorˡ.from
≈ unitorˡ.from
⟩
unitaryʳ : ∀ {X} →
[ F₀ X ⊗₀ unit ⇒ F₀ X ]⟨
id ⊗₁ ε ⇒⟨ F₀ X ⊗₀ F₀ C.unit ⟩
⊗-homo.η (X , C.unit) ⇒⟨ F₀ (X C.⊗₀ C.unit) ⟩
F₁ C.unitorʳ.from
≈ unitorʳ.from
⟩
record MonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
field
F : Functor C.U D.U
isMonoidal : IsMonoidalFunctor F
open Functor F public
open IsMonoidalFunctor isMonoidal public
-- strong monoidal functor
record IsStrongMonoidalFunctor (F : Functor C.U D.U) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where
open Functor F
field
ε : D.unit ≅ F₀ C.unit
⊗-homo : D.⊗ ∘F (F ⁂ F) ≃ F ∘F C.⊗
module ε = _≅_ ε
module ⊗-homo = NaturalIsomorphism ⊗-homo
-- coherence condition
open D
open Commutation D.U
field
associativity : ∀ {X Y Z} →
[ (F₀ X ⊗₀ F₀ Y) ⊗₀ F₀ Z ⇒ F₀ (X C.⊗₀ Y C.⊗₀ Z) ]⟨
⊗-homo.⇒.η (X , Y) ⊗₁ id ⇒⟨ F₀ (X C.⊗₀ Y) ⊗₀ F₀ Z ⟩
⊗-homo.⇒.η (X C.⊗₀ Y , Z) ⇒⟨ F₀ ((X C.⊗₀ Y) C.⊗₀ Z) ⟩
F₁ C.associator.from
≈ associator.from ⇒⟨ F₀ X ⊗₀ F₀ Y ⊗₀ F₀ Z ⟩
id ⊗₁ ⊗-homo.⇒.η (Y , Z) ⇒⟨ F₀ X ⊗₀ F₀ (Y C.⊗₀ Z) ⟩
⊗-homo.⇒.η (X , Y C.⊗₀ Z)
⟩
unitaryˡ : ∀ {X} →
[ unit ⊗₀ F₀ X ⇒ F₀ X ]⟨
ε.from ⊗₁ id ⇒⟨ F₀ C.unit ⊗₀ F₀ X ⟩
⊗-homo.⇒.η (C.unit , X) ⇒⟨ F₀ (C.unit C.⊗₀ X) ⟩
F₁ C.unitorˡ.from
≈ unitorˡ.from
⟩
unitaryʳ : ∀ {X} →
[ F₀ X ⊗₀ unit ⇒ F₀ X ]⟨
id ⊗₁ ε.from ⇒⟨ F₀ X ⊗₀ F₀ C.unit ⟩
⊗-homo.⇒.η (X , C.unit) ⇒⟨ F₀ (X C.⊗₀ C.unit) ⟩
F₁ C.unitorʳ.from
≈ unitorʳ.from
⟩
isMonoidal : IsMonoidalFunctor F
isMonoidal = record
{ ε = ε.from
; ⊗-homo = ⊗-homo.F⇒G
; associativity = associativity
; unitaryˡ = unitaryˡ
; unitaryʳ = unitaryʳ
}
record StrongMonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
field
F : Functor C.U D.U
isStrongMonoidal : IsStrongMonoidalFunctor F
open Functor F public
open IsStrongMonoidalFunctor isStrongMonoidal public
monoidalFunctor : MonoidalFunctor
monoidalFunctor = record { F = F ; isMonoidal = isMonoidal }
| {
"alphanum_fraction": 0.4297451022,
"avg_line_length": 35.162962963,
"ext": "agda",
"hexsha": "43287dfbbdcb28bf67cfc363d73923732b48aae3",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Monoidal.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Monoidal.agda",
"max_line_length": 98,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Monoidal.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1679,
"size": 4747
} |
module Issue2880 where
app : {A : Set} → (A → A) → (A → A)
app f x = f x
{-# COMPILE GHC app = \ A f x -> f (app A f x) #-}
mutual
id : {A : Set} → A → A
id x = x
{-# COMPILE GHC id = id' #-}
id' : {A : Set} → A → A
id' x = x
{-# COMPILE GHC id' = id #-}
| {
"alphanum_fraction": 0.4343065693,
"avg_line_length": 14.4210526316,
"ext": "agda",
"hexsha": "33dccc36fb890006b342b2c9d2388644b05c4348",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2880.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2880.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2880.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 116,
"size": 274
} |
------------------------------------------------------------------------------
----- -----
----- Relevant.Abstraction -----
----- -----
------------------------------------------------------------------------------
module Relevant.Abstraction where
open import Lib.Equality
open import Lib.Sigma
open import Lib.Bwd
open import Thin.Data
open import Thin.Thinned
module _ {B : Set} where
open THIN {B}
{-
A scoped notion of abstraction brings a newly bound variable into scope at the
local end of the context.
-}
------------------------------------------------------------------------------
-- relevance-aware abstraction
------------------------------------------------------------------------------
{-
CodeBruijn syntax is not necessarily intended to restrict the use of variables
more or less than ordinary syntax-with-binding, but it is intended to ensure
greater awareness of how variables are used.
In particular, we use types Foo ga to mean the type of Foos with support ga,
i.e., that the variables from ga not only may but must occur free in the Foo.
Now, when we bind a variable to make an abstraction of some sort, there is
nobody to tell us whether the bound variable must be used. But we must make
our minds up: if we bring it into scope, it must be used; if we do not, it
cannot be used. Let us therefore offer the choice of which to do.
-}
infixr 8 _|-_
data _|-_ (b : B)(T : Scope -> Set)(ga : Scope) : Set where
ll : T (ga -, b) -> (b |- T) ga -- two-l llambda, he's a beast
kk : T ga -> (b |- T) ga -- two-k kkonstant, he's the least
------------------------------------------------------------------------------
-- smart constructor for thinned abstraction
------------------------------------------------------------------------------
infixr 4 _\\_
_\\_ : forall b {T : Scope -> Set}{ga} -> T :< ga -, b -> (b |- T) :< ga
b \\ t ^ th -, .b = ll t ^ th
b \\ t ^ th -^ .b = kk t ^ th
{-
We can tell the support of t by looking at the thinning that it is paired
with. We learn which constructor we should then use.
-}
------------------------------------------------------------------------------
-- smart destructor for thinned abstraction
------------------------------------------------------------------------------
data Under {b T ga} : (b |- T) :< ga -> Set where
un\\ : forall t -> Under (b \\ t)
under : forall {b T ga}(x : (b |- T) :< ga) -> Under x
under (ll t ^ th) = un\\ (t ^ th -, _)
under (kk t ^ th) = un\\ (t ^ th -^ _)
under\\ : forall b {T ga}(t : T :< ga -, b) -> under (b \\ t) ~ un\\ t
under\\ b (_ ^ th -, .b) = r~
under\\ b (_ ^ th -^ .b) = r~
| {
"alphanum_fraction": 0.4493267186,
"avg_line_length": 36.1794871795,
"ext": "agda",
"hexsha": "a5117c6fddeec5cdc9cb4547e637017a4323e952",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z",
"max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ajnavarro/language-dataset",
"max_forks_repo_path": "data/github.com/pigworker/TypesWhoSayNi/7015fcde9a76984134691e9176bfb144ebeca7d5/codeb/Relevant/Abstraction.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ajnavarro/language-dataset",
"max_issues_repo_path": "data/github.com/pigworker/TypesWhoSayNi/7015fcde9a76984134691e9176bfb144ebeca7d5/codeb/Relevant/Abstraction.agda",
"max_line_length": 78,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/pigworker/TypesWhoSayNi/7015fcde9a76984134691e9176bfb144ebeca7d5/codeb/Relevant/Abstraction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z",
"num_tokens": 614,
"size": 2822
} |
module ProofRep where
import Prelude
import Logic.Relations
import Logic.Identity
import Data.Nat
import Data.Nat.Properties
open Prelude
open Data.Nat hiding (_==_; _≡_)
open Data.Nat.Properties
open Logic.Relations
module Foo (Var : Set) where
data _==_ : (x y : Var) -> Set where
cRefl : {x : Var} -> x == x
cSym : {x y : Var} -> y == x -> x == y
cTrans : {x y z : Var} -> x == z -> z == y -> x == y
cAxiom : {x y : Var} -> x == y
data Axioms {A : Set}(_≈_ : Rel A)([_] : Var -> A) : Set where
noAxioms : Axioms _≈_ [_]
anAxiom : (x y : Var) -> [ x ] ≈ [ y ] -> Axioms _≈_ [_]
manyAxioms : Axioms _≈_ [_] -> Axioms _≈_ [_] -> Axioms _≈_ [_]
refl : {x : Var} -> x == x
refl = cRefl
sym : {x y : Var} -> x == y -> y == x
sym (cRefl xy) = cRefl (Var.sym xy)
sym cAxiom = cSym cAxiom
sym (cSym p) = p
sym (cTrans z p q) = cTrans z (sym q) (sym p)
trans : {x y z : Var} -> x == y -> y == z -> x == z
trans {x}{y}{z} (cRefl xy) q = Var.subst (\w -> w == z) (Var.sym xy) q
trans {x}{y}{z} p (cRefl yz) = Var.subst (\w -> x == w) yz p
trans {x}{y}{z} (cTrans w p q) r = cTrans w p (trans q r)
trans p q = cTrans _ p q
| {
"alphanum_fraction": 0.5040453074,
"avg_line_length": 28.7441860465,
"ext": "agda",
"hexsha": "0134533d1c66a85c7d83018379938f886406f801",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/ProofRep.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/ProofRep.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/ProofRep.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 504,
"size": 1236
} |
------------------------------------------------------------------------------
-- The ABP using the Agda standard library
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Program.ABP.ABP-SL where
open import Codata.Musical.Notation
open import Codata.Musical.Stream
open import Data.Bool
open import Data.Product
open import Relation.Nullary
------------------------------------------------------------------------------
Bit : Set
Bit = Bool
-- Data type used to model the fair unreliable transmission channel.
data Err (A : Set) : Set where
ok : (x : A) → Err A
error : Err A
-- The mutual sender functions.
-- TODO (2019-01-04): Agda doesn't accept this definition which was
-- accepted by a previous version.
{-# TERMINATING #-}
sendA : {A : Set} → Bit → Stream A → Stream (Err Bit) → Stream (A × Bool)
awaitA : {A : Set} → Bit → Stream A → Stream (Err Bit) → Stream (A × Bit)
sendA b (i ∷ is) ds = (i , b) ∷ ♯ awaitA b (i ∷ is) ds
awaitA b (i ∷ is) (ok b' ∷ ds) with b ≟ b'
... | yes p = sendA (not b) (♭ is) (♭ ds)
... | no ¬p = (i , b) ∷ ♯ (awaitA b (i ∷ is) (♭ ds))
awaitA b (i ∷ is) (error ∷ ds) = (i , b) ∷ ♯ (awaitA b (i ∷ is) (♭ ds))
-- The receiver functions.
-- TODO (2019-01-04): Agda doesn't accept this definition which was
-- accepted by a previous version.
{-# TERMINATING #-}
ackA : {A : Set} → Bit → Stream (Err (A × Bit)) → Stream Bit
ackA b (ok (_ , b') ∷ bs) with b ≟ b'
... | yes p = b ∷ ♯ (ackA (not b) (♭ bs))
... | no ¬p = not b ∷ ♯ (ackA b (♭ bs))
ackA b (error ∷ bs) = not b ∷ ♯ (ackA b (♭ bs))
-- 25 June 2014. Requires the TERMINATING flag when using
-- --without-K. See Agda Issue 1214.
-- TODO (03 December 2015): Report the issue.
{-# TERMINATING #-}
outA : {A : Set} → Bit → Stream (Err (A × Bit)) → Stream A
outA b (ok (i , b') ∷ bs) with b ≟ b'
... | yes p = i ∷ ♯ (outA (not b) (♭ bs))
... | no ¬p = outA b (♭ bs)
outA b (error ∷ bs) = outA b (♭ bs)
-- Model the fair unreliable tranmission channel.
-- TODO (2019-01-04): Agda doesn't accept this definition which was
-- accepted by a previous version.
{-# TERMINATING #-}
corruptA : {A : Set} → Stream Bit → Stream A → Stream (Err A)
corruptA (true ∷ os) (_ ∷ xs) = error ∷ ♯ (corruptA (♭ os) (♭ xs))
corruptA (false ∷ os) (x ∷ xs) = ok x ∷ ♯ (corruptA (♭ os) (♭ xs))
-- 25 June 2014. Requires the TERMINATING flag when using
-- --without-K. See Agda Issue 1214.
-- TODO (03 December 2015): Report the issue.
-- The ABP transfer function.
{-# TERMINATING #-}
abpTransA : {A : Set} → Bit → Stream Bit → Stream Bit → Stream A → Stream A
abpTransA {A} b os₁ os₂ is = outA b bs
where
as : Stream (A × Bit)
bs : Stream (Err (A × Bit))
cs : Stream Bit
ds : Stream (Err Bit)
as = sendA b is ds
bs = corruptA os₁ as
cs = ackA b bs
ds = corruptA os₂ cs
| {
"alphanum_fraction": 0.547,
"avg_line_length": 31.5789473684,
"ext": "agda",
"hexsha": "2d7c03b1f6b292d13ffc4298f22280110547a6fb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Program/ABP/ABP-SL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Program/ABP/ABP-SL.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Program/ABP/ABP-SL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 974,
"size": 3000
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.Encode
open import Util.PKCS as PKCS hiding (sign)
open import Util.Prelude
module LibraBFT.Impl.Types.ValidatorSigner where
sign : {C : Set} ⦃ enc : Encoder C ⦄ → ValidatorSigner → C → Signature
sign (ValidatorSigner∙new _ sk) c = PKCS.sign-encodable c sk
postulate -- TODO-1: publicKey_USE_ONLY_AT_INIT
publicKey_USE_ONLY_AT_INIT : ValidatorSigner → PK
obmGetValidatorSigner : AuthorName → List ValidatorSigner → Either ErrLog ValidatorSigner
obmGetValidatorSigner name vss =
case List-filter go vss of λ where
(vs ∷ []) → pure vs
_ → Left fakeErr -- [ "ValidatorSigner", "obmGetValidatorSigner"
-- , name , "not found in"
-- , show (fmap (^.vsAuthor.aAuthorName) vss) ]
where
go : (vs : ValidatorSigner) → Dec (vs ^∙ vsAuthor ≡ name)
go (ValidatorSigner∙new _vsAuthor _) = _vsAuthor ≟ name
| {
"alphanum_fraction": 0.6879032258,
"avg_line_length": 37.5757575758,
"ext": "agda",
"hexsha": "78946f317d3e1a9d2794908e68a2eb3c106f57fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Types/ValidatorSigner.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Types/ValidatorSigner.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Types/ValidatorSigner.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 344,
"size": 1240
} |
module JMEq where
data _==_ {A : Set}(x : A) : {B : Set}(y : B) -> Set where
refl : x == x
subst : {A : Set}{x y : A}(P : A -> Set) -> x == y -> P x -> P y
subst {A} P refl px = px
| {
"alphanum_fraction": 0.4545454545,
"avg_line_length": 18.7,
"ext": "agda",
"hexsha": "b0bc4a33696f485ec99ecc8507b5dc575d7e0634",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/JMEq.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/JMEq.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/JMEq.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 80,
"size": 187
} |
-- {-# OPTIONS --without-K #-}
module Paths where
open import Agda.Prim
open import Data.Unit
open import Data.Bool
open import Data.Nat hiding (_⊔_)
open import Data.Sum
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality
open import PointedTypes
--infix 2 _∎ -- equational reasoning
--infixr 2 _≡⟨_⟩_ -- equational reasoning
------------------------------------------------------------------------------
-- Paths are pi-combinators
data _⇛_ {ℓ : Level} :
(A• : Set• ℓ) → (B• : Set• ℓ) → Set (lsuc (lsuc ℓ)) where
-- additive structure
swap₁₊⇛ : {A B : Set ℓ} {a : A} {b : B} →
•[ A ⊎ B , inj₁ a ] ⇛ •[ B ⊎ A , inj₂ a ]
id⇛ : {A : Set ℓ} → (a : A) → •[ A , a ] ⇛ •[ A , a ]
η⋆⇛ : {A : Set ℓ} {a : A} → •[ A , a ] ⇛ •[ (A → A) , id ]
equiv⇛ : {A B : Set ℓ} {a : A} {b : B} →
(f : •[ A , a ] →• •[ B , b ]) →
(fequiv : isequiv• f) →
•[ A , a ] ⇛ •[ B , b ]
swap₊ : {ℓ : Level} {A B : Set ℓ} → A ⊎ B → B ⊎ A
swap₊ (inj₁ a) = inj₂ a
swap₊ (inj₂ b) = inj₁ b
eval : {ℓ : Level} {A• B• : Set• ℓ} → A• ⇛ B• → (A• →• B•)
eval swap₁₊⇛ = record { fun = swap₊ ; resp• = refl }
eval (id⇛ _) = id•
eval η⋆⇛ = {!!}
eval (equiv⇛ _ _) = {!!}
pInversion : {ℓ : Level} {A• B• : Set• ℓ} → (c : A• ⇛ B•) → fun (eval c) (• A•) ≡ • B•
pInversion {ℓ} {A•} {B•} c = resp• (eval c)
funext : {ℓ : Level} {A• B• : Set• ℓ} {f g : A• →• B•} →
(pt f ⇛ pt g) → (f ∼• g)
funext = {!!}
{--
swap₂₊⇛ : {A• B• : Set• {ℓ}} → (A• ⊎•₂ B•) ⇛ (B• ⊎•₁ A•)
assocl₁₊⇛ : {A• B• C• : Set• {ℓ}} →
(A• ⊎•₁ (B• ⊎•₁ C•)) ⇛ ((A• ⊎•₁ B•) ⊎•₁ C•)
assocl₁₊⇛' : {A• B• C• : Set• {ℓ}} →
(A• ⊎•₁ (B• ⊎•₂ C•)) ⇛ ((A• ⊎•₁ B•) ⊎•₁ C•)
•[ A ⊎ (B ⊎ C) , inj₁ a ] ⇛ •[ (A ⊎ B) ⊎ C , inj₁ (inj₁ a) ]
assocl₂₁₊⇛ : {A B C : Set ℓ} → (b : B) →
•[ A ⊎ (B ⊎ C) , inj₂ (inj₁ b) ] ⇛
•[ (A ⊎ B) ⊎ C , inj₁ (inj₂ b) ]
assocl₂₂₊⇛ : {A B C : Set ℓ} → (c : C) →
•[ A ⊎ (B ⊎ C) , inj₂ (inj₂ c) ] ⇛ •[ (A ⊎ B) ⊎ C , inj₂ c ]
assocr₁₁₊⇛ : {A B C : Set ℓ} → (a : A) →
•[ (A ⊎ B) ⊎ C , inj₁ (inj₁ a) ] ⇛ •[ A ⊎ (B ⊎ C) , inj₁ a ]
assocr₁₂₊⇛ : {A B C : Set ℓ} → (b : B) →
•[ (A ⊎ B) ⊎ C , inj₁ (inj₂ b) ] ⇛
•[ A ⊎ (B ⊎ C) , inj₂ (inj₁ b) ]
assocr₂₊⇛ : {A B C : Set ℓ} → (c : C) →
•[ (A ⊎ B) ⊎ C , inj₂ c ] ⇛ •[ A ⊎ (B ⊎ C) , inj₂ (inj₂ c) ]
-- multiplicative structure
unite⋆⇛ : {A : Set ℓ} → (a : A) → •[ ⊤ × A , (tt , a) ] ⇛ •[ A , a ]
uniti⋆⇛ : {A : Set ℓ} → (a : A) → •[ A , a ] ⇛ •[ ⊤ × A , (tt , a) ]
swap⋆⇛ : {A B : Set ℓ} → (a : A) → (b : B) →
•[ A × B , (a , b) ] ⇛ •[ B × A , (b , a) ]
assocl⋆⇛ : {A B C : Set ℓ} → (a : A) → (b : B) → (c : C) →
•[ A × (B × C) , (a , (b , c)) ] ⇛
•[ (A × B) × C , ((a , b) , c) ]
assocr⋆⇛ : {A B C : Set ℓ} → (a : A) → (b : B) → (c : C) →
•[ (A × B) × C , ((a , b) , c) ] ⇛
•[ A × (B × C) , (a , (b , c)) ]
-- distributivity
dist₁⇛ : {A B C : Set ℓ} → (a : A) → (c : C) →
•[ (A ⊎ B) × C , (inj₁ a , c) ] ⇛
•[ (A × C) ⊎ (B × C) , inj₁ (a , c) ]
dist₂⇛ : {A B C : Set ℓ} → (b : B) → (c : C) →
•[ (A ⊎ B) × C , (inj₂ b , c) ] ⇛
•[ (A × C) ⊎ (B × C) , inj₂ (b , c) ]
factor₁⇛ : {A B C : Set ℓ} → (a : A) → (c : C) →
•[ (A × C) ⊎ (B × C) , inj₁ (a , c) ] ⇛
•[ (A ⊎ B) × C , (inj₁ a , c) ]
factor₂⇛ : {A B C : Set ℓ} → (b : B) → (c : C) →
•[ (A × C) ⊎ (B × C) , inj₂ (b , c) ] ⇛
•[ (A ⊎ B) × C , (inj₂ b , c) ]
-- congruence but without sym which is provable
id⇛ : {A : Set ℓ} → (a : A) → •[ A , a ] ⇛ •[ A , a ]
trans⇛ : {A B C : Set ℓ} {a : A} {b : B} {c : C} →
(•[ A , a ] ⇛ •[ B , b ]) →
(•[ B , b ] ⇛ •[ C , c ]) →
(•[ A , a ] ⇛ •[ C , c ])
plus₁⇛ : {A B C D : Set ℓ} {a : A} {b : B} {c : C} {d : D} →
(•[ A , a ] ⇛ •[ C , c ]) →
(•[ B , b ] ⇛ •[ D , d ]) →
(•[ A ⊎ B , inj₁ a ] ⇛ •[ C ⊎ D , inj₁ c ])
plus₂⇛ : {A B C D : Set ℓ} {a : A} {b : B} {c : C} {d : D} →
(•[ A , a ] ⇛ •[ C , c ]) →
(•[ B , b ] ⇛ •[ D , d ]) →
(•[ A ⊎ B , inj₂ b ] ⇛ •[ C ⊎ D , inj₂ d ])
times⇛ : {A B C D : Set ℓ} {a : A} {b : B} {c : C} {d : D} →
(•[ A , a ] ⇛ •[ C , c ]) → (•[ B , b ] ⇛ •[ D , d ]) →
(•[ A × B , (a , b) ] ⇛ •[ C × D , (c , d) ])
--}
-- Abbreviations and small examples
{--
Path : {ℓ : Level} {A B : Set ℓ} → (a : A) → (b : B) → Set (lsuc ℓ)
Path {ℓ} {A} {B} a b = •[ A , a ] ⇛ •[ B , b ]
2Path : {ℓ : Level} {A B C D : Set ℓ} {a : A} {b : B} {c : C} {d : D} →
(p : Path a b) → (q : Path c d) → Set (lsuc (lsuc ℓ))
2Path {ℓ} {A} {B} {C} {D} {a} {b} {c} {d} p q = Path p q
-- •[ Path a b , p ] ⇛ •[ Path c d , q ]
--}
{--
_≡⟨_⟩_ : ∀ {ℓ} → {A B C : Set ℓ} (a : A) {b : B} {c : C} →
Path a b → Path b c → Path a c
_ ≡⟨ p ⟩ q = trans⇛ p q
_∎ : ∀ {ℓ} → {A : Set ℓ} (a : A) → Path a a
_∎ a = id⇛ a
test3 : {A : Set} {a : A} → Set•
test3 {A} {a} = •[ Path a a , id⇛ a ]
test4 : Set•
test4 = •[ Path ℕ ℕ , id⇛ ℕ ]
test5 : Set•
test5 = •[ Path (ℕ , Bool) (Bool , ℕ) , swap⋆⇛ ℕ Bool ]
test6 : Set•
test6 = •[ Path (tt , ℕ) ℕ , unite⋆⇛ ℕ ]
test7 : {A : Set} {a : A} → Set•
test7 {A} {a} = •[ 2Path (id⇛ a) (id⇛ a) , id⇛ (id⇛ a) ]
test8 : {A B C D : Set} {a : A} {b : B} {c : C} {d : D} →
(p : Path a b) → (q : Path c d) → Set•
test8 {A} {B} {C} {D} {a} {b} {c} {d} p q =
•[ Path (a , c) (b , d) , times⇛ p q ]
-- Propositional equality implies a path
≡Path : {ℓ : Level} {A : Set ℓ} {x y : A} → (x ≡ y) → Path x y
≡Path {ℓ} {A} {x} {.x} refl = id⇛ x
--}
------------------------------------------------------------------------------
-- Path induction
{--
pathInd : {ℓ ℓ' : Level} →
(P : {A• B• : Set• {ℓ}} → (A• ⇛ B•) → Set ℓ') →
({A• B• : Set• {ℓ}} → P (swap₁₊⇛ {ℓ} {A•} {B•})) →
pathInd : {ℓ ℓ' : Level} →
(P : {A B : Set ℓ} {a : A} {b : B} →
(•[ A , a ] ⇛ •[ B , b ]) → Set ℓ') →
({A B : Set ℓ} → (a : A) → P (swap₁₊⇛ {ℓ} {A} {B} a)) →
({A B : Set ℓ} → (b : B) → P (swap₂₊⇛ {ℓ} {A} {B} b)) →
({A B C : Set ℓ} → (a : A) → P (assocl₁₊⇛ {ℓ} {A} {B} {C} a)) →
({A B C : Set ℓ} → (b : B) → P (assocl₂₁₊⇛ {ℓ} {A} {B} {C} b)) →
({A B C : Set ℓ} → (c : C) → P (assocl₂₂₊⇛ {ℓ} {A} {B} {C} c)) →
({A B C : Set ℓ} → (a : A) → P (assocr₁₁₊⇛ {ℓ} {A} {B} {C} a)) →
({A B C : Set ℓ} → (b : B) → P (assocr₁₂₊⇛ {ℓ} {A} {B} {C} b)) →
({A B C : Set ℓ} → (c : C) → P (assocr₂₊⇛ {ℓ} {A} {B} {C} c)) →
({A : Set ℓ} → (a : A) → P (unite⋆⇛ {ℓ} {A} a)) →
({A : Set ℓ} → (a : A) → P (uniti⋆⇛ {ℓ} {A} a)) →
({A B : Set ℓ} → (a : A) → (b : B) → P (swap⋆⇛ {ℓ} {A} {B} a b)) →
({A B C : Set ℓ} → (a : A) → (b : B) → (c : C) →
P (assocl⋆⇛ {ℓ} {A} {B} {C} a b c)) →
({A B C : Set ℓ} → (a : A) → (b : B) → (c : C) →
P (assocr⋆⇛ {ℓ} {A} {B} {C} a b c)) →
({A B C : Set ℓ} → (a : A) → (c : C) → P (dist₁⇛ {ℓ} {A} {B} {C} a c)) →
({A B C : Set ℓ} → (b : B) → (c : C) → P (dist₂⇛ {ℓ} {A} {B} {C} b c)) →
({A B C : Set ℓ} → (a : A) → (c : C) → P (factor₁⇛ {ℓ} {A} {B} {C} a c)) →
({A B C : Set ℓ} → (b : B) → (c : C) → P (factor₂⇛ {ℓ} {A} {B} {C} b c)) →
({A : Set ℓ} → (a : A) → P (id⇛ {ℓ} {A} a)) →
({A B C : Set ℓ} {a : A} {b : B} {c : C} →
(p : (•[ A , a ] ⇛ •[ B , b ])) →
(q : (•[ B , b ] ⇛ •[ C , c ])) →
P p → P q → P (trans⇛ p q)) →
({A B C D : Set ℓ} {a : A} {b : B} {c : C} {d : D} →
(p : (•[ A , a ] ⇛ •[ C , c ])) →
(q : (•[ B , b ] ⇛ •[ D , d ])) →
P p → P q → P (plus₁⇛ {ℓ} {A} {B} {C} {D} {a} {b} {c} {d} p q)) →
({A B C D : Set ℓ} {a : A} {b : B} {c : C} {d : D} →
(p : (•[ A , a ] ⇛ •[ C , c ])) →
(q : (•[ B , b ] ⇛ •[ D , d ])) →
P p → P q → P (plus₂⇛ {ℓ} {A} {B} {C} {D} {a} {b} {c} {d} p q)) →
({A B C D : Set ℓ} {a : A} {b : B} {c : C} {d : D} →
(p : (•[ A , a ] ⇛ •[ C , c ])) →
(q : (•[ B , b ] ⇛ •[ D , d ])) →
P p → P q → P (times⇛ p q)) →
{A B : Set ℓ} {a : A} {b : B} → (p : •[ A , a ] ⇛ •[ B , b ]) → P p
{A• B• : Set• {ℓ}} → (p : A• ⇛ B•) → P p
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (swap₁₊⇛ a) = swap₁₊ a
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (swap₂₊⇛ b) = swap₂₊ b
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (assocl₁₊⇛ a) = assocl₁₊ a
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (assocl₂₁₊⇛ b) = assocl₂₁₊ b
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (assocl₂₂₊⇛ c) = assocl₂₂₊ c
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (assocr₁₁₊⇛ a) = assocr₁₁₊ a
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (assocr₁₂₊⇛ b) = assocr₁₂₊ b
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (assocr₂₊⇛ c) = assocr₂₊ c
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (unite⋆⇛ a) = unite⋆ a
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (uniti⋆⇛ a) = uniti⋆ a
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (swap⋆⇛ a b) = swap⋆ a b
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (assocl⋆⇛ a b c) = assocl⋆ a b c
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (assocr⋆⇛ a b c) = assocr⋆ a b c
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (dist₁⇛ a c) = dist₁ a c
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (dist₂⇛ b c) = dist₂ b c
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (factor₁⇛ a c) = factor₁ a c
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (factor₂⇛ b c) = factor₂ b c
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (id⇛ a) = cid a
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (trans⇛ p q) =
ctrans p q
(pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times p)
(pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times q)
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (plus₁⇛ p q) =
plus₁ p q
(pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times p)
(pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times q)
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (plus₂⇛ p q) =
plus₂ p q
(pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times p)
(pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times q)
pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times (times⇛ p q) =
times p q
(pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times p)
(pathInd P swap₁₊ swap₂₊
assocl₁₊ assocl₂₁₊ assocl₂₂₊ assocr₁₁₊ assocr₁₂₊ assocr₂₊
unite⋆ uniti⋆ swap⋆ assocl⋆ assocr⋆ dist₁ dist₂ factor₁ factor₂
cid ctrans plus₁ plus₂ times q)
pathInd P swap₁₊ swap₁₊⇛ = swap₁₊
--}
------------------------------------------------------------------------------
-- Groupoid structure (emerging...)
{--
sym⇛ : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → Path a b → Path b a
sym⇛ {ℓ} {A} {B} {a} {b} p =
(pathInd
(λ {A} {B} {a} {b} p → Path b a)
swap₂₊⇛ swap₁₊⇛
assocr₁₁₊⇛ assocr₁₂₊⇛ assocr₂₊⇛ assocl₁₊⇛ assocl₂₁₊⇛ assocl₂₂₊⇛
uniti⋆⇛ unite⋆⇛ (λ a b → swap⋆⇛ b a)
assocr⋆⇛ assocl⋆⇛ factor₁⇛ factor₂⇛ dist₁⇛ dist₂⇛
id⇛ (λ _ _ p' q' → trans⇛ q' p'))
(λ _ _ p' q' → plus₁⇛ p' q') (λ _ _ p' q' → plus₂⇛ p' q')
(λ _ _ p' q' → times⇛ p' q')
{A} {B} {a} {b} p
test9 : {A : Set} {a : A} → Path (a , (tt , a)) ((tt , a) , a)
test9 {A} {a} = sym⇛ (times⇛ (unite⋆⇛ a) (uniti⋆⇛ a))
-- evaluates to (times⇛ (uniti⋆⇛ a) (unite⋆⇛ a)
--}
{--
idright : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} {p : Path a b} →
2Path (trans⇛ p (id⇛ b)) p
idright {ℓ} {A} {B} {a} {b} {p} =
(pathInd
(λ {A} {B} {a} {b} p → 2Path (trans⇛ p (id⇛ b)) p)
(λ {A} {B} a₁ → {!!})
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!})
{A} {B} {a} {b} p
aptransL : {ℓ : Level} {A B C : Set ℓ} {a : A} {b : B} {c : C} →
(p q : Path a b) → (r : Path b c) → (α : 2Path p q) →
2Path (trans⇛ p r) (trans⇛ q r)
aptransL {ℓ} {A} {B} {C} {a} {b} {c} p q r α =
(pathInd
(λ {B} {C} {b} {c} r → (A : Set ℓ) → (a : A) → (p q : Path a b) →
(α : 2Path p q) → 2Path (trans⇛ p r) (trans⇛ q r))
(λ a₁ A₂ a₂ p₁ q₁ α₁ → {!!})
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!}
{!!})
{B} {C} {b} {c} r A a p q α
symsym : {ℓ : Level} {A B : Set ℓ} {a : A} {b : B} → (p : Path a b) →
2Path (sym⇛ (sym⇛ p)) p
symsym {ℓ} {A} {B} {a} {b} p =
(pathInd
(λ {A} {B} {a} {b} p → 2Path (sym⇛ (sym⇛ p)) p)
(λ a → id⇛ (swap₁₊⇛ a))
(λ b → id⇛ (swap₂₊⇛ b))
(λ a → id⇛ (assocl₁₊⇛ a))
(λ b → id⇛ (assocl₂₁₊⇛ b))
(λ c → id⇛ (assocl₂₂₊⇛ c))
(λ a → id⇛ (assocr₁₁₊⇛ a))
(λ b → id⇛ (assocr₁₂₊⇛ b))
(λ c → id⇛ (assocr₂₊⇛ c))
(λ a → id⇛ (unite⋆⇛ a))
(λ a → id⇛ (uniti⋆⇛ a))
(λ a b → id⇛ (swap⋆⇛ a b))
(λ a b c → id⇛ (assocl⋆⇛ a b c))
(λ a b c → id⇛ (assocr⋆⇛ a b c))
(λ a c → id⇛ (dist₁⇛ a c))
(λ b c → id⇛ (dist₂⇛ b c))
(λ a c → id⇛ (factor₁⇛ a c))
(λ b c → id⇛ (factor₂⇛ b c))
(λ a → id⇛ (id⇛ a))
(λ p q α β → {!!})
(λ p q α β → {!!})
(λ p q α β → {!!})
(λ p q α β → {!!}))
{A} {B} {a} {b} p
--}
------------------------------------------------------------------------------
{-- old stuff which we might need again
idright : {A B : Set} {a : A} {b : B} {p : •[ A , a ] ⇛ •[ B , b ]} →
(trans⇛ p (id⇛ {B} {b})) 2⇛ p
idright = 2Path id⇛ id⇛
idleft : {A B : Set} {a : A} {b : B} {p : •[ A , a ] ⇛ •[ B , b ]} →
(trans⇛ (id⇛ {A} {a}) p) 2⇛ p
idleft = 2Path id⇛ id⇛
assoc : {A B C D : Set} {a : A} {b : B} {c : C} {d : D}
{p : •[ A , a ] ⇛ •[ B , b ]}
{q : •[ B , b ] ⇛ •[ C , c ]}
{r : •[ C , c ] ⇛ •[ D , d ]} →
(trans⇛ p (trans⇛ q r)) 2⇛ (trans⇛ (trans⇛ p q) r)
assoc = 2Path id⇛ id⇛
bifunctorid⋆ : {A B : Set} {a : A} {b : B} →
(times⇛ (id⇛ {A} {a}) (id⇛ {B} {b})) 2⇛ (id⇛ {A × B} {(a , b)})
bifunctorid⋆ = 2Path id⇛ id⇛
bifunctorid₊₁ : {A B : Set} {a : A} →
(plus₁⇛ {A} {B} {A} {B} (id⇛ {A} {a})) 2⇛ (id⇛ {A ⊎ B} {inj₁ a})
bifunctorid₊₁ = 2Path id⇛ id⇛
bifunctorid₊₂ : {A B : Set} {b : B} →
(plus₂⇛ {A} {B} {A} {B} (id⇛ {B} {b})) 2⇛ (id⇛ {A ⊎ B} {inj₂ b})
bifunctorid₊₂ = 2Path id⇛ id⇛
bifunctorC⋆ : {A B C D E F : Set}
{a : A} {b : B} {c : C} {d : D} {e : E} {f : F}
{p : •[ A , a ] ⇛ •[ B , b ]}
{q : •[ B , b ] ⇛ •[ C , c ]}
{r : •[ D , d ] ⇛ •[ E , e ]}
{s : •[ E , e ] ⇛ •[ F , f ]} →
(trans⇛ (times⇛ p r) (times⇛ q s)) 2⇛ (times⇛ (trans⇛ p q) (trans⇛ r s))
bifunctorC⋆ = 2Path id⇛ id⇛
bifunctorC₊₁₁ : {A B C D E F : Set}
{a : A} {b : B} {c : C}
{p : •[ A , a ] ⇛ •[ B , b ]}
{q : •[ B , b ] ⇛ •[ C , c ]} →
(trans⇛ (plus₁⇛ {A} {D} {B} {E} p) (plus₁⇛ {B} {E} {C} {F} q)) 2⇛
(plus₁⇛ {A} {D} {C} {F} (trans⇛ p q))
bifunctorC₊₁₁ = 2Path id⇛ id⇛
bifunctorC₊₂₂ : {A B C D E F : Set}
{d : D} {e : E} {f : F}
{r : •[ D , d ] ⇛ •[ E , e ]}
{s : •[ E , e ] ⇛ •[ F , f ]} →
(trans⇛ (plus₂⇛ {A} {D} {B} {E} r) (plus₂⇛ {B} {E} {C} {F} s)) 2⇛
(plus₂⇛ {A} {D} {C} {F} (trans⇛ r s))
bifunctorC₊₂₂ = 2Path id⇛ id⇛
triangle : {A B : Set} {a : A} {b : B} →
(trans⇛ (assocr⋆⇛ {A} {⊤} {B} {a} {tt} {b}) (times⇛ id⇛ unite⋆⇛)) 2⇛
(times⇛ (trans⇛ swap⋆⇛ unite⋆⇛) id⇛)
triangle = 2Path id⇛ id⇛
-- Now interpret a path (x ⇛ y) as a value of type (1/x , y)
Recip : {A : Set} → (x : • A) → Set₁
Recip {A} x = (x ⇛ x)
η : {A : Set} {x : • A} → ⊤ → Recip x × • A
η {A} {x} tt = (id⇛ x , x)
lower : {A : Set} {x : • A} → x ⇛ x -> ⊤
lower c = tt
-- The problem here is that we can't assert that y == x.
ε : {A : Set} {x : • A} → Recip x × • A → ⊤
ε {A} {x} (rx , y) = lower (id⇛ ( ↑ (fun (ap rx) (focus y)) )) -- makes insufficient sense
apr : {A B : Set} {x : • A} {y : • B} → (x ⇛ y) → Recip y → Recip x
apr {A} {B} {x} {y} q ry = trans⇛ q (trans⇛ ry (sym⇛ q))
x
≡⟨ q ⟩
y
≡⟨ ry ⟩
y
≡⟨ sym⇛ q ⟩
x ∎
ε : {A B : Set} {x : A} {y : B} → Recip x → Singleton y → x ⇛ y
ε rx (singleton y) = rx y
pathV : {A B : Set} {x : A} {y : B} → (x ⇛ y) → Recip x × Singleton y
pathV unite₊⇛ = {!!}
pathV uniti₊⇛ = {!!}
-- swap₁₊⇛ : {A B : Set} {x : A} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₁ x) (inj₂ x)
pathV (swap₁₊⇛ {A} {B} {x}) = ((λ x' → {!!}) , singleton (inj₂ x))
pathV swap₂₊⇛ = {!!}
pathV assocl₁₊⇛ = {!!}
pathV assocl₂₁₊⇛ = {!!}
pathV assocl₂₂₊⇛ = {!!}
pathV assocr₁₁₊⇛ = {!!}
pathV assocr₁₂₊⇛ = {!!}
pathV assocr₂₊⇛ = {!!}
pathV unite⋆⇛ = {!!}
pathV uniti⋆⇛ = {!!}
pathV swap⋆⇛ = {!!}
pathV assocl⋆⇛ = {!!}
pathV assocr⋆⇛ = {!!}
pathV dist₁⇛ = {!!}
pathV dist₂⇛ = {!!}
pathV factor₁⇛ = {!!}
pathV factor₂⇛ = {!!}
pathV dist0⇛ = {!!}
pathV factor0⇛ = {!!}
pathV {A} {.A} {x} (id⇛ .x) = {!!}
pathV (sym⇛ p) = {!!}
pathV (trans⇛ p p₁) = {!!}
pathV (plus₁⇛ p) = {!!}
pathV (plus₂⇛ p) = {!!}
pathV (times⇛ p p₁) = {!!}
-- these are individual paths so to speak
-- should we represent a path like swap+ as a family explicitly:
-- swap+ : (x : A) -> x ⇛ swapF x
-- I guess we can: swap+ : (x : A) -> case x of inj1 -> swap1 x else swap2 x
If A={x0,x1,x2}, 1/A has three values:
(x0<-x0, x0<-x1, x0<-x2)
(x1<-x0, x1<-x1, x1<-x2)
(x2<-x0, x2<-x1, x2<-x2)
It is a fake choice between x0, x1, and x2 (some negative information). You base
yourself at x0 for example and enforce that any other value can be mapped to x0.
So think of a value of type 1/A as an uncertainty about which value of A we
have. It could be x0, x1, or x2 but at the end it makes no difference. There is
no choice.
You can manipulate a value of type 1/A (x0<-x0, x0<-x1, x0<-x2) by with a
path to some arbitrary path to b0 for example:
(b0<-x0<-x0, b0<-x0<-x1, b0<-x0<-x2)
eta_3 will give (x0<-x0, x0<-x1, x0<-x2, x0) for example but any other
combination is equivalent.
epsilon_3 will take (x0<-x0, x0<-x1, x0<-x2) and one actual xi which is now
certain; we can resolve our previous uncertainty by following the path from
xi to x0 thus eliminating the fake choice we seemed to have.
Explain connection to negative information.
Knowing head or tails is 1 bits. Giving you a choice between heads and tails
and then cooking this so that heads=tails takes away your choice.
-- transp⇛ : {A B : Set} {x y : • A} →
-- (f : A → B) → x ⇛ y → ↑ (f (focus x)) ⇛ ↑ (f (focus y))
-- Morphism of pointed space: contains a path!
record _⟶_ {A B : Set} (pA : • A) (pB : • B) : Set₁ where
field
fun : A → B
eq : ↑ (fun (focus pA)) ⇛ pB
open _⟶_
_○_ : {A B C : Set} {pA : • A} {pB : • B} {pC : • C} → pA ⟶ pB → pB ⟶ pC → pA ⟶ pC
f ○ g = record { fun = λ x → (fun g) ((fun f) x) ; eq = trans⇛ (transp⇛ (fun g) (eq f)) (eq g)}
mutual
ap : {A B : Set} {x : • A} {y : • B} → x ⇛ y → x ⟶ y
ap {y = y} unite₊⇛ = record { fun = λ { (inj₁ ())
; (inj₂ x) → x } ; eq = id⇛ y }
ap uniti₊⇛ (singleton x) = singleton (inj₂ x)
ap (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₁ x)) = singleton (inj₂ x)
ap (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₂ y)) = singleton (inj₁ y)
ap (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) =
singleton (inj₁ (inj₁ x))
ap (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) =
singleton (inj₁ (inj₂ y))
ap (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) =
singleton (inj₂ z)
ap (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) =
singleton (inj₁ x)
ap (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) =
singleton (inj₂ (inj₁ y))
ap (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) =
singleton (inj₂ (inj₂ z))
ap {.(⊤ × A)} {A} {.(tt , x)} {x} unite⋆⇛ (singleton .(tt , x)) =
singleton x
ap uniti⋆⇛ (singleton x) = singleton (tt , x)
ap (swap⋆⇛ {A} {B} {x} {y}) (singleton .(x , y)) = singleton (y , x)
ap (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) =
singleton ((x , y) , z)
ap (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) =
singleton (x , (y , z))
ap (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) =
singleton (inj₁ (x , z))
ap (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) =
singleton (inj₂ (y , z))
ap (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) =
singleton (inj₁ x , z)
ap (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) =
singleton (inj₂ y , z)
ap {.(⊥ × A)} {.⊥} {.(• , x)} {•} (dist0⇛ {A} {.•} {x}) (singleton .(• , x)) =
singleton •
ap factor0⇛ (singleton ())
ap {x = x} (id⇛ .x) = record { fun = λ x → x; eq = id⇛ x }
ap (sym⇛ c) = apI c
ap (trans⇛ c₁ c₂) = (ap c₁) ○ (ap c₂)
ap (transp⇛ f a) = record { fun = λ x → x; eq = transp⇛ f a }
ap (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ x))
with ap c (singleton x)
... | singleton .z = singleton (inj₁ z)
ap (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ y))
with ap c (singleton y)
... | singleton .w = singleton (inj₂ w)
ap (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(x , y))
with ap c₁ (singleton x) | ap c₂ (singleton y)
... | singleton .z | singleton .w = singleton (z , w)
apI : {A B : Set} {x : • A} {y : • B} → x ⇛ y → y ⟶ x
apI {y = y} unite₊⇛ = record { fun = inj₂; eq = id⇛ (↑ (inj₂ (focus y))) }
apI {A} {.(⊥ ⊎ A)} {x} uniti₊⇛ (singleton .(inj₂ x)) = singleton x
apI (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₂ x)) = singleton (inj₁ x)
apI (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₁ y)) = singleton (inj₂ y)
apI (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) =
singleton (inj₁ x)
apI (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) =
singleton (inj₂ (inj₁ y))
apI (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) =
singleton (inj₂ (inj₂ z))
apI (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) =
singleton (inj₁ (inj₁ x))
apI (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) =
singleton (inj₁ (inj₂ y))
apI (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) =
singleton (inj₂ z)
apI unite⋆⇛ (singleton x) = singleton (tt , x)
apI {A} {.(⊤ × A)} {x} uniti⋆⇛ (singleton .(tt , x)) = singleton x
apI (swap⋆⇛ {A} {B} {x} {y}) (singleton .(y , x)) = singleton (x , y)
apI (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) =
singleton (x , (y , z))
apI (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) =
singleton ((x , y) , z)
apI (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) =
singleton (inj₁ x , z)
apI (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) =
singleton (inj₂ y , z)
apI (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) =
singleton (inj₁ (x , z))
apI (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) =
singleton (inj₂ (y , z))
apI dist0⇛ (singleton ())
apI {.⊥} {.(⊥ × A)} {•} (factor0⇛ {A} {.•} {x}) (singleton .(• , x)) =
singleton •
apI {x = x} (id⇛ .x) = record { fun = λ x → x; eq = id⇛ x }
apI (sym⇛ c) = ap c
apI (trans⇛ c₁ c₂) = (apI c₂) ○ (apI c₁)
apI (transp⇛ f a) = record { fun = λ x → x; eq = transp⇛ f (sym⇛ a) }
apI (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ z))
with apI c (singleton z)
... | singleton .x = singleton (inj₁ x)
apI (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ w))
with apI c (singleton w)
... | singleton .y = singleton (inj₂ y)
apI (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(z , w))
with apI c₁ (singleton z) | apI c₂ (singleton w)
... | singleton .x | singleton .y = singleton (x , y)
--}
--}
| {
"alphanum_fraction": 0.4637303852,
"avg_line_length": 38.9986091794,
"ext": "agda",
"hexsha": "00a304048ad64bfbd33f4e06b13c55e2911e9419",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Paths.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Paths.agda",
"max_line_length": 95,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Paths.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 14352,
"size": 28040
} |
module STLC.Coquand.Substitution where
open import STLC.Coquand.Renaming public
open import Category
--------------------------------------------------------------------------------
-- Substitutions
infix 3 _⊢⋆_
data _⊢⋆_ : 𝒞 → 𝒞 → Set
where
∅ : ∀ {Γ} → Γ ⊢⋆ ∅
_,_ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) (M : Γ ⊢ A)
→ Γ ⊢⋆ Ξ , A
putₛ : ∀ {Ξ Γ} → (∀ {A} → Ξ ⊢ A → Γ ⊢ A) → Γ ⊢⋆ Ξ
putₛ {∅} f = ∅
putₛ {Γ , A} f = putₛ (λ M → f (wk M)) , f 0
getₛ : ∀ {Γ Ξ A} → Γ ⊢⋆ Ξ → Ξ ∋ A → Γ ⊢ A
getₛ (σ , M) zero = M
getₛ (σ , M) (suc i) = getₛ σ i
wkₛ : ∀ {A Γ Ξ} → Γ ⊢⋆ Ξ → Γ , A ⊢⋆ Ξ
wkₛ ∅ = ∅
wkₛ (σ , M) = wkₛ σ , wk M
liftₛ : ∀ {A Γ Ξ} → Γ ⊢⋆ Ξ → Γ , A ⊢⋆ Ξ , A
liftₛ σ = wkₛ σ , 0
idₛ : ∀ {Γ} → Γ ⊢⋆ Γ
idₛ {∅} = ∅
idₛ {Γ , A} = liftₛ idₛ
sub : ∀ {Γ Ξ A} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A
sub σ (𝓋 i) = getₛ σ i
sub σ (ƛ M) = ƛ (sub (liftₛ σ) M)
sub σ (M ∙ N) = sub σ M ∙ sub σ N
cut : ∀ {Γ A B} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B
cut M N = sub (idₛ , M) N
-- NOTE: _●_ = sub⋆
_●_ : ∀ {Γ Ξ Φ} → Γ ⊢⋆ Ξ → Ξ ⊢⋆ Φ → Γ ⊢⋆ Φ
σ₁ ● ∅ = ∅
σ₁ ● (σ₂ , M) = σ₁ ● σ₂ , sub σ₁ M
--------------------------------------------------------------------------------
-- (wkgetₛ)
natgetₛ : ∀ {Γ Ξ A B} → (σ : Γ ⊢⋆ Ξ) (i : Ξ ∋ A)
→ getₛ (wkₛ {B} σ) i ≡ (wk ∘ getₛ σ) i
natgetₛ (σ , M) zero = refl
natgetₛ (σ , M) (suc i) = natgetₛ σ i
idgetₛ : ∀ {Γ A} → (i : Γ ∋ A)
→ getₛ idₛ i ≡ 𝓋 i
idgetₛ zero = refl
idgetₛ (suc i) = natgetₛ idₛ i
⦙ wk & idgetₛ i
⦙ 𝓋 & ( natgetᵣ idᵣ i
⦙ suc & idgetᵣ i
)
idsub : ∀ {Γ A} → (M : Γ ⊢ A)
→ sub idₛ M ≡ M
idsub (𝓋 i) = idgetₛ i
idsub (ƛ M) = ƛ & idsub M
idsub (M ∙ N) = _∙_ & idsub M
⊗ idsub N
--------------------------------------------------------------------------------
⌊_⌋ : ∀ {Γ Γ′} → Γ′ ∋⋆ Γ → Γ′ ⊢⋆ Γ
⌊ ∅ ⌋ = ∅
⌊ η , i ⌋ = ⌊ η ⌋ , 𝓋 i
-- NOTE: _◐_ = getₛ⋆
_◐_ : ∀ {Γ Ξ Ξ′} → Γ ⊢⋆ Ξ′ → Ξ′ ∋⋆ Ξ → Γ ⊢⋆ Ξ
σ ◐ η = σ ● ⌊ η ⌋
-- NOTE: _◑_ = ren⋆
_◑_ : ∀ {Γ Γ′ Ξ} → Γ′ ∋⋆ Γ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ
η ◑ σ = ⌊ η ⌋ ● σ
⌊get⌋ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) (i : Γ ∋ A)
→ getₛ ⌊ η ⌋ i ≡ 𝓋 (getᵣ η i)
⌊get⌋ (η , j) zero = refl
⌊get⌋ (η , j) (suc i) = ⌊get⌋ η i
⌊wk⌋ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ)
→ wkₛ {A} ⌊ η ⌋ ≡ ⌊ wkᵣ η ⌋
⌊wk⌋ ∅ = refl
⌊wk⌋ (η , i) = (wkₛ ⌊ η ⌋ ,_) & (𝓋 & natgetᵣ idᵣ i)
⦙ _,_ & ⌊wk⌋ η
⊗ 𝓋 ∘ suc & idgetᵣ i
⌊lift⌋ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ)
→ liftₛ {A} ⌊ η ⌋ ≡ ⌊ liftᵣ η ⌋
⌊lift⌋ η = (_, 0) & ⌊wk⌋ η
⌊id⌋ : ∀ {Γ} → idₛ {Γ} ≡ ⌊ idᵣ ⌋
⌊id⌋ {∅} = refl
⌊id⌋ {Γ , A} = (_, 0) & ( wkₛ & ⌊id⌋
⦙ ⌊wk⌋ idᵣ
)
⌊sub⌋ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) (M : Γ ⊢ A)
→ sub ⌊ η ⌋ M ≡ ren η M
⌊sub⌋ η (𝓋 i) = ⌊get⌋ η i
⌊sub⌋ η (ƛ M) = ƛ & ( (λ σ → sub σ M) & ⌊lift⌋ η
⦙ ⌊sub⌋ (liftᵣ η) M
)
⌊sub⌋ η (M ∙ N) = _∙_ & ⌊sub⌋ η M
⊗ ⌊sub⌋ η N
⌊○⌋ : ∀ {Γ Γ′ Γ″} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ)
→ ⌊ η₁ ○ η₂ ⌋ ≡ ⌊ η₁ ⌋ ● ⌊ η₂ ⌋
⌊○⌋ η₁ ∅ = refl
⌊○⌋ η₁ (η₂ , i) = _,_ & ⌊○⌋ η₁ η₂
⊗ (⌊get⌋ η₁ i ⁻¹)
--------------------------------------------------------------------------------
zap◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Γ ⊢ A)
→ (σ , M) ◐ wkᵣ η ≡ σ ◐ η
zap◐ σ ∅ M = refl
zap◐ σ (η , i) M = (_, getₛ σ i) & zap◐ σ η M
rid◐ : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ)
→ σ ◐ idᵣ ≡ σ
rid◐ ∅ = refl
rid◐ (σ , M) = (_, M) & ( zap◐ σ idᵣ M
⦙ rid◐ σ
)
--------------------------------------------------------------------------------
get◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (i : Ξ ∋ A)
→ getₛ (σ ◐ η) i ≡ (getₛ σ ∘ getᵣ η) i
get◐ σ (η , j) zero = refl
get◐ σ (η , j) (suc i) = get◐ σ η i
wk◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ)
→ wkₛ {A} (σ ◐ η) ≡ wkₛ σ ◐ η
wk◐ σ ∅ = refl
wk◐ σ (η , i) = _,_ & wk◐ σ η
⊗ (natgetₛ σ i ⁻¹)
lift◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ)
→ liftₛ {A} (σ ◐ η) ≡ liftₛ σ ◐ liftᵣ η
lift◐ σ η = (_, 0) & ( wk◐ σ η
⦙ zap◐ (wkₛ σ) η 0 ⁻¹
)
wkrid◐ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ)
→ wkₛ {A} σ ◐ idᵣ ≡ wkₛ σ
wkrid◐ σ = wk◐ σ idᵣ ⁻¹
⦙ wkₛ & rid◐ σ
liftwkrid◐ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ)
→ liftₛ {A} σ ◐ wkᵣ idᵣ ≡ wkₛ σ
liftwkrid◐ σ = zap◐ (wkₛ σ) idᵣ 0
⦙ wkrid◐ σ
mutual
sub◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Ξ ⊢ A)
→ sub (σ ◐ η) M ≡ (sub σ ∘ ren η) M
sub◐ σ η (𝓋 i) = get◐ σ η i
sub◐ σ η (ƛ M) = ƛ & sublift◐ σ η M
sub◐ σ η (M ∙ N) = _∙_ & sub◐ σ η M
⊗ sub◐ σ η N
sublift◐ : ∀ {Γ Ξ Ξ′ A B} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Ξ , B ⊢ A)
→ sub (liftₛ {B} (σ ◐ η)) M ≡
(sub (liftₛ σ) ∘ ren (liftᵣ η)) M
sublift◐ σ η M = (λ σ′ → sub σ′ M) & lift◐ σ η
⦙ sub◐ (liftₛ σ) (liftᵣ η) M
subwk◐ : ∀ {Γ Ξ Ξ′ A B} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Ξ ⊢ A)
→ sub (wkₛ {B} (σ ◐ η)) M ≡
(sub (wkₛ σ) ∘ ren η) M
subwk◐ σ η M = (λ σ′ → sub σ′ M) & wk◐ σ η
⦙ sub◐ (wkₛ σ) η M
subliftwk◐ : ∀ {Γ Ξ Ξ′ A B} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Ξ ⊢ A)
→ sub (wkₛ {B} (σ ◐ η)) M ≡
(sub (liftₛ σ) ∘ ren (wkᵣ η)) M
subliftwk◐ σ η M = (λ σ′ → sub σ′ M) & ( wk◐ σ η
⦙ zap◐ (wkₛ σ) η 0 ⁻¹
)
⦙ sub◐ (liftₛ σ) (wkᵣ η) M
--------------------------------------------------------------------------------
zap◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (i : Γ′ ∋ A)
→ (η , i) ◑ wkₛ σ ≡ η ◑ σ
zap◑ η ∅ i = refl
zap◑ η (σ , j) i = _,_ & zap◑ η σ i
⊗ ( sub◐ (⌊ η ⌋ , 𝓋 i) (wkᵣ idᵣ) j ⁻¹
⦙ (λ σ′ → sub σ′ j)
& ( zap◐ ⌊ η ⌋ idᵣ (𝓋 i)
⦙ rid◐ ⌊ η ⌋
)
)
lid◑ : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ)
→ idᵣ ◑ σ ≡ σ
lid◑ ∅ = refl
lid◑ (σ , M) = _,_ & lid◑ σ
⊗ ( (λ σ′ → sub σ′ M) & ⌊id⌋ ⁻¹
⦙ idsub M
)
--------------------------------------------------------------------------------
zap● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Γ ⊢ A)
→ (σ₁ , M) ● wkₛ σ₂ ≡ σ₁ ● σ₂
zap● σ₁ ∅ M = refl
zap● σ₁ (σ₂ , N) M = _,_ & zap● σ₁ σ₂ M
⊗ ( sub◐ (σ₁ , M) (wkᵣ idᵣ) N ⁻¹
⦙ (λ σ′ → sub σ′ N)
& ( zap◐ σ₁ idᵣ M
⦙ rid◐ σ₁
)
)
lid● : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ)
→ idₛ ● σ ≡ σ
lid● ∅ = refl
lid● (σ , M) = _,_ & lid● σ
⊗ idsub M
rid● : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ)
→ σ ● idₛ ≡ σ
rid● σ = (σ ●_) & ⌊id⌋ ⦙ rid◐ σ
--------------------------------------------------------------------------------
get◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (i : Ξ ∋ A)
→ getₛ (η ◑ σ) i ≡ (ren η ∘ getₛ σ) i
get◑ η (σ , M) zero = ⌊sub⌋ η M
get◑ η (σ , M) (suc i) = get◑ η σ i
wk◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ)
→ wkₛ {A} (η ◑ σ) ≡ wkᵣ η ◑ σ
wk◑ η ∅ = refl
wk◑ η (σ , M) = _,_ & wk◑ η σ
⊗ ( ren (wkᵣ idᵣ) & ⌊sub⌋ η M
⦙ ren○ (wkᵣ idᵣ) η M ⁻¹
⦙ (λ η′ → ren η′ M) & wklid○ η
⦙ ⌊sub⌋ (wkᵣ η) M ⁻¹
)
lift◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ)
→ liftₛ {A} (η ◑ σ) ≡ liftᵣ η ◑ liftₛ σ
lift◑ η σ = (_, 0) & ( wk◑ η σ
⦙ zap● ⌊ wkᵣ η ⌋ σ 0 ⁻¹
)
wklid◑ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ)
→ wkᵣ {A} idᵣ ◑ σ ≡ wkₛ σ
wklid◑ σ = wk◑ idᵣ σ ⁻¹
⦙ wkₛ & lid◑ σ
liftwklid◑ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ)
→ (liftᵣ {A} idᵣ ◑ wkₛ σ) ≡ wkₛ σ
liftwklid◑ σ = zap◑ (wkᵣ idᵣ) σ 0
⦙ wklid◑ σ
mutual
sub◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ ⊢ A)
→ sub (η ◑ σ) M ≡ (ren η ∘ sub σ) M
sub◑ η σ (𝓋 i) = get◑ η σ i
sub◑ η σ (ƛ M) = ƛ & sublift◑ η σ M
sub◑ η σ (M ∙ N) = _∙_ & sub◑ η σ M
⊗ sub◑ η σ N
sublift◑ : ∀ {Γ Γ′ Ξ A B} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ , B ⊢ A)
→ sub (liftₛ {B} (η ◑ σ)) M ≡
(ren (liftᵣ η) ∘ sub (liftₛ σ)) M
sublift◑ η σ M = (λ σ′ → sub σ′ M) & lift◑ η σ
⦙ sub◑ (liftᵣ η) (liftₛ σ) M
subwk◑ : ∀ {Γ Γ′ Ξ A B} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ ⊢ A)
→ sub (wkₛ {B} (η ◑ σ)) M ≡
(ren (wkᵣ η) ∘ sub σ) M
subwk◑ η σ M = (λ σ′ → sub σ′ M) & wk◑ η σ
⦙ sub◑ (wkᵣ η) σ M
subliftwk◑ : ∀ {Γ Γ′ Ξ A B} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ ⊢ A)
→ sub (wkₛ {B} (η ◑ σ)) M ≡
(ren (liftᵣ η) ∘ sub (wkₛ σ)) M
subliftwk◑ η σ M = (λ σ′ → sub σ′ M) & ( wk◑ η σ
⦙ zap◑ (wkᵣ η) σ 0 ⁻¹
)
⦙ sub◑ (liftᵣ η) (wkₛ σ) M
--------------------------------------------------------------------------------
get● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (i : Φ ∋ A)
→ getₛ (σ₁ ● σ₂) i ≡ (sub σ₁ ∘ getₛ σ₂) i
get● σ₁ (σ₂ , M) zero = refl
get● σ₁ (σ₂ , M) (suc i) = get● σ₁ σ₂ i
wk● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ)
→ wkₛ {A} (σ₁ ● σ₂) ≡ wkₛ σ₁ ● σ₂
wk● σ₁ ∅ = refl
wk● σ₁ (σ₂ , M) = _,_ & wk● σ₁ σ₂
⊗ ( sub◑ (wkᵣ idᵣ) σ₁ M ⁻¹
⦙ (λ σ′ → sub σ′ M) & wklid◑ σ₁
)
lift● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ)
→ liftₛ {A} (σ₁ ● σ₂) ≡ liftₛ σ₁ ● liftₛ σ₂
lift● σ₁ σ₂ = (_, 0) & ( wk● σ₁ σ₂
⦙ zap● (wkₛ σ₁) σ₂ 0 ⁻¹
)
wklid● : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ)
→ wkₛ {A} idₛ ● σ ≡ wkₛ σ
wklid● σ = wk● idₛ σ ⁻¹
⦙ wkₛ & lid● σ
wkrid● : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ)
→ wkₛ {A} σ ● idₛ ≡ wkₛ σ
wkrid● σ = wk● σ idₛ ⁻¹
⦙ wkₛ & rid● σ
liftwkrid● : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ)
→ liftₛ {A} σ ● wkₛ idₛ ≡ wkₛ σ
liftwkrid● σ = zap● (wkₛ σ) idₛ 0
⦙ wkrid● σ
mutual
sub● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A)
→ sub (σ₁ ● σ₂) M ≡ (sub σ₁ ∘ sub σ₂) M
sub● σ₁ σ₂ (𝓋 i) = get● σ₁ σ₂ i
sub● σ₁ σ₂ (ƛ M) = ƛ & sublift● σ₁ σ₂ M
sub● σ₁ σ₂ (M ∙ N) = _∙_ & sub● σ₁ σ₂ M
⊗ sub● σ₁ σ₂ N
sublift● : ∀ {Γ Ξ Φ A B} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ , B ⊢ A)
→ sub (liftₛ {B} (σ₁ ● σ₂)) M ≡
(sub (liftₛ σ₁) ∘ sub (liftₛ σ₂)) M
sublift● σ₁ σ₂ M = (λ σ′ → sub σ′ M) & lift● σ₁ σ₂
⦙ sub● (liftₛ σ₁) (liftₛ σ₂) M
subwk● : ∀ {Γ Ξ Φ A B} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A)
→ sub (wkₛ {B} (σ₁ ● σ₂)) M ≡
(sub (wkₛ σ₁) ∘ sub σ₂) M
subwk● σ₁ σ₂ M = (λ σ′ → sub σ′ M) & wk● σ₁ σ₂
⦙ sub● (wkₛ σ₁) σ₂ M
subliftwk● : ∀ {Γ Ξ Φ A B} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A)
→ sub (wkₛ {B} (σ₁ ● σ₂)) M ≡
(sub (liftₛ σ₁) ∘ sub (wkₛ σ₂)) M
subliftwk● σ₁ σ₂ M = (λ σ′ → sub σ′ M) & ( wk● σ₁ σ₂
⦙ zap● (wkₛ σ₁) σ₂ 0 ⁻¹
)
⦙ sub● (liftₛ σ₁) (wkₛ σ₂) M
--------------------------------------------------------------------------------
comp◐○ : ∀ {Γ Ξ Ξ′ Ξ″} → (σ : Γ ⊢⋆ Ξ″) (η₁ : Ξ″ ∋⋆ Ξ′) (η₂ : Ξ′ ∋⋆ Ξ)
→ σ ◐ (η₁ ○ η₂) ≡ (σ ◐ η₁) ◐ η₂
comp◐○ σ η₁ ∅ = refl
comp◐○ σ η₁ (η₂ , i) = _,_ & comp◐○ σ η₁ η₂
⊗ (get◐ σ η₁ i ⁻¹)
comp◑○ : ∀ {Γ Γ′ Γ″ Ξ} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ)
→ η₁ ◑ (η₂ ◑ σ) ≡ (η₁ ○ η₂) ◑ σ
comp◑○ η₁ η₂ ∅ = refl
comp◑○ η₁ η₂ (σ , M) = _,_ & comp◑○ η₁ η₂ σ
⊗ ( sub● ⌊ η₁ ⌋ ⌊ η₂ ⌋ M ⁻¹
⦙ (λ σ′ → sub σ′ M)
& ⌊○⌋ η₁ η₂ ⁻¹
)
comp◑◐ : ∀ {Γ Γ′ Ξ Ξ′} → (η₁ : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ′) (η₂ : Ξ′ ∋⋆ Ξ)
→ η₁ ◑ (σ ◐ η₂) ≡ (η₁ ◑ σ) ◐ η₂
comp◑◐ η₁ σ ∅ = refl
comp◑◐ η₁ σ (η₂ , i) = _,_ & comp◑◐ η₁ σ η₂
⊗ ( ⌊sub⌋ η₁ (getₛ σ i)
⦙ get◑ η₁ σ i ⁻¹
)
comp◑● : ∀ {Γ Γ′ Ξ Φ} → (η : Γ′ ∋⋆ Γ) (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ)
→ η ◑ (σ₁ ● σ₂) ≡ (η ◑ σ₁) ● σ₂
comp◑● η σ₁ ∅ = refl
comp◑● η σ₁ (σ₂ , M) = _,_ & comp◑● η σ₁ σ₂
⊗ (sub● ⌊ η ⌋ σ₁ M ⁻¹)
comp●◐ : ∀ {Γ Ξ Φ Φ′} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ′) (η : Φ′ ∋⋆ Φ)
→ σ₁ ● (σ₂ ◐ η) ≡ (σ₁ ● σ₂) ◐ η
comp●◐ σ₁ σ₂ ∅ = refl
comp●◐ σ₁ σ₂ (η , i) = _,_ & comp●◐ σ₁ σ₂ η
⊗ (get● σ₁ σ₂ i ⁻¹)
comp●◑ : ∀ {Γ Ξ Ξ′ Φ} → (σ₁ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ)
→ σ₁ ● (η ◑ σ₂) ≡ (σ₁ ◐ η) ● σ₂
comp●◑ σ₁ η ∅ = refl
comp●◑ σ₁ η (σ₂ , M) = _,_ & comp●◑ σ₁ η σ₂
⊗ (sub● σ₁ ⌊ η ⌋ M ⁻¹)
--------------------------------------------------------------------------------
assoc● : ∀ {Γ Ξ Φ Ψ} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (σ₃ : Φ ⊢⋆ Ψ)
→ σ₁ ● (σ₂ ● σ₃) ≡ (σ₁ ● σ₂) ● σ₃
assoc● σ₁ σ₂ ∅ = refl
assoc● σ₁ σ₂ (σ₃ , M) = _,_ & assoc● σ₁ σ₂ σ₃
⊗ (sub● σ₁ σ₂ M ⁻¹)
--------------------------------------------------------------------------------
𝗦𝗧𝗟𝗖 : Category 𝒞 _⊢⋆_
𝗦𝗧𝗟𝗖 =
record
{ idₓ = idₛ
; _⋄_ = flip _●_
; lid⋄ = rid●
; rid⋄ = lid●
; assoc⋄ = assoc●
}
subPsh : 𝒯 → Presheaf₀ 𝗦𝗧𝗟𝗖
subPsh A =
record
{ Fₓ = _⊢ A
; F = sub
; idF = fext! idsub
; F⋄ = λ σ₁ σ₂ → fext! (sub● σ₂ σ₁)
}
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.277955489,
"avg_line_length": 31.5300429185,
"ext": "agda",
"hexsha": "374cba69cd7865a07d8118f9a2294b09084d61ab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC/Coquand/Substitution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC/Coquand/Substitution.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC/Coquand/Substitution.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7663,
"size": 14693
} |
Subsets and Splits