Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Andreas, 2012-10-02
-- {-# OPTIONS -v tc.conv.level:100 -v tc.constr.add:40 -v tc.meta:50 -v tc.inj.use:30 -v 80 #-}
module Issue689 where
open import Common.Level
data Bad : Set₁ where
c : Set₁ → Bad
-- this should not leave unsolvable constraints, but report an error
| {
"alphanum_fraction": 0.6942446043,
"avg_line_length": 25.2727272727,
"ext": "agda",
"hexsha": "8f8ea53c48bce442bc72ad24a76832ee6a3fc2cd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue689.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue689.agda",
"max_line_length": 96,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue689.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 88,
"size": 278
} |
------------------------------------------------------------------------
-- The sequential colimit HIT with an erased higher constructor
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- The definition of sequential colimits and the statement of the
-- non-dependent universal property are based on those in van Doorn's
-- "Constructing the Propositional Truncation using Non-recursive
-- HITs".
-- The module is parametrised by a notion of equality. The higher
-- constructor of the HIT defining sequential colimits uses path
-- equality, but the supplied notion of equality is used for many
-- other things.
import Equality.Path as P
module Colimit.Sequential.Erased
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
open import Erased.Cubical eq
private
variable
a b p q : Level
A B : Type a
P : A → Type p
n : ℕ
e x : A
------------------------------------------------------------------------
-- The type
-- Sequential colimits, with an erased higher constructor.
data Colimitᴱ (P : ℕ → Type p) (@0 step : ∀ {n} → P n → P (suc n)) :
Type p where
∣_∣ : P n → Colimitᴱ P step
@0 ∣∣≡∣∣ᴾ : (x : P n) → ∣ step x ∣ P.≡ ∣ x ∣
-- A variant of ∣∣≡∣∣ᴾ.
@0 ∣∣≡∣∣ :
{step : ∀ {n} → P n → P (suc n)} (x : P n) →
_≡_ {A = Colimitᴱ P step} ∣ step x ∣ ∣ x ∣
∣∣≡∣∣ x = _↔_.from ≡↔≡ (∣∣≡∣∣ᴾ x)
------------------------------------------------------------------------
-- Eliminators
-- A dependent eliminator, expressed using paths.
record Elimᴾ
{P : ℕ → Type p} {@0 step : ∀ {n} → P n → P (suc n)}
(Q : Colimitᴱ P step → Type q) : Type (p ⊔ q) where
no-eta-equality
field
∣∣ʳ : (x : P n) → Q ∣ x ∣
@0 ∣∣≡∣∣ʳ :
(x : P n) →
P.[ (λ i → Q (∣∣≡∣∣ᴾ x i)) ] ∣∣ʳ (step x) ≡ ∣∣ʳ x
open Elimᴾ public
elimᴾ :
{@0 step : ∀ {n} → P n → P (suc n)} {Q : Colimitᴱ P step → Type q} →
Elimᴾ Q → (x : Colimitᴱ P step) → Q x
elimᴾ {P = P} {step = step} {Q = Q} e = helper
where
module E = Elimᴾ e
helper : (x : Colimitᴱ P step) → Q x
helper ∣ x ∣ = E.∣∣ʳ x
helper (∣∣≡∣∣ᴾ x i) = E.∣∣≡∣∣ʳ x i
-- A non-dependent eliminator, expressed using paths.
record Recᴾ
(P : ℕ → Type p) (@0 step : ∀ {n} → P n → P (suc n))
(B : Type b) : Type (p ⊔ b) where
no-eta-equality
field
∣∣ʳ : P n → B
@0 ∣∣≡∣∣ʳ : (x : P n) → ∣∣ʳ (step x) P.≡ ∣∣ʳ x
open Recᴾ public
recᴾ :
{@0 step : ∀ {n} → P n → P (suc n)} →
Recᴾ P step B → Colimitᴱ P step → B
recᴾ r = elimᴾ λ where
.∣∣ʳ → R.∣∣ʳ
.∣∣≡∣∣ʳ → R.∣∣≡∣∣ʳ
where
module R = Recᴾ r
-- A dependent eliminator.
record Elim
{P : ℕ → Type p} {@0 step : ∀ {n} → P n → P (suc n)}
(Q : Colimitᴱ P step → Type q) : Type (p ⊔ q) where
no-eta-equality
field
∣∣ʳ : (x : P n) → Q ∣ x ∣
@0 ∣∣≡∣∣ʳ : (x : P n) → subst Q (∣∣≡∣∣ x) (∣∣ʳ (step x)) ≡ ∣∣ʳ x
open Elim public
elim :
{@0 step : ∀ {n} → P n → P (suc n)} {Q : Colimitᴱ P step → Type q} →
Elim Q → (x : Colimitᴱ P step) → Q x
elim e = elimᴾ λ where
.∣∣ʳ → E.∣∣ʳ
.∣∣≡∣∣ʳ x → subst≡→[]≡ (E.∣∣≡∣∣ʳ x)
where
module E = Elim e
-- A "computation" rule.
@0 elim-∣∣≡∣∣ : dcong (elim e) (∣∣≡∣∣ x) ≡ Elim.∣∣≡∣∣ʳ e x
elim-∣∣≡∣∣ = dcong-subst≡→[]≡ (refl _)
-- A non-dependent eliminator.
record Rec
(P : ℕ → Type p) (@0 step : ∀ {n} → P n → P (suc n))
(B : Type b) : Type (p ⊔ b) where
no-eta-equality
field
∣∣ʳ : P n → B
@0 ∣∣≡∣∣ʳ : (x : P n) → ∣∣ʳ (step x) ≡ ∣∣ʳ x
open Rec public
rec :
{@0 step : ∀ {n} → P n → P (suc n)} →
Rec P step B → Colimitᴱ P step → B
rec r = recᴾ λ where
.∣∣ʳ → R.∣∣ʳ
.∣∣≡∣∣ʳ x → _↔_.to ≡↔≡ (R.∣∣≡∣∣ʳ x)
where
module R = Rec r
-- A "computation" rule.
@0 rec-∣∣≡∣∣ :
{step : ∀ {n} → P n → P (suc n)} {r : Rec P step B} {x : P n} →
cong (rec r) (∣∣≡∣∣ x) ≡ Rec.∣∣≡∣∣ʳ r x
rec-∣∣≡∣∣ = cong-≡↔≡ (refl _)
------------------------------------------------------------------------
-- The universal property
-- The universal property of the sequential colimit.
universal-property :
{@0 step : ∀ {n} → P n → P (suc n)} →
(Colimitᴱ P step → B) ≃
(∃ λ (f : ∀ n → P n → B) →
Erased (∀ n x → f (suc n) (step x) ≡ f n x))
universal-property {P = P} {B = B} {step = step} =
Eq.↔→≃ to from to∘from from∘to
where
to :
(Colimitᴱ P step → B) →
∃ λ (f : ∀ n → P n → B) →
Erased (∀ n x → f (suc n) (step x) ≡ f n x)
to h = (λ _ → h ∘ ∣_∣)
, [ (λ _ x →
h ∣ step x ∣ ≡⟨ cong h (∣∣≡∣∣ x) ⟩∎
h ∣ x ∣ ∎)
]
from :
(∃ λ (f : ∀ n → P n → B) →
Erased (∀ n x → f (suc n) (step x) ≡ f n x)) →
Colimitᴱ P step → B
from (f , g) = rec λ where
.∣∣ʳ → f _
.∣∣≡∣∣ʳ → erased g _
to∘from : ∀ p → to (from p) ≡ p
to∘from (f , g) =
cong (f ,_) $
[]-cong
[ (⟨ext⟩ λ n → ⟨ext⟩ λ x →
cong (rec _) (∣∣≡∣∣ x) ≡⟨ rec-∣∣≡∣∣ ⟩∎
erased g n x ∎)
]
from∘to : ∀ h → from (to h) ≡ h
from∘to h = ⟨ext⟩ $ elim λ where
.∣∣ʳ _ → refl _
.∣∣≡∣∣ʳ x →
subst (λ z → from (to h) z ≡ h z) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (from (to h)) (∣∣≡∣∣ x)))
(trans (refl _) (cong h (∣∣≡∣∣ x))) ≡⟨ cong₂ (λ p q → trans (sym p) q)
rec-∣∣≡∣∣
(trans-reflˡ _) ⟩
trans (sym (cong h (∣∣≡∣∣ x))) (cong h (∣∣≡∣∣ x)) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
-- A dependently typed variant of the sequential colimit's universal
-- property.
universal-property-Π :
{@0 step : ∀ {n} → P n → P (suc n)} →
{Q : Colimitᴱ P step → Type q} →
((x : Colimitᴱ P step) → Q x) ≃
(∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) →
Erased (∀ n x → subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x))
universal-property-Π {P = P} {step = step} {Q = Q} =
Eq.↔→≃ to from to∘from from∘to
where
to :
((x : Colimitᴱ P step) → Q x) →
∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) →
Erased (∀ n x → subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x)
to h = (λ _ → h ∘ ∣_∣)
, [ (λ _ x →
subst Q (∣∣≡∣∣ x) (h ∣ step x ∣) ≡⟨ dcong h (∣∣≡∣∣ x) ⟩∎
h ∣ x ∣ ∎)
]
from :
(∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) →
Erased (∀ n x →
subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x)) →
(x : Colimitᴱ P step) → Q x
from (f , [ g ]) = elim λ where
.∣∣ʳ → f _
.∣∣≡∣∣ʳ → g _
to∘from : ∀ p → to (from p) ≡ p
to∘from (f , [ g ]) = cong (f ,_) $ []-cong
[ (⟨ext⟩ λ n → ⟨ext⟩ λ x →
dcong (elim _) (∣∣≡∣∣ x) ≡⟨ elim-∣∣≡∣∣ ⟩∎
g n x ∎)
]
from∘to : ∀ h → from (to h) ≡ h
from∘to h = ⟨ext⟩ $ elim λ where
.∣∣ʳ _ → refl _
.∣∣≡∣∣ʳ x →
subst (λ z → from (to h) z ≡ h z) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-dcong ⟩
trans (sym (dcong (from (to h)) (∣∣≡∣∣ x)))
(trans (cong (subst Q (∣∣≡∣∣ x)) (refl _))
(dcong h (∣∣≡∣∣ x))) ≡⟨ cong₂ (λ p q → trans (sym p) q)
elim-∣∣≡∣∣
(trans (cong (flip trans _) $
cong-refl _) $
trans-reflˡ _) ⟩
trans (sym (dcong h (∣∣≡∣∣ x))) (dcong h (∣∣≡∣∣ x)) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
| {
"alphanum_fraction": 0.4120803694,
"avg_line_length": 29.7881040892,
"ext": "agda",
"hexsha": "58bad7f64a9a02433553172c629aa9f3b52ce646",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Colimit/Sequential/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Colimit/Sequential/Erased.agda",
"max_line_length": 98,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Colimit/Sequential/Erased.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3508,
"size": 8013
} |
module _ where
record Pair (A B : Set) : Set where
field
π₁ : A
π₂ : B
open Pair
foo : {A B : Set} → Pair A B → Pair A B
foo = λ { x → {!x!} }
{- Case splitting on x produces:
foo = λ { record { π₁ = π₃ ; π₂ = π₃ } → ? }
Repeated variables in pattern: π₃
-}
| {
"alphanum_fraction": 0.5376344086,
"avg_line_length": 16.4117647059,
"ext": "agda",
"hexsha": "1b5583e116df1d377a12efe0d93dfb6d026a72f5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2669.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2669.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2669.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 108,
"size": 279
} |
open import Prelude hiding (id; Bool)
module Implicits.Resolution.Undecidable.Expressiveness where
open import Implicits.Syntax
open import Implicits.Substitutions
open import Extensions.ListFirst
open import Implicits.Resolution.Ambiguous.Resolution as A
open import Implicits.Resolution.Deterministic.Resolution as D
open import Implicits.Resolution.Undecidable.Resolution as I
mutual
↓-sound : ∀ {ν} {Δ : ICtx ν} {a r} → Δ D.⊢ r ↓ a → Δ I.⊢ r ↓ a
↓-sound (i-simp a) = i-simp a
↓-sound (i-iabs x x₁) = i-iabs (≥-deterministic x) (↓-sound x₁)
↓-sound (i-tabs b x) = i-tabs b (↓-sound x)
Δ⟨τ⟩-sound : ∀ {ν} {Δ Δ' : ICtx ν} {a r} → Δ D.⟨ a ⟩= r → Δ' D.⊢ r ↓ a →
first r ∈ Δ ⇔ (λ r' → Δ' I.⊢ r' ↓ a)
Δ⟨τ⟩-sound (here p v) y = here (↓-sound y) v
Δ⟨τ⟩-sound (there x ¬x◁τ p) y = there x (¬◁-¬↓ ¬x◁τ) (Δ⟨τ⟩-sound p y)
where
↓-◁ : ∀ {ν} {Δ : ICtx ν} {a r} → Δ I.⊢ r ↓ a → r ◁ a
↓-◁ (i-simp _) = m-simp
↓-◁ (i-iabs _ r2↓a) = m-iabs (↓-◁ r2↓a)
↓-◁ (i-tabs b r↓a) = m-tabs b (↓-◁ r↓a)
¬◁-¬↓ : ∀ {ν} {Δ : ICtx ν} {a r} → ¬ r ◁ a → ¬ Δ I.⊢ r ↓ a
¬◁-¬↓ ¬a◁a (i-simp a) = ¬a◁a m-simp
¬◁-¬↓ ¬r◁a (i-iabs ⊢ᵣr₁ r₂↓a) = ¬r◁a (m-iabs (↓-◁ r₂↓a))
¬◁-¬↓ ¬r◁a (i-tabs b r[/]↓a) = ¬r◁a (m-tabs b (↓-◁ r[/]↓a))
≥-deterministic : ∀ {ν} {Δ : ICtx ν} {a} → Δ D.⊢ᵣ a → Δ I.⊢ᵣ a
≥-deterministic (r-simp {τ = a} Δ⟨a⟩=r r↓a) = r-simp (Δ⟨τ⟩-sound Δ⟨a⟩=r r↓a)
≥-deterministic (r-iabs ρ₁ x) = r-iabs ρ₁ (≥-deterministic x)
≥-deterministic (r-tabs x) = r-tabs (≥-deterministic x)
| {
"alphanum_fraction": 0.5323834197,
"avg_line_length": 40.6315789474,
"ext": "agda",
"hexsha": "eb128a9fd0e22f076674d8c036da1582e1630d18",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Undecidable/Expressiveness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Undecidable/Expressiveness.agda",
"max_line_length": 78,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Undecidable/Expressiveness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 771,
"size": 1544
} |
{-# OPTIONS --cubical --safe #-}
module Hyper where
open import Prelude hiding (⊥)
open import Data.Empty.UniversePolymorphic
open import Data.List using (List; _∷_; [])
open import Data.Vec.Iterated
open import Data.Nat using (_*_; _+_)
open import Data.Nat.Properties using (Even; Odd)
private
variable n m : ℕ
infixr 4 _#_↬_
_#_↬_ : ℕ → Type a → Type b → Type (a ℓ⊔ b)
zero # A ↬ B = ⊥
suc n # A ↬ B = n # B ↬ A → B
module _ {a b} {A : Type a} {B : Type b} where
yfld : Vec B n → 1 + (n * 2) # List (A × B) ↬ (A → List (A × B))
yfld =
foldr
(λ n → 1 + (n * 2) # List (A × B) ↬ (A → List (A × B)))
(λ y yk xk x → (x , y) ∷ xk yk)
(λ ())
xfld : Vec A n → (1 + n) * 2 # (A → List (A × B)) ↬ List (A × B)
xfld =
foldr
(λ n → (1 + n) * 2 # (A → List (A × B)) ↬ List (A × B))
(λ x xk yk → yk xk x)
(λ _ → [])
zip : Vec A n → Vec B n → List (A × B)
zip xs ys = xfld xs (yfld ys)
cata : Even n → (((C → A) → B) → C) → n # A ↬ B → C
cata {n = suc (suc n)} e ϕ h = ϕ (λ g → h (g ∘ cata e ϕ))
push : (A → B) → n # A ↬ B → 2 + n # A ↬ B
push {n = suc n} f q k = f (k q)
one : Odd n → n # A ↬ A
one {n = suc zero} o ()
one {n = suc (suc n)} o k = k (one o)
| {
"alphanum_fraction": 0.4806902219,
"avg_line_length": 25.3541666667,
"ext": "agda",
"hexsha": "fc91d7242621a285fec81f6b262c96661c54a4d5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Hyper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Hyper.agda",
"max_line_length": 66,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Hyper.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 536,
"size": 1217
} |
open import Agda.Builtin.Char
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.String
open import Agda.Builtin.String.Properties
data ⊥ : Set where
∷⁻¹ : ∀ {A : Set} {x y : A} {xs ys} → x ∷ xs ≡ y ∷ ys → x ≡ y
∷⁻¹ refl = refl
xD800 = primNatToChar 0xD800
xD801 = primNatToChar 0xD801
legit : '\xD800' ∷ [] ≡ '\xD801' ∷ []
legit = primStringFromListInjective _ _ refl
actually : xD800 ≡ xD801
actually = refl
nope : xD800 ≡ xD801 → ⊥
nope ()
boom : ⊥
boom = nope (∷⁻¹ legit)
errorAlsoInLHS : Char → String
errorAlsoInLHS '\xD8AA' = "bad"
errorAlsoInLHS _ = "meh"
| {
"alphanum_fraction": 0.6715210356,
"avg_line_length": 19.935483871,
"ext": "agda",
"hexsha": "a4c36deb293fb3713e1646a40795a74a592ba6fe",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue4999.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue4999.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue4999.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 239,
"size": 618
} |
module CTL.Modalities.AN where
open import FStream.Core
open import Library
-- Always (in) Next : p ⊧ φ ⇔ p[1] ⊧ φ
AN' : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁}
→ FStream' C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
AN' props = APred head (inF (tail props))
AN : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁}
→ FStream C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂)
AN props = APred AN' (inF props)
mutual
AN'ₛ : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁}
→ FStream' C (Set ℓ₂) → FStream' {i} C (Set (ℓ₁ ⊔ ℓ₂))
head (AN'ₛ props) = AN' props
tail (AN'ₛ props) = ANₛ (tail props)
ANₛ : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁}
→ FStream C (Set ℓ₂) → FStream {i} C (Set (ℓ₁ ⊔ ℓ₂))
inF (ANₛ props) = fmap AN'ₛ (inF props)
| {
"alphanum_fraction": 0.5671641791,
"avg_line_length": 27.9166666667,
"ext": "agda",
"hexsha": "94e12ae1995a067cc3adce5a806aa3a4fa161661",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "CTL/Modalities/AN.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "CTL/Modalities/AN.agda",
"max_line_length": 61,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "CTL/Modalities/AN.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 319,
"size": 670
} |
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Algebra.Signature where
open import Data.Nat using (ℕ)
record Signature : Set₁ where
field
ops : ℕ → Set
open Signature public
data ExtendedOp (Σ : Signature) (O : ℕ → Set) : ℕ → Set where
newₒ : ∀ {n} → O n → ExtendedOp Σ O n
oldₒ : ∀ {n} → ops Σ n → ExtendedOp Σ O n
_⦅_⦆ : (Σ : Signature) → (ℕ → Set) → Signature
Σ ⦅ O ⦆ = record { ops = ExtendedOp Σ O }
| {
"alphanum_fraction": 0.6173120729,
"avg_line_length": 23.1052631579,
"ext": "agda",
"hexsha": "2804b9c6fbbee1dc11482d6d50c1dfbd5b478397",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Algebra/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Algebra/Signature.agda",
"max_line_length": 61,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Algebra/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 159,
"size": 439
} |
-- Andreas, 2017-08-10, issue #2664, reported by csetzer
-- Test case by Ulf
-- {-# OPTIONS -v tc.rec:40 #-}
-- {-# OPTIONS -v tc.cc:60 #-}
open import Agda.Builtin.IO
open import Agda.Builtin.String
open import Agda.Builtin.Unit
open import Agda.Builtin.Nat
mutual
-- Error WAS:
-- The presence of mutual affected the compilation of the projections
-- since it triggered a record pattern translation for them.
record R : Set where
constructor mkR
field
dummy : Nat
str : String
helloWorld : R
helloWorld = mkR 0 "Hello World!"
postulate
putStrLn : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO as Text #-}
{-# COMPILE GHC putStrLn = Text.putStrLn #-}
{-# COMPILE JS putStrLn = function(x) { return function(cb) { process.stdout.write(x + "\n"); cb(0); }; } #-}
{-# FOREIGN OCaml
let printEndline y world = Lwt.return (print_endline y)
#-}
{-# COMPILE OCaml putStrLn = printEndline #-}
main : IO ⊤
main = putStrLn (R.str helloWorld)
-- Expected: Should print
--
-- Hello World!
| {
"alphanum_fraction": 0.6714836224,
"avg_line_length": 23.5909090909,
"ext": "agda",
"hexsha": "cc259e1ec04ec812ed220901ef3b1ed470562b7e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "xekoukou/agda-ocaml",
"max_forks_repo_path": "test/Compiler/simple/Issue2664.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "xekoukou/agda-ocaml",
"max_issues_repo_path": "test/Compiler/simple/Issue2664.agda",
"max_line_length": 110,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "xekoukou/agda-ocaml",
"max_stars_repo_path": "test/Compiler/simple/Issue2664.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 285,
"size": 1038
} |
module OList {A : Set}(_≤_ : A → A → Set) where
open import Data.List
open import Bound.Lower A
open import Bound.Lower.Order _≤_
data OList : Bound → Set where
onil : {b : Bound}
→ OList b
:< : {b : Bound}{x : A}
→ LeB b (val x)
→ OList (val x)
→ OList b
forget : {b : Bound} → OList b → List A
forget onil = []
forget ( :< {x = x} _ xs) = x ∷ forget xs
| {
"alphanum_fraction": 0.4820627803,
"avg_line_length": 21.2380952381,
"ext": "agda",
"hexsha": "4bbf937d8af3ae3e9062e468a9987d5ba128e4af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/OList.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/OList.agda",
"max_line_length": 47,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/OList.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 147,
"size": 446
} |
------------------------------------------------------------------------
-- Formalisation of subtyping for recursive types
--
-- Nils Anders Danielsson
------------------------------------------------------------------------
-- This formalisation is explained in "Subtyping, Declaratively—An
-- Exercise in Mixed Induction and Coinduction" (coauthored with
-- Thorsten Altenkirch). The code is partly based on "Coinductive
-- Axiomatization of Recursive Type Equality and Subtyping" by Michael
-- Brandt and Fritz Henglein.
module RecursiveTypes where
-- Recursive types and potentially infinite trees.
import RecursiveTypes.Syntax
-- Substitutions.
import RecursiveTypes.Substitution
-- The semantics of recursive types, defined in terms of the trees
-- that you get when unfolding them.
import RecursiveTypes.Semantics
-- The definition of subtyping which, in my eyes, is the most obvious.
-- Some people may dislike coinductive definitions, though.
import RecursiveTypes.Subtyping.Semantic.Coinductive
-- An example.
import RecursiveTypes.Subtyping.Example
-- Another definition of subtyping, this time in terms of finite
-- approximations. According to Brandt and Henglein this definition is
-- due to Amadio and Cardelli.
import RecursiveTypes.Subtyping.Semantic.Inductive
-- The two semantical definitions of subtyping above can easily be
-- proved equivalent.
import RecursiveTypes.Subtyping.Semantic.Equivalence
-- An axiomatisation of subtyping which is inspired by Brandt and
-- Henglein's. The main difference is that their axiomatisation is
-- inductive, using explicit hypotheses to get a coinductive flavour,
-- whereas mine is mixed inductive/coinductive, using no explicit
-- hypotheses. The axiomatisation is proved equivalent to the
-- coinductive semantic definition of subtyping. The proof is a lot
-- simpler than Brandt and Henglein's, but their proof includes a
-- decision procedure for subtyping.
import RecursiveTypes.Subtyping.Axiomatic.Coinductive
-- Brandt and Henglein's axiomatisation, plus some proofs:
-- • A proof showing that the axiomatisation is sound with respect to
-- the ones above. The soundness proof is different from the one
-- given by Brandt and Henglein: it is cyclic (but productive).
-- • Proofs of decidability and completeness, based on Brandt and
-- Henglein's algorithm.
import RecursiveTypes.Subtyping.Axiomatic.Inductive
-- Some modules containing supporting code for the proof of
-- decidability, including Brandt and Henglein's subterm relation.
import RecursiveTypes.Subterm
import RecursiveTypes.Subterm.RestrictedHypothesis
import RecursiveTypes.Syntax.UnfoldedOrFixpoint
-- An incorrect "subtyping" relation which illustrates the fact that
-- taking the transitive closure of a coinductively defined relation
-- is not in general equivalent to adding an inductive transitivity
-- constructor to it.
import RecursiveTypes.Subtyping.Axiomatic.Incorrect
-- Finally some code which is not directly related to subtyping or
-- recursive types: an example which shows that, in a coinductive
-- setting, it is not always sound to postulate admissible rules
-- (inductively).
import AdmissibleButNotPostulable
| {
"alphanum_fraction": 0.7636932707,
"avg_line_length": 36.3068181818,
"ext": "agda",
"hexsha": "8b92e07337915ff1c4d51e441817208a7dd4e36e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "RecursiveTypes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "RecursiveTypes.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "RecursiveTypes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 691,
"size": 3195
} |
{-# OPTIONS --prop --rewriting #-}
module Examples.Sorting.Parallel.Comparable where
open import Calf.CostMonoid
open import Calf.CostMonoids
parCostMonoid = ℕ²-ParCostMonoid
costMonoid = ParCostMonoid.costMonoid parCostMonoid
open import Data.Nat using (ℕ)
open ParCostMonoid parCostMonoid using (ℂ)
open import Data.Product using (_,_)
fromℕ : ℕ → ℂ
fromℕ n = n , n
open import Examples.Sorting.Comparable costMonoid fromℕ public
| {
"alphanum_fraction": 0.7876712329,
"avg_line_length": 23.0526315789,
"ext": "agda",
"hexsha": "26ed5963db8e31471566b9c5517f619c6da72652",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Examples/Sorting/Parallel/Comparable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Examples/Sorting/Parallel/Comparable.agda",
"max_line_length": 63,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Examples/Sorting/Parallel/Comparable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 130,
"size": 438
} |
module Highlighting where
Set-one : Set₂
Set-one = Set₁
record R (A : Set) : Set-one where
constructor con
field X : Set
F : Set → Set → Set
F A B = B
field P : F A X → Set
-- highlighting of non-terminating definition
Q : F A X → Set
Q = Q
postulate P : _
open import Highlighting.M using (ℕ) renaming
( _+_ to infixl 5 _⊕_
; _*_ to infixl 7 _⊗_
)
data D (A : Set) : Set-one where
d : let X = D in X A
postulate _+_ _×_ : Set → Set → Set
infixl 4 _×_ _+_
-- Issue #2140: the operators should be highlighted also in the
-- fixity declaration.
-- Issue #3120, jump-to-definition for record field tags
-- in record expressions and patterns.
anR : ∀ A → R A
anR A = record { X = A ; P = λ _ → A }
idR : ∀ A → R A → R A
idR A r@record { X = X; P = P } = record r { X = X }
record S (A : Set) : Set where
field
X : A
idR' : ∀ A → R A → R A
idR' A r@record { X = X; P = P } = record r { X = X }
open S
bla : ∀{A} → A → S A
bla x .X = x
-- Issue #3825: highlighting of unsolved metas in record{M} expressions
record R₂ (A : Set) : Set where
field
impl : {a : A} → A
module M {A : Set} where
impl : {a : A} → A -- yellow should not be here
impl {a} = a
r₂ : ∀{A} → R₂ A
r₂ = record {M} -- just because there is an unsolved meta here
-- End issue #3825
-- Issue #3855: highlighting of quantity attributes.
-- @0 and @erased should be highlighted as symbols.
idPoly0 : {@0 A : Set} → A → A
idPoly0 x = x
idPolyE : {@erased A : Set} → A → A
idPolyE x = x
-- Issue #3989: Shadowed repeated variables in telescopes should by
-- default /not/ be highlighted.
Issue-3989 : (A A : Set) → Set
Issue-3989 _ A = A
-- Issue #4356.
open import Agda.Builtin.Sigma
Issue-4356₁ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set)
Issue-4356₁ = λ P@(A , B) → P
Issue-4356₂ : Σ Set (λ _ → Set) → Set
Issue-4356₂ = λ (A , B) → A
Issue-4356₃ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set)
Issue-4356₃ P = let Q@(A , B) = P in Q
Issue-4356₄ : Σ Set (λ _ → Set) → Set
Issue-4356₄ P = let (A , B) = P in B
Issue-4356₅ : Σ Set (λ _ → Set) → Σ Set (λ _ → Set)
Issue-4356₅ P@(A , B) = P
Issue-4356₆ : Σ Set (λ _ → Set) → Set
Issue-4356₆ (A , B) = B
-- Issue #4361: Highlighting builtins.
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat -#} -- NATURAL should be highlighted as keyword.
| {
"alphanum_fraction": 0.5954003407,
"avg_line_length": 20.2413793103,
"ext": "agda",
"hexsha": "53a382d6ca9d1c73f407815af863f158c762a359",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Soares/agda",
"max_forks_repo_path": "test/interaction/Highlighting.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Soares/agda",
"max_issues_repo_path": "test/interaction/Highlighting.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d6a705ba40d8ba2a5bb550bc40eddc280aedbf2b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Soares/agda",
"max_stars_repo_path": "test/interaction/Highlighting.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 896,
"size": 2348
} |
------------------------------------------------------------------------
-- This module proves that the recognisers correspond exactly to
-- decidable predicates of type List Bool → Bool (when the alphabet is
-- Bool)
------------------------------------------------------------------------
-- This result could be generalised to other finite alphabets.
module TotalRecognisers.Simple.ExpressiveStrength where
open import Codata.Musical.Notation
open import Data.Bool
open import Data.Bool.Properties
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using (_⇔_; equivalence; module Equivalence)
open import Data.List
open import Data.Product
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Decidable
import TotalRecognisers.Simple
open TotalRecognisers.Simple Bool _≟_
-- One direction of the correspondence has already been established:
-- For every grammar there is an equivalent decidable predicate.
grammar⇒pred : ∀ {n} (p : P n) →
∃ λ (f : List Bool → Bool) → ∀ s → s ∈ p ⇔ T (f s)
grammar⇒pred p =
((λ s → ⌊ s ∈? p ⌋) , λ _ → equivalence fromWitness toWitness)
-- For every decidable predicate there is a corresponding grammar.
-- Note that these grammars are all "infinite LL(1)".
pred⇒grammar : (f : List Bool → Bool) →
∃ λ (p : P (f [])) → ∀ s → s ∈ p ⇔ T (f s)
pred⇒grammar f =
(grammar f , λ s → equivalence (sound f) (complete f s))
where
accept-if-true : ∀ b → P b
accept-if-true true = empty
accept-if-true false = fail
grammar : (f : List Bool → Bool) → P (f [])
grammar f = tok true · ♯ grammar (f ∘ _∷_ true )
∣ tok false · ♯ grammar (f ∘ _∷_ false)
∣ accept-if-true (f [])
accept-if-true-sound :
∀ b {s} → s ∈ accept-if-true b → s ≡ [] × T b
accept-if-true-sound true empty = (refl , _)
accept-if-true-sound false ()
accept-if-true-complete : ∀ {b} → T b → [] ∈ accept-if-true b
accept-if-true-complete ok with Equivalence.to T-≡ ⟨$⟩ ok
... | refl = empty
sound : ∀ f {s} → s ∈ grammar f → T (f s)
sound f (∣-right s∈) with accept-if-true-sound (f []) s∈
... | (refl , ok) = ok
sound f (∣-left (∣-left (tok · s∈))) = sound (f ∘ _∷_ true ) s∈
sound f (∣-left (∣-right (tok · s∈))) = sound (f ∘ _∷_ false) s∈
complete : ∀ f s → T (f s) → s ∈ grammar f
complete f [] ok =
∣-right {n₁ = false} $ accept-if-true-complete ok
complete f (true ∷ bs) ok =
∣-left {n₁ = false} $ ∣-left {n₁ = false} $
tok · complete (f ∘ _∷_ true ) bs ok
complete f (false ∷ bs) ok =
∣-left {n₁ = false} $ ∣-right {n₁ = false} $
tok · complete (f ∘ _∷_ false) bs ok
| {
"alphanum_fraction": 0.593529193,
"avg_line_length": 35.8533333333,
"ext": "agda",
"hexsha": "a229a4807c81f5e08b24ec0dae54398803a86d4b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalRecognisers/Simple/ExpressiveStrength.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalRecognisers/Simple/ExpressiveStrength.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalRecognisers/Simple/ExpressiveStrength.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 832,
"size": 2689
} |
-- {-# OPTIONS --show-implicit #-}
module Issue89 where
open import Common.Coinduction renaming (∞ to ∞_)
------------------------------------------------------------------------
-- Streams
infixr 5 _≺_
data Stream A : Set where
_≺_ : (x : A) (xs : ∞ (Stream A)) -> Stream A
head : forall {A} -> Stream A -> A
head (x ≺ xs) = x
tail : forall {A} -> Stream A -> Stream A
tail (x ≺ xs) = ♭ xs
------------------------------------------------------------------------
-- Stream programs
infix 8 _∞
infixr 5 _⋎_
infix 4 ↓_
mutual
data Stream′ A : Set1 where
_≺_ : (x : A) (xs : ∞ (StreamProg A)) -> Stream′ A
data StreamProg (A : Set) : Set1 where
↓_ : (xs : Stream′ A) -> StreamProg A
_∞ : (x : A) -> StreamProg A
_⋎_ : (xs ys : StreamProg A) -> StreamProg A
head′ : ∀ {A} → Stream′ A → A
head′ (x ≺ xs) = x
tail′ : ∀ {A} → Stream′ A → StreamProg A
tail′ (x ≺ xs) = ♭ xs
P⇒′ : forall {A} -> StreamProg A -> Stream′ A
P⇒′ (↓ xs) = xs
P⇒′ (x ∞) = x ≺ ♯ (x ∞)
P⇒′ (xs ⋎ ys) with P⇒′ xs
P⇒′ (xs ⋎ ys) | xs′ = head′ xs′ ≺ ♯ (ys ⋎ tail′ xs′)
mutual
′⇒ : forall {A} -> Stream′ A -> Stream A
′⇒ (x ≺ xs) = x ≺ ♯ P⇒ (♭ xs)
P⇒ : forall {A} -> StreamProg A -> Stream A
P⇒ xs = ′⇒ (P⇒′ xs)
------------------------------------------------------------------------
-- Stream equality
infix 4 _≡_ _≈_ _≊_
data _≡_ {a : Set} (x : a) : a -> Set where
≡-refl : x ≡ x
data _≈_ {A} (xs ys : Stream A) : Set where
_≺_ : (x≡ : head xs ≡ head ys) (xs≈ : ∞ (tail xs ≈ tail ys)) ->
xs ≈ ys
_≊_ : forall {A} (xs ys : StreamProg A) -> Set
xs ≊ ys = P⇒ xs ≈ P⇒ ys
foo : forall {A} (x : A) -> x ∞ ⋎ x ∞ ≊ x ∞
foo x = ≡-refl ≺ ♯ foo x
-- The first goal has goal type
-- head (′⇒ (x ≺ x ∞ ⋎ x ∞)) ≡ head (′⇒ (x ≺ x ∞)).
-- The normal form of the left-hand side is x, and the normal form of
-- the right-hand side is x (both according to Agda), but ≡-refl is
-- not accepted by the type checker:
-- x != head (′⇒ (P⇒′ (x ∞))) of type .A
-- when checking that the expression ≡-refl has type
-- (head (P⇒ (x ∞ ⋎ x ∞)) ≡ head (P⇒ (x ∞)))
| {
"alphanum_fraction": 0.4597315436,
"avg_line_length": 24.5411764706,
"ext": "agda",
"hexsha": "fc55e36ad1eb7ad2530feadea9924cc9feda174d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue89.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue89.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue89.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 869,
"size": 2086
} |
import Relation.Binary.Reasoning.Setoid as SetoidR
open import MultiSorted.AlgebraicTheory
import MultiSorted.Interpretation as Interpretation
import MultiSorted.Model as Model
import MultiSorted.UniversalInterpretation as UniversalInterpretation
import MultiSorted.Substitution as Substitution
import MultiSorted.SyntacticCategory as SyntacticCategory
module MultiSorted.UniversalModel
{ℓt}
{𝓈 ℴ}
{Σ : Signature {𝓈} {ℴ}}
(T : Theory ℓt Σ) where
open Theory T
open Substitution T
open UniversalInterpretation T
open Interpretation.Interpretation ℐ
open SyntacticCategory T
𝒰 : Model.Is-Model T ℐ
𝒰 =
record
{ model-eq = λ ε var-var →
let open SetoidR (eq-setoid (ax-ctx ε) (sort-of (ctx-slot (ax-sort ε)) var-var)) in
begin
interp-term (ax-lhs ε) var-var ≈⟨ interp-term-self (ax-lhs ε) var-var ⟩
ax-lhs ε ≈⟨ id-action ⟩
ax-lhs ε [ id-s ]s ≈⟨ eq-axiom ε id-s ⟩
ax-rhs ε [ id-s ]s ≈˘⟨ id-action ⟩
ax-rhs ε ≈˘⟨ interp-term-self (ax-rhs ε) var-var ⟩
interp-term (ax-rhs ε) var-var ∎
}
-- The universal model is universal
universality : ∀ (ε : Equation Σ) → ⊨ ε → ⊢ ε
universality ε p =
let open Equation in
let open SetoidR (eq-setoid (eq-ctx ε) (eq-sort ε)) in
(begin
eq-lhs ε ≈˘⟨ interp-term-self (eq-lhs ε) var-var ⟩
interp-term (eq-lhs ε) var-var ≈⟨ p var-var ⟩
interp-term (eq-rhs ε) var-var ≈⟨ interp-term-self (eq-rhs ε) var-var ⟩
eq-rhs ε ∎)
| {
"alphanum_fraction": 0.5975683891,
"avg_line_length": 35,
"ext": "agda",
"hexsha": "dc43761bd416e78413502225df9f20bd79763eb0",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/MultiSorted/UniversalModel.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/MultiSorted/UniversalModel.agda",
"max_line_length": 106,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/MultiSorted/UniversalModel.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 510,
"size": 1645
} |
module InstanceArgumentsModNotParameterised where
postulate A : Set
a : A
record B : Set where
field bA : A
b : B
b = record {bA = a}
module C = B b
open C {{...}}
| {
"alphanum_fraction": 0.6132596685,
"avg_line_length": 12.0666666667,
"ext": "agda",
"hexsha": "e4782ee83b928ab8fb17132dd3ba9226eb0a47b0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/InstanceArgumentsModNotParameterised.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/InstanceArgumentsModNotParameterised.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/InstanceArgumentsModNotParameterised.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 57,
"size": 181
} |
{-# OPTIONS --without-K #-}
open import Types
module Functions where
-- Identity functions
id : ∀ {i} (A : Set i) → (A → A)
id A = λ x → x
-- Constant functions
cst : ∀ {i j} {A : Set i} {B : Set j} (b : B) → (A → B)
cst b = λ _ → b
-- Composition of dependent functions
_◯_ : ∀ {i j k} {A : Set i} {B : A → Set j} {C : (a : A) → (B a → Set k)}
→ (g : {a : A} → Π (B a) (C a)) → (f : Π A B) → Π A (λ a → C a (f a))
g ◯ f = λ x → g (f x)
-- Application
infixr 0 _$_
_$_ : ∀ {i j} {A : Set i} {B : A → Set j} → (∀ x → B x) → (∀ x → B x)
f $ x = f x
-- Curry! Can't live without it!
curry : ∀ {i j k} {A : Set i} {B : A → Set j} {C : Σ A B → Set k}
→ (∀ s → C s) → (∀ x y → C (x , y))
curry f x y = f (x , y)
uncurry : ∀ {i j k} {A : Set i} {B : A → Set j} {C : ∀ x → B x → Set k}
→ (∀ x y → C x y) → (∀ s → C (π₁ s) (π₂ s))
uncurry f (x , y) = f x y
| {
"alphanum_fraction": 0.4373549884,
"avg_line_length": 26.1212121212,
"ext": "agda",
"hexsha": "809c3f8642b68e803b856aaa3aab99d2ebc053fb",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Functions.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Functions.agda",
"max_line_length": 73,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 398,
"size": 862
} |
module Peano where
open import IPL
data ℕ : Set where
zero : ℕ -- Axiom 2.1. 0 is a natural number
_++ : ℕ → ℕ -- Axiom 2.2. If n is a natural number, then n++ is also a natural number
data _≡_ : ℕ → ℕ → Set where
refl : {a : ℕ} → a ≡ a
axiom23 : {n : ℕ} → ¬ (zero ≡ (n ++))
axiom23 = λ ()
axiom24 : {n m : ℕ} → (n ++) ≡ (m ++) → n ≡ m
axiom24 refl = refl
_+_ : ℕ → ℕ → ℕ -- Definition 2.2.1
zero + m = m
(n ++) + m = (n + m) ++
≡-sec : {n m : ℕ} → n ≡ m → (n ++) ≡ (m ++)
≡-sec refl = refl
≡-comm : {n m : ℕ} → n ≡ m → m ≡ n
≡-comm refl = refl
≡-trans : {n m p : ℕ} → n ≡ m → m ≡ p → n ≡ p
≡-trans refl refl = refl
lemma222 : (n : ℕ) → (n + zero) ≡ n
lemma222 zero = refl
lemma222 (n ++) = ≡-sec (lemma222 n)
lemma223 : (n m : ℕ) → (n + (m ++)) ≡ ((n + m) ++)
lemma223 zero m = refl
lemma223 (n ++) m = ≡-sec (lemma223 n m)
-- Addition is commutative
prop224 : (n m : ℕ) → (n + m) ≡ (m + n)
prop224 zero m = ≡-comm (lemma222 m)
prop224 (n ++) m = ≡-trans (≡-sec (prop224 n m)) (≡-comm (lemma223 m n))
-- Addition is associative
prop225 : (a b c : ℕ) → ((a + b) + c) ≡ (a + (b + c))
prop225 zero b c = refl
prop225 (a ++) b c = ≡-sec (prop225 a b c)
-- Cancellation law
prop226 : (a b c : ℕ) → (a + b) ≡ (a + c) → b ≡ c
prop226 zero b c = λ z → z
prop226 (a ++) b c = λ z → (prop226 a b c) (axiom24 z)
| {
"alphanum_fraction": 0.4781675018,
"avg_line_length": 26.8653846154,
"ext": "agda",
"hexsha": "72bcadde4ad88ae3b39628483044f6b015332d48",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alf239/tao",
"max_forks_repo_path": "peano.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alf239/tao",
"max_issues_repo_path": "peano.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "11f8071e325d07d19a53157cb065d88244b20cb4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alf239/tao",
"max_stars_repo_path": "peano.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 612,
"size": 1397
} |
{-# OPTIONS --without-K #-}
open import Type
open import Data.Bits using (Bits)
open import Data.Bit using (Bit)
open import Data.Zero using (𝟘)
open import Data.Fin using (Fin)
open import Data.Maybe using (Maybe)
open import Data.Nat using (ℕ)
open import Data.Product using (Σ; _×_)
open import Data.Sum using (_⊎_)
open import Data.One using (𝟙)
open import Data.Vec using (Vec)
module Explore.Syntax where
-- this is to be imported from the appropriate module
postulate
S : ★₀ → ★₀
S𝟙 : S 𝟙
SBit : S Bit
SFin : ∀ n → S (Fin n)
SBits : ∀ n → S (Bits n)
SVec : ∀ {A} → S A → ∀ n → S (Vec A n)
_S×_ : ∀ {A B} → S A → S B → S (A × B)
_S⊎_ : ∀ {A B} → S A → S B → S (A ⊎ B)
SMaybe : ∀ {A} → S A → S (Maybe A)
SΣ : ∀ {A} {B : A → _} → S A → (∀ x → S (B x)) → S (Σ A B)
S𝟙→ : ∀ {A} → S A → S (𝟙 → A)
SBit→ : ∀ {A} → S A → S (Bit → A)
S𝟘→ : ∀ A → S (𝟘 → A)
S×→ : ∀ {A B C} → S (A → B → C) → S (A × B → C)
S⟨_⊎_⟩→ : ∀ {A B C} → S (A → C) → S (B → C) → S (A ⊎ B → C)
module Fin-universe where
`★ : ★₀
`★ = ℕ
-- decoding
El : `★ → ★₀
El = Fin
`S : ∀ `A → S (El `A)
`S = SFin
module Bits-universe where
`★ : ★₀
`★ = ℕ
-- decoding
El : `★ → ★₀
El = Bits
`S : ∀ `A → S (El `A)
`S = SBits
module ⊎×-universe where
data `★ : ★₀ where
`𝟙 : `★
_`×_ _`⊎_ : `★ → `★ → `★
-- decoding
El : `★ → ★₀
El `𝟙 = 𝟙
El (s `× t) = El s × El t
El (s `⊎ t) = El s ⊎ El t
`S : ∀ `A → S (El `A)
`S `𝟙 = S𝟙
`S (s `× t) = `S s S× `S t
`S (s `⊎ t) = `S s S⊎ `S t
module 𝟙-Maybe-universe where
data `★ : ★₀ where
-- one element
`𝟙 : `★
-- one element more
`Maybe : `★ → `★
-- decoding
El : `★ → ★₀
El `𝟙 = 𝟙
El (`Maybe t) = Maybe (El t)
`S : ∀ `A → S (El `A)
`S `𝟙 = S𝟙
`S (`Maybe t) = SMaybe (`S t)
module ΣBit-universe where
data `★ : ★₀
El : `★ → ★₀
data `★ where
`Bit : `★
`Σ : (s : `★) → (El s → `★) → `★
-- decoding
El `Bit = Bit
El (`Σ s t) = Σ (El s) λ x → El (t x)
`S : ∀ `A → S (El `A)
`S `Bit = SBit
`S (`Σ s t) = SΣ (`S s) λ x → `S (t x)
module ⊎×→-universe where
-- Types appearing on the left of an arrow
data `★⁻ : ★₀ where
-- zero and elements
`𝟘 `𝟙 : `★⁻
-- products and co-products
_`×_ _`⊎_ : `★⁻ → `★⁻ → `★⁻
-- decoding of negative types
El⁻ : `★⁻ → ★₀
El⁻ `𝟘 = 𝟘
El⁻ `𝟙 = 𝟙
El⁻ (s `× t) = El⁻ s × El⁻ t
El⁻ (s `⊎ t) = El⁻ s ⊎ El⁻ t
`S⟨_⟩→_ : ∀ `A {B} (sB : S B) → S (El⁻ `A → B)
`S⟨ `𝟘 ⟩→ t = S𝟘→ _
`S⟨ `𝟙 ⟩→ t = S𝟙→ t
`S⟨ s `× t ⟩→ u = S×→ (`S⟨ s ⟩→ `S⟨ t ⟩→ u)
`S⟨ s `⊎ t ⟩→ u = S⟨ `S⟨ s ⟩→ u ⊎ `S⟨ t ⟩→ u ⟩→
data `★ : ★₀ where
-- one element
`𝟙 : `★
-- products and co-products
_`×_ _`⊎_ : `★ → `★ → `★
-- functions
_`→_ : `★⁻ → `★ → `★
-- decoding of positive types
El : `★ → ★₀
El `𝟙 = 𝟙
El (s `× t) = El s × El t
El (s `⊎ t) = El s ⊎ El t
El (s `→ t) = El⁻ s → El t
`S : ∀ `A → S (El `A)
`S `𝟙 = S𝟙
`S (s `× t) = `S s S× `S t
`S (s `⊎ t) = `S s S⊎ `S t
`S (s `→ t) = `S⟨ s ⟩→ `S t
module Σ⊎×→-universe where
-- Types appearing on the left of an arrow
data `★⁻ : ★₀ where
-- zero, one, and two elements
`𝟘 `𝟙 `Bit : `★⁻
-- products and co-products
_`×_ _`⊎_ : `★⁻ → `★⁻ → `★⁻
-- Σ?
-- decoding of negative types
El⁻ : `★⁻ → ★₀
El⁻ `𝟘 = 𝟘
El⁻ `𝟙 = 𝟙
El⁻ `Bit = Bit
El⁻ (s `× t) = El⁻ s × El⁻ t
El⁻ (s `⊎ t) = El⁻ s ⊎ El⁻ t
`S⟨_⟩→_ : ∀ `A {B} (sB : S B) → S (El⁻ `A → B)
`S⟨ `𝟘 ⟩→ t = S𝟘→ _
`S⟨ `𝟙 ⟩→ t = S𝟙→ t
`S⟨ `Bit ⟩→ t = SBit→ t
`S⟨ s `× t ⟩→ u = S×→ (`S⟨ s ⟩→ `S⟨ t ⟩→ u)
`S⟨ s `⊎ t ⟩→ u = S⟨ `S⟨ s ⟩→ u ⊎ `S⟨ t ⟩→ u ⟩→
data `★ : ★₀
El : `★ → ★₀
data `★ where
-- one and two elements
`𝟙 `Bit : `★
-- 'n' elements
`Fin : ℕ → `★
-- one element more
`Maybe : `★ → `★
-- products and co-products
_`×_ _`⊎_ : `★ → `★ → `★
-- dependent pairs
`Σ : (s : `★) → (El s → `★) → `★
-- vectors
`Vec : `★ → ℕ → `★
-- functions
_`→_ : `★⁻ → `★ → `★
-- decoding of positive types
El `𝟙 = 𝟙
El `Bit = Bit
El (`Fin n) = Fin n
El (`Maybe t) = Maybe (El t)
El (s `× t) = El s × El t
El (s `⊎ t) = El s ⊎ El t
El (`Σ s t) = Σ (El s) λ x → El (t x)
El (s `→ t) = El⁻ s → El t
El (`Vec t n) = Vec (El t) n
`Bits = `Vec `Bit
`S : ∀ `A → S (El `A)
`S `𝟙 = S𝟙
`S `Bit = SBit
`S (`Fin n) = SFin n
`S (`Maybe `A) = SMaybe (`S `A)
`S (`A `× `B) = `S `A S× `S `B
`S (`A `⊎ `B) = `S `A S⊎ `S `B
`S (`Σ `A `B) = SΣ (`S `A) λ x → `S (`B x)
`S (`Vec `A n) = SVec (`S `A) n
`S (`A `→ `B) = `S⟨ `A ⟩→ `S `B
| {
"alphanum_fraction": 0.3827160494,
"avg_line_length": 21.4826086957,
"ext": "agda",
"hexsha": "514ef9f8299b8064d1508325d2a90e6db9676b27",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/TODO/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/TODO/Syntax.agda",
"max_line_length": 61,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/TODO/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 2454,
"size": 4941
} |
{-# OPTIONS --no-termination-check #-}
module Pi-abstract-machine where
open import Data.Empty
open import Data.Unit
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
infixr 30 _⟷_
infixr 30 _⟺_
infixr 20 _◎_
------------------------------------------------------------------------------
-- A universe of our value types
data B : Set where
ZERO : B
ONE : B
PLUS : B → B → B
TIMES : B → B → B
data VB : (b : B) → Set where
unitB : VB ONE
inlB : {b₁ b₂ : B} → VB b₁ → VB (PLUS b₁ b₂)
inrB : {b₁ b₂ : B} → VB b₂ → VB (PLUS b₁ b₂)
pairB : {b₁ b₂ : B} → VB b₁ → VB b₂ → VB (TIMES b₁ b₂)
------------------------------------------------------------------------------
-- Primitive isomorphisms
data _⟷_ : B → B → Set where
-- (+,0) commutative monoid
unite₊ : { b : B } → PLUS ZERO b ⟷ b
uniti₊ : { b : B } → b ⟷ PLUS ZERO b
swap₊ : { b₁ b₂ : B } → PLUS b₁ b₂ ⟷ PLUS b₂ b₁
assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃
assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃)
-- (*,1) commutative monoid
unite⋆ : { b : B } → TIMES ONE b ⟷ b
uniti⋆ : { b : B } → b ⟷ TIMES ONE b
swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃
assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃)
-- * distributes over +
dist : { b₁ b₂ b₃ : B } →
TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)
factor : { b₁ b₂ b₃ : B } →
PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃
-- id
id⟷ : { b : B } → b ⟷ b
adjointP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
adjointP unite₊ = uniti₊
adjointP uniti₊ = unite₊
adjointP swap₊ = swap₊
adjointP assocl₊ = assocr₊
adjointP assocr₊ = assocl₊
adjointP unite⋆ = uniti⋆
adjointP uniti⋆ = unite⋆
adjointP swap⋆ = swap⋆
adjointP assocl⋆ = assocr⋆
adjointP assocr⋆ = assocl⋆
adjointP dist = factor
adjointP factor = dist
adjointP id⟷ = id⟷
evalP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → VB b₁ → VB b₂
evalP unite₊ (inlB ())
evalP unite₊ (inrB v) = v
evalP uniti₊ v = inrB v
evalP swap₊ (inlB v) = inrB v
evalP swap₊ (inrB v) = inlB v
evalP assocl₊ (inlB v) = inlB (inlB v)
evalP assocl₊ (inrB (inlB v)) = inlB (inrB v)
evalP assocl₊ (inrB (inrB v)) = inrB v
evalP assocr₊ (inlB (inlB v)) = inlB v
evalP assocr₊ (inlB (inrB v)) = inrB (inlB v)
evalP assocr₊ (inrB v) = inrB (inrB v)
evalP unite⋆ (pairB unitB v) = v
evalP uniti⋆ v = (pairB unitB v)
evalP swap⋆ (pairB v₁ v₂) = pairB v₂ v₁
evalP assocl⋆ (pairB v₁ (pairB v₂ v₃)) = pairB (pairB v₁ v₂) v₃
evalP assocr⋆ (pairB (pairB v₁ v₂) v₃) = pairB v₁ (pairB v₂ v₃)
evalP dist (pairB (inlB v₁) v₃) = inlB (pairB v₁ v₃)
evalP dist (pairB (inrB v₂) v₃) = inrB (pairB v₂ v₃)
evalP factor (inlB (pairB v₁ v₃)) = pairB (inlB v₁) v₃
evalP factor (inrB (pairB v₂ v₃)) = pairB (inrB v₂) v₃
evalP id⟷ v = v
-- Backwards evaluator
bevalP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → VB b₂ → VB b₁
bevalP c v = evalP (adjointP c) v
------------------------------------------------------------------------------
-- Closure combinators
data _⟺_ : B → B → Set where
iso : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₁ ⟺ b₂)
sym : { b₁ b₂ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₁)
_◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₃) → (b₁ ⟺ b₃)
_⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟺ b₃) → (b₂ ⟺ b₄) → (PLUS b₁ b₂ ⟺ PLUS b₃ b₄)
_⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟺ b₃) → (b₂ ⟺ b₄) → (TIMES b₁ b₂ ⟺ TIMES b₃ b₄)
--
adjoint : { b₁ b₂ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₁)
adjoint (iso c) = iso (adjointP c)
adjoint (sym c) = c
adjoint (c₁ ◎ c₂) = adjoint c₂ ◎ adjoint c₁
adjoint (c₁ ⊕ c₂) = adjoint c₁ ⊕ adjoint c₂
adjoint (c₁ ⊗ c₂) = adjoint c₁ ⊗ adjoint c₂
------------------------------------------------------------------------------
-- Operational semantics
-- (Context a b c d) represents a combinator (c <=> d) with a hole
-- requiring something of type (a <=> b). When we use these contexts,
-- it is always the case that the (c <=> a) part of the computation
-- has ALREADY been done and that we are about to evaluate (a <=> b)
-- using a given 'a'. The continuation takes the output 'b' and
-- produces a 'd'.
data Context : B → B → B → B → Set where
emptyC : {a b : B} → Context a b a b
seqC₁ : {a b c i o : B} → (b ⟺ c) → Context a c i o → Context a b i o
seqC₂ : {a b c i o : B} → (a ⟺ b) → Context a c i o → Context b c i o
leftC : {a b c d i o : B} →
(c ⟺ d) → Context (PLUS a c) (PLUS b d) i o → Context a b i o
rightC : {a b c d i o : B} →
(a ⟺ b) → Context (PLUS a c) (PLUS b d) i o → Context c d i o
-- the (i <-> a) part of the computation is completely done; so we must store
-- the value of type [[ c ]] as part of the context
fstC : {a b c d i o : B} →
VB c → (c ⟺ d) → Context (TIMES a c) (TIMES b d) i o → Context a b i o
-- the (i <-> c) part of the computation and the (a <-> b) part of
-- the computation are completely done; so we must store the value
-- of type [[ b ]] as part of the context
sndC : {a b c d i o : B} →
(a ⟺ b) → VB b → Context (TIMES a c) (TIMES b d) i o → Context c d i o
-- Small-step evaluation
-- A computation (c <=> d) is split into:
-- - a history (c <==> a)
-- - a current computation in focus (a <==> b)
-- - a future (b <==> d)
record BState (a b c d : B) : Set where
constructor <_!_!_>
field
comb : a ⟺ b
val : VB a
context : Context a b c d
record AState (a b c d : B) : Set where
constructor [_!_!_]
field
comb : a ⟺ b
val : VB b
context : Context a b c d
data State (d : B) : Set where
before : {a b c : B} → BState a b c d → State d
after : {a b c : B} → AState a b c d → State d
final : VB d → State d
-- The (c <=> a) part of the computation has been done.
-- We are about to perform the (a <=> b) part of the computation.
beforeStep : {a b c d : B} → BState a b c d → State d
beforeStep < iso f ! v ! C > = after [ iso f ! (evalP f v) ! C ]
beforeStep < sym c ! v ! C > = before < adjoint c ! v ! C >
beforeStep < _◎_ {b₂ = _} f g ! v ! C > = before < f ! v ! seqC₁ g C >
beforeStep < _⊕_ {b₁} {b₂} {b₃} {b₄} f g ! inlB v ! C > = before < f ! v ! leftC g C >
beforeStep < _⊕_ {b₁} {b₂} {b₃} {b₄} f g ! inrB v ! C > = before < g ! v ! rightC f C >
beforeStep < _⊗_ f g ! (pairB v₁ v₂ ) ! C > = before < f ! v₁ ! fstC v₂ g C >
-- The (c <=> a) part of the computation has been done.
-- The (a <=> b) part of the computation has been done.
-- We need to examine the context to get the 'd'.
-- We rebuild the combinator on the way out.
afterStep : {a b c d : B} → AState a b c d → State d
afterStep {d = d} [ f ! v ! emptyC ] = final v
afterStep [ f ! v ! seqC₁ g C ] = before < g ! v ! seqC₂ f C >
afterStep [ g ! v ! seqC₂ f C ] = after [ f ◎ g ! v ! C ]
afterStep [ f ! v ! leftC g C ] = after [ f ⊕ g ! inlB v ! C ]
afterStep [ g ! v ! rightC f C ] = after [ f ⊕ g ! inrB v ! C ]
afterStep [ f ! v₁ ! fstC v₂ g C ] = before < g ! v₂ ! sndC f v₁ C >
afterStep [ g ! v₂ ! sndC f v₁ C ] = after [ f ⊗ g ! (pairB v₁ v₂) ! C ]
-- Backwards evaluator
-- Re-use AState and BState, but use them 'backwards'
-- this one is different as it produces a 'c' rather than a 'd'
data Stateb (c : B) : Set where
before : {a b d : B} → AState a b c d → Stateb c
after : {a b d : B} → BState a b c d → Stateb c
final : VB c → Stateb c
-- The (d <=> b) part of the computation has been done.
-- We have a 'b' and we are about to do the (a <=> b) computation backwards.
-- We get an 'a' and examine the context to get the 'c'
beforeStepb : { a b c d : B } → AState a b c d → Stateb c
beforeStepb [ iso f ! v ! C ] = after < iso f ! bevalP f v ! C >
beforeStepb [ sym c ! v ! C ] = before [ adjoint c ! v ! C ]
beforeStepb [ f ◎ g ! v ! C ] = before [ g ! v ! seqC₂ f C ]
beforeStepb [ f ⊕ g ! inlB v ! C ] = before [ f ! v ! leftC g C ]
beforeStepb [ f ⊕ g ! inrB v ! C ] = before [ g ! v ! rightC f C ]
beforeStepb [ f ⊗ g ! pairB v₁ v₂ ! C ] = before [ g ! v₂ ! sndC f v₁ C ]
-- The (d <-> b) part of the computation has been done.
-- The (a <-> b) backwards computation has been done.
-- We have an 'a' and examine the context to get the 'c'
afterStepb : { a b c d : B } → BState a b c d → Stateb c
afterStepb < f ! v ! emptyC > = final v
afterStepb < g ! v ! seqC₂ f C > = before [ f ! v ! seqC₁ g C ]
afterStepb < f ! v ! seqC₁ g C > = after < f ◎ g ! v ! C >
afterStepb < f ! v ! leftC g C > = after < f ⊕ g ! inlB v ! C >
afterStepb < g ! v ! rightC f C > = after < f ⊕ g ! inrB v ! C >
afterStepb < g ! v₂ ! sndC f v₁ C > = before [ f ! v₁ ! fstC v₂ g C ]
afterStepb < f ! v₁ ! fstC v₂ g C > = after < f ⊗ g ! pairB v₁ v₂ ! C >
------------------------------------------------------------------------------
-- A single step of a machine
step : {d : B} → State d → State d
step (before st) = beforeStep st
step (after st) = afterStep st
step (final v) = final v
stepb : {c : B} → Stateb c → Stateb c
stepb (before st) = beforeStepb st
stepb (after st) = afterStepb st
stepb (final v) = final v
-- Forward and backwards evaluators loop until final state
eval : {a b : B} → (a ⟺ b) → VB a → VB b
eval f v = loop (before < f ! v ! emptyC > )
where
loop : {b : B} → State b → VB b
loop (final v) = v
loop st = loop (step st)
evalb : {a b : B} → (a ⟺ b) → VB b → VB a
evalb f v = loop (before [ f ! v ! emptyC ] )
where
loop : {b : B} → Stateb b → VB b
loop (final v) = v
loop st = loop (stepb st)
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5366410629,
"avg_line_length": 37.6328125,
"ext": "agda",
"hexsha": "b013c62ef15f9a7dc68f84cec4b5b230e7147eab",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/Pi-abstract-machine.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/Pi-abstract-machine.agda",
"max_line_length": 88,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/Pi-abstract-machine.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3917,
"size": 9634
} |
------------------------------------------------------------------------------
-- Well-founded induction on the lexicographic order on natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- From the thesis: The induction principle $\Conid{Lexi-wfind}$ is
-- proved by well-founded induction on the usual order $\Conid{LT}$ on
-- (partial) natural numbers which, in turn, can be proved by pattern
-- matching on the proof that the numbers are total.
module FOT.FOTC.Data.Nat.Induction.NonAcc.LexicographicI where
open import FOTC.Base
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI
open import FOTC.Data.Nat.Inequalities.PropertiesI
open import FOTC.Data.Nat.Induction.NonAcc.WF-I
open module WFI = FOTC.Data.Nat.Induction.NonAcc.WF-I.WFInd
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
Lexi-wfind :
(A : D → D → Set) →
(∀ {m₁ n₁} → N m₁ → N n₁ →
(∀ {m₂ n₂} → N m₂ → N n₂ → Lexi m₂ n₂ m₁ n₁ → A m₂ n₂) → A m₁ n₁) →
∀ {m n} → N m → N n → A m n
Lexi-wfind A h {m} Nm Nn = <-wfind {!!} {!!} {!!}
| {
"alphanum_fraction": 0.5479452055,
"avg_line_length": 38.5277777778,
"ext": "agda",
"hexsha": "e17e6c48cb3157a95f0b325ab979cb67a5ef4ac1",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/NonAcc/LexicographicI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/NonAcc/LexicographicI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/NonAcc/LexicographicI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 369,
"size": 1387
} |
{-# OPTIONS --without-K #-}
module Circuits where
open import PiLevel0
using (U; ZERO; ONE; PLUS; TIMES; BOOL; BOOL²;
_⟷_;
unite₊; uniti₊; swap₊; assocl₊; assocr₊;
unite⋆; uniti⋆; swap⋆; assocl⋆; assocr⋆;
absorbr; absorbl; factorzr; factorzl; dist; factor;
id⟷; _◎_; _⊕_; _⊗_;
_⟷⟨_⟩_; _□;
NOT; CNOT; TOFFOLI)
------------------------------------------------------------------------------
SWAP : BOOL² ⟷ BOOL²
SWAP = swap⋆
CONTROL : {t : U} → (t ⟷ t) → (TIMES BOOL t ⟷ TIMES BOOL t)
CONTROL {t} f = TIMES BOOL t
⟷⟨ id⟷ ⟩
TIMES (PLUS x y) t
⟷⟨ dist ⟩
PLUS (TIMES x t) (TIMES y t)
⟷⟨ id⟷ ⊕ (id⟷ ⊗ f) ⟩
PLUS (TIMES x t) (TIMES y t)
⟷⟨ factor ⟩
TIMES (PLUS x y) t
⟷⟨ id⟷ ⟩
TIMES BOOL t □
where x = ONE; y = ONE
FREDKIN : TIMES BOOL BOOL² ⟷ TIMES BOOL BOOL²
FREDKIN = CONTROL SWAP
------------------------------------------------------------------------------
-- Fig. 4 in http://arxiv.org/pdf/1110.2574v2.pdf
-- (e) cycles
-- (c) reversible truth table
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3870967742,
"avg_line_length": 27.6304347826,
"ext": "agda",
"hexsha": "29f8e9810eab9bc3dcb59a5353cd74d2f7e5e733",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Circuits.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Circuits.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Circuits.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 399,
"size": 1271
} |
{-# OPTIONS --without-K --safe #-}
module Fragment.Examples.CSemigroup.Arith.Functions where
open import Fragment.Examples.CSemigroup.Arith.Base
-- Fully dynamic associativity
+-dyn-assoc₁ : ∀ {f : ℕ → ℕ} {m n o} → (f m + n) + o ≡ f m + (n + o)
+-dyn-assoc₁ = fragment CSemigroupFrex +-csemigroup
+-dyn-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → ((f m + n) + o) + g p ≡ f m + (n + (o + g p))
+-dyn-assoc₂ = fragment CSemigroupFrex +-csemigroup
+-dyn-assoc₃ : ∀ {f g h : ℕ → ℕ} {m n o p q} → (f m + n) + g o + (p + h q) ≡ f m + (n + g o + p) + h q
+-dyn-assoc₃ = fragment CSemigroupFrex +-csemigroup
*-dyn-assoc₁ : ∀ {f : ℕ → ℕ} {m n o} → (f m * n) * o ≡ f m * (n * o)
*-dyn-assoc₁ = fragment CSemigroupFrex *-csemigroup
*-dyn-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → ((f m * n) * o) * g p ≡ f m * (n * (o * g p))
*-dyn-assoc₂ = fragment CSemigroupFrex *-csemigroup
*-dyn-assoc₃ : ∀ {f g h : ℕ → ℕ} {m n o p q} → (f m * n) * g o * (p * h q) ≡ f m * (n * g o * p) * h q
*-dyn-assoc₃ = fragment CSemigroupFrex *-csemigroup
-- Fully dynamic commutativity
+-dyn-comm₁ : ∀ {f : ℕ → ℕ} {m} → f m + m ≡ m + f m
+-dyn-comm₁ = fragment CSemigroupFrex +-csemigroup
+-dyn-comm₂ : ∀ {f g : ℕ → ℕ} {m n o} → f m + (n + g o) ≡ (g o + n) + f m
+-dyn-comm₂ = fragment CSemigroupFrex +-csemigroup
+-dyn-comm₃ : ∀ {f g h : ℕ → ℕ} {m n o p} → (f m + g n) + (h o + p) ≡ (p + h o) + (g n + f m)
+-dyn-comm₃ = fragment CSemigroupFrex +-csemigroup
*-dyn-comm₁ : ∀ {f : ℕ → ℕ} {m} → f m * m ≡ m * f m
*-dyn-comm₁ = fragment CSemigroupFrex *-csemigroup
*-dyn-comm₂ : ∀ {f g : ℕ → ℕ} {m n o} → f m * (n * g o) ≡ (g o * n) * f m
*-dyn-comm₂ = fragment CSemigroupFrex *-csemigroup
*-dyn-comm₃ : ∀ {f g h : ℕ → ℕ} {m n o p} → (f m * g n) * (h o * p) ≡ (p * h o) * (g n * f m)
*-dyn-comm₃ = fragment CSemigroupFrex *-csemigroup
-- Fully dynamic associavity and commutativity
+-dyn-comm-assoc₁ : ∀ {f : ℕ → ℕ} {m} → (f m + f (f m)) + f (f (f m)) ≡ f (f (f m)) + (f (f m) + f m)
+-dyn-comm-assoc₁ = fragment CSemigroupFrex +-csemigroup
+-dyn-comm-assoc₂ : ∀ {f g : ℕ → ℕ} {m n} → ((f m + f n) + g m) + g n ≡ g m + (f n + (g n + f m))
+-dyn-comm-assoc₂ = fragment CSemigroupFrex +-csemigroup
+-dyn-comm-assoc₃ : ∀ {f : ℕ → ℕ} {m n o p q} → f (m + n) + o + (p + q) ≡ f (m + n) + q + (p + o)
+-dyn-comm-assoc₃ = fragment CSemigroupFrex +-csemigroup
*-dyn-comm-assoc₁ : ∀ {f : ℕ → ℕ} {m} → (f m * f (f m)) * f (f (f m)) ≡ f (f (f m)) * (f (f m) * f m)
*-dyn-comm-assoc₁ = fragment CSemigroupFrex *-csemigroup
*-dyn-comm-assoc₂ : ∀ {f g : ℕ → ℕ} {m n} → ((f m * f n) * g m) * g n ≡ g m * (f n * (g n * f m))
*-dyn-comm-assoc₂ = fragment CSemigroupFrex *-csemigroup
*-dyn-comm-assoc₃ : ∀ {f : ℕ → ℕ} {m n o p q} → f (m + n) * o * (p * q) ≡ f (m + n) * q * (p * o)
*-dyn-comm-assoc₃ = fragment CSemigroupFrex *-csemigroup
-- Partially static associativity
+-sta-assoc₁ : ∀ {f : ℕ → ℕ} {m} → (m + 2) + (3 + f 0) ≡ m + (5 + f 0)
+-sta-assoc₁ = fragment CSemigroupFrex +-csemigroup
+-sta-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → (((f m + g n) + 5) + o) + p ≡ f m + (g n + (2 + (3 + (o + p))))
+-sta-assoc₂ = fragment CSemigroupFrex +-csemigroup
+-sta-assoc₃ : ∀ {f : ℕ → ℕ} {m n o p} → f (n + m) + (n + 2) + (3 + (o + p)) ≡ (((n + 1) + (4 + o)) + p) + f (n + m)
+-sta-assoc₃ = fragment CSemigroupFrex +-csemigroup
*-sta-assoc₁ : ∀ {f : ℕ → ℕ} {m} → (m * 2) * (3 * f 0) ≡ m * (6 * f 0)
*-sta-assoc₁ = fragment CSemigroupFrex *-csemigroup
*-sta-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → (((f m * g n) * 6) * o) * p ≡ f m * (g n * (2 * (3 * (o * p))))
*-sta-assoc₂ = fragment CSemigroupFrex *-csemigroup
*-sta-assoc₃ : ∀ {f : ℕ → ℕ} {m n o p} → f (n + m) * (n * 4) * (3 * (o * p)) ≡ (((n * 2) * (6 * o)) * p) * f (n + m)
*-sta-assoc₃ = fragment CSemigroupFrex *-csemigroup
-- Partially static commutativity
+-sta-comm₁ : ∀ {f g : ℕ → ℕ} {m} → f m + g 1 ≡ g 1 + f m
+-sta-comm₁ = fragment CSemigroupFrex +-csemigroup
+-sta-comm₂ : ∀ {f g : ℕ → ℕ} {m n} → f m + (2 + g n) ≡ (g n + 2) + f m
+-sta-comm₂ = fragment CSemigroupFrex +-csemigroup
+-sta-comm₃ : ∀ {f g h : ℕ → ℕ} {m n o p} → (1 + (f m + g n)) + ((o + p) + h 2) ≡ ((p + o) + h 2) + (1 + (g n + f m))
+-sta-comm₃ = fragment CSemigroupFrex +-csemigroup
*-sta-comm₁ : ∀ {f g : ℕ → ℕ} {m} → f m * g 1 ≡ g 1 * f m
*-sta-comm₁ = fragment CSemigroupFrex *-csemigroup
*-sta-comm₂ : ∀ {f g : ℕ → ℕ} {m n} → f m * (2 * g n) ≡ (g n * 2) * f m
*-sta-comm₂ = fragment CSemigroupFrex *-csemigroup
*-sta-comm₃ : ∀ {f g h : ℕ → ℕ} {m n o p} → (3 * (f m * g n)) * ((o * p) * h 2) ≡ ((p * o) * h 2) * (3 * (g n * f m))
*-sta-comm₃ = fragment CSemigroupFrex *-csemigroup
-- Partially static associavity and commutativity
+-sta-comm-assoc₁ : ∀ {f : ℕ → ℕ} {m n o} → 1 + (f m + n) + f o + 4 ≡ 5 + n + (f m + f o)
+-sta-comm-assoc₁ = fragment CSemigroupFrex +-csemigroup
+-sta-comm-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → 5 + ((f m + n) + o) + g p ≡ g p + ((o + 1) + (n + f m)) + 4
+-sta-comm-assoc₂ = fragment CSemigroupFrex +-csemigroup
+-sta-comm-assoc₃ : ∀ {f g h : ℕ → ℕ} {m n o p q} → (f m + g n + 1) + o + (p + h q + 4) ≡ (2 + h q) + (p + o + g n) + (f m + 3)
+-sta-comm-assoc₃ = fragment CSemigroupFrex +-csemigroup
*-sta-comm-assoc₁ : ∀ {f : ℕ → ℕ} {m n o} → 2 * (f m * n) * f o * 6 ≡ 12 * n * (f m * f o)
*-sta-comm-assoc₁ = fragment CSemigroupFrex *-csemigroup
*-sta-comm-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → 12 * ((f m * n) * o) * g p ≡ g p * ((o * 2) * (n * f m)) * 6
*-sta-comm-assoc₂ = fragment CSemigroupFrex *-csemigroup
*-sta-comm-assoc₃ : ∀ {f g h : ℕ → ℕ} {m n o p q} → (f m * g n * 2) * o * (p * h q * 6) ≡ (4 * h q) * (p * o * g n) * (f m * 3)
*-sta-comm-assoc₃ = fragment CSemigroupFrex *-csemigroup
| {
"alphanum_fraction": 0.5143769968,
"avg_line_length": 44.7142857143,
"ext": "agda",
"hexsha": "981a4bbba00714529cabb0bbfa8cc2d9680281a8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Functions.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Functions.agda",
"max_line_length": 127,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Examples/CSemigroup/Arith/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 2564,
"size": 5634
} |
{-
This second-order equational theory was created from the following second-order syntax description:
syntax QIO
type
T : 0-ary
P : 0-ary
term
new : P.T -> T
measure : P T T -> T
applyX : P P.T -> T
applyI2 : P P.T -> T
applyDuv : P P (P,P).T -> T
applyDu : P P.T -> T
applyDv : P P.T -> T
theory
(A) a:P t u:T |> applyX (a, b.measure(b, t, u)) = measure(a, u, t)
(B) a:P b:P t u:P.T |> measure(a, applyDu(b, b.t[b]), applyDv(b, b.u[b])) = applyDuv(a, b, a b.measure(a, t[b], u[b]))
(D) t u:T |> new(a.measure(a, t, u)) = t
(E) b:P t:(P, P).T |> new(a.applyDuv(a, b, a b. t[a,b])) = applyDu(b, b.new(a.t[a,b]))
-}
module QIO.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import QIO.Signature
open import QIO.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution QIO:Syn
open import SOAS.Metatheory.SecondOrder.Equality QIO:Syn
private
variable
α β γ τ : QIOT
Γ Δ Π : Ctx
infix 1 _▹_⊢_≋ₐ_
-- Axioms of equality
data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ QIO) α Γ → (𝔐 ▷ QIO) α Γ → Set where
A : ⁅ P ⁆ ⁅ T ⁆ ⁅ T ⁆̣ ▹ ∅ ⊢ applyX 𝔞 (measure x₀ 𝔟 𝔠) ≋ₐ measure 𝔞 𝔠 𝔟
B : ⁅ P ⁆ ⁅ P ⁆ ⁅ P ⊩ T ⁆ ⁅ P ⊩ T ⁆̣ ▹ ∅ ⊢ measure 𝔞 (applyDu 𝔟 (𝔠⟨ x₀ ⟩)) (applyDv 𝔟 (𝔡⟨ x₀ ⟩)) ≋ₐ applyDuv 𝔞 𝔟 (measure x₀ (𝔠⟨ x₁ ⟩) (𝔡⟨ x₁ ⟩))
D : ⁅ T ⁆ ⁅ T ⁆̣ ▹ ∅ ⊢ new (measure x₀ 𝔞 𝔟) ≋ₐ 𝔞
E : ⁅ P ⁆ ⁅ P · P ⊩ T ⁆̣ ▹ ∅ ⊢ new (applyDuv x₀ 𝔞 (𝔟⟨ x₀ ◂ x₁ ⟩)) ≋ₐ applyDu 𝔞 (new (𝔟⟨ x₀ ◂ x₁ ⟩))
open EqLogic _▹_⊢_≋ₐ_
open ≋-Reasoning
| {
"alphanum_fraction": 0.5239154616,
"avg_line_length": 30.4745762712,
"ext": "agda",
"hexsha": "2b06f7a211f561346672c9a21f3927235bd969e2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "k4rtik/agda-soas",
"max_forks_repo_path": "out/QIO/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "k4rtik/agda-soas",
"max_issues_repo_path": "out/QIO/Equality.agda",
"max_line_length": 147,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "k4rtik/agda-soas",
"max_stars_repo_path": "out/QIO/Equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 819,
"size": 1798
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
import homotopy.ConstantToSetExtendsToProp as ConstExt
module homotopy.RelativelyConstantToSetExtendsViaSurjection
{i j k} {A : Type i} {B : Type j} {C : B → Type k}
(C-is-set : ∀ b → is-set (C b))
(f : A → B) (f-is-surj : is-surj f)
(g : (a : A) → C (f a))
(g-is-const : ∀ a₁ a₂ → (p : f a₁ == f a₂) → g a₁ == g a₂ [ C ↓ p ])
where
{-
(b : A) ----> [ hfiber f b ] ----?----> C ?
^
|
hfiber f b
-}
private
lemma : ∀ b → hfiber f b → C b
lemma b (a , fa=b) = transport C fa=b (g a)
lemma-const : ∀ b → (h₁ h₂ : hfiber f b) → lemma b h₁ == lemma b h₂
lemma-const ._ (a₁ , fa₁=fa₂) (a₂ , idp) =
to-transp (g-is-const a₁ a₂ fa₁=fa₂)
module CE (b : B) =
ConstExt {A = hfiber f b} {B = C b}
(C-is-set b) (lemma b) (lemma-const b)
ext : Π B C
ext b = CE.ext b (f-is-surj b)
β : (a : A) → ext (f a) == g a
β a = ap (CE.ext (f a))
(prop-has-all-paths Trunc-level (f-is-surj (f a)) [ a , idp ])
| {
"alphanum_fraction": 0.4898148148,
"avg_line_length": 27.6923076923,
"ext": "agda",
"hexsha": "dffde1ba9182c6750cd086971b51dc3b828c8cdb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/RelativelyConstantToSetExtendsViaSurjection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/RelativelyConstantToSetExtendsViaSurjection.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/RelativelyConstantToSetExtendsViaSurjection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 420,
"size": 1080
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Ints.IsoInt where
open import Cubical.HITs.Ints.IsoInt.Base public
| {
"alphanum_fraction": 0.7428571429,
"avg_line_length": 23.3333333333,
"ext": "agda",
"hexsha": "1aab2919fe39b56e402401970a87216a05a86d19",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Ints/IsoInt.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Ints/IsoInt.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Ints/IsoInt.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 42,
"size": 140
} |
------------------------------------------------------------------------------
-- Testing an alternative definition of subtraction
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Nat.SubtractionSL where
open import Data.Nat hiding ( _∸_ )
open import Relation.Binary.PropositionalEquality
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Data/Nat.agda).
infixl 9 _∸₁_ _∸₂_
-- First definition (from the Agda standard library 0.8.1).
_∸₁_ : ℕ → ℕ → ℕ
m ∸₁ zero = m
zero ∸₁ suc n = zero
suc m ∸₁ suc n = m ∸₁ n
-- Second definition.
_∸₂_ : ℕ → ℕ → ℕ
m ∸₂ zero = m
{-# CATCHALL #-}
zero ∸₂ n = zero
suc m ∸₂ suc n = m ∸₂ n
-- Both definitions are equivalents.
thm : ∀ m n → m ∸₁ n ≡ m ∸₂ n
thm m zero = refl
thm zero (suc n) = refl
thm (suc m) (suc n) = thm m n
| {
"alphanum_fraction": 0.5076923077,
"avg_line_length": 28.1081081081,
"ext": "agda",
"hexsha": "29a804add2c7fb3a1d1de8359e1f0638cf27f769",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/SubtractionSL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/SubtractionSL.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/SubtractionSL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 310,
"size": 1040
} |
module Issue2579.Import where
record Wrap A : Set where
constructor wrap
field wrapped : A
| {
"alphanum_fraction": 0.7604166667,
"avg_line_length": 16,
"ext": "agda",
"hexsha": "da74d9e70e6e38ba242912dd7127bdaa3814f35f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/eagda",
"max_forks_repo_path": "test/Succeed/Issue2579/Import.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/eagda",
"max_issues_repo_path": "test/Succeed/Issue2579/Import.agda",
"max_line_length": 29,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/eagda",
"max_stars_repo_path": "test/Succeed/Issue2579/Import.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 24,
"size": 96
} |
{-# OPTIONS --show-implicit #-}
module PragmasRespected where
postulate
Foo : {A : Set₁} → Set
Bar : Foo {A = Set}
-- Andreas, 2014-10-20, AIM XX:
-- This test used to check that the --show-implicit option
-- is turned on even if the module is just reloaded from
-- an interface file.
-- However, as we now always recheck when reload,
-- this test should now trivially succeed.
| {
"alphanum_fraction": 0.6961038961,
"avg_line_length": 25.6666666667,
"ext": "agda",
"hexsha": "a12daa5a7304f5dd19802870f6672f4b3f4332e0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/PragmasRespected.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/PragmasRespected.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/PragmasRespected.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 107,
"size": 385
} |
------------------------------------------------------------------------------
-- Totality of Boolean conjunction
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Bool.AndTotality where
open import FOTC.Base
open import FOTC.Data.Bool.Type
------------------------------------------------------------------------------
postulate thm : (A : D → Set) → ∀ {b} → (Bool b ∧ A true ∧ A false) → A b
-- Because the ATPs don't handle induction, them cannot prove the
-- induction principle for Bool.
-- {-# ATP prove thm #-}
postulate
thm₁ : {A : D → Set} → ∀ {x y z} → Bool x → A y → A z → A (if x then y else z)
-- Because the ATPs don't handle induction, them cannot prove this postulate.
-- {-# ATP prove thm₁ #-}
-- Typing of the if-then-else.
if-T : (A : D → Set) → ∀ {x y z} → Bool x → A y → A z →
A (if x then y else z)
if-T A {y = y} btrue Ay Az = subst A (sym (if-true y)) Ay
if-T A {z = z} bfalse Ay Az = subst A (sym (if-false z)) Az
_&&_ : D → D → D
x && y = if x then y else false
{-# ATP definition _&&_ #-}
postulate &&-Bool : ∀ {x y} → Bool x → Bool y → Bool (x && y)
{-# ATP prove &&-Bool if-T #-}
&&-Bool₁ : ∀ {x y} → Bool x → Bool y → Bool (x && y)
&&-Bool₁ {y = y} btrue By = prf
where
postulate prf : Bool (true && y)
{-# ATP prove prf if-T #-}
&&-Bool₁ {y = y} bfalse By = prf
where
postulate prf : Bool (false && y)
{-# ATP prove prf if-T #-}
&&-Bool₂ : ∀ {x y} → Bool x → Bool y → Bool (x && y)
&&-Bool₂ btrue By = if-T Bool btrue By bfalse
&&-Bool₂ bfalse By = if-T Bool bfalse By bfalse
| {
"alphanum_fraction": 0.4884246189,
"avg_line_length": 33.4150943396,
"ext": "agda",
"hexsha": "fa45b103251567a5a6597ffd09b6d1207ef7b61d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Bool/AndTotality.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Bool/AndTotality.agda",
"max_line_length": 80,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Bool/AndTotality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 526,
"size": 1771
} |
{-# OPTIONS --without-K --exact-split #-}
module 16-sets where
import 15-groups
open 15-groups public
{- Equivalence relations -}
Rel-Prop :
(l : Level) {l1 : Level} (A : UU l1) → UU ((lsuc l) ⊔ l1)
Rel-Prop l A = A → (A → UU-Prop l)
type-Rel-Prop :
{l1 l2 : Level} {A : UU l1} (R : Rel-Prop l2 A) → A → A → UU l2
type-Rel-Prop R x y = pr1 (R x y)
is-prop-type-Rel-Prop :
{l1 l2 : Level} {A : UU l1} (R : Rel-Prop l2 A) →
(x y : A) → is-prop (type-Rel-Prop R x y)
is-prop-type-Rel-Prop R x y = pr2 (R x y)
is-reflexive-Rel-Prop :
{l1 l2 : Level} {A : UU l1} → Rel-Prop l2 A → UU (l1 ⊔ l2)
is-reflexive-Rel-Prop {A = A} R =
(x : A) → type-Rel-Prop R x x
is-symmetric-Rel-Prop :
{l1 l2 : Level} {A : UU l1} → Rel-Prop l2 A → UU (l1 ⊔ l2)
is-symmetric-Rel-Prop {A = A} R =
(x y : A) → type-Rel-Prop R x y → type-Rel-Prop R y x
is-transitive-Rel-Prop :
{l1 l2 : Level} {A : UU l1} → Rel-Prop l2 A → UU (l1 ⊔ l2)
is-transitive-Rel-Prop {A = A} R =
(x y z : A) → type-Rel-Prop R x y → type-Rel-Prop R y z → type-Rel-Prop R x z
is-equivalence-relation :
{l1 l2 : Level} {A : UU l1} (R : Rel-Prop l2 A) → UU (l1 ⊔ l2)
is-equivalence-relation R =
is-reflexive-Rel-Prop R ×
( is-symmetric-Rel-Prop R × is-transitive-Rel-Prop R)
Eq-Rel :
(l : Level) {l1 : Level} (A : UU l1) → UU ((lsuc l) ⊔ l1)
Eq-Rel l A = Σ (Rel-Prop l A) is-equivalence-relation
rel-prop-Eq-Rel :
{l1 l2 : Level} {A : UU l1} → Eq-Rel l2 A → Rel-Prop l2 A
rel-prop-Eq-Rel = pr1
type-Eq-Rel :
{l1 l2 : Level} {A : UU l1} → Eq-Rel l2 A → A → A → UU l2
type-Eq-Rel R = type-Rel-Prop (rel-prop-Eq-Rel R)
is-equivalence-relation-rel-prop-Eq-Rel :
{l1 l2 : Level} {A : UU l1} (R : Eq-Rel l2 A) →
is-equivalence-relation (rel-prop-Eq-Rel R)
is-equivalence-relation-rel-prop-Eq-Rel R = pr2 R
refl-Eq-Rel :
{l1 l2 : Level} {A : UU l1} (R : Eq-Rel l2 A) →
is-reflexive-Rel-Prop (rel-prop-Eq-Rel R)
refl-Eq-Rel R = pr1 (is-equivalence-relation-rel-prop-Eq-Rel R)
symm-Eq-Rel :
{l1 l2 : Level} {A : UU l1} (R : Eq-Rel l2 A) →
is-symmetric-Rel-Prop (rel-prop-Eq-Rel R)
symm-Eq-Rel R = pr1 (pr2 (is-equivalence-relation-rel-prop-Eq-Rel R))
trans-Eq-Rel :
{l1 l2 : Level} {A : UU l1} (R : Eq-Rel l2 A) →
is-transitive-Rel-Prop (rel-prop-Eq-Rel R)
trans-Eq-Rel R = pr2 (pr2 (is-equivalence-relation-rel-prop-Eq-Rel R))
{- Section 15.2 The universal property of set quotients -}
identifies-Eq-Rel :
{l1 l2 l3 : Level} {A : UU l1} (R : Eq-Rel l2 A) →
{B : UU l3} → (A → B) → UU (l1 ⊔ (l2 ⊔ l3))
identifies-Eq-Rel {A = A} R f =
(x y : A) → type-Eq-Rel R x y → Id (f x) (f y)
precomp-map-universal-property-Eq-Rel :
{l l1 l2 l3 : Level} {A : UU l1} (R : Eq-Rel l2 A)
{B : UU-Set l3} (f : A → type-Set B) (H : identifies-Eq-Rel R f) →
(X : UU-Set l) → (type-hom-Set B X) → Σ (A → type-Set X) (identifies-Eq-Rel R)
precomp-map-universal-property-Eq-Rel R f H X g =
pair (g ∘ f) (λ x y r → ap g (H x y r))
universal-property-set-quotient :
(l : Level) {l1 l2 l3 : Level} {A : UU l1} (R : Eq-Rel l2 A)
{B : UU-Set l3} (f : A → type-Set B) (H : identifies-Eq-Rel R f) → UU _
universal-property-set-quotient l R {B} f H =
(X : UU-Set l) → is-equiv (precomp-map-universal-property-Eq-Rel R {B} f H X)
{- Effective quotients -}
is-effective-Set-Quotient :
{l1 l2 l3 : Level} {A : UU l1} (R : Eq-Rel l2 A) (B : UU-Set l3)
(f : A → type-Set B) (H : identifies-Eq-Rel R f) → UU (l1 ⊔ l2 ⊔ l3)
is-effective-Set-Quotient {A = A} R B f H = (x y : A) → is-equiv (H x y)
-- Section 13.4
is-small :
(l : Level) {l1 : Level} (A : UU l1) → UU (lsuc l ⊔ l1)
is-small l A = Σ (UU l) (λ X → A ≃ X)
is-small-map :
(l : Level) {l1 l2 : Level} {A : UU l1} {B : UU l2} →
(A → B) → UU (lsuc l ⊔ (l1 ⊔ l2))
is-small-map l {B = B} f = (b : B) → is-small l (fib f b)
is-locally-small :
(l : Level) {l1 : Level} (A : UU l1) → UU (lsuc l ⊔ l1)
is-locally-small l A = (x y : A) → is-small l (Id x y)
total-subtype :
{l1 l2 : Level} {A : UU l1} (P : A → UU-Prop l2) → UU (l1 ⊔ l2)
total-subtype {A = A} P = Σ A (λ x → pr1 (P x))
equiv-subtype-equiv :
{l1 l2 l3 l4 : Level}
{A : UU l1} {B : UU l2} (e : A ≃ B)
(C : A → UU-Prop l3) (D : B → UU-Prop l4) →
((x : A) → (C x) ↔ (D (map-equiv e x))) →
total-subtype C ≃ total-subtype D
equiv-subtype-equiv e C D H =
equiv-toto (λ y → type-Prop (D y)) e
( λ x → equiv-iff (C x) (D (map-equiv e x)) (H x))
equiv-comp-equiv' :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} →
(A ≃ B) → (C : UU l3) → (B ≃ C) ≃ (A ≃ C)
equiv-comp-equiv' e C =
equiv-subtype-equiv
( equiv-precomp-equiv e C)
( is-equiv-Prop)
( is-equiv-Prop)
( λ g →
pair
( is-equiv-comp' g (map-equiv e) (is-equiv-map-equiv e))
( λ is-equiv-eg →
is-equiv-left-factor'
g (map-equiv e) is-equiv-eg (is-equiv-map-equiv e)))
is-prop-is-small :
(l : Level) {l1 : Level} (A : UU l1) → is-prop (is-small l A)
is-prop-is-small l A =
is-prop-is-contr-if-inh
( λ Xe →
is-contr-equiv'
( Σ (UU l) (λ Y → (pr1 Xe) ≃ Y))
( equiv-tot ((λ Y → equiv-comp-equiv' (pr2 Xe) Y)))
( is-contr-total-equiv (pr1 Xe)))
is-prop-is-locally-small :
(l : Level) {l1 : Level} (A : UU l1) → is-prop (is-locally-small l A)
is-prop-is-locally-small l A =
is-prop-Π (λ x → is-prop-Π (λ y → is-prop-is-small l (Id x y)))
| {
"alphanum_fraction": 0.5651847683,
"avg_line_length": 32.9074074074,
"ext": "agda",
"hexsha": "bc751b99ec34a62dbe312c2ceb86991b9fe7976d",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/16-sets.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/16-sets.agda",
"max_line_length": 80,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/16-sets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 2344,
"size": 5331
} |
{-# OPTIONS --universe-polymorphism #-}
module Issue311 where
open import Common.Level
postulate
A : Set
C : (b : Level) (B : A → Set b) → Set b
f : (b : Level) (B : A → Set b) → C b B → A
g : (b : Level) (B : A → Set b) (d : C b B) → B (f b B d)
P : (c : Level) → Set c
Q : A → Set
checkQ : ∀ a → Q a → Set
T : (c : Level) → Set c
T c = P c → A
Foo : (c : Level) (d : C c (λ _ → T c)) →
Q (f c (λ _ → T c) d) → Set
Foo c d q with f c (λ _ → T c) d | g c (λ _ → T c) d
Foo c d q | x | y = checkQ x q
-- C-c C-, gives:
--
-- Goal: Set₁
-- ————————————————————————————————————————————————————————————
-- q : Q (f c (λ _ → P c → A) d)
-- y : P c → A
-- x : A
-- d : C c (λ _ → P c → A)
-- c : Level
--
-- Note that q has type Q (f c (λ _ → P c → A) d); it should have type
-- Q x.
| {
"alphanum_fraction": 0.4173913043,
"avg_line_length": 22.3611111111,
"ext": "agda",
"hexsha": "a7d0bfed458b2d130930f9fc4ce74877d13b614d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue311.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue311.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue311.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 335,
"size": 805
} |
{-# OPTIONS --safe #-}
{-
This uses ideas from Floris van Doorn's phd thesis and the code in
https://github.com/cmu-phil/Spectral/blob/master/spectrum/basic.hlean
-}
module Cubical.Homotopy.Spectrum where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Unit.Pointed
open import Cubical.Foundations.Equiv
open import Cubical.Data.Int
open import Cubical.Homotopy.Prespectrum
private
variable
ℓ : Level
Spectrum : (ℓ : Level) → Type (ℓ-suc ℓ)
Spectrum ℓ = let open GenericPrespectrum
in Σ[ P ∈ Prespectrum ℓ ] ((k : ℤ) → isEquiv (fst (map P k)))
| {
"alphanum_fraction": 0.7232597623,
"avg_line_length": 25.6086956522,
"ext": "agda",
"hexsha": "c2a36d017b5e21912dc79b58d8bd1d1b9377fb6b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Spectrum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Spectrum.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Spectrum.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 176,
"size": 589
} |
------------------------------------------------------------------------
-- Example: Left recursive expression grammar
------------------------------------------------------------------------
module TotalParserCombinators.Recogniser.Expression where
open import Codata.Musical.Notation
open import Data.Bool
open import Data.Char as Char using (Char)
open import Data.List
open import Data.String as String using (String)
open import Function
open import Relation.Binary.PropositionalEquality
open import TotalParserCombinators.BreadthFirst
import TotalParserCombinators.Lib as Lib
open import TotalParserCombinators.Recogniser
------------------------------------------------------------------------
-- Lifted versions of some parsers
-- Specific tokens.
tok : Char → P Char []
tok c = lift $ Lib.Token.tok Char Char._≟_ c
-- Numbers.
number : P Char []
number = lift Lib.number
------------------------------------------------------------------------
-- An expression grammar
-- t ∷= t '+' f ∣ f
-- f ∷= f '*' a ∣ a
-- a ∷= '(' t ')' ∣ n
mutual
term = ♯ term · tok '+' · factor
∣ factor
factor = ♯ factor · tok '*' · atom
∣ atom
atom = tok '(' · ♯ term · tok ')'
∣ number
------------------------------------------------------------------------
-- Unit tests
module Tests where
test : ∀ {n} → P Char n → String → Bool
test p s = not $ null $ parse ⟦ p ⟧ (String.toList s)
ex₁ : test term "1*(2+3)" ≡ true
ex₁ = refl
ex₂ : test term "1*(2+3" ≡ false
ex₂ = refl
| {
"alphanum_fraction": 0.5,
"avg_line_length": 24.2857142857,
"ext": "agda",
"hexsha": "2ad178dd3b961c551f4c1fffb9714910798754e7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/Recogniser/Expression.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/Recogniser/Expression.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/Recogniser/Expression.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 354,
"size": 1530
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of the binary representation of natural numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Bin.Properties where
open import Data.Bin
open import Data.Digit using (Bit; Expansion)
import Data.Fin as Fin
import Data.Fin.Properties as 𝔽ₚ
open import Data.List.Base using (List; []; _∷_)
open import Data.List.Properties using (∷-injective)
open import Data.Nat
using (ℕ; zero; z≤n; s≤s)
renaming (suc to 1+_; _+_ to _+ℕ_; _*_ to _*ℕ_; _≤_ to _≤ℕ_)
import Data.Nat.Properties as ℕₚ
open import Data.Product using (proj₁; proj₂)
open import Function using (_∘_)
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.PropositionalEquality
using (_≡_; _≢_; refl; sym; isEquivalence; resp₂; decSetoid)
open import Relation.Nullary using (yes; no)
------------------------------------------------------------------------
-- (Bin, _≡_) is a decidable setoid
1#-injective : ∀ {as bs} → as 1# ≡ bs 1# → as ≡ bs
1#-injective refl = refl
infix 4 _≟_ _≟ₑ_
_≟ₑ_ : ∀ {base} → Decidable (_≡_ {A = Expansion base})
_≟ₑ_ [] [] = yes refl
_≟ₑ_ [] (_ ∷ _) = no λ()
_≟ₑ_ (_ ∷ _) [] = no λ()
_≟ₑ_ (x ∷ xs) (y ∷ ys) with x Fin.≟ y | xs ≟ₑ ys
... | _ | no xs≢ys = no (xs≢ys ∘ proj₂ ∘ ∷-injective)
... | no x≢y | _ = no (x≢y ∘ proj₁ ∘ ∷-injective)
... | yes refl | yes refl = yes refl
_≟_ : Decidable {A = Bin} _≡_
0# ≟ 0# = yes refl
0# ≟ bs 1# = no λ()
as 1# ≟ 0# = no λ()
as 1# ≟ bs 1# with as ≟ₑ bs
... | yes refl = yes refl
... | no as≢bs = no (as≢bs ∘ 1#-injective)
≡-isDecEquivalence : IsDecEquivalence _≡_
≡-isDecEquivalence = record
{ isEquivalence = isEquivalence
; _≟_ = _≟_
}
≡-decSetoid : DecSetoid _ _
≡-decSetoid = decSetoid _≟_
------------------------------------------------------------------------
-- (Bin _≡_ _<_) is a strict total order
<-trans : Transitive _<_
<-trans (less lt₁) (less lt₂) = less (ℕₚ.<-trans lt₁ lt₂)
<-asym : Asymmetric _<_
<-asym (less lt) (less gt) = ℕₚ.<-asym lt gt
<-irrefl : Irreflexive _≡_ _<_
<-irrefl refl (less lt) = ℕₚ.<-irrefl refl lt
∷ʳ-mono-< : ∀ {a b as bs} → as 1# < bs 1# → (a ∷ as) 1# < (b ∷ bs) 1#
∷ʳ-mono-< {a} {b} {as} {bs} (less lt) = less (begin
1+ (m₁ +ℕ n₁ *ℕ 2) ≤⟨ s≤s (ℕₚ.+-monoˡ-≤ _ (𝔽ₚ.toℕ≤pred[n] a)) ⟩
1+ (1 +ℕ n₁ *ℕ 2) ≡⟨ refl ⟩
1+ n₁ *ℕ 2 ≤⟨ ℕₚ.*-mono-≤ lt ℕₚ.≤-refl ⟩
n₂ *ℕ 2 ≤⟨ ℕₚ.n≤m+n m₂ (n₂ *ℕ 2) ⟩
m₂ +ℕ n₂ *ℕ 2 ∎)
where
open ℕₚ.≤-Reasoning
m₁ = Fin.toℕ a; m₂ = Fin.toℕ b
n₁ = toℕ (as 1#); n₂ = toℕ (bs 1#)
∷ˡ-mono-< : ∀ {a b bs} → a Fin.< b → (a ∷ bs) 1# < (b ∷ bs) 1#
∷ˡ-mono-< {a} {b} {bs} lt = less (begin
1 +ℕ (m₁ +ℕ n *ℕ 2) ≡⟨ sym (ℕₚ.+-assoc 1 m₁ (n *ℕ 2)) ⟩
(1 +ℕ m₁) +ℕ n *ℕ 2 ≤⟨ ℕₚ.+-monoˡ-≤ _ lt ⟩
m₂ +ℕ n *ℕ 2 ∎)
where
open ℕₚ.≤-Reasoning
m₁ = Fin.toℕ a; m₂ = Fin.toℕ b; n = toℕ (bs 1#)
1<[23] : ∀ {b} → [] 1# < (b ∷ []) 1#
1<[23] {b} = less (ℕₚ.n≤m+n (Fin.toℕ b) 2)
1<2+ : ∀ {b bs} → [] 1# < (b ∷ bs) 1#
1<2+ {_} {[]} = 1<[23]
1<2+ {_} {b ∷ bs} = <-trans 1<[23] (∷ʳ-mono-< {a = b} 1<2+)
0<1+ : ∀ {bs} → 0# < bs 1#
0<1+ {[]} = less (s≤s z≤n)
0<1+ {b ∷ bs} = <-trans (less (s≤s z≤n)) 1<2+
<⇒≢ : ∀ {a b} → a < b → a ≢ b
<⇒≢ lt eq = asym⟶irr (resp₂ _<_) sym <-asym eq lt
<-cmp : Trichotomous _≡_ _<_
<-cmp 0# 0# = tri≈ (<-irrefl refl) refl (<-irrefl refl)
<-cmp 0# (_ 1#) = tri< 0<1+ (<⇒≢ 0<1+) (<-asym 0<1+)
<-cmp (_ 1#) 0# = tri> (<-asym 0<1+) (<⇒≢ 0<1+ ∘ sym) 0<1+
<-cmp ([] 1#) ([] 1#) = tri≈ (<-irrefl refl) refl (<-irrefl refl)
<-cmp ([] 1#) ((b ∷ bs) 1#) = tri< 1<2+ (<⇒≢ 1<2+) (<-asym 1<2+)
<-cmp ((a ∷ as) 1#) ([] 1#) = tri> (<-asym 1<2+) (<⇒≢ 1<2+ ∘ sym) 1<2+
<-cmp ((a ∷ as) 1#) ((b ∷ bs) 1#) with <-cmp (as 1#) (bs 1#)
... | tri< lt ¬eq ¬gt =
tri< (∷ʳ-mono-< lt) (<⇒≢ (∷ʳ-mono-< lt)) (<-asym (∷ʳ-mono-< lt))
... | tri> ¬lt ¬eq gt =
tri> (<-asym (∷ʳ-mono-< gt)) (<⇒≢ (∷ʳ-mono-< gt) ∘ sym) (∷ʳ-mono-< gt)
... | tri≈ ¬lt refl ¬gt with 𝔽ₚ.<-cmp a b
... | tri≈ ¬lt′ refl ¬gt′ =
tri≈ (<-irrefl refl) refl (<-irrefl refl)
... | tri< lt′ ¬eq ¬gt′ =
tri< (∷ˡ-mono-< lt′) (<⇒≢ (∷ˡ-mono-< lt′)) (<-asym (∷ˡ-mono-< lt′))
... | tri> ¬lt′ ¬eq gt′ =
tri> (<-asym (∷ˡ-mono-< gt′)) (<⇒≢ (∷ˡ-mono-< gt′) ∘ sym) (∷ˡ-mono-< gt′)
<-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_
<-isStrictTotalOrder = record
{ isEquivalence = isEquivalence
; trans = <-trans
; compare = <-cmp
}
<-strictTotalOrder : StrictTotalOrder _ _ _
<-strictTotalOrder = record
{ Carrier = Bin
; _≈_ = _≡_
; _<_ = _<_
; isStrictTotalOrder = <-isStrictTotalOrder
}
| {
"alphanum_fraction": 0.4786972552,
"avg_line_length": 33.9027777778,
"ext": "agda",
"hexsha": "63d261c237c00bc90d4519341bebc7e892168238",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Bin/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Bin/Properties.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Bin/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2266,
"size": 4882
} |
open import Prelude
open import Nat
open import List
open import Bij
module delta-lemmas (K : Set) {{bij : bij K Nat}} where
-- abbreviations for conversion between K and Nat
key : Nat → K
key = convert-inv {{bij}}
nat : K → Nat
nat = bij.convert bij
-- another bij-related convenience functions
inj-cp : ∀{k1 k2} → k1 ≠ k2 → nat k1 ≠ nat k2
inj-cp ne eq = abort (ne (bij.inj bij eq))
-- helper function
delta : ∀{n m} → n < m → Nat
delta n<m = difference (n<m→1+n≤m n<m)
-- raw underlying list-of-pairs type
dl : (V : Set) → Set
dl V = List (Nat ∧ V)
---- helper definitions ----
_lkup_ : {V : Set} → dl V → Nat → Maybe V
[] lkup x = None
((hn , hv) :: t) lkup n with <dec n hn
... | Inl n<hn = None
... | Inr (Inl refl) = Some hv
... | Inr (Inr hn<n) = t lkup (delta hn<n)
_,,'_ : ∀{V} → dl V → (Nat ∧ V) → dl V
[] ,,' (n , v) = (n , v) :: []
((hn , hv) :: t) ,,' (n , v) with <dec n hn
... | Inl n<hn = (n , v) :: ((delta n<hn , hv) :: t)
... | Inr (Inl refl) = (n , v) :: t
... | Inr (Inr hn<n) = (hn , hv) :: (t ,,' (delta hn<n , v))
data _∈'_ : {V : Set} (p : Nat ∧ V) → (d : dl V) → Set where
InH : {V : Set} {d : dl V} {n : Nat} {v : V} →
(n , v) ∈' ((n , v) :: d)
InT : {V : Set} {d : dl V} {n s : Nat} {v v' : V} →
(n , v) ∈' d →
(n + 1+ s , v) ∈' ((s , v') :: d)
dom' : {V : Set} → dl V → Nat → Set
dom' {V} d n = Σ[ v ∈ V ] ((n , v) ∈' d)
_#'_ : {V : Set} (n : Nat) → (d : dl V) → Set
n #' d = dom' d n → ⊥
---- lemmas ----
undelta : (x s : Nat) → (x<s+1+x : x < s + 1+ x) → s == delta x<s+1+x
undelta x s x<s+1+x
rewrite n+1+m==1+n+m {s} {x} | ! (m-n==1+m-1+n n≤m+n (n<m→1+n≤m x<s+1+x)) | +comm {s} {x}
= ! (n+m-n==m n≤n+m)
n#'[] : {V : Set} {n : Nat} → _#'_ {V} n []
n#'[] (_ , ())
too-small : {V : Set} {d : dl V} {xl xb : Nat} {v : V} →
xl < xb →
dom' ((xb , v) :: d) xl →
⊥
too-small (_ , ne) (_ , InH) = ne refl
too-small (x+1+xb≤xb , x+1+xb==xb) (_ , InT _) =
x+1+xb==xb (≤antisym x+1+xb≤xb (≤trans (≤1+ ≤refl) n≤m+n))
all-not-none : {V : Set} {d : dl V} {x : Nat} {v : V} →
None ≠ (((x , v) :: d) lkup x)
all-not-none {x = x} rewrite <dec-refl x = λ ()
all-bindings-==-rec-eq : {V : Set} {d1 d2 : dl V} {x : Nat} {v : V} →
((x' : Nat) → ((x , v) :: d1) lkup x' == ((x , v) :: d2) lkup x') →
((x' : Nat) → d1 lkup x' == d2 lkup x')
all-bindings-==-rec-eq {x = x} h x'
with h (x' + 1+ x)
... | eq
with <dec (x' + 1+ x) x
... | Inl x'+1+x<x
= abort (<antisym x'+1+x<x (n<m→n<s+m n<1+n))
... | Inr (Inl x'+1+x==x)
= abort ((flip n≠n+1+m) (n+1+m==1+n+m · (+comm {1+ x} · x'+1+x==x)))
... | Inr (Inr x<x'+1+x)
rewrite ! (undelta x x' x<x'+1+x) = eq
all-bindings-==-rec : {V : Set} {d1 d2 : dl V} {x1 x2 : Nat} {v1 v2 : V} →
((x : Nat) → ((x1 , v1) :: d1) lkup x == ((x2 , v2) :: d2) lkup x) →
((x : Nat) → d1 lkup x == d2 lkup x)
all-bindings-==-rec {x1 = x1} {x2} h x
with h x1 | h x2
... | eq1 | eq2
rewrite <dec-refl x1 | <dec-refl x2
with <dec x1 x2 | <dec x2 x1
... | Inl _ | _
= abort (somenotnone eq1)
... | Inr _ | Inl _
= abort (somenotnone (! eq2))
... | Inr (Inl refl) | Inr (Inl refl)
rewrite someinj eq1 | someinj eq2
= all-bindings-==-rec-eq h x
... | Inr (Inl refl) | Inr (Inr x2<x2)
= abort (<antirefl x2<x2)
... | Inr (Inr x2<x2) | Inr (Inl refl)
= abort (<antirefl x2<x2)
... | Inr (Inr x2<x1) | Inr (Inr x1<x2)
= abort (<antisym x1<x2 x2<x1)
sad-lemma : {V : Set} {d : dl V} {x n : Nat} {v v' : V} →
(x + 1+ n , v') ∈' ((n , v) :: d) →
Σ[ x' ∈ Nat ] Σ[ d' ∈ dl V ] (
d' == ((n , v) :: d) ∧
x' == x + 1+ n ∧
(x' , v') ∈' d')
sad-lemma h = _ , _ , refl , refl , h
lemma-math' : ∀{x x1 n} → x ≠ x1 + (n + 1+ x)
lemma-math' {x} {x1} {n}
rewrite ! (+assc {x1} {n} {1+ x})
| n+1+m==1+n+m {x1 + n} {x}
| +comm {1+ x1 + n} {x}
= n≠n+1+m
lookup-cons-2' : {V : Set} {d : dl V} {n : Nat} {v : V} → d lkup n == Some v → (n , v) ∈' d
lookup-cons-2' {d = []} ()
lookup-cons-2' {d = ((hn , hv) :: t)} {n} h
with <dec n hn
lookup-cons-2' {d = ((hn , hv) :: t)} {n} () | Inl _
lookup-cons-2' {d = ((hn , hv) :: t)} {.hn} refl | Inr (Inl refl) = InH
lookup-cons-2' {d = ((hn , hv) :: t)} {n} {v} h | Inr (Inr hn<n)
= tr
(λ y → (y , v) ∈' ((hn , hv) :: t))
(m-n+n==m (n<m→1+n≤m hn<n))
(InT (lookup-cons-2' {d = t} h))
lookup-cons-1' : {V : Set} {d : dl V} {n : Nat} {v : V} →
(n , v) ∈' d →
d lkup n == Some v
lookup-cons-1' {n = x} InH rewrite <dec-refl x = refl
lookup-cons-1' (InT {d = d} {n = x} {s} {v} x∈d)
with <dec (x + 1+ s) s
... | Inl x+1+s<s = abort (<antisym x+1+s<s (n<m→n<s+m n<1+n))
... | Inr (Inl x+1+s==s) = abort ((flip n≠n+1+m) (n+1+m==1+n+m · (+comm {1+ s} · x+1+s==s)))
... | Inr (Inr s<x+1+s)
with lookup-cons-1' x∈d
... | h rewrite ! (undelta s x s<x+1+s) = h
n,v∈'d,,n,v : {V : Set} {d : dl V} {n : Nat} {v : V} → (n , v) ∈' (d ,,' (n , v))
n,v∈'d,,n,v {d = []} {n} {v} = InH
n,v∈'d,,n,v {d = ((hn , hv) :: t)} {n} {v}
with <dec n hn
... | Inl _ = InH
... | Inr (Inl refl) = InH
... | Inr (Inr hn<n) =
tr
(λ y → (y , v) ∈' ((hn , hv) :: (t ,,' (delta hn<n , v))))
(m-n+n==m (n<m→1+n≤m hn<n))
(InT (n,v∈'d,,n,v {d = t} {delta hn<n}))
n∈d+→'n∈d : {V : Set} {d : dl V} {n n' : Nat} {v v' : V} →
n ≠ n' →
(n , v) ∈' (d ,,' (n' , v')) →
(n , v) ∈' d
n∈d+→'n∈d {d = []} n≠n' InH = abort (n≠n' refl)
n∈d+→'n∈d {d = []} n≠n' (InT ())
n∈d+→'n∈d {d = (hn , hv) :: t} {n' = n'} n≠n' n∈d+
with <dec n' hn
n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' InH | Inl n'<hn = abort (n≠n' refl)
n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' (InT InH) | Inl n'<hn
rewrite m-n+n==m (n<m→1+n≤m n'<hn) = InH
n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' (InT (InT {n = n} n∈d+)) | Inl n'<hn
rewrite +assc {n} {1+ (delta n'<hn)} {1+ n'} | m-n+n==m (n<m→1+n≤m n'<hn)
= InT n∈d+
n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = .hn} n≠n' InH | Inr (Inl refl) = abort (n≠n' refl)
n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = .hn} n≠n' (InT n∈d+) | Inr (Inl refl) = InT n∈d+
n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' InH | Inr (Inr hn<n') = InH
n∈d+→'n∈d {_} {(hn , hv) :: t} {n' = n'} n≠n' (InT n∈d+) | Inr (Inr hn<n')
= InT (n∈d+→'n∈d (λ where refl → n≠n' (m-n+n==m (n<m→1+n≤m hn<n'))) n∈d+)
n∈d→'n∈d+ : {V : Set} {d : dl V} {n n' : Nat} {v v' : V} →
n ≠ n' →
(n , v) ∈' d →
(n , v) ∈' (d ,,' (n' , v'))
n∈d→'n∈d+ {n = n} {n'} {v} {v'} n≠n' (InH {d = d'})
with <dec n' n
... | Inl n'<n
= tr
(λ y → (y , v) ∈' ((n' , v') :: ((delta n'<n , v) :: d')))
(m-n+n==m (n<m→1+n≤m n'<n))
(InT InH)
... | Inr (Inl refl) = abort (n≠n' refl)
... | Inr (Inr n<n') = InH
n∈d→'n∈d+ {n = .(_ + 1+ _)} {n'} {v} {v'} n≠n' (InT {d = d} {n} {s} {v' = v''} n∈d)
with <dec n' s
... | Inl n'<s
= tr
(λ y → (y , v) ∈' ((n' , v') :: ((delta n'<s , v'') :: d)))
((+assc {b = 1+ (delta n'<s)}) · (ap1 (n +_) (1+ap (m-n+n==m (n<m→1+n≤m n'<s)))))
(InT (InT n∈d))
... | Inr (Inl refl) = InT n∈d
... | Inr (Inr s<n') =
InT (n∈d→'n∈d+ (λ where refl → n≠n' (m-n+n==m (n<m→1+n≤m s<n'))) n∈d)
mem-dec' : {V : Set} (d : dl V) (n : Nat) → dom' d n ∨ n #' d
mem-dec' [] n = Inr (λ ())
mem-dec' ((hn , hv) :: t) n
with <dec n hn
... | Inl n<hn = Inr (too-small n<hn)
... | Inr (Inl refl) = Inl (hv , InH)
... | Inr (Inr hn<n)
with mem-dec' t (delta hn<n)
mem-dec' ((hn , hv) :: t) n | Inr (Inr hn<n) | Inl (v , rec) =
Inl (v , tr
(λ y → (y , v) ∈' ((hn , hv) :: t))
(m-n+n==m (n<m→1+n≤m hn<n))
(InT rec))
mem-dec' {V} ((hn , hv) :: t) n | Inr (Inr hn<n) | Inr dne =
Inr n∉d
where
n∉d : Σ[ v ∈ V ] ((n , v) ∈' ((hn , hv) :: t)) → ⊥
n∉d (_ , n∈d) with n∈d
... | InH = (π2 hn<n) refl
... | InT {n = s} n-hn-1∈t
rewrite ! (undelta hn s hn<n) = dne (_ , n-hn-1∈t)
extensional' : {V : Set} {d1 d2 : dl V} →
((n : Nat) → d1 lkup n == d2 lkup n) →
d1 == d2
extensional' {d1 = []} {[]} all-bindings-== = refl
extensional' {d1 = []} {(hn2 , hv2) :: t2} all-bindings-==
= abort (all-not-none {d = t2} {x = hn2} (all-bindings-== hn2))
extensional' {d1 = (hn1 , hv1) :: t1} {[]} all-bindings-==
= abort (all-not-none {d = t1} {x = hn1} (! (all-bindings-== hn1)))
extensional' {d1 = (hn1 , hv1) :: t1} {(hn2 , hv2) :: t2} all-bindings-==
rewrite extensional' {d1 = t1} {t2} (all-bindings-==-rec all-bindings-==)
with all-bindings-== hn1 | all-bindings-== hn2
... | hv1== | hv2== rewrite <dec-refl hn1 | <dec-refl hn2
with <dec hn1 hn2 | <dec hn2 hn1
... | Inl hn1<hn2 | _
= abort (somenotnone hv1==)
... | Inr (Inl refl) | Inl hn2<hn1
= abort (somenotnone (! hv2==))
... | Inr (Inr hn2<hn1) | Inl hn2<'hn1
= abort (somenotnone (! hv2==))
... | Inr (Inl refl) | Inr _
rewrite someinj hv1== = refl
... | Inr (Inr hn2<hn1) | Inr (Inl refl)
rewrite someinj hv2== = refl
... | Inr (Inr hn2<hn1) | Inr (Inr hn1<hn2)
= abort (<antisym hn1<hn2 hn2<hn1)
==-dec' : {V : Set}
(d1 d2 : dl V) →
((v1 v2 : V) → v1 == v2 ∨ v1 ≠ v2) →
d1 == d2 ∨ d1 ≠ d2
==-dec' [] [] _ = Inl refl
==-dec' [] (_ :: _) _ = Inr (λ ())
==-dec' (_ :: _) [] _ = Inr (λ ())
==-dec' ((hn1 , hv1) :: t1) ((hn2 , hv2) :: t2) V==dec
with natEQ hn1 hn2 | V==dec hv1 hv2 | ==-dec' t1 t2 V==dec
... | Inl refl | Inl refl | Inl refl = Inl refl
... | Inl refl | Inl refl | Inr ne = Inr λ where refl → ne refl
... | Inl refl | Inr ne | _ = Inr λ where refl → ne refl
... | Inr ne | _ | _ = Inr λ where refl → ne refl
delete' : {V : Set} {d : dl V} {n : Nat} {v : V} →
(n , v) ∈' d →
Σ[ d⁻ ∈ dl V ] (
d == d⁻ ,,' (n , v) ∧
n #' d⁻)
delete' {d = (n' , v') :: d} {n} n∈d
with <dec n n'
... | Inl n<n' = abort (too-small n<n' (_ , n∈d))
delete' {_} {(n' , v') :: []} {.n'} InH | Inr (Inl _) = [] , refl , λ ()
delete' {_} {(n' , v') :: ((n'' , v'') :: d)} {.n'} InH | Inr (Inl _)
= ((n'' + 1+ n' , v'') :: d) , lem , λ {(_ , n'∈d+) → abort (too-small (n<m→n<s+m n<1+n) (_ , n'∈d+))}
where
lem : ((n' , v') :: ((n'' , v'') :: d)) == ((n'' + 1+ n' , v'') :: d) ,,' (n' , v')
lem
with <dec n' (n'' + 1+ n')
lem | Inl n'<n''+1+n' rewrite ! (undelta n' n'' n'<n''+1+n') = refl
lem | Inr (Inl false) = abort (lemma-math' {x1 = Z} false)
lem | Inr (Inr false) = abort (<antisym false (n<m→n<s+m n<1+n))
delete' {d = (n' , v') :: d} InH | Inr (Inr n'<n') = abort (<antirefl n'<n')
delete' {d = (n' , v') :: d} (InT n∈d) | Inr _
with delete' {d = d} n∈d
delete' {d = (n' , v') :: d} {.(_ + 1+ n')} {v} (InT {n = x} n∈d) | Inr _ | d⁻ , refl , x#d⁻
= _ , lem' , lem
where
lem : (x + 1+ n') #' ((n' , v') :: d⁻)
lem (_ , x+1+n'∈d?)
with sad-lemma x+1+n'∈d?
... | _ , _ , refl , n'==x+1+n' , InH = abort (lemma-math' {x1 = Z} n'==x+1+n')
... | _ , _ , refl , n'==x+1+n' , InT x+1+n'∈d'
rewrite +inj {b = 1+ n'} n'==x+1+n'
= x#d⁻ (_ , x+1+n'∈d')
lem' : ((n' , v') :: (d⁻ ,,' (x , v))) == (((n' , v') :: d⁻) ,,' (x + 1+ n' , v))
lem'
with <dec (x + 1+ n') n'
lem' | Inl x+1+n'<n' = abort (<antisym x+1+n'<n' (n<m→n<s+m n<1+n))
lem' | Inr (Inl false) = abort (lemma-math' {x1 = Z} (! false))
lem' | Inr (Inr n'<x+1+n') rewrite ! (undelta n' x n'<x+1+n') = refl
extend-size' : {V : Set} {d : dl V} {n : Nat} {v : V} →
n #' d →
∥ d ,,' (n , v) ∥ == 1+ ∥ d ∥
extend-size' {d = []} n#d = refl
extend-size' {d = (n' , v') :: d} {n} n#d
with <dec n n'
... | Inl n<n' = refl
... | Inr (Inl refl) = abort (n#d (_ , InH))
... | Inr (Inr n'<n)
= 1+ap (extend-size' λ {(v , diff∈d) →
n#d (v , tr
(λ y → (y , v) ∈' ((n' , v') :: d))
(m-n+n==m (n<m→1+n≤m n'<n))
(InT diff∈d))})
---- contrapositives of some previous lemmas ----
lookup-dec' : {V : Set} (d : dl V) (n : Nat) →
Σ[ v ∈ V ] (d lkup n == Some v) ∨ d lkup n == None
lookup-dec' d n
with d lkup n
... | Some v = Inl (v , refl)
... | None = Inr refl
lookup-cp-2' : {V : Set} {d : dl V} {n : Nat} →
n #' d →
d lkup n == None
lookup-cp-2' {d = d} {n} n#d
with lookup-dec' d n
... | Inl (_ , n∈d) = abort (n#d (_ , lookup-cons-2' n∈d))
... | Inr n#'d = n#'d
n#d→'n#d+ : {V : Set} {d : dl V} {n n' : Nat} {v' : V} →
n ≠ n' →
n #' d →
n #' (d ,,' (n' , v'))
n#d→'n#d+ {d = d} {n} {n'} {v'} n≠n' n#d
with mem-dec' (d ,,' (n' , v')) n
... | Inl (_ , n∈d+) = abort (n#d (_ , n∈d+→'n∈d n≠n' n∈d+))
... | Inr n#d+ = n#d+
---- union, and dlt <=> list conversion definitions
merge' : {V : Set} → (V → V → V) → Maybe V → V → V
merge' merge ma1 v2
with ma1
... | None = v2
... | Some v1 = merge v1 v2
union' : {V : Set} → (V → V → V) → dl V → dl V → Nat → dl V
union' merge d1 [] _ = d1
union' merge d1 ((hn , hv) :: d2) offset
with d1 ,,' (hn + offset , merge' merge (d1 lkup hn + offset) hv)
... | d1+ = union' merge d1+ d2 (1+ hn + offset)
dlt⇒list' : {V : Set} (d : dl V) → dl V
dlt⇒list' [] = []
dlt⇒list' ((x , v) :: d) = (x , v) :: map (λ {(x' , v') → x' + 1+ x , v'}) (dlt⇒list' d)
list⇒dlt' : {V : Set} (d : dl V) → dl V
list⇒dlt' = foldr _,,'_ []
---- union, dlt <=> list, etc lemmas ----
lemma-union'-0 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} {v : V} →
(x , v) ∈' d1 →
(x , v) ∈' (union' m d1 d2 (n + 1+ x))
lemma-union'-0 {d2 = []} x∈d1 = x∈d1
lemma-union'-0 {d2 = (x1 , v1) :: d2} {x} {n} x∈d1
rewrite ! (+assc {1+ x1} {n} {1+ x})
= lemma-union'-0 {d2 = d2} {n = 1+ x1 + n} (n∈d→'n∈d+ (lemma-math' {x1 = x1} {n}) x∈d1)
lemma-union'-1 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} {v : V} →
(x , v) ∈' d1 →
(n≤x : n ≤ x) →
(difference n≤x) #' d2 →
(x , v) ∈' (union' m d1 d2 n)
lemma-union'-1 {d2 = []} {x} x∈d1 n≤x x-n#d2 = x∈d1
lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2
with <dec x (x1 + n)
lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n
with d1 lkup x1 + n
lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n | Some v'
with expr-eq (λ _ → d1 ,,' (x1 + n , m v' v1))
lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n | Some v' | d1+ , refl
= tr
(λ y → (x , v) ∈' (union' m d1+ d2 y))
(n+1+m==1+n+m {difference (π1 x<x1+n)} · 1+ap (m-n+n==m (π1 x<x1+n)))
(lemma-union'-0 {d2 = d2} (n∈d→'n∈d+ (π2 x<x1+n) x∈d1))
lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n | None
with expr-eq (λ _ → d1 ,,' (x1 + n , v1))
lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inl x<x1+n | None | d1+ , refl
= tr
(λ y → (x , v) ∈' (union' m d1+ d2 y))
(n+1+m==1+n+m {difference (π1 x<x1+n)} · 1+ap (m-n+n==m (π1 x<x1+n)))
(lemma-union'-0 {d2 = d2} (n∈d→'n∈d+ (π2 x<x1+n) x∈d1))
lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inr (Inl refl)
rewrite +comm {x1} {n} | n+m-n==m n≤x
= abort (x-n#d2 (_ , InH))
lemma-union'-1 {m = m} {d1} {(x1 , v1) :: d2} {x} {n} {v} x∈d1 n≤x x-n#d2 | Inr (Inr x1+n<x)
rewrite (! (a+b==c→a==c-b (+assc {delta x1+n<x} · m-n+n==m (n<m→1+n≤m x1+n<x)) n≤x))
= lemma-union'-1
(n∈d→'n∈d+ (flip (π2 x1+n<x)) x∈d1)
(n<m→1+n≤m x1+n<x)
λ {(_ , x-x1-n∈d2) → x-n#d2 (_ , InT x-x1-n∈d2)}
lemma-union'-2 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} {v : V} →
(x + n) #' d1 →
(x , v) ∈' d2 →
(x + n , v) ∈' (union' m d1 d2 n)
lemma-union'-2 {d1 = d1} x+n#d1 (InH {d = d2})
rewrite lookup-cp-2' x+n#d1
= lemma-union'-0 {d2 = d2} {n = Z} (n,v∈'d,,n,v {d = d1})
lemma-union'-2 {d1 = d1} {n = n} x+n#d1 (InT {d = d2} {n = x} {s} x∈d2)
rewrite +assc {x} {1+ s} {n}
with d1 lkup s + n
... | Some v'
= lemma-union'-2
(λ {(_ , x∈d1+) →
x+n#d1 (_ , n∈d+→'n∈d (flip (lemma-math' {x1 = Z})) x∈d1+)})
x∈d2
... | None
= lemma-union'-2
(λ {(_ , x∈d1+) →
x+n#d1 (_ , n∈d+→'n∈d (flip (lemma-math' {x1 = Z})) x∈d1+)})
x∈d2
lemma-union'-3 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} {v1 v2 : V} →
(x + n , v1) ∈' d1 →
(x , v2) ∈' d2 →
(x + n , m v1 v2) ∈' (union' m d1 d2 n)
lemma-union'-3 {d1 = d1} x+n∈d1 (InH {d = d2})
rewrite lookup-cons-1' x+n∈d1
= lemma-union'-0 {d2 = d2} {n = Z} (n,v∈'d,,n,v {d = d1})
lemma-union'-3 {d1 = d1} {n = n} x+n∈d1 (InT {d = d2} {n = x} {s} x∈d2)
rewrite +assc {x} {1+ s} {n}
with d1 lkup s + n
... | Some v'
= lemma-union'-3 (n∈d→'n∈d+ (flip (lemma-math' {x1 = Z})) x+n∈d1) x∈d2
... | None
= lemma-union'-3 (n∈d→'n∈d+ (flip (lemma-math' {x1 = Z})) x+n∈d1) x∈d2
lemma-union'-4 : {V : Set} {m : V → V → V} {d1 d2 : dl V} {x n : Nat} →
dom' (union' m d1 d2 n) x →
dom' d1 x ∨ (Σ[ s ∈ Nat ] (x == n + s ∧ dom' d2 s))
lemma-union'-4 {d2 = []} x∈un = Inl x∈un
lemma-union'-4 {d1 = d1} {(x1 , _) :: d2} {x} {n} x∈un
with lemma-union'-4 {d2 = d2} x∈un
... | Inr (s , refl , _ , s∈d2)
rewrite +comm {x1} {n}
| ! (n+1+m==1+n+m {n + x1} {s})
| +assc {n} {x1} {1+ s}
| +comm {x1} {1+ s}
| ! (n+1+m==1+n+m {s} {x1})
= Inr (_ , refl , _ , InT s∈d2)
... | Inl (_ , x∈d1+)
with natEQ x (n + x1)
... | Inl refl = Inr (_ , refl , _ , InH)
... | Inr x≠n+x1
rewrite +comm {x1} {n}
= Inl (_ , n∈d+→'n∈d x≠n+x1 x∈d1+)
dlt⇒list-size' : {V : Set} {d : dl V} → ∥ dlt⇒list' d ∥ == ∥ d ∥
dlt⇒list-size' {d = []} = refl
dlt⇒list-size' {d = _ :: d} = 1+ap (map-len · dlt⇒list-size')
dlt⇒list-In-1' : {V : Set} {d : dl V} {n : Nat} {v : V} →
(n , v) ∈' d →
(n , v) In dlt⇒list' d
dlt⇒list-In-1' InH = LInH
dlt⇒list-In-1' (InT ∈h) = LInT <| map-In <| dlt⇒list-In-1' ∈h
too-small-list : {V : Set} {d : dl V} {m m' : Nat} {v : V} →
m ≤ m' →
(m , v) In (map (λ { (n'' , v'') → n'' + 1+ m' , v'' }) (dlt⇒list' d)) →
⊥
too-small-list {d = (n2 , v2) :: d} n≤n' LInH
= abort (lemma-math' {x1 = Z} (≤antisym (≤trans n≤m+n (n≤m+n {m = n2})) n≤n'))
too-small-list {d = (n2 , v2) :: d} {m} {m'} {v} m≤m' (LInT in')
= too-small-list (≤trans m≤m' (≤trans n≤m+n (n≤m+n {m = n2}))) rec-in
where
rec-in =
tr
(λ y → (m , v) In y)
(map^2
{f = (λ { (n'' , v'') → n'' + 1+ m' , v'' })}
{(λ { (n'' , v'') → n'' + 1+ n2 , v'' })}
{dlt⇒list' d}
·
map-ext (λ where (n'' , v'') → ap1 (λ y' → y' , v'') <| +assc {n''} {b = 1+ n2} {c = 1+ m'}))
in'
dlt⇒list-In-2' : {V : Set} {d : dl V} {n : Nat} {v : V} →
(n , v) In dlt⇒list' d →
(n , v) ∈' d
dlt⇒list-In-2' {d = _ :: d} LInH = InH
dlt⇒list-In-2' {d = (n' , v') :: d} {n} (LInT in')
with <dec n n'
... | Inl n<n' = abort (too-small-list (π1 n<n') in')
... | Inr (Inl refl) = abort (too-small-list ≤refl in')
... | Inr (Inr n'<n)
with n<m→s+1+n=m n'<n
... | _ , refl = InT (dlt⇒list-In-2' (lem2 in'))
where
lem1 : ∀{V l} {m1 m2 : Nat} {vv1 vv2 : V} →
m1 ≠ m2 →
(in'' : (m1 , vv1) In ((m2 , vv2) :: l)) →
Σ[ in2 ∈ ((m1 , vv1) In l) ] (in'' == LInT in2)
lem1 ne LInH = abort (ne refl)
lem1 ne (LInT in'') = in'' , refl
lem2 : ∀{V s l} {vv : V} →
(s + 1+ n' , vv) In map (λ { (n'' , v'') → n'' + 1+ n' , v'' }) l →
(s , vv) In l
lem2 {s = s} {(n2 , v2) :: l} in''
with natEQ s n2
lem2 {s = s} {(s , v2) :: l} LInH | Inl refl = LInH
lem2 {s = s} {(s , v2) :: l} (LInT in'') | Inl refl = LInT (lem2 in'')
... | Inr ne
with lem1 (+inj-cp ne) in''
... | in2 , refl = LInT (lem2 in2)
list⇒dlt-In' : {V : Set} {l : dl V} {n : Nat} {v : V} →
(n , v) ∈' list⇒dlt' l →
(n , v) In l
list⇒dlt-In' {l = (n' , v') :: l} {n} ∈h
rewrite foldl-++ {l1 = reverse l} {(n' , v') :: []} {_,,'_} {[]}
with natEQ n n'
... | Inr ne = LInT (list⇒dlt-In' (n∈d+→'n∈d ne ∈h))
... | Inl refl
rewrite someinj <| (! <| lookup-cons-1' ∈h) · (lookup-cons-1' {n = n} {v'} <| n,v∈'d,,n,v {d = foldl _,,'_ [] (reverse l)})
= LInH
list⇒dlt-order' : {V : Set} {l1 l2 : dl V} {n : Nat} {v1 v2 : V} →
(n , v1) ∈' (list⇒dlt' ((n , v1) :: l1 ++ ((n , v2) :: l2)))
list⇒dlt-order' {l1 = l1} {l2} {n} {v1} {v2}
rewrite foldl-++ {l1 = reverse (l1 ++ ((n , v2) :: l2))} {(n , v1) :: []} {_,,'_} {[]}
= n,v∈'d,,n,v {d = foldl _,,'_ [] <| reverse (l1 ++ ((n , v2) :: l2))}
bij-pair-1 : {V : Set} (nv : Nat ∧ V) → (nat <| key <| π1 nv , π2 nv) == nv
bij-pair-1 (n , v) rewrite convert-bij2 {t = n} = refl
bij-pair-2 : {V : Set} (kv : K ∧ V) → (key <| nat <| π1 kv , π2 kv) == kv
bij-pair-2 (k , v) rewrite convert-bij1 {f = k} = refl
dltmap-func' : {V1 V2 : Set} {d : dl V1} {f : V1 → V2} {n : Nat} {v : V1} →
(map (λ { (hn , hv) → hn , f hv }) (d ,,' (n , v)))
==
(map (λ { (hn , hv) → hn , f hv }) d ,,' (n , f v))
dltmap-func' {d = []} = refl
dltmap-func' {d = (nh , vh) :: d} {f = f} {n}
with <dec n nh
... | Inl n<nh = refl
... | Inr (Inl refl) = refl
... | Inr (Inr nh<n) = ap1 ((nh , f vh) ::_) (dltmap-func' {d = d})
-- these proofs could use refactoring -
-- contraction should probably make use of ==-dec'
-- and exchange is way too long and repetitive
contraction' : {V : Set} {d : dl V} {n : Nat} {v v' : V} → (d ,,' (n , v')) ,,' (n , v) == d ,,' (n , v)
contraction' {d = []} {n} rewrite <dec-refl n = refl
contraction' {d = (hn , hv) :: t} {n} {v} {v'}
with <dec n hn
... | Inl _ rewrite <dec-refl n = refl
... | Inr (Inl refl) rewrite <dec-refl hn = refl
... | Inr (Inr hn<n)
with <dec n hn
... | Inl n<hn = abort (<antisym n<hn hn<n)
... | Inr (Inl refl) = abort (<antirefl hn<n)
... | Inr (Inr hn<'n)
with contraction' {d = t} {delta hn<'n} {v} {v'}
... | eq
rewrite diff-proof-irrelevance (n<m→1+n≤m hn<n) (n<m→1+n≤m hn<'n) | eq
= refl
exchange' : {V : Set} {d : dl V} {n1 n2 : Nat} {v1 v2 : V} →
n1 ≠ n2 →
(d ,,' (n1 , v1)) ,,' (n2 , v2) == (d ,,' (n2 , v2)) ,,' (n1 , v1)
exchange' {V} {d} {n1} {n2} {v1} {v2} n1≠n2 = extensional' fun
where
fun : (n : Nat) →
((d ,,' (n1 , v1)) ,,' (n2 , v2)) lkup n ==
((d ,,' (n2 , v2)) ,,' (n1 , v1)) lkup n
fun n
with natEQ n n1 | natEQ n n2 | mem-dec' d n
fun n | Inl refl | Inl refl | _
= abort (n1≠n2 refl)
fun n1 | Inl refl | Inr n≠n2 | Inl (_ , n1∈d)
with n,v∈'d,,n,v {d = d} {n1} {v1}
... | n∈d+1
with n∈d→'n∈d+ {v' = v2} n≠n2 n∈d+1 | n,v∈'d,,n,v {d = d ,,' (n2 , v2)} {n1} {v1}
... | n∈d++1 | n∈d++2
rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl
fun n1 | Inl refl | Inr n≠n2 | Inr n1#d
with n,v∈'d,,n,v {d = d} {n1} {v1}
... | n∈d+1
with n∈d→'n∈d+ {v' = v2} n≠n2 n∈d+1 | n,v∈'d,,n,v {d = d ,,' (n2 , v2)} {n1} {v1}
... | n∈d++1 | n∈d++2
rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl
fun n2 | Inr n≠n1 | Inl refl | Inl (_ , n2∈d)
with n,v∈'d,,n,v {d = d} {n2} {v2}
... | n∈d+2
with n∈d→'n∈d+ {v' = v1} n≠n1 n∈d+2 | n,v∈'d,,n,v {d = d ,,' (n1 , v1)} {n2} {v2}
... | n∈d++1 | n∈d++2
rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl
fun n2 | Inr n≠n1 | Inl refl | Inr n2#d
with n,v∈'d,,n,v {d = d} {n2} {v2}
... | n∈d+2
with n∈d→'n∈d+ {v' = v1} n≠n1 n∈d+2 | n,v∈'d,,n,v {d = d ,,' (n1 , v1)} {n2} {v2}
... | n∈d++1 | n∈d++2
rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl
fun n | Inr n≠n1 | Inr n≠n2 | Inl (_ , n∈d)
with n∈d→'n∈d+ {v' = v1} n≠n1 n∈d | n∈d→'n∈d+ {v' = v2} n≠n2 n∈d
... | n∈d+1 | n∈d+2
with n∈d→'n∈d+ {v' = v2} n≠n2 n∈d+1 | n∈d→'n∈d+ {v' = v1} n≠n1 n∈d+2
... | n∈d++1 | n∈d++2
rewrite lookup-cons-1' n∈d++1 | lookup-cons-1' n∈d++2 = refl
fun n | Inr n≠n1 | Inr n≠n2 | Inr n#d
with n#d→'n#d+ {v' = v1} n≠n1 n#d | n#d→'n#d+ {v' = v2} n≠n2 n#d
... | n#d+1 | n#d+2
with n#d→'n#d+ {v' = v2} n≠n2 n#d+1 | n#d→'n#d+ {v' = v1} n≠n1 n#d+2
... | n#d++1 | n#d++2
rewrite lookup-cp-2' n#d++1 | lookup-cp-2' n#d++2 = refl
| {
"alphanum_fraction": 0.3922377569,
"avg_line_length": 41.4208860759,
"ext": "agda",
"hexsha": "0489857f026e004f6d805e48b6709842b76abb32",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nickcollins/dependent-dicts-agda",
"max_forks_repo_path": "delta-lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nickcollins/dependent-dicts-agda",
"max_issues_repo_path": "delta-lemmas.agda",
"max_line_length": 127,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nickcollins/dependent-dicts-agda",
"max_stars_repo_path": "delta-lemmas.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12497,
"size": 26178
} |
module Issue335 where
postulate
A : Set
k : (.A -> Set) -> A
bla = k (\ .(x : A) -> A)
-- syntax for irrelevant typed lambda now exists | {
"alphanum_fraction": 0.5957446809,
"avg_line_length": 17.625,
"ext": "agda",
"hexsha": "9f084215f96eab86b361d6123b42e41ca8cf9897",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue335.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue335.agda",
"max_line_length": 48,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue335.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 45,
"size": 141
} |
module Data.Nat.Etc where
open import Data.Nat
open import Data.Nat.Properties.Simple
open import Function
open import Relation.Nullary.Negation using (contradiction; contraposition)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; trans; sym)
open PropEq.≡-Reasoning
-- exponention
_^_ : ℕ → ℕ → ℕ
a ^ zero = 1
a ^ suc b = a * (a ^ b)
--------------------------------------------------------------------------------
-- Properties
--------------------------------------------------------------------------------
distrib-left-*-+ : ∀ m n o → m * (n + o) ≡ m * n + m * o
distrib-left-*-+ m n o =
begin
m * (n + o)
≡⟨ *-comm m (n + o) ⟩
(n + o) * m
≡⟨ distribʳ-*-+ m n o ⟩
n * m + o * m
≡⟨ cong (flip _+_ (o * m)) (*-comm n m) ⟩
m * n + o * m
≡⟨ cong (_+_ (m * n)) (*-comm o m) ⟩
m * n + m * o
∎
{-
no-zero-divisor : ∀ m n → m ≢ 0 → m * n ≡ 0 → n ≡ 0
no-zero-divisor zero n p q = contradiction q p
no-zero-divisor (suc m) zero p q = refl
no-zero-divisor (suc m) (suc n) p ()
m^n≢0 : ∀ m n → {m≢0 : m ≢ 0} → m ^ n ≢ 0
m^n≢0 m zero {p} = λ ()
m^n≢0 m (suc n) {p} = contraposition (no-zero-divisor m (m ^ n) p) (m^n≢0 m n {p})
m≰n⇒n<m : (m n : ℕ) → m ≰ n → m > n
m≰n⇒n<m zero n p = contradiction p (λ z → z z≤n)
m≰n⇒n<m (suc m) zero p = s≤s z≤n
m≰n⇒n<m (suc m) (suc n) p = s≤s (m≰n⇒n<m m n (λ z → p (s≤s z)))
-}
>⇒≰ : _>_ ⇒ _≰_
>⇒≰ {zero} ()
>⇒≰ {suc m} {zero} rel ()
>⇒≰ {suc m} {suc n} (s≤s rel) (s≤s x) = contradiction x (>⇒≰ rel)
>⇒≢ : _>_ ⇒ _≢_
>⇒≢ {zero} () m≡n
>⇒≢ {suc m} {zero} m>n ()
>⇒≢ {suc m} {suc n} (s≤s m>n) m≡n = >⇒≢ m>n (cong pred m≡n)
{-
≰⇒> : _≰_ ⇒ _>_
≰⇒> {zero} z≰n with z≰n z≤n
... | ()
≰⇒> {suc m} {zero} _ = s≤s z≤n
≰⇒> {suc m} {suc n} m≰n = s≤s (≰⇒> (m≰n ∘ s≤s))
-}
{-
begin
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
∎
-}
| {
"alphanum_fraction": 0.3991354467,
"avg_line_length": 25.7037037037,
"ext": "agda",
"hexsha": "b622648bcfa3f87460f5eb7cefe295815c4bffb7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/Data/Nat/Etc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/Data/Nat/Etc.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/Data/Nat/Etc.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 966,
"size": 2082
} |
-- Concrete definition of contexts over a sort T
module SOAS.Context {T : Set} where
open import SOAS.Common
open import Data.List using (List; []; _∷_; _++_)
-- Context: a list of types
data Ctx : Set where
∅ : Ctx
_∙_ : (α : T) → (Γ : Ctx) → Ctx
infixr 50 _∙_
-- Singleton context
pattern _⌋ τ = τ ∙ ∅
pattern ⌈_⌋ α = α ∙ ∅
pattern ⌊_ α = α
infixr 60 _⌋
infix 70 ⌈_⌋
infix 70 ⌊_
-- Context concatenation
_∔_ : Ctx → Ctx → Ctx
∅ ∔ Δ = Δ
(α ∙ Γ) ∔ Δ = α ∙ (Γ ∔ Δ)
infixl 20 _∔_
-- Context concatenation is associative
∔-assoc : (Γ Δ Θ : Ctx) → ((Γ ∔ Δ) ∔ Θ) ≡ (Γ ∔ (Δ ∔ Θ))
∔-assoc ∅ Δ Θ = refl
∔-assoc (α ∙ Γ) Δ Θ = cong (α ∙_) (∔-assoc Γ Δ Θ)
-- Empty context is right unit of context concatenation
∔-unitʳ : (Γ : Ctx) → Γ ∔ ∅ ≡ Γ
∔-unitʳ ∅ = refl
∔-unitʳ (α ∙ Γ) = cong (α ∙_) (∔-unitʳ Γ)
| {
"alphanum_fraction": 0.5670356704,
"avg_line_length": 20.8461538462,
"ext": "agda",
"hexsha": "a1a6703d414d7d40f2f571b8780bbba737a2d0f8",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Context.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Context.agda",
"max_line_length": 55,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Context.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 393,
"size": 813
} |
-- Andreas, 2017-03-21, issue #2466
-- The unifier should not turn user-written variable patterns into
-- dot patterns.
-- {-# OPTIONS -v reify.implicit:100 -v interaction.case:100 #-}
-- {-# OPTIONS -v tc.lhs.unify:40 #-}
postulate
A B : Set
module Explicit where
data D : A → B → Set where
c : ∀ p {p'} x → D p' x → D p x
test : ∀ p x → D p x → D p x
test .p _ (c p x pp) = {!p'!}
where
y = x
-- Expected: test .p _ (c p {p'} x pp) = ?
module Implicit where
data D : A → B → Set where
c : ∀ {p p' x} → D p' x → D p x
test : ∀ p {x} → D p x → D p x
test .p (c {p} {x = x} pp) = {!p'!}
where
y = x
-- Expected: test .p (c {p} {p'} {x} pp) = ?
| {
"alphanum_fraction": 0.5100574713,
"avg_line_length": 19.8857142857,
"ext": "agda",
"hexsha": "23bae51ac87e49520d795994f36ebf05490fc7a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phadej/agda",
"max_forks_repo_path": "test/interaction/Issue2466.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phadej/agda",
"max_issues_repo_path": "test/interaction/Issue2466.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phadej/agda",
"max_stars_repo_path": "test/interaction/Issue2466.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 272,
"size": 696
} |
module InstanceArgs where
data UnitMonoid : Set where
u : UnitMonoid
p : UnitMonoid → UnitMonoid → UnitMonoid
record Plus (A : Set) : Set where
infixl 6 _+_
field
_+_ : A → A → A
open Plus {{...}}
instance
plus-unitMonoid : Plus UnitMonoid
plus-unitMonoid = record { _+_ = p }
bigValue : UnitMonoid
bigValue =
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u +
u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u + u
| {
"alphanum_fraction": 0.270718232,
"avg_line_length": 65.6125,
"ext": "agda",
"hexsha": "ba99b40f09aa37245e038aa75004e3d790611e44",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "benchmark/misc/InstanceArgs.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "benchmark/misc/InstanceArgs.agda",
"max_line_length": 81,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "benchmark/misc/InstanceArgs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 2568,
"size": 5249
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category)
open import Categories.Category.Monoidal.Core using (Monoidal)
open import Categories.Category.Monoidal.Symmetric using (Symmetric)
module Categories.Category.Monoidal.Star-Autonomous {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where
open import Level
open import Categories.Category.Product using (_⁂_; assocˡ)
open import Categories.Functor using (Functor; _∘F_; id)
open import Categories.Functor.Properties using (FullyFaithful)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_)
open import Categories.Functor.Hom
open Category C renaming (op to Cᵒᵖ) hiding (id)
open Monoidal M
open Functor ⊗ renaming (op to ⊗ₒₚ)
open Hom C
record Star-Autonomous : Set (levelOfTerm M) where
field
symmetric : Symmetric M
Star : Functor Cᵒᵖ C
open Functor Star renaming (op to Starₒₚ) public
field
FF-Star : FullyFaithful Star
A**≃A : (Star ∘F Starₒₚ) ≃ id
𝒞[A⊗B,C*]≃𝒞[A,B⊗C*] : Hom[-,-] ∘F (⊗ₒₚ ⁂ Star) ≃ Hom[-,-] ∘F (id ⁂ (Star ∘F ⊗ₒₚ)) ∘F assocˡ _ _ _
| {
"alphanum_fraction": 0.7241063245,
"avg_line_length": 33.0606060606,
"ext": "agda",
"hexsha": "9f88fa738f7b227f1dbbada5b61ad07b0199aa97",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Star-Autonomous.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Star-Autonomous.agda",
"max_line_length": 103,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Star-Autonomous.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 362,
"size": 1091
} |
------------------------------------------------------------------------
-- Recognisers built on top of the parsers
------------------------------------------------------------------------
-- Note that these recognisers are different from the ones in
-- TotalRecognisers.LeftRecursion: these allow the use of fewer sharps.
-- (Compare the examples in TotalRecognisers.LeftRecursion.Expression
-- and TotalParserCombinators.Recogniser.Expression.)
module TotalParserCombinators.Recogniser where
open import Category.Monad
open import Codata.Musical.Notation
open import Data.Bool
open import Data.List as List
import Data.List.Categorical
open import Data.Maybe
open import Data.Unit
open import Level
open RawMonadPlus {f = zero} Data.List.Categorical.monadPlus
using () renaming (_⊛_ to _⊛′_)
open import TotalParserCombinators.Parser as Parser
using (Parser; flatten); open Parser.Parser
import TotalParserCombinators.Lib as Lib
------------------------------------------------------------------------
-- Helper function
infixl 4 _·′_
_·′_ : (mb₁ mb₂ : Maybe (List ⊤)) → List ⊤
mb₁ ·′ nothing = []
mb₁ ·′ just b₂ = List.map _ (flatten mb₁) ⊛′ b₂
------------------------------------------------------------------------
-- Recognisers
infixl 50 _·_
infixl 5 _∣_
-- Recognisers.
mutual
-- The index is non-empty if the corresponding language contains the
-- empty string (is nullable).
data P (Tok : Set) : List ⊤ → Set₁ where
-- Parsers can be turned into recognisers.
lift : ∀ {R n} (p : Parser Tok R n) → P Tok (List.map _ n)
-- Symmetric choice.
_∣_ : ∀ {n₁ n₂}
(p₁ : P Tok n₁) (p₂ : P Tok n₂) → P Tok (n₁ ++ n₂)
-- Sequencing.
_·_ : ∀ {n₁ n₂}
(p₁ : ∞⟨ n₂ ⟩P Tok (flatten n₁))
(p₂ : ∞⟨ n₁ ⟩P Tok (flatten n₂)) →
P Tok (n₁ ·′ n₂)
-- Delayed if the index is /nothing/.
∞⟨_⟩P : Maybe (List ⊤) → Set → List ⊤ → Set₁
∞⟨ nothing ⟩P Tok n = ∞ (P Tok n)
∞⟨ just _ ⟩P Tok n = P Tok n
------------------------------------------------------------------------
-- Helper function related to ∞⟨_⟩P
-- Is the argument parser forced? If the result is just something,
-- then it is.
forced? : ∀ {Tok m n} → ∞⟨ m ⟩P Tok n → Maybe (List ⊤)
forced? {m = m} _ = m
------------------------------------------------------------------------
-- The semantics of the recognisers is defined by translation
⟦_⟧ : ∀ {Tok n} (p : P Tok n) → Parser Tok ⊤ n
⟦ lift p ⟧ = _ <$> p
⟦ p₁ ∣ p₂ ⟧ = ⟦ p₁ ⟧ ∣ ⟦ p₂ ⟧
⟦ p₁ · p₂ ⟧ with forced? p₁ | forced? p₂
... | just xs | nothing = _ <$> ⟦ p₁ ⟧ ⊛ ♯ ⟦ ♭ p₂ ⟧
... | just xs | just ys = _ <$> ⟦ p₁ ⟧ ⊛ ⟦ p₂ ⟧
... | nothing | nothing = ♯ (_ <$> ⟦ ♭ p₁ ⟧) ⊛ ♯ ⟦ ♭ p₂ ⟧
... | nothing | just ys = ♯ (_ <$> ⟦ ♭ p₁ ⟧) ⊛ ⟦ p₂ ⟧
| {
"alphanum_fraction": 0.5124234786,
"avg_line_length": 30.8555555556,
"ext": "agda",
"hexsha": "98c171b972377e610c5accc08ffd1d091a048026",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/Recogniser.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/Recogniser.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/Recogniser.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 855,
"size": 2777
} |
{-# OPTIONS --rewriting #-}
--
-- Prelude.agda - Some base definitions
--
module Prelude where
open import Agda.Primitive public
record ⊤ : Set where
constructor tt
{-# BUILTIN UNIT ⊤ #-}
record Σ {i j} (A : Set i) (B : A → Set j) : Set (i ⊔ j) where
constructor _,_
field
fst : A
snd : B fst
open Σ public
data ℕ : Set where
O : ℕ
S : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
uncurry : ∀ {i j k} {A : Set i} {B : A → Set j} {C : Set k} →
(φ : (a : A) → (b : B a) → C) →
Σ A B → C
uncurry φ (a , b) = φ a b
curry : ∀ {i j k} {A : Set i} {B : A → Set j} {C : Set k} →
(ψ : Σ A B → C) →
(a : A) → (b : B a) → C
curry ψ a b = ψ (a , b)
infix 30 _==_
data _==_ {i} {A : Set i} (a : A) : A → Set i where
idp : a == a
{-# BUILTIN EQUALITY _==_ #-}
{-# BUILTIN REFL idp #-}
transport : ∀{i j} {A : Set i} (P : A → Set j) {a₀ a₁ : A} (p : a₀ == a₁) → P a₀ → P a₁
transport P idp x = x
sym : ∀ {i} {A : Set i} {a₀ a₁ : A} (p : a₀ == a₁) → a₁ == a₀
sym idp = idp
etrans : ∀ {i} {A : Set i} {a₀ a₁ a₂ : A} → a₀ == a₁ → a₁ == a₂ → a₀ == a₂
etrans idp idp = idp
proof-irrelevance : ∀ {a} {A : Set a} {x y : A} (p q : x == y) → p == q
proof-irrelevance idp idp = idp
elimtransport : ∀{i j} {A : Set i} (P : A → Set j) {a₀ a₁ : A} (p : a₀ == a₁) (q : a₀ == a₁) (r : p == q) (x : P a₀) → transport P p x == transport P q x
elimtransport P p .p idp x = idp
tr! : ∀{i j} {A : Set i} (P : A → Set j) {a₀ a₁ : A} (p : a₀ == a₁) (q : a₀ == a₁) (x : P a₀) → transport P p x == transport P q x
tr! P p q x = elimtransport P p q (proof-irrelevance p q) x
tr² : ∀{i j} {A : Set i} (P : A → Set j) {a₀ a₁ a₂ : A} (p : a₀ == a₁) (q : a₁ == a₂) (x : P a₀) → transport P q (transport P p x) == transport P (etrans p q) x
tr² P idp idp x = idp
tr³ : ∀{i j} {A : Set i} (P : A → Set j) {a₀ a₁ a₂ a₃ : A} (p₀ : a₀ == a₁) (p₁ : a₁ == a₂) (p₂ : a₂ == a₃) (x : P a₀) → transport P p₂ (transport P p₁ (transport P p₀ x)) == transport P (etrans p₀ (etrans p₁ p₂)) x
tr³ P idp idp idp x = idp
tr⁴ : ∀{i j} {A : Set i} (P : A → Set j) {a₀ a₁ a₂ a₃ a₄ : A} (p₀ : a₀ == a₁) (p₁ : a₁ == a₂) (p₂ : a₂ == a₃) (p₃ : a₃ == a₄) (x : P a₀) → transport P p₃ (transport P p₂ (transport P p₁ (transport P p₀ x))) == transport P (etrans p₀ (etrans p₁ (etrans p₂ p₃))) x
tr⁴ P idp idp idp idp x = idp
hfiber : ∀ {i} {A B : Set i} (f : A → B) (b : B) → Set i
hfiber {A = A} f b = Σ A (λ a → f a == b)
PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {a₀ a₁ : A} (p : a₀ == a₁) (b₉ : B a₀) (b₁ : B a₁) → Set j
PathOver B idp b₀ b₁ = b₀ == b₁
infix 30 PathOver
syntax PathOver B p u v =
u == v [ B ↓ p ]
Σ-r : ∀ {i j k} {A : Set i} {B : A → Set j} (C : Σ A B → Set k) → A → Set (j ⊔ k)
Σ-r {A = A} {B = B} C a = Σ (B a) (λ b → C (a , b))
Σ-in : ∀ {i j k} {A : Set i} {B : A → Set j} (C : (a : A) → B a → Set k) → A → Set (j ⊔ k)
Σ-in {A = A} {B = B} C a = Σ (B a) (λ b → C a b)
infix 30 _↦_
postulate
_↦_ : ∀ {i} {A : Set i} → A → A → Set i
{-# BUILTIN REWRITE _↦_ #-}
data bool : Set where
true : bool
false : bool
data ⊥ : Set where
if_then_else : ∀ {a} {A : Set a} → bool → A → A → A
if true then A else B = A
if false then A else B = B
_≤_ : ℕ → ℕ → bool
O ≤ n₁ = true
S n₀ ≤ O = false
S n₀ ≤ S n₁ = n₀ ≤ n₁
min : ℕ → ℕ → ℕ
min n₀ n₁ with n₀ ≤ n₁
min n₀ n₁ | true = n₀
min n₀ n₁ | false = n₁
≤S : ∀ (n₀ n₁ : ℕ) → (n₀ ≤ n₁) == true → (n₀ ≤ S n₁) == true
≤S O n₁ x = idp
≤S (S n₀) O ()
≤S (S n₀) (S n₁) x = ≤S n₀ n₁ x
S≤S : ∀ (n₀ n₁ : ℕ) → (n₀ ≤ n₁) == true → (S n₀ ≤ S n₁) == true
S≤S n₀ n₁ x = x
| {
"alphanum_fraction": 0.4604663629,
"avg_line_length": 29.1484375,
"ext": "agda",
"hexsha": "b9153356ddd83f2e708e63f8530b315ad1cc685c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b1734c0ab6f56403d47855829dcf1808b9c53575",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt",
"max_forks_repo_path": "agda/Prelude.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "b1734c0ab6f56403d47855829dcf1808b9c53575",
"max_issues_repo_issues_event_max_datetime": "2018-07-12T16:44:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-14T09:31:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt",
"max_issues_repo_path": "agda/Prelude.agda",
"max_line_length": 265,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "b1734c0ab6f56403d47855829dcf1808b9c53575",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ThiBen/catt",
"max_stars_repo_path": "agda/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2020-05-21T00:44:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-31T10:06:17.000Z",
"num_tokens": 1767,
"size": 3731
} |
-- Andreas, 2021-08-19, issue #5291 reported by gergoerdi
-- https://stackoverflow.com/q/66816547/477476
open import Agda.Builtin.Char
open import Agda.Builtin.String
works : Char
works = '\SOH'
-- This used to fail as the matcher was committed to finding SOH after SO.
-- (Worked only for prefix-free matching.)
test : Char
test = '\SO'
-- Here, all the silly legacy ASCII escape sequences in their glorious detail...
all : String
all = "\NUL\SOH\STX\ETX\EOT\ENQ\ACK\BEL\BS\HT\LF\VT\FF\CR\SO\SI\DEL\DLE\DC1\DC2\DC3\DC4\NAK\SYN\ETB\CAN\EM\SUB\ESC\FS\GS\RS\US"
| {
"alphanum_fraction": 0.7243816254,
"avg_line_length": 28.3,
"ext": "agda",
"hexsha": "5972e0b99fab564766e43d1e09f5a451afc063ff",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5291.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5291.agda",
"max_line_length": 127,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5291.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 199,
"size": 566
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Bicategory.Monad.Properties where
open import Categories.Category
open import Categories.Bicategory.Instance.Cats
open import Categories.NaturalTransformation using (NaturalTransformation)
open import Categories.Functor using (Functor)
import Categories.Bicategory.Monad as BicatMonad
import Categories.Monad as ElemMonad
import Categories.Morphism.Reasoning as MR
--------------------------------------------------------------------------------
-- Bicategorical Monads in Cat are the same as the more elementary
-- definition of Monads.
CatMonad⇒Monad : ∀ {o ℓ e} → (T : BicatMonad.Monad (Cats o ℓ e)) → ElemMonad.Monad (BicatMonad.Monad.C T)
CatMonad⇒Monad T = record
{ F = T.T
; η = T.η
; μ = T.μ
; assoc = λ {X} → begin
η T.μ X ∘ F₁ T.T (η T.μ X) ≈⟨ intro-ids ⟩
(η T.μ X ∘ (F₁ T.T (η T.μ X) ∘ id) ∘ id) ≈⟨ T.assoc ⟩
(η T.μ X ∘ F₁ T.T id ∘ η T.μ (F₀ T.T X)) ≈⟨ ∘-resp-≈ʳ (∘-resp-≈ˡ (identity T.T) ○ identityˡ) ⟩
η T.μ X ∘ η T.μ (F₀ T.T X) ∎
; sym-assoc = λ {X} → begin
η T.μ X ∘ η T.μ (F₀ T.T X) ≈⟨ intro-F-ids ⟩
η T.μ X ∘ (F₁ T.T id ∘ η T.μ (F₀ T.T X)) ∘ id ≈⟨ T.sym-assoc ⟩
η T.μ X ∘ F₁ T.T (η T.μ X) ∘ id ≈⟨ ∘-resp-≈ʳ identityʳ ⟩
η T.μ X ∘ F₁ T.T (η T.μ X) ∎
; identityˡ = λ {X} → begin
η T.μ X ∘ F₁ T.T (η T.η X) ≈⟨ intro-ids ⟩
η T.μ X ∘ (F₁ T.T (η T.η X) ∘ id) ∘ id ≈⟨ T.identityˡ ⟩
id ∎
; identityʳ = λ {X} → begin
η T.μ X ∘ η T.η (F₀ T.T X) ≈⟨ intro-F-ids ⟩
η T.μ X ∘ (F₁ T.T id ∘ η T.η (F₀ T.T X)) ∘ id ≈⟨ T.identityʳ ⟩
id ∎
}
where
module T = BicatMonad.Monad T
open Category (BicatMonad.Monad.C T)
open HomReasoning
open Equiv
open MR (BicatMonad.Monad.C T)
open NaturalTransformation
open Functor
intro-ids : ∀ {X Y Z} {f : Y ⇒ Z} {g : X ⇒ Y} → f ∘ g ≈ f ∘ (g ∘ id) ∘ id
intro-ids = ⟺ (∘-resp-≈ʳ identityʳ) ○ ⟺ (∘-resp-≈ʳ identityʳ)
intro-F-ids : ∀ {X Y Z} {f : F₀ T.T Y ⇒ Z} {g : X ⇒ F₀ T.T Y} → f ∘ g ≈ f ∘ (F₁ T.T id ∘ g) ∘ id
intro-F-ids = ∘-resp-≈ʳ (⟺ identityˡ ○ ⟺ (∘-resp-≈ˡ (identity T.T))) ○ ⟺ (∘-resp-≈ʳ identityʳ)
Monad⇒CatMonad : ∀ {o ℓ e} {𝒞 : Category o ℓ e} → (T : ElemMonad.Monad 𝒞) → BicatMonad.Monad (Cats o ℓ e)
Monad⇒CatMonad {𝒞 = 𝒞} T = record
{ C = 𝒞
; T = T.F
; η = T.η
; μ = T.μ
; assoc = λ {X} → begin
T.μ.η X ∘ (T.F.F₁ (T.μ.η X) ∘ id) ∘ id ≈⟨ eliminate-ids ⟩
T.μ.η X ∘ T.F.F₁ (T.μ.η X) ≈⟨ T.assoc ⟩
T.μ.η X ∘ T.μ.η (T.F.F₀ X) ≈⟨ ∘-resp-≈ʳ (⟺ identityˡ ○ ∘-resp-≈ˡ (⟺ T.F.identity)) ⟩
T.μ.η X ∘ T.F.F₁ id ∘ T.μ.η (T.F.F₀ X) ∎
; sym-assoc = λ {X} → begin
T.μ.η X ∘ (T.F.F₁ id ∘ T.μ.η (T.F.F₀ X)) ∘ id ≈⟨ eliminate-F-ids ⟩
T.μ.η X ∘ T.μ.η (T.F.F₀ X) ≈⟨ T.sym-assoc ⟩
T.μ.η X ∘ T.F.F₁ (T.μ.η X) ≈⟨ ∘-resp-≈ʳ (⟺ identityʳ) ⟩
T.μ.η X ∘ T.F.F₁ (T.μ.η X) ∘ id ∎
; identityˡ = λ {X} → begin
T.μ.η X ∘ (T.F.F₁ (T.η.η X) ∘ id) ∘ id ≈⟨ eliminate-ids ⟩
T.μ.η X ∘ T.F.F₁ (T.η.η X) ≈⟨ T.identityˡ ⟩
id ∎
; identityʳ = λ {X} → begin
(T.μ.η X ∘ (T.F.F₁ id ∘ T.η.η (T.F.F₀ X)) ∘ id) ≈⟨ eliminate-F-ids ⟩
T.μ.η X ∘ T.η.η (T.F.F₀ X) ≈⟨ T.identityʳ ⟩
id ∎
}
where
module T = ElemMonad.Monad T
open Category 𝒞
open HomReasoning
open MR 𝒞
eliminate-ids : ∀ {X Y Z} {f : Y ⇒ Z} {g : X ⇒ Y} → f ∘ (g ∘ id) ∘ id ≈ f ∘ g
eliminate-ids = ∘-resp-≈ʳ identityʳ ○ ∘-resp-≈ʳ identityʳ
eliminate-F-ids : ∀ {X Y Z} {f : T.F.F₀ Y ⇒ Z} {g : X ⇒ T.F.F₀ Y} → f ∘ (T.F.F₁ id ∘ g) ∘ id ≈ f ∘ g
eliminate-F-ids = ∘-resp-≈ʳ identityʳ ○ ∘-resp-≈ʳ (∘-resp-≈ˡ T.F.identity ○ identityˡ)
| {
"alphanum_fraction": 0.4710346572,
"avg_line_length": 42.0531914894,
"ext": "agda",
"hexsha": "c4df88c1b02ed9c6f25e861dd4802d20970026ab",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Bicategory/Monad/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Bicategory/Monad/Properties.agda",
"max_line_length": 105,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Bicategory/Monad/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1802,
"size": 3953
} |
module vtv where
open import Function.Base
open import Data.Unit.Base
open import Agda.Builtin.Nat
open import Data.Integer
open import Data.Product
open import Agda.Builtin.String
open import Data.List
open import Data.Bool
open import Data.Maybe.Base
using (just)
using (nothing)
open import Agda.Builtin.Coinduction
import IO.Primitive as Prim
open import IO
renaming (_>>=_ to _>>>=_)
renaming (_>>_ to _>>>_)
open import verify
using (parse-verify)
open import Codata.Musical.Colist
renaming (length to length*)
renaming (map to map*)
renaming ([_] to [_]*)
renaming (_∷_ to _∷*_)
renaming (_++_ to _++*_)
open import Codata.Musical.Costring
open import Data.Bool using (if_then_else_)
open import basic using (Chars)
postulate
prim-get-args : Prim.IO (List String)
prim-exit-failure : Prim.IO ⊤
{-# FOREIGN GHC import qualified System.Environment as Env #-}
{-# FOREIGN GHC import Data.Text #-}
{-# FOREIGN GHC import qualified System.Exit #-}
{-# COMPILE GHC prim-get-args = fmap (fmap pack) Env.getArgs #-}
{-# COMPILE GHC prim-exit-failure = System.Exit.exitFailure #-}
exit-failure : IO ⊤
exit-failure = lift prim-exit-failure
_>>=_ : {A : Set} {B : Set} → IO A → (A → IO B) → IO B
_>>=_ f g = ♯ f >>>= \ x → ♯ (g x)
_>>_ : {A : Set} {B : Set} → IO A → IO B → IO B
_>>_ f g = ♯ f >>> ♯ g
skip : IO ⊤
skip = lift (Prim.return tt)
get-args : IO (List String)
get-args = lift prim-get-args
put-str-ln : String → IO ⊤
put-str-ln s = putStr s >> (putStr "\n" >> skip)
costring-to-chars : Costring → Chars
costring-to-chars (c ∷* cs) = c ∷ costring-to-chars (♭ cs)
costring-to-chars _ = []
-- print-result : Res ⊤ → IO ⊤
-- print-result (cont tt x) = put-str-ln "Proof verified (kernel = ATTV)."
-- print-result (stop s) = do
-- putStr "Invalid proof : "
-- put-str-ln s
-- exit-failure
print-result : Bool → IO ⊤
print-result true = put-str-ln "Proof verified by VTV."
print-result false = do
putStr "Invalid proof"
exit-failure
io-verify : IO ⊤
io-verify = do
(pn ∷ _) ← get-args
where _ → (put-str-ln "Missing proof file name." >> exit-failure)
ps ← getContents
cs ← readFiniteFile pn >>= (return ∘ primStringToList)
print-result (parse-verify (costring-to-chars ps) cs)
main : Prim.IO ⊤
main = run io-verify | {
"alphanum_fraction": 0.658123371,
"avg_line_length": 27.0823529412,
"ext": "agda",
"hexsha": "3f034039f88d6b6e44b155e2eeac1311fc3f86dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6577dfad2f197a9d9ed003138798930d515185a4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skbaek/tesc",
"max_forks_repo_path": "vtv/vtv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6577dfad2f197a9d9ed003138798930d515185a4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skbaek/tesc",
"max_issues_repo_path": "vtv/vtv.agda",
"max_line_length": 74,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "6577dfad2f197a9d9ed003138798930d515185a4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skbaek/tesc",
"max_stars_repo_path": "vtv/vtv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-01T12:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-06-30T13:16:19.000Z",
"num_tokens": 712,
"size": 2302
} |
------------------------------------------------------------------------
-- Pushouts, defined using a HIT
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- This module follows the HoTT book rather closely.
-- The module is parametrised by a notion of equality. The higher
-- constructor of the HIT defining pushouts uses path equality, but
-- the supplied notion of equality is used for many other things.
import Equality.Path as P
module Pushout
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Prelude
open import Bijection equality-with-J using (_↔_)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
open import Function-universe equality-with-J hiding (id; _∘_)
import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import Pointed-type equality-with-J using (Pointed-type)
import Suspension eq as S
private
variable
a b l ℓ m p r : Level
A B : Type a
S : A
-- Spans.
record Span l r m : Type (lsuc (l ⊔ r ⊔ m)) where
field
{Left} : Type l
{Right} : Type r
{Middle} : Type m
left : Middle → Left
right : Middle → Right
-- Pushouts.
data Pushout (S : Span l r m) : Type (l ⊔ r ⊔ m) where
inl : Span.Left S → Pushout S
inr : Span.Right S → Pushout S
glueᴾ : (x : Span.Middle S) →
inl (Span.left S x) P.≡ inr (Span.right S x)
-- Glue.
glue : (x : Span.Middle S) →
_≡_ {A = Pushout S} (inl (Span.left S x)) (inr (Span.right S x))
glue x = _↔_.from ≡↔≡ (glueᴾ x)
-- A dependent eliminator, expressed using paths.
elimᴾ :
{S : Span l r m} (open Span S)
(P : Pushout S → Type p)
(h₁ : (x : Left) → P (inl x))
(h₂ : (x : Right) → P (inr x)) →
(∀ x → P.[ (λ i → P (glueᴾ x i)) ] h₁ (left x) ≡ h₂ (right x)) →
(x : Pushout S) → P x
elimᴾ P h₁ h₂ g = λ where
(inl x) → h₁ x
(inr x) → h₂ x
(glueᴾ x i) → g x i
-- A non-dependent eliminator.
recᴾ :
{S : Span l r m} (open Span S)
(h₁ : Left → A)
(h₂ : Right → A) →
(∀ x → h₁ (left x) P.≡ h₂ (right x)) →
Pushout S → A
recᴾ = elimᴾ _
-- A dependent eliminator.
elim :
{S : Span l r m} (open Span S)
(P : Pushout S → Type p)
(h₁ : (x : Left) → P (inl x))
(h₂ : (x : Right) → P (inr x)) →
(∀ x → subst P (glue x) (h₁ (left x)) ≡ h₂ (right x)) →
(x : Pushout S) → P x
elim P h₁ h₂ g = elimᴾ P h₁ h₂ (subst≡→[]≡ ∘ g)
elim-glue :
{S : Span l r m} (open Span S) {P : Pushout S → Type p}
{h₁ : (x : Left) → P (inl x)}
{h₂ : (x : Right) → P (inr x)}
{g : ∀ x → subst P (glue x) (h₁ (left x)) ≡ h₂ (right x)}
{x : Middle} →
dcong (elim P h₁ h₂ g) (glue x) ≡ g x
elim-glue = dcong-subst≡→[]≡ (refl _)
-- A non-dependent eliminator.
rec :
{S : Span l r m} (open Span S)
(h₁ : Left → A)
(h₂ : Right → A) →
(∀ x → h₁ (left x) ≡ h₂ (right x)) →
Pushout S → A
rec h₁ h₂ g = recᴾ h₁ h₂ (_↔_.to ≡↔≡ ∘ g)
rec-glue :
{S : Span l r m} (open Span S)
{h₁ : Left → A} {h₂ : Right → A}
{g : ∀ x → h₁ (left x) ≡ h₂ (right x)}
{x : Middle} →
cong (rec h₁ h₂ g) (glue x) ≡ g x
rec-glue = cong-≡↔≡ (refl _)
-- Cocones.
Cocone : Span l r m → Type a → Type (a ⊔ l ⊔ r ⊔ m)
Cocone S A =
∃ λ (left : Left → A) →
∃ λ (right : Right → A) →
(x : Middle) → left (Span.left S x) ≡ right (Span.right S x)
where
open Span S using (Left; Right; Middle)
-- Some projection functions for cocones.
module Cocone (c : Cocone S A) where
open Span S using (Left; Right; Middle)
left : Left → A
left = proj₁ c
right : Right → A
right = proj₁ (proj₂ c)
left-left≡right-right :
(x : Middle) → left (Span.left S x) ≡ right (Span.right S x)
left-left≡right-right = proj₂ (proj₂ c)
-- A universal property for pushouts.
Pushout→↔Cocone : (Pushout S → A) ↔ Cocone S A
Pushout→↔Cocone {S = S} {A = A} = record
{ surjection = record
{ logical-equivalence = record
{ to = to
; from = from
}
; right-inverse-of = to-from
}
; left-inverse-of = from-to
}
where
open Span S
to : (Pushout S → A) → Cocone S A
to f = f ∘ inl , f ∘ inr , cong f ∘ glue
from : Cocone S A → (Pushout S → A)
from c = rec
(Cocone.left c)
(Cocone.right c)
(Cocone.left-left≡right-right c)
to-from : ∀ c → to (from c) ≡ c
to-from c = cong (λ x → _ , _ , x) $ ⟨ext⟩ λ x →
cong (from c) (glue x) ≡⟨ rec-glue ⟩∎
Cocone.left-left≡right-right c x ∎
from-to : ∀ f → from (to f) ≡ f
from-to f = ⟨ext⟩ $ elim
_
(λ _ → refl _)
(λ _ → refl _)
(λ x →
subst (λ y → from (to f) y ≡ f y) (glue x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (from (to f)) (glue x)))
(trans (refl _) (cong f (glue x))) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩
trans (sym (cong (from (to f)) (glue x))) (cong f (glue x)) ≡⟨ cong (λ eq → trans (sym eq) (cong f (glue x))) rec-glue ⟩
trans (sym (Cocone.left-left≡right-right (to f) x)) (cong f (glue x)) ≡⟨⟩
trans (sym (cong f (glue x))) (cong f (glue x)) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
-- Joins.
Join : Type a → Type b → Type (a ⊔ b)
Join A B = Pushout (record
{ Middle = A × B
; left = proj₁
; right = proj₂
})
-- Join is symmetric.
Join-symmetric : Join A B ≃ Join B A
Join-symmetric = Eq.↔→≃
to
to
to-to
to-to
where
to : Join A B → Join B A
to = rec inr inl (sym ∘ glue ∘ swap)
to-to : (x : Join A B) → to (to x) ≡ x
to-to =
elim _ (λ _ → refl _) (λ _ → refl _)
(λ p →
subst (λ x → to (to x) ≡ x) (glue p) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (to ∘ to) (glue p)))
(trans (refl _) (cong id (glue p))) ≡⟨ cong₂ (trans ∘ sym)
(sym $ cong-∘ _ _ _)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (cong to (cong to (glue p)))) (glue p) ≡⟨ cong (flip trans _) $ cong (sym ∘ cong to) rec-glue ⟩
trans (sym (cong to (sym (glue (swap p))))) (glue p) ≡⟨ cong (flip trans _) $ cong sym $ cong-sym _ _ ⟩
trans (sym (sym (cong to (glue (swap p))))) (glue p) ≡⟨ cong (flip trans _) $ sym-sym _ ⟩
trans (cong to (glue (swap p))) (glue p) ≡⟨ cong (flip trans _) rec-glue ⟩
trans (sym (glue (swap (swap p)))) (glue p) ≡⟨⟩
trans (sym (glue p)) (glue p) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
-- The empty type is a right identity for Join.
Join-⊥ʳ : Join A (⊥ {ℓ = ℓ}) ≃ A
Join-⊥ʳ = Eq.↔→≃
(rec id ⊥-elim (λ { (_ , ()) }))
inl
refl
(elim _ (λ _ → refl _) (λ ()) (λ { (_ , ()) }))
-- The empty type is a left identity for Join.
Join-⊥ˡ : Join (⊥ {ℓ = ℓ}) A ≃ A
Join-⊥ˡ {A = A} =
Join ⊥ A ↝⟨ Join-symmetric ⟩
Join A ⊥ ↝⟨ Join-⊥ʳ ⟩□
A □
-- Cones.
Cone : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b)
Cone f = Pushout (record
{ Left = ⊤
; right = f
})
-- Wedges.
Wedge : Pointed-type a → Pointed-type b → Type (a ⊔ b)
Wedge (A , a) (B , b) =
Pushout (record
{ Middle = ⊤
; left = const a
; right = const b
})
-- Smash products.
Smash-product : Pointed-type a → Pointed-type b → Type (a ⊔ b)
Smash-product PA@(A , a) PB@(B , b) = Cone f
where
f : Wedge PA PB → A × B
f = rec (_, b) (a ,_) (λ _ → refl _)
-- Suspensions.
Susp : Type a → Type a
Susp A = Pushout (record
{ Left = ⊤
; Middle = A
; Right = ⊤
})
-- These suspensions are equivalent to the ones defined in Suspension.
Susp≃Susp : Susp A ≃ S.Susp A
Susp≃Susp = Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ to = to
; from = from
}
; right-inverse-of = to∘from
}
; left-inverse-of = from∘to
})
where
to : Susp A → S.Susp A
to = recᴾ (λ _ → S.north) (λ _ → S.south) S.meridianᴾ
from : S.Susp A → Susp A
from = S.recᴾ (inl _) (inr _) glueᴾ
to∘from : ∀ x → to (from x) ≡ x
to∘from =
_↔_.from ≡↔≡ ∘
S.elimᴾ _ P.refl P.refl (λ a i _ → S.meridianᴾ a i)
from∘to : ∀ x → from (to x) ≡ x
from∘to =
_↔_.from ≡↔≡ ∘
elimᴾ _ (λ _ → P.refl) (λ _ → P.refl) (λ a i _ → glueᴾ a i)
| {
"alphanum_fraction": 0.5035207203,
"avg_line_length": 26.6553846154,
"ext": "agda",
"hexsha": "9ab5cc82a2636bb33b6f952052d337ce75a79c54",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Pushout.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Pushout.agda",
"max_line_length": 138,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Pushout.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3284,
"size": 8663
} |
open import MJ.Types
import MJ.Classtable.Core as Core
module MJ.Syntax.Program {c}(Ct : Core.Classtable c) where
open import Prelude
open import Data.List
open import MJ.Classtable.Code Ct
open import MJ.Syntax Ct
Prog : Ty c → Set
Prog a = Code × (Body [] a)
| {
"alphanum_fraction": 0.7396226415,
"avg_line_length": 18.9285714286,
"ext": "agda",
"hexsha": "aebc6a40ee0da33c171645292c210b5cda83ebdc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJ/Syntax/Program.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJ/Syntax/Program.agda",
"max_line_length": 58,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJ/Syntax/Program.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 73,
"size": 265
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Unit.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat
open import Cubical.Data.Unit.Base
isPropUnit : isProp Unit
isPropUnit _ _ i = tt
isContrUnit : isContr Unit
isContrUnit = tt , λ {tt → refl}
isOfHLevelUnit : (n : ℕ) → isOfHLevel n Unit
isOfHLevelUnit 0 = isContrUnit
isOfHLevelUnit 1 = isPropUnit
isOfHLevelUnit (suc n) = hLevelSuc n Unit (isOfHLevelUnit n)
| {
"alphanum_fraction": 0.7568555759,
"avg_line_length": 24.8636363636,
"ext": "agda",
"hexsha": "4fe856fcdb0ac7a02624bd64b2437961c3ad0df0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 168,
"size": 547
} |
------------------------------------------------------------------------------
-- FOCT terms properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Base.PropertiesATP where
open import FOTC.Base
------------------------------------------------------------------------------
-- Injective properties
postulate succInjective : ∀ {m n} → succ₁ m ≡ succ₁ n → m ≡ n
{-# ATP prove succInjective #-}
------------------------------------------------------------------------------
-- Discrimination rules
postulate S≢0 : ∀ {n} → succ₁ n ≢ zero
{-# ATP prove S≢0 #-}
| {
"alphanum_fraction": 0.3554987212,
"avg_line_length": 31.28,
"ext": "agda",
"hexsha": "8ac1d0c73ae0f6d381e267826799b36479dfefb8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Base/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Base/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Base/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 133,
"size": 782
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Escape {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Reducible types are well-formed.
escape : ∀ {l Γ A} → Γ ⊩⟨ l ⟩ A → Γ ⊢ A
escape (Uᵣ′ l′ l< ⊢Γ) = Uⱼ ⊢Γ
escape (ℕᵣ [ ⊢A , ⊢B , D ]) = ⊢A
escape (Emptyᵣ [ ⊢A , ⊢B , D ]) = ⊢A
escape (Unitᵣ [ ⊢A , ⊢B , D ]) = ⊢A
escape (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) = ⊢A
escape (Bᵣ′ W F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) = ⊢A
escape (emb 0<1 A) = escape A
-- Reducible type equality respect the equality relation.
escapeEq : ∀ {l Γ A B} → ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
→ Γ ⊢ A ≅ B
escapeEq (Uᵣ′ l′ l< ⊢Γ) PE.refl = ≅-Urefl ⊢Γ
escapeEq (ℕᵣ [ ⊢A , ⊢B , D ]) D′ = ≅-red D D′ ℕₙ ℕₙ (≅-ℕrefl (wf ⊢A))
escapeEq (Emptyᵣ [ ⊢A , ⊢B , D ]) D′ = ≅-red D D′ Emptyₙ Emptyₙ (≅-Emptyrefl (wf ⊢A))
escapeEq (Unitᵣ [ ⊢A , ⊢B , D ]) D′ = ≅-red D D′ Unitₙ Unitₙ (≅-Unitrefl (wf ⊢A))
escapeEq (ne′ K D neK K≡K) (ne₌ M D′ neM K≡M) =
≅-red (red D) (red D′) (ne neK) (ne neM) (~-to-≅ K≡M)
escapeEq (Bᵣ′ W F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
≅-red (red D) D′ ⟦ W ⟧ₙ ⟦ W ⟧ₙ A≡B
escapeEq (emb 0<1 A) A≡B = escapeEq A A≡B
-- Reducible terms are well-formed.
escapeTerm : ∀ {l Γ A t} → ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ∷ A / [A]
→ Γ ⊢ t ∷ A
escapeTerm (Uᵣ′ l′ l< ⊢Γ) (Uₜ A [ ⊢t , ⊢u , d ] typeA A≡A [A]) = ⊢t
escapeTerm (ℕᵣ D) (ℕₜ n [ ⊢t , ⊢u , d ] t≡t prop) =
conv ⊢t (sym (subset* (red D)))
escapeTerm (Emptyᵣ D) (Emptyₜ e [ ⊢t , ⊢u , d ] t≡t prop) =
conv ⊢t (sym (subset* (red D)))
escapeTerm (Unitᵣ D) (Unitₜ e [ ⊢t , ⊢u , d ] prop) =
conv ⊢t (sym (subset* (red D)))
escapeTerm (ne′ K D neK K≡K) (neₜ k [ ⊢t , ⊢u , d ] nf) =
conv ⊢t (sym (subset* (red D)))
escapeTerm (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ f [ ⊢t , ⊢u , d ] funcF f≡f [f] [f]₁) =
conv ⊢t (sym (subset* (red D)))
escapeTerm (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Σₜ p [ ⊢t , ⊢u , d ] pProd p≅p [fst] [snd]) =
conv ⊢t (sym (subset* (red D)))
escapeTerm (emb 0<1 A) t = escapeTerm A t
-- Reducible term equality respect the equality relation.
escapeTermEq : ∀ {l Γ A t u} → ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A]
→ Γ ⊢ t ≅ u ∷ A
escapeTermEq (Uᵣ′ l′ l< ⊢Γ) (Uₜ₌ A B d d′ typeA typeB A≡B [A] [B] [A≡B]) =
≅ₜ-red (id (Uⱼ ⊢Γ)) (redₜ d) (redₜ d′) Uₙ (typeWhnf typeA) (typeWhnf typeB) A≡B
escapeTermEq (ℕᵣ D) (ℕₜ₌ k k′ d d′ k≡k′ prop) =
let natK , natK′ = split prop
in ≅ₜ-red (red D) (redₜ d) (redₜ d′) ℕₙ
(naturalWhnf natK) (naturalWhnf natK′) k≡k′
escapeTermEq (Emptyᵣ D) (Emptyₜ₌ k k′ d d′ k≡k′ prop) =
let natK , natK′ = esplit prop
in ≅ₜ-red (red D) (redₜ d) (redₜ d′) Emptyₙ
(ne natK) (ne natK′) k≡k′
escapeTermEq {l} {Γ} {A} {t} {u} (Unitᵣ D) (Unitₜ₌ ⊢t ⊢u) =
let t≅u = ≅ₜ-η-unit ⊢t ⊢u
A≡Unit = subset* (red D)
in ≅-conv t≅u (sym A≡Unit)
escapeTermEq (ne′ K D neK K≡K)
(neₜ₌ k m d d′ (neNfₜ₌ neT neU t≡u)) =
≅ₜ-red (red D) (redₜ d) (redₜ d′) (ne neK) (ne neT) (ne neU)
(~-to-≅ₜ t≡u)
escapeTermEq (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g]) =
≅ₜ-red (red D) (redₜ d) (redₜ d′) Πₙ (functionWhnf funcF) (functionWhnf funcG) f≡g
escapeTermEq (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Σₜ₌ p r d d′ pProd rProd p≅r [t] [u] [fstp] [fstr] [fst≡] [snd≡]) =
≅ₜ-red (red D) (redₜ d) (redₜ d′) Σₙ (productWhnf pProd) (productWhnf rProd) p≅r
escapeTermEq (emb 0<1 A) t≡u = escapeTermEq A t≡u
| {
"alphanum_fraction": 0.5264102564,
"avg_line_length": 41.935483871,
"ext": "agda",
"hexsha": "21200c2fe4acbc652abec946405bc20ea444f962",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Escape.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Escape.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Escape.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1995,
"size": 3900
} |
{-# OPTIONS --safe #-}
module Cubical.HITs.CumulativeHierarchy where
open import Cubical.HITs.CumulativeHierarchy.Base public
hiding (elim; elimProp)
open import Cubical.HITs.CumulativeHierarchy.Properties public
open import Cubical.HITs.CumulativeHierarchy.Constructions public
| {
"alphanum_fraction": 0.8333333333,
"avg_line_length": 35.25,
"ext": "agda",
"hexsha": "0cd804b36a9f62b2dac1085c0a8a816329f940db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/CumulativeHierarchy.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/CumulativeHierarchy.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/CumulativeHierarchy.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 68,
"size": 282
} |
-- Andreas, 2018-06-18, problem surfaced with issue #3136
-- Correct printing of a pattern lambda that has no patterns.
-- {-# OPTIONS -v extendedlambda:50 #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
record R : Set where
no-eta-equality
field w : Bool
f : R
f = λ where
.R.w → λ where
→ false
triggerError : ∀ x → x ≡ f
triggerError x = refl
-- Error prints extended lambda name in error:
-- x != λ { .R.w → λ { .extendedlambda1 → false } } of type R
-- when checking that the expression refl has type x ≡ f
-- Expected:
-- x != λ { .R.w → λ { → false } } of type R
-- when checking that the expression refl has type x ≡ f
| {
"alphanum_fraction": 0.6596385542,
"avg_line_length": 23.7142857143,
"ext": "agda",
"hexsha": "099938ec7ae90341c4d5d5c881c4997e28a4a4dc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3136a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3136a.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3136a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 198,
"size": 664
} |
{-# OPTIONS --cubical --allow-unsolved-metas #-}
open import Prelude
open import Relation.Binary
module Data.AVLTree.Mapping {k} {K : Type k} {r₁ r₂} (totalOrder : TotalOrder K r₁ r₂) where
open import Relation.Binary.Construct.Bounded totalOrder
open import Data.Nat using (_+_)
open TotalOrder totalOrder using (_<?_; compare)
open TotalOrder b-ord using (<-trans) renaming (refl to <-refl)
import Data.Empty.UniversePolymorphic as Poly
open import Data.AVLTree.Internal totalOrder
private
variable
n m : ℕ
v : Level
Val : K → Type v
data Mapping (Val : K → Type v) : Type (k ℓ⊔ v ℓ⊔ r₁) where
[_] : Tree Val [⊥] [⊤] n → Mapping Val
quot : (xs : Tree Val [⊥] [⊤] n) (ys : Tree Val [⊥] [⊤] m) → toList xs ≡ toList ys → [ xs ] ≡ [ ys ]
trunc : isSet (Mapping Val)
lookup′ : (x : K) → Mapping Val → Maybe (Val x)
lookup′ x [ xs ] = lookup x xs
lookup′ x (quot xs ys p j) = {!!}
lookup′ x (trunc xs xs₁ x₁ y i i₁) = {!!}
| {
"alphanum_fraction": 0.6458773784,
"avg_line_length": 30.5161290323,
"ext": "agda",
"hexsha": "3e47da398454daef374fd839a30c8de9d21281f2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/AVLTree/Mapping.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/AVLTree/Mapping.agda",
"max_line_length": 102,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/AVLTree/Mapping.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 329,
"size": 946
} |
open import Base
open import Homotopy.Connected
module Homotopy.Extensions.ProductPushoutToProductToConnected.Magic
{i j} {D E : Set i} (h : E → D) where
{-
k
E ---> F x
| /^
| ≃ /
| / l?
v /
(x : D)
-}
-- The mapping l and the coherence data.
extension : (F : D → Set j) (k : ∀ x → F (h x)) → Set (max i j)
extension F k = Σ (Π D F) (λ l → ∀ x → k x ≡ l (h x))
-- Specialized J rules.
private
-- This is a combination of 2~3 basic rules.
lemma₁ : ∀ (F : D → Set j) (k : ∀ x → F (h x))
{l₁ l₂ : ∀ x → F x} (p : l₁ ≡ l₂) (q : ∀ x → k x ≡ l₁ (h x)) a
→ transport (λ l → ∀ x → k x ≡ l (h x)) p q a
≡ q a ∘ happly p (h a)
lemma₁ F k refl q a = ! $ refl-right-unit _
-- May be generalized later.
lemma₂ : ∀ {i} {X : Set i} {x₁ x₂ x₃ : X}
(p₁ : x₁ ≡ x₂) (p₂ : x₂ ≡ x₃) (p₃ : x₁ ≡ x₃)
→ (p₁ ∘ p₂ ≡ p₃) ≡ (p₂ ≡ ! p₁ ∘ p₃)
lemma₂ refl _ _ = refl
-- May be generalized later.
lemma₃ : ∀ {i} {X : Set i} {x₁ x₂ : X}
(p₁ : x₁ ≡ x₂) (p₂ : x₁ ≡ x₂)
→ (p₁ ≡ p₂) ≡ (p₂ ≡ p₁)
lemma₃ p₁ p₂ = eq-to-path $ ! , iso-is-eq ! ! opposite-opposite opposite-opposite
lemma₄ : ∀ {i j} {A A′ : Set i} (B′ : A′ → Set j) (eq : A ≃ A′)
→ Σ A (λ x → (B′ (eq ☆ x))) ≡ Σ A′ B′
lemma₄ {j = j} B′ eq = equiv-induction
(λ {A A′} eq → ∀ (B′ : A′ → Set j) → Σ A (λ x → (B′ (eq ☆ x))) ≡ Σ A′ B′)
(λ A _ → refl)
eq B′
-- The main lemma
module _ {n₁ : ℕ₋₂} (h-is-conn : has-connected-fibers n₁ h) where
open import Homotopy.Truncation
extension-is-truncated :
(F : D → Set j)
{n₂ : ℕ₋₂} ⦃ F-is-trunc : ∀ x → is-truncated (n₂ +2+ n₁) (F x) ⦄
(k : ∀ x → F (h x))
→ is-truncated n₂ (extension F k)
extension-is-truncated F {⟨-2⟩} ⦃ F-is-trunc ⦄ k =
center , (λ e″ → Σ-eq (path-l e″) (path-coh e″))
where
-- The section
l′ : ∀ x → τ n₁ (hfiber h x) → F x
l′ x = τ-extend-nondep ⦃ F-is-trunc x ⦄
λ{(preimage , shift) → transport F shift (k preimage)}
-- The section
l : ∀ x → F x
l x = l′ x (π₁ (h-is-conn x))
-- The coherence data (commutivity)
abstract
coh : ∀ x → k x ≡ l (h x)
coh x = ap (l′ (h x)) $ π₂ (h-is-conn (h x)) $ proj (x , refl)
-- The canonical choice of section+coherence
center : extension F k
center = l , coh
-- The path between the canonical choice and others (pointwise).
abstract
path-l-pointwise′ : ∀ (e : extension F k) x → τ n₁ (hfiber h x) → π₁ e x ≡ l x
path-l-pointwise′ = λ{(l″ , coh″) x →
τ-extend-nondep
⦃ ≡-is-truncated n₁ $ F-is-trunc x ⦄
-- The point is to make all artifacts go away when shift = refl _.
(λ{(pre , shift) → transport (λ x → l″ x ≡ l x) shift $
l″ (h pre)
≡⟨ ! $ coh″ pre ⟩
k pre
≡⟨ coh pre ⟩∎
l (h pre)
∎})}
-- The path between the canonical choice and others (pointwise).
abstract
path-l-pointwise : ∀ (e : extension F k) x → π₁ e x ≡ l x
path-l-pointwise = λ e x →
path-l-pointwise′ e x (π₁ (h-is-conn x))
-- The path between the canonical choice and others.
abstract
path-l : ∀ (e : extension F k) → π₁ e ≡ l
path-l = funext ◯ path-l-pointwise
-- The path between the canonical choice and others.
abstract
path-coh : ∀ (e : extension F k)
→ transport (λ l → ∀ x → k x ≡ l (h x)) (path-l e) (π₂ e)
≡ coh
path-coh e″ = funext λ x → let coh″ = π₂ e″ in
transport (λ l → ∀ x → k x ≡ l (h x)) (path-l e″) coh″ x
≡⟨ lemma₁ F k (path-l e″) coh″ x ⟩
coh″ x ∘ happly (path-l e″) (h x)
≡⟨ ap (λ p → coh″ x ∘ p (h x)) $ happly-funext (path-l-pointwise e″) ⟩
coh″ x ∘ (path-l-pointwise′ e″ (h x) (π₁ (h-is-conn (h x))))
≡⟨ ap (λ y → π₂ e″ x ∘ (path-l-pointwise′ e″ (h x) y))
$ ! $ π₂ (h-is-conn (h x)) $ proj (x , refl) ⟩
coh″ x ∘ (path-l-pointwise′ e″ (h x) (proj (x , refl)))
≡⟨ refl ⟩
coh″ x ∘ ((! $ coh″ x) ∘ coh x)
≡⟨ ! $ concat-assoc (coh″ x) (! $ coh″ x) (coh x) ⟩
(coh″ x ∘ (! $ coh″ x)) ∘ coh x
≡⟨ ap (λ p → p ∘ coh x) $ opposite-right-inverse (coh″ x) ⟩∎
coh x
∎
extension-is-truncated F {S n₂} ⦃ F-is-trunc ⦄ k = λ e₁ e₂ →
transport (is-truncated n₂)
(! $ extension≡-extension′-path e₁ e₂)
(extension′-is-trunc e₁ e₂) where
module _ (e₁ e₂ : extension F k) where
l₁ = π₁ e₁
l₂ = π₁ e₂
coh₁ = π₂ e₁
coh₂ = π₂ e₂
-- The trick: Make a new F for the path space.
F′ : ∀ D → Set j
F′ x = l₁ x ≡ l₂ x
k′ : ∀ x → F′ (h x)
k′ x = ! (coh₁ x) ∘ coh₂ x
F′-is-trunc : ∀ x → is-truncated (n₂ +2+ n₁) (F′ x)
F′-is-trunc x = F-is-trunc x (l₁ x) (l₂ x)
extension′ : Set (max i j)
extension′ = extension F′ k′
-- Conversion between paths and new extensions.
abstract
extension≡-extension′-path : (e₁ ≡ e₂) ≡ extension′
extension≡-extension′-path =
e₁ ≡ e₂
≡⟨ ! $ eq-to-path $ total-Σ-eq-equiv ⟩
Σ (l₁ ≡ l₂) (λ l₁≡l₂ → transport (λ l → ∀ x → k x ≡ l (h x)) l₁≡l₂ coh₁ ≡ coh₂)
≡⟨ ap (Σ (l₁ ≡ l₂)) (funext λ _ → ! $ eq-to-path $ funext-equiv) ⟩
Σ (l₁ ≡ l₂) (λ l₁≡l₂ → ∀ x → transport (λ l → ∀ x → k x ≡ l (h x)) l₁≡l₂ coh₁ x ≡ coh₂ x)
≡⟨ ap (Σ (l₁ ≡ l₂)) (funext λ l₁≡l₂ → ap (λ p → ∀ x → p x ≡ coh₂ x)
$ funext $ lemma₁ F k l₁≡l₂ coh₁) ⟩
Σ (l₁ ≡ l₂) (λ l₁≡l₂ → ∀ x → coh₁ x ∘ happly l₁≡l₂ (h x) ≡ coh₂ x)
≡⟨ ap (Σ (l₁ ≡ l₂)) (funext λ l₁≡l₂ → ap (λ p → ∀ x → p x)
$ funext λ x → lemma₂ (coh₁ x) (happly l₁≡l₂ (h x)) (coh₂ x)) ⟩
Σ (l₁ ≡ l₂) (λ l₁≡l₂ → ∀ x → happly l₁≡l₂ (h x) ≡ ! (coh₁ x) ∘ coh₂ x)
≡⟨ ap (Σ (l₁ ≡ l₂)) (funext λ l₁≡l₂ → ap (λ p → ∀ x → p x)
$ funext λ x → lemma₃ (happly l₁≡l₂ (h x)) (! (coh₁ x) ∘ coh₂ x)) ⟩
Σ (l₁ ≡ l₂) (λ l₁≡l₂ → ∀ x → ! (coh₁ x) ∘ coh₂ x ≡ happly l₁≡l₂ (h x))
≡⟨ lemma₄ (λ l₁x≡l₂x → ∀ x → ! (coh₁ x) ∘ coh₂ x ≡ l₁x≡l₂x (h x)) happly-equiv ⟩∎
extension′
∎
-- Recursive calls.
abstract
extension′-is-trunc : is-truncated n₂ extension′
extension′-is-trunc = extension-is-truncated F′ {n₂} ⦃ F′-is-trunc ⦄ k′
| {
"alphanum_fraction": 0.4369699583,
"avg_line_length": 39.5284090909,
"ext": "agda",
"hexsha": "f987903c9a01b50b6aaf19c879f443f35cdfd5e6",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/Extensions/ProductPushoutToProductToConnected/Magic.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/Extensions/ProductPushoutToProductToConnected/Magic.agda",
"max_line_length": 103,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/Extensions/ProductPushoutToProductToConnected/Magic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2672,
"size": 6957
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Functorial where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Path
open import Cubical.Foundations.SIP
private
variable
ℓ ℓ₁ : Level
-- Standard notion of structure from a "functorial" action
-- We don't need all the functor axioms, only F id ≡ id
FunctorialEquivStr : {S : Type ℓ → Type ℓ₁}
→ (∀ {X Y} → (X → Y) → S X → S Y)
→ StrEquiv S ℓ₁
FunctorialEquivStr F (X , s) (Y , t) e = F (e .fst) s ≡ t
functorialUnivalentStr : {S : Type ℓ → Type ℓ₁}
(F : ∀ {X Y} → (X → Y) → S X → S Y)
→ (∀ {X} s → F (idfun X) s ≡ s)
→ UnivalentStr S (FunctorialEquivStr F)
functorialUnivalentStr F η =
SNS→UnivalentStr
(FunctorialEquivStr F)
(λ s t → pathToEquiv (cong (_≡ t) (η s)))
| {
"alphanum_fraction": 0.6866597725,
"avg_line_length": 29.303030303,
"ext": "agda",
"hexsha": "96f270bd57dc081fe342bf9a950633536c5b7e31",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Structures/Functorial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Structures/Functorial.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Structures/Functorial.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 344,
"size": 967
} |
module Numeral.Natural.Oper.Modulo where
import Lvl
open import Data
open import Data.Boolean.Stmt
open import Logic.Propositional.Theorems
open import Numeral.Natural
open import Numeral.Natural.Oper.Comparisons
open import Relator.Equals
infixl 10100 _mod_
-- Modulo is defined using this.
-- This, unlike (_mod_) is keeping internal state of the previous value.
-- `r` is the current result. Should be 0 at the start.
-- `b` is the modulus. This value will not change in the repeated applications of the function.
-- `a'` is the number to take the modulo of.
-- 'b'` is the temporary modulus. Should be `b` at the start.
-- This function works by repeatedly decreasing `a'` and `b'` and at the same time increasing `r` until `b'` is 0.
-- When `b'` is 0, `r` is resetted to 0, and `b'` is resetted to `b`.
-- Almost the same algorithm imperatively:
-- while a'!=0{
-- a'-= 1;
-- b'-= 1;
-- r += 1;
-- if b'==0{
-- r := 0;
-- b':= b;
-- }
-- }
-- return r;
-- Example execution:
-- [ 0 , 2 ] 5 mod' 2
-- = [ 1 , 2 ] 4 mod' 1
-- = [ 2 , 2 ] 3 mod' 0
-- = [ 0 , 2 ] 3 mod' 2
-- = [ 1 , 2 ] 2 mod' 1
-- = [ 2 , 2 ] 1 mod' 0
-- = [ 0 , 2 ] 1 mod' 2
-- = [ 1 , 2 ] 0 mod' 1
-- = 1
-- The above is describing the following code:
-- {-# TERMINATING #-}
-- [_,_]_mod₀'_ : ℕ → ℕ → ℕ → ℕ → ℕ
-- [ _ , 𝟎 ] _ mod₀' _ = 𝟎
-- [ _ , b ] a' mod₀' 𝟎 = [ 𝟎 , b ] a' mod₀' b
-- [ r , _ ] 𝟎 mod₀' _ = r
-- [ r , b ] 𝐒(a') mod₀' 𝐒(b') = [ 𝐒(r) , b ] a' mod₀' b'
-- Then it is transformed to the following code (So that it terminates):
-- [_,_]_mod₀'_ : ℕ → ℕ → ℕ → ℕ → ℕ
-- [ _ , 𝟎 ] _ mod₀' _ = 𝟎
-- [ _ , 𝐒(_) ] 𝟎 mod₀' 𝟎 = 𝟎
-- [ r , 𝐒(_) ] 𝟎 mod₀' 𝐒(_) = r
-- [ _ , 𝐒(b) ] 𝐒(a') mod₀' 𝟎 = [ 𝐒(𝟎) , 𝐒(b) ] a' mod₀' b
-- [ r , 𝐒(b) ] 𝐒(a') mod₀' 𝐒(b') = [ 𝐒(r) , 𝐒(b) ] a' mod₀' b'
-- And finally removing the forbidden 𝟎 cases of `b` and `b'` by just interpreting (b=0), (b'=0) in this function as 1's:
-- [ r , _ ] 𝟎 mod' _ = r
-- [ _ , b ] 𝐒(a') mod' 𝟎 = [ 𝟎 , b ] a' mod' b
-- [ r , b ] 𝐒(a') mod' 𝐒(b') = [ 𝐒(r) , b ] a' mod' b'
-- Note: [ r , b ] a mod' b) is like ((a − r) mod b). The other b is actually a state for handling the situation when a is greater than the modulus b.
-- TODO: If it is possible together with the BUILTIN pragma, swap b and b' to avoid confusion. b' is actually a state (like r) and is not the actual base
[_,_]_mod'_ : ℕ → ℕ → ℕ → ℕ → ℕ
[ r , _ ] 𝟎 mod' _ = r
[ _ , b ] 𝐒(a') mod' 𝟎 = [ 𝟎 , b ] a' mod' b
[ r , b ] 𝐒(a') mod' 𝐒(b') = [ 𝐒(r) , b ] a' mod' b'
{-# BUILTIN NATMODSUCAUX [_,_]_mod'_ #-}
-- Difference between the value before and after the floored division operation.
_mod_ : ℕ → (m : ℕ) → .⦃ pos : IsTrue(positive?(m))⦄ → ℕ
a mod 𝐒(m) = [ 𝟎 , m ] a mod' m
_mod₀_ : ℕ → ℕ → ℕ
_ mod₀ 𝟎 = 𝟎
a mod₀ 𝐒(m) = [ 𝟎 , m ] a mod' m
| {
"alphanum_fraction": 0.5256322625,
"avg_line_length": 39.0133333333,
"ext": "agda",
"hexsha": "8612ba2fec94224c1b777a95969580687f396d59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Oper/Modulo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Oper/Modulo.agda",
"max_line_length": 153,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Oper/Modulo.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1244,
"size": 2926
} |
------------------------------------------------------------------------
-- A parametrised coinductive definition that can be used to define
-- various forms of similarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
open import Labelled-transition-system
module Similarity.General
{ℓ}
(lts : LTS ℓ)
(open LTS lts)
(_[_]↝_ : Proc → Label → Proc → Type ℓ)
(⟶→↝ : ∀ {p μ q} → p [ μ ]⟶ q → p [ μ ]↝ q)
where
open import Equality.Propositional as Eq hiding (Extensionality)
open import Prelude.Size
open import Bijection equality-with-J using (_↔_)
open import Function-universe equality-with-J hiding (id; _∘_)
open import Indexed-container hiding (⟨_⟩)
open import Relation
open import Similarity.Step lts _[_]↝_ as Step public
using (StepC)
open Indexed-container public using (force)
open StepC public using (⟨_⟩; challenge)
-- Similarity. Note that this definition is small.
infix 4 _≤_ _≤′_ [_]_≤_ [_]_≤′_
Similarity : Size → Rel₂ ℓ Proc
Similarity i = ν StepC i
Similarity′ : Size → Rel₂ ℓ Proc
Similarity′ i = ν′ StepC i
[_]_≤_ : Size → Proc → Proc → Type ℓ
[_]_≤_ i = curry (Similarity i)
[_]_≤′_ : Size → Proc → Proc → Type ℓ
[_]_≤′_ i = curry (Similarity′ i)
_≤_ : Proc → Proc → Type ℓ
_≤_ = [ ∞ ]_≤_
_≤′_ : Proc → Proc → Type ℓ
_≤′_ = [ ∞ ]_≤′_
-- Similarity is reflexive.
mutual
reflexive-≤ : ∀ {p i} → [ i ] p ≤ p
reflexive-≤ =
StepC.⟨ (λ p⟶p′ → _ , ⟶→↝ p⟶p′ , reflexive-≤′)
⟩
reflexive-≤′ : ∀ {p i} → [ i ] p ≤′ p
force reflexive-≤′ = reflexive-≤
≡⇒≤ : ∀ {p q} → p ≡ q → p ≤ q
≡⇒≤ refl = reflexive-≤
-- Functions that can be used to aid the instance resolution
-- mechanism.
infix -2 ≤:_ ≤′:_
≤:_ : ∀ {i p q} → [ i ] p ≤ q → [ i ] p ≤ q
≤:_ = id
≤′:_ : ∀ {i p q} → [ i ] p ≤′ q → [ i ] p ≤′ q
≤′:_ = id
-- Bisimilarity of similarity proofs.
infix 4 [_]_≡_ [_]_≡′_
[_]_≡_ : ∀ {p q} → Size → (_ _ : ν StepC ∞ (p , q)) → Type ℓ
[_]_≡_ i = curry (ν-bisimilar i)
[_]_≡′_ : ∀ {p q} → Size → (_ _ : ν′ StepC ∞ (p , q)) → Type ℓ
[_]_≡′_ i = curry (ν′-bisimilar i)
-- An alternative characterisation of bisimilarity of similarity
-- proofs.
[]≡↔ :
Eq.Extensionality ℓ ℓ →
∀ {p q} {i : Size} (p≤q₁ p≤q₂ : ν StepC ∞ (p , q)) →
[ i ] p≤q₁ ≡ p≤q₂
↔
(∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) →
let q′₁ , q⟶q′₁ , p′≤q′₁ = StepC.challenge p≤q₁ p⟶p′
q′₂ , q⟶q′₂ , p′≤q′₂ = StepC.challenge p≤q₂ p⟶p′
in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) →
subst (q [ μ ]↝_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (p′ ,_)) q′₁≡q′₂ p′≤q′₁ ≡′ p′≤q′₂)
[]≡↔ ext {p} {q} {i} p≤q₁@(s₁ , f₁) p≤q₂@(s₂ , f₂) =
[ i ] p≤q₁ ≡ p≤q₂ ↝⟨ ν-bisimilar↔ ext (s₁ , f₁) (s₂ , f₂) ⟩
(∃ λ (eq : s₁ ≡ s₂) →
∀ {o} (p : Container.Position StepC s₁ o) →
[ i ] f₁ p ≡′ f₂ (subst (λ s → Container.Position StepC s o) eq p)) ↝⟨ Step.⟦StepC⟧₂↔ ext (ν′-bisimilar i) p≤q₁ p≤q₂ ⟩□
(∀ {p′ μ} (p⟶p′ : p [ μ ]⟶ p′) →
let q′₁ , q⟶q′₁ , p′≤q′₁ = StepC.challenge p≤q₁ p⟶p′
q′₂ , q⟶q′₂ , p′≤q′₂ = StepC.challenge p≤q₂ p⟶p′
in ∃ λ (q′₁≡q′₂ : q′₁ ≡ q′₂) →
subst (q [ μ ]↝_) q′₁≡q′₂ q⟶q′₁ ≡ q⟶q′₂
×
[ i ] subst (ν′ StepC ∞ ∘ (p′ ,_)) q′₁≡q′₂ p′≤q′₁ ≡′ p′≤q′₂) □
-- A statement of extensionality for similarity.
Extensionality : Type ℓ
Extensionality = ν′-extensionality StepC
-- This form of extensionality can be used to derive another form (in
-- the presence of extensionality for functions).
extensionality :
Eq.Extensionality ℓ ℓ →
Extensionality →
∀ {p q} {p≤q₁ p≤q₂ : ν StepC ∞ (p , q)} →
[ ∞ ] p≤q₁ ≡ p≤q₂ → p≤q₁ ≡ p≤q₂
extensionality ext ν-ext = ν-extensionality ext ν-ext
| {
"alphanum_fraction": 0.5181745821,
"avg_line_length": 26.9214285714,
"ext": "agda",
"hexsha": "a2a52a21b04b1307adca5a7a08a3fb840f807d73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Similarity/General.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Similarity/General.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Similarity/General.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1626,
"size": 3769
} |
open import Relation.Binary.Core
module BBHeap.Subtyping.Properties {A : Set}
(_≤_ : A → A → Set)
(trans≤ : Transitive _≤_) where
open import BBHeap _≤_
open import BBHeap.Subtyping _≤_ trans≤
open import BBHeap.Properties _≤_
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import Bound.Lower.Order.Properties _≤_ trans≤
open import List.Permutation.Base A
open import List.Permutation.Base.Equivalence A
subtyping⋘l : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b : LeB b'' b) → h ⋘ h' → subtyping b''≤b h ⋘ h'
subtyping⋘l b''≤b lf⋘ = lf⋘
subtyping⋘l b''≤b (ll⋘ b≤x b'≤x' l⋘r l'⋘r' l'≃r' r≃l') = ll⋘ (transLeB b''≤b b≤x) b'≤x' l⋘r l'⋘r' l'≃r' r≃l'
subtyping⋘l b''≤b (lr⋘ b≤x b'⋘x' l⋙r l'⋘r' l'≃r' l⋗l') = lr⋘ (transLeB b''≤b b≤x) b'⋘x' l⋙r l'⋘r' l'≃r' l⋗l'
subtyping⋘ : {b b' b'' b''' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b : LeB b'' b)(b'''≤b' : LeB b''' b') → h ⋘ h' → subtyping b''≤b h ⋘ subtyping b'''≤b' h'
subtyping⋘ b''≤b b'''≤b' lf⋘ = lf⋘
subtyping⋘ b''≤b b'''≤b' (ll⋘ b≤x b'≤x' l⋘r l'⋘r' l'≃r' r≃l') = ll⋘ (transLeB b''≤b b≤x) (transLeB b'''≤b' b'≤x') l⋘r l'⋘r' l'≃r' r≃l'
subtyping⋘ b''≤b b'''≤b' (lr⋘ b≤x b'⋘x' l⋙r l'⋘r' l'≃r' l⋗l') = lr⋘ (transLeB b''≤b b≤x) (transLeB b'''≤b' b'⋘x') l⋙r l'⋘r' l'≃r' l⋗l'
subtyping⋙r : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b' : LeB b'' b') → h ⋙ h' → h ⋙ subtyping b''≤b' h'
subtyping⋙r b''≤b' (⋙lf b≤x) = ⋙lf b≤x
subtyping⋙r b''≤b' (⋙rl b≤x b'≤x' l⋘r l≃r l'⋘r' l⋗r') = ⋙rl b≤x (transLeB b''≤b' b'≤x') l⋘r l≃r l'⋘r' l⋗r'
subtyping⋙r b''≤b' (⋙rr b≤x b'⋘x' l⋘r l≃r l'⋙r' l≃l') = ⋙rr b≤x (transLeB b''≤b' b'⋘x') l⋘r l≃r l'⋙r' l≃l'
subtyping⋙ : {b b' b'' b''' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b : LeB b'' b)(b'''≤b' : LeB b''' b') → h ⋙ h' → subtyping b''≤b h ⋙ subtyping b'''≤b' h'
subtyping⋙ b''≤b b'''≤b' (⋙lf b≤x) = ⋙lf (transLeB b''≤b b≤x)
subtyping⋙ b''≤b b'''≤b' (⋙rl b≤x b'≤x' l⋘r l≃r l'⋘r' l⋗r') = ⋙rl (transLeB b''≤b b≤x) (transLeB b'''≤b' b'≤x') l⋘r l≃r l'⋘r' l⋗r'
subtyping⋙ b''≤b b'''≤b' (⋙rr b≤x b'⋘x' l⋘r l≃r l'⋙r' l≃l') = ⋙rr (transLeB b''≤b b≤x) (transLeB b'''≤b' b'⋘x') l⋘r l≃r l'⋙r' l≃l'
subtyping≃r : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b' : LeB b'' b') → h ≃ h' → h ≃ subtyping b''≤b' h'
subtyping≃r b''≤b' ≃lf = ≃lf
subtyping≃r b''≤b' (≃nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l≃l') = ≃nd b≤x (transLeB b''≤b' b'≤x') l⋘r l'⋘r' l≃r l'≃r' l≃l'
subtyping≃l : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b : LeB b'' b) → h ≃ h' → subtyping b''≤b h ≃ h'
subtyping≃l b''≤b h≃h' = sym≃ (subtyping≃r b''≤b (sym≃ h≃h'))
subtyping≃ : {b b' b'' b''' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b : LeB b'' b)(b'''≤b' : LeB b''' b') → h ≃ h' → subtyping b''≤b h ≃ subtyping b'''≤b' h'
subtyping≃ b''≤b b'''≤b' h≃h' = subtyping≃r b'''≤b' (subtyping≃l b''≤b h≃h')
subtyping⋗r : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b' : LeB b'' b') → h ⋗ h' → h ⋗ subtyping b''≤b' h'
subtyping⋗r b''≤b' (⋗lf b≤x) = ⋗lf b≤x
subtyping⋗r b''≤b' (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l') = ⋗nd b≤x (transLeB b''≤b' b'≤x') l⋘r l'⋘r' l≃r l'≃r' l⋗l'
subtyping⋗l : {b b' b'' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b : LeB b'' b) → h ⋗ h' → subtyping b''≤b h ⋗ h'
subtyping⋗l b''≤b (⋗lf b≤x) = ⋗lf (transLeB b''≤b b≤x)
subtyping⋗l b''≤b (⋗nd b≤x b'≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l') = ⋗nd (transLeB b''≤b b≤x) b'≤x' l⋘r l'⋘r' l≃r l'≃r' l⋗l'
subtyping⋗ : {b b' b'' b''' : Bound}{h : BBHeap b}{h' : BBHeap b'}(b''≤b : LeB b'' b)(b'''≤b' : LeB b''' b') → h ⋗ h' → subtyping b''≤b h ⋗ subtyping b'''≤b' h'
subtyping⋗ b''≤b b'''≤b' h⋗h' = subtyping⋗r b'''≤b' (subtyping⋗l b''≤b h⋗h')
lemma-subtyping# : {b b' : Bound}(b'≤b : LeB b' b)(h : BBHeap b) → # (subtyping b'≤b h) ≡ # h
lemma-subtyping# b'≤b leaf = refl
lemma-subtyping# b'≤b (left b≤x l⋘r) = refl
lemma-subtyping# b'≤b (right b≤x l⋙r) = refl
lemma-subtyping≡ : {b b' : Bound}(b'≤b : LeB b' b)(h : BBHeap b) → (flatten (subtyping b'≤b h)) ≡ flatten h
lemma-subtyping≡ b'≤b leaf = refl
lemma-subtyping≡ b'≤b (left {l = l} {r = r} b≤x l⋘r) rewrite lemma-subtyping≡ b≤x l | lemma-subtyping≡ b≤x r = refl
lemma-subtyping≡ b'≤b (right {l = l} {r = r} b≤x l⋙r) rewrite lemma-subtyping≡ b≤x l | lemma-subtyping≡ b≤x r = refl
lemma-subtyping∼ : {b b' : Bound}(b'≤b : LeB b' b)(h : BBHeap b) → flatten (subtyping b'≤b h) ∼ flatten h
lemma-subtyping∼ b'≤b leaf = ∼[]
lemma-subtyping∼ b'≤b (left b≤x l⋘r) = ∼x /head /head refl∼
lemma-subtyping∼ b'≤b (right b≤x l⋙r) = ∼x /head /head refl∼
| {
"alphanum_fraction": 0.5218065087,
"avg_line_length": 63.6197183099,
"ext": "agda",
"hexsha": "153bcb52f74012df7d4e07d3cb02ffe703ab5f0d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Subtyping/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Subtyping/Properties.agda",
"max_line_length": 161,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Subtyping/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 2784,
"size": 4517
} |
{-# OPTIONS --without-K #-}
-- Finished 6pm Th, March 24! yay!
-- Bit thanks to tzaikin for posting his work online (some of his macros
-- were essential for this proof for me) and to the code we saw in class today.
module EH where
open import Level using (_⊔_)
open import Data.Product using (Σ; _,_)
open import Function renaming (_∘_ to _○_)
infixr 8 _∘_ -- path composition
infixr 8 _⋆_ -- horizontal path composition
infix 4 _≡_ -- propositional equality
infix 4 _∼_ -- homotopy between two functions
infix 4 _≃_ -- type of equivalences
-- macros from tzaikin for equational rewriting over non-standard ≡
infixr 4 _≡⟨_⟩_
infix 4 _∎
------------------------------------------------------------------------------
-- A few HoTT primitives
data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where
refl : (a : A) → (a ≡ a)
pathInd : ∀ {u ℓ} → {A : Set u} →
(C : {x y : A} → x ≡ y → Set ℓ) →
(c : (x : A) → C (refl x)) →
({x y : A} (p : x ≡ y) → C p)
pathInd C c (refl x) = c x
--
! : ∀ {u} → {A : Set u} {x y : A} → (x ≡ y) → (y ≡ x)
! = pathInd (λ {x} {y} _ → y ≡ x) refl
_∘_ : ∀ {u} → {A : Set u} → {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
_∘_ {u} {A} {x} {y} {z} p q =
pathInd {u}
(λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z)))
(λ x z q → pathInd (λ {x} {z} _ → x ≡ z) refl {x} {z} q)
{x} {y} p z q
-- Handy "macros" (from tzaikin)
_∎ : {A : Set} → (p : A) → p ≡ p
p ∎ = refl p
_≡⟨_⟩_ : {A : Set} → {q r : A} → (p : A) → p ≡ q → q ≡ r → p ≡ r
p ≡⟨ α ⟩ β = α ∘ β
--
RU : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ p ∘ refl y)
RU {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ≡ p ∘ (refl y))
(λ x → refl (refl x))
{x} {y} p
LU : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x ∘ p)
LU {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ≡ (refl x) ∘ p)
(λ x → refl (refl x))
{x} {y} p
invTransL : {A : Set} {x y : A} → (p : x ≡ y) → (! p ∘ p ≡ refl y)
invTransL {A} {x} {y} p =
pathInd
(λ {x} {y} p → ! p ∘ p ≡ refl y)
(λ x → refl (refl x))
{x} {y} p
invTransR : ∀ {ℓ} {A : Set ℓ} {x y : A} → (p : x ≡ y) → (p ∘ ! p ≡ refl x)
invTransR {ℓ} {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ∘ ! p ≡ refl x)
(λ x → refl (refl x))
{x} {y} p
invId : {A : Set} {x y : A} → (p : x ≡ y) → (! (! p) ≡ p)
invId {A} {x} {y} p =
pathInd
(λ {x} {y} p → ! (! p) ≡ p)
(λ x → refl (refl x))
{x} {y} p
assocP : {A : Set} {x y z w : A} → (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) →
(p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r)
assocP {A} {x} {y} {z} {w} p q r =
pathInd
(λ {x} {y} p → (z : A) → (w : A) → (q : y ≡ z) → (r : z ≡ w) →
p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r)
(λ x z w q r →
pathInd
(λ {x} {z} q → (w : A) → (r : z ≡ w) →
(refl x) ∘ (q ∘ r) ≡ ((refl x) ∘ q) ∘ r)
(λ x w r →
pathInd
(λ {x} {w} r →
(refl x) ∘ ((refl x) ∘ r) ≡
((refl x) ∘ (refl x)) ∘ r)
(λ x → (refl (refl x)))
{x} {w} r)
{x} {z} q w r)
{x} {y} p z w q r
invComp : {A : Set} {x y z : A} → (p : x ≡ y) → (q : y ≡ z) →
! (p ∘ q) ≡ ! q ∘ ! p
invComp {A} {x} {y} {z} p q =
pathInd
(λ {x} {y} p → (z : A) → (q : y ≡ z) → ! (p ∘ q) ≡ ! q ∘ ! p)
(λ x z q →
pathInd
(λ {x} {z} q → ! (refl x ∘ q) ≡ ! q ∘ ! (refl x))
(λ x → refl (refl x))
{x} {z} q)
{x} {y} p z q
--
ap : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {x y : A} →
(f : A → B) → (x ≡ y) → (f x ≡ f y)
ap {ℓ} {ℓ'} {A} {B} {x} {y} f p =
pathInd -- on p
(λ {x} {y} p → f x ≡ f y)
(λ x → refl (f x))
{x} {y} p
apfTrans : ∀ {u} → {A B : Set u} {x y z : A} →
(f : A → B) → (p : x ≡ y) → (q : y ≡ z) → ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q)
apfTrans {u} {A} {B} {x} {y} {z} f p q =
pathInd {u}
(λ {x} {y} p → (z : A) → (q : y ≡ z) →
ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q))
(λ x z q →
pathInd {u}
(λ {x} {z} q →
ap f (refl x ∘ q) ≡ (ap f (refl x)) ∘ (ap f q))
(λ x → refl (refl (f x)))
{x} {z} q)
{x} {y} p z q
apfInv : ∀ {u} → {A B : Set u} {x y : A} → (f : A → B) → (p : x ≡ y) →
ap f (! p) ≡ ! (ap f p)
apfInv {u} {A} {B} {x} {y} f p =
pathInd {u}
(λ {x} {y} p → ap f (! p) ≡ ! (ap f p))
(λ x → refl (ap f (refl x)))
{x} {y} p
apfComp : {A B C : Set} {x y : A} → (f : A → B) → (g : B → C) → (p : x ≡ y) →
ap g (ap f p) ≡ ap (g ○ f) p
apfComp {A} {B} {C} {x} {y} f g p =
pathInd
(λ {x} {y} p → ap g (ap f p) ≡ ap (g ○ f) p)
(λ x → refl (ap g (ap f (refl x))))
{x} {y} p
apfId : {A : Set} {x y : A} → (p : x ≡ y) → ap id p ≡ p
apfId {A} {x} {y} p =
pathInd
(λ {x} {y} p → ap id p ≡ p)
(λ x → refl (refl x))
{x} {y} p
--
transport : ∀ {ℓ ℓ'} → {A : Set ℓ} {x y : A} →
(P : A → Set ℓ') → (p : x ≡ y) → P x → P y
transport {ℓ} {ℓ'} {A} {x} {y} P p =
pathInd -- on p
(λ {x} {y} p → (P x → P y))
(λ _ → id)
{x} {y} p
apd : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : A → Set ℓ'} {x y : A} → (f : (a : A) → B a) →
(p : x ≡ y) → (transport B p (f x) ≡ f y)
apd {ℓ} {ℓ'} {A} {B} {x} {y} f p =
pathInd
(λ {x} {y} p → transport B p (f x) ≡ f y)
(λ x → refl (f x))
{x} {y} p
-- Homotopies and equivalences
_∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} →
(f g : (x : A) → P x) → Set (ℓ ⊔ ℓ')
_∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x
record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkqinv
field
g : B → A
α : (f ○ g) ∼ id
β : (g ○ f) ∼ id
record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkisequiv
field
g : B → A
α : (f ○ g) ∼ id
h : B → A
β : (h ○ f) ∼ id
equiv₁ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f
equiv₁ (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ
_≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A ≃ B = Σ (A → B) isequiv
postulate
univalence : {A B : Set} → (A ≡ B) ≃ (A ≃ B)
------------------------------------------------------------------------------
-- Path and loop spaces
1-Path : {A : Set} → (a b : A) → Set
1-Path {A} a b = (a ≡ b)
2-Path : {A : Set} → (a b : A) (p q : 1-Path {A} a b) → Set
2-Path {A} a b p q = (p ≡ q)
Ω : (A : Set) → {a : A} → Set
Ω A {a} = 1-Path {A} a a
Ω² : (A : Set) → {a : A} → Set
Ω² A {a} = 2-Path {A} a a (refl a) (refl a)
-- Whiskering Lemmas
-- ___ p ___ ___ r ___
-- / \ / \
-- a α⇓ b β⇓ c
-- \ / \ /
-- --- q --- --- s ---
wskR : {A : Set}
{a b c : A}
{p q : 1-Path {A} a b} →
(α : 2-Path {A} a b p q) →
(r : 1-Path {A} b c) →
(p ∘ r) ≡ (q ∘ r)
wskR {A} {a} {b} {c} {p} {q} α r =
(pathInd (λ {b} {c} r →
{p q : a ≡ b} →
(α : p ≡ q) →
2-Path {A} a c (p ∘ r) (q ∘ r))
(λ b {p} {q} α →
(p ∘ refl b) ≡⟨ ! (RU p) ⟩
p ≡⟨ α ⟩
q ≡⟨ RU q ⟩
(q ∘ refl b) ∎)
r)
α
wskL : {A : Set}
{a b c : A}
{r s : 1-Path {A} b c} →
(q : 1-Path {A} a b) →
(β : 2-Path {A} b c r s) →
(q ∘ r) ≡ (q ∘ s)
wskL {A} {a} {b} {c} {r} {s} q β =
(pathInd (λ {a} {b} q →
{r s : b ≡ c} →
(α : r ≡ s) →
2-Path {A} a c (q ∘ r) (q ∘ s))
((λ b {p} {q} β →
(refl b ∘ p) ≡⟨ ! (LU p) ⟩
p ≡⟨ β ⟩
q ≡⟨ LU q ⟩
(refl b ∘ q) ∎))
q)
β
_⋆_ : {A : Set}
{a b c : A}
{p q : 1-Path {A} a b}
{r s : 1-Path {A} b c}
(α : 2-Path {A} a b p q) →
(β : 2-Path {A} b c r s) →
(p ∘ r) ≡ (q ∘ s)
_⋆_ {A} {a} {b} {c} {p} {q} {r} {s} α β = (wskR α r) ∘ (wskL q β)
Hcomp→compR1 : {A : Set}
{a : A}
(α : 2-Path {A} a a (refl a) (refl a)) →
(wskR α (refl a)) ≡ (! (RU (refl a))) ∘ α ∘ (RU (refl a))
Hcomp→compR1 {A} {a} α = refl
(pathInd (λ {x} {y} _ → x ≡ y) refl
(pathInd (λ {x} {y} _ → (x₁ : a ≡ a) (x₂ : y ≡ x₁) → x ≡ x₁)
(λ x x₁ → pathInd (λ {x₂} {y} _ → x₂ ≡ y) refl) α (refl a)
(refl (refl a))))
Hcomp→compL1 : {A : Set}
{a : A}
(β : 2-Path {A} a a (refl a) (refl a)) →
(wskL (refl a) β) ≡ (! (LU (refl a))) ∘ β ∘ (LU (refl a))
Hcomp→compL1 {A} {a} β = refl
(pathInd (λ {x} {y} _ → x ≡ y) refl
(pathInd (λ {x} {y} _ → (x₁ : a ≡ a) (x₂ : y ≡ x₁) → x ≡ x₁)
(λ x x₁ → pathInd (λ {x₂} {y} _ → x₂ ≡ y) refl) β (refl a)
(refl (refl a))))
-- proof from pg 81
α⋆β≡α∘β : {A : Set}
{a : A}
(α : 2-Path {A} a a (refl a) (refl a)) →
(β : 2-Path {A} a a (refl a) (refl a)) →
α ⋆ β ≡ α ∘ β
α⋆β≡α∘β {A} {a} α β =
α ⋆ β
≡⟨ refl (α ⋆ β) ⟩
(wskR α ra) ∘ (wskL ra β)
≡⟨ refl ((!(refl ra) ∘ α ∘ (refl ra)) ∘ (wskL ra β)) ⟩
(!(refl ra) ∘ (α ∘ (refl ra))) ∘ (wskL ra β)
≡⟨ ap (λ p → ((!(refl ra) ∘ p) ∘ (wskL ra β))) (! (RU α)) ⟩
((!(refl ra) ∘ α) ∘ (wskL ra β))
≡⟨ ap (λ p → (p ∘ (wskL ra β))) (! (LU α)) ⟩
(α ∘ (wskL ra β))
≡⟨ refl (α ∘ (wskL ra β)) ⟩
(α ∘ (!(refl ra) ∘ β ∘ (refl ra)))
≡⟨ ap (λ p → (α ∘ (!(refl ra) ∘ p))) (! (RU β)) ⟩
(α ∘ (!(refl ra) ∘ β))
≡⟨ ap (λ p → (α ∘ p)) (! (LU β)) ⟩
α ∘ β ∎
where ra = (refl a)
_⋆'_ : {A : Set}
{a b c : A}
{p q : 1-Path {A} a b}
{r s : 1-Path {A} b c}
(α : 2-Path {A} a b p q) →
(β : 2-Path {A} b c r s) →
(p ∘ r) ≡ (q ∘ s)
_⋆'_ {A} {a} {b} {c} {p} {q} {r} {s} α β = (wskL p β) ∘ (wskR α s)
α⋆'β≡β∘α : {A : Set}
{a : A}
(α : 2-Path {A} a a (refl a) (refl a)) →
(β : 2-Path {A} a a (refl a) (refl a)) →
α ⋆' β ≡ β ∘ α
α⋆'β≡β∘α {A} {a} α β =
α ⋆' β
≡⟨ refl (α ⋆' β) ⟩
(wskL ra β) ∘ (!(refl ra) ∘ (α ∘ (refl ra)))
≡⟨ ap (λ p → ((wskL ra β) ∘ (!(refl ra) ∘ p))) (! (RU α)) ⟩
((wskL ra β) ∘ (!(refl ra) ∘ α))
≡⟨ ap (λ p → ((wskL ra β) ∘ p)) (! (LU α)) ⟩
((wskL ra β) ∘ α)
≡⟨ refl ((wskL ra β) ∘ α) ⟩
((!(refl ra) ∘ β ∘ (refl ra)) ∘ α)
≡⟨ ap (λ p → ((!(refl ra) ∘ p) ∘ α)) (! (RU β)) ⟩
((!(refl ra) ∘ β) ∘ α)
≡⟨ ap (λ p → (p ∘ α)) (! (LU β)) ⟩
β ∘ α ∎
where ra = (refl a)
-- yuck lots of nested induction
α⋆β≡α⋆'β : {A : Set}
{a : A}
(α : 2-Path {A} a a (refl a) (refl a)) →
(β : 2-Path {A} a a (refl a) (refl a)) →
α ⋆ β ≡ α ⋆' β
α⋆β≡α⋆'β {A} {a} α β =
-- induction on α
pathInd
(λ α → α ⋆ β ≡ α ⋆' β)
(λ p →
-- induction on β
pathInd
(λ β → refl p ⋆ β ≡ refl p ⋆' β)
(λ q →
-- induction on p
(pathInd
(λ {a} {b} p → (c : A) → (q : b ≡ c) →
((refl p ⋆ refl q) ≡ (refl p ⋆' refl q)))
(λ a d q →
-- induction on q
pathInd
(λ {a} {d} r →
((refl (refl a) ⋆ refl r) ≡ (refl (refl a) ⋆' refl r)))
(λ a → refl (refl (refl a)))
q)
p a q))
β)
α
eckmann-hilton : {A : Set} {a : A} (α β : Ω² A {a}) → α ∘ β ≡ β ∘ α
eckmann-hilton {A} {a} α β =
α ∘ β
≡⟨ ! (α⋆β≡α∘β α β) ⟩
α ⋆ β
≡⟨ α⋆β≡α⋆'β α β ⟩
α ⋆' β
≡⟨ α⋆'β≡β∘α α β ⟩
β ∘ α ∎
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3336125304,
"avg_line_length": 27.3203661327,
"ext": "agda",
"hexsha": "11a8ae0e03811266c41282bc6e273aeadaf599a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andmkent/misc-HoTT",
"max_forks_repo_path": "EH.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andmkent/misc-HoTT",
"max_issues_repo_path": "EH.agda",
"max_line_length": 88,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andmkent/misc-HoTT",
"max_stars_repo_path": "EH.agda",
"max_stars_repo_stars_event_max_datetime": "2016-01-26T18:17:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-26T18:17:16.000Z",
"num_tokens": 5812,
"size": 11939
} |
module rename where
open import lib
open import cedille-types
open import ctxt-types
open import is-free
open import syntax-util
renamectxt : Set
renamectxt = stringset × trie string {- the trie maps vars to their renamed versions,
and the stringset stores all those renamed versions -}
empty-renamectxt : renamectxt
empty-renamectxt = empty-stringset , empty-trie
renamectxt-contains : renamectxt → string → 𝔹
renamectxt-contains (_ , r) s = trie-contains r s
renamectxt-insert : renamectxt → (s1 s2 : string) → renamectxt
renamectxt-insert (ranr , r) s x = stringset-insert ranr x , trie-insert r s x
renamectxt-single : var → var → renamectxt
renamectxt-single = renamectxt-insert empty-renamectxt
renamectxt-lookup : renamectxt → string → maybe string
renamectxt-lookup (ranr , r) s = trie-lookup r s
renamectxt-remove : renamectxt → string → renamectxt
renamectxt-remove (ranr , r) s with trie-lookup r s
renamectxt-remove (ranr , r) s | nothing = ranr , r
renamectxt-remove (ranr , r) s | just s' = stringset-remove ranr s' , trie-remove r s
renamectxt-in-range : renamectxt → string → 𝔹
renamectxt-in-range (ranr , r) s = stringset-contains ranr s
renamectxt-in-field : renamectxt → string → 𝔹
renamectxt-in-field m s = renamectxt-contains m s || renamectxt-in-range m s
renamectxt-rep : renamectxt → string → string
renamectxt-rep r x with renamectxt-lookup r x
renamectxt-rep r x | nothing = x
renamectxt-rep r x | just x' = x'
eq-var : renamectxt → string → string → 𝔹
eq-var r x y = renamectxt-rep r x =string renamectxt-rep r y
pick-new-name : string → string
pick-new-name x = x ^ "'"
{- rename-away-from x g r rename the variable x to be some new name (related to x)
which does not satisfy the given predicate on names (assuming this is possible),
and is not in the domain of the renamectxt . -}
{-# NON_TERMINATING #-}
rename-away-from : string → (string → 𝔹) → renamectxt → string
rename-away-from x g r =
if (g x) then
rename-away-from (pick-new-name x) g r
else if (renamectxt-in-field r x) then
rename-away-from (pick-new-name x) g r
else x
fresh-var : string → (string → 𝔹) → renamectxt → string
fresh-var = rename-away-from
rename-var-if : {ed : exprd} → ctxt → renamectxt → var → ⟦ ed ⟧ → var
rename-var-if Γ ρ y t =
if is-free-in check-erased y t || renamectxt-in-range ρ y then
rename-away-from y (ctxt-binds-var Γ) ρ
else
y
renamectxt-insert* : renamectxt → (vs1 vs2 : 𝕃 string) → maybe renamectxt
renamectxt-insert* ρ [] [] = just ρ
renamectxt-insert* ρ (x :: vs1) (y :: vs2) = renamectxt-insert* (renamectxt-insert ρ x y) vs1 vs2
renamectxt-insert* ρ _ _ = nothing
| {
"alphanum_fraction": 0.7005208333,
"avg_line_length": 34.9090909091,
"ext": "agda",
"hexsha": "931f4198bf6e094135fc6c3625fec23f81156647",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/rename.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/rename.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/rename.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 783,
"size": 2688
} |
------------------------------------------------------------------------------
-- Streams (unbounded lists)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Stream where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Stream.Type public
------------------------------------------------------------------------------
postulate
zeros : D
zeros-eq : zeros ≡ zero ∷ zeros
{-# ATP axiom zeros-eq #-}
postulate
ones : D
ones-eq : ones ≡ succ₁ zero ∷ ones
{-# ATP axiom ones-eq #-}
| {
"alphanum_fraction": 0.4097693351,
"avg_line_length": 27.2962962963,
"ext": "agda",
"hexsha": "e085edee9c361d916699498ee55d012b1065954a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Stream.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Stream.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Stream.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 138,
"size": 737
} |
module Interpretation where
open import VariableName
open import FunctionName
open import PredicateName
open import Element
open import Elements
open import TruthValue
record Interpretation : Set
where
field
μ⟦_⟧ : VariableName → Element
𝑓⟦_⟧ : FunctionName → Elements → Element
𝑃⟦_⟧ : PredicateName → Elements → TruthValue
open Interpretation public
open import OscarPrelude
open import Term
open import Delay
open import Vector
mutual
τ⇑⟦_⟧ : Interpretation → {i : Size} → Term → Delay i Element
τ⇑⟦ I ⟧ (variable 𝑥) = now $ μ⟦ I ⟧ 𝑥
τ⇑⟦ I ⟧ (function 𝑓 τs) = 𝑓⟦ I ⟧ 𝑓 ∘ ⟨_⟩ <$> τs⇑⟦ I ⟧ τs
τs⇑⟦_⟧ : Interpretation → {i : Size} → (τs : Terms) → Delay i (Vector Element (arity τs))
τs⇑⟦ I ⟧ ⟨ ⟨ [] ⟩ ⟩ = now ⟨ [] ⟩
τs⇑⟦ I ⟧ ⟨ ⟨ τ ∷ τs ⟩ ⟩ = τ⇑⟦ I ⟧ τ >>= (λ t → τs⇑⟦ I ⟧ ⟨ ⟨ τs ⟩ ⟩ >>= λ ts → now ⟨ t ∷ vector ts ⟩)
τs⇓⟦_⟧ : (I : Interpretation) → (τs : Terms) → τs⇑⟦ I ⟧ τs ⇓
τs⇓⟦ I ⟧ ⟨ ⟨ [] ⟩ ⟩ = _ , now⇓
τs⇓⟦ I ⟧ ⟨ ⟨ variable 𝑥 ∷ τs ⟩ ⟩ = _ , τs⇓⟦ I ⟧ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ now⇓
τs⇓⟦ I ⟧ ⟨ ⟨ function 𝑓₁ τs₁ ∷ τs₂ ⟩ ⟩ =
_ , τs⇓⟦ I ⟧ τs₁ ⇓>>=⇓ now⇓ >>=⇓ (τs⇓⟦ I ⟧ ⟨ ⟨ τs₂ ⟩ ⟩ ⇓>>=⇓ now⇓)
τ⇓⟦_⟧ : (I : Interpretation) → (τ : Term) → τ⇑⟦ I ⟧ τ ⇓
τ⇓⟦ I ⟧ (variable 𝑥) = _ , now⇓
τ⇓⟦ I ⟧ (function 𝑓 τs) = _ , τs⇓⟦ I ⟧ τs ⇓>>=⇓ now⇓
τ⟦_⟧ : (I : Interpretation) → {i : Size} → (τ : Term) → Element
τ⟦ I ⟧ τ = fst (τ⇓⟦ I ⟧ τ)
| {
"alphanum_fraction": 0.5386313466,
"avg_line_length": 28.914893617,
"ext": "agda",
"hexsha": "8b6f41df7af223bc7659fddded1cf1ad6a9d9047",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Interpretation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Interpretation.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Interpretation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 723,
"size": 1359
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Terms used in the reflection machinery
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.Term where
open import Data.List.Base hiding (_++_)
import Data.List.Properties as Lₚ
open import Data.Nat as ℕ using (ℕ; zero; suc)
open import Data.Product
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Reflection.Abstraction
open import Reflection.Argument
open import Reflection.Argument.Information using (visibility)
import Reflection.Argument.Visibility as Visibility; open Visibility.Visibility
import Reflection.Literal as Literal
import Reflection.Meta as Meta
open import Reflection.Name as Name using (Name)
import Reflection.Pattern as Pattern
open import Relation.Nullary
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Re-exporting the builtin type and constructors
open import Agda.Builtin.Reflection as Builtin public
using (Sort; Type; Term; Clause)
open Sort public
open Term public renaming (agda-sort to sort)
open Clause public
------------------------------------------------------------------------
-- Handy synonyms
Clauses : Set
Clauses = List Clause
-- Pattern synonyms for more compact presentation
pattern vLam s t = lam visible (abs s t)
pattern hLam s t = lam hidden (abs s t)
pattern iLam s t = lam instance′ (abs s t)
pattern Π[_∶_]_ s a ty = pi a (abs s ty)
pattern vΠ[_∶_]_ s a ty = Π[ s ∶ (vArg a) ] ty
pattern hΠ[_∶_]_ s a ty = Π[ s ∶ (hArg a) ] ty
pattern iΠ[_∶_]_ s a ty = Π[ s ∶ (iArg a) ] ty
----------------------------------------------------------------------
-- Utility functions
getName : Term → Maybe Name
getName (con c args) = just c
getName (def f args) = just f
getName _ = nothing
-- "n ⋯⟅∷⟆ xs" prepends "n" visible unknown arguments to the list of
-- arguments. Useful when constructing the list of arguments for a
-- function with initial inferable arguments.
infixr 5 _⋯⟨∷⟩_
_⋯⟨∷⟩_ : ℕ → Args Term → Args Term
zero ⋯⟨∷⟩ xs = xs
suc i ⋯⟨∷⟩ xs = unknown ⟨∷⟩ (i ⋯⟨∷⟩ xs)
{-# INLINE _⋯⟨∷⟩_ #-}
-- "n ⋯⟅∷⟆ xs" prepends "n" hidden unknown arguments to the list of
-- arguments. Useful when constructing the list of arguments for a
-- function with initial implicit arguments.
infixr 5 _⋯⟅∷⟆_
_⋯⟅∷⟆_ : ℕ → Args Term → Args Term
zero ⋯⟅∷⟆ xs = xs
suc i ⋯⟅∷⟆ xs = unknown ⟅∷⟆ (i ⋯⟅∷⟆ xs)
{-# INLINE _⋯⟅∷⟆_ #-}
------------------------------------------------------------------------
-- Decidable equality
clause-injective₁ : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → ps ≡ ps′
clause-injective₁ refl = refl
clause-injective₂ : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → b ≡ b′
clause-injective₂ refl = refl
clause-injective : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → ps ≡ ps′ × b ≡ b′
clause-injective = < clause-injective₁ , clause-injective₂ >
absurd-clause-injective : ∀ {ps ps′} → absurd-clause ps ≡ absurd-clause ps′ → ps ≡ ps′
absurd-clause-injective refl = refl
infix 4 _≟-AbsTerm_ _≟-AbsType_ _≟-ArgTerm_ _≟-ArgType_ _≟-Args_
_≟-Clause_ _≟-Clauses_ _≟_
_≟-Sort_
_≟-AbsTerm_ : DecidableEquality (Abs Term)
_≟-AbsType_ : DecidableEquality (Abs Type)
_≟-ArgTerm_ : DecidableEquality (Arg Term)
_≟-ArgType_ : DecidableEquality (Arg Type)
_≟-Args_ : DecidableEquality (Args Term)
_≟-Clause_ : DecidableEquality Clause
_≟-Clauses_ : DecidableEquality Clauses
_≟_ : DecidableEquality Term
_≟-Sort_ : DecidableEquality Sort
-- Decidable equality 'transformers'
-- We need to inline these because the terms are not sized so termination
-- would not obvious if we were to use higher-order functions such as
-- Data.List.Properties' ≡-dec
abs s a ≟-AbsTerm abs s′ a′ = unAbs-dec (a ≟ a′)
abs s a ≟-AbsType abs s′ a′ = unAbs-dec (a ≟ a′)
arg i a ≟-ArgTerm arg i′ a′ = unArg-dec (a ≟ a′)
arg i a ≟-ArgType arg i′ a′ = unArg-dec (a ≟ a′)
[] ≟-Args [] = yes refl
(x ∷ xs) ≟-Args (y ∷ ys) = Lₚ.∷-dec (x ≟-ArgTerm y) (xs ≟-Args ys)
[] ≟-Args (_ ∷ _) = no λ()
(_ ∷ _) ≟-Args [] = no λ()
[] ≟-Clauses [] = yes refl
(x ∷ xs) ≟-Clauses (y ∷ ys) = Lₚ.∷-dec (x ≟-Clause y) (xs ≟-Clauses ys)
[] ≟-Clauses (_ ∷ _) = no λ()
(_ ∷ _) ≟-Clauses [] = no λ()
clause ps b ≟-Clause clause ps′ b′ =
Dec.map′ (uncurry (cong₂ clause)) clause-injective (ps Pattern.≟s ps′ ×-dec b ≟ b′)
absurd-clause ps ≟-Clause absurd-clause ps′ =
Dec.map′ (cong absurd-clause) absurd-clause-injective (ps Pattern.≟s ps′)
clause _ _ ≟-Clause absurd-clause _ = no λ()
absurd-clause _ ≟-Clause clause _ _ = no λ()
var-injective₁ : ∀ {x x′ args args′} → var x args ≡ var x′ args′ → x ≡ x′
var-injective₁ refl = refl
var-injective₂ : ∀ {x x′ args args′} → var x args ≡ var x′ args′ → args ≡ args′
var-injective₂ refl = refl
var-injective : ∀ {x x′ args args′} → var x args ≡ var x′ args′ → x ≡ x′ × args ≡ args′
var-injective = < var-injective₁ , var-injective₂ >
con-injective₁ : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → c ≡ c′
con-injective₁ refl = refl
con-injective₂ : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → args ≡ args′
con-injective₂ refl = refl
con-injective : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → c ≡ c′ × args ≡ args′
con-injective = < con-injective₁ , con-injective₂ >
def-injective₁ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′
def-injective₁ refl = refl
def-injective₂ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → args ≡ args′
def-injective₂ refl = refl
def-injective : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′ × args ≡ args′
def-injective = < def-injective₁ , def-injective₂ >
meta-injective₁ : ∀ {x x′ args args′} → meta x args ≡ meta x′ args′ → x ≡ x′
meta-injective₁ refl = refl
meta-injective₂ : ∀ {x x′ args args′} → meta x args ≡ meta x′ args′ → args ≡ args′
meta-injective₂ refl = refl
meta-injective : ∀ {x x′ args args′} → meta x args ≡ meta x′ args′ → x ≡ x′ × args ≡ args′
meta-injective = < meta-injective₁ , meta-injective₂ >
lam-injective₁ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′
lam-injective₁ refl = refl
lam-injective₂ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → t ≡ t′
lam-injective₂ refl = refl
lam-injective : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′ × t ≡ t′
lam-injective = < lam-injective₁ , lam-injective₂ >
pat-lam-injective₁ : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → cs ≡ cs′
pat-lam-injective₁ refl = refl
pat-lam-injective₂ : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → args ≡ args′
pat-lam-injective₂ refl = refl
pat-lam-injective : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → cs ≡ cs′ × args ≡ args′
pat-lam-injective = < pat-lam-injective₁ , pat-lam-injective₂ >
pi-injective₁ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′
pi-injective₁ refl = refl
pi-injective₂ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₂ ≡ t₂′
pi-injective₂ refl = refl
pi-injective : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′ × t₂ ≡ t₂′
pi-injective = < pi-injective₁ , pi-injective₂ >
sort-injective : ∀ {x y} → sort x ≡ sort y → x ≡ y
sort-injective refl = refl
lit-injective : ∀ {x y} → lit x ≡ lit y → x ≡ y
lit-injective refl = refl
set-injective : ∀ {x y} → set x ≡ set y → x ≡ y
set-injective refl = refl
slit-injective : ∀ {x y} → Sort.lit x ≡ lit y → x ≡ y
slit-injective refl = refl
var x args ≟ var x′ args′ =
Dec.map′ (uncurry (cong₂ var)) var-injective (x ℕ.≟ x′ ×-dec args ≟-Args args′)
con c args ≟ con c′ args′ =
Dec.map′ (uncurry (cong₂ con)) con-injective (c Name.≟ c′ ×-dec args ≟-Args args′)
def f args ≟ def f′ args′ =
Dec.map′ (uncurry (cong₂ def)) def-injective (f Name.≟ f′ ×-dec args ≟-Args args′)
meta x args ≟ meta x′ args′ =
Dec.map′ (uncurry (cong₂ meta)) meta-injective (x Meta.≟ x′ ×-dec args ≟-Args args′)
lam v t ≟ lam v′ t′ =
Dec.map′ (uncurry (cong₂ lam)) lam-injective (v Visibility.≟ v′ ×-dec t ≟-AbsTerm t′)
pat-lam cs args ≟ pat-lam cs′ args′ =
Dec.map′ (uncurry (cong₂ pat-lam)) pat-lam-injective (cs ≟-Clauses cs′ ×-dec args ≟-Args args′)
pi t₁ t₂ ≟ pi t₁′ t₂′ =
Dec.map′ (uncurry (cong₂ pi)) pi-injective (t₁ ≟-ArgType t₁′ ×-dec t₂ ≟-AbsType t₂′)
sort s ≟ sort s′ = Dec.map′ (cong sort) sort-injective (s ≟-Sort s′)
lit l ≟ lit l′ = Dec.map′ (cong lit) lit-injective (l Literal.≟ l′)
unknown ≟ unknown = yes refl
var x args ≟ con c args′ = no λ()
var x args ≟ def f args′ = no λ()
var x args ≟ lam v t = no λ()
var x args ≟ pi t₁ t₂ = no λ()
var x args ≟ sort _ = no λ()
var x args ≟ lit _ = no λ()
var x args ≟ meta _ _ = no λ()
var x args ≟ unknown = no λ()
con c args ≟ var x args′ = no λ()
con c args ≟ def f args′ = no λ()
con c args ≟ lam v t = no λ()
con c args ≟ pi t₁ t₂ = no λ()
con c args ≟ sort _ = no λ()
con c args ≟ lit _ = no λ()
con c args ≟ meta _ _ = no λ()
con c args ≟ unknown = no λ()
def f args ≟ var x args′ = no λ()
def f args ≟ con c args′ = no λ()
def f args ≟ lam v t = no λ()
def f args ≟ pi t₁ t₂ = no λ()
def f args ≟ sort _ = no λ()
def f args ≟ lit _ = no λ()
def f args ≟ meta _ _ = no λ()
def f args ≟ unknown = no λ()
lam v t ≟ var x args = no λ()
lam v t ≟ con c args = no λ()
lam v t ≟ def f args = no λ()
lam v t ≟ pi t₁ t₂ = no λ()
lam v t ≟ sort _ = no λ()
lam v t ≟ lit _ = no λ()
lam v t ≟ meta _ _ = no λ()
lam v t ≟ unknown = no λ()
pi t₁ t₂ ≟ var x args = no λ()
pi t₁ t₂ ≟ con c args = no λ()
pi t₁ t₂ ≟ def f args = no λ()
pi t₁ t₂ ≟ lam v t = no λ()
pi t₁ t₂ ≟ sort _ = no λ()
pi t₁ t₂ ≟ lit _ = no λ()
pi t₁ t₂ ≟ meta _ _ = no λ()
pi t₁ t₂ ≟ unknown = no λ()
sort _ ≟ var x args = no λ()
sort _ ≟ con c args = no λ()
sort _ ≟ def f args = no λ()
sort _ ≟ lam v t = no λ()
sort _ ≟ pi t₁ t₂ = no λ()
sort _ ≟ lit _ = no λ()
sort _ ≟ meta _ _ = no λ()
sort _ ≟ unknown = no λ()
lit _ ≟ var x args = no λ()
lit _ ≟ con c args = no λ()
lit _ ≟ def f args = no λ()
lit _ ≟ lam v t = no λ()
lit _ ≟ pi t₁ t₂ = no λ()
lit _ ≟ sort _ = no λ()
lit _ ≟ meta _ _ = no λ()
lit _ ≟ unknown = no λ()
meta _ _ ≟ var x args = no λ()
meta _ _ ≟ con c args = no λ()
meta _ _ ≟ def f args = no λ()
meta _ _ ≟ lam v t = no λ()
meta _ _ ≟ pi t₁ t₂ = no λ()
meta _ _ ≟ sort _ = no λ()
meta _ _ ≟ lit _ = no λ()
meta _ _ ≟ unknown = no λ()
unknown ≟ var x args = no λ()
unknown ≟ con c args = no λ()
unknown ≟ def f args = no λ()
unknown ≟ lam v t = no λ()
unknown ≟ pi t₁ t₂ = no λ()
unknown ≟ sort _ = no λ()
unknown ≟ lit _ = no λ()
unknown ≟ meta _ _ = no λ()
pat-lam _ _ ≟ var x args = no λ()
pat-lam _ _ ≟ con c args = no λ()
pat-lam _ _ ≟ def f args = no λ()
pat-lam _ _ ≟ lam v t = no λ()
pat-lam _ _ ≟ pi t₁ t₂ = no λ()
pat-lam _ _ ≟ sort _ = no λ()
pat-lam _ _ ≟ lit _ = no λ()
pat-lam _ _ ≟ meta _ _ = no λ()
pat-lam _ _ ≟ unknown = no λ()
var x args ≟ pat-lam _ _ = no λ()
con c args ≟ pat-lam _ _ = no λ()
def f args ≟ pat-lam _ _ = no λ()
lam v t ≟ pat-lam _ _ = no λ()
pi t₁ t₂ ≟ pat-lam _ _ = no λ()
sort _ ≟ pat-lam _ _ = no λ()
lit _ ≟ pat-lam _ _ = no λ()
meta _ _ ≟ pat-lam _ _ = no λ()
unknown ≟ pat-lam _ _ = no λ()
set t ≟-Sort set t′ = Dec.map′ (cong set) set-injective (t ≟ t′)
lit n ≟-Sort lit n′ = Dec.map′ (cong lit) slit-injective (n ℕ.≟ n′)
unknown ≟-Sort unknown = yes refl
set _ ≟-Sort lit _ = no λ()
set _ ≟-Sort unknown = no λ()
lit _ ≟-Sort set _ = no λ()
lit _ ≟-Sort unknown = no λ()
unknown ≟-Sort set _ = no λ()
unknown ≟-Sort lit _ = no λ()
| {
"alphanum_fraction": 0.5700880731,
"avg_line_length": 36.593373494,
"ext": "agda",
"hexsha": "5e724e710a4b9e274a425f4d8b2dba8bae3bba01",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Reflection/Term.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Reflection/Term.agda",
"max_line_length": 105,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Reflection/Term.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 4442,
"size": 12149
} |
module Category where
open import Logic.Equivalence
open import Logic.Relations
open Equivalence using () renaming (_==_ to eq)
record Cat : Set2 where
field
Obj : Set1
_─→_ : Obj -> Obj -> Set
id : {A : Obj} -> A ─→ A
_∘_ : {A B C : Obj} -> B ─→ C -> A ─→ B -> A ─→ C
Eq : {A B : Obj} -> Equivalence (A ─→ B)
cong : {A B C : Obj}{f₁ f₂ : B ─→ C}{g₁ g₂ : A ─→ B} ->
eq Eq f₁ f₂ -> eq Eq g₁ g₂ -> eq Eq (f₁ ∘ g₁) (f₂ ∘ g₂)
idLeft : {A B : Obj}{f : A ─→ B} -> eq Eq (id ∘ f) f
idRight : {A B : Obj}{f : A ─→ B} -> eq Eq (f ∘ id) f
assoc : {A B C D : Obj}{f : C ─→ D}{g : B ─→ C}{h : A ─→ B} ->
eq Eq ((f ∘ g) ∘ h) (f ∘ (g ∘ h))
module Category (ℂ : Cat) where
private module CC = Cat ℂ
open CC public hiding (_─→_; _∘_)
private module Eq {A B : Obj} = Equivalence (Eq {A}{B})
open Eq public hiding (_==_)
infix 20 _==_
infixr 30 _─→_
infixr 90 _∘_
_─→_ = CC._─→_
_==_ : {A B : Obj} -> Rel (A ─→ B)
_==_ = Eq._==_
_∘_ : {A B C : Obj} -> B ─→ C -> A ─→ B -> A ─→ C
_∘_ = CC._∘_
congL : {A B C : Obj}{f₁ f₂ : B ─→ C}{g : A ─→ B} ->
f₁ == f₂ -> f₁ ∘ g == f₂ ∘ g
congL p = cong p (refl _)
congR : {A B C : Obj}{f : B ─→ C}{g₁ g₂ : A ─→ B} ->
g₁ == g₂ -> f ∘ g₁ == f ∘ g₂
congR p = cong (refl _) p
module Poly-Cat where
infix 20 _==_
infixr 30 _─→_ _─→'_
infixr 90 _∘_
private module C = Category
-- Objects
data Obj (ℂ : Cat) : Set1 where
-- obj : C.Obj ℂ -> Obj ℂ
-- obj⁻¹ : {ℂ : Cat} -> Obj ℂ -> C.Obj ℂ
-- obj⁻¹ {ℂ} (obj A) = A
postulate X : Set
-- Arrows
data _─→_ {ℂ : Cat}(A B : Obj ℂ) : Set where
arr : X -> A ─→ B -- C._─→_ ℂ (obj⁻¹ A) (obj⁻¹ B) -> A ─→ B
postulate
ℂ : Cat
A : Obj ℂ
B : Obj ℂ
foo : A ─→ B -> X
foo (arr f) = ?
-- arr⁻¹ : {ℂ : Cat}{A B : Obj ℂ} -> A ─→ B -> C._─→_ ℂ (obj⁻¹ A) (obj⁻¹ B)
-- arr⁻¹ {ℂ}{A}{B} (arr f) = f
open Poly-Cat
open Category hiding (Obj; _─→_)
{-
id : {ℂ : Cat}{A : Obj ℂ} -> A ─→ A
id {ℂ} = arr (Pr.id ℂ)
_∘_ : {ℂ : Cat}{A B C : Obj ℂ} -> B ─→ C -> A ─→ B -> A ─→ C
_∘_ {ℂ} (arr f) (arr g) = arr (Pr.compose ℂ f g)
data _==_ {ℂ : Cat}{A B : Obj ℂ}(f g : A ─→ B) : Set where
eqArr : Pr.equal ℂ (arr⁻¹ f) (arr⁻¹ g) -> f == g
refl : {ℂ : Cat}{A B : Obj ℂ}{f : A ─→ B} -> f == f
refl {ℂ} = eqArr (Pr.refl ℂ)
sym : {ℂ : Cat}{A B : Obj ℂ}{f g : A ─→ B} -> f == g -> g == f
sym {ℂ} (eqArr fg) = eqArr (Pr.sym ℂ fg)
trans : {ℂ : Cat}{A B : Obj ℂ}{f g h : A ─→ B} -> f == g -> g == h -> f == h
trans {ℂ} (eqArr fg) (eqArr gh) = eqArr (Pr.trans ℂ fg gh)
cong : {ℂ : Cat}{A B C : Obj ℂ}{f₁ f₂ : B ─→ C}{g₁ g₂ : A ─→ B} ->
f₁ == f₂ -> g₁ == g₂ -> f₁ ∘ g₁ == f₂ ∘ g₂
cong {ℂ} {f₁ = arr _}{f₂ = arr _}{g₁ = arr _}{g₂ = arr _}
(eqArr p) (eqArr q) = eqArr (Pr.cong ℂ p q)
congL : {ℂ : Cat}{A B C : Obj ℂ}{f₁ f₂ : B ─→ C}{g : A ─→ B} ->
f₁ == f₂ -> f₁ ∘ g == f₂ ∘ g
congL p = cong p refl
congR : {ℂ : Cat}{A B C : Obj ℂ}{f : B ─→ C}{g₁ g₂ : A ─→ B} ->
g₁ == g₂ -> f ∘ g₁ == f ∘ g₂
congR q = cong refl q
Eq : {ℂ : Cat}{A B : Obj ℂ} -> Equivalence (A ─→ B)
Eq = equiv _==_ (\x -> refl) (\x y -> sym) (\x y z -> trans)
idL : {ℂ : Cat}{A B : Obj ℂ}{f : A ─→ B} -> id ∘ f == f
idL {ℂ}{f = arr _} = eqArr (Pr.idL ℂ)
idR : {ℂ : Cat}{A B : Obj ℂ}{f : A ─→ B} -> f ∘ id == f
idR {ℂ}{f = arr _} = eqArr (Pr.idR ℂ)
assoc : {ℂ : Cat}{A B C D : Obj ℂ}{f : C ─→ D}{g : B ─→ C}{h : A ─→ B} ->
(f ∘ g) ∘ h == f ∘ (g ∘ h)
assoc {ℂ}{f = arr _}{g = arr _}{h = arr _} = eqArr (Pr.assoc ℂ)
-}
| {
"alphanum_fraction": 0.4381270903,
"avg_line_length": 26.977443609,
"ext": "agda",
"hexsha": "63238f8601462582db7159a6d1cb454f8e35ac0d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/cat/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/cat/Category.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/cat/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 1765,
"size": 3588
} |
{-# OPTIONS --cumulativity #-}
open import Agda.Primitive
data Unit : Set where unit : Unit
record Container a : Set (lsuc a) where
constructor _◁_
field
Shape : Set a
Pos : Shape → Set a
open Container public
data Free {a : Level} (C : Container a) (A : Unit → Set a) : Set a where
pure : A unit → Free C A
impure : (s : Shape C) → (Pos C s → Free C A) → Free C A
ROp : ∀ a → Container (lsuc a)
ROp a = Set a ◁ λ x → x
rop : {a : Level} {A : Unit → Set a} → Free (ROp a) A
rop {_} {A} = impure (A unit) pure
rop′ : {a : Level} {A : Unit → Set (lsuc a)} → Free (ROp a) A
rop′ {a} {A} = rop {a} -- This should not work, A : Set (suc a) is too large.
-- Passing it as an implicit parameter {A} gives the expected error.
| {
"alphanum_fraction": 0.5563909774,
"avg_line_length": 29.5555555556,
"ext": "agda",
"hexsha": "be1bab51d8511a825bfdfba415ea32f5b55f7283",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4926b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4926b.agda",
"max_line_length": 91,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4926b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 264,
"size": 798
} |
module Prelude.List.Relations.All where
open import Prelude.Equality
open import Prelude.Nat
open import Prelude.Empty
open import Prelude.Unit
open import Prelude.Product
open import Prelude.Number
open import Prelude.List.Base
open import Prelude.Applicative
open import Agda.Primitive
infixr 5 _∷_
data All {a b} {A : Set a} (P : A → Set b) : List A → Set (a ⊔ b) where
[] : All P []
_∷_ : ∀ {x xs} (p : P x) (ps : All P xs) → All P (x ∷ xs)
| {
"alphanum_fraction": 0.6960352423,
"avg_line_length": 23.8947368421,
"ext": "agda",
"hexsha": "b6c5668fe5197d89d99a9855db09c7e247944de6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Prelude/List/Relations/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Prelude/List/Relations/All.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Prelude/List/Relations/All.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 141,
"size": 454
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Rational numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Rational.Base where
open import Function using (id)
open import Data.Integer as ℤ using (ℤ; ∣_∣; +_; -[1+_])
open import Data.Nat.GCD
open import Data.Nat.Divisibility as ℕDiv using (divides; 0∣⇒≡0)
open import Data.Nat.Coprimality as C using (Coprime; Bézout-coprime)
open import Data.Nat as ℕ using (ℕ; zero; suc)
open import Data.Product
open import Level using (0ℓ)
open import Relation.Nullary.Decidable using (False)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; subst; cong; cong₂; module ≡-Reasoning)
open ≡-Reasoning
------------------------------------------------------------------------
-- Rational numbers in reduced form. Note that there is exactly one
-- way to represent every rational number.
record ℚ : Set where
constructor mkℚ
field
numerator : ℤ
denominator-1 : ℕ
.isCoprime : Coprime ∣ numerator ∣ (suc denominator-1)
denominatorℕ : ℕ
denominatorℕ = suc denominator-1
denominator : ℤ
denominator = + denominatorℕ
open ℚ public using ()
renaming
( numerator to ↥_
; denominator to ↧_
; denominatorℕ to ↧ₙ_
)
------------------------------------------------------------------------
-- Equality of rational numbers (coincides with _≡_)
infix 4 _≃_
_≃_ : Rel ℚ 0ℓ
p ≃ q = (↥ p ℤ.* ↧ q) ≡ (↥ q ℤ.* ↧ p)
------------------------------------------------------------------------
-- Ordering of rationals
infix 4 _≤_
data _≤_ : Rel ℚ 0ℓ where
*≤* : ∀ {p q} → (↥ p ℤ.* ↧ q) ℤ.≤ (↥ q ℤ.* ↧ p) → p ≤ q
------------------------------------------------------------------------
-- Negation
pattern +0 = + 0
pattern +[1+_] n = + suc n
-_ : ℚ → ℚ
- mkℚ -[1+ n ] d prf = mkℚ +[1+ n ] d prf
- mkℚ +0 d prf = mkℚ +0 d prf
- mkℚ +[1+ n ] d prf = mkℚ -[1+ n ] d prf
------------------------------------------------------------------------
-- Constructing rationals
infix 4 _≢0
_≢0 : ℕ → Set
n ≢0 = False (n ℕ.≟ 0)
-- A constructor for ℚ that takes two natural numbers, say 6 and 21,
-- and returns them in a normalized form, e.g. say 2 and 7
normalize : ∀ m n .{m≢0 : m ≢0} .{n≢0 : n ≢0} → ℚ
normalize (suc m) (suc n) with gcd (suc m) (suc n)
... | zero , GCD.is (1+m∣0 , _) _ = contradiction (0∣⇒≡0 1+m∣0) λ()
... | suc g , G@(GCD.is (divides (suc p) refl , divides (suc q) refl) _)
= mkℚ (+ suc p) q (Bézout-coprime (Bézout.identity G))
-- A constructor for ℚ that (unlike mkℚ) automatically normalises it's
-- arguments. See the constants section below for how to use this operator.
infixl 7 _/_
_/_ : (n : ℤ) (d : ℕ) → .{d≢0 : d ≢0} → ℚ
_/_ +0 d {d≢0} = mkℚ +0 0 (C.sym (C.1-coprimeTo 0))
_/_ +[1+ n ] d {d≢0} = normalize (suc n) d {_} {d≢0}
_/_ -[1+ n ] d {d≢0} = - normalize (suc n) d {_} {d≢0}
------------------------------------------------------------------------------
-- Some constants
0ℚ : ℚ
0ℚ = + 0 / 1
1ℚ : ℚ
1ℚ = + 1 / 1
½ : ℚ
½ = + 1 / 2
-½ : ℚ
-½ = - ½
------------------------------------------------------------------------------
-- Operations on rationals
infix 8 -_ 1/_
infixl 7 _*_ _÷_
infixl 6 _-_ _+_
-- addition
_+_ : ℚ → ℚ → ℚ
p + q = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)
-- multiplication
_*_ : ℚ → ℚ → ℚ
p * q = (↥ p ℤ.* ↥ q) / (↧ₙ p ℕ.* ↧ₙ q)
-- subtraction
_-_ : ℚ → ℚ → ℚ
p - q = p + (- q)
-- reciprocal: requires a proof that the numerator is not zero
1/_ : (p : ℚ) → .{n≢0 : ∣ ↥ p ∣ ≢0} → ℚ
1/ mkℚ +[1+ n ] d prf = mkℚ +[1+ d ] n (C.sym prf)
1/ mkℚ -[1+ n ] d prf = mkℚ -[1+ d ] n (C.sym prf)
-- division: requires a proof that the denominator is not zero
_÷_ : (p q : ℚ) → .{n≢0 : ∣ ↥ q ∣ ≢0} → ℚ
(p ÷ q) {n≢0} = p * (1/_ q {n≢0})
| {
"alphanum_fraction": 0.4896621281,
"avg_line_length": 26.2649006623,
"ext": "agda",
"hexsha": "129068ffb6b5086c5f9c5f495f642a3aa85a7944",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational/Base.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1436,
"size": 3966
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Ring.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring.Base
private
variable
ℓ : Level
{-
some basic calculations (used for example in QuotientRing.agda),
that should become obsolete or subject to change once we have a
ring solver (see https://github.com/agda/cubical/issues/297)
-}
module Theory (R' : Ring {ℓ}) where
open RingStr (snd R')
private R = ⟨ R' ⟩
implicitInverse : (x y : R)
→ x + y ≡ 0r
→ y ≡ - x
implicitInverse x y p =
y ≡⟨ sym (+-lid y) ⟩
0r + y ≡⟨ cong (λ u → u + y) (sym (+-linv x)) ⟩
(- x + x) + y ≡⟨ sym (+-assoc _ _ _) ⟩
(- x) + (x + y) ≡⟨ cong (λ u → (- x) + u) p ⟩
(- x) + 0r ≡⟨ +-rid _ ⟩
- x ∎
equalByDifference : (x y : R)
→ x - y ≡ 0r
→ x ≡ y
equalByDifference x y p =
x ≡⟨ sym (+-rid _) ⟩
x + 0r ≡⟨ cong (λ u → x + u) (sym (+-linv y)) ⟩
x + ((- y) + y) ≡⟨ +-assoc _ _ _ ⟩
(x - y) + y ≡⟨ cong (λ u → u + y) p ⟩
0r + y ≡⟨ +-lid _ ⟩
y ∎
0-selfinverse : - 0r ≡ 0r
0-selfinverse = sym (implicitInverse _ _ (+-rid 0r))
0-idempotent : 0r + 0r ≡ 0r
0-idempotent = +-lid 0r
+-idempotency→0 : (x : R) → x ≡ x + x → x ≡ 0r
+-idempotency→0 x p =
x ≡⟨ sym (+-rid x) ⟩
x + 0r ≡⟨ cong (λ u → x + u) (sym (+-rinv _)) ⟩
x + (x + (- x)) ≡⟨ +-assoc _ _ _ ⟩
(x + x) + (- x) ≡⟨ cong (λ u → u + (- x)) (sym p) ⟩
x + (- x) ≡⟨ +-rinv _ ⟩
0r ∎
0-rightNullifies : (x : R) → x · 0r ≡ 0r
0-rightNullifies x =
let x·0-is-idempotent : x · 0r ≡ x · 0r + x · 0r
x·0-is-idempotent =
x · 0r ≡⟨ cong (λ u → x · u) (sym 0-idempotent) ⟩
x · (0r + 0r) ≡⟨ ·-rdist-+ _ _ _ ⟩
(x · 0r) + (x · 0r) ∎
in (+-idempotency→0 _ x·0-is-idempotent)
0-leftNullifies : (x : R) → 0r · x ≡ 0r
0-leftNullifies x =
let 0·x-is-idempotent : 0r · x ≡ 0r · x + 0r · x
0·x-is-idempotent =
0r · x ≡⟨ cong (λ u → u · x) (sym 0-idempotent) ⟩
(0r + 0r) · x ≡⟨ ·-ldist-+ _ _ _ ⟩
(0r · x) + (0r · x) ∎
in +-idempotency→0 _ 0·x-is-idempotent
-commutesWithRight-· : (x y : R) → x · (- y) ≡ - (x · y)
-commutesWithRight-· x y = implicitInverse (x · y) (x · (- y))
(x · y + x · (- y) ≡⟨ sym (·-rdist-+ _ _ _) ⟩
x · (y + (- y)) ≡⟨ cong (λ u → x · u) (+-rinv y) ⟩
x · 0r ≡⟨ 0-rightNullifies x ⟩
0r ∎)
-commutesWithLeft-· : (x y : R) → (- x) · y ≡ - (x · y)
-commutesWithLeft-· x y = implicitInverse (x · y) ((- x) · y)
(x · y + (- x) · y ≡⟨ sym (·-ldist-+ _ _ _) ⟩
(x - x) · y ≡⟨ cong (λ u → u · y) (+-rinv x) ⟩
0r · y ≡⟨ 0-leftNullifies y ⟩
0r ∎)
-isDistributive : (x y : R) → (- x) + (- y) ≡ - (x + y)
-isDistributive x y =
implicitInverse _ _
((x + y) + ((- x) + (- y)) ≡⟨ sym (+-assoc _ _ _) ⟩
x + (y + ((- x) + (- y))) ≡⟨ cong
(λ u → x + (y + u))
(+-comm _ _) ⟩
x + (y + ((- y) + (- x))) ≡⟨ cong (λ u → x + u) (+-assoc _ _ _) ⟩
x + ((y + (- y)) + (- x)) ≡⟨ cong (λ u → x + (u + (- x)))
(+-rinv _) ⟩
x + (0r + (- x)) ≡⟨ cong (λ u → x + u) (+-lid _) ⟩
x + (- x) ≡⟨ +-rinv _ ⟩
0r ∎)
translatedDifference : (x a b : R) → a - b ≡ (x + a) - (x + b)
translatedDifference x a b =
a - b ≡⟨ cong (λ u → a + u)
(sym (+-lid _)) ⟩
(a + (0r + (- b))) ≡⟨ cong (λ u → a + (u + (- b)))
(sym (+-rinv _)) ⟩
(a + ((x + (- x)) + (- b))) ≡⟨ cong (λ u → a + u)
(sym (+-assoc _ _ _)) ⟩
(a + (x + ((- x) + (- b)))) ≡⟨ (+-assoc _ _ _) ⟩
((a + x) + ((- x) + (- b))) ≡⟨ cong (λ u → u + ((- x) + (- b)))
(+-comm _ _) ⟩
((x + a) + ((- x) + (- b))) ≡⟨ cong (λ u → (x + a) + u)
(-isDistributive _ _) ⟩
((x + a) - (x + b)) ∎
+-assoc-comm1 : (x y z : R) → x + (y + z) ≡ y + (x + z)
+-assoc-comm1 x y z = +-assoc x y z ∙∙ cong (λ x → x + z) (+-comm x y) ∙∙ sym (+-assoc y x z)
+-assoc-comm2 : (x y z : R) → x + (y + z) ≡ z + (y + x)
+-assoc-comm2 x y z = +-assoc-comm1 x y z ∙∙ cong (λ x → y + x) (+-comm x z) ∙∙ +-assoc-comm1 y z x
module HomTheory {R S : Ring {ℓ}} (f′ : RingHom R S) where
open Theory ⦃...⦄
open RingStr ⦃...⦄
open RingHom f′
private
instance
_ = R
_ = S
_ = snd R
_ = snd S
homPres0 : f 0r ≡ 0r
homPres0 = +-idempotency→0 (f 0r)
(f 0r ≡⟨ sym (cong f 0-idempotent) ⟩
f (0r + 0r) ≡⟨ isHom+ _ _ ⟩
f 0r + f 0r ∎)
-commutesWithHom : (x : ⟨ R ⟩) → f (- x) ≡ - (f x)
-commutesWithHom x = implicitInverse _ _
(f x + f (- x) ≡⟨ sym (isHom+ _ _) ⟩
f (x + (- x)) ≡⟨ cong f (+-rinv x) ⟩
f 0r ≡⟨ homPres0 ⟩
0r ∎)
| {
"alphanum_fraction": 0.3841746671,
"avg_line_length": 39.1393939394,
"ext": "agda",
"hexsha": "e0ffd9222d7fc66ab5bd47b34328197f78a6724b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/Algebra/Ring/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/Algebra/Ring/Properties.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/Algebra/Ring/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2400,
"size": 6458
} |
-- Andreas, 2017-01-12, issue #2386
id : {A : Set} → A → A
id x = x
data Eq (A : Set) : (x y : A) → Set where
refl : (x : A) → Eq A x (id x)
{-# BUILTIN EQUALITY Eq #-}
-- Should be accepted.
| {
"alphanum_fraction": 0.5202020202,
"avg_line_length": 16.5,
"ext": "agda",
"hexsha": "010a1ccc56beb9d43d25cef95d6a9e0a5efe7bcf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2386ReflId.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2386ReflId.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2386ReflId.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 79,
"size": 198
} |
{-# OPTIONS --allow-unsolved-metas #-}
data ⊤ : Set where
tt : ⊤
data _≡_ (a : ⊤) : {B : Set} → B → Set where
refl : a ≡ a
foo : ⊤
foo = (λ (z : ⊤) (q : bar ≡ {!!}) → tt) bar refl
where
bar : ⊤
bar = {!!}
| {
"alphanum_fraction": 0.4369369369,
"avg_line_length": 15.8571428571,
"ext": "agda",
"hexsha": "b4d511b3be9ef3f6438fa2d81e027026974f832f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2627.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2627.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2627.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 222
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed W-types aka Petersson-Synek trees
------------------------------------------------------------------------
module Data.W.Indexed where
open import Level
open import Data.Container.Indexed.Core
open import Data.Product
open import Relation.Unary
-- The family of indexed W-types.
module _ {ℓ c r} {O : Set ℓ} (C : Container O O c r) where
open Container C
data W (o : O) : Set (ℓ ⊔ c ⊔ r) where
sup : ⟦ C ⟧ W o → W o
-- Projections.
head : W ⊆ Command
head (sup (c , _)) = c
tail : ∀ {o} (w : W o) (r : Response (head w)) → W (next (head w) r)
tail (sup (_ , k)) r = k r
-- Induction, (primitive) recursion and iteration.
ind : ∀ {ℓ} (P : Pred (Σ O W) ℓ) →
(∀ {o} (cs : ⟦ C ⟧ W o) → □ C P (o , cs) → P (o , sup cs)) →
∀ {o} (w : W o) → P (o , w)
ind P φ (sup (c , k)) = φ (c , k) (λ r → ind P φ (k r))
rec : ∀ {ℓ} {X : Pred O ℓ} → (⟦ C ⟧ (W ∩ X) ⊆ X) → W ⊆ X
rec φ (sup (c , k))= φ (c , λ r → (k r , rec φ (k r)))
iter : ∀ {ℓ} {X : Pred O ℓ} → (⟦ C ⟧ X ⊆ X) → W ⊆ X
iter φ (sup (c , k))= φ (c , λ r → iter φ (k r))
| {
"alphanum_fraction": 0.4399664148,
"avg_line_length": 27.6976744186,
"ext": "agda",
"hexsha": "1b615ecba2d0518d50fbd642073e9440627a16e2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/W/Indexed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/W/Indexed.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/W/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 442,
"size": 1191
} |
module SystemF.Syntax.Type.Constructors where
open import Prelude
open import SystemF.Syntax.Type
open import SystemF.Substitutions.Types
-- church numerals
tnat : Type 0
tnat = ∀' (((tvar zero) →' (tvar zero)) →' (tvar zero) →' (tvar zero))
-- Type of the polymorphic identity
tid' : ∀ {n} → Type n
tid' = ∀' ((tvar zero) →' (tvar zero))
-- Top/terminal/unit type
⊤' : ∀ {n} → Type n
⊤' = tid'
-- Bottom/initial/zero type
⊥' : ∀ {n} → Type n
⊥' = ∀' (tvar zero)
-- n-ary function type
infixr 7 _→ⁿ_
_→ⁿ_ : ∀ {n k} → Vec (Type n) k → Type n → Type n
[] →ⁿ z = z
(a ∷ as) →ⁿ z = as →ⁿ a →' z
-- Record/finite tuple
rec : ∀ {n k} → Vec (Type n) k → Type n
rec [] = ⊤'
rec (a ∷ as) = ∀' ((map tp-weaken (a ∷ as) →ⁿ tvar zero) →' tvar zero)
-- tuple
_×'_ : ∀ {n} → Type n → Type n → Type n
a ×' b = rec (a ∷ b ∷ [])
| {
"alphanum_fraction": 0.5600961538,
"avg_line_length": 22.4864864865,
"ext": "agda",
"hexsha": "724fc8f79c6d19df9f573399d2aba2975c6d7699",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/Syntax/Type/Constructors.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/Syntax/Type/Constructors.agda",
"max_line_length": 70,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/Syntax/Type/Constructors.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 337,
"size": 832
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Finite.Fin.Construction.Discrete where
open import Data.Product using (∃; _,_)
open import Data.Nat using (ℕ)
open import Data.Fin
open import Data.Fin.Patterns
open import Function using (case_of_)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl; ≡-≟-identity; ≢-≟-identity)
open import Categories.Category.Finite.Fin
open import Categories.Category
private
card : ∀ {n} (j k : Fin n) → ℕ
card {ℕ.suc n} 0F 0F = 1
card {ℕ.suc n} 0F (suc k) = 0
card {ℕ.suc n} (suc j) 0F = 0
card {ℕ.suc n} (suc j) (suc k) = card j k
id : ∀ {n} (a : Fin n) → Fin (card a a)
id {ℕ.suc n} 0F = 0F
id {ℕ.suc n} (suc a) = id a
comp : ∀ n {a b c : Fin n} → Fin (card b c) → Fin (card a b) → Fin (card a c)
comp (ℕ.suc n) {0F} {0F} {0F} f g = 0F
comp (ℕ.suc n) {suc a} {suc b} {suc c} f g = comp n f g
assoc : ∀ n {a b c d : Fin n}
{f : Fin (card a b)} {g : Fin (card b c)} {h : Fin (card c d)} →
(comp n (comp n h g) f) ≡ comp n h (comp n g f)
assoc (ℕ.suc n) {0F} {0F} {0F} {0F} {f} {g} {h} = refl
assoc (ℕ.suc n) {suc a} {suc b} {suc c} {suc d} {f} {g} {h} = assoc n
identityˡ : ∀ n {a b : Fin n} {f : Fin (card a b)} → comp n (id b) f ≡ f
identityˡ (ℕ.suc n) {0F} {0F} {0F} = refl
identityˡ (ℕ.suc n) {suc a} {suc b} {f} = identityˡ n
identityʳ : ∀ n {a b : Fin n} {f : Fin (card a b)} → comp n f (id a) ≡ f
identityʳ (ℕ.suc n) {0F} {0F} {0F} = refl
identityʳ (ℕ.suc n) {suc a} {suc b} {f} = identityʳ n
module _ (n : ℕ) where
DiscreteShape : FinCatShape
DiscreteShape = record
{ size = n
; ∣_⇒_∣ = card {n}
; hasShape = record
{ id = id {n} _
; _∘_ = comp n
; assoc = assoc n
; identityˡ = identityˡ n
; identityʳ = identityʳ n
}
}
Discrete : ∀ n → Category _ _ _
Discrete n = FinCategory (DiscreteShape n)
module Discrete n = Category (Discrete n)
| {
"alphanum_fraction": 0.5513748191,
"avg_line_length": 31.8923076923,
"ext": "agda",
"hexsha": "61de0c07bb92bb8334dc159d893f17f39f36f13f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Finite/Fin/Construction/Discrete.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Finite/Fin/Construction/Discrete.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Finite/Fin/Construction/Discrete.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 858,
"size": 2073
} |
-- Andreas, 2016-05-10, issue 1848, reported by Nisse
-- {-# OPTIONS -v tc.lhs.top:20 #-}
data D : Set where
c : D → D
postulate
P : D → Set
foo : (x : D) → P x
foo _ = {!!}
-- checked lhs:
-- ps = _
-- delta = (x : D)
-- qs = [r(x = VarP (0,"x"))]
-- The unnamed variable is part of the context:
-- Goal: P .x
-- ————————————————————————————————————————————————————————————
-- .x : D
bar : (x : D) → P x
bar (c _) = {!!}
-- WAS:
-- checked lhs:
-- ps = _
-- delta = (_ : D)
-- qs = [r(x = ConP Issue1848.D.c ... [r(_ = VarP (0,"_"))])]
-- The unnamed variable is not part of the context:
-- Goal: P (c _)
-- ————————————————————————————————————————————————————————————
-- This can, in more complicated situations, make the goal type harder
-- to understand.
-- NOW:
-- Unnamed variable should be displayed in the context, e.g., as ".x"
| {
"alphanum_fraction": 0.4513574661,
"avg_line_length": 20.0909090909,
"ext": "agda",
"hexsha": "d3b75f2a3541a5cec14a2adf8303763a7cef16d2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1848.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1848.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1848.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 283,
"size": 884
} |
open import GGT
-- Throughout the following assume A is a (right) Action
module GGT.Theory
{a b ℓ₁ ℓ₂}
(A : Action a b ℓ₁ ℓ₂)
where
open import Level
open import Relation.Unary hiding (_\\_; _⇒_)
open import Relation.Binary
open import Algebra
open import Data.Product
open Action A renaming (setoid to Ω')
open import Relation.Binary.Reasoning.MultiSetoid
-- open import Relation.Binary.Reasoning.Setoid Ω' would be enough
open Group G renaming (setoid to S)
open import GGT.Group.Structures {a} {ℓ₂} {ℓ₁}
open import GGT.Group.Bundles {a} {ℓ₂} {ℓ₁}
open import Function.Bundles
open import Function.Base using (_on_)
orbitalEq : IsEquivalence _ω_
orbitalEq = record { refl = r ;
sym = s ;
trans = t } where
open Setoid Ω' renaming (sym to σ)
r : Reflexive _ω_
r {o} = ε , actId o
s : Symmetric _ω_
s {x} {y} ( g , x·g≡y ) = (g ⁻¹ , y·g⁻¹≡x) where
y·g⁻¹≡x = σ x≡y·g⁻¹ where
x≡y·g⁻¹ = begin⟨ Ω' ⟩
x ≈˘⟨ actId x ⟩
x · ε ≈˘⟨ G-ext (inverseʳ _) ⟩
x · (g ∙ g ⁻¹) ≈⟨ actAssoc _ _ _ ⟩
x · g · g ⁻¹ ≈⟨ ·-cong (g ⁻¹) x·g≡y ⟩
y · g ⁻¹ ∎
t : Transitive _ω_
t {x} {y} {z} ( g , x·g≡y ) ( h , y·h≡z ) = ( g ∙ h , x·gh≡z ) where
x·gh≡z : _
x·gh≡z = begin⟨ Ω' ⟩
x · (g ∙ h) ≈⟨ actAssoc _ _ _ ⟩
x · g · h ≈⟨ ·-cong _ x·g≡y ⟩
y · h ≈⟨ y·h≡z ⟩
z ∎
ω≤≋ : _≋_ ⇒ _ω_
ω≤≋ {o} {o'} o≋o' = (ε , oε≋o' ) where
oε≋o' = begin⟨ Ω' ⟩
o · ε ≈⟨ actId o ⟩
o ≈⟨ o≋o' ⟩
o' ∎
stabIsSubGroup : ∀ (o : Ω) → (stab o) ≤ G
stabIsSubGroup o = record { ε∈ = actId o ;
∙-⁻¹-closed = itis ;
r = resp } where
itis = λ {x} {y} px py → begin⟨ Ω' ⟩
(o · (x - y)) ≡⟨⟩
o · x ∙ (y ⁻¹) ≈⟨ actAssoc o x (y ⁻¹) ⟩
o · x · y ⁻¹ ≈⟨ ·-cong (y ⁻¹) px ⟩
o · y ⁻¹ ≈˘⟨ ·-cong (y ⁻¹) py ⟩
o · y · y ⁻¹ ≈˘⟨ actAssoc o y (y ⁻¹) ⟩
o · (y ∙ y ⁻¹) ≈⟨ G-ext (inverseʳ y) ⟩
o · ε ≈⟨ actId o ⟩
o ∎
resp : ∀ {x y : Carrier} → x ≈ y → ((stab o) x) → ((stab o) y)
resp {x} {y} x~y xfixeso = begin⟨ Ω' ⟩
o · y ≈˘⟨ G-ext x~y ⟩
o · x ≈⟨ xfixeso ⟩
o ∎
Stab : Ω → SubGroup G
Stab o = record { P = stab o;
isSubGroup = stabIsSubGroup o}
orbitalCorr : {o : Ω} → Bijection (Stab o \\ G) (Orbit o)
orbitalCorr {o} = record { f = f ;
cong = cc ;
bijective = inj ,′ surj } where
open Setoid (Stab o \\ G) renaming (_≈_ to _≈₁_; Carrier to G')
open Setoid (Orbit o) renaming (_≈_ to _≈₂_)
open Setoid S renaming (refl to r)
f : G' → Σ Ω (o ·G)
f x = (o · x , ( x , G-ext r))
cc : f Preserves _≈₁_ ⟶ _≈₂_
cc {g} {h} g≈₁h = begin⟨ Ω' ⟩ -- f h ≈₂ f g
o · g ≈˘⟨ actId (o · g) ⟩
o · g · ε ≈˘⟨ G-ext (inverseˡ h) ⟩
o · g · (h ⁻¹ ∙ h ) ≈˘⟨ actAssoc o g (h ⁻¹ ∙ h ) ⟩
o · (g ∙ (h ⁻¹ ∙ h )) ≈˘⟨ G-ext (assoc _ _ _) ⟩
o · ((g ∙ h ⁻¹) ∙ h ) ≈⟨ actAssoc _ _ h ⟩
o · (g ∙ h ⁻¹) · h ≈⟨ ·-cong h g≈₁h ⟩
-- g≈₁h ⇒ P (g ∙ h ⁻¹) ⇒ (g ∙ h ⁻¹) ∈ Stab o
o · h ∎
inj : _
-- o · g = o · h ⇒ g ∙ h ⁻¹ ∈ Stab o
inj {g} {h} fg≈₂fh = begin⟨ Ω' ⟩
o · g ∙ h ⁻¹ ≈⟨ actAssoc _ _ _ ⟩
o · g · h ⁻¹ ≈⟨ ·-cong _ fg≈₂fh ⟩
o · h · h ⁻¹ ≈˘⟨ actAssoc _ _ _ ⟩
o · (h ∙ h ⁻¹) ≈⟨ G-ext (inverseʳ h)⟩
o · ε ≈⟨ actId o ⟩
o ∎
surj : _
surj (_ , p) = p
| {
"alphanum_fraction": 0.3895131086,
"avg_line_length": 35.1315789474,
"ext": "agda",
"hexsha": "f339dec3db62eacbd8dbf478e571ffdae4870aca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zampino/ggt",
"max_forks_repo_path": "src/ggt/Theory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zampino/ggt",
"max_issues_repo_path": "src/ggt/Theory.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e2d6b5f9bea15dd67817bf67e273f6b9a14335af",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zampino/ggt",
"max_stars_repo_path": "src/ggt/Theory.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:48:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-17T11:10:00.000Z",
"num_tokens": 1655,
"size": 4005
} |
{-# OPTIONS --without-K #-}
module Ch1-5 where
open import Data.Product
open import Ch2-1
uniq : ∀ {a b} {A : Set a} {B : Set b}
→ (x : A × B)
→ ((proj₁ x , proj₂ x) ≡ x)
uniq (fst , snd) = refl
ind : ∀ {a b c} {A : Set a} {B : Set b}
→ (C : A × B → Set c)
→ ((x : A) → (y : B) → C (x , y))
→ (p : A × B)
→ C p
ind C c (fst , snd) = c fst snd
-- Definition 1.5.2
Definition-1-5-2 : ∀ {a b c} {A : Set a} {B : Set b}
→ (C : Set c)
→ (f : A → B → C)
→ A × B
→ C
Definition-1-5-2 {_} {_} {_} {A} {B} C f (fst , snd) = f fst snd
| {
"alphanum_fraction": 0.4500907441,
"avg_line_length": 19.6785714286,
"ext": "agda",
"hexsha": "a7a3d68ce7ff7e74805c1ebc4d44d45d0e5bdd14",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/hott",
"max_forks_repo_path": "src/Ch1-5.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/hott",
"max_issues_repo_path": "src/Ch1-5.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/hott",
"max_stars_repo_path": "src/Ch1-5.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 251,
"size": 551
} |
{-# OPTIONS --safe #-}
open import Generics.Prelude hiding (lookup; pi; curry)
open import Generics.Telescope
open import Generics.Desc
open import Generics.All
open import Generics.HasDesc
import Generics.Helpers as Helpers
open import Relation.Binary.HeterogeneousEquality.Core using (_≅_; refl)
module Generics.Constructions.Cong
{P I ℓ} {A : Indexed P I ℓ} (H : HasDesc {P} {I} {ℓ} A)
{p}
where
open HasDesc H
private
variable
V : ExTele P
i i₁ i₂ : ⟦ I ⟧tel p
v v₁ v₂ : ⟦ V ⟧tel p
-----------------------
-- Type of congruences
levelCongCon : (C : ConDesc P V I) → Level
levelCongCon (var _) = ℓ
levelCongCon (π {ℓ} _ _ C) = ℓ ⊔ levelCongCon C
levelCongCon (A ⊗ B) = levelIndArg A ℓ ⊔ levelCongCon B
CongCon : (C : ConDesc P V I)
(mk₁ : ∀ {i₁} → ⟦ C ⟧Con A′ (p , v₁ , i₁) → ⟦ D ⟧Data A′ (p , i₁))
(mk₂ : ∀ {i₂} → ⟦ C ⟧Con A′ (p , v₂ , i₂) → ⟦ D ⟧Data A′ (p , i₂))
→ Set (levelCongCon C)
-- If non-inductive arguments are equal
CongCon (π (n , ai) S C) mk₁ mk₂
= {s₁ : < relevance ai > S _}
{s₂ : < relevance ai > S _}
→ s₁ ≅ s₂
→ CongCon C (λ x → mk₁ (s₁ , x))
(λ x → mk₂ (s₂ , x))
-- And inductive arguments are equal
CongCon (A ⊗ B) mk₁ mk₂
= {f₁ : ⟦ A ⟧IndArg A′ _}
{f₂ : ⟦ A ⟧IndArg A′ _}
→ f₁ ≅ f₂
→ CongCon B (λ x → mk₁ (f₁ , x))
(λ x → mk₂ (f₂ , x))
-- Then applying the constructor to both sets should lead
-- to equal values
CongCon (var f) mk₁ mk₂
= constr (mk₁ refl) ≅ constr (mk₂ refl)
Cong : ∀ k → Set (levelCongCon (lookupCon D k))
Cong k = CongCon (lookupCon D k) (k ,_) (k ,_)
----------------------
-- Generic congruence
deriveCong : ∀ k → Cong k
deriveCong k = congCon (lookupCon D k)
where
congCon : (C : ConDesc P V I)
{mk : ∀ {i} → ⟦ C ⟧Con A′ (p , v , i) → ⟦ D ⟧Data A′ (p , i)}
→ CongCon C mk mk
congCon (var f) = refl
congCon (π ai S C) refl = congCon C
congCon (A ⊗ B) refl = congCon B
| {
"alphanum_fraction": 0.5594159114,
"avg_line_length": 27.2054794521,
"ext": "agda",
"hexsha": "1e5d5f9a8e48b21a88b838de4821164c72146144",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Constructions/Cong.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Constructions/Cong.agda",
"max_line_length": 76,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Constructions/Cong.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 748,
"size": 1986
} |
{-# OPTIONS --without-K #-}
module VectorLemmas where
open import Level using (Level)
open import Data.Vec
using (Vec; tabulate; []; _∷_; lookup; allFin)
renaming (_++_ to _++V_; map to mapV; concat to concatV)
open import Data.Vec.Properties
using (lookup-++-≥; lookup∘tabulate; tabulate-∘; tabulate∘lookup;
tabulate-allFin)
open import Function using (id;_∘_;flip)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; cong; cong₂; subst; trans; proof-irrelevance; module ≡-Reasoning)
open import Data.Nat using (ℕ; zero; suc; _+_; z≤n; _*_)
open import Data.Nat.Properties.Simple using (+-comm; +-right-identity)
open import Data.Fin using (Fin; zero; suc; inject+; raise; reduce≥)
open import Data.Fin.Properties using (toℕ-injective)
open import Data.Sum using (_⊎_; [_,_]′; inj₁; inj₂) renaming (map to map⊎)
open import SubstLemmas
open import FinNatLemmas
open import FiniteFunctions
------------------------------------------------------------------------------
-- Lemmas about map and tabulate
-- to make things look nicer
_!!_ : ∀ {m} {A : Set} → Vec A m → Fin m → A
v !! i = lookup i v
-- this is actually in Data.Vec.Properties, but over an arbitrary
-- Setoid. Specialize
map-id : ∀ {a n} {A : Set a} (xs : Vec A n) → mapV id xs ≡ xs
map-id [] = refl
map-id (x ∷ xs) = cong (_∷_ x) (map-id xs)
map-++-commute : ∀ {a b m n} {A : Set a} {B : Set b}
(f : B → A) (xs : Vec B m) {ys : Vec B n} →
mapV f (xs ++V ys) ≡ mapV f xs ++V mapV f ys
map-++-commute f [] = refl
map-++-commute f (x ∷ xs) = cong (λ z → f x ∷ z) (map-++-commute f xs)
-- this is too, but is done "point free", this version is more convenient
map-∘ : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c}
(f : B → C) (g : A → B) → (xs : Vec A n) →
mapV (f ∘ g) xs ≡ (mapV f ∘ mapV g) xs
map-∘ f g [] = refl
map-∘ f g (x ∷ xs) = cong (_∷_ (f (g x))) (map-∘ f g xs)
-- this looks trivial, why can't I find it?
lookup-map : ∀ {a b} {n : ℕ} {A : Set a} {B : Set b} →
(i : Fin n) → (f : A → B) →
(v : Vec A n) → lookup i (mapV f v) ≡ f (lookup i v)
lookup-map {n = 0} () _ _
lookup-map {n = suc n} zero f (x ∷ v) = refl
lookup-map {n = suc n} (suc i) f (x ∷ v) = lookup-map i f v
-- These are 'generalized' lookup into left/right parts of a Vector which
-- does not depend on the values in the Vector at all.
look-left : ∀ {m n} {a b c : Level} {A : Set a} {B : Set b} {C : Set c} →
(i : Fin m) → (f : A → C) → (g : B → C) → (vm : Vec A m) → (vn : Vec B n) →
lookup (inject+ n i) (mapV f vm ++V mapV g vn) ≡ f (lookup i vm)
look-left {0} () _ _ _ _
look-left {suc _} zero f g (x ∷ vm) vn = refl
look-left {suc _} (suc i) f g (x ∷ vm) vn = look-left i f g vm vn
look-right : ∀ {m n} {a b c : Level} {A : Set a} {B : Set b} {C : Set c} →
(i : Fin n) → (f : A → C) → (g : B → C) → (vm : Vec A m) → (vn : Vec B n) →
lookup (raise m i) (mapV f vm ++V mapV g vn) ≡ g (lookup i vn)
look-right {0} i f g vn vm = lookup-map i g vm
look-right {suc m} {0} () _ _ _ _
look-right {suc m} {suc n} i f g (x ∷ vn) vm = look-right i f g vn vm
-- variant
left!! : ∀ {m n} {C : Set} →
(i : Fin m) → (f : Fin m → C) → {g : Fin n → C} →
(tabulate f ++V tabulate g) !! (inject+ n i) ≡ f i
left!! {zero} () _
left!! {suc _} zero f = refl
left!! {suc _} (suc i) f = left!! i (f ∘ suc)
right!! : ∀ {m n} {C : Set} →
(i : Fin n) → {f : Fin m → C} → (g : Fin n → C) →
(tabulate f ++V tabulate g) !! (raise m i) ≡ g i
right!! {zero} i g = lookup∘tabulate g i
right!! {suc _} {0} () _
right!! {suc m} {suc _} i g = right!! {m} i g
-- similar to lookup-++-inject+ from library
lookup-++-raise : ∀ {m n} {a : Level} {A : Set a} →
(vm : Vec A m) (vn : Vec A n) (i : Fin n) →
lookup (raise m i) (vm ++V vn) ≡ lookup i vn
lookup-++-raise {0} vn vm i =
begin (lookup i (vn ++V vm)
≡⟨ lookup-++-≥ vn vm i z≤n ⟩
lookup (reduce≥ i z≤n) vm
≡⟨ refl ⟩
lookup i vm ∎)
where open ≡-Reasoning --
lookup-++-raise {suc m} {0} _ _ ()
lookup-++-raise {suc m} {suc n} (x ∷ vn) vm i = lookup-++-raise vn vm i
-- concat (map (map f) xs) = map f (concat xs)
concat-map : ∀ {a b m n} {A : Set a} {B : Set b} →
(xs : Vec (Vec A n) m) → (f : A → B) →
concatV (mapV (mapV f) xs) ≡ mapV f (concatV xs)
concat-map [] f = refl
concat-map (xs ∷ xss) f =
begin (concatV (mapV (mapV f) (xs ∷ xss))
≡⟨ refl ⟩
concatV (mapV f xs ∷ mapV (mapV f) xss)
≡⟨ refl ⟩
mapV f xs ++V concatV (mapV (mapV f) xss)
≡⟨ cong (_++V_ (mapV f xs)) (concat-map xss f) ⟩
mapV f xs ++V mapV f (concatV xss)
≡⟨ sym (map-++-commute f xs) ⟩
mapV f (xs ++V concatV xss)
≡⟨ refl ⟩
mapV f (concatV (xs ∷ xss)) ∎)
where open ≡-Reasoning
map-map-map : ∀ {a b c m n} {A : Set a} {B : Set b} {C : Set c} →
(f : B → C) → (g : A → Vec B n) → (xs : Vec A m) →
mapV (mapV f) (mapV g xs) ≡ mapV (mapV f ∘ g) xs
map-map-map f g xss = sym (map-∘ (mapV f) g xss)
splitV+ : ∀ {m n} {a : Level} {A : Set a} {f : Fin (m + n) → A} → Vec A (m + n)
splitV+ {m} {n} {f = f} = tabulate {m} (f ∘ inject+ n) ++V tabulate {n} (f ∘ raise m)
splitVOp+ : ∀ {m} {n} {a : Level} {A : Set a} {f : Fin (n + m) → A} → Vec A (m + n)
splitVOp+ {m} {n} {f = f} = tabulate {m} (f ∘ raise n) ++V tabulate {n} (f ∘ inject+ m)
-- f can be implicit since this is mostly used in equational reasoning, where it can be inferred!
tabulate-split : ∀ {m n} {a : Level} {A : Set a} → {f : Fin (m + n) → A} →
tabulate {m + n} f ≡ splitV+ {m} {n} {f = f}
tabulate-split {0} = refl
tabulate-split {suc m} {f = f} = cong (_∷_ (f zero)) (tabulate-split {m} {f = f ∘ suc})
lookup-subst : ∀ {m m' n}
(i : Fin n) (xs : Vec (Fin m) n) (eq : m ≡ m') →
lookup i (subst (λ s → Vec (Fin s) n) eq xs) ≡
subst Fin eq (lookup i xs)
lookup-subst i xs refl = refl
-- lookup is associative on Fin vectors
lookupassoc : ∀ {m₁ m₂ m₃ m₄} → (π₁ : Vec (Fin m₂) m₁)
(π₂ : Vec (Fin m₃) m₂) (π₃ : Vec (Fin m₄) m₃) → (i : Fin m₁) →
lookup (lookup i π₁) (tabulate (λ j → lookup (lookup j π₂) π₃)) ≡
lookup (lookup i (tabulate (λ j → lookup (lookup j π₁) π₂))) π₃
lookupassoc π₁ π₂ π₃ i =
begin (lookup (lookup i π₁) (tabulate (λ j → lookup (lookup j π₂) π₃))
≡⟨ lookup∘tabulate (λ j → lookup (lookup j π₂) π₃) (lookup i π₁) ⟩
lookup (lookup (lookup i π₁) π₂) π₃
≡⟨ cong
(λ x → lookup x π₃)
(sym (lookup∘tabulate (λ j → lookup (lookup j π₁) π₂) i)) ⟩
lookup (lookup i (tabulate (λ j → lookup (lookup j π₁) π₂))) π₃ ∎)
where open ≡-Reasoning
-- This should generalize a lot, but that can be done later
subst-lookup-tabulate-raise : ∀ {m n : ℕ} → (z : Fin n) →
subst Fin (+-comm n m) (lookup z (tabulate (λ i → subst Fin (+-comm m n) (raise m i)))) ≡
raise m z
subst-lookup-tabulate-raise {m} {n} z =
begin (subst Fin (+-comm n m) (lookup z (tabulate (λ i → subst Fin (+-comm m n) (raise m i))))
≡⟨ cong (subst Fin (+-comm n m))
(lookup∘tabulate (λ i → subst Fin (+-comm m n) (raise m i)) z) ⟩
subst Fin (+-comm n m) (subst Fin (+-comm m n) (raise m z))
≡⟨ subst-subst (+-comm n m) (+-comm m n)
(proof-irrelevance (sym (+-comm n m)) (+-comm m n)) (raise m z) ⟩
raise m z
∎)
where open ≡-Reasoning
subst-lookup-tabulate-inject+ : ∀ {m n : ℕ} → (z : Fin m) →
subst Fin (+-comm n m) (lookup z (tabulate (λ i → subst Fin (+-comm m n) (inject+ n i)))) ≡
inject+ n z
subst-lookup-tabulate-inject+ {m} {n} z =
begin (subst Fin (+-comm n m) (lookup z (tabulate (λ i → subst Fin (+-comm m n) (inject+ n i))))
≡⟨ cong (subst Fin (+-comm n m))
(lookup∘tabulate (λ i → subst Fin (+-comm m n) (inject+ n i)) z) ⟩
subst Fin (+-comm n m) (subst Fin (+-comm m n) (inject+ n z))
≡⟨ subst-subst (+-comm n m) (+-comm m n)
(proof-irrelevance (sym (+-comm n m)) (+-comm m n)) (inject+ n z) ⟩
inject+ n z
∎)
where open ≡-Reasoning
-- a kind of inverse for splitAt
unSplit : {m n : ℕ} {A : Set} → (f : Fin (m + n) → A) →
tabulate {m} (f ∘ (inject+ n)) ++V tabulate {n} (f ∘ (raise m)) ≡ tabulate f
unSplit {0} {n} f = refl
unSplit {suc m} f = cong (λ x → (f zero) ∷ x) (unSplit {m} (f ∘ suc))
-- nested tabulate-lookup
denest-tab-!! : {A B C : Set} {k : ℕ} → (f : B → C) → (g : A → B) → (v : Vec A k) →
tabulate (λ i → f (tabulate (λ j → g (v !! j)) !! i)) ≡ mapV (f ∘ g) v
denest-tab-!! f g v =
begin (
tabulate (λ i → f (tabulate (λ j → g (v !! j)) !! i))
≡⟨ tabulate-∘ f (λ i → tabulate (λ j → g (v !! j)) !! i) ⟩
mapV f (tabulate (λ i → tabulate (λ j → g (v !! j)) !! i) )
≡⟨ cong (mapV f) (tabulate∘lookup (tabulate (λ j → g (v !! j)))) ⟩
mapV f (tabulate (λ j → g (v !! j)))
≡⟨ cong (mapV f) (tabulate-∘ g (flip lookup v)) ⟩
mapV f (mapV g (tabulate (flip lookup v)))
≡⟨ sym (map-∘ f g _) ⟩
mapV (f ∘ g) (tabulate (flip lookup v))
≡⟨ cong (mapV (f ∘ g)) (tabulate∘lookup v) ⟩
mapV (f ∘ g) v ∎)
where open ≡-Reasoning
tab++[]≡tab∘̂unite+ : ∀ {m} {A : Set} (f : Fin m → A) (eq : m + 0 ≡ m) →
tabulate f ++V [] ≡ tabulate (λ j → f (subst Fin eq j))
tab++[]≡tab∘̂unite+ {zero} f eq = refl
tab++[]≡tab∘̂unite+ {suc m} f eq = cong₂ _∷_ (cong f pf₁) pf₂
where
pf₁ : zero ≡ subst Fin eq zero
pf₁ = toℕ-injective (sym (toℕ-invariance zero eq))
pf₃ : ∀ j → suc (subst Fin (+-right-identity m) j) ≡ subst Fin eq (suc j)
pf₃ j = toℕ-injective (trans (cong suc (toℕ-invariance j (+-right-identity m)))
(sym (toℕ-invariance (suc j) eq)))
pf₂ : tabulate (f ∘ suc) ++V [] ≡ tabulate (λ j → f (subst Fin eq (suc j)))
pf₂ = trans (tab++[]≡tab∘̂unite+ (f ∘ suc) (+-right-identity m))
(finext (λ j → cong f (pf₃ j)))
-- Move to its own spot later
merge-[,] : {A B C D E : Set} → {h : A → C} → {i : B → D} → {f : C → E}
→ {g : D → E} → (x : A ⊎ B) →
[ f , g ]′ ( map⊎ h i x ) ≡ [ (f ∘ h) , (g ∘ i) ]′ x
merge-[,] (inj₁ x) = refl
merge-[,] (inj₂ y) = refl
| {
"alphanum_fraction": 0.5107345721,
"avg_line_length": 43.0995850622,
"ext": "agda",
"hexsha": "d17b1f0b66b9479fa486cb5f7b5261afc2461209",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/VectorLemmas.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/VectorLemmas.agda",
"max_line_length": 98,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/VectorLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4155,
"size": 10387
} |
import Lvl
open import Type
module Structure.Logic.Constructive.BoundedPredicate
{ℓₗ} {Formula : Type{ℓₗ}}
{ℓₘₗ} (Proof : Formula → Type{ℓₘₗ})
{ℓₚ} {Predicate : Type{ℓₚ}}
{ℓₒ} {Domain : Type{ℓₒ}}
(_$_ : Predicate → (x : Domain) → ∀{B : Domain → Formula} → Proof(B(x)) → Formula)
where
import Logic.Predicate as Meta
open import Type.Dependent using (Σ)
open import Type.Properties.Inhabited using (◊)
import Structure.Logic.Constructive.Propositional as Propositional
open import Syntax.Function
private variable P : Predicate
private variable X Y Q : Formula
private variable x y z : Domain
private variable B : Domain → Formula
-- Rules of universal quantification (for all).
record BoundedUniversal(∀ₗ : (Domain → Formula) → Predicate → Formula) : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Predicate)} where
field
intro : (∀{x} → (bx : Proof(B(x))) → Proof((P $ x) {B} bx)) → Proof(∀ₗ B P)
elim : Proof(∀ₗ B P) → ∀{x} → (bx : Proof(B(x))) → Proof((P $ x) {B} bx)
∀ₗ = \ ⦃(Meta.[∃]-intro ▫) : Meta.∃(BoundedUniversal)⦄ → ▫
module ∀ₛ {▫} ⦃ p ⦄ = BoundedUniversal {▫} p
-- Rules of existential quantification (exists).
record BoundedExistential(∃ : (Domain → Formula) → Predicate → Formula) : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Predicate)} where
field
intro : (bx : Proof(B(x))) → Proof((P $ x) {B} bx) → Proof(∃ B P)
elim : (∀{x} → (bx : Proof(B(x))) → Proof((P $ x) {B} bx) → Proof(Q)) → (Proof(∃ B P) → Proof(Q))
∃ = \ ⦃(Meta.[∃]-intro ▫) : Meta.∃(BoundedExistential)⦄ → ▫
module ∃ₛ {▫} ⦃ p ⦄ = BoundedExistential {▫} p
record BoundedExistentialWitness(∃ : (Domain → Formula) → Predicate → Formula) : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Predicate)} where
field
witness : Proof(∃ B P) → Domain
bound : (p : Proof(∃ B P)) → Proof(B(witness p))
proof : (p : Proof(∃ B P)) → Proof((P $ witness p) {B} (bound p))
record Logic : Type{ℓₘₗ Lvl.⊔ Lvl.of(Formula) Lvl.⊔ Lvl.of(Domain) Lvl.⊔ Lvl.of(Predicate)} where
field
⦃ propositional ⦄ : Propositional.Logic(Proof)
⦃ universal ⦄ : Meta.∃(BoundedUniversal)
⦃ existential ⦄ : Meta.∃(BoundedExistential)
| {
"alphanum_fraction": 0.6299955097,
"avg_line_length": 44.54,
"ext": "agda",
"hexsha": "d52bfe452c2c43da33590a7144f63314a95962a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Logic/Constructive/BoundedPredicate.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Logic/Constructive/BoundedPredicate.agda",
"max_line_length": 163,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Logic/Constructive/BoundedPredicate.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 879,
"size": 2227
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module groups.Pointed where
infix 60 ⊙[_,_]ᴳˢ ⊙[_,_]ᴳ
record ⊙GroupStructure {i : ULevel} (GEl : Type i) : Type (lsucc i) where
constructor ⊙[_,_]ᴳˢ
field
de⊙ᴳˢ : GroupStructure GEl
ptᴳˢ : GEl
open GroupStructure de⊙ᴳˢ public
open ⊙GroupStructure using (de⊙ᴳˢ; ptᴳˢ) public
record ⊙Group (i : ULevel) : Type (lsucc i) where
constructor ⊙[_,_]ᴳ
field
de⊙ᴳ : Group i
ptᴳ : Group.El de⊙ᴳ
open Group de⊙ᴳ public
⊙exp = Group.exp de⊙ᴳ ptᴳ
open ⊙Group using (de⊙ᴳ; ptᴳ) public
⊙Group₀ = ⊙Group lzero
infix 0 _⊙→ᴳ_
_⊙→ᴳ_ : ∀ {i j} → ⊙Group i → ⊙Group j → Type (lmax i j)
⊙G ⊙→ᴳ ⊙H = Σ (de⊙ᴳ ⊙G →ᴳ de⊙ᴳ ⊙H) (λ φ → GroupHom.f φ (ptᴳ ⊙G) == ptᴳ ⊙H)
infix 30 _⊙≃ᴳ_
_⊙≃ᴳ_ : ∀ {i j} → ⊙Group i → ⊙Group j → Type (lmax i j)
⊙G ⊙≃ᴳ ⊙H = Σ (de⊙ᴳ ⊙G ≃ᴳ de⊙ᴳ ⊙H) (λ φ → GroupIso.f φ (ptᴳ ⊙G) == ptᴳ ⊙H)
infixl 120 _⊙⁻¹ᴳ
_⊙⁻¹ᴳ : ∀ {i j} {⊙G : ⊙Group i} {⊙H : ⊙Group j} → ⊙G ⊙≃ᴳ ⊙H → ⊙H ⊙≃ᴳ ⊙G
_⊙⁻¹ᴳ (iso , iic) = iso ⁻¹ᴳ , ! (equiv-adj (GroupIso.f-equiv iso) iic)
⊙exp-hom : ∀ {i} (⊙G : ⊙Group i)
→ ⊙[ ℤ-group , 1 ]ᴳ ⊙→ᴳ ⊙G
⊙exp-hom ⊙[ G , pt ]ᴳ = exp-hom G pt , idp
is-struct-infinite-cyclic : ∀ {i} {El : Type i} → ⊙GroupStructure El → Type i
is-struct-infinite-cyclic ⊙[ G , g ]ᴳˢ = is-equiv (GroupStructure.exp G g)
is-infinite-cyclic : ∀ {i} → ⊙Group i → Type i
is-infinite-cyclic ⊙[ G , g ]ᴳ =
is-struct-infinite-cyclic ⊙[ Group.group-struct G , g ]ᴳˢ
isomorphism-preserves-infinite-cyclic : ∀ {i j}
→ {⊙G : ⊙Group i} {⊙H : ⊙Group j} → ⊙G ⊙≃ᴳ ⊙H
→ is-infinite-cyclic ⊙G
→ is-infinite-cyclic ⊙H
isomorphism-preserves-infinite-cyclic
{⊙G = ⊙[ G , g ]ᴳ} {⊙H = ⊙[ H , h ]ᴳ} (iso , pres-pt) ⊙G-iic =
is-eq _ (is-equiv.g ⊙G-iic ∘ GroupIso.g iso) to-from from-to
where
abstract
lemma : Group.exp H h ∼ GroupIso.f iso ∘ Group.exp G g
lemma i = ! $
GroupIso.f iso (Group.exp G g i)
=⟨ GroupIso.pres-exp iso g i ⟩
Group.exp H (GroupIso.f iso g) i
=⟨ ap (λ x → Group.exp H x i) pres-pt ⟩
Group.exp H h i
=∎
to-from : ∀ x → Group.exp H h (is-equiv.g ⊙G-iic (GroupIso.g iso x)) == x
to-from x =
Group.exp H h (is-equiv.g ⊙G-iic (GroupIso.g iso x))
=⟨ lemma (is-equiv.g ⊙G-iic (GroupIso.g iso x)) ⟩
GroupIso.f iso (Group.exp G g (is-equiv.g ⊙G-iic (GroupIso.g iso x)))
=⟨ ap (GroupIso.f iso) (is-equiv.f-g ⊙G-iic (GroupIso.g iso x)) ⟩
GroupIso.f iso (GroupIso.g iso x)
=⟨ GroupIso.f-g iso x ⟩
x
=∎
from-to : ∀ i → is-equiv.g ⊙G-iic (GroupIso.g iso (Group.exp H h i)) == i
from-to i =
is-equiv.g ⊙G-iic (GroupIso.g iso (Group.exp H h i))
=⟨ ap (is-equiv.g ⊙G-iic ∘ GroupIso.g iso) (lemma i) ⟩
is-equiv.g ⊙G-iic (GroupIso.g iso (GroupIso.f iso (Group.exp G g i)))
=⟨ ap (is-equiv.g ⊙G-iic) (GroupIso.g-f iso (Group.exp G g i)) ⟩
is-equiv.g ⊙G-iic (Group.exp G g i)
=⟨ is-equiv.g-f ⊙G-iic i ⟩
i
=∎
isomorphism-preserves'-infinite-cyclic : ∀ {i j}
→ {⊙G : ⊙Group i} {⊙H : ⊙Group j} → ⊙G ⊙≃ᴳ ⊙H
→ is-infinite-cyclic ⊙H
→ is-infinite-cyclic ⊙G
isomorphism-preserves'-infinite-cyclic iso iic =
isomorphism-preserves-infinite-cyclic (iso ⊙⁻¹ᴳ) iic
| {
"alphanum_fraction": 0.5594874924,
"avg_line_length": 33.793814433,
"ext": "agda",
"hexsha": "f50d370359ff5499672146cf664cad77018d0bd7",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/Pointed.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/Pointed.agda",
"max_line_length": 79,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/Pointed.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1553,
"size": 3278
} |
data Nat : Set where
nohana : Nat
kibou : Nat -> Nat
one = kibou nohana
two = kibou one
| {
"alphanum_fraction": 0.6382978723,
"avg_line_length": 13.4285714286,
"ext": "agda",
"hexsha": "5102279ff6d82e4151e4c9a750766f8675b5faa9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/LaTeXAndHTML/succeed/HighlightOccurrences.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/LaTeXAndHTML/succeed/HighlightOccurrences.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/LaTeXAndHTML/succeed/HighlightOccurrences.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 37,
"size": 94
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.EilenbergMacLane1
open import homotopy.EilenbergMacLane
{- Given sequence of groups (Gₙ : n ≥ 1) such that Gₙ is abelian for n > 1,
- we can construct a space X such that πₙ(X) == Gₙ.
- (We can also make π₀(X) whatever we want but this isn't done here.) -}
module homotopy.SpaceFromGroups where
{- From a sequence of spaces (Fₙ) such that Fₙ is n-connected and
- n+1-truncated, construct a space X such that πₙ₊₁(X) == πₙ₊₁(Fₙ) -}
module SpaceFromEMs {i} (F : ℕ → Ptd i)
{{pF : {n : ℕ} → has-level ⟨ S n ⟩ (de⊙ (F n))}}
{{cF : (n : ℕ) → is-connected ⟨ n ⟩ (de⊙ (F n))}} where
X : Ptd i
X = ⊙FinTuples F
πS-X : (n : ℕ) → πS n X ≃ᴳ πS n (F n)
πS-X n =
πS n (⊙FinTuples F)
≃ᴳ⟨ prefix-lemma n O F ⟩
πS n (⊙FinTuples (λ k → F (n + k)))
≃ᴳ⟨ πS-emap n (⊙fin-tuples-cons (λ k → F (n + k))) ⁻¹ᴳ ⟩
πS n (F (n + O) ⊙× ⊙FinTuples (λ k → F (n + S k)))
≃ᴳ⟨ πS-× n (F (n + O)) (⊙FinTuples (λ k → F (n + S k))) ⟩
πS n (F (n + O)) ×ᴳ πS n (⊙FinTuples (λ k → F (n + S k)))
≃ᴳ⟨ ×ᴳ-emap (idiso (πS n (F (n + O))) )
(contr-iso-0ᴳ _ $
connected-at-level-is-contr {{⟨⟩}}
{{Trunc-preserves-conn {n = 0} $ Ω^-conn _ (S n) _ $
transport
(λ k → is-connected k
(FinTuples (λ k → F (n + S k))))
(+2+-comm 0 ⟨ n ⟩₋₁)
(ncolim-conn _ _ {{connected-lemma _ _ (λ k →
transport (λ s → is-connected ⟨ s ⟩ (de⊙ (F (n + S k))))
(+-βr n k ∙ +-comm (S n) k)
(cF (n + S k)))}})}}) ⟩
πS n (F (n + O)) ×ᴳ 0ᴳ
≃ᴳ⟨ ×ᴳ-unit-r _ ⟩
πS n (F (n + O))
≃ᴳ⟨ transportᴳ-iso (λ k → πS n (F k)) (+-unit-r n) ⟩
πS n (F n)
≃ᴳ∎
where
{- In computing πₙ₊₁, spaces before Fₙ are ignored because of their
- truncation level -}
prefix-lemma : (n : ℕ) (m : ℕ) (F : ℕ → Ptd i)
{{_ : {k : ℕ} → has-level ⟨ S m + k ⟩ (de⊙ (F k))}}
→ πS (m + n) (⊙FinTuples F)
≃ᴳ πS (m + n) (⊙FinTuples (λ k → F (n + k)))
prefix-lemma O m F = idiso _
prefix-lemma (S n) m F =
πS (m + S n) (⊙FinTuples F)
≃ᴳ⟨ πS-emap (m + S n) (⊙fin-tuples-cons F) ⁻¹ᴳ ⟩
πS (m + S n) (F O ⊙× ⊙FinTuples (F ∘ S))
≃ᴳ⟨ πS-× (m + S n) (F O) (⊙FinTuples (F ∘ S)) ⟩
πS (m + S n) (F O) ×ᴳ πS (m + S n) (⊙FinTuples (F ∘ S))
≃ᴳ⟨ ×ᴳ-emap lemma₁ lemma₂ ⟩
0ᴳ ×ᴳ πS (m + S n) (⊙FinTuples (λ k → F (S (n + k))))
≃ᴳ⟨ ×ᴳ-unit-l _ ⟩
πS (m + S n) (⊙FinTuples (λ k → F (S (n + k))))
≃ᴳ∎
where
{- ignore first space -}
lemma₁ : πS (m + S n) (F O) ≃ᴳ 0ᴳ
lemma₁ =
πS->level-econv (m + S n) _ (F O)
(⟨⟩-monotone-< (<-ap-S (<-+-l m (O<S n))))
{- ignore the rest by recursive call -}
lemma₂ : πS (m + S n) (⊙FinTuples (F ∘ S))
≃ᴳ πS (m + S n) (⊙FinTuples (λ k → F (S (n + k))))
lemma₂ =
πS (m + S n) (⊙FinTuples (F ∘ S))
≃ᴳ⟨ transportᴳ-iso (λ s → πS s (⊙FinTuples (F ∘ S))) (+-βr m n) ⟩
πS (S m + n) (⊙FinTuples (F ∘ S))
≃ᴳ⟨ prefix-lemma n (S m) (F ∘ S)
{{λ {k} → transport (λ s → has-level ⟨ s ⟩ (de⊙ (F (S k))))
(+-βr (S m) k) ⟨⟩}} ⟩
πS (S m + n) (⊙FinTuples (λ k → F (S (n + k))))
≃ᴳ⟨ transportᴳ-iso (λ s → πS s (⊙FinTuples (λ k → F (S (n + k))))) (+-βr m n) ⁻¹ᴳ ⟩
πS (m + S n) (⊙FinTuples (λ k → F (S (n + k))))
≃ᴳ∎
connected-lemma : (m : ℕ) (F : ℕ → Ptd i)
(cA' : (n : ℕ) → is-connected ⟨ n + m ⟩ (de⊙ (F n)))
(n : ℕ) → is-connected ⟨ m ⟩ (FinTuplesType F n)
connected-lemma m F cA' O =
Trunc-preserves-level ⟨ m ⟩ ⟨⟩
connected-lemma m F cA' (S n) = ×-conn
(cA' O)
(connected-lemma m (F ∘ S)
(λ n → connected-≤T (⟨⟩-monotone-≤ (inr ltS)) {{cA' (S n)}}) n)
{- Given sequence of groups (Gₙ : n ≥ 1) such that Gₙ is abelian for n > 1,
- construct a space X such that πₙ(X) == Gₙ. -}
module SpaceFromGroups {i} (G : ℕ → Group i)
(abG-S : (n : ℕ) → is-abelian (G (S n))) where
private
F : ℕ → Ptd i
F O = ⊙EM₁ (G O)
F (S n) = EMExplicit.⊙EM (G (S n) , abG-S n) (S (S n))
instance
pF : (n : ℕ) → has-level ⟨ S n ⟩ (de⊙ (F n))
pF O = EM₁-level {G = G O}
pF (S n) = EMExplicit.EM-level (G (S n) , abG-S n) (S (S n))
cF : (n : ℕ) → is-connected ⟨ n ⟩ (de⊙ (F n))
cF O = EM₁-conn {G = G O}
cF (S n) = EMExplicit.EM-conn (G (S n) , abG-S n) (S n)
module M = SpaceFromEMs F
X = M.X
πS-X : (n : ℕ) → πS n X ≃ᴳ G n
πS-X O = π₁-EM₁ (G O) ∘eᴳ M.πS-X O
πS-X (S n) =
EMExplicit.πS-diag (G (S n) , abG-S n) (S n) ∘eᴳ M.πS-X (S n)
| {
"alphanum_fraction": 0.4525807805,
"avg_line_length": 37.5275590551,
"ext": "agda",
"hexsha": "be935e0a785739ab35bf72457ea14f4374fd54e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/SpaceFromGroups.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/SpaceFromGroups.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/SpaceFromGroups.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2223,
"size": 4766
} |
{-# OPTIONS --rewriting #-}
module Examples.OpSem where
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; subst)
open import Luau.Syntax using (Block; var; val; nil; local_←_; _∙_; done; return; block_is_end)
open import Luau.Heap using (∅)
ex1 : ∅ ⊢ (local (var "x") ← val nil ∙ return (var "x") ∙ done) ⟶ᴮ (return (val nil) ∙ done) ⊣ ∅
ex1 = subst nil
| {
"alphanum_fraction": 0.649859944,
"avg_line_length": 32.4545454545,
"ext": "agda",
"hexsha": "c3f74ec1dbc57b481714d11e21d37dd15fb0a18f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Examples/OpSem.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Examples/OpSem.agda",
"max_line_length": 96,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Examples/OpSem.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 147,
"size": 357
} |
module BasicIS4.Metatheory.DyadicGentzenSpinalNormalForm-HereditarySubstitution where
open import BasicIS4.Syntax.DyadicGentzenSpinalNormalForm public
-- Hereditary substitution and reduction.
mutual
[_≔_]ⁿᶠ_ : ∀ {A B Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B → Γ ∖ i ⁏ Δ ⊢ⁿᶠ B
[ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ j xs y) with i ≟∈ j
[ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ .i xs y) | same = reduce s ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ᵗᵖ y)
[ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ ._ xs y) | diff j = neⁿᶠ (spⁿᵉ j ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ᵗᵖ y))
[ i ≔ s ]ⁿᶠ neⁿᶠ (mspⁿᵉ j xs y) = neⁿᶠ (mspⁿᵉ j ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ᵗᵖ y))
[ i ≔ s ]ⁿᶠ lamⁿᶠ t = lamⁿᶠ ([ pop i ≔ mono⊢ⁿᶠ weak⊆ s ]ⁿᶠ t)
[ i ≔ s ]ⁿᶠ boxⁿᶠ t = boxⁿᶠ t
[ i ≔ s ]ⁿᶠ pairⁿᶠ t u = pairⁿᶠ ([ i ≔ s ]ⁿᶠ t) ([ i ≔ s ]ⁿᶠ u)
[ i ≔ s ]ⁿᶠ unitⁿᶠ = unitⁿᶠ
[_≔_]ˢᵖ_ : ∀ {A B C Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ B ⦙ C → Γ ∖ i ⁏ Δ ⊢ˢᵖ B ⦙ C
[ i ≔ s ]ˢᵖ nilˢᵖ = nilˢᵖ
[ i ≔ s ]ˢᵖ appˢᵖ xs u = appˢᵖ ([ i ≔ s ]ˢᵖ xs) ([ i ≔ s ]ⁿᶠ u)
[ i ≔ s ]ˢᵖ fstˢᵖ xs = fstˢᵖ ([ i ≔ s ]ˢᵖ xs)
[ i ≔ s ]ˢᵖ sndˢᵖ xs = sndˢᵖ ([ i ≔ s ]ˢᵖ xs)
[_≔_]ᵗᵖ_ : ∀ {A B C Γ Δ} → (i : A ∈ Γ) → Γ ∖ i ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → Γ ∖ i ⁏ Δ ⊢ᵗᵖ B ⦙ C
[ i ≔ s ]ᵗᵖ nilᵗᵖ = nilᵗᵖ
[ i ≔ s ]ᵗᵖ unboxᵗᵖ u = unboxᵗᵖ u′
where u′ = [ i ≔ mmono⊢ⁿᶠ weak⊆ s ]ⁿᶠ u
m[_≔_]ⁿᶠ_ : ∀ {A B Γ Δ} → (i : A ∈ Δ) → ∅ ⁏ Δ ∖ i ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ∖ i ⊢ⁿᶠ B
m[ i ≔ s ]ⁿᶠ neⁿᶠ (spⁿᵉ j xs y) = neⁿᶠ (spⁿᵉ j (m[ i ≔ s ]ˢᵖ xs) (m[ i ≔ s ]ᵗᵖ y))
m[ i ≔ s ]ⁿᶠ neⁿᶠ (mspⁿᵉ j xs y) with i ≟∈ j
m[ i ≔ s ]ⁿᶠ neⁿᶠ (mspⁿᵉ .i xs y) | same = reduce (mono⊢ⁿᶠ bot⊆ s) (m[ i ≔ s ]ˢᵖ xs) (m[ i ≔ s ]ᵗᵖ y)
m[ i ≔ s ]ⁿᶠ neⁿᶠ (mspⁿᵉ ._ xs y) | diff j = neⁿᶠ (mspⁿᵉ j (m[ i ≔ s ]ˢᵖ xs) (m[ i ≔ s ]ᵗᵖ y))
m[ i ≔ s ]ⁿᶠ lamⁿᶠ t = lamⁿᶠ (m[ i ≔ s ]ⁿᶠ t)
m[ i ≔ s ]ⁿᶠ boxⁿᶠ t = boxⁿᶠ (m[ i ≔ s ]ⁿᶠ t)
m[ i ≔ s ]ⁿᶠ pairⁿᶠ t u = pairⁿᶠ (m[ i ≔ s ]ⁿᶠ t) (m[ i ≔ s ]ⁿᶠ u)
m[ i ≔ s ]ⁿᶠ unitⁿᶠ = unitⁿᶠ
m[_≔_]ˢᵖ_ : ∀ {A B C Γ Δ} → (i : A ∈ Δ) → ∅ ⁏ Δ ∖ i ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ B ⦙ C → Γ ⁏ Δ ∖ i ⊢ˢᵖ B ⦙ C
m[ i ≔ s ]ˢᵖ nilˢᵖ = nilˢᵖ
m[ i ≔ s ]ˢᵖ appˢᵖ xs u = appˢᵖ (m[ i ≔ s ]ˢᵖ xs) (m[ i ≔ s ]ⁿᶠ u)
m[ i ≔ s ]ˢᵖ fstˢᵖ xs = fstˢᵖ (m[ i ≔ s ]ˢᵖ xs)
m[ i ≔ s ]ˢᵖ sndˢᵖ xs = sndˢᵖ (m[ i ≔ s ]ˢᵖ xs)
m[_≔_]ᵗᵖ_ : ∀ {A B C Γ Δ} → (i : A ∈ Δ) → ∅ ⁏ Δ ∖ i ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → Γ ⁏ Δ ∖ i ⊢ᵗᵖ B ⦙ C
m[ i ≔ s ]ᵗᵖ nilᵗᵖ = nilᵗᵖ
m[ i ≔ s ]ᵗᵖ unboxᵗᵖ u = unboxᵗᵖ u′
where u′ = m[ pop i ≔ mmono⊢ⁿᶠ weak⊆ s ]ⁿᶠ u
reduce : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ A ⦙ B → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → {{_ : Tyⁿᵉ C}} → Γ ⁏ Δ ⊢ⁿᶠ C
reduce t nilˢᵖ nilᵗᵖ = t
reduce (neⁿᶠ (spⁿᵉ i xs nilᵗᵖ)) nilˢᵖ y = neⁿᶠ (spⁿᵉ i xs y)
reduce (neⁿᶠ (spⁿᵉ i xs (unboxᵗᵖ u))) nilˢᵖ y = neⁿᶠ (spⁿᵉ i xs (unboxᵗᵖ u′))
where u′ = reduce u nilˢᵖ (mmono⊢ᵗᵖ weak⊆ y)
reduce (neⁿᶠ (mspⁿᵉ i xs nilᵗᵖ)) nilˢᵖ y = neⁿᶠ (mspⁿᵉ i xs y)
reduce (neⁿᶠ (mspⁿᵉ i xs (unboxᵗᵖ u))) nilˢᵖ y = neⁿᶠ (mspⁿᵉ i xs (unboxᵗᵖ u′))
where u′ = reduce u nilˢᵖ (mmono⊢ᵗᵖ weak⊆ y)
reduce (neⁿᶠ t {{()}}) (appˢᵖ xs u) y
reduce (neⁿᶠ t {{()}}) (fstˢᵖ xs) y
reduce (neⁿᶠ t {{()}}) (sndˢᵖ xs) y
reduce (lamⁿᶠ t) (appˢᵖ xs u) y = reduce ([ top ≔ u ]ⁿᶠ t) xs y
reduce (boxⁿᶠ t) nilˢᵖ (unboxᵗᵖ u) = m[ top ≔ t ]ⁿᶠ u
reduce (pairⁿᶠ t u) (fstˢᵖ xs) y = reduce t xs y
reduce (pairⁿᶠ t u) (sndˢᵖ xs) y = reduce u xs y
-- Reduction-based normal forms.
appⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A ▻ B → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B
appⁿᶠ (neⁿᶠ t {{()}})
appⁿᶠ (lamⁿᶠ t) u = [ top ≔ u ]ⁿᶠ t
fstⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A ∧ B → Γ ⁏ Δ ⊢ⁿᶠ A
fstⁿᶠ (neⁿᶠ t {{()}})
fstⁿᶠ (pairⁿᶠ t u) = t
sndⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A ∧ B → Γ ⁏ Δ ⊢ⁿᶠ B
sndⁿᶠ (neⁿᶠ t {{()}})
sndⁿᶠ (pairⁿᶠ t u) = u
-- Useful equipment for deriving neutrals.
≪appˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ C ⦙ A ▻ B → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ C ⦙ B
≪appˢᵖ nilˢᵖ t = appˢᵖ nilˢᵖ t
≪appˢᵖ (appˢᵖ xs u) t = appˢᵖ (≪appˢᵖ xs t) u
≪appˢᵖ (fstˢᵖ xs) t = fstˢᵖ (≪appˢᵖ xs t)
≪appˢᵖ (sndˢᵖ xs) t = sndˢᵖ (≪appˢᵖ xs t)
≪fstˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ C ⦙ A ∧ B → Γ ⁏ Δ ⊢ˢᵖ C ⦙ A
≪fstˢᵖ nilˢᵖ = fstˢᵖ nilˢᵖ
≪fstˢᵖ (appˢᵖ xs u) = appˢᵖ (≪fstˢᵖ xs) u
≪fstˢᵖ (fstˢᵖ xs) = fstˢᵖ (≪fstˢᵖ xs)
≪fstˢᵖ (sndˢᵖ xs) = sndˢᵖ (≪fstˢᵖ xs)
≪sndˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ C ⦙ A ∧ B → Γ ⁏ Δ ⊢ˢᵖ C ⦙ B
≪sndˢᵖ nilˢᵖ = sndˢᵖ nilˢᵖ
≪sndˢᵖ (appˢᵖ xs u) = appˢᵖ (≪sndˢᵖ xs) u
≪sndˢᵖ (fstˢᵖ xs) = fstˢᵖ (≪sndˢᵖ xs)
≪sndˢᵖ (sndˢᵖ xs) = sndˢᵖ (≪sndˢᵖ xs)
-- Derived neutrals.
varⁿᵉ : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ⁿᵉ A
varⁿᵉ i = spⁿᵉ i nilˢᵖ nilᵗᵖ
appⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ▻ B → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᵉ B
appⁿᵉ (spⁿᵉ i xs nilᵗᵖ) t = spⁿᵉ i (≪appˢᵖ xs t) nilᵗᵖ
appⁿᵉ (spⁿᵉ i xs (unboxᵗᵖ u)) t = spⁿᵉ i xs (unboxᵗᵖ u′)
where u′ = appⁿᶠ u (mmono⊢ⁿᶠ weak⊆ t)
appⁿᵉ (mspⁿᵉ i xs nilᵗᵖ) t = mspⁿᵉ i (≪appˢᵖ xs t) nilᵗᵖ
appⁿᵉ (mspⁿᵉ i xs (unboxᵗᵖ u)) t = mspⁿᵉ i xs (unboxᵗᵖ u′)
where u′ = appⁿᶠ u (mmono⊢ⁿᶠ weak⊆ t)
mvarⁿᵉ : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ ⊢ⁿᵉ A
mvarⁿᵉ i = mspⁿᵉ i nilˢᵖ nilᵗᵖ
fstⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ∧ B → Γ ⁏ Δ ⊢ⁿᵉ A
fstⁿᵉ (spⁿᵉ i xs nilᵗᵖ) = spⁿᵉ i (≪fstˢᵖ xs) nilᵗᵖ
fstⁿᵉ (spⁿᵉ i xs (unboxᵗᵖ u)) = spⁿᵉ i xs (unboxᵗᵖ (fstⁿᶠ u))
fstⁿᵉ (mspⁿᵉ i xs nilᵗᵖ) = mspⁿᵉ i (≪fstˢᵖ xs) nilᵗᵖ
fstⁿᵉ (mspⁿᵉ i xs (unboxᵗᵖ u)) = mspⁿᵉ i xs (unboxᵗᵖ (fstⁿᶠ u))
sndⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ∧ B → Γ ⁏ Δ ⊢ⁿᵉ B
sndⁿᵉ (spⁿᵉ i xs nilᵗᵖ) = spⁿᵉ i (≪sndˢᵖ xs) nilᵗᵖ
sndⁿᵉ (spⁿᵉ i xs (unboxᵗᵖ u)) = spⁿᵉ i xs (unboxᵗᵖ (sndⁿᶠ u))
sndⁿᵉ (mspⁿᵉ i xs nilᵗᵖ) = mspⁿᵉ i (≪sndˢᵖ xs) nilᵗᵖ
sndⁿᵉ (mspⁿᵉ i xs (unboxᵗᵖ u)) = mspⁿᵉ i xs (unboxᵗᵖ (sndⁿᶠ u))
-- Iterated expansion.
expand : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ ⊢ⁿᶠ A
expand {α P} t = neⁿᶠ t {{α P}}
expand {A ▻ B} t = lamⁿᶠ (expand (appⁿᵉ (mono⊢ⁿᵉ weak⊆ t) (expand (varⁿᵉ top))))
expand {□ A} t = neⁿᶠ t {{□ A}}
expand {A ∧ B} t = pairⁿᶠ (expand (fstⁿᵉ t)) (expand (sndⁿᵉ t))
expand {⊤} t = unitⁿᶠ
-- Expansion-based normal forms.
varⁿᶠ : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ⁿᶠ A
varⁿᶠ i = expand (varⁿᵉ i)
mvarⁿᶠ : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ ⊢ⁿᶠ A
mvarⁿᶠ i = expand (mvarⁿᵉ i)
mutual
unboxⁿᶠ : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ □ A → Γ ⁏ Δ , A ⊢ⁿᶠ C → Γ ⁏ Δ ⊢ⁿᶠ C
unboxⁿᶠ (neⁿᶠ t) u = expand (unboxⁿᵉ t u)
unboxⁿᶠ (boxⁿᶠ t) u = m[ top ≔ t ]ⁿᶠ u
unboxⁿᵉ : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ □ A → Γ ⁏ Δ , A ⊢ⁿᶠ C → Γ ⁏ Δ ⊢ⁿᵉ C
unboxⁿᵉ (spⁿᵉ i xs nilᵗᵖ) u = spⁿᵉ i xs (unboxᵗᵖ u)
unboxⁿᵉ (spⁿᵉ i xs (unboxᵗᵖ t)) u = spⁿᵉ i xs (unboxᵗᵖ u′)
where u′ = unboxⁿᶠ t (mmono⊢ⁿᶠ (keep (weak⊆)) u)
unboxⁿᵉ (mspⁿᵉ i xs nilᵗᵖ) u = mspⁿᵉ i xs (unboxᵗᵖ u)
unboxⁿᵉ (mspⁿᵉ i xs (unboxᵗᵖ t)) u = mspⁿᵉ i xs (unboxᵗᵖ u′)
where u′ = unboxⁿᶠ t (mmono⊢ⁿᶠ (keep (weak⊆)) u)
-- Translation from terms to normal forms.
tm→nf : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ⁿᶠ A
tm→nf (var i) = varⁿᶠ i
tm→nf (lam t) = lamⁿᶠ (tm→nf t)
tm→nf (app t u) = appⁿᶠ (tm→nf t) (tm→nf u)
tm→nf (mvar i) = mvarⁿᶠ i
tm→nf (box t) = boxⁿᶠ (tm→nf t)
tm→nf (unbox t u) = unboxⁿᶠ (tm→nf t) (tm→nf u)
tm→nf (pair t u) = pairⁿᶠ (tm→nf t) (tm→nf u)
tm→nf (fst t) = fstⁿᶠ (tm→nf t)
tm→nf (snd t) = sndⁿᶠ (tm→nf t)
tm→nf unit = unitⁿᶠ
-- Normalisation by hereditary substitution.
norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A
norm = nf→tm ∘ tm→nf
| {
"alphanum_fraction": 0.4925706772,
"avg_line_length": 41.3315217391,
"ext": "agda",
"hexsha": "ff297fe4e6e360e587be81a727347ecf9a308b80",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Metatheory/DyadicGentzenSpinalNormalForm-HereditarySubstitution.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Metatheory/DyadicGentzenSpinalNormalForm-HereditarySubstitution.agda",
"max_line_length": 105,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Metatheory/DyadicGentzenSpinalNormalForm-HereditarySubstitution.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 5446,
"size": 7605
} |
{-# OPTIONS --without-K #-}
open import Base
open import Algebra.Groups
{-
The definition of G-sets. Thanks to Daniel Grayson.
-}
module Algebra.GroupSets {i} (grp : group i) where
private
module G = group grp
-- The right group action with respect to the group [grp].
-- [Y] should be some set, but that condition is not needed
-- in the definition.
record action (Y : Set i) : Set i where
constructor act[_,_,_]
field
_∙_ : Y → G.carrier → Y
right-unit : ∀ y → y ∙ G.e ≡ y
assoc : ∀ y p₁ p₂ → (y ∙ p₁) ∙ p₂ ≡ y ∙ (p₁ G.∙ p₂)
{-
action-eq : ∀ {Y} ⦃ _ : is-set Y ⦄ {act₁ act₂ : action Y}
→ action._∙_ act₁ ≡ action._∙_ act₂ → act₁ ≡ act₂
action-eq ∙≡ =
-}
-- The definition of a G-set. A set [carrier] equipped with
-- a right group action with respect to [grp].
record gset : Set (suc i) where
constructor gset[_,_,_]
field
carrier : Set i
act : action carrier
set : is-set carrier
open action act public
-- A convenient tool to compare two G-sets. Many data are
-- just props and this function do the coversion for them
-- for you. You only need to show the non-trivial parts.
gset-eq : ∀ {gs₁ gs₂ : gset} (carrier≡ : gset.carrier gs₁ ≡ gset.carrier gs₂)
→ (∙≡ : transport (λ Y → Y → G.carrier → Y) carrier≡ (action._∙_ (gset.act gs₁))
≡ action._∙_ (gset.act gs₂))
→ gs₁ ≡ gs₂
gset-eq
{gset[ Y , act[ ∙ , unit₁ , assoc₁ ] , set₁ ]}
{gset[ ._ , act[ ._ , unit₂ , assoc₂ ] , set₂ ]}
refl refl =
gset[ Y , act[ ∙ , unit₁ , assoc₁ ] , set₁ ]
≡⟨ ap (λ unit → gset[ Y , act[ ∙ , unit , assoc₁ ] , set₁ ])
$ prop-has-all-paths (Π-is-prop λ _ → set₁ _ _) _ _ ⟩
gset[ Y , act[ ∙ , unit₂ , assoc₁ ] , set₁ ]
≡⟨ ap (λ assoc → gset[ Y , act[ ∙ , unit₂ , assoc ] , set₁ ])
$ prop-has-all-paths (Π-is-prop λ _ → Π-is-prop λ _ → Π-is-prop λ _ → set₁ _ _) _ _ ⟩
gset[ Y , act[ ∙ , unit₂ , assoc₂ ] , set₁ ]
≡⟨ ap (λ set → gset[ Y , act[ ∙ , unit₂ , assoc₂ ] , set ])
$ prop-has-all-paths is-set-is-prop _ _ ⟩∎
gset[ Y , act[ ∙ , unit₂ , assoc₂ ] , set₂ ]
∎
| {
"alphanum_fraction": 0.5491540924,
"avg_line_length": 34.7142857143,
"ext": "agda",
"hexsha": "61c003ac65e1d86b3e4ec561f5e259ac5b6009cf",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Algebra/GroupSets.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Algebra/GroupSets.agda",
"max_line_length": 99,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Algebra/GroupSets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 791,
"size": 2187
} |
------------------------------------------------------------------------------
-- Proving properties without using pattern matching on refl
------------------------------------------------------------------------------
{-# OPTIONS --no-pattern-matching #-}
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
module FOT.GroupTheory.NoPatternMatchingOnRefl where
open import GroupTheory.Base
------------------------------------------------------------------------------
-- From GroupTheory.PropertiesI
-- Congruence properties
-- The propositional equality is compatible with the binary operation.
·-leftCong : ∀ {a b c} → a ≡ b → a · c ≡ b · c
·-leftCong {a} {c = c} h = subst (λ t → a · c ≡ t · c) h refl
·-rightCong : ∀ {a b c} → b ≡ c → a · b ≡ a · c
·-rightCong {a} {b} h = subst (λ t → a · b ≡ a · t) h refl
-- The propositional equality is compatible with the inverse function.
⁻¹-cong : ∀ {a b} → a ≡ b → a ⁻¹ ≡ b ⁻¹
⁻¹-cong {a} h = subst (λ t → a ⁻¹ ≡ t ⁻¹) h refl
| {
"alphanum_fraction": 0.4726415094,
"avg_line_length": 35.3333333333,
"ext": "agda",
"hexsha": "8621f7745b4c7ac52f76072c7354449096c37ae7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/GroupTheory/NoPatternMatchingOnRefl.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/GroupTheory/NoPatternMatchingOnRefl.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/GroupTheory/NoPatternMatchingOnRefl.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 275,
"size": 1060
} |
{-# OPTIONS --rewriting #-}
module Duality where
open import Data.Bool
open import Data.Nat hiding (compare)
open import Data.Nat.Properties
open import Data.Fin hiding (_+_)
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open import Agda.Builtin.Equality.Rewrite
-- variables
variable
n m : ℕ
open import Types.Direction
open import Auxiliary.Extensionality
open import Auxiliary.RewriteLemmas
----------------------------------------------------------------------
-- session types coinductively
import Types.COI as COI
----------------------------------------------------------------------
-- session type inductively with explicit rec
import Types.IND as IND
----------------------------------------------------------------------
-- provide an embedding of IND to COI
open COI
open IND hiding (_≈_ ; _≈'_ ; ≈-refl ; ≈'-refl ; ≈ᵗ-refl)
ind2coiT : IND.Type 0 → COI.Type
ind2coiS : IND.SType 0 → COI.SType
ind2coiG : IND.GType 0 → COI.STypeF COI.SType
ind2coiT TUnit = TUnit
ind2coiT TInt = TInt
ind2coiT (TPair it it₁) = TPair (ind2coiT it) (ind2coiT it₁)
ind2coiT (TChan st) = TChan (ind2coiS st)
ind2coiG (transmit d t ist) = transmit d (ind2coiT t) (ind2coiS ist)
ind2coiG (choice d m alt) = choice d m (ind2coiS ∘ alt)
ind2coiG end = end
SType.force (ind2coiS (gdd gst)) = ind2coiG gst
SType.force (ind2coiS (rec gst)) = ind2coiG (st-substG gst zero (rec gst))
----------------------------------------------------------------------
{-# TERMINATING #-}
subst-weakenS : (s : IND.SType (suc n)) (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s0 : IND.SType 0)
→ st-substS (weaken1'S (inject₁ j) s) (suc i) s0 ≡ weaken1'S j (st-substS s i s0)
subst-weakenG : (g : IND.GType (suc n)) (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s0 : IND.SType 0)
→ st-substG (weaken1'G (inject₁ j) g) (suc i) s0 ≡ weaken1'G j (st-substG g i s0)
subst-weakenT : (t : IND.Type (suc n)) (i : Fin (suc n)) (j : Fin (suc n)) (le : Data.Fin._≤_ j i) (s0 : IND.SType 0)
→ st-substT (weaken1'T (inject₁ j) t) (suc i) s0 ≡ weaken1'T j (st-substT t i s0)
subst-weakenS (gdd gst) i j le s0 = cong gdd (subst-weakenG gst i j le s0)
subst-weakenS (rec gst) i j le s0 = cong rec (subst-weakenG gst (suc i) (suc j) (s≤s le) s0)
subst-weakenS (var p x) zero zero le s0 = refl
subst-weakenS {suc n} (var p x) (suc i) zero le s0 = refl
subst-weakenS {suc n} (var p zero) (suc i) (suc j) le s0 = refl
subst-weakenS {suc n} (var p (suc x)) (suc i) (suc j) (s≤s le) s0 rewrite (weak-weakS j zero z≤n (st-substS (var p x) i s0))
= cong (weaken1'S zero) (subst-weakenS (var p x) i j le s0)
subst-weakenG (transmit d t s) i j le s0 = cong₂ (transmit d) (subst-weakenT t i j le s0) (subst-weakenS s i j le s0)
subst-weakenG (choice d m alt) i j le s0 = cong (choice d m) (ext (λ m' → subst-weakenS (alt m') i j le s0 ))
subst-weakenG end i j le s0 = refl
subst-weakenT TUnit i j le s0 = refl
subst-weakenT TInt i j le s0 = refl
subst-weakenT (TPair t t₁) i j le s0 = cong₂ TPair (subst-weakenT t i j le s0) (subst-weakenT t₁ i j le s0)
subst-weakenT (TChan s) i j le s0 = cong TChan (subst-weakenS s i j le s0)
{-# TERMINATING #-}
subst-swap-dualT : ∀ {ist} → (t : IND.Type (suc n)) (i : Fin (suc n)) →
st-substT t i ist ≡ st-substT (swap-polT i t) i (IND.dualS ist)
subst-swap-dualS : ∀ {ist} → (st : IND.SType (suc n)) (i : Fin (suc n)) →
st-substS st i ist ≡ st-substS (swap-polS i st) i (IND.dualS ist)
subst-swap-dualG : ∀ {ist} → (gst : IND.GType (suc n)) (i : Fin (suc n)) →
st-substG gst i ist ≡ st-substG (swap-polG i gst) i (IND.dualS ist)
subst-swap-dualT TUnit i = refl
subst-swap-dualT TInt i = refl
subst-swap-dualT (TPair ty ty₁) i = cong₂ TPair (subst-swap-dualT ty i) (subst-swap-dualT ty₁ i)
subst-swap-dualT (TChan x) i = cong TChan (subst-swap-dualS x i)
subst-swap-dualS (gdd gst) i = cong gdd (subst-swap-dualG gst i)
subst-swap-dualS (rec gst) i = cong rec (subst-swap-dualG gst (suc i))
subst-swap-dualS {n} {ist} (var p zero) zero = cong (weakenS n) (dual-if-dual p ist)
subst-swap-dualS {suc n} (var p zero) (suc i) = refl
subst-swap-dualS {suc n} (var p (suc x)) zero = refl
subst-swap-dualS {suc n}{ist} (var p (suc x)) (suc i)
rewrite subst-weakenS (swap-polS i (var p x)) i zero z≤n (dualS ist)
= cong (weaken1'S zero) (subst-swap-dualS ((var p x)) i)
subst-swap-dualG (transmit d t s) i = cong₂ (transmit d) (subst-swap-dualT t i) (subst-swap-dualS s i)
subst-swap-dualG (choice d m alt) i = cong (choice d m) (ext (λ x → subst-swap-dualS (alt x) i))
subst-swap-dualG end i = refl
----------------------------------------------------------------------
swap-i-weakenS : (i : Fin (suc n)) (s : IND.SType n) → swap-polS i (weaken1'S i s) ≡ weaken1'S i s
swap-i-weakenG : (i : Fin (suc n)) (g : IND.GType n) → swap-polG i (weaken1'G i g) ≡ weaken1'G i g
swap-i-weakenT : (i : Fin (suc n)) (t : IND.TType n) → swap-polT i (weaken1'T i t) ≡ weaken1'T i t
swap-i-weakenS i (gdd gst) = cong gdd (swap-i-weakenG i gst)
swap-i-weakenS i (rec gst) = cong rec (swap-i-weakenG (suc i) gst)
swap-i-weakenS zero (var p zero) = refl
swap-i-weakenS (suc i) (var p zero) = refl
swap-i-weakenS zero (var p (suc x)) = refl
swap-i-weakenS (suc i) (var p (suc x)) = cong weaken1S (swap-i-weakenS i (var p x))
swap-i-weakenG i (transmit d t s) = cong₂ (transmit d) (swap-i-weakenT i t) (swap-i-weakenS i s)
swap-i-weakenG i (choice d m alt) = cong (choice d m) (ext (swap-i-weakenS i ∘ alt))
swap-i-weakenG i end = refl
swap-i-weakenT i TUnit = refl
swap-i-weakenT i TInt = refl
swap-i-weakenT i (TPair t₁ t₂) = cong₂ TPair (swap-i-weakenT i t₁) (swap-i-weakenT i t₂)
swap-i-weakenT i (TChan x) = cong TChan (swap-i-weakenS i x)
{-# TERMINATING #-}
subst-swapG : (ist : IND.SType 0) (i : Fin (suc (suc n))) (j : Fin′ i) (g : GType (suc (suc n))) →
st-substG (swap-polG (inject j) g) i ist ≡ swap-polG (inject! j) (st-substG g i ist)
subst-swapS : (ist : IND.SType 0) (i : Fin (suc (suc n))) (j : Fin′ i) (s : IND.SType (suc (suc n))) →
st-substS (swap-polS (inject j) s) i ist ≡ swap-polS (inject! j) (st-substS s i ist)
subst-swapT : (ist : IND.SType 0) (i : Fin (suc (suc n))) (j : Fin′ i) (g : IND.Type (suc (suc n))) →
st-substT (swap-polT (inject j) g) i ist ≡ swap-polT (inject! j) (st-substT g i ist)
subst-swapG ist i j (transmit d t s) = cong₂ (transmit d) (subst-swapT ist i j t) (subst-swapS ist i j s)
subst-swapG ist i j (choice d m alt) = cong (choice d m) (ext (λ x → subst-swapS ist i j (alt x)))
subst-swapG ist i j end = refl
subst-swapS ist i j (gdd gst) = cong gdd (subst-swapG ist i j gst)
subst-swapS ist i j (rec gst) = cong rec (subst-swapG ist (suc i) (suc j) gst)
subst-swapS{zero} ist zero () (var p zero)
subst-swapS {zero} ist (suc zero) zero (var p zero) = refl
subst-swapS {zero} ist (suc zero) zero (var p (suc x))
rewrite swap-i-weakenS zero (st-substS (var p x) zero ist) = refl
subst-swapS{suc n} ist (suc i) zero (var p zero) = refl
subst-swapS{suc n} ist (suc i) (suc j) (var p zero) = refl
subst-swapS{suc n} ist zero () (var p (suc x))
subst-swapS{suc n} ist (suc i) zero (var p (suc x))
rewrite swap-i-weakenS zero (st-substS (var p x) i ist) = refl
subst-swapS{suc n} ist (suc i) (suc j) (var p (suc x))
rewrite subst-weakenS (swap-polS (inject j) (var p x)) i zero z≤n ist
| swap-weakenS (inject! j) (st-substS (var p x) i ist)
= cong weaken1S (subst-swapS ist i j (var p x))
subst-swapT ist i j TUnit = refl
subst-swapT ist i j TInt = refl
subst-swapT ist i j (TPair t t₁) = cong₂ TPair (subst-swapT ist i j t) (subst-swapT ist i j t₁)
subst-swapT ist i j (TChan x) = cong TChan (subst-swapS ist i j x)
----------------------------------------------------------------------
dual-recT' : (t : TType (suc n)) (i : Fin (suc n)) (ist : IND.SType 0)
→ st-substT (swap-polT i t) i (dualS ist) ≡ st-substT t i ist
dual-recG' : (g : GType (suc n)) (i : Fin (suc n)) (ist : IND.SType 0)
→ st-substG (swap-polG i g) i (dualS ist) ≡ st-substG g i ist
dual-recS' : (s : IND.SType (suc n)) (i : Fin (suc n)) (ist : IND.SType 0)
→ st-substS (swap-polS i s) i (dualS ist) ≡ st-substS s i ist
dual-recT' TUnit i ist = refl
dual-recT' TInt i ist = refl
dual-recT' (TPair t t₁) i ist = cong₂ TPair (dual-recT' t i ist) (dual-recT' t₁ i ist)
dual-recT' (TChan s) i ist = cong TChan (dual-recS' s i ist)
dual-recG' (transmit d t s) i ist = cong₂ (transmit d) (dual-recT' t i ist) (dual-recS' s i ist)
dual-recG' (choice d m alt) i ist = cong (choice d m) (ext (λ m' → dual-recS' (alt m') i ist))
dual-recG' end i ist = refl
dual-recS' (gdd gst) i ist = cong gdd (dual-recG' gst i ist)
dual-recS' (rec gst) i ist = cong rec (dual-recG' gst (suc i) ist)
dual-recS' (var p zero) zero ist rewrite (dual-if-dual p ist) = refl
dual-recS' (var p (suc x)) zero ist = trivial-subst-var p x (dualS ist) (ist)
dual-recS' (var p zero) (suc i) ist = trivial-subst-var' p i (dualS ist) (ist)
dual-recS' (var p (suc x)) (suc i) ist rewrite (subst-swap-dualS{ist = ist} (var p (suc x)) (suc i))
= refl
----------------------------------------------------------------------
-- show that the dualS function is compatible with unfolding
-- that is
-- COI.dual ∘ ind2coi ≈ ind2coi ∘ IND.dual
{-# TERMINATING #-}
dual-lemmaS : (s : IND.SType (suc n)) (j : Fin (suc n)) (s0 : IND.SType 0)
→ st-substS (dualS s) j s0 ≡ dualS (st-substS s j s0)
dual-lemmaG : (g : IND.GType (suc n)) (j : Fin (suc n)) (s0 : IND.SType 0)
→ st-substG (dualG g) j s0 ≡ dualG (st-substG g j s0)
dual-lemmaS (gdd gst) j s0 = cong gdd (dual-lemmaG gst j s0)
dual-lemmaS (rec gst) j s0 rewrite (subst-swapG s0 (suc j) zero (dualG gst)) =
let rst = dual-lemmaG gst (suc j) s0 in cong rec (cong (swap-polG zero) rst)
dual-lemmaS {n} (var POS zero) zero s0 = sym (dual-weakenS' n s0)
dual-lemmaS {n} (var NEG zero) zero s0 rewrite (sym (dual-weakenS' n s0)) | (sym (dual-invS (weakenS n s0))) = refl
dual-lemmaS {suc n} (var POS zero) (suc j) s0 = refl
dual-lemmaS {suc n} (var NEG zero) (suc j) s0 = refl
dual-lemmaS {suc n} (var POS (suc x)) zero s0 = refl
dual-lemmaS {suc n} (var NEG (suc x)) zero s0 = refl
dual-lemmaS {suc n} (var POS (suc x)) (suc j) s0 rewrite (dual-weakenS zero (st-substS (var POS x) j s0)) = cong (weaken1'S zero) (dual-lemmaS (var POS x) j s0)
dual-lemmaS {suc n} (var NEG (suc x)) (suc j) s0 rewrite (dual-weakenS zero (st-substS (var NEG x) j s0)) = cong (weaken1'S zero) (dual-lemmaS (var NEG x) j s0)
dual-lemmaG (transmit d t s) j s0 = cong₂ (transmit (dual-dir d)) refl (dual-lemmaS s j s0)
dual-lemmaG (choice d m alt) j s0 = cong (choice (dual-dir d) m) (ext (λ m' → dual-lemmaS (alt m') j s0))
dual-lemmaG end j s0 = refl
----------------------------------------------------------------------
-- main result
dual-compatibleS : (ist : IND.SType 0) →
COI.dual (ind2coiS ist) ≈ ind2coiS (IND.dualS ist)
dual-compatibleG : (gst : IND.GType 0) →
COI.dualF (ind2coiG gst) ≈' ind2coiG (IND.dualG gst)
Equiv.force (dual-compatibleS (gdd gst)) = dual-compatibleG gst
Equiv.force (dual-compatibleS (rec gst))
rewrite (dual-recG' (dualG gst) zero (rec gst))
| dual-lemmaG gst zero (rec gst) = dual-compatibleG (st-substG gst zero (rec gst))
dual-compatibleG (transmit d t s) = eq-transmit (dual-dir d) ≈ᵗ-refl (dual-compatibleS s)
dual-compatibleG (choice d m alt) = eq-choice (dual-dir d) (dual-compatibleS ∘ alt)
dual-compatibleG end = eq-end
| {
"alphanum_fraction": 0.6201746725,
"avg_line_length": 48.3122362869,
"ext": "agda",
"hexsha": "2405e361d0636f374f33f95fd3da536867fd59b5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-07T16:12:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-07T16:12:50.000Z",
"max_forks_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "peterthiemann/dual-session",
"max_forks_repo_path": "src/Duality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "peterthiemann/dual-session",
"max_issues_repo_path": "src/Duality.agda",
"max_line_length": 160,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "peterthiemann/dual-session",
"max_stars_repo_path": "src/Duality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:43:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-13T05:43:25.000Z",
"num_tokens": 4471,
"size": 11450
} |
open import Type
module Graph.Oper {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where
open import Logic.Propositional
open import Graph{ℓ₁}{ℓ₂}(V)
_∪_ : Graph → Graph → Graph
(g₁ ∪ g₂) v₁ v₂ = g₁ v₁ v₂ ∨ g₂ v₁ v₂ -- TODO: lift1On2
| {
"alphanum_fraction": 0.6698113208,
"avg_line_length": 21.2,
"ext": "agda",
"hexsha": "edd9928e38e6765ad93bd7e4105d0fe3edde4648",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Graph/Oper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Graph/Oper.agda",
"max_line_length": 55,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Graph/Oper.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 93,
"size": 212
} |
module Eval where
open import Data.Empty
open import Data.Unit
open import Data.Unit.Core
open import Data.Nat renaming (_⊔_ to _⊔ℕ_)
open import Data.Sum renaming (map to _⊎→_)
open import Data.Product renaming (map to _×→_)
open import Data.Vec
open import Relation.Binary.PropositionalEquality
open import FT -- Finite Types
_∘_ = trans
mutual
evalComb : {a b : FT} → a ⇛ b → ⟦ a ⟧ → ⟦ b ⟧
evalComb unite₊⇛ (inj₁ ())
evalComb unite₊⇛ (inj₂ y) = y
evalComb uniti₊⇛ v = inj₂ v
evalComb swap₊⇛ (inj₁ x) = inj₂ x
evalComb swap₊⇛ (inj₂ y) = inj₁ y
evalComb assocl₊⇛ (inj₁ x) = inj₁ (inj₁ x)
evalComb assocl₊⇛ (inj₂ (inj₁ x)) = inj₁ (inj₂ x)
evalComb assocl₊⇛ (inj₂ (inj₂ y)) = inj₂ y
evalComb assocr₊⇛ (inj₁ (inj₁ x)) = inj₁ x
evalComb assocr₊⇛ (inj₁ (inj₂ y)) = inj₂ (inj₁ y)
evalComb assocr₊⇛ (inj₂ y) = inj₂ (inj₂ y)
evalComb unite⋆⇛ (tt , proj₂) = proj₂
evalComb uniti⋆⇛ v = tt , v
evalComb swap⋆⇛ (proj₁ , proj₂) = proj₂ , proj₁
evalComb assocl⋆⇛ (proj₁ , proj₂ , proj₃) = (proj₁ , proj₂) , proj₃
evalComb assocr⋆⇛ ((proj₁ , proj₂) , proj₃) = proj₁ , proj₂ , proj₃
evalComb distz⇛ (() , proj₂)
evalComb factorz⇛ ()
evalComb dist⇛ (inj₁ x , proj₂) = inj₁ (x , proj₂)
evalComb dist⇛ (inj₂ y , proj₂) = inj₂ (y , proj₂)
evalComb factor⇛ (inj₁ (proj₁ , proj₂)) = inj₁ proj₁ , proj₂
evalComb factor⇛ (inj₂ (proj₁ , proj₂)) = inj₂ proj₁ , proj₂
evalComb id⇛ v = v
evalComb (sym⇛ c) v = evalBComb c v
evalComb (c₁ ◎ c₂) v = evalComb c₂ (evalComb c₁ v)
evalComb (c ⊕ c₁) (inj₁ x) = inj₁ (evalComb c x)
evalComb (c ⊕ c₁) (inj₂ y) = inj₂ (evalComb c₁ y)
evalComb (c ⊗ c₁) (proj₁ , proj₂) = evalComb c proj₁ , evalComb c₁ proj₂
evalBComb : {a b : FT} → a ⇛ b → ⟦ b ⟧ → ⟦ a ⟧
evalBComb unite₊⇛ v = inj₂ v
evalBComb uniti₊⇛ (inj₁ ())
evalBComb uniti₊⇛ (inj₂ y) = y
evalBComb swap₊⇛ (inj₁ x) = inj₂ x
evalBComb swap₊⇛ (inj₂ y) = inj₁ y
evalBComb assocl₊⇛ (inj₁ (inj₁ x)) = inj₁ x
evalBComb assocl₊⇛ (inj₁ (inj₂ y)) = inj₂ (inj₁ y)
evalBComb assocl₊⇛ (inj₂ y) = inj₂ (inj₂ y)
evalBComb assocr₊⇛ (inj₁ x) = inj₁ (inj₁ x)
evalBComb assocr₊⇛ (inj₂ (inj₁ x)) = inj₁ (inj₂ x)
evalBComb assocr₊⇛ (inj₂ (inj₂ y)) = inj₂ y
evalBComb unite⋆⇛ x = tt , x
evalBComb uniti⋆⇛ (tt , x) = x
evalBComb swap⋆⇛ (x , y) = y , x
evalBComb assocl⋆⇛ ((x , y) , z) = x , y , z
evalBComb assocr⋆⇛ (x , y , z) = (x , y) , z
evalBComb distz⇛ ()
evalBComb factorz⇛ (() , _)
evalBComb dist⇛ (inj₁ (proj₁ , proj₂)) = inj₁ proj₁ , proj₂
evalBComb dist⇛ (inj₂ (proj₁ , proj₂)) = inj₂ proj₁ , proj₂
evalBComb factor⇛ (inj₁ x , proj₂) = inj₁ (x , proj₂)
evalBComb factor⇛ (inj₂ y , proj₂) = inj₂ (y , proj₂)
evalBComb id⇛ x = x
evalBComb (sym⇛ c) x = evalComb c x
evalBComb (c ◎ c₁) x = evalBComb c (evalBComb c₁ x)
evalBComb (c ⊕ c₁) (inj₁ x) = inj₁ (evalBComb c x)
evalBComb (c ⊕ c₁) (inj₂ y) = inj₂ (evalBComb c₁ y)
evalBComb (c ⊗ c₁) (proj₁ , proj₂) = evalBComb c proj₁ , evalBComb c₁ proj₂
mutual
Comb∘BComb : {a b : FT} → (c : a ⇛ b) → ∀ x → evalBComb c (evalComb c x) ≡ x
Comb∘BComb unite₊⇛ (inj₁ ())
Comb∘BComb unite₊⇛ (inj₂ y) = refl
Comb∘BComb uniti₊⇛ x = refl
Comb∘BComb swap₊⇛ (inj₁ x) = refl
Comb∘BComb swap₊⇛ (inj₂ y) = refl
Comb∘BComb assocl₊⇛ (inj₁ x) = refl
Comb∘BComb assocl₊⇛ (inj₂ (inj₁ x)) = refl
Comb∘BComb assocl₊⇛ (inj₂ (inj₂ y)) = refl
Comb∘BComb assocr₊⇛ (inj₁ (inj₁ x)) = refl
Comb∘BComb assocr₊⇛ (inj₁ (inj₂ y)) = refl
Comb∘BComb assocr₊⇛ (inj₂ y) = refl
Comb∘BComb unite⋆⇛ (tt , y) = refl
Comb∘BComb uniti⋆⇛ x = refl
Comb∘BComb swap⋆⇛ (x , y) = refl
Comb∘BComb assocl⋆⇛ (x , y , z) = refl
Comb∘BComb assocr⋆⇛ ((x , y) , z) = refl
Comb∘BComb distz⇛ (() , _)
Comb∘BComb factorz⇛ ()
Comb∘BComb dist⇛ (inj₁ x , y) = refl
Comb∘BComb dist⇛ (inj₂ x , y) = refl
Comb∘BComb factor⇛ (inj₁ (x , y)) = refl
Comb∘BComb factor⇛ (inj₂ (x , y)) = refl
Comb∘BComb id⇛ x = refl
Comb∘BComb (sym⇛ c) x = BComb∘Comb c x
Comb∘BComb (c₀ ◎ c₁) x =
cong (evalBComb c₀) (Comb∘BComb c₁ (evalComb c₀ x)) ∘ Comb∘BComb c₀ x
Comb∘BComb (c₀ ⊕ c₁) (inj₁ x) = cong inj₁ (Comb∘BComb c₀ x)
Comb∘BComb (c₀ ⊕ c₁) (inj₂ y) = cong inj₂ (Comb∘BComb c₁ y)
Comb∘BComb (c₀ ⊗ c₁) (x , y) = cong₂ _,_ (Comb∘BComb c₀ x) (Comb∘BComb c₁ y)
BComb∘Comb : {a b : FT} → (c : a ⇛ b) → ∀ x → evalComb c (evalBComb c x) ≡ x
BComb∘Comb unite₊⇛ x = refl
BComb∘Comb uniti₊⇛ (inj₁ ())
BComb∘Comb uniti₊⇛ (inj₂ y) = refl
BComb∘Comb swap₊⇛ (inj₁ x) = refl
BComb∘Comb swap₊⇛ (inj₂ y) = refl
BComb∘Comb assocl₊⇛ (inj₁ (inj₁ x)) = refl
BComb∘Comb assocl₊⇛ (inj₁ (inj₂ y)) = refl
BComb∘Comb assocl₊⇛ (inj₂ y) = refl
BComb∘Comb assocr₊⇛ (inj₁ x) = refl
BComb∘Comb assocr₊⇛ (inj₂ (inj₁ x)) = refl
BComb∘Comb assocr₊⇛ (inj₂ (inj₂ y)) = refl
BComb∘Comb unite⋆⇛ x = refl
BComb∘Comb uniti⋆⇛ (tt , proj₂) = refl
BComb∘Comb swap⋆⇛ (proj₁ , proj₂) = refl
BComb∘Comb assocl⋆⇛ ((proj₁ , proj₂) , proj₃) = refl
BComb∘Comb assocr⋆⇛ (proj₁ , proj₂ , proj₃) = refl
BComb∘Comb distz⇛ ()
BComb∘Comb factorz⇛ (() , _)
BComb∘Comb dist⇛ (inj₁ (proj₁ , proj₂)) = refl
BComb∘Comb dist⇛ (inj₂ (proj₁ , proj₂)) = refl
BComb∘Comb factor⇛ (inj₁ x , proj₂) = refl
BComb∘Comb factor⇛ (inj₂ y , proj₂) = refl
BComb∘Comb id⇛ x = refl
BComb∘Comb (sym⇛ c) x = Comb∘BComb c x
BComb∘Comb (c₀ ◎ c₁) x =
cong (evalComb c₁) (BComb∘Comb c₀ (evalBComb c₁ x)) ∘ BComb∘Comb c₁ x
BComb∘Comb (c ⊕ c₁) (inj₁ x) = cong inj₁ (BComb∘Comb c x)
BComb∘Comb (c ⊕ c₁) (inj₂ y) = cong inj₂ (BComb∘Comb c₁ y)
BComb∘Comb (c ⊗ c₁) (x , y) = cong₂ _,_ (BComb∘Comb c x) (BComb∘Comb c₁ y)
-----------------------------------------------------------------------------------
-- evaluate the alternative interpretation; A needs to be a pointed type.
mutual
evalComb′ : {a b : FT} {A : Set} {pt : A} → a ⇛ b → ⟦ a ⟧′ A → ⟦ b ⟧′ A
evalComb′ unite₊⇛ (inj₁ ())
evalComb′ unite₊⇛ (inj₂ y) = y
evalComb′ uniti₊⇛ x = inj₂ x
evalComb′ swap₊⇛ (inj₁ x) = inj₂ x
evalComb′ swap₊⇛ (inj₂ y) = inj₁ y
evalComb′ assocl₊⇛ (inj₁ x) = inj₁ (inj₁ x)
evalComb′ assocl₊⇛ (inj₂ (inj₁ x)) = inj₁ (inj₂ x)
evalComb′ assocl₊⇛ (inj₂ (inj₂ y)) = inj₂ y
evalComb′ assocr₊⇛ (inj₁ (inj₁ x)) = inj₁ x
evalComb′ assocr₊⇛ (inj₁ (inj₂ y)) = inj₂ (inj₁ y)
evalComb′ assocr₊⇛ (inj₂ y) = inj₂ (inj₂ y)
evalComb′ unite⋆⇛ (_ , x) = x
evalComb′ {pt = a} uniti⋆⇛ x = a , x
evalComb′ swap⋆⇛ (x , y) = y , x
evalComb′ assocl⋆⇛ (x , y , z) = (x , y) , z
evalComb′ assocr⋆⇛ ((x , y) , z) = x , y , z
evalComb′ distz⇛ (() , _)
evalComb′ factorz⇛ ()
evalComb′ dist⇛ (inj₁ x , z) = inj₁ (x , z)
evalComb′ dist⇛ (inj₂ y , z) = inj₂ (y , z)
evalComb′ factor⇛ (inj₁ (x , y)) = inj₁ x , y
evalComb′ factor⇛ (inj₂ (x , y)) = inj₂ x , y
evalComb′ id⇛ x = x
evalComb′ {pt = a} (sym⇛ c) x = evalBComb′ {pt = a} c x
evalComb′ {pt = a} (c₀ ◎ c₁) x = evalComb′ {pt = a} c₁ (evalComb′ {pt = a} c₀ x)
evalComb′ {pt = a} (c₀ ⊕ c₁) (inj₁ x) = inj₁ (evalComb′ {pt = a} c₀ x)
evalComb′ {pt = a} (c₀ ⊕ c₁) (inj₂ y) = inj₂ (evalComb′ {pt = a} c₁ y)
evalComb′ {pt = a} (c₀ ⊗ c₁) (x , y) = evalComb′ {pt = a} c₀ x , evalComb′ {pt = a} c₁ y
evalBComb′ : {a b : FT} {A : Set} {pt : A} → a ⇛ b → ⟦ b ⟧′ A → ⟦ a ⟧′ A
evalBComb′ unite₊⇛ x = inj₂ x
evalBComb′ uniti₊⇛ (inj₁ ())
evalBComb′ uniti₊⇛ (inj₂ y) = y
evalBComb′ swap₊⇛ (inj₁ x) = inj₂ x
evalBComb′ swap₊⇛ (inj₂ y) = inj₁ y
evalBComb′ assocl₊⇛ (inj₁ (inj₁ x)) = inj₁ x
evalBComb′ assocl₊⇛ (inj₁ (inj₂ y)) = inj₂ (inj₁ y)
evalBComb′ assocl₊⇛ (inj₂ y) = inj₂ (inj₂ y)
evalBComb′ assocr₊⇛ (inj₁ x) = inj₁ (inj₁ x)
evalBComb′ assocr₊⇛ (inj₂ (inj₁ x)) = inj₁ (inj₂ x)
evalBComb′ assocr₊⇛ (inj₂ (inj₂ y)) = inj₂ y
evalBComb′ {pt = a} unite⋆⇛ x = a , x
evalBComb′ uniti⋆⇛ (_ , y) = y
evalBComb′ swap⋆⇛ (x , y) = y , x
evalBComb′ assocl⋆⇛ ((x , y) , z) = x , y , z
evalBComb′ assocr⋆⇛ (x , y , z) = (x , y) , z
evalBComb′ distz⇛ ()
evalBComb′ factorz⇛ (() , _)
evalBComb′ dist⇛ (inj₁ (x , y)) = inj₁ x , y
evalBComb′ dist⇛ (inj₂ (x , y)) = inj₂ x , y
evalBComb′ factor⇛ (inj₁ x , z) = inj₁ (x , z)
evalBComb′ factor⇛ (inj₂ y , z) = inj₂ (y , z)
evalBComb′ id⇛ x = x
evalBComb′ {pt = a} (sym⇛ c) x = evalComb′ {pt = a} c x
evalBComb′ {pt = a} (c₀ ◎ c₁) x = evalBComb′ {pt = a} c₀ (evalBComb′ {pt = a} c₁ x)
evalBComb′ {pt = a} (c₀ ⊕ c₁) (inj₁ x) = inj₁ (evalBComb′ {pt = a} c₀ x)
evalBComb′ {pt = a} (c₀ ⊕ c₁) (inj₂ y) = inj₂ (evalBComb′ {pt = a} c₁ y)
evalBComb′ {pt = a} (c₀ ⊗ c₁) (x , y) = evalBComb′ {pt = a} c₀ x , evalBComb′ {pt = a} c₁ y
---
SWAP12 SWAP23 SWAP13 : PLUS ONE (PLUS ONE ONE) ⇛ PLUS ONE (PLUS ONE ONE)
SWAP12 = assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛
SWAP23 = id⇛ ⊕ swap₊⇛
SWAP13 = SWAP23 ◎ SWAP12 ◎ SWAP23
x121 = evalComb SWAP12 (inj₁ tt) -- 0 -> 1
x122 = evalComb SWAP12 (inj₂ (inj₁ tt)) -- 1 -> 0
x123 = evalComb SWAP12 (inj₂ (inj₂ tt)) -- 2 -> 2
x231 = evalComb SWAP23 (inj₁ tt) -- 0 -> 0
x232 = evalComb SWAP23 (inj₂ (inj₁ tt)) -- 1 -> 2
x233 = evalComb SWAP23 (inj₂ (inj₂ tt)) -- 2 -> 1
x131 = evalComb SWAP13 (inj₁ tt) -- 0 -> 2
x132 = evalComb SWAP13 (inj₂ (inj₁ tt)) -- 1 -> 1
x133 = evalComb SWAP13 (inj₂ (inj₂ tt)) -- 2 -> 0
| {
"alphanum_fraction": 0.5810546875,
"avg_line_length": 41.3273542601,
"ext": "agda",
"hexsha": "a8b912a97a9eb9378e28391e56d6ff120208bbca",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/Eval.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/Eval.agda",
"max_line_length": 93,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/Eval.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4735,
"size": 9216
} |
open import Formalization.PredicateLogic.Signature
module Formalization.PredicateLogic.Minimal.NaturalDeduction.NegativeTranslations (𝔏 : Signature) where
open Signature(𝔏)
open import Data.Either as Either using (Left ; Right)
open import Data.ListSized using (List)
import Logic.Propositional as Meta
import Logic.Predicate as Meta
import Lvl
open import Formalization.PredicateLogic.Minimal.NaturalDeduction (𝔏)
import Formalization.PredicateLogic.Classical.NaturalDeduction
private module Classical = Formalization.PredicateLogic.Classical.NaturalDeduction (𝔏)
open import Formalization.PredicateLogic.Syntax(𝔏)
open import Formalization.PredicateLogic.Syntax.NegativeTranslations(𝔏)
open import Formalization.PredicateLogic.Syntax.Substitution(𝔏)
open import Functional using (_∘_ ; _∘₂_ ; _∘₃_ ; _∘₄_ ; swap ; _←_)
open import Numeral.Finite
open import Numeral.Natural
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇] ; map ; unmap) renaming (•_ to · ; _≡_ to _≡ₛ_)
open import Structure.Relator
open import Type
-- TODO: Move this module
module _ where
private variable ℓ : Lvl.Level
private variable T A B : Type{ℓ}
private variable S S₁ S₂ : PredSet{ℓ}(T)
private variable f : A → B
private variable x : T
postulate map-preserves-union : (map f(S₁ ∪ S₂) ⊆ ((map f(S₁)) ∪ (map f(S₂))))
postulate map-preserves-singleton : (map f(S₁ ∪ S₂) ⊆ ((map f(S₁)) ∪ (map f(S₂))))
postulate map-preserves-union-singleton : (map f(S ∪ · x) ⊆ ((map f(S)) ∪ ·(f(x))))
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable args n vars : ℕ
private variable Γ Γ₁ Γ₂ : PredSet{ℓ}(Formula(vars))
private variable φ ψ γ φ₁ ψ₁ γ₁ φ₂ ψ₂ γ₂ φ₃ ψ₃ φ₄ ψ₄ φ₅ ψ₅ δ₁ δ₂ : Formula(vars)
private variable p : Prop(args)
private variable x : List(Term(vars))(args)
[⊢]-functionₗ : (Γ₁ ≡ₛ Γ₂) → ((Γ₁ ⊢_) ≡ₛ (Γ₂ ⊢_))
[⊢]-functionₗ Γ₁Γ₂ = Meta.[↔]-intro (weaken (Meta.[↔]-to-[←] Γ₁Γ₂)) (weaken (Meta.[↔]-to-[→] Γ₁Γ₂))
[⊢][→]-elim : ((Γ ∪ · φ) ⊢ ψ) → ((Γ ⊢ φ) → (Γ ⊢ ψ))
[⊢][→]-elim Γφψ Γφ = [∨]-elim Γφψ Γφψ ([∨]-introₗ Γφ)
[⟶]-intro-inverse : (Γ ⊢ (φ ⟶ ψ)) → ((Γ ∪ · φ) ⊢ ψ)
[⟶]-intro-inverse p = [⟶]-elim (direct (Right [≡]-intro)) (weaken-union p)
weaken-closure-union : (((Γ₁ ⊢_) ∪ Γ₂) ⊢ φ) → ((((Γ₁ ∪ Γ₂) ⊢_)) ⊢ φ)
weaken-closure-union {Γ₁ = Γ₁}{Γ₂ = Γ₂}{φ = φ} = weaken sub where
sub : ((Γ₁ ⊢_) ∪ Γ₂) ⊆ ((Γ₁ ∪ Γ₂) ⊢_)
sub (Left p) = weaken-union p
sub (Right p) = direct (Right p)
{-
assume-closure : ((Γ ⊢_) ⊢ φ) → (Γ ⊢ φ)
assume-closure (direct p) = p
assume-closure [⊤]-intro = [⊤]-intro
assume-closure ([∧]-intro p q) = [∧]-intro (assume-closure p) (assume-closure q)
assume-closure ([∧]-elimₗ p) = [∧]-elimₗ (assume-closure p)
assume-closure ([∧]-elimᵣ p) = [∧]-elimᵣ (assume-closure p)
assume-closure ([∨]-introₗ p) = [∨]-introₗ (assume-closure p)
assume-closure ([∨]-introᵣ p) = [∨]-introᵣ (assume-closure p)
assume-closure ([∨]-elim p q r) = [∨]-elim {!assume-closure(weaken-closure-union p)!} ([⟶]-elim (direct(Right [≡]-intro)) {!!}) (assume-closure r)
assume-closure ([⟶]-intro p) = [⟶]-intro (assume-closure {!weaken-closure-union p!})
assume-closure ([⟶]-elim p q) = [⟶]-elim (assume-closure p) (assume-closure q)
assume-closure ([Ɐ]-intro p) = [Ɐ]-intro (assume-closure p)
assume-closure ([Ɐ]-elim p) = [Ɐ]-elim (assume-closure p)
assume-closure ([∃]-intro p) = [∃]-intro (assume-closure p)
assume-closure ([∃]-elim p q) = [∃]-elim (assume-closure {!!}) (assume-closure q)
-}
-- 2.1.8B1
[¬¬]-intro-[⟶] : (Γ ⊢ (φ ⟶ (¬¬ φ)))
[¬¬]-intro-[⟶] = [⟶]-intro ([¬¬]-intro (direct (Right [≡]-intro)))
-- 2.1.8.A1
[⟶]-const : Γ ⊢ (φ ⟶ ψ ⟶ φ)
[⟶]-const = [⟶]-intro ([⟶]-intro (direct (Left (Right [≡]-intro))))
[⟶]-refl : Γ ⊢ (φ ⟶ φ)
[⟶]-refl = [⟶]-intro (direct (Right [≡]-intro))
[⟷]-refl : Γ ⊢ (φ ⟷ φ)
[⟷]-refl = [⟷]-intro (direct (Right [≡]-intro)) (direct (Right [≡]-intro))
[⟶]-trans : (Γ ⊢ ((φ ⟶ ψ) ⟶ (ψ ⟶ γ) ⟶ (φ ⟶ γ)))
[⟶]-trans = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) (direct (Left (Left (Right [≡]-intro))))) (direct (Left (Right [≡]-intro))))))
[⟶]-contrapositiveᵣ : (Γ ⊢ (φ ⟶ ψ) ⟶ ((¬ φ) ⟵ (¬ ψ)))
[⟶]-contrapositiveᵣ = [⟶]-trans
[⟶]-double-contrapositiveᵣ : (Γ ⊢ (φ ⟶ ψ) ⟶ ((¬¬ φ) ⟶ (¬¬ ψ)))
[⟶]-double-contrapositiveᵣ = [⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) [⟶]-contrapositiveᵣ) [⟶]-contrapositiveᵣ)
[⟶]-elim₂ : (Γ ⊢ φ₁) → (Γ ⊢ φ₂) → (Γ ⊢ (φ₁ ⟶ φ₂ ⟶ ψ)) → (Γ ⊢ ψ)
[⟶]-elim₂ = swap(_∘_) [⟶]-elim ∘ (swap(_∘_) ∘ [⟶]-elim)
[⟶]-elim₃ : (Γ ⊢ φ₁) → (Γ ⊢ φ₂) → (Γ ⊢ φ₃) → (Γ ⊢ (φ₁ ⟶ φ₂ ⟶ φ₃ ⟶ ψ)) → (Γ ⊢ ψ)
[⟶]-elim₃ = swap(_∘_) [⟶]-elim ∘₂ (swap(_∘_) ∘₂ [⟶]-elim₂)
[⟶]-elim₄ : (Γ ⊢ φ₁) → (Γ ⊢ φ₂) → (Γ ⊢ φ₃) → (Γ ⊢ φ₄) → (Γ ⊢ (φ₁ ⟶ φ₂ ⟶ φ₃ ⟶ φ₄ ⟶ ψ)) → (Γ ⊢ ψ)
[⟶]-elim₄ = swap(_∘_) [⟶]-elim ∘₃ (swap(_∘_) ∘₃ [⟶]-elim₃)
[⟶]-elim₅ : (Γ ⊢ φ₁) → (Γ ⊢ φ₂) → (Γ ⊢ φ₃) → (Γ ⊢ φ₄) → (Γ ⊢ φ₅) → (Γ ⊢ (φ₁ ⟶ φ₂ ⟶ φ₃ ⟶ φ₄ ⟶ φ₅ ⟶ ψ)) → (Γ ⊢ ψ)
[⟶]-elim₅ = swap(_∘_) [⟶]-elim ∘₄ (swap(_∘_) ∘₄ [⟶]-elim₄)
-- 2.1.8B2
[¬¬¬]-elim : Γ ⊢ ((¬ ¬ ¬ φ) ⟶ (¬ φ))
[¬¬¬]-elim = [⟶]-intro ([⟶]-intro ([⟶]-elim ([¬¬]-intro (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro)))))
[∨]-introₗ-by-[¬∧] : Γ ⊢ ((¬ φ) ⟶ ¬(φ ∧ ψ))
[∨]-introₗ-by-[¬∧] = [⟶]-intro ([⟶]-intro ([⟶]-elim ([∧]-elimₗ (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro)))))
[∨]-introᵣ-by-[¬∧] : Γ ⊢ ((¬ ψ) ⟶ ¬(φ ∧ ψ))
[∨]-introᵣ-by-[¬∧] = [⟶]-intro ([⟶]-intro ([⟶]-elim ([∧]-elimᵣ (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro)))))
[∨]-introₗ-by-[¬¬∧¬] : Γ ⊢ (φ ⟶ ¬((¬ φ) ∧ (¬ ψ)))
[∨]-introₗ-by-[¬¬∧¬] = [⟶]-intro ([⟶]-intro ([⟶]-elim (direct (Left (Right [≡]-intro))) ([∧]-elimₗ (direct (Right [≡]-intro)))))
[∨]-introᵣ-by-[¬¬∧¬] : Γ ⊢ (ψ ⟶ ¬((¬ φ) ∧ (¬ ψ)))
[∨]-introᵣ-by-[¬¬∧¬] = [⟶]-intro ([⟶]-intro ([⟶]-elim (direct (Left (Right [≡]-intro))) ([∧]-elimᵣ (direct (Right [≡]-intro)))))
[∃]-intro-by-[¬Ɐ] : ∀{t} → (Γ ⊢ ((¬(substitute0 t φ)) ⟶ ¬(Ɐ φ)))
[∃]-intro-by-[¬Ɐ] = [⟶]-intro ([⟶]-intro ([⟶]-elim ([Ɐ]-elim (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro)))))
[∃]-intro-by-[¬Ɐ¬] : ∀{t} → (Γ ⊢ ((substitute0 t φ) ⟶ ¬(Ɐ(¬ φ))))
[∃]-intro-by-[¬Ɐ¬] = [⟶]-intro ([⟶]-intro ([⟶]-elim (direct (Left (Right [≡]-intro))) ([Ɐ]-elim (direct (Right [≡]-intro)))))
[∧]-map : Γ ⊢ ((φ₁ ⟶ φ₂) ⟶ (ψ₁ ⟶ ψ₂) ⟶ ((φ₁ ∧ ψ₁) ⟶ (φ₂ ∧ ψ₂)))
[∧]-map = [⟶]-intro ([⟶]-intro ([⟶]-intro ([∧]-intro ([⟶]-elim ([∧]-elimₗ (direct (Right [≡]-intro))) (direct (Left (Left (Right [≡]-intro))))) ([⟶]-elim ([∧]-elimᵣ (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro)))))))
[∨]-map : Γ ⊢ ((φ₁ ⟶ φ₂) ⟶ (ψ₁ ⟶ ψ₂) ⟶ ((φ₁ ∨ ψ₁) ⟶ (φ₂ ∨ ψ₂)))
[∨]-map = [⟶]-intro ([⟶]-intro ([⟶]-intro ([∨]-elim ([∨]-introₗ ([⟶]-intro-inverse (direct (Left (Left (Right [≡]-intro)))))) ([∨]-introᵣ ([⟶]-intro-inverse (direct (Left (Right [≡]-intro))))) (direct (Right [≡]-intro)))))
[Ɐ]-map : Γ ⊢ (Ɐ(φ₁ ⟶ φ₂) ⟶ ((Ɐ φ₁) ⟶ (Ɐ φ₂)))
[Ɐ]-map = [⟶]-intro ([⟶]-intro ([Ɐ]-intro ([⟶]-elim ([Ɐ]-elim (direct (Right [≡]-intro))) ([Ɐ]-elim(direct (Left (Right [≡]-intro)))))))
[⟶]-map : Γ ⊢ ((φ₁ ⟵ φ₂) ⟶ (ψ₁ ⟶ ψ₂) ⟶ ((φ₁ ⟶ ψ₁) ⟶ (φ₂ ⟶ ψ₂)))
[⟶]-map = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) (direct (Left (Left (Left (Right [≡]-intro)))))) (direct (Left (Right [≡]-intro)))) (direct (Left (Left (Right [≡]-intro))))))))
[⟶]-map₂ : Γ ⊢ ((φ₁ ⟵ φ₂) ⟶ (ψ₁ ⟵ ψ₂) ⟶ (γ₁ ⟶ γ₂) ⟶ ((φ₁ ⟶ ψ₁ ⟶ γ₁) ⟶ (φ₂ ⟶ ψ₂ ⟶ γ₂)))
[⟶]-map₂ = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim₂ (direct (Left (Left (Right [≡]-intro)))) ([⟶]-elim₂ (direct (Left (Right [≡]-intro))) (direct (Right [≡]-intro)) [⟶]-map) [⟶]-map)))
[⟶]-map₃ : Γ ⊢ ((φ₁ ⟵ φ₂) ⟶ (ψ₁ ⟵ ψ₂) ⟶ (γ₁ ⟵ γ₂) ⟶ (δ₁ ⟶ δ₂) ⟶ ((φ₁ ⟶ ψ₁ ⟶ γ₁ ⟶ δ₁) ⟶ (φ₂ ⟶ ψ₂ ⟶ γ₂ ⟶ δ₂)))
[⟶]-map₃ = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim₃ (direct (Left (Left (Left (Right [≡]-intro))))) (direct (Left (Left (Right [≡]-intro)))) ([⟶]-elim₂ (direct (Left (Right [≡]-intro))) (direct (Right [≡]-intro)) [⟶]-map) [⟶]-map₂))))
[¬]-map : Γ ⊢ ((φ ⟵ ψ) ⟶ (¬ φ) ⟶ (¬ ψ))
[¬]-map = [⟶]-contrapositiveᵣ
[⟶]-trans₂ : (Γ ⊢ ((φ₁ ⟶ φ₂ ⟶ ψ) ⟶ (ψ ⟶ γ) ⟶ (φ₁ ⟶ φ₂ ⟶ γ)))
[⟶]-trans₂ = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim₂ (direct (Left (Right [≡]-intro))) (direct (Right [≡]-intro)) (direct (Left (Left (Left (Right [≡]-intro)))))) (direct (Left (Left (Right [≡]-intro))))))))
-- 2.1.8B3
[¬¬]-preserve-[⟶] : Γ ⊢ (¬¬(φ ⟶ ψ) ⟶ ((¬¬ φ) ⟶ (¬¬ ψ)))
[¬¬]-preserve-[⟶] = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) ([⟶]-elim (direct(Right [≡]-intro)) [⟶]-double-contrapositiveᵣ)) ([¬¬]-intro (direct (Left (Right [≡]-intro)))))) (direct (Left (Left (Right [≡]-intro)))))))
-- 2.1.8B4
[¬¬]-preserve-[∧] : Γ ⊢ (¬¬(φ ∧ ψ) ⟷ ((¬¬ φ) ∧ (¬¬ ψ)))
[¬¬]-preserve-[∧] {Γ = Γ}{φ = φ} =
[⟷]-intro
([⟶]-intro ([⟶]-elim ([⟶]-intro ([⟶]-elim ([⟶]-intro ([⟶]-elim ([∧]-intro (direct (Left (Right [≡]-intro))) (direct (Right [≡]-intro))) (direct (Left (Left (Right [≡]-intro)))))) ([∧]-elimᵣ (direct (Left (Left (Right [≡]-intro))))))) ([∧]-elimₗ (direct (Left (Right [≡]-intro))))))
([∧]-intro
([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) [∨]-introₗ-by-[¬∧]) (direct (Left (Right [≡]-intro)))))
([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) [∨]-introᵣ-by-[¬∧]) (direct (Left (Right [≡]-intro)))))
)
-- 2.1.8B5
[¬]-preserve-[∨][∧] : Γ ⊢ (¬(φ ∨ ψ) ⟷ ((¬ φ) ∧ (¬ ψ)))
[¬]-preserve-[∨][∧] =
[⟷]-intro
([⟶]-intro ([∨]-elim
([⟶]-elim (direct (Right [≡]-intro)) ([∧]-elimₗ (direct (Left (Left (Right [≡]-intro))))))
([⟶]-elim (direct (Right [≡]-intro)) ([∧]-elimᵣ (direct (Left (Left (Right [≡]-intro))))))
(direct (Right [≡]-intro))
))
([∧]-intro
([⟶]-intro ([⟶]-elim ([∨]-introₗ (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro)))))
([⟶]-intro ([⟶]-elim ([∨]-introᵣ (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro)))))
)
-- 2.1.8B6
[¬¬]-preserve-[Ɐ] : Γ ⊢ (¬¬(Ɐ φ) ⟶ (Ɐ(¬¬ φ)))
[¬¬]-preserve-[Ɐ] = [⟶]-intro ([Ɐ]-intro ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) [∃]-intro-by-[¬Ɐ]) (direct (Left (Right [≡]-intro))))))
[¬]-preserve-[∃][Ɐ] : Γ ⊢ (¬(∃ φ) ⟷ (Ɐ(¬ φ)))
[¬]-preserve-[∃][Ɐ] =
[⟷]-intro
([⟶]-intro ([∃]-elim ([⟶]-intro-inverse ([Ɐ]-elim (direct (Left (Right [≡]-intro))))) (direct (Right [≡]-intro))))
([Ɐ]-intro ([⟶]-intro ([⟶]-elim ([∃]-intro (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro))))))
open import Lang.Instance
-- 2.3.1
data NegativeFragment : Formula(vars) → Type{ℓₚ Lvl.⊔ ℓₒ} where
atom : NegativeFragment(¬(p $ x))
bottom : NegativeFragment{vars}(⊥)
top : NegativeFragment{vars}(⊤)
and : NegativeFragment(φ) → NegativeFragment(ψ) → NegativeFragment(φ ∧ ψ)
impl : NegativeFragment(φ) → NegativeFragment(ψ) → NegativeFragment(φ ⟶ ψ)
all : (∀{t} → NegativeFragment(substitute0 t φ)) → NegativeFragment(Ɐ φ)
pattern neg p = NegativeFragment.impl p bottom
instance _ = \{vars} {p}{args}{x} → atom{vars}{p = p}{args}{x = x}
instance _ = \{vars} → bottom{vars}
instance _ = \{vars} → top{vars}
instance _ = \{vars} {φ} ⦃ neg-φ ⦄ {ψ} ⦃ neg-ψ ⦄ → and{vars}{φ = φ}{ψ = ψ} neg-φ neg-ψ
instance _ = \{vars} {φ} ⦃ neg-φ ⦄ {ψ} ⦃ neg-ψ ⦄ → impl{vars}{φ = φ}{ψ = ψ} neg-φ neg-ψ
instance _ = \{vars} {φ} ⦃ neg-φ : ∀{_} → _ ⦄ → all{vars}{φ = φ} (\{t} → neg-φ{t})
-- 2.3.2
[¬¬]-elim-on-negativeFragment : NegativeFragment(φ) → (Γ ⊢ ((¬¬ φ) ⟶ φ))
[¬¬]-elim-on-negativeFragment atom = [¬¬¬]-elim
[¬¬]-elim-on-negativeFragment bottom = [¬¬]-intro [⟶]-refl
[¬¬]-elim-on-negativeFragment top = [⟶]-intro [⊤]-intro
[¬¬]-elim-on-negativeFragment (and negφ negψ) =
[⟶]-intro ([∧]-intro
([⟶]-elim ([∧]-elimₗ([⟷]-elimᵣ (direct (Right [≡]-intro)) [¬¬]-preserve-[∧])) ([¬¬]-elim-on-negativeFragment negφ))
([⟶]-elim ([∧]-elimᵣ([⟷]-elimᵣ (direct (Right [≡]-intro)) [¬¬]-preserve-[∧])) ([¬¬]-elim-on-negativeFragment negψ))
)
[¬¬]-elim-on-negativeFragment (impl negφ negψ) =
[⟶]-intro ([⟶]-intro ([⟶]-elim
([⟶]-elim₂ (direct (Left (Right [≡]-intro))) ([¬¬]-intro (direct (Right [≡]-intro))) [¬¬]-preserve-[⟶])
([¬¬]-elim-on-negativeFragment negψ)
))
[¬¬]-elim-on-negativeFragment (all negφ) = [⟶]-intro ([Ɐ]-intro ([⟶]-elim ([⟶]-intro ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) [∃]-intro-by-[¬Ɐ]) (direct (Left (Right [≡]-intro))))) ([¬¬]-elim-on-negativeFragment negφ)))
Stable : ∀{ℓ}{vars} → Formula(vars) → Type
Stable{ℓ = ℓ} (φ) = ∀{Γ : PredSet{ℓ}(_)} → (Γ ⊢ (¬¬ φ ⟶ φ))
[¬]-stability : Stable{ℓ}(¬ φ)
[¬]-stability = [¬¬¬]-elim
-- [∨]-stability : Stable(φ) → Stable(ψ) → Stable{ℓ}(φ ∨ ψ)
-- [∨]-stability sφ sψ = [⟶]-intro ([∨]-elim ([∨]-introₗ {!!}) ([∨]-introᵣ {!!}) {!!})
[∨]-elim-by-[¬∧] : Stable(φ) → Stable(ψ) → Stable(γ) → (Γ ⊢ (((¬ φ) ⟶ γ) ⟶ ((¬ ψ) ⟶ γ) ⟶ ¬(φ ∧ ψ) ⟶ γ))
[∨]-elim-by-[¬∧] negφ negψ negγ = [⟶]-intro ([⟶]-intro ([⟶]-intro ([⟶]-elim ([⟶]-intro ([⟶]-elim ([⟶]-elim₃ negφ negψ ([∧]-intro ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Left (Right [≡]-intro))))) [⟶]-contrapositiveᵣ)) ([⟶]-elim (direct (Right [≡]-intro)) ([⟶]-elim (direct (Left (Left (Right [≡]-intro)))) [⟶]-contrapositiveᵣ))) [∧]-map) (direct (Left (Right [≡]-intro))))) negγ)))
[∨]-elim-by-[¬¬∧¬] : (∀{ℓ} → Stable{ℓ}(γ)) → (Γ ⊢ ((φ ⟶ γ) ⟶ (ψ ⟶ γ) ⟶ ¬((¬ φ) ∧ (¬ ψ)) ⟶ γ))
[∨]-elim-by-[¬¬∧¬] negγ = [⟶]-elim₅ (pp negγ) (pp negγ) [⟶]-refl [⟶]-refl ([∨]-elim-by-[¬∧] [¬]-stability [¬]-stability negγ) [⟶]-map₃ where
pp : Stable(ψ) → (Γ ⊢ ((φ ⟶ ψ) ⟶ ((¬¬ φ) ⟶ ψ)))
pp negψ = [⟶]-elim₂ [⟶]-double-contrapositiveᵣ negψ [⟶]-trans₂
[⟷]-to-[⟵] : (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ (φ ⟵ ψ))
[⟷]-to-[⟵] p = [⟶]-intro ([⟷]-elimₗ (direct (Right [≡]-intro)) (weaken-union p))
[⟷]-to-[⟶] : (Γ ⊢ (φ ⟷ ψ)) → (Γ ⊢ (φ ⟶ ψ))
[⟷]-to-[⟶] p = [⟶]-intro ([⟷]-elimᵣ (direct (Right [≡]-intro)) (weaken-union p))
[Ɐ][→]-distributivity : Γ ⊢ (Ɐ(φ ⟶ ψ) ⟶ (Ɐ φ) ⟶ (Ɐ ψ))
[Ɐ][→]-distributivity = [⟶]-intro ([⟶]-intro ([Ɐ]-intro ([⟶]-elim ([Ɐ]-elim (direct (Right [≡]-intro))) ([Ɐ]-elim (direct (Left (Right [≡]-intro)))))))
[¬∃]-to-[∀¬] : Γ ⊢ (¬(∃ φ) ⟶ Ɐ(¬ φ))
[¬∃]-to-[∀¬] = [⟶]-intro ([Ɐ]-intro ([⟶]-intro ([⟶]-elim ([∃]-intro (direct (Right [≡]-intro))) (direct (Left (Right [≡]-intro))))))
[¬Ɐ]-to-[∃¬] : (∀{t} → Stable(substitute0 t φ)) → Stable(∃(¬ φ)) → (Γ ⊢ (¬(Ɐ φ) ⟶ ∃(¬ φ)))
[¬Ɐ]-to-[∃¬] negφ nege = [⟶]-intro ([⟶]-elim ([⟶]-intro ([⟶]-elim ([⟶]-elim₂ ([Ɐ]-intro negφ) ([⟶]-elim (direct (Right [≡]-intro)) [¬∃]-to-[∀¬]) [Ɐ][→]-distributivity) (direct (Left (Right [≡]-intro))))) nege)
{-
test : (Γ ⊢ (¬¬ φ ⟶ φ)) → (Γ ⊢ (¬ Ɐ(¬ φ))) → (Γ ⊢ ∃ φ)
test negφ p = [∃]-elim ([∃]-intro {![⟶]-intro negφ!}) ([⟶]-elim p test2)
-}
[∃]-elim-by-[¬¬∧¬] : (∀{t} → (Γ ∪ ·(substitute0 t φ)) ⊢ ψ) → (Γ ⊢ ¬(Ɐ(¬ φ))) → (Γ ⊢ ψ)
[∃]-elim-by-[¬¬∧¬] p q = [∃]-elim p {!!}
-- test : ∀{t} → (Γ₁ ≡ₛ Γ₂) → (Γ₁ ⊢ φ) → (Γ₂ ⊢ substitute0 t φ)
-- test p = {!p!}
{-
test : ∀{t} → (∀{Γ : PredSet{ℓ}(Formula(𝐒(vars)))} → (Γ ⊢ φ)) → (∀{Γ : PredSet{ℓ}(Formula(vars))} → (Γ ⊢ substitute0 t φ))
test {t = t} Γφ {Γ} with Γφ{unmap(substitute0 t) Γ}
... | direct p = direct p
... | [⊤]-intro = [⊤]-intro
... | [∧]-intro p q = [∧]-intro {!test p!} {!!}
... | [∧]-elimₗ p = {!!}
... | [∧]-elimᵣ p = {!!}
... | [∨]-introₗ p = {!!}
... | [∨]-introᵣ p = {!!}
... | [∨]-elim p q r = {!!}
... | [⟶]-intro p = {!!}
... | [⟶]-elim p q = {!!}
... | [Ɐ]-intro p = {!!}
... | [Ɐ]-elim p = {!!}
... | [∃]-intro p = {!!}
... | [∃]-elim p q = {!!}
-}
substitute0-negativeFragment : NegativeFragment(φ) → ∀{t} → NegativeFragment(substitute0 t φ)
substitute0-negativeFragment atom = atom
substitute0-negativeFragment bottom = bottom
substitute0-negativeFragment top = top
substitute0-negativeFragment (and p q) = and (substitute0-negativeFragment p) (substitute0-negativeFragment q)
substitute0-negativeFragment (impl p q) = impl (substitute0-negativeFragment p) (substitute0-negativeFragment q)
substitute0-negativeFragment (all p) = {!!} -- all (substitute0-negativeFragment p)
ggTrans-negativeFragment : NegativeFragment(ggTrans(φ))
ggTrans-negativeFragment {φ = p $ x} = neg atom
ggTrans-negativeFragment {φ = ⊤} = top
ggTrans-negativeFragment {φ = ⊥} = bottom
ggTrans-negativeFragment {φ = φ ∧ ψ} = and ggTrans-negativeFragment ggTrans-negativeFragment
ggTrans-negativeFragment {φ = φ ∨ ψ} = neg(and(neg ggTrans-negativeFragment) (neg ggTrans-negativeFragment))
ggTrans-negativeFragment {φ = φ ⟶ ψ} = impl ggTrans-negativeFragment ggTrans-negativeFragment
ggTrans-negativeFragment {φ = Ɐ φ} = all (substitute0-negativeFragment (ggTrans-negativeFragment {φ = φ}))
ggTrans-negativeFragment {φ = ∃ φ} = neg (all (neg (substitute0-negativeFragment (ggTrans-negativeFragment {φ = φ}))))
-- [¬¬]-elim-of-koTrans : (Γ ⊢ (¬¬ ggTrans(φ))) ← (Γ ⊢ (ggTrans φ))
ggTrans-substitute0 : ∀{t} → (ggTrans(substitute0 t φ) ≡ substitute0 t (ggTrans φ))
ggTrans-substitute0 {φ = P $ x} = [≡]-intro
ggTrans-substitute0 {φ = ⊤} = [≡]-intro
ggTrans-substitute0 {φ = ⊥} = [≡]-intro
ggTrans-substitute0 {φ = φ ∧ ψ}{t}
rewrite ggTrans-substitute0 {φ = φ}{t}
rewrite ggTrans-substitute0 {φ = ψ}{t}
= [≡]-intro
ggTrans-substitute0 {φ = φ ∨ ψ}{t}
rewrite ggTrans-substitute0 {φ = φ}{t}
rewrite ggTrans-substitute0 {φ = ψ}{t}
= [≡]-intro
ggTrans-substitute0 {φ = φ ⟶ ψ}{t}
rewrite ggTrans-substitute0 {φ = φ}{t}
rewrite ggTrans-substitute0 {φ = ψ}{t}
= [≡]-intro
ggTrans-substitute0 {φ = Ɐ φ}{t} = {!!}
-- rewrite ggTrans-substitute0 {φ = φ}{termVar𝐒 t}
-- = [≡]-intro
ggTrans-substitute0 {φ = ∃ φ}{t} = {!!}
-- rewrite ggTrans-substitute0 {φ = φ}{termVar𝐒 t}
-- = [≡]-intro
koTrans-substitute0 : ∀{t} → (koTrans(substitute0 t φ) ≡ substitute0 t (koTrans φ))
koTrans-substitute0 {φ = f $ x} = [≡]-intro
koTrans-substitute0 {φ = ⊤} = [≡]-intro
koTrans-substitute0 {φ = ⊥} = [≡]-intro
koTrans-substitute0 {φ = φ ∧ ψ}{t}
rewrite koTrans-substitute0 {φ = φ}{t}
rewrite koTrans-substitute0 {φ = ψ}{t}
= [≡]-intro
koTrans-substitute0 {φ = φ ∨ ψ}{t}
rewrite koTrans-substitute0 {φ = φ}{t}
rewrite koTrans-substitute0 {φ = ψ}{t}
= [≡]-intro
koTrans-substitute0 {φ = φ ⟶ ψ}{t}
rewrite koTrans-substitute0 {φ = φ}{t}
rewrite koTrans-substitute0 {φ = ψ}{t}
= [≡]-intro
koTrans-substitute0 {φ = Ɐ φ}{t} = {!!}
-- rewrite koTrans-substitute0 {φ = φ}{termVar𝐒 t}
-- = [≡]-intro
koTrans-substitute0 {φ = ∃ φ}{t} = {!!}
-- rewrite koTrans-substitute0 {φ = φ}{termVar𝐒 t}
-- = [≡]-intro
-- 2.3.4 (ii)
ggTrans-correctnessₗ : (Γ Classical.⊢ φ) ← (map ggTrans Γ ⊢ (ggTrans φ))
ggTrans-correctnessᵣ : (Γ Classical.⊢ φ) → (map ggTrans Γ ⊢ (ggTrans φ))
ggTrans-correctnessᵣ (Classical.direct p) = direct (Meta.[∃]-intro _ ⦃ Meta.[∧]-intro p [≡]-intro ⦄)
ggTrans-correctnessᵣ (Classical.[⊤]-intro) = [⊤]-intro
ggTrans-correctnessᵣ {Γ = Γ}{φ = φ} (Classical.[⊥]-elim p) = [⟶]-elim ([⟶]-intro(weaken{Γ₂ = (map ggTrans Γ) ∪ ·(ggTrans(¬ φ))} map-preserves-union-singleton (ggTrans-correctnessᵣ p))) ([¬¬]-elim-on-negativeFragment ggTrans-negativeFragment)
ggTrans-correctnessᵣ (Classical.[∧]-intro p q) = [∧]-intro (ggTrans-correctnessᵣ p) (ggTrans-correctnessᵣ q)
ggTrans-correctnessᵣ (Classical.[∧]-elimₗ p) = [∧]-elimₗ (ggTrans-correctnessᵣ p)
ggTrans-correctnessᵣ (Classical.[∧]-elimᵣ p) = [∧]-elimᵣ (ggTrans-correctnessᵣ p)
ggTrans-correctnessᵣ (Classical.[∨]-introₗ p) = [⟶]-elim (ggTrans-correctnessᵣ p) [∨]-introₗ-by-[¬¬∧¬]
ggTrans-correctnessᵣ (Classical.[∨]-introᵣ p) = [⟶]-elim (ggTrans-correctnessᵣ p) [∨]-introᵣ-by-[¬¬∧¬]
ggTrans-correctnessᵣ (Classical.[∨]-elim p q r) = [⟶]-elim₃ ([⟶]-intro(weaken map-preserves-union-singleton (ggTrans-correctnessᵣ p))) ([⟶]-intro(weaken map-preserves-union-singleton (ggTrans-correctnessᵣ q))) (ggTrans-correctnessᵣ r) ([∨]-elim-by-[¬¬∧¬] ([¬¬]-elim-on-negativeFragment ggTrans-negativeFragment))
ggTrans-correctnessᵣ (Classical.[⟶]-intro p) = [⟶]-intro (weaken map-preserves-union-singleton (ggTrans-correctnessᵣ p))
ggTrans-correctnessᵣ (Classical.[⟶]-elim p q) = [⟶]-elim (ggTrans-correctnessᵣ p) (ggTrans-correctnessᵣ q)
ggTrans-correctnessᵣ (Classical.[Ɐ]-intro p) = [Ɐ]-intro (substitute₁(_ ⊢_) ggTrans-substitute0 (ggTrans-correctnessᵣ p))
ggTrans-correctnessᵣ (Classical.[Ɐ]-elim p) = substitute₁ₗ(_ ⊢_) ggTrans-substitute0 ([Ɐ]-elim (ggTrans-correctnessᵣ p))
ggTrans-correctnessᵣ (Classical.[∃]-intro p) = [⟶]-elim (substitute₁(_ ⊢_) ggTrans-substitute0 (ggTrans-correctnessᵣ p)) [∃]-intro-by-[¬Ɐ¬]
ggTrans-correctnessᵣ (Classical.[∃]-elim p q) = [⟶]-elim ([⟶]-intro ([⟶]-elim ([Ɐ]-intro ([⟶]-intro ([⟶]-elim (weaken {!map-preserves-union-singleton!} (ggTrans-correctnessᵣ p)) (direct (Left (Right [≡]-intro)))))) (weaken-union (ggTrans-correctnessᵣ q)))) ([¬¬]-elim-on-negativeFragment ggTrans-negativeFragment)
koTrans-stability : Stable{ℓ}(koTrans(φ))
koTrans-stability {φ = f $ x} = [¬¬¬]-elim
koTrans-stability {φ = ⊤} = [⟶]-intro [⊤]-intro
koTrans-stability {φ = ⊥} = [⟶]-intro ([⟶]-elim [⟶]-refl (direct (Right [≡]-intro)))
koTrans-stability {φ = φ ∧ ψ} = [¬¬¬]-elim
koTrans-stability {φ = φ ∨ ψ} = [¬¬¬]-elim
koTrans-stability {φ = φ ⟶ ψ} = [¬¬¬]-elim
koTrans-stability {φ = Ɐ φ} = [¬¬¬]-elim
koTrans-stability {φ = ∃ φ} = [¬¬¬]-elim
{-
koTrans-to-[¬¬] : Γ ⊢ (koTrans(φ) ⟶ (¬¬ φ))
koTrans-to-[¬¬] {φ = f $ x} = [⟶]-refl
koTrans-to-[¬¬] {φ = ⊤} = [¬¬]-intro-[⟶]
koTrans-to-[¬¬] {φ = ⊥} = [¬¬]-intro-[⟶]
koTrans-to-[¬¬] {φ = φ ∧ ψ} = [⟶]-intro ([⟷]-elimₗ ([⟶]-elim₃ koTrans-to-[¬¬] koTrans-to-[¬¬] {!!} [∧]-map) [¬¬]-preserve-[∧])
koTrans-to-[¬¬] {φ = φ ∨ ψ} = {!!}
koTrans-to-[¬¬] {φ = φ ⟶ ψ} = {!!}
koTrans-to-[¬¬] {φ = Ɐ φ} = {!!}
koTrans-to-[¬¬] {φ = ∃ φ} = {!!}
-}
ggTrans-koTransₗ : Γ ⊢ ((ggTrans φ) ⟵ (koTrans φ))
ggTrans-koTransᵣ : Γ ⊢ ((ggTrans φ) ⟶ (koTrans φ))
[∧]-elimₗ-koTrans : (Γ ⊢ (koTrans(φ ∧ ψ) ⟶ koTrans(φ)))
[∧]-elimₗ-koTrans = [⟶]-intro ([∧]-elimₗ ([⟶]-elim₃ koTrans-stability koTrans-stability ([⟷]-elimᵣ (direct (Right [≡]-intro)) [¬¬]-preserve-[∧]) [∧]-map))
[∧]-elimᵣ-koTrans : (Γ ⊢ (koTrans(φ ∧ ψ) ⟶ koTrans(ψ)))
[∧]-elimᵣ-koTrans = [⟶]-intro ([∧]-elimᵣ ([⟶]-elim₃ koTrans-stability koTrans-stability ([⟷]-elimᵣ (direct (Right [≡]-intro)) [¬¬]-preserve-[∧]) [∧]-map))
-- [⟶]-elim-koTrans : (Γ ⊢ (koTrans(φ) ⟶ koTrans(φ ⟶ ψ) ⟶ koTrans(ψ)))
-- [⟶]-intro ([⟶]-elim ([∧]-elimₗ ([⟷]-elimᵣ ([⟶]-intro-inverse {![¬¬]-intro-[⟶]!}) [¬¬]-preserve-[∧])) koTrans-stability)
-- {![∧]-elimₗ(Meta.[↔]-to-[→] [¬¬][∧] Γφψ)!}
-- [¬]-preserve-[∨][∧] : Γ ⊢ (¬(φ ∨ ψ) ⟷ ((¬ φ) ∧ (¬ ψ)))
-- Alternative proof of the (_∧_)-case:
-- [⟶]-intro ([∧]-intro
-- ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) [∧]-elimₗ-koTrans) (weaken-union(ggTrans-koTransₗ {φ = φ})))
-- ([⟶]-elim ([⟶]-elim (direct (Right [≡]-intro)) [∧]-elimᵣ-koTrans) (weaken-union(ggTrans-koTransₗ {φ = ψ})))
-- )
ggTrans-koTransₗ {φ = P $ x} = [⟶]-refl
ggTrans-koTransₗ {φ = ⊤} = [⟶]-refl
ggTrans-koTransₗ {φ = ⊥} = [⟶]-refl
ggTrans-koTransₗ {φ = φ ∧ ψ} = [⟶]-elim₃
([⟶]-elim₂ ([⟷]-to-[⟶] [¬¬]-preserve-[∧]) ([⟶]-elim₂ koTrans-stability koTrans-stability [∧]-map) [⟶]-trans)
[⟶]-refl
([⟶]-elim₂ (ggTrans-koTransₗ {φ = φ}) (ggTrans-koTransₗ {φ = ψ}) [∧]-map)
[⟶]-map
ggTrans-koTransₗ {φ = φ ∨ ψ} = [⟶]-elim₃
([⟶]-elim ([⟷]-to-[⟵] [¬]-preserve-[∨][∧]) [⟶]-contrapositiveᵣ)
[⟶]-refl
([⟶]-elim ([⟶]-elim₂ ([⟶]-elim (ggTrans-koTransₗ {φ = φ}) [¬]-map) ([⟶]-elim (ggTrans-koTransₗ {φ = ψ}) [¬]-map) [∧]-map) [¬]-map)
[⟶]-map
ggTrans-koTransₗ {φ = φ ⟶ ψ} = [⟶]-elim₃
(([⟶]-elim₂ [¬¬]-preserve-[⟶] ([⟶]-elim₂ [¬¬]-intro-[⟶] koTrans-stability [⟶]-map) [⟶]-trans))
[⟶]-refl
(([⟶]-elim₂ (ggTrans-koTransᵣ {φ = φ}) (ggTrans-koTransₗ {φ = ψ}) [⟶]-map))
[⟶]-map
ggTrans-koTransₗ {Γ = Γ}{φ = Ɐ φ} = [⟶]-elim₃
([⟶]-elim₂ [¬¬]-preserve-[Ɐ] ([⟶]-elim ([Ɐ]-intro (substitute₁(\φ → Γ ⊢ ((¬¬ φ) ⟶ φ)) koTrans-substitute0 koTrans-stability)) ([Ɐ]-map {φ₂ = koTrans φ})) [⟶]-trans)
[⟶]-refl
([⟶]-elim ([Ɐ]-intro (substitute₂(\a b → Γ ⊢ (a ⟵ b)) ggTrans-substitute0 koTrans-substitute0 (ggTrans-koTransₗ {φ = substitute0 _ φ}))) [Ɐ]-map)
[⟶]-map
ggTrans-koTransₗ {φ = ∃ φ} = [⟶]-elim₃
([⟶]-elim ([⟷]-to-[⟵] [¬]-preserve-[∃][Ɐ]) [⟶]-contrapositiveᵣ)
[⟶]-refl
([⟶]-elim ([⟶]-elim ([Ɐ]-intro ([⟶]-elim (substitute₂(\a b → _ ⊢ (a ⟵ b)) ggTrans-substitute0 koTrans-substitute0 (ggTrans-koTransₗ {φ = substitute0 _ φ})) [¬]-map)) [Ɐ]-map) [¬]-map)
[⟶]-map
ggTrans-koTransᵣ {φ = P $ x} = [⟶]-refl
ggTrans-koTransᵣ {φ = ⊤} = [⟶]-refl
ggTrans-koTransᵣ {φ = ⊥} = [⟶]-refl
ggTrans-koTransᵣ {φ = φ ∧ ψ} =
[⟶]-intro ([¬¬]-intro ([∧]-intro
([⟶]-elim ([∧]-elimₗ (direct (Right [≡]-intro))) (weaken-union(ggTrans-koTransᵣ {φ = φ})))
([⟶]-elim ([∧]-elimᵣ (direct (Right [≡]-intro))) (weaken-union(ggTrans-koTransᵣ {φ = ψ})))
))
ggTrans-koTransᵣ {φ = φ ∨ ψ} =
[⟶]-intro ([¬¬]-intro ([⟶]-elim₃
{!!}
{!!}
{!direct (Right [≡]-intro)!}
([∨]-elim-by-[¬¬∧¬] {!koTrans-stability!})
))
ggTrans-koTransᵣ {φ = φ ⟶ ψ} =
[⟶]-intro ([¬¬]-intro ([⟶]-intro
([⟶]-elim
([⟶]-elim ([⟵]-elim (direct (Right [≡]-intro)) (weaken-union(weaken-union(ggTrans-koTransₗ {φ = φ})))) (direct (Left (Right [≡]-intro))))
(weaken-union(weaken-union(ggTrans-koTransᵣ {φ = ψ})))
)
))
ggTrans-koTransᵣ {φ = Ɐ φ} = {!!}
ggTrans-koTransᵣ {φ = ∃ φ} = {!!}
| {
"alphanum_fraction": 0.5416272842,
"avg_line_length": 53.1213389121,
"ext": "agda",
"hexsha": "53987dfcaf3772c7d420c46e5b7014f60d1ba6fb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/PredicateLogic/Minimal/NaturalDeduction/NegativeTranslations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/PredicateLogic/Minimal/NaturalDeduction/NegativeTranslations.agda",
"max_line_length": 409,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/PredicateLogic/Minimal/NaturalDeduction/NegativeTranslations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 11733,
"size": 25392
} |
module Cats.Category where
open import Level
import Cats.Category.Base as Base
import Cats.Category.Constructions.CCC as CCC
import Cats.Category.Constructions.Epi as Epi
import Cats.Category.Constructions.Equalizer as Equalizer
import Cats.Category.Constructions.Exponential as Exponential
import Cats.Category.Constructions.Iso as Iso
import Cats.Category.Constructions.Initial as Initial
import Cats.Category.Constructions.Mono as Mono
import Cats.Category.Constructions.Product as Product
import Cats.Category.Constructions.Terminal as Terminal
import Cats.Category.Constructions.Unique as Unique
Category : ∀ lo la l≈ → Set (suc (lo ⊔ la ⊔ l≈))
Category = Base.Category
module Category {lo la l≈} (Cat : Base.Category lo la l≈) where
open Base.Category Cat public
open Epi.Build Cat public
open Equalizer.Build Cat public
open Exponential.Build Cat public
open Initial.Build Cat public
open Iso.Build Cat public
open Mono.Build Cat public
open Product.Build Cat public
open Terminal.Build Cat public
open Unique.Build Cat public
open CCC public using (IsCCC)
open Exponential public using (HasExponentials)
open Initial public using (HasInitial)
open Product public using
( HasProducts ; HasBinaryProducts ; HasFiniteProducts
; HasProducts→HasBinaryProducts
; HasProducts→HasTerminal )
open Terminal public using (HasTerminal)
| {
"alphanum_fraction": 0.8032187271,
"avg_line_length": 31.0681818182,
"ext": "agda",
"hexsha": "b429b8df36c11bce174b4dc51a1f060b5b9e0670",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 310,
"size": 1367
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Polynomials.Multivariate.Equiv.Comp-Poly where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_)
open import Cubical.Data.Vec
open import Cubical.Data.Sigma
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Polynomials.Univariate.Base
open import Cubical.Algebra.Polynomials.Multivariate.Base
open import Cubical.Algebra.Polynomials.Multivariate.Properties
open import Cubical.Algebra.CommRing.Instances.MultivariatePoly
private variable
ℓ ℓ' : Level
module Comp-Poly-nm (A' : CommRing ℓ) (n m : ℕ) where
private
A = fst A'
open CommRingStr (snd A')
module Mr = Nth-Poly-structure A' m
module N+Mr = Nth-Poly-structure A' (n +n m)
module N∘Mr = Nth-Poly-structure (PolyCommRing A' m) n
-----------------------------------------------------------------------------
-- direct sens
N∘M→N+M-b : (v : Vec ℕ n) → Poly A' m → Poly A' (n +n m)
N∘M→N+M-b v = Poly-Rec-Set.f A' m (Poly A' (n +n m)) trunc
0P
(λ v' a → base (v ++ v') a)
_Poly+_
Poly+-assoc
Poly+-Rid
Poly+-comm
(λ v' → base-0P (v ++ v'))
(λ v' a b → base-Poly+ (v ++ v') a b)
N∘M→N+M : Poly (PolyCommRing A' m) n → Poly A' (n +n m)
N∘M→N+M = Poly-Rec-Set.f (PolyCommRing A' m) n (Poly A' (n +n m)) trunc
0P
N∘M→N+M-b
_Poly+_
Poly+-assoc
Poly+-Rid
Poly+-comm
(λ _ → refl)
(λ v a b → refl)
-- -----------------------------------------------------------------------------
-- -- Converse sens
N+M→N∘M : Poly A' (n +n m) → Poly (PolyCommRing A' m) n
N+M→N∘M = Poly-Rec-Set.f A' (n +n m) (Poly (PolyCommRing A' m) n) trunc
0P
(λ v a → let v , v' = sep-vec n m v in
base v (base v' a))
_Poly+_
Poly+-assoc
Poly+-Rid
Poly+-comm
(λ v → (cong (base (fst (sep-vec n m v))) (base-0P (snd (sep-vec n m v)))) ∙ (base-0P (fst (sep-vec n m v))))
λ v a b → base-Poly+ (fst (sep-vec n m v)) (base (snd (sep-vec n m v)) a) (base (snd (sep-vec n m v)) b)
∙ cong (base (fst (sep-vec n m v))) (base-Poly+ (snd (sep-vec n m v)) a b)
-----------------------------------------------------------------------------
-- Section
e-sect : (P : Poly A' (n +n m)) → N∘M→N+M (N+M→N∘M P) ≡ P
e-sect = Poly-Ind-Prop.f A' (n +n m)
(λ P → N∘M→N+M (N+M→N∘M P) ≡ P)
(λ _ → trunc _ _)
refl
(λ v a → cong (λ X → base X a) (sep-vec-id n m v))
(λ {U V} ind-U ind-V → cong₂ _Poly+_ ind-U ind-V)
-----------------------------------------------------------------------------
-- Retraction
e-retr : (P : Poly (PolyCommRing A' m) n) → N+M→N∘M (N∘M→N+M P) ≡ P
e-retr = Poly-Ind-Prop.f (PolyCommRing A' m) n
(λ P → N+M→N∘M (N∘M→N+M P) ≡ P)
(λ _ → trunc _ _)
refl
(λ v → Poly-Ind-Prop.f A' m
(λ P → N+M→N∘M (N∘M→N+M (base v P)) ≡ base v P)
(λ _ → trunc _ _)
(sym (base-0P v))
(λ v' a → cong₂ base (sep-vec-fst n m v v') (cong (λ X → base X a) (sep-vec-snd n m v v')))
(λ {U V} ind-U ind-V → (cong₂ _Poly+_ ind-U ind-V) ∙ (base-Poly+ v U V)))
(λ {U V} ind-U ind-V → cong₂ _Poly+_ ind-U ind-V )
-----------------------------------------------------------------------------
-- Morphism of ring
map-0P : N∘M→N+M (0P) ≡ 0P
map-0P = refl
N∘M→N+M-gmorph : (P Q : Poly (PolyCommRing A' m) n) → N∘M→N+M ( P Poly+ Q) ≡ N∘M→N+M P Poly+ N∘M→N+M Q
N∘M→N+M-gmorph = λ P Q → refl
map-1P : N∘M→N+M (N∘Mr.1P) ≡ N+Mr.1P
map-1P = cong (λ X → base X 1r) (rep-concat n m 0 )
N∘M→N+M-rmorph : (P Q : Poly (PolyCommRing A' m) n) → N∘M→N+M ( P N∘Mr.Poly* Q) ≡ N∘M→N+M P N+Mr.Poly* N∘M→N+M Q
N∘M→N+M-rmorph =
-- Ind P
Poly-Ind-Prop.f (PolyCommRing A' m) n
(λ P → (Q : Poly (PolyCommRing A' m) n) → N∘M→N+M (P N∘Mr.Poly* Q) ≡ (N∘M→N+M P N+Mr.Poly* N∘M→N+M Q))
(λ P p q i Q j → trunc _ _ (p Q) (q Q) i j)
(λ Q → refl)
(λ v → -- Ind Base P
Poly-Ind-Prop.f A' m
(λ P → (Q : Poly (PolyCommRing A' m) n) → N∘M→N+M (base v P N∘Mr.Poly* Q) ≡ (N∘M→N+M (base v P) N+Mr.Poly* N∘M→N+M Q))
(λ P p q i Q j → trunc _ _ (p Q) (q Q) i j)
(λ Q → cong (λ X → N∘M→N+M (X N∘Mr.Poly* Q)) (base-0P v))
(λ v' a → -- Ind Q
Poly-Ind-Prop.f (PolyCommRing A' m) n
(λ Q → N∘M→N+M (base v (base v' a) N∘Mr.Poly* Q) ≡ (N∘M→N+M (base v (base v' a)) N+Mr.Poly* N∘M→N+M Q))
(λ _ → trunc _ _)
(sym (N+Mr.0PRightAnnihilatesPoly (N∘M→N+M (base v (base v' a)))))
(λ w → -- Ind base Q
Poly-Ind-Prop.f A' m
_
(λ _ → trunc _ _)
(sym (N+Mr.0PRightAnnihilatesPoly (N∘M→N+M (base v (base v' a)))))
(λ w' b → cong (λ X → base X (a · b)) (+n-vec-concat n m v w v' w'))
λ {U V} ind-U ind-V → cong (λ X → N∘M→N+M (base v (base v' a) N∘Mr.Poly* X)) (sym (base-Poly+ w U V))
∙ cong₂ (_Poly+_ ) ind-U ind-V
∙ sym (cong (λ X → N∘M→N+M (base v (base v' a)) N+Mr.Poly* N∘M→N+M X) (base-Poly+ w U V)) )
-- End Ind base Q
λ {U V} ind-U ind-V → cong₂ _Poly+_ ind-U ind-V)
-- End Ind Q
λ {U V} ind-U ind-V Q → cong (λ X → N∘M→N+M (X N∘Mr.Poly* Q)) (sym (base-Poly+ v U V))
∙ cong₂ _Poly+_ (ind-U Q) (ind-V Q)
∙ sym (cong (λ X → (N∘M→N+M X) N+Mr.Poly* (N∘M→N+M Q)) (sym (base-Poly+ v U V)) ))
-- End Ind base P
λ {U V} ind-U ind-V Q → cong₂ _Poly+_ (ind-U Q) (ind-V Q)
-- End Ind P
-----------------------------------------------------------------------------
-- Ring Equivalence
module _ (A' : CommRing ℓ) (n m : ℕ) where
open Comp-Poly-nm A' n m
CRE-PolyN∘M-PolyN+M : CommRingEquiv (PolyCommRing (PolyCommRing A' m) n) (PolyCommRing A' (n +n m))
fst CRE-PolyN∘M-PolyN+M = isoToEquiv is
where
is : Iso _ _
Iso.fun is = N∘M→N+M
Iso.inv is = N+M→N∘M
Iso.rightInv is = e-sect
Iso.leftInv is = e-retr
snd CRE-PolyN∘M-PolyN+M = makeIsRingHom map-1P N∘M→N+M-gmorph N∘M→N+M-rmorph
| {
"alphanum_fraction": 0.442386231,
"avg_line_length": 40.0935672515,
"ext": "agda",
"hexsha": "387dd55b5b46723697f5ef166c9f7f649b577c1c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Comp-Poly.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Comp-Poly.agda",
"max_line_length": 144,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/Equiv/Comp-Poly.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2525,
"size": 6856
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties
-- module directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Star.Properties where
open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties
public
{-# WARNING_ON_IMPORT
"Data.Star.Properties was deprecated in v0.16.
Use Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties instead."
#-}
| {
"alphanum_fraction": 0.6028938907,
"avg_line_length": 31.1,
"ext": "agda",
"hexsha": "30b4deb8614d4174e9bfb69d2080e0568687301c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Star/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Star/Properties.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Star/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 110,
"size": 622
} |
------------------------------------------------------------------------
-- The "always true" predicate, □
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Delay-monad.Sized.Always where
open import Prelude
open import Prelude.Size
open import Delay-monad.Sized
open import Delay-monad.Sized.Monad
-- The "always true" predicate, □.
mutual
data □ {a p} {A : Size → Type a} (i : Size) (P : A ∞ → Type p) :
Delay A ∞ → Type (a ⊔ p) where
now : ∀ {x} → P x → □ i P (now x)
later : ∀ {x} → □′ i P (force x) → □ i P (later x)
record □′ {a p} {A : Size → Type a} (i : Size) (P : A ∞ → Type p)
(x : Delay A ∞) : Type (a ⊔ p) where
coinductive
field
force : {j : Size< i} → □ j P x
open □′ public
-- □ is closed, in a certain sense, under bind.
□->>= :
∀ {i a b p q}
{A : Size → Type a} {B : Size → Type b}
{P : A ∞ → Type p} {Q : B ∞ → Type q}
{x : Delay A ∞} {f : ∀ {i} → A i → Delay B i} →
□ i P x → (∀ {x} → P x → □ i Q (f x)) → □ i Q (x >>= f)
□->>= (now P-x) □-f = □-f P-x
□->>= (later □-x) □-f = later λ { .force → □->>= (force □-x) □-f }
| {
"alphanum_fraction": 0.4214103653,
"avg_line_length": 28.0238095238,
"ext": "agda",
"hexsha": "ee3dcdc0f1b4335131bf78d9331e20acf7b30855",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/delay-monad",
"max_forks_repo_path": "src/Delay-monad/Sized/Always.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/delay-monad",
"max_issues_repo_path": "src/Delay-monad/Sized/Always.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/delay-monad",
"max_stars_repo_path": "src/Delay-monad/Sized/Always.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 433,
"size": 1177
} |
open import Prelude
open import Level using (_⊔_; Lift; lift) renaming (suc to ls; zero to lz)
open import Data.String using (String)
open import Data.Maybe using (Maybe; nothing; just)
open import Data.Nat using (_≤_)
module RW.Data.RTrie.Insert
where
open import Relation.Binary.PropositionalEquality
using (inspect; [_])
open import RW.Data.RTrie.Decl
import RW.Data.PMap (RTermᵢ ⊥) as IdxMap
import RW.Data.PMap ℕ as ℕmap
postulate
trie-err : ∀{a}{A : Set a} → String → A
open import RW.Utils.Monads
open Monad {{...}}
open Eq {{...}}
I : ∀{a} → Set a → Set a
I {a} = STₐ {lz} {a} (Σ ℕ (λ _ → Maybe ℕ))
_<$>_ : ∀{a}{A B : Set a} → (A → B) → I A → I B
f <$> ix = ix >>= (return ∘ f)
--------------------
-- Monadic boilerplate
private
getLbl : I (Maybe ℕ)
getLbl = getₐ >>= return ∘ p2
putLbl : ℕ → I Unit
putLbl n = getₐ >>= λ x → putₐ (p1 x , just n)
getCount : I ℕ
getCount = p1 <$> getₐ
putCount : ℕ → I Unit
putCount x = getLbl >>= putₐ ∘ (_,_ x)
++count : I ℕ
++count = getCount <>= (putCount ∘ suc)
CellCtx : Set _
CellCtx = RTrie → Cell
singleton : ∀{a}{A : Set a} → A → List A
singleton x = x ∷ []
applyBRule : Rule → ℕ → Maybe ℕ
applyBRule (Tr m n) k with m ≟-ℕ k
...| yes _ = just n
...| no _ = nothing
applyBRule _ _ = nothing
-- |Makes a new rule *without* checking anything.
-- If the current label is nothing, returns a Gather
-- If the current label is a (just l), return a Tr l.
--
-- Changes the state to the newly created label.
makeRule : I Rule
makeRule = getLbl
>>= λ l → (++count <>= putLbl) -- increments the counter and set's it.
>>= λ c′ → return $ maybe (flip Tr c′) (Gr c′) l
-- |Given a list of rules, which arise from we reaching
-- either a leaf node or a previously bound symbol,
-- will apply one of such rules or create a new one.
--
-- In any case, this will change the current label either
-- to a fresh one or by a transition in the list.
handleRules : List Rule → I (List Rule)
handleRules rs = getLbl >>= maybe (flip l≡just rs) (l≡nothing rs)
where
l≡just : ℕ → List Rule → I (List Rule)
l≡just l [] = singleton <$> makeRule
l≡just l (r ∷ rs) with applyBRule r l
...| just l′ = putLbl l′ >> return (r ∷ rs)
...| nothing = (_∷_ r) <$> l≡just l rs
l≡nothing : List Rule → I (List Rule)
l≡nothing [] = singleton <$> makeRule
l≡nothing ((Gr k) ∷ rs) = putLbl k >> return ((Gr k) ∷ rs)
l≡nothing (r ∷ rs) = _∷_ r <$> l≡nothing rs
-- |Given a cell and a NON-BINDING index, mIdx takes care
-- of finding the trie we need to keep traversing and
-- creating a reconstruction function, for when we
-- finish modifying the mentioned trie.
mIdx : Cell → RTermᵢ ⊥
→ I (CellCtx × RTrie)
-- In the case we are inserting a ivarᵢ, we are going to merge the new btrie,
-- which is going to be a leaf (TODO: why?), in the default branch.
mIdx ((d , mh) , bs) (ivarᵢ _)
= return $ (λ bt → (merge d bt , mh) , bs) , BTrieEmpty
where
merge : RTrie → RTrie → RTrie
merge (Leaf as) (Leaf bs) = Leaf (as ++ bs)
merge _ bt = bt
-- For the more general case, if tid ∉ mh, we add and entry (tid ↦ empty).
-- After, we return mh(tid) and the context that modifies this exact entry.
mIdx ((d , mh) , bs) tid
= let mh′ , prf = IdxMap.alterPrf BTrieEmpty tid mh
in return $ (λ f → (d , IdxMap.insert tid f mh) , bs)
, (IdxMap.lkup' tid mh′ prf)
-- |When we find a binding symbol, however, things can be a bit more tricky.
-- This symbol is either registered, in which case we just add a fresh
-- rule to it, or it is not registered in the map, where we add it with
-- a fresh rule.
mSym : Cell → ℕ
→ I (CellCtx × RTrie)
mSym (mh , bs) tsym with ℕmap.lkup tsym bs
...| nothing = makeRule
>>= λ r → return (const (mh , (tsym , r ∷ []) ∷ bs)
, BTrieEmpty)
...| just rs = handleRules rs
>>= λ r → return (const (mh , ℕmap.insert tsym r bs)
, BTrieEmpty)
-- |𝑴 chooses which traversal function to use.
𝑴 : {A : Set}{{enA : Enum A}}
→ Cell → RTermᵢ A → I (CellCtx × RTrie)
𝑴 {{enum aℕ _}} c tid with toSymbol tid | inspect toSymbol tid
...| nothing | [ prf ] = mIdx c (idx-cast tid prf)
...| just s | _ = maybe (mSym c) enum-err (aℕ s)
where postulate enum-err : I (CellCtx × RTrie)
-- |Insertion of an (opened) term in a cell. Returns the altered cell.
mutual
insCell* : {A : Set}{{enA : Enum A}}
→ List (RTerm A) → List Cell → I (List Cell)
insCell* [] _ = return []
insCell* _ [] = return []
insCell* (t ∷ ts) (b ∷ bs)
= insCell (out t) b >>= λ b′ → (_∷_ b′) <$> insCell* ts bs
-- Variation of insCell*, assuming we're always adding to empty cells.
insCell*ε : {A : Set}{{enA : Enum A}} → List (RTerm A) → I (List Cell)
insCell*ε [] = return []
insCell*ε (t ∷ ts)
= insCell (out t) ((Leaf [] , IdxMap.empty) , [])
>>= λ b → (_∷_ b) <$> insCell*ε ts
{-# TERMINATING #-}
insCell : {A : Set}{{enA : Enum A}}
→ RTermᵢ A × List (RTerm A) → Cell → I Cell
insCell (tid , tr) cell
= 𝑴 cell tid
>>= λ { (c , bt) → insCellAux tid tr bt >>= return ∘ c }
where
-- Note how if tid is a binding symbol, we don't do anything. That's
-- because 𝑴 already took care of adding the rules in the correct place for us.
tr≡[] : {A : Set}{{enA : Enum A}}
→ RTermᵢ A → I RTrie
tr≡[] tid with toSymbol tid
...| nothing = (Leaf ∘ singleton) <$> makeRule
...| _ = return $ Fork []
insCellAux : {A : Set}{{enA : Enum A}}
→ RTermᵢ A → List (RTerm A) → RTrie
→ I RTrie
-- Inserting in a Leaf is impossible...
insCellAux tid _ (Leaf r) = return (Leaf r)
-- If we don't have recursive arguments in the term beeing inserted,
-- we follow by tr≡[]
insCellAux tid [] _ = tr≡[] tid
-- Otherwise we simply add our recursive arguments.
insCellAux tid tr (Fork [])
= Fork <$> insCell*ε tr
insCellAux tid tr (Fork ms)
= Fork <$> insCell* tr ms
-- |Insertion has to begin in a 1-cell fork.
-- This gives some intuition that BTries should contain an arity, somewhere in their type.
ins : {A : Set}{{enA : Enum A}} → RTerm A → RTrie → I RTrie
ins t (Fork (cell ∷ []))
= (Fork ∘ singleton) <$> insCell (out t) cell
ins t (Fork [])
= (Fork ∘ singleton) <$> insCell (out t) ((Leaf [] , IdxMap.empty) , [])
ins t _ = trie-err "Insertion has to begin in a 1-cell fork"
-- Interfacing
{-# TERMINATING #-}
insertTerm : {A : Set}{{enA : Enum A}} → Name → RTerm A → (ℕ × RTrie) → (ℕ × RTrie)
insertTerm d term (n , Leaf r) = trie-err "Can't insert in a leaf"
insertTerm d term (n , bt)
= let bt′ , n′ , lbl = STₐ.run (ins term bt) (n + 1 , nothing)
in maybe′ (λ l′ → l′ , substΣ l′ d bt′)
(trie-err "empty final lbl") lbl
where
open import Data.Maybe using (maybe′)
-- Substitution boilerplate.
sR : ℕ → Name → Rule → Rule
sR k c (Tr m n) with n ≟-ℕ k
...| yes _ = Fr m c
...| no _ = Tr m n
sR _ _ r = r
mutual
sC : ℕ → Name → Cell → Cell
sC k c ((d , mh) , bs)
= (substΣ k c d
, IdxMap.map (substΣ k c) mh)
, ℕmap.map (Prelude.map (sR k c)) bs
substΣ : ℕ → Name → RTrie → RTrie
substΣ k c (Leaf rs) = Leaf (Prelude.map (sR k c) rs)
substΣ k c (Fork ms) = Fork (Prelude.map (sC k c) ms)
| {
"alphanum_fraction": 0.5489151123,
"avg_line_length": 35.8227272727,
"ext": "agda",
"hexsha": "601e17903dfe812bae80c7e91a38013954ab80d2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Data/RTrie/Insert.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Data/RTrie/Insert.agda",
"max_line_length": 93,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Data/RTrie/Insert.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 2608,
"size": 7881
} |
-- Andreas, 2020-03-18, issue 4518, reported by strangeglyph
-- Better error message when parsing of LHS fails
open import Agda.Builtin.Nat using (Nat) -- forgot to import constructors
postulate
foo : Nat
test : Set₁
test with foo
... | zero = Set
... | suc n = Set
-- ERROR:
-- Could not parse the left-hand side test | suc n
-- NEW INFORMATION:
-- Problematic expression: (suc n)
| {
"alphanum_fraction": 0.6948717949,
"avg_line_length": 20.5263157895,
"ext": "agda",
"hexsha": "a864bdea6464f9af3371931d10e78bf69b6571c1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4518.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4518.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4518.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 112,
"size": 390
} |
{-# OPTIONS --without-K --exact-split #-}
module abelian-subgroups where
import abelian-groups
import subgroups
open abelian-groups public
open subgroups public
{- Subsets of abelian groups -}
subset-Ab :
(l : Level) {l1 : Level} (A : Ab l1) → UU ((lsuc l) ⊔ l1)
subset-Ab l A = subset-Group l (group-Ab A)
is-set-subset-Ab :
(l : Level) {l1 : Level} (A : Ab l1) → is-set (subset-Ab l A)
is-set-subset-Ab l A = is-set-subset-Group l (group-Ab A)
{- Defining subgroups -}
contains-zero-subset-Ab :
{l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) → UU l2
contains-zero-subset-Ab A = contains-unit-subset-Group (group-Ab A)
is-prop-contains-zero-subset-Ab :
{l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) →
is-prop (contains-zero-subset-Ab A P)
is-prop-contains-zero-subset-Ab A =
is-prop-contains-unit-subset-Group (group-Ab A)
closed-under-add-subset-Ab :
{l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) → UU (l1 ⊔ l2)
closed-under-add-subset-Ab A =
closed-under-mul-subset-Group (group-Ab A)
is-prop-closed-under-add-subset-Ab :
{l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) →
is-prop (closed-under-add-subset-Ab A P)
is-prop-closed-under-add-subset-Ab A =
is-prop-closed-under-mul-subset-Group (group-Ab A)
closed-under-neg-subset-Ab :
{l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) → UU (l1 ⊔ l2)
closed-under-neg-subset-Ab A =
closed-under-inv-subset-Group (group-Ab A)
is-prop-closed-under-neg-subset-Ab :
{l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) →
is-prop (closed-under-neg-subset-Ab A P)
is-prop-closed-under-neg-subset-Ab A =
is-prop-closed-under-inv-subset-Group (group-Ab A)
is-subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) → UU (l1 ⊔ l2)
is-subgroup-Ab A = is-subgroup-Group (group-Ab A)
is-prop-is-subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : subset-Ab l2 A) →
is-prop (is-subgroup-Ab A P)
is-prop-is-subgroup-Ab A = is-prop-is-subgroup-Group (group-Ab A)
{- Introducing the type of all subgroups of a group G -}
Subgroup-Ab :
(l : Level) {l1 : Level} (A : Ab l1) → UU ((lsuc l) ⊔ l1)
Subgroup-Ab l A = Subgroup l (group-Ab A)
subset-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) →
( Subgroup-Ab l2 A) → ( subset-Ab l2 A)
subset-Subgroup-Ab A = subset-Subgroup (group-Ab A)
is-emb-subset-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) → is-emb (subset-Subgroup-Ab {l2 = l2} A)
is-emb-subset-Subgroup-Ab A = is-emb-subset-Subgroup (group-Ab A)
type-subset-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
(type-Ab A → UU l2)
type-subset-Subgroup-Ab A = type-subset-Subgroup (group-Ab A)
is-prop-type-subset-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
(x : type-Ab A) → is-prop (type-subset-Subgroup-Ab A P x)
is-prop-type-subset-Subgroup-Ab A =
is-prop-type-subset-Subgroup (group-Ab A)
is-subgroup-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
is-subgroup-Ab A (subset-Subgroup-Ab A P)
is-subgroup-Subgroup-Ab A = is-subgroup-Subgroup (group-Ab A)
contains-zero-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
contains-zero-subset-Ab A (subset-Subgroup-Ab A P)
contains-zero-Subgroup-Ab A = contains-unit-Subgroup (group-Ab A)
closed-under-add-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
closed-under-add-subset-Ab A (subset-Subgroup-Ab A P)
closed-under-add-Subgroup-Ab A = closed-under-mul-Subgroup (group-Ab A)
closed-under-neg-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
closed-under-neg-subset-Ab A (subset-Subgroup-Ab A P)
closed-under-neg-Subgroup-Ab A = closed-under-inv-Subgroup (group-Ab A)
{- Given a subgroup of an abelian group, we construct an abelian group -}
type-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) → UU (l1 ⊔ l2)
type-ab-Subgroup-Ab A = type-group-Subgroup (group-Ab A)
incl-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
type-ab-Subgroup-Ab A P → type-Ab A
incl-ab-Subgroup-Ab A = incl-group-Subgroup (group-Ab A)
is-emb-incl-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
is-emb (incl-ab-Subgroup-Ab A P)
is-emb-incl-ab-Subgroup-Ab A = is-emb-incl-group-Subgroup (group-Ab A)
eq-subgroup-ab-eq-ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
{x y : type-ab-Subgroup-Ab A P} →
Id (incl-ab-Subgroup-Ab A P x) (incl-ab-Subgroup-Ab A P y) → Id x y
eq-subgroup-ab-eq-ab A =
eq-subgroup-eq-group (group-Ab A)
set-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) → Subgroup-Ab l2 A → UU-Set (l1 ⊔ l2)
set-ab-Subgroup-Ab A = set-group-Subgroup (group-Ab A)
zero-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) → type-ab-Subgroup-Ab A P
zero-ab-Subgroup-Ab A = unit-group-Subgroup (group-Ab A)
add-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
( x y : type-ab-Subgroup-Ab A P) → type-ab-Subgroup-Ab A P
add-ab-Subgroup-Ab A = mul-group-Subgroup (group-Ab A)
neg-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
type-ab-Subgroup-Ab A P → type-ab-Subgroup-Ab A P
neg-ab-Subgroup-Ab A = inv-group-Subgroup (group-Ab A)
is-associative-add-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
( x y z : type-ab-Subgroup-Ab A P) →
Id (add-ab-Subgroup-Ab A P (add-ab-Subgroup-Ab A P x y) z)
(add-ab-Subgroup-Ab A P x (add-ab-Subgroup-Ab A P y z))
is-associative-add-ab-Subgroup-Ab A =
is-associative-mul-group-Subgroup (group-Ab A)
left-zero-law-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
( x : type-ab-Subgroup-Ab A P) →
Id (add-ab-Subgroup-Ab A P (zero-ab-Subgroup-Ab A P) x) x
left-zero-law-ab-Subgroup-Ab A =
left-unit-law-group-Subgroup (group-Ab A)
right-zero-law-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
( x : type-ab-Subgroup-Ab A P) →
Id (add-ab-Subgroup-Ab A P x (zero-ab-Subgroup-Ab A P)) x
right-zero-law-ab-Subgroup-Ab A =
right-unit-law-group-Subgroup (group-Ab A)
left-neg-law-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
( x : type-ab-Subgroup-Ab A P) →
Id ( add-ab-Subgroup-Ab A P (neg-ab-Subgroup-Ab A P x) x)
( zero-ab-Subgroup-Ab A P)
left-neg-law-ab-Subgroup-Ab A =
left-inverse-law-group-Subgroup (group-Ab A)
right-neg-law-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
( x : type-ab-Subgroup-Ab A P) →
Id ( add-ab-Subgroup-Ab A P x (neg-ab-Subgroup-Ab A P x))
( zero-ab-Subgroup-Ab A P)
right-neg-law-ab-Subgroup-Ab A = right-inverse-law-group-Subgroup (group-Ab A)
is-commutative-add-ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
( x y : type-ab-Subgroup-Ab A P) →
Id ( add-ab-Subgroup-Ab A P x y) (add-ab-Subgroup-Ab A P y x)
is-commutative-add-ab-Subgroup-Ab A P (pair x p) (pair y q) =
eq-subgroup-ab-eq-ab A P (is-commutative-add-Ab A x y)
ab-Subgroup-Ab :
{l1 l2 : Level} (A : Ab l1) → Subgroup-Ab l2 A → Ab (l1 ⊔ l2)
ab-Subgroup-Ab A P =
pair
(group-Subgroup (group-Ab A) P) (is-commutative-add-ab-Subgroup-Ab A P)
{- We show that the inclusion from ab-Subgroup-Ab A P → A is a group
homomorphism -}
preserves-add-incl-ab-Subgroup-Ab :
{ l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
preserves-add (ab-Subgroup-Ab A P) A (incl-ab-Subgroup-Ab A P)
preserves-add-incl-ab-Subgroup-Ab A =
preserves-mul-incl-group-Subgroup (group-Ab A)
hom-ab-Subgroup-Ab :
{ l1 l2 : Level} (A : Ab l1) (P : Subgroup-Ab l2 A) →
hom-Ab (ab-Subgroup-Ab A P) A
hom-ab-Subgroup-Ab A = hom-group-Subgroup (group-Ab A)
{- We define another type of subgroups of A as the type of group inclusions -}
emb-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) → UU (l1 ⊔ l2)
emb-Ab A B = emb-Group (group-Ab A) (group-Ab B)
emb-Ab-Slice :
(l : Level) {l1 : Level} (A : Ab l1) → UU ((lsuc l) ⊔ l1)
emb-Ab-Slice l A = emb-Group-Slice l (group-Ab A)
emb-ab-slice-Subgroup-Ab :
{ l1 l2 : Level} (A : Ab l1) →
Subgroup-Ab l2 A → emb-Ab-Slice (l1 ⊔ l2) A
emb-ab-slice-Subgroup-Ab A = emb-group-slice-Subgroup (group-Ab A)
| {
"alphanum_fraction": 0.6455665025,
"avg_line_length": 35.6140350877,
"ext": "agda",
"hexsha": "53dcabfb8484fe79464ad82826ff837d764e9e5c",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/abelian-subgroups.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/abelian-subgroups.agda",
"max_line_length": 78,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/abelian-subgroups.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 3273,
"size": 8120
} |
Subsets and Splits