Search is not available for this dataset
text
string
meta
dict
-- {-# OPTIONS -v tc.meta:20 #-} -- Agdalist 2010-09-24 David Leduc module Issue323 where data Sigma (A : Set)(B : A -> Set) : Set where _,_ : (a : A) -> B a -> Sigma A B data Trivial {A : Set}(a : A) : Set where trivial : Trivial a lemma : (A : Set)(x y : A) -> Trivial (x , y) lemma A x y = trivial
{ "alphanum_fraction": 0.5714285714, "avg_line_length": 25.6666666667, "ext": "agda", "hexsha": "844fa4e83a2685b254b8489ce2a91b39909160ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue323.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue323.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue323.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 114, "size": 308 }
import Lvl open import Type module Type.Functions.Inverse {ℓₗ : Lvl.Level}{ℓₒ₁}{ℓₒ₂} {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where open import Function.Domains open import Type.Functions {ℓₗ}{ℓₒ₁}{ℓₒ₂} {X}{Y} open import Type.Properties.Empty open import Type.Properties.Singleton {ℓₒ₁}{ℓₒ₂} inv : (f : X → Y) → ⦃ _ : Bijective(f) ⦄ → (Y → X) inv f ⦃ Bijective.intro(proof) ⦄ (y) with proof{y} ... | IsUnit.intro (Unapply.intro x) _ = x invᵣ : (f : X → Y) → ⦃ _ : Surjective(f) ⦄ → (Y → X) invᵣ f ⦃ Surjective.intro(proof) ⦄ (y) with proof{y} ... | ◊.intro ⦃ Unapply.intro x ⦄ = x
{ "alphanum_fraction": 0.6305841924, "avg_line_length": 32.3333333333, "ext": "agda", "hexsha": "387b1dc0fb1b06dadc7513b586a42b401c9c00e4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Type/Functions/Inverse.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Type/Functions/Inverse.agda", "max_line_length": 94, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Type/Functions/Inverse.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 259, "size": 582 }
module Issue2486.HaskellB where {-# FOREIGN GHC import qualified MAlonzo.Code.Issue2486.ImportB as B #-} {-# FOREIGN GHC data Test = Con B.BBool #-}
{ "alphanum_fraction": 0.7189542484, "avg_line_length": 15.3, "ext": "agda", "hexsha": "c6706f8467fa723770e91f8a29f7cea10a33a1e2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2486/HaskellB.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2486/HaskellB.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2486/HaskellB.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 153 }
module FreeVarPresheaves where open import Data.Nat as Nat import Level open import Categories.Category open import Categories.Presheaf open import Relation.Binary.Core open import Relation.Binary open import Function using (flip) module DTO = DecTotalOrder Nat.decTotalOrder data ℕ-≤-eq {n m : ℕ} : Rel (n ≤ m) Level.zero where triv-eq : ∀ {p q} → ℕ-≤-eq p q ℕ-≤-eq-equivRel : ∀ {n m} → IsEquivalence (ℕ-≤-eq {n} {m}) ℕ-≤-eq-equivRel = record { refl = triv-eq ; sym = λ _ → triv-eq ; trans = λ _ _ → triv-eq } {- trans-assoc : ∀ {a ℓ} {A : Set a} → {_<_ : Rel A ℓ} → {trans : Transitive _<_} → ∀ {w x y z : A} → ∀{p : w < x} → ∀{q : x < y} → ∀{r : y < z} → (trans p (trans q r)) ≡ (trans (trans p q) r) trans-assoc = {!!} -} ℕ-≤-eq-assoc : {m n k i : ℕ} {p : m ≤ n} {q : n ≤ k} {r : k ≤ i} → ℕ-≤-eq (DTO.trans p (DTO.trans q r)) (DTO.trans (DTO.trans p q) r) ℕ-≤-eq-assoc = triv-eq trans-resp-ℕ-≤-eq : {m n k : ℕ} {p r : n ≤ k} {q s : m ≤ n} → ℕ-≤-eq p r → ℕ-≤-eq q s → ℕ-≤-eq (DTO.trans q p) (DTO.trans s r) trans-resp-ℕ-≤-eq _ _ = triv-eq op : Category Level.zero Level.zero Level.zero op = record { Obj = ℕ ; _⇒_ = Nat._≤_ ; _≡_ = ℕ-≤-eq ; _∘_ = flip DTO.trans ; id = DTO.refl ; assoc = ℕ-≤-eq-assoc ; identityˡ = triv-eq ; identityʳ = triv-eq ; equiv = ℕ-≤-eq-equivRel ; ∘-resp-≡ = trans-resp-ℕ-≤-eq } Ctx a = List (Var a) data Var : (Γ : Ctx) → Set where zero : ∀{Γ} → TyVar (Γ + 1) succ : ∀{Γ} (x : TyVar Γ) → TyVar (Γ + 1)
{ "alphanum_fraction": 0.5449141347, "avg_line_length": 25.6610169492, "ext": "agda", "hexsha": "17d8622b3cc6885f0cef06be371c5a6868259f00", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "TypeTheory/Common/FreeVarPresheaves.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "TypeTheory/Common/FreeVarPresheaves.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "TypeTheory/Common/FreeVarPresheaves.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 677, "size": 1514 }
-- Andreas, 2015-08-27 Allow rewrite rules for symbols defined in other file {-# OPTIONS --rewriting #-} open import Common.Nat open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} x+0 : ∀ x → x + 0 ≡ x x+0 zero = refl x+0 (suc x) rewrite x+0 x = refl {-# REWRITE x+0 #-} -- adding rewrite rule for + is ok x+0+0 : ∀{x} → (x + 0) + 0 ≡ x x+0+0 = refl
{ "alphanum_fraction": 0.6066481994, "avg_line_length": 20.0555555556, "ext": "agda", "hexsha": "5f3b6f290199713b5c3fb1811753479ecb085d7a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1550.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1550.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1550.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 136, "size": 361 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A universe which includes several kinds of "relatedness" for sets, -- such as equivalences, surjections and bijections ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Related where open import Level open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence as Eq using (Equivalence) open import Function.Injection as Inj using (Injection; _↣_) open import Function.Inverse as Inv using (Inverse; _↔_) open import Function.LeftInverse as LeftInv using (LeftInverse) open import Function.Surjection as Surj using (Surjection) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Wrapper types -- Synonyms which are used to make _∼[_]_ below "constructor-headed" -- (which implies that Agda can deduce the universe code from an -- expression matching any of the right-hand sides). record _←_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where constructor lam field app-← : B → A open _←_ public record _↢_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where constructor lam field app-↢ : B ↣ A open _↢_ public ------------------------------------------------------------------------ -- Relatedness -- There are several kinds of "relatedness". -- The idea to include kinds other than equivalence and bijection came -- from Simon Thompson and Bengt Nordström. /NAD data Kind : Set where implication : Kind reverse-implication : Kind equivalence : Kind injection : Kind reverse-injection : Kind left-inverse : Kind surjection : Kind bijection : Kind -- Interpretation of the codes above. The code "bijection" is -- interpreted as Inverse rather than Bijection; the two types are -- equivalent. infix 4 _∼[_]_ _∼[_]_ : ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Kind → Set ℓ₂ → Set _ A ∼[ implication ] B = A → B A ∼[ reverse-implication ] B = A ← B A ∼[ equivalence ] B = Equivalence (P.setoid A) (P.setoid B) A ∼[ injection ] B = Injection (P.setoid A) (P.setoid B) A ∼[ reverse-injection ] B = A ↢ B A ∼[ left-inverse ] B = LeftInverse (P.setoid A) (P.setoid B) A ∼[ surjection ] B = Surjection (P.setoid A) (P.setoid B) A ∼[ bijection ] B = Inverse (P.setoid A) (P.setoid B) -- A non-infix synonym. Related : Kind → ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _ Related k A B = A ∼[ k ] B -- The bijective equality implies any kind of relatedness. ↔⇒ : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ bijection ] Y → X ∼[ k ] Y ↔⇒ {implication} = _⟨$⟩_ ∘ Inverse.to ↔⇒ {reverse-implication} = lam ∘′ _⟨$⟩_ ∘ Inverse.from ↔⇒ {equivalence} = Inverse.equivalence ↔⇒ {injection} = Inverse.injection ↔⇒ {reverse-injection} = lam ∘′ Inverse.injection ∘ Inv.sym ↔⇒ {left-inverse} = Inverse.left-inverse ↔⇒ {surjection} = Inverse.surjection ↔⇒ {bijection} = id -- Actual equality also implies any kind of relatedness. ≡⇒ : ∀ {k ℓ} {X Y : Set ℓ} → X ≡ Y → X ∼[ k ] Y ≡⇒ P.refl = ↔⇒ Inv.id ------------------------------------------------------------------------ -- Special kinds of kinds -- Kinds whose interpretation is symmetric. data Symmetric-kind : Set where equivalence : Symmetric-kind bijection : Symmetric-kind -- Forgetful map. ⌊_⌋ : Symmetric-kind → Kind ⌊ equivalence ⌋ = equivalence ⌊ bijection ⌋ = bijection -- The proof of symmetry can be found below. -- Kinds whose interpretation include a function which "goes in the -- forward direction". data Forward-kind : Set where implication : Forward-kind equivalence : Forward-kind injection : Forward-kind left-inverse : Forward-kind surjection : Forward-kind bijection : Forward-kind -- Forgetful map. ⌊_⌋→ : Forward-kind → Kind ⌊ implication ⌋→ = implication ⌊ equivalence ⌋→ = equivalence ⌊ injection ⌋→ = injection ⌊ left-inverse ⌋→ = left-inverse ⌊ surjection ⌋→ = surjection ⌊ bijection ⌋→ = bijection -- The function. ⇒→ : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋→ ] Y → X → Y ⇒→ {implication} = id ⇒→ {equivalence} = _⟨$⟩_ ∘ Equivalence.to ⇒→ {injection} = _⟨$⟩_ ∘ Injection.to ⇒→ {left-inverse} = _⟨$⟩_ ∘ LeftInverse.to ⇒→ {surjection} = _⟨$⟩_ ∘ Surjection.to ⇒→ {bijection} = _⟨$⟩_ ∘ Inverse.to -- Kinds whose interpretation include a function which "goes backwards". data Backward-kind : Set where reverse-implication : Backward-kind equivalence : Backward-kind reverse-injection : Backward-kind left-inverse : Backward-kind surjection : Backward-kind bijection : Backward-kind -- Forgetful map. ⌊_⌋← : Backward-kind → Kind ⌊ reverse-implication ⌋← = reverse-implication ⌊ equivalence ⌋← = equivalence ⌊ reverse-injection ⌋← = reverse-injection ⌊ left-inverse ⌋← = left-inverse ⌊ surjection ⌋← = surjection ⌊ bijection ⌋← = bijection -- The function. ⇒← : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋← ] Y → Y → X ⇒← {reverse-implication} = app-← ⇒← {equivalence} = _⟨$⟩_ ∘ Equivalence.from ⇒← {reverse-injection} = _⟨$⟩_ ∘ Injection.to ∘ app-↢ ⇒← {left-inverse} = _⟨$⟩_ ∘ LeftInverse.from ⇒← {surjection} = _⟨$⟩_ ∘ Surjection.from ⇒← {bijection} = _⟨$⟩_ ∘ Inverse.from -- Kinds whose interpretation include functions going in both -- directions. data Equivalence-kind : Set where equivalence : Equivalence-kind left-inverse : Equivalence-kind surjection : Equivalence-kind bijection : Equivalence-kind -- Forgetful map. ⌊_⌋⇔ : Equivalence-kind → Kind ⌊ equivalence ⌋⇔ = equivalence ⌊ left-inverse ⌋⇔ = left-inverse ⌊ surjection ⌋⇔ = surjection ⌊ bijection ⌋⇔ = bijection -- The functions. ⇒⇔ : ∀ {k x y} {X : Set x} {Y : Set y} → X ∼[ ⌊ k ⌋⇔ ] Y → X ∼[ equivalence ] Y ⇒⇔ {equivalence} = id ⇒⇔ {left-inverse} = LeftInverse.equivalence ⇒⇔ {surjection} = Surjection.equivalence ⇒⇔ {bijection} = Inverse.equivalence -- Conversions between special kinds. ⇔⌊_⌋ : Symmetric-kind → Equivalence-kind ⇔⌊ equivalence ⌋ = equivalence ⇔⌊ bijection ⌋ = bijection →⌊_⌋ : Equivalence-kind → Forward-kind →⌊ equivalence ⌋ = equivalence →⌊ left-inverse ⌋ = left-inverse →⌊ surjection ⌋ = surjection →⌊ bijection ⌋ = bijection ←⌊_⌋ : Equivalence-kind → Backward-kind ←⌊ equivalence ⌋ = equivalence ←⌊ left-inverse ⌋ = left-inverse ←⌊ surjection ⌋ = surjection ←⌊ bijection ⌋ = bijection ------------------------------------------------------------------------ -- Opposites -- For every kind there is an opposite kind. _op : Kind → Kind implication op = reverse-implication reverse-implication op = implication equivalence op = equivalence injection op = reverse-injection reverse-injection op = injection left-inverse op = surjection surjection op = left-inverse bijection op = bijection -- For every morphism there is a corresponding reverse morphism of the -- opposite kind. reverse : ∀ {k a b} {A : Set a} {B : Set b} → A ∼[ k ] B → B ∼[ k op ] A reverse {implication} = lam reverse {reverse-implication} = app-← reverse {equivalence} = Eq.sym reverse {injection} = lam reverse {reverse-injection} = app-↢ reverse {left-inverse} = Surj.fromRightInverse reverse {surjection} = Surjection.right-inverse reverse {bijection} = Inv.sym ------------------------------------------------------------------------ -- For a fixed universe level every kind is a preorder and each -- symmetric kind is an equivalence K-refl : ∀ {k ℓ} → Reflexive (Related k {ℓ}) K-refl {implication} = id K-refl {reverse-implication} = lam id K-refl {equivalence} = Eq.id K-refl {injection} = Inj.id K-refl {reverse-injection} = lam Inj.id K-refl {left-inverse} = LeftInv.id K-refl {surjection} = Surj.id K-refl {bijection} = Inv.id K-reflexive : ∀ {k ℓ} → _≡_ ⇒ Related k {ℓ} K-reflexive P.refl = K-refl K-trans : ∀ {k ℓ₁ ℓ₂ ℓ₃} → Trans (Related k {ℓ₁} {ℓ₂}) (Related k {ℓ₂} {ℓ₃}) (Related k {ℓ₁} {ℓ₃}) K-trans {implication} = flip _∘′_ K-trans {reverse-implication} = λ f g → lam (app-← f ∘ app-← g) K-trans {equivalence} = flip Eq._∘_ K-trans {injection} = flip Inj._∘_ K-trans {reverse-injection} = λ f g → lam (Inj._∘_ (app-↢ f) (app-↢ g)) K-trans {left-inverse} = flip LeftInv._∘_ K-trans {surjection} = flip Surj._∘_ K-trans {bijection} = flip Inv._∘_ SK-sym : ∀ {k ℓ₁ ℓ₂} → Sym (Related ⌊ k ⌋ {ℓ₁} {ℓ₂}) (Related ⌊ k ⌋ {ℓ₂} {ℓ₁}) SK-sym {equivalence} = Eq.sym SK-sym {bijection} = Inv.sym SK-isEquivalence : ∀ k ℓ → IsEquivalence {ℓ = ℓ} (Related ⌊ k ⌋) SK-isEquivalence k ℓ = record { refl = K-refl ; sym = SK-sym ; trans = K-trans } SK-setoid : Symmetric-kind → (ℓ : Level) → Setoid _ _ SK-setoid k ℓ = record { isEquivalence = SK-isEquivalence k ℓ } K-isPreorder : ∀ k ℓ → IsPreorder _↔_ (Related k) K-isPreorder k ℓ = record { isEquivalence = SK-isEquivalence bijection ℓ ; reflexive = ↔⇒ ; trans = K-trans } K-preorder : Kind → (ℓ : Level) → Preorder _ _ _ K-preorder k ℓ = record { isPreorder = K-isPreorder k ℓ } ------------------------------------------------------------------------ -- Equational reasoning -- Equational reasoning for related things. module EquationalReasoning where infix 3 _∎ infixr 2 _∼⟨_⟩_ _↔⟨_⟩_ _↔⟨⟩_ _≡⟨_⟩_ _∼⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} → X ∼[ k ] Y → Y ∼[ k ] Z → X ∼[ k ] Z _ ∼⟨ X↝Y ⟩ Y↝Z = K-trans X↝Y Y↝Z -- Isomorphisms can be combined with any other kind of relatedness. _↔⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} → X ↔ Y → Y ∼[ k ] Z → X ∼[ k ] Z X ↔⟨ X↔Y ⟩ Y⇔Z = X ∼⟨ ↔⇒ X↔Y ⟩ Y⇔Z _↔⟨⟩_ : ∀ {k x y} (X : Set x) {Y : Set y} → X ∼[ k ] Y → X ∼[ k ] Y X ↔⟨⟩ X⇔Y = X⇔Y _≡⟨_⟩_ : ∀ {k ℓ z} (X : Set ℓ) {Y : Set ℓ} {Z : Set z} → X ≡ Y → Y ∼[ k ] Z → X ∼[ k ] Z X ≡⟨ X≡Y ⟩ Y⇔Z = X ∼⟨ ≡⇒ X≡Y ⟩ Y⇔Z _∎ : ∀ {k x} (X : Set x) → X ∼[ k ] X X ∎ = K-refl sym = SK-sym {-# WARNING_ON_USAGE sym "Warning: EquationalReasoning.sym was deprecated in v0.17. Please use SK-sym instead." #-} ------------------------------------------------------------------------ -- Every unary relation induces a preorder and, for symmetric kinds, -- an equivalence. (No claim is made that these relations are unique.) InducedRelation₁ : Kind → ∀ {a s} {A : Set a} → (A → Set s) → A → A → Set _ InducedRelation₁ k S = λ x y → S x ∼[ k ] S y InducedPreorder₁ : Kind → ∀ {a s} {A : Set a} → (A → Set s) → Preorder _ _ _ InducedPreorder₁ k S = record { _≈_ = _≡_ ; _∼_ = InducedRelation₁ k S ; isPreorder = record { isEquivalence = P.isEquivalence ; reflexive = reflexive ∘ K-reflexive ∘ P.cong S ; trans = K-trans } } where open Preorder (K-preorder _ _) InducedEquivalence₁ : Symmetric-kind → ∀ {a s} {A : Set a} → (A → Set s) → Setoid _ _ InducedEquivalence₁ k S = record { _≈_ = InducedRelation₁ ⌊ k ⌋ S ; isEquivalence = record { refl = K-refl ; sym = SK-sym ; trans = K-trans } } ------------------------------------------------------------------------ -- Every binary relation induces a preorder and, for symmetric kinds, -- an equivalence. (No claim is made that these relations are unique.) InducedRelation₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b} → (A → B → Set s) → B → B → Set _ InducedRelation₂ k _S_ = λ x y → ∀ {z} → (z S x) ∼[ k ] (z S y) InducedPreorder₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b} → (A → B → Set s) → Preorder _ _ _ InducedPreorder₂ k _S_ = record { _≈_ = _≡_ ; _∼_ = InducedRelation₂ k _S_ ; isPreorder = record { isEquivalence = P.isEquivalence ; reflexive = λ x≡y {z} → reflexive $ K-reflexive $ P.cong (_S_ z) x≡y ; trans = λ i↝j j↝k → K-trans i↝j j↝k } } where open Preorder (K-preorder _ _) InducedEquivalence₂ : Symmetric-kind → ∀ {a b s} {A : Set a} {B : Set b} → (A → B → Set s) → Setoid _ _ InducedEquivalence₂ k _S_ = record { _≈_ = InducedRelation₂ ⌊ k ⌋ _S_ ; isEquivalence = record { refl = refl ; sym = λ i↝j → sym i↝j ; trans = λ i↝j j↝k → trans i↝j j↝k } } where open Setoid (SK-setoid _ _) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.17 preorder = K-preorder {-# WARNING_ON_USAGE preorder "Warning: preorder was deprecated in v0.17. Please use K-preorder instead." #-} setoid = SK-setoid {-# WARNING_ON_USAGE setoid "Warning: setoid was deprecated in v0.17. Please use SK-setoid instead." #-}
{ "alphanum_fraction": 0.5538984052, "avg_line_length": 31.6448598131, "ext": "agda", "hexsha": "855428beb515d5ffdc533f646c68008e5c06c992", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Related.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Related.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Related.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4531, "size": 13544 }
{- An experiment of transporting rev-++-distr from lists to lists where the arguments to cons have been flipped inspired by section 2 of https://arxiv.org/abs/2010.00774 Note that Agda doesn't care about the order of constructors so we can't do exactly the same example. -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Experiments.List where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma infixr 5 _∷_ infixl 5 _∷'_ infixr 5 _++_ -- Normal lists data List (A : Type) : Type where [] : List A _∷_ : (x : A) (xs : List A) → List A -- Lists where the arguments to cons have been flipped data List' (A : Type) : Type where [] : List' A _∷'_ : (xs : List' A) (x : A) → List' A variable A : Type -- Some operations and properties for List _++_ : List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys rev : List A → List A rev [] = [] rev (x ∷ xs) = rev xs ++ (x ∷ []) ++-unit-r : (xs : List A) → xs ++ [] ≡ xs ++-unit-r [] = refl ++-unit-r (x ∷ xs) = cong (_∷_ x) (++-unit-r xs) ++-assoc : (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ ys ++ zs ++-assoc [] ys zs = refl ++-assoc (x ∷ xs) ys zs = cong (_∷_ x) (++-assoc xs ys zs) rev-++-distr : (xs ys : List A) → rev (xs ++ ys) ≡ rev ys ++ rev xs rev-++-distr [] ys = sym (++-unit-r (rev ys)) rev-++-distr (x ∷ xs) ys = cong (_++ _) (rev-++-distr xs ys) ∙ ++-assoc (rev ys) (rev xs) (x ∷ []) -- We now want to transport this to List'. For this we first establish -- an isomorphism of the types. toList' : List A → List' A toList' [] = [] toList' (x ∷ xs) = toList' xs ∷' x fromList' : List' A → List A fromList' [] = [] fromList' (xs ∷' x) = x ∷ fromList' xs toFrom : (xs : List' A) → toList' (fromList' xs) ≡ xs toFrom [] = refl toFrom (xs ∷' x) i = toFrom xs i ∷' x fromTo : (xs : List A) → fromList' (toList' xs) ≡ xs fromTo [] = refl fromTo (x ∷ xs) i = x ∷ fromTo xs i ListIso : Iso (List A) (List' A) ListIso = iso toList' fromList' toFrom fromTo ListEquiv : List A ≃ List' A ListEquiv = isoToEquiv ListIso -- We then use univalence to turn this into a path ListPath : (A : Type) → List A ≡ List' A ListPath A = isoToPath (ListIso {A = A}) -- We can now use this path to transport the operations and properties -- from List to List' module transport where -- First make a suitable Σ-type packaging what we need for the -- transport (note that _++_ and rev here are part of the Σ-type). -- It should be possible to automatically generate this given a module/file. T : Type → Type T X = Σ[ _++_ ∈ (X → X → X) ] Σ[ rev ∈ (X → X) ] ((xs ys : X) → rev (xs ++ ys) ≡ rev ys ++ rev xs) -- We can now transport the instance of T for List to List' T-List' : T (List' A) T-List' {A = A} = transport (λ i → T (ListPath A i)) (_++_ , rev , rev-++-distr) -- Getting the operations and property for List' is then just a matter of projecting them out _++'_ : List' A → List' A → List' A _++'_ = T-List' .fst rev' : List' A → List' A rev' = T-List' .snd .fst rev-++-distr' : (xs ys : List' A) → rev' (xs ++' ys) ≡ rev' ys ++' rev' xs rev-++-distr' = T-List' .snd .snd -- To connect this with the Cubical Agda paper consider the following -- (painfully) manual transport. This is really what the above code -- unfolds to. module manualtransport where _++'_ : List' A → List' A → List' A _++'_ {A = A} = transport (λ i → ListPath A i → ListPath A i → ListPath A i) _++_ rev' : List' A → List' A rev' {A = A} = transport (λ i → ListPath A i → ListPath A i) rev rev-++-distr' : (xs ys : List' A) → rev' (xs ++' ys) ≡ rev' ys ++' rev' xs rev-++-distr' {A = A} = transport (λ i → (xs ys : ListPath A i) → revP i (appP i xs ys) ≡ appP i (revP i ys) (revP i xs)) rev-++-distr where appP : PathP (λ i → ListPath A i → ListPath A i → ListPath A i) _++_ _++'_ appP i = transp (λ j → ListPath A (i ∧ j) → ListPath A (i ∧ j) → ListPath A (i ∧ j)) (~ i) _++_ revP : PathP (λ i → ListPath A i → ListPath A i) rev rev' revP i = transp (λ j → ListPath A (i ∧ j) → ListPath A (i ∧ j)) (~ i) rev -- The above operations for List' are derived by going back and -- forth. With the SIP we can do better and transport properties for -- user defined operations (assuming that the operations are -- well-defined wrt to the forward direction of the equivalence). open import Cubical.Foundations.SIP open import Cubical.Structures.Axioms open import Cubical.Structures.Product open import Cubical.Structures.Pointed open import Cubical.Structures.Function -- For illustrative purposes we first apply the SIP manually. This -- requires quite a bit of boilerplate code which is automated in the -- next module. module manualSIP (A : Type) where -- First define the raw structure without axioms. This is just the -- signature of _++_ and rev. RawStruct : Type → Type RawStruct X = (X → X → X) × (X → X) -- Some boilerplate code which can be automated e1 : StrEquiv (λ x → x → x → x) ℓ-zero e1 = FunctionEquivStr+ pointedEquivAction (FunctionEquivStr+ pointedEquivAction PointedEquivStr) e2 : StrEquiv (λ x → x → x) ℓ-zero e2 = FunctionEquivStr+ pointedEquivAction PointedEquivStr RawEquivStr : StrEquiv RawStruct _ RawEquivStr = ProductEquivStr e1 e2 rawUnivalentStr : UnivalentStr _ RawEquivStr rawUnivalentStr = productUnivalentStr e1 he1 e2 he2 where he2 : UnivalentStr (λ z → z → z) e2 he2 = functionUnivalentStr+ pointedEquivAction pointedTransportStr PointedEquivStr pointedUnivalentStr he1 : UnivalentStr (λ z → z → z → z) e1 he1 = functionUnivalentStr+ pointedEquivAction pointedTransportStr e2 he2 -- Now the property that we want to transport P : (X : Type) → RawStruct X → Type P X (_++_ , rev) = ((xs ys : X) → rev (xs ++ ys) ≡ rev ys ++ rev xs) -- Package things up for List List-Struct : Σ[ X ∈ Type ] (Σ[ s ∈ RawStruct X ] (P X s)) List-Struct = List A , (_++_ , rev) , rev-++-distr -- We now give direct definitions of ++' and rev' for List' _++'_ : List' A → List' A → List' A [] ++' ys = ys (xs ∷' x) ++' ys = (xs ++' ys) ∷' x rev' : List' A → List' A rev' [] = [] rev' (xs ∷' x) = rev' xs ++' ([] ∷' x) -- We then package this up into a raw structure on List' List'-RawStruct : Σ[ X ∈ Type ] (RawStruct X) List'-RawStruct = List' A , (_++'_ , rev') -- Finally we prove that toList' commutes with _++_ and rev. Note -- that this could be a lot more complex, see for example the Matrix -- example (Cubical.Algebra.Matrix). toList'-++ : (xs ys : List A) → toList' (xs ++ ys) ≡ toList' xs ++' toList' ys toList'-++ [] ys = refl toList'-++ (x ∷ xs) ys i = toList'-++ xs ys i ∷' x toList'-rev : (xs : List A) → toList' (rev xs) ≡ rev' (toList' xs) toList'-rev [] = refl toList'-rev (x ∷ xs) = toList'-++ (rev xs) (x ∷ []) ∙ cong (_++' ([] ∷' x)) (toList'-rev xs) -- We can now get the property for ++' and rev' via the SIP rev-++-distr' : (xs ys : List' A) → rev' (xs ++' ys) ≡ rev' ys ++' rev' xs rev-++-distr' = transferAxioms rawUnivalentStr List-Struct List'-RawStruct (ListEquiv , toList'-++ , toList'-rev) -- Note that rev-++-distr' is really talking about the direct -- definitions of ++' and rev', not the transported operations as in -- the previous attempt. -- We now automate parts of the above construction open import Cubical.Structures.Auto module SIP-auto (A : Type) where -- First define the raw structure without axioms. This is just the -- signature of _++_ and rev. RawStruct : Type → Type RawStruct X = (X → X → X) × (X → X) -- Some automated SIP magic RawEquivStr : _ RawEquivStr = AutoEquivStr RawStruct rawUnivalentStr : UnivalentStr _ RawEquivStr rawUnivalentStr = autoUnivalentStr RawStruct -- Now the property that we want to transport P : (X : Type) → RawStruct X → Type P X (_++_ , rev) = ((xs ys : X) → rev (xs ++ ys) ≡ rev ys ++ rev xs) -- Package things up for List List-Struct : Σ[ X ∈ Type ] (Σ[ s ∈ RawStruct X ] (P X s)) List-Struct = List A , (_++_ , rev) , rev-++-distr -- We now give direct definitions of ++' and rev' for List' _++'_ : List' A → List' A → List' A [] ++' ys = ys (xs ∷' x) ++' ys = (xs ++' ys) ∷' x rev' : List' A → List' A rev' [] = [] rev' (xs ∷' x) = rev' xs ++' ([] ∷' x) -- We then package this up into a raw structure on List' List'-RawStruct : Σ[ X ∈ Type ] (RawStruct X) List'-RawStruct = List' A , (_++'_ , rev') -- Finally we prove that toList' commutes with _++_ and rev. Note -- that this could be a lot more complex, see for example the Matrix -- example (Cubical.Algebra.Matrix). toList'-++ : (xs ys : List A) → toList' (xs ++ ys) ≡ toList' xs ++' toList' ys toList'-++ [] ys = refl toList'-++ (x ∷ xs) ys i = toList'-++ xs ys i ∷' x toList'-rev : (xs : List A) → toList' (rev xs) ≡ rev' (toList' xs) toList'-rev [] = refl toList'-rev (x ∷ xs) = toList'-++ (rev xs) (x ∷ []) ∙ cong (_++' ([] ∷' x)) (toList'-rev xs) -- We can now get the property for ++' and rev' via the SIP rev-++-distr' : (xs ys : List' A) → rev' (xs ++' ys) ≡ rev' ys ++' rev' xs rev-++-distr' = transferAxioms rawUnivalentStr List-Struct List'-RawStruct (ListEquiv , toList'-++ , toList'-rev) -- Note that rev-++-distr' is really talking about the direct -- definitions of ++' and rev', not the transported operations as in -- the previous attempt.
{ "alphanum_fraction": 0.6041368011, "avg_line_length": 34.1468531469, "ext": "agda", "hexsha": "5cd54deba3c3ee3306d64f16eb1ca6f79579f978", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Experiments/List.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Experiments/List.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Experiments/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3320, "size": 9766 }
-- {-# OPTIONS -v tc.meta:100 #-} -- Andreas, 2011-04-20 -- see Abel Pientka TLCA 2011 module PruningNonMillerPattern where data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a data Nat : Set where zero : Nat suc : Nat -> Nat -- bad variable y in head position test : let X : Nat -> Nat -> Nat X = _ Y : Nat -> Nat -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x x ≡ suc (Y x y)) -> ({x y : Nat} -> Y x x ≡ x) -> ({x y : Nat} -> X (Y x y) y ≡ X x x) -> C) -> C test C k = k refl refl refl {- none of these equations is immediately solvable. However, from 1. we deduce that Y does not depend on its second argument, thus from 2. we solve Y x y = x, and then eqn. 3. simplifies to X x y = X x x, thus, X does not depend on its second arg, we can then solve using 1. X x y = suc x -} -- a variant, where pruning is even triggered from a non-pattern test' : let X : Nat -> Nat -> Nat X = _ Y : Nat -> Nat -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x (suc x) ≡ suc (Y x y)) -> -- non-pattern lhs ({x y : Nat} -> Y x x ≡ x) -> ({x y : Nat} -> X (Y x y) y ≡ X x x) -> C) -> C test' C k = k refl refl refl -- another variant, where the pruned argument does not have an offending -- variable in the head, but in a non-eliminateable position -- (argument to a datatype) data Sing {A : Set} : A → Set where sing : (x : A) -> Sing x -- bad rigid under a data type constructor test2 : let X : Nat -> Nat -> Nat X = _ Y : Nat → Set -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x x ≡ suc (Y x (Sing (suc y)))) -> ({x y : Nat} -> Y x (Sing x) ≡ x) -> ({x y : Nat} -> X (Y x (Sing y)) y ≡ X x x) -> C) -> C test2 C k = k refl refl refl T : Nat → Set T zero = Nat T (suc _) = Nat → Nat -- bad rigid y under a Pi type constructor test3 : let X : Nat -> Nat -> Nat X = _ Y : Nat → Set -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x x ≡ suc (Y x (T y -> T y))) -> ({x y : Nat} -> Y x (Sing x) ≡ x) -> ({x y : Nat} -> X (Y x (Sing y)) y ≡ X x x) -> C) -> C test3 C k = k refl refl refl -- bad rigid y in head position under a lambda test4 : let X : Nat -> Nat -> Nat X = _ Y : Nat → (Nat → Nat) -> Nat Y = _ in (C : Set) -> ((∀ {x : Nat} {y : Nat → Nat} -> X x x ≡ suc (Y x (λ k → y zero))) -> (∀ {x : Nat} {y : Nat → Nat} -> Y x (λ k → y zero) ≡ x) -> (∀ {x : Nat} {y : Nat } -> X (Y x (λ k → y)) y ≡ X x x) -> C) -> C test4 C k = k refl refl refl -- bad variable in irrelevant position test5 : let X : Nat -> Nat -> Nat X = _ Y : Nat -> .Nat -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x (suc x) ≡ suc (Y x (suc y))) -> -- non-pattern lhs ({x y : Nat} -> Y x x ≡ x) -> ({x y : Nat} -> X (Y x (suc y)) y ≡ X x x) -> C) -> C test5 C k = k refl refl refl
{ "alphanum_fraction": 0.4346082665, "avg_line_length": 34.1263157895, "ext": "agda", "hexsha": "c0d0bd91f1dae9864bb7108b3083f339a718d996", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/PruningNonMillerPattern.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/PruningNonMillerPattern.agda", "max_line_length": 84, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/succeed/PruningNonMillerPattern.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1094, "size": 3242 }
module BTree.Equality.Properties {A : Set} where open import BTree {A} open import BTree.Equality {A} open import Relation.Binary.Core trans≃ : Transitive _≃_ trans≃ ≃lf ≃lf = ≃lf trans≃ (≃nd x x' l≃r l≃l' l'≃r') (≃nd .x' x'' _ l'≃l'' l''≃r'') = ≃nd x x'' l≃r (trans≃ l≃l' l'≃l'') l''≃r'' symm≃ : Symmetric _≃_ symm≃ ≃lf = ≃lf symm≃ (≃nd x x' l≃r l≃l' l'≃r') = ≃nd x' x l'≃r' (symm≃ l≃l') l≃r
{ "alphanum_fraction": 0.5664160401, "avg_line_length": 28.5, "ext": "agda", "hexsha": "71818ebcfee9256188b8fbcbf5400b8baf69e3e8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BTree/Equality/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BTree/Equality/Properties.agda", "max_line_length": 110, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BTree/Equality/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 220, "size": 399 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Ring where open import Cubical.Algebra.Ring.Base public open import Cubical.Algebra.Ring.Properties public
{ "alphanum_fraction": 0.7922077922, "avg_line_length": 25.6666666667, "ext": "agda", "hexsha": "ca6659831babbcf980b807e55b8d38e211ce0444", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Algebra/Ring.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Algebra/Ring.agda", "max_line_length": 50, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Algebra/Ring.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 36, "size": 154 }
{-# OPTIONS --cubical --safe #-} open import Prelude open import Algebra module Data.Maybe.Monoid {ℓ} (sgr : Semigroup ℓ) where open import Data.Maybe open Semigroup sgr _«∙»_ : Maybe 𝑆 → Maybe 𝑆 → Maybe 𝑆 nothing «∙» y = y just x «∙» nothing = just x just x «∙» just y = just (x ∙ y) maybeMonoid : Monoid ℓ maybeMonoid .Monoid.𝑆 = Maybe 𝑆 maybeMonoid .Monoid._∙_ = _«∙»_ maybeMonoid .Monoid.ε = nothing maybeMonoid .Monoid.assoc nothing y z = refl maybeMonoid .Monoid.assoc (just x) nothing z = refl maybeMonoid .Monoid.assoc (just x) (just x₁) nothing = refl maybeMonoid .Monoid.assoc (just x) (just y) (just z) = cong just (assoc x y z) maybeMonoid .Monoid.ε∙ _ = refl maybeMonoid .Monoid.∙ε nothing = refl maybeMonoid .Monoid.∙ε (just x) = refl
{ "alphanum_fraction": 0.698013245, "avg_line_length": 26.9642857143, "ext": "agda", "hexsha": "823960e2a07856199a813e98a4b72524dd2d0968", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Maybe/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Maybe/Monoid.agda", "max_line_length": 78, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Maybe/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 285, "size": 755 }
{- Copyright © 2015 Benjamin Barenblat Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} module B.Prelude.Number where import Algebra import Data.Integer import Data.Integer.Properties import Data.Nat import Data.Nat.Properties open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open Data.Integer using (ℤ) public open Data.Nat using (ℕ) public record NearSemiring {c} {ℓ} (A : Set c) : Set (Level.suc (c ⊔ ℓ)) where field structure : Algebra.NearSemiring c ℓ typeEquality : A ≡ Algebra.NearSemiring.Carrier structure NearSemiringInstance : ∀ {c ℓ} → (structure : Algebra.NearSemiring c ℓ) → NearSemiring (Algebra.NearSemiring.Carrier structure) NearSemiringInstance structure = record { structure = structure; typeEquality = refl } private change₂ : ∀ {c ℓ A′} → ⦃ witness : NearSemiring {c} {ℓ} A′ ⦄ → ((r : Algebra.NearSemiring c ℓ) → let A = Algebra.NearSemiring.Carrier r in A → A → A) → A′ → A′ → A′ change₂ ⦃ witness ⦄ f rewrite NearSemiring.typeEquality witness = f (NearSemiring.structure witness) _*_ : ∀ {c ℓ A} → ⦃ _ : NearSemiring {c} {ℓ} A ⦄ → A → A → A _*_ = change₂ Algebra.NearSemiring._*_ instance NearSemiring-ℕ : NearSemiring ℕ NearSemiring-ℕ = NearSemiringInstance (Algebra.CommutativeSemiring.nearSemiring Data.Nat.Properties.commutativeSemiring) NearSemiring-ℤ : NearSemiring ℤ NearSemiring-ℤ = NearSemiringInstance (Algebra.CommutativeRing.nearSemiring Data.Integer.Properties.commutativeRing)
{ "alphanum_fraction": 0.6952469711, "avg_line_length": 35.1803278689, "ext": "agda", "hexsha": "02024d0e879633be50f7183b32908f702cc2d347", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "bbarenblat/B", "max_forks_repo_path": "Prelude/Number.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "bbarenblat/B", "max_issues_repo_path": "Prelude/Number.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "bbarenblat/B", "max_stars_repo_path": "Prelude/Number.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-30T15:59:38.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-30T15:59:38.000Z", "num_tokens": 588, "size": 2146 }
postulate foo : Set bar : Set baz : Set → Set baz fooo = Fooo
{ "alphanum_fraction": 0.6029411765, "avg_line_length": 8.5, "ext": "agda", "hexsha": "6f36fd3bcb2145c1648544d3a712be87eb9ce756", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1903.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1903.agda", "max_line_length": 15, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1903.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 27, "size": 68 }
{-# OPTIONS --without-K --safe #-} module Dodo.Unary.Union where -- Stdlib imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; cong) open import Level using (Level; _⊔_) open import Function using (_∘_; _∘₂_) open import Data.Sum using (_⊎_; inj₁; inj₂; swap) open import Data.Product using (_,_) open import Data.Empty using (⊥-elim) open import Relation.Unary using (Pred) -- Local imports open import Dodo.Unary.Equality open import Dodo.Unary.Unique open import Dodo.Unary.Disjoint -- # Definitions infixl 30 _∪₁_ _∪₁_ : {a ℓ₁ ℓ₂ : Level} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A (ℓ₁ ⊔ ℓ₂) _∪₁_ p q x = p x ⊎ q x -- # Properties module _ {a ℓ : Level} {A : Set a} {R : Pred A ℓ} where ∪₁-idem : (R ∪₁ R) ⇔₁ R ∪₁-idem = ⇔: ⊆-proof (λ _ → inj₁) where ⊆-proof : (R ∪₁ R) ⊆₁' R ⊆-proof _ (inj₁ Rx) = Rx ⊆-proof _ (inj₂ Rx) = Rx module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} where ∪₁-comm : (P ∪₁ Q) ⇔₁ (Q ∪₁ P) ∪₁-comm = ⇔: (λ _ → swap) (λ _ → swap) module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∪₁-assoc : (P ∪₁ Q) ∪₁ R ⇔₁ P ∪₁ (Q ∪₁ R) ∪₁-assoc = ⇔: ⊆-proof ⊇-proof where ⊆-proof : ((P ∪₁ Q) ∪₁ R) ⊆₁' (P ∪₁ (Q ∪₁ R)) ⊆-proof _ (inj₁ (inj₁ Px)) = inj₁ Px ⊆-proof _ (inj₁ (inj₂ Qx)) = inj₂ (inj₁ Qx) ⊆-proof _ (inj₂ Rx) = inj₂ (inj₂ Rx) ⊇-proof : (P ∪₁ (Q ∪₁ R)) ⊆₁' ((P ∪₁ Q) ∪₁ R) ⊇-proof _ (inj₁ Px) = inj₁ (inj₁ Px) ⊇-proof _ (inj₂ (inj₁ Qx)) = inj₁ (inj₂ Qx) ⊇-proof _ (inj₂ (inj₂ Rx)) = inj₂ Rx -- # Operations -- ## Operations: General module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} where ∪₁-unique-pred : Disjoint₁ P Q → UniquePred P → UniquePred Q → UniquePred (P ∪₁ Q) ∪₁-unique-pred _ uniqueP _ x (inj₁ Px₁) (inj₁ Px₂) = cong inj₁ (uniqueP x Px₁ Px₂) ∪₁-unique-pred disPQ _ _ x (inj₁ Px) (inj₂ Qx) = ⊥-elim (disPQ x (Px , Qx)) ∪₁-unique-pred disPQ _ _ x (inj₂ Qx) (inj₁ Px) = ⊥-elim (disPQ x (Px , Qx)) ∪₁-unique-pred _ _ uniqueQ x (inj₂ Qx₁) (inj₂ Qx₂) = cong inj₂ (uniqueQ x Qx₁ Qx₂) -- ## Operations: ⊆₁ module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∪₁-combine-⊆₁ : P ⊆₁ Q → R ⊆₁ Q → (P ∪₁ R) ⊆₁ Q ∪₁-combine-⊆₁ (⊆: P⊆Q) (⊆: R⊆Q) = ⊆: lemma where lemma : (P ∪₁ R) ⊆₁' Q lemma x (inj₁ Px) = P⊆Q x Px lemma x (inj₂ Rx) = R⊆Q x Rx module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} where ∪₁-introˡ : P ⊆₁ (Q ∪₁ P) ∪₁-introˡ = ⊆: λ{_ → inj₂} ∪₁-introʳ : P ⊆₁ (P ∪₁ Q) ∪₁-introʳ = ⊆: λ{_ → inj₁} module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∪₁-introˡ-⊆₁ : P ⊆₁ R → P ⊆₁ (Q ∪₁ R) ∪₁-introˡ-⊆₁ (⊆: P⊆R) = ⊆: (inj₂ ∘₂ P⊆R) ∪₁-introʳ-⊆₁ : P ⊆₁ Q → P ⊆₁ (Q ∪₁ R) ∪₁-introʳ-⊆₁ (⊆: P⊆Q) = ⊆: (inj₁ ∘₂ P⊆Q) ∪₁-elimˡ-⊆₁ : (P ∪₁ Q) ⊆₁ R → Q ⊆₁ R ∪₁-elimˡ-⊆₁ (⊆: [P∪Q]⊆R) = ⊆: (λ x → [P∪Q]⊆R x ∘ inj₂) ∪₁-elimʳ-⊆₁ : (P ∪₁ Q) ⊆₁ R → P ⊆₁ R ∪₁-elimʳ-⊆₁ (⊆: [P∪Q]⊆R) = ⊆: (λ x → [P∪Q]⊆R x ∘ inj₁) module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∪₁-substˡ-⊆₁ : P ⊆₁ Q → (P ∪₁ R) ⊆₁ (Q ∪₁ R) ∪₁-substˡ-⊆₁ (⊆: P⊆Q) = ⊆: lemma where lemma : (P ∪₁ R) ⊆₁' (Q ∪₁ R) lemma x (inj₁ Px) = inj₁ (P⊆Q x Px) lemma x (inj₂ Rx) = inj₂ Rx ∪₁-substʳ-⊆₁ : P ⊆₁ Q → (R ∪₁ P) ⊆₁ (R ∪₁ Q) ∪₁-substʳ-⊆₁ (⊆: P⊆Q) = ⊆: lemma where lemma : (R ∪₁ P) ⊆₁' (R ∪₁ Q) lemma x (inj₁ Rx) = inj₁ Rx lemma x (inj₂ Px) = inj₂ (P⊆Q x Px) -- ## Operations: ⇔₂ module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : Pred A ℓ₃} where ∪₁-substˡ : P ⇔₁ Q → (P ∪₁ R) ⇔₁ (Q ∪₁ R) ∪₁-substˡ = ⇔₁-compose ∪₁-substˡ-⊆₁ ∪₁-substˡ-⊆₁ ∪₁-substʳ : P ⇔₁ Q → (R ∪₁ P) ⇔₁ (R ∪₁ Q) ∪₁-substʳ = ⇔₁-compose ∪₁-substʳ-⊆₁ ∪₁-substʳ-⊆₁
{ "alphanum_fraction": 0.513062951, "avg_line_length": 27.1554054054, "ext": "agda", "hexsha": "ca82714096b9967fa279691be3a4ee650f65cf92", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Unary/Union.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Unary/Union.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Unary/Union.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2199, "size": 4019 }
module Recutter where open import Basics open import All open import Cutting open import Perm module RECUTTER {I}(C : I |> I) where open _|>_ CutKit : (I -> Set) -> Set CutKit P = (i : I)(c : Cuts C i) -> P i -> All P (inners C c) Subs : List I -> Set Subs = All (\ i -> One + Cuts C i) subCollect : (is : List I) -> Subs is -> List I subCollect is cs = collect is (all (\ i -> (\ _ -> i ,- []) <+> inners C) is cs) Sub : I |> Sg I (Cuts C) Cuts Sub (i , c) = Subs (inners C c) inners Sub {i , c} cs = subCollect (inners C c) cs Recutter : Set Recutter = (i : I)(c c' : Cuts C i) -> Sg (Cuts Sub (i , c)) \ d -> Sg (Cuts Sub (i , c')) \ d' -> inners Sub d ~ inners Sub d' module NATRECUT where open RECUTTER NatCut data CutCompare (x x' y y' n : Nat) : Set where cutLt : (d : Nat) -> (x +N suc d) == y -> (suc d +N y') == x' -> CutCompare x x' y y' n cutEq : x == y -> x' == y' -> CutCompare x x' y y' n cutGt : (d : Nat) -> (y +N suc d) == x -> (suc d +N x') == y' -> CutCompare x x' y y' n sucInj : {x y : Nat} -> suc x == suc y -> x == y sucInj (refl (suc _)) = refl _ cutCompare : (x x' y y' n : Nat) -> (x +N x') == n -> (y +N y') == n -> CutCompare x x' y y' n cutCompare zero .n zero .n n (refl _) (refl _) = cutEq (refl _) (refl _) cutCompare zero .(suc (y +N y')) (suc y) y' .(suc (y +N y')) (refl _) (refl _) = cutLt y (refl _) (refl _) cutCompare (suc x) x' zero .(suc (x +N x')) .(suc (x +N x')) (refl _) (refl _) = cutGt x (refl _) (refl _) cutCompare (suc x) x' (suc y) y' zero () () cutCompare (suc x) x' (suc y) y' (suc n) xq yq with cutCompare x x' y y' n (sucInj xq) (sucInj yq) cutCompare (suc x) x' (suc .(x +N suc d)) y' (suc n) xq yq | cutLt d (refl _) bq = cutLt d (refl _) bq cutCompare (suc x) x' (suc .x) y' (suc n) xq yq | cutEq (refl _) bq = cutEq (refl _) bq cutCompare (suc .(y +N suc d)) x' (suc y) y' (suc n) xq yq | cutGt d (refl _) bq = cutGt d (refl _) bq NatRecut : Recutter NatRecut n (a , b , qab) (c , d , qcd) with cutCompare a b c d n qab qcd NatRecut n (a , b , qab) (c , d , qcd) | cutLt e q0 q1 = (inl <> , inr (suc e , d , q1) , <>) , (inr (a , suc e , q0) , inl <> , <>) , reflP _ NatRecut n (a , b , qab) (.a , .b , qcd) | cutEq (refl .a) (refl .b) = (inl <> , inl <> , <>) , (inl <> , inl <> , <>) , reflP _ NatRecut n (a , b , qab) (c , d , qcd) | cutGt e q0 q1 = (inr (c , suc e , q0) , inl <> , <>) , (inl <> , inr (suc e , b , q1) , <>) , reflP _ module SUBCOLLECTLEMMA where open _|>_ open RECUTTER subCollectLemma : forall {I J}(C : I |> I)(D : J |> J) (f : I -> J)(g : (i : I) -> Cuts C i -> Cuts D (f i)) -> (q : (i : I)(c : Cuts C i) -> inners D (g i c) == list f (inners C c)) -> (is : List I)(ps : All (\ i -> One + Cuts C i) is) -> subCollect D (list f is) (allRe f is (all (\ i -> id +map g i) is ps)) == list f (subCollect C is ps) subCollectLemma C D f g q [] <> = refl [] subCollectLemma C D f g q (i ,- is) (inl <> , ps) = refl (f i ,-_) =$= subCollectLemma C D f g q is ps subCollectLemma C D f g q (i ,- is) (inr c , ps) = (inners D (g i c) +L subCollect D (list f is) (allRe f is (allAp is (allPu (\ i -> id +map g i) is) ps))) =[ refl _+L_ =$= q i c =$= subCollectLemma C D f g q is ps >= (list f (inners C c) +L list f (subCollect C is ps)) =[ catNatural f (inners C c) (subCollect C is ps) >= list f (inners C c +L subCollect C is ps) [QED]
{ "alphanum_fraction": 0.4899456522, "avg_line_length": 36.4356435644, "ext": "agda", "hexsha": "f9a084fa765274755bac141447a2b1e70efbf22a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "Recutter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "Recutter.agda", "max_line_length": 93, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "Recutter.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 1516, "size": 3680 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Conversion {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Tools.Product -- Conversion from left to right of valid terms. convᵛ : ∀ {t A B Γ l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([B] : Γ ⊩ᵛ⟨ l ⟩ B / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A] → Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] → Γ ⊩ᵛ⟨ l ⟩ t ∷ B / [Γ] / [B] convᵛ [Γ] [A] [B] [A≡B] [t] ⊢Δ [σ] = let [σA] = proj₁ ([A] ⊢Δ [σ]) [σB] = proj₁ ([B] ⊢Δ [σ]) [σA≡σB] = irrelevanceEq [σA] [σA] ([A≡B] ⊢Δ [σ]) [σt] = proj₁ ([t] ⊢Δ [σ]) [σt≡σ′t] = λ σ′ → proj₂ ([t] ⊢Δ [σ]) {σ′ = σ′} in convTerm₁ [σA] [σB] [σA≡σB] [σt] , λ [σ′] [σ≡σ′] → convEqTerm₁ [σA] [σB] [σA≡σB] (([σt≡σ′t] _) [σ′] [σ≡σ′]) -- Conversion from right to left of valid terms. conv₂ᵛ : ∀ {t A B Γ l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([B] : Γ ⊩ᵛ⟨ l ⟩ B / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A] → Γ ⊩ᵛ⟨ l ⟩ t ∷ B / [Γ] / [B] → Γ ⊩ᵛ⟨ l ⟩ t ∷ A / [Γ] / [A] conv₂ᵛ [Γ] [A] [B] [A≡B] [t] ⊢Δ [σ] = let [σA] = proj₁ ([A] ⊢Δ [σ]) [σB] = proj₁ ([B] ⊢Δ [σ]) [σA≡σB] = irrelevanceEq [σA] [σA] ([A≡B] ⊢Δ [σ]) [σt] = proj₁ ([t] ⊢Δ [σ]) [σt≡σ′t] = λ σ′ → (proj₂ ([t] ⊢Δ [σ]) {σ′ = σ′}) in convTerm₂ [σA] [σB] [σA≡σB] [σt] , λ [σ′] [σ≡σ′] → convEqTerm₂ [σA] [σB] [σA≡σB] (([σt≡σ′t] _) [σ′] [σ≡σ′]) -- Conversion from left to right of valid term equality. convEqᵛ : ∀ {t u A B Γ l} ([Γ] : ⊩ᵛ Γ) ([A] : Γ ⊩ᵛ⟨ l ⟩ A / [Γ]) ([B] : Γ ⊩ᵛ⟨ l ⟩ B / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ A ≡ B / [Γ] / [A] → Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ A / [Γ] / [A] → Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ B / [Γ] / [B] convEqᵛ [Γ] [A] [B] [A≡B] [t≡u] ⊢Δ [σ] = let [σA] = proj₁ ([A] ⊢Δ [σ]) [σB] = proj₁ ([B] ⊢Δ [σ]) [σA≡σB] = irrelevanceEq [σA] [σA] ([A≡B] ⊢Δ [σ]) in convEqTerm₁ [σA] [σB] [σA≡σB] ([t≡u] ⊢Δ [σ])
{ "alphanum_fraction": 0.4281780633, "avg_line_length": 35.1451612903, "ext": "agda", "hexsha": "40238a3253cc0fc32fc49e971c4eb47f7c0346e0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Conversion.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Conversion.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1196, "size": 2179 }
module Abstract where abstract f : {A : Set} → A → A f x = x g : {A : Set} → A → A g x = x h : {A : Set} → A → A h x = f x _ : {A : Set} → A → A _ = λ x → x
{ "alphanum_fraction": 0.2839506173, "avg_line_length": 7.3636363636, "ext": "agda", "hexsha": "946d7f368f51fe73a943fe5d0a60d85428451da2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/declaration/Abstract.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/declaration/Abstract.agda", "max_line_length": 21, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/declaration/Abstract.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 111, "size": 243 }
-- 2012-03-06 Andreas -- Errors during printing of debug messages should not propagate to the -- top level {-# OPTIONS -v tc.meta.assign:10 #-} module Issue578 where -- Skipping import of Level will leave us with no level builtins -- import Level data D : Set where -- This will generate a debug message, but it cannot be printed -- since there are no bindings for the level builtins. -- However, the file should still succeed.
{ "alphanum_fraction": 0.7390300231, "avg_line_length": 25.4705882353, "ext": "agda", "hexsha": "a4443f9a6b73a6e55bb90d3ec687711d333e8fbd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue578.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue578.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue578.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 101, "size": 433 }
-- Andreas, 2017-01-19, issue #2416, probably regression -- Give failed for constrained size -- {-# OPTIONS -v interaction.give:40 #-} -- {-# OPTIONS -v tc.conv:10 #-} -- {-# OPTIONS -v tc.conv.coerce:70 #-} -- {-# OPTIONS -v tc.size:40 #-} -- {-# OPTIONS -v tc.check.internal:40 #-} open import Common.Size open import Common.Equality data Nat i : Set where zero : Nat i suc : (j : Size< i) (n : Nat j) → Nat i postulate divideBySuc : Nat ∞ → ∀ k → Nat k → Nat k div-self : ∀ l (n : Nat l) → divideBySuc n (↑ l) (suc {! l !} n) ≡ suc l zero -- Cannot solve size constraints -- [i, n] i ≤ _j_19 i n -- [i, n] (↑ _j_19 i n) ≤ _i_18 i n -- [i, n] (↑ _j_20 i n) ≤ _i_18 i n -- Reason: inconsistent upper bound for 20 -- when checking that zero is a valid argument to a function of type
{ "alphanum_fraction": 0.608531995, "avg_line_length": 29.5185185185, "ext": "agda", "hexsha": "f444830be2f1525f2dcd967deb675d26158f9a87", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2416.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2416.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2416.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 279, "size": 797 }
open import Auto open import Function using (const) open import Data.Bool using (Bool; true; false) open import Data.Bool.Show as Bool using () open import Data.List using (_∷_; []) open import Data.Maybe open import Data.Nat using (ℕ; suc; zero) open import Data.Nat.Show as Nat using () open import Data.String using (String; _++_) open import Data.Sum renaming (_⊎_ to Either; inj₁ to left; inj₂ to right) open import Relation.Binary.PropositionalEquality using (_≡_; refl) module Auto.Example.TypeClasses where -------------------------------------------------------------------------------- -- * We can construct a class for the Show function (as a dependent record) * -- -------------------------------------------------------------------------------- record Show (A : Set) : Set where constructor mkShow field show : A → String open Show {{...}} -------------------------------------------------------------------------------- -- * And set up a list of rules which guide the instance resolution * -- -------------------------------------------------------------------------------- rules : HintDB rules = [] << quote instShowEither << quote instShowBool << quote instShowNat where instShowBool : Show Bool instShowBool = mkShow Bool.show instShowNat : Show ℕ instShowNat = mkShow Nat.show instShowEither : {A B : Set} → Show A → Show B → Show (Either A B) instShowEither {A} {B} instShowA instShowB = mkShow showEither where showEither : Either A B → String showEither (left x) = "left " ++ show x showEither (right y) = "right " ++ show y -------------------------------------------------------------------------------- -- * Using these rules and `auto` we can easily and robustly compute the * -- -- * instances we need. * -- -------------------------------------------------------------------------------- example₁ : String example₁ = show (left true) ++ show (right 4) where instance inst : Show (Either Bool ℕ) inst = tactic (auto 5 rules) -------------------------------------------------------------------------------- -- * This fails due to normalisation from the non-dependent pair _×_ to the * -- -- * dependent pair Σ (as `A × B` is defined as `Σ A (λ _ → B)`). * -- -------------------------------------------------------------------------------- module DefaultPair where open import Data.Product using (_×_; _,_) instShowPair : {A B : Set} → Show A → Show B → Show (A × B) instShowPair {A} {B} showA showB = record { show = showPair } where showPair : A × B → String showPair (proj₁ , proj₂) = show proj₁ ++ "," ++ show proj₂ inst : Exception unsupportedSyntax inst = unquote (auto 5 (rules << quote instShowPair) g) where g = quoteTerm (Show (Bool × ℕ)) -------------------------------------------------------------------------------- -- * So we're forced to use a custom pair, which isn't derived from * -- -- * a dependent pair * -- -------------------------------------------------------------------------------- module CustomPair where data _×_ (A B : Set) : Set where _,_ : A → B → A × B instShowPair : ∀ {A B} → Show A → Show B → Show (A × B) instShowPair {A} {B} showA showB = record { show = showPair } where showPair : A × B → String showPair (proj₁ , proj₂) = show proj₁ ++ "," ++ show proj₂ example₂ : String example₂ = show (true , 1) where instance inst : Show (Bool × ℕ) inst = tactic (auto 5 (rules << quote instShowPair)) -------------------------------------------------------------------------------- -- * This fails due to something super weird which I haven't encountered * -- -- * before at all... * -- -------------------------------------------------------------------------------- module AbstractPair where open import Data.Product as Σ using (Σ) abstract _×_ : (A B : Set) → Set A × B = Σ A (const B) instShowPair : ∀ {A B} → Show A → Show B → Show (A × B) instShowPair {A} {B} showA showB = record { show = showPair } where showPair : A × B → String showPair (proj₁ Σ., proj₂) = show proj₁ ++ "," ++ show proj₂ _,_ : {A B : Set} (x : A) (y : B) → A × B _,_ = Σ._,_ --inst : Show (Bool × ℕ) --inst = tactic (auto 5 (rules << quote instShowPair))
{ "alphanum_fraction": 0.4626044875, "avg_line_length": 34.7022900763, "ext": "agda", "hexsha": "7694047d529d7eca69b064e6675d2e8ed4f9680a", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2019-07-07T07:37:07.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-10T10:47:30.000Z", "max_forks_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wenkokke/AutoInAgda", "max_forks_repo_path": "src/Auto/Example/TypeClasses.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_issues_repo_issues_event_max_datetime": "2017-11-06T16:49:27.000Z", "max_issues_repo_issues_event_min_datetime": "2017-11-03T09:46:19.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wenkokke/AutoInAgda", "max_issues_repo_path": "src/Auto/Example/TypeClasses.agda", "max_line_length": 80, "max_stars_count": 22, "max_stars_repo_head_hexsha": "f384b5c236645fcf8ab93179723a7355383a8716", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/AutoInAgda", "max_stars_repo_path": "src/Auto/Example/TypeClasses.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-20T15:04:47.000Z", "max_stars_repo_stars_event_min_datetime": "2017-07-18T18:14:09.000Z", "num_tokens": 1040, "size": 4546 }
module Peano where data ℕ : Set where zero : ℕ suc : ℕ → ℕ _+_ : ℕ → ℕ → ℕ zero + zero = zero zero + n = n (suc n) + m = suc (n + m) data _even : ℕ → Set where ZERO : zero even STEP : ∀ x → x even → suc (suc x) even proof₁ : suc (suc (suc (suc zero))) even proof₁ = STEP (suc (suc zero)) (STEP zero ZERO)
{ "alphanum_fraction": 0.527696793, "avg_line_length": 20.1764705882, "ext": "agda", "hexsha": "9900b507e8bd083e40755157fb331753baa922f0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6178c6ff150b11a462d40f0f3a0fd3ccc8d5ffb0", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "prt2121/tdd-playground", "max_forks_repo_path": "agda/Peano.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6178c6ff150b11a462d40f0f3a0fd3ccc8d5ffb0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "prt2121/tdd-playground", "max_issues_repo_path": "agda/Peano.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "6178c6ff150b11a462d40f0f3a0fd3ccc8d5ffb0", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "prt2121/tdd-playground", "max_stars_repo_path": "agda/Peano.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 133, "size": 343 }
{- Name: Bowornmet (Ben) Hudson -- define the source language from the paper -} open import Preliminaries open import Preorder-withmax module Source-lang where -- define the source language from the paper -- we want to focus on arrow, cross, and nat types data Tp : Set where unit : Tp nat : Tp susp : Tp → Tp _->s_ : Tp → Tp → Tp _×s_ : Tp → Tp → Tp data Cost : Set where 0c : Cost 1c : Cost _+c_ : Cost → Cost → Cost data Equals0c : Cost → Set where Eq0-0c : Equals0c 0c Eq0-+c : ∀ {c c'} → Equals0c c → Equals0c c' → Equals0c (c +c c') -- represent a context as a list of types Ctx = List Tp -- de Bruijn indices (for free variables) data _∈_ : Tp → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ (τ :: Γ) iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ (τ1 :: Γ) data _|-_ : Ctx → Tp → Set where unit : ∀ {Γ} → Γ |- unit var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ z : ∀ {Γ} → Γ |- nat suc : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (susp τ :: Γ)) |- τ → Γ |- τ lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->s τ) app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->s τ1) → Γ |- τ2 → Γ |- τ1 prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×s τ2) l-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×s τ2) → Γ |- τ1 r-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×s τ2) → Γ |- τ2 -- include split, delay/susp/force instead of usual elim rules for products delay : ∀ {Γ τ} → Γ |- τ → Γ |- susp τ force : ∀ {Γ τ} → Γ |- susp τ → Γ |- τ split : ∀ {Γ τ τ1 τ2} → Γ |- (τ1 ×s τ2) → (τ1 :: (τ2 :: Γ)) |- τ → Γ |- τ ------weakening and substitution lemmas -- renaming function rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ -- re: transferring variables in contexts lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') lem1 d i0 = i0 lem1 d (iS x) = iS (d x) -- renaming lemma ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ ren unit d = unit ren (var x) d = var (d x) ren z d = z ren (suc e) d = suc (ren e d) ren (rec e e0 e1) d = rec (ren e d) (ren e0 d) (ren e1 (lem1 (lem1 d))) ren (lam e) d = lam (ren e (lem1 d)) ren (app e1 e2) d = app (ren e1 d) (ren e2 d) ren (prod e1 e2) d = prod (ren e1 d) (ren e2 d) ren (l-proj e) d = l-proj (ren e d) ren (r-proj e) d = r-proj (ren e d) ren (delay e) d = delay (ren e d) ren (force e) d = force (ren e d) ren (split e e1) d = split (ren e d) (ren e1 (lem1 (lem1 d))) -- substitution sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ -- weakening a context wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 wkn e = ren e iS -- weakening also works with substitution wkn-s : ∀ {Γ τ1 Γ'} → sctx Γ Γ' → sctx (τ1 :: Γ) Γ' wkn-s d = λ f → wkn (d f) wkn-r : ∀ {Γ τ1 Γ'} → rctx Γ Γ' → rctx (τ1 :: Γ) Γ' wkn-r d = λ x → iS (d x) -- lem2 (need a lemma for subst like we did for renaming) lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') lem2 d i0 = var i0 lem2 d (iS i) = wkn (d i) -- another substitution lemma lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) lem3 e i0 = e lem3 e (iS i) = var i lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ') lem3' Θ e i0 = e lem3' Θ e (iS i) = Θ i -- one final lemma needed for the last stepping rule. Thank you Professor Licata! lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem4 e1 e2 i0 = e1 lem4 e1 e2 (iS i0) = e2 lem4 e1 e2 (iS (iS i)) = var i lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ')) lem4' Θ a b i0 = a lem4' Θ a b (iS i0) = b lem4' Θ a b (iS (iS i)) = Θ i lem5 : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×s τ2) → sctx Γ ((τ1 ×s τ2) :: (τ1 :: (τ2 :: Γ))) lem5 e i0 = e lem5 e (iS i0) = l-proj e lem5 e (iS (iS i0)) = r-proj e lem5 e (iS (iS (iS i))) = var i ids-2 : ∀ {Γ τ} → Γ |- τ → sctx Γ Γ → Γ |- τ ids-2 e Θ = e -- the 'real' substitution lemma (if (x : τ') :: Γ |- (e : τ) and Γ |- (e : τ') , then Γ |- e[x -> e'] : τ) subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ subst d unit = unit subst d (var x) = d x subst d z = z subst d (suc x) = suc (subst d x) subst d (rec e e0 e1) = rec (subst d e) (subst d e0) (subst (lem2 (lem2 d)) e1) subst d (lam e) = lam (subst (lem2 d) e) subst d (app e1 e2) = app (subst d e1) (subst d e2) subst d (prod e1 e2) = prod (subst d e1) (subst d e2) subst d (l-proj e) = l-proj (subst d e) subst d (r-proj e) = r-proj (subst d e) subst d (delay e) = delay (subst d e) subst d (force e) = force (subst d e) subst d (split e e1) = split (subst d e) (subst (lem2 (lem2 d)) e1) s-comp1 : ∀ {Γ Γ' Γ''} → sctx Γ Γ' → sctx Γ'' Γ → sctx Γ'' Γ' s-comp1 Θ Θ' = subst Θ' o Θ postulate subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (lem3 v) (subst (lem2 Θ) e) == subst (lem3' Θ v) e --subst-compose {Γ} {_} Θ v e = {!!} postulate subst-compose2 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (n : Γ |- nat) (e1 : Γ' |- τ) (e2 : (nat :: (susp τ :: Γ')) |- τ) → subst (lem4 n (delay (rec n (subst Θ e1) (subst (lem2 (lem2 Θ)) e2)))) (subst (lem2 (lem2 Θ)) e2) == subst (lem4' Θ n (delay (rec n (subst Θ e1) (subst (lem2 (lem2 Θ)) e2)))) e2 postulate subst-compose3 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (lem4 v1 v2) (subst (lem2 (lem2 Θ)) e1) == subst (lem4' Θ v1 v2) e1 postulate subst-compose4 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- susp τ) (e2 : (nat :: (susp τ :: Γ')) |- τ) → subst (lem4 v' r) (subst (lem2 (lem2 Θ)) e2) == subst (lem4' Θ v' r) e2 ------- data val : ∀ {τ} → [] |- τ → Set where z-isval : val z suc-isval : (e : [] |- nat) → (val e) → val (suc e) pair-isval : ∀ {τ1 τ2} (e1 : [] |- τ1) → (e2 : [] |- τ2) → val e1 → val e2 → val (prod e1 e2) lam-isval : ∀ {ρ τ} (e : (ρ :: []) |- τ) → val (lam e) unit-isval : val unit delay-isval : ∀ {τ} (e : [] |- τ) → val (delay e) mutual -- define evals (e : source exp) (v : value) (c : nat) -- analogous to "e evaluates to v in c steps" -- see figure 4 of paper data evals : {τ : Tp} → [] |- τ → [] |- τ → Cost → Set where pair-evals : ∀ {n1 n2} → {τ1 τ2 : Tp} {e1 v1 : [] |- τ1} {e2 v2 : [] |- τ2} → evals e1 v1 n1 → evals e2 v2 n2 → evals (prod e1 e2) (prod v1 v2) (n1 +c n2) lam-evals : ∀ {ρ τ} {e : (ρ :: []) |- τ} → evals (lam e) (lam e) 0c app-evals : ∀ {n0 n1 n} → {τ1 τ2 : Tp} {e0 : [] |- (τ1 ->s τ2)} {e0' : (τ1 :: []) |- τ2} {e1 v1 : [] |- τ1} {v : [] |- τ2} → evals e0 (lam e0') n0 → evals e1 v1 n1 → evals (subst (lem3 v1) e0') v n → evals (app e0 e1) v ((n0 +c n1) +c n) z-evals : evals z z 0c s-evals : ∀ {n} → {e v : [] |- nat} → evals e v n → evals (suc e) (suc v) n unit-evals : evals unit unit 0c rec-evals : ∀ {n1 n2} → {τ : Tp} {e v : [] |- nat} {e0 v' : [] |- τ} {e1 : (nat :: (susp τ :: [])) |- τ} → evals e v n1 → evals-rec-branch e0 e1 v v' n2 → evals (rec e e0 e1) v' (n1 +c (1c +c n2)) -- adding some new rules to the mix delay-evals : {τ : Tp} {e : [] |- τ} → evals (delay e) (delay e) 0c force-evals : ∀ {n1 n2} → {τ : Tp} {e' v : [] |- τ} {e : [] |- susp τ} → evals e (delay e') n1 → evals e' v n2 → evals (force e) v (n1 +c n2) split-evals : ∀ {n1 n2} → {τ τ1 τ2 : Tp} {e0 : [] |- (τ1 ×s τ2)} {v1 : [] |- τ1} {v2 : [] |- τ2} {e1 : (τ1 :: (τ2 :: [])) |- τ} {v : [] |- τ} → evals e0 (prod v1 v2) n1 → evals (subst (lem4 v1 v2) e1) v n2 → evals (split e0 e1) v (n1 +c n2) -- means evals (rec v e0 e1) v' n -- but helpful to have a separate type for this data evals-rec-branch {τ : Tp} (e0 : [] |- τ) (e1 : (nat :: (susp τ :: [])) |- τ) : (e : [] |- nat) (v : [] |- τ) → Cost → Set where evals-rec-z : ∀ {v n} → evals e0 v n → evals-rec-branch e0 e1 z v n evals-rec-s : ∀ {v v' n} → evals (subst (lem4 v (delay (rec v e0 e1))) e1) v' n → evals-rec-branch e0 e1 (suc v) v' n evals-val : {τ : Tp} {e : [] |- τ} {v : [] |- τ} {n : Cost} → evals e v n → val v evals-val (pair-evals D D₁) = pair-isval _ _ (evals-val D) (evals-val D₁) evals-val lam-evals = lam-isval _ evals-val (app-evals D D₁ D₂) = evals-val D₂ evals-val z-evals = z-isval evals-val (s-evals D) = suc-isval _ (evals-val D) evals-val unit-evals = unit-isval evals-val (rec-evals x (evals-rec-z D)) = evals-val D evals-val (rec-evals x (evals-rec-s D)) = evals-val D evals-val delay-evals = delay-isval _ evals-val (force-evals D D₁) = evals-val D₁ evals-val (split-evals D D₁) = evals-val D₁ val-evals-inversion : {τ : Tp} {v v' : [] |- τ} {n : Cost} → val v → evals v v' n → (v == v') × Equals0c n val-evals-inversion z-isval z-evals = Refl , Eq0-0c val-evals-inversion (suc-isval e valv) (s-evals evv) = ap suc (fst IH) , snd IH where IH = val-evals-inversion valv evv val-evals-inversion (pair-isval e1 e2 valv valv₁) (pair-evals evv evv₁) = ap2 prod (fst IH1) (fst IH2) , Eq0-+c (snd IH1) (snd IH2) where IH1 = val-evals-inversion valv evv IH2 = val-evals-inversion valv₁ evv₁ val-evals-inversion (lam-isval e) lam-evals = Refl , Eq0-0c val-evals-inversion unit-isval unit-evals = Refl , Eq0-0c val-evals-inversion (delay-isval e) delay-evals = Refl , Eq0-0c ---------- some sample programs in the source language --dbl(n : nat) = 2*n dbl : ∀ {Γ} → Γ |- (nat ->s nat) dbl = lam (rec (var i0) z (suc (suc (force (var (iS i0)))))) --add(x : nat , y : nat) = x+y add : ∀ {Γ} → Γ |- (nat ->s (nat ->s nat)) add = lam (lam (rec (var (iS i0)) (var i0) (suc (force (var (iS i0)))))) --mult(x : nat , y : nat) = x*y mult : ∀ {Γ} → Γ |- (nat ->s (nat ->s nat)) mult = lam (lam (rec (var (iS i0)) z (app (app add (var (iS (iS i0)))) (force (var (iS i0))))))
{ "alphanum_fraction": 0.4613587515, "avg_line_length": 35.5514950166, "ext": "agda", "hexsha": "4ef8b582acde03a61a68e7b5b46b91175011b639", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity-drafts/Source-lang.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity-drafts/Source-lang.agda", "max_line_length": 139, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity-drafts/Source-lang.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 4466, "size": 10701 }
------------------------------------------------------------------------ -- Lemmas related to application of substitutions ------------------------------------------------------------------------ open import Data.Universe.Indexed module deBruijn.Substitution.Data.Application.Application222 {i u e} {Uni : IndexedUniverse i u e} where import deBruijn.Context; open deBruijn.Context Uni open import deBruijn.Substitution.Data.Application.Application221 open import deBruijn.Substitution.Data.Basics open import deBruijn.Substitution.Data.Map open import deBruijn.Substitution.Data.Simple open import Function using (_$_) open import Level using (_⊔_) import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning -- Lemmas related to application. record Application₂₂₂ {t₁} {T₁ : Term-like t₁} {t₂} {T₂ : Term-like t₂} -- Simple substitutions for the first kind of terms. (simple₁ : Simple T₁) -- Simple substitutions for the second kind of terms. (simple₂ : Simple T₂) -- A translation from the first to the second kind of terms. (trans : [ T₁ ⟶⁼ T₂ ]) : Set (i ⊔ u ⊔ e ⊔ t₁ ⊔ t₂) where open Term-like T₁ using () renaming (_⊢_ to _⊢₁_) open Term-like T₂ using ([_]) renaming (_⊢_ to _⊢₂_; _≅-⊢_ to _≅-⊢₂_) open Simple simple₁ using () renaming ( id to id₁; sub to sub₁; var to var₁ ; wk to wk₁; wk[_] to wk₁[_] ; _↑ to _↑₁; _↑_ to _↑₁_; _↑⁺_ to _↑⁺₁_; _↑₊_ to _↑₊₁_ ; _↑⋆ to _↑⋆₁; _↑⁺⋆_ to _↑⁺⋆₁_ ) open Simple simple₂ using () renaming ( var to var₂ ; weaken to weaken₂; weaken[_] to weaken₂[_]; wk⁺ to wk⁺₂ ; wk-subst to wk-subst₂; wk-subst[_] to wk-subst₂[_] ; _↑ to _↑₂; _↑_ to _↑₂_; _↑⁺_ to _↑⁺₂_; _↑₊_ to _↑₊₂_ ) field application₂₂₁ : Application₂₂₁ simple₁ simple₂ trans open Application₂₂₁ application₂₂₁ public abstract -- A variant of suc-/∋-↑. suc-/⊢⋆-↑⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} σ {τ} (x : Γ ∋ τ) (ρs : Subs T₁ ρ̂) → var₂ · suc[ σ ] x /⊢⋆ ρs ↑⋆₁ ≅-⊢₂ var₂ · x /⊢⋆ (ρs ▻ wk₁[ σ /⋆ ρs ]) suc-/⊢⋆-↑⋆ σ x ε = begin [ var₂ · suc x ] ≡⟨ P.sym $ var-/⊢-wk-↑⁺ ε x ⟩ [ var₂ · x /⊢ wk₁ ] ∎ suc-/⊢⋆-↑⋆ σ x (ρs ▻ ρ) = begin [ var₂ · suc[ σ ] x /⊢⋆ ρs ↑⋆₁ /⊢ ρ ↑₁ ] ≡⟨ /⊢-cong (suc-/⊢⋆-↑⋆ σ x ρs) (P.refl {x = [ ρ ↑₁ ]}) ⟩ [ var₂ · x /⊢⋆ ρs /⊢ wk₁[ σ /⋆ ρs ] /⊢ ρ ↑₁ ] ≡⟨ P.sym $ /⊢-/⊢-wk (σ /⋆ ρs) (var₂ · x /⊢⋆ ρs) ρ ⟩ [ var₂ · x /⊢⋆ ρs /⊢ ρ /⊢ wk₁ ] ∎ -- The antecedent of var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ follows from a less -- complicated statement. var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} {ρs₁ : Subs T₁ ρ̂} {ρs₂ : Subs T₁ ρ̂} → (∀ {σ} (x : Γ ∋ σ) → var₂ · x /⊢⋆ ρs₁ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂) → ∀ Γ⁺ {σ} (x : Γ ++⁺ Γ⁺ ∋ σ) → var₂ · x /⊢⋆ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂ ↑⁺⋆₁ Γ⁺ var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ hyp ε x = hyp x var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ {ρs₁ = ρs₁} {ρs₂} hyp (Γ⁺ ▻ σ) zero = begin [ var₂ · zero /⊢⋆ ρs₁ ↑⁺⋆₁ (Γ⁺ ▻ σ) ] ≡⟨ zero-/⊢⋆-↑⋆ σ (ρs₁ ↑⁺⋆₁ Γ⁺) ⟩ [ var₂ · zero ] ≡⟨ P.sym $ zero-/⊢⋆-↑⋆ σ (ρs₂ ↑⁺⋆₁ Γ⁺) ⟩ [ var₂ · zero /⊢⋆ ρs₂ ↑⁺⋆₁ (Γ⁺ ▻ σ) ] ∎ var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ {ρs₁ = ρs₁} {ρs₂} hyp (Γ⁺ ▻ σ) (suc x) = begin [ var₂ · suc x /⊢⋆ ρs₁ ↑⁺⋆₁ (Γ⁺ ▻ σ) ] ≡⟨ suc-/⊢⋆-↑⋆ σ x (ρs₁ ↑⁺⋆₁ Γ⁺) ⟩ [ var₂ · x /⊢⋆ ρs₁ ↑⁺⋆₁ Γ⁺ /⊢ wk₁ ] ≡⟨ /⊢-cong (var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ hyp Γ⁺ x) (P.refl {x = [ wk₁ ]}) ⟩ [ var₂ · x /⊢⋆ ρs₂ ↑⁺⋆₁ Γ⁺ /⊢ wk₁ ] ≡⟨ P.sym $ suc-/⊢⋆-↑⋆ σ x (ρs₂ ↑⁺⋆₁ Γ⁺) ⟩ [ var₂ · suc x /⊢⋆ ρs₂ ↑⁺⋆₁ (Γ⁺ ▻ σ) ] ∎ -- Variants of var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ which may be easier to use. var-/⊢⋆-⇒-/⊢⋆-↑⁺⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs₁ : Subs T₁ ρ̂) (ρs₂ : Subs T₁ ρ̂) → (∀ {σ} (x : Γ ∋ σ) → var₂ · x /⊢⋆ ρs₁ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂) → ∀ Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢₂ σ) → t /⊢⋆ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢⋆ ρs₂ ↑⁺⋆₁ Γ⁺ var-/⊢⋆-⇒-/⊢⋆-↑⁺⋆ ρs₁ ρs₂ hyp = var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ ρs₁ ρs₂ (var-/⊢⋆-⇒-var-/⊢⋆-↑⁺⋆ hyp) var-/⊢⋆-⇒-/⊢⋆ : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs₁ : Subs T₁ ρ̂) (ρs₂ : Subs T₁ ρ̂) → (∀ {σ} (x : Γ ∋ σ) → var₂ · x /⊢⋆ ρs₁ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂) → ∀ {σ} (t : Γ ⊢₂ σ) → t /⊢⋆ ρs₁ ≅-⊢₂ t /⊢⋆ ρs₂ var-/⊢⋆-⇒-/⊢⋆ ρs₁ ρs₂ hyp = var-/⊢⋆-⇒-/⊢⋆-↑⁺⋆ ρs₁ ρs₂ hyp ε -- The identity substitution has no effect. /⊢-id : ∀ {Γ σ} (t : Γ ⊢₂ σ) → t /⊢ id₁ ≅-⊢₂ t /⊢-id = var-/⊢⋆-⇒-/⊢⋆ (ε ▻ id₁) ε var-/⊢-id -- id is a right identity of _∘_. ∘-id : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₂ ρ̂) → ρ ∘ id₁ ≅-⇨ ρ ∘-id ρ = extensionality P.refl λ x → begin [ x /∋ ρ ∘ id₁ ] ≡⟨ /∋-∘ x ρ id₁ ⟩ [ x /∋ ρ /⊢ id₁ ] ≡⟨ /⊢-id (x /∋ ρ) ⟩ [ x /∋ ρ ] ∎ -- Lifting distributes over composition. ∘-↑ : ∀ {Γ Δ Ε} σ {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (ρ₁ : Sub T₂ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) → (ρ₁ ∘ ρ₂) ↑₂ σ ≅-⇨ ρ₁ ↑₂ σ ∘ ρ₂ ↑₁ ∘-↑ σ ρ₁ ρ₂ = let ρ₂↑ = ρ₂ ↑₁ (σ / ρ₁) lemma₁ = begin [ wk-subst₂ (ρ₁ ∘ ρ₂) ] ≡⟨ P.refl ⟩ [ map weaken₂ (map (app ρ₂) ρ₁) ] ≡⟨ P.sym $ map-[∘] weaken₂ (app ρ₂) ρ₁ ⟩ [ map (weaken₂ [∘] app ρ₂) ρ₁ ] ≡⟨ map-cong-ext₁ P.refl (λ t → begin [ weaken₂ · (t /⊢ ρ₂) ] ≡⟨ P.sym $ /⊢-wk (t /⊢ ρ₂) ⟩ [ t /⊢ ρ₂ /⊢ wk₁ ] ≡⟨ /⊢-/⊢-wk (σ / ρ₁) t ρ₂ ⟩ [ t /⊢ wk₁ /⊢ ρ₂↑ ] ≡⟨ /⊢-cong (/⊢-wk t) P.refl ⟩ [ weaken₂ · t /⊢ ρ₂↑ ] ∎) (P.refl {x = [ ρ₁ ]}) ⟩ [ map (app ρ₂↑ [∘] weaken₂) ρ₁ ] ≡⟨ map-[∘] (app ρ₂↑) weaken₂ ρ₁ ⟩ [ map (app ρ₂↑) (map (weaken₂) ρ₁) ] ∎ lemma₂ = begin [ var₂ · zero ] ≡⟨ P.sym $ trans-var zero ⟩ [ trans · (var₁ · zero) ] ≡⟨ trans-cong (P.sym $ Simple.zero-/∋-↑ simple₁ (σ / ρ₁) ρ₂) ⟩ [ trans · (zero /∋ ρ₂↑) ] ≡⟨ P.sym $ var-/⊢ zero ρ₂↑ ⟩ [ var₂ · zero /⊢ ρ₂↑ ] ∎ in begin [ (ρ₁ ∘ ρ₂) ↑₂ ] ≡⟨ Simple.unfold-↑ simple₂ (ρ₁ ∘ ρ₂) ⟩ [ wk-subst₂ (ρ₁ ∘ ρ₂) ▻ var₂ · zero ] ≡⟨ ▻⇨-cong P.refl lemma₁ lemma₂ ⟩ [ map (app ρ₂↑) (map weaken₂[ σ / ρ₁ ] ρ₁) ▻ var₂ · zero /⊢ ρ₂↑ ] ≡⟨ P.sym $ map-▻ (app ρ₂↑) (wk-subst₂[ σ / ρ₁ ] ρ₁) (var₂ · zero) ⟩ [ map (app ρ₂↑) (wk-subst₂[ σ / ρ₁ ] ρ₁ ▻ var₂ · zero) ] ≡⟨ map-cong (app ρ₂↑ ∎-⟶) (P.sym $ Simple.unfold-↑ simple₂ ρ₁) ⟩ [ map (app ρ₂↑) (ρ₁ ↑₂) ] ≡⟨ P.refl ⟩ [ ρ₁ ↑₂ ∘ ρ₂ ↑₁ ] ∎ -- N-ary lifting distributes over composition. ∘-↑⁺ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (ρ₁ : Sub T₂ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) Γ⁺ → (ρ₁ ∘ ρ₂) ↑⁺₂ Γ⁺ ≅-⇨ ρ₁ ↑⁺₂ Γ⁺ ∘ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁) ∘-↑⁺ ρ₁ ρ₂ ε = P.refl ∘-↑⁺ ρ₁ ρ₂ (Γ⁺ ▻ σ) = begin [ ((ρ₁ ∘ ρ₂) ↑⁺₂ Γ⁺) ↑₂ ] ≡⟨ Simple.↑-cong simple₂ (∘-↑⁺ ρ₁ ρ₂ Γ⁺) P.refl ⟩ [ (ρ₁ ↑⁺₂ Γ⁺ ∘ ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁)) ↑₂ ] ≡⟨ ∘-↑ σ (ρ₁ ↑⁺₂ Γ⁺) (ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁)) ⟩ [ (ρ₁ ↑⁺₂ Γ⁺) ↑₂ ∘ (ρ₂ ↑⁺₁ (Γ⁺ /⁺ ρ₁)) ↑₁ ] ∎ ∘-↑₊ : ∀ {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} (ρ₁ : Sub T₂ ρ̂₁) (ρ₂ : Sub T₁ ρ̂₂) Γ₊ → (ρ₁ ∘ ρ₂) ↑₊₂ Γ₊ ≅-⇨ ρ₁ ↑₊₂ Γ₊ ∘ ρ₂ ↑₊₁ (Γ₊ /₊ ρ₁) ∘-↑₊ ρ₁ ρ₂ ε = P.refl ∘-↑₊ ρ₁ ρ₂ (σ ◅ Γ₊) = begin [ (ρ₁ ∘ ρ₂ ) ↑₂ σ ↑₊₂ Γ₊ ] ≡⟨ Simple.↑₊-cong simple₂ (∘-↑ σ ρ₁ ρ₂) (P.refl {x = [ Γ₊ ]}) ⟩ [ (ρ₁ ↑₂ σ ∘ ρ₂ ↑₁) ↑₊₂ Γ₊ ] ≡⟨ ∘-↑₊ (ρ₁ ↑₂ σ) (ρ₂ ↑₁) Γ₊ ⟩ [ ρ₁ ↑₊₂ (σ ◅ Γ₊) ∘ ρ₂ ↑₊₁ ((σ ◅ Γ₊) /₊ ρ₁) ] ∎ -- First weakening and then substituting something for the first -- variable is equivalent to doing nothing. /⊢-wk-/⊢-sub : ∀ {Γ σ τ} (t : Γ ⊢₂ τ) (t′ : Γ ⊢₁ σ) → t /⊢ wk₁ /⊢ sub₁ t′ ≅-⊢₂ t /⊢-wk-/⊢-sub t t′ = var-/⊢⋆-⇒-/⊢⋆ (ε ▻ wk₁ ▻ sub₁ t′) ε (λ x → begin [ var₂ · x /⊢ wk₁ /⊢ sub₁ t′ ] ≡⟨ /⊢-cong (/∋-≅-⊢-var x wk₁ (Simple./∋-wk simple₁ x)) P.refl ⟩ [ var₂ · suc x /⊢ sub₁ t′ ] ≡⟨ suc-/⊢-sub x t′ ⟩ [ var₂ · x ] ∎) t -- Weakening a substitution and composing with sub is the same as -- doing nothing. wk-subst-∘-sub : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₂ ρ̂) (t : Δ ⊢₁ σ) → wk-subst₂ ρ ∘ sub₁ t ≅-⇨ ρ wk-subst-∘-sub ρ t = extensionality P.refl λ x → let lemma = begin [ x /∋ wk-subst₂ ρ ] ≡⟨ Simple./∋-wk-subst simple₂ x ρ ⟩ [ weaken₂ · (x /∋ ρ) ] ≡⟨ P.sym $ /⊢-wk (x /∋ ρ) ⟩ [ x /∋ ρ /⊢ wk₁ ] ∎ in begin [ x /∋ wk-subst₂ ρ ∘ sub₁ t ] ≡⟨ /∋-∘ x (wk-subst₂ ρ) (sub₁ t) ⟩ [ x /∋ wk-subst₂ ρ /⊢ sub₁ t ] ≡⟨ /⊢-cong lemma P.refl ⟩ [ x /∋ ρ /⊢ wk₁ /⊢ sub₁ t ] ≡⟨ /⊢-wk-/⊢-sub (x /∋ ρ) t ⟩ [ x /∋ ρ ] ∎ -- Unfolding lemma for wk⁺. wk⁺-▻ : ∀ {Γ} (Γ⁺ : Ctxt⁺ Γ) {σ} → wk⁺₂ (Γ⁺ ▻ σ) ≅-⇨ wk⁺₂ Γ⁺ ∘ wk₁[ σ ] wk⁺-▻ Γ⁺ {σ = σ} = begin [ wk⁺₂ (Γ⁺ ▻ σ) ] ≡⟨ P.refl ⟩ [ wk-subst₂ (wk⁺₂ Γ⁺) ] ≡⟨ P.sym $ ∘-wk (wk⁺₂ Γ⁺) ⟩ [ wk⁺₂ Γ⁺ ∘ wk₁ ] ∎
{ "alphanum_fraction": 0.3792210483, "avg_line_length": 44.6944444444, "ext": "agda", "hexsha": "3d36074668ea511cf749b4d817cb21d9cd0a8b19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Substitution/Data/Application/Application222.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Substitution/Data/Application/Application222.agda", "max_line_length": 134, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Substitution/Data/Application/Application222.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 5232, "size": 9654 }
------------------------------------------------------------------------ -- Convenient syntax for relational reasoning using transitive -- relations ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Relation.Binary.TransReasoning where open import Level using (suc; _⊔_) open import Data.Context using (Ctx) open import Data.Fin.Substitution.Typed using (Typing) open import Data.Fin.Substitution.TypedRelation using (TypedRel) open import Data.Nat using (ℕ) open import Data.Product using (_,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality as P using (_≡_; subst) open import Relation.Binary open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Transitive relations that are not necessarily reflexive -- -- Following the convention used in the standard library, we define -- transitive binary relations using a pair of records (see -- Relation.Binary). record IsTransRel {a ℓ₁ ℓ₂} {A : Set a} (_≈_ : Rel A ℓ₁) -- The underlying equality. (_∼_ : Rel A ℓ₂) -- The relation. : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where field isEquivalence : IsEquivalence _≈_ trans : Transitive _∼_ -- _∼_ respects the underlying equality _≈_. -- -- (This always true for preorders, but not necessarily for -- irreflexive relations.) ∼-resp-≈ : _∼_ Respects₂ _≈_ module Eq = IsEquivalence isEquivalence record TransRel c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 4 _≈_ _∼_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _∼_ : Rel Carrier ℓ₂ -- The relation. isTransRel : IsTransRel _≈_ _∼_ open IsTransRel isTransRel public -- Sanity check: every pre-order is a transitive relation in the above -- sense... preorderIsTransRel : ∀ {c ℓ₁ ℓ₂} → Preorder c ℓ₁ ℓ₂ → TransRel c ℓ₁ ℓ₂ preorderIsTransRel P = record { isTransRel = record { isEquivalence = isEquivalence ; trans = trans ; ∼-resp-≈ = ∼-resp-≈ } } where open IsPreorder (Preorder.isPreorder P) -- ... and so is every strict partial order. strictPartialOrderIsTransRel : ∀ {c ℓ₁ ℓ₂} → StrictPartialOrder c ℓ₁ ℓ₂ → TransRel c ℓ₁ ℓ₂ strictPartialOrderIsTransRel SPO = record { isTransRel = record { isEquivalence = isEquivalence ; trans = trans ; ∼-resp-≈ = <-resp-≈ } } where open IsStrictPartialOrder (StrictPartialOrder.isStrictPartialOrder SPO) -- A form of relational reasoning for transitive relations. -- -- The structure of this module is adapted from the -- Relation.Binary.PreorderReasoning module of the standard library. -- It differs from the latter in that -- -- 1. it allows reasoning about relations that are transitive but not -- reflexive, and -- -- 2. the _IsRelatedTo_ predicate is extended with an additional -- index that tracks whether elements of the carrier are actually -- related in the transitive relation _∼_ or just in the -- underlying equality _≈_. -- -- Proofs that elements x, y are related as (x IsRelatedTo y In rel) -- can be converted back to proofs that x ∼ y using begin_, whereas -- proofs of (x IsRelatedTo y In eq) are too weak to do so. Since the -- relation _∼_ is not assumed to be reflexive (i.e. not necessarily a -- preorder) _∎ can only construct proofs of the weaker form (x ∎ : x -- IsRelatedTo x In eq). Consequently, at least one use of _∼⟨_⟩_ is -- necessary to conclude a proof. module TransRelReasoning {c ℓ₁ ℓ₂} (R : TransRel c ℓ₁ ℓ₂) where open TransRel R infix 4 _IsRelatedTo_In_ infix 3 _∎ infixr 2 _∼⟨_⟩_ _≈⟨_⟩_ _≈⟨⟩_ infix 1 begin_ -- Codes for the relation _∼_ and the underlying equality _≈_. data RelC : Set where rel eq : RelC -- A generic relation combining _∼_ and equality. data _IsRelatedTo_In_ (x y : Carrier) : RelC → Set (ℓ₁ ⊔ ℓ₂) where relTo : (x∼y : x ∼ y) → x IsRelatedTo y In rel eqTo : (x≈y : x ≈ y) → x IsRelatedTo y In eq begin_ : ∀ {x y} → x IsRelatedTo y In rel → x ∼ y begin (relTo x∼y) = x∼y _∼⟨_⟩_ : ∀ x {y z c} → x ∼ y → y IsRelatedTo z In c → x IsRelatedTo z In rel _ ∼⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z) _ ∼⟨ x∼y ⟩ eqTo y≈z = relTo (proj₁ ∼-resp-≈ y≈z x∼y) _≈⟨_⟩_ : ∀ x {y z c} → x ≈ y → y IsRelatedTo z In c → x IsRelatedTo z In c x ≈⟨ x≈y ⟩ relTo y∼z = relTo (proj₂ ∼-resp-≈ (Eq.sym x≈y) y∼z) x ≈⟨ x≈y ⟩ eqTo y≈z = eqTo (Eq.trans x≈y y≈z) _≈⟨⟩_ : ∀ x {y c} → x IsRelatedTo y In c → x IsRelatedTo y In c _ ≈⟨⟩ rt-x∼y = rt-x∼y _∎ : ∀ x → x IsRelatedTo x In eq _ ∎ = eqTo Eq.refl ------------------------------------------------------------------------ -- FIXME: the following should go into a different module (probably -- into Data.Fin.Substitution.{Typed,TypedRel}) -- A form of pre-order reasoning for transitive relations in a context. record TransCtxTermRelReasoning {t₁ t₂ ℓ} {T₁ : Pred ℕ t₁} {T₂ : Pred ℕ t₂} (_⊢_∼_ : Typing T₁ T₂ T₂ ℓ) : Set (t₁ ⊔ t₂ ⊔ ℓ) where -- Transitivity of _⊢_∼_ for a given context. field ∼-trans : ∀ {n} {Γ : Ctx T₁ n} → Transitive (Γ ⊢_∼_) module _ {n} {Γ : Ctx T₁ n} where ∼-transRel : TransRel _ _ _ ∼-transRel = record { Carrier = T₂ n ; _≈_ = _≡_ ; _∼_ = Γ ⊢_∼_ ; isTransRel = record { isEquivalence = P.isEquivalence ; trans = ∼-trans ; ∼-resp-≈ = subst (Γ ⊢ _ ∼_) , subst (Γ ⊢_∼ _) } } open TransRelReasoning ∼-transRel public renaming (_≈⟨_⟩_ to _≡⟨_⟩_; _≈⟨⟩_ to _≡⟨⟩_) -- A form of pre-order reasoning for typed transitive relations. record TypedTransRelReasoning {t₁ t₂ t₃ ℓ} {T₁ : Pred ℕ t₁} {T₂ : Pred ℕ t₂} {T₃ : Pred ℕ t₃} (_⊢_∼_∈_ : TypedRel T₁ T₂ T₂ T₃ ℓ) : Set (t₁ ⊔ t₂ ⊔ t₃ ⊔ ℓ) where -- Transitivity of _⊢_∼_∈_ for a given context and T₃-"type". field ∼-trans : ∀ {n} {Γ : Ctx T₁ n} {t} → Transitive (Γ ⊢_∼_∈ t) module _ {n} {Γ : Ctx T₁ n} {t : T₃ n} where ∼-transRel : TransRel _ _ _ ∼-transRel = record { Carrier = T₂ n ; _≈_ = _≡_ ; _∼_ = Γ ⊢_∼_∈ t ; isTransRel = record { isEquivalence = P.isEquivalence ; trans = ∼-trans ; ∼-resp-≈ = subst (Γ ⊢ _ ∼_∈ _) , subst (Γ ⊢_∼ _ ∈ _) } } open TransRelReasoning ∼-transRel public renaming (_≈⟨_⟩_ to _≡⟨_⟩_; _≈⟨⟩_ to _≡⟨⟩_)
{ "alphanum_fraction": 0.5841898428, "avg_line_length": 35.0052910053, "ext": "agda", "hexsha": "8904035eedaf80d652de762b5d103c9e5c939e7f", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z", "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/Relation/Binary/TransReasoning.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z", "max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/Relation/Binary/TransReasoning.agda", "max_line_length": 78, "max_stars_count": 12, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/Relation/Binary/TransReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z", "num_tokens": 2269, "size": 6616 }
open import Relation.Binary using (Preorder) open import Relation.Binary.PropositionalEquality open import Level module Category.Monad.Monotone.State {ℓ}(pre : Preorder ℓ ℓ ℓ)(H : Preorder.Carrier pre → Set ℓ) where open Preorder pre renaming (Carrier to I; _∼_ to _≤_; refl to ≤-refl; trans to ≤-trans) open import Data.Unit using (⊤; tt) open import Relation.Unary open import Relation.Unary.PredicateTransformer using (Pt) open import Relation.Unary.Monotone pre open import Data.Product open import Data.List.All open import Category.Monad open import Category.Monad.Monotone pre open import Category.Monad.Identity MST : (Set ℓ → Set ℓ) → Pt I ℓ MST M P = H ⇒ (λ i → M (∃ λ j → i ≤ j × H j × P j)) MSt : Pt I ℓ MSt = MST Identity record StateMonad (M : Pt I ℓ) : Set (suc ℓ) where field runState : ∀ {P} → (H ↗ H ∩ P) ⊆ M P get : ∀ {i} → M H i get = runState λ _ μ → μ , μ module _ {M}⦃ Mon : RawMonad {ℓ} M ⦄ where private module M = RawMonad Mon instance open RawMPMonad hiding (_>>=_; ts) mst-monad : RawMPMonad (MST M) return mst-monad px μ = M.return (_ , ≤-refl , μ , px) _≥=_ mst-monad c f μ = c μ M.>>= λ where (i₁ , ext₁ , μ₁ , pv) → (f ext₁ pv μ₁) M.>>= λ where (i₂ , ext₂ , μ₂ , pw) → M.return (i₂ , ≤-trans ext₁ ext₂ , μ₂ , pw) open StateMonad mst-monad-ops : StateMonad (MST M) runState (mst-monad-ops) f μ = let μ' , p = f ≤-refl μ in M.return (_ , ≤-refl , μ' , p)
{ "alphanum_fraction": 0.641184573, "avg_line_length": 31.5652173913, "ext": "agda", "hexsha": "b83da509865c98449e822daf3e5bcfaa6a24259e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Category/Monad/Monotone/State.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Category/Monad/Monotone/State.agda", "max_line_length": 102, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Category/Monad/Monotone/State.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 519, "size": 1452 }
data Bool : Set where true : Bool false : Bool record Eq (t : Set) : Set where field _==_ : t → t → Bool open Eq {{...}} -- Now package this into a record type for "sets with boolean equality": record EqSet : Set₁ where field set : Set instance eq : Eq set open EqSet equality : {{A : EqSet}} (x y : set A) → Bool equality x y = x == y
{ "alphanum_fraction": 0.6072423398, "avg_line_length": 17.0952380952, "ext": "agda", "hexsha": "d41d2730c5b57e0d5f9bd77bb06aa1a542caf19a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1273.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1273.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1273.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 113, "size": 359 }
{- Constant structure: _ ↦ A -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Relational.Constant where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.RelationalStructure open import Cubical.HITs.PropositionalTruncation open import Cubical.HITs.SetQuotients open import Cubical.Structures.Constant private variable ℓ ℓ' : Level -- Structured relations module _ (A : hSet ℓ') where ConstantRelStr : StrRel {ℓ = ℓ} (ConstantStructure (A .fst)) ℓ' ConstantRelStr _ a₀ a₁ = a₀ ≡ a₁ constantSuitableRel : SuitableStrRel {ℓ = ℓ} (ConstantStructure (A .fst)) ConstantRelStr constantSuitableRel .quo _ _ _ = isContrSingl _ constantSuitableRel .symmetric _ = sym constantSuitableRel .transitive _ _ = _∙_ constantSuitableRel .set _ = A .snd constantSuitableRel .prop _ = A .snd constantRelMatchesEquiv : StrRelMatchesEquiv {ℓ = ℓ} ConstantRelStr (ConstantEquivStr (A .fst)) constantRelMatchesEquiv _ _ _ = idEquiv _ constantRelAction : StrRelAction {ℓ = ℓ} ConstantRelStr constantRelAction .actStr _ a = a constantRelAction .actStrId _ = refl constantRelAction .actRel _ a a' p = p constantPositiveRel : PositiveStrRel {ℓ = ℓ} constantSuitableRel constantPositiveRel .act = constantRelAction constantPositiveRel .reflexive a = refl constantPositiveRel .detransitive R R' p = ∣ _ , p , refl ∣ constantPositiveRel .quo R = isoToIsEquiv isom where open Iso isom : Iso _ _ isom .fun = _ isom .inv = [_] isom .rightInv _ = refl isom .leftInv = elimProp (λ _ → squash/ _ _) (λ a → refl)
{ "alphanum_fraction": 0.7443693694, "avg_line_length": 30.6206896552, "ext": "agda", "hexsha": "c853b4824a996fe99f95445fb4c8b28e4b5af7fa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Relational/Constant.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Relational/Constant.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Relational/Constant.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 551, "size": 1776 }
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 12-univalence where import 11-function-extensionality open 11-function-extensionality public -- Section 10.1 Type extensionality equiv-eq : {i : Level} {A : UU i} {B : UU i} → Id A B → A ≃ B equiv-eq {A = A} refl = pair id (is-equiv-id A) UNIVALENCE : {i : Level} (A B : UU i) → UU (lsuc i) UNIVALENCE A B = is-equiv (equiv-eq {A = A} {B = B}) is-contr-total-equiv-UNIVALENCE : {i : Level} (A : UU i) → ((B : UU i) → UNIVALENCE A B) → is-contr (Σ (UU i) (λ X → A ≃ X)) is-contr-total-equiv-UNIVALENCE A UA = fundamental-theorem-id' A ( pair id (is-equiv-id A)) ( λ B → equiv-eq {B = B}) ( UA) UNIVALENCE-is-contr-total-equiv : {i : Level} (A : UU i) → is-contr (Σ (UU i) (λ X → A ≃ X)) → (B : UU i) → UNIVALENCE A B UNIVALENCE-is-contr-total-equiv A c = fundamental-theorem-id A ( pair id (is-equiv-id A)) ( c) ( λ B → equiv-eq {B = B}) ev-id : {i j : Level} {A : UU i} (P : (B : UU i) → (A ≃ B) → UU j) → ((B : UU i) (e : A ≃ B) → P B e) → P A (pair id (is-equiv-id A)) ev-id {A = A} P f = f A (pair id (is-equiv-id A)) IND-EQUIV : {i j : Level} {A : UU i} → ((B : UU i) (e : A ≃ B) → UU j) → UU _ IND-EQUIV P = sec (ev-id P) triangle-ev-id : {i j : Level} {A : UU i} (P : (Σ (UU i) (λ X → A ≃ X)) → UU j) → (ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (pair id (is-equiv-id A))) P) ~ ((ev-id (λ X e → P (pair X e))) ∘ (ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P})) triangle-ev-id P f = refl abstract IND-EQUIV-is-contr-total-equiv : {i j : Level} (A : UU i) → is-contr (Σ (UU i) (λ X → A ≃ X)) → (P : (Σ (UU i) (λ X → A ≃ X)) → UU j) → IND-EQUIV (λ B e → P (pair B e)) IND-EQUIV-is-contr-total-equiv {i} {j} A c P = section-comp ( ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (pair id (is-equiv-id A))) P) ( ev-id (λ X e → P (pair X e))) ( ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P}) ( triangle-ev-id P) ( sec-ev-pair (UU i) (λ X → A ≃ X) P) ( is-sing-is-contr (Σ (UU i) (λ X → A ≃ X)) ( pair ( pair A (pair id (is-equiv-id A))) ( λ t → ( inv (contraction c (pair A (pair id (is-equiv-id A))))) ∙ ( contraction c t))) ( P) ( pair A (equiv-id A))) abstract is-contr-total-equiv-IND-EQUIV : {i : Level} (A : UU i) → ( {j : Level} (P : (Σ (UU i) (λ X → A ≃ X)) → UU j) → IND-EQUIV (λ B e → P (pair B e))) → is-contr (Σ (UU i) (λ X → A ≃ X)) is-contr-total-equiv-IND-EQUIV {i} A ind = is-contr-is-sing ( Σ (UU i) (λ X → A ≃ X)) ( pair A (pair id (is-equiv-id A))) ( λ P → section-comp' ( ev-pt (Σ (UU i) (λ X → A ≃ X)) (pair A (pair id (is-equiv-id A))) P) ( ev-id (λ X e → P (pair X e))) ( ev-pair {A = UU i} {B = λ X → A ≃ X} {C = P}) ( triangle-ev-id P) ( sec-ev-pair (UU i) (λ X → A ≃ X) P) ( ind P)) -- The univalence axiom postulate univalence : {i : Level} (A B : UU i) → UNIVALENCE A B eq-equiv : {i : Level} (A B : UU i) → (A ≃ B) → Id A B eq-equiv A B = inv-is-equiv (univalence A B) abstract is-contr-total-equiv : {i : Level} (A : UU i) → is-contr (Σ (UU i) (λ X → A ≃ X)) is-contr-total-equiv A = is-contr-total-equiv-UNIVALENCE A (univalence A) abstract Ind-equiv : {i j : Level} (A : UU i) (P : (B : UU i) (e : A ≃ B) → UU j) → sec (ev-id P) Ind-equiv A P = IND-EQUIV-is-contr-total-equiv A ( is-contr-total-equiv A) ( λ t → P (pr1 t) (pr2 t)) ind-equiv : {i j : Level} (A : UU i) (P : (B : UU i) (e : A ≃ B) → UU j) → P A (pair id (is-equiv-id A)) → {B : UU i} (e : A ≃ B) → P B e ind-equiv A P p {B} = pr1 (Ind-equiv A P) p B -- Subuniverses is-subuniverse : {l1 l2 : Level} (P : UU l1 → UU l2) → UU ((lsuc l1) ⊔ l2) is-subuniverse P = is-subtype P subuniverse : (l1 l2 : Level) → UU ((lsuc l1) ⊔ (lsuc l2)) subuniverse l1 l2 = Σ (UU l1 → UU l2) is-subuniverse {- By univalence, subuniverses are closed under equivalences. -} in-subuniverse-equiv : {l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P X → P Y in-subuniverse-equiv P e = tr P (eq-equiv _ _ e) in-subuniverse-equiv' : {l1 l2 : Level} (P : UU l1 → UU l2) {X Y : UU l1} → X ≃ Y → P Y → P X in-subuniverse-equiv' P e = tr P (inv (eq-equiv _ _ e)) total-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → UU ((lsuc l1) ⊔ l2) total-subuniverse {l1} P = Σ (UU l1) (pr1 P) {- We also introduce the notion of 'global subuniverse'. The handling of universe levels is a bit more complicated here, since (l : Level) → A l are kinds but not types. -} is-global-subuniverse : (α : Level → Level) (P : (l : Level) → subuniverse l (α l)) → (l1 l2 : Level) → UU _ is-global-subuniverse α P l1 l2 = (X : UU l1) (Y : UU l2) → X ≃ Y → (pr1 (P l1)) X → (pr1 (P l2)) Y {- Next we characterize the identity type of a subuniverse. -} Eq-total-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → (s t : total-subuniverse P) → UU l1 Eq-total-subuniverse (pair P H) (pair X p) t = X ≃ (pr1 t) Eq-total-subuniverse-eq : {l1 l2 : Level} (P : subuniverse l1 l2) → (s t : total-subuniverse P) → Id s t → Eq-total-subuniverse P s t Eq-total-subuniverse-eq (pair P H) (pair X p) .(pair X p) refl = equiv-id X abstract is-contr-total-Eq-total-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) (s : total-subuniverse P) → is-contr (Σ (total-subuniverse P) (λ t → Eq-total-subuniverse P s t)) is-contr-total-Eq-total-subuniverse (pair P H) (pair X p) = is-contr-total-Eq-substructure (is-contr-total-equiv X) H X (equiv-id X) p abstract is-equiv-Eq-total-subuniverse-eq : {l1 l2 : Level} (P : subuniverse l1 l2) (s t : total-subuniverse P) → is-equiv (Eq-total-subuniverse-eq P s t) is-equiv-Eq-total-subuniverse-eq (pair P H) (pair X p) = fundamental-theorem-id ( pair X p) ( equiv-id X) ( is-contr-total-Eq-total-subuniverse (pair P H) (pair X p)) ( Eq-total-subuniverse-eq (pair P H) (pair X p)) eq-Eq-total-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → {s t : total-subuniverse P} → Eq-total-subuniverse P s t → Id s t eq-Eq-total-subuniverse P {s} {t} = inv-is-equiv (is-equiv-Eq-total-subuniverse-eq P s t) -- Section 12.2 Univalence implies function extensionality is-equiv-postcomp-univalence : {l1 l2 : Level} {X Y : UU l1} (A : UU l2) (e : X ≃ Y) → is-equiv (postcomp A (map-equiv e)) is-equiv-postcomp-univalence {X = X} A = ind-equiv X ( λ Y e → is-equiv (postcomp A (map-equiv e))) ( is-equiv-id (A → X)) weak-funext-univalence : {l : Level} {A : UU l} {B : A → UU l} → WEAK-FUNEXT A B weak-funext-univalence {A = A} {B} is-contr-B = is-contr-retract-of ( fib (postcomp A (pr1 {B = B})) id) ( pair ( λ f → pair (λ x → pair x (f x)) refl) ( pair ( λ h x → tr B (htpy-eq (pr2 h) x) (pr2 (pr1 h x))) ( htpy-refl))) ( is-contr-map-is-equiv ( is-equiv-postcomp-univalence A (equiv-pr1 is-contr-B)) ( id)) funext-univalence : {l : Level} {A : UU l} {B : A → UU l} (f : (x : A) → B x) → FUNEXT f funext-univalence {A = A} {B} f = FUNEXT-WEAK-FUNEXT (λ A B → weak-funext-univalence) A B f -- Section 12.3 Groups in univalent mathematics {- We first introduce semi-groups, and then groups. We do this because the category of groups is a full subcategory of the category of semi-groups. In particular, it is a proposition for a semi-group to be a group. Therefore this approach gives us in a straightforward way that equality of groups is equality of semi-groups. This will be useful in showing that group isomorphisms are equivalent to identifications of groups. -} has-associative-mul : {l : Level} (X : UU-Set l) → UU l has-associative-mul X = Σ ( ( type-Set X) → ( ( type-Set X) → (type-Set X))) (λ μ → ( x y z : type-Set X) → Id (μ (μ x y) z) (μ x (μ y z))) Semi-Group : (l : Level) → UU (lsuc l) Semi-Group l = Σ (UU-Set l) has-associative-mul {- Bureaucracy of semi-groups. -} set-Semi-Group : {l : Level} → Semi-Group l → UU-Set l set-Semi-Group G = pr1 G type-Semi-Group : {l : Level} → Semi-Group l → UU l type-Semi-Group G = pr1 (set-Semi-Group G) is-set-type-Semi-Group : {l : Level} (G : Semi-Group l) → is-set (type-Semi-Group G) is-set-type-Semi-Group G = pr2 (set-Semi-Group G) associative-mul-Semi-Group : {l : Level} (G : Semi-Group l) → has-associative-mul (set-Semi-Group G) associative-mul-Semi-Group G = pr2 G mul-Semi-Group : {l : Level} (G : Semi-Group l) → type-Semi-Group G → type-Semi-Group G → type-Semi-Group G mul-Semi-Group G = pr1 (associative-mul-Semi-Group G) is-associative-mul-Semi-Group : {l : Level} (G : Semi-Group l) (x y z : type-Semi-Group G) → Id ( mul-Semi-Group G (mul-Semi-Group G x y) z) ( mul-Semi-Group G x (mul-Semi-Group G y z)) is-associative-mul-Semi-Group G = pr2 (associative-mul-Semi-Group G) {- The property that a semi-group is a monoid is just that the semi-group possesses a unit that satisfies the left and right unit laws. -} is-unital : {l : Level} → Semi-Group l → UU l is-unital G = Σ ( type-Semi-Group G) ( λ e → ( (y : type-Semi-Group G) → Id (mul-Semi-Group G e y) y) × ( (x : type-Semi-Group G) → Id (mul-Semi-Group G x e) x)) {- We show that is-unital is a proposition. -} abstract is-prop-is-unital' : {l : Level} (G : Semi-Group l) → is-prop' (is-unital G) is-prop-is-unital' (pair (pair X is-set-X) (pair μ assoc-μ)) (pair e (pair left-unit-e right-unit-e)) (pair e' (pair left-unit-e' right-unit-e')) = eq-subtype ( λ e → is-prop-prod ( is-prop-Π (λ y → is-set-X (μ e y) y)) ( is-prop-Π (λ x → is-set-X (μ x e) x))) ( (inv (left-unit-e' e)) ∙ (right-unit-e e')) abstract is-prop-is-unital : {l : Level} (G : Semi-Group l) → is-prop (is-unital G) is-prop-is-unital G = is-prop-is-prop' (is-prop-is-unital' G) {- The property that a monoid is a group is just the property that the monoid that every element is invertible, i.e., it comes equipped with an inverse operation that satisfies the left and right inverse laws. -} is-group' : {l : Level} (G : Semi-Group l) → is-unital G → UU l is-group' G is-unital-G = Σ ( type-Semi-Group G → type-Semi-Group G) ( λ i → ( (x : type-Semi-Group G) → Id (mul-Semi-Group G (i x) x) (pr1 is-unital-G)) × ( (x : type-Semi-Group G) → Id (mul-Semi-Group G x (i x)) (pr1 is-unital-G))) is-group : {l : Level} (G : Semi-Group l) → UU l is-group G = Σ (is-unital G) (is-group' G) Group : (l : Level) → UU (lsuc l) Group l = Σ (Semi-Group l) is-group {- Some bureaucracy of Groups. -} semi-group-Group : {l : Level} → Group l → Semi-Group l semi-group-Group G = pr1 G set-Group : {l : Level} → Group l → UU-Set l set-Group G = pr1 (semi-group-Group G) type-Group : {l : Level} → Group l → UU l type-Group G = pr1 (set-Group G) is-set-type-Group : {l : Level} (G : Group l) → is-set (type-Group G) is-set-type-Group G = pr2 (set-Group G) associative-mul-Group : {l : Level} (G : Group l) → has-associative-mul (set-Group G) associative-mul-Group G = pr2 (semi-group-Group G) mul-Group : {l : Level} (G : Group l) → type-Group G → type-Group G → type-Group G mul-Group G = pr1 (associative-mul-Group G) is-associative-mul-Group : {l : Level} (G : Group l) (x y z : type-Group G) → Id (mul-Group G (mul-Group G x y) z) (mul-Group G x (mul-Group G y z)) is-associative-mul-Group G = pr2 (associative-mul-Group G) is-group-Group : {l : Level} (G : Group l) → is-group (semi-group-Group G) is-group-Group G = pr2 G is-unital-Group : {l : Level} (G : Group l) → is-unital (semi-group-Group G) is-unital-Group G = pr1 (is-group-Group G) unit-Group : {l : Level} (G : Group l) → type-Group G unit-Group G = pr1 (is-unital-Group G) left-unit-law-Group : {l : Level} (G : Group l) (x : type-Group G) → Id (mul-Group G (unit-Group G) x) x left-unit-law-Group G = pr1 (pr2 (is-unital-Group G)) right-unit-law-Group : {l : Level} (G : Group l) (x : type-Group G) → Id (mul-Group G x (unit-Group G)) x right-unit-law-Group G = pr2 (pr2 (is-unital-Group G)) has-inverses-Group : {l : Level} (G : Group l) → is-group' (semi-group-Group G) (is-unital-Group G) has-inverses-Group G = pr2 (is-group-Group G) inv-Group : {l : Level} (G : Group l) → type-Group G → type-Group G inv-Group G = pr1 (has-inverses-Group G) left-inverse-law-Group : {l : Level} (G : Group l) (x : type-Group G) → Id (mul-Group G (inv-Group G x) x) (unit-Group G) left-inverse-law-Group G = pr1 (pr2 (has-inverses-Group G)) right-inverse-law-Group : {l : Level} (G : Group l) (x : type-Group G) → Id (mul-Group G x (inv-Group G x)) (unit-Group G) right-inverse-law-Group G = pr2 (pr2 (has-inverses-Group G)) {- We show that being a group is a proposition. -} abstract is-prop-is-group' : {l : Level} (G : Semi-Group l) (e : is-unital G) → is-prop' (is-group' G e) is-prop-is-group' ( pair (pair G is-set-G) (pair μ assoc-G)) ( pair e (pair left-unit-G right-unit-G)) ( pair i (pair left-inv-i right-inv-i)) ( pair i' (pair left-inv-i' right-inv-i')) = eq-subtype ( λ i → is-prop-prod ( is-prop-Π (λ x → is-set-G (μ (i x) x) e)) ( is-prop-Π (λ x → is-set-G (μ x (i x)) e))) ( eq-htpy ( λ x → -- ix ( inv (left-unit-G (i x))) ∙ -- = 1·(ix) ( ( ap (λ y → μ y (i x)) (inv (left-inv-i' x))) ∙ -- = (i'x·x)·(ix) ( ( assoc-G (i' x) x (i x)) ∙ -- = (i'x)·(x·i'x) ( ( ap (μ (i' x)) (right-inv-i x)) ∙ -- = (i'x)·1 ( right-unit-G (i' x))))))) -- = i'x abstract is-prop-is-group : {l : Level} (G : Semi-Group l) → is-prop (is-group G) is-prop-is-group G = is-prop-Σ ( is-prop-is-unital G) ( λ e → is-prop-is-prop' (is-prop-is-group' G e)) {- We give two examples of groups. The first is the group ℤ of integers. The second is the loop space of a pointed 1-type. -} {- The group of integers. -} semi-group-ℤ : Semi-Group lzero semi-group-ℤ = pair set-ℤ (pair add-ℤ associative-add-ℤ) group-ℤ : Group lzero group-ℤ = pair ( semi-group-ℤ) ( pair ( pair zero-ℤ (pair left-unit-law-add-ℤ right-unit-law-add-ℤ)) ( pair neg-ℤ (pair left-inverse-law-add-ℤ right-inverse-law-add-ℤ))) {- The loop space of a 1-type as a group. -} loop-space : {l : Level} {A : UU l} → A → UU l loop-space a = Id a a set-loop-space : {l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → UU-Set l set-loop-space A a is-set-Ω = pair (Id a a) is-set-Ω semi-group-loop-space : {l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → Semi-Group l semi-group-loop-space A a is-set-Ω = pair ( set-loop-space A a is-set-Ω) ( pair (λ p q → p ∙ q) assoc) group-loop-space : {l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → Group l group-loop-space A a is-set-Ω = pair ( semi-group-loop-space A a is-set-Ω) ( pair ( pair refl (pair (λ q → left-unit) (λ p → right-unit))) ( pair inv (pair left-inv right-inv))) set-loop-space-1-type : {l : Level} (A : 1-type l) (a : pr1 A) → UU-Set l set-loop-space-1-type (pair A is-1-type-A) a = set-loop-space A a (is-1-type-A a a) semi-group-loop-space-1-type : {l : Level} (A : 1-type l) (a : pr1 A) → Semi-Group l semi-group-loop-space-1-type (pair A is-1-type-A) a = semi-group-loop-space A a (is-1-type-A a a) group-loop-space-1-type : {l : Level} (A : 1-type l) (a : pr1 A) → Group l group-loop-space-1-type (pair A is-1-type-A) a = group-loop-space A a (is-1-type-A a a) {- We introduce the automorphism group on a set X. -} aut-Set : {l : Level} (X : UU-Set l) → UU-Set l aut-Set X = set-equiv X X associative-comp-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} → (e : A ≃ B) (f : B ≃ C) (g : C ≃ D) → Id ((g ∘e f) ∘e e) (g ∘e (f ∘e e)) associative-comp-equiv e f g = eq-htpy-equiv htpy-refl has-associative-mul-aut-Set : {l : Level} (X : UU-Set l) → has-associative-mul (aut-Set X) has-associative-mul-aut-Set X = pair ( λ e f → f ∘e e) ( λ e f g → inv (associative-comp-equiv e f g)) aut-Semi-Group : {l : Level} (X : UU-Set l) → Semi-Group l aut-Semi-Group X = pair ( aut-Set X) ( has-associative-mul-aut-Set X) left-unit-law-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → Id ((equiv-id Y) ∘e e) e left-unit-law-equiv e = eq-htpy-equiv htpy-refl right-unit-law-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → Id (e ∘e (equiv-id X)) e right-unit-law-equiv e = eq-htpy-equiv htpy-refl is-unital-aut-Semi-Group : {l : Level} (X : UU-Set l) → is-unital (aut-Semi-Group X) is-unital-aut-Semi-Group X = pair ( equiv-id (type-Set X)) ( pair ( right-unit-law-equiv) ( left-unit-law-equiv)) left-inverse-law-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → Id ((inv-equiv e) ∘e e) (equiv-id X) left-inverse-law-equiv e = eq-htpy-equiv (isretr-inv-is-equiv (is-equiv-map-equiv e)) right-inverse-law-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → Id (e ∘e (inv-equiv e)) (equiv-id Y) right-inverse-law-equiv e = eq-htpy-equiv (issec-inv-is-equiv (is-equiv-map-equiv e)) is-group-aut-Semi-Group' : {l : Level} (X : UU-Set l) → is-group' (aut-Semi-Group X) (is-unital-aut-Semi-Group X) is-group-aut-Semi-Group' X = pair ( inv-equiv) ( pair right-inverse-law-equiv left-inverse-law-equiv) aut-Group : {l : Level} → UU-Set l → Group l aut-Group X = pair ( aut-Semi-Group X) ( pair (is-unital-aut-Semi-Group X) (is-group-aut-Semi-Group' X)) {- Now we introduce homomorphisms of semi-groups. Group homomorphisms are just homomorphisms between their underlying semi-groups. -} preserves-mul : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → (type-Semi-Group G → type-Semi-Group H) → UU (l1 ⊔ l2) preserves-mul G H f = (x y : type-Semi-Group G) → Id (f (mul-Semi-Group G x y)) (mul-Semi-Group H (f x) (f y)) abstract is-prop-preserves-mul : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : type-Semi-Group G → type-Semi-Group H) → is-prop (preserves-mul G H f) is-prop-preserves-mul G (pair (pair H is-set-H) (pair μ-H assoc-H)) f = is-prop-Π (λ x → is-prop-Π (λ y → is-set-H (f (mul-Semi-Group G x y)) (μ-H (f x) (f y)))) hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) hom-Semi-Group G H = Σ ( type-Semi-Group G → type-Semi-Group H) ( preserves-mul G H) {- Bureaucracy of homomorphisms of semi-groups. -} map-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( hom-Semi-Group G H) → ( type-Semi-Group G) → (type-Semi-Group H) map-hom-Semi-Group G H f = pr1 f preserves-mul-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → preserves-mul G H (map-hom-Semi-Group G H f) preserves-mul-hom-Semi-Group G H f = pr2 f {- We characterize the identity type of the semi-group homomorphisms. -} htpy-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) (f g : hom-Semi-Group G H) → UU (l1 ⊔ l2) htpy-hom-Semi-Group G H f g = (map-hom-Semi-Group G H f) ~ (map-hom-Semi-Group G H g) reflexive-htpy-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → htpy-hom-Semi-Group G H f f reflexive-htpy-hom-Semi-Group G H f = htpy-refl htpy-hom-Semi-Group-eq : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f g : hom-Semi-Group G H) → Id f g → htpy-hom-Semi-Group G H f g htpy-hom-Semi-Group-eq G H f .f refl = reflexive-htpy-hom-Semi-Group G H f abstract is-contr-total-htpy-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → is-contr (Σ (hom-Semi-Group G H) (htpy-hom-Semi-Group G H f)) is-contr-total-htpy-hom-Semi-Group G H f = is-contr-total-Eq-substructure ( is-contr-total-htpy (map-hom-Semi-Group G H f)) ( is-prop-preserves-mul G H) ( map-hom-Semi-Group G H f) ( htpy-refl) ( preserves-mul-hom-Semi-Group G H f) abstract is-equiv-htpy-hom-Semi-Group-eq : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f g : hom-Semi-Group G H) → is-equiv (htpy-hom-Semi-Group-eq G H f g) is-equiv-htpy-hom-Semi-Group-eq G H f = fundamental-theorem-id f ( reflexive-htpy-hom-Semi-Group G H f) ( is-contr-total-htpy-hom-Semi-Group G H f) ( htpy-hom-Semi-Group-eq G H f) eq-htpy-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → { f g : hom-Semi-Group G H} → htpy-hom-Semi-Group G H f g → Id f g eq-htpy-hom-Semi-Group G H {f} {g} = inv-is-equiv (is-equiv-htpy-hom-Semi-Group-eq G H f g) {- We show that the type of semi-group homomorphisms between two semi-groups is a set. -} is-set-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → is-set (hom-Semi-Group G H) is-set-hom-Semi-Group G H (pair f μ-f) (pair g μ-g) = is-prop-is-equiv ( htpy-hom-Semi-Group G H (pair f μ-f) (pair g μ-g)) ( htpy-hom-Semi-Group-eq G H (pair f μ-f) (pair g μ-g)) ( is-equiv-htpy-hom-Semi-Group-eq G H (pair f μ-f) (pair g μ-g)) ( is-prop-Π (λ x → is-set-type-Semi-Group H (f x) (g x))) {- We introduce group homomorphisms. -} hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2) hom-Group G H = hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H) {- Bureaucracy of group homomorphisms. -} map-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( hom-Group G H) → ( type-Group G) → (type-Group H) map-hom-Group G H f = pr1 f preserves-mul-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → preserves-mul ( semi-group-Group G) ( semi-group-Group H) ( map-hom-Group G H f) preserves-mul-hom-Group G H f = pr2 f {- We characterize the identity type of the group homomorphisms. -} htpy-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) (f g : hom-Group G H) → UU (l1 ⊔ l2) htpy-hom-Group G H = htpy-hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H) reflexive-htpy-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → htpy-hom-Group G H f f reflexive-htpy-hom-Group G H = reflexive-htpy-hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H) htpy-hom-Group-eq : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f g : hom-Group G H) → Id f g → htpy-hom-Group G H f g htpy-hom-Group-eq G H = htpy-hom-Semi-Group-eq ( semi-group-Group G) ( semi-group-Group H) abstract is-contr-total-htpy-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → is-contr (Σ (hom-Group G H) (htpy-hom-Group G H f)) is-contr-total-htpy-hom-Group G H = is-contr-total-htpy-hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H) abstract is-equiv-htpy-hom-Group-eq : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f g : hom-Group G H) → is-equiv (htpy-hom-Group-eq G H f g) is-equiv-htpy-hom-Group-eq G H = is-equiv-htpy-hom-Semi-Group-eq ( semi-group-Group G) ( semi-group-Group H) eq-htpy-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → { f g : hom-Group G H} → htpy-hom-Group G H f g → Id f g eq-htpy-hom-Group G H = eq-htpy-hom-Semi-Group (semi-group-Group G) (semi-group-Group H) {- Next, we construct the identity group homomorphism, and we show that compositions of group homomorphisms are again group homomorphisms. -} preserves-mul-id : {l : Level} (G : Semi-Group l) → preserves-mul G G id preserves-mul-id (pair (pair G is-set-G) (pair μ-G assoc-G)) x y = refl id-Semi-Group : {l : Level} (G : Semi-Group l) → hom-Semi-Group G G id-Semi-Group G = pair id (preserves-mul-id G) id-Group : {l : Level} (G : Group l) → hom-Group G G id-Group G = id-Semi-Group (semi-group-Group G) composition-Semi-Group : {l1 l2 l3 : Level} → (G : Semi-Group l1) (H : Semi-Group l2) (K : Semi-Group l3) → (hom-Semi-Group H K) → (hom-Semi-Group G H) → (hom-Semi-Group G K) composition-Semi-Group G H K (pair g μ-g) (pair f μ-f) = pair ( g ∘ f) ( λ x y → (ap g (μ-f x y)) ∙ (μ-g (f x) (f y))) composition-Group : {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (K : Group l3) → (hom-Group H K) → (hom-Group G H) → (hom-Group G K) composition-Group G H K = composition-Semi-Group ( semi-group-Group G) ( semi-group-Group H) ( semi-group-Group K) {- Next, we prove the that the laws for a category hold for group homomorphisms, i.e., we show that composition is associative and satisfies the left and right unit laws. Before we show that these laws hold, we will characterize the identity type of the types of semi-group homomorphisms and group homomorphisms. -} associative-Semi-Group : { l1 l2 l3 l4 : Level} (G : Semi-Group l1) (H : Semi-Group l2) ( K : Semi-Group l3) (L : Semi-Group l4) (h : hom-Semi-Group K L) → ( g : hom-Semi-Group H K) (f : hom-Semi-Group G H) → Id ( composition-Semi-Group G H L ( composition-Semi-Group H K L h g) f) ( composition-Semi-Group G K L h ( composition-Semi-Group G H K g f)) associative-Semi-Group G H K L (pair h μ-h) (pair g μ-g) (pair f μ-f) = eq-htpy-hom-Semi-Group G L htpy-refl left-unit-law-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) ( f : hom-Semi-Group G H) → Id ( composition-Semi-Group G H H (id-Semi-Group H) f) f left-unit-law-Semi-Group G (pair (pair H is-set-H) (pair μ-H assoc-H)) (pair f μ-f) = eq-htpy-hom-Semi-Group G ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( htpy-refl) right-unit-law-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) ( f : hom-Semi-Group G H) → Id ( composition-Semi-Group G G H f (id-Semi-Group G)) f right-unit-law-Semi-Group (pair (pair G is-set-G) (pair μ-G assoc-G)) H (pair f μ-f) = eq-htpy-hom-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) H htpy-refl {- Now we introduce the notion of group isomorphism. Finally, we will show that isomorphic groups are equal. -} is-iso-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → UU (l1 ⊔ l2) is-iso-Semi-Group G H f = Σ ( hom-Semi-Group H G) (λ g → ( Id (composition-Semi-Group H G H f g) (id-Semi-Group H)) × ( Id (composition-Semi-Group G H G g f) (id-Semi-Group G))) iso-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) iso-Semi-Group G H = Σ (hom-Semi-Group G H) (is-iso-Semi-Group G H) abstract is-prop-is-iso-Semi-Group' : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → is-prop' (is-iso-Semi-Group G H f) is-prop-is-iso-Semi-Group' G H f (pair g (pair issec isretr)) (pair g' (pair issec' isretr')) = eq-subtype ( λ h → is-prop-prod ( is-set-hom-Semi-Group H H ( composition-Semi-Group H G H f h) ( id-Semi-Group H)) ( is-set-hom-Semi-Group G G ( composition-Semi-Group G H G h f) ( id-Semi-Group G))) ( ( inv (left-unit-law-Semi-Group H G g)) ∙ ( ( inv (ap (λ h → composition-Semi-Group H G G h g) isretr')) ∙ ( ( associative-Semi-Group H G H G g' f g) ∙ ( ( ap (composition-Semi-Group H H G g') issec) ∙ ( right-unit-law-Semi-Group H G g'))))) abstract is-prop-is-iso-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) → is-prop (is-iso-Semi-Group G H f) is-prop-is-iso-Semi-Group G H f = is-prop-is-prop' (is-prop-is-iso-Semi-Group' G H f) abstract preserves-mul-inv-is-equiv-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) ( is-equiv-f : is-equiv (map-hom-Semi-Group G H f)) → preserves-mul H G (inv-is-equiv is-equiv-f) preserves-mul-inv-is-equiv-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair f μ-f) is-equiv-f x y = inv-is-equiv ( is-emb-is-equiv f is-equiv-f ( inv-is-equiv is-equiv-f (μ-H x y)) ( μ-G (inv-is-equiv is-equiv-f x) (inv-is-equiv is-equiv-f y))) ( ( ( issec-inv-is-equiv is-equiv-f (μ-H x y)) ∙ ( ( ap (λ t → μ-H t y) (inv (issec-inv-is-equiv is-equiv-f x))) ∙ ( ap ( μ-H (f (inv-is-equiv is-equiv-f x))) ( inv (issec-inv-is-equiv is-equiv-f y))))) ∙ ( inv (μ-f (inv-is-equiv is-equiv-f x) (inv-is-equiv is-equiv-f y)))) abstract is-iso-is-equiv-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) (is-equiv-f : is-equiv (pr1 f)) → is-iso-Semi-Group G H f is-iso-is-equiv-hom-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair f μ-f) is-equiv-f = pair ( pair ( inv-is-equiv is-equiv-f) ( preserves-mul-inv-is-equiv-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair f μ-f) is-equiv-f)) ( pair ( eq-htpy-hom-Semi-Group ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( issec-inv-is-equiv is-equiv-f)) ( eq-htpy-hom-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( isretr-inv-is-equiv is-equiv-f))) abstract is-equiv-hom-is-iso-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → ( f : hom-Semi-Group G H) (is-iso-f : is-iso-Semi-Group G H f) → ( is-equiv (pr1 f)) is-equiv-hom-is-iso-Semi-Group ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair f μ-f) ( pair (pair g μ-g) (pair issec isretr)) = is-equiv-has-inverse g ( htpy-eq (ap pr1 issec)) ( htpy-eq (ap pr1 isretr)) equiv-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) equiv-Semi-Group G H = Σ ( type-Semi-Group G ≃ type-Semi-Group H) ( λ e → preserves-mul G H (map-equiv e)) total-is-equiv-hom-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) total-is-equiv-hom-Semi-Group G H = Σ (hom-Semi-Group G H) (λ f → is-equiv (map-hom-Semi-Group G H f)) preserves-mul' : { l1 l2 : Level} (G : Semi-Group l1) (H : UU-Set l2) ( μ-H : has-associative-mul H) → ( e : (type-Semi-Group G) ≃ (type-Set H)) → UU (l1 ⊔ l2) preserves-mul' G H μ-H e = preserves-mul G (pair H μ-H) (map-equiv e) equiv-Semi-Group' : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2) equiv-Semi-Group' G H = equiv-Semi-Group G (pair (pr1 H) (pr2 H)) abstract equiv-iso-Semi-Group-equiv-Semi-Group : { l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → equiv-Semi-Group' G H ≃ iso-Semi-Group G H equiv-iso-Semi-Group-equiv-Semi-Group G H = ( ( ( equiv-total-subtype ( λ f → is-subtype-is-equiv (map-hom-Semi-Group G H f)) ( is-prop-is-iso-Semi-Group G H) ( is-iso-is-equiv-hom-Semi-Group G H) ( is-equiv-hom-is-iso-Semi-Group G H)) ∘e ( ( inv-equiv ( equiv-Σ-assoc ( type-Semi-Group G → type-Semi-Group H) ( preserves-mul G H) ( λ f → is-equiv (map-hom-Semi-Group G H f)))) ∘e ( equiv-tot ( λ f → equiv-swap-prod (is-equiv f) (preserves-mul G H f))))) ∘e ( equiv-Σ-assoc ( type-Semi-Group G → type-Semi-Group H) ( is-equiv) ( λ e → preserves-mul G H (map-equiv e)))) ∘e ( equiv-tr (equiv-Semi-Group G) (η-pair H)) center-total-preserves-mul-id : { l1 : Level} (G : Semi-Group l1) → Σ (has-associative-mul (pr1 G)) (λ μ → preserves-mul G (pair (pr1 G) μ) id) center-total-preserves-mul-id (pair (pair G is-set-G) (pair μ-G assoc-G)) = pair (pair μ-G assoc-G) (λ x y → refl) contraction-total-preserves-mul-id : { l1 : Level} (G : Semi-Group l1) → ( t : Σ ( has-associative-mul (pr1 G)) ( λ μ → preserves-mul G (pair (pr1 G) μ) id)) → Id (center-total-preserves-mul-id G) t contraction-total-preserves-mul-id ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair μ-G' assoc-G') μ-id) = eq-subtype ( λ μ → is-prop-preserves-mul ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair (pair G is-set-G) μ) id) ( eq-subtype ( λ μ → is-prop-Π (λ x → is-prop-Π (λ y → is-prop-Π (λ z → is-set-G (μ (μ x y) z) (μ x (μ y z)))))) ( eq-htpy (λ x → eq-htpy (λ y → μ-id x y)))) is-contr-total-preserves-mul-id : { l1 : Level} (G : Semi-Group l1) → is-contr (Σ (has-associative-mul (pr1 G)) (λ μ → preserves-mul G (pair (pr1 G) μ) id)) is-contr-total-preserves-mul-id G = pair ( center-total-preserves-mul-id G) ( contraction-total-preserves-mul-id G) is-contr-total-equiv-Semi-Group : { l1 : Level} (G : Semi-Group l1) → is-contr (Σ (Semi-Group l1) (λ H → equiv-Semi-Group' G H)) is-contr-total-equiv-Semi-Group {l1} G = is-contr-total-Eq-structure ( preserves-mul' G) ( is-contr-total-Eq-substructure ( is-contr-total-equiv (type-Semi-Group G)) ( is-prop-is-set) ( type-Semi-Group G) ( equiv-id (type-Semi-Group G)) ( is-set-type-Semi-Group G)) ( pair (pr1 G) (equiv-id (type-Semi-Group G))) ( is-contr-total-preserves-mul-id G) is-contr-total-iso-Semi-Group : { l1 : Level} (G : Semi-Group l1) → is-contr (Σ (Semi-Group l1) (iso-Semi-Group G)) is-contr-total-iso-Semi-Group {l1} G = is-contr-equiv' ( Σ (Semi-Group l1) (λ H → equiv-Semi-Group' G H)) ( equiv-tot (λ H → equiv-iso-Semi-Group-equiv-Semi-Group G H)) ( is-contr-total-equiv-Semi-Group G) iso-id-Semi-Group : { l1 : Level} (G : Semi-Group l1) → iso-Semi-Group G G iso-id-Semi-Group G = pair ( id-Semi-Group G) ( pair ( id-Semi-Group G) ( pair ( left-unit-law-Semi-Group G G (id-Semi-Group G)) ( right-unit-law-Semi-Group G G (id-Semi-Group G)))) iso-eq-Semi-Group : { l1 : Level} (G H : Semi-Group l1) → Id G H → iso-Semi-Group G H iso-eq-Semi-Group G .G refl = iso-id-Semi-Group G is-equiv-iso-eq-Semi-Group : { l1 : Level} (G H : Semi-Group l1) → is-equiv (iso-eq-Semi-Group G H) is-equiv-iso-eq-Semi-Group G = fundamental-theorem-id G ( iso-id-Semi-Group G) ( is-contr-total-iso-Semi-Group G) ( iso-eq-Semi-Group G) equiv-iso-eq-Semi-Group : { l1 : Level} (G H : Semi-Group l1) → Id G H ≃ iso-Semi-Group G H equiv-iso-eq-Semi-Group G H = pair (iso-eq-Semi-Group G H) (is-equiv-iso-eq-Semi-Group G H) eq-iso-Semi-Group : { l1 : Level} (G H : Semi-Group l1) → iso-Semi-Group G H → Id G H eq-iso-Semi-Group G H = inv-is-equiv (is-equiv-iso-eq-Semi-Group G H) {- Finally we show that isomorphic groups are equal. -} iso-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2) iso-Group G H = iso-Semi-Group ( semi-group-Group G) ( semi-group-Group H) iso-id-Group : { l1 : Level} (G : Group l1) → iso-Group G G iso-id-Group G = iso-id-Semi-Group (semi-group-Group G) iso-eq-Group : { l1 : Level} (G H : Group l1) → Id G H → iso-Group G H iso-eq-Group G .G refl = iso-id-Group G abstract equiv-iso-eq-Group' : { l1 : Level} (G H : Group l1) → Id G H ≃ iso-Group G H equiv-iso-eq-Group' G H = ( equiv-iso-eq-Semi-Group ( semi-group-Group G) ( semi-group-Group H)) ∘e ( equiv-ap-pr1-is-subtype is-prop-is-group {s = G} {t = H}) abstract is-contr-total-iso-Group : { l1 : Level} (G : Group l1) → is-contr (Σ (Group l1) (iso-Group G)) is-contr-total-iso-Group {l1} G = is-contr-equiv' ( Σ (Group l1) (Id G)) ( equiv-tot (λ H → equiv-iso-eq-Group' G H)) ( is-contr-total-path G) is-equiv-iso-eq-Group : { l1 : Level} (G H : Group l1) → is-equiv (iso-eq-Group G H) is-equiv-iso-eq-Group G = fundamental-theorem-id G ( iso-id-Group G) ( is-contr-total-iso-Group G) ( iso-eq-Group G) eq-iso-Group : { l1 : Level} (G H : Group l1) → iso-Group G H → Id G H eq-iso-Group G H = inv-is-equiv (is-equiv-iso-eq-Group G H) -- Exercises -- Exercise 10.1 tr-equiv-eq-ap : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {x y : A} (p : Id x y) → (map-equiv (equiv-eq (ap B p))) ~ tr B p tr-equiv-eq-ap refl = htpy-refl -- Exercise 10.2 subuniverse-is-contr : {i : Level} → subuniverse i i subuniverse-is-contr {i} = pair is-contr is-subtype-is-contr unit' : (i : Level) → UU i unit' i = pr1 (Raise i unit) abstract is-contr-unit' : (i : Level) → is-contr (unit' i) is-contr-unit' i = is-contr-equiv' unit (pr2 (Raise i unit)) is-contr-unit abstract center-UU-contr : (i : Level) → total-subuniverse (subuniverse-is-contr {i}) center-UU-contr i = pair (unit' i) (is-contr-unit' i) contraction-UU-contr : {i : Level} (A : Σ (UU i) is-contr) → Id (center-UU-contr i) A contraction-UU-contr (pair A is-contr-A) = eq-Eq-total-subuniverse subuniverse-is-contr ( equiv-is-contr (is-contr-unit' _) is-contr-A) abstract is-contr-UU-contr : (i : Level) → is-contr (Σ (UU i) is-contr) is-contr-UU-contr i = pair (center-UU-contr i) (contraction-UU-contr) is-trunc-UU-trunc : (k : 𝕋) (i : Level) → is-trunc (succ-𝕋 k) (Σ (UU i) (is-trunc k)) is-trunc-UU-trunc k i X Y = is-trunc-is-equiv k ( Id (pr1 X) (pr1 Y)) ( ap pr1) ( is-emb-pr1-is-subtype ( is-prop-is-trunc k) X Y) ( is-trunc-is-equiv k ( (pr1 X) ≃ (pr1 Y)) ( equiv-eq) ( univalence (pr1 X) (pr1 Y)) ( is-trunc-equiv-is-trunc k (pr2 X) (pr2 Y))) ev-true-false : {l : Level} (A : UU l) → (f : bool → A) → A × A ev-true-false A f = pair (f true) (f false) map-universal-property-bool : {l : Level} {A : UU l} → A × A → (bool → A) map-universal-property-bool (pair x y) true = x map-universal-property-bool (pair x y) false = y issec-map-universal-property-bool : {l : Level} {A : UU l} → ((ev-true-false A) ∘ map-universal-property-bool) ~ id issec-map-universal-property-bool (pair x y) = eq-pair-triv (pair refl refl) isretr-map-universal-property-bool' : {l : Level} {A : UU l} (f : bool → A) → (map-universal-property-bool (ev-true-false A f)) ~ f isretr-map-universal-property-bool' f true = refl isretr-map-universal-property-bool' f false = refl isretr-map-universal-property-bool : {l : Level} {A : UU l} → (map-universal-property-bool ∘ (ev-true-false A)) ~ id isretr-map-universal-property-bool f = eq-htpy (isretr-map-universal-property-bool' f) universal-property-bool : {l : Level} (A : UU l) → is-equiv (λ (f : bool → A) → pair (f true) (f false)) universal-property-bool A = is-equiv-has-inverse map-universal-property-bool issec-map-universal-property-bool isretr-map-universal-property-bool ev-true : {l : Level} {A : UU l} → (bool → A) → A ev-true f = f true triangle-ev-true : {l : Level} (A : UU l) → (ev-true) ~ (pr1 ∘ (ev-true-false A)) triangle-ev-true A = htpy-refl aut-bool-bool : bool → (bool ≃ bool) aut-bool-bool true = equiv-id bool aut-bool-bool false = equiv-neg-𝟚 bool-aut-bool : (bool ≃ bool) → bool bool-aut-bool e = map-equiv e true decide-true-false : (b : bool) → coprod (Id b true) (Id b false) decide-true-false true = inl refl decide-true-false false = inr refl eq-false : (b : bool) → (¬ (Id b true)) → (Id b false) eq-false true p = ind-empty (p refl) eq-false false p = refl eq-true : (b : bool) → (¬ (Id b false)) → Id b true eq-true true p = refl eq-true false p = ind-empty (p refl) eq-false-equiv' : (e : bool ≃ bool) → Id (map-equiv e true) true → is-decidable (Id (map-equiv e false) false) → Id (map-equiv e false) false eq-false-equiv' e p (inl q) = q eq-false-equiv' e p (inr x) = ind-empty ( Eq-𝟚-eq true false ( ap pr1 ( is-prop-is-contr' ( is-contr-map-is-equiv (is-equiv-map-equiv e) true) ( pair true p) ( pair false (eq-true (map-equiv e false) x))))) eq-false-equiv : (e : bool ≃ bool) → Id (map-equiv e true) true → Id (map-equiv e false) false eq-false-equiv e p = eq-false-equiv' e p (has-decidable-equality-𝟚 (map-equiv e false) false) {- eq-true-equiv : (e : bool ≃ bool) → ¬ (Id (map-equiv e true) true) → Id (map-equiv e false) true eq-true-equiv e f = {!!} issec-bool-aut-bool' : ( e : bool ≃ bool) (d : is-decidable (Id (map-equiv e true) true)) → htpy-equiv (aut-bool-bool (bool-aut-bool e)) e issec-bool-aut-bool' e (inl p) true = ( htpy-equiv-eq (ap aut-bool-bool p) true) ∙ (inv p) issec-bool-aut-bool' e (inl p) false = ( htpy-equiv-eq (ap aut-bool-bool p) false) ∙ ( inv (eq-false-equiv e p)) issec-bool-aut-bool' e (inr f) true = ( htpy-equiv-eq ( ap aut-bool-bool (eq-false (map-equiv e true) f)) true) ∙ ( inv (eq-false (map-equiv e true) f)) issec-bool-aut-bool' e (inr f) false = ( htpy-equiv-eq (ap aut-bool-bool {!eq-true-equiv e ?!}) {!!}) ∙ ( inv {!!}) issec-bool-aut-bool : (aut-bool-bool ∘ bool-aut-bool) ~ id issec-bool-aut-bool e = eq-htpy-equiv ( issec-bool-aut-bool' e ( has-decidable-equality-𝟚 (map-equiv e true) true)) -} -- Exercise unit-classical-Prop : classical-Prop lzero unit-classical-Prop = pair (pair {!!} {!!}) {!!} raise-unit-classical-Prop : (l : Level) → classical-Prop l raise-unit-classical-Prop l = pair ( pair ( raise l unit) ( is-prop-is-equiv' unit ( map-raise l unit) ( is-equiv-map-raise l unit) ( is-prop-unit))) ( inl (map-raise l unit star)) bool-classical-Prop : (l : Level) → classical-Prop l → bool bool-classical-Prop l (pair P (inl x)) = true bool-classical-Prop l (pair P (inr x)) = false classical-Prop-bool : (l : Level) → bool → classical-Prop l classical-Prop-bool l true = raise-unit-classical-Prop l classical-Prop-bool l false = {!!} -- Exercise {- We show that group homomorphisms preserve the unit. -} preserves-unit : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Semi-Group ( semi-group-Group G) ( semi-group-Group H)) → UU l2 preserves-unit G H f = Id (map-hom-Group G H f (unit-Group G)) (unit-Group H) abstract preserves-unit-group-hom : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → preserves-unit G H f preserves-unit-group-hom ( pair ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair ( pair e-G (pair left-unit-G right-unit-G)) ( pair i-G (pair left-inv-G right-inv-G)))) ( pair ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair ( pair e-H (pair left-unit-H right-unit-H)) ( pair i-H (pair left-inv-H right-inv-H)))) ( pair f μ-f) = ( inv (left-unit-H (f e-G))) ∙ ( ( ap (λ x → μ-H x (f e-G)) (inv (left-inv-H (f e-G)))) ∙ ( ( assoc-H (i-H (f e-G)) (f e-G) (f e-G)) ∙ ( ( ap (μ-H (i-H (f e-G))) (inv (μ-f e-G e-G))) ∙ ( ( ap (λ x → μ-H (i-H (f e-G)) (f x)) (left-unit-G e-G)) ∙ ( left-inv-H (f e-G)))))) {- We show that group homomorphisms preserve inverses. -} preserves-inverses : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → UU (l1 ⊔ l2) preserves-inverses G H f = ( x : type-Group G) → Id ( map-hom-Group G H f (inv-Group G x)) ( inv-Group H (map-hom-Group G H f x)) abstract preserves-inverses-group-hom' : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → preserves-unit G H f → preserves-inverses G H f preserves-inverses-group-hom' ( pair ( pair (pair G is-set-G) (pair μ-G assoc-G)) ( pair ( pair e-G (pair left-unit-G right-unit-G)) ( pair i-G (pair left-inv-G right-inv-G)))) ( pair ( pair (pair H is-set-H) (pair μ-H assoc-H)) ( pair ( pair e-H (pair left-unit-H right-unit-H)) ( pair i-H (pair left-inv-H right-inv-H)))) ( pair f μ-f) preserves-unit-f x = ( inv ( right-unit-H (f (i-G x)))) ∙ ( ( ap (μ-H (f (i-G x))) (inv (right-inv-H (f x)))) ∙ ( ( inv (assoc-H (f (i-G x)) (f x) (i-H (f x)))) ∙ ( ( inv (ap (λ y → μ-H y (i-H (f x))) (μ-f (i-G x) x))) ∙ ( ( ap (λ y → μ-H (f y) (i-H (f x))) (left-inv-G x)) ∙ ( ( ap ( λ y → μ-H y (i-H (f x))) ( preserves-unit-f)) ∙ ( left-unit-H (i-H (f x)))))))) abstract preserves-inverses-group-hom : { l1 l2 : Level} (G : Group l1) (H : Group l2) → ( f : hom-Group G H) → preserves-inverses G H f preserves-inverses-group-hom G H f = preserves-inverses-group-hom' G H f (preserves-unit-group-hom G H f) hom-Group' : { l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2) hom-Group' G H = Σ ( hom-Group G H) (λ f → ( preserves-unit G H f) × (preserves-inverses G H f)) preserves-all-hom-Group : { l1 l2 : Level} (G : Group l1) (H : Group l2) → hom-Group G H → hom-Group' G H preserves-all-hom-Group G H f = pair f ( pair ( preserves-unit-group-hom G H f) ( preserves-inverses-group-hom G H f)) -- Exercise {- hom-mul-Group : {l : Level} (G : Group l) → hom-Group G Aut -}
{ "alphanum_fraction": 0.5818197657, "avg_line_length": 33.3949090909, "ext": "agda", "hexsha": "5810f36bef84e7575a68447fabfd24afd1956b71", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tadejpetric/HoTT-Intro", "max_forks_repo_path": "Agda/12-univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tadejpetric/HoTT-Intro", "max_issues_repo_path": "Agda/12-univalence.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tadejpetric/HoTT-Intro", "max_stars_repo_path": "Agda/12-univalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 17474, "size": 45918 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Group.MorphismProperties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Function using (_∘_; id) open import Cubical.Foundations.GroupoidLaws hiding (_⁻¹) open import Cubical.Functions.Embedding open import Cubical.Data.Sigma open import Cubical.Data.Prod using (isPropProd) open import Cubical.Algebra open import Cubical.Algebra.Properties open import Cubical.Algebra.Group.Morphism open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Record open import Cubical.Algebra.Monoid.Properties using (isPropIsMonoid) open import Cubical.Relation.Binary.Reasoning.Equality open Iso private variable ℓ ℓ′ ℓ′′ : Level F : Group ℓ G : Group ℓ′ H : Group ℓ′′ isPropIsGroupHom : ∀ (G : Group ℓ) (H : Group ℓ′) f → isProp (IsGroupHom G H f) isPropIsGroupHom G H f (isgrouphom aHom) (isgrouphom bHom) = cong isgrouphom (isPropHomomorphic₂ (Group.is-set H) f (Group._•_ G) (Group._•_ H) aHom bHom) isSetGroupHom : isSet (G ⟶ᴴ H) isSetGroupHom {G = G} {H = H} = isOfHLevelRespectEquiv 2 equiv (isSetΣ (isSetΠ λ _ → is-set H) (λ f → isProp→isSet (isPropIsGroupHom G H f))) where open Group equiv : (Σ[ g ∈ (⟨ G ⟩ → ⟨ H ⟩) ] IsGroupHom G H g) ≃ GroupHom G H equiv = isoToEquiv (iso (λ (g , m) → grouphom g m) (λ (grouphom g m) → g , m) (λ _ → refl) λ _ → refl) isGroupHomComp : {f : ⟨ F ⟩ → ⟨ G ⟩} {g : ⟨ G ⟩ → ⟨ H ⟩} → IsGroupHom F G f → IsGroupHom G H g → IsGroupHom F H (g ∘ f) isGroupHomComp {g = g} (isgrouphom fHom) (isgrouphom gHom) = isgrouphom (λ _ _ → cong g (fHom _ _) ∙ gHom _ _) private isGroupHomComp′ : (f : F ⟶ᴴ G) (g : G ⟶ᴴ H) → IsGroupHom F H (GroupHom.fun g ∘ GroupHom.fun f) isGroupHomComp′ (grouphom f (isgrouphom fHom)) (grouphom g (isgrouphom gHom)) = isgrouphom (λ _ _ → cong g (fHom _ _) ∙ gHom _ _) compGroupHom : (F ⟶ᴴ G) → (G ⟶ᴴ H) → (F ⟶ᴴ H) compGroupHom f g = grouphom _ (isGroupHomComp′ f g) compGroupEquiv : F ≃ᴴ G → G ≃ᴴ H → F ≃ᴴ H compGroupEquiv f g = groupequiv (compEquiv f.eq g.eq) (isGroupHomComp′ f.hom g.hom) where module f = GroupEquiv f module g = GroupEquiv g isGroupHomId : (G : Group ℓ) → IsGroupHom G G id isGroupHomId G = record { preservesOp = λ _ _ → refl } idGroupHom : (G : Group ℓ) → (G ⟶ᴴ G) idGroupHom G = record { fun = id ; isHom = isGroupHomId G } idGroupEquiv : (G : Group ℓ) → G ≃ᴴ G idGroupEquiv G = record { eq = idEquiv ⟨ G ⟩ ; isHom = isGroupHomId G } -- Isomorphism inversion isGroupHomInv : (eqv : G ≃ᴴ H) → IsGroupHom H G (invEq (GroupEquiv.eq eqv)) isGroupHomInv {G = G} {H = H} (groupequiv eq (isgrouphom hom)) = isgrouphom (λ x y → isInj-f ( f (f⁻¹ (x H.• y)) ≡⟨ retEq eq _ ⟩ x H.• y ≡˘⟨ cong₂ H._•_ (retEq eq x) (retEq eq y) ⟩ f (f⁻¹ x) H.• f (f⁻¹ y) ≡˘⟨ hom (f⁻¹ x) (f⁻¹ y) ⟩ f (f⁻¹ x G.• f⁻¹ y) ∎)) where module G = Group G module H = Group H f = equivFun eq f⁻¹ = invEq eq isInj-f : {x y : ⟨ G ⟩} → f x ≡ f y → x ≡ y isInj-f {x} {y} = invEq (_ , isEquiv→isEmbedding (eq .snd) x y) invGroupHom : G ≃ᴴ H → (H ⟶ᴴ G) invGroupHom eq = record { isHom = isGroupHomInv eq } invGroupEquiv : G ≃ᴴ H → H ≃ᴴ G invGroupEquiv eq = record { eq = invEquiv (GroupEquiv.eq eq) ; isHom = isGroupHomInv eq } groupHomEq : {f g : G ⟶ᴴ H} → (GroupHom.fun f ≡ GroupHom.fun g) → f ≡ g groupHomEq {G = G} {H = H} {grouphom f fm} {grouphom g gm} p i = grouphom (p i) (p-hom i) where p-hom : PathP (λ i → IsGroupHom G H (p i)) fm gm p-hom = toPathP (isPropIsGroupHom G H _ _ _) groupEquivEq : {f g : G ≃ᴴ H} → (GroupEquiv.eq f ≡ GroupEquiv.eq g) → f ≡ g groupEquivEq {G = G} {H = H} {groupequiv f fm} {groupequiv g gm} p i = groupequiv (p i) (p-hom i) where p-hom : PathP (λ i → IsGroupHom G H (p i .fst)) fm gm p-hom = toPathP (isPropIsGroupHom G H _ _ _) module GroupΣTheory {ℓ} where RawGroupStructure : Type ℓ → Type ℓ RawGroupStructure X = (X → X → X) × X × (X → X) RawGroupEquivStr = AutoEquivStr RawGroupStructure rawGroupUnivalentStr : UnivalentStr _ RawGroupEquivStr rawGroupUnivalentStr = autoUnivalentStr RawGroupStructure GroupAxioms : (G : Type ℓ) → RawGroupStructure G → Type ℓ GroupAxioms G (_•_ , ε , _⁻¹) = IsMonoid G _•_ ε × Inverse ε _⁻¹ _•_ GroupStructure : Type ℓ → Type ℓ GroupStructure = AxiomsStructure RawGroupStructure GroupAxioms GroupΣ : Type (ℓ-suc ℓ) GroupΣ = TypeWithStr ℓ GroupStructure isPropGroupAxioms : (G : Type ℓ) (s : RawGroupStructure G) → isProp (GroupAxioms G s) isPropGroupAxioms G (_•_ , ε , _⁻¹) = isPropΣ isPropIsMonoid λ isMonG → isPropInverse (IsMonoid.is-set isMonG) _•_ _⁻¹ ε GroupEquivStr : StrEquiv GroupStructure ℓ GroupEquivStr = AxiomsEquivStr RawGroupEquivStr GroupAxioms GroupAxiomsIsoIsGroup : {G : Type ℓ} (s : RawGroupStructure G) → Iso (GroupAxioms G s) (IsGroup G (s .fst) (s .snd .fst) (s .snd .snd)) fun (GroupAxiomsIsoIsGroup s) (x , y) = isgroup x y inv (GroupAxiomsIsoIsGroup s) (isgroup x y) = (x , y) rightInv (GroupAxiomsIsoIsGroup s) _ = refl leftInv (GroupAxiomsIsoIsGroup s) _ = refl GroupAxioms≡IsGroup : {G : Type ℓ} (s : RawGroupStructure G) → GroupAxioms G s ≡ IsGroup G (s .fst) (s .snd .fst) (s .snd .snd) GroupAxioms≡IsGroup s = isoToPath (GroupAxiomsIsoIsGroup s) Group→GroupΣ : Group ℓ → GroupΣ Group→GroupΣ (mkgroup G _•_ ε _⁻¹ isGroup) = G , (_•_ , ε , _⁻¹) , GroupAxiomsIsoIsGroup (_•_ , ε , _⁻¹) .inv isGroup GroupΣ→Group : GroupΣ → Group ℓ GroupΣ→Group (G , (_•_ , ε , _⁻¹) , isGroupG) = mkgroup G _•_ ε _⁻¹ (GroupAxiomsIsoIsGroup (_•_ , ε , _⁻¹) .fun isGroupG) GroupIsoGroupΣ : Iso (Group ℓ) GroupΣ GroupIsoGroupΣ = iso Group→GroupΣ GroupΣ→Group (λ _ → refl) (λ _ → refl) groupUnivalentStr : UnivalentStr GroupStructure GroupEquivStr groupUnivalentStr = axiomsUnivalentStr _ isPropGroupAxioms rawGroupUnivalentStr GroupΣPath : (G H : GroupΣ) → (G ≃[ GroupEquivStr ] H) ≃ (G ≡ H) GroupΣPath = SIP groupUnivalentStr GroupEquivΣ : (G H : Group ℓ) → Type ℓ GroupEquivΣ G H = Group→GroupΣ G ≃[ GroupEquivStr ] Group→GroupΣ H GroupIsoΣPath : {G H : Group ℓ} → Iso (GroupEquiv G H) (GroupEquivΣ G H) fun GroupIsoΣPath (groupequiv eq hom) = eq , IsGroupHom.preservesOp hom , IsGroupHom.preservesId hom , IsGroupHom.preservesInv hom inv GroupIsoΣPath (eq , hom , _) = groupequiv eq (isgrouphom hom) rightInv (GroupIsoΣPath {H = H}) _ = ΣPathTransport→PathΣ _ _ (refl , ΣPathTransport→PathΣ _ _ (transportRefl _ , ΣPathTransport→PathΣ _ _ (Group.is-set H _ _ _ _ , isPropΠ (λ _ → Group.is-set H _ _) _ _ ) )) leftInv (GroupIsoΣPath {H = H}) _ = refl GroupPath : (G H : Group ℓ) → (GroupEquiv G H) ≃ (G ≡ H) GroupPath G H = GroupEquiv G H ≃⟨ isoToEquiv GroupIsoΣPath ⟩ GroupEquivΣ G H ≃⟨ GroupΣPath _ _ ⟩ Group→GroupΣ G ≡ Group→GroupΣ H ≃⟨ isoToEquiv (invIso (congIso GroupIsoGroupΣ)) ⟩ G ≡ H ■ RawGroupΣ : Type (ℓ-suc ℓ) RawGroupΣ = TypeWithStr ℓ RawGroupStructure Group→RawGroupΣ : Group ℓ → RawGroupΣ Group→RawGroupΣ (mkgroup A _•_ ε _⁻¹ _) = A , _•_ , ε , _⁻¹ InducedGroup : (G : Group ℓ) (H : RawGroupΣ) (e : G .Group.Carrier ≃ H .fst) → RawGroupEquivStr (Group→RawGroupΣ G) H e → Group ℓ InducedGroup G H e r = GroupΣ→Group (inducedStructure rawGroupUnivalentStr (Group→GroupΣ G) H (e , r)) InducedGroupPath : (G : Group ℓ) (H : RawGroupΣ) (e : G .Group.Carrier ≃ H .fst) (E : RawGroupEquivStr (Group→RawGroupΣ G) H e) → G ≡ InducedGroup G H e E InducedGroupPath G H e E = GroupPath G (InducedGroup G H e E) .fst (groupequiv e (isgrouphom (E .fst))) -- We now extract the important results from the above module open GroupΣTheory public using (InducedGroup; InducedGroupPath) isPropIsGroup : {G : Type ℓ} {_•_ : Op₂ G} {ε : G} {_⁻¹ : Op₁ G} → isProp (IsGroup G _•_ ε _⁻¹) isPropIsGroup = subst isProp (GroupΣTheory.GroupAxioms≡IsGroup (_ , _ , _)) (GroupΣTheory.isPropGroupAxioms _ (_ , _ , _)) GroupPath : (G ≃ᴴ H) ≃ (G ≡ H) GroupPath = GroupΣTheory.GroupPath _ _ open Group uaGroup : G ≃ᴴ H → G ≡ H uaGroup = equivFun GroupPath carac-uaGroup : {G H : Group ℓ} (f : G ≃ᴴ H) → cong Carrier (uaGroup f) ≡ ua (GroupEquiv.eq f) carac-uaGroup (groupequiv f m) = (refl ∙∙ ua f ∙∙ refl) ≡˘⟨ rUnit (ua f) ⟩ ua f ∎ Group≡ : (G H : Group ℓ) → ( Σ[ p ∈ ⟨ G ⟩ ≡ ⟨ H ⟩ ] Σ[ q ∈ PathP (λ i → p i → p i → p i) (_•_ G) (_•_ H) ] Σ[ r ∈ PathP (λ i → p i) (ε G) (ε H) ] Σ[ s ∈ PathP (λ i → p i → p i) (_⁻¹ G) (_⁻¹ H) ] PathP (λ i → IsGroup (p i) (q i) (r i) (s i)) (isGroup G) (isGroup H)) ≃ (G ≡ H) Group≡ G H = isoToEquiv (iso (λ (p , q , r , s , t) i → mkgroup (p i) (q i) (r i) (s i) (t i)) (λ p → cong Carrier p , cong _•_ p , cong ε p , cong _⁻¹ p , cong isGroup p) (λ _ → refl) (λ _ → refl)) caracGroup≡ : {G H : Group ℓ} (p q : G ≡ H) → cong Carrier p ≡ cong Carrier q → p ≡ q caracGroup≡ {G = G} {H} p q t = cong (fst (Group≡ G H)) (Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set H) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set H) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set H) _ _) λ _ → isOfHLevelPathP 1 isPropIsGroup _ _) t) uaGroupId : (G : Group ℓ) → uaGroup (idGroupEquiv G) ≡ refl uaGroupId G = caracGroup≡ _ _ (carac-uaGroup (idGroupEquiv G) ∙ uaIdEquiv) uaCompGroupEquiv : {F G H : Group ℓ} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong Carrier (uaGroup (compGroupEquiv f g)) ≡⟨ carac-uaGroup (compGroupEquiv f g) ⟩ ua (eq (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ ua (eq f) ∙ ua (eq g) ≡˘⟨ cong (_∙ ua (eq g)) (carac-uaGroup f) ⟩ cong Carrier (uaGroup f) ∙ ua (eq g) ≡˘⟨ cong (cong Carrier (uaGroup f) ∙_) (carac-uaGroup g) ⟩ cong Carrier (uaGroup f) ∙ cong Carrier (uaGroup g) ≡˘⟨ cong-∙ Carrier (uaGroup f) (uaGroup g) ⟩ cong Carrier (uaGroup f ∙ uaGroup g) ∎) where open GroupEquiv
{ "alphanum_fraction": 0.6110299489, "avg_line_length": 38.975088968, "ext": "agda", "hexsha": "228a0433738d024bd252b33f998d3b871395f288", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda", "max_line_length": 133, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Group/MorphismProperties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4291, "size": 10952 }
module Bad where data Bool : Set where false : Bool true : Bool data Nat : Set where zero : Nat suc : Nat -> Nat F : Bool -> Set F false = Bool F true = Nat cast : {x : Bool} -> F x -> F x cast a = a not : Bool -> Bool not true = false not false = true oops : Bool oops = not (cast zero)
{ "alphanum_fraction": 0.5876623377, "avg_line_length": 11.8461538462, "ext": "agda", "hexsha": "1bd5c6fbe17d7c67815144391ada6ddebe100832", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "notes/talks/Types07/Bad.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "notes/talks/Types07/Bad.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "notes/talks/Types07/Bad.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 105, "size": 308 }
module _ where open import Agda.Builtin.Reflection open import Agda.Builtin.Bool open import Agda.Builtin.Unit open import Agda.Builtin.String open import Common.Prelude _<_ = primQNameLess True : Bool → Set True true = ⊤ True false = ⊥ zzz aaa : ⊤ zzz = _ aaa = _ ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () check : (x y : Name) → True (x < y) → String check x y prf with x < y check x y prf | true = "A-ok" check x y prf | false = ⊥-elim prf main : IO Unit main = putStrLn (check (quote zzz) (quote aaa) _)
{ "alphanum_fraction": 0.6555772994, "avg_line_length": 17.0333333333, "ext": "agda", "hexsha": "30e2e1725fb4bd4d1e22d6351e484dfc2193293e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/QNameOrder.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/QNameOrder.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/QNameOrder.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 183, "size": 511 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The reflexive, symmetric and transitive closure of a binary -- relation (aka the equivalence closure). ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Construct.Closure.Equivalence where open import Function using (flip; id; _∘_) open import Level using (_⊔_) open import Relation.Binary open import Relation.Binary.Construct.Closure.ReflexiveTransitive as Star using (Star; ε; _◅◅_; reverse) open import Relation.Binary.Construct.Closure.Symmetric as SC using (SymClosure) ------------------------------------------------------------------------ -- Definition EqClosure : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Rel A (a ⊔ ℓ) EqClosure _∼_ = Star (SymClosure _∼_) ------------------------------------------------------------------------ -- Equivalence closures are equivalences. module _ {a ℓ} {A : Set a} (_∼_ : Rel A ℓ) where reflexive : Reflexive (EqClosure _∼_) reflexive = ε transitive : Transitive (EqClosure _∼_) transitive = _◅◅_ symmetric : Symmetric (EqClosure _∼_) symmetric = reverse (SC.symmetric _∼_) isEquivalence : IsEquivalence (EqClosure _∼_) isEquivalence = record { refl = reflexive ; sym = symmetric ; trans = transitive } setoid : Setoid a (a ⊔ ℓ) setoid = record { _≈_ = EqClosure _∼_ ; isEquivalence = isEquivalence } ------------------------------------------------------------------------ -- Operations module _ {a ℓ₁ ℓ₂} {A : Set a} where -- A generalised variant of map which allows the index type to change. gmap : ∀ {b} {B : Set b} {P : Rel A ℓ₁} {Q : Rel B ℓ₂} → (f : A → B) → P =[ f ]⇒ Q → EqClosure P =[ f ]⇒ EqClosure Q gmap {Q = Q} f = Star.gmap f ∘ SC.gmap {Q = Q} f map : ∀ {P : Rel A ℓ₁} {Q : Rel A ℓ₂} → P ⇒ Q → EqClosure P ⇒ EqClosure Q map = gmap id
{ "alphanum_fraction": 0.5252270434, "avg_line_length": 30.0303030303, "ext": "agda", "hexsha": "9c1167ba912b65ba9a517076168cbc0fa1c953d2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Equivalence.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 548, "size": 1982 }
module Prelude.Int.Properties where open import Prelude.Unit open import Prelude.Nat open import Prelude.Nat.Properties open import Prelude.Number open import Prelude.Equality open import Prelude.Int.Core open import Prelude.Smashed open import Prelude.Ord open import Prelude.Semiring open import Prelude.Function --- Specification functions --- --- sucInt a = 1 + a --- predInt a = -1 + a --- sucsInt n a = pos n + a --- predsInt n a = neg n + a --- diffNat a b = a -NZ b sucInt : Int → Int sucInt (pos n) = pos (suc n) sucInt (negsuc zero) = pos zero sucInt (negsuc (suc n)) = negsuc n predInt : Int → Int predInt (pos zero) = negsuc zero predInt (pos (suc n)) = pos n predInt (negsuc n) = negsuc (suc n) sucsInt : Nat → Int → Int sucsInt zero b = b sucsInt (suc a) b = sucInt (sucsInt a b) predsInt : Nat → Int → Int predsInt zero b = b predsInt (suc a) b = predInt (predsInt a b) diffNat : Nat → Nat → Int diffNat a zero = pos a diffNat zero (suc b) = negsuc b diffNat (suc a) (suc b) = diffNat a b --- Injectivity proofs --- pos-inj : ∀ {a b} → pos a ≡ pos b → a ≡ b pos-inj refl = refl negsuc-inj : ∀ {a b} → negsuc a ≡ negsuc b → a ≡ b negsuc-inj refl = refl neg-inj : ∀ {a b} → neg a ≡ neg b → a ≡ b neg-inj {zero} {zero} eq = refl neg-inj {zero} {suc b} () neg-inj {suc a} {zero} () neg-inj {suc a} {suc b} eq = suc $≡ negsuc-inj eq negate-inj : {a b : Int} → negate a ≡ negate b → a ≡ b negate-inj {pos a} {pos b} eq = pos $≡ neg-inj eq negate-inj {pos zero} {negsuc b} () negate-inj {pos (suc a)} {negsuc b} () negate-inj {negsuc a} {pos zero} () negate-inj {negsuc a} {pos (suc _)} () negate-inj {negsuc a} {negsuc b} eq = negsuc $≡ suc-inj (pos-inj eq) sucInt-inj : ∀ a b → sucInt a ≡ sucInt b → a ≡ b sucInt-inj (pos a) (pos a) refl = refl sucInt-inj (pos a) (negsuc zero) () sucInt-inj (pos a) (negsuc (suc b)) () sucInt-inj (negsuc zero) (pos b) () sucInt-inj (negsuc (suc a)) (pos b) () sucInt-inj (negsuc zero) (negsuc zero) eq = refl sucInt-inj (negsuc zero) (negsuc (suc b)) () sucInt-inj (negsuc (suc a)) (negsuc zero) () sucInt-inj (negsuc (suc a)) (negsuc (suc a)) refl = refl predInt-inj : ∀ a b → predInt a ≡ predInt b → a ≡ b predInt-inj (pos zero) (pos zero) eq = refl predInt-inj (pos zero) (pos (suc b)) () predInt-inj (pos (suc a)) (pos zero) () predInt-inj (pos (suc a)) (pos (suc a)) refl = refl predInt-inj (pos zero) (negsuc b) () predInt-inj (pos (suc a)) (negsuc b) () predInt-inj (negsuc a) (pos zero) () predInt-inj (negsuc a) (pos (suc b)) () predInt-inj (negsuc a) (negsuc a) refl = refl --- sucInt and predInt are inverses -- sucInt-predInt : ∀ a → sucInt (predInt a) ≡ a sucInt-predInt (pos zero) = refl sucInt-predInt (pos (suc n)) = refl sucInt-predInt (negsuc n) = refl predInt-sucInt : ∀ a → predInt (sucInt a) ≡ a predInt-sucInt (pos n) = refl predInt-sucInt (negsuc zero) = refl predInt-sucInt (negsuc (suc n)) = refl --- Commutativity of _+_ is easy addInt-commute : (a b : Int) → a + b ≡ b + a addInt-commute (pos a) (pos b) = pos $≡ add-commute a b addInt-commute (pos a) (negsuc b) = refl addInt-commute (negsuc a) (pos b) = refl addInt-commute (negsuc a) (negsuc b) = negsuc ∘ suc $≡ add-commute a b --- Proving _-NZ_ == diffNat -NZ-suc : ∀ a b → suc a -NZ suc b ≡ a -NZ b -NZ-suc a b rewrite smashed {x = compare (suc a) (suc b)} {suc-comparison (compare a b)} with compare a b ... | less (diff! k) = refl ... | equal eq = refl ... | greater (diff! k) = refl -NZ-spec : ∀ a b → a -NZ b ≡ diffNat a b -NZ-spec zero zero = refl -NZ-spec (suc a) zero = refl -NZ-spec zero (suc b) = refl -NZ-spec (suc a) (suc b) = -NZ-suc a b ⟨≡⟩ -NZ-spec a b --- diffNat distributes over suc in both arguments... diffNat-suc-l : ∀ a b → diffNat (suc a) b ≡ sucInt (diffNat a b) diffNat-suc-l a 0 = refl diffNat-suc-l 0 1 = refl diffNat-suc-l 0 (suc (suc b)) = refl diffNat-suc-l (suc a) (suc b) = diffNat-suc-l a b diffNat-suc-r : ∀ a b → diffNat a (suc b) ≡ predInt (diffNat a b) diffNat-suc-r zero zero = refl diffNat-suc-r zero (suc b) = refl diffNat-suc-r (suc a) zero = refl diffNat-suc-r (suc a) (suc b) = diffNat-suc-r a b --- ...and thus so does _-NZ_ -NZ-suc-l : ∀ a b → suc a -NZ b ≡ sucInt (a -NZ b) -NZ-suc-l a b = -NZ-spec (suc a) b ⟨≡⟩ diffNat-suc-l a b ⟨≡⟩ʳ sucInt $≡ -NZ-spec a b -NZ-suc-r : ∀ a b → a -NZ suc b ≡ predInt (a -NZ b) -NZ-suc-r a b = -NZ-spec a (suc b) ⟨≡⟩ diffNat-suc-r a b ⟨≡⟩ʳ predInt $≡ -NZ-spec a b --- We need some lemmas about how sucInt and predInt relates to _+_. --- These are special cases of the computation rules below, so we make them private. private sucInt-spec : ∀ a → 1 + a ≡ sucInt a sucInt-spec (pos n) = refl sucInt-spec (negsuc zero) = refl sucInt-spec (negsuc (suc n)) = refl predInt-spec : ∀ a → -1 + a ≡ predInt a predInt-spec (pos zero) = refl predInt-spec (pos (suc n)) = -NZ-spec (suc n) 1 predInt-spec (negsuc n) = refl addInt-suc : ∀ a b → pos (suc a) + b ≡ sucInt (pos a + b) addInt-suc a (pos b) = refl addInt-suc a (negsuc b) = -NZ-suc-l a (suc b) addInt-negsuc : ∀ a b → negsuc (suc a) + b ≡ predInt (negsuc a + b) addInt-negsuc a (pos b) = -NZ-suc-r b (suc a) addInt-negsuc a (negsuc b) = refl --- Now we can prove some "computation" rules for _+_ addInt-zero-l : (a : Int) → 0 + a ≡ a addInt-zero-l (pos a) = refl addInt-zero-l (negsuc a) = -NZ-spec 0 (suc a) addInt-zero-r : (a : Int) → a + 0 ≡ a addInt-zero-r (pos a) = pos $≡ add-zero-r a addInt-zero-r (negsuc a) = -NZ-spec 0 (suc a) addInt-sucInt-l : ∀ a b → sucInt a + b ≡ sucInt (a + b) addInt-sucInt-l (pos a) b = addInt-suc a b addInt-sucInt-l (negsuc zero) b = addInt-zero-l b ⟨≡⟩ʳ sucInt $≡ predInt-spec b ⟨≡⟩ sucInt-predInt b addInt-sucInt-l (negsuc (suc a)) b = sucInt-predInt (negsuc a + b) ʳ⟨≡⟩ʳ sucInt $≡ addInt-negsuc a b addInt-predInt-l : ∀ a b → predInt a + b ≡ predInt (a + b) addInt-predInt-l (pos zero) b = predInt-spec b ⟨≡⟩ʳ predInt $≡ addInt-zero-l b addInt-predInt-l (pos (suc a)) b = predInt-sucInt (pos a + b) ʳ⟨≡⟩ʳ predInt $≡ addInt-suc a b addInt-predInt-l (negsuc a) b = addInt-negsuc a b --- Adding a non-negative number is equivalent to sucsInt and adding a negative number --- to predsInt. addInt-pos : ∀ a b → pos a + b ≡ sucsInt a b addInt-pos zero b = addInt-zero-l b addInt-pos (suc a) b = addInt-suc a b ⟨≡⟩ sucInt $≡ addInt-pos a b addInt-neg : ∀ a b → neg a + b ≡ predsInt a b addInt-neg zero b = addInt-zero-l b addInt-neg (suc zero) b = addInt-predInt-l 0 b ⟨≡⟩ predInt $≡ addInt-zero-l b -- predInt-spec b addInt-neg (suc (suc a)) b = addInt-predInt-l (negsuc a) b ⟨≡⟩ predInt $≡ addInt-neg (suc a) b --- sucsInt and predsInt have the appropriate associativity properties private sucsInt-assoc : ∀ a b c → sucsInt a (b + c) ≡ sucsInt a b + c sucsInt-assoc zero b c = refl sucsInt-assoc (suc a) b c = sucInt $≡ sucsInt-assoc a b c ⟨≡⟩ʳ addInt-sucInt-l (sucsInt a b) c predsInt-assoc : ∀ a b c → predsInt a (b + c) ≡ predsInt a b + c predsInt-assoc zero b c = refl predsInt-assoc (suc a) b c = predInt $≡ predsInt-assoc a b c ⟨≡⟩ʳ addInt-predInt-l (predsInt a b) c --- Finally we can prove associativity of _+_ addInt-assoc : (a b c : Int) → a + (b + c) ≡ (a + b) + c addInt-assoc (pos a) b c = addInt-pos a (b + c) ⟨≡⟩ sucsInt-assoc a b c ⟨≡⟩ʳ _+ c $≡ addInt-pos a b addInt-assoc (negsuc a) b c = addInt-neg (suc a) (b + c) ⟨≡⟩ predsInt-assoc (suc a) b c ⟨≡⟩ʳ _+ c $≡ addInt-neg (suc a) b --- Injectivity of _+_ private sucsInt-inj : ∀ a b c → sucsInt a b ≡ sucsInt a c → b ≡ c sucsInt-inj zero b c eq = eq sucsInt-inj (suc a) b c eq = sucsInt-inj a b c (sucInt-inj _ _ eq) predsInt-inj : ∀ a b c → predsInt a b ≡ predsInt a c → b ≡ c predsInt-inj zero b c eq = eq predsInt-inj (suc a) b c eq = predsInt-inj a b c (predInt-inj _ _ eq) addInt-inj₂ : (a b c : Int) → a + b ≡ a + c → b ≡ c addInt-inj₂ (pos a) b c eq = sucsInt-inj a b c (addInt-pos a b ʳ⟨≡⟩ eq ⟨≡⟩ addInt-pos a c) addInt-inj₂ (negsuc a) b c eq = predsInt-inj a b c (predInt-inj _ _ (addInt-neg (suc a) b ʳ⟨≡⟩ eq ⟨≡⟩ addInt-neg (suc a) c)) addInt-inj₁ : (a b c : Int) → a + c ≡ b + c → a ≡ b addInt-inj₁ a b c eq = addInt-inj₂ c a b (addInt-commute c a ⟨≡⟩ eq ⟨≡⟩ addInt-commute b c) --- Properties of negate --- negate-idempotent : (a : Int) → negate (negate a) ≡ a negate-idempotent (pos zero) = refl negate-idempotent (pos (suc n)) = refl negate-idempotent (negsuc n) = refl private neg-add : ∀ a b → neg (a + b) ≡ neg a + neg b neg-add zero b = sym (addInt-zero-l (neg b)) neg-add (suc a) zero = negsuc $≡ add-zero-r a ⟨≡⟩ʳ -NZ-spec 0 (suc a) neg-add (suc a) (suc b) = negsuc $≡ add-suc-r a b negate-diffNat : ∀ a b → negate (diffNat a b) ≡ diffNat b a negate-diffNat zero zero = refl negate-diffNat zero (suc b) = refl negate-diffNat (suc a) zero = refl negate-diffNat (suc a) (suc b) = negate-diffNat a b negate-NZ : ∀ a b → negate (a -NZ b) ≡ b -NZ a negate-NZ a b = negate $≡ -NZ-spec a b ⟨≡⟩ negate-diffNat a b ⟨≡⟩ʳ -NZ-spec b a negate-addInt : (a b : Int) → negate (a + b) ≡ negate a + negate b negate-addInt (pos a) (pos b) = neg-add a b negate-addInt (pos zero) (negsuc b) = refl negate-addInt (pos (suc a)) (negsuc b) = negate-NZ (suc a) (suc b) negate-addInt (negsuc a) (pos zero) = pos ∘ suc $≡ sym (add-zero-r a) negate-addInt (negsuc a) (pos (suc b)) = negate-NZ (suc b) (suc a) negate-addInt (negsuc a) (negsuc b) = pos $≡ sym (add-suc-r (suc a) b) negate-subInt : (a b : Int) → negate (a - b) ≡ b - a negate-subInt a b = negate-addInt a (negate b) ⟨≡⟩ negate a +_ $≡ negate-idempotent b ⟨≡⟩ addInt-commute (negate a) b --- Properties of subtraction --- private diffNat-equal : ∀ a → diffNat a a ≡ 0 diffNat-equal zero = refl diffNat-equal (suc a) = diffNat-equal a subInt-equal : (a b : Int) → a ≡ b → a - b ≡ 0 subInt-equal (pos zero) _ refl = refl subInt-equal (pos (suc n)) _ refl = -NZ-spec (suc n) (suc n) ⟨≡⟩ diffNat-equal n subInt-equal (negsuc n) _ refl = -NZ-spec (suc n) (suc n) ⟨≡⟩ diffNat-equal n
{ "alphanum_fraction": 0.5908270819, "avg_line_length": 37.2120141343, "ext": "agda", "hexsha": "89fbc56288c875c695f33ab7190529d1cd23f06e", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Int/Properties.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Int/Properties.agda", "max_line_length": 124, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Int/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 4305, "size": 10531 }
module Luau.Type where open import FFI.Data.Maybe using (Maybe; just; nothing) data Type : Set where nil : Type _⇒_ : Type → Type → Type none : Type any : Type number : Type _∪_ : Type → Type → Type _∩_ : Type → Type → Type src : Type → Type src nil = none src (S ⇒ T) = S src none = none src any = any src number = none src (S ∪ T) = (src S) ∪ (src T) src (S ∩ T) = (src S) ∩ (src T) tgt : Type → Type tgt nil = none tgt (S ⇒ T) = T tgt none = none tgt any = any tgt number = none tgt (S ∪ T) = (tgt S) ∪ (tgt T) tgt (S ∩ T) = (tgt S) ∩ (tgt T) optional : Type → Type optional nil = nil optional (T ∪ nil) = (T ∪ nil) optional T = (T ∪ nil) normalizeOptional : Type → Type normalizeOptional (S ∪ T) with normalizeOptional S | normalizeOptional T normalizeOptional (S ∪ T) | (S′ ∪ nil) | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil normalizeOptional (S ∪ T) | S′ | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil normalizeOptional (S ∪ T) | (S′ ∪ nil) | T′ = (S′ ∪ T′) ∪ nil normalizeOptional (S ∪ T) | S′ | nil = optional S′ normalizeOptional (S ∪ T) | nil | T′ = optional T′ normalizeOptional (S ∪ T) | S′ | T′ = S′ ∪ T′ normalizeOptional T = T
{ "alphanum_fraction": 0.5548117155, "avg_line_length": 25.9782608696, "ext": "agda", "hexsha": "af5f857cbdb76050fe4d8cb4ee853eb7694262b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Tr4shh/Roblox-Luau", "max_forks_repo_path": "prototyping/Luau/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Tr4shh/Roblox-Luau", "max_issues_repo_path": "prototyping/Luau/Type.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Tr4shh/Roblox-Luau", "max_stars_repo_path": "prototyping/Luau/Type.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 456, "size": 1195 }
module NumeralNaturalProofs where open NumeralNatural open Structure open Structure.Function'.Properties open Structure.Relator open Structure.Relator.Properties [∩]-inductive : Proof(∀ₗ(a ↦ ∀ₗ(b ↦ (Inductive(a) ∧ Inductive(b)) ⟶ Inductive(a ∩ b)))) [∩]-inductive = ([∀].intro (\{a} → ([∀].intro (\{b} → ([→].intro(indaindb ↦ ([∧].intro -- ∅ is in ([↔].elimₗ ([∀].elim([∀].elim([∀].elim([∩]-membership){a}){b}){∅}) ([∧].intro ([∧].elimₗ([∧].elimₗ indaindb)) ([∧].elimₗ([∧].elimᵣ indaindb)) ) ) -- 𝐒 is in ([∀].intro (\{x} → ([→].intro(x∈a∩b ↦ ([↔].elimₗ ([∀].elim([∀].elim([∀].elim([∩]-membership){a}){b}){𝐒(x)}) ([∧].intro -- 𝐒(x) ∈ a ([→].elim([∀].elim([∧].elimᵣ([∧].elimₗ indaindb)){x})( -- x ∈ a [∧].elimₗ([↔].elimᵣ ([∀].elim([∀].elim([∀].elim([∩]-membership){a}){b}){x}) (x∈a∩b) ) )) -- 𝐒(x) ∈ b ([→].elim([∀].elim([∧].elimᵣ([∧].elimᵣ indaindb)){x})( -- x ∈ b [∧].elimᵣ([↔].elimᵣ ([∀].elim([∀].elim([∀].elim([∩]-membership){a}){b}){x}) (x∈a∩b) ) )) ) ) )) )) ) )) )) )) -- postulate [⋂]-property : ∀{φ} → Proof(∀ₗ(s ↦ ∀ₗ(x ↦ (x ∈ s) ⟶ φ(x)) ⟶ φ(⋂ s))) TODO: MAybe not true [⋂]-inductive : Proof(∀ₗ(s ↦ ∀ₗ(x ↦ (x ∈ s) ⟶ Inductive(x)) ⟶ Inductive(⋂ s))) [⋂]-inductive = ([∀].intro (\{s} → ([→].intro(allxxsindx ↦ ([∧].intro -- ∅ is in proof -- 𝐒 is in proof ) )) )) where postulate proof : ∀{a} → a [ℕ]-inductive : Proof(Inductive(ℕ)) [ℕ]-inductive = ([→].elim ([∀].elim [⋂]-inductive {filter(℘(inductiveSet)) Inductive} ) ([∀].intro(\{x} → ([→].intro(x∈filter ↦ [∧].elimᵣ(([↔].elimᵣ([∀].elim([∀].elim filter-membership{℘(inductiveSet)}){x})) (x∈filter)) )) )) ) module _ where open FunctionSet open FunctionProofs postulate [ℕ]-recursive-function : ∀{z : Domain}{s : Domain → Domain → Domain} → Proof(∃ₛ!(ℕ →ₛₑₜ ℕ)(f ↦ ((𝟎 , z) ∈ f) ∧ (∀ₗ(n ↦ ∀ₗ(fn ↦ ((n , fn) ∈ f) ⟶ ((𝐒(n) , s(n)(fn)) ∈ f)))))) [ℕ]-recursive-function-witness : Domain → BinaryOperator → Function [ℕ]-recursive-function-witness z s = [→ₛₑₜ]-witness([∃ₛ!]-witness ⦃ f ⦄ ) ⦃ [∃ₛ!]-domain ⦃ f ⦄ ⦄ where f = [ℕ]-recursive-function{z}{s} postulate [ℕ]-recursive-function-of-zero : ∀{z : Domain}{s : Domain → Domain → Domain} → Proof(([ℕ]-recursive-function-witness z s)(𝟎) ≡ z) postulate [ℕ]-recursive-function-of-successor : ∀{z : Domain}{s : Domain → Domain → Domain} → Proof(∀ₛ(ℕ) (n ↦ ([ℕ]-recursive-function-witness z s)(𝐒(n)) ≡ s(n)(([ℕ]-recursive-function-witness z s)(n)))) _+_ : Domain → Domain → Domain _+_ a b = [ℕ]-recursive-function-witness z s b where z : Domain z = a s : Domain → Domain → Domain s(n)(sn) = 𝐒(sn) _⋅_ : Domain → Domain → Domain _⋅_ a b = [ℕ]-recursive-function-witness z s b where z : Domain z = 𝟎 s : Domain → Domain → Domain s(n)(sn) = sn + a _^'_ : Domain → Domain → Domain -- TODO: Temporary name collision fix _^'_ a b = [ℕ]-recursive-function-witness z s b where z : Domain z = 𝐒(𝟎) s : Domain → Domain → Domain s(n)(sn) = sn ⋅ a module _ where open Structure.Operator.Properties postulate [+]-commutativity : Proof(Commutativity(ℕ)(_+_)) postulate [+]-associativity : Proof(Associativity(ℕ)(_+_)) postulate [+]-identity : Proof(Identity(ℕ)(_+_)(𝟎)) postulate [⋅]-commutativity : Proof(Commutativity(ℕ)(_⋅_)) postulate [⋅]-associativity : Proof(Associativity(ℕ)(_⋅_)) postulate [⋅]-identity : Proof(Identity(ℕ)(_⋅_)(𝐒(𝟎))) postulate [⋅][+]-distributivity : Proof(Distributivity(ℕ)(_⋅_)(_+_)) postulate [ℕ]-elements : Proof(∀ₛ(ℕ)(n ↦ (n ≡ 𝟎) ∨ ∃ₛ(ℕ)(p ↦ n ≡ 𝐒(p)))) postulate [<]-irreflexivity : Proof(Irreflexivity(ℕ)(_<_)) postulate [<]-asymmetry : Proof(Antisymmetry(ℕ)(_<_)) postulate [<]-transitivity : Proof(Transitivity(ℕ)(_<_)) postulate [≤]-reflexivity : Proof(Irreflexivity(ℕ)(_≤_)) postulate [≤]-antisymmetry : Proof(Antisymmetry(ℕ)(_≤_)) postulate [≤]-transitivity : Proof(Transitivity(ℕ)(_≤_)) -- instance -- [𝐒]-type : Function.Type(𝐒) -- [𝐒]-type = Function.Type.intro ℕ ℕ proof where -- postulate proof : ∀{a} → a -- postulate [𝐒]-injective : Proof(Injective(ℕ)(𝐒)) -- ∀ₛ(ℕ)(a ↦ ∀ₛ(ℕ)(b ↦ (a < b) ⟶ (𝐒(a) < 𝐒(b)))) -- ∀ₛ(ℕ)(n ↦ 𝟎 ≢ 𝐒(n)) -- A model of the integers expressed in set theory (using only sets). module NumeralInteger where open Structure.Function'.Properties open Structure.Relator.Properties private module Nat where open NumeralNatural ⦃ signature ⦄ public open NumeralNaturalProofs public EqualDistance : Domain → Domain → Formula EqualDistance x y = ∃ₗ(x₁ ↦ ∃ₗ(x₂ ↦ (x ≡ (x₁ , x₂)) ∧ ∃ₗ(y₁ ↦ ∃ₗ(y₂ ↦ (y ≡ (y₁ , y₂)) ∧ ((x₁ Nat.+ y₂) ≡ (x₂ Nat.+ y₁)))))) postulate EqualDistance-equivalence : Proof(Equivalence(Nat.ℕ ⨯ Nat.ℕ)(EqualDistance)) ℤ : Domain ℤ = (Nat.ℕ ⨯ Nat.ℕ) / EqualDistance nat : Domain → Domain nat(n) = map(N ↦ (N , (N Nat.+ n))) Nat.ℕ postulate nat-type : Proof(Type(Nat.ℕ)(ℤ)(nat)) 𝟎 : Domain 𝟎 = nat(Nat.𝟎) postulate _<_ : Domain → Domain → Formula -- TODO _≤_ : Domain → Domain → Formula a ≤ b = (a < b) ∨ (a ≡ b) _>_ : Domain → Domain → Formula _>_ = swap _<_ _≥_ : Domain → Domain → Formula _≥_ = swap _≤_ ℕ : Domain ℕ = filter(ℤ) (_≥ 𝟎) ℤ₊ : Domain ℤ₊ = filter(ℤ) (_> 𝟎) ℤ₋ : Domain ℤ₋ = filter(ℤ) (_< 𝟎) postulate 𝐒 : Domain → Domain -- TODO postulate 𝐏 : Domain → Domain -- TODO postulate _+_ : Domain → Domain → Domain -- TODO postulate −_ : Domain → Domain -- TODO _−_ : Domain → Domain → Domain a − b = a + (− b) postulate _⋅_ : Domain → Domain → Domain -- TODO -- A model of the rational numbers expressed in set theory (using only sets). module NumeralRational where open Structure.Function'.Properties open Structure.Relator.Properties private module Nat = NumeralNatural private module Int = NumeralInteger open Structure.Ordering.Strict EqualRatio : Domain → Domain → Formula EqualRatio x y = ∃ₗ(x₁ ↦ ∃ₗ(x₂ ↦ (x ≡ (x₁ , x₂)) ∧ ∃ₗ(y₁ ↦ ∃ₗ(y₂ ↦ (y ≡ (y₁ , y₂)) ∧ ((x₁ Int.⋅ y₂) ≡ (x₂ Int.⋅ y₁)))))) postulate EqualRatio-equivalence : Proof(Equivalence(Int.ℤ ⨯ Int.ℤ₊)(EqualRatio)) ℚ : Domain ℚ = (Int.ℤ ⨯ Int.ℤ₊) / EqualRatio postulate int : Domain → Domain -- TODO -- int(n) = map(N ↦ (N , (N Int.⋅ n))) Int.ℤ postulate int-type : Proof(Type(Int.ℤ)(ℚ)(int)) nat : Domain → Domain nat(n) = int(Int.nat(n)) postulate nat-type : Proof(Type(Nat.ℕ)(ℚ)(nat)) 𝟎 : Domain 𝟎 = nat(Nat.𝟎) -- TODO: These are incorrect because elements in ℚ are sets of tuples _≤_ : Domain → Domain → Formula _≤_ x y = ∃ₗ(x₁ ↦ ∃ₗ(x₂ ↦ (x ≡ (x₁ , x₂)) ∧ ∃ₗ(y₁ ↦ ∃ₗ(y₂ ↦ (y ≡ (y₁ , y₂)) ∧ ((x₁ Int.⋅ y₂) Int.≤ (x₂ Int.⋅ y₁)))))) _<_ : Domain → Domain → Formula _<_ x y = ∃ₗ(x₁ ↦ ∃ₗ(x₂ ↦ (x ≡ (x₁ , x₂)) ∧ ∃ₗ(y₁ ↦ ∃ₗ(y₂ ↦ (y ≡ (y₁ , y₂)) ∧ ((x₁ Int.⋅ y₂) Int.< (x₂ Int.⋅ y₁)))))) _>_ : Domain → Domain → Formula _>_ = swap _<_ _≥_ : Domain → Domain → Formula _≥_ = swap _≤_ postulate [<]-dense : Proof(Dense(ℚ)(_<_)) -- TODO postulate _+_ : Domain → Domain → Domain -- TODO postulate −_ : Domain → Domain -- TODO _−_ : Domain → Domain → Domain a − b = a + (− b) postulate _⋅_ : Domain → Domain → Domain -- TODO postulate ⅟_ : Domain → Domain -- TODO _/'_ : Domain → Domain → Domain a /' b = a ⋅ (⅟ b) postulate abs : Domain → Domain _𝄩_ : Domain → Domain → Domain a 𝄩 b = abs(a − b) -- A model of the real numbers expressed in set theory (using only sets). module NumeralReal where private module Rat = NumeralRational -- TODO: https://math.stackexchange.com/questions/1076806/proof-that-the-floor-and-ceiling-functions-exist
{ "alphanum_fraction": 0.4962296005, "avg_line_length": 31.2852112676, "ext": "agda", "hexsha": "51168828ed2fecddf597987c72a4ae1351fb8d03", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/Numeral.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/Numeral.agda", "max_line_length": 209, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/Numeral.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3259, "size": 8885 }
module Cats.Category.Sets where open import Data.Product using (Σ ; _×_ ; proj₁ ; proj₂) open import Level open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Cats.Category.Base open import Cats.Util.Function open import Cats.Util.Logic.Constructive module _ {l} {A B : Set l} where infixr 4 _≈_ _≈_ : (f g : A → B) → Set l f ≈ g = ∀ x → f x ≡ g x equiv : IsEquivalence _≈_ equiv = record { refl = λ x → ≡.refl ; sym = λ eq x → ≡.sym (eq x) ; trans = λ eq₁ eq₂ x → ≡.trans (eq₁ x) (eq₂ x) } instance Sets : ∀ l → Category (suc l) l l Sets l = record { Obj = Set l ; _⇒_ = λ A B → A → B ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = λ {_} {_} {_} {f} eq₁ eq₂ x → ≡.trans (≡.cong f (eq₂ _)) (eq₁ _) ; id-r = λ _ → ≡.refl ; id-l = λ _ → ≡.refl ; assoc = λ _ → ≡.refl }
{ "alphanum_fraction": 0.5540816327, "avg_line_length": 22.2727272727, "ext": "agda", "hexsha": "7c77a2c22b5d71dc754fd6417bf5021c61d4b241", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Sets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Sets.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Sets.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 386, "size": 980 }
module Bughunting2 where data Nat : Set where zero : Nat -- Comment which gets eaten suc : Nat -> Nat --Comment which is preserved plus : Nat -> Nat -> Nat plus2 : Nat -> Nat -> Nat plus2 = plus plus zero m = m plus m n = {! !}
{ "alphanum_fraction": 0.5730769231, "avg_line_length": 18.5714285714, "ext": "agda", "hexsha": "b32bbe4a329a3db437f07388cefbbf8291a9d98a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/Bughunting2.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/Bughunting2.agda", "max_line_length": 67, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/Bughunting2.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 73, "size": 260 }
module Categories.WithFamilies where open import Level import Relation.Binary.HeterogeneousEquality as Het open Het using (_≅_) open import Categories.Support.PropositionalEquality open import Categories.Support.Experimental open import Categories.Category open import Categories.Functor open import Categories.NaturalIsomorphism open import Categories.Object.Terminal open import Categories.Fam module UnpackFam {o ℓ e a b} (C : Category o ℓ e) (T : Functor (Category.op C) (Fam a b)) where private module C = Category C private module T = Functor T Context = C.Obj Ty : C.Obj → Set a Ty Γ = Fam.U (T.F₀ Γ) _[_] : ∀ {Γ Δ} → Ty Γ → Δ C.⇒ Γ → Ty Δ _[_] A f = Fam.Hom.f (T.F₁ f) A Tm : ∀ Γ → Ty Γ → Set b Tm Γ = Fam.T (T.F₀ Γ) _[_⁺] : ∀ {Γ Δ A} → Tm Γ A → (f : Δ C.⇒ Γ) → Tm Δ (A [ f ]) _[_⁺] M f = Fam.Hom.φ (T.F₁ f) _ M record CwF {o ℓ e a b} : Set (suc e ⊔ (suc ℓ ⊔ suc o) ⊔ suc a ⊔ suc b) where field C : Category o ℓ e T : Functor (Category.op C) (Fam a b) Empty : Terminal C module C = Category C module T = Functor T open UnpackFam C T module Empty = Terminal C Empty field -- context snoc _>_ : ∀ Γ → Ty Γ → C.Obj -- projections p : ∀ {Γ A} → (Γ > A) C.⇒ Γ v : ∀ {Γ A} → Tm (Γ > A) (A [ p ]) -- constructor <_,_> : ∀ {Γ A} → ∀ {Δ} (γ : Δ C.⇒ Γ) (a : Tm Δ (A [ γ ])) → Δ C.⇒ (Γ > A) .p∘<γ,a>≡γ : ∀ {Γ A} → ∀ {Δ} {γ : Δ C.⇒ Γ} {a : Tm Δ (A [ γ ])} → p C.∘ < γ , a > C.≡ γ .v[<γ,a>]≡a : ∀ {Γ A} → ∀ {Δ} {γ : Δ C.⇒ Γ} {a : Tm Δ (A [ γ ])} → v [ < γ , a > ⁺] ≅ a .<γ,a>-unique : ∀ {Γ A} → ∀ {Δ} {γ : Δ C.⇒ Γ} {a : Tm Δ (A [ γ ])} → (δ : Δ C.⇒ (Γ > A)) → .(p C.∘ δ C.≡ γ) → .(v [ δ ⁺] ≅ a) → δ C.≡ < γ , a > v[_] : ∀ {Γ A Δ} → (γ : Δ C.⇒ Γ) -> Tm (Δ > A [ γ ]) (A [ γ C.∘ p ]) v[_] {Γ} {A} {Δ} γ = ≣-subst′ (Tm (Δ > A [ γ ])) (≣-sym (Fam.Eq.f≡g (T.homomorphism {Γ}) {A})) (v {Δ} {A [ γ ]}) _[id] : ∀ {Γ A} -> Tm Γ A -> Tm Γ (A [ C.id ]) _[id] {Γ} {A} x = ≣-subst′ (Tm Γ) (≣-sym (Fam.Eq.f≡g (T.identity {Γ}) {A})) x open UnpackFam C T public open Empty public using () renaming (⊤ to <>) record Pi {o ℓ e a b} (Cwf : CwF {o} {ℓ} {e} {a} {b}) : Set (o ⊔ ℓ ⊔ a ⊔ b) where open CwF Cwf field Π : ∀ {Γ} -> (A : Ty Γ) (B : Ty (Γ > A)) -> Ty Γ lam : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (b : Tm (Γ > A) B) -> Tm Γ (Π A B) _$_ : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (f : Tm Γ (Π A B)) (x : Tm Γ A) -> Tm Γ (B [ < C.id , x [id] > ]) -- naturality laws .Π-nat : ∀ {Γ} -> (A : Ty Γ) (B : Ty (Γ > A)) -> ∀ {Δ} (γ : Δ C.⇒ Γ) -> Π A B [ γ ] ≣ Π (A [ γ ]) (B [ < (γ C.∘ p) , v[ γ ] > ]) .lam-nat : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (b : Tm (Γ > A) B) -> ∀ {Δ} (γ : Δ C.⇒ Γ) -> lam b [ γ ⁺] ≅ lam {A = A [ γ ]} (b [ < γ C.∘ p , v[ γ ] > ⁺]) .app-nat : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (f : Tm Γ (Π A B)) (x : Tm Γ A) -> ∀ {Δ} (γ : Δ C.⇒ Γ) -> (f $ x) [ γ ⁺] ≅ ≣-subst′ (Tm Δ) (Π-nat A B γ) (f [ γ ⁺]) $ (x [ γ ⁺]) -- proofs of the lam/_$_ isomorphism .β : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (b : Tm (Γ > A) B) (x : Tm Γ A) -> (lam b $ x) ≣ b [ < C.id , x [id] > ⁺] .η : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (f : Tm Γ (Π A B)) -> lam (≣-subst′ (Tm (Γ > A)) (Π-nat A B p) (f [ p ⁺]) $ v) ≅ f
{ "alphanum_fraction": 0.420590816, "avg_line_length": 35.9894736842, "ext": "agda", "hexsha": "acb0da69d652b8c08aee6af0c6e110d4c0eb070b", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/WithFamilies.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/WithFamilies.agda", "max_line_length": 114, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/WithFamilies.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1649, "size": 3419 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Concrete where open import Level open import Categories.Category.Core using (Category) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor.Core using (Functor) open import Categories.Functor.Representable using (Representable) open import Categories.Functor.Properties using (Faithful) -- A Concrete Category is a category along with a faithful -- functor to Setoid. -- [Normally Set, but that doesn't work so well here] private variable o ℓ e : Level record Concrete (C : Category o ℓ e) (ℓ′ e′ : Level) : Set (o ⊔ ℓ ⊔ e ⊔ suc (ℓ′ ⊔ e′)) where field concretize : Functor C (Setoids ℓ′ e′) conc-faithful : Faithful concretize -- Because of the use of the Hom functor, some levels collapse record RepresentablyConcrete (C : Category o ℓ e) : Set (o ⊔ suc (e ⊔ ℓ)) where open Concrete field conc : Concrete C ℓ e representable : Representable (concretize conc)
{ "alphanum_fraction": 0.728, "avg_line_length": 31.25, "ext": "agda", "hexsha": "7ad4fcb3e919494ce301d0866388e87c43b83591", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Concrete.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Concrete.agda", "max_line_length": 92, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Concrete.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 272, "size": 1000 }
{- Name: Bowornmet (Ben) Hudson --Complexity : "Playing The Game"-- -} open import Preliminaries open import Preorder-withmax module Complexity-lang where data Typ : Set where nat : Typ _×'_ : Typ → Typ → Typ _⇒_ : Typ → Typ → Typ unit : Typ ------------------------------------------ -- represent a context as a list of types Ctx = List Typ -- de Bruijn indices (for free variables) data _∈_ : Typ → Ctx → Set where i0 : ∀ {Γ T} → T ∈ (T :: Γ) iS : ∀ {Γ T T1} → T ∈ Γ → T ∈ (T1 :: Γ) ------------------------------------------ -- some syntax data _|-_ : Ctx → Typ → Set where var : ∀ {Γ T} → (x : T ∈ Γ) → Γ |- T z : ∀ {Γ} → Γ |- nat suc : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ T} → (e : Γ |- nat) → (e0 : Γ |- T) → (e1 : (nat :: (T :: Γ)) |- T) → Γ |- T lam : ∀ {Γ T Ρ} → (x : (Ρ :: Γ) |- T) → Γ |- (Ρ ⇒ T) app : ∀ {Γ T1 T2} → (e1 : Γ |- (T2 ⇒ T1)) → (e2 : Γ |- T2) → Γ |- T1 unit : ∀ {Γ} → Γ |- unit prod : ∀ {Γ T1 T2} → (e1 : Γ |- T1) → (e2 : Γ |- T2) → Γ |- (T1 ×' T2) l-proj : ∀ {Γ T1 T2} → (e : Γ |- (T1 ×' T2)) → Γ |- T1 r-proj : ∀ {Γ T1 T2} → (e : Γ |- (T1 ×' T2)) → Γ |- T2 ------------------------------------------ -- renaming function rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') lem1 d i0 = i0 lem1 d (iS x) = iS (d x) ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ ren (var x) d = var (d x) ren z d = z ren (suc e) d = suc (ren e d) ren (rec e0 e1 e2) d = rec (ren e0 d) (ren e1 d) (ren e2 (lem1 (lem1 d))) ren (lam x) d = lam (ren x (lem1 d)) ren (app e1 e2) d = app (ren e1 d) (ren e2 d) ren unit d = unit ren (prod e1 e2) d = prod (ren e1 d) (ren e2 d) ren (l-proj e) d = l-proj (ren e d) ren (r-proj e) d = r-proj (ren e d) ------------------------------------------ -- substitution sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ -- weakening wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 wkn e = ren e iS -- lemmas everywhere wkn-s : ∀ {Γ τ1 Γ'} → sctx Γ Γ' → sctx (τ1 :: Γ) Γ' wkn-s d = λ f → wkn (d f) wkn-r : ∀ {Γ τ1 Γ'} → rctx Γ Γ' → rctx (τ1 :: Γ) Γ' wkn-r d = λ x → iS (d x) lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') lem2 d i0 = var i0 lem2 d (iS i) = wkn (d i) lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) lem3 e i0 = e lem3 e (iS i) = var i lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem4 e1 e2 i0 = e1 lem4 e1 e2 (iS i0) = e2 lem4 e1 e2 (iS (iS i)) = var i subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ subst d (var x) = d x subst d z = z subst d (suc e) = suc (subst d e) subst d (rec e0 e1 e2) = rec (subst d e0) (subst d e1) (subst (lem2 (lem2 d)) e2) subst d (lam e) = lam (subst (lem2 d) e) subst d (app e1 e2) = app (subst d e1) (subst d e2) subst d unit = unit subst d (prod e1 e2) = prod (subst d e1) (subst d e2) subst d (l-proj e) = l-proj (subst d e) subst d (r-proj e) = r-proj (subst d e) ------------------------------------------ -- define 'stepping' as a datatype (fig. 1 of proof) data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set where refl-s : ∀ {Γ T} → (e : Γ |- T) → e ≤s e trans-s : ∀ {Γ T} → (e e' e'' : Γ |- T) → e ≤s e' → e' ≤s e'' → e ≤s e'' cong-s : ∀ {Γ T T'} → (e : (T :: Γ) |- T') → (e1 e2 : Γ |- T) → e1 ≤s e2 → subst (lem3 e1) e ≤s subst (lem3 e2) e lam-s : ∀ {Γ T T'} → (e : (T :: Γ) |- T') → (e2 : Γ |- T) → subst (lem3 e2) e ≤s app (lam e) e2 l-proj-s : ∀ {Γ T1 T2} → (e1 : Γ |- T1) → (e2 : Γ |- T2) → e1 ≤s (l-proj (prod e1 e2)) r-proj-s : ∀ {Γ T1 T2} → (e1 : Γ |- T1) → (e2 : Γ |- T2) → e2 ≤s (r-proj (prod e1 e2)) rec-steps-s : ∀ {Γ T} → (e : Γ |- nat) → (e0 : Γ |- T) → (e1 : (nat :: (T :: Γ)) |- T) → subst (lem4 e (rec e e0 e1)) e1 ≤s (rec (suc e) e0 e1) rec-steps-z : ∀ {Γ T} → (e0 : Γ |- T) → (e1 : (nat :: (T :: Γ)) |- T) → e0 ≤s (rec z e0 e1) ------------------------------------------ el : PREORDER → Set el = fst PREORDER≤ : (PA : PREORDER) → el PA → el PA → Set PREORDER≤ PA = Preorder-max-str.≤ (snd PA) interp : Typ → PREORDER interp nat = Nat , nat-p interp (A ×' B) = interp A ×p interp B interp (A ⇒ B) = interp A ->p interp B interp unit = unit-p interpC : Ctx → PREORDER interpC [] = unit-p interpC (A :: Γ) = interpC Γ ×p interp A -- look up a variable in context lookup : ∀{Γ τ} → τ ∈ Γ → el (interpC Γ ->p interp τ) lookup (i0 {Γ} {τ}) = snd' {interpC (τ :: Γ)} {interpC Γ} {_} id lookup (iS {Γ} {τ} {τ1} x) = comp {interpC (τ1 :: Γ)} {_} {_} (fst' {interpC (τ1 :: Γ)} {_} {interp τ1} id) (lookup x) interpE : ∀{Γ τ} → Γ |- τ → el (interpC Γ ->p interp τ) interpE (var x) = lookup x interpE z = monotone (λ x → Z) (λ x y _ → <>) interpE (suc e) = {!!} --monotone (λ x → S {!!}) {!!} interpE (rec e0 e1 e2) = mnatrec {!!} (interpE e1) (λ x x₁ → {!!}) {!!} --mnatrec {!!} (λ x x₁ → interpE e1) {!!} interpE (lam e) = lam' (interpE e) interpE (app e1 e2) = app' (interpE e1) (interpE e2) interpE unit = monotone (λ _ → <>) (λ x y _ → <>) interpE (prod e1 e2) = pair' (interpE e1) (interpE e2) interpE (l-proj {Γ} {τ1} {τ2} e) = fst' {_} {_} {interp τ2} (interpE e) interpE (r-proj {Γ} {τ1} {τ2} e) = snd' {_} {interp τ1} {_} (interpE e) sound : ∀ {Γ τ} (e e' : Γ |- τ) → e ≤s e' → PREORDER≤ (interpC Γ ->p interp τ) (interpE e) (interpE e') sound {_} {τ} .e' e' (refl-s .e') k = Preorder-max-str.refl (snd (interp τ)) (Monotone.f (interpE e') k) sound {_} {τ} e e' (trans-s .e e'' .e' p p₁) k = Preorder-max-str.trans (snd (interp τ)) (Monotone.f (interpE e) k) (Monotone.f (interpE e'') k) (Monotone.f (interpE e') k) (sound e e'' p k) (sound e'' e' p₁ k) sound .(subst (lem3 e1) e) .(subst (lem3 e2) e) (cong-s e e1 e2 p) k = {!!} sound .(subst (lem3 e2) e) .(app (lam e) e2) (lam-s e e2) k = {!!} sound {_} {τ} e .(l-proj (prod e e2)) (l-proj-s .e e2) k = Preorder-max-str.refl (snd (interp τ)) (Monotone.f (interpE e) k) sound {_} {τ} e .(r-proj (prod e1 e)) (r-proj-s e1 .e) k = Preorder-max-str.refl (snd (interp τ)) (Monotone.f (interpE e) k) sound .(subst (lem4 e (rec e e0 e1)) e1) .(rec (suc e) e0 e1) (rec-steps-s e e0 e1) k = {!!} sound e .(rec z e e1) (rec-steps-z .e e1) k = {!!}
{ "alphanum_fraction": 0.4256335988, "avg_line_length": 32.7251184834, "ext": "agda", "hexsha": "dde258f525e5d9e2ba0aff18342b8dc6db83ac95", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "ug/Complexity-lang.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "ug/Complexity-lang.agda", "max_line_length": 126, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "ug/Complexity-lang.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 2879, "size": 6905 }
------------------------------------------------------------------------------ -- Well-founded induction on natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Adapted from -- http://www.iis.sinica.edu.tw/~scm/2008/well-founded-recursion-and-accessibility/ -- and the Agda standard library 0.8.1. module FOTC.Induction.WF where open import Common.Relation.Unary open import FOTC.Base ------------------------------------------------------------------------------ -- The accessibility predicate: x is accessible if everything which is -- smaller than x is also accessible (inductively). data Acc (P : D → Set)(_<_ : D → D → Set)(x : D) : Set where acc : (∀ {y} → P y → y < x → Acc P _<_ y) → Acc P _<_ x accFold : {P Q : D → Set}(_<_ : D → D → Set) → (∀ {x} → Q x → (∀ {y} → Q y → y < x → P y) → P x) → ∀ {x} → Q x → Acc Q _<_ x → P x accFold _<_ f Qx (acc h) = f Qx (λ Qy y<x → accFold _<_ f Qy (h Qy y<x)) -- The accessibility predicate encodes what it means to be -- well-founded; if all elements are accessible, then _<_ is -- well-founded. WellFounded : {P : D → Set} → (D → D → Set) → Set WellFounded {P} _<_ = ∀ {x} → P x → Acc P _<_ x WellFoundedInduction : {P Q : D → Set} {_<_ : D → D → Set} → WellFounded _<_ → (∀ {x} → Q x → (∀ {y} → Q y → y < x → P y) → P x) → ∀ {x} → Q x → P x WellFoundedInduction {_<_ = _<_} wf f Qx = accFold _<_ f Qx (wf Qx) module Subrelation {P : D → Set} {_<_ _<'_ : D → D → Set} (<⇒<' : ∀ {x y} → P x → x < y → x <' y) where accessible : Acc P _<'_ ⊆ Acc P _<_ accessible (acc h) = acc (λ Py y<x → accessible (h Py (<⇒<' Py y<x))) well-founded : WellFounded _<'_ → WellFounded _<_ well-founded wf = λ Px → accessible (wf Px) module InverseImage {P Q : D → Set} {_<_ : D → D → Set} {f : D → D} (f-Q : ∀ {x} → P x → Q (f x)) where accessible : ∀ {x} → P x → Acc Q _<_ (f x) → Acc P (λ x' y' → f x' < f y') x accessible Px (acc h) = acc (λ {y} Py fy<fx → accessible Py (h (f-Q Py) fy<fx)) wellFounded : WellFounded _<_ → WellFounded (λ x y → f x < f y) wellFounded wf = λ Px → accessible Px (wf (f-Q Px))
{ "alphanum_fraction": 0.4507973551, "avg_line_length": 37.8088235294, "ext": "agda", "hexsha": "5e1f15d99ac87c14ada167d22984b37455ec3358", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Induction/WF.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Induction/WF.agda", "max_line_length": 83, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Induction/WF.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 766, "size": 2571 }
module Golden.Constructor where open import Agda.Builtin.Nat f : (Nat -> Nat) -> Nat f g = g zero fsuc = suc fzero = zero one = f suc a = fsuc fzero
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 11.7692307692, "ext": "agda", "hexsha": "d7689c973a142218c45866e1a271b87b566b9056", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z", "max_forks_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-ocaml", "max_forks_repo_path": "test/agda-ocaml/Golden/Constructor.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_issues_repo_issues_event_max_datetime": "2018-11-05T21:28:57.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-29T13:37:52.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-ocaml", "max_issues_repo_path": "test/agda-ocaml/Golden/Constructor.agda", "max_line_length": 31, "max_stars_count": 48, "max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-ocaml", "max_stars_repo_path": "test/agda-ocaml/Golden/Constructor.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z", "num_tokens": 53, "size": 153 }
{-# OPTIONS --safe --cubical #-} module Data.Product.NAry where open import Data.Sigma open import Prelude hiding (⊤; tt) open import Data.Unit.UniversePolymorphic open import Path.Reasoning private variable n : ℕ ℓ : Level Levels : ℕ → Type Levels zero = ⊤ Levels (suc n) = Level × Levels n private variable ls : Levels n max-level : Levels n → Level max-level {zero} _ = ℓzero max-level {suc n} (x , xs) = x ℓ⊔ max-level xs Types : ∀ n → (ls : Levels n) → Type (ℓsuc (max-level ls)) Types zero ls = ⊤ Types (suc n) (l , ls) = Type l × Types n ls ⦅_⦆⁺ : Types (suc n) ls → Type (max-level ls) ⦅_⦆⁺ {n = zero } (X , Xs) = X ⦅_⦆⁺ {n = suc n} (X , Xs) = X × ⦅ Xs ⦆⁺ ⦅_⦆ : Types n ls → Type (max-level ls) ⦅_⦆ {n = zero} _ = ⊤ ⦅_⦆ {n = suc n} = ⦅_⦆⁺ {n = n} map-types : (fn : ∀ {ℓ} → Type ℓ → Type ℓ) → ∀ {n ls} → Types n ls → Types n ls map-types fn {zero} xs = xs map-types fn {suc n} (x , xs) = fn x , map-types fn xs data ArgForm : Type where expl impl inst : ArgForm infixr 0 _[_]→_ _[_]→_ : Type a → ArgForm → Type b → Type (a ℓ⊔ b) A [ expl ]→ B = A → B A [ impl ]→ B = { _ : A } → B A [ inst ]→ B = ⦃ _ : A ⦄ → B [_$] : ∀ form → (A [ form ]→ B) ⇔ (A → B) [ expl $] .fun f = f [ impl $] .fun f x = f {x} [ inst $] .fun f x = f ⦃ x ⦄ [ expl $] .inv f = f [ impl $] .inv f {x} = f x [ inst $] .inv f ⦃ x ⦄ = f x [ expl $] .leftInv f = refl [ impl $] .leftInv f = refl [ inst $] .leftInv f = refl [ expl $] .rightInv f = refl [ impl $] .rightInv f = refl [ inst $] .rightInv f = refl infixr 0 pi-arr pi-arr : (A : Type a) → ArgForm → (A → Type b) → Type (a ℓ⊔ b) pi-arr A expl B = (x : A) → B x pi-arr A impl B = {x : A} → B x pi-arr A inst B = ⦃ x : A ⦄ → B x syntax pi-arr a f (λ x → b ) = x ⦂ a Π[ f ]→ b Π[_$] : ∀ {B : A → Type b} fr → (x ⦂ A Π[ fr ]→ B x) ⇔ ((x : A) → B x) Π[ expl $] .fun f = f Π[ impl $] .fun f x = f {x} Π[ inst $] .fun f x = f ⦃ x ⦄ Π[ expl $] .inv f x = f x Π[ impl $] .inv f {x} = f x Π[ inst $] .inv f ⦃ x ⦄ = f x Π[ expl $] .leftInv f = refl Π[ impl $] .leftInv f = refl Π[ inst $] .leftInv f = refl Π[ expl $] .rightInv f = refl Π[ impl $] .rightInv f = refl Π[ inst $] .rightInv f = refl infixr 0 ⦅_⦆[_]→_ ⦅_⦆[_]→_ : Types n ls → ArgForm → Type ℓ → Type (max-level ls ℓ⊔ ℓ) ⦅_⦆[_]→_ {n = zero} Xs fr Y = Y ⦅_⦆[_]→_ {n = suc n} (X , Xs) fr Y = X [ fr ]→ ⦅ Xs ⦆[ fr ]→ Y infixr 0 pi-arrs-plus pi-arrs-plus : (Xs : Types (suc n) ls) → ArgForm → (y : ⦅ Xs ⦆⁺ → Type ℓ) → Type (max-level ls ℓ⊔ ℓ) pi-arrs-plus {n = zero } (X , Xs) fr Y = x ⦂ X Π[ fr ]→ Y x pi-arrs-plus {n = suc n } (X , Xs) fr Y = x ⦂ X Π[ fr ]→ xs ⦂⦅ Xs ⦆⁺Π[ fr ]→ Y (x , xs) syntax pi-arrs-plus Xs fr (λ xs → Y) = xs ⦂⦅ Xs ⦆⁺Π[ fr ]→ Y pi-arrs : ∀ {n ls ℓ} → (Xs : Types n ls) → ArgForm → (y : ⦅ Xs ⦆ → Type ℓ) → Type (max-level ls ℓ⊔ ℓ) pi-arrs {n = zero} xs fr Y = Y tt pi-arrs {n = suc n} = pi-arrs-plus syntax pi-arrs Xs fr (λ xs → Y) = xs ⦂⦅ Xs ⦆Π[ fr ]→ Y [_^_$]⁺↓ : ∀ n {ls ℓ} f {Xs : Types (suc n) ls} {y : Type ℓ} → (⦅ Xs ⦆⁺ → y) → ⦅ Xs ⦆[ f ]→ y [ zero ^ fr $]⁺↓ f = [ fr $] .inv f [ suc n ^ fr $]⁺↓ f = [ fr $] .inv ([ n ^ fr $]⁺↓ ∘ (f ∘_) ∘ _,_) [_^_$]↓ : ∀ n {ls ℓ} f {xs : Types n ls} {y : Type ℓ} → (⦅ xs ⦆ → y) → ⦅ xs ⦆[ f ]→ y [ zero ^ fr $]↓ f = f tt [ suc n ^ fr $]↓ f = [ n ^ fr $]⁺↓ f [_^_$]⁺↑ : ∀ n {ls ℓ} f {xs : Types (suc n) ls} {y : Type ℓ} → (⦅ xs ⦆[ f ]→ y) → (⦅ xs ⦆⁺ → y) [ zero ^ fr $]⁺↑ f = [ fr $] .fun f [ suc n ^ fr $]⁺↑ f = uncurry ([ n ^ fr $]⁺↑ ∘ [ fr $] .fun f) [_^_$]↑ : ∀ n {ls ℓ} f {xs : Types n ls} {y : Type ℓ} → (⦅ xs ⦆[ f ]→ y) → (⦅ xs ⦆ → y) [ zero ^ fr $]↑ f _ = f [ suc n ^ fr $]↑ f = [ n ^ fr $]⁺↑ f leftInvCurry⁺ : ∀ n {ls ℓ} fr {Xs : Types (suc n) ls} {Y : Type ℓ} → (f : ⦅ Xs ⦆[ fr ]→ Y ) → [ n ^ fr $]⁺↓ ([ n ^ fr $]⁺↑ f) ≡ f leftInvCurry⁺ zero fr f = [ fr $] .leftInv f leftInvCurry⁺ (suc n) fr f = [ fr $] .inv ([ n ^ fr $]⁺↓ ∘ [ n ^ fr $]⁺↑ ∘ [ fr $] .fun f) ≡⟨ cong (λ r → [ fr $] .inv (r ∘ [ fr $] .fun f)) (funExt (leftInvCurry⁺ n fr)) ⟩ [ fr $] .inv ([ fr $] .fun f) ≡⟨ [ fr $] .leftInv f ⟩ f ∎ leftInvCurry : ∀ n {ls ℓ} fr {Xs : Types n ls} {Y : Type ℓ} → (f : ⦅ Xs ⦆[ fr ]→ Y ) → [ n ^ fr $]↓ ([ n ^ fr $]↑ f) ≡ f leftInvCurry zero fr f = refl leftInvCurry (suc n) fr f = leftInvCurry⁺ n fr f rightInvCurry⁺ : ∀ n {ls ℓ} fr {Xs : Types (suc n) ls} {Y : Type ℓ} (f : ⦅ Xs ⦆ → Y) → [ n ^ fr $]⁺↑ ([ n ^ fr $]⁺↓ f) ≡ f rightInvCurry⁺ zero fr f = [ fr $] .rightInv f rightInvCurry⁺ (suc n) fr f = uncurry ([ n ^ fr $]⁺↑ ∘ [ fr $] .fun ([ fr $] .inv ([ n ^ fr $]⁺↓ ∘ ((f ∘_) ∘ _,_)))) ≡⟨ cong (λ h → uncurry ([ n ^ fr $]⁺↑ ∘ h)) ([ fr $] .rightInv _) ⟩ uncurry ([ n ^ fr $]⁺↑ ∘ [ n ^ fr $]⁺↓ ∘ ((f ∘_) ∘ _,_)) ≡⟨ cong (λ r → uncurry (r ∘ ((f ∘_) ∘ _,_))) (funExt (rightInvCurry⁺ n fr)) ⟩ f ∎ rightInvCurry : ∀ n {ls ℓ} fr {Xs : Types n ls} {Y : Type ℓ} (f : ⦅ Xs ⦆ → Y) → [ n ^ fr $]↑ ([ n ^ fr $]↓ f) ≡ f rightInvCurry zero fr f = refl rightInvCurry (suc n) fr f = rightInvCurry⁺ n fr f [_^_$] : ∀ n {ls ℓ} fr {Xs : Types n ls} {Y : Type ℓ} → (⦅ Xs ⦆[ fr ]→ Y) ⇔ (⦅ Xs ⦆ → Y) [ n ^ fr $] .fun = [ n ^ fr $]↑ [ n ^ fr $] .inv = [ n ^ fr $]↓ [ n ^ fr $] .leftInv = leftInvCurry n fr [ n ^ fr $] .rightInv = rightInvCurry n fr ↓Π[_^_$]⁺ : ∀ n {ls ℓ} fr {Xs : Types (suc n) ls} {Y : ⦅ Xs ⦆ → Type ℓ} → ((xs : ⦅ Xs ⦆) → Y xs) → xs ⦂⦅ Xs ⦆⁺Π[ fr ]→ Y xs ↓Π[ zero ^ fr $]⁺ f = Π[ fr $] .inv f ↓Π[ suc n ^ fr $]⁺ f = Π[ fr $] .inv (↓Π[ n ^ fr $]⁺ ∘ (f ∘_) ∘ _,_) ↓Π[_^_$] : ∀ n {ls ℓ} fr {Xs : Types n ls} {Y : ⦅ Xs ⦆ → Type ℓ} → ((xs : ⦅ Xs ⦆) → Y xs) → xs ⦂⦅ Xs ⦆Π[ fr ]→ Y xs ↓Π[ zero ^ fr $] f = f tt ↓Π[ suc n ^ fr $] f = ↓Π[ n ^ fr $]⁺ f ↑Π[_^_$]⁺ : ∀ n {ls ℓ} fr {Xs : Types (suc n) ls} {Y : ⦅ Xs ⦆ → Type ℓ} → (xs ⦂⦅ Xs ⦆⁺Π[ fr ]→ Y xs) → ((xs : ⦅ Xs ⦆) → Y xs) ↑Π[ zero ^ fr $]⁺ f = Π[ fr $] .fun f ↑Π[ suc n ^ fr $]⁺ f = uncurry (↑Π[ n ^ fr $]⁺ ∘ Π[ fr $] .fun f) ↑Π[_^_$] : ∀ n {ls ℓ} fr {Xs : Types n ls} {Y : ⦅ Xs ⦆ → Type ℓ} → (xs ⦂⦅ Xs ⦆Π[ fr ]→ Y xs) → ((xs : ⦅ Xs ⦆) → Y xs) ↑Π[ zero ^ fr $] f _ = f ↑Π[ suc n ^ fr $] f = ↑Π[ n ^ fr $]⁺ f leftInvCurryΠ⁺ : ∀ n {ls ℓ} fr {Xs : Types (suc n) ls} {Y : ⦅ Xs ⦆ → Type ℓ} → (f : xs ⦂⦅ Xs ⦆⁺Π[ fr ]→ Y xs) → ↓Π[ n ^ fr $]⁺ (↑Π[ n ^ fr $]⁺ f) ≡ f leftInvCurryΠ⁺ zero fr f = Π[ fr $] .leftInv f leftInvCurryΠ⁺ (suc n) fr f = Π[ fr $] .inv (↓Π[ n ^ fr $]⁺ ∘ ↑Π[ n ^ fr $]⁺ ∘ Π[ fr $] .fun f) ≡⟨ cong (Π[ fr $] .inv ∘ flip _∘_ (Π[ fr $] .fun f)) (λ i x → leftInvCurryΠ⁺ n fr x i) ⟩ Π[ fr $] .inv (Π[ fr $] .fun f) ≡⟨ Π[ fr $] .leftInv f ⟩ f ∎ leftInvCurryΠ : ∀ n {ls ℓ} fr {Xs : Types n ls} {Y : ⦅ Xs ⦆ → Type ℓ} → (f : xs ⦂⦅ Xs ⦆Π[ fr ]→ Y xs) → ↓Π[ n ^ fr $] (↑Π[ n ^ fr $] f) ≡ f leftInvCurryΠ zero fr f = refl leftInvCurryΠ (suc n) fr f = leftInvCurryΠ⁺ n fr f rightInvCurryΠ⁺ : ∀ n {ls ℓ} fr {Xs : Types (suc n) ls} {Y : ⦅ Xs ⦆ → Type ℓ} (f : (xs : ⦅ Xs ⦆) → Y xs) → ↑Π[ n ^ fr $]⁺ (↓Π[ n ^ fr $]⁺ f) ≡ f rightInvCurryΠ⁺ zero fr f = Π[ fr $] .rightInv f rightInvCurryΠ⁺ (suc n) fr f = uncurry (↑Π[ n ^ fr $]⁺ ∘ (Π[ fr $] .fun (Π[ fr $] .inv (↓Π[ n ^ fr $]⁺ ∘ (f ∘_) ∘ _,_)))) ≡⟨ cong (λ h → uncurry (↑Π[ n ^ fr $]⁺ ∘ h)) (Π[ fr $] .rightInv _) ⟩ uncurry (↑Π[ n ^ fr $]⁺ ∘ ↓Π[ n ^ fr $]⁺ ∘ (f ∘_) ∘ _,_) ≡⟨ cong (uncurry ∘ flip _∘_ ((f ∘_) ∘ _,_)) (λ i x → rightInvCurryΠ⁺ n fr x i) ⟩ f ∎ rightInvCurryΠ : ∀ n {ls ℓ} fr {Xs : Types n ls} {Y : ⦅ Xs ⦆ → Type ℓ} (f : (xs : ⦅ Xs ⦆) → Y xs) → ↑Π[ n ^ fr $] (↓Π[ n ^ fr $] f) ≡ f rightInvCurryΠ zero fr f = refl rightInvCurryΠ (suc n) fr f = rightInvCurryΠ⁺ n fr f Π[_^_$] : ∀ n {ls ℓ} fr {Xs : Types n ls} {Y : ⦅ Xs ⦆ → Type ℓ} → (xs ⦂⦅ Xs ⦆Π[ fr ]→ Y xs) ⇔ ((xs : ⦅ Xs ⦆) → Y xs) Π[ n ^ fr $] .fun = ↑Π[ n ^ fr $] Π[ n ^ fr $] .inv = ↓Π[ n ^ fr $] Π[ n ^ fr $] .leftInv = leftInvCurryΠ n fr Π[ n ^ fr $] .rightInv = rightInvCurryΠ n fr
{ "alphanum_fraction": 0.4516211062, "avg_line_length": 37.6315789474, "ext": "agda", "hexsha": "9eff3db70f05746daa985caee00dc9cadaf00fb4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Product/NAry.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Product/NAry.agda", "max_line_length": 162, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Product/NAry.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 4274, "size": 7865 }
-- Andreas, 2017-04-10, issue #2537 reported by xekoukou -- Preserve named args when splitting in a where clause. -- {-# OPTIONS -v reify:100 #-} data Bool : Set where true false : Bool fun : {a b c d e f g : Bool} → Bool → Bool fun {g = g} x with x ... | r = {!g!} -- C-c C-c g -- Expected result: -- fun {g = true} x | r = ? -- fun {g = false} x | r = ?
{ "alphanum_fraction": 0.5690607735, "avg_line_length": 22.625, "ext": "agda", "hexsha": "fb8fa29be8724704d44f828758163bdb91a475e3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2537.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2537.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2537.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 128, "size": 362 }
module Numeral.Natural.Oper.Comparisons.Proofs where open import Data.Boolean.Stmt open import Data.Boolean open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Proofs open import Relator.Equals [≤?]-𝟎 : ∀{n} → IsTrue(𝟎 ≤? n) [≤?]-𝟎 = [⊤]-intro [≤?]-𝐒 : ∀{n} → IsTrue(n ≤? 𝐒(n)) [≤?]-𝐒 {𝟎} = [⊤]-intro [≤?]-𝐒 {𝐒 n} = [≤?]-𝐒 {n} [<?]-𝟎 : ∀{n} → IsTrue(𝟎 <? 𝐒(n)) [<?]-𝟎 {𝟎} = [⊤]-intro [<?]-𝟎 {𝐒 n} = [<?]-𝟎 {n} [<?]-𝐒 : ∀{n} → IsTrue(n <? 𝐒(n)) [<?]-𝐒 {𝟎} = [⊤]-intro [<?]-𝐒 {𝐒 n} = [<?]-𝐒 {n} [≤?]-reflexivity : ∀{n} → IsTrue(n ≤? n) [≤?]-reflexivity {𝟎} = [⊤]-intro [≤?]-reflexivity {𝐒(n)} = [≤?]-reflexivity {n} [<?]-positive : ∀{n} → (𝟎 <? n) ≡ positive?(n) [<?]-positive {𝟎} = [≡]-intro [<?]-positive {𝐒(_)} = [≡]-intro {-# REWRITE [<?]-positive #-} [<?]-positive-any : ∀{m n} → ⦃ _ : IsTrue(m <? n) ⦄ → IsTrue(positive?(n)) [<?]-positive-any {𝟎} {n} ⦃ p ⦄ = p [<?]-positive-any {𝐒 m} {𝐒 n} ⦃ p ⦄ = [⊤]-intro [≤?]-positive : ∀{n} → (𝐒(𝟎) ≤? n) ≡ positive?(n) [≤?]-positive {𝟎} = [≡]-intro [≤?]-positive {𝐒(_)} = [≡]-intro [≢?]-positive : ∀{n} → (n ≢? 𝟎) ≡ positive?(n) [≢?]-positive {𝟎} = [≡]-intro [≢?]-positive {𝐒(_)} = [≡]-intro [<?]-to-[≤?] : ∀{a b} → ((a <? b) ≡ (𝐒(a) ≤? b)) [<?]-to-[≤?] {𝟎} {𝟎} = [≡]-intro [<?]-to-[≤?] {𝟎} {𝐒(_)} = [≡]-intro [<?]-to-[≤?] {𝐒(_)}{𝟎} = [≡]-intro [<?]-to-[≤?] {𝐒(a)}{𝐒(b)} = [<?]-to-[≤?] {a}{b} [≡?]-zero : ∀{n} → (n ≡? 𝟎) ≡ zero?(n) [≡?]-zero {𝟎} = [≡]-intro [≡?]-zero {𝐒(_)} = [≡]-intro
{ "alphanum_fraction": 0.4501278772, "avg_line_length": 27.9285714286, "ext": "agda", "hexsha": "7452b514231d212bcfad2465f51e6c6cac503ad0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Comparisons/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Comparisons/Proofs.agda", "max_line_length": 74, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Comparisons/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 883, "size": 1564 }
open import Relation.Binary.Core module InsertSort.Impl1.Correctness.Permutation.Alternative {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Data.Sum open import Function open import InsertSort.Impl1 _≤_ tot≤ open import List.Permutation.Alternative A renaming (_∼_ to _∼′_) open import List.Permutation.Alternative.Correctness A open import List.Permutation.Base A lemma-insert∼′ : (x : A)(xs : List A) → (x ∷ xs) ∼′ insert x xs lemma-insert∼′ x [] = ∼refl lemma-insert∼′ x (y ∷ ys) with tot≤ x y ... | inj₁ x≤y = ∼refl ... | inj₂ y≤x = ∼trans (∼swap ∼refl) (∼head y (lemma-insert∼′ x ys)) lemma-insertSort∼′ : (xs : List A) → xs ∼′ insertSort xs lemma-insertSort∼′ [] = ∼refl lemma-insertSort∼′ (x ∷ xs) = ∼trans (∼head x (lemma-insertSort∼′ xs)) (lemma-insert∼′ x (insertSort xs)) theorem-insertSort∼ : (xs : List A) → xs ∼ insertSort xs theorem-insertSort∼ = lemma-∼′-∼ ∘ lemma-insertSort∼′
{ "alphanum_fraction": 0.6493902439, "avg_line_length": 35.1428571429, "ext": "agda", "hexsha": "32316d4e54fa16148b68b7d64ec1db86a983e217", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/InsertSort/Impl1/Correctness/Permutation/Alternative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/InsertSort/Impl1/Correctness/Permutation/Alternative.agda", "max_line_length": 105, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/InsertSort/Impl1/Correctness/Permutation/Alternative.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 355, "size": 984 }
module NF.Sum where open import NF open import Data.Sum open import Relation.Binary.PropositionalEquality instance nfInj₁ : {A B : Set}{a : A}{{nfa : NF a}} -> NF {A ⊎ B} (inj₁ a) Sing.unpack (NF.!! (nfInj₁ {a = a})) = inj₁ (nf a) Sing.eq (NF.!! (nfInj₁ {{nfa}})) rewrite nf≡ {{nfa}} = refl {-# INLINE nfInj₁ #-} nfInj₂ : {A B : Set}{b : B}{{nfb : NF b}} -> NF {A ⊎ B} (inj₂ b) Sing.unpack (NF.!! (nfInj₂ {b = b})) = inj₂ (nf b) Sing.eq (NF.!! (nfInj₂ {{nfb}})) rewrite nf≡ {{nfb}} = refl {-# INLINE nfInj₂ #-}
{ "alphanum_fraction": 0.5612052731, "avg_line_length": 29.5, "ext": "agda", "hexsha": "1fd7158f2748c69f40c36489b0e3dece652ae55c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yanok/normalize-via-instances", "max_forks_repo_path": "src/NF/Sum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yanok/normalize-via-instances", "max_issues_repo_path": "src/NF/Sum.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "4f037dad109a5d080023557f0869418ed9fc11c1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yanok/normalize-via-instances", "max_stars_repo_path": "src/NF/Sum.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 222, "size": 531 }
module Category.Universality where open import Level open import Category.Core open import Category.Comma open import Category.Instance -- something is universal from c to S when it's an initial object in c / S universal : {𝒸₀ ℓ₀ 𝒸₁ ℓ₁ : Level} → {C : Category 𝒸₀ ℓ₀} {D : Category 𝒸₁ ℓ₁} → {c : Category.Object C} → {S : Functor D C} → (init : Category.Object (point c ↓ S)) → Set (𝒸₁ ⊔ (ℓ₀ ⊔ 𝒸₀)) universal {c = c} {S = S} init = initial (point c ↓ S) init where initial : ∀ {𝒸 ℓ} → (C : Category 𝒸 ℓ) → Category.Object C → Set 𝒸 initial C init = ∀ (other : Object) → init ⇒ other where open Category C initial : ∀ {𝒸 ℓ} (C : Category 𝒸 ℓ) → Category.Object C → Set (𝒸 ⊔ (ℓ ⊔ 𝒸)) initial C c = universal {C = C} {D = C} {c} {identity C} (record { source = tt ; target = c ; morphism = id c }) where open import Data.Unit open Category C initial-prop : ∀ {𝒸 ℓ} {C : Category 𝒸 ℓ} → (init : Category.Object C) → initial C init → (other : Category.Object C) → Category._⇒_ C init other initial-prop {C = C} obj obj-init other = Comma.morphismBetweenSources {! !} where open Category C -- prop1 : {! !} -- prop1 = {! initial !}
{ "alphanum_fraction": 0.5681114551, "avg_line_length": 30.7619047619, "ext": "agda", "hexsha": "f2356f7101df2be976bc21daf0af78b05ee4220b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/categories", "max_forks_repo_path": "src/Category/Universality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/categories", "max_issues_repo_path": "src/Category/Universality.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9f6d933b227aecab338ecaef1d86566a54fdac68", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/categories", "max_stars_repo_path": "src/Category/Universality.agda", "max_stars_repo_stars_event_max_datetime": "2018-01-04T23:19:30.000Z", "max_stars_repo_stars_event_min_datetime": "2018-01-04T23:19:30.000Z", "num_tokens": 430, "size": 1292 }
------------------------------------------------------------------------------ -- Operations on and with functions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Common.Function where -- From Funcion.agda (Agda standard library 0.8.1). -- infixr 0 _$_ ------------------------------------------------------------------------------ -- The right associative application operator. -- -- N.B. The operator is not first-order, so it cannot be used with -- types/terms which will be translated to FOL. -- _$_ : {A : Set}{B : A → Set} → ((x : A) → B x) → (x : A) → B x -- f $ x = f x -- N.B. The function is not first-order, so it cannot be used with -- types/terms which will be translated to FOL. -- flip : {A : Set} → (A → A → A) → A → A → A -- flip f y x = f x y
{ "alphanum_fraction": 0.4426229508, "avg_line_length": 36.1481481481, "ext": "agda", "hexsha": "55e20efc9b769d0436c527dca504f2f9330c3732", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/old/Function.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/old/Function.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/old/Function.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 218, "size": 976 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Truncation.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.PathSplitEquiv open isPathSplitEquiv open import Cubical.Modalities.Everything open Modality open import Cubical.Data.Empty as ⊥ using (⊥) open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.NatMinusOne as ℕ₋₁ hiding (1+_) open import Cubical.Data.NatMinusTwo as ℕ₋₂ hiding (-1+_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Nullification as Null hiding (rec; elim) open import Cubical.HITs.Truncation.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc renaming (∥_∥ to ∥_∥₋₁; ∣_∣ to ∣_∣₋₁; squash to squash₋₁) using () open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₀; ∣_∣₀; squash₀) open import Cubical.HITs.GroupoidTruncation as GpdTrunc using (∥_∥₁; ∣_∣₁; squash₁) open import Cubical.HITs.2GroupoidTruncation as 2GpdTrunc using (∥_∥₂; ∣_∣₂; squash₂) private variable ℓ ℓ' : Level A : Type ℓ sphereFill : (n : ℕ₋₁) (f : S n → A) → Type _ sphereFill {A = A} n f = Σ[ top ∈ A ] ((x : S n) → top ≡ f x) isSphereFilled : ℕ₋₁ → Type ℓ → Type ℓ isSphereFilled n A = (f : S n → A) → sphereFill n f isSphereFilledTrunc : {n : ℕ} → isSphereFilled (-1+ n) (hLevelTrunc n A) isSphereFilledTrunc {n = zero} f = hub f , ⊥.elim isSphereFilledTrunc {n = suc n} f = hub f , spoke f isSphereFilled→isOfHLevelSuc : {n : ℕ} → isSphereFilled (ℕ→ℕ₋₁ n) A → isOfHLevel (suc n) A isSphereFilled→isOfHLevelSuc {A = A} {zero} h x y = sym (snd (h f) north) ∙ snd (h f) south where f : Susp ⊥ → A f north = x f south = y f (merid () i) isSphereFilled→isOfHLevelSuc {A = A} {suc n} h x y = isSphereFilled→isOfHLevelSuc (helper h x y) where helper : isSphereFilled (ℕ→ℕ₋₁ (suc n)) A → (x y : A) → isSphereFilled (ℕ→ℕ₋₁ n) (x ≡ y) helper h x y f = l , r where f' : Susp (S (ℕ→ℕ₋₁ n)) → A f' north = x f' south = y f' (merid u i) = f u i u : sphereFill (ℕ→ℕ₋₁ (suc n)) f' u = h f' z : A z = fst u p : z ≡ x p = snd u north q : z ≡ y q = snd u south l : x ≡ y l = sym p ∙ q r : (s : S (ℕ→ℕ₋₁ n)) → l ≡ f s r s i j = hcomp (λ k → λ { (i = i0) → compPath-filler (sym p) q k j ; (i = i1) → snd u (merid s j) k ; (j = i0) → p (k ∨ (~ i)) ; (j = i1) → q k }) (p ((~ i) ∧ (~ j))) isOfHLevel→isSphereFilled : {n : ℕ} → isOfHLevel n A → isSphereFilled (-1+ n) A isOfHLevel→isSphereFilled {A = A} {zero} h f = fst h , λ _ → snd h _ isOfHLevel→isSphereFilled {A = A} {suc zero} h f = f north , λ _ → h _ _ isOfHLevel→isSphereFilled {A = A} {suc (suc n)} h = helper λ x y → isOfHLevel→isSphereFilled (h x y) where helper : {n : ℕ} → ((x y : A) → isSphereFilled (-1+ n) (x ≡ y)) → isSphereFilled (suc₋₁ (-1+ n)) A helper {n = n} h f = l , r where l : A l = f north f' : S (-1+ n) → f north ≡ f south f' x i = f (merid x i) h' : sphereFill (-1+ n) f' h' = h (f north) (f south) f' r : (x : S (suc₋₁ (-1+ n))) → l ≡ f x r north = refl r south = h' .fst r (merid x i) j = hcomp (λ k → λ { (i = i0) → f north ; (i = i1) → h' .snd x (~ k) j ; (j = i0) → f north ; (j = i1) → f (merid x i) }) (f (merid x (i ∧ j))) -- isNull (S n) A ≃ (isSphereFilled n A) × (∀ (x y : A) → isSphereFilled n (x ≡ y)) isOfHLevel→isSnNull : {n : ℕ} → isOfHLevel n A → isNull (S (-1+ n)) A fst (sec (isOfHLevel→isSnNull h)) f = fst (isOfHLevel→isSphereFilled h f) snd (sec (isOfHLevel→isSnNull h)) f i s = snd (isOfHLevel→isSphereFilled h f) s i fst (secCong (isOfHLevel→isSnNull h) x y) p = fst (isOfHLevel→isSphereFilled (isOfHLevelPath _ h x y) (funExt⁻ p)) snd (secCong (isOfHLevel→isSnNull h) x y) p i j s = snd (isOfHLevel→isSphereFilled (isOfHLevelPath _ h x y) (funExt⁻ p)) s i j isSnNull→isOfHLevel : {n : ℕ} → isNull (S (-1+ n)) A → isOfHLevel n A isSnNull→isOfHLevel {n = zero} nA = fst (sec nA) ⊥.rec , λ y → fst (secCong nA _ y) (funExt ⊥.elim) isSnNull→isOfHLevel {n = suc n} nA = isSphereFilled→isOfHLevelSuc (λ f → fst (sec nA) f , λ s i → snd (sec nA) f i s) isOfHLevelTrunc : (n : ℕ) → isOfHLevel n (hLevelTrunc n A) isOfHLevelTrunc zero = hub ⊥.rec , λ _ → ≡hub ⊥.rec isOfHLevelTrunc (suc n) = isSphereFilled→isOfHLevelSuc isSphereFilledTrunc -- isOfHLevelTrunc n = isSnNull→isOfHLevel isNull-Null -- hLevelTrunc n is a modality rec : {n : ℕ} {B : Type ℓ'} → (isOfHLevel n B) → (g : (a : A) → B) → (hLevelTrunc n A → B) rec {B = B} h = Null.elim {B = λ _ → B} λ x → isOfHLevel→isSnNull h elim : {n : ℕ} {B : hLevelTrunc n A → Type ℓ'} (hB : (x : hLevelTrunc n A) → isOfHLevel n (B x)) (g : (a : A) → B (∣ a ∣)) (x : hLevelTrunc n A) → B x elim hB = Null.elim (λ x → isOfHLevel→isSnNull (hB x)) elim2 : {n : ℕ} {B : hLevelTrunc n A → hLevelTrunc n A → Type ℓ'} (hB : ((x y : hLevelTrunc n A) → isOfHLevel n (B x y))) (g : (a b : A) → B ∣ a ∣ ∣ b ∣) (x y : hLevelTrunc n A) → B x y elim2 {n = n} hB g = elim (λ _ → isOfHLevelPi n (λ _ → hB _ _)) (λ a → elim (λ _ → hB _ _) (λ b → g a b)) elim3 : {n : ℕ} {B : (x y z : hLevelTrunc n A) → Type ℓ'} (hB : ((x y z : hLevelTrunc n A) → isOfHLevel n (B x y z))) (g : (a b c : A) → B (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : hLevelTrunc n A) → B x y z elim3 {n = n} hB g = elim2 (λ _ _ → isOfHLevelPi n (hB _ _)) (λ a b → elim (λ _ → hB _ _ _) (λ c → g a b c)) HLevelTruncModality : ∀ {ℓ} (n : ℕ) → Modality ℓ isModal (HLevelTruncModality n) = isOfHLevel n isModalIsProp (HLevelTruncModality n) = isPropIsOfHLevel n ◯ (HLevelTruncModality n) = hLevelTrunc n ◯-isModal (HLevelTruncModality n) = isOfHLevelTrunc n η (HLevelTruncModality n) = ∣_∣ ◯-elim (HLevelTruncModality n) = elim ◯-elim-β (HLevelTruncModality n) = λ _ _ _ → refl ◯-=-isModal (HLevelTruncModality n) = isOfHLevelPath n (isOfHLevelTrunc n) idemTrunc : (n : ℕ) → isOfHLevel n A → A ≃ (hLevelTrunc n A) idemTrunc n hA = ∣_∣ , isModalToIsEquiv (HLevelTruncModality n) hA -- equivalences to prop/set/groupoid truncations propTrunc≃Trunc-1 : ∥ A ∥₋₁ ≃ ∥ A ∥ -1 propTrunc≃Trunc-1 = isoToEquiv (iso (PropTrunc.elim (λ _ → isOfHLevelTrunc 1) ∣_∣) (elim (λ _ → squash₋₁) ∣_∣₋₁) (elim (λ _ → isOfHLevelPath 1 (isOfHLevelTrunc 1) _ _) (λ _ → refl)) (PropTrunc.elim (λ _ → isOfHLevelPath 1 squash₋₁ _ _) (λ _ → refl))) setTrunc≃Trunc0 : ∥ A ∥₀ ≃ ∥ A ∥ 0 setTrunc≃Trunc0 = isoToEquiv (iso (SetTrunc.elim (λ _ → isOfHLevelTrunc 2) ∣_∣) (elim (λ _ → squash₀) ∣_∣₀) (elim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (λ _ → refl)) (SetTrunc.elim (λ _ → isOfHLevelPath 2 squash₀ _ _) (λ _ → refl))) groupoidTrunc≃Trunc1 : ∥ A ∥₁ ≃ ∥ A ∥ 1 groupoidTrunc≃Trunc1 = isoToEquiv (iso (GpdTrunc.elim (λ _ → isOfHLevelTrunc 3) ∣_∣) (elim (λ _ → squash₁) ∣_∣₁) (elim (λ _ → isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) (λ _ → refl)) (GpdTrunc.elim (λ _ → isOfHLevelPath 3 squash₁ _ _) (λ _ → refl))) 2GroupoidTrunc≃Trunc2 : ∥ A ∥₂ ≃ ∥ A ∥ 2 2GroupoidTrunc≃Trunc2 = isoToEquiv (iso (2GpdTrunc.elim (λ _ → isOfHLevelTrunc 4) ∣_∣) (elim (λ _ → squash₂) ∣_∣₂) (elim (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ _ → refl)) (2GpdTrunc.elim (λ _ → isOfHLevelPath 4 squash₂ _ _) (λ _ → refl))) ---- ∥ Ω A ∥ ₙ ≡ Ω ∥ A ∥ₙ₊₁ ---- {- Proofs of Theorem 7.3.12. and Corollary 7.3.13. in the HoTT book -} private {- We define the fibration P to show a more general result -} P : ∀ {ℓ} {B : Type ℓ}{n : ℕ₋₂} → ∥ B ∥ (suc₋₂ n) → ∥ B ∥ (suc₋₂ n) → Type ℓ P x y = fst (P₁ x y) where P₁ : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} → ∥ B ∥ (suc₋₂ n) → ∥ B ∥ (suc₋₂ n) → (HLevel ℓ (2+ n)) P₁ {ℓ} {n = n} x y = elim2 (λ _ _ → isOfHLevelHLevel (2+ n)) (λ a b → ∥ a ≡ b ∥ n , isOfHLevelTrunc (2+ n)) x y {- We will need P to be of hLevel n + 3 -} hLevelP : ∀{ℓ} {n : ℕ₋₂} {B : Type ℓ} (a b : ∥ B ∥ (suc₋₂ n)) → isOfHLevel (2+ (suc₋₂ n)) (P a b ) hLevelP {n = n} = elim2 (λ x y → isProp→isOfHLevelSuc (2+ n) (isPropIsOfHLevel (2+ suc₋₂ n)) ) (λ a b → isOfHLevelSuc (2+ n) (isOfHLevelTrunc (2+ n))) {- decode function from P x y to x ≡ y -} decode-fun : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} (x y : ∥ B ∥ (suc₋₂ n)) → P x y → x ≡ y decode-fun {B = B} {n = n} = elim2 (λ u v → isOfHLevelPi (2+ suc₋₂ n) (λ _ → isOfHLevelSuc (2+ suc₋₂ n) (isOfHLevelTrunc (2+ suc₋₂ n)) u v)) decode* where decode* : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂}(u v : B) → (P {n = n} ∣ u ∣ ∣ v ∣) → _≡_ {A = ∥ B ∥ (suc₋₂ n)} ∣ u ∣ ∣ v ∣ decode* {B = B} {n = neg2} u v = rec ( isOfHLevelTrunc (suc zero) ∣ u ∣ ∣ v ∣ , λ _ → isOfHLevelSuc (suc zero) (isOfHLevelTrunc (suc zero)) _ _ _ _ ) (λ p → cong (λ z → ∣ z ∣) p) decode* {n = ℕ₋₂.-1+ n} u v = rec (isOfHLevelTrunc (suc (suc n)) ∣ u ∣ ∣ v ∣) (λ p → cong (λ z → ∣ z ∣) p) {- auxilliary function r used to define encode -} r : ∀ {ℓ} {B : Type ℓ} {m : ℕ₋₂} (u : ∥ B ∥ (suc₋₂ m)) → P u u r {m = m} = elim (λ x → hLevelP x x) (λ a → ∣ refl ∣) {- encode function from x ≡ y to P x y -} encode-fun : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} (x y : ∥ B ∥ (suc₋₂ n)) → x ≡ y → P x y encode-fun x y p = transport (λ i → P x (p i)) (r x) {- We need the following two lemmas on the functions behaviour for refl -} dec-refl : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} (x : ∥ B ∥ (suc₋₂ n)) → decode-fun x x (r x) ≡ refl {x = x} dec-refl {B = B} {n = neg2} = elim (λ x → isOfHLevelSuc (suc zero) (isOfHLevelSuc (suc zero) (isOfHLevelTrunc (suc zero)) x x) _ _) (λ a → refl) dec-refl {n = ℕ₋₂.-1+ n} = elim (λ x → isOfHLevelSuc (suc n) (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc (suc n)) x x) (decode-fun x x (r x)) refl)) (λ c → refl) enc-refl : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} (x : ∥ B ∥ (suc₋₂ n)) → encode-fun x x refl ≡ r x enc-refl x j = transp (λ i → P x (refl {x = x} i)) j (r x) {- decode-fun is a right-inverse -} P-rinv : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} (u v : ∥ B ∥ (suc₋₂ n)) → (x : _≡_ {A = ∥ B ∥ (suc₋₂ n)} u v) → decode-fun u v (encode-fun u v x) ≡ x P-rinv {ℓ = ℓ} {B = B} {n = n} u v = J (λ y p → decode-fun u y (encode-fun u y p) ≡ p) ((λ i → (decode-fun u u (enc-refl u i))) ∙ dec-refl u) {- decode-fun is a left-inverse -} P-linv : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} (u v : ∥ B ∥ (suc₋₂ n )) → (x : P u v) → encode-fun u v (decode-fun u v x) ≡ x P-linv {n = n} = elim2 (λ x y → isOfHLevelPi (2+ suc₋₂ n) (λ z → isOfHLevelSuc (2+ suc₋₂ n) (hLevelP x y) _ _)) helper where helper : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} (a b : B) (x : P {n = n} ∣ a ∣ ∣ b ∣) → encode-fun ∣ a ∣ ∣ b ∣ (decode-fun ∣ a ∣ ∣ b ∣ x) ≡ x helper {n = neg2} a b = elim (λ x → ( sym (isOfHLevelTrunc zero .snd (encode-fun ∣ a ∣ ∣ b ∣ (decode-fun ∣ a ∣ ∣ b ∣ x))) ∙ (isOfHLevelTrunc zero .snd x) , λ y → isOfHLevelSuc (suc zero) (isOfHLevelSuc zero (isOfHLevelTrunc {A = a ≡ b} zero)) _ _ _ _ )) (J (λ y p → encode-fun ∣ a ∣ ∣ y ∣ ((decode-fun ∣ a ∣ ∣ y ∣) ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) helper {n = ℕ₋₂.-1+ n} a b = elim (λ x → hLevelP {n = ℕ₋₂.-1+ n} ∣ a ∣ ∣ b ∣ _ _) (J (λ y p → encode-fun {n = ℕ₋₂.-1+ n} ∣ a ∣ ∣ y ∣ ((decode-fun ∣ a ∣ ∣ y ∣) ∣ p ∣) ≡ ∣ p ∣) (enc-refl ∣ a ∣)) {- The final Iso established -} IsoFinal : ∀ {ℓ} {B : Type ℓ} {n : ℕ₋₂} (x y : ∥ B ∥ (suc₋₂ n)) → Iso (x ≡ y) (P x y) IsoFinal x y = iso (encode-fun x y ) (decode-fun x y) (P-linv x y) (P-rinv x y) PathIdTrunc : {a b : A} (n : ℕ₋₂) → (_≡_ {A = ∥ A ∥ (suc₋₂ n)} ∣ a ∣ ∣ b ∣) ≡ (∥ a ≡ b ∥ n) PathIdTrunc {a = a} {b = b} n = isoToPath (IsoFinal {n = n} ∣ a ∣ ∣ b ∣) PathΩ : {a : A} (n : ℕ₋₂) → (_≡_ {A = ∥ A ∥ (suc₋₂ n)} ∣ a ∣ ∣ a ∣) ≡ (∥ a ≡ a ∥ n) PathΩ {a = a} n = PathIdTrunc {a = a} {b = a} n
{ "alphanum_fraction": 0.5243749017, "avg_line_length": 37.9641791045, "ext": "agda", "hexsha": "94938f37604005fb67fd8a57558488162836d2d6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/HITs/Truncation/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/HITs/Truncation/Properties.agda", "max_line_length": 126, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/HITs/Truncation/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5654, "size": 12718 }
module Numeric.Nat.Divide.Properties where open import Prelude open import Numeric.Nat.Properties open import Numeric.Nat.DivMod open import Numeric.Nat.Divide open import Tactic.Nat divides-add : ∀ {a b d} → d Divides a → d Divides b → d Divides (a + b) divides-add (factor! q) (factor! q₁) = factor (q + q₁) auto divides-mul-r : ∀ a {b d} → d Divides b → d Divides (a * b) divides-mul-r a (factor! q) = factor (a * q) auto divides-mul-l : ∀ {a} b {d} → d Divides a → d Divides (a * b) divides-mul-l b (factor! q) = factor (b * q) auto divides-mul : ∀ {a b c d} → c Divides a → d Divides b → (c * d) Divides (a * b) divides-mul (factor! q) (factor! r) = factor (q * r) auto mul-divides-l : (a b c : Nat) → (a * b) Divides c → a Divides c mul-divides-l a b c (factor! q) = factor (q * b) auto mul-divides-r : (a b c : Nat) → (a * b) Divides c → b Divides c mul-divides-r a b c (factor! q) = factor (q * a) auto divides-flip-mul : ∀ {a b c d} → c Divides b → d Divides a → (c * d) Divides (a * b) divides-flip-mul {a} {b} {c} {d} c|b d|a = transport ((c * d) Divides_) (mul-commute b a) (divides-mul c|b d|a) divides-sub-l : ∀ {a b d} → d Divides (a + b) → d Divides a → d Divides b divides-sub-l {b = b} {d} (factor q₁ eq) (factor! q) = factor (q₁ - q) $ by eq divides-sub-r : ∀ {a b d} → d Divides (a + b) → d Divides b → d Divides a divides-sub-r {a} {b} d|ab d|b rewrite add-commute a b = divides-sub-l d|ab d|b divides-mul-cong-l : ∀ {a b} c → a Divides b → (c * a) Divides (c * b) divides-mul-cong-l {a} {b} c (factor q eq) = factor q (by (c *_ $≡ eq)) divides-mul-cong-r : ∀ {a b} c → a Divides b → (a * c) Divides (b * c) divides-mul-cong-r {a} {b} c (factor q eq) = factor q (by (c *_ $≡ eq)) divides-nonzero : ∀ {a b} {{_ : NonZero b}} → a Divides b → NonZero a divides-nonzero {zero} {{nzb}} (factor! b) = transport NonZero (mul-zero-r b) nzb divides-nonzero {suc _} _ = _ divides-refl : ∀ {a} → a Divides a divides-refl = factor 1 auto divides-antisym : ∀ {a b} → a Divides b → b Divides a → a ≡ b divides-antisym (factor! q) (factor! 0) = auto divides-antisym (factor! q) (factor 1 eq) = by eq divides-antisym {zero} (factor! q) (factor (suc (suc q₁)) eq) = auto divides-antisym {suc a} (factor! 0) (factor (suc (suc q₁)) eq) = by eq divides-antisym {suc a} (factor! (suc q)) (factor (suc (suc q₁)) eq) = refute eq divides-trans : ∀ {a b c} → a Divides b → b Divides c → a Divides c divides-trans (factor! q) (factor! q′) = factor (q′ * q) auto divides-zero : ∀ {a} → 0 Divides a → a ≡ 0 divides-zero (factor! q) = auto one-divides : ∀ {a} → 1 Divides a one-divides {a} = factor a auto divides-one : ∀ {a} → a Divides 1 → a ≡ 1 divides-one {0} (factor k eq) = refute eq divides-one {1} _ = refl divides-one {suc (suc a)} (factor zero ()) divides-one {suc (suc a)} (factor (suc k) eq) = refute eq mul=1-l : (a b : Nat) → a * b ≡ 1 → a ≡ 1 mul=1-l a b eq = divides-one (transport (a Divides_) eq (divides-mul-l b divides-refl)) mul=1-r : (a b : Nat) → a * b ≡ 1 → b ≡ 1 mul=1-r a b eq = mul=1-l b a (by eq) divides-less : ∀ {a b} {{_ : NonZero b}} → a Divides b → a ≤ b divides-less {{}} (factor! 0) divides-less {a} (factor! (suc q)) = auto nonzero-factor : ∀ {a b} ⦃ nzb : NonZero b ⦄ (a|b : a Divides b) → NonZero (get-factor a|b) nonzero-factor ⦃ () ⦄ (factor! zero) nonzero-factor (factor! (suc _)) = _ cancel-mul-divides-r : ∀ a b c ⦃ _ : NonZero c ⦄ → (a * c) Divides (b * c) → a Divides b cancel-mul-divides-r a b c (factor q qac=bc) = factor q (mul-inj₁ (q * a) b c (by qac=bc)) cancel-mul-divides-l : ∀ a b c ⦃ _ : NonZero a ⦄ → (a * b) Divides (a * c) → b Divides c cancel-mul-divides-l a b c rewrite mul-commute a b | mul-commute a c = cancel-mul-divides-r b c a
{ "alphanum_fraction": 0.5940306392, "avg_line_length": 40.2765957447, "ext": "agda", "hexsha": "ec7b39a7d3bea429f0c5aeab633b6ee1c30b909a", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Numeric/Nat/Divide/Properties.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Numeric/Nat/Divide/Properties.agda", "max_line_length": 97, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Numeric/Nat/Divide/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 1529, "size": 3786 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Maybe type and some operations ------------------------------------------------------------------------ -- The definitions in this file are reexported by Data.Maybe. {-# OPTIONS --without-K --safe #-} module Data.Maybe.Base where open import Level open import Data.Bool.Base using (Bool; true; false; not) open import Data.Unit.Base using (⊤) open import Data.These using (These; this; that; these) open import Data.Product as Prod using (_×_; _,_) open import Function open import Relation.Nullary ------------------------------------------------------------------------ -- Definition data Maybe {a} (A : Set a) : Set a where just : (x : A) → Maybe A nothing : Maybe A ------------------------------------------------------------------------ -- Some operations boolToMaybe : Bool → Maybe ⊤ boolToMaybe true = just _ boolToMaybe false = nothing is-just : ∀ {a} {A : Set a} → Maybe A → Bool is-just (just _) = true is-just nothing = false is-nothing : ∀ {a} {A : Set a} → Maybe A → Bool is-nothing = not ∘ is-just decToMaybe : ∀ {a} {A : Set a} → Dec A → Maybe A decToMaybe (yes x) = just x decToMaybe (no _) = nothing -- A dependent eliminator. maybe : ∀ {a b} {A : Set a} {B : Maybe A → Set b} → ((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x maybe j n (just x) = j x maybe j n nothing = n -- A non-dependent eliminator. maybe′ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → B → Maybe A → B maybe′ = maybe -- A defaulting mechanism fromMaybe : ∀ {a} {A : Set a} → A → Maybe A → A fromMaybe = maybe′ id -- A safe variant of "fromJust". If the value is nothing, then the -- return type is the unit type. module _ {a} {A : Set a} where From-just : Maybe A → Set a From-just (just _) = A From-just nothing = Lift a ⊤ from-just : (x : Maybe A) → From-just x from-just (just x) = x from-just nothing = _ -- Functoriality: map. map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Maybe A → Maybe B map f = maybe (just ∘ f) nothing -- Alternative: <∣> _<∣>_ : ∀ {a} {A : Set a} → Maybe A → Maybe A → Maybe A just x <∣> my = just x nothing <∣> my = my ------------------------------------------------------------------------ -- Aligning and zipping module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where alignWith : (These A B → C) → Maybe A → Maybe B → Maybe C alignWith f (just a) (just b) = just (f (these a b)) alignWith f (just a) nothing = just (f (this a)) alignWith f nothing (just b) = just (f (that b)) alignWith f nothing nothing = nothing zipWith : (A → B → C) → Maybe A → Maybe B → Maybe C zipWith f (just a) (just b) = just (f a b) zipWith _ _ _ = nothing module _ {a b} {A : Set a} {B : Set b} where align : Maybe A → Maybe B → Maybe (These A B) align = alignWith id zip : Maybe A → Maybe B → Maybe (A × B) zip = zipWith _,_ module _ {a b} {A : Set a} {B : Set b} where -- Injections. thisM : A → Maybe B → These A B thisM a = maybe′ (these a) (this a) thatM : Maybe A → B → These A B thatM = maybe′ these that
{ "alphanum_fraction": 0.5338417541, "avg_line_length": 26.4453781513, "ext": "agda", "hexsha": "3c5a5e541ffc4507c0d6ec6ddcbeb6c85469a948", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Base.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 975, "size": 3147 }
-- Solver for Category {-# OPTIONS --without-K --safe #-} open import Categories.Category module Experiment.Categories.Solver.Category {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Relation.Binary using (Rel) import Categories.Morphism.Reasoning as MR open Category 𝒞 open HomReasoning open MR 𝒞 private variable A B C D E : Obj infixr 9 _:∘_ data Expr : Rel Obj (o ⊔ ℓ) where :id : Expr A A _:∘_ : Expr B C → Expr A B → Expr A C ∥_∥ : A ⇒ B → Expr A B -- Semantics ⟦_⟧ : Expr A B → A ⇒ B ⟦ :id ⟧ = id ⟦ e₁ :∘ e₂ ⟧ = ⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧ ⟦ ∥ f ∥ ⟧ = f ⟦_⟧N∘_ : Expr B C → A ⇒ B → A ⇒ C ⟦ :id ⟧N∘ g = g ⟦ e₁ :∘ e₂ ⟧N∘ g = ⟦ e₁ ⟧N∘ (⟦ e₂ ⟧N∘ g) ⟦ ∥ f ∥ ⟧N∘ g = f ∘ g ⟦_⟧N : Expr A B → A ⇒ B ⟦ e ⟧N = ⟦ e ⟧N∘ id ⟦e⟧N∘f≈⟦e⟧∘f : (e : Expr B C) (g : A ⇒ B) → ⟦ e ⟧N∘ g ≈ ⟦ e ⟧ ∘ g ⟦e⟧N∘f≈⟦e⟧∘f :id g = ⟺ identityˡ ⟦e⟧N∘f≈⟦e⟧∘f (e₁ :∘ e₂) g = begin ⟦ e₁ ⟧N∘ (⟦ e₂ ⟧N∘ g) ≈⟨ ⟦e⟧N∘f≈⟦e⟧∘f e₁ (⟦ e₂ ⟧N∘ g) ⟩ ⟦ e₁ ⟧ ∘ (⟦ e₂ ⟧N∘ g) ≈⟨ pushʳ (⟦e⟧N∘f≈⟦e⟧∘f e₂ g) ⟩ (⟦ e₁ ⟧ ∘ ⟦ e₂ ⟧) ∘ g ∎ ⟦e⟧N∘f≈⟦e⟧∘f ∥ f ∥ g = refl ⟦e⟧N≈⟦e⟧ : (e : Expr A B) → ⟦ e ⟧N ≈ ⟦ e ⟧ ⟦e⟧N≈⟦e⟧ e = ⟦e⟧N∘f≈⟦e⟧∘f e id ○ identityʳ solve : (e₁ e₂ : Expr A B) → ⟦ e₁ ⟧N ≈ ⟦ e₂ ⟧N → ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧ solve e₁ e₂ eq = begin ⟦ e₁ ⟧ ≈˘⟨ ⟦e⟧N≈⟦e⟧ e₁ ⟩ ⟦ e₁ ⟧N ≈⟨ eq ⟩ ⟦ e₂ ⟧N ≈⟨ ⟦e⟧N≈⟦e⟧ e₂ ⟩ ⟦ e₂ ⟧ ∎ ∥-∥ : ∀ {f : A ⇒ B} → Expr A B ∥-∥ {f = f} = ∥ f ∥
{ "alphanum_fraction": 0.4543493889, "avg_line_length": 22.0793650794, "ext": "agda", "hexsha": "bbc5b4639e88df0c25ba71d9e378a8c556c8784d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Categories/Solver/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Categories/Solver/Category.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Categories/Solver/Category.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 898, "size": 1391 }
module even where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Definitions open import nat open import logic even : (n : ℕ ) → Set even zero = ⊤ even (suc zero) = ⊥ even (suc (suc n)) = even n even? : (n : ℕ ) → Dec ( even n ) even? zero = yes tt even? (suc zero) = no (λ ()) even? (suc (suc n)) = even? n n+even : {n m : ℕ } → even n → even m → even ( n + m ) n+even {zero} {zero} tt tt = tt n+even {zero} {suc m} tt em = em n+even {suc (suc n)} {m} en em = n+even {n} {m} en em n*even : {m n : ℕ } → even n → even ( m * n ) n*even {zero} {n} en = tt n*even {suc m} {n} en = n+even {n} {m * n} en (n*even {m} {n} en) even*n : {n m : ℕ } → even n → even ( n * m ) even*n {n} {m} en = subst even (*-comm m n) (n*even {m} {n} en) record Even (i : ℕ) : Set where field j : ℕ is-twice : i ≡ 2 * j e2 : (i : ℕ) → even i → Even i e2 zero en = record { j = 0 ; is-twice = refl } e2 (suc (suc i)) en = record { j = suc (Even.j (e2 i en )) ; is-twice = e21 } where e21 : suc (suc i) ≡ 2 * suc (Even.j (e2 i en)) e21 = begin suc (suc i) ≡⟨ cong (λ k → suc (suc k)) (Even.is-twice (e2 i en)) ⟩ suc (suc (2 * Even.j (e2 i en))) ≡⟨ sym (*-distribˡ-+ 2 1 _) ⟩ 2 * suc (Even.j (e2 i en)) ∎ where open ≡-Reasoning record Odd (i : ℕ) : Set where field j : ℕ is-twice : i ≡ suc (2 * j ) odd2 : (i : ℕ) → ¬ even i → even (suc i) odd2 zero ne = ⊥-elim ( ne tt ) odd2 (suc zero) ne = tt odd2 (suc (suc i)) ne = odd2 i ne odd3 : (i : ℕ) → ¬ even i → Odd i odd3 zero ne = ⊥-elim ( ne tt ) odd3 (suc zero) ne = record { j = 0 ; is-twice = refl } odd3 (suc (suc i)) ne = record { j = Even.j (e2 (suc i) (odd2 i ne)) ; is-twice = odd31 } where odd31 : suc (suc i) ≡ suc (2 * Even.j (e2 (suc i) (odd2 i ne))) odd31 = begin suc (suc i) ≡⟨ cong suc (Even.is-twice (e2 (suc i) (odd2 i ne))) ⟩ suc (2 * (Even.j (e2 (suc i) (odd2 i ne)))) ∎ where open ≡-Reasoning odd4 : (i : ℕ) → even i → ¬ even ( suc i ) odd4 (suc (suc i)) en en1 = odd4 i en en1
{ "alphanum_fraction": 0.5478699038, "avg_line_length": 30.3194444444, "ext": "agda", "hexsha": "a1dc82bed38362aa973f43a5acc0ac4f71f44dab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/even.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/even.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/even.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 924, "size": 2183 }
{-# OPTIONS --without-K --termination-depth=2 #-} open import HoTT open import cw.CW module cw.Sphere where CWSphere-skel : ∀ n → Skeleton {lzero} n CWSphere : ℕ → Type₀ CWSphere n = ⟦ CWSphere-skel n ⟧ Sphere-to-CWSphere : (n : ℕ) → Sphere n → CWSphere n CWSphere-skel O = Bool CWSphere-skel (S n) = (CWSphere-skel n , Bool , cst (Sphere-to-CWSphere n)) {- mapping: hub true <-> north hub false <-> south incl _ -> north spoke true x -> idp spoke fales x -> merid x ! spoke true x ∙ spoke false x <- merid x -} private module PosToCW n = SuspensionRec {C = CWSphere (S n)} (hub true) (hub false) (λ x → (! (spoke true x)) ∙' spoke false x) Sphere-to-CWSphere O = idf _ Sphere-to-CWSphere (S n) = PosToCW.f n {- Now proving the equivalence -} private CWSphere-to-Sphere-incl : ∀ n → CWSphere n → Sphere (S n) CWSphere-to-Sphere-incl _ _ = north CWSphere-to-Sphere-hub : ∀ n → Bool → Sphere (S n) CWSphere-to-Sphere-hub _ true = north CWSphere-to-Sphere-hub _ false = south CWSphere-to-Sphere-spoke : ∀ n (b : Bool) (x : Sphere n) → CWSphere-to-Sphere-incl n (Sphere-to-CWSphere n x) == CWSphere-to-Sphere-hub n b CWSphere-to-Sphere-spoke _ true _ = idp CWSphere-to-Sphere-spoke _ false x = merid x module PosFromCW n = AttachedRec {attaching = cst (Sphere-to-CWSphere n)} (CWSphere-to-Sphere-incl n) (CWSphere-to-Sphere-hub n) (CWSphere-to-Sphere-spoke n) CWSphere-to-Sphere : ∀ n → CWSphere n → Sphere n CWSphere-to-Sphere O = idf _ CWSphere-to-Sphere (S n) = PosFromCW.f n private from-to : ∀ n x → CWSphere-to-Sphere n (Sphere-to-CWSphere n x) == x from-to O _ = idp from-to (S n) = SuspensionElim.f idp idp path where to = Sphere-to-CWSphere (S n) from = CWSphere-to-Sphere (S n) module To = PosToCW n module From = PosFromCW n path : ∀ x → idp == idp [ (λ x → from (to x) == x) ↓ merid x ] path x = ↓-app=idf-in $ ! $ ap (from ∘ to) (merid x) ∙ idp =⟨ ∙-unit-r $ ap (from ∘ to) (merid x) ⟩ ap (from ∘ to) (merid x) =⟨ ap-∘ from to (merid x) ⟩ ap from (ap to (merid x)) =⟨ To.merid-β x |in-ctx ap from ⟩ ap from (! (spoke true x) ∙' spoke false x) =⟨ ap-∙' from (! (spoke true x)) (spoke false x) ⟩ ap from (! (spoke true x)) ∙' ap from (spoke false x) =⟨ ap-! from (spoke true x) |in-ctx (λ p → p ∙' ap from (spoke false x)) ⟩ ! (ap from (spoke true x)) ∙' ap from (spoke false x) =⟨ From.spoke-β true x |in-ctx (λ p → ! p ∙' ap from (spoke false x)) ⟩ idp ∙' ap from (spoke false x) =⟨ From.spoke-β false x |in-ctx (idp ∙'_) ⟩ idp ∙' merid x ∎ Sphere-to-CWSphere-is-equiv : ∀ n → is-equiv (Sphere-to-CWSphere n) private to-from : ∀ n x → Sphere-to-CWSphere n (CWSphere-to-Sphere n x) == x Sphere-to-CWSphere-is-equiv n = is-eq _ (CWSphere-to-Sphere n) (to-from n) (from-to n) to-from O _ = idp to-from (S n) = AttachedElim.f to-from-incl to-from-hub to-from-spoke where to = Sphere-to-CWSphere (S n) from = CWSphere-to-Sphere (S n) module To = PosToCW n module From = PosFromCW n to-from-incl : ∀ (c : CWSphere n) → to (from (incl c)) == incl c to-from-incl c = ! (spoke true (CWSphere-to-Sphere n c)) ∙ ap incl (is-equiv.f-g (Sphere-to-CWSphere-is-equiv n) c) to-from-hub : ∀ b → to (from (hub b)) == hub b to-from-hub true = idp to-from-hub false = idp to-from-incl-to : ∀ (x : Sphere n) → to-from-incl (Sphere-to-CWSphere n x) == ! (spoke true x) to-from-incl-to x = ! (spoke true (CWSphere-to-Sphere n (Sphere-to-CWSphere n x))) ∙ ap incl (is-equiv.f-g (Sphere-to-CWSphere-is-equiv n) (Sphere-to-CWSphere n x)) =⟨ ! $ is-equiv.adj (Sphere-to-CWSphere-is-equiv n) x |in-ctx (λ p → ! (spoke true (CWSphere-to-Sphere n (Sphere-to-CWSphere n x))) ∙ ap incl p) ⟩ ! (spoke true (CWSphere-to-Sphere n (Sphere-to-CWSphere n x))) ∙ ap incl (ap (Sphere-to-CWSphere n) (is-equiv.g-f (Sphere-to-CWSphere-is-equiv n) x)) =⟨ ! $ ap-∘ incl (Sphere-to-CWSphere n) (is-equiv.g-f (Sphere-to-CWSphere-is-equiv n) x) |in-ctx (λ p → ! (spoke true (CWSphere-to-Sphere n (Sphere-to-CWSphere n x))) ∙ p) ⟩ ! (spoke true (CWSphere-to-Sphere n (Sphere-to-CWSphere n x))) ∙ ap (incl ∘ Sphere-to-CWSphere n) (is-equiv.g-f (Sphere-to-CWSphere-is-equiv n) x) =⟨ htpy-natural-cst=app (λ x → ! (spoke true x)) (is-equiv.g-f (Sphere-to-CWSphere-is-equiv n) x) ⟩ ! (spoke true x) ∎ to-from-spoke : ∀ (b : Bool) (x : Sphere n) → to-from-incl (Sphere-to-CWSphere n x) == to-from-hub b [ (λ x → to (from x) == x) ↓ spoke b x ] to-from-spoke true x = ↓-app=idf-in $ to-from-incl (Sphere-to-CWSphere n x) ∙' spoke true x =⟨ to-from-incl-to x |in-ctx (λ p → p ∙' spoke true x) ⟩ ! (spoke true x) ∙' spoke true x =⟨ !-inv'-l (spoke true x) ⟩ idp =⟨ ! $ From.spoke-β true x |in-ctx (λ p → ap to p ∙ idp) ⟩ ap to (ap from (spoke true x)) ∙ idp =⟨ ∘-ap to from (spoke true x) |in-ctx (λ p → p ∙ idp) ⟩ ap (to ∘ from) (spoke true x) ∙ idp ∎ to-from-spoke false x = ↓-app=idf-in $ to-from-incl (Sphere-to-CWSphere n x) ∙' spoke false x =⟨ to-from-incl-to x |in-ctx (λ p → p ∙' spoke false x) ⟩ ! (spoke true x) ∙' spoke false x =⟨ ! $ To.merid-β x ⟩ ap to (merid x) =⟨ ! $ From.spoke-β false x |in-ctx (ap to) ⟩ ap to (ap from (spoke false x)) =⟨ ∘-ap to from (spoke false x) ⟩ ap (to ∘ from) (spoke false x) =⟨ ! $ ∙-unit-r _ ⟩ ap (to ∘ from) (spoke false x) ∙ idp ∎ Sphere-equiv-CWSphere : ∀ n → Sphere n ≃ CWSphere n Sphere-equiv-CWSphere n = _ , Sphere-to-CWSphere-is-equiv n CWSphere-has-dec-cells : ∀ n → has-dec-cells (CWSphere-skel n) CWSphere-has-dec-cells 0 = Bool-has-dec-eq CWSphere-has-dec-cells (S n) = CWSphere-has-dec-cells n , Bool-has-dec-eq CWSphere-is-aligned : ∀ n → is-aligned (CWSphere-skel n) CWSphere-is-aligned 0 = lift tt CWSphere-is-aligned 1 = lift tt CWSphere-is-aligned 2 = lift tt , (λ _ → true , spoke true true) CWSphere-is-aligned (S (S (S n))) = CWSphere-is-aligned (S (S n)) , (λ _ → hub true , spoke true north)
{ "alphanum_fraction": 0.5838745446, "avg_line_length": 35.4662921348, "ext": "agda", "hexsha": "998d2be404536ddc882c72d4f2edd586076eb3e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/cw/Sphere.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/cw/Sphere.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/cw/Sphere.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2369, "size": 6313 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Weakening {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening as T hiding (wk; wkEq; wkTerm; wkEqTerm) open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Tools.Embedding open import Tools.Product import Tools.PropositionalEquality as PE -- Weakening of neutrals in WHNF wkTermNe : ∀ {ρ Γ Δ k A} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Γ ⊩neNf k ∷ A → Δ ⊩neNf U.wk ρ k ∷ U.wk ρ A wkTermNe {ρ} [ρ] ⊢Δ (neNfₜ neK ⊢k k≡k) = neNfₜ (wkNeutral ρ neK) (T.wkTerm [ρ] ⊢Δ ⊢k) (~-wk [ρ] ⊢Δ k≡k) wkEqTermNe : ∀ {ρ Γ Δ k k′ A} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Γ ⊩neNf k ≡ k′ ∷ A → Δ ⊩neNf U.wk ρ k ≡ U.wk ρ k′ ∷ U.wk ρ A wkEqTermNe {ρ} [ρ] ⊢Δ (neNfₜ₌ neK neM k≡m) = neNfₜ₌ (wkNeutral ρ neK) (wkNeutral ρ neM) (~-wk [ρ] ⊢Δ k≡m) -- Weakening of reducible natural numbers mutual wkTermℕ : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → _⊩ℕ_∷ℕ Γ n → _⊩ℕ_∷ℕ Δ (U.wk ρ n) wkTermℕ {ρ} [ρ] ⊢Δ (ℕₜ n d n≡n prop) = ℕₜ (U.wk ρ n) (wkRed:*:Term [ρ] ⊢Δ d) (≅ₜ-wk [ρ] ⊢Δ n≡n) (wkNatural-prop [ρ] ⊢Δ prop) wkNatural-prop : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → Natural-prop Γ n → Natural-prop Δ (U.wk ρ n) wkNatural-prop ρ ⊢Δ (sucᵣ n) = sucᵣ (wkTermℕ ρ ⊢Δ n) wkNatural-prop ρ ⊢Δ zeroᵣ = zeroᵣ wkNatural-prop ρ ⊢Δ (ne nf) = ne (wkTermNe ρ ⊢Δ nf) mutual wkEqTermℕ : ∀ {ρ Γ Δ t u} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → _⊩ℕ_≡_∷ℕ Γ t u → _⊩ℕ_≡_∷ℕ Δ (U.wk ρ t) (U.wk ρ u) wkEqTermℕ {ρ} [ρ] ⊢Δ (ℕₜ₌ k k′ d d′ t≡u prop) = ℕₜ₌ (U.wk ρ k) (U.wk ρ k′) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′) (≅ₜ-wk [ρ] ⊢Δ t≡u) (wk[Natural]-prop [ρ] ⊢Δ prop) wk[Natural]-prop : ∀ {ρ Γ Δ n n′} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ) → [Natural]-prop Γ n n′ → [Natural]-prop Δ (U.wk ρ n) (U.wk ρ n′) wk[Natural]-prop ρ ⊢Δ (sucᵣ [n≡n′]) = sucᵣ (wkEqTermℕ ρ ⊢Δ [n≡n′]) wk[Natural]-prop ρ ⊢Δ zeroᵣ = zeroᵣ wk[Natural]-prop ρ ⊢Δ (ne x) = ne (wkEqTermNe ρ ⊢Δ x) -- Weakening of the logical relation wk : ∀ {ρ Γ Δ A l} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊩⟨ l ⟩ A → Δ ⊩⟨ l ⟩ U.wk ρ A wk ρ ⊢Δ (Uᵣ′ l′ l< ⊢Γ) = Uᵣ′ l′ l< ⊢Δ wk ρ ⊢Δ (ℕᵣ D) = ℕᵣ (wkRed:*: ρ ⊢Δ D) wk {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) = ne′ (U.wk ρ K) (wkRed:*: [ρ] ⊢Δ D) (wkNeutral ρ neK) (~-wk [ρ] ⊢Δ K≡K) wk {ρ} {Γ} {Δ} {A} {l} [ρ] ⊢Δ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = let ⊢ρF = T.wk [ρ] ⊢Δ ⊢F [F]′ : ∀ {ρ ρ′ E} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) → E ⊩⟨ l ⟩ U.wk ρ (U.wk ρ′ F) [F]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E = irrelevance′ (PE.sym (wk-comp ρ ρ′ F)) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) ([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′] ⊢E) → E ⊩⟨ l ⟩ a ∷ U.wk (ρ • ρ′) F / [F] ([ρ] •ₜ [ρ′]) ⊢E [a]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E [a] = irrelevanceTerm′ (wk-comp ρ ρ′ F) ([F]′ [ρ] [ρ′] ⊢E) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a] [G]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E) ([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′] ⊢E) → E ⊩⟨ l ⟩ U.wk (lift (ρ • ρ′)) G [ a ] [G]′ η η′ ⊢E [a] = [G] (η •ₜ η′) ⊢E ([a]′ η η′ ⊢E [a]) in Πᵣ′ (U.wk ρ F) (U.wk (lift ρ) G) (T.wkRed:*: [ρ] ⊢Δ D) ⊢ρF (T.wk (lift [ρ]) (⊢Δ ∙ ⊢ρF) ⊢G) (≅-wk [ρ] ⊢Δ A≡A) (λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] → let [a≡b]′ = irrelevanceEqTerm′ (wk-comp ρ₁ ρ F) ([F]′ [ρ₁] [ρ] ⊢Δ₁) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a≡b] in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G) (wk-comp-subst ρ₁ ρ G) ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]) (irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])) (G-ext ([ρ₁] •ₜ [ρ]) ⊢Δ₁ ([a]′ [ρ₁] [ρ] ⊢Δ₁ [a]) ([a]′ [ρ₁] [ρ] ⊢Δ₁ [b]) [a≡b]′)) wk ρ ⊢Δ (emb′ 0<1 x) = emb′ 0<1 (wk ρ ⊢Δ x) wkEq : ∀ {ρ Γ Δ A B l} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Δ ⊩⟨ l ⟩ U.wk ρ A ≡ U.wk ρ B / wk [ρ] ⊢Δ [A] wkEq ρ ⊢Δ (Uᵣ′ _ _ _) (U₌ PE.refl) = (U₌ PE.refl) wkEq ρ ⊢Δ (ℕᵣ D) (ιx (ℕ₌ A≡B)) = ιx (ℕ₌ (wkRed* ρ ⊢Δ A≡B)) wkEq {ρ} [ρ] ⊢Δ (ne′ _ _ _ _) (ιx (ne₌ M D′ neM K≡M)) = ιx (ne₌ (U.wk ρ M) (wkRed:*: [ρ] ⊢Δ D′) (wkNeutral ρ neM) (~-wk [ρ] ⊢Δ K≡M)) wkEq {ρ} [ρ] ⊢Δ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = Π₌ (U.wk ρ F′) (U.wk (lift ρ) G′) (T.wkRed* [ρ] ⊢Δ D′) (≅-wk [ρ] ⊢Δ A≡B) (λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevanceEq″ (PE.sym (wk-comp ρ₁ ρ F)) (PE.sym (wk-comp ρ₁ ρ F′)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) (irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) ([F≡F′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → let [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) (irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)) ([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a] in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G) (wk-comp-subst ρ₁ ρ G′) ([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′) (irrelevance′ (wk-comp-subst ρ₁ ρ G) ([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) ([G≡G′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) wkEq ρ ⊢Δ (emb′ 0<1 x) (ιx A≡B) = ιx (wkEq ρ ⊢Δ x A≡B) wkTerm : ∀ {ρ Γ Δ A t l} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ t ∷ A / [A] → Δ ⊩⟨ l ⟩ U.wk ρ t ∷ U.wk ρ A / wk [ρ] ⊢Δ [A] wkTerm {ρ} [ρ] ⊢Δ (Uᵣ′ .⁰ 0<1 ⊢Γ) (Uₜ A d typeA A≡A [t]) = Uₜ (U.wk ρ A) (wkRed:*:Term [ρ] ⊢Δ d) (wkType ρ typeA) (≅ₜ-wk [ρ] ⊢Δ A≡A) (wk [ρ] ⊢Δ [t]) wkTerm ρ ⊢Δ (ℕᵣ D) (ιx [t]) = ιx (wkTermℕ ρ ⊢Δ [t]) -- wkTerm {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) (ιx (neₜ k d nf)) = ιx (neₜ (U.wk ρ k) (wkRed:*:Term [ρ] ⊢Δ d) (wkTermNe [ρ] ⊢Δ nf)) wkTerm {ρ} [ρ] ⊢Δ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) = Πₜ (U.wk ρ f) (wkRed:*:Term [ρ] ⊢Δ d) (wkFunction ρ funcF) (≅ₜ-wk [ρ] ⊢Δ f≡f) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] → let F-compEq = wk-comp ρ₁ ρ F G-compEq = wk-comp-subst ρ₁ ρ G [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁ [a]′ = irrelevanceTerm′ F-compEq [F]₂ [F]₁ [a] [b]′ = irrelevanceTerm′ F-compEq [F]₂ [F]₁ [b] [G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [G]₂ = irrelevance′ G-compEq [G]₁ [a≡b]′ = irrelevanceEqTerm′ F-compEq [F]₂ [F]₁ [a≡b] in irrelevanceEqTerm″ (PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _))) (PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _))) G-compEq [G]₁ [G]₂ ([f] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [b]′ [a≡b]′)) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → let [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁ [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) [F]₂ [F]₁ [a] [G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁ in irrelevanceTerm″ (wk-comp-subst ρ₁ ρ G) (PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _))) [G]₁ [G]₂ ([f]₁ ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) wkTerm ρ ⊢Δ (emb′ 0<1 x) (ιx t) = ιx (wkTerm ρ ⊢Δ x t) wkEqTerm : ∀ {ρ Γ Δ A t u l} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] → Δ ⊩⟨ l ⟩ U.wk ρ t ≡ U.wk ρ u ∷ U.wk ρ A / wk [ρ] ⊢Δ [A] wkEqTerm {ρ} [ρ] ⊢Δ (Uᵣ′ .⁰ 0<1 ⊢Γ) (Uₜ₌ A B d d′ typeA typeB A≡B [t] [u] [t≡u]) = Uₜ₌ (U.wk ρ A) (U.wk ρ B) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′) (wkType ρ typeA) (wkType ρ typeB) (≅ₜ-wk [ρ] ⊢Δ A≡B) (wk [ρ] ⊢Δ [t]) (wk [ρ] ⊢Δ [u]) (wkEq [ρ] ⊢Δ [t] [t≡u]) wkEqTerm ρ ⊢Δ (ℕᵣ D) (ιx [t≡u]) = ιx (wkEqTermℕ ρ ⊢Δ [t≡u]) wkEqTerm {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) (ιx (neₜ₌ k m d d′ nf)) = ιx (neₜ₌ (U.wk ρ k) (U.wk ρ m) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′) (wkEqTermNe [ρ] ⊢Δ nf)) wkEqTerm {ρ} [ρ] ⊢Δ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ₌ f g d d′ funcF funcG f≡g [t] [u] [f≡g]) = let [A] = Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext in Πₜ₌ (U.wk ρ f) (U.wk ρ g) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′) (wkFunction ρ funcF) (wkFunction ρ funcG) (≅ₜ-wk [ρ] ⊢Δ f≡g) (wkTerm [ρ] ⊢Δ [A] [t]) (wkTerm [ρ] ⊢Δ [A] [u]) (λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → let [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁ [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) [F]₂ [F]₁ [a] [G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁ in irrelevanceEqTerm″ (PE.cong (λ y → y ∘ _) (PE.sym (wk-comp ρ₁ ρ _))) (PE.cong (λ y → y ∘ _) (PE.sym (wk-comp ρ₁ ρ _))) (wk-comp-subst ρ₁ ρ G) [G]₁ [G]₂ ([f≡g] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)) wkEqTerm ρ ⊢Δ (emb′ 0<1 x) (ιx t≡u) = ιx (wkEqTerm ρ ⊢Δ x t≡u)
{ "alphanum_fraction": 0.3793991416, "avg_line_length": 48.7674418605, "ext": "agda", "hexsha": "2d592dac09dc8080fe22e257f9b9aea9efd981dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Weakening.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Weakening.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Weakening.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5359, "size": 10485 }
{-# OPTIONS --copatterns #-} open import Common.Prelude open import Common.Product postulate A : Set B : A → Set f : ∀ a → B a bla : ∃ B {-# NON_TERMINATING #-} proj₁ bla = proj₁ bla proj₂ bla = f (proj₁ bla) T : Bool → Set T true = Bool T false = Bool test : (∀ b → T b) → ∃ T {-# NON_TERMINATING #-} proj₁ (test f) = proj₁ (test f) proj₂ (test f) = f (proj₁ (test f))
{ "alphanum_fraction": 0.5968586387, "avg_line_length": 15.9166666667, "ext": "agda", "hexsha": "40903f683f2042bbd822829beaf6d075688b5de7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/NonTerminatingClauseInDefByCopatterns.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/NonTerminatingClauseInDefByCopatterns.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/NonTerminatingClauseInDefByCopatterns.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 135, "size": 382 }
module Common.Sum where open import Common.Level data _⊎_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B [_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : A ⊎ B → Set c} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ] (inj₁ x) = f x [ f , g ] (inj₂ y) = g y
{ "alphanum_fraction": 0.4033149171, "avg_line_length": 24.1333333333, "ext": "agda", "hexsha": "44c6ed15ed0c6bf7bbb3672b61ee06cd2b5cdab2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Common/Sum.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Common/Sum.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Common/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 180, "size": 362 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order module Numbers.Modulo.Definition where record ℤn (n : ℕ) .(pr : 0 <N n) : Set where field x : ℕ .xLess : x <N n equalityZn : {n : ℕ} .{pr : 0 <N n} → {a b : ℤn n pr} → (ℤn.x a ≡ ℤn.x b) → a ≡ b equalityZn {a = record { x = a ; xLess = aLess }} {record { x = .a ; xLess = bLess }} refl = refl
{ "alphanum_fraction": 0.6113537118, "avg_line_length": 28.625, "ext": "agda", "hexsha": "0e36c66f7be1245dba73d51adc91f3ed56c2098e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Modulo/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Modulo/Definition.agda", "max_line_length": 97, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Modulo/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 172, "size": 458 }
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.Monoid where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Structures.Pointed open import Cubical.Structures.NAryOp private variable ℓ : Level -- Monoids raw-monoid-structure : Type ℓ → Type ℓ raw-monoid-structure X = X × (X → X → X) -- If we ignore the axioms we get a "raw" monoid raw-monoid-is-SNS : SNS {ℓ} raw-monoid-structure _ raw-monoid-is-SNS = join-SNS pointed-iso pointed-is-SNS (nAryFunIso 2) (nAryFunSNS 2) -- Monoid axioms monoid-axioms : (X : Type ℓ) → raw-monoid-structure X → Type ℓ monoid-axioms X (e , _·_ ) = isSet X × ((x y z : X) → x · (y · z) ≡ (x · y) · z) × ((x : X) → x · e ≡ x) × ((x : X) → e · x ≡ x) monoid-structure : Type ℓ → Type ℓ monoid-structure = add-to-structure raw-monoid-structure monoid-axioms Monoid : Type (ℓ-suc ℓ) Monoid {ℓ} = TypeWithStr ℓ monoid-structure -- Monoid extractors ⟨_⟩ : Monoid {ℓ} → Type ℓ ⟨ G , _ ⟩ = G monoid-id : (M : Monoid {ℓ}) → ⟨ M ⟩ monoid-id (_ , (e , _) , _) = e monoid-operation : (M : Monoid {ℓ}) → ⟨ M ⟩ → ⟨ M ⟩ → ⟨ M ⟩ monoid-operation (_ , (_ , f) , _) = f -- Monoid syntax with explicit monoid module monoid-syntax where id : (M : Monoid {ℓ}) → ⟨ M ⟩ id = monoid-id monoid-operation-syntax : (M : Monoid {ℓ}) → ⟨ M ⟩ → ⟨ M ⟩ → ⟨ M ⟩ monoid-operation-syntax = monoid-operation infixr 18 monoid-operation-syntax syntax monoid-operation-syntax M x y = x ·⟨ M ⟩ y open monoid-syntax -- More Monoid extractors monoid-is-set : (M : Monoid {ℓ}) → isSet (⟨ M ⟩) monoid-is-set (_ , _ , P , _) = P monoid-assoc : (M : Monoid {ℓ}) → (x y z : ⟨ M ⟩) → x ·⟨ M ⟩ (y ·⟨ M ⟩ z) ≡ (x ·⟨ M ⟩ y) ·⟨ M ⟩ z monoid-assoc (_ , _ , _ , P , _) = P monoid-rid : (M : Monoid {ℓ}) → (x : ⟨ M ⟩) → x ·⟨ M ⟩ (id M) ≡ x monoid-rid (_ , _ , _ , _ , P , _) = P monoid-lid : (M : Monoid {ℓ}) → (x : ⟨ M ⟩) → (id M) ·⟨ M ⟩ x ≡ x monoid-lid (_ , _ , _ , _ , _ , P) = P -- Monoid equivalence monoid-iso : StrIso monoid-structure ℓ monoid-iso = add-to-iso (join-iso pointed-iso (nAryFunIso 2)) monoid-axioms -- We have to show that the monoid axioms are indeed propositions monoid-axioms-are-Props : (X : Type ℓ) (s : raw-monoid-structure X) → isProp (monoid-axioms X s) monoid-axioms-are-Props X (e , _·_) s = β s where α = s .fst β = isProp× isPropIsSet (isProp× (isPropΠ3 (λ x y z → α (x · (y · z)) ((x · y) · z))) (isProp× (isPropΠ (λ x → α (x · e) x)) (isPropΠ (λ x → α (e · x) x)))) monoid-is-SNS : SNS {ℓ} monoid-structure monoid-iso monoid-is-SNS = add-axioms-SNS _ monoid-axioms-are-Props raw-monoid-is-SNS MonoidPath : (M N : Monoid {ℓ}) → (M ≃[ monoid-iso ] N) ≃ (M ≡ N) MonoidPath = SIP monoid-is-SNS -- Added for its use in groups -- If there exists a inverse of an element it is unique inv-lemma : (M : Monoid {ℓ}) → (x y z : ⟨ M ⟩) → y ·⟨ M ⟩ x ≡ id M → x ·⟨ M ⟩ z ≡ id M → y ≡ z inv-lemma M x y z left-inverse right-inverse = y ≡⟨ sym (monoid-rid M y) ⟩ y ·⟨ M ⟩ id M ≡⟨ cong (λ - → y ·⟨ M ⟩ -) (sym right-inverse) ⟩ y ·⟨ M ⟩ (x ·⟨ M ⟩ z) ≡⟨ monoid-assoc M y x z ⟩ (y ·⟨ M ⟩ x) ·⟨ M ⟩ z ≡⟨ cong (λ - → - ·⟨ M ⟩ z) left-inverse ⟩ id M ·⟨ M ⟩ z ≡⟨ monoid-lid M z ⟩ z ∎ -- Monoid ·syntax module monoid-·syntax (M : Monoid {ℓ}) where infixr 18 _·_ _·_ : ⟨ M ⟩ → ⟨ M ⟩ → ⟨ M ⟩ _·_ = monoid-operation M ₁ : ⟨ M ⟩ ₁ = monoid-id M
{ "alphanum_fraction": 0.5595687332, "avg_line_length": 29.2125984252, "ext": "agda", "hexsha": "788318e4b334a0b0590e1a5cf7baabb8c198ec4c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Structures/Monoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Structures/Monoid.agda", "max_line_length": 96, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Structures/Monoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 1493, "size": 3710 }
-- TODO -- Common syntax. module BasicT.Syntax.Common where open import Common.Context public -- Types, or propositions. infixl 9 _∧_ infixr 7 _▻_ data Ty : Set where α_ : Atom → Ty _▻_ : Ty → Ty → Ty _∧_ : Ty → Ty → Ty ⊤ : Ty BOOL : Ty NAT : Ty -- Additional useful types. infix 7 _▻◅_ _▻◅_ : Ty → Ty → Ty A ▻◅ B = (A ▻ B) ∧ (B ▻ A) infixr 7 _▻⋯▻_ _▻⋯▻_ : Cx Ty → Ty → Ty ∅ ▻⋯▻ B = B (Ξ , A) ▻⋯▻ B = Ξ ▻⋯▻ (A ▻ B) infixr 7 _▻⋯▻⋆_ _▻⋯▻⋆_ : Cx Ty → Cx Ty → Ty Γ ▻⋯▻⋆ ∅ = ⊤ Γ ▻⋯▻⋆ (Ξ , A) = (Γ ▻⋯▻⋆ Ξ) ∧ (Γ ▻⋯▻ A)
{ "alphanum_fraction": 0.4719710669, "avg_line_length": 14.9459459459, "ext": "agda", "hexsha": "63c83b726b9649b8379988c48bdb7c1e888ba18c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "BasicT/Syntax/Common.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "BasicT/Syntax/Common.agda", "max_line_length": 39, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "BasicT/Syntax/Common.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 334, "size": 553 }
{-# OPTIONS --safe #-} module Cubical.Data.Bool.Properties where open import Cubical.Core.Everything open import Cubical.Functions.Involution open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.Pointed open import Cubical.Data.Sum open import Cubical.Data.Bool.Base open import Cubical.Data.Empty as Empty open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation hiding (rec) open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq private variable ℓ : Level A : Type ℓ notnot : ∀ x → not (not x) ≡ x notnot true = refl notnot false = refl notIso : Iso Bool Bool Iso.fun notIso = not Iso.inv notIso = not Iso.rightInv notIso = notnot Iso.leftInv notIso = notnot notIsEquiv : isEquiv not notIsEquiv = involIsEquiv {f = not} notnot notEquiv : Bool ≃ Bool notEquiv = involEquiv {f = not} notnot notEq : Bool ≡ Bool notEq = involPath {f = not} notnot private -- This computes to false as expected nfalse : Bool nfalse = transp (λ i → notEq i) i0 true -- Sanity check nfalsepath : nfalse ≡ false nfalsepath = refl K-Bool : (P : {b : Bool} → b ≡ b → Type ℓ) → (∀{b} → P {b} refl) → ∀{b} → (q : b ≡ b) → P q K-Bool P Pr {false} = J (λ{ false q → P q ; true _ → Lift ⊥ }) Pr K-Bool P Pr {true} = J (λ{ true q → P q ; false _ → Lift ⊥ }) Pr isSetBool : isSet Bool isSetBool a b = J (λ _ p → ∀ q → p ≡ q) (K-Bool (refl ≡_) refl) true≢false : ¬ true ≡ false true≢false p = subst (λ b → if b then Bool else ⊥) p true false≢true : ¬ false ≡ true false≢true p = subst (λ b → if b then ⊥ else Bool) p true ¬true→false : (x : Bool) → ¬ x ≡ true → x ≡ false ¬true→false false _ = refl ¬true→false true p = Empty.rec (p refl) ¬false→true : (x : Bool) → ¬ x ≡ false → x ≡ true ¬false→true false p = Empty.rec (p refl) ¬false→true true _ = refl not≢const : ∀ x → ¬ not x ≡ x not≢const false = true≢false not≢const true = false≢true zeroˡ : ∀ x → true or x ≡ true zeroˡ false = refl zeroˡ true = refl zeroʳ : ∀ x → x or true ≡ true zeroʳ false = refl zeroʳ true = refl or-identityˡ : ∀ x → false or x ≡ x or-identityˡ false = refl or-identityˡ true = refl or-identityʳ : ∀ x → x or false ≡ x or-identityʳ false = refl or-identityʳ true = refl or-comm : ∀ x y → x or y ≡ y or x or-comm false y = false or y ≡⟨ or-identityˡ y ⟩ y ≡⟨ sym (or-identityʳ y) ⟩ y or false ∎ or-comm true y = true or y ≡⟨ zeroˡ y ⟩ true ≡⟨ sym (zeroʳ y) ⟩ y or true ∎ or-assoc : ∀ x y z → x or (y or z) ≡ (x or y) or z or-assoc false y z = false or (y or z) ≡⟨ or-identityˡ _ ⟩ y or z ≡[ i ]⟨ or-identityˡ y (~ i) or z ⟩ ((false or y) or z) ∎ or-assoc true y z = true or (y or z) ≡⟨ zeroˡ _ ⟩ true ≡⟨ sym (zeroˡ _) ⟩ true or z ≡[ i ]⟨ zeroˡ y (~ i) or z ⟩ (true or y) or z ∎ or-idem : ∀ x → x or x ≡ x or-idem false = refl or-idem true = refl ⊕-identityʳ : ∀ x → x ⊕ false ≡ x ⊕-identityʳ false = refl ⊕-identityʳ true = refl ⊕-comm : ∀ x y → x ⊕ y ≡ y ⊕ x ⊕-comm false false = refl ⊕-comm false true = refl ⊕-comm true false = refl ⊕-comm true true = refl ⊕-assoc : ∀ x y z → x ⊕ (y ⊕ z) ≡ (x ⊕ y) ⊕ z ⊕-assoc false y z = refl ⊕-assoc true false z = refl ⊕-assoc true true z = notnot z not-⊕ˡ : ∀ x y → not (x ⊕ y) ≡ not x ⊕ y not-⊕ˡ false y = refl not-⊕ˡ true y = notnot y ⊕-invol : ∀ x y → x ⊕ (x ⊕ y) ≡ y ⊕-invol false x = refl ⊕-invol true x = notnot x isEquiv-⊕ : ∀ x → isEquiv (x ⊕_) isEquiv-⊕ x = involIsEquiv (⊕-invol x) ⊕-Path : ∀ x → Bool ≡ Bool ⊕-Path x = involPath {f = x ⊕_} (⊕-invol x) ⊕-Path-refl : ⊕-Path false ≡ refl ⊕-Path-refl = isInjectiveTransport refl ¬transportNot : ∀(P : Bool ≡ Bool) b → ¬ (transport P (not b) ≡ transport P b) ¬transportNot P b eq = not≢const b sub where sub : not b ≡ b sub = subst {A = Bool → Bool} (λ f → f (not b) ≡ f b) (λ i c → transport⁻Transport P c i) (cong (transport⁻ P) eq) module BoolReflection where data Table (A : Type₀) (P : Bool ≡ A) : Type₀ where inspect : (b c : A) → transport P false ≡ b → transport P true ≡ c → Table A P table : ∀ P → Table Bool P table = J Table (inspect false true refl refl) reflLemma : (P : Bool ≡ Bool) → transport P false ≡ false → transport P true ≡ true → transport P ≡ transport (⊕-Path false) reflLemma P ff tt i false = ff i reflLemma P ff tt i true = tt i notLemma : (P : Bool ≡ Bool) → transport P false ≡ true → transport P true ≡ false → transport P ≡ transport (⊕-Path true) notLemma P ft tf i false = ft i notLemma P ft tf i true = tf i categorize : ∀ P → transport P ≡ transport (⊕-Path (transport P false)) categorize P with table P categorize P | inspect false true p q = subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (reflLemma P p q) categorize P | inspect true false p q = subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (notLemma P p q) categorize P | inspect false false p q = Empty.rec (¬transportNot P false (q ∙ sym p)) categorize P | inspect true true p q = Empty.rec (¬transportNot P false (q ∙ sym p)) ⊕-complete : ∀ P → P ≡ ⊕-Path (transport P false) ⊕-complete P = isInjectiveTransport (categorize P) ⊕-comp : ∀ p q → ⊕-Path p ∙ ⊕-Path q ≡ ⊕-Path (q ⊕ p) ⊕-comp p q = isInjectiveTransport (λ i x → ⊕-assoc q p x i) open Iso reflectIso : Iso Bool (Bool ≡ Bool) reflectIso .fun = ⊕-Path reflectIso .inv P = transport P false reflectIso .leftInv = ⊕-identityʳ reflectIso .rightInv P = sym (⊕-complete P) reflectEquiv : Bool ≃ (Bool ≡ Bool) reflectEquiv = isoToEquiv reflectIso IsoBool→∙ : ∀ {ℓ} {A : Pointed ℓ} → Iso ((Bool , true) →∙ A) (typ A) Iso.fun IsoBool→∙ f = fst f false fst (Iso.inv IsoBool→∙ a) false = a fst (Iso.inv (IsoBool→∙ {A = A}) a) true = pt A snd (Iso.inv IsoBool→∙ a) = refl Iso.rightInv IsoBool→∙ a = refl Iso.leftInv IsoBool→∙ (f , p) = ΣPathP ((funExt (λ { false → refl ; true → sym p})) , λ i j → p (~ i ∨ j)) -- import here to avoid conflicts open import Cubical.Data.Unit -- relation to hProp BoolProp≃BoolProp* : {a : Bool} → Bool→Type a ≃ Bool→Type* {ℓ} a BoolProp≃BoolProp* {a = true} = Unit≃Unit* BoolProp≃BoolProp* {a = false} = uninhabEquiv Empty.rec Empty.rec* Bool→TypeInj : (a b : Bool) → Bool→Type a ≃ Bool→Type b → a ≡ b Bool→TypeInj true true _ = refl Bool→TypeInj true false p = Empty.rec (p .fst tt) Bool→TypeInj false true p = Empty.rec (invEq p tt) Bool→TypeInj false false _ = refl Bool→TypeInj* : (a b : Bool) → Bool→Type* {ℓ} a ≃ Bool→Type* {ℓ} b → a ≡ b Bool→TypeInj* true true _ = refl Bool→TypeInj* true false p = Empty.rec* (p .fst tt*) Bool→TypeInj* false true p = Empty.rec* (invEq p tt*) Bool→TypeInj* false false _ = refl isPropBool→Type : {a : Bool} → isProp (Bool→Type a) isPropBool→Type {a = true} = isPropUnit isPropBool→Type {a = false} = isProp⊥ isPropBool→Type* : {a : Bool} → isProp (Bool→Type* {ℓ} a) isPropBool→Type* {a = true} = isPropUnit* isPropBool→Type* {a = false} = isProp⊥* DecBool→Type : {a : Bool} → Dec (Bool→Type a) DecBool→Type {a = true} = yes tt DecBool→Type {a = false} = no (λ x → x) DecBool→Type* : {a : Bool} → Dec (Bool→Type* {ℓ} a) DecBool→Type* {a = true} = yes tt* DecBool→Type* {a = false} = no (λ (lift x) → x) Dec→DecBool : {P : Type ℓ} → (dec : Dec P) → P → Bool→Type (Dec→Bool dec) Dec→DecBool (yes p) _ = tt Dec→DecBool (no ¬p) q = Empty.rec (¬p q) DecBool→Dec : {P : Type ℓ} → (dec : Dec P) → Bool→Type (Dec→Bool dec) → P DecBool→Dec (yes p) _ = p Dec≃DecBool : {P : Type ℓ} → (h : isProp P)(dec : Dec P) → P ≃ Bool→Type (Dec→Bool dec) Dec≃DecBool h dec = propBiimpl→Equiv h isPropBool→Type (Dec→DecBool dec) (DecBool→Dec dec) Bool≡BoolDec : {a : Bool} → a ≡ Dec→Bool (DecBool→Type {a = a}) Bool≡BoolDec {a = true} = refl Bool≡BoolDec {a = false} = refl Dec→DecBool* : {P : Type ℓ} → (dec : Dec P) → P → Bool→Type* {ℓ} (Dec→Bool dec) Dec→DecBool* (yes p) _ = tt* Dec→DecBool* (no ¬p) q = Empty.rec (¬p q) DecBool→Dec* : {P : Type ℓ} → (dec : Dec P) → Bool→Type* {ℓ} (Dec→Bool dec) → P DecBool→Dec* (yes p) _ = p Dec≃DecBool* : {P : Type ℓ} → (h : isProp P)(dec : Dec P) → P ≃ Bool→Type* {ℓ} (Dec→Bool dec) Dec≃DecBool* h dec = propBiimpl→Equiv h isPropBool→Type* (Dec→DecBool* dec) (DecBool→Dec* dec) Bool≡BoolDec* : {a : Bool} → a ≡ Dec→Bool (DecBool→Type* {ℓ} {a = a}) Bool≡BoolDec* {a = true} = refl Bool≡BoolDec* {a = false} = refl Bool→Type× : (a b : Bool) → Bool→Type (a and b) → Bool→Type a × Bool→Type b Bool→Type× true true _ = tt , tt Bool→Type× true false p = Empty.rec p Bool→Type× false true p = Empty.rec p Bool→Type× false false p = Empty.rec p Bool→Type×' : (a b : Bool) → Bool→Type a × Bool→Type b → Bool→Type (a and b) Bool→Type×' true true _ = tt Bool→Type×' true false (_ , p) = Empty.rec p Bool→Type×' false true (p , _) = Empty.rec p Bool→Type×' false false (p , _) = Empty.rec p Bool→Type×≃ : (a b : Bool) → Bool→Type a × Bool→Type b ≃ Bool→Type (a and b) Bool→Type×≃ a b = propBiimpl→Equiv (isProp× isPropBool→Type isPropBool→Type) isPropBool→Type (Bool→Type×' a b) (Bool→Type× a b) Bool→Type⊎ : (a b : Bool) → Bool→Type (a or b) → Bool→Type a ⊎ Bool→Type b Bool→Type⊎ true true _ = inl tt Bool→Type⊎ true false _ = inl tt Bool→Type⊎ false true _ = inr tt Bool→Type⊎ false false p = Empty.rec p Bool→Type⊎' : (a b : Bool) → Bool→Type a ⊎ Bool→Type b → Bool→Type (a or b) Bool→Type⊎' true true _ = tt Bool→Type⊎' true false _ = tt Bool→Type⊎' false true _ = tt Bool→Type⊎' false false (inl p) = Empty.rec p Bool→Type⊎' false false (inr p) = Empty.rec p PropBoolP→P : (dec : Dec A) → Bool→Type (Dec→Bool dec) → A PropBoolP→P (yes p) _ = p P→PropBoolP : (dec : Dec A) → A → Bool→Type (Dec→Bool dec) P→PropBoolP (yes p) _ = tt P→PropBoolP (no ¬p) = ¬p Bool≡ : Bool → Bool → Bool Bool≡ true true = true Bool≡ true false = false Bool≡ false true = false Bool≡ false false = true Bool≡≃ : (a b : Bool) → (a ≡ b) ≃ Bool→Type (Bool≡ a b) Bool≡≃ true true = isContr→≃Unit (inhProp→isContr refl (isSetBool _ _)) Bool≡≃ true false = uninhabEquiv true≢false Empty.rec Bool≡≃ false true = uninhabEquiv false≢true Empty.rec Bool≡≃ false false = isContr→≃Unit (inhProp→isContr refl (isSetBool _ _)) open Iso -- Bool is equivalent to bi-point type Iso-⊤⊎⊤-Bool : Iso (Unit ⊎ Unit) Bool Iso-⊤⊎⊤-Bool .fun (inl tt) = true Iso-⊤⊎⊤-Bool .fun (inr tt) = false Iso-⊤⊎⊤-Bool .inv true = inl tt Iso-⊤⊎⊤-Bool .inv false = inr tt Iso-⊤⊎⊤-Bool .leftInv (inl tt) = refl Iso-⊤⊎⊤-Bool .leftInv (inr tt) = refl Iso-⊤⊎⊤-Bool .rightInv true = refl Iso-⊤⊎⊤-Bool .rightInv false = refl
{ "alphanum_fraction": 0.6232244973, "avg_line_length": 30.5408450704, "ext": "agda", "hexsha": "46e47801e5ef6493120bffc2f09dece244a8e59f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/Bool/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/Bool/Properties.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/Bool/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4326, "size": 10842 }
module Adjoint where import Category import Functor open Category open Functor using (Functor) module Adj where open Functor.Projections using (Map; map) data _⊢_ {ℂ ⅅ : Cat}(F : Functor ℂ ⅅ)(G : Functor ⅅ ℂ) : Set1 where adjunction : (_* : {X : Obj ℂ}{Y : Obj ⅅ} -> Map F X ─→ Y -> X ─→ Map G Y) (_# : {X : Obj ℂ}{Y : Obj ⅅ} -> X ─→ Map G Y -> Map F X ─→ Y) (inv₁ : {X : Obj ℂ}{Y : Obj ⅅ}(g : X ─→ Map G Y) -> g # * == g) (inv₂ : {X : Obj ℂ}{Y : Obj ⅅ}(f : Map F X ─→ Y) -> f * # == f) (nat₁ : {X₁ X₂ : Obj ℂ}{Y₁ Y₂ : Obj ⅅ} (f : Y₁ ─→ Y₂)(g : X₂ ─→ X₁)(h : Map F X₁ ─→ Y₁) -> (f ∘ h ∘ map F g) * == map G f ∘ (h *) ∘ g ) (nat₂ : {X₁ X₂ : Obj ℂ}{Y₁ Y₂ : Obj ⅅ} (f : Y₁ ─→ Y₂)(g : X₂ ─→ X₁)(h : X₁ ─→ Map G Y₁) -> (map G f ∘ h ∘ g) # == f ∘ (h #) ∘ map F g ) -> F ⊢ G open Adj public
{ "alphanum_fraction": 0.4401805869, "avg_line_length": 27.6875, "ext": "agda", "hexsha": "e04b61d135edd98d941c446f2d74ded99f4e0e95", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/cat/Adjoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/cat/Adjoint.agda", "max_line_length": 69, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/cat/Adjoint.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 412, "size": 886 }
{- This is mostly for convenience, when working with ideals (which are defined for general rings) in a commutative ring. -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Ideal where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Algebra.CommRing.Base open import Cubical.Algebra.Ring.Ideal renaming (IdealsIn to IdealsInRing) open import Cubical.Algebra.RingSolver.ReflectionSolving private variable ℓ : Level IdealsIn : (R : CommRing ℓ) → Type _ IdealsIn R = IdealsInRing (CommRing→Ring R) module _ (Ring@(R , str) : CommRing ℓ) where open CommRingStr str makeIdeal : (I : R → hProp ℓ) → (+-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I) → (0r-closed : 0r ∈ I) → (·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I) → IdealsIn (R , str) makeIdeal I +-closed 0r-closed ·-closedLeft = I , (record { +-closed = +-closed ; -closed = λ x∈I → subst (_∈ I) (useSolver _) (·-closedLeft (- 1r) x∈I) ; 0r-closed = 0r-closed ; ·-closedLeft = ·-closedLeft ; ·-closedRight = λ r x∈I → subst (_∈ I) (·-comm r _) (·-closedLeft r x∈I) }) where useSolver : (x : R) → - 1r · x ≡ - x useSolver = solve Ring
{ "alphanum_fraction": 0.5572413793, "avg_line_length": 32.9545454545, "ext": "agda", "hexsha": "2e932e928d414fc25378f4c75103cc8b80f9907d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kl-i/cubical-0.3", "max_forks_repo_path": "Cubical/Algebra/CommRing/Ideal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kl-i/cubical-0.3", "max_issues_repo_path": "Cubical/Algebra/CommRing/Ideal.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "f2d74ae8e2e176963029a35bd886364480948214", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kl-i/cubical-0.3", "max_stars_repo_path": "Cubical/Algebra/CommRing/Ideal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 453, "size": 1450 }
-- Jesper, 2018-11-29: Instances with explicit arguments will never be -- used, so declaring them should give a warning. postulate X : Set instance _ : Set → X -- this should give a warning it : {{_ : X}} → X it {{x}} = x -- OTOH, this is fine as the instance can be used inside the module module _ (A : Set) where postulate instance instX : X test : X test = it -- Andreas, 2020-01-29, issue #4360: -- Such warnings should also be given for data and record constructors. record R (A : Set) : Set where instance constructor r field a : A data D (A : Set) : Set where instance c : A → D A
{ "alphanum_fraction": 0.6601626016, "avg_line_length": 21.9642857143, "ext": "agda", "hexsha": "bd2ad40ac54cc462692cba7aacf129a40ab319ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/WarningInstanceWithExplicitArg.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/WarningInstanceWithExplicitArg.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/WarningInstanceWithExplicitArg.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 189, "size": 615 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor where open import Level open import Function renaming (id to id→; _∘_ to _●_) using () open import Categories.Category open import Categories.Functor.Core public private variable o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level Endofunctor : Category o ℓ e → Set _ Endofunctor C = Functor C C id : ∀ {C : Category o ℓ e} → Functor C C id {C = C} = record { F₀ = id→ ; F₁ = id→ ; identity = Category.Equiv.refl C ; homomorphism = Category.Equiv.refl C ; F-resp-≈ = id→ } infixr 9 _∘F_ -- note that this definition could be shortened by inlining the definitions for -- identity′ and homomorphism′, but the definitions below are simpler to understand. _∘F_ : ∀ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {E : Category o″ ℓ″ e″} → Functor D E → Functor C D → Functor C E _∘F_ {C = C} {D = D} {E = E} F G = record { F₀ = F.₀ ● G.₀ ; F₁ = F.₁ ● G.₁ ; identity = identity′ ; homomorphism = homomorphism′ ; F-resp-≈ = F.F-resp-≈ ● G.F-resp-≈ } where module C = Category C using (id) module D = Category D using (id) module E = Category E using (id; module HomReasoning) module F = Functor F module G = Functor G identity′ : ∀ {A} → E [ F.₁ (G.₁ (C.id {A})) ≈ E.id ] identity′ = begin F.₁ (G.₁ C.id) ≈⟨ F.F-resp-≈ G.identity ⟩ F.₁ D.id ≈⟨ F.identity ⟩ E.id ∎ where open E.HomReasoning homomorphism′ : ∀ {X Y Z} {f : C [ X , Y ]} {g : C [ Y , Z ]} → E [ F.₁ (G.₁ (C [ g ∘ f ])) ≈ E [ F.₁ (G.₁ g) ∘ F.₁ (G.₁ f) ] ] homomorphism′ {f = f} {g = g} = begin F.₁ (G.₁ (C [ g ∘ f ])) ≈⟨ F.F-resp-≈ G.homomorphism ⟩ F.₁ (D [ G.₁ g ∘ G.₁ f ]) ≈⟨ F.homomorphism ⟩ E [ F.₁ (G.₁ g) ∘ F.₁ (G.₁ f) ] ∎ where open E.HomReasoning
{ "alphanum_fraction": 0.5521978022, "avg_line_length": 30.3333333333, "ext": "agda", "hexsha": "9848b37353792ff07c1033bcbfea5bb728ce5426", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor.agda", "max_line_length": 84, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 724, "size": 1820 }
module Type.Properties.Inhabited{ℓ} where import Lvl open import Type -- An inhabited type, which essentially means non-empty (there exists objects with this type), and this object is pointed out/specified/chosen. -- This means that there exists objects with such an type, and such an object is extractable constructively (like a witness). -- Also called: Pointed type. record ◊ (T : Type{ℓ}) : Type{ℓ} where constructor intro field ⦃ existence ⦄ : T open ◊ ⦃ ... ⦄ renaming (existence to [◊]-existence) public
{ "alphanum_fraction": 0.7281368821, "avg_line_length": 37.5714285714, "ext": "agda", "hexsha": "e4a63e264a33e050d9ee36b73c420bbfa398b5cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Properties/Inhabited.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Properties/Inhabited.agda", "max_line_length": 143, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Properties/Inhabited.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 143, "size": 526 }
{- ℚ is a Commutative Ring -} {-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Instances.QuoQ where open import Cubical.Foundations.Prelude open import Cubical.Algebra.CommRing open import Cubical.HITs.Rationals.QuoQ renaming (ℚ to ℚType ; _+_ to _+ℚ_; _·_ to _·ℚ_; -_ to -ℚ_) open CommRingStr ℚCommRing : CommRing ℓ-zero ℚCommRing .fst = ℚType ℚCommRing .snd .0r = 0 ℚCommRing .snd .1r = 1 ℚCommRing .snd ._+_ = _+ℚ_ ℚCommRing .snd ._·_ = _·ℚ_ ℚCommRing .snd .-_ = -ℚ_ ℚCommRing .snd .isCommRing = isCommRingℚ where abstract isCommRingℚ : IsCommRing 0 1 _+ℚ_ _·ℚ_ -ℚ_ isCommRingℚ = makeIsCommRing isSetℚ +-assoc +-identityʳ +-inverseʳ +-comm ·-assoc ·-identityʳ (λ x y z → sym (·-distribˡ x y z)) ·-comm
{ "alphanum_fraction": 0.6866666667, "avg_line_length": 22.7272727273, "ext": "agda", "hexsha": "ac9b1a86ced624aed4d58148384973c137296d31", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/QuoQ.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/QuoQ.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/QuoQ.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 309, "size": 750 }
{-# OPTIONS --prop --rewriting #-} open import Calf.CostMonoid open import Data.Nat using (ℕ) module Examples.Sorting.Comparable (costMonoid : CostMonoid) (fromℕ : ℕ → CostMonoid.ℂ costMonoid) where open CostMonoid costMonoid using (ℂ) open import Calf costMonoid open import Calf.Types.Bool open import Calf.Types.Bounded costMonoid open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning) open import Data.Product using (_×_; _,_; proj₁; proj₂; ∃) open import Function record Comparable : Set₁ where field A : tp pos _≤_ : val A → val A → Set _≤ᵇ_ : val A → val A → cmp (F bool) ≤ᵇ-reflects-≤ : ∀ {x y b} → ◯ ((x ≤ᵇ y) ≡ ret b → Reflects (x ≤ y) b) ≤-refl : Reflexive _≤_ ≤-trans : Transitive _≤_ ≤-total : Total _≤_ ≤-antisym : Antisymmetric _≡_ _≤_ h-cost : (x y : val A) → IsBounded bool (x ≤ᵇ y) (fromℕ 1) NatComparable : Comparable NatComparable = record { A = nat ; _≤_ = _≤_ ; _≤ᵇ_ = λ x y → step (F bool) (fromℕ 1) (ret (x ≤ᵇ y)) ; ≤ᵇ-reflects-≤ = reflects ; ≤-refl = ≤-refl ; ≤-trans = ≤-trans ; ≤-total = ≤-total ; ≤-antisym = ≤-antisym ; h-cost = λ _ _ → bound/relax (λ u → CostMonoid.≤-reflexive costMonoid (CostMonoid.+-identityʳ costMonoid (fromℕ 1))) (bound/step (fromℕ 1) (CostMonoid.zero costMonoid) bound/ret) } where open import Calf.Types.Nat open import Data.Nat open import Data.Nat.Properties ret-injective : ∀ {𝕊 v₁ v₂} → ret {U (meta 𝕊)} v₁ ≡ ret {U (meta 𝕊)} v₂ → v₁ ≡ v₂ ret-injective {𝕊} = Eq.cong (λ e → bind {U (meta 𝕊)} (meta 𝕊) e id) reflects : ∀ {m n b} → ◯ (step (F bool) (fromℕ 1) (ret (m ≤ᵇ n)) ≡ ret {bool} b → Reflects (m ≤ n) b) reflects {m} {n} {b} u h with ret-injective (Eq.subst (_≡ ret b) (step/ext (F bool) (ret (m ≤ᵇ n)) (fromℕ 1) u) h) ... | refl = ≤ᵇ-reflects-≤ m n
{ "alphanum_fraction": 0.6179659267, "avg_line_length": 31.7540983607, "ext": "agda", "hexsha": "395aa45da6e443c6d6a7400031f40cf1c078fbd9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z", "max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "jonsterling/agda-calf", "max_forks_repo_path": "src/Examples/Sorting/Comparable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "jonsterling/agda-calf", "max_issues_repo_path": "src/Examples/Sorting/Comparable.agda", "max_line_length": 118, "max_stars_count": 29, "max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "jonsterling/agda-calf", "max_stars_repo_path": "src/Examples/Sorting/Comparable.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z", "num_tokens": 770, "size": 1937 }
{- Name: Bowornmet (Ben) Hudson and Theodore (Ted) Kim -- COMP360 Final Project: Group Theory in Agda -- In this project, we define some fundamental ideas of group theory and prove a few basic theorems about the topic using Agda. For example, we define what a group is, and give several elementary examples of groups. We utilize the notion of propositional equality in Agda to prove our theorems using equation chains. -} open import Preliminaries module finalproject where -- addition of nats plusNat : Nat → Nat → Nat plusNat Z m = m plusNat (S n) m = S (plusNat n m) -- integers data Int : Set where _-_ : (n : Nat) → (m : Nat) → Int -- negation -_ : Int → Int - (n - m) = m - n -- addition of ints plusInt : Int → Int → Int plusInt (n1 - m1) (n2 - m2) = plusNat n1 n2 - plusNat m1 m2 -- operation Op : Set → Set Op el = el → el → el -- record of Group {- Definition: a Group is a set G with a binary operation, *, with three properties: 1.) G has an identity element, e ∈ G, such that ∀ x ∈ G, e*x = x = x*e. 2.) ∀ x ∈ G, ∃ x' ∈ G such that x*x' = e = x'*x, where e is the identity element of G. 3.) G is associative. That is, ∀ x y z ∈ G, (x*y)*z = x*(y*z). -} record Group : Set1 where field el : Set _*_ : Op el e : el inv : el → el assoc : ∀ x y z → ((x * y) * z) == (x * (y * z)) ident-l : ∀ x → (e * x) == x ident-r : ∀ x → (x * e) == x inv-l : ∀ x → ((inv x) * x) == e inv-r : ∀ x → (x * (inv x)) == e -- first example, Bools with "multiplication" operation. Comparable to Z mod 2 -- with addition -- multiplication of bools multB : Bool → Bool → Bool multB True True = True multB True False = False multB False True = False multB False False = True -- associativity of bools assocB : ∀ (x y z : Bool) → multB (multB x y) z == multB x (multB y z) assocB True True True = Refl assocB True True False = Refl assocB True False True = Refl assocB True False False = Refl assocB False True True = Refl assocB False True False = Refl assocB False False True = Refl assocB False False False = Refl -- proof of identity multTruel : ∀ (x : Bool) → (multB True x == x) multTruel True = Refl multTruel False = Refl multTruer : ∀ (x : Bool) → (multB x True == x) multTruer True = Refl multTruer False = Refl -- inverses of bools invB : Bool → Bool invB True = True invB False = False -- proof of inverses with identity invBMultl : ∀ (x : Bool) → (multB (invB x) x == True) invBMultl True = Refl invBMultl False = Refl invBMultr : ∀ (x : Bool) → (multB x (invB x) == True) invBMultr True = Refl invBMultr False = Refl -- proof that the Booleans are a group on multiplication Bool*-isgroup : Group Bool*-isgroup = record { el = Bool; _*_ = multB; e = True; inv = invB; assoc = assocB; ident-l = multTruel; ident-r = multTruer; inv-l = invBMultl; inv-r = invBMultr } -- second example of a group, ints with the addition operation -- congruence congruenceNatInt : ∀ (a b c d : Nat) → a == c → b == d → a - b == c - d congruenceNatInt .c .d c d Refl Refl = Refl congruenceNat : ∀ (x y : Nat) → x == y → (S x) == (S y) congruenceNat .y y Refl = Refl congruenceNat' : ∀ (n m : Nat) → n == m → S n == S m congruenceNat' .m m Refl = Refl -- lemma addZNat : ∀ (x : Nat) → plusNat x Z == x addZNat Z = Refl addZNat (S x) = congruenceNat (plusNat x Z) x (addZNat x) -- proof of associativity assocNat+ : (x y z : Nat) → plusNat (plusNat x y) z == plusNat x (plusNat y z) assocNat+ Z y z = Refl assocNat+ (S x) y z = congruenceNat (plusNat (plusNat x y) z) (plusNat x (plusNat y z)) (assocNat+ x y z) assocInt+ : ∀ (a b c : Int) → plusInt (plusInt a b) c == plusInt a (plusInt b c) assocInt+ (n1 - m1) (n2 - m2) (n3 - m3) = congruenceNatInt (plusNat (plusNat n1 n2) n3) (plusNat (plusNat m1 m2) m3) (plusNat n1 (plusNat n2 n3)) (plusNat m1 (plusNat m2 m3)) (assocNat+ n1 n2 n3) (assocNat+ m1 m2 m3) -- proof of identity addIntZl : ∀ (n : Int) → (plusInt (Z - Z) n == n) addIntZl (n - m) = Refl addIntZr : ∀ (n : Int) → (plusInt n (Z - Z) == n) addIntZr (n - m) = congruenceNatInt (plusNat n 0) (plusNat m 0) n m (addZNat n) (addZNat m) -- proof of inverses -- issue with quotient type: impossible to prove that (S n) - (S n) = 0 - 0 without equality constructor -- had problems in including the equality constructor, only thing we could not work out invIntl : ∀ (n : Int) → plusInt (- n) n == (Z - Z) invIntl (n - m) = {!!} invIntr : ∀ (n : Int) → plusInt n (- n) == (Z - Z) invIntr (n - m) = {!!} -- proof that the integers on addition are a group Int+-isgroup : Group Int+-isgroup = record { el = Int; _*_ = plusInt; e = Z - Z; inv = -_; assoc = assocInt+; ident-l = addIntZl; ident-r = addIntZr; inv-l = invIntl; inv-r = invIntr } {- Definition: an group is called abelian if it is commutative. That is, ∀ x y ∈ G, x*y = y*x. Our record of an abelian group requires a group and a proof that the group operation is commutative. -} record AbelianGroup (G : Group) : Set where open Group G field comm : ∀ (x y : el) → x * y == y * x -- proof of commutativity for multiplication on bools commB : ∀ (x y : Bool) → multB x y == multB y x commB True True = Refl commB True False = Refl commB False True = Refl commB False False = Refl Bool*-isAbelian : AbelianGroup Bool*-isgroup Bool*-isAbelian = record { comm = commB } -- some theorems module Theorems (G : Group) where open Group G congruenceOP : {a b c : el} → a == b → a * c == b * c congruenceOP Refl = Refl congruenceOP' : {a b c : el} → b == c → a * b == a * c congruenceOP' Refl = Refl sym : {a b : el} → a == b → b == a sym Refl = Refl -- extremely simple theorem babytheorem : (a b : el) → ((a * e) * b) == (a * b) babytheorem a b = congruenceOP (ident-r a) -- theorem 1: Let G be a group, and let a and b ∈ G. Then (a * b)^-1 = b^-1 * a^-1. theorem1 : ∀ (a b : el) → inv (a * b) == (inv b * inv a) theorem1 a b = inv (a * b) =⟨ sym (ident-r (inv (a * b))) ⟩ (inv (a * b) * e) =⟨ sym (congruenceOP' (inv-r a)) ⟩ (inv (a * b) * (a * inv a)) =⟨ congruenceOP' (congruenceOP (sym (ident-r a))) ⟩ (inv (a * b) * ((a * e) * inv a)) =⟨ congruenceOP' (congruenceOP (congruenceOP' (sym (inv-r b)))) ⟩ (inv (a * b) * ((a * (b * inv b)) * inv a)) =⟨ congruenceOP' (congruenceOP (sym (assoc a b (inv b)))) ⟩ (inv (a * b) * (((a * b) * inv b) * inv a)) =⟨ congruenceOP' (assoc (a * b) (inv b) (inv a)) ⟩ (inv (a * b) * ((a * b) * (inv b * inv a))) =⟨ sym (assoc (inv (a * b)) (a * b) (inv b * inv a)) ⟩ ((inv (a * b) * (a * b)) * (inv b * inv a)) =⟨ congruenceOP (inv-l (a * b)) ⟩ (e * (inv b * inv a)) =⟨ ident-l (inv b * inv a) ⟩ (inv b * inv a) ∎ -- theorem 2: Let G be a group, and let a, b, and c ∈ G. If a * c = b * c, then a = b. theorem2 : ∀ (a b c : el) → (a * c) == (b * c) → a == b theorem2 a b c p = a =⟨ sym (ident-r a) ⟩ a * e =⟨ congruenceOP' (sym (inv-r c)) ⟩ (a * (c * inv c)) =⟨ sym (assoc a c (inv c)) ⟩ (a * c) * inv c =⟨ congruenceOP p ⟩ (b * c) * inv c =⟨ assoc b c (inv c) ⟩ (b * (c * inv c)) =⟨ congruenceOP' (inv-r c) ⟩ (b * e) =⟨ ident-r b ⟩ b ∎ -- theorem 3: Let G be a group, and let g ∈ G. If g * g = g, then g = e. theorem3 : ∀ (g : el) → (g * g) == g → g == e theorem3 g p = g =⟨ sym (ident-r g) ⟩ (g * e) =⟨ congruenceOP' (sym (inv-r g)) ⟩ (g * (g * inv g)) =⟨ sym (assoc g g (inv g)) ⟩ (g * g) * inv g =⟨ congruenceOP p ⟩ g * inv g =⟨ inv-r g ⟩ e ∎ -- lemma 1: for all x ∈ G, if x * x = e, x^-1 = x. That is, x is its own inverse. lemma1 : ∀ (x : el) → (p : x * x == e) → inv x == x lemma1 x p = (inv x) =⟨ sym (ident-r (inv x)) ⟩ (inv x * e) =⟨ congruenceOP' (sym p) ⟩ inv x * (x * x) =⟨ sym (assoc (inv x) x x) ⟩ (inv x * x) * x =⟨ congruenceOP (inv-l x) ⟩ (e * x) =⟨ ident-l x ⟩ x ∎ -- theorem 4: let G be a group. If ∀ x ∈ G, x * x = e, then G is abelian. theorem4 : (p : ∀ x → (x * x) == e) → AbelianGroup G theorem4 p = record { comm = λ a b → a * b =⟨ congruenceOP (sym (ident-r a)) ⟩ (a * e) * b =⟨ congruenceOP (congruenceOP' (sym (inv-r a))) ⟩ (a * (a * inv a)) * b =⟨ congruenceOP (sym (assoc a a (inv a))) ⟩ ((a * a) * inv a) * b =⟨ congruenceOP (congruenceOP (p a)) ⟩ (e * inv a) * b =⟨ congruenceOP (ident-l (inv a)) ⟩ inv a * b =⟨ congruenceOP' (sym (ident-r b)) ⟩ inv a * (b * e) =⟨ congruenceOP' (congruenceOP' (sym (inv-r b))) ⟩ inv a * (b * (b * inv b)) =⟨ congruenceOP' (sym (assoc b b (inv b))) ⟩ inv a * ((b * b) * inv b) =⟨ congruenceOP' (congruenceOP (p b)) ⟩ inv a * (e * inv b) =⟨ congruenceOP' (ident-l (inv b)) ⟩ (inv a * inv b) =⟨ sym (theorem1 b a) ⟩ (inv (b * a)) =⟨ lemma1 (b * a) (p (b * a)) ⟩ (b * a) ∎ } -- theorem 5: Let G be a group, and a, b, and c ∈ G. If (a * b) * c = e, then (b * c) * a = e as well. theorem5 : ∀ (a b c : el) → ((a * b) * c) == e → ((b * c) * a) == e theorem5 a b c p = ((b * c) * a) =⟨ sym (ident-l ((b * c) * a)) ⟩ e * ((b * c) * a) =⟨ congruenceOP (sym (inv-l a)) ⟩ (inv a * a) * ((b * c) * a) =⟨ assoc (inv a) a ((b * c) * a) ⟩ inv a * (a * ((b * c) * a)) =⟨ sym (congruenceOP' (assoc a (b * c) a)) ⟩ inv a * ((a * (b * c)) * a) =⟨ congruenceOP' (congruenceOP (sym (assoc a b c))) ⟩ inv a * (((a * b) * c) * a) =⟨ congruenceOP' (congruenceOP p) ⟩ inv a * (e * a) =⟨ congruenceOP' (ident-l a) ⟩ (inv a * a) =⟨ inv-l a ⟩ e ∎ {- Definition: a homomorphism is a function f from a group (G , *) to another group (H , ∘) such that (∀ a,b ∈ G), f(a*b) = f(a)∘f(b). Our definition of a homomorphism also includes a proof that homomorphisms preserve identity elements between groups. That is, f(e_G) = e_H, where e_G and e_H are the identity elements in G and H, respectively. -} -- record of homomorphisms record Homomorphism (G : Group) (H : Group) : Set where open Group renaming (_*_ to *) field f : el G → el H preserve-id : f (e G) == e H preserve-op : ∀ (a b : el G) → (f (* G a b)) == * H (f a) (f b) -- third example of a group, Z mod 2 under addition. -- Z mod 2 data Zmod2 : Set where Zero : Zmod2 One : Zmod2 -- addition mod 2 plusmod2 : Zmod2 → Zmod2 → Zmod2 plusmod2 Zero Zero = Zero plusmod2 Zero One = One plusmod2 One Zero = One plusmod2 One One = Zero -- identity of Z mod 2 idenZmod2-l : (x : Zmod2) → plusmod2 Zero x == x idenZmod2-l Zero = Refl idenZmod2-l One = Refl idenZmod2-r : (x : Zmod2) → plusmod2 x Zero == x idenZmod2-r Zero = Refl idenZmod2-r One = Refl -- inverses of Z mod 2 (the inverse of anything in Z mod 2 is itself) invZmod2 : Zmod2 → Zmod2 invZmod2 x = x -- left and right inverses of Z mod 2 invZmod2-lr : (x : Zmod2) → plusmod2 x x == Zero invZmod2-lr Zero = Refl invZmod2-lr One = Refl -- associativity of addition in Z mod 2 assocZmod2 : (x y z : Zmod2) → plusmod2 (plusmod2 x y) z == plusmod2 x (plusmod2 y z) assocZmod2 Zero Zero Zero = Refl assocZmod2 Zero Zero One = Refl assocZmod2 Zero One Zero = Refl assocZmod2 Zero One One = Refl assocZmod2 One Zero Zero = Refl assocZmod2 One Zero One = Refl assocZmod2 One One Zero = Refl assocZmod2 One One One = Refl -- commutativity of addition in Z mod 2 commZmod2 : (x y : Zmod2) → plusmod2 x y == plusmod2 y x commZmod2 Zero Zero = Refl commZmod2 Zero One = Refl commZmod2 One Zero = Refl commZmod2 One One = Refl -- Zmod2 is a group on addition. Zmod2+-isgroup : Group Zmod2+-isgroup = record { el = Zmod2; _*_ = plusmod2; e = Zero; inv = invZmod2; assoc = assocZmod2; ident-l = idenZmod2-l; ident-r = idenZmod2-r; inv-l = λ x → invZmod2-lr x; inv-r = λ x → invZmod2-lr x } -- proof that Z mod 2 on addition is an abelian group. Zmod2+-isAbelian : AbelianGroup (Zmod2+-isgroup) Zmod2+-isAbelian = record { comm = commZmod2 } -- example of a homomorphism: mapBool-to-Zmod2 is a homomorphism from Bools on multiplication to Zmod2 with addition. -- map from Bools to the elements of Zmod2. mapBool-to-Zmod2 : Bool → Zmod2 mapBool-to-Zmod2 True = Zero mapBool-to-Zmod2 False = One -- proof that the map from Bools to Zmod2 preserves composition. mapBool-to-Zmod2-preserve-op : (a b : Bool) → mapBool-to-Zmod2 (multB a b) == plusmod2 (mapBool-to-Zmod2 a) (mapBool-to-Zmod2 b) mapBool-to-Zmod2-preserve-op True True = Refl mapBool-to-Zmod2-preserve-op True False = Refl mapBool-to-Zmod2-preserve-op False True = Refl mapBool-to-Zmod2-preserve-op False False = Refl homomorphism-example : Homomorphism (Bool*-isgroup) (Zmod2+-isgroup) homomorphism-example = record { f = mapBool-to-Zmod2; preserve-id = Refl; preserve-op = mapBool-to-Zmod2-preserve-op } -- record of isomorphisms. {- Definition: a homomorphism between two groups is called an isomorphism if it is bijective (both one-to-one and onto). The isomorphism record requires a homomorphism along with proofs that it is both one-to-one (injective) and onto (surjective). -} record Isomorphism (G : Group) (H : Group) : Set where open Group open Homomorphism field homomorphism : Homomorphism G H injective : ∀ (a b : el G) → f homomorphism a == f homomorphism b → a == b surjective : ∀ (b : el H) → Σ (λ g → f homomorphism g == b) -- example of an isomorphism -- proof that this map from Bools to Zmod2 is injective (that is, ∀ a b : Bool, f(a) = f(b) implies a = b). mapB-Zmod2-inj : (a b : Bool) → mapBool-to-Zmod2 a == mapBool-to-Zmod2 b → a == b mapB-Zmod2-inj True True p = Refl mapB-Zmod2-inj True False () mapB-Zmod2-inj False True () mapB-Zmod2-inj False False p = Refl -- proof that this map from Bools to Zmod2 is surjective (that is, ∀ b : Zmod2, ∃ a ∈ Bool such that f(a) = b). mapB-Zmod2-sur : (n : Zmod2) → Σ (λ bool → mapBool-to-Zmod2 bool == n) mapB-Zmod2-sur Zero = True , Refl mapB-Zmod2-sur One = False , Refl -- the homomorphism between Bools on multiplication to Zmod2 with addition is isomorphic isomorphism-example : Isomorphism Bool*-isgroup Zmod2+-isgroup isomorphism-example = record { homomorphism = homomorphism-example; injective = mapB-Zmod2-inj; surjective = mapB-Zmod2-sur }
{ "alphanum_fraction": 0.4983571931, "avg_line_length": 41.6723716381, "ext": "agda", "hexsha": "54b184bb6cc1ee372f89b936a8698a69d67072f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "ug/finalproject.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "ug/finalproject.agda", "max_line_length": 133, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "ug/finalproject.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 5672, "size": 17044 }
module PiQ.Eval where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.Maybe open import Data.Nat hiding (_≟_) open import Data.List as L hiding (_∷_) open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import PiQ.Syntax open import PiQ.Opsem open import PiQ.AuxLemmas open import PiQ.NoRepeat open import PiQ.Invariants infix 100 _⃗ infix 100 _⃖ -- Stuck states must be either of the form ⟨ c ∣ v ∣ ☐ ⟩◁), [ c ∣ v ∣ ☐ ]▷ or ⊠ Stuck : ∀ {st} → is-stuck st → (Σ[ A ∈ 𝕌 ] Σ[ B ∈ 𝕌 ] Σ[ c ∈ A ↔ B ] Σ[ v ∈ ⟦ A ⟧ ] st ≡ ⟨ c ∣ v ∣ ☐ ⟩◁) ⊎ (Σ[ A ∈ 𝕌 ] Σ[ B ∈ 𝕌 ] Σ[ c ∈ A ↔ B ] Σ[ v ∈ ⟦ B ⟧ ] st ≡ [ c ∣ v ∣ ☐ ]▷) ⊎ st ≡ ⊠ Stuck {⟨ unite₊l ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ uniti₊l ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ swap₊ ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ assocl₊ ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ assocr₊ ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ unite⋆l ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ uniti⋆l ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ swap⋆ ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ assocl⋆ ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ assocr⋆ ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ dist ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ factor ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁)) Stuck {⟨ id↔ ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₂)) Stuck {⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₃)) Stuck {⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₄)) Stuck {⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₅)) Stuck {⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗₆)) Stuck {⟨ ε₊ ∣ inj₁ x ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦ε₊₁)) Stuck {⟨ ε₊ ∣ inj₂ (- x) ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦ε₊₂)) Stuck {⟨ ηₓ _ ∣ tt ∣ κ ⟩▷} stuck = ⊥-elim (stuck (_ , ↦⃗ηₓ)) Stuck {⟨ εₓ v ∣ (v' , ↻) ∣ κ ⟩▷} stuck with v ≟ v' ... | yes p = ⊥-elim (stuck (_ , ↦⃗εₓ₁ {eq = p})) ... | no p = ⊥-elim (stuck (_ , ↦⃗εₓ₂ {neq = p})) Stuck {[ c ∣ v ∣ ☐ ]▷} stuck = inj₂ (inj₁ (_ , _ , c , v , refl)) Stuck {[ c₁ ∣ v ∣ ☐⨾ c₂ • κ ]▷} stuck = ⊥-elim (stuck (_ , ↦⃗₇)) Stuck {[ c ∣ v ∣ c₁ ⨾☐• κ ]▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁₀)) Stuck {[ c ∣ v ∣ ☐⊕ c₂ • κ ]▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁₁)) Stuck {[ c ∣ v ∣ c₁ ⊕☐• κ ]▷} stuck = ⊥-elim (stuck (_ , ↦⃗₁₂)) Stuck {[ c ∣ v ∣ ☐⊗[ c₂ , x ]• κ ]▷} stuck = ⊥-elim (stuck (_ , ↦⃗₈)) Stuck {[ c ∣ v ∣ [ c₁ , x ]⊗☐• κ ]▷} stuck = ⊥-elim (stuck (_ , ↦⃗₉)) Stuck {⟨ c ∣ v ∣ ☐ ⟩◁} stuck = inj₁ (_ , _ , c , v , refl) Stuck {⟨ c₁ ∣ v ∣ ☐⨾ c₂ • κ ⟩◁} stuck = ⊥-elim (stuck (_ , ↦⃖₃)) Stuck {⟨ c₂ ∣ v ∣ c₁ ⨾☐• κ ⟩◁} stuck = ⊥-elim (stuck (_ , ↦⃖₇)) Stuck {⟨ c₁ ∣ v ∣ ☐⊕ c₂ • κ ⟩◁} stuck = ⊥-elim (stuck (_ , ↦⃖₄)) Stuck {⟨ c₂ ∣ v ∣ c₁ ⊕☐• κ ⟩◁} stuck = ⊥-elim (stuck (_ , ↦⃖₅)) Stuck {⟨ c₁ ∣ x ∣ ☐⊗[ c₂ , y ]• κ ⟩◁} stuck = ⊥-elim (stuck (_ , ↦⃖₆)) Stuck {⟨ c₂ ∣ y ∣ [ c₁ , x ]⊗☐• κ ⟩◁} stuck = ⊥-elim (stuck (_ , ↦⃖₈)) Stuck {[ unite₊l ∣ v ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₂ v ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ uniti₊l ∣ inj₂ y ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ y ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ swap₊ ∣ inj₁ x ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₂ x ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ swap₊ ∣ inj₂ y ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₁ y ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ assocl₊ ∣ inj₁ (inj₁ x) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₁ x ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ assocl₊ ∣ inj₁ (inj₂ y) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₂ (inj₁ y) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ assocl₊ ∣ inj₂ y ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₂ (inj₂ y) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ assocr₊ ∣ inj₁ x ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₁ (inj₁ x) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ assocr₊ ∣ inj₂ (inj₁ x) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₁ (inj₂ x) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ assocr₊ ∣ inj₂ (inj₂ y) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ (inj₂ y) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ unite⋆l ∣ v ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ (tt , v) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ uniti⋆l ∣ (tt , v) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ v ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ swap⋆ ∣ (x , y) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ (y , x) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ assocl⋆ ∣ (x , y) , z ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ x , (y , z) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ assocr⋆ ∣ x , (y , z) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ (x , y) , z ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ dist ∣ inj₁ (x , z) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₁ x , z ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ dist ∣ inj₂ (y , z) ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₂ y , z ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ factor ∣ inj₁ x , z ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₁ (x , z) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ factor ∣ inj₂ y , z ∣ κ ]◁} stuck = ⊥-elim (stuck (⟨ _ ∣ inj₂ (y , z) ∣ _ ⟩◁ , ↦⃖₁)) Stuck {[ id↔ ∣ v ∣ κ ]◁} stuck = ⊥-elim (stuck (_ , ↦⃖₂)) Stuck {[ c₁ ⨾ c₂ ∣ v ∣ κ ]◁} stuck = ⊥-elim (stuck (_ , ↦⃖₁₀)) Stuck {[ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ]◁} stuck = ⊥-elim (stuck (_ , ↦⃖₁₁)) Stuck {[ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ]◁} stuck = ⊥-elim (stuck (_ , ↦⃖₁₂)) Stuck {[ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ]◁} stuck = ⊥-elim (stuck (_ , ↦⃖₉)) Stuck {[ η₊ ∣ inj₁ x ∣ κ ]◁} stuck = ⊥-elim (stuck (_ , ↦η₊₁)) Stuck {[ η₊ ∣ inj₂ (- x) ∣ κ ]◁} stuck = ⊥-elim (stuck (_ , ↦η₊₂)) Stuck {[ ηₓ v ∣ (v' , ↻) ∣ κ ]◁} stuck with v ≟ v' ... | yes p = ⊥-elim (stuck (_ , ↦⃖ηₓ₁ {eq = p})) ... | no p = ⊥-elim (stuck (_ , ↦⃖ηₓ₂ {neq = p})) Stuck {[ εₓ _ ∣ tt ∣ κ ]◁} stuck = ⊥-elim (stuck (_ , ↦⃖εₓ)) Stuck {⊠} stuck = inj₂ (inj₂ refl) -- Find next step of given the state step : (st : State) → ∃[ st' ] (st ↦ st') ⊎ is-stuck st step ⟨ unite₊l ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ uniti₊l ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ swap₊ ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ assocl₊ ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ assocr₊ ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ unite⋆l ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ uniti⋆l ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ swap⋆ ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ assocl⋆ ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ assocr⋆ ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ dist ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ factor ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₁) step ⟨ id↔ ∣ v ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₂) step ⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩▷ = inj₁ (⟨ c₁ ∣ v ∣ ☐⨾ c₂ • κ ⟩▷ , ↦⃗₃) step ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₄) step ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₅) step ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩▷ = inj₁ (_ , ↦⃗₆) step ⟨ ε₊ ∣ inj₁ x ∣ κ ⟩▷ = inj₁ (_ , ↦ε₊₁) step ⟨ ε₊ ∣ inj₂ (- x) ∣ κ ⟩▷ = inj₁ (_ , ↦ε₊₂) step ⟨ ηₓ _ ∣ tt ∣ κ ⟩▷ = inj₁ (_ , ↦⃗ηₓ) step ⟨ εₓ v ∣ v' , ↻ ∣ κ ⟩▷ with v ≟ v' ... | yes p = inj₁ (_ , (↦⃗εₓ₁ {eq = p})) ... | no p = inj₁ (_ , (↦⃗εₓ₂ {neq = p})) step [ c ∣ v ∣ ☐ ]▷ = inj₂ (λ ()) step [ c₁ ∣ v ∣ ☐⨾ c₂ • κ ]▷ = inj₁ (_ , ↦⃗₇) step [ c₂ ∣ v ∣ c₁ ⨾☐• κ ]▷ = inj₁ (_ , ↦⃗₁₀) step [ c₁ ∣ v ∣ ☐⊕ c₂ • κ ]▷ = inj₁ (_ , ↦⃗₁₁) step [ c₂ ∣ v ∣ c₁ ⊕☐• κ ]▷ = inj₁ (_ , ↦⃗₁₂) step [ c₁ ∣ v ∣ ☐⊗[ c₂ , x ]• κ ]▷ = inj₁ (_ , ↦⃗₈) step [ c₂ ∣ v ∣ [ c₁ , x ]⊗☐• κ ]▷ = inj₁ (_ , ↦⃗₉) step ⟨ c ∣ v ∣ ☐ ⟩◁ = inj₂ (λ ()) step ⟨ c₁ ∣ v ∣ ☐⨾ c₂ • κ ⟩◁ = inj₁ (_ , ↦⃖₃) step ⟨ c₂ ∣ v ∣ c₁ ⨾☐• κ ⟩◁ = inj₁ (_ , ↦⃖₇) step ⟨ c₁ ∣ v ∣ ☐⊕ c₂ • κ ⟩◁ = inj₁ (_ , ↦⃖₄) step ⟨ c₂ ∣ v ∣ c₁ ⊕☐• κ ⟩◁ = inj₁ (_ , ↦⃖₅) step ⟨ c₁ ∣ v ∣ ☐⊗[ c₂ , x ]• κ ⟩◁ = inj₁ (_ , ↦⃖₆) step ⟨ c₂ ∣ v ∣ [ c₁ , x ]⊗☐• κ ⟩◁ = inj₁ (_ , ↦⃖₈) step [ unite₊l ∣ v ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₂ v ∣ _ ⟩◁ , ↦⃖₁) step [ uniti₊l ∣ inj₂ v ∣ κ ]◁ = inj₁ (⟨ _ ∣ v ∣ _ ⟩◁ , ↦⃖₁) step [ swap₊ ∣ inj₁ x ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₂ x ∣ _ ⟩◁ , ↦⃖₁) step [ swap₊ ∣ inj₂ y ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₁ y ∣ _ ⟩◁ , ↦⃖₁) step [ assocl₊ ∣ inj₁ (inj₁ x) ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₁ x ∣ _ ⟩◁ , ↦⃖₁) step [ assocl₊ ∣ inj₁ (inj₂ y) ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₂ (inj₁ y) ∣ _ ⟩◁ , ↦⃖₁) step [ assocl₊ ∣ inj₂ z ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₂ (inj₂ z) ∣ _ ⟩◁ , ↦⃖₁) step [ assocr₊ ∣ inj₁ x ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₁ (inj₁ x) ∣ _ ⟩◁ , ↦⃖₁) step [ assocr₊ ∣ inj₂ (inj₁ y) ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₁ (inj₂ y) ∣ _ ⟩◁ , ↦⃖₁) step [ assocr₊ ∣ inj₂ (inj₂ z) ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₂ z ∣ _ ⟩◁ , ↦⃖₁) step [ unite⋆l ∣ v ∣ κ ]◁ = inj₁ (⟨ _ ∣ tt , v ∣ _ ⟩◁ , ↦⃖₁) step [ uniti⋆l ∣ (tt , v) ∣ κ ]◁ = inj₁ (⟨ _ ∣ v ∣ _ ⟩◁ , ↦⃖₁) step [ swap⋆ ∣ (x , y) ∣ κ ]◁ = inj₁ (⟨ _ ∣ (y , x) ∣ _ ⟩◁ , ↦⃖₁) step [ assocl⋆ ∣ (x , y) , z ∣ κ ]◁ = inj₁ (⟨ _ ∣ x , (y , z) ∣ _ ⟩◁ , ↦⃖₁) step [ assocr⋆ ∣ x , (y , z) ∣ κ ]◁ = inj₁ (⟨ _ ∣ (x , y) , z ∣ _ ⟩◁ , ↦⃖₁) step [ dist ∣ inj₁ (x , z) ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₁ x , z ∣ _ ⟩◁ , ↦⃖₁) step [ dist ∣ inj₂ (y , z) ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₂ y , z ∣ _ ⟩◁ , ↦⃖₁) step [ factor ∣ inj₁ x , z ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₁ (x , z) ∣ _ ⟩◁ , ↦⃖₁) step [ factor ∣ inj₂ y , z ∣ κ ]◁ = inj₁ (⟨ _ ∣ inj₂ (y , z) ∣ _ ⟩◁ , ↦⃖₁) step [ id↔ ∣ v ∣ κ ]◁ = inj₁ (_ , ↦⃖₂) step [ c₁ ⨾ c₂ ∣ v ∣ κ ]◁ = inj₁ (_ , ↦⃖₁₀) step [ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ]◁ = inj₁ (_ , ↦⃖₁₁) step [ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ]◁ = inj₁ (_ , ↦⃖₁₂) step [ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ]◁ = inj₁ (_ , ↦⃖₉) step [ η₊ ∣ inj₁ x ∣ κ ]◁ = inj₁ (_ , ↦η₊₁) step [ η₊ ∣ inj₂ (- x) ∣ κ ]◁ = inj₁ (_ , ↦η₊₂) step [ ηₓ v ∣ (v' , ↻) ∣ κ ]◁ with v ≟ v' ... | yes p = inj₁ (_ , (↦⃖ηₓ₁ {eq = p})) ... | no p = inj₁ (_ , (↦⃖ηₓ₂ {neq = p})) step [ εₓ _ ∣ tt ∣ κ ]◁ = inj₁ (_ , ↦⃖εₓ) step ⊠ = inj₂ (λ ()) -- Values tagged with direction data Val (A B : 𝕌) : Set where _⃗ : ⟦ A ⟧ → Val A B _⃖ : ⟦ B ⟧ → Val A B -- Termination is guaranteed by PiQ.NoRepeat and the finiteness of states {-# TERMINATING #-} run : (st₀ : State) → (init : is-initial st₀) → let (A , B , c) = getℂ st₀ (st-is-initial⇒st≢⊠ st₀ init) in (Σ[ v ∈ ⟦ A ⟧ ] st₀ ↦* ⟨ c ∣ v ∣ ☐ ⟩◁) ⊎ (Σ[ v ∈ ⟦ B ⟧ ] st₀ ↦* [ c ∣ v ∣ ☐ ]▷) ⊎ st₀ ↦* ⊠ run st₀ init = run' st₀ ◾ where run' : (st : State) → st₀ ↦* st → let (A , B , c) = getℂ st₀ (st-is-initial⇒st≢⊠ st₀ init) in (Σ[ v ∈ ⟦ A ⟧ ] st₀ ↦* ⟨ c ∣ v ∣ ☐ ⟩◁) ⊎ (Σ[ v ∈ ⟦ B ⟧ ] st₀ ↦* [ c ∣ v ∣ ☐ ]▷) ⊎ st₀ ↦* ⊠ run' st rs with step st ... | inj₁ (st' , r) = run' st' (rs ++↦ (r ∷ ◾)) ... | inj₂ stuck with Stuck stuck ... | inj₁ (A , B , c , v , refl) with ℂInvariant* rs (st-is-initial⇒st≢⊠ st₀ init) (λ ()) ... | refl = inj₁ (v , rs) run' st rs | inj₂ stuck | inj₂ (inj₁ (A , B , c , v , refl)) with ℂInvariant* rs (st-is-initial⇒st≢⊠ st₀ init) (λ ()) ... | refl = inj₂ (inj₁ (v , rs)) run' st rs | inj₂ stuck | inj₂ (inj₂ refl) = inj₂ (inj₂ rs) -- Forward evaluator of PiQ eval : ∀ {A B} → (A ↔ B) → Val A B → Maybe (Val B A) eval c (v ⃗) = [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ (run ⟨ c ∣ v ∣ ☐ ⟩▷ (λ ())) eval c (v ⃖) = [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ (run [ c ∣ v ∣ ☐ ]◁ (λ ())) -- Backward evaluator of PiQ evalᵣₑᵥ : ∀ {A B} → (A ↔ B) → Val B A → Maybe (Val A B) evalᵣₑᵥ c (v ⃖) = [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ (run ⟨ c ∣ v ∣ ☐ ⟩▷ (λ ())) evalᵣₑᵥ c (v ⃗) = [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ (run [ c ∣ v ∣ ☐ ]◁ (λ ())) -- Evaluator which generate execution traces convert↦ : ∀ {st st'} → st ↦* st' → List State convert↦ (◾ {st}) = st L.∷ [] convert↦ (_∷_ {st} r rs) = st L.∷ convert↦ rs evalₜᵣ : ∀ {A B} → (A ↔ B) → ⟦ A ⟧ → List State evalₜᵣ c v with (run ⟨ c ∣ v ∣ ☐ ⟩▷ (λ ())) ... | inj₁ (_ , rs) = convert↦ rs ... | inj₂ (inj₁ (_ , rs)) = convert↦ rs ... | inj₂ (inj₂ rs) = convert↦ rs -- Faster evaluator which does not carry the reduction trace. -- Returns the result and the number of steps it takes {-# TERMINATING #-} eval' : ∀ {A B} → (A ↔ B) → ⟦ A ⟧ → Maybe (Σ[ t ∈ 𝕌 ] ⟦ t ⟧) × ℕ eval' c v = run' ⟨ c ∣ v ∣ ☐ ⟩▷ 0 where getV : State → Maybe (Σ[ t ∈ 𝕌 ] ⟦ t ⟧) getV ⟨ _ ∣ v ∣ _ ⟩▷ = just (_ , v) getV [ _ ∣ v ∣ _ ]▷ = just (_ , v) getV ⟨ _ ∣ v ∣ _ ⟩◁ = just (_ , v) getV [ _ ∣ v ∣ _ ]◁ = just (_ , v) getV ⊠ = nothing run' : State → ℕ → Maybe (Σ[ t ∈ 𝕌 ] ⟦ t ⟧) × ℕ run' st n with step st ... | inj₁ (st' , _) = run' st' (suc n) ... | inj₂ stuck = getV st , n
{ "alphanum_fraction": 0.4107463152, "avg_line_length": 55.0343347639, "ext": "agda", "hexsha": "d6d031ff60137e2b3af1a2932b04f79abee8c486", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiQ/Eval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiQ/Eval.agda", "max_line_length": 121, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiQ/Eval.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 7354, "size": 12823 }
import Lvl open import Structure.Operator.Vector open import Structure.Setoid open import Type module Structure.Operator.Vector.LinearCombination.Proofs {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} {V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ {S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ {_+ᵥ_ : V → V → V} {_⋅ₛᵥ_ : S → V → V} {_+ₛ_ _⋅ₛ_ : S → S → S} ⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄ where open VectorSpace(vectorSpace) import Lvl open import Function.Equals open import Logic.Predicate open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec) open import Numeral.Finite open import Numeral.Natural open import Structure.Function.Multi import Structure.Function.Names as Names open import Structure.Operator.Proofs.Util open import Structure.Operator.Properties open import Structure.Operator open import Structure.Operator.Vector.LinearCombination ⦃ vectorSpace = vectorSpace ⦄ open import Structure.Operator.Vector.Proofs open import Structure.Relator.Properties open import Syntax.Function open import Syntax.Number open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ ℓₗ : Lvl.Level private variable n n₁ n₂ : ℕ private variable i j k : 𝕟(n) private variable vf vf₁ vf₂ : Vec(n)(V) private variable sf sf₁ sf₂ : Vec(n)(S) instance linearCombination-binaryOperator : BinaryOperator(linearCombination{n}) linearCombination-binaryOperator = intro p where p : Names.Congruence₂(linearCombination{n}) p {𝟎} {vf₁} {vf₂} (intro vfeq) {sf₁} {sf₂} (intro sfeq) = reflexivity(_≡_) p {𝐒(𝟎)} {vf₁} {vf₂} (intro vfeq) {sf₁} {sf₂} (intro sfeq) = congruence₂(_⋅ₛᵥ_) sfeq vfeq p {𝐒(𝐒(n))} {vf₁} {vf₂} (intro vfeq) {sf₁} {sf₂} (intro sfeq) = (sf₁(𝟎) ⋅ₛᵥ vf₁(𝟎)) +ᵥ linearCombination(Vec.tail vf₁) (Vec.tail sf₁) 🝖[ _≡_ ]-[ congruence₂(_+ᵥ_) (congruence₂(_⋅ₛᵥ_) sfeq vfeq) (p {𝐒(n)} (intro vfeq) (intro sfeq)) ] (sf₂(𝟎) ⋅ₛᵥ vf₂(𝟎)) +ᵥ linearCombination(Vec.tail vf₂) (Vec.tail sf₂) 🝖-end instance linearCombination-scalar-preserves-[+] : Preserving₂(linearCombination vf) (Vec.map₂(_+ₛ_)) (_+ᵥ_) linearCombination-scalar-preserves-[+] {vf = vf} = intro(p{vf = vf}) where p : ∀{n}{vf : Vec(n)(V)} → Names.Preserving₂(linearCombination vf) (Vec.map₂(_+ₛ_)) (_+ᵥ_) p {𝟎}{vf} {sf₁} {sf₂} = 𝟎ᵥ 🝖[ _≡_ ]-[ identityₗ(_+ᵥ_)(𝟎ᵥ) ]-sym 𝟎ᵥ +ᵥ 𝟎ᵥ 🝖-end p {𝐒(𝟎)}{vf} {sf₁} {sf₂} = (Vec.map₂(_+ₛ_) sf₁ sf₂ 𝟎) ⋅ₛᵥ vf(𝟎) 🝖[ _≡_ ]-[] (sf₁(𝟎) +ₛ sf₂(𝟎)) ⋅ₛᵥ vf(𝟎) 🝖[ _≡_ ]-[ [⋅ₛᵥ][+ₛ][+ᵥ]-distributivityᵣ ] (sf₁(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (sf₂(𝟎) ⋅ₛᵥ vf(𝟎)) 🝖-end p {𝐒(𝐒(n))}{vf} {sf₁} {sf₂} = ((Vec.map₂(_+ₛ_) sf₁ sf₂ 𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail(Vec.map₂(_+ₛ_) sf₁ sf₂))) 🝖[ _≡_ ]-[] ((sf₁(𝟎) +ₛ sf₂(𝟎)) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail(Vec.map₂(_+ₛ_) sf₁ sf₂))) 🝖[ _≡_ ]-[ congruence₂(_+ᵥ_) [⋅ₛᵥ][+ₛ][+ᵥ]-distributivityᵣ (p {𝐒(n)}{Vec.tail vf} {Vec.tail sf₁} {Vec.tail sf₂}) ] ((sf₁(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (sf₂(𝟎) ⋅ₛᵥ vf(𝟎))) +ᵥ ((linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf₁)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf₂))) 🝖[ _≡_ ]-[ One.associate-commute4 (commutativity(_+ᵥ_)) ] (((sf₁(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf₁))) +ᵥ ((sf₂(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf₂)))) 🝖-end instance linearCombination-scalar-preserves-[⋅] : ∀{s} → Preserving₁(linearCombination vf) (Vec.map(s ⋅ₛ_)) (s ⋅ₛᵥ_) linearCombination-scalar-preserves-[⋅] {vf = vf} {s = s} = intro(p{vf = vf}) where p : ∀{n}{vf : Vec(n)(V)} → Names.Preserving₁(linearCombination vf) (Vec.map(s ⋅ₛ_)) (s ⋅ₛᵥ_) p {𝟎} {vf} {sf} = 𝟎ᵥ 🝖[ _≡_ ]-[ [⋅ₛᵥ]-absorberᵣ ]-sym s ⋅ₛᵥ 𝟎ᵥ 🝖-end p {𝐒(𝟎)} {vf} {sf} = (s ⋅ₛ sf(𝟎)) ⋅ₛᵥ vf(𝟎) 🝖[ _≡_ ]-[ [⋅ₛ][⋅ₛᵥ]-compatibility ] s ⋅ₛᵥ (sf(𝟎) ⋅ₛᵥ vf(𝟎)) 🝖-end p {𝐒(𝐒(n))} {vf} {sf} = linearCombination vf (Vec.map (s ⋅ₛ_) sf) 🝖[ _≡_ ]-[] ((s ⋅ₛ sf(𝟎)) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination (Vec.tail vf) (Vec.map (s ⋅ₛ_) (Vec.tail sf))) 🝖[ _≡_ ]-[ congruence₂(_+ᵥ_) ⦃ [+ᵥ]-binary-operator ⦄ [⋅ₛ][⋅ₛᵥ]-compatibility (p {𝐒(n)} {Vec.tail vf} {Vec.tail sf}) ] (s ⋅ₛᵥ (sf(𝟎) ⋅ₛᵥ vf(𝟎))) +ᵥ (s ⋅ₛᵥ (linearCombination (Vec.tail vf) (Vec.tail sf))) 🝖[ _≡_ ]-[ distributivityₗ(_⋅ₛᵥ_)(_+ᵥ_) ]-sym s ⋅ₛᵥ ((sf(𝟎) ⋅ₛᵥ vf(𝟎)) +ᵥ (linearCombination (Vec.tail vf) (Vec.tail sf))) 🝖[ _≡_ ]-[] s ⋅ₛᵥ (linearCombination vf sf) 🝖-end -- linearCombination-of-unit : linearCombination vf (Vec.fill 𝟏ₛ) ≡ (foldᵣ(_+_) 𝟎ᵥ vf) postulate linearCombination-of-indexProject : (linearCombination vf (Vec.indexProject i 𝟏ₛ 𝟎ₛ) ≡ vf(i))
{ "alphanum_fraction": 0.591828479, "avg_line_length": 55.5505617978, "ext": "agda", "hexsha": "2316d1a470eeedbd50933749858b01472d803920", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Vector/LinearCombination/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Vector/LinearCombination/Proofs.agda", "max_line_length": 285, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Vector/LinearCombination/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2386, "size": 4944 }
{-# OPTIONS --without-K #-} module hott.equivalence.properties where open import sum open import equality.core open import equality.calculus open import function.core open import function.isomorphism open import function.extensionality open import hott.equivalence.core open import hott.equivalence.alternative open import hott.univalence open import hott.level sym≈ : ∀ {i j}{X : Set i}{Y : Set j} → X ≈ Y → Y ≈ X sym≈ = ≅'⇒≈ ∘ sym≅' ∘ ≈⇒≅' -- being a weak equivalence is propositional we-h1 : ∀ {i j}{X : Set i}{Y : Set j} → (f : X → Y) → h 1 (weak-equiv f) we-h1 f = Π-level λ _ → contr-h1 _ apply≈-inj : ∀ {i j}{X : Set i}{Y : Set j} → injective (apply≈ {X = X}{Y = Y}) apply≈-inj {x = (f , w)}{.f , w'} refl = unapΣ (refl , h1⇒prop (we-h1 f) w w') abstract univ-sym≈ : ∀ {i}{X Y : Set i} → (w : X ≈ Y) → sym (≈⇒≡ w) ≡ ≈⇒≡ (sym≈ w) univ-sym≈ {i}{X}{Y} w = inverse-unique p q lem-inv where p : X ≡ Y p = ≈⇒≡ w q : Y ≡ X q = ≈⇒≡ (sym≈ w) p-β : coerce p ≡ apply≈ w p-β = uni-coherence w q-β : coerce q ≡ invert≈ w q-β = uni-coherence (sym≈ w) lem : coerce (p · q) ≡ coerce refl lem = coerce-hom p q · (ap (λ h → coerce q ∘ h) p-β · ap (λ h → h ∘ apply≈ w) q-β · funext (_≅_.iso₁ (≈⇒≅ w))) lem-inv : p · q ≡ refl lem-inv = iso⇒inj uni-iso (apply≈-inj lem)
{ "alphanum_fraction": 0.5239085239, "avg_line_length": 24.8793103448, "ext": "agda", "hexsha": "34fe70707e94df1032e8c55c7d467ac21d3fc0f8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "hott/equivalence/properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/equivalence/properties.agda", "max_line_length": 52, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/equivalence/properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 574, "size": 1443 }
module FFI.Data.HaskellInt where open import Agda.Builtin.Int using (Int) {-# FOREIGN GHC import qualified Data.Int #-} postulate HaskellInt : Set {-# COMPILE GHC HaskellInt = type Data.Int.Int #-} postulate intToHaskellInt : Int → HaskellInt haskellIntToInt : HaskellInt → Int {-# COMPILE GHC intToHaskellInt = fromIntegral #-} {-# COMPILE GHC haskellIntToInt = fromIntegral #-}
{ "alphanum_fraction": 0.7396907216, "avg_line_length": 25.8666666667, "ext": "agda", "hexsha": "9ab0868e26bdf8f8fd1d8dce6021539d79603225", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/FFI/Data/HaskellInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/FFI/Data/HaskellInt.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/FFI/Data/HaskellInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z", "num_tokens": 100, "size": 388 }
{-# OPTIONS -v tc.unquote:30 #-} open import Common.Prelude open import Common.Reflection data Box : Bool → Set where box : (b : Bool) → Box b works : (b : Bool) → Box b → Bool works b (box .b) = unquote (give (var 0 [])) works₂ : (b : Bool) → Box b → Bool unquoteDef works₂ = defineFun works₂ (clause ( arg (argInfo visible relevant) (var "b") ∷ arg (argInfo visible relevant) (con (quote box) (arg (argInfo visible relevant) dot ∷ [])) ∷ []) (var 0 []) ∷ []) works₃ : (b : Bool) → Box b → (x y : Bool) → Bool unquoteDef works₃ = defineFun works₃ (clause ( arg (argInfo visible relevant) (var "b") ∷ arg (argInfo visible relevant) (con (quote box) (arg (argInfo visible relevant) dot ∷ [])) ∷ arg (argInfo visible relevant) (var "x") ∷ arg (argInfo visible relevant) (var "y") ∷ []) (var 2 []) ∷ [])
{ "alphanum_fraction": 0.6073546856, "avg_line_length": 30.1071428571, "ext": "agda", "hexsha": "d67ca040fd0abbfa59d94f248063911122862569", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1344.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue1344.agda", "max_line_length": 51, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue1344.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 280, "size": 843 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Maybe type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Maybe where open import Data.Unit using (⊤) open import Data.Empty using (⊥) open import Data.Bool.Base using (T) open import Data.Maybe.Relation.Unary.All open import Data.Maybe.Relation.Unary.Any ------------------------------------------------------------------------ -- The base type and some operations open import Data.Maybe.Base public ------------------------------------------------------------------------ -- Using Any and All to define Is-just and Is-nothing Is-just : ∀ {a} {A : Set a} → Maybe A → Set a Is-just = Any (λ _ → ⊤) Is-nothing : ∀ {a} {A : Set a} → Maybe A → Set a Is-nothing = All (λ _ → ⊥) to-witness : ∀ {p} {P : Set p} {m : Maybe P} → Is-just m → P to-witness (just {x = p} _) = p to-witness-T : ∀ {p} {P : Set p} (m : Maybe P) → T (is-just m) → P to-witness-T (just p) _ = p to-witness-T nothing ()
{ "alphanum_fraction": 0.4616805171, "avg_line_length": 29.2702702703, "ext": "agda", "hexsha": "7df273af8073330a3dd14329a8589bc6918d1749", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 273, "size": 1083 }
module OldBasicILP.Syntax.Projection where open import Common.UntypedContext public import OldBasicILP.UntypedSyntax.ClosedHilbertSequential as CHS import OldBasicILP.UntypedSyntax.ClosedHilbert as CH -- Projection of types and derivations to a form parametrised by a closed, untyped representation of syntax. module ClosedHilbertSequential where open import OldBasicILP.Syntax.ClosedHilbertSequential mutual ⌊_⌋ᵀ : Ty → CHS.Ty ⌊ α P ⌋ᵀ = CHS.α P ⌊ A ▻ B ⌋ᵀ = ⌊ A ⌋ᵀ CHS.▻ ⌊ B ⌋ᵀ ⌊ p ⦂ A ⌋ᵀ = ⌊ p ⌋ᴾ CHS.⦂ ⌊ A ⌋ᵀ ⌊ A ∧ B ⌋ᵀ = ⌊ A ⌋ᵀ CHS.∧ ⌊ B ⌋ᵀ ⌊ ⊤ ⌋ᵀ = CHS.⊤ -- FIXME: WHat is going on here? postulate ⌊_⌋ᴾ : ∀ {Ξ A} → Proof Ξ A → CHS.Proof ⌊_⌋ᵀ⋆ : Cx Ty → Cx CHS.Ty ⌊ ∅ ⌋ᵀ⋆ = ∅ ⌊ Γ , A ⌋ᵀ⋆ = ⌊ Γ ⌋ᵀ⋆ , ⌊ A ⌋ᵀ ⌊_⌋∈ : ∀ {Ξ A} → A ∈ Ξ → ⌊ A ⌋ᵀ ∈ ⌊ Ξ ⌋ᵀ⋆ ⌊ top ⌋∈ = top ⌊ pop i ⌋∈ = pop ⌊ i ⌋∈ ⌊_⌋ᴰ : ∀ {Ξ} → ⊢ᴰ Ξ → CHS.⊢ᴰ ⌊ Ξ ⌋ᵀ⋆ ⌊ nil ⌋ᴰ = CHS.nil ⌊ mp i j d ⌋ᴰ = CHS.mp ⌊ i ⌋∈ ⌊ j ⌋∈ ⌊ d ⌋ᴰ ⌊ ci d ⌋ᴰ = CHS.ci ⌊ d ⌋ᴰ ⌊ ck d ⌋ᴰ = CHS.ck ⌊ d ⌋ᴰ ⌊ cs d ⌋ᴰ = CHS.cs ⌊ d ⌋ᴰ ⌊ nec `d d ⌋ᴰ = {!CHS.nec ⌊ `d ⌋ᴰ ⌊ d ⌋ᴰ!} ⌊ cdist d ⌋ᴰ = {!CHS.cdist ⌊ d ⌋ᴰ!} ⌊ cup d ⌋ᴰ = {!CHS.cup ⌊ d ⌋ᴰ!} ⌊ cdown d ⌋ᴰ = CHS.cdown ⌊ d ⌋ᴰ ⌊ cpair d ⌋ᴰ = CHS.cpair ⌊ d ⌋ᴰ ⌊ cfst d ⌋ᴰ = CHS.cfst ⌊ d ⌋ᴰ ⌊ csnd d ⌋ᴰ = CHS.csnd ⌊ d ⌋ᴰ ⌊ unit d ⌋ᴰ = CHS.unit ⌊ d ⌋ᴰ ⌊_⌋ : ∀ {A} → ⊢ A → CHS.⊢ ⌊ A ⌋ᵀ ⌊ Ξ , d ⌋ = ⌊ Ξ ⌋ᵀ⋆ , ⌊ d ⌋ᴰ -- Projection of types and derivations to a form parametrised by a closed, untyped representation of syntax. module ClosedHilbert where open import OldBasicILP.Syntax.ClosedHilbert mutual ⌊_⌋ᵀ : Ty → CH.Ty ⌊ α P ⌋ᵀ = CH.α P ⌊ A ▻ B ⌋ᵀ = ⌊ A ⌋ᵀ CH.▻ ⌊ B ⌋ᵀ ⌊ p ⦂ A ⌋ᵀ = ⌊ p ⌋ᴾ CH.⦂ ⌊ A ⌋ᵀ ⌊ A ∧ B ⌋ᵀ = ⌊ A ⌋ᵀ CH.∧ ⌊ B ⌋ᵀ ⌊ ⊤ ⌋ᵀ = CH.⊤ ⌊_⌋ᴾ : ∀ {A} → Proof A → CH.Proof ⌊ [ d ] ⌋ᴾ = CH.[ CH.ᴿ⌊ ⌊ d ⌋ ⌋ ] ⌊_⌋ : ∀ {A} → ⊢ A → CH.⊢ ⌊ A ⌋ᵀ ⌊ app d₁ d₂ ⌋ = CH.app ⌊ d₁ ⌋ ⌊ d₂ ⌋ ⌊ ci ⌋ = CH.ci ⌊ ck ⌋ = CH.ck ⌊ cs ⌋ = CH.cs ⌊ box d ⌋ = CH.box ⌊ d ⌋ ⌊ cdist ⌋ = CH.cdist ⌊ cup ⌋ = CH.cup ⌊ cdown ⌋ = CH.cdown ⌊ cpair ⌋ = CH.cpair ⌊ cfst ⌋ = CH.cfst ⌊ csnd ⌋ = CH.csnd ⌊ unit ⌋ = CH.unit
{ "alphanum_fraction": 0.4589455488, "avg_line_length": 28.2195121951, "ext": "agda", "hexsha": "ae9a7ae9501ded3f173265cd21cbb1aecc8a49a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OldBasicILP/Syntax/Projection.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OldBasicILP/Syntax/Projection.agda", "max_line_length": 108, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OldBasicILP/Syntax/Projection.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 1537, "size": 2314 }
-- Andreas, 2016-07-19 revisiting issue #418 module Issue418private where open import Common.Equality abstract A : Set₁ A = Set private works : A ≡ A works = refl test : A ≡ _ test = refl -- Since test is private, abstract definitions are transparent in its type. -- The meta should be solved (by A or Set).
{ "alphanum_fraction": 0.6706231454, "avg_line_length": 16.0476190476, "ext": "agda", "hexsha": "1acfcf0137a9cd61f7ff9dcadcd0a354818b0141", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue418private.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue418private.agda", "max_line_length": 75, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue418private.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 95, "size": 337 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.PathFunctor open import lib.PathGroupoid open import lib.types.Bool open import lib.types.IteratedSuspension open import lib.types.LoopSpace open import lib.types.Nat open import lib.types.Paths open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Suspension open import lib.types.TLevel open import lib.types.Unit open import nicolai.pseudotruncations.Preliminary-definitions open import nicolai.pseudotruncations.Liblemmas open import nicolai.pseudotruncations.SeqColim open import nicolai.pseudotruncations.wconstSequence module nicolai.pseudotruncations.PseudoTruncs-wconst-seq where open import nicolai.pseudotruncations.pointed-O-Sphere open import nicolai.pseudotruncations.LoopsAndSpheres open import nicolai.pseudotruncations.PseudoTruncs {- The special sequence that we consider -} module PtruncsSeq {i} (X : Type i) where A : ℕ → Type i A O = X A (S n) = Pseudo n -1-trunc (A n) f : (n : ℕ) → A n → A (S n) f n x = point n -1 x C : Sequence {i} C = (A , f) {- A main result: If we have an inhabitant of X, then the sequence is weakly constant. This is Lemma 6.2 ! -} module PtruncSeqWC {i} (X : Type i) (x₀ : X) where open PtruncsSeq {i} X fs : (n : ℕ) → A n fs O = x₀ fs (S n) = f n (fs n) P : (n : ℕ) → (x : A n) → Type i P n x = f n x == fs (S n) {- This is the easy 'Case j ≡ -2' -} f₀-x₀ : (y : X) → P O y f₀-x₀ y = (spoke O -1 r (lift false)) ∙ ! (spoke O -1 r (lift true)) where r : Sphere {i} O → X r (lift true) = x₀ r (lift false) = y {- Now, the general case is done by induction on n (note that this variable is called 'j' in the paper). Hence, what is 'j' in the paper is now 'S n'. Unfortunately, we have to do everything in one "big" step with many "where" clauses due to the mutual dependencies. -} fₙ-x₀ : (n : ℕ) → (y : A n) → P n y fₙ-x₀ O y = f₀-x₀ y fₙ-x₀ (S n) = Pseudotrunc-ind n Point Hub Spoke where -- just for convenience - saves brackets norₙ' : Sphere' {i} n norₙ' = nor' n fⁿx₀ = fs n Point : (w : A n) → P (S n) (point n -1 w) Point w = ap (point (S n) -1) (fₙ-x₀ n w) Hub : (r : Sphere' n → A n) → point S n -1 _ == _ Hub r = ap (point (S n) -1) (! (spoke n -1 r norₙ') ∙ fₙ-x₀ n (r norₙ')) {- The definition of [Spoke] is the hard part. First, we do the easy things that we have to do... -} Spoke : (r : _) → (x : Sphere' n) → _ Spoke r = λ x → from-transp (P (S n)) (spoke n -1 r x) ( transport (P (S n)) (spoke n -1 r x) (Point (r x)) =⟨ trans-ap₁ (f (S n)) (fs (S (S n))) (spoke n -1 r x) (Point (r x)) ⟩ ! (ap (point (S n) -1) (spoke n -1 r x)) ∙ Point (r x) =⟨ ! (ap (point (S n) -1) (spoke n -1 r x)) ∙ₗ ! (∙-unit-r (Point (r x))) ⟩ ! (ap (point (S n) -1) (spoke n -1 r x)) ∙ Point (r x) ∙ idp {- Now comes the hard step which requires A LOT of work in the where clause below: we can compose with something which, for a complicated reason, is idp! -} =⟨ ! (ap (point (S n) -1) (spoke n -1 r x)) ∙ₗ (Point (r x) ∙ₗ ! (k-const x)) ⟩ ! (ap (point (S n) -1) (spoke n -1 r x)) ∙ Point (r x) ∙ k x {- From here, it's easy; we just have to re-associate paths and cancel inverses. This could be done with standard library lemmas, but it's easier to just use an 'ad-hoc' lemma. -} =⟨ multi-cancelling (ap (point S n -1) (spoke n -1 r x)) (Point (r x)) (Hub r) ⟩ Hub r ∎ ) where {- Now, the actual work follows! -} {- First, we define the interesting loop. In the paper, it is called [kₓ]. Here, it is just [k x]. -} k : (x : Sphere' {i} n) → Ω (Pseudo S n -1-trunc (A (S n)) , f (S n) (f n fⁿx₀)) k x = ! (Point (r x)) ∙ ap (point (S n) -1) (spoke n -1 r x) ∙ (Hub r) {- We want to show that [k] factors as [ap pₙ ∘ h]. First, we define h. -} h : Sphere' {i} n → Ω (Pseudo n -1-trunc (A n) , f n fⁿx₀) h x = ! (fₙ-x₀ n (r x)) ∙ (spoke n -1 r x) ∙ (! (spoke n -1 r norₙ') ∙ fₙ-x₀ n (r norₙ')) {- The statement that k == ap pₙ ∘ h: -} k-p-h : k == ap (point S n -1) ∘ h k-p-h = λ= (λ (x : Sphere' {i} n) → k x =⟨ idp ⟩ ! (Point (r x)) ∙ (ap (point (S n) -1) (spoke n -1 r x) ∙ (Hub r)) =⟨ !-ap (point S n -1) (fₙ-x₀ n (r x)) ∙ᵣ ( ap (point S n -1) (spoke n -1 r x) ∙ Hub r) ⟩ ap (point (S n) -1) (! (fₙ-x₀ n (r x))) ∙ ap (point (S n) -1) (spoke n -1 r x) ∙ (Hub r) =⟨ ! (ap (point (S n) -1) (! (fₙ-x₀ n (r x))) ∙ₗ ap-∙ point S n -1 (spoke n -1 r x) _ ) ⟩ ap (point (S n) -1) (! (fₙ-x₀ n (r x))) ∙ ap (point (S n) -1) ( spoke n -1 r x ∙ (! (spoke n -1 r norₙ') ∙ fₙ-x₀ n (r norₙ'))) =⟨ ! (ap-∙ point S n -1 (! (fₙ-x₀ n (r x))) _) ⟩ ap (point S n -1) (h x) ∎) {- [h] can be made into a a pointed map, written [ĥ] -} ĥ : (⊙Sphere' {i} n) →̇ ⊙Ω (A (S n) , f n fⁿx₀) ĥ = h , (! (fₙ-x₀ n (r _)) ∙ (spoke n -1 r _) ∙ ! (spoke n -1 r norₙ') ∙ fₙ-x₀ n (r norₙ') =⟨ (! (fₙ-x₀ n (r _))) ∙ₗ (! (∙-assoc (spoke n -1 r _) (! (spoke n -1 r norₙ')) (fₙ-x₀ n (r norₙ')))) ⟩ ! (fₙ-x₀ n (r _)) ∙ ((spoke n -1 r _) ∙ (! (spoke n -1 r norₙ'))) ∙ fₙ-x₀ n (r norₙ') =⟨ ! (fₙ-x₀ n (r _)) ∙ₗ !-inv-r (spoke n -1 r _) ∙ᵣ fₙ-x₀ n (r norₙ') ⟩ ! (fₙ-x₀ n (r _)) ∙ idp ∙ fₙ-x₀ n (r norₙ') =⟨ !-inv-l (fₙ-x₀ n (r _)) ⟩ idp ∎ ) {- A pointed version of the first constructor. -} pointsₙ : (A (S n) , f n fⁿx₀) →̇ A (S (S n)) , f (S n) (f n fⁿx₀) pointsₙ = point S n -1 , idp open null open hom-adjoint points-Φ⁻¹-null : isNull∙ (pointsₙ ⊙∘ Φ⁻¹ _ _ ĥ) points-Φ⁻¹-null = <– (isNull-equiv (pointsₙ ⊙∘ Φ⁻¹ _ _ ĥ)) -- translate from isNull∙' (null-lequiv (pointsₙ ⊙∘ Φ⁻¹ _ _ ĥ) -- translate from isNulld; this, -- we have done already! (cmp-nll'.from-sphere-null'∙ n (Φ⁻¹ _ _ ĥ))) ap-points-ĥ-null : isNull∙ (⊙ap (point S n -1 , idp) ⊙∘ ĥ) ap-points-ĥ-null = –> (combine-isnull-nat' ĥ (point S n -1 , idp)) points-Φ⁻¹-null {- ... consequently, h is always refl [in the library "idp"]: -} points-h-const : (x : Sphere' n) → ap (point S n -1) (h x) == idp points-h-const x = null-lequiv-easy _ ap-points-ĥ-null x {- ... and so is k: -} k-const : (x : Sphere' n) → k x == idp k-const x = app= k-p-h x ∙ points-h-const x {- Main result: each function in the sequence is propositional! -} wconst-f : wconst-chain C wconst-f n w₁ w₂ = fₙ-x₀ n w₁ ∙ ! (fₙ-x₀ n w₂) {- Another important result: if we want to show a proposition, we can assume A₀ instead of Aω But this should follow from the general induction principle, so... TODO -} module PtruncSeqResult' {i} (X : Type i) where open PtruncsSeq {i} X -- this defines the chain C of pseudo-truncations SC = SeqCo C reduction-lemma : (P : Type i) → (is-prop P) → (A O → P) → (SC → P) reduction-lemma P ip ff = SeqCo-rec {C = C} {B = P} Ins Glue where Ins : (n : ℕ) → A n → P Ins O = ff Ins (S n) = Pseudotrunc-rec {P = P} n Point-1 Hub-1 Spoke-1 where Point-1 : _ → P Point-1 x = Ins n x Hub-1 : (Sphere' n → A n) → P Hub-1 r = Ins n (r (nor' n)) Spoke-1 : (r : Sphere' n → A n) (x : Sphere' n) → Point-1 (r x) == Hub-1 r Spoke-1 r x = prop-has-all-paths {A = P} ip _ _ Glue : (n : ℕ) (a : A n) → Ins n a == Ins (S n) (f n a) Glue n a = prop-has-all-paths ip _ _ {- Corollary of the main result: The colimit of the considered sequence is propositional! -} module PtruncSeqResult {i} (X : Type i) where open PtruncsSeq {i} X -- this defines the chain C of pseudo-truncations colim-is-prp : is-prop (SeqCo C) colim-is-prp = inhab-to-contr-is-prop (PtruncSeqResult'.reduction-lemma X (is-contr (SeqCo C)) has-level-is-prop (λ x₀ → ins O x₀ , prop-has-all-paths (wconst-prop C (PtruncSeqWC.wconst-f X x₀)) (ins O x₀))) open PtruncSeqResult' X {- If we have the propositional truncation in the theory: -} open import lib.types.Truncation colim-is-trunc : (Trunc ⟨-1⟩ X) ≃ SeqCo C colim-is-trunc = equiv (Trunc-rec (colim-is-prp) (ins 0)) (reduction-lemma (Trunc ⟨-1⟩ X) Trunc-level [_]) (λ _ → prop-has-all-paths colim-is-prp _ _) (λ _ → prop-has-all-paths Trunc-level _ _)
{ "alphanum_fraction": 0.4685148515, "avg_line_length": 35.5633802817, "ext": "agda", "hexsha": "36232f1e491af8039961a7842f379ba6ba73baf2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/pseudotruncations/PseudoTruncs-wconst-seq.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/pseudotruncations/PseudoTruncs-wconst-seq.agda", "max_line_length": 94, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/pseudotruncations/PseudoTruncs-wconst-seq.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 3478, "size": 10100 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Closed module Categories.Category.Monoidal.Closed.IsClosed.Pentagon {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (Cl : Closed M) where open import Data.Product using (Σ; _,_) open import Function using (_$_) renaming (_∘_ to _∙_) open import Function.Equality as Π using (Π) open import Categories.Category.Product open import Categories.Category.Monoidal.Properties M open import Categories.Morphism C open import Categories.Morphism.Properties C open import Categories.Morphism.Reasoning C open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Dinatural hiding (_∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as NI hiding (refl) import Categories.Category.Closed as Cls open Closed Cl private module C = Category C open Category C open Commutation module ℱ = Functor module ⊗ = Functor ⊗ α⇒ = associator.from α⇐ = associator.to λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to open HomReasoning open Π.Π open adjoint renaming (unit to η; counit to ε; Ladjunct to 𝕃; Ladjunct-comm′ to 𝕃-comm′; Ladjunct-resp-≈ to 𝕃-resp-≈) open import Categories.Category.Monoidal.Closed.IsClosed.Identity Cl open import Categories.Category.Monoidal.Closed.IsClosed.L Cl -- some intermediate steps as lemmas private -- ⊗.F₀ (⊗.F₀ ([-,-].F₀ (u , v) , [-,-].F₀ (x , u)) , x) ⇒ v inner : {x : Obj} (v u : Obj) → ((Functor.F₀ [ u ,-] v) ⊗₀ (Functor.F₀ [ x ,-] u) ) ⊗₀ x ⇒ v inner {x} v u = ε.η v ∘ id ⊗₁ ε.η {x} u ∘ α⇒ VU-UY⇒VY-VU : {U V X Y : Obj} → inner {X} V U ∘ (id ⊗₁ 𝕃 (inner U Y) ∘ α⇒) ⊗₁ id ≈ inner V Y ∘ (𝕃 (inner V U) ⊗₁ id) ⊗₁ id VU-UY⇒VY-VU {U} {V} {X} {Y} = begin inner V U ∘ (id ⊗₁ 𝕃 (inner U Y) ∘ α⇒) ⊗₁ id ≈⟨ pushʳ $ ℱ.homomorphism (-⊗ X) ⟩ (inner V U ∘ (id ⊗₁ 𝕃 (inner U Y)) ⊗₁ id) ∘ α⇒ ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩∘⟨refl ⟩ (ε.η V ∘ id ⊗₁ ε.η U ∘ id ⊗₁ 𝕃 (inner U Y) ⊗₁ id ∘ α⇒) ∘ α⇒ ⊗₁ id ≈⟨ (∘-resp-≈ʳ $ pullˡ $ ⟺ (ℱ.homomorphism ([ U , V ]₀ ⊗-))) ⟩∘⟨refl ⟩ (ε.η V ∘ id ⊗₁ (ε.η U ∘ 𝕃 (inner U Y) ⊗₁ id) ∘ α⇒) ∘ α⇒ ⊗₁ id ≈⟨ ∘-resp-≈ˡ (⟺ assoc) ○ assoc ⟩ (ε.η V ∘ id ⊗₁ (ε.η U ∘ 𝕃 (inner U Y) ⊗₁ id)) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ≈⟨ ∘-resp-≈ˡ $ ∘-resp-≈ʳ $ ℱ.F-resp-≈ ([ U , V ]₀ ⊗-) (RLadjunct≈id ○ ⟺ assoc) ⟩ (ε.η V ∘ id ⊗₁ ((ε.η U ∘ id ⊗₁ ε.η Y) ∘ α⇒)) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ≈⟨ ∘-resp-≈ˡ $ ∘-resp-≈ʳ $ ℱ.homomorphism ([ U , V ]₀ ⊗-) ⟩ (ε.η V ∘ id ⊗₁ (ε.η U ∘ id ⊗₁ ε.η Y) ∘ id ⊗₁ α⇒) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ≈⟨ pull-last refl ⟩ ε.η V ∘ id ⊗₁ (ε.η U ∘ id ⊗₁ ε.η Y) ∘ (id ⊗₁ α⇒ ∘ α⇒ ∘ α⇒ ⊗₁ id) ≈⟨ refl⟩∘⟨ ∘-resp-≈ (ℱ.homomorphism ([ U , V ]₀ ⊗-)) pentagon ⟩ ε.η V ∘ (id ⊗₁ ε.η U ∘ id ⊗₁ (id ⊗₁ ε.η Y)) ∘ (α⇒ ∘ α⇒) ≈⟨ ⟺ assoc ○ ⟺ assoc ⟩ ((ε.η V ∘ id ⊗₁ ε.η U ∘ id ⊗₁ (id ⊗₁ ε.η Y)) ∘ α⇒) ∘ α⇒ ≈⟨ pull-last (⟺ assoc-commute-from) ⟩∘⟨refl ⟩ (ε.η V ∘ id ⊗₁ ε.η U ∘ α⇒ ∘ (id ⊗₁ id) ⊗₁ ε.η Y) ∘ α⇒ ≈⟨ assoc ○ ∘-resp-≈ʳ (∘-resp-≈ˡ (⟺ assoc)) ○ ⟺ (center refl) ⟩ (ε.η V ∘ id ⊗₁ ε.η U ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ ε.η Y ∘ α⇒ ≈⟨ ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ⊗.F-resp-≈ (⊗.identity , refl) ⟩ (ε.η V ∘ id ⊗₁ ε.η U ∘ α⇒) ∘ id ⊗₁ ε.η Y ∘ α⇒ ≈˘⟨ center⁻¹ RLadjunct≈id refl ⟩ ε.η V ∘ (𝕃 (ε.η V ∘ id ⊗₁ ε.η U ∘ α⇒) ⊗₁ id ∘ id ⊗₁ ε.η Y) ∘ α⇒ ≈⟨ ∘-resp-≈ʳ $ pushˡ (⟺ [ ⊗ ]-commute) ⟩ ε.η V ∘ id ⊗₁ ε.η Y ∘ 𝕃 (inner V U) ⊗₁ id ∘ α⇒ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ ⊗.F-resp-≈ (refl , ⊗.identity) ⟩∘⟨refl ⟩ ε.η V ∘ id ⊗₁ ε.η Y ∘ 𝕃 (inner V U) ⊗₁ (id ⊗₁ id) ∘ α⇒ ≈˘⟨ pull-last assoc-commute-from ⟩ (inner V Y) ∘ (𝕃 (inner V U) ⊗₁ id) ⊗₁ id ∎ expand-[-,-] : {U V X Y : Obj} → (ε.η [ X , V ]₀ ∘ id ⊗₁ ε.η [ X , U ]₀ ∘ α⇒) ∘ (L X U V ⊗₁ L X Y U) ⊗₁ id ≈ 𝕃 (ε.η V ∘ id ⊗₁ ε.η Y ∘ α⇒) ∘ 𝕃 (ε.η V ∘ id ⊗₁ ε.η U ∘ α⇒) ⊗₁ id expand-[-,-] {U} {V} {X} {Y} = begin (inner XV XU) ∘ (L X U V ⊗₁ L X Y U) ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩ ε.η XV ∘ id ⊗₁ ε.η XU ∘ L X U V ⊗₁ L X Y U ⊗₁ id ∘ α⇒ ≈⟨ refl⟩∘⟨ pullˡ (⟺ ⊗.homomorphism ○ ⊗.F-resp-≈ (identityˡ , refl)) ⟩ ε.η XV ∘ L X U V ⊗₁ (ε.η XU ∘ L X Y U ⊗₁ id) ∘ α⇒ ≈⟨ refl⟩∘⟨ [ ⊗ ]-decompose₁ ⟩∘⟨refl ⟩ ε.η XV ∘ (L X U V ⊗₁ id ∘ id ⊗₁ (ε.η XU ∘ L X Y U ⊗₁ id)) ∘ α⇒ ≈⟨ center⁻¹ RLadjunct≈id (∘-resp-≈ˡ (ℱ.F-resp-≈ ([ U , V ]₀ ⊗-) RLadjunct≈id)) ⟩ 𝕃 (inner V U) ∘ (id ⊗₁ 𝕃 (inner U Y) ∘ α⇒) ≈˘⟨ 𝕃-comm′ ⟩ 𝕃 (inner V U ∘ (id ⊗₁ 𝕃 (inner U Y) ∘ α⇒) ⊗₁ id) ≈⟨ 𝕃-resp-≈ VU-UY⇒VY-VU ⟩ 𝕃 (inner V Y ∘ (𝕃 (inner V U) ⊗₁ id) ⊗₁ id) ≈⟨ 𝕃-comm′ ⟩ 𝕃 (inner V Y) ∘ 𝕃 (inner V U) ⊗₁ id ∎ where XV = [ X , V ]₀ XU = [ X , U ]₀ UV = [ U , V ]₀ pentagon′ : {U V X Y : Obj} → [ [ U , V ]₀ ⇒ [ [ Y , U ]₀ , [ [ X , Y ]₀ , [ X , V ]₀ ]₀ ]₀ ]⟨ L X U V ⇒⟨ [ [ X , U ]₀ , [ X , V ]₀ ]₀ ⟩ L [ X , Y ]₀ [ X , U ]₀ [ X , V ]₀ ⇒⟨ [ [ [ X , Y ]₀ , [ X , U ]₀ ]₀ , [ [ X , Y ]₀ , [ X , V ]₀ ]₀ ]₀ ⟩ [ L X Y U , id ]₁ ≈ L Y U V ⇒⟨ [ [ Y , U ]₀ , [ Y , V ]₀ ]₀ ⟩ [ id , L X Y V ]₁ ⟩ pentagon′ {U} {V} {X} {Y} = begin [ L X Y U , id ]₁ ∘ L [ X , Y ]₀ XU XV ∘ L X U V ≈˘⟨ refl ⟩∘⟨ 𝕃-comm′ ⟩ [ L X Y U , id ]₁ ∘ 𝕃 (𝕃 (ε.η XV ∘ id ⊗₁ ε.η XU ∘ α⇒) ∘ L X U V ⊗₁ id) ≈˘⟨ pushˡ [ [-,-] ]-commute ⟩ ([ id , 𝕃 (inner XV XU) ∘ L X U V ⊗₁ id ]₁ ∘ [ L X Y U , id ]₁) ∘ η.η UV ≈˘⟨ pushʳ (mate.commute₁ (L X Y U)) ⟩ [ id , 𝕃 (inner XV XU) ∘ L X U V ⊗₁ id ]₁ ∘ [ id , id ⊗₁ L X Y U ]₁ ∘ η.η UV ≈˘⟨ pushˡ (ℱ.homomorphism [ [ Y , U ]₀ ,-]) ⟩ 𝕃 ((𝕃 (inner XV XU) ∘ L X U V ⊗₁ id) ∘ id ⊗₁ L X Y U) ≈˘⟨ 𝕃-resp-≈ $ pushʳ [ ⊗ ]-decompose₁ ⟩ 𝕃 (𝕃 (inner XV XU) ∘ L X U V ⊗₁ L X Y U) ≈˘⟨ 𝕃-resp-≈ $ 𝕃-comm′ ⟩ 𝕃 (𝕃 $ (inner XV XU) ∘ (L X U V ⊗₁ L X Y U) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ $ expand-[-,-] ⟩ 𝕃 (𝕃 $ 𝕃 (inner V Y) ∘ 𝕃 (inner V U) ⊗₁ id) ≈⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩ 𝕃 (L X Y V ∘ 𝕃 (inner V U)) ≈⟨ pushˡ (ℱ.homomorphism [ [ Y , U ]₀ ,-]) ⟩ [ id , L X Y V ]₁ ∘ L Y U V ∎ where XV = [ X , V ]₀ XU = [ X , U ]₀ UV = [ U , V ]₀
{ "alphanum_fraction": 0.4545320993, "avg_line_length": 57.686440678, "ext": "agda", "hexsha": "9eaebd1d958f04a7827b08491b1b70a314dcd0dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Pentagon.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Pentagon.agda", "max_line_length": 152, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Pentagon.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3424, "size": 6807 }
-- Andreas, 2019-06-17, LAIM 2019, issue #3855 -- Only allow erased definitions (such as projections of erased fields) -- in erased context. open import Common.IO open import Common.Unit open import Common.String open import Common.Bool record Erased (A : Set) : Set where constructor erase field @0 gone : A noWorld : Bool → Erased String noWorld true = erase "Hello world!" noWorld false = erase "Hallo, Welt!" -- Illegal definition, should raise a type error. unerase : ∀{A : Set} → Erased A → A unerase = Erased.gone main = putStrLn (unerase (noWorld false)) -- WAS: type checker let it through, compiler produces ill-formed Haskell
{ "alphanum_fraction": 0.7243491577, "avg_line_length": 24.1851851852, "ext": "agda", "hexsha": "909d87d52f84bd3143d15557b54139d0a160660d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3855.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3855.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3855.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 175, "size": 653 }
module Structure.Relator.Apartness.Proofs where open import Data open import Data.Either as Either open import Data.Tuple as Tuple open import Functional open import Logic.Classical open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Structure.Relator.Apartness open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Syntax.Implication open import Type private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ ℓₗ₄ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ : Lvl.Level private variable T A B : Type{ℓ} private variable _▫_ : T → T → Type{ℓ} module _ {_▫_ : T → T → Type{ℓ}} where instance -- The negation of an apartness relation is an equivalence relation. -- This is a reason for using an apartness relation in constructive real mathematics. Both the apartness properties and the equivalence properties are sought after and by starting with an apartness relation, one gets both. apartness-equivalenceᵣ : ⦃ apart : Apartness(_▫_) ⦄ → Equivalence((¬_) ∘₂ (_▫_)) Reflexivity.proof (Equivalence.reflexivity apartness-equivalenceᵣ) = irreflexivity(_▫_) Symmetry.proof (Equivalence.symmetry apartness-equivalenceᵣ) = contrapositiveᵣ(symmetry(_▫_)) Transitivity.proof (Equivalence.transitivity apartness-equivalenceᵣ) nxy nyz = [∨]-elim nxy nyz ∘ cotransitivity(_▫_) module _ ⦃ classical : Classical₂(_▫_) ⦄ where equivalence-apartnessᵣ : ⦃ equi : Equivalence(_▫_) ⦄ → Apartness((¬_) ∘₂ (_▫_)) Irreflexivity.proof (Apartness.irreflexivity equivalence-apartnessᵣ) = [¬¬]-intro (reflexivity(_▫_)) Symmetry.proof (Apartness.symmetry equivalence-apartnessᵣ) = contrapositiveᵣ(symmetry(_▫_)) CoTransitivity.proof (Apartness.cotransitivity equivalence-apartnessᵣ) {x}{y}{z} nxz with excluded-middle(x ▫ y) | excluded-middle(y ▫ z) ... | Left xy | Left yz with () ← nxz(transitivity(_▫_) xy yz) ... | Left xy | Right nyz = [∨]-introᵣ nyz ... | Right nxy | Left yz = [∨]-introₗ nxy ... | Right nxy | Right nyz = [∨]-introₗ nxy equivalence-apartnessₗ : ⦃ apart : Apartness((¬_) ∘₂ (_▫_)) ⦄ → Equivalence(_▫_) Reflexivity.proof (Equivalence.reflexivity equivalence-apartnessₗ) = [¬¬]-elim(irreflexivity((¬_) ∘₂ (_▫_))) Symmetry.proof (Equivalence.symmetry equivalence-apartnessₗ) = contrapositiveₗ(symmetry((¬_) ∘₂ (_▫_))) Transitivity.proof (Equivalence.transitivity equivalence-apartnessₗ) {x}{y}{z} xy yz with excluded-middle(x ▫ z) ... | Left xz = xz ... | Right nxz with cotransitivity((¬_) ∘₂ (_▫_)) nxz ... | Left nxy with () ← nxy xy ... | Right nyz with () ← nyz yz apartness-equivalenceₗ : ⦃ equi : Equivalence((¬_) ∘₂ (_▫_)) ⦄ → Apartness(_▫_) Irreflexivity.proof (Apartness.irreflexivity apartness-equivalenceₗ) = reflexivity((¬_) ∘₂ (_▫_)) Symmetry.proof (Apartness.symmetry apartness-equivalenceₗ) = contrapositiveₗ(symmetry((¬_) ∘₂ (_▫_))) CoTransitivity.proof (Apartness.cotransitivity apartness-equivalenceₗ) {x}{y}{z} = (x ▫ z) ⇒-[ [¬¬]-intro ] ¬¬(x ▫ z) ⇒-[ contrapositiveᵣ(uncurry(transitivity((¬_) ∘₂ (_▫_)))) ] ¬(¬(x ▫ y) ∧ ¬(y ▫ z)) ⇒-[ [¬]-preserves-[∧][∨]ᵣ ] ¬¬(x ▫ y) ∨ ¬¬(y ▫ z) ⇒-[ Either.map [¬¬]-elim [¬¬]-elim ] (x ▫ y) ∨ (y ▫ z) ⇒-end
{ "alphanum_fraction": 0.6709774436, "avg_line_length": 57.3275862069, "ext": "agda", "hexsha": "aec653fb4d9fb3a16987ff7ff841dc1c95c1d135", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Relator/Apartness/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Relator/Apartness/Proofs.agda", "max_line_length": 226, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Relator/Apartness/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1178, "size": 3325 }
import Lvl open import Logic open import Type module Data.List.Relation.Pairwise {ℓ₁ ℓ₂} {T : Type{ℓ₁}} where open import Data.List import Data.List.Functions as List open import Data.List.Relation.Quantification open import Functional open import Logic.Propositional -- Whether a list's elements pairwise satisfy a binary relation with their adjacent elements in the list. -- Example: -- AdjacentlyPairwise(_▫_) [a,b,c,d,e] -- ↔ (∧){ -- • (a ▫ b) -- • (b ▫ c) -- • (c ▫ d) -- • (d ▫ e) -- } -- Note: Equivalent to OrderedPairwise(_▫_) when (_▫_) is transitive. data AdjacentlyPairwise(_▫_ : T → T → Stmt{ℓ₂}) : List(T) → Stmt{ℓ₁ Lvl.⊔ ℓ₂} where instance empty : AdjacentlyPairwise(_▫_)(∅) single : ∀{a} → AdjacentlyPairwise(_▫_)(List.singleton(a)) step : ∀{a b}{l} → ⦃ _ : (a ▫ b) ⦄ → ⦃ _ : AdjacentlyPairwise(_▫_)(b ⊰ l) ⦄ → AdjacentlyPairwise(_▫_)(a ⊰ b ⊰ l) -- Whether a list's elements pairwise satisfy a binary relation with all the successive elements in the list. -- Example: -- OrderedPairwise(_▫_) [a,b,c,d,e] -- ↔ (∧){ -- • (a ▫ b) -- • (a ▫ c) -- • (a ▫ d) -- • (a ▫ e) -- • (b ▫ c) -- • (b ▫ d) -- • (b ▫ e) -- • (c ▫ d) -- • (c ▫ e) -- • (d ▫ e) -- } -- Note: Equivalent to Pairwise(_▫_) when (_▫_) is symmetric. data OrderedPairwise(_▫_ : T → T → Stmt{ℓ₂}) : List(T) → Stmt{ℓ₁ Lvl.⊔ ℓ₂} where empty : OrderedPairwise(_▫_)(∅) step : ∀{a}{l} → AllElements(a ▫_)(l) → OrderedPairwise(_▫_)(l) → OrderedPairwise(_▫_)(a ⊰ l) -- TODO: Is this correct? Using (_∧_)? Pairwise : (T → T → Stmt{ℓ₂}) → List(T) → Stmt Pairwise(_▫_) = OrderedPairwise(x ↦ y ↦ (y ▫ x) ∧ (x ▫ y))
{ "alphanum_fraction": 0.5735468565, "avg_line_length": 32.4230769231, "ext": "agda", "hexsha": "7d9cffb4e3c663ae8061bec849d4351792101a6a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Relation/Pairwise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Relation/Pairwise.agda", "max_line_length": 118, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Relation/Pairwise.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 656, "size": 1686 }
open import Agda.Builtin.Nat -- split on m -- WAS: m = zero or m = suc m -- WANT: m = suc m because 2nd clause already covers m = zero f : Nat -> Nat -> Nat f m zero = {!!} f zero zero = zero f _ _ = zero -- However for g, we still get m = zero or m = suc m -- because the other splits are orthogonal / catchalls g : Nat -> Nat -> Nat g m zero = {!!} g zero n = zero g _ _ = zero
{ "alphanum_fraction": 0.6103896104, "avg_line_length": 19.25, "ext": "agda", "hexsha": "6b66b9159e45344b239c9f2d58457e114175aa6e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3829-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3829-2.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3829-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 385 }
module _ where open import Common.Prelude hiding (_>>=_) open import Common.Reflection pattern `Nat = def (quote Nat) [] unquoteDecl f = declareDef (vArg f) `Nat
{ "alphanum_fraction": 0.7142857143, "avg_line_length": 15.2727272727, "ext": "agda", "hexsha": "7f8668917dfe3c0fbb5ab68d004927502736d072", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/UnquoteDeclNotDefined.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/UnquoteDeclNotDefined.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/UnquoteDeclNotDefined.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 46, "size": 168 }
module _ where postulate D : Set module A where infixr 5 _∷_ postulate _∷_ : Set₁ → D → D module B where infix 5 _∷_ postulate _∷_ : Set₁ → Set₁ → D open A open B foo : D foo = Set ∷ Set
{ "alphanum_fraction": 0.5943396226, "avg_line_length": 8.8333333333, "ext": "agda", "hexsha": "337293df44551674c489a75b61a3b5109e14f8e8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Fail/Issue1194m.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue1194m.agda", "max_line_length": 25, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue1194m.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 87, "size": 212 }
module Cats.Category.Setoids where open import Cats.Util.SetoidMorphism public using (_⇒_ ; _≈_ ; ≈-intro ; ≈-elim ; ≈-elim′ ; equiv ; _∘_ ; id ; ∘-resp ; assoc ; id-l ; id-r) open import Level using (_⊔_ ; suc) open import Relation.Binary using (Setoid) open import Cats.Category.Base open import Cats.Category.Sets using (Sets) open import Cats.Util.Conv instance HasArrow-⇒ : ∀ {l l≈} {A B : Setoid l l≈} → HasArrow (A ⇒ B) (suc l) l l HasArrow-⇒ {l} = record { Cat = Sets l ; _⃗ = _⇒_.arr } Setoids : ∀ l l≈ → Category (suc (l ⊔ l≈)) (l ⊔ l≈) (l ⊔ l≈) Setoids l l≈ = record { Obj = Setoid l l≈ ; _⇒_ = λ A B → A ⇒ B ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = λ {A} {B} {C} {f} {g} {h} {i} → ∘-resp {f = f} {g} {h} {i} ; id-r = λ {A} {B} {f} → id-r {f = f} ; id-l = λ {A} {B} {f} → id-l {f = f} ; assoc = λ {A} {B} {C} {D} {f} {g} {h} → assoc {f = f} {g} {h} }
{ "alphanum_fraction": 0.5058201058, "avg_line_length": 27.7941176471, "ext": "agda", "hexsha": "54044f1762c4c279e3b38cd1c27c902f83ce8ddc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Setoids.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Setoids.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Setoids.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 430, "size": 945 }
{-# OPTIONS --sized-types #-} module Ex where open import Size open import Data.Empty open import Data.Unit open import Data.Nat open import Data.Product open import Data.Sum open import Data.Fin open import Function open import Relation.Binary.PropositionalEquality open import Relation.Nullary • : Set • = ⊤ -- | Container for defining signatures record Cont : Set₁ where constructor cont field Pos : Set Sh : Pos → Set open Cont -- | Extension of a container ⟪_⟫ : Cont → Set → Set ⟪ cont P S ⟫ X = Σ P (λ p → S p → X) -- | Finite and infinite trees over a signature record T∞ {i : Size} (C : Cont) : Set where coinductive field out : ∀ {j : Size< i} → • ⊎ ⟪ C ⟫ (T∞ {j} C) open T∞ ------ -- Example due to Fu Peng ----- -- In the following, we give two interpretations to the logic program -- ⇒ P(c) -- P(x), P(f(f x)) ⇒ P(f x). -- The first is an inductive interpretation, the second is coinductive. -- In both cases we are able to prove that there is a tree x : Tree sig₁, -- such that P x holds. -- | Signature has two symbols, a nullary and a unary symbol. sig₁ : Cont sig₁ = cont (⊤ ⊎ ⊤) S where S : ⊤ ⊎ ⊤ → Set S (inj₁ tt) = Fin 0 S (inj₂ tt) = Fin 1 -- | Symbol names c' f' : Pos sig₁ c' = inj₁ tt f' = inj₂ tt -- | Symbol constructor for c c : T∞ sig₁ out c = inj₂ (c' , (λ ())) -- | Constructor for symbol f f : T∞ sig₁ → T∞ sig₁ out (f x) = inj₂ (f' , (λ _ → x)) -- | c and f a distinct constructors c≢f : (x : T∞ sig₁) → c ≡ f x → ⊥ c≢f x p = lem x (cong (λ t → out t {∞}) p) where lem : (y : T∞ sig₁) → out c ≡ out (f y) → ⊥ lem y () -- | Inductive interpretation of LP data P-ind : T∞ sig₁ → Set where c-P : P-ind c f-P : (x : T∞ sig₁) → P-ind x → P-ind (f (f x)) → P-ind (f x) -- | P c holds immediately. p-ind₀ : ∃ λ x → P-ind x p-ind₀ = (c , c-P) unprvbl-lem : (x : T∞ sig₁) → P-ind (f x) → ⊥ unprvbl-lem x q = m x (f x) q refl where m : (x y : T∞ sig₁) → P-ind y → y ≡ f x → ⊥ m x .c c-P p = (c≢f x p) m x .(f x₁) (f-P x₁ p q₁) e = m (f x₁) (f (f x₁)) q₁ refl -- | We can show that there is no tree x, s.t. P-ind (f x) holds. unprvbl : ¬ (∃ λ x → P-ind (f x)) unprvbl (x , q) = unprvbl-lem x q ------- -- Coinductive interpretation of LP F : (T∞ sig₁ → Set) → T∞ sig₁ → Set F G x = m (out x) where m : ⊤ ⊎ ⟪ sig₁ ⟫ (T∞ sig₁) → Set m (inj₁ tt) = ⊥ -- case for • m (inj₂ (inj₁ tt , _)) = ⊤ -- case for c, k₀ m (inj₂ (inj₂ tt , α)) = -- case for f x, k₁ let x = α zero in G x × G (f (f x)) record P-coind' (x : T∞ sig₁) : Set where coinductive field p-out' : F P-coind' x open P-coind' record P-coind {i : Size} (x : T∞ sig₁) : Set where coinductive field p-out : ∀ {j : Size< i} → F (P-coind {j}) x open P-coind -- | Trivial proof k₀ : P-coind c p-out k₀ = tt -- | Non-trivial proof p-coind : ∃ λ x → P-coind (f x) p-coind = (_ , k _ k₀) where k : ∀{i} → (x : T∞ sig₁) → P-coind {i} x → P-coind {i} (f x) p-out (k x q) = (q , k (f x) (k x q)) ------------------------------------------- ------- From example ------------------------------------------- -- | The signature has two symbols: S of arity 1 and cons of arity 2. sig₂ : Cont sig₂ = cont (⊤ ⊎ ⊤) ar₂ where ar₂ : ⊤ ⊎ ⊤ → Set ar₂ (inj₁ tt) = Fin 1 ar₂ (inj₂ tt) = Fin 2 -- | Easier to read symbol names S' cons' : Pos sig₂ S' = inj₁ tt cons' = inj₂ tt -- | Tree constructors for S S : ∀{i} → T∞ {i} sig₂ → T∞ {i} sig₂ out (S x) = inj₂ (S' , (λ _ → x)) -- | Tree constructors for cons cons : T∞ sig₂ → T∞ sig₂ → T∞ sig₂ out (cons x y) = inj₂ (cons' , α) where α : Sh sig₂ cons' → T∞ sig₂ α zero = x α (suc _) = y -- | Coinductive conlusion for the rule -- from(S x, y) ⇒ from(x, cons (x, y)). -- Note that we need to encode this as -- from(S x, y) ∧ x ≡ x' ⇒ from(x, cons (x', y)). From-Enc : (T∞ sig₂ → T∞ sig₂ → Set) → T∞ sig₂ → T∞ sig₂ → Set From-Enc G x y with (out y) ... | inj₁ tt = ⊥ -- no clause for from(x, •) ... | inj₂ (inj₁ tt , _) = ⊥ -- neither for from(x, S y) ... | inj₂ (inj₂ tt , α) = -- from(S x, y) ∧ x ≡ x' ⇒ from(x, cons (x', y)) let x' = α zero y = α (suc zero) in x ≡ x' × G (S x) y -- | Define From as coinductive relation. record From (x y : T∞ sig₂) : Set where coinductive field out-From : From-Enc From x y open From ----- Below, we construct for each x : T∞ sig₂ a term tₓ that is related to x ----- via From, and prove that this is indeed the case. -- | t x = cons x (cons (s x) ... t : T∞ sig₂ → T∞ sig₂ out (t x) = inj₂ (cons' , α) where α : Sh sig₂ cons' → T∞ sig₂ α zero = x α (suc _) = t (S x) -- | Prove that x and tₓ are related via From. lem : (x : T∞ sig₂) → From x (t x) out-From (lem x) = (refl , lem (S x)) -- | From is inhabitated if T∞ sig₂ is. thm : (x : T∞ sig₂) → ∃ λ y → From x y thm x = , (lem x) ---------------------------------------- -- Different approach to show that From is inhabited: -- The separate definition of T∞ and From makes it impossible, or at least -- extremly difficult, to construct y and From x y at the same time. -- The predicate ∃-From x thus simultaneously defines a special existential -- quantifier for T∞ sig₂ that ensures that the given witness y fulfills -- From x y. -- Note that elements of ∃-From contain a lot of junk, as we always just use -- the root of a tree. This make the first projection rather complicated, see -- p₁. I guess, this could be made more economical. ∃-From-Enc : ∀{i} → (T∞ {i} sig₂ → Set) → T∞ {i} sig₂ → Set ∃-From-Enc {i} G x = Σ (⟪ sig₂ ⟫ (T∞ sig₂)) m where m : ⟪ sig₂ ⟫ (T∞ {i} sig₂) → Set m (inj₁ tt , _) = ⊥ m (inj₂ tt , α) = let x' = α zero y = α (suc zero) in x ≡ x' × G (S x) record ∃-From {i : Size} (x : T∞ {i} sig₂) : Set where coinductive field out-∃-From : {j : Size< i} → ∃-From-Enc (∃-From {j}) x open ∃-From postulate T∞-ext : ∀{C} → (x y : T∞ C) → out x ≡ out y → x ≡ y -- | Project out the witness. p₁ : ∀ {i x} → ∃-From {i} x → T∞ {i} sig₂ out (p₁ u) {j} with out-∃-From u ... | (inj₁ tt , _) , () ... | (inj₂ tt , α) , q , u' = inj₂ (cons' , α') where t' = p₁ u' α' : Fin 2 → T∞ {j} sig₂ α' zero = α zero α' (suc _) = t' p₂ : ∀ {x} → (u : ∃-From x) → From x (p₁ u) out-From (p₂ {x} u) = {!!} where m : (v : ∃-From-Enc ∃-From x) → v ≡ out-∃-From u → From-Enc From x (p₁ u) m v p with v ... | ((inj₁ tt , _) , ()) ... | ((inj₂ tt , α) , q , u') = {!!} -- subst (From-Enc From x) s m' where v' : From (S x) (p₁ u') v' = p₂ u' α' : Fin 2 → T∞ sig₂ α' zero = α zero α' (suc _) = p₁ u' s : ∀ {α q u'} → ((inj₂ tt , α) , q , u') ≡ out-∃-From u → record { out = inj₂ (cons' , α') } ≡ p₁ u s p with out-∃-From u s p | r = {!!} {- s p with out-∃-From u s p | (inj₁ tt , _) , () s p | ((inj₂ tt , α₁) , q₁ , u'₁) = ? -- T∞-ext (record { out = inj₂ (cons' , α') }) (p₁ u) {!!} -} m' : From-Enc From x (record { out = inj₂ (cons' , α') }) m' = (q , v') thm₂ : ∀{i} → (x : T∞ {i} sig₂) → ∃-From {i} x out-∃-From (thm₂ {i} x) {j} = ((cons' , α) , refl , u) where u = thm₂ {j} (S x) α : Sh sig₂ cons' → T∞ {j} sig₂ α zero = x α (suc _) = p₁ u --------------------- -- Some other tries -------------------- {- F : (ℕ → Set) → ℕ → Set F G 0 = ⊤ F G (suc n) = G n record NatLp (n : ℕ) : Set where coinductive field out : F NatLp n open NatLp lem : (n : ℕ) → NatLp n out (lem zero) = tt out (lem (suc n)) = lem n record bad (A : Set) (a : A) : Set where coinductive field bad-out : bad A a open bad bad-lem : (n : ℕ) → bad ℕ n bad-out (bad-lem n) = bad-lem n -}
{ "alphanum_fraction": 0.5136907057, "avg_line_length": 25.0935483871, "ext": "agda", "hexsha": "0029eed8d60a21ff085bf8a6a61a57fe30ba083a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "LP2/Ex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "LP2/Ex.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "LP2/Ex.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3147, "size": 7779 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Subset open import Setoids.Setoids open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Sets.EquivalenceRelations open import Rings.Orders.Total.Definition open import Rings.Orders.Partial.Definition open import Rings.Definition open import Fields.Fields open import Groups.Definition open import Functions.Definition module Fields.Orders.LeastUpperBounds.Examples {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_<_ : Rel {_} {c} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {pOrderedRing : PartiallyOrderedRing R pOrder} (orderedRing : TotallyOrderedRing pOrderedRing) (F : Field R) (isNontrivial : Setoid._∼_ S (Ring.0R R) (Ring.1R R) → False) where open PartiallyOrderedRing pOrderedRing open Setoid S open Equivalence eq open SetoidTotalOrder (TotallyOrderedRing.total orderedRing) open Field F open Ring R open SetoidPartialOrder pOrder open Group additiveGroup open import Rings.Orders.Partial.Lemmas pOrderedRing open import Rings.Orders.Total.Lemmas orderedRing open import Fields.Orders.LeastUpperBounds.Definition pOrder charNot2 : Setoid._∼_ S (Ring.1R R + Ring.1R R) (Ring.0R R) → False charNot2 = orderedImpliesCharNot2 nontrivial openIntervalPred : (a : A) → (b : A) → a < b → A → Set _ openIntervalPred a b a<b x = (a < x) && (x < b) openInterval : (a : A) → (b : A) → (a<b : a < b) → subset S (openIntervalPred a b a<b) openInterval a b a<b x=y (a<x ,, x<b) = SetoidPartialOrder.<WellDefined pOrder reflexive x=y a<x ,, SetoidPartialOrder.<WellDefined pOrder x=y reflexive x<b 1/2 : A 1/2 with allInvertible (1R + 1R) charNot2 ... | n , _ = n 1/2Is1/2 : 1/2 * (1R + 1R) ∼ 1R 1/2Is1/2 with allInvertible (1R + 1R) charNot2 ... | n , pr = pr 1/2Is1/2' : (1/2 + 1/2) ∼ 1R 1/2Is1/2' = transitive (+WellDefined (symmetric identIsIdent) (symmetric identIsIdent)) (transitive (transitive (symmetric *DistributesOver+') *Commutative) 1/2Is1/2) halfHalves : (a : A) → ((a + a) * 1/2) ∼ a halfHalves a = transitive *DistributesOver+' (transitive (transitive (transitive (symmetric *DistributesOver+) (*WellDefined reflexive 1/2Is1/2')) *Commutative) identIsIdent) 0<1/2 : 0R < 1/2 0<1/2 = halvePositive 1/2 (<WellDefined reflexive (symmetric (transitive (symmetric (transitive *DistributesOver+ (+WellDefined (transitive *Commutative identIsIdent) (transitive *Commutative identIsIdent)))) 1/2Is1/2)) (0<1 nontrivial)) min<mean : (a b : A) → a < b → a < ((a + b) * 1/2) min<mean a b a<b = <WellDefined (transitive *DistributesOver+' (transitive (+WellDefined *Commutative *Commutative) (transitive (symmetric *DistributesOver+') (transitive (*WellDefined 1/2Is1/2' reflexive) identIsIdent)))) reflexive a+a<a+b where a+a<a+b : ((a + a) * 1/2) < ((a + b) * 1/2) a+a<a+b = ringCanMultiplyByPositive 0<1/2 (<WellDefined reflexive groupIsAbelian (orderRespectsAddition a<b a)) mean<max : (a b : A) → a < b → ((a + b) * 1/2) < b mean<max a b a<b = <WellDefined reflexive (halfHalves b) a+b<b+b where a+b<b+b : ((a + b) * 1/2) < ((b + b) * 1/2) a+b<b+b = ringCanMultiplyByPositive 0<1/2 (orderRespectsAddition a<b b) example1 : (a b : A) (a<b : a < b) → LeastUpperBound (openInterval a b a<b) b LeastUpperBound.upperBound (example1 a b a<b) y (a<y ,, y<b) = inl y<b LeastUpperBound.leastUpperBound (example1 a b a<b) y isUpperBound with totality b y LeastUpperBound.leastUpperBound (example1 a b a<b) y isUpperBound | inl (inl x) = inl x LeastUpperBound.leastUpperBound (example1 a b a<b) y isUpperBound | inl (inr y<b) = exFalso false where betterBound : A betterBound = (y + b) * 1/2 p1 : ((y + b) * 1/2) < ((b + b) * 1/2) p1 = ringCanMultiplyByPositive 0<1/2 (orderRespectsAddition y<b b) p2 : betterBound < b p2 = <WellDefined reflexive (transitive (*WellDefined (transitive (symmetric (+WellDefined identIsIdent identIsIdent)) (transitive (+WellDefined *Commutative *Commutative) (symmetric *DistributesOver+))) reflexive) (transitive (symmetric *Associative) (transitive (transitive (*WellDefined reflexive (transitive *Commutative 1/2Is1/2)) *Commutative) identIsIdent))) p1 a<y : a < y a<y with isUpperBound ((a + b) * 1/2) (min<mean a b a<b ,, mean<max a b a<b) a<y | inl a+b/2<y = <Transitive (min<mean a b a<b) a+b/2<y a<y | inr a+b/2=y = <WellDefined reflexive a+b/2=y (min<mean a b a<b) p3 : ((a + a) * 1/2) < ((y + b) * 1/2) p3 = ringCanMultiplyByPositive 0<1/2 (ringAddInequalities a<y a<b) a<betterBound : a < betterBound a<betterBound = <WellDefined (halfHalves a) reflexive p3 bad : (betterBound < y) || (betterBound ∼ y) bad = isUpperBound betterBound (a<betterBound ,, p2) false : False false with bad false | inl mean<y with min<mean y b y<b ... | y<mean = irreflexive (<Transitive y<mean mean<y) false | inr x = irreflexive (<WellDefined (symmetric x) reflexive (min<mean y b y<b)) LeastUpperBound.leastUpperBound (example1 a b a<b) y isUpperBound | inr x = inr x
{ "alphanum_fraction": 0.6946190102, "avg_line_length": 53.0416666667, "ext": "agda", "hexsha": "0e964b33bff4b8be15787e52b65d585fa5176b03", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/Orders/LeastUpperBounds/Examples.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/Orders/LeastUpperBounds/Examples.agda", "max_line_length": 372, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/Orders/LeastUpperBounds/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1805, "size": 5092 }
-- Andreas, 2020-04-15, issue #4586 -- Better error message when `let` contains an absurd pattern. test : Set₁ test = let f () in Set -- WAS: -- Not a valid let-declaration -- when scope checking let f () in Set -- EXPECTED: -- Missing right hand side in let binding -- when scope checking let f () in Set
{ "alphanum_fraction": 0.665615142, "avg_line_length": 21.1333333333, "ext": "agda", "hexsha": "c2cd15854233bb433a0c063ae7512f7894886258", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4586LetBindingAbsurd.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4586LetBindingAbsurd.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4586LetBindingAbsurd.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 88, "size": 317 }
-- Andreas, 2014-05-02 -- As of now, we have no negative integer literals, and these parse as identifiers. module _ where open import Common.Prelude n : Nat n = -1 -- Should give error "not in scope: -1"
{ "alphanum_fraction": 0.7019230769, "avg_line_length": 17.3333333333, "ext": "agda", "hexsha": "355b2cfa72272aaf4a031b46bdf1d6732fb85ef2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/NegativeIntegerLiteral.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/NegativeIntegerLiteral.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/NegativeIntegerLiteral.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 60, "size": 208 }
module UnSizedIO.ConsoleObject where open import UnSizedIO.Console open import UnSizedIO.Object open import UnSizedIO.IOObject -- A console object is an IO object for the IO interface of console ConsoleObject : (iface : Interface) → Set ConsoleObject iface = IOObject ConsoleInterface iface
{ "alphanum_fraction": 0.8080808081, "avg_line_length": 22.8461538462, "ext": "agda", "hexsha": "e91282f9e620d8c508cf7978cd89404f98671630", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/UnSizedIO/ConsoleObject.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/UnSizedIO/ConsoleObject.agda", "max_line_length": 68, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/UnSizedIO/ConsoleObject.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 71, "size": 297 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Propertiers of any for containers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Morphism.Properties where open import Level using (_⊔_; suc) open import Function as F using (_$_) open import Data.Product using (∃; proj₁; proj₂; _,_) open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_) open import Data.Container.Core open import Data.Container.Morphism open import Data.Container.Relation.Binary.Equality.Setoid -- Identity module _ {s p} (C : Container s p) where id-correct : ∀ {x} {X : Set x} → ⟪ id C ⟫ {X = X} ≗ F.id id-correct x = P.refl -- Composition. module _ {s₁ s₂ s₃ p₁ p₂ p₃} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {C₃ : Container s₃ p₃} where ∘-correct : (f : C₂ ⇒ C₃) (g : C₁ ⇒ C₂) → ∀ {x} {X : Set x} → ⟪ f ∘ g ⟫ {X = X} ≗ (⟪ f ⟫ F.∘ ⟪ g ⟫) ∘-correct f g xs = P.refl module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} where -- Naturality. Natural : ∀ x e → (∀ {X : Set x} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X) → Set (s₁ ⊔ s₂ ⊔ p₁ ⊔ p₂ ⊔ suc (x ⊔ e)) Natural x e m = ∀ {X : Set x} (Y : Setoid x e) → let module Y = Setoid Y in (f : X → Y.Carrier) (xs : ⟦ C₁ ⟧ X) → Eq Y C₂ (m $ map f xs) (map f $ m xs) -- Container morphisms are natural. natural : ∀ (m : C₁ ⇒ C₂) x e → Natural x e ⟪ m ⟫ natural m x e Y f xs = refl Y C₂ module _ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where -- Natural transformations. NT : ∀ x e → Set (s₁ ⊔ s₂ ⊔ p₁ ⊔ p₂ ⊔ suc (x ⊔ e)) NT x e = ∃ λ (m : ∀ {X : Set x} → ⟦ C₁ ⟧ X → ⟦ C₂ ⟧ X) → Natural x e m module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} where -- All natural functions of the right type are container morphisms. complete : ∀ {e} → (nt : NT C₁ C₂ p₁ e) → ∃ λ m → (X : Setoid p₁ e) → let module X = Setoid X in ∀ xs → Eq X C₂ (proj₁ nt xs) (⟪ m ⟫ xs) complete (nt , nat) = (m , λ X xs → nat X (proj₂ xs) (proj₁ xs , F.id)) where m : C₁ ⇒ C₂ m .shape = λ s → proj₁ (nt (s , F.id)) m .position = proj₂ (nt (_ , F.id))
{ "alphanum_fraction": 0.5313445741, "avg_line_length": 31.2567567568, "ext": "agda", "hexsha": "513651e434de95fb65f49e491d53b00fa3f0557f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Morphism/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Morphism/Properties.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Morphism/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 852, "size": 2313 }
module Issue488 where open import Data.Product using (∃-syntax; -,_; _×_; _,_) open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans) module CounterExample where data Term : Set where A B C D : Term data _—→_ : (M N : Term) → Set where B—→C : B —→ C C—→B : C —→ B B—→A : B —→ A C—→D : C —→ D infix 2 _—↠_ infix 1 begin_ infixr 2 _—→⟨_⟩_ infix 3 _∎ data _—↠_ : Term → Term → Set where _∎ : ∀ M --------- → M —↠ M _—→⟨_⟩_ : ∀ L {M N} → L —→ M → M —↠ N --------- → L —↠ N begin_ : ∀ {M N} → M —↠ N ------ → M —↠ N begin M—↠N = M—↠N diamond : ∀ {L M N} → ((L —→ M) × (L —→ N)) ----------------------------- → ∃[ P ] ((M —↠ P) × (N —↠ P)) diamond (B—→A , B—→A) = -, ((A ∎) , (A ∎)) diamond (C—→B , C—→B) = -, ((B ∎) , (B ∎)) diamond (B—→C , B—→C) = -, ((C ∎) , (C ∎)) diamond (C—→D , C—→D) = -, ((D ∎) , (D ∎)) diamond (B—→C , B—→A) = -, ((begin C —→⟨ C—→B ⟩ B —→⟨ B—→A ⟩ A ∎) , (A ∎)) diamond (C—→B , C—→D) = -, ((begin B —→⟨ B—→C ⟩ C —→⟨ C—→D ⟩ D ∎) , (D ∎)) diamond (B—→A , B—→C) = -, ((A ∎) , (begin C —→⟨ C—→B ⟩ B —→⟨ B—→A ⟩ A ∎)) diamond (C—→D , C—→B) = -, ((D ∎) , (begin B —→⟨ B—→C ⟩ C —→⟨ C—→D ⟩ D ∎)) A—↠A : ∀ {P} → A —↠ P → P ≡ A A—↠A (.A ∎) = refl D—↠D : ∀ {P} → D —↠ P → P ≡ D D—↠D (.D ∎) = refl ¬confluence : ¬ (∀ {L M N} → ((L —↠ M) × (L —↠ N)) ----------------------------- → ∃[ P ] ((M —↠ P) × (N —↠ P))) ¬confluence confluence with confluence ( (begin B —→⟨ B—→A ⟩ A ∎) , (begin B —→⟨ B—→C ⟩ C —→⟨ C—→D ⟩ D ∎) ) ... | (P , (A—↠P , D—↠P)) with trans (sym (A—↠A A—↠P)) (D—↠D D—↠P) ... | () module DeterministicImpliesDiamondPropertyAndConfluence where infix 2 _—↠_ infix 1 begin_ infixr 2 _—→⟨_⟩_ infix 3 _∎ postulate Term : Set _—→_ : Term → Term → Set postulate deterministic : ∀ {L M N} → L —→ M → L —→ N ------ → M ≡ N data _—↠_ : Term → Term → Set where _∎ : ∀ M --------- → M —↠ M _—→⟨_⟩_ : ∀ L {M N} → L —→ M → M —↠ N ------- → L —↠ N begin_ : ∀ {M N} → M —↠ N ------ → M —↠ N begin M—↠N = M—↠N diamond : ∀ {L M N} → ((L —→ M) × (L —→ N)) -------------------- → ∃[ P ] ((M —↠ P) × (N —↠ P)) diamond (L—→M , L—→N) rewrite deterministic L—→M L—→N = -, ((_ ∎) , (_ ∎)) confluence : ∀ {L M N} → (L —↠ M) → (L —↠ N) -------------------- → ∃[ P ] ((M —↠ P) × (N —↠ P)) confluence {L} {.L} { N} (.L ∎) L—↠N = -, (L—↠N , (N ∎)) confluence {L} { M} {.L} L—↠M (.L ∎) = -, ((M ∎) , L—↠M) confluence {L} { M} { N} (.L —→⟨ L—→M′ ⟩ M′—↠M) (.L —→⟨ L—→N′ ⟩ N′—↠N) rewrite deterministic L—→M′ L—→N′ = confluence M′—↠M N′—↠N
{ "alphanum_fraction": 0.3556252177, "avg_line_length": 23.7272727273, "ext": "agda", "hexsha": "bf46778aa0e8e4dd9c1b174f48b806bb9cce52b1", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "andorp/plfa.github.io", "max_forks_repo_path": "extra/Issue488.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "andorp/plfa.github.io", "max_issues_repo_path": "extra/Issue488.agda", "max_line_length": 79, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "andorp/plfa.github.io", "max_stars_repo_path": "extra/Issue488.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 1395, "size": 2871 }
module SizedPolyIO.Console where open import Level using () renaming (zero to lzero) open import Size open import NativePolyIO open import SizedPolyIO.Base data ConsoleCommand : Set where putStrLn : String → ConsoleCommand getLine : ConsoleCommand ConsoleResponse : ConsoleCommand → Set ConsoleResponse (putStrLn s) = Unit ConsoleResponse getLine = String consoleI : IOInterface lzero lzero Command consoleI = ConsoleCommand Response consoleI = ConsoleResponse IOConsole : Size → Set → Set IOConsole i = IO consoleI i IOConsole+ : Size → Set → Set IOConsole+ i = IO+ consoleI i translateIOConsoleLocal : (c : ConsoleCommand) → NativeIO (ConsoleResponse c) translateIOConsoleLocal (putStrLn s) = nativePutStrLn s translateIOConsoleLocal getLine = nativeGetLine translateIOConsole : {A : Set} → IOConsole ∞ A → NativeIO A translateIOConsole = translateIO translateIOConsoleLocal main : NativeIO (Unit {lzero}) main = nativePutStrLn "Console"
{ "alphanum_fraction": 0.7760577915, "avg_line_length": 26.9166666667, "ext": "agda", "hexsha": "08f5d4d4a9f94afaf61e39ceca8a1c561650c640", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/SizedPolyIO/Console.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/SizedPolyIO/Console.agda", "max_line_length": 77, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/SizedPolyIO/Console.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 247, "size": 969 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Lists.Lists open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Decidable.Sets open import Numbers.Naturals.Definition open import Numbers.Naturals.Semiring module Computability.LambdaCalculus.Definition where open import UnorderedSet.Definition (ℕDecideEquality) data Term : Set where var : (v : ℕ) → Term lam : (x : ℕ) → Term → Term apply : Term → Term → Term
{ "alphanum_fraction": 0.7489626556, "avg_line_length": 26.7777777778, "ext": "agda", "hexsha": "6a490ecd00337ddeb41027758bb0d2bdcadc2d66", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Computability/LambdaCalculus/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Computability/LambdaCalculus/Definition.agda", "max_line_length": 58, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Computability/LambdaCalculus/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 135, "size": 482 }
module StateSizedIO.Base where open import Size open import SizedIO.Base open import Data.Product record IOInterfaceˢ : Set₁ where field IOStateˢ : Set Commandˢ : IOStateˢ → Set Responseˢ : (s : IOStateˢ) → (m : Commandˢ s) → Set IOnextˢ : (s : IOStateˢ) → (m : Commandˢ s) → (Responseˢ s m) → IOStateˢ open IOInterfaceˢ public record Interfaceˢ : Set₁ where field Stateˢ : Set Methodˢ : Stateˢ → Set Resultˢ : (s : Stateˢ) → (m : Methodˢ s) → Set nextˢ : (s : Stateˢ) → (m : Methodˢ s) → (Resultˢ s m) → Stateˢ open Interfaceˢ public module _ (ioi : IOInterface) (let C = Command ioi) (let R = Response ioi) (oi : Interfaceˢ) (let S = Stateˢ oi) (let M = Methodˢ oi) (let Rt = Resultˢ oi) (let n = nextˢ oi) where record IOObjectˢ (i : Size) (s : Stateˢ) : Set where coinductive field method : ∀{j : Size< i} (m : M s) → IO ioi ∞ ( Σ[ r ∈ Rt s m ] IOObjectˢ j (n s m r)) open IOObjectˢ public module _ (I : IOInterfaceˢ ) (let S = IOStateˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let n = nextˢ I) where mutual record IOˢ (i : Size) (A : S → Set) (s : S) : Set where coinductive constructor delay field forceˢ : {j : Size< i} → IOˢ' j A s data IOˢ' (i : Size) (A : S → Set) (s : S) : Set where doˢ' : (c : C s) (f : (r : R s c) → IOˢ i A (n s c r)) → IOˢ' i A s returnˢ' : (a : A s) → IOˢ' i A s data IOˢ+ (i : Size) (A : S → Set) (s : S) : Set where do' : (c : C s) (f : (r : R s c) → IOˢ i A (n s c r)) → IOˢ+ i A s open IOˢ public module _ {I : IOInterfaceˢ } (let S = Stateˢ I) (let C = Commandˢ I) (let R = Responseˢ I) (let n = nextˢ I) where returnˢ : ∀{i}{A : S → Set} (s : S) (a : A s) → IOˢ I i A s forceˢ (returnˢ s a) = returnˢ' a doˢ : ∀{i}{A : S → Set} (s : S) (c : C s) (f : (r : R s c) → IOˢ I i A (n s c r)) → IOˢ I i A s forceˢ (doˢ s c f) = doˢ' c f
{ "alphanum_fraction": 0.5148467433, "avg_line_length": 28.602739726, "ext": "agda", "hexsha": "d4539c72173d8d5c04e5f36e8826c9d907fca41e", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "src/StateSizedIO/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "src/StateSizedIO/Base.agda", "max_line_length": 99, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "src/StateSizedIO/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 864, "size": 2088 }
open import Categories open import Functors import RMonads module RMonads.RKleisli {a b c d} {C : Cat {a}{b}} {D : Cat {c}{d}} {J : Fun C D} (M : RMonads.RMonad J) where open import Library open RMonads.RMonad M open Cat open Fun Kl : Cat Kl = record{ Obj = Obj C; Hom = λ X Y → Hom D (OMap J X) (T Y); iden = η; comp = λ f g → comp D (bind f) g; idl = λ{X}{Y}{f} → proof comp D (bind η) f ≅⟨ cong (λ g → comp D g f) law1 ⟩ comp D (iden D) f ≅⟨ idl D ⟩ f ∎; idr = law2; ass = λ{_ _ _ _ f g h} → proof comp D (bind (comp D (bind f) g)) h ≅⟨ cong (λ f → comp D f h) law3 ⟩ comp D (comp D (bind f) (bind g)) h ≅⟨ ass D ⟩ comp D (bind f) (comp D (bind g) h) ∎}
{ "alphanum_fraction": 0.5092105263, "avg_line_length": 19, "ext": "agda", "hexsha": "d565af1194cbcad1d68f23b64f04005b0fb7146c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads/RKleisli.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads/RKleisli.agda", "max_line_length": 40, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads/RKleisli.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 337, "size": 760 }
---------------------------------------------------------------------- -- -- -- Author : Jan Stolarek <[email protected]> -- -- License : Public Domain -- -- -- -- This module contains Agda implementation of code presented in -- -- "Why Dependent Types Matter" by Thorsten Altenkirch, Conor -- -- McBride and James McKinna. Original code in the paper was -- -- written in Epigram but with its official web page offline -- -- Epigram seems to be dead. Original paper elides details of some -- -- proofs. I supplied the missing parts so that this module is -- -- complete and self-contained. I avoided using the standard -- -- library to show how the proofs are constructed from -- -- scratch. This means I have to reinvent some of basic things like -- -- natural numbers, lists or vector. Some of the code below is not -- -- mine, in which case I refer to the original source. If you're -- -- reading "Why Dependent Types Matter" I encourage you to try and -- -- implement all the code by yourself. I assure you that this will -- -- be very rewarding. -- -- -- -- This code was written and tested in Agda 2.3.2.1. YMMV -- -- -- ---------------------------------------------------------------------- module WhyDependentTypesMatter where -- Reinventing the wheel: we will need a type of pairs to implement -- deal function that splits list into a pair of lists. Sg is in fact -- type of dependent pairs. This code is taken from Conor McBride: -- https://github.com/pigworker/MetaprogAgda/blob/master/Basics.agda record Sg (S : Set)(T : S → Set) : Set where constructor _,_ field fst : S snd : T fst open Sg public _×_ : Set → Set → Set S × T = Sg S λ _ → T infixr 4 _,_ _×_ -- Section 1 : Introduction -- ~~~~~~~~~~~~~~~~~~~~~~~~ -- Standard implementation of merge sort with no dependent types. This -- implements code shown in the paper in Figure 1. data Nat : Set where zero : Nat suc : Nat → Nat data Order : Set where le ge : Order data List (X : Set) : Set where nil : List X _::_ : X → List X → List X order : Nat → Nat → Order order zero y = le order (suc x) zero = ge order (suc x) (suc y) = order x y -- deal splits a list into a pair of lists. If the input list has even length -- then the output lists have the same length. If input has odd length then -- first output list is longer by one. deal : {X : Set} → List X → List X × List X deal nil = nil , nil deal (x :: nil) = x :: nil , nil deal (y :: (z :: xs)) with deal xs deal (y :: (z :: xs)) | ys , zs = y :: ys , z :: zs -- We have a small problem with merge and sort functions - Agda's termination -- checker complains about merge and sort. The problem is that it doesn't see -- that parameteres to merge are actually getting smaller in the recursive -- calls. This results from the usage of "with" pattern, which is desugared to -- an auxiliary function (say, "go"). Here's an explanation from Andreas Abel: -- -- the termination checker refutes this call pattern. -- -- merge (x :: xs) (y :: ys) -- --> go x xs y ys ... -- --> merge xs (y :: ys) -- -- The termination checker sees that in merge-->go, the arguments all become -- smaller, but in go--->merge, one argument becomes bigger. Since it has -- simplistic, it cannot remember where y and ys came from and that taken -- together, they are actually the same as we started out. -- -- See Andreas' full explanation on Agda mailing list here: -- https://lists.chalmers.se/pipermail/agda/2013/005948.html -- -- I could rewrite the code to avoid this problem, but I'm leaving it as-is -- because IMO it teaches something important about Agda's termination checker. merge : List Nat → List Nat → List Nat merge nil ys = ys merge xs nil = xs merge (x :: xs) (y :: ys) with order x y merge (x :: xs) (y :: ys) | le = x :: merge xs (y :: ys) merge (x :: xs) (y :: ys) | ge = y :: merge (x :: xs) ys -- After I posted the original code I realized that it is not obvious that this -- function is total. We know that (deal xs) is smaller than xs, but I think -- that this isn't obvious. sort : List Nat → List Nat sort xs with deal xs sort xs | ys , nil = ys sort xs | ys , zs = merge (sort ys) (sort zs) -- Section 3.1 : Totality is Good for more than the Soul -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Here we reinvent another wheel - refl data _≡_ {S : Set} (s : S) : S → Set where refl : s ≡ s infixl 1 _≡_ -- Section 3.2 : Defusing General Recursion -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Merge sort with explicit structure of recursion. data Parity : Set where p0 p1 : Parity data DealT (X : Set) : Set where empT : DealT X leafT : X → DealT X nodeT : Parity → DealT X → DealT X → DealT X insertT : {X : Set} → X → DealT X → DealT X insertT x empT = leafT x insertT x (leafT y) = nodeT p0 (leafT y) (leafT x) insertT x (nodeT p0 l r) = nodeT p1 (insertT x l) r insertT x (nodeT p1 l r) = nodeT p0 l (insertT x r) dealT : {X : Set} → List X → DealT X dealT nil = empT dealT (x :: xs) = insertT x (dealT xs) mergeT : DealT Nat → List Nat mergeT empT = nil mergeT (leafT x) = x :: nil mergeT (nodeT p l r) = merge (mergeT l) (mergeT r) -- In the paper this function is called sort. Here and in other places I rename -- functions to avoid name clashes. sortT : List Nat → List Nat sortT xs = mergeT (dealT xs) -- Section 4 : Maintaining Invariants by Static Indexing -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Note that I'm using (suc n) instead of (1 + n). Why? -- becuase I'm not using Agda's BUILTIN pragmas, so I'd -- have to write (suc zero) instead of 1. This doesn't -- change much in the proofs we'll be doing. data Vec (X : Set) : Nat → Set where vnil : Vec X zero vcons : {n : Nat} → X → Vec X n → Vec X (suc n) vtail : {X : Set} {n : Nat} → Vec X (suc n) → Vec X n vtail (vcons x xs) = xs -- @ is a reserved sign in Agda, so I'm using vapp to denote -- vectorized application. vapp : {A B : Set} {n : Nat} → Vec (A → B) n → Vec A n → Vec B n vapp vnil vnil = vnil vapp (vcons f fs) (vcons s ss) = vcons (f s) (vapp fs ss) _+_ : Nat → Nat → Nat zero + n = n suc m + n = suc (m + n) infixl 4 _+_ _++_ : {X : Set} {n m : Nat} → Vec X n → Vec X m → Vec X (n + m) vnil ++ ys = ys vcons x xs ++ ys = vcons x (xs ++ ys) vec : {X : Set} {n : Nat} → X → Vec X n vec {X} {zero} x = vnil vec {X} {suc n} x = vcons x (vec x) xpose : {X : Set} {n m : Nat} → Vec (Vec X n) m → Vec (Vec X m) n xpose vnil = vec vnil xpose (vcons xj xi'j) = vapp (vapp (vec vcons) xj) (xpose xi'j) -- Section 4.1 : Static Indexing and Proofs -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- This section is the one that is missing some of the proofs. vrevacc : {X : Set} {n m : Nat} → Vec X n → Vec X m → Vec X (n + m) vrevacc vnil ys = ys vrevacc (vcons x xs) ys = {!!} -- vrevacc xs (vcons x ys) -- We can't fill in the correct code, because Agda doesn't know that m + (1 + n) -- eqauls 1 + (m + n). We will have to prove it. -- To conduct a proof we will need three properties: -- a) symmetry: if a equals b then b equals a sym : {A : Set} → {a b : A} → a ≡ b → b ≡ a sym refl = refl -- b) congruence: if a equals b, then (f a) equals (f b) cong : {A B : Set} (f : A → B) → ∀ {x y} → x ≡ y → f x ≡ f y cong f refl = refl -- c) substitution: if we have a proposition that is true for a -- and a equals b, then proposition is also true for b subst : {A : Set}(P : A → Set) → {a b : A} → a ≡ b → P a → P b subst prp refl p = p -- These three properties were taken from Thorsten Altenkirch's course -- on Computer Aided Formal Reasoning: http://www.cs.nott.ac.uk/~txa/g53cfr/ -- If you don't know how they work and why do we need them now is a good moment -- to stop reading "Why Dependent Types Matter" and go through lectures 1-9 -- of Thorsten's course. plusSuc : (m n : Nat) → suc (m + n) ≡ m + (suc n) plusSuc zero n = refl plusSuc (suc m) n = cong suc (plusSuc m n) vrevacc2 : {X : Set} {n m : Nat} → Vec X n → Vec X m → Vec X (n + m) vrevacc2 vnil ys = ys vrevacc2 {X} {suc n} {m} (vcons x xs) ys = subst (Vec X) (sym (plusSuc n m)) (vrevacc2 xs (vcons x ys)) -- Last line corresponds to -- -- {[plusSuc m' n⟩} vrevacc2 xs (vcons x ys) -- -- in the paper. Call to vrevacc2 produces Vec with index n + (suc m). The -- problem is we need index suc (n + m). We need to prove their equality. we -- already proved with plusSuc that suc (n + m) equals n + (suc m). Since now -- we're proving something opposite we make use of symmetry: we apply sym to -- plusSuc. Having a proof is not enough - we must apply it to convert from the -- result produced by vrevacc2 to the result expected by the typechecker. To do -- this we use subst function. Our proposition is (Vec X). Look at the type -- signature of subst - the proposition is something that will take an element -- of Set (in this case Nat) and produce an element of Set. Vec X will return an -- element of Set (ie a type) when we pass it an index of type Nat. subst -- replaces (substitutes) index n + (suc m) produced by vrevacc2 with -- suc (n + m). plusZero : (n : Nat) → n + zero ≡ n plusZero zero = refl plusZero (suc n) = cong suc (plusZero n) vrev : {X : Set} {n : Nat} → Vec X n → Vec X n vrev {X} {n} xs = subst (Vec X) (plusZero n) (vrevacc2 xs vnil) -- Section 4.2 : Sized Merge-Sort -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- note that mergeS is a renamed merge from the paper mergeS : {n m : Nat} → Vec Nat n → Vec Nat m → Vec Nat (n + m) mergeS {zero } {_ } vnil ys = ys mergeS {suc n} {zero } (vcons x xs) vnil = subst (Vec Nat) (sym (plusZero (suc n))) (vcons x xs) mergeS {suc n} {suc m} (vcons x xs) (vcons y ys) with order x y mergeS {suc n} {suc m} (vcons x xs) (vcons y ys) | le = vcons x (mergeS xs (vcons y ys)) mergeS {suc n} {suc m} (vcons x xs) (vcons y ys) | ge = subst (Vec Nat) (plusSuc (suc n) m) (vcons y (mergeS (vcons x xs) ys)) p2n : Parity → Nat p2n p0 = zero p2n p1 = suc zero -- Data types and functions below have S (mnemonic for Sized) appended to their -- name to avoid name clash. data DealTS (X : Set) : Nat → Set where empT : DealTS X zero leafT : X → DealTS X (suc zero) nodeT : {n : Nat} → (p : Parity) → DealTS X (p2n p + n) → DealTS X n → DealTS X ((p2n p + n) + n) mergeTS : {n : Nat} → DealTS Nat n → Vec Nat n mergeTS empT = vnil mergeTS (leafT x) = vcons x vnil mergeTS (nodeT p l r) = mergeS (mergeTS l) (mergeTS r) insertTS : {n : Nat} {X : Set} → X → DealTS X n → DealTS X (suc n) insertTS x empT = leafT x insertTS x (leafT y ) = nodeT p0 (leafT y) (leafT x) insertTS x (nodeT p0 l r) = nodeT p1 (insertTS x l) r insertTS {.(p2n p1 + n + n)} {X} x (nodeT {n} p1 l r) = subst (DealTS X) (sym (cong suc (plusSuc n n))) (nodeT p0 l (insertTS x r)) -- | | | -- | | +---- suc (n + n) ≡ n + suc n -- | +-------------- suc (suc (n + n)) ≡ suc (n + suc n)) -- +------------------- suc (n + suc n)) ≡ suc (suc (n + n)) -- -- It took me a while to figure out this proof (though in retrospect it is -- simple). The expected size of the resulting vector is: -- -- suc (suc (n + n)) -- -- First suc comes from the type signature of insertTS, second suc comes from -- p2n p1 (which is suc zero), and n + n comes from nodeT definition. The actual -- size produced by recursive call to nodeT is: -- -- suc (n + suc n)) -- -- Outer suc comes from type signature, n is size of l, suc n is size of new r -- (ie. r with x inserted into it). dealTS : {X : Set} {n : Nat} → Vec X n → DealTS X n dealTS vnil = empT dealTS (vcons x xs) = insertTS x (dealTS xs) sortTS : {n : Nat} → Vec Nat n → Vec Nat n sortTS xs = mergeTS (dealTS xs) -- Section 5.1 : Evidence of Ordering -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ data _≤_ : Nat → Nat → Set where le0 : {y : Nat} → zero ≤ y leS : {x : Nat} {y : Nat} → x ≤ y → suc x ≤ suc y data OrderD : Nat → Nat → Set where le : {x : Nat} {y : Nat} → x ≤ y → OrderD x y ge : {x : Nat} {y : Nat} → y ≤ x → OrderD x y orderD : (x : Nat) → (y : Nat) → OrderD x y orderD zero y = le le0 orderD (suc x) zero = ge le0 orderD (suc x) (suc y) with orderD x y orderD (suc x) (suc y) | le xley = le (leS xley) orderD (suc x) (suc y) | ge ylex = ge (leS ylex) leRefl : {x : Nat} → x ≤ x leRefl {zero} = le0 leRefl {suc x} = leS leRefl leTrans : {x y z : Nat} → x ≤ y → y ≤ z → x ≤ z leTrans le0 yz = le0 leTrans (leS xy) (leS yz) = leS (leTrans xy yz) leASym : {x y : Nat} → x ≤ y → y ≤ x → x ≡ x leASym le0 le0 = refl leASym (leS xy) (leS yx) = refl -- Second equation for leASym is surprisingly simple. I admit I don't fully -- understand why I could simply use refl here, without doing inductive proof. -- Section 5.2 : Locally Sorted Lists -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- LNat = Nat lifted with infinity data LNat : Set where zero : LNat suc : LNat → LNat inf : LNat lift : Nat → LNat lift zero = zero lift (suc x) = suc (lift x) -- In the paper ≤ is used for comparisons on lifted Nats. I'm using ≤' to avoid -- name clash. data _≤'_ : LNat → LNat → Set where le0 : {y : LNat} → zero ≤' y leS : {x : LNat} {y : LNat} → x ≤' y → suc x ≤' suc y leI : {x : LNat} → x ≤' inf data CList : LNat → Set where cnil : CList inf ccons : {y : LNat} → (x : Nat) → (lift x) ≤' y → CList y → CList (lift x) -- | -- +---------------------------+ -- +--> Paper compares lifted and unlifted Nat using ≤. -- This seems incorrect or at least unprecise. -- The problem with CList is that we can't create it if we don't know the least -- element. That's why the paper says sort is bound by min. clist : CList zero clist = ccons zero le0 ( ccons (suc (suc zero)) (leS (leS le0)) ( ccons (suc (suc zero)) leI cnil)) data OList : Nat → Set where onil : {b : Nat} → OList b ocons : {b : Nat} → (x : Nat) → b ≤ x → OList x → OList b -- With OList we can just create the list by saying it is bound by zero. olist : OList zero olist = ocons (suc zero) le0 onil olist2 : OList zero olist2 = ocons (suc zero) le0 (ocons (suc (suc zero)) (leS le0) onil) -- mergeO (ie. merge for open-bounds lists) has the same problem that we've seen -- earlier with merge and sort - termination checker complains because we use -- "with" pattern. mergeO : {b : Nat} → OList b → OList b → OList b mergeO onil ys = ys mergeO (ocons x blex xs) onil = ocons x blex xs mergeO (ocons x blex xs) (ocons y bley ys) with orderD x y mergeO (ocons x blex xs) (ocons y bley ys) | le xley = ocons x blex (mergeO xs (ocons y xley ys)) mergeO (ocons x blex xs) (ocons y bley ys) | ge ylex = ocons y bley (mergeO (ocons x ylex xs) ys) -- The important thing here is that both lists passed to mergeO must share their -- lower bound. That's why we have to replace old evidence of ordering (bley in -- the first case) with the new one (xley). mergeTO : DealT Nat → OList zero mergeTO empT = onil mergeTO (leafT x) = ocons x le0 onil mergeTO (nodeT p l r) = mergeO (mergeTO l) (mergeTO r) sortO : List Nat → OList zero sortO xs = mergeTO (dealT xs)
{ "alphanum_fraction": 0.5861260691, "avg_line_length": 38.0361445783, "ext": "agda", "hexsha": "b3575cd034c9ba5f5be3f04aaf79f2c5eb2c920e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/beyond/WhyDependentTypesMatter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/beyond/WhyDependentTypesMatter.agda", "max_line_length": 80, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/beyond/WhyDependentTypesMatter.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 5044, "size": 15785 }
-- Andreas, 2019-04-10, issue #3687, name mayhem when printing module contents (C-c C-o) -- {-# OPTIONS -v interaction.contents.record:20 #-} record Cat : Set₁ where field Obj : Set Hom : (A B : Obj) → Set Eq : ∀{A B} (f g : Hom A B) → Set id : (A : Obj) → Hom A A comp : ∀{A B C} (f : Hom B C) (g : Hom A B) → Hom A C record Functor (C1 C2 : Cat) : Set where record FunEq {C D : Cat} (F G : Functor C D) : Set₁ where field eqMap : ∀{c d} (f g : Cat.Hom C c d) (eq : Cat.Eq C f g) → Set test : ∀ C D (F G : Functor C D) → FunEq F G FunEq.eqMap (test C D F G) f g f=g = {!D!} -- C-c C-o -- In the output, the names are completely garbled: -- Names -- Obj : Set -- Hom : f=g → f=g → Set -- Eq : {A B : g} → f=g A B → f=g A B → Set -- id : (A : f) → g A A -- comp : {A B : d} {C = C₁ : d} → f B C₁ → f A B → f A C₁ -- test/interaction$ make AGDA_BIN=agda-2.5.1.1 Issue3687.cmp
{ "alphanum_fraction": 0.5234541578, "avg_line_length": 29.3125, "ext": "agda", "hexsha": "dcc08f82babe35d7db4bc271bba9f98cfc41a31d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3687.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3687.agda", "max_line_length": 88, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3687.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 384, "size": 938 }