filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_2
# A sample recursive neural network for text classification # @Time: 8/13/2020 # @Author: lnblanke # @Email: [email protected] # @File: cnn.py import numpy as np import tensorflow as tf from blocks import RNN, Dense from model import Model import os path = os.path.join("glove.6B.100d.txt") embedding_indices = {} with open(path) as f: for line in f: word, coef = line.split(maxsplit = 1) coef = np.fromstring(coef, "f", sep = " ") embedding_indices[word] = coef def embedding(x): word_idx = tf.keras.datasets.imdb.get_word_index() embedding_dim = 100 l, w = x.shape embed = np.zeros((l, w, embedding_dim)) vec_to_word = {vec + 3: ww for ww, vec in word_idx.items()} vec_to_word[0] = "<pad>" vec_to_word[1] = "<sos>" vec_to_word[2] = "<unk>" for i in range(l): for j in range(w): embedding_vec = embedding_indices.get(vec_to_word[x[i][j]]) if embedding_vec is not None: embed[i][j] = embedding_vec return embed word_size = 15000 (train_x, train_y), (test_x, test_y) = tf.keras.datasets.imdb.load_data(num_words = word_size) max_len = 300 train_x = tf.keras.preprocessing.sequence.pad_sequences(train_x, max_len)[:1000] train_y = train_y[:1000] test_x = tf.keras.preprocessing.sequence.pad_sequences(test_x, max_len)[:200] test_y = test_y[:200] train_x_embed = embedding(train_x) test_x_embed = embedding(test_x) rate = 1e-2 # Learning rate epoch = 100 # Learning epochs patience = 10 # Early stop patience model = Model("RNN") model.add(RNN(input_size = 100, output_size = 64, units = 128)) model.add(Dense(64, 2, activation = "softmax")) if __name__ == '__main__': model.fit(train_x_embed, train_y, loss_func = "cross entropy loss", epochs = epoch, learning_rate = rate, patience = patience) pred = model.predict(test_x_embed) print("Accuracy: %.2f" % (np.sum(pred == test_y) / len(test_y) * 100) + "%")
the-stack_0_3
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for CreateDocument # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-dialogflow # [START dialogflow_v2_generated_Documents_CreateDocument_sync] from google.cloud import dialogflow_v2 def sample_create_document(): # Create a client client = dialogflow_v2.DocumentsClient() # Initialize request argument(s) document = dialogflow_v2.Document() document.content_uri = "content_uri_value" document.display_name = "display_name_value" document.mime_type = "mime_type_value" document.knowledge_types = "AGENT_FACING_SMART_REPLY" request = dialogflow_v2.CreateDocumentRequest( parent="parent_value", document=document, ) # Make the request operation = client.create_document(request=request) print("Waiting for operation to complete...") response = operation.result() # Handle the response print(response) # [END dialogflow_v2_generated_Documents_CreateDocument_sync]
the-stack_0_6
import os from setuptools import setup, find_packages with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme: README = readme.read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django_admin_monitoring', version='0.1.3', packages=find_packages(), include_package_data=True, license='MIT License', description='A simple Django app that provides ability to monitor such things as user feedback in admin', long_description=README, url='https://github.com/eternalfame/django_admin_monitoring', author='Vyacheslav Sukhenko', author_email='[email protected]', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
the-stack_0_7
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np import warnings from abc import ABCMeta, abstractmethod from joblib import Parallel from ..base import clone, is_classifier from ._base import LinearClassifierMixin, SparseCoefMixin from ._base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..utils import check_array, check_random_state, check_X_y from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted, _check_sample_weight from ..utils.validation import _deprecate_positional_args from ..utils.fixes import delayed from ..exceptions import ConvergenceWarning from ..model_selection import StratifiedShuffleSplit, ShuffleSplit from ._sgd_fast import _plain_sgd from ..utils import compute_class_weight from ._sgd_fast import Hinge from ._sgd_fast import SquaredHinge from ._sgd_fast import Log from ._sgd_fast import ModifiedHuber from ._sgd_fast import SquaredLoss from ._sgd_fast import Huber from ._sgd_fast import EpsilonInsensitive from ._sgd_fast import SquaredEpsilonInsensitive from ..utils.fixes import _joblib_parallel_args from ..utils import deprecated LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "adaptive": 4, "pa1": 5, "pa2": 6} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. MAX_INT = np.iinfo(np.int32).max class _ValidationScoreCallback: """Callback for early stopping based on validation score""" def __init__(self, estimator, X_val, y_val, sample_weight_val, classes=None): self.estimator = clone(estimator) self.estimator.t_ = 1 # to pass check_is_fitted if classes is not None: self.estimator.classes_ = classes self.X_val = X_val self.y_val = y_val self.sample_weight_val = sample_weight_val def __call__(self, coef, intercept): est = self.estimator est.coef_ = coef.reshape(1, -1) est.intercept_ = np.atleast_1d(intercept) return est.score(self.X_val, self.y_val, self.sample_weight_val) class BaseSGD(SparseCoefMixin, BaseEstimator, metaclass=ABCMeta): """Base class for SGD classification and regression.""" @_deprecate_positional_args def __init__(self, loss, *, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.early_stopping = early_stopping self.validation_fraction = validation_fraction self.n_iter_no_change = n_iter_no_change self.warm_start = warm_start self.average = average self.max_iter = max_iter self.tol = tol # current tests expect init to do parameter validation # but we are not allowed to set attributes self._validate_params() def set_params(self, **kwargs): """Set and validate the parameters of estimator. Parameters ---------- **kwargs : dict Estimator parameters. Returns ------- self : object Estimator instance. """ super().set_params(**kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self, for_partial_fit=False): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if not isinstance(self.early_stopping, bool): raise ValueError("early_stopping must be either True or False") if self.early_stopping and for_partial_fit: raise ValueError("early_stopping should be False with partial_fit") if self.max_iter is not None and self.max_iter <= 0: raise ValueError("max_iter must be > zero. Got %f" % self.max_iter) if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.n_iter_no_change < 1: raise ValueError("n_iter_no_change must be >= 1") if not (0.0 < self.validation_fraction < 1.0): raise ValueError("validation_fraction must be in range (0, 1)") if self.learning_rate in ("constant", "invscaling", "adaptive"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") if self.learning_rate == "optimal" and self.alpha == 0: raise ValueError("alpha must be > 0 since " "learning_rate is 'optimal'. alpha is used " "to compute the optimal learning rate.") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError as e: raise ValueError("The loss %s is not supported. " % loss) from e def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError as e: raise ValueError("learning rate %s " "is not supported. " % learning_rate) from e def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError as e: raise ValueError("Penalty %s is not supported. " % penalty) from e def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match " "dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self._standard_coef = self.coef_ self._standard_intercept = self.intercept_ self._average_coef = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self._average_intercept = np.zeros(self._standard_intercept.shape, dtype=np.float64, order="C") def _make_validation_split(self, y): """Split the dataset between training set and validation set. Parameters ---------- y : ndarray of shape (n_samples, ) Target values. Returns ------- validation_mask : ndarray of shape (n_samples, ) Equal to 1 on the validation set, 0 on the training set. """ n_samples = y.shape[0] validation_mask = np.zeros(n_samples, dtype=np.uint8) if not self.early_stopping: # use the full set for training, with an empty validation set return validation_mask if is_classifier(self): splitter_type = StratifiedShuffleSplit else: splitter_type = ShuffleSplit cv = splitter_type(test_size=self.validation_fraction, random_state=self.random_state) idx_train, idx_val = next(cv.split(np.zeros(shape=(y.shape[0], 1)), y)) if idx_train.shape[0] == 0 or idx_val.shape[0] == 0: raise ValueError( "Splitting %d samples into a train set and a validation set " "with validation_fraction=%r led to an empty set (%d and %d " "samples). Please either change validation_fraction, increase " "number of samples, or disable early_stopping." % (n_samples, self.validation_fraction, idx_train.shape[0], idx_val.shape[0])) validation_mask[idx_val] = 1 return validation_mask def _make_validation_score_cb(self, validation_mask, X, y, sample_weight, classes=None): if not self.early_stopping: return None return _ValidationScoreCallback( self, X[validation_mask], y[validation_mask], sample_weight[validation_mask], classes=classes) # mypy error: Decorated property not supported @deprecated("Attribute standard_coef_ was deprecated " # type: ignore "in version 0.23 and will be removed in 1.0 " "(renaming of 0.25).") @property def standard_coef_(self): return self._standard_coef # mypy error: Decorated property not supported @deprecated( # type: ignore "Attribute standard_intercept_ was deprecated " "in version 0.23 and will be removed in 1.0 (renaming of 0.25)." ) @property def standard_intercept_(self): return self._standard_intercept # mypy error: Decorated property not supported @deprecated("Attribute average_coef_ was deprecated " # type: ignore "in version 0.23 and will be removed in 1.0 " "(renaming of 0.25).") @property def average_coef_(self): return self._average_coef # mypy error: Decorated property not supported @deprecated("Attribute average_intercept_ was deprecated " # type: ignore "in version 0.23 and will be removed in 1.0 " "(renaming of 0.25).") @property def average_intercept_(self): return self._average_intercept def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept, average_coef, average_intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est._standard_coef.ravel() intercept = est._standard_intercept[0] average_coef = est._average_coef.ravel() average_intercept = est._average_intercept[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est._standard_coef[i] intercept = est._standard_intercept[i] average_coef = est._average_coef[i] average_intercept = est._average_intercept[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, max_iter, pos_weight, neg_weight, sample_weight, validation_mask=None, random_state=None): """Fit a single binary classifier. The i'th class is considered the "positive" class. Parameters ---------- est : Estimator object The estimator to fit i : int Index of the positive class X : numpy array or sparse matrix of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples, ] Target values alpha : float The regularization parameter C : float Maximum step size for passive aggressive learning_rate : string The learning rate. Accepted values are 'constant', 'optimal', 'invscaling', 'pa1' and 'pa2'. max_iter : int The maximum number of iterations (epochs) pos_weight : float The weight of the positive class neg_weight : float The weight of the negative class sample_weight : numpy array of shape [n_samples, ] The weight of each sample validation_mask : numpy array of shape [n_samples, ], default=None Precomputed validation mask in case _fit_binary is called in the context of a one-vs-rest reduction. random_state : int, RandomState instance, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] random_state = check_random_state(random_state) dataset, intercept_decay = make_dataset( X, y_i, sample_weight, random_state=random_state) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) if validation_mask is None: validation_mask = est._make_validation_split(y_i) classes = np.array([-1, 1], dtype=y_i.dtype) validation_score_cb = est._make_validation_score_cb( validation_mask, X, y_i, sample_weight, classes=classes) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(MAX_INT) tol = est.tol if est.tol is not None else -np.inf coef, intercept, average_coef, average_intercept, n_iter_ = _plain_sgd( coef, intercept, average_coef, average_intercept, est.loss_function_, penalty_type, alpha, C, est.l1_ratio, dataset, validation_mask, est.early_stopping, validation_score_cb, int(est.n_iter_no_change), max_iter, tol, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if est.average: if len(est.classes_) == 2: est._average_intercept[0] = average_intercept else: est._average_intercept[i] = average_intercept return coef, intercept, n_iter_ class BaseSGDClassifier(LinearClassifierMixin, BaseSGD, metaclass=ABCMeta): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod @_deprecate_positional_args def __init__(self, loss="hinge", *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=None, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False): super().__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, warm_start=warm_start, average=average) self.class_weight = class_weight self.n_jobs = n_jobs def _partial_fit(self, X, y, alpha, C, loss, learning_rate, max_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C", accept_large_sparse=False) n_samples, n_features = X.shape _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight( self.class_weight, classes=self.classes_, y=y) sample_weight = _check_sample_weight(sample_weight, X) if getattr(self, "coef_", None) is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) self.loss_function_ = self._get_loss_function(loss) if not hasattr(self, "t_"): self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, max_iter=max_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, max_iter=max_iter) else: raise ValueError( "The number of classes has to be greater than one;" " got %d class" % n_classes) return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): self._validate_params() if hasattr(self, "classes_"): self.classes_ = None X, y = self._validate_data(X, y, accept_sparse='csr', dtype=np.float64, order="C", accept_large_sparse=False) # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and hasattr(self, "coef_"): if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self._standard_coef = self.coef_ self._standard_intercept = self.intercept_ self._average_coef = None self._average_intercept = None # Clear iteration count for multiple call to fit. self.t_ = 1.0 self._partial_fit(X, y, alpha, C, loss, learning_rate, self.max_iter, classes, sample_weight, coef_init, intercept_init) if (self.tol is not None and self.tol > -np.inf and self.n_iter_ == self.max_iter): warnings.warn("Maximum number of iteration reached before " "convergence. Consider increasing max_iter to " "improve the fit.", ConvergenceWarning) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, max_iter): """Fit a binary classifier on X and y. """ coef, intercept, n_iter_ = fit_binary(self, 1, X, y, alpha, C, learning_rate, max_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight, random_state=self.random_state) self.t_ += n_iter_ * X.shape[0] self.n_iter_ = n_iter_ # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self._average_coef.reshape(1, -1) self.intercept_ = self._average_intercept else: self.coef_ = self._standard_coef.reshape(1, -1) self._standard_intercept = np.atleast_1d(intercept) self.intercept_ = self._standard_intercept else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, max_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OvA (One versus All) or OvR (One versus Rest). """ # Precompute the validation split using the multiclass labels # to ensure proper balancing of the classes. validation_mask = self._make_validation_split(y) # Use joblib to fit OvA in parallel. # Pick the random seed for each job outside of fit_binary to avoid # sharing the estimator random state between threads which could lead # to non-deterministic behavior random_state = check_random_state(self.random_state) seeds = random_state.randint(MAX_INT, size=len(self.classes_)) result = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, **_joblib_parallel_args(require="sharedmem"))( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, max_iter, self._expanded_class_weight[i], 1., sample_weight, validation_mask=validation_mask, random_state=seed) for i, seed in enumerate(seeds)) # take the maximum of n_iter_ over every binary fit n_iter_ = 0. for i, (_, intercept, n_iter_i) in enumerate(result): self.intercept_[i] = intercept n_iter_ = max(n_iter_, n_iter_i) self.t_ += n_iter_ * X.shape[0] self.n_iter_ = n_iter_ if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self._average_coef self.intercept_ = self._average_intercept else: self.coef_ = self._standard_coef self._standard_intercept = np.atleast_1d(self.intercept_) self.intercept_ = self._standard_intercept def partial_fit(self, X, y, classes=None, sample_weight=None): """Perform one epoch of stochastic gradient descent on given samples. Internally, this method uses ``max_iter = 1``. Therefore, it is not guaranteed that a minimum of the cost function is reached after calling it once. Matters such as objective convergence and early stopping should be handled by the user. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data. y : ndarray of shape (n_samples,) Subset of the target values. classes : ndarray of shape (n_classes,), default=None Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), default=None Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : Returns an instance of self. """ self._validate_params(for_partial_fit=True) if self.class_weight in ['balanced']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights," " use compute_class_weight('{0}', " "classes=classes, y=y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, max_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) Target values. coef_init : ndarray of shape (n_classes, n_features), default=None The initial coefficients to warm-start the optimization. intercept_init : ndarray of shape (n_classes,), default=None The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), default=None Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified. Returns ------- self : Returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier): """Linear classifiers (SVM, logistic regression, etc.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning via the `partial_fit` method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, default='hinge' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The possible options are 'hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron', or a regression loss: 'squared_loss', 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see :class:`~sklearn.linear_model.SGDRegressor` for a description. More details about the losses formulas can be found in the :ref:`User Guide <sgd_mathematical_formulation>`. penalty : {'l2', 'l1', 'elasticnet'}, default='l2' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float, default=0.0001 Constant that multiplies the regularization term. The higher the value, the stronger the regularization. Also used to compute the learning rate when set to `learning_rate` is set to 'optimal'. l1_ratio : float, default=0.15 The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Only used if `penalty` is 'elasticnet'. fit_intercept : bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. max_iter : int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the :meth:`partial_fit` method. .. versionadded:: 0.19 tol : float, default=1e-3 The stopping criterion. If it is not None, training will stop when (loss > best_loss - tol) for ``n_iter_no_change`` consecutive epochs. .. versionadded:: 0.19 shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : int, default=0 The verbosity level. epsilon : float, default=0.1 Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : int, default=None The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. random_state : int, RandomState instance, default=None Used for shuffling the data, when ``shuffle`` is set to ``True``. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. learning_rate : str, default='optimal' The learning rate schedule: - 'constant': `eta = eta0` - 'optimal': `eta = 1.0 / (alpha * (t + t0))` where t0 is chosen by a heuristic proposed by Leon Bottou. - 'invscaling': `eta = eta0 / pow(t, power_t)` - 'adaptive': eta = eta0, as long as the training keeps decreasing. Each time n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to increase validation score by tol if early_stopping is True, the current learning rate is divided by 5. .. versionadded:: 0.20 Added 'adaptive' option eta0 : double, default=0.0 The initial learning rate for the 'constant', 'invscaling' or 'adaptive' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double, default=0.5 The exponent for inverse scaling learning rate [default 0.5]. early_stopping : bool, default=False Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically set aside a stratified fraction of training data as validation and terminate training when validation score returned by the `score` method is not improving by at least tol for n_iter_no_change consecutive epochs. .. versionadded:: 0.20 Added 'early_stopping' option validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if `early_stopping` is True. .. versionadded:: 0.20 Added 'validation_fraction' option n_iter_no_change : int, default=5 Number of iterations with no improvement to wait before early stopping. .. versionadded:: 0.20 Added 'n_iter_no_change' option class_weight : dict, {class_label: weight} or "balanced", default=None Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary <warm_start>`. Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled. If a dynamic learning rate is used, the learning rate is adapted depending on the number of samples already seen. Calling ``fit`` resets this counter, while ``partial_fit`` will result in increasing the existing counter. average : bool or int, default=False When set to True, computes the averaged SGD weights accross all updates and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches `average`. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : ndarray of shape (1, n_features) if n_classes == 2 else \ (n_classes, n_features) Weights assigned to the features. intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. n_iter_ : int The actual number of iterations before reaching the stopping criterion. For multiclass fits, it is the maximum over every binary fit. loss_function_ : concrete ``LossFunction`` classes_ : array of shape (n_classes,) t_ : int Number of weight updates performed during training. Same as ``(n_iter_ * n_samples)``. See Also -------- sklearn.svm.LinearSVC : Linear support vector classification. LogisticRegression : Logistic regression. Perceptron : Inherits from SGDClassifier. ``Perceptron()`` is equivalent to ``SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant", penalty=None)``. Examples -------- >>> import numpy as np >>> from sklearn.linear_model import SGDClassifier >>> from sklearn.preprocessing import StandardScaler >>> from sklearn.pipeline import make_pipeline >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> # Always scale the input. The most convenient way is to use a pipeline. >>> clf = make_pipeline(StandardScaler(), ... SGDClassifier(max_iter=1000, tol=1e-3)) >>> clf.fit(X, Y) Pipeline(steps=[('standardscaler', StandardScaler()), ('sgdclassifier', SGDClassifier())]) >>> print(clf.predict([[-0.8, -1]])) [1] """ @_deprecate_positional_args def __init__(self, loss="hinge", *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=None, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False): super().__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. For other loss functions it is necessary to perform proper probability calibration by wrapping the classifier with :class:`~sklearn.calibration.CalibratedClassifierCV` instead. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data for prediction. Returns ------- ndarray of shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): check_is_fitted(self) if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Input data for prediction. Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) def _more_tags(self): return { '_xfail_checks': { 'check_sample_weights_invariance': 'zero sample_weight is not equivalent to removing samples', } } class BaseSGDRegressor(RegressorMixin, BaseSGD): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod @_deprecate_positional_args def __init__(self, loss="squared_loss", *, penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False): super().__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, max_iter, sample_weight, coef_init, intercept_init): X, y = self._validate_data(X, y, accept_sparse="csr", copy=False, order='C', dtype=np.float64, accept_large_sparse=False) y = y.astype(np.float64, copy=False) n_samples, n_features = X.shape sample_weight = _check_sample_weight(sample_weight, X) # Allocate datastructures from input arguments if getattr(self, "coef_", None) is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and getattr(self, "_average_coef", None) is None: self._average_coef = np.zeros(n_features, dtype=np.float64, order="C") self._average_intercept = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, max_iter) return self def partial_fit(self, X, y, sample_weight=None): """Perform one epoch of stochastic gradient descent on given samples. Internally, this method uses ``max_iter = 1``. Therefore, it is not guaranteed that a minimum of the cost function is reached after calling it once. Matters such as objective convergence and early stopping should be handled by the user. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), default=None Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ self._validate_params(for_partial_fit=True) return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, max_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): self._validate_params() if self.warm_start and getattr(self, "coef_", None) is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = 1.0 self._partial_fit(X, y, alpha, C, loss, learning_rate, self.max_iter, sample_weight, coef_init, intercept_init) if (self.tol is not None and self.tol > -np.inf and self.n_iter_ == self.max_iter): warnings.warn("Maximum number of iteration reached before " "convergence. Consider increasing max_iter to " "improve the fit.", ConvergenceWarning) return self def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : ndarray of shape (n_samples,) Target values coef_init : ndarray of shape (n_features,), default=None The initial coefficients to warm-start the optimization. intercept_init : ndarray of shape (1,), default=None The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), default=None Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- ndarray of shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- ndarray of shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, max_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if not hasattr(self, "t_"): self.t_ = 1.0 validation_mask = self._make_validation_split(y) validation_score_cb = self._make_validation_score_cb( validation_mask, X, y, sample_weight) random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) tol = self.tol if self.tol is not None else -np.inf if self.average: coef = self._standard_coef intercept = self._standard_intercept average_coef = self._average_coef average_intercept = self._average_intercept else: coef = self.coef_ intercept = self.intercept_ average_coef = None # Not used average_intercept = [0] # Not used coef, intercept, average_coef, average_intercept, self.n_iter_ = \ _plain_sgd(coef, intercept[0], average_coef, average_intercept[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, validation_mask, self.early_stopping, validation_score_cb, int(self.n_iter_no_change), max_iter, tol, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.t_ += self.n_iter_ * X.shape[0] if self.average > 0: self._average_intercept = np.atleast_1d(average_intercept) self._standard_intercept = np.atleast_1d(intercept) if self.average <= self.t_ - 1.0: # made enough updates for averaging to be taken into account self.coef_ = average_coef self.intercept_ = np.atleast_1d(average_intercept) else: self.coef_ = coef self.intercept_ = np.atleast_1d(intercept) else: self.intercept_ = np.atleast_1d(intercept) class SGDRegressor(BaseSGDRegressor): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, default='squared_loss' The loss function to be used. The possible values are 'squared_loss', 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive' The 'squared_loss' refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. More details about the losses formulas can be found in the :ref:`User Guide <sgd_mathematical_formulation>`. penalty : {'l2', 'l1', 'elasticnet'}, default='l2' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float, default=0.0001 Constant that multiplies the regularization term. The higher the value, the stronger the regularization. Also used to compute the learning rate when set to `learning_rate` is set to 'optimal'. l1_ratio : float, default=0.15 The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Only used if `penalty` is 'elasticnet'. fit_intercept : bool, default=True Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. max_iter : int, default=1000 The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the :meth:`partial_fit` method. .. versionadded:: 0.19 tol : float, default=1e-3 The stopping criterion. If it is not None, training will stop when (loss > best_loss - tol) for ``n_iter_no_change`` consecutive epochs. .. versionadded:: 0.19 shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. verbose : int, default=0 The verbosity level. epsilon : float, default=0.1 Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. random_state : int, RandomState instance, default=None Used for shuffling the data, when ``shuffle`` is set to ``True``. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. learning_rate : string, default='invscaling' The learning rate schedule: - 'constant': `eta = eta0` - 'optimal': `eta = 1.0 / (alpha * (t + t0))` where t0 is chosen by a heuristic proposed by Leon Bottou. - 'invscaling': `eta = eta0 / pow(t, power_t)` - 'adaptive': eta = eta0, as long as the training keeps decreasing. Each time n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to increase validation score by tol if early_stopping is True, the current learning rate is divided by 5. .. versionadded:: 0.20 Added 'adaptive' option eta0 : double, default=0.01 The initial learning rate for the 'constant', 'invscaling' or 'adaptive' schedules. The default value is 0.01. power_t : double, default=0.25 The exponent for inverse scaling learning rate. early_stopping : bool, default=False Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically set aside a fraction of training data as validation and terminate training when validation score returned by the `score` method is not improving by at least `tol` for `n_iter_no_change` consecutive epochs. .. versionadded:: 0.20 Added 'early_stopping' option validation_fraction : float, default=0.1 The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if `early_stopping` is True. .. versionadded:: 0.20 Added 'validation_fraction' option n_iter_no_change : int, default=5 Number of iterations with no improvement to wait before early stopping. .. versionadded:: 0.20 Added 'n_iter_no_change' option warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See :term:`the Glossary <warm_start>`. Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled. If a dynamic learning rate is used, the learning rate is adapted depending on the number of samples already seen. Calling ``fit`` resets this counter, while ``partial_fit`` will result in increasing the existing counter. average : bool or int, default=False When set to True, computes the averaged SGD weights accross all updates and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches `average`. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : ndarray of shape (n_features,) Weights assigned to the features. intercept_ : ndarray of shape (1,) The intercept term. average_coef_ : ndarray of shape (n_features,) Averaged weights assigned to the features. Only available if ``average=True``. .. deprecated:: 0.23 Attribute ``average_coef_`` was deprecated in version 0.23 and will be removed in 1.0 (renaming of 0.25). average_intercept_ : ndarray of shape (1,) The averaged intercept term. Only available if ``average=True``. .. deprecated:: 0.23 Attribute ``average_intercept_`` was deprecated in version 0.23 and will be removed in 1.0 (renaming of 0.25). n_iter_ : int The actual number of iterations before reaching the stopping criterion. t_ : int Number of weight updates performed during training. Same as ``(n_iter_ * n_samples)``. Examples -------- >>> import numpy as np >>> from sklearn.linear_model import SGDRegressor >>> from sklearn.pipeline import make_pipeline >>> from sklearn.preprocessing import StandardScaler >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> # Always scale the input. The most convenient way is to use a pipeline. >>> reg = make_pipeline(StandardScaler(), ... SGDRegressor(max_iter=1000, tol=1e-3)) >>> reg.fit(X, y) Pipeline(steps=[('standardscaler', StandardScaler()), ('sgdregressor', SGDRegressor())]) See Also -------- Ridge, ElasticNet, Lasso, sklearn.svm.SVR """ @_deprecate_positional_args def __init__(self, loss="squared_loss", *, penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False): super().__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, early_stopping=early_stopping, validation_fraction=validation_fraction, n_iter_no_change=n_iter_no_change, warm_start=warm_start, average=average) def _more_tags(self): return { '_xfail_checks': { 'check_sample_weights_invariance': 'zero sample_weight is not equivalent to removing samples', } }
the-stack_0_9
from datetime import datetime, timedelta import pytest import pytz from kaffepause.breaks.selectors import get_pending_break_invitations from kaffepause.breaks.test.factories import BreakFactory, BreakInvitationFactory pytestmark = pytest.mark.django_db def test_get_break_invitations_awaiting_reply_returns_unanswered_invitations(user): """Should return all non-expired break invitations the user has not replied to.""" unanswered_break_invitation = BreakInvitationFactory() unanswered_break_invitation.subject.connect(BreakFactory()) unanswered_break_invitation.addressees.connect(user) an_hour_ago = datetime.now(pytz.utc) - timedelta(hours=10) expired_break = BreakFactory() expired_break.starting_at = an_hour_ago expired_break.save() expired_break_invitation = BreakInvitationFactory() expired_break_invitation.subject.connect(expired_break) expired_break_invitation.addressees.connect(user) accepted_break_invitation = BreakInvitationFactory() accepted_break_invitation.subject.connect(BreakFactory()) accepted_break_invitation.addressees.connect(user) accepted_break_invitation.acceptees.connect(user) declined_break_invitation = BreakInvitationFactory() declined_break_invitation.subject.connect(BreakFactory()) declined_break_invitation.addressees.connect(user) declined_break_invitation.declinees.connect(user) actual_break_invitations = get_pending_break_invitations(actor=user) assert unanswered_break_invitation in actual_break_invitations assert expired_break_invitation not in actual_break_invitations assert accepted_break_invitation not in actual_break_invitations assert declined_break_invitation not in actual_break_invitations def test_get_break_invitations_awaiting_reply_returns_unanswered_invitations_expired_five_minutes_ago( user, ): """Should return unanswered invitations who's break has started within 5 minutes ago.""" two_minutes_ago = datetime.now(pytz.utc) - timedelta(minutes=2) non_expired_break = BreakFactory() non_expired_break.starting_at = two_minutes_ago non_expired_break.save() non_expired_break_invitation = BreakInvitationFactory() non_expired_break_invitation.subject.connect(non_expired_break) non_expired_break_invitation.addressees.connect(user) ten_minutes_ago = datetime.now(pytz.utc) - timedelta(minutes=10) expired_break = BreakFactory() expired_break.starting_at = ten_minutes_ago expired_break.save() expired_break_invitation = BreakInvitationFactory() expired_break_invitation.subject.connect(expired_break) expired_break_invitation.addressees.connect(user) actual_break_invitations = get_pending_break_invitations(actor=user) assert non_expired_break_invitation in actual_break_invitations assert expired_break_invitation not in actual_break_invitations
the-stack_0_10
import numpy as np from scipy.sparse import diags from scipy.sparse import kron from scipy.sparse import eye from .two_particles import TwoParticles from ..util.constants import * from .. import Eigenstates class TwoFermions(TwoParticles): def get_eigenstates(self, H, max_states, eigenvalues, eigenvectors): eigenvectors = eigenvectors.T.reshape(( max_states, *[H.N]*H.ndim) ) # Normalize the eigenvectors eigenvectors = eigenvectors/np.sqrt(H.dx**H.ndim) energies = [] eigenstates_array = [] #antisymmetrize eigenvectors: This is made by applying (𝜓(r1 , s1, r2 , s2) - 𝜓(r2 , s2, r1 , s1))/sqrt(2) to each state. for i in range(max_states): eigenstate_tmp = (eigenvectors[i] - eigenvectors[i].swapaxes(0,1))/np.sqrt(2) norm = np.sum(eigenstate_tmp*eigenstate_tmp)*H.dx**H.ndim TOL = 0.02 # check if is eigenstate_tmp is a normalizable eigenstate. (norm shouldn't be zero) if norm > TOL : # for some reason when the eigenstate is degenerated it isn't normalized #print("norm",norm) eigenstate_tmp = eigenstate_tmp/np.sqrt(norm) if eigenstates_array != []: #check if it's the first eigenstate inner_product = np.sum(eigenstates_array[-1]* eigenstate_tmp)*H.dx**H.ndim #print("inner_product",inner_product) else: inner_product = 0 if np.abs(inner_product) < TOL: # check if is eigenstate_tmp is repeated. (inner_product should be zero) eigenstates_array += [eigenstate_tmp] energies += [eigenvalues[i]] if H.spatial_ndim == 1: type = "TwoIdenticalParticles1D" elif H.spatial_ndim == 2: type = "TwoIdenticalParticles2D" eigenstates = Eigenstates(energies, eigenstates_array, H.extent, H.N, type) return eigenstates
the-stack_0_13
""" Copyright 2018 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ Activation generator helper classes for TCAV""" ''' The following class was modified to enable numeric class labels ''' from abc import ABCMeta from abc import abstractmethod from multiprocessing import dummy as multiprocessing import os.path import numpy as np import PIL.Image import tensorflow as tf class ActivationGeneratorInterface(object): """Interface for an activation generator for a model""" __metaclass__ = ABCMeta @abstractmethod def process_and_load_activations(self, bottleneck_names, concepts): pass @abstractmethod def get_model(self): pass class ActivationGeneratorBase(ActivationGeneratorInterface): """Basic abstract activation generator for a model""" def __init__(self, model, acts_dir, max_examples=500): self.model = model self.acts_dir = acts_dir self.max_examples = max_examples def get_model(self): return self.model @abstractmethod def get_examples_for_concept(self, concept): pass def get_activations_for_concept(self, concept, bottleneck): examples = self.get_examples_for_concept(concept) return self.get_activations_for_examples(examples, bottleneck) def get_activations_for_examples(self, examples, bottleneck): acts = self.model.run_examples(examples, bottleneck) return self.model.reshape_activations(acts).squeeze() def process_and_load_activations(self, bottleneck_names, concepts): acts = {} if self.acts_dir and not tf.gfile.Exists(self.acts_dir): tf.gfile.MakeDirs(self.acts_dir) for concept in concepts: if concept not in acts: acts[concept] = {} for bottleneck_name in bottleneck_names: acts_path = os.path.join(self.acts_dir, 'acts_{}_{}'.format( concept, bottleneck_name)) if self.acts_dir else None if acts_path and tf.gfile.Exists(acts_path): with tf.gfile.Open(acts_path, 'rb') as f: acts[concept][bottleneck_name] = np.load(f).squeeze() tf.logging.info('Loaded {} shape {}'.format( acts_path, acts[concept][bottleneck_name].shape)) else: acts[concept][bottleneck_name] = self.get_activations_for_concept( concept, bottleneck_name) if acts_path: tf.logging.info('{} does not exist, Making one...'.format( acts_path)) with tf.gfile.Open(acts_path, 'wb') as f: np.save(f, acts[concept][bottleneck_name], allow_pickle=False) return acts class ImageActivationGenerator(ActivationGeneratorBase): """Activation generator for a basic image model""" def __init__(self, model, source_dir, acts_dir, max_examples=10): self.source_dir = source_dir super(ImageActivationGenerator, self).__init__( model, acts_dir, max_examples) def get_examples_for_concept(self, concept): concept_dir = os.path.join(self.source_dir, concept) print(concept_dir, concept) img_paths = [os.path.join(concept_dir, d) for d in tf.gfile.ListDirectory(concept_dir)] imgs = self.load_images_from_files(img_paths, self.max_examples, shape=self.model.get_image_shape()[:2]) return imgs def load_image_from_file(self, filename, shape): """Given a filename, try to open the file. If failed, return None. Args: filename: location of the image file shape: the shape of the image file to be scaled Returns: the image if succeeds, None if fails. Rasies: exception if the image was not the right shape. """ if not tf.gfile.Exists(filename): tf.logging.error('Cannot find file: {}'.format(filename)) return None try: img = np.array(PIL.Image.open(tf.gfile.Open(filename, 'rb')).resize( shape, PIL.Image.BILINEAR)) # Normalize pixel values to between 0 and 1. img = np.float32(img) / 255.0 if not (len(img.shape) == 3 and img.shape[2] == 3): return None else: return img except Exception as e: tf.logging.info(e) return None return img def load_images_from_files(self, filenames, max_imgs=500, do_shuffle=True, run_parallel=True, shape=(299, 299), num_workers=100): """Return image arrays from filenames. Args: filenames: locations of image files. max_imgs: maximum number of images from filenames. do_shuffle: before getting max_imgs files, shuffle the names or not run_parallel: get images in parallel or not shape: desired shape of the image num_workers: number of workers in parallelization. Returns: image arrays """ imgs = [] # First shuffle a copy of the filenames. filenames = filenames[:] if do_shuffle: np.random.shuffle(filenames) if run_parallel: pool = multiprocessing.Pool(num_workers) imgs = pool.map( lambda filename: self.load_image_from_file(filename, shape), filenames[:max_imgs]) imgs = [img for img in imgs if img is not None] else: for filename in filenames: img = self.load_image_from_file(filename, shape) if img is not None: imgs.append(img) if len(imgs) >= max_imgs: break return np.array(imgs)
the-stack_0_14
import base64 import logging from urllib import urlencode from dateutil.tz import tzutc import httplib2 from sharpy.exceptions import AccessDenied from sharpy.exceptions import BadRequest from sharpy.exceptions import CheddarError from sharpy.exceptions import CheddarFailure from sharpy.exceptions import NaughtyGateway from sharpy.exceptions import NotFound from sharpy.exceptions import PreconditionFailed from sharpy.exceptions import UnprocessableEntity client_log = logging.getLogger('SharpyClient') class Client(object): default_endpoint = 'https://cheddargetter.com/xml' def __init__(self, username, password, product_code, cache=None, timeout=None, endpoint=None): ''' username - Your cheddargetter username (probably an email address) password - Your cheddargetter password product_code - The product code for the product you want to work with cache - A file system path or an object which implements the httplib2 cache API (optional) timeout - Socket level timout in seconds (optional) endpoint - An alternate API endpoint (optional) ''' self.username = username self.password = password self.product_code = product_code self.endpoint = endpoint or self.default_endpoint self.cache = cache self.timeout = timeout super(Client, self).__init__() def build_url(self, path, params=None): ''' Constructs the url for a cheddar API resource ''' url = u'%s/%s/productCode/%s' % ( self.endpoint, path, self.product_code, ) if params: for key, value in params.items(): url = u'%s/%s/%s' % (url, key, value) return url def format_datetime(self, to_format): if to_format == 'now': str_dt = to_format else: if getattr(to_format, 'tzinfo', None) is not None: utc_value = to_format.astimezone(tzutc()) else: utc_value = to_format str_dt = utc_value.strftime('%Y-%m-%dT%H:%M:%S+00:00') return str_dt def format_date(self, to_format): if to_format == 'now': str_dt = to_format else: if getattr(to_format, 'tzinfo', None) is not None: utc_value = to_format.astimezone(tzutc()) else: utc_value = to_format str_dt = utc_value.strftime('%Y-%m-%d') return str_dt def make_request(self, path, params=None, data=None, method=None): ''' Makes a request to the cheddar api using the authentication and configuration settings available. ''' # Setup values url = self.build_url(path, params) client_log.debug('Requesting: %s' % url) method = method or 'GET' body = None headers = {} cleaned_data = None if data: method = 'POST' body = urlencode(data) headers = { 'content-type': 'application/x-www-form-urlencoded; charset=UTF-8', } # Clean credit card info from when the request gets logged # (remove ccv and only show last four of card num) cleaned_data = data.copy() if 'subscription[ccCardCode]' in cleaned_data: del cleaned_data['subscription[ccCardCode]'] if 'subscription[ccNumber]' in cleaned_data: ccNum = cleaned_data['subscription[ccNumber]'] cleaned_data['subscription[ccNumber]'] = ccNum[-4:] client_log.debug('Request Method: %s' % method) client_log.debug('Request Body (Cleaned Data): %s' % cleaned_data) # Setup http client h = httplib2.Http(cache=self.cache, timeout=self.timeout) # Skip the normal http client behavior and send auth headers # immediately to save an http request. headers['Authorization'] = "Basic %s" % base64.standard_b64encode( self.username + ':' + self.password).strip() # Make request response, content = h.request(url, method, body=body, headers=headers) status = response.status client_log.debug('Response Status: %d' % status) client_log.debug('Response Content: %s' % content) if status != 200 and status != 302: exception_class = CheddarError if status == 401: exception_class = AccessDenied elif status == 400: exception_class = BadRequest elif status == 404: exception_class = NotFound elif status == 412: exception_class = PreconditionFailed elif status == 500: exception_class = CheddarFailure elif status == 502: exception_class = NaughtyGateway elif status == 422: exception_class = UnprocessableEntity raise exception_class(response, content) response.content = content return response
the-stack_0_15
from fastbook import * from fastai.vision.widgets import * def create_dataloader(path): print(" Creating dataloader.. ") db = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) db = db.new( item_tfms=RandomResizedCrop(224, min_scale=0.5), batch_tfms=aug_transforms()) dls = db.dataloaders(path) return dls def train_model(dls , save_model_name = "animals_prediction.pkl"): print(" Training Model .. ") learn = cnn_learner(dls, resnet18, metrics=error_rate) learn.fine_tune(4) learn.export(save_model_name) return learn if __name__ == "__main__": path = Path("DATA") animals_path = (path/"animals") dls = create_dataloader(animals_path) model = train_model(dls ,"animals_prediction.pkl")
the-stack_0_17
# Copyright (c) 2015 Ansible, Inc. # All Rights Reserved. # Python import copy import json import logging import re from collections import OrderedDict from datetime import timedelta # OAuth2 from oauthlib import oauth2 from oauthlib.common import generate_token # Django from django.conf import settings from django.contrib.auth import update_session_auth_hash from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ObjectDoesNotExist, ValidationError as DjangoValidationError from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.encoding import force_text from django.utils.text import capfirst from django.utils.timezone import now from django.utils.functional import cached_property # Django REST Framework from rest_framework.exceptions import ValidationError, PermissionDenied from rest_framework.relations import ManyRelatedField from rest_framework import fields from rest_framework import serializers from rest_framework import validators from rest_framework.utils.serializer_helpers import ReturnList # Django-Polymorphic from polymorphic.models import PolymorphicModel # AWX from awx.main.access import get_user_capabilities from awx.main.constants import ( SCHEDULEABLE_PROVIDERS, ANSI_SGR_PATTERN, ACTIVE_STATES, CENSOR_VALUE, ) from awx.main.models import ( ActivityStream, AdHocCommand, AdHocCommandEvent, Credential, CredentialInputSource, CredentialType, CustomInventoryScript, Group, Host, Instance, InstanceGroup, Inventory, InventorySource, InventoryUpdate, InventoryUpdateEvent, Job, JobEvent, JobHostSummary, JobLaunchConfig, JobTemplate, Label, Notification, NotificationTemplate, OAuth2AccessToken, OAuth2Application, Organization, Project, ProjectUpdate, ProjectUpdateEvent, RefreshToken, Role, Schedule, SystemJob, SystemJobEvent, SystemJobTemplate, Team, UnifiedJob, UnifiedJobTemplate, WorkflowJob, WorkflowJobNode, WorkflowJobTemplate, WorkflowJobTemplateNode, StdoutMaxBytesExceeded ) from awx.main.models.base import VERBOSITY_CHOICES, NEW_JOB_TYPE_CHOICES from awx.main.models.rbac import ( get_roles_on_resource, role_summary_fields_generator ) from awx.main.fields import ImplicitRoleField, JSONBField from awx.main.utils import ( get_type_for_model, get_model_for_type, camelcase_to_underscore, getattrd, parse_yaml_or_json, has_model_field_prefetched, extract_ansible_vars, encrypt_dict, prefetch_page_capabilities, get_external_account) from awx.main.utils.filters import SmartFilter from awx.main.redact import UriCleaner, REPLACE_STR from awx.main.validators import vars_validate_or_raise from awx.api.versioning import reverse from awx.api.fields import (BooleanNullField, CharNullField, ChoiceNullField, VerbatimField, DeprecatedCredentialField) logger = logging.getLogger('awx.api.serializers') # Fields that should be summarized regardless of object type. DEFAULT_SUMMARY_FIELDS = ('id', 'name', 'description')# , 'created_by', 'modified_by')#, 'type') # Keys are fields (foreign keys) where, if found on an instance, summary info # should be added to the serialized data. Values are a tuple of field names on # the related object to include in the summary data (if the field is present on # the related object). SUMMARIZABLE_FK_FIELDS = { 'organization': DEFAULT_SUMMARY_FIELDS, 'user': ('id', 'username', 'first_name', 'last_name'), 'application': ('id', 'name'), 'team': DEFAULT_SUMMARY_FIELDS, 'inventory': DEFAULT_SUMMARY_FIELDS + ('has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'groups_with_active_failures', 'has_inventory_sources', 'total_inventory_sources', 'inventory_sources_with_failures', 'organization_id', 'kind', 'insights_credential_id',), 'host': DEFAULT_SUMMARY_FIELDS + ('has_active_failures', 'has_inventory_sources'), 'group': DEFAULT_SUMMARY_FIELDS + ('has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'groups_with_active_failures', 'has_inventory_sources'), 'project': DEFAULT_SUMMARY_FIELDS + ('status', 'scm_type'), 'source_project': DEFAULT_SUMMARY_FIELDS + ('status', 'scm_type'), 'project_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed',), 'credential': DEFAULT_SUMMARY_FIELDS + ('kind', 'cloud', 'credential_type_id'), 'job': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'elapsed', 'type'), 'job_template': DEFAULT_SUMMARY_FIELDS, 'workflow_job_template': DEFAULT_SUMMARY_FIELDS, 'workflow_job': DEFAULT_SUMMARY_FIELDS, 'schedule': DEFAULT_SUMMARY_FIELDS + ('next_run',), 'unified_job_template': DEFAULT_SUMMARY_FIELDS + ('unified_job_type',), 'last_job': DEFAULT_SUMMARY_FIELDS + ('finished', 'status', 'failed', 'license_error'), 'last_job_host_summary': DEFAULT_SUMMARY_FIELDS + ('failed',), 'last_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'current_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'current_job': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'inventory_source': ('source', 'last_updated', 'status'), 'custom_inventory_script': DEFAULT_SUMMARY_FIELDS, 'source_script': ('name', 'description'), 'role': ('id', 'role_field'), 'notification_template': DEFAULT_SUMMARY_FIELDS, 'instance_group': {'id', 'name', 'controller_id'}, 'insights_credential': DEFAULT_SUMMARY_FIELDS, 'source_credential': DEFAULT_SUMMARY_FIELDS + ('kind', 'cloud', 'credential_type_id'), 'target_credential': DEFAULT_SUMMARY_FIELDS + ('kind', 'cloud', 'credential_type_id'), } def reverse_gfk(content_object, request): ''' Computes a reverse for a GenericForeignKey field. Returns a dictionary of the form { '<type>': reverse(<type detail>) } for example { 'organization': '/api/v2/organizations/1/' } ''' if content_object is None or not hasattr(content_object, 'get_absolute_url'): return {} return { camelcase_to_underscore(content_object.__class__.__name__): content_object.get_absolute_url(request=request) } class CopySerializer(serializers.Serializer): name = serializers.CharField() def validate(self, attrs): name = attrs.get('name') view = self.context.get('view', None) obj = view.get_object() if name == obj.name: raise serializers.ValidationError(_( 'The original object is already named {}, a copy from' ' it cannot have the same name.'.format(name) )) return attrs class BaseSerializerMetaclass(serializers.SerializerMetaclass): ''' Custom metaclass to enable attribute inheritance from Meta objects on serializer base classes. Also allows for inheriting or updating field lists from base class(es): class Meta: # Inherit all fields from base class. fields = ('*',) # Inherit all fields from base class and add 'foo'. fields = ('*', 'foo') # Inherit all fields from base class except 'bar'. fields = ('*', '-bar') # Define fields as 'foo' and 'bar'; ignore base class fields. fields = ('foo', 'bar') # Extra field kwargs dicts are also merged from base classes. extra_kwargs = { 'foo': {'required': True}, 'bar': {'read_only': True}, } # If a subclass were to define extra_kwargs as: extra_kwargs = { 'foo': {'required': False, 'default': ''}, 'bar': {'label': 'New Label for Bar'}, } # The resulting value of extra_kwargs would be: extra_kwargs = { 'foo': {'required': False, 'default': ''}, 'bar': {'read_only': True, 'label': 'New Label for Bar'}, } # Extra field kwargs cannot be removed in subclasses, only replaced. ''' @staticmethod def _is_list_of_strings(x): return isinstance(x, (list, tuple)) and all([isinstance(y, str) for y in x]) @staticmethod def _is_extra_kwargs(x): return isinstance(x, dict) and all([isinstance(k, str) and isinstance(v, dict) for k,v in x.items()]) @classmethod def _update_meta(cls, base, meta, other=None): for attr in dir(other): if attr.startswith('_'): continue val = getattr(other, attr) meta_val = getattr(meta, attr, None) # Special handling for lists/tuples of strings (field names). if cls._is_list_of_strings(val) and cls._is_list_of_strings(meta_val or []): meta_val = meta_val or [] new_vals = [] except_vals = [] if base: # Merge values from all bases. new_vals.extend([x for x in meta_val]) for v in val: if not base and v == '*': # Inherit all values from previous base(es). new_vals.extend([x for x in meta_val]) elif not base and v.startswith('-'): # Except these values. except_vals.append(v[1:]) else: new_vals.append(v) val = [] for v in new_vals: if v not in except_vals and v not in val: val.append(v) val = tuple(val) # Merge extra_kwargs dicts from base classes. elif cls._is_extra_kwargs(val) and cls._is_extra_kwargs(meta_val or {}): meta_val = meta_val or {} new_val = {} if base: for k,v in meta_val.items(): new_val[k] = copy.deepcopy(v) for k,v in val.items(): new_val.setdefault(k, {}).update(copy.deepcopy(v)) val = new_val # Any other values are copied in case they are mutable objects. else: val = copy.deepcopy(val) setattr(meta, attr, val) def __new__(cls, name, bases, attrs): meta = type('Meta', (object,), {}) for base in bases[::-1]: cls._update_meta(base, meta, getattr(base, 'Meta', None)) cls._update_meta(None, meta, attrs.get('Meta', meta)) attrs['Meta'] = meta return super(BaseSerializerMetaclass, cls).__new__(cls, name, bases, attrs) class BaseSerializer(serializers.ModelSerializer, metaclass=BaseSerializerMetaclass): class Meta: fields = ('id', 'type', 'url', 'related', 'summary_fields', 'created', 'modified', 'name', 'description') summary_fields = () summarizable_fields = () # add the URL and related resources type = serializers.SerializerMethodField() url = serializers.SerializerMethodField() related = serializers.SerializerMethodField('_get_related') summary_fields = serializers.SerializerMethodField('_get_summary_fields') # make certain fields read only created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() def __init__(self, *args, **kwargs): super(BaseSerializer, self).__init__(*args, **kwargs) # The following lines fix the problem of being able to pass JSON dict into PrimaryKeyRelatedField. data = kwargs.get('data', False) if data: for field_name, field_instance in self.fields.items(): if isinstance(field_instance, ManyRelatedField) and not field_instance.read_only: if isinstance(data.get(field_name, False), dict): raise serializers.ValidationError(_('Cannot use dictionary for %s' % field_name)) @property def version(self): return 2 def get_type(self, obj): return get_type_for_model(self.Meta.model) def get_types(self): return [self.get_type(None)] def get_type_choices(self): type_name_map = { 'job': _('Playbook Run'), 'ad_hoc_command': _('Command'), 'project_update': _('SCM Update'), 'inventory_update': _('Inventory Sync'), 'system_job': _('Management Job'), 'workflow_job': _('Workflow Job'), 'workflow_job_template': _('Workflow Template'), 'job_template': _('Job Template') } choices = [] for t in self.get_types(): name = _(type_name_map.get(t, force_text(get_model_for_type(t)._meta.verbose_name).title())) choices.append((t, name)) return choices def get_url(self, obj): if obj is None or not hasattr(obj, 'get_absolute_url'): return '' elif isinstance(obj, User): return self.reverse('api:user_detail', kwargs={'pk': obj.pk}) else: return obj.get_absolute_url(request=self.context.get('request')) def filter_field_metadata(self, fields, method): """ Filter field metadata based on the request method. This it intended to be extended by subclasses. """ return fields def _get_related(self, obj): return {} if obj is None else self.get_related(obj) def _generate_named_url(self, url_path, obj, node): url_units = url_path.split('/') named_url = node.generate_named_url(obj) url_units[4] = named_url return '/'.join(url_units) def get_related(self, obj): res = OrderedDict() view = self.context.get('view', None) if view and (hasattr(view, 'retrieve') or view.request.method == 'POST') and \ type(obj) in settings.NAMED_URL_GRAPH: original_url = self.get_url(obj) res['named_url'] = self._generate_named_url( original_url, obj, settings.NAMED_URL_GRAPH[type(obj)] ) if getattr(obj, 'created_by', None): res['created_by'] = self.reverse('api:user_detail', kwargs={'pk': obj.created_by.pk}) if getattr(obj, 'modified_by', None): res['modified_by'] = self.reverse('api:user_detail', kwargs={'pk': obj.modified_by.pk}) return res def _get_summary_fields(self, obj): return {} if obj is None else self.get_summary_fields(obj) def get_summary_fields(self, obj): # Return values for certain fields on related objects, to simplify # displaying lists of items without additional API requests. summary_fields = OrderedDict() for fk, related_fields in SUMMARIZABLE_FK_FIELDS.items(): try: # A few special cases where we don't want to access the field # because it results in additional queries. if fk == 'job' and isinstance(obj, UnifiedJob): continue if fk == 'project' and (isinstance(obj, InventorySource) or isinstance(obj, Project)): continue try: fkval = getattr(obj, fk, None) except ObjectDoesNotExist: continue if fkval is None: continue if fkval == obj: continue summary_fields[fk] = OrderedDict() for field in related_fields: fval = getattr(fkval, field, None) if fval is None and field == 'type': if isinstance(fkval, PolymorphicModel): fkval = fkval.get_real_instance() fval = get_type_for_model(fkval) elif fval is None and field == 'unified_job_type' and isinstance(fkval, UnifiedJobTemplate): fkval = fkval.get_real_instance() fval = get_type_for_model(fkval._get_unified_job_class()) if fval is not None: summary_fields[fk][field] = fval # Can be raised by the reverse accessor for a OneToOneField. except ObjectDoesNotExist: pass if getattr(obj, 'created_by', None): summary_fields['created_by'] = OrderedDict() for field in SUMMARIZABLE_FK_FIELDS['user']: summary_fields['created_by'][field] = getattr(obj.created_by, field) if getattr(obj, 'modified_by', None): summary_fields['modified_by'] = OrderedDict() for field in SUMMARIZABLE_FK_FIELDS['user']: summary_fields['modified_by'][field] = getattr(obj.modified_by, field) # RBAC summary fields roles = {} for field in obj._meta.get_fields(): if type(field) is ImplicitRoleField: roles[field.name] = role_summary_fields_generator(obj, field.name) if len(roles) > 0: summary_fields['object_roles'] = roles # Advance display of RBAC capabilities if hasattr(self, 'show_capabilities'): user_capabilities = self._obj_capability_dict(obj) if user_capabilities: summary_fields['user_capabilities'] = user_capabilities return summary_fields def _obj_capability_dict(self, obj): """ Returns the user_capabilities dictionary for a single item If inside of a list view, it runs the prefetching algorithm for the entire current page, saves it into context """ view = self.context.get('view', None) parent_obj = None if view and hasattr(view, 'parent_model') and hasattr(view, 'get_parent_object'): parent_obj = view.get_parent_object() if view and view.request and view.request.user: capabilities_cache = {} # if serializer has parent, it is ListView, apply page capabilities prefetch if self.parent and hasattr(self, 'capabilities_prefetch') and self.capabilities_prefetch: qs = self.parent.instance if 'capability_map' not in self.context: if hasattr(self, 'polymorphic_base'): model = self.polymorphic_base.Meta.model prefetch_list = self.polymorphic_base._capabilities_prefetch else: model = self.Meta.model prefetch_list = self.capabilities_prefetch self.context['capability_map'] = prefetch_page_capabilities( model, qs, prefetch_list, view.request.user ) if obj.id in self.context['capability_map']: capabilities_cache = self.context['capability_map'][obj.id] return get_user_capabilities( view.request.user, obj, method_list=self.show_capabilities, parent_obj=parent_obj, capabilities_cache=capabilities_cache ) else: # Contextual information to produce user_capabilities doesn't exist return {} def get_created(self, obj): if obj is None: return None elif isinstance(obj, User): return obj.date_joined elif hasattr(obj, 'created'): return obj.created return None def get_modified(self, obj): if obj is None: return None elif isinstance(obj, User): return obj.last_login # Not actually exposed for User. elif hasattr(obj, 'modified'): return obj.modified return None def get_extra_kwargs(self): extra_kwargs = super(BaseSerializer, self).get_extra_kwargs() if self.instance: read_only_on_update_fields = getattr(self.Meta, 'read_only_on_update_fields', tuple()) for field_name in read_only_on_update_fields: kwargs = extra_kwargs.get(field_name, {}) kwargs['read_only'] = True extra_kwargs[field_name] = kwargs return extra_kwargs def build_standard_field(self, field_name, model_field): # DRF 3.3 serializers.py::build_standard_field() -> utils/field_mapping.py::get_field_kwargs() short circuits # when a Model's editable field is set to False. The short circuit skips choice rendering. # # This logic is to force rendering choice's on an uneditable field. # Note: Consider expanding this rendering for more than just choices fields # Note: This logic works in conjuction with if hasattr(model_field, 'choices') and model_field.choices: was_editable = model_field.editable model_field.editable = True field_class, field_kwargs = super(BaseSerializer, self).build_standard_field(field_name, model_field) if hasattr(model_field, 'choices') and model_field.choices: model_field.editable = was_editable if was_editable is False: field_kwargs['read_only'] = True # Pass model field default onto the serializer field if field is not read-only. if model_field.has_default() and not field_kwargs.get('read_only', False): field_kwargs['default'] = field_kwargs['initial'] = model_field.get_default() # Enforce minimum value of 0 for PositiveIntegerFields. if isinstance(model_field, (models.PositiveIntegerField, models.PositiveSmallIntegerField)) and 'choices' not in field_kwargs: field_kwargs['min_value'] = 0 # Use custom boolean field that allows null and empty string as False values. if isinstance(model_field, models.BooleanField) and not field_kwargs.get('read_only', False): field_class = BooleanNullField # Use custom char or choice field that coerces null to an empty string. if isinstance(model_field, (models.CharField, models.TextField)) and not field_kwargs.get('read_only', False): if 'choices' in field_kwargs: field_class = ChoiceNullField else: field_class = CharNullField # Update the message used for the unique validator to use capitalized # verbose name; keeps unique message the same as with DRF 2.x. opts = self.Meta.model._meta.concrete_model._meta for validator in field_kwargs.get('validators', []): if isinstance(validator, validators.UniqueValidator): unique_error_message = model_field.error_messages.get('unique', None) if unique_error_message: unique_error_message = unique_error_message % { 'model_name': capfirst(opts.verbose_name), 'field_label': capfirst(model_field.verbose_name), } validator.message = unique_error_message return field_class, field_kwargs def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(BaseSerializer, self).build_relational_field(field_name, relation_info) # Don't include choices for foreign key fields. field_kwargs.pop('choices', None) return field_class, field_kwargs def get_unique_together_validators(self): # Allow the model's full_clean method to handle the unique together validation. return [] def run_validation(self, data=fields.empty): try: return super(BaseSerializer, self).run_validation(data) except ValidationError as exc: # Avoid bug? in DRF if exc.detail happens to be a list instead of a dict. raise ValidationError(detail=serializers.as_serializer_error(exc)) def get_validation_exclusions(self, obj=None): # Borrowed from DRF 2.x - return model fields that should be excluded # from model validation. cls = self.Meta.model opts = cls._meta.concrete_model._meta exclusions = [field.name for field in opts.fields] for field_name, field in self.fields.items(): field_name = field.source or field_name if field_name not in exclusions: continue if field.read_only: continue if isinstance(field, serializers.Serializer): continue exclusions.remove(field_name) # The clean_ methods cannot be ran on many-to-many models exclusions.extend([field.name for field in opts.many_to_many]) return exclusions def validate(self, attrs): attrs = super(BaseSerializer, self).validate(attrs) try: # Create/update a model instance and run it's full_clean() method to # do any validation implemented on the model class. exclusions = self.get_validation_exclusions(self.instance) obj = self.instance or self.Meta.model() for k,v in attrs.items(): if k not in exclusions: setattr(obj, k, v) obj.full_clean(exclude=exclusions) # full_clean may modify values on the instance; copy those changes # back to attrs so they are saved. for k in attrs.keys(): if k not in exclusions: attrs[k] = getattr(obj, k) except DjangoValidationError as exc: # DjangoValidationError may contain a list or dict; normalize into a # dict where the keys are the field name and the values are a list # of error messages, then raise as a DRF ValidationError. DRF would # normally convert any DjangoValidationError to a non-field specific # error message; here we preserve field-specific errors raised from # the model's full_clean method. d = exc.update_error_dict({}) for k,v in d.items(): v = v if isinstance(v, list) else [v] v2 = [] for e in v: if isinstance(e, DjangoValidationError): v2.extend(list(e)) elif isinstance(e, list): v2.extend(e) else: v2.append(e) d[k] = list(map(force_text, v2)) raise ValidationError(d) return attrs def reverse(self, *args, **kwargs): kwargs['request'] = self.context.get('request') return reverse(*args, **kwargs) @property def is_detail_view(self): if 'view' in self.context: if 'pk' in self.context['view'].kwargs: return True return False class EmptySerializer(serializers.Serializer): pass class UnifiedJobTemplateSerializer(BaseSerializer): # As a base serializer, the capabilities prefetch is not used directly _capabilities_prefetch = [ 'admin', 'execute', {'copy': ['jobtemplate.project.use', 'jobtemplate.inventory.use', 'workflowjobtemplate.organization.workflow_admin']} ] class Meta: model = UnifiedJobTemplate fields = ('*', 'last_job_run', 'last_job_failed', 'next_job_run', 'status') def get_related(self, obj): res = super(UnifiedJobTemplateSerializer, self).get_related(obj) if obj.current_job: res['current_job'] = obj.current_job.get_absolute_url(request=self.context.get('request')) if obj.last_job: res['last_job'] = obj.last_job.get_absolute_url(request=self.context.get('request')) if obj.next_schedule: res['next_schedule'] = obj.next_schedule.get_absolute_url(request=self.context.get('request')) return res def get_types(self): if type(self) is UnifiedJobTemplateSerializer: return ['project', 'inventory_source', 'job_template', 'system_job_template', 'workflow_job_template',] else: return super(UnifiedJobTemplateSerializer, self).get_types() def get_sub_serializer(self, obj): serializer_class = None if type(self) is UnifiedJobTemplateSerializer: if isinstance(obj, Project): serializer_class = ProjectSerializer elif isinstance(obj, InventorySource): serializer_class = InventorySourceSerializer elif isinstance(obj, JobTemplate): serializer_class = JobTemplateSerializer elif isinstance(obj, SystemJobTemplate): serializer_class = SystemJobTemplateSerializer elif isinstance(obj, WorkflowJobTemplate): serializer_class = WorkflowJobTemplateSerializer return serializer_class def to_representation(self, obj): serializer_class = self.get_sub_serializer(obj) if serializer_class: serializer = serializer_class(instance=obj, context=self.context) # preserve links for list view if self.parent: serializer.parent = self.parent serializer.polymorphic_base = self # capabilities prefetch is only valid for these models if isinstance(obj, (JobTemplate, WorkflowJobTemplate)): serializer.capabilities_prefetch = self._capabilities_prefetch else: serializer.capabilities_prefetch = None return serializer.to_representation(obj) else: return super(UnifiedJobTemplateSerializer, self).to_representation(obj) class UnifiedJobSerializer(BaseSerializer): show_capabilities = ['start', 'delete'] event_processing_finished = serializers.BooleanField( help_text=_('Indicates whether all of the events generated by this ' 'unified job have been saved to the database.'), read_only=True ) class Meta: model = UnifiedJob fields = ('*', 'unified_job_template', 'launch_type', 'status', 'failed', 'started', 'finished', 'elapsed', 'job_args', 'job_cwd', 'job_env', 'job_explanation', 'execution_node', 'controller_node', 'result_traceback', 'event_processing_finished') extra_kwargs = { 'unified_job_template': { 'source': 'unified_job_template_id', 'label': 'unified job template', }, 'job_env': { 'read_only': True, 'label': 'job_env', } } def get_types(self): if type(self) is UnifiedJobSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job', 'workflow_job',] else: return super(UnifiedJobSerializer, self).get_types() def get_related(self, obj): res = super(UnifiedJobSerializer, self).get_related(obj) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(request=self.context.get('request')) if obj.schedule: res['schedule'] = obj.schedule.get_absolute_url(request=self.context.get('request')) if isinstance(obj, ProjectUpdate): res['stdout'] = self.reverse('api:project_update_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, InventoryUpdate): res['stdout'] = self.reverse('api:inventory_update_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, Job): res['stdout'] = self.reverse('api:job_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, AdHocCommand): res['stdout'] = self.reverse('api:ad_hoc_command_stdout', kwargs={'pk': obj.pk}) if obj.workflow_job_id: res['source_workflow_job'] = self.reverse('api:workflow_job_detail', kwargs={'pk': obj.workflow_job_id}) return res def get_summary_fields(self, obj): summary_fields = super(UnifiedJobSerializer, self).get_summary_fields(obj) if obj.spawned_by_workflow: summary_fields['source_workflow_job'] = {} try: summary_obj = obj.unified_job_node.workflow_job except UnifiedJob.unified_job_node.RelatedObjectDoesNotExist: return summary_fields for field in SUMMARIZABLE_FK_FIELDS['job']: val = getattr(summary_obj, field, None) if val is not None: summary_fields['source_workflow_job'][field] = val return summary_fields def get_sub_serializer(self, obj): serializer_class = None if type(self) is UnifiedJobSerializer: if isinstance(obj, ProjectUpdate): serializer_class = ProjectUpdateSerializer elif isinstance(obj, InventoryUpdate): serializer_class = InventoryUpdateSerializer elif isinstance(obj, Job): serializer_class = JobSerializer elif isinstance(obj, AdHocCommand): serializer_class = AdHocCommandSerializer elif isinstance(obj, SystemJob): serializer_class = SystemJobSerializer elif isinstance(obj, WorkflowJob): serializer_class = WorkflowJobSerializer return serializer_class def to_representation(self, obj): serializer_class = self.get_sub_serializer(obj) if serializer_class: serializer = serializer_class(instance=obj, context=self.context) # preserve links for list view if self.parent: serializer.parent = self.parent serializer.polymorphic_base = self # TODO: restrict models for capabilities prefetch, when it is added ret = serializer.to_representation(obj) else: ret = super(UnifiedJobSerializer, self).to_representation(obj) if 'elapsed' in ret: if obj and obj.pk and obj.started and not obj.finished: td = now() - obj.started ret['elapsed'] = (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / (10 ** 6 * 1.0) ret['elapsed'] = float(ret['elapsed']) return ret class UnifiedJobListSerializer(UnifiedJobSerializer): class Meta: fields = ('*', '-job_args', '-job_cwd', '-job_env', '-result_traceback', '-event_processing_finished') def get_field_names(self, declared_fields, info): field_names = super(UnifiedJobListSerializer, self).get_field_names(declared_fields, info) # Meta multiple inheritance and -field_name options don't seem to be # taking effect above, so remove the undesired fields here. return tuple(x for x in field_names if x not in ('job_args', 'job_cwd', 'job_env', 'result_traceback', 'event_processing_finished')) def get_types(self): if type(self) is UnifiedJobListSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job', 'workflow_job'] else: return super(UnifiedJobListSerializer, self).get_types() def get_sub_serializer(self, obj): serializer_class = None if type(self) is UnifiedJobListSerializer: if isinstance(obj, ProjectUpdate): serializer_class = ProjectUpdateListSerializer elif isinstance(obj, InventoryUpdate): serializer_class = InventoryUpdateListSerializer elif isinstance(obj, Job): serializer_class = JobListSerializer elif isinstance(obj, AdHocCommand): serializer_class = AdHocCommandListSerializer elif isinstance(obj, SystemJob): serializer_class = SystemJobListSerializer elif isinstance(obj, WorkflowJob): serializer_class = WorkflowJobListSerializer return serializer_class def to_representation(self, obj): serializer_class = self.get_sub_serializer(obj) if serializer_class: serializer = serializer_class(instance=obj, context=self.context) ret = serializer.to_representation(obj) else: ret = super(UnifiedJobListSerializer, self).to_representation(obj) if 'elapsed' in ret: ret['elapsed'] = float(ret['elapsed']) return ret class UnifiedJobStdoutSerializer(UnifiedJobSerializer): result_stdout = serializers.SerializerMethodField() class Meta: fields = ('result_stdout',) def get_types(self): if type(self) is UnifiedJobStdoutSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job'] else: return super(UnifiedJobStdoutSerializer, self).get_types() class UserSerializer(BaseSerializer): password = serializers.CharField(required=False, default='', write_only=True, help_text=_('Write-only field used to change the password.')) ldap_dn = serializers.CharField(source='profile.ldap_dn', read_only=True) external_account = serializers.SerializerMethodField(help_text=_('Set if the account is managed by an external service')) is_system_auditor = serializers.BooleanField(default=False) show_capabilities = ['edit', 'delete'] class Meta: model = User fields = ('*', '-name', '-description', '-modified', 'username', 'first_name', 'last_name', 'email', 'is_superuser', 'is_system_auditor', 'password', 'ldap_dn', 'last_login', 'external_account') def to_representation(self, obj): ret = super(UserSerializer, self).to_representation(obj) ret.pop('password', None) if obj and type(self) is UserSerializer: ret['auth'] = obj.social_auth.values('provider', 'uid') return ret def get_validation_exclusions(self, obj=None): ret = super(UserSerializer, self).get_validation_exclusions(obj) ret.extend(['password', 'is_system_auditor']) return ret def validate_password(self, value): if not self.instance and value in (None, ''): raise serializers.ValidationError(_('Password required for new User.')) return value def _update_password(self, obj, new_password): # For now we're not raising an error, just not saving password for # users managed by LDAP who already have an unusable password set. if getattr(settings, 'AUTH_LDAP_SERVER_URI', None): try: if obj.pk and obj.profile.ldap_dn and not obj.has_usable_password(): new_password = None except AttributeError: pass if (getattr(settings, 'SOCIAL_AUTH_GOOGLE_OAUTH2_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_ORG_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_TEAM_KEY', None) or getattr(settings, 'SOCIAL_AUTH_SAML_ENABLED_IDPS', None)) and obj.social_auth.all(): new_password = None if (getattr(settings, 'RADIUS_SERVER', None) or getattr(settings, 'TACACSPLUS_HOST', None)) and obj.enterprise_auth.all(): new_password = None if new_password: obj.set_password(new_password) obj.save(update_fields=['password']) # Cycle the session key, but if the requesting user is the same # as the modified user then inject a session key derived from # the updated user to prevent logout. This is the logic used by # the Django admin's own user_change_password view. update_session_auth_hash(self.context['request'], obj) elif not obj.password: obj.set_unusable_password() obj.save(update_fields=['password']) def get_external_account(self, obj): return get_external_account(obj) def create(self, validated_data): new_password = validated_data.pop('password', None) is_system_auditor = validated_data.pop('is_system_auditor', None) obj = super(UserSerializer, self).create(validated_data) self._update_password(obj, new_password) if is_system_auditor is not None: obj.is_system_auditor = is_system_auditor return obj def update(self, obj, validated_data): new_password = validated_data.pop('password', None) is_system_auditor = validated_data.pop('is_system_auditor', None) obj = super(UserSerializer, self).update(obj, validated_data) self._update_password(obj, new_password) if is_system_auditor is not None: obj.is_system_auditor = is_system_auditor return obj def get_related(self, obj): res = super(UserSerializer, self).get_related(obj) res.update(dict( teams = self.reverse('api:user_teams_list', kwargs={'pk': obj.pk}), organizations = self.reverse('api:user_organizations_list', kwargs={'pk': obj.pk}), admin_of_organizations = self.reverse('api:user_admin_of_organizations_list', kwargs={'pk': obj.pk}), projects = self.reverse('api:user_projects_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:user_credentials_list', kwargs={'pk': obj.pk}), roles = self.reverse('api:user_roles_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:user_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:user_access_list', kwargs={'pk': obj.pk}), tokens = self.reverse('api:o_auth2_token_list', kwargs={'pk': obj.pk}), authorized_tokens = self.reverse('api:user_authorized_token_list', kwargs={'pk': obj.pk}), personal_tokens = self.reverse('api:user_personal_token_list', kwargs={'pk': obj.pk}), )) return res def _validate_ldap_managed_field(self, value, field_name): if not getattr(settings, 'AUTH_LDAP_SERVER_URI', None): return value try: is_ldap_user = bool(self.instance and self.instance.profile.ldap_dn) except AttributeError: is_ldap_user = False if is_ldap_user: ldap_managed_fields = ['username'] ldap_managed_fields.extend(getattr(settings, 'AUTH_LDAP_USER_ATTR_MAP', {}).keys()) ldap_managed_fields.extend(getattr(settings, 'AUTH_LDAP_USER_FLAGS_BY_GROUP', {}).keys()) if field_name in ldap_managed_fields: if value != getattr(self.instance, field_name): raise serializers.ValidationError(_('Unable to change %s on user managed by LDAP.') % field_name) return value def validate_username(self, value): return self._validate_ldap_managed_field(value, 'username') def validate_first_name(self, value): return self._validate_ldap_managed_field(value, 'first_name') def validate_last_name(self, value): return self._validate_ldap_managed_field(value, 'last_name') def validate_email(self, value): return self._validate_ldap_managed_field(value, 'email') def validate_is_superuser(self, value): return self._validate_ldap_managed_field(value, 'is_superuser') class UserActivityStreamSerializer(UserSerializer): """Changes to system auditor status are shown as separate entries, so by excluding it from fields here we avoid duplication, which would carry some unintended consequences. """ class Meta: model = User fields = ('*', '-is_system_auditor') class BaseOAuth2TokenSerializer(BaseSerializer): refresh_token = serializers.SerializerMethodField() token = serializers.SerializerMethodField() ALLOWED_SCOPES = ['read', 'write'] class Meta: model = OAuth2AccessToken fields = ( '*', '-name', 'description', 'user', 'token', 'refresh_token', 'application', 'expires', 'scope', ) read_only_fields = ('user', 'token', 'expires', 'refresh_token') extra_kwargs = { 'scope': {'allow_null': False, 'required': False}, 'user': {'allow_null': False, 'required': True} } def get_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return obj.token else: return CENSOR_VALUE except ObjectDoesNotExist: return '' def get_refresh_token(self, obj): request = self.context.get('request', None) try: if not obj.refresh_token: return None elif request.method == 'POST': return getattr(obj.refresh_token, 'token', '') else: return CENSOR_VALUE except ObjectDoesNotExist: return None def get_related(self, obj): ret = super(BaseOAuth2TokenSerializer, self).get_related(obj) if obj.user: ret['user'] = self.reverse('api:user_detail', kwargs={'pk': obj.user.pk}) if obj.application: ret['application'] = self.reverse( 'api:o_auth2_application_detail', kwargs={'pk': obj.application.pk} ) ret['activity_stream'] = self.reverse( 'api:o_auth2_token_activity_stream_list', kwargs={'pk': obj.pk} ) return ret def _is_valid_scope(self, value): if not value or (not isinstance(value, str)): return False words = value.split() for word in words: if words.count(word) > 1: return False # do not allow duplicates if word not in self.ALLOWED_SCOPES: return False return True def validate_scope(self, value): if not self._is_valid_scope(value): raise serializers.ValidationError(_( 'Must be a simple space-separated string with allowed scopes {}.' ).format(self.ALLOWED_SCOPES)) return value def create(self, validated_data): validated_data['user'] = self.context['request'].user try: return super(BaseOAuth2TokenSerializer, self).create(validated_data) except oauth2.AccessDeniedError as e: raise PermissionDenied(str(e)) class UserAuthorizedTokenSerializer(BaseOAuth2TokenSerializer): class Meta: extra_kwargs = { 'scope': {'allow_null': False, 'required': False}, 'user': {'allow_null': False, 'required': True}, 'application': {'allow_null': False, 'required': True} } def create(self, validated_data): current_user = self.context['request'].user validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=settings.OAUTH2_PROVIDER['ACCESS_TOKEN_EXPIRE_SECONDS'] ) obj = super(UserAuthorizedTokenSerializer, self).create(validated_data) obj.save() if obj.application: RefreshToken.objects.create( user=current_user, token=generate_token(), application=obj.application, access_token=obj ) return obj class OAuth2TokenSerializer(BaseOAuth2TokenSerializer): def create(self, validated_data): current_user = self.context['request'].user validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=settings.OAUTH2_PROVIDER['ACCESS_TOKEN_EXPIRE_SECONDS'] ) obj = super(OAuth2TokenSerializer, self).create(validated_data) if obj.application and obj.application.user: obj.user = obj.application.user obj.save() if obj.application: RefreshToken.objects.create( user=current_user, token=generate_token(), application=obj.application, access_token=obj ) return obj class OAuth2TokenDetailSerializer(OAuth2TokenSerializer): class Meta: read_only_fields = ('*', 'user', 'application') class UserPersonalTokenSerializer(BaseOAuth2TokenSerializer): class Meta: read_only_fields = ('user', 'token', 'expires', 'application') def create(self, validated_data): validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=settings.OAUTH2_PROVIDER['ACCESS_TOKEN_EXPIRE_SECONDS'] ) validated_data['application'] = None obj = super(UserPersonalTokenSerializer, self).create(validated_data) obj.save() return obj class OAuth2ApplicationSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = OAuth2Application fields = ( '*', 'description', '-user', 'client_id', 'client_secret', 'client_type', 'redirect_uris', 'authorization_grant_type', 'skip_authorization', 'organization' ) read_only_fields = ('client_id', 'client_secret') read_only_on_update_fields = ('user', 'authorization_grant_type') extra_kwargs = { 'user': {'allow_null': True, 'required': False}, 'organization': {'allow_null': False}, 'authorization_grant_type': {'allow_null': False, 'label': _('Authorization Grant Type')}, 'client_secret': { 'label': _('Client Secret') }, 'client_type': { 'label': _('Client Type') }, 'redirect_uris': { 'label': _('Redirect URIs') }, 'skip_authorization': { 'label': _('Skip Authorization') }, } def to_representation(self, obj): ret = super(OAuth2ApplicationSerializer, self).to_representation(obj) request = self.context.get('request', None) if request.method != 'POST' and obj.client_type == 'confidential': ret['client_secret'] = CENSOR_VALUE if obj.client_type == 'public': ret.pop('client_secret', None) return ret def get_related(self, obj): res = super(OAuth2ApplicationSerializer, self).get_related(obj) res.update(dict( tokens = self.reverse('api:o_auth2_application_token_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse( 'api:o_auth2_application_activity_stream_list', kwargs={'pk': obj.pk} ) )) return res def get_modified(self, obj): if obj is None: return None return obj.updated def _summary_field_tokens(self, obj): token_list = [{'id': x.pk, 'token': CENSOR_VALUE, 'scope': x.scope} for x in obj.oauth2accesstoken_set.all()[:10]] if has_model_field_prefetched(obj, 'oauth2accesstoken_set'): token_count = len(obj.oauth2accesstoken_set.all()) else: if len(token_list) < 10: token_count = len(token_list) else: token_count = obj.oauth2accesstoken_set.count() return {'count': token_count, 'results': token_list} def get_summary_fields(self, obj): ret = super(OAuth2ApplicationSerializer, self).get_summary_fields(obj) ret['tokens'] = self._summary_field_tokens(obj) return ret class OrganizationSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = Organization fields = ('*', 'max_hosts', 'custom_virtualenv',) def get_related(self, obj): res = super(OrganizationSerializer, self).get_related(obj) res.update(dict( projects = self.reverse('api:organization_projects_list', kwargs={'pk': obj.pk}), inventories = self.reverse('api:organization_inventories_list', kwargs={'pk': obj.pk}), workflow_job_templates = self.reverse('api:organization_workflow_job_templates_list', kwargs={'pk': obj.pk}), users = self.reverse('api:organization_users_list', kwargs={'pk': obj.pk}), admins = self.reverse('api:organization_admins_list', kwargs={'pk': obj.pk}), teams = self.reverse('api:organization_teams_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:organization_credential_list', kwargs={'pk': obj.pk}), applications = self.reverse('api:organization_applications_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:organization_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates = self.reverse('api:organization_notification_templates_list', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:organization_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:organization_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:organization_notification_templates_error_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:organization_object_roles_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:organization_access_list', kwargs={'pk': obj.pk}), instance_groups = self.reverse('api:organization_instance_groups_list', kwargs={'pk': obj.pk}), )) return res def get_summary_fields(self, obj): summary_dict = super(OrganizationSerializer, self).get_summary_fields(obj) counts_dict = self.context.get('related_field_counts', None) if counts_dict is not None and summary_dict is not None: if obj.id not in counts_dict: summary_dict['related_field_counts'] = { 'inventories': 0, 'teams': 0, 'users': 0, 'job_templates': 0, 'admins': 0, 'projects': 0} else: summary_dict['related_field_counts'] = counts_dict[obj.id] return summary_dict def validate(self, attrs): obj = self.instance view = self.context['view'] obj_limit = getattr(obj, 'max_hosts', None) api_limit = attrs.get('max_hosts') if not view.request.user.is_superuser: if api_limit is not None and api_limit != obj_limit: # Only allow superusers to edit the max_hosts field raise serializers.ValidationError(_('Cannot change max_hosts.')) return super(OrganizationSerializer, self).validate(attrs) class ProjectOptionsSerializer(BaseSerializer): class Meta: fields = ('*', 'local_path', 'scm_type', 'scm_url', 'scm_branch', 'scm_clean', 'scm_delete_on_update', 'credential', 'timeout',) def get_related(self, obj): res = super(ProjectOptionsSerializer, self).get_related(obj) if obj.credential: res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential.pk}) return res def validate(self, attrs): errors = {} # Don't allow assigning a local_path used by another project. # Don't allow assigning a local_path when scm_type is set. valid_local_paths = Project.get_local_path_choices() if self.instance: scm_type = attrs.get('scm_type', self.instance.scm_type) or u'' else: scm_type = attrs.get('scm_type', u'') or u'' if self.instance and not scm_type: valid_local_paths.append(self.instance.local_path) if scm_type: attrs.pop('local_path', None) if 'local_path' in attrs and attrs['local_path'] not in valid_local_paths: errors['local_path'] = _('This path is already being used by another manual project.') if errors: raise serializers.ValidationError(errors) return super(ProjectOptionsSerializer, self).validate(attrs) def to_representation(self, obj): ret = super(ProjectOptionsSerializer, self).to_representation(obj) if obj is not None and 'credential' in ret and not obj.credential: ret['credential'] = None return ret class ProjectSerializer(UnifiedJobTemplateSerializer, ProjectOptionsSerializer): status = serializers.ChoiceField(choices=Project.PROJECT_STATUS_CHOICES, read_only=True) last_update_failed = serializers.BooleanField(read_only=True) last_updated = serializers.DateTimeField(read_only=True) show_capabilities = ['start', 'schedule', 'edit', 'delete', 'copy'] capabilities_prefetch = [ 'admin', 'update', {'copy': 'organization.project_admin'} ] class Meta: model = Project fields = ('*', 'organization', 'scm_update_on_launch', 'scm_update_cache_timeout', 'scm_revision', 'custom_virtualenv',) + \ ('last_update_failed', 'last_updated') # Backwards compatibility def get_related(self, obj): res = super(ProjectSerializer, self).get_related(obj) res.update(dict( teams = self.reverse('api:project_teams_list', kwargs={'pk': obj.pk}), playbooks = self.reverse('api:project_playbooks', kwargs={'pk': obj.pk}), inventory_files = self.reverse('api:project_inventories', kwargs={'pk': obj.pk}), update = self.reverse('api:project_update_view', kwargs={'pk': obj.pk}), project_updates = self.reverse('api:project_updates_list', kwargs={'pk': obj.pk}), scm_inventory_sources = self.reverse('api:project_scm_inventory_sources', kwargs={'pk': obj.pk}), schedules = self.reverse('api:project_schedules_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:project_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:project_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:project_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:project_notification_templates_error_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:project_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:project_object_roles_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:project_copy', kwargs={'pk': obj.pk}) )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) # Backwards compatibility. if obj.current_update: res['current_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.current_update.pk}) if obj.last_update: res['last_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.last_update.pk}) return res def to_representation(self, obj): ret = super(ProjectSerializer, self).to_representation(obj) if 'scm_revision' in ret and obj.scm_type == '': ret['scm_revision'] = '' return ret def validate(self, attrs): def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) organization = None if 'organization' in attrs: organization = attrs['organization'] elif self.instance: organization = self.instance.organization view = self.context.get('view', None) if not organization and not view.request.user.is_superuser: # Only allow super users to create orgless projects raise serializers.ValidationError(_('Organization is missing')) elif get_field_from_model_or_attrs('scm_type') == '': for fd in ('scm_update_on_launch', 'scm_delete_on_update', 'scm_clean'): if get_field_from_model_or_attrs(fd): raise serializers.ValidationError({fd: _('Update options must be set to false for manual projects.')}) return super(ProjectSerializer, self).validate(attrs) class ProjectPlaybooksSerializer(ProjectSerializer): playbooks = serializers.SerializerMethodField(help_text=_('Array of playbooks available within this project.')) class Meta: model = Project fields = ('playbooks',) def get_playbooks(self, obj): return obj.playbook_files if obj.scm_type else obj.playbooks @property def data(self): ret = super(ProjectPlaybooksSerializer, self).data ret = ret.get('playbooks', []) return ReturnList(ret, serializer=self) class ProjectInventoriesSerializer(ProjectSerializer): inventory_files = serializers.ReadOnlyField(help_text=_( 'Array of inventory files and directories available within this project, ' 'not comprehensive.')) class Meta: model = Project fields = ('inventory_files',) @property def data(self): ret = super(ProjectInventoriesSerializer, self).data ret = ret.get('inventory_files', []) return ReturnList(ret, serializer=self) class ProjectUpdateViewSerializer(ProjectSerializer): can_update = serializers.BooleanField(read_only=True) class Meta: fields = ('can_update',) class ProjectUpdateSerializer(UnifiedJobSerializer, ProjectOptionsSerializer): class Meta: model = ProjectUpdate fields = ('*', 'project', 'job_type', '-controller_node') def get_related(self, obj): res = super(ProjectUpdateSerializer, self).get_related(obj) try: res.update(dict( project = self.reverse('api:project_detail', kwargs={'pk': obj.project.pk}), )) except ObjectDoesNotExist: pass res.update(dict( cancel = self.reverse('api:project_update_cancel', kwargs={'pk': obj.pk}), scm_inventory_updates = self.reverse('api:project_update_scm_inventory_updates', kwargs={'pk': obj.pk}), notifications = self.reverse('api:project_update_notifications_list', kwargs={'pk': obj.pk}), events = self.reverse('api:project_update_events_list', kwargs={'pk': obj.pk}), )) return res class ProjectUpdateDetailSerializer(ProjectUpdateSerializer): host_status_counts = serializers.SerializerMethodField( help_text=_('A count of hosts uniquely assigned to each status.'), ) playbook_counts = serializers.SerializerMethodField( help_text=_('A count of all plays and tasks for the job run.'), ) class Meta: model = ProjectUpdate fields = ('*', 'host_status_counts', 'playbook_counts',) def get_playbook_counts(self, obj): task_count = obj.project_update_events.filter(event='playbook_on_task_start').count() play_count = obj.project_update_events.filter(event='playbook_on_play_start').count() data = {'play_count': play_count, 'task_count': task_count} return data def get_host_status_counts(self, obj): try: counts = obj.project_update_events.only('event_data').get(event='playbook_on_stats').get_host_status_counts() except ProjectUpdateEvent.DoesNotExist: counts = {} return counts class ProjectUpdateListSerializer(ProjectUpdateSerializer, UnifiedJobListSerializer): class Meta: model = ProjectUpdate fields = ('*', '-controller_node') # field removal undone by UJ serializer class ProjectUpdateCancelSerializer(ProjectUpdateSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class BaseSerializerWithVariables(BaseSerializer): def validate_variables(self, value): return vars_validate_or_raise(value) class InventorySerializer(BaseSerializerWithVariables): show_capabilities = ['edit', 'delete', 'adhoc', 'copy'] capabilities_prefetch = [ 'admin', 'adhoc', {'copy': 'organization.inventory_admin'} ] groups_with_active_failures = serializers.IntegerField( read_only=True, min_value=0, help_text=_('This field has been deprecated and will be removed in a future release') ) class Meta: model = Inventory fields = ('*', 'organization', 'kind', 'host_filter', 'variables', 'has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'groups_with_active_failures', 'has_inventory_sources', 'total_inventory_sources', 'inventory_sources_with_failures', 'insights_credential', 'pending_deletion',) def get_related(self, obj): res = super(InventorySerializer, self).get_related(obj) res.update(dict( hosts = self.reverse('api:inventory_hosts_list', kwargs={'pk': obj.pk}), groups = self.reverse('api:inventory_groups_list', kwargs={'pk': obj.pk}), root_groups = self.reverse('api:inventory_root_groups_list', kwargs={'pk': obj.pk}), variable_data = self.reverse('api:inventory_variable_data', kwargs={'pk': obj.pk}), script = self.reverse('api:inventory_script_view', kwargs={'pk': obj.pk}), tree = self.reverse('api:inventory_tree_view', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:inventory_inventory_sources_list', kwargs={'pk': obj.pk}), update_inventory_sources = self.reverse('api:inventory_inventory_sources_update', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:inventory_activity_stream_list', kwargs={'pk': obj.pk}), job_templates = self.reverse('api:inventory_job_template_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:inventory_ad_hoc_commands_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:inventory_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:inventory_object_roles_list', kwargs={'pk': obj.pk}), instance_groups = self.reverse('api:inventory_instance_groups_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:inventory_copy', kwargs={'pk': obj.pk}) )) if obj.insights_credential: res['insights_credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.insights_credential.pk}) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def to_representation(self, obj): ret = super(InventorySerializer, self).to_representation(obj) if obj is not None and 'organization' in ret and not obj.organization: ret['organization'] = None return ret def validate_host_filter(self, host_filter): if host_filter: try: for match in JSONBField.get_lookups().keys(): if match == 'exact': # __exact is allowed continue match = '__{}'.format(match) if re.match( 'ansible_facts[^=]+{}='.format(match), host_filter ): raise models.base.ValidationError({ 'host_filter': 'ansible_facts does not support searching with {}'.format(match) }) SmartFilter().query_from_string(host_filter) except RuntimeError as e: raise models.base.ValidationError(e) return host_filter def validate(self, attrs): kind = None if 'kind' in attrs: kind = attrs['kind'] elif self.instance: kind = self.instance.kind host_filter = None if 'host_filter' in attrs: host_filter = attrs['host_filter'] elif self.instance: host_filter = self.instance.host_filter if kind == 'smart' and not host_filter: raise serializers.ValidationError({'host_filter': _( 'Smart inventories must specify host_filter')}) return super(InventorySerializer, self).validate(attrs) class InventoryScriptSerializer(InventorySerializer): class Meta: fields = () class HostSerializer(BaseSerializerWithVariables): show_capabilities = ['edit', 'delete'] capabilities_prefetch = ['inventory.admin'] class Meta: model = Host fields = ('*', 'inventory', 'enabled', 'instance_id', 'variables', 'has_active_failures', 'has_inventory_sources', 'last_job', 'last_job_host_summary', 'insights_system_id', 'ansible_facts_modified',) read_only_fields = ('last_job', 'last_job_host_summary', 'insights_system_id', 'ansible_facts_modified',) def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(HostSerializer, self).build_relational_field(field_name, relation_info) # Inventory is read-only unless creating a new host. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def get_related(self, obj): res = super(HostSerializer, self).get_related(obj) res.update(dict( variable_data = self.reverse('api:host_variable_data', kwargs={'pk': obj.pk}), groups = self.reverse('api:host_groups_list', kwargs={'pk': obj.pk}), all_groups = self.reverse('api:host_all_groups_list', kwargs={'pk': obj.pk}), job_events = self.reverse('api:host_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:host_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:host_activity_stream_list', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:host_inventory_sources_list', kwargs={'pk': obj.pk}), smart_inventories = self.reverse('api:host_smart_inventories_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:host_ad_hoc_commands_list', kwargs={'pk': obj.pk}), ad_hoc_command_events = self.reverse('api:host_ad_hoc_command_events_list', kwargs={'pk': obj.pk}), insights = self.reverse('api:host_insights', kwargs={'pk': obj.pk}), ansible_facts = self.reverse('api:host_ansible_facts_detail', kwargs={'pk': obj.pk}), )) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) if obj.last_job: res['last_job'] = self.reverse('api:job_detail', kwargs={'pk': obj.last_job.pk}) if obj.last_job_host_summary: res['last_job_host_summary'] = self.reverse('api:job_host_summary_detail', kwargs={'pk': obj.last_job_host_summary.pk}) return res def get_summary_fields(self, obj): d = super(HostSerializer, self).get_summary_fields(obj) try: d['last_job']['job_template_id'] = obj.last_job.job_template.id d['last_job']['job_template_name'] = obj.last_job.job_template.name except (KeyError, AttributeError): pass if has_model_field_prefetched(obj, 'groups'): group_list = sorted([{'id': g.id, 'name': g.name} for g in obj.groups.all()], key=lambda x: x['id'])[:5] else: group_list = [{'id': g.id, 'name': g.name} for g in obj.groups.all().order_by('id')[:5]] group_cnt = obj.groups.count() d.setdefault('groups', {'count': group_cnt, 'results': group_list}) d.setdefault('recent_jobs', [{ 'id': j.job.id, 'name': j.job.job_template.name if j.job.job_template is not None else "", 'status': j.job.status, 'finished': j.job.finished, } for j in obj.job_host_summaries.select_related('job__job_template').order_by('-created')[:5]]) return d def _get_host_port_from_name(self, name): # Allow hostname (except IPv6 for now) to specify the port # inline. port = None if name.count(':') == 1: name, port = name.split(':') try: port = int(port) if port < 1 or port > 65535: raise ValueError except ValueError: raise serializers.ValidationError(_(u'Invalid port specification: %s') % force_text(port)) return name, port def validate_name(self, value): name = force_text(value or '') # Validate here only, update in main validate method. host, port = self._get_host_port_from_name(name) return value def validate_inventory(self, value): if value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Host for Smart Inventory")}) return value def validate_variables(self, value): return vars_validate_or_raise(value) def validate(self, attrs): name = force_text(attrs.get('name', self.instance and self.instance.name or '')) host, port = self._get_host_port_from_name(name) if port: attrs['name'] = host variables = force_text(attrs.get('variables', self.instance and self.instance.variables or '')) vars_dict = parse_yaml_or_json(variables) vars_dict['ansible_ssh_port'] = port attrs['variables'] = json.dumps(vars_dict) return super(HostSerializer, self).validate(attrs) def to_representation(self, obj): ret = super(HostSerializer, self).to_representation(obj) if not obj: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None if 'last_job' in ret and not obj.last_job: ret['last_job'] = None if 'last_job_host_summary' in ret and not obj.last_job_host_summary: ret['last_job_host_summary'] = None return ret class AnsibleFactsSerializer(BaseSerializer): class Meta: model = Host def to_representation(self, obj): return obj.ansible_facts class GroupSerializer(BaseSerializerWithVariables): show_capabilities = ['copy', 'edit', 'delete'] capabilities_prefetch = ['inventory.admin', 'inventory.adhoc'] groups_with_active_failures = serializers.IntegerField( read_only=True, min_value=0, help_text=_('This field has been deprecated and will be removed in a future release') ) class Meta: model = Group fields = ('*', 'inventory', 'variables', 'has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'groups_with_active_failures', 'has_inventory_sources') def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(GroupSerializer, self).build_relational_field(field_name, relation_info) # Inventory is read-only unless creating a new group. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def get_related(self, obj): res = super(GroupSerializer, self).get_related(obj) res.update(dict( variable_data = self.reverse('api:group_variable_data', kwargs={'pk': obj.pk}), hosts = self.reverse('api:group_hosts_list', kwargs={'pk': obj.pk}), potential_children = self.reverse('api:group_potential_children_list', kwargs={'pk': obj.pk}), children = self.reverse('api:group_children_list', kwargs={'pk': obj.pk}), all_hosts = self.reverse('api:group_all_hosts_list', kwargs={'pk': obj.pk}), job_events = self.reverse('api:group_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:group_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:group_activity_stream_list', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:group_inventory_sources_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:group_ad_hoc_commands_list', kwargs={'pk': obj.pk}), )) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) return res def validate_name(self, value): if value in ('all', '_meta'): raise serializers.ValidationError(_('Invalid group name.')) return value def validate_inventory(self, value): if value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Group for Smart Inventory")}) return value def to_representation(self, obj): ret = super(GroupSerializer, self).to_representation(obj) if obj is not None and 'inventory' in ret and not obj.inventory: ret['inventory'] = None return ret class GroupTreeSerializer(GroupSerializer): children = serializers.SerializerMethodField() class Meta: model = Group fields = ('*', 'children') def get_children(self, obj): if obj is None: return {} children_qs = obj.children children_qs = children_qs.select_related('inventory') children_qs = children_qs.prefetch_related('inventory_source') return GroupTreeSerializer(children_qs, many=True).data class BaseVariableDataSerializer(BaseSerializer): class Meta: fields = ('variables',) def to_representation(self, obj): if obj is None: return {} ret = super(BaseVariableDataSerializer, self).to_representation(obj) return parse_yaml_or_json(ret.get('variables', '') or '{}') def to_internal_value(self, data): data = {'variables': json.dumps(data)} return super(BaseVariableDataSerializer, self).to_internal_value(data) class InventoryVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Inventory class HostVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Host class GroupVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Group class CustomInventoryScriptSerializer(BaseSerializer): script = serializers.CharField(trim_whitespace=False) show_capabilities = ['edit', 'delete', 'copy'] capabilities_prefetch = [ {'edit': 'admin'} ] class Meta: model = CustomInventoryScript fields = ('*', "script", "organization") def validate_script(self, value): if not value.startswith("#!"): raise serializers.ValidationError(_('Script must begin with a hashbang sequence: i.e.... #!/usr/bin/env python')) return value def to_representation(self, obj): ret = super(CustomInventoryScriptSerializer, self).to_representation(obj) if obj is None: return ret request = self.context.get('request', None) if request.user not in obj.admin_role and \ not request.user.is_superuser and \ not request.user.is_system_auditor and \ not (obj.organization is not None and request.user in obj.organization.auditor_role): ret['script'] = None return ret def get_related(self, obj): res = super(CustomInventoryScriptSerializer, self).get_related(obj) res.update(dict( object_roles = self.reverse('api:inventory_script_object_roles_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:inventory_script_copy', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res class InventorySourceOptionsSerializer(BaseSerializer): credential = DeprecatedCredentialField( help_text=_('Cloud credential to use for inventory updates.') ) class Meta: fields = ('*', 'source', 'source_path', 'source_script', 'source_vars', 'credential', 'source_regions', 'instance_filters', 'group_by', 'overwrite', 'overwrite_vars', 'custom_virtualenv', 'timeout', 'verbosity') def get_related(self, obj): res = super(InventorySourceOptionsSerializer, self).get_related(obj) if obj.credential: # TODO: remove when 'credential' field is removed res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential}) if obj.source_script: res['source_script'] = self.reverse('api:inventory_script_detail', kwargs={'pk': obj.source_script.pk}) return res def validate_source_vars(self, value): ret = vars_validate_or_raise(value) for env_k in parse_yaml_or_json(value): if env_k in settings.INV_ENV_VARIABLE_BLACKLIST: raise serializers.ValidationError(_("`{}` is a prohibited environment variable".format(env_k))) return ret def validate(self, attrs): # TODO: Validate source, validate source_regions errors = {} source = attrs.get('source', self.instance and self.instance.source or '') source_script = attrs.get('source_script', self.instance and self.instance.source_script or '') if source == 'custom': if source_script is None or source_script == '': errors['source_script'] = _("If 'source' is 'custom', 'source_script' must be provided.") else: try: if not self.instance: dest_inventory = attrs.get('inventory', None) if not dest_inventory: errors['inventory'] = _("Must provide an inventory.") else: dest_inventory = self.instance.inventory if dest_inventory and source_script.organization != dest_inventory.organization: errors['source_script'] = _("The 'source_script' does not belong to the same organization as the inventory.") except Exception: errors['source_script'] = _("'source_script' doesn't exist.") logger.exception('Problem processing source_script validation.') if errors: raise serializers.ValidationError(errors) return super(InventorySourceOptionsSerializer, self).validate(attrs) class InventorySourceSerializer(UnifiedJobTemplateSerializer, InventorySourceOptionsSerializer): status = serializers.ChoiceField(choices=InventorySource.INVENTORY_SOURCE_STATUS_CHOICES, read_only=True) last_update_failed = serializers.BooleanField(read_only=True) last_updated = serializers.DateTimeField(read_only=True) show_capabilities = ['start', 'schedule', 'edit', 'delete'] capabilities_prefetch = [ {'admin': 'inventory.admin'}, {'start': 'inventory.update'} ] class Meta: model = InventorySource fields = ('*', 'name', 'inventory', 'update_on_launch', 'update_cache_timeout', 'source_project', 'update_on_project_update') + \ ('last_update_failed', 'last_updated') # Backwards compatibility. def get_related(self, obj): res = super(InventorySourceSerializer, self).get_related(obj) res.update(dict( update = self.reverse('api:inventory_source_update_view', kwargs={'pk': obj.pk}), inventory_updates = self.reverse('api:inventory_source_updates_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:inventory_source_schedules_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:inventory_source_activity_stream_list', kwargs={'pk': obj.pk}), hosts = self.reverse('api:inventory_source_hosts_list', kwargs={'pk': obj.pk}), groups = self.reverse('api:inventory_source_groups_list', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:inventory_source_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:inventory_source_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:inventory_source_notification_templates_error_list', kwargs={'pk': obj.pk}), )) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) if obj.source_project_id is not None: res['source_project'] = self.reverse('api:project_detail', kwargs={'pk': obj.source_project.pk}) # Backwards compatibility. if obj.current_update: res['current_update'] = self.reverse('api:inventory_update_detail', kwargs={'pk': obj.current_update.pk}) if obj.last_update: res['last_update'] = self.reverse('api:inventory_update_detail', kwargs={'pk': obj.last_update.pk}) else: res['credentials'] = self.reverse('api:inventory_source_credentials_list', kwargs={'pk': obj.pk}) return res def get_group(self, obj): # TODO: remove in 3.3 if obj.deprecated_group: return obj.deprecated_group.id return None def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(InventorySourceSerializer, self).build_relational_field(field_name, relation_info) # SCM Project and inventory are read-only unless creating a new inventory. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs # TODO: remove when old 'credential' fields are removed def build_field(self, field_name, info, model_class, nested_depth): # have to special-case the field so that DRF will not automagically make it # read-only because it's a property on the model. if field_name == 'credential': return self.build_standard_field(field_name, self.credential) return super(InventorySourceOptionsSerializer, self).build_field(field_name, info, model_class, nested_depth) def to_representation(self, obj): ret = super(InventorySourceSerializer, self).to_representation(obj) if obj is None: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None return ret def validate_source_project(self, value): if value and value.scm_type == '': raise serializers.ValidationError(_("Cannot use manual project for SCM-based inventory.")) return value def validate_update_on_project_update(self, value): if value and self.instance and self.instance.schedules.exists(): raise serializers.ValidationError(_("Setting not compatible with existing schedules.")) return value def validate_inventory(self, value): if value and value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Inventory Source for Smart Inventory")}) return value # TODO: remove when old 'credential' fields are removed def create(self, validated_data): deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(InventorySourceSerializer, self).create(validated_data) if deprecated_fields: self._update_deprecated_fields(deprecated_fields, obj) return obj # TODO: remove when old 'credential' fields are removed def update(self, obj, validated_data): deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(InventorySourceSerializer, self).update(obj, validated_data) if deprecated_fields: self._update_deprecated_fields(deprecated_fields, obj) return obj # TODO: remove when old 'credential' fields are removed def _update_deprecated_fields(self, fields, obj): if 'credential' in fields: new_cred = fields['credential'] existing = obj.credentials.all() if new_cred not in existing: for cred in existing: # Remove all other cloud credentials obj.credentials.remove(cred) if new_cred: # Add new credential obj.credentials.add(new_cred) def validate(self, attrs): deprecated_fields = {} if 'credential' in attrs: # TODO: remove when 'credential' field removed deprecated_fields['credential'] = attrs.pop('credential') def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) if get_field_from_model_or_attrs('source') != 'scm': redundant_scm_fields = list(filter( lambda x: attrs.get(x, None), ['source_project', 'source_path', 'update_on_project_update'] )) if redundant_scm_fields: raise serializers.ValidationError( {"detail": _("Cannot set %s if not SCM type." % ' '.join(redundant_scm_fields))} ) attrs = super(InventorySourceSerializer, self).validate(attrs) # Check type consistency of source and cloud credential, if provided if 'credential' in deprecated_fields: # TODO: remove when v2 API is deprecated cred = deprecated_fields['credential'] attrs['credential'] = cred if cred is not None: cred = Credential.objects.get(pk=cred) view = self.context.get('view', None) if (not view) or (not view.request) or (view.request.user not in cred.use_role): raise PermissionDenied() cred_error = InventorySource.cloud_credential_validation( get_field_from_model_or_attrs('source'), cred ) if cred_error: raise serializers.ValidationError({"credential": cred_error}) return attrs class InventorySourceUpdateSerializer(InventorySourceSerializer): can_update = serializers.BooleanField(read_only=True) class Meta: fields = ('can_update',) class InventoryUpdateSerializer(UnifiedJobSerializer, InventorySourceOptionsSerializer): custom_virtualenv = serializers.ReadOnlyField() class Meta: model = InventoryUpdate fields = ('*', 'inventory', 'inventory_source', 'license_error', 'org_host_limit_error', 'source_project_update', 'custom_virtualenv', '-controller_node',) def get_related(self, obj): res = super(InventoryUpdateSerializer, self).get_related(obj) try: res.update(dict( inventory_source = self.reverse( 'api:inventory_source_detail', kwargs={'pk': obj.inventory_source.pk} ), )) except ObjectDoesNotExist: pass res.update(dict( cancel = self.reverse('api:inventory_update_cancel', kwargs={'pk': obj.pk}), notifications = self.reverse('api:inventory_update_notifications_list', kwargs={'pk': obj.pk}), events = self.reverse('api:inventory_update_events_list', kwargs={'pk': obj.pk}), )) if obj.source_project_update_id: res['source_project_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.source_project_update.pk}) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) res['credentials'] = self.reverse('api:inventory_update_credentials_list', kwargs={'pk': obj.pk}) return res class InventoryUpdateDetailSerializer(InventoryUpdateSerializer): source_project = serializers.SerializerMethodField( help_text=_('The project used for this job.'), method_name='get_source_project_id' ) class Meta: model = InventoryUpdate fields = ('*', 'source_project',) def get_source_project(self, obj): return getattrd(obj, 'source_project_update.unified_job_template', None) def get_source_project_id(self, obj): return getattrd(obj, 'source_project_update.unified_job_template.id', None) def get_related(self, obj): res = super(InventoryUpdateDetailSerializer, self).get_related(obj) source_project_id = self.get_source_project_id(obj) if source_project_id: res['source_project'] = self.reverse('api:project_detail', kwargs={'pk': source_project_id}) return res def get_summary_fields(self, obj): summary_fields = super(InventoryUpdateDetailSerializer, self).get_summary_fields(obj) source_project = self.get_source_project(obj) if source_project: summary_fields['source_project'] = {} for field in SUMMARIZABLE_FK_FIELDS['project']: value = getattr(source_project, field, None) if value is not None: summary_fields['source_project'][field] = value cred = obj.credentials.first() if cred: summary_fields['credential'] = { 'id': cred.pk, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'cloud': cred.credential_type.kind == 'cloud' } return summary_fields class InventoryUpdateListSerializer(InventoryUpdateSerializer, UnifiedJobListSerializer): class Meta: model = InventoryUpdate fields = ('*', '-controller_node') # field removal undone by UJ serializer class InventoryUpdateCancelSerializer(InventoryUpdateSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class TeamSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = Team fields = ('*', 'organization') def get_related(self, obj): res = super(TeamSerializer, self).get_related(obj) res.update(dict( projects = self.reverse('api:team_projects_list', kwargs={'pk': obj.pk}), users = self.reverse('api:team_users_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:team_credentials_list', kwargs={'pk': obj.pk}), roles = self.reverse('api:team_roles_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:team_object_roles_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:team_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:team_access_list', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def to_representation(self, obj): ret = super(TeamSerializer, self).to_representation(obj) if obj is not None and 'organization' in ret and not obj.organization: ret['organization'] = None return ret class RoleSerializer(BaseSerializer): class Meta: model = Role fields = ('*', '-created', '-modified') read_only_fields = ('id', 'role_field', 'description', 'name') def to_representation(self, obj): ret = super(RoleSerializer, self).to_representation(obj) if obj.object_id: content_object = obj.content_object if hasattr(content_object, 'username'): ret['summary_fields']['resource_name'] = obj.content_object.username if hasattr(content_object, 'name'): ret['summary_fields']['resource_name'] = obj.content_object.name content_model = obj.content_type.model_class() ret['summary_fields']['resource_type'] = get_type_for_model(content_model) ret['summary_fields']['resource_type_display_name'] = content_model._meta.verbose_name.title() return ret def get_related(self, obj): ret = super(RoleSerializer, self).get_related(obj) ret['users'] = self.reverse('api:role_users_list', kwargs={'pk': obj.pk}) ret['teams'] = self.reverse('api:role_teams_list', kwargs={'pk': obj.pk}) try: if obj.content_object: ret.update(reverse_gfk(obj.content_object, self.context.get('request'))) except AttributeError: # AttributeError's happen if our content_object is pointing at # a model that no longer exists. This is dirty data and ideally # doesn't exist, but in case it does, let's not puke. pass return ret class RoleSerializerWithParentAccess(RoleSerializer): show_capabilities = ['unattach'] class ResourceAccessListElementSerializer(UserSerializer): show_capabilities = [] # Clear fields from UserSerializer parent class def to_representation(self, user): ''' With this method we derive "direct" and "indirect" access lists. Contained in the direct access list are all the roles the user is a member of, and all of the roles that are directly granted to any teams that the user is a member of. The indirect access list is a list of all of the roles that the user is a member of that are ancestors of any roles that grant permissions to the resource. ''' ret = super(ResourceAccessListElementSerializer, self).to_representation(user) obj = self.context['view'].get_parent_object() if self.context['view'].request is not None: requesting_user = self.context['view'].request.user else: requesting_user = None if 'summary_fields' not in ret: ret['summary_fields'] = {} def format_role_perm(role): role_dict = { 'id': role.id, 'name': role.name, 'description': role.description} try: role_dict['resource_name'] = role.content_object.name role_dict['resource_type'] = get_type_for_model(role.content_type.model_class()) role_dict['related'] = reverse_gfk(role.content_object, self.context.get('request')) except AttributeError: pass if role.content_type is not None: role_dict['user_capabilities'] = {'unattach': requesting_user.can_access( Role, 'unattach', role, user, 'members', data={}, skip_sub_obj_read_check=False)} else: # Singleton roles should not be managed from this view, as per copy/edit rework spec role_dict['user_capabilities'] = {'unattach': False} return { 'role': role_dict, 'descendant_roles': get_roles_on_resource(obj, role)} def format_team_role_perm(naive_team_role, permissive_role_ids): ret = [] team_role = naive_team_role if naive_team_role.role_field == 'admin_role': team_role = naive_team_role.content_object.member_role for role in team_role.children.filter(id__in=permissive_role_ids).all(): role_dict = { 'id': role.id, 'name': role.name, 'description': role.description, 'team_id': team_role.object_id, 'team_name': team_role.content_object.name, 'team_organization_name': team_role.content_object.organization.name, } if role.content_type is not None: role_dict['resource_name'] = role.content_object.name role_dict['resource_type'] = get_type_for_model(role.content_type.model_class()) role_dict['related'] = reverse_gfk(role.content_object, self.context.get('request')) role_dict['user_capabilities'] = {'unattach': requesting_user.can_access( Role, 'unattach', role, team_role, 'parents', data={}, skip_sub_obj_read_check=False)} else: # Singleton roles should not be managed from this view, as per copy/edit rework spec role_dict['user_capabilities'] = {'unattach': False} ret.append({ 'role': role_dict, 'descendant_roles': get_roles_on_resource(obj, team_role)}) return ret team_content_type = ContentType.objects.get_for_model(Team) content_type = ContentType.objects.get_for_model(obj) direct_permissive_role_ids = Role.objects.filter(content_type=content_type, object_id=obj.id).values_list('id', flat=True) all_permissive_role_ids = Role.objects.filter(content_type=content_type, object_id=obj.id).values_list('ancestors__id', flat=True) direct_access_roles = user.roles \ .filter(id__in=direct_permissive_role_ids).all() direct_team_roles = Role.objects \ .filter(content_type=team_content_type, members=user, children__in=direct_permissive_role_ids) if content_type == team_content_type: # When looking at the access list for a team, exclude the entries # for that team. This exists primarily so we don't list the read role # as a direct role when a user is a member or admin of a team direct_team_roles = direct_team_roles.exclude( children__content_type=team_content_type, children__object_id=obj.id ) indirect_team_roles = Role.objects \ .filter(content_type=team_content_type, members=user, children__in=all_permissive_role_ids) \ .exclude(id__in=direct_team_roles) indirect_access_roles = user.roles \ .filter(id__in=all_permissive_role_ids) \ .exclude(id__in=direct_permissive_role_ids) \ .exclude(id__in=direct_team_roles) \ .exclude(id__in=indirect_team_roles) ret['summary_fields']['direct_access'] \ = [format_role_perm(r) for r in direct_access_roles.distinct()] \ + [y for x in (format_team_role_perm(r, direct_permissive_role_ids) for r in direct_team_roles.distinct()) for y in x] \ + [y for x in (format_team_role_perm(r, all_permissive_role_ids) for r in indirect_team_roles.distinct()) for y in x] ret['summary_fields']['indirect_access'] \ = [format_role_perm(r) for r in indirect_access_roles.distinct()] return ret class CredentialTypeSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] managed_by_tower = serializers.ReadOnlyField() class Meta: model = CredentialType fields = ('*', 'kind', 'namespace', 'name', 'managed_by_tower', 'inputs', 'injectors') def validate(self, attrs): if self.instance and self.instance.managed_by_tower: raise PermissionDenied( detail=_("Modifications not allowed for managed credential types") ) if self.instance and self.instance.credentials.exists(): if 'inputs' in attrs and attrs['inputs'] != self.instance.inputs: raise PermissionDenied( detail= _("Modifications to inputs are not allowed for credential types that are in use") ) ret = super(CredentialTypeSerializer, self).validate(attrs) if 'kind' in attrs and attrs['kind'] not in ('cloud', 'net'): raise serializers.ValidationError({ "kind": _("Must be 'cloud' or 'net', not %s") % attrs['kind'] }) fields = attrs.get('inputs', {}).get('fields', []) for field in fields: if field.get('ask_at_runtime', False): raise serializers.ValidationError({"inputs": _("'ask_at_runtime' is not supported for custom credentials.")}) return ret def get_related(self, obj): res = super(CredentialTypeSerializer, self).get_related(obj) res['credentials'] = self.reverse( 'api:credential_type_credential_list', kwargs={'pk': obj.pk} ) res['activity_stream'] = self.reverse( 'api:credential_type_activity_stream_list', kwargs={'pk': obj.pk} ) return res def to_representation(self, data): value = super(CredentialTypeSerializer, self).to_representation(data) # translate labels and help_text for credential fields "managed by Tower" if value.get('managed_by_tower'): value['name'] = _(value['name']) for field in value.get('inputs', {}).get('fields', []): field['label'] = _(field['label']) if 'help_text' in field: field['help_text'] = _(field['help_text']) return value def filter_field_metadata(self, fields, method): # API-created/modified CredentialType kinds are limited to # `cloud` and `net` if method in ('PUT', 'POST'): fields['kind']['choices'] = list(filter( lambda choice: choice[0] in ('cloud', 'net'), fields['kind']['choices'] )) return fields class CredentialSerializer(BaseSerializer): show_capabilities = ['edit', 'delete', 'copy', 'use'] capabilities_prefetch = ['admin', 'use'] class Meta: model = Credential fields = ('*', 'organization', 'credential_type', 'inputs', 'kind', 'cloud') extra_kwargs = { 'credential_type': { 'label': _('Credential Type'), }, } def to_representation(self, data): value = super(CredentialSerializer, self).to_representation(data) if 'inputs' in value: value['inputs'] = data.display_inputs() return value def get_related(self, obj): res = super(CredentialSerializer, self).get_related(obj) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) res.update(dict( activity_stream = self.reverse('api:credential_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:credential_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:credential_object_roles_list', kwargs={'pk': obj.pk}), owner_users = self.reverse('api:credential_owner_users_list', kwargs={'pk': obj.pk}), owner_teams = self.reverse('api:credential_owner_teams_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:credential_copy', kwargs={'pk': obj.pk}), input_sources = self.reverse('api:credential_input_source_sublist', kwargs={'pk': obj.pk}), credential_type = self.reverse('api:credential_type_detail', kwargs={'pk': obj.credential_type.pk}), )) parents = [role for role in obj.admin_role.parents.all() if role.object_id is not None] if parents: res.update({parents[0].content_type.name:parents[0].content_object.get_absolute_url(self.context.get('request'))}) elif len(obj.admin_role.members.all()) > 0: user = obj.admin_role.members.all()[0] res.update({'user': self.reverse('api:user_detail', kwargs={'pk': user.pk})}) return res def get_summary_fields(self, obj): summary_dict = super(CredentialSerializer, self).get_summary_fields(obj) summary_dict['owners'] = [] for user in obj.admin_role.members.all(): summary_dict['owners'].append({ 'id': user.pk, 'type': 'user', 'name': user.username, 'description': ' '.join([user.first_name, user.last_name]), 'url': self.reverse('api:user_detail', kwargs={'pk': user.pk}), }) for parent in [role for role in obj.admin_role.parents.all() if role.object_id is not None]: summary_dict['owners'].append({ 'id': parent.content_object.pk, 'type': camelcase_to_underscore(parent.content_object.__class__.__name__), 'name': parent.content_object.name, 'description': parent.content_object.description, 'url': parent.content_object.get_absolute_url(self.context.get('request')), }) return summary_dict def get_validation_exclusions(self, obj=None): ret = super(CredentialSerializer, self).get_validation_exclusions(obj) for field in ('credential_type', 'inputs'): if field in ret: ret.remove(field) return ret def validate_credential_type(self, credential_type): if self.instance and credential_type.pk != self.instance.credential_type.pk: for rel in ( 'ad_hoc_commands', 'insights_inventories', 'unifiedjobs', 'unifiedjobtemplates', 'projects', 'projectupdates', 'workflowjobnodes' ): if getattr(self.instance, rel).count() > 0: raise ValidationError( _('You cannot change the credential type of the credential, as it may break the functionality' ' of the resources using it.'), ) return credential_type class CredentialSerializerCreate(CredentialSerializer): user = serializers.PrimaryKeyRelatedField( queryset=User.objects.all(), required=False, default=None, write_only=True, allow_null=True, help_text=_('Write-only field used to add user to owner role. If provided, ' 'do not give either team or organization. Only valid for creation.')) team = serializers.PrimaryKeyRelatedField( queryset=Team.objects.all(), required=False, default=None, write_only=True, allow_null=True, help_text=_('Write-only field used to add team to owner role. If provided, ' 'do not give either user or organization. Only valid for creation.')) organization = serializers.PrimaryKeyRelatedField( queryset=Organization.objects.all(), required=False, default=None, allow_null=True, help_text=_('Inherit permissions from organization roles. If provided on creation, ' 'do not give either user or team.')) class Meta: model = Credential fields = ('*', 'user', 'team') def validate(self, attrs): owner_fields = set() for field in ('user', 'team', 'organization'): if field in attrs: if attrs[field]: owner_fields.add(field) else: attrs.pop(field) if not owner_fields: raise serializers.ValidationError({"detail": _("Missing 'user', 'team', or 'organization'.")}) if attrs.get('team'): attrs['organization'] = attrs['team'].organization return super(CredentialSerializerCreate, self).validate(attrs) def create(self, validated_data): user = validated_data.pop('user', None) team = validated_data.pop('team', None) credential = super(CredentialSerializerCreate, self).create(validated_data) if user: credential.admin_role.members.add(user) if team: if not credential.organization or team.organization.id != credential.organization.id: raise serializers.ValidationError({"detail": _("Credential organization must be set and match before assigning to a team")}) credential.admin_role.parents.add(team.admin_role) credential.use_role.parents.add(team.member_role) return credential class CredentialInputSourceSerializer(BaseSerializer): show_capabilities = ['delete'] class Meta: model = CredentialInputSource fields = ( '*', 'input_field_name', 'metadata', 'target_credential', 'source_credential', '-name', ) extra_kwargs = { 'input_field_name': {'required': True}, 'target_credential': {'required': True}, 'source_credential': {'required': True}, } def get_related(self, obj): res = super(CredentialInputSourceSerializer, self).get_related(obj) res['source_credential'] = obj.source_credential.get_absolute_url(request=self.context.get('request')) res['target_credential'] = obj.target_credential.get_absolute_url(request=self.context.get('request')) return res class UserCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-team', '-organization') class TeamCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-user', '-organization') class OrganizationCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-user', '-team') class LabelsListMixin(object): def _summary_field_labels(self, obj): label_list = [{'id': x.id, 'name': x.name} for x in obj.labels.all()[:10]] if has_model_field_prefetched(obj, 'labels'): label_ct = len(obj.labels.all()) else: if len(label_list) < 10: label_ct = len(label_list) else: label_ct = obj.labels.count() return {'count': label_ct, 'results': label_list} def get_summary_fields(self, obj): res = super(LabelsListMixin, self).get_summary_fields(obj) res['labels'] = self._summary_field_labels(obj) return res class JobOptionsSerializer(LabelsListMixin, BaseSerializer): class Meta: fields = ('*', 'job_type', 'inventory', 'project', 'playbook', 'forks', 'limit', 'verbosity', 'extra_vars', 'job_tags', 'force_handlers', 'skip_tags', 'start_at_task', 'timeout', 'use_fact_cache',) def get_related(self, obj): res = super(JobOptionsSerializer, self).get_related(obj) res['labels'] = self.reverse('api:job_template_label_list', kwargs={'pk': obj.pk}) try: if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) except ObjectDoesNotExist: setattr(obj, 'inventory', None) try: if obj.project: res['project'] = self.reverse('api:project_detail', kwargs={'pk': obj.project.pk}) except ObjectDoesNotExist: setattr(obj, 'project', None) if isinstance(obj, UnifiedJobTemplate): res['extra_credentials'] = self.reverse( 'api:job_template_extra_credentials_list', kwargs={'pk': obj.pk} ) res['credentials'] = self.reverse( 'api:job_template_credentials_list', kwargs={'pk': obj.pk} ) elif isinstance(obj, UnifiedJob): res['extra_credentials'] = self.reverse('api:job_extra_credentials_list', kwargs={'pk': obj.pk}) res['credentials'] = self.reverse('api:job_credentials_list', kwargs={'pk': obj.pk}) return res def to_representation(self, obj): ret = super(JobOptionsSerializer, self).to_representation(obj) if obj is None: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None if 'project' in ret and not obj.project: ret['project'] = None if 'playbook' in ret: ret['playbook'] = '' return ret def validate(self, attrs): if 'project' in self.fields and 'playbook' in self.fields: project = attrs.get('project', self.instance and self.instance.project or None) playbook = attrs.get('playbook', self.instance and self.instance.playbook or '') if not project: raise serializers.ValidationError({'project': _('This field is required.')}) if project and project.scm_type and playbook and force_text(playbook) not in project.playbook_files: raise serializers.ValidationError({'playbook': _('Playbook not found for project.')}) if project and not project.scm_type and playbook and force_text(playbook) not in project.playbooks: raise serializers.ValidationError({'playbook': _('Playbook not found for project.')}) if project and not playbook: raise serializers.ValidationError({'playbook': _('Must select playbook for project.')}) ret = super(JobOptionsSerializer, self).validate(attrs) return ret class JobTemplateMixin(object): ''' Provide recent jobs and survey details in summary_fields ''' def _recent_jobs(self, obj): # Exclude "joblets", jobs that ran as part of a sliced workflow job uj_qs = obj.unifiedjob_unified_jobs.exclude(job__job_slice_count__gt=1).order_by('-created') # Would like to apply an .only, but does not play well with non_polymorphic # .only('id', 'status', 'finished', 'polymorphic_ctype_id') optimized_qs = uj_qs.non_polymorphic() return [{ 'id': x.id, 'status': x.status, 'finished': x.finished, # Make type consistent with API top-level key, for instance workflow_job 'type': x.get_real_instance_class()._meta.verbose_name.replace(' ', '_') } for x in optimized_qs[:10]] def get_summary_fields(self, obj): d = super(JobTemplateMixin, self).get_summary_fields(obj) if obj.survey_spec is not None and ('name' in obj.survey_spec and 'description' in obj.survey_spec): d['survey'] = dict(title=obj.survey_spec['name'], description=obj.survey_spec['description']) d['recent_jobs'] = self._recent_jobs(obj) return d class JobTemplateSerializer(JobTemplateMixin, UnifiedJobTemplateSerializer, JobOptionsSerializer): show_capabilities = ['start', 'schedule', 'copy', 'edit', 'delete'] capabilities_prefetch = [ 'admin', 'execute', {'copy': ['project.use', 'inventory.use']} ] status = serializers.ChoiceField(choices=JobTemplate.JOB_TEMPLATE_STATUS_CHOICES, read_only=True, required=False) class Meta: model = JobTemplate fields = ('*', 'host_config_key', 'ask_diff_mode_on_launch', 'ask_variables_on_launch', 'ask_limit_on_launch', 'ask_tags_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch', 'survey_enabled', 'become_enabled', 'diff_mode', 'allow_simultaneous', 'custom_virtualenv', 'job_slice_count') def get_related(self, obj): res = super(JobTemplateSerializer, self).get_related(obj) res.update(dict( jobs = self.reverse('api:job_template_jobs_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:job_template_schedules_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:job_template_activity_stream_list', kwargs={'pk': obj.pk}), launch = self.reverse('api:job_template_launch', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:job_template_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:job_template_access_list', kwargs={'pk': obj.pk}), survey_spec = self.reverse('api:job_template_survey_spec', kwargs={'pk': obj.pk}), labels = self.reverse('api:job_template_label_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:job_template_object_roles_list', kwargs={'pk': obj.pk}), instance_groups = self.reverse('api:job_template_instance_groups_list', kwargs={'pk': obj.pk}), slice_workflow_jobs = self.reverse('api:job_template_slice_workflow_jobs_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:job_template_copy', kwargs={'pk': obj.pk}), )) if obj.host_config_key: res['callback'] = self.reverse('api:job_template_callback', kwargs={'pk': obj.pk}) return res def validate(self, attrs): def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) inventory = get_field_from_model_or_attrs('inventory') project = get_field_from_model_or_attrs('project') if get_field_from_model_or_attrs('host_config_key') and not inventory: raise serializers.ValidationError({'host_config_key': _( "Cannot enable provisioning callback without an inventory set." )}) prompting_error_message = _("Must either set a default value or ask to prompt on launch.") if project is None: raise serializers.ValidationError({'project': _("Job Templates must have a project assigned.")}) elif inventory is None and not get_field_from_model_or_attrs('ask_inventory_on_launch'): raise serializers.ValidationError({'inventory': prompting_error_message}) return super(JobTemplateSerializer, self).validate(attrs) def validate_extra_vars(self, value): return vars_validate_or_raise(value) def get_summary_fields(self, obj): summary_fields = super(JobTemplateSerializer, self).get_summary_fields(obj) all_creds = [] # Organize credential data into multitude of deprecated fields extra_creds = [] if obj.pk: for cred in obj.credentials.all(): summarized_cred = { 'id': cred.pk, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'cloud': cred.credential_type.kind == 'cloud' } all_creds.append(summarized_cred) if cred.credential_type.kind in ('cloud', 'net'): extra_creds.append(summarized_cred) if self.is_detail_view: summary_fields['extra_credentials'] = extra_creds summary_fields['credentials'] = all_creds return summary_fields class JobTemplateWithSpecSerializer(JobTemplateSerializer): ''' Used for activity stream entries. ''' class Meta: model = JobTemplate fields = ('*', 'survey_spec') class JobSerializer(UnifiedJobSerializer, JobOptionsSerializer): passwords_needed_to_start = serializers.ReadOnlyField() artifacts = serializers.SerializerMethodField() class Meta: model = Job fields = ('*', 'job_template', 'passwords_needed_to_start', 'allow_simultaneous', 'artifacts', 'scm_revision', 'instance_group', 'diff_mode', 'job_slice_number', 'job_slice_count') def get_related(self, obj): res = super(JobSerializer, self).get_related(obj) res.update(dict( job_events = self.reverse('api:job_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:job_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:job_activity_stream_list', kwargs={'pk': obj.pk}), notifications = self.reverse('api:job_notifications_list', kwargs={'pk': obj.pk}), labels = self.reverse('api:job_label_list', kwargs={'pk': obj.pk}), create_schedule = self.reverse('api:job_create_schedule', kwargs={'pk': obj.pk}), )) try: if obj.job_template: res['job_template'] = self.reverse('api:job_template_detail', kwargs={'pk': obj.job_template.pk}) except ObjectDoesNotExist: setattr(obj, 'job_template', None) if obj.can_cancel or True: res['cancel'] = self.reverse('api:job_cancel', kwargs={'pk': obj.pk}) try: if obj.project_update: res['project_update'] = self.reverse( 'api:project_update_detail', kwargs={'pk': obj.project_update.pk} ) except ObjectDoesNotExist: pass res['relaunch'] = self.reverse('api:job_relaunch', kwargs={'pk': obj.pk}) return res def get_artifacts(self, obj): if obj: return obj.display_artifacts() return {} def to_internal_value(self, data): # When creating a new job and a job template is specified, populate any # fields not provided in data from the job template. if not self.instance and isinstance(data, dict) and data.get('job_template', False): try: job_template = JobTemplate.objects.get(pk=data['job_template']) except JobTemplate.DoesNotExist: raise serializers.ValidationError({'job_template': _('Invalid job template.')}) data.setdefault('name', job_template.name) data.setdefault('description', job_template.description) data.setdefault('job_type', job_template.job_type) if job_template.inventory: data.setdefault('inventory', job_template.inventory.pk) if job_template.project: data.setdefault('project', job_template.project.pk) data.setdefault('playbook', job_template.playbook) if job_template.credential: data.setdefault('credential', job_template.credential) data.setdefault('forks', job_template.forks) data.setdefault('limit', job_template.limit) data.setdefault('verbosity', job_template.verbosity) data.setdefault('extra_vars', job_template.extra_vars) data.setdefault('job_tags', job_template.job_tags) data.setdefault('force_handlers', job_template.force_handlers) data.setdefault('skip_tags', job_template.skip_tags) data.setdefault('start_at_task', job_template.start_at_task) return super(JobSerializer, self).to_internal_value(data) def to_representation(self, obj): ret = super(JobSerializer, self).to_representation(obj) if obj is None: return ret if 'job_template' in ret and not obj.job_template: ret['job_template'] = None if 'extra_vars' in ret: ret['extra_vars'] = obj.display_extra_vars() return ret def get_summary_fields(self, obj): summary_fields = super(JobSerializer, self).get_summary_fields(obj) all_creds = [] # Organize credential data into multitude of deprecated fields extra_creds = [] if obj.pk: for cred in obj.credentials.all(): summarized_cred = { 'id': cred.pk, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'cloud': cred.credential_type.kind == 'cloud' } all_creds.append(summarized_cred) if cred.credential_type.kind in ('cloud', 'net'): extra_creds.append(summarized_cred) if self.is_detail_view: summary_fields['extra_credentials'] = extra_creds summary_fields['credentials'] = all_creds return summary_fields class JobDetailSerializer(JobSerializer): host_status_counts = serializers.SerializerMethodField( help_text=_('A count of hosts uniquely assigned to each status.'), ) playbook_counts = serializers.SerializerMethodField( help_text=_('A count of all plays and tasks for the job run.'), ) custom_virtualenv = serializers.ReadOnlyField() class Meta: model = Job fields = ('*', 'host_status_counts', 'playbook_counts', 'custom_virtualenv') def get_playbook_counts(self, obj): task_count = obj.job_events.filter(event='playbook_on_task_start').count() play_count = obj.job_events.filter(event='playbook_on_play_start').count() data = {'play_count': play_count, 'task_count': task_count} return data def get_host_status_counts(self, obj): try: counts = obj.job_events.only('event_data').get(event='playbook_on_stats').get_host_status_counts() except JobEvent.DoesNotExist: counts = {} return counts class JobCancelSerializer(BaseSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: model = Job fields = ('can_cancel',) class JobRelaunchSerializer(BaseSerializer): passwords_needed_to_start = serializers.SerializerMethodField() retry_counts = serializers.SerializerMethodField() hosts = serializers.ChoiceField( required=False, allow_null=True, default='all', choices=[ ('all', _('No change to job limit')), ('failed', _('All failed and unreachable hosts')) ], write_only=True ) credential_passwords = VerbatimField(required=True, write_only=True) class Meta: model = Job fields = ('passwords_needed_to_start', 'retry_counts', 'hosts', 'credential_passwords',) def validate_credential_passwords(self, value): pnts = self.instance.passwords_needed_to_start missing = set(pnts) - set(key for key in value if value[key]) if missing: raise serializers.ValidationError(_( 'Missing passwords needed to start: {}'.format(', '.join(missing)) )) return value def to_representation(self, obj): res = super(JobRelaunchSerializer, self).to_representation(obj) view = self.context.get('view', None) if hasattr(view, '_raw_data_form_marker'): password_keys = dict([(p, u'') for p in self.get_passwords_needed_to_start(obj)]) res.update(password_keys) return res def get_passwords_needed_to_start(self, obj): if obj: return obj.passwords_needed_to_start return '' def get_retry_counts(self, obj): if obj.status in ACTIVE_STATES: return _('Relaunch by host status not available until job finishes running.') data = OrderedDict([]) for status in self.fields['hosts'].choices.keys(): data[status] = obj.retry_qs(status).count() return data def get_validation_exclusions(self, *args, **kwargs): r = super(JobRelaunchSerializer, self).get_validation_exclusions(*args, **kwargs) r.append('credential_passwords') return r def validate(self, attrs): obj = self.instance if obj.project is None: raise serializers.ValidationError(dict(errors=[_("Job Template Project is missing or undefined.")])) if obj.inventory is None or obj.inventory.pending_deletion: raise serializers.ValidationError(dict(errors=[_("Job Template Inventory is missing or undefined.")])) attrs = super(JobRelaunchSerializer, self).validate(attrs) return attrs class JobCreateScheduleSerializer(BaseSerializer): can_schedule = serializers.SerializerMethodField() prompts = serializers.SerializerMethodField() class Meta: model = Job fields = ('can_schedule', 'prompts',) def get_can_schedule(self, obj): ''' Need both a job template and job prompts to schedule ''' return obj.can_schedule @staticmethod def _summarize(res_name, obj): summary = {} for field in SUMMARIZABLE_FK_FIELDS[res_name]: summary[field] = getattr(obj, field, None) return summary def get_prompts(self, obj): try: config = obj.launch_config ret = config.prompts_dict(display=True) if 'inventory' in ret: ret['inventory'] = self._summarize('inventory', ret['inventory']) if 'credentials' in ret: all_creds = [self._summarize('credential', cred) for cred in ret['credentials']] ret['credentials'] = all_creds return ret except JobLaunchConfig.DoesNotExist: return {'all': _('Unknown, job may have been ran before launch configurations were saved.')} class AdHocCommandSerializer(UnifiedJobSerializer): class Meta: model = AdHocCommand fields = ('*', 'job_type', 'inventory', 'limit', 'credential', 'module_name', 'module_args', 'forks', 'verbosity', 'extra_vars', 'become_enabled', 'diff_mode', '-unified_job_template', '-description') extra_kwargs = { 'name': { 'read_only': True, }, } def get_field_names(self, declared_fields, info): field_names = super(AdHocCommandSerializer, self).get_field_names(declared_fields, info) # Meta multiple inheritance and -field_name options don't seem to be # taking effect above, so remove the undesired fields here. return tuple(x for x in field_names if x not in ('unified_job_template', 'description')) def build_standard_field(self, field_name, model_field): field_class, field_kwargs = super(AdHocCommandSerializer, self).build_standard_field(field_name, model_field) # Load module name choices dynamically from DB settings. if field_name == 'module_name': field_class = serializers.ChoiceField module_name_choices = [(x, x) for x in settings.AD_HOC_COMMANDS] module_name_default = 'command' if 'command' in [x[0] for x in module_name_choices] else '' field_kwargs['choices'] = module_name_choices field_kwargs['required'] = bool(not module_name_default) field_kwargs['default'] = module_name_default or serializers.empty field_kwargs['allow_blank'] = bool(module_name_default) field_kwargs.pop('max_length', None) return field_class, field_kwargs def get_related(self, obj): res = super(AdHocCommandSerializer, self).get_related(obj) if obj.inventory_id: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory_id}) if obj.credential_id: res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential_id}) res.update(dict( events = self.reverse('api:ad_hoc_command_ad_hoc_command_events_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:ad_hoc_command_activity_stream_list', kwargs={'pk': obj.pk}), notifications = self.reverse('api:ad_hoc_command_notifications_list', kwargs={'pk': obj.pk}), )) res['cancel'] = self.reverse('api:ad_hoc_command_cancel', kwargs={'pk': obj.pk}) res['relaunch'] = self.reverse('api:ad_hoc_command_relaunch', kwargs={'pk': obj.pk}) return res def to_representation(self, obj): ret = super(AdHocCommandSerializer, self).to_representation(obj) if 'inventory' in ret and not obj.inventory_id: ret['inventory'] = None if 'credential' in ret and not obj.credential_id: ret['credential'] = None # For the UI, only module_name is returned for name, instead of the # longer module name + module_args format. if 'name' in ret: ret['name'] = obj.module_name return ret def validate(self, attrs): ret = super(AdHocCommandSerializer, self).validate(attrs) return ret def validate_extra_vars(self, value): redacted_extra_vars, removed_vars = extract_ansible_vars(value) if removed_vars: raise serializers.ValidationError(_( "{} are prohibited from use in ad hoc commands." ).format(", ".join(sorted(removed_vars, reverse=True)))) return vars_validate_or_raise(value) class AdHocCommandDetailSerializer(AdHocCommandSerializer): host_status_counts = serializers.SerializerMethodField( help_text=_('A count of hosts uniquely assigned to each status.'), ) class Meta: model = AdHocCommand fields = ('*', 'host_status_counts',) def get_host_status_counts(self, obj): try: counts = obj.ad_hoc_command_events.only('event_data').get(event='playbook_on_stats').get_host_status_counts() except AdHocCommandEvent.DoesNotExist: counts = {} return counts class AdHocCommandCancelSerializer(AdHocCommandSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class AdHocCommandRelaunchSerializer(AdHocCommandSerializer): class Meta: fields = () def to_representation(self, obj): if obj: return dict([(p, u'') for p in obj.passwords_needed_to_start]) else: return {} class SystemJobTemplateSerializer(UnifiedJobTemplateSerializer): class Meta: model = SystemJobTemplate fields = ('*', 'job_type',) def get_related(self, obj): res = super(SystemJobTemplateSerializer, self).get_related(obj) res.update(dict( jobs = self.reverse('api:system_job_template_jobs_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:system_job_template_schedules_list', kwargs={'pk': obj.pk}), launch = self.reverse('api:system_job_template_launch', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:system_job_template_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:system_job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:system_job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), )) return res class SystemJobSerializer(UnifiedJobSerializer): result_stdout = serializers.SerializerMethodField() class Meta: model = SystemJob fields = ('*', 'system_job_template', 'job_type', 'extra_vars', 'result_stdout', '-controller_node',) def get_related(self, obj): res = super(SystemJobSerializer, self).get_related(obj) if obj.system_job_template: res['system_job_template'] = self.reverse('api:system_job_template_detail', kwargs={'pk': obj.system_job_template.pk}) res['notifications'] = self.reverse('api:system_job_notifications_list', kwargs={'pk': obj.pk}) if obj.can_cancel or True: res['cancel'] = self.reverse('api:system_job_cancel', kwargs={'pk': obj.pk}) res['events'] = self.reverse('api:system_job_events_list', kwargs={'pk': obj.pk}) return res def get_result_stdout(self, obj): try: return obj.result_stdout except StdoutMaxBytesExceeded as e: return _( "Standard Output too large to display ({text_size} bytes), " "only download supported for sizes over {supported_size} bytes.").format( text_size=e.total, supported_size=e.supported ) class SystemJobCancelSerializer(SystemJobSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class WorkflowJobTemplateSerializer(JobTemplateMixin, LabelsListMixin, UnifiedJobTemplateSerializer): show_capabilities = ['start', 'schedule', 'edit', 'copy', 'delete'] capabilities_prefetch = [ 'admin', 'execute', {'copy': 'organization.workflow_admin'} ] class Meta: model = WorkflowJobTemplate fields = ('*', 'extra_vars', 'organization', 'survey_enabled', 'allow_simultaneous', 'ask_variables_on_launch', 'inventory', 'ask_inventory_on_launch',) def get_related(self, obj): res = super(WorkflowJobTemplateSerializer, self).get_related(obj) res.update(dict( workflow_jobs = self.reverse('api:workflow_job_template_jobs_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:workflow_job_template_schedules_list', kwargs={'pk': obj.pk}), launch = self.reverse('api:workflow_job_template_launch', kwargs={'pk': obj.pk}), workflow_nodes = self.reverse('api:workflow_job_template_workflow_nodes_list', kwargs={'pk': obj.pk}), labels = self.reverse('api:workflow_job_template_label_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:workflow_job_template_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates_any = self.reverse('api:workflow_job_template_notification_templates_any_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:workflow_job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:workflow_job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:workflow_job_template_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:workflow_job_template_object_roles_list', kwargs={'pk': obj.pk}), survey_spec = self.reverse('api:workflow_job_template_survey_spec', kwargs={'pk': obj.pk}), copy = self.reverse('api:workflow_job_template_copy', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def validate_extra_vars(self, value): return vars_validate_or_raise(value) class WorkflowJobTemplateWithSpecSerializer(WorkflowJobTemplateSerializer): ''' Used for activity stream entries. ''' class Meta: model = WorkflowJobTemplate fields = ('*', 'survey_spec') class WorkflowJobSerializer(LabelsListMixin, UnifiedJobSerializer): class Meta: model = WorkflowJob fields = ('*', 'workflow_job_template', 'extra_vars', 'allow_simultaneous', 'job_template', 'is_sliced_job', '-execution_node', '-event_processing_finished', '-controller_node', 'inventory',) def get_related(self, obj): res = super(WorkflowJobSerializer, self).get_related(obj) if obj.workflow_job_template: res['workflow_job_template'] = self.reverse('api:workflow_job_template_detail', kwargs={'pk': obj.workflow_job_template.pk}) res['notifications'] = self.reverse('api:workflow_job_notifications_list', kwargs={'pk': obj.pk}) if obj.job_template_id: res['job_template'] = self.reverse('api:job_template_detail', kwargs={'pk': obj.job_template_id}) res['workflow_nodes'] = self.reverse('api:workflow_job_workflow_nodes_list', kwargs={'pk': obj.pk}) res['labels'] = self.reverse('api:workflow_job_label_list', kwargs={'pk': obj.pk}) res['activity_stream'] = self.reverse('api:workflow_job_activity_stream_list', kwargs={'pk': obj.pk}) res['relaunch'] = self.reverse('api:workflow_job_relaunch', kwargs={'pk': obj.pk}) if obj.can_cancel or True: res['cancel'] = self.reverse('api:workflow_job_cancel', kwargs={'pk': obj.pk}) return res def to_representation(self, obj): ret = super(WorkflowJobSerializer, self).to_representation(obj) if obj is None: return ret if 'extra_vars' in ret: ret['extra_vars'] = obj.display_extra_vars() return ret class WorkflowJobListSerializer(WorkflowJobSerializer, UnifiedJobListSerializer): class Meta: fields = ('*', '-execution_node', '-controller_node',) class WorkflowJobCancelSerializer(WorkflowJobSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class LaunchConfigurationBaseSerializer(BaseSerializer): job_type = serializers.ChoiceField(allow_blank=True, allow_null=True, required=False, default=None, choices=NEW_JOB_TYPE_CHOICES) job_tags = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) limit = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) skip_tags = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) diff_mode = serializers.NullBooleanField(required=False, default=None) verbosity = serializers.ChoiceField(allow_null=True, required=False, default=None, choices=VERBOSITY_CHOICES) exclude_errors = () class Meta: fields = ('*', 'extra_data', 'inventory', # Saved launch-time config fields 'job_type', 'job_tags', 'skip_tags', 'limit', 'skip_tags', 'diff_mode', 'verbosity') def get_related(self, obj): res = super(LaunchConfigurationBaseSerializer, self).get_related(obj) if obj.inventory_id: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory_id}) res['credentials'] = self.reverse( 'api:{}_credentials_list'.format(get_type_for_model(self.Meta.model)), kwargs={'pk': obj.pk} ) return res def _build_mock_obj(self, attrs): mock_obj = self.Meta.model() if self.instance: for field in self.instance._meta.fields: setattr(mock_obj, field.name, getattr(self.instance, field.name)) field_names = set(field.name for field in self.Meta.model._meta.fields) for field_name, value in list(attrs.items()): setattr(mock_obj, field_name, value) if field_name not in field_names: attrs.pop(field_name) return mock_obj def to_representation(self, obj): ret = super(LaunchConfigurationBaseSerializer, self).to_representation(obj) if obj is None: return ret if 'extra_data' in ret and obj.survey_passwords: ret['extra_data'] = obj.display_extra_vars() return ret def get_summary_fields(self, obj): summary_fields = super(LaunchConfigurationBaseSerializer, self).get_summary_fields(obj) # Credential would be an empty dictionary in this case summary_fields.pop('credential', None) return summary_fields def validate(self, attrs): db_extra_data = {} if self.instance: db_extra_data = parse_yaml_or_json(self.instance.extra_data) attrs = super(LaunchConfigurationBaseSerializer, self).validate(attrs) ujt = None if 'unified_job_template' in attrs: ujt = attrs['unified_job_template'] elif self.instance: ujt = self.instance.unified_job_template # build additional field survey_passwords to track redacted variables password_dict = {} extra_data = parse_yaml_or_json(attrs.get('extra_data', {})) if hasattr(ujt, 'survey_password_variables'): # Prepare additional field survey_passwords for save for key in ujt.survey_password_variables(): if key in extra_data: password_dict[key] = REPLACE_STR # Replace $encrypted$ submissions with db value if exists if 'extra_data' in attrs: if password_dict: if not self.instance or password_dict != self.instance.survey_passwords: attrs['survey_passwords'] = password_dict.copy() # Force dict type (cannot preserve YAML formatting if passwords are involved) # Encrypt the extra_data for save, only current password vars in JT survey # but first, make a copy or else this is referenced by request.data, and # user could get encrypted string in form data in API browser attrs['extra_data'] = extra_data.copy() encrypt_dict(attrs['extra_data'], password_dict.keys()) # For any raw $encrypted$ string, either # - replace with existing DB value # - raise a validation error # - ignore, if default present for key in password_dict.keys(): if attrs['extra_data'].get(key, None) == REPLACE_STR: if key not in db_extra_data: element = ujt.pivot_spec(ujt.survey_spec)[key] # NOTE: validation _of_ the default values of password type # questions not done here or on launch, but doing so could # leak info about values, so it should not be added if not ('default' in element and element['default']): raise serializers.ValidationError( {"extra_data": _('Provided variable {} has no database value to replace with.').format(key)}) else: attrs['extra_data'][key] = db_extra_data[key] # Build unsaved version of this config, use it to detect prompts errors mock_obj = self._build_mock_obj(attrs) accepted, rejected, errors = ujt._accept_or_ignore_job_kwargs( _exclude_errors=self.exclude_errors, **mock_obj.prompts_dict()) # Remove all unprocessed $encrypted$ strings, indicating default usage if 'extra_data' in attrs and password_dict: for key, value in attrs['extra_data'].copy().items(): if value == REPLACE_STR: if key in password_dict: attrs['extra_data'].pop(key) attrs.get('survey_passwords', {}).pop(key, None) else: errors.setdefault('extra_vars', []).append( _('"$encrypted$ is a reserved keyword, may not be used for {var_name}."'.format(key)) ) # Launch configs call extra_vars extra_data for historical reasons if 'extra_vars' in errors: errors['extra_data'] = errors.pop('extra_vars') if errors: raise serializers.ValidationError(errors) # Model `.save` needs the container dict, not the psuedo fields if mock_obj.char_prompts: attrs['char_prompts'] = mock_obj.char_prompts return attrs class WorkflowJobTemplateNodeSerializer(LaunchConfigurationBaseSerializer): credential = DeprecatedCredentialField() success_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) failure_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) always_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) exclude_errors = ('required',) # required variables may be provided by WFJT or on launch class Meta: model = WorkflowJobTemplateNode fields = ('*', 'credential', 'workflow_job_template', '-name', '-description', 'id', 'url', 'related', 'unified_job_template', 'success_nodes', 'failure_nodes', 'always_nodes',) def get_related(self, obj): res = super(WorkflowJobTemplateNodeSerializer, self).get_related(obj) res['success_nodes'] = self.reverse('api:workflow_job_template_node_success_nodes_list', kwargs={'pk': obj.pk}) res['failure_nodes'] = self.reverse('api:workflow_job_template_node_failure_nodes_list', kwargs={'pk': obj.pk}) res['always_nodes'] = self.reverse('api:workflow_job_template_node_always_nodes_list', kwargs={'pk': obj.pk}) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) try: res['workflow_job_template'] = self.reverse('api:workflow_job_template_detail', kwargs={'pk': obj.workflow_job_template.pk}) except WorkflowJobTemplate.DoesNotExist: pass return res def build_field(self, field_name, info, model_class, nested_depth): # have to special-case the field so that DRF will not automagically make it # read-only because it's a property on the model. if field_name == 'credential': return self.build_standard_field(field_name, self.credential) return super(WorkflowJobTemplateNodeSerializer, self).build_field(field_name, info, model_class, nested_depth) def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(WorkflowJobTemplateNodeSerializer, self).build_relational_field(field_name, relation_info) # workflow_job_template is read-only unless creating a new node. if self.instance and field_name == 'workflow_job_template': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def validate(self, attrs): deprecated_fields = {} if 'credential' in attrs: # TODO: remove when v2 API is deprecated deprecated_fields['credential'] = attrs.pop('credential') view = self.context.get('view') attrs = super(WorkflowJobTemplateNodeSerializer, self).validate(attrs) ujt_obj = None if 'unified_job_template' in attrs: ujt_obj = attrs['unified_job_template'] elif self.instance: ujt_obj = self.instance.unified_job_template if 'credential' in deprecated_fields: # TODO: remove when v2 API is deprecated cred = deprecated_fields['credential'] attrs['credential'] = cred if cred is not None: if not ujt_obj.ask_credential_on_launch: raise serializers.ValidationError({"credential": _( "Related template is not configured to accept credentials on launch.")}) cred = Credential.objects.get(pk=cred) view = self.context.get('view', None) if (not view) or (not view.request) or (view.request.user not in cred.use_role): raise PermissionDenied() return attrs def create(self, validated_data): # TODO: remove when v2 API is deprecated deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(WorkflowJobTemplateNodeSerializer, self).create(validated_data) if 'credential' in deprecated_fields: if deprecated_fields['credential']: obj.credentials.add(deprecated_fields['credential']) return obj def update(self, obj, validated_data): # TODO: remove when v2 API is deprecated deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(WorkflowJobTemplateNodeSerializer, self).update(obj, validated_data) if 'credential' in deprecated_fields: existing = obj.credentials.filter(credential_type__kind='ssh') new_cred = deprecated_fields['credential'] if new_cred not in existing: for cred in existing: obj.credentials.remove(cred) if new_cred: obj.credentials.add(new_cred) return obj class WorkflowJobNodeSerializer(LaunchConfigurationBaseSerializer): credential = DeprecatedCredentialField() success_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) failure_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) always_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) class Meta: model = WorkflowJobNode fields = ('*', 'credential', 'job', 'workflow_job', '-name', '-description', 'id', 'url', 'related', 'unified_job_template', 'success_nodes', 'failure_nodes', 'always_nodes', 'do_not_run',) def get_related(self, obj): res = super(WorkflowJobNodeSerializer, self).get_related(obj) res['success_nodes'] = self.reverse('api:workflow_job_node_success_nodes_list', kwargs={'pk': obj.pk}) res['failure_nodes'] = self.reverse('api:workflow_job_node_failure_nodes_list', kwargs={'pk': obj.pk}) res['always_nodes'] = self.reverse('api:workflow_job_node_always_nodes_list', kwargs={'pk': obj.pk}) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) if obj.job: res['job'] = obj.job.get_absolute_url(self.context.get('request')) if obj.workflow_job: res['workflow_job'] = self.reverse('api:workflow_job_detail', kwargs={'pk': obj.workflow_job.pk}) return res class WorkflowJobNodeListSerializer(WorkflowJobNodeSerializer): pass class WorkflowJobNodeDetailSerializer(WorkflowJobNodeSerializer): pass class WorkflowJobTemplateNodeDetailSerializer(WorkflowJobTemplateNodeSerializer): ''' Influence the api browser sample data to not include workflow_job_template when editing a WorkflowNode. Note: I was not able to accomplish this through the use of extra_kwargs. Maybe something to do with workflow_job_template being a relational field? ''' def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(WorkflowJobTemplateNodeDetailSerializer, self).build_relational_field(field_name, relation_info) if self.instance and field_name == 'workflow_job_template': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs class JobListSerializer(JobSerializer, UnifiedJobListSerializer): pass class AdHocCommandListSerializer(AdHocCommandSerializer, UnifiedJobListSerializer): pass class SystemJobListSerializer(SystemJobSerializer, UnifiedJobListSerializer): class Meta: model = SystemJob fields = ('*', '-controller_node') # field removal undone by UJ serializer class JobHostSummarySerializer(BaseSerializer): class Meta: model = JobHostSummary fields = ('*', '-name', '-description', 'job', 'host', 'host_name', 'changed', 'dark', 'failures', 'ok', 'processed', 'skipped', 'failed', 'ignored', 'rescued') def get_related(self, obj): res = super(JobHostSummarySerializer, self).get_related(obj) res.update(dict( job=self.reverse('api:job_detail', kwargs={'pk': obj.job.pk}))) if obj.host is not None: res.update(dict( host=self.reverse('api:host_detail', kwargs={'pk': obj.host.pk}) )) return res def get_summary_fields(self, obj): d = super(JobHostSummarySerializer, self).get_summary_fields(obj) try: d['job']['job_template_id'] = obj.job.job_template.id d['job']['job_template_name'] = obj.job.job_template.name except (KeyError, AttributeError): pass return d class JobEventSerializer(BaseSerializer): event_display = serializers.CharField(source='get_event_display2', read_only=True) event_level = serializers.IntegerField(read_only=True) class Meta: model = JobEvent fields = ('*', '-name', '-description', 'job', 'event', 'counter', 'event_display', 'event_data', 'event_level', 'failed', 'changed', 'uuid', 'parent_uuid', 'host', 'host_name', 'parent', 'playbook', 'play', 'task', 'role', 'stdout', 'start_line', 'end_line', 'verbosity') def get_related(self, obj): res = super(JobEventSerializer, self).get_related(obj) res.update(dict( job = self.reverse('api:job_detail', kwargs={'pk': obj.job_id}), )) if obj.parent_id: res['parent'] = self.reverse('api:job_event_detail', kwargs={'pk': obj.parent_id}) res['children'] = self.reverse('api:job_event_children_list', kwargs={'pk': obj.pk}) if obj.host_id: res['host'] = self.reverse('api:host_detail', kwargs={'pk': obj.host_id}) if obj.hosts.exists(): res['hosts'] = self.reverse('api:job_event_hosts_list', kwargs={'pk': obj.pk}) return res def get_summary_fields(self, obj): d = super(JobEventSerializer, self).get_summary_fields(obj) try: d['job']['job_template_id'] = obj.job.job_template.id d['job']['job_template_name'] = obj.job.job_template.name except (KeyError, AttributeError): pass return d def to_representation(self, obj): ret = super(JobEventSerializer, self).to_representation(obj) # Show full stdout for event detail view, truncate only for list view. if hasattr(self.context.get('view', None), 'retrieve'): return ret # Show full stdout for playbook_on_* events. if obj and obj.event.startswith('playbook_on'): return ret max_bytes = settings.EVENT_STDOUT_MAX_BYTES_DISPLAY if max_bytes > 0 and 'stdout' in ret and len(ret['stdout']) >= max_bytes: ret['stdout'] = ret['stdout'][:(max_bytes - 1)] + u'\u2026' set_count = 0 reset_count = 0 for m in ANSI_SGR_PATTERN.finditer(ret['stdout']): if m.string[m.start():m.end()] == u'\u001b[0m': reset_count += 1 else: set_count += 1 ret['stdout'] += u'\u001b[0m' * (set_count - reset_count) return ret class JobEventWebSocketSerializer(JobEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = JobEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'job_events' class ProjectUpdateEventSerializer(JobEventSerializer): stdout = serializers.SerializerMethodField() event_data = serializers.SerializerMethodField() class Meta: model = ProjectUpdateEvent fields = ('*', '-name', '-description', '-job', '-job_id', '-parent_uuid', '-parent', '-host', 'project_update') def get_related(self, obj): res = super(JobEventSerializer, self).get_related(obj) res['project_update'] = self.reverse( 'api:project_update_detail', kwargs={'pk': obj.project_update_id} ) return res def get_stdout(self, obj): return UriCleaner.remove_sensitive(obj.stdout) def get_event_data(self, obj): try: return json.loads( UriCleaner.remove_sensitive( json.dumps(obj.event_data) ) ) except Exception: logger.exception("Failed to sanitize event_data") return {} class ProjectUpdateEventWebSocketSerializer(ProjectUpdateEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = ProjectUpdateEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'project_update_events' class AdHocCommandEventSerializer(BaseSerializer): event_display = serializers.CharField(source='get_event_display', read_only=True) class Meta: model = AdHocCommandEvent fields = ('*', '-name', '-description', 'ad_hoc_command', 'event', 'counter', 'event_display', 'event_data', 'failed', 'changed', 'uuid', 'host', 'host_name', 'stdout', 'start_line', 'end_line', 'verbosity') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res.update(dict( ad_hoc_command = self.reverse('api:ad_hoc_command_detail', kwargs={'pk': obj.ad_hoc_command_id}), )) if obj.host: res['host'] = self.reverse('api:host_detail', kwargs={'pk': obj.host.pk}) return res def to_representation(self, obj): ret = super(AdHocCommandEventSerializer, self).to_representation(obj) # Show full stdout for event detail view, truncate only for list view. if hasattr(self.context.get('view', None), 'retrieve'): return ret max_bytes = settings.EVENT_STDOUT_MAX_BYTES_DISPLAY if max_bytes > 0 and 'stdout' in ret and len(ret['stdout']) >= max_bytes: ret['stdout'] = ret['stdout'][:(max_bytes - 1)] + u'\u2026' set_count = 0 reset_count = 0 for m in ANSI_SGR_PATTERN.finditer(ret['stdout']): if m.string[m.start():m.end()] == u'\u001b[0m': reset_count += 1 else: set_count += 1 ret['stdout'] += u'\u001b[0m' * (set_count - reset_count) return ret class AdHocCommandEventWebSocketSerializer(AdHocCommandEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = AdHocCommandEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'ad_hoc_command_events' class InventoryUpdateEventSerializer(AdHocCommandEventSerializer): class Meta: model = InventoryUpdateEvent fields = ('*', '-name', '-description', '-ad_hoc_command', '-host', '-host_name', 'inventory_update') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res['inventory_update'] = self.reverse( 'api:inventory_update_detail', kwargs={'pk': obj.inventory_update_id} ) return res class InventoryUpdateEventWebSocketSerializer(InventoryUpdateEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = InventoryUpdateEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'inventory_update_events' class SystemJobEventSerializer(AdHocCommandEventSerializer): class Meta: model = SystemJobEvent fields = ('*', '-name', '-description', '-ad_hoc_command', '-host', '-host_name', 'system_job') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res['system_job'] = self.reverse( 'api:system_job_detail', kwargs={'pk': obj.system_job_id} ) return res class SystemJobEventWebSocketSerializer(SystemJobEventSerializer): created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() event_name = serializers.CharField(source='event') group_name = serializers.SerializerMethodField() class Meta: model = SystemJobEvent fields = ('*', 'event_name', 'group_name',) def get_created(self, obj): return obj.created.isoformat() def get_modified(self, obj): return obj.modified.isoformat() def get_group_name(self, obj): return 'system_job_events' class JobLaunchSerializer(BaseSerializer): # Representational fields passwords_needed_to_start = serializers.ReadOnlyField() can_start_without_user_input = serializers.BooleanField(read_only=True) variables_needed_to_start = serializers.ReadOnlyField() credential_needed_to_start = serializers.SerializerMethodField() inventory_needed_to_start = serializers.SerializerMethodField() survey_enabled = serializers.SerializerMethodField() job_template_data = serializers.SerializerMethodField() defaults = serializers.SerializerMethodField() # Accepted on launch fields extra_vars = serializers.JSONField(required=False, write_only=True) inventory = serializers.PrimaryKeyRelatedField( queryset=Inventory.objects.all(), required=False, write_only=True ) credentials = serializers.PrimaryKeyRelatedField( many=True, queryset=Credential.objects.all(), required=False, write_only=True ) credential_passwords = VerbatimField(required=False, write_only=True) diff_mode = serializers.BooleanField(required=False, write_only=True) job_tags = serializers.CharField(required=False, write_only=True, allow_blank=True) job_type = serializers.ChoiceField(required=False, choices=NEW_JOB_TYPE_CHOICES, write_only=True) skip_tags = serializers.CharField(required=False, write_only=True, allow_blank=True) limit = serializers.CharField(required=False, write_only=True, allow_blank=True) verbosity = serializers.ChoiceField(required=False, choices=VERBOSITY_CHOICES, write_only=True) class Meta: model = JobTemplate fields = ('can_start_without_user_input', 'passwords_needed_to_start', 'extra_vars', 'inventory', 'limit', 'job_tags', 'skip_tags', 'job_type', 'verbosity', 'diff_mode', 'credentials', 'credential_passwords', 'ask_variables_on_launch', 'ask_tags_on_launch', 'ask_diff_mode_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_limit_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch', 'survey_enabled', 'variables_needed_to_start', 'credential_needed_to_start', 'inventory_needed_to_start', 'job_template_data', 'defaults', 'verbosity') read_only_fields = ( 'ask_diff_mode_on_launch', 'ask_variables_on_launch', 'ask_limit_on_launch', 'ask_tags_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch',) def get_credential_needed_to_start(self, obj): return False def get_inventory_needed_to_start(self, obj): return not (obj and obj.inventory) def get_survey_enabled(self, obj): if obj: return obj.survey_enabled and 'spec' in obj.survey_spec return False def get_defaults(self, obj): defaults_dict = {} for field_name in JobTemplate.get_ask_mapping().keys(): if field_name == 'inventory': defaults_dict[field_name] = dict( name=getattrd(obj, '%s.name' % field_name, None), id=getattrd(obj, '%s.pk' % field_name, None)) elif field_name == 'credentials': for cred in obj.credentials.all(): cred_dict = dict( id=cred.id, name=cred.name, credential_type=cred.credential_type.pk, passwords_needed=cred.passwords_needed ) if cred.credential_type.managed_by_tower and 'vault_id' in cred.credential_type.defined_fields: cred_dict['vault_id'] = cred.get_input('vault_id', default=None) defaults_dict.setdefault(field_name, []).append(cred_dict) else: defaults_dict[field_name] = getattr(obj, field_name) return defaults_dict def get_job_template_data(self, obj): return dict(name=obj.name, id=obj.id, description=obj.description) def validate_extra_vars(self, value): return vars_validate_or_raise(value) def validate(self, attrs): template = self.context.get('template') accepted, rejected, errors = template._accept_or_ignore_job_kwargs( _exclude_errors=['prompts'], # make several error types non-blocking **attrs) self._ignored_fields = rejected if template.inventory and template.inventory.pending_deletion is True: errors['inventory'] = _("The inventory associated with this Job Template is being deleted.") elif 'inventory' in accepted and accepted['inventory'].pending_deletion: errors['inventory'] = _("The provided inventory is being deleted.") # Prohibit providing multiple credentials of the same CredentialType.kind # or multiples of same vault id distinct_cred_kinds = [] for cred in accepted.get('credentials', []): if cred.unique_hash() in distinct_cred_kinds: errors.setdefault('credentials', []).append(_( 'Cannot assign multiple {} credentials.' ).format(cred.unique_hash(display=True))) if cred.credential_type.kind not in ('ssh', 'vault', 'cloud', 'net'): errors.setdefault('credentials', []).append(_( 'Cannot assign a Credential of kind `{}`' ).format(cred.credential_type.kind)) distinct_cred_kinds.append(cred.unique_hash()) # Prohibit removing credentials from the JT list (unsupported for now) template_credentials = template.credentials.all() if 'credentials' in attrs: removed_creds = set(template_credentials) - set(attrs['credentials']) provided_mapping = Credential.unique_dict(attrs['credentials']) for cred in removed_creds: if cred.unique_hash() in provided_mapping.keys(): continue # User replaced credential with new of same type errors.setdefault('credentials', []).append(_( 'Removing {} credential at launch time without replacement is not supported. ' 'Provided list lacked credential(s): {}.' ).format(cred.unique_hash(display=True), ', '.join([str(c) for c in removed_creds]))) # verify that credentials (either provided or existing) don't # require launch-time passwords that have not been provided if 'credentials' in accepted: launch_credentials = accepted['credentials'] else: launch_credentials = template_credentials passwords = attrs.get('credential_passwords', {}) # get from original attrs passwords_lacking = [] for cred in launch_credentials: for p in cred.passwords_needed: if p not in passwords: passwords_lacking.append(p) else: accepted.setdefault('credential_passwords', {}) accepted['credential_passwords'][p] = passwords[p] if len(passwords_lacking): errors['passwords_needed_to_start'] = passwords_lacking if errors: raise serializers.ValidationError(errors) if 'extra_vars' in accepted: extra_vars_save = accepted['extra_vars'] else: extra_vars_save = None # Validate job against JobTemplate clean_ methods accepted = super(JobLaunchSerializer, self).validate(accepted) # Preserve extra_vars as dictionary internally if extra_vars_save: accepted['extra_vars'] = extra_vars_save return accepted class WorkflowJobLaunchSerializer(BaseSerializer): can_start_without_user_input = serializers.BooleanField(read_only=True) defaults = serializers.SerializerMethodField() variables_needed_to_start = serializers.ReadOnlyField() survey_enabled = serializers.SerializerMethodField() extra_vars = VerbatimField(required=False, write_only=True) inventory = serializers.PrimaryKeyRelatedField( queryset=Inventory.objects.all(), required=False, write_only=True ) workflow_job_template_data = serializers.SerializerMethodField() class Meta: model = WorkflowJobTemplate fields = ('ask_inventory_on_launch', 'can_start_without_user_input', 'defaults', 'extra_vars', 'inventory', 'survey_enabled', 'variables_needed_to_start', 'node_templates_missing', 'node_prompts_rejected', 'workflow_job_template_data', 'survey_enabled', 'ask_variables_on_launch') read_only_fields = ('ask_inventory_on_launch', 'ask_variables_on_launch') def get_survey_enabled(self, obj): if obj: return obj.survey_enabled and 'spec' in obj.survey_spec return False def get_defaults(self, obj): defaults_dict = {} for field_name in WorkflowJobTemplate.get_ask_mapping().keys(): if field_name == 'inventory': defaults_dict[field_name] = dict( name=getattrd(obj, '%s.name' % field_name, None), id=getattrd(obj, '%s.pk' % field_name, None)) else: defaults_dict[field_name] = getattr(obj, field_name) return defaults_dict def get_workflow_job_template_data(self, obj): return dict(name=obj.name, id=obj.id, description=obj.description) def validate(self, attrs): template = self.instance accepted, rejected, errors = template._accept_or_ignore_job_kwargs(**attrs) self._ignored_fields = rejected if template.inventory and template.inventory.pending_deletion is True: errors['inventory'] = _("The inventory associated with this Workflow is being deleted.") elif 'inventory' in accepted and accepted['inventory'].pending_deletion: errors['inventory'] = _("The provided inventory is being deleted.") if errors: raise serializers.ValidationError(errors) WFJT_extra_vars = template.extra_vars WFJT_inventory = template.inventory super(WorkflowJobLaunchSerializer, self).validate(attrs) template.extra_vars = WFJT_extra_vars template.inventory = WFJT_inventory return accepted class NotificationTemplateSerializer(BaseSerializer): show_capabilities = ['edit', 'delete', 'copy'] capabilities_prefetch = [{'copy': 'organization.admin'}] class Meta: model = NotificationTemplate fields = ('*', 'organization', 'notification_type', 'notification_configuration') type_map = {"string": (str,), "int": (int,), "bool": (bool,), "list": (list,), "password": (str,), "object": (dict, OrderedDict)} def to_representation(self, obj): ret = super(NotificationTemplateSerializer, self).to_representation(obj) if 'notification_configuration' in ret: ret['notification_configuration'] = obj.display_notification_configuration() return ret def get_related(self, obj): res = super(NotificationTemplateSerializer, self).get_related(obj) res.update(dict( test = self.reverse('api:notification_template_test', kwargs={'pk': obj.pk}), notifications = self.reverse('api:notification_template_notification_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:notification_template_copy', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def _recent_notifications(self, obj): return [{'id': x.id, 'status': x.status, 'created': x.created} for x in obj.notifications.all().order_by('-created')[:5]] def get_summary_fields(self, obj): d = super(NotificationTemplateSerializer, self).get_summary_fields(obj) d['recent_notifications'] = self._recent_notifications(obj) return d def validate(self, attrs): from awx.api.views import NotificationTemplateDetail notification_type = None if 'notification_type' in attrs: notification_type = attrs['notification_type'] elif self.instance: notification_type = self.instance.notification_type else: notification_type = None if not notification_type: raise serializers.ValidationError(_('Missing required fields for Notification Configuration: notification_type')) notification_class = NotificationTemplate.CLASS_FOR_NOTIFICATION_TYPE[notification_type] missing_fields = [] incorrect_type_fields = [] error_list = [] if 'notification_configuration' not in attrs: return attrs if self.context['view'].kwargs and isinstance(self.context['view'], NotificationTemplateDetail): object_actual = self.context['view'].get_object() else: object_actual = None for field, params in notification_class.init_parameters.items(): if field not in attrs['notification_configuration']: if 'default' in params: attrs['notification_configuration'][field] = params['default'] else: missing_fields.append(field) continue field_val = attrs['notification_configuration'][field] field_type = params['type'] expected_types = self.type_map[field_type] if not type(field_val) in expected_types: incorrect_type_fields.append((field, field_type)) continue if field_type == "list" and len(field_val) < 1: error_list.append(_("No values specified for field '{}'").format(field)) continue if field_type == "password" and field_val == "$encrypted$" and object_actual is not None: attrs['notification_configuration'][field] = object_actual.notification_configuration[field] if missing_fields: error_list.append(_("Missing required fields for Notification Configuration: {}.").format(missing_fields)) if incorrect_type_fields: for type_field_error in incorrect_type_fields: error_list.append(_("Configuration field '{}' incorrect type, expected {}.").format(type_field_error[0], type_field_error[1])) if error_list: raise serializers.ValidationError(error_list) return super(NotificationTemplateSerializer, self).validate(attrs) class NotificationSerializer(BaseSerializer): class Meta: model = Notification fields = ('*', '-name', '-description', 'notification_template', 'error', 'status', 'notifications_sent', 'notification_type', 'recipients', 'subject') def get_related(self, obj): res = super(NotificationSerializer, self).get_related(obj) res.update(dict( notification_template = self.reverse('api:notification_template_detail', kwargs={'pk': obj.notification_template.pk}), )) return res class LabelSerializer(BaseSerializer): class Meta: model = Label fields = ('*', '-description', 'organization') def get_related(self, obj): res = super(LabelSerializer, self).get_related(obj) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res class SchedulePreviewSerializer(BaseSerializer): class Meta: model = Schedule fields = ('rrule',) # We reject rrules if: # - DTSTART is not include # - INTERVAL is not included # - SECONDLY is used # - TZID is used # - BYDAY prefixed with a number (MO is good but not 20MO) # - BYYEARDAY # - BYWEEKNO # - Multiple DTSTART or RRULE elements # - Can't contain both COUNT and UNTIL # - COUNT > 999 def validate_rrule(self, value): rrule_value = value multi_by_month_day = r".*?BYMONTHDAY[\:\=][0-9]+,-*[0-9]+" multi_by_month = r".*?BYMONTH[\:\=][0-9]+,[0-9]+" by_day_with_numeric_prefix = r".*?BYDAY[\:\=][0-9]+[a-zA-Z]{2}" match_count = re.match(r".*?(COUNT\=[0-9]+)", rrule_value) match_multiple_dtstart = re.findall(r".*?(DTSTART(;[^:]+)?\:[0-9]+T[0-9]+Z?)", rrule_value) match_native_dtstart = re.findall(r".*?(DTSTART:[0-9]+T[0-9]+) ", rrule_value) match_multiple_rrule = re.findall(r".*?(RRULE\:)", rrule_value) if not len(match_multiple_dtstart): raise serializers.ValidationError(_('Valid DTSTART required in rrule. Value should start with: DTSTART:YYYYMMDDTHHMMSSZ')) if len(match_native_dtstart): raise serializers.ValidationError(_('DTSTART cannot be a naive datetime. Specify ;TZINFO= or YYYYMMDDTHHMMSSZZ.')) if len(match_multiple_dtstart) > 1: raise serializers.ValidationError(_('Multiple DTSTART is not supported.')) if not len(match_multiple_rrule): raise serializers.ValidationError(_('RRULE required in rrule.')) if len(match_multiple_rrule) > 1: raise serializers.ValidationError(_('Multiple RRULE is not supported.')) if 'interval' not in rrule_value.lower(): raise serializers.ValidationError(_('INTERVAL required in rrule.')) if 'secondly' in rrule_value.lower(): raise serializers.ValidationError(_('SECONDLY is not supported.')) if re.match(multi_by_month_day, rrule_value): raise serializers.ValidationError(_('Multiple BYMONTHDAYs not supported.')) if re.match(multi_by_month, rrule_value): raise serializers.ValidationError(_('Multiple BYMONTHs not supported.')) if re.match(by_day_with_numeric_prefix, rrule_value): raise serializers.ValidationError(_("BYDAY with numeric prefix not supported.")) if 'byyearday' in rrule_value.lower(): raise serializers.ValidationError(_("BYYEARDAY not supported.")) if 'byweekno' in rrule_value.lower(): raise serializers.ValidationError(_("BYWEEKNO not supported.")) if 'COUNT' in rrule_value and 'UNTIL' in rrule_value: raise serializers.ValidationError(_("RRULE may not contain both COUNT and UNTIL")) if match_count: count_val = match_count.groups()[0].strip().split("=") if int(count_val[1]) > 999: raise serializers.ValidationError(_("COUNT > 999 is unsupported.")) try: Schedule.rrulestr(rrule_value) except Exception as e: raise serializers.ValidationError(_("rrule parsing failed validation: {}").format(e)) return value class ScheduleSerializer(LaunchConfigurationBaseSerializer, SchedulePreviewSerializer): show_capabilities = ['edit', 'delete'] timezone = serializers.SerializerMethodField() until = serializers.SerializerMethodField() class Meta: model = Schedule fields = ('*', 'unified_job_template', 'enabled', 'dtstart', 'dtend', 'rrule', 'next_run', 'timezone', 'until') def get_timezone(self, obj): return obj.timezone def get_until(self, obj): return obj.until def get_related(self, obj): res = super(ScheduleSerializer, self).get_related(obj) res.update(dict( unified_jobs = self.reverse('api:schedule_unified_jobs_list', kwargs={'pk': obj.pk}), )) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) try: if obj.unified_job_template.project: res['project'] = obj.unified_job_template.project.get_absolute_url(self.context.get('request')) except ObjectDoesNotExist: pass if obj.inventory: res['inventory'] = obj.inventory.get_absolute_url(self.context.get('request')) elif obj.unified_job_template and getattr(obj.unified_job_template, 'inventory', None): res['inventory'] = obj.unified_job_template.inventory.get_absolute_url(self.context.get('request')) return res def get_summary_fields(self, obj): summary_fields = super(ScheduleSerializer, self).get_summary_fields(obj) if 'inventory' in summary_fields: return summary_fields inventory = None if obj.unified_job_template and getattr(obj.unified_job_template, 'inventory', None): inventory = obj.unified_job_template.inventory else: return summary_fields summary_fields['inventory'] = dict() for field in SUMMARIZABLE_FK_FIELDS['inventory']: summary_fields['inventory'][field] = getattr(inventory, field, None) return summary_fields def validate_unified_job_template(self, value): if type(value) == InventorySource and value.source not in SCHEDULEABLE_PROVIDERS: raise serializers.ValidationError(_('Inventory Source must be a cloud resource.')) elif type(value) == Project and value.scm_type == '': raise serializers.ValidationError(_('Manual Project cannot have a schedule set.')) elif type(value) == InventorySource and value.source == 'scm' and value.update_on_project_update: raise serializers.ValidationError(_( 'Inventory sources with `update_on_project_update` cannot be scheduled. ' 'Schedule its source project `{}` instead.'.format(value.source_project.name))) return value class InstanceSerializer(BaseSerializer): consumed_capacity = serializers.SerializerMethodField() percent_capacity_remaining = serializers.SerializerMethodField() jobs_running = serializers.IntegerField( help_text=_('Count of jobs in the running or waiting state that ' 'are targeted for this instance'), read_only=True ) jobs_total = serializers.IntegerField( help_text=_('Count of all jobs that target this instance'), read_only=True ) class Meta: model = Instance read_only_fields = ('uuid', 'hostname', 'version') fields = ("id", "type", "url", "related", "uuid", "hostname", "created", "modified", 'capacity_adjustment', "version", "capacity", "consumed_capacity", "percent_capacity_remaining", "jobs_running", "jobs_total", "cpu", "memory", "cpu_capacity", "mem_capacity", "enabled", "managed_by_policy") def get_related(self, obj): res = super(InstanceSerializer, self).get_related(obj) res['jobs'] = self.reverse('api:instance_unified_jobs_list', kwargs={'pk': obj.pk}) res['instance_groups'] = self.reverse('api:instance_instance_groups_list', kwargs={'pk': obj.pk}) return res def get_consumed_capacity(self, obj): return obj.consumed_capacity def get_percent_capacity_remaining(self, obj): if not obj.capacity or obj.consumed_capacity >= obj.capacity: return 0.0 else: return float("{0:.2f}".format(((float(obj.capacity) - float(obj.consumed_capacity)) / (float(obj.capacity))) * 100)) class InstanceGroupSerializer(BaseSerializer): committed_capacity = serializers.SerializerMethodField() consumed_capacity = serializers.SerializerMethodField() percent_capacity_remaining = serializers.SerializerMethodField() jobs_running = serializers.IntegerField( help_text=_('Count of jobs in the running or waiting state that ' 'are targeted for this instance group'), read_only=True ) jobs_total = serializers.IntegerField( help_text=_('Count of all jobs that target this instance group'), read_only=True ) instances = serializers.SerializerMethodField() is_controller = serializers.BooleanField( help_text=_('Indicates whether instance group controls any other group'), read_only=True ) is_isolated = serializers.BooleanField( help_text=_('Indicates whether instances in this group are isolated.' 'Isolated groups have a designated controller group.'), read_only=True ) # NOTE: help_text is duplicated from field definitions, no obvious way of # both defining field details here and also getting the field's help_text policy_instance_percentage = serializers.IntegerField( default=0, min_value=0, max_value=100, required=False, initial=0, label=_('Policy Instance Percentage'), help_text=_("Minimum percentage of all instances that will be automatically assigned to " "this group when new instances come online.") ) policy_instance_minimum = serializers.IntegerField( default=0, min_value=0, required=False, initial=0, label=_('Policy Instance Minimum'), help_text=_("Static minimum number of Instances that will be automatically assign to " "this group when new instances come online.") ) policy_instance_list = serializers.ListField( child=serializers.CharField(), required=False, label=_('Policy Instance List'), help_text=_("List of exact-match Instances that will be assigned to this group") ) class Meta: model = InstanceGroup fields = ("id", "type", "url", "related", "name", "created", "modified", "capacity", "committed_capacity", "consumed_capacity", "percent_capacity_remaining", "jobs_running", "jobs_total", "instances", "controller", "is_controller", "is_isolated", "policy_instance_percentage", "policy_instance_minimum", "policy_instance_list") def get_related(self, obj): res = super(InstanceGroupSerializer, self).get_related(obj) res['jobs'] = self.reverse('api:instance_group_unified_jobs_list', kwargs={'pk': obj.pk}) res['instances'] = self.reverse('api:instance_group_instance_list', kwargs={'pk': obj.pk}) if obj.controller_id: res['controller'] = self.reverse('api:instance_group_detail', kwargs={'pk': obj.controller_id}) return res def validate_policy_instance_list(self, value): for instance_name in value: if value.count(instance_name) > 1: raise serializers.ValidationError(_('Duplicate entry {}.').format(instance_name)) if not Instance.objects.filter(hostname=instance_name).exists(): raise serializers.ValidationError(_('{} is not a valid hostname of an existing instance.').format(instance_name)) if Instance.objects.get(hostname=instance_name).is_isolated(): raise serializers.ValidationError(_('Isolated instances may not be added or removed from instances groups via the API.')) if self.instance and self.instance.controller_id is not None: raise serializers.ValidationError(_('Isolated instance group membership may not be managed via the API.')) return value def validate_name(self, value): if self.instance and self.instance.name == 'tower' and value != 'tower': raise serializers.ValidationError(_('tower instance group name may not be changed.')) return value def get_capacity_dict(self): # Store capacity values (globally computed) in the context if 'capacity_map' not in self.context: ig_qs = None jobs_qs = UnifiedJob.objects.filter(status__in=('running', 'waiting')) if self.parent: # Is ListView: ig_qs = self.parent.instance self.context['capacity_map'] = InstanceGroup.objects.capacity_values( qs=ig_qs, tasks=jobs_qs, breakdown=True) return self.context['capacity_map'] def get_consumed_capacity(self, obj): return self.get_capacity_dict()[obj.name]['running_capacity'] def get_committed_capacity(self, obj): return self.get_capacity_dict()[obj.name]['committed_capacity'] def get_percent_capacity_remaining(self, obj): if not obj.capacity: return 0.0 consumed = self.get_consumed_capacity(obj) if consumed >= obj.capacity: return 0.0 else: return float("{0:.2f}".format( ((float(obj.capacity) - float(consumed)) / (float(obj.capacity))) * 100) ) def get_instances(self, obj): return obj.instances.count() class ActivityStreamSerializer(BaseSerializer): changes = serializers.SerializerMethodField() object_association = serializers.SerializerMethodField( help_text=_("When present, shows the field name of the role or relationship that changed.")) object_type = serializers.SerializerMethodField( help_text=_("When present, shows the model on which the role or relationship was defined.")) @cached_property def _local_summarizable_fk_fields(self): summary_dict = copy.copy(SUMMARIZABLE_FK_FIELDS) # Special requests summary_dict['group'] = summary_dict['group'] + ('inventory_id',) for key in summary_dict.keys(): if 'id' not in summary_dict[key]: summary_dict[key] = summary_dict[key] + ('id',) field_list = list(summary_dict.items()) # Needed related fields that are not in the default summary fields field_list += [ ('workflow_job_template_node', ('id', 'unified_job_template_id')), ('label', ('id', 'name', 'organization_id')), ('notification', ('id', 'status', 'notification_type', 'notification_template_id')), ('o_auth2_access_token', ('id', 'user_id', 'description', 'application_id', 'scope')), ('o_auth2_application', ('id', 'name', 'description')), ('credential_type', ('id', 'name', 'description', 'kind', 'managed_by_tower')), ('ad_hoc_command', ('id', 'name', 'status', 'limit')) ] return field_list class Meta: model = ActivityStream fields = ('*', '-name', '-description', '-created', '-modified', 'timestamp', 'operation', 'changes', 'object1', 'object2', 'object_association', 'action_node', 'object_type') def get_fields(self): ret = super(ActivityStreamSerializer, self).get_fields() for key, field in list(ret.items()): if key == 'changes': field.help_text = _('A summary of the new and changed values when an object is created, updated, or deleted') if key == 'object1': field.help_text = _('For create, update, and delete events this is the object type that was affected. ' 'For associate and disassociate events this is the object type associated or disassociated with object2.') if key == 'object2': field.help_text = _('Unpopulated for create, update, and delete events. For associate and disassociate ' 'events this is the object type that object1 is being associated with.') if key == 'operation': field.help_text = _('The action taken with respect to the given object(s).') return ret def get_changes(self, obj): if obj is None: return {} try: return json.loads(obj.changes) except Exception: logger.warn("Error deserializing activity stream json changes") return {} def get_object_association(self, obj): if not obj.object_relationship_type: return "" elif obj.object_relationship_type.endswith('_role'): # roles: these values look like # "awx.main.models.inventory.Inventory.admin_role" # due to historical reasons the UI expects just "role" here return "role" # default case: these values look like # "awx.main.models.organization.Organization_notification_templates_success" # so instead of splitting on period we have to take after the first underscore try: return obj.object_relationship_type.split(".")[-1].split("_", 1)[1] except Exception: logger.debug('Failed to parse activity stream relationship type {}'.format(obj.object_relationship_type)) return "" def get_object_type(self, obj): if not obj.object_relationship_type: return "" elif obj.object_relationship_type.endswith('_role'): return camelcase_to_underscore(obj.object_relationship_type.rsplit('.', 2)[-2]) # default case: these values look like # "awx.main.models.organization.Organization_notification_templates_success" # so we have to take after the last period but before the first underscore. try: cls = obj.object_relationship_type.rsplit('.', 1)[0] return camelcase_to_underscore(cls.split('_', 1)) except Exception: logger.debug('Failed to parse activity stream relationship type {}'.format(obj.object_relationship_type)) return "" def get_related(self, obj): rel = {} if obj.actor is not None: rel['actor'] = self.reverse('api:user_detail', kwargs={'pk': obj.actor.pk}) for fk, __ in self._local_summarizable_fk_fields: if not hasattr(obj, fk): continue m2m_list = self._get_rel(obj, fk) if m2m_list: rel[fk] = [] id_list = [] for thisItem in m2m_list: if getattr(thisItem, 'id', None) in id_list: continue id_list.append(getattr(thisItem, 'id', None)) if hasattr(thisItem, 'get_absolute_url'): rel_url = thisItem.get_absolute_url(self.context.get('request')) else: view_name = fk + '_detail' rel_url = self.reverse('api:' + view_name, kwargs={'pk': thisItem.id}) rel[fk].append(rel_url) if fk == 'schedule': rel['unified_job_template'] = thisItem.unified_job_template.get_absolute_url(self.context.get('request')) if obj.setting and obj.setting.get('category', None): rel['setting'] = self.reverse( 'api:setting_singleton_detail', kwargs={'category_slug': obj.setting['category']} ) return rel def _get_rel(self, obj, fk): related_model = ActivityStream._meta.get_field(fk).related_model related_manager = getattr(obj, fk) if issubclass(related_model, PolymorphicModel) and hasattr(obj, '_prefetched_objects_cache'): # HACK: manually fill PolymorphicModel caches to prevent running query multiple times # unnecessary if django-polymorphic issue #68 is solved if related_manager.prefetch_cache_name not in obj._prefetched_objects_cache: obj._prefetched_objects_cache[related_manager.prefetch_cache_name] = list(related_manager.all()) return related_manager.all() def get_summary_fields(self, obj): summary_fields = OrderedDict() for fk, related_fields in self._local_summarizable_fk_fields: try: if not hasattr(obj, fk): continue m2m_list = self._get_rel(obj, fk) if m2m_list: summary_fields[fk] = [] for thisItem in m2m_list: if fk == 'job': summary_fields['job_template'] = [] job_template_item = {} job_template_fields = SUMMARIZABLE_FK_FIELDS['job_template'] job_template = getattr(thisItem, 'job_template', None) if job_template is not None: for field in job_template_fields: fval = getattr(job_template, field, None) if fval is not None: job_template_item[field] = fval summary_fields['job_template'].append(job_template_item) if fk == 'workflow_job_template_node': summary_fields['workflow_job_template'] = [] workflow_job_template_item = {} workflow_job_template_fields = SUMMARIZABLE_FK_FIELDS['workflow_job_template'] workflow_job_template = getattr(thisItem, 'workflow_job_template', None) if workflow_job_template is not None: for field in workflow_job_template_fields: fval = getattr(workflow_job_template, field, None) if fval is not None: workflow_job_template_item[field] = fval summary_fields['workflow_job_template'].append(workflow_job_template_item) if fk == 'schedule': unified_job_template = getattr(thisItem, 'unified_job_template', None) if unified_job_template is not None: summary_fields[get_type_for_model(unified_job_template)] = {'id': unified_job_template.id, 'name': unified_job_template.name} thisItemDict = {} for field in related_fields: fval = getattr(thisItem, field, None) if fval is not None: thisItemDict[field] = fval summary_fields[fk].append(thisItemDict) except ObjectDoesNotExist: pass if obj.actor is not None: summary_fields['actor'] = dict(id = obj.actor.id, username = obj.actor.username, first_name = obj.actor.first_name, last_name = obj.actor.last_name) elif obj.deleted_actor: summary_fields['actor'] = obj.deleted_actor.copy() summary_fields['actor']['id'] = None if obj.setting: summary_fields['setting'] = [obj.setting] return summary_fields
the-stack_0_18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import math import tqdm import numpy as np from multiprocessing.pool import ThreadPool import paddle.fluid as fluid import paddlex.utils.logging as logging import paddlex import copy import os.path as osp from paddlex.cv.transforms import arrange_transforms from collections import OrderedDict from .faster_rcnn import FasterRCNN from .utils.detection_eval import eval_results, bbox2out, mask2out class MaskRCNN(FasterRCNN): """构建MaskRCNN,并实现其训练、评估、预测和模型导出。 Args: num_classes (int): 包含了背景类的类别数。默认为81。 backbone (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18']。默认为'ResNet50'。 with_fpn (bool): 是否使用FPN结构。默认为True。 aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。 anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。 input_channel (int): 输入图像的通道数量。默认为3。 """ def __init__(self, num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ratios=[0.5, 1.0, 2.0], anchor_sizes=[32, 64, 128, 256, 512], input_channel=3): self.init_params = locals() backbones = [ 'ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18' ] assert backbone in backbones, "backbone should be one of {}".format( backbones) super(FasterRCNN, self).__init__('detector') self.backbone = backbone self.num_classes = num_classes self.with_fpn = with_fpn self.anchor_sizes = anchor_sizes self.labels = None if with_fpn: self.mask_head_resolution = 28 else: self.mask_head_resolution = 14 self.fixed_input_shape = None self.input_channel = input_channel self.with_dcn = False def build_net(self, mode='train'): train_pre_nms_top_n = 2000 if self.with_fpn else 12000 test_pre_nms_top_n = 1000 if self.with_fpn else 6000 num_convs = 4 if self.with_fpn else 0 model = paddlex.cv.nets.detection.MaskRCNN( backbone=self._get_backbone(self.backbone), num_classes=self.num_classes, mode=mode, with_fpn=self.with_fpn, train_pre_nms_top_n=train_pre_nms_top_n, test_pre_nms_top_n=test_pre_nms_top_n, num_convs=num_convs, mask_head_resolution=self.mask_head_resolution, fixed_input_shape=self.fixed_input_shape, input_channel=self.input_channel) inputs = model.generate_inputs() if mode == 'train': model_out = model.build_net(inputs) loss = model_out['loss'] self.optimizer.minimize(loss) outputs = OrderedDict( [('loss', model_out['loss']), ('loss_cls', model_out['loss_cls']), ('loss_bbox', model_out['loss_bbox']), ('loss_mask', model_out['loss_mask']), ('loss_rpn_cls', model_out['loss_rpn_cls']), ( 'loss_rpn_bbox', model_out['loss_rpn_bbox'])]) else: outputs = model.build_net(inputs) return inputs, outputs def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr, lr_decay_epochs, lr_decay_gamma, num_steps_each_epoch): if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch: logging.error( "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset", exit=False) logging.error( "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice", exit=False) logging.error( "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function". format(lr_decay_epochs[0] * num_steps_each_epoch, warmup_steps // num_steps_each_epoch)) boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs] values = [(lr_decay_gamma**i) * learning_rate for i in range(len(lr_decay_epochs) + 1)] lr_decay = fluid.layers.piecewise_decay( boundaries=boundaries, values=values) lr_warmup = fluid.layers.linear_lr_warmup( learning_rate=lr_decay, warmup_steps=warmup_steps, start_lr=warmup_start_lr, end_lr=learning_rate) optimizer = fluid.optimizer.Momentum( learning_rate=lr_warmup, momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-04)) return optimizer def train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0 / 800, warmup_steps=500, warmup_start_lr=1.0 / 2400, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5, resume_checkpoint=None): """训练。 Args: num_epochs (int): 训练迭代轮数。 train_dataset (paddlex.datasets): 训练数据读取器。 train_batch_size (int): 训练或验证数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与 显卡数量之商为验证数据batch大小。默认值为1。 eval_dataset (paddlex.datasets): 验证数据读取器。 save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。 log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为20。 save_dir (str): 模型保存路径。默认值为'output'。 pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET', 则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO', 则自动下载在COCO数据集上预训练的模型权重;若为None,则不使用预训练模型。默认为None。 optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器: fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。 learning_rate (float): 默认优化器的学习率。默认为1.0/800。 warmup_steps (int): 默认优化器进行warmup过程的步数。默认为500。 warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为1.0/2400。 lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[8, 11]。 lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。 metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。 use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。 early_stop (bool): 是否使用提前终止训练策略。默认值为False。 early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内 连续下降或持平,则终止训练。默认值为5。 resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。 Raises: ValueError: 评估类型不在指定列表中。 ValueError: 模型从inference model进行加载。 """ if metric is None: if isinstance(train_dataset, paddlex.datasets.CocoDetection) or \ isinstance(train_dataset, paddlex.datasets.EasyDataDet): metric = 'COCO' else: raise Exception( "train_dataset should be datasets.COCODetection or datasets.EasyDataDet." ) assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'" self.metric = metric if not self.trainable: raise Exception("Model is not trainable from load_model method.") self.labels = copy.deepcopy(train_dataset.labels) self.labels.insert(0, 'background') # 构建训练网络 if optimizer is None: # 构建默认的优化策略 num_steps_each_epoch = train_dataset.num_samples // train_batch_size optimizer = self.default_optimizer( learning_rate=learning_rate, warmup_steps=warmup_steps, warmup_start_lr=warmup_start_lr, lr_decay_epochs=lr_decay_epochs, lr_decay_gamma=lr_decay_gamma, num_steps_each_epoch=num_steps_each_epoch) self.optimizer = optimizer # 构建训练、验证、测试网络 self.build_program() fuse_bn = True if self.with_fpn and self.backbone in [ 'ResNet18', 'ResNet50', 'HRNet_W18' ]: fuse_bn = False self.net_initialize( startup_prog=fluid.default_startup_program(), pretrain_weights=pretrain_weights, fuse_bn=fuse_bn, save_dir=save_dir, resume_checkpoint=resume_checkpoint) # 训练 self.train_loop( num_epochs=num_epochs, train_dataset=train_dataset, train_batch_size=train_batch_size, eval_dataset=eval_dataset, save_interval_epochs=save_interval_epochs, log_interval_steps=log_interval_steps, save_dir=save_dir, use_vdl=use_vdl, early_stop=early_stop, early_stop_patience=early_stop_patience) def evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False): """评估。 Args: eval_dataset (paddlex.datasets): 验证数据读取器。 batch_size (int): 验证数据批大小。默认为1。当前只支持设置为1。 epoch_id (int): 当前评估模型所在的训练轮数。 metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None, 根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC'; 如为COCODetection,则metric为'COCO'。 return_details (bool): 是否返回详细信息。默认值为False。 Returns: tuple (metrics, eval_details) /dict (metrics): 当return_details为True时,返回(metrics, eval_details), 当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'和'segm_mmap' 或者’bbox_map‘和'segm_map',分别表示预测框和分割区域平均准确率平均值在 各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict, 包含bbox、mask和gt三个关键字。其中关键字bbox的键值是一个列表,列表中每个元素代表一个预测结果, 一个预测结果是一个由图像id,预测框类别id, 预测框坐标,预测框得分组成的列表。 关键字mask的键值是一个列表,列表中每个元素代表各预测框内物体的分割结果,分割结果由图像id、 预测框类别id、表示预测框内各像素点是否属于物体的二值图、预测框得分。 而关键字gt的键值是真实标注框的相关信息。 """ input_channel = getattr(self, 'input_channel', 3) arrange_transforms( model_type=self.model_type, class_name=self.__class__.__name__, transforms=eval_dataset.transforms, mode='eval', input_channel=input_channel) if metric is None: if hasattr(self, 'metric') and self.metric is not None: metric = self.metric else: if isinstance(eval_dataset, paddlex.datasets.CocoDetection): metric = 'COCO' else: raise Exception( "eval_dataset should be datasets.COCODetection.") assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'" if batch_size > 1: batch_size = 1 logging.warning( "Mask RCNN supports batch_size=1 only during evaluating, so batch_size is forced to be set to 1." ) data_generator = eval_dataset.generator( batch_size=batch_size, drop_last=False) total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size) results = list() logging.info( "Start to evaluating(total_samples={}, total_steps={})...".format( eval_dataset.num_samples, total_steps)) for step, data in tqdm.tqdm( enumerate(data_generator()), total=total_steps): images = np.array([d[0] for d in data]).astype('float32') im_infos = np.array([d[1] for d in data]).astype('float32') im_shapes = np.array([d[3] for d in data]).astype('float32') feed_data = { 'image': images, 'im_info': im_infos, 'im_shape': im_shapes, } with fluid.scope_guard(self.scope): outputs = self.exe.run( self.test_prog, feed=[feed_data], fetch_list=list(self.test_outputs.values()), return_numpy=False) res = { 'bbox': (np.array(outputs[0]), outputs[0].recursive_sequence_lengths()), 'mask': (np.array(outputs[1]), outputs[1].recursive_sequence_lengths()) } res_im_id = [d[2] for d in data] res['im_info'] = (im_infos, []) res['im_shape'] = (im_shapes, []) res['im_id'] = (np.array(res_im_id), []) results.append(res) logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step + 1, total_steps)) ap_stats, eval_details = eval_results( results, 'COCO', eval_dataset.coco_gt, with_background=True, resolution=self.mask_head_resolution) if metric == 'VOC': if isinstance(ap_stats[0], np.ndarray) and isinstance(ap_stats[1], np.ndarray): metrics = OrderedDict( zip(['bbox_map', 'segm_map'], [ap_stats[0][1], ap_stats[1][1]])) else: metrics = OrderedDict( zip(['bbox_map', 'segm_map'], [0.0, 0.0])) elif metric == 'COCO': if isinstance(ap_stats[0], np.ndarray) and isinstance(ap_stats[1], np.ndarray): metrics = OrderedDict( zip(['bbox_mmap', 'segm_mmap'], [ap_stats[0][0], ap_stats[1][0]])) else: metrics = OrderedDict( zip(['bbox_mmap', 'segm_mmap'], [0.0, 0.0])) if return_details: return metrics, eval_details return metrics @staticmethod def _postprocess(res, batch_size, num_classes, mask_head_resolution, labels): clsid2catid = dict({i: i for i in range(num_classes)}) xywh_results = bbox2out([res], clsid2catid) segm_results = mask2out([res], clsid2catid, mask_head_resolution) preds = [[] for i in range(batch_size)] import pycocotools.mask as mask_util for index, xywh_res in enumerate(xywh_results): image_id = xywh_res['image_id'] del xywh_res['image_id'] xywh_res['mask'] = mask_util.decode(segm_results[index][ 'segmentation']) xywh_res['category'] = labels[xywh_res['category_id']] preds[image_id].append(xywh_res) return preds def predict(self, img_file, transforms=None): """预测。 Args: img_file(str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。 transforms (paddlex.det.transforms): 数据预处理操作。 Returns: lict: 预测结果列表,每个预测结果由预测框类别标签、预测框类别名称、 预测框坐标(坐标格式为[xmin, ymin, w, h])、 原图大小的预测二值图(1表示预测框类别,0表示背景类)、 预测框得分组成。 """ if transforms is None and not hasattr(self, 'test_transforms'): raise Exception("transforms need to be defined, now is None.") if isinstance(img_file, (str, np.ndarray)): images = [img_file] else: raise Exception("img_file must be str/np.ndarray") if transforms is None: transforms = self.test_transforms input_channel = getattr(self, 'input_channel', 3) im, im_resize_info, im_shape = FasterRCNN._preprocess( images, transforms, self.model_type, self.__class__.__name__, input_channel=input_channel) with fluid.scope_guard(self.scope): result = self.exe.run(self.test_prog, feed={ 'image': im, 'im_info': im_resize_info, 'im_shape': im_shape }, fetch_list=list(self.test_outputs.values()), return_numpy=False, use_program_cache=True) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(list(self.test_outputs.keys()), result) } res['im_id'] = (np.array( [[i] for i in range(len(images))]).astype('int32'), []) res['im_shape'] = (np.array(im_shape), []) preds = MaskRCNN._postprocess(res, len(images), self.num_classes, self.mask_head_resolution, self.labels) return preds[0] def batch_predict(self, img_file_list, transforms=None): """预测。 Args: img_file_list(list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径 也可以是解码后的排列格式为(H,W,C)且类型为float32且为BGR格式的数组。 transforms (paddlex.det.transforms): 数据预处理操作。 Returns: dict: 每个元素都为列表,表示各图像的预测结果。在各图像的预测结果列表中,每个预测结果由预测框类别标签、预测框类别名称、 预测框坐标(坐标格式为[xmin, ymin, w, h])、 原图大小的预测二值图(1表示预测框类别,0表示背景类)、 预测框得分组成。 """ if transforms is None and not hasattr(self, 'test_transforms'): raise Exception("transforms need to be defined, now is None.") if not isinstance(img_file_list, (list, tuple)): raise Exception("im_file must be list/tuple") if transforms is None: transforms = self.test_transforms input_channel = getattr(self, 'input_channel', 3) im, im_resize_info, im_shape = FasterRCNN._preprocess( img_file_list, transforms, self.model_type, self.__class__.__name__, self.thread_pool, input_channel=input_channel) with fluid.scope_guard(self.scope): result = self.exe.run(self.test_prog, feed={ 'image': im, 'im_info': im_resize_info, 'im_shape': im_shape }, fetch_list=list(self.test_outputs.values()), return_numpy=False, use_program_cache=True) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(list(self.test_outputs.keys()), result) } res['im_id'] = (np.array( [[i] for i in range(len(img_file_list))]).astype('int32'), []) res['im_shape'] = (np.array(im_shape), []) preds = MaskRCNN._postprocess(res, len(img_file_list), self.num_classes, self.mask_head_resolution, self.labels) return preds
the-stack_0_20
import sqlite3 import json import math from sqlite3.dbapi2 import Error from flask import Flask, request, Response, render_template app = Flask(__name__) def open_db(): db = sqlite3.connect('./transactions.db') db.row_factory = sqlite3.Row return db @app.route('/', methods=['GET']) def transactions(): return render_template('transactions.html') @app.route('/categories', methods=['GET']) def categories(): return render_template('categories.html') @app.route('/api/transactions', methods=['GET']) def get_transactions(): with open_db() as db: results = db.execute('SELECT * FROM transactions WHERE date >= "2021-05-01" ORDER BY date ASC') return Response(json.dumps([dict(idx) for idx in results.fetchall()]), mimetype='application/json') @app.route('/api/transactions/<int:id>', methods=['PUT', 'PATCH']) def update_transaction(id): transaction = request.get_json(force=True) with open_db() as db: db.execute('UPDATE transactions SET category_id = ? WHERE id = ?', (transaction['category_id'], id)) db.commit() return {'success': True} @app.route('/api/categories', methods=['GET']) def get_categories(): with open_db() as db: results = db.execute('SELECT * FROM categories') return Response(json.dumps([dict(idx) for idx in results.fetchall()]), mimetype='application/json') @app.route('/api/categories', methods=['POST']) def create_category(): category = request.get_json(force=True) with open_db() as db: db.execute('INSERT INTO categories (name) VALUES (?)', (category.get('name'),)) db.commit() return {'success': True} @app.route('/api/breakdown', methods=['GET']) def get_breakdown(): group_by_first = request.args.get('group_by', 'month').lower() with open_db() as db: results = db.execute(''' SELECT j.* FROM ( SELECT t.id, t.date, SUBSTR(t.date, 0, 8) as month, t.amount, REPLACE(t.description, ' ', ' ') as description, t.category_id, c.name as category_name, t.source FROM transactions t INNER JOIN categories c on t.category_id = c.id WHERE c.name NOT IN ('Income', 'Payments', 'Savings') AND t.date >= '2021-05' ) j ORDER BY j.month ASC, j.category_name ASC ''') # return Response(json.dumps([dict(idx) for idx in results.fetchall()], indent=2), mimetype='application/json') transactions = [dict(idx) for idx in results.fetchall()] if group_by_first == 'month': first_group = 'month' second_group = 'category_name' elif group_by_first == 'category': first_group = 'category_name' second_group = 'month' else: return Response(Error('Invalid group by')) aggregated_transactions = {} for item in transactions: item['description'] = item['description'].replace(' ', ' ', 10).replace('\t', ' ') top_group_value = item.get(first_group) second_group_value = item.get(second_group) if top_group_value in aggregated_transactions.keys(): if second_group_value in aggregated_transactions[top_group_value].keys(): sub_group = aggregated_transactions[top_group_value][second_group_value] sub_group['transactions'].append(item) sub_group['summary']['amount'] += item['amount'] sub_group['summary']['total_transactions'] += 1 sub_group['summary']['min'] = min(sub_group['summary']['min'], item['amount']) sub_group['summary']['max'] = max(sub_group['summary']['max'], item['amount']) sub_group['summary']['avg'] = round(sub_group['summary']['amount'] / sub_group['summary']['total_transactions'], 2) else: aggregated_transactions[top_group_value][second_group_value] = { 'summary': { 'amount': item['amount'], 'total_transactions': 1, 'min': item['amount'], 'max': item['amount'], 'avg': item['amount'] }, 'transactions': [item] } else: aggregated_transactions[top_group_value] = {} aggregated_transactions[top_group_value][second_group_value] = { 'summary': { 'amount': item['amount'], 'total_transactions': 1, 'min': item['amount'], 'max': item['amount'], 'avg': item['amount'] }, 'transactions': [item] } return Response(json.dumps(aggregated_transactions, indent=2), mimetype='application/json')
the-stack_0_22
"""A collection of tasks.""" import logging from ..const import AddonState from ..coresys import CoreSysAttributes from ..exceptions import ( AddonsError, AudioError, CliError, CoreDNSError, HomeAssistantError, MulticastError, ObserverError, ) from ..host.const import HostFeature from ..jobs.decorator import Job, JobCondition _LOGGER: logging.Logger = logging.getLogger(__name__) HASS_WATCHDOG_API = "HASS_WATCHDOG_API" RUN_UPDATE_SUPERVISOR = 29100 RUN_UPDATE_ADDONS = 57600 RUN_UPDATE_CLI = 28100 RUN_UPDATE_DNS = 30100 RUN_UPDATE_AUDIO = 30200 RUN_UPDATE_MULTICAST = 30300 RUN_UPDATE_OBSERVER = 30400 RUN_RELOAD_ADDONS = 10800 RUN_RELOAD_BACKUPS = 72000 RUN_RELOAD_HOST = 7600 RUN_RELOAD_UPDATER = 7200 RUN_RELOAD_INGRESS = 930 RUN_WATCHDOG_HOMEASSISTANT_DOCKER = 15 RUN_WATCHDOG_HOMEASSISTANT_API = 120 RUN_WATCHDOG_DNS_DOCKER = 30 RUN_WATCHDOG_AUDIO_DOCKER = 60 RUN_WATCHDOG_CLI_DOCKER = 60 RUN_WATCHDOG_OBSERVER_DOCKER = 60 RUN_WATCHDOG_MULTICAST_DOCKER = 60 RUN_WATCHDOG_ADDON_DOCKER = 30 RUN_WATCHDOG_ADDON_APPLICATON = 120 RUN_WATCHDOG_OBSERVER_APPLICATION = 180 RUN_REFRESH_ADDON = 15 RUN_CHECK_CONNECTIVITY = 30 class Tasks(CoreSysAttributes): """Handle Tasks inside Supervisor.""" def __init__(self, coresys): """Initialize Tasks.""" self.coresys = coresys self._cache = {} async def load(self): """Add Tasks to scheduler.""" # Update self.sys_scheduler.register_task(self._update_addons, RUN_UPDATE_ADDONS) self.sys_scheduler.register_task(self._update_supervisor, RUN_UPDATE_SUPERVISOR) self.sys_scheduler.register_task(self._update_cli, RUN_UPDATE_CLI) self.sys_scheduler.register_task(self._update_dns, RUN_UPDATE_DNS) self.sys_scheduler.register_task(self._update_audio, RUN_UPDATE_AUDIO) self.sys_scheduler.register_task(self._update_multicast, RUN_UPDATE_MULTICAST) self.sys_scheduler.register_task(self._update_observer, RUN_UPDATE_OBSERVER) # Reload self.sys_scheduler.register_task(self.sys_store.reload, RUN_RELOAD_ADDONS) self.sys_scheduler.register_task(self.sys_updater.reload, RUN_RELOAD_UPDATER) self.sys_scheduler.register_task(self.sys_backups.reload, RUN_RELOAD_BACKUPS) self.sys_scheduler.register_task(self.sys_host.reload, RUN_RELOAD_HOST) self.sys_scheduler.register_task(self.sys_ingress.reload, RUN_RELOAD_INGRESS) # Watchdog self.sys_scheduler.register_task( self._watchdog_homeassistant_docker, RUN_WATCHDOG_HOMEASSISTANT_DOCKER ) self.sys_scheduler.register_task( self._watchdog_homeassistant_api, RUN_WATCHDOG_HOMEASSISTANT_API ) self.sys_scheduler.register_task( self._watchdog_dns_docker, RUN_WATCHDOG_DNS_DOCKER ) self.sys_scheduler.register_task( self._watchdog_audio_docker, RUN_WATCHDOG_AUDIO_DOCKER ) self.sys_scheduler.register_task( self._watchdog_cli_docker, RUN_WATCHDOG_CLI_DOCKER ) self.sys_scheduler.register_task( self._watchdog_observer_docker, RUN_WATCHDOG_OBSERVER_DOCKER ) self.sys_scheduler.register_task( self._watchdog_observer_application, RUN_WATCHDOG_OBSERVER_APPLICATION ) self.sys_scheduler.register_task( self._watchdog_multicast_docker, RUN_WATCHDOG_MULTICAST_DOCKER ) self.sys_scheduler.register_task( self._watchdog_addon_docker, RUN_WATCHDOG_ADDON_DOCKER ) self.sys_scheduler.register_task( self._watchdog_addon_application, RUN_WATCHDOG_ADDON_APPLICATON ) # Refresh self.sys_scheduler.register_task(self._refresh_addon, RUN_REFRESH_ADDON) # Connectivity self.sys_scheduler.register_task( self._check_connectivity, RUN_CHECK_CONNECTIVITY ) _LOGGER.info("All core tasks are scheduled") @Job( conditions=[ JobCondition.HEALTHY, JobCondition.FREE_SPACE, JobCondition.INTERNET_HOST, JobCondition.RUNNING, ] ) async def _update_addons(self): """Check if an update is available for an Add-on and update it.""" for addon in self.sys_addons.all: if not addon.is_installed or not addon.auto_update: continue # Evaluate available updates if not addon.need_update: continue if not addon.test_update_schema(): _LOGGER.warning( "Add-on %s will be ignored, schema tests failed", addon.slug ) continue # Run Add-on update sequential # avoid issue on slow IO _LOGGER.info("Add-on auto update process %s", addon.slug) try: await addon.update(backup=True) except AddonsError: _LOGGER.error("Can't auto update Add-on %s", addon.slug) @Job( conditions=[ JobCondition.FREE_SPACE, JobCondition.INTERNET_HOST, JobCondition.RUNNING, ] ) async def _update_supervisor(self): """Check and run update of Supervisor Supervisor.""" if not self.sys_supervisor.need_update: return _LOGGER.info( "Found new Supervisor version %s, updating", self.sys_supervisor.latest_version, ) await self.sys_supervisor.update() async def _watchdog_homeassistant_docker(self): """Check running state of Docker and start if they is close.""" if not self.sys_homeassistant.watchdog: # Watchdog is not enabled for Home Assistant return if self.sys_homeassistant.error_state: # Home Assistant is in an error state, this is handled by the rollback feature return if not await self.sys_homeassistant.core.is_failed(): # The home assistant container is not in a failed state return if self.sys_homeassistant.core.in_progress: # Home Assistant has a task in progress return if await self.sys_homeassistant.core.is_running(): # Home Assistant is running return _LOGGER.warning("Watchdog found a problem with Home Assistant Docker!") try: await self.sys_homeassistant.core.start() except HomeAssistantError as err: _LOGGER.error("Home Assistant watchdog reanimation failed!") self.sys_capture_exception(err) else: return _LOGGER.info("Rebuilding the Home Assistant Container") await self.sys_homeassistant.core.rebuild() async def _watchdog_homeassistant_api(self): """Create scheduler task for monitoring running state of API. Try 2 times to call API before we restart Home-Assistant. Maybe we had a delay in our system. """ if not self.sys_homeassistant.watchdog: # Watchdog is not enabled for Home Assistant return if self.sys_homeassistant.error_state: # Home Assistant is in an error state, this is handled by the rollback feature return if not await self.sys_homeassistant.core.is_running(): # The home assistant container is not running return if self.sys_homeassistant.core.in_progress: # Home Assistant has a task in progress return if await self.sys_homeassistant.api.check_api_state(): # Home Assistant is running properly return # Init cache data retry_scan = self._cache.get(HASS_WATCHDOG_API, 0) # Look like we run into a problem retry_scan += 1 if retry_scan == 1: self._cache[HASS_WATCHDOG_API] = retry_scan _LOGGER.warning("Watchdog miss API response from Home Assistant") return _LOGGER.error("Watchdog found a problem with Home Assistant API!") try: await self.sys_homeassistant.core.restart() except HomeAssistantError as err: _LOGGER.error("Home Assistant watchdog reanimation failed!") self.sys_capture_exception(err) finally: self._cache[HASS_WATCHDOG_API] = 0 @Job(conditions=JobCondition.RUNNING) async def _update_cli(self): """Check and run update of cli.""" if not self.sys_plugins.cli.need_update: return _LOGGER.info( "Found new cli version %s, updating", self.sys_plugins.cli.latest_version ) await self.sys_plugins.cli.update() @Job(conditions=JobCondition.RUNNING) async def _update_dns(self): """Check and run update of CoreDNS plugin.""" if not self.sys_plugins.dns.need_update: return _LOGGER.info( "Found new CoreDNS plugin version %s, updating", self.sys_plugins.dns.latest_version, ) await self.sys_plugins.dns.update() @Job(conditions=JobCondition.RUNNING) async def _update_audio(self): """Check and run update of PulseAudio plugin.""" if not self.sys_plugins.audio.need_update: return _LOGGER.info( "Found new PulseAudio plugin version %s, updating", self.sys_plugins.audio.latest_version, ) await self.sys_plugins.audio.update() @Job(conditions=JobCondition.RUNNING) async def _update_observer(self): """Check and run update of Observer plugin.""" if not self.sys_plugins.observer.need_update: return _LOGGER.info( "Found new Observer plugin version %s, updating", self.sys_plugins.observer.latest_version, ) await self.sys_plugins.observer.update() @Job(conditions=JobCondition.RUNNING) async def _update_multicast(self): """Check and run update of multicast.""" if not self.sys_plugins.multicast.need_update: return _LOGGER.info( "Found new Multicast version %s, updating", self.sys_plugins.multicast.latest_version, ) await self.sys_plugins.multicast.update() async def _watchdog_dns_docker(self): """Check running state of Docker and start if they is close.""" # if CoreDNS is active if await self.sys_plugins.dns.is_running() or self.sys_plugins.dns.in_progress: return _LOGGER.warning("Watchdog found a problem with CoreDNS plugin!") # Detect loop await self.sys_plugins.dns.loop_detection() try: await self.sys_plugins.dns.start() except CoreDNSError: _LOGGER.error("CoreDNS watchdog reanimation failed!") async def _watchdog_audio_docker(self): """Check running state of Docker and start if they is close.""" # if PulseAudio plugin is active if ( await self.sys_plugins.audio.is_running() or self.sys_plugins.audio.in_progress ): return _LOGGER.warning("Watchdog found a problem with PulseAudio plugin!") try: await self.sys_plugins.audio.start() except AudioError: _LOGGER.error("PulseAudio watchdog reanimation failed!") async def _watchdog_cli_docker(self): """Check running state of Docker and start if they is close.""" # if cli plugin is active if await self.sys_plugins.cli.is_running() or self.sys_plugins.cli.in_progress: return _LOGGER.warning("Watchdog found a problem with cli plugin!") try: await self.sys_plugins.cli.start() except CliError: _LOGGER.error("CLI watchdog reanimation failed!") async def _watchdog_observer_docker(self): """Check running state of Docker and start if they is close.""" # if observer plugin is active if ( await self.sys_plugins.observer.is_running() or self.sys_plugins.observer.in_progress ): return _LOGGER.warning("Watchdog/Docker found a problem with observer plugin!") try: await self.sys_plugins.observer.start() except ObserverError: _LOGGER.error("Observer watchdog reanimation failed!") async def _watchdog_observer_application(self): """Check running state of application and rebuild if they is not response.""" # if observer plugin is active if ( self.sys_plugins.observer.in_progress or await self.sys_plugins.observer.check_system_runtime() ): return _LOGGER.warning("Watchdog/Application found a problem with observer plugin!") try: await self.sys_plugins.observer.rebuild() except ObserverError: _LOGGER.error("Observer watchdog reanimation failed!") async def _watchdog_multicast_docker(self): """Check running state of Docker and start if they is close.""" # if multicast plugin is active if ( await self.sys_plugins.multicast.is_running() or self.sys_plugins.multicast.in_progress ): return _LOGGER.warning("Watchdog found a problem with Multicast plugin!") try: await self.sys_plugins.multicast.start() except MulticastError: _LOGGER.error("Multicast watchdog reanimation failed!") async def _watchdog_addon_docker(self): """Check running state of Docker and start if they is close.""" for addon in self.sys_addons.installed: # if watchdog need looking for if not addon.watchdog or await addon.is_running(): continue # if Addon have running actions if addon.in_progress or addon.state != AddonState.STARTED: continue _LOGGER.warning("Watchdog found a problem with %s!", addon.slug) try: await addon.start() except AddonsError as err: _LOGGER.error("%s watchdog reanimation failed with %s", addon.slug, err) self.sys_capture_exception(err) async def _watchdog_addon_application(self): """Check running state of the application and start if they is hangs.""" for addon in self.sys_addons.installed: # if watchdog need looking for if not addon.watchdog or addon.state != AddonState.STARTED: continue # Init cache data retry_scan = self._cache.get(addon.slug, 0) # if Addon have running actions / Application work if addon.in_progress or await addon.watchdog_application(): continue # Look like we run into a problem retry_scan += 1 if retry_scan == 1: self._cache[addon.slug] = retry_scan _LOGGER.warning( "Watchdog missing application response from %s", addon.slug ) return _LOGGER.warning("Watchdog found a problem with %s application!", addon.slug) try: await addon.restart() except AddonsError as err: _LOGGER.error("%s watchdog reanimation failed with %s", addon.slug, err) self.sys_capture_exception(err) finally: self._cache[addon.slug] = 0 async def _refresh_addon(self) -> None: """Refresh addon state.""" for addon in self.sys_addons.installed: # if watchdog need looking for if addon.watchdog or addon.state != AddonState.STARTED: continue # if Addon have running actions if addon.in_progress or await addon.is_running(): continue # Adjust state addon.state = AddonState.STOPPED async def _check_connectivity(self) -> None: """Check system connectivity.""" value = self._cache.get("connectivity", 0) # Need only full check if not connected or each 10min if value >= 600: pass elif ( self.sys_supervisor.connectivity and self.sys_host.network.connectivity is None ) or ( self.sys_supervisor.connectivity and self.sys_host.network.connectivity is not None and self.sys_host.network.connectivity ): self._cache["connectivity"] = value + RUN_CHECK_CONNECTIVITY return # Check connectivity try: await self.sys_supervisor.check_connectivity() if HostFeature.NETWORK in self.sys_host.features: await self.sys_host.network.check_connectivity() finally: self._cache["connectivity"] = 0
the-stack_0_23
"""Patch to fix MNIST download issue as described here: - https://github.com/pytorch/ignite/issues/1737 - https://github.com/pytorch/vision/issues/3500 """ import os import subprocess as sp import torch from torchvision.datasets.mnist import MNIST, read_image_file, read_label_file from torchvision.datasets.utils import extract_archive def patched_download(self): """wget patched download method. """ if self._check_exists(): return os.makedirs(self.raw_folder, exist_ok=True) os.makedirs(self.processed_folder, exist_ok=True) # download files for url, md5 in self.resources: filename = url.rpartition("/")[2] download_root = os.path.expanduser(self.raw_folder) extract_root = None remove_finished = False if extract_root is None: extract_root = download_root if not filename: filename = os.path.basename(url) # Use wget to download archives sp.run(["wget", url, "-P", download_root]) archive = os.path.join(download_root, filename) print("Extracting {} to {}".format(archive, extract_root)) extract_archive(archive, extract_root, remove_finished) # process and save as torch files print("Processing...") training_set = ( read_image_file(os.path.join(self.raw_folder, "train-images-idx3-ubyte")), read_label_file(os.path.join(self.raw_folder, "train-labels-idx1-ubyte")), ) test_set = ( read_image_file(os.path.join(self.raw_folder, "t10k-images-idx3-ubyte")), read_label_file(os.path.join(self.raw_folder, "t10k-labels-idx1-ubyte")), ) with open(os.path.join(self.processed_folder, self.training_file), "wb") as f: torch.save(training_set, f) with open(os.path.join(self.processed_folder, self.test_file), "wb") as f: torch.save(test_set, f) print("Done!") def main(): # Patch download method MNIST.download = patched_download # Download MNIST MNIST(".", download=True) if __name__ == "__main__": main()
the-stack_0_25
# -*- coding: utf-8 -*- # :Project: metapensiero.pj -- compatibility # :Created: lun 30 mar 2020, 01:48:33 # :Author: Alberto Berti <[email protected]> # :License: GNU General Public License version 3 or later # :Copyright: © 2020 Alberto Berti # import ast import sys is_py36 = sys.version_info >= (3, 6) if is_py36: assign_types = (ast.Assign, ast.AnnAssign) else: assign_types = (ast.Assign,)
the-stack_0_27
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8-80 compliant> from _bpy import types as bpy_types import _bpy StructRNA = bpy_types.bpy_struct StructMetaPropGroup = bpy_types.bpy_struct_meta_idprop # StructRNA = bpy_types.Struct bpy_types.BlendDataLibraries.load = _bpy._library_load bpy_types.BlendDataLibraries.write = _bpy._library_write bpy_types.BlendData.user_map = _bpy._rna_id_collection_user_map bpy_types.BlendData.batch_remove = _bpy._rna_id_collection_batch_remove class Context(StructRNA): __slots__ = () def copy(self): from types import BuiltinMethodType new_context = {} generic_attrs = ( *StructRNA.__dict__.keys(), "bl_rna", "rna_type", "copy", ) for attr in dir(self): if not (attr.startswith("_") or attr in generic_attrs): value = getattr(self, attr) if type(value) != BuiltinMethodType: new_context[attr] = value return new_context class Library(bpy_types.ID): __slots__ = () @property def users_id(self): """ID data blocks which use this library""" import bpy # See: readblenentry.c, IDTYPE_FLAGS_ISLINKABLE, # we could make this an attribute in rna. attr_links = ( "actions", "armatures", "brushes", "cameras", "curves", "grease_pencils", "collections", "images", "lights", "lattices", "materials", "metaballs", "meshes", "node_groups", "objects", "scenes", "sounds", "speakers", "textures", "texts", "fonts", "worlds", ) return tuple(id_block for attr in attr_links for id_block in getattr(bpy.data, attr) if id_block.library == self) class Texture(bpy_types.ID): __slots__ = () @property def users_material(self): """Materials that use this texture""" import bpy return tuple(mat for mat in bpy.data.materials if self in [slot.texture for slot in mat.texture_slots if slot] ) @property def users_object_modifier(self): """Object modifiers that use this texture""" import bpy return tuple( obj for obj in bpy.data.objects if self in [ mod.texture for mod in obj.modifiers if mod.type == 'DISPLACE'] ) class Collection(bpy_types.ID): __slots__ = () @property def users_dupli_group(self): """The collection instance objects this collection is used in""" import bpy return tuple(obj for obj in bpy.data.objects if self == obj.instance_collection) class Object(bpy_types.ID): __slots__ = () @property def children(self): """All the children of this object. Warning: takes O(len(bpy.data.objects)) time.""" import bpy return tuple(child for child in bpy.data.objects if child.parent == self) @property def users_collection(self): """The collections this object is in. Warning: takes O(len(bpy.data.collections) + len(bpy.data.scenes)) time.""" import bpy return ( tuple( collection for collection in bpy.data.collections if self in collection.objects[:] ) + tuple( scene.collection for scene in bpy.data.scenes if self in scene.collection.objects[:] ) ) @property def users_scene(self): """The scenes this object is in. Warning: takes O(len(bpy.data.scenes) * len(bpy.data.objects)) time.""" import bpy return tuple(scene for scene in bpy.data.scenes if self in scene.objects[:]) class WindowManager(bpy_types.ID): __slots__ = () def popup_menu(self, draw_func, title="", icon='NONE'): import bpy popup = self.popmenu_begin__internal(title, icon=icon) try: draw_func(popup, bpy.context) finally: self.popmenu_end__internal(popup) def popover( self, draw_func, *, ui_units_x=0, keymap=None, from_active_button=False, ): import bpy popup = self.popover_begin__internal( ui_units_x=ui_units_x, from_active_button=from_active_button, ) try: draw_func(popup, bpy.context) finally: self.popover_end__internal(popup, keymap=keymap) def popup_menu_pie(self, event, draw_func, title="", icon='NONE'): import bpy pie = self.piemenu_begin__internal(title, icon=icon, event=event) if pie: try: draw_func(pie, bpy.context) finally: self.piemenu_end__internal(pie) class WorkSpace(bpy_types.ID): __slots__ = () def status_text_set(self, text): """ Set the status text or None to clear, When text is a function, this will be called with the (header, context) arguments. """ from bl_ui.space_statusbar import STATUSBAR_HT_header draw_fn = getattr(STATUSBAR_HT_header, "_draw_orig", None) if draw_fn is None: draw_fn = STATUSBAR_HT_header._draw_orig = STATUSBAR_HT_header.draw if not (text is None or isinstance(text, str)): draw_fn = text text = None self.status_text_set_internal(text) STATUSBAR_HT_header.draw = draw_fn class _GenericBone: """ functions for bones, common between Armature/Pose/Edit bones. internal subclassing use only. """ __slots__ = () def translate(self, vec): """Utility function to add *vec* to the head and tail of this bone""" self.head += vec self.tail += vec def parent_index(self, parent_test): """ The same as 'bone in other_bone.parent_recursive' but saved generating a list. """ # use the name so different types can be tested. name = parent_test.name parent = self.parent i = 1 while parent: if parent.name == name: return i parent = parent.parent i += 1 return 0 @property def x_axis(self): """ Vector pointing down the x-axis of the bone. """ from mathutils import Vector return self.matrix.to_3x3() @ Vector((1.0, 0.0, 0.0)) @property def y_axis(self): """ Vector pointing down the y-axis of the bone. """ from mathutils import Vector return self.matrix.to_3x3() @ Vector((0.0, 1.0, 0.0)) @property def z_axis(self): """ Vector pointing down the z-axis of the bone. """ from mathutils import Vector return self.matrix.to_3x3() @ Vector((0.0, 0.0, 1.0)) @property def basename(self): """The name of this bone before any '.' character""" # return self.name.rsplit(".", 1)[0] return self.name.split(".")[0] @property def parent_recursive(self): """A list of parents, starting with the immediate parent""" parent_list = [] parent = self.parent while parent: if parent: parent_list.append(parent) parent = parent.parent return parent_list @property def center(self): """The midpoint between the head and the tail.""" return (self.head + self.tail) * 0.5 @property def vector(self): """ The direction this bone is pointing. Utility function for (tail - head) """ return (self.tail - self.head) @property def children(self): """A list of all the bones children. Warning: takes O(len(bones)) time.""" return [child for child in self._other_bones if child.parent == self] @property def children_recursive(self): """A list of all children from this bone. Warning: takes O(len(bones)**2) time.""" bones_children = [] for bone in self._other_bones: index = bone.parent_index(self) if index: bones_children.append((index, bone)) # sort by distance to parent bones_children.sort(key=lambda bone_pair: bone_pair[0]) return [bone for index, bone in bones_children] @property def children_recursive_basename(self): """ Returns a chain of children with the same base name as this bone. Only direct chains are supported, forks caused by multiple children with matching base names will terminate the function and not be returned. Warning: takes O(len(bones)**2) time. """ basename = self.basename chain = [] child = self while True: children = child.children children_basename = [] for child in children: if basename == child.basename: children_basename.append(child) if len(children_basename) == 1: child = children_basename[0] chain.append(child) else: if children_basename: print("multiple basenames found, " "this is probably not what you want!", self.name, children_basename) break return chain @property def _other_bones(self): id_data = self.id_data id_data_type = type(id_data) if id_data_type == bpy_types.Object: bones = id_data.pose.bones elif id_data_type == bpy_types.Armature: bones = id_data.edit_bones if not bones: # not in edit mode bones = id_data.bones return bones class PoseBone(StructRNA, _GenericBone, metaclass=StructMetaPropGroup): __slots__ = () @property def children(self): obj = self.id_data pbones = obj.pose.bones self_bone = self.bone return tuple(pbones[bone.name] for bone in obj.data.bones if bone.parent == self_bone) class Bone(StructRNA, _GenericBone, metaclass=StructMetaPropGroup): __slots__ = () class EditBone(StructRNA, _GenericBone, metaclass=StructMetaPropGroup): __slots__ = () def align_orientation(self, other): """ Align this bone to another by moving its tail and settings its roll the length of the other bone is not used. """ vec = other.vector.normalized() * self.length self.tail = self.head + vec self.roll = other.roll def transform(self, matrix, scale=True, roll=True): """ Transform the the bones head, tail, roll and envelope (when the matrix has a scale component). :arg matrix: 3x3 or 4x4 transformation matrix. :type matrix: :class:`mathutils.Matrix` :arg scale: Scale the bone envelope by the matrix. :type scale: bool :arg roll: Correct the roll to point in the same relative direction to the head and tail. :type roll: bool """ from mathutils import Vector z_vec = self.matrix.to_3x3() @ Vector((0.0, 0.0, 1.0)) self.tail = matrix @ self.tail self.head = matrix @ self.head if scale: scalar = matrix.median_scale self.head_radius *= scalar self.tail_radius *= scalar if roll: self.align_roll(matrix @ z_vec) def ord_ind(i1, i2): if i1 < i2: return i1, i2 return i2, i1 class Mesh(bpy_types.ID): __slots__ = () def from_pydata(self, vertices, edges, faces): """ Make a mesh from a list of vertices/edges/faces Until we have a nicer way to make geometry, use this. :arg vertices: float triplets each representing (X, Y, Z) eg: [(0.0, 1.0, 0.5), ...]. :type vertices: iterable object :arg edges: int pairs, each pair contains two indices to the *vertices* argument. eg: [(1, 2), ...] :type edges: iterable object :arg faces: iterator of faces, each faces contains three or more indices to the *vertices* argument. eg: [(5, 6, 8, 9), (1, 2, 3), ...] :type faces: iterable object .. warning:: Invalid mesh data *(out of range indices, edges with matching indices, 2 sided faces... etc)* are **not** prevented. If the data used for mesh creation isn't known to be valid, run :class:`Mesh.validate` after this function. """ from itertools import chain, islice, accumulate face_lengths = tuple(map(len, faces)) self.vertices.add(len(vertices)) self.edges.add(len(edges)) self.loops.add(sum(face_lengths)) self.polygons.add(len(faces)) self.vertices.foreach_set("co", tuple(chain.from_iterable(vertices))) self.edges.foreach_set("vertices", tuple(chain.from_iterable(edges))) vertex_indices = tuple(chain.from_iterable(faces)) loop_starts = tuple(islice(chain([0], accumulate(face_lengths)), len(faces))) self.polygons.foreach_set("loop_total", face_lengths) self.polygons.foreach_set("loop_start", loop_starts) self.polygons.foreach_set("vertices", vertex_indices) # if no edges - calculate them if faces and (not edges): self.update(calc_edges=True) elif edges: self.update(calc_edges_loose=True) @property def edge_keys(self): return [ed.key for ed in self.edges] class MeshEdge(StructRNA): __slots__ = () @property def key(self): return ord_ind(*tuple(self.vertices)) class MeshLoopTriangle(StructRNA): __slots__ = () @property def center(self): """The midpoint of the face.""" face_verts = self.vertices[:] mesh_verts = self.id_data.vertices return ( mesh_verts[face_verts[0]].co + mesh_verts[face_verts[1]].co + mesh_verts[face_verts[2]].co ) / 3.0 @property def edge_keys(self): verts = self.vertices[:] return ( ord_ind(verts[0], verts[1]), ord_ind(verts[1], verts[2]), ord_ind(verts[2], verts[0]), ) class MeshPolygon(StructRNA): __slots__ = () @property def edge_keys(self): verts = self.vertices[:] vlen = len(self.vertices) return [ord_ind(verts[i], verts[(i + 1) % vlen]) for i in range(vlen)] @property def loop_indices(self): start = self.loop_start end = start + self.loop_total return range(start, end) class Text(bpy_types.ID): __slots__ = () def as_string(self): """Return the text as a string.""" return "\n".join(line.body for line in self.lines) def from_string(self, string): """Replace text with this string.""" self.clear() self.write(string) def as_module(self): from os.path import splitext from types import ModuleType mod = ModuleType(splitext(self.name)[0]) # TODO: We could use Text.compiled (C struct member) # if this is called often it will be much faster. exec(self.as_string(), mod.__dict__) return mod class Sound(bpy_types.ID): __slots__ = () @property def factory(self): """The aud.Factory object of the sound.""" import aud return aud._sound_from_pointer(self.as_pointer()) class RNAMeta(type): # TODO(campbell): move to C-API @property def is_registered(cls): return "bl_rna" in cls.__dict__ class RNAMetaPropGroup(StructMetaPropGroup, RNAMeta): pass # Same as 'Operator' # only without 'as_keywords' class Gizmo(StructRNA): __slots__ = () def __getattribute__(self, attr): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if (bl_rna is not None) and (attr in bl_rna.properties): return getattr(properties, attr) return super().__getattribute__(attr) def __setattr__(self, attr, value): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if (bl_rna is not None) and (attr in bl_rna.properties): return setattr(properties, attr, value) return super().__setattr__(attr, value) def __delattr__(self, attr): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if (bl_rna is not None) and (attr in bl_rna.properties): return delattr(properties, attr) return super().__delattr__(attr) from _bpy import ( _rna_gizmo_target_set_handler as target_set_handler, _rna_gizmo_target_get_value as target_get_value, _rna_gizmo_target_set_value as target_set_value, _rna_gizmo_target_get_range as target_get_range, ) # Convenience wrappers around private `_gpu` module. def draw_custom_shape(self, shape, *, matrix=None, select_id=None): """ Draw a shape created form :class:`bpy.types.Gizmo.draw_custom_shape`. :arg shape: The cached shape to draw. :type shape: Undefined. :arg matrix: 4x4 matrix, when not given :class:`bpy.types.Gizmo.matrix_world` is used. :type matrix: :class:`mathutils.Matrix` :arg select_id: The selection id. Only use when drawing within :class:`bpy.types.Gizmo.draw_select`. :type select_it: int """ import gpu if matrix is None: matrix = self.matrix_world batch, shader = shape shader.bind() if select_id is not None: gpu.select.load_id(select_id) else: if self.is_highlight: color = (*self.color_highlight, self.alpha_highlight) else: color = (*self.color, self.alpha) shader.uniform_float("color", color) with gpu.matrix.push_pop(): gpu.matrix.multiply_matrix(matrix) batch.draw() @staticmethod def new_custom_shape(type, verts): """ Create a new shape that can be passed to :class:`bpy.types.Gizmo.draw_custom_shape`. :arg type: The type of shape to create in (POINTS, LINES, TRIS, LINE_STRIP). :type type: string :arg verts: Coordinates. :type verts: sequence of of 2D or 3D coordinates. :arg display_name: Optional callback that takes the full path, returns the name to display. :type display_name: Callable that takes a string and returns a string. :return: The newly created shape. :rtype: Undefined (it may change). """ import gpu from gpu.types import ( GPUBatch, GPUVertBuf, GPUVertFormat, ) dims = len(verts[0]) if dims not in {2, 3}: raise ValueError("Expected 2D or 3D vertex") fmt = GPUVertFormat() pos_id = fmt.attr_add(id="pos", comp_type='F32', len=dims, fetch_mode='FLOAT') vbo = GPUVertBuf(len=len(verts), format=fmt) vbo.attr_fill(id=pos_id, data=verts) batch = GPUBatch(type=type, buf=vbo) shader = gpu.shader.from_builtin('3D_UNIFORM_COLOR' if dims == 3 else '2D_UNIFORM_COLOR') batch.program_set(shader) return (batch, shader) # Dummy class to keep the reference in `bpy_types_dict` and avoid # erros like: "TypeError: expected GizmoGroup subclass of class ..." class GizmoGroup(StructRNA): __slots__ = () # Only defined so operators members can be used by accessing self.order # with doc generation 'self.properties.bl_rna.properties' can fail class Operator(StructRNA, metaclass=RNAMeta): __slots__ = () def __getattribute__(self, attr): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if (bl_rna is not None) and (attr in bl_rna.properties): return getattr(properties, attr) return super().__getattribute__(attr) def __setattr__(self, attr, value): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if (bl_rna is not None) and (attr in bl_rna.properties): return setattr(properties, attr, value) return super().__setattr__(attr, value) def __delattr__(self, attr): properties = StructRNA.path_resolve(self, "properties") bl_rna = getattr(properties, "bl_rna", None) if (bl_rna is not None) and (attr in bl_rna.properties): return delattr(properties, attr) return super().__delattr__(attr) def as_keywords(self, ignore=()): """Return a copy of the properties as a dictionary""" ignore = ignore + ("rna_type",) return {attr: getattr(self, attr) for attr in self.properties.rna_type.properties.keys() if attr not in ignore} class Macro(StructRNA): # bpy_types is imported before ops is defined # so we have to do a local import on each run __slots__ = () @classmethod def define(self, opname): from _bpy import ops return ops.macro_define(self, opname) class PropertyGroup(StructRNA, metaclass=RNAMetaPropGroup): __slots__ = () class RenderEngine(StructRNA, metaclass=RNAMeta): __slots__ = () class KeyingSetInfo(StructRNA, metaclass=RNAMeta): __slots__ = () class AddonPreferences(StructRNA, metaclass=RNAMeta): __slots__ = () class _GenericUI: __slots__ = () @classmethod def _dyn_ui_initialize(cls): draw_funcs = getattr(cls.draw, "_draw_funcs", None) if draw_funcs is None: def draw_ls(self, context): # ensure menus always get default context operator_context_default = self.layout.operator_context # Support filtering out by owner workspace = context.workspace if workspace.use_filter_by_owner: owner_names = {owner_id.name for owner_id in workspace.owner_ids} else: owner_names = None for func in draw_ls._draw_funcs: # Begin 'owner_id' filter. if owner_names is not None: owner_id = getattr(func, "_owner", None) if owner_id is not None: if func._owner not in owner_names: continue # End 'owner_id' filter. # so bad menu functions don't stop # the entire menu from drawing try: func(self, context) except: import traceback traceback.print_exc() self.layout.operator_context = operator_context_default draw_funcs = draw_ls._draw_funcs = [cls.draw] cls.draw = draw_ls return draw_funcs @staticmethod def _dyn_owner_apply(draw_func): from _bpy import _bl_owner_id_get owner_id = _bl_owner_id_get() if owner_id is not None: draw_func._owner = owner_id @classmethod def is_extended(cls): return bool(getattr(cls.draw, "_draw_funcs", None)) @classmethod def append(cls, draw_func): """ Append a draw function to this menu, takes the same arguments as the menus draw function """ draw_funcs = cls._dyn_ui_initialize() cls._dyn_owner_apply(draw_func) draw_funcs.append(draw_func) @classmethod def prepend(cls, draw_func): """ Prepend a draw function to this menu, takes the same arguments as the menus draw function """ draw_funcs = cls._dyn_ui_initialize() cls._dyn_owner_apply(draw_func) draw_funcs.insert(0, draw_func) @classmethod def remove(cls, draw_func): """Remove a draw function that has been added to this menu""" draw_funcs = cls._dyn_ui_initialize() try: draw_funcs.remove(draw_func) except ValueError: pass class Panel(StructRNA, _GenericUI, metaclass=RNAMeta): __slots__ = () class UIList(StructRNA, _GenericUI, metaclass=RNAMeta): __slots__ = () class Header(StructRNA, _GenericUI, metaclass=RNAMeta): __slots__ = () class Menu(StructRNA, _GenericUI, metaclass=RNAMeta): __slots__ = () def path_menu(self, searchpaths, operator, *, props_default=None, prop_filepath="filepath", filter_ext=None, filter_path=None, display_name=None, add_operator=None): """ Populate a menu from a list of paths. :arg searchpaths: Paths to scan. :type searchpaths: sequence of strings. :arg operator: The operator id to use with each file. :type operator: string :arg prop_filepath: Optional operator filepath property (defaults to "filepath"). :type prop_filepath: string :arg props_default: Properties to assign to each operator. :type props_default: dict :arg filter_ext: Optional callback that takes the file extensions. Returning false excludes the file from the list. :type filter_ext: Callable that takes a string and returns a bool. :arg display_name: Optional callback that takes the full path, returns the name to display. :type display_name: Callable that takes a string and returns a string. """ layout = self.layout import os import bpy.utils layout = self.layout if not searchpaths: layout.label(text="* Missing Paths *") # collect paths files = [] for directory in searchpaths: files.extend([ (f, os.path.join(directory, f)) for f in os.listdir(directory) if (not f.startswith(".")) if ((filter_ext is None) or (filter_ext(os.path.splitext(f)[1]))) if ((filter_path is None) or (filter_path(f))) ]) files.sort() col = layout.column(align=True) for f, filepath in files: # Intentionally pass the full path to 'display_name' callback, # since the callback may want to use part a directory in the name. row = col.row(align=True) name = display_name(filepath) if display_name else bpy.path.display_name(f) props = row.operator( operator, text=name, translate=False, ) if props_default is not None: for attr, value in props_default.items(): setattr(props, attr, value) setattr(props, prop_filepath, filepath) if operator == "script.execute_preset": props.menu_idname = self.bl_idname if add_operator: props = row.operator(add_operator, text="", icon='REMOVE') props.name = name props.remove_name = True if add_operator: wm = bpy.data.window_managers[0] layout.separator() row = layout.row() sub = row.row() sub.emboss = 'NORMAL' sub.prop(wm, "preset_name", text="") props = row.operator(add_operator, text="", icon='ADD') props.name = wm.preset_name def draw_preset(self, _context): """ Define these on the subclass: - preset_operator (string) - preset_subdir (string) Optionally: - preset_add_operator (string) - preset_extensions (set of strings) - preset_operator_defaults (dict of keyword args) """ import bpy ext_valid = getattr(self, "preset_extensions", {".py", ".xml"}) props_default = getattr(self, "preset_operator_defaults", None) add_operator = getattr(self, "preset_add_operator", None) self.path_menu( bpy.utils.preset_paths(self.preset_subdir), self.preset_operator, props_default=props_default, filter_ext=lambda ext: ext.lower() in ext_valid, add_operator=add_operator, ) @classmethod def draw_collapsible(cls, context, layout): # helper function for (optionally) collapsed header menus # only usable within headers if context.area.show_menus: # Align menus to space them closely. layout.row(align=True).menu_contents(cls.__name__) else: layout.menu(cls.__name__, icon='COLLAPSEMENU') class NodeTree(bpy_types.ID, metaclass=RNAMetaPropGroup): __slots__ = () class Node(StructRNA, metaclass=RNAMetaPropGroup): __slots__ = () @classmethod def poll(cls, _ntree): return True class NodeInternal(Node): __slots__ = () class NodeSocket(StructRNA, metaclass=RNAMetaPropGroup): __slots__ = () @property def links(self): """List of node links from or to this socket. Warning: takes O(len(nodetree.links)) time.""" return tuple( link for link in self.id_data.links if (link.from_socket == self or link.to_socket == self)) class NodeSocketInterface(StructRNA, metaclass=RNAMetaPropGroup): __slots__ = () # These are intermediate subclasses, need a bpy type too class CompositorNode(NodeInternal): __slots__ = () @classmethod def poll(cls, ntree): return ntree.bl_idname == 'CompositorNodeTree' def update(self): self.tag_need_exec() class ShaderNode(NodeInternal): __slots__ = () @classmethod def poll(cls, ntree): return ntree.bl_idname == 'ShaderNodeTree' class TextureNode(NodeInternal): __slots__ = () @classmethod def poll(cls, ntree): return ntree.bl_idname == 'TextureNodeTree'
the-stack_0_30
from proteus import Context from proteus import Comm comm = Comm.get() ctx = Context.get() # simulation flags for error analysis # # simFlagsList is initialized in proteus.iproteus # simFlagsList[0]['errorQuantities']=['u'] simFlagsList[0]['errorTypes']= ['numericalSolution'] #compute error in soln and glob. mass bal simFlagsList[0]['errorNorms']= ['L2','H1'] #compute L2 norm in space or H0 or ... simFlagsList[0]['errorTimes']= ['Last'] #'All', 'Last' simFlagsList[0]['echo']=True # start quit
the-stack_0_32
from keras_applications import get_submodules_from_kwargs def Conv2dBn( filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, activation_dtype=None, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, use_batchnorm=False, **kwargs ): """Extension of Conv2D layer with batchnorm""" conv_name, act_name, bn_name = None, None, None block_name = kwargs.pop('name', None) backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs) if block_name is not None: conv_name = block_name + '_conv' if block_name is not None and activation is not None: act_str = activation.__name__ if callable(activation) else str(activation) act_name = block_name + '_' + act_str if block_name is not None and use_batchnorm: bn_name = block_name + '_bn' bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 def wrapper(input_tensor): x = layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=None, use_bias=not (use_batchnorm), kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, name=conv_name, )(input_tensor) if use_batchnorm: x = layers.BatchNormalization(axis=bn_axis, name=bn_name)(x) if activation: if activation_dtype is None: x = layers.Activation(activation, name=act_name)(x) else: x = layers.Activation(activation, name=act_name, dtype=activation_dtype)(x) return x return wrapper
the-stack_0_33
#!/usr/bin/env python3 import os import random import unittest from math import exp, pi import gpytorch import torch from gpytorch.distributions import MultivariateNormal from gpytorch.kernels import RBFKernel, ScaleKernel from gpytorch.likelihoods import GaussianLikelihood, FixedNoiseGaussianLikelihood from gpytorch.means import ConstantMean from gpytorch.priors import SmoothedBoxPrior from gpytorch.test.utils import least_used_cuda_device from torch import optim class ExactGPModel(gpytorch.models.ExactGP): def __init__(self, train_inputs, train_targets, likelihood): super(ExactGPModel, self).__init__(train_inputs, train_targets, likelihood) self.mean_module = ConstantMean(prior=SmoothedBoxPrior(-1, 1)) self.rbf_covar_module = RBFKernel(lengthscale_prior=SmoothedBoxPrior(exp(-3), exp(3), sigma=0.1)) self.covar_module = ScaleKernel(self.rbf_covar_module) def forward(self, x): mean_x = self.mean_module(x) covar_x = self.covar_module(x) return MultivariateNormal(mean_x, covar_x) class TestWhiteNoiseGPRegression(unittest.TestCase): def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(1) if torch.cuda.is_available(): torch.cuda.manual_seed_all(1) random.seed(1) def tearDown(self): if hasattr(self, "rng_state"): torch.set_rng_state(self.rng_state) def _get_data(self, cuda=False): device = torch.device("cuda") if cuda else torch.device("cpu") # Simple training data: let's try to learn a sine function train_x = torch.linspace(0, 1, 11, device=device) train_y = torch.sin(train_x * (2 * pi)) test_x = torch.linspace(0, 1, 51, device=device) test_y = torch.sin(test_x * (2 * pi)) return train_x, test_x, train_y, test_y def test_posterior_latent_gp_and_likelihood_without_optimization(self, cuda=False): train_x, test_x, train_y, test_y = self._get_data(cuda=cuda) with gpytorch.settings.debug(False): # We're manually going to set the hyperparameters to be ridiculous likelihood = FixedNoiseGaussianLikelihood(torch.ones(11) * 1e-8) gp_model = ExactGPModel(train_x, train_y, likelihood) # Update lengthscale prior to accommodate extreme parameters gp_model.rbf_covar_module.initialize(lengthscale=exp(-6)) gp_model.mean_module.initialize(constant=0) if cuda: gp_model.cuda() likelihood.cuda() # Compute posterior distribution gp_model.eval() likelihood.eval() # Let's see how our model does, conditioned with weird hyperparams # The posterior should fit all the data function_predictions = likelihood(gp_model(train_x)) self.assertLess(torch.norm(function_predictions.mean - train_y), 1e-3) self.assertLess(torch.norm(function_predictions.variance), 5e-3) # It shouldn't fit much else though test_function_predictions = gp_model(torch.tensor([1.1]).type_as(test_x)) self.assertLess(torch.norm(test_function_predictions.mean - 0), 1e-4) self.assertLess(torch.norm(test_function_predictions.variance - gp_model.covar_module.outputscale), 1e-4) def test_posterior_latent_gp_and_likelihood_without_optimization_cuda(self): if torch.cuda.is_available(): with least_used_cuda_device(): self.test_posterior_latent_gp_and_likelihood_without_optimization(cuda=True) def test_posterior_latent_gp_and_likelihood_with_optimization(self, cuda=False): train_x, test_x, train_y, test_y = self._get_data(cuda=cuda) # We're manually going to set the hyperparameters to something they shouldn't be likelihood = FixedNoiseGaussianLikelihood(torch.ones(11) * 0.001) gp_model = ExactGPModel(train_x, train_y, likelihood) mll = gpytorch.ExactMarginalLogLikelihood(likelihood, gp_model) gp_model.rbf_covar_module.initialize(lengthscale=exp(1)) gp_model.mean_module.initialize(constant=0) if cuda: gp_model.cuda() likelihood.cuda() # Find optimal model hyperparameters gp_model.train() likelihood.train() optimizer = optim.Adam(list(gp_model.parameters()) + list(likelihood.parameters()), lr=0.1) optimizer.n_iter = 0 with gpytorch.settings.debug(False): for _ in range(75): optimizer.zero_grad() output = gp_model(train_x) loss = -mll(output, train_y) loss.backward() optimizer.n_iter += 1 optimizer.step() for param in gp_model.parameters(): self.assertTrue(param.grad is not None) self.assertGreater(param.grad.norm().item(), 0) for param in likelihood.parameters(): self.assertTrue(param.grad is not None) self.assertGreater(param.grad.norm().item(), 0) optimizer.step() # Test the model gp_model.eval() likelihood.eval() test_function_predictions = likelihood(gp_model(test_x)) mean_abs_error = torch.mean(torch.abs(test_y - test_function_predictions.mean)) self.assertLess(mean_abs_error.squeeze().item(), 0.05) def test_posterior_latent_gp_and_likelihood_with_optimization_cuda(self): if torch.cuda.is_available(): with least_used_cuda_device(): self.test_posterior_latent_gp_and_likelihood_with_optimization(cuda=True) def test_posterior_latent_gp_and_likelihood_fast_pred_var(self, cuda=False): train_x, test_x, train_y, test_y = self._get_data(cuda=cuda) with gpytorch.settings.fast_pred_var(), gpytorch.settings.debug(False): # We're manually going to set the hyperparameters to something they shouldn't be likelihood = GaussianLikelihood(noise_prior=SmoothedBoxPrior(exp(-3), exp(3), sigma=0.1)) gp_model = ExactGPModel(train_x, train_y, likelihood) mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, gp_model) gp_model.rbf_covar_module.initialize(lengthscale=exp(1)) gp_model.mean_module.initialize(constant=0) likelihood.initialize(noise=exp(1)) if cuda: gp_model.cuda() likelihood.cuda() # Find optimal model hyperparameters gp_model.train() likelihood.train() optimizer = optim.Adam(list(gp_model.parameters()) + list(likelihood.parameters()), lr=0.1) optimizer.n_iter = 0 for _ in range(50): optimizer.zero_grad() output = gp_model(train_x) loss = -mll(output, train_y) loss.backward() optimizer.n_iter += 1 optimizer.step() for param in gp_model.parameters(): self.assertTrue(param.grad is not None) self.assertGreater(param.grad.norm().item(), 0) for param in likelihood.parameters(): self.assertTrue(param.grad is not None) self.assertGreater(param.grad.norm().item(), 0) optimizer.step() # Test the model gp_model.eval() likelihood.eval() # Set the cache test_function_predictions = likelihood(gp_model(train_x)) # Now bump up the likelihood to something huge # This will make it easy to calculate the variance likelihood.raw_noise.data.fill_(3) test_function_predictions = likelihood(gp_model(train_x)) noise = likelihood.noise var_diff = (test_function_predictions.variance - noise).abs() self.assertLess(torch.max(var_diff / noise), 0.05) def test_posterior_latent_gp_and_likelihood_fast_pred_var_cuda(self): if torch.cuda.is_available(): with least_used_cuda_device(): self.test_posterior_latent_gp_and_likelihood_fast_pred_var(cuda=True) if __name__ == "__main__": unittest.main()
the-stack_0_34
""" Interfaces for serializing Django objects. Usage:: from django.core import serializers json = serializers.serialize("json", some_query_set) objects = list(serializers.deserialize("json", json)) To add your own serializers, use the SERIALIZATION_MODULES setting:: SERIALIZATION_MODULES = { "csv" : "path.to.csv.serializer", "txt" : "path.to.txt.serializer", } """ from django.conf import settings from django.utils import importlib # Built-in serializers BUILTIN_SERIALIZERS = { "xml" : "django.core.serializers.xml_serializer", "python" : "django.core.serializers.python", "json" : "django.core.serializers.json", } # Check for PyYaml and register the serializer if it's available. try: import yaml BUILTIN_SERIALIZERS["yaml"] = "django.core.serializers.pyyaml" except ImportError: pass _serializers = {} def register_serializer(format, serializer_module, serializers=None): """"Register a new serializer. ``serializer_module`` should be the fully qualified module name for the serializer. If ``serializers`` is provided, the registration will be added to the provided dictionary. If ``serializers`` is not provided, the registration will be made directly into the global register of serializers. Adding serializers directly is not a thread-safe operation. """ module = importlib.import_module(serializer_module) if serializers is None: _serializers[format] = module else: serializers[format] = module def unregister_serializer(format): "Unregister a given serializer. This is not a thread-safe operation." del _serializers[format] def get_serializer(format): if not _serializers: _load_serializers() return _serializers[format].Serializer def get_serializer_formats(): if not _serializers: _load_serializers() return _serializers.keys() def get_public_serializer_formats(): if not _serializers: _load_serializers() return [k for k, v in _serializers.iteritems() if not v.Serializer.internal_use_only] def get_deserializer(format): if not _serializers: _load_serializers() return _serializers[format].Deserializer def serialize(format, queryset, **options): """ Serialize a queryset (or any iterator that returns database objects) using a certain serializer. """ s = get_serializer(format)() s.serialize(queryset, **options) return s.getvalue() def deserialize(format, stream_or_string): """ Deserialize a stream or a string. Returns an iterator that yields ``(obj, m2m_relation_dict)``, where ``obj`` is a instantiated -- but *unsaved* -- object, and ``m2m_relation_dict`` is a dictionary of ``{m2m_field_name : list_of_related_objects}``. """ d = get_deserializer(format) return d(stream_or_string) def _load_serializers(): """ Register built-in and settings-defined serializers. This is done lazily so that user code has a chance to (e.g.) set up custom settings without needing to be careful of import order. """ global _serializers serializers = {} for format in BUILTIN_SERIALIZERS: register_serializer(format, BUILTIN_SERIALIZERS[format], serializers) if hasattr(settings, "SERIALIZATION_MODULES"): for format in settings.SERIALIZATION_MODULES: register_serializer(format, settings.SERIALIZATION_MODULES[format], serializers) _serializers = serializers
the-stack_0_35
__copyright__ = "Copyright 2017, Georgia Institute of Technology" __license__ = "MIT" __version_info__ = ('0', '0', '1') __version__ = '.'.join(__version_info__) __maintainer__ = "Marat Dukhan" __email__ = "[email protected]" import logging logger = logging.getLogger("confu") logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) class ConsoleFormatter(logging.Formatter): def __init__(self): super(ConsoleFormatter, self).__init__("%(message)s") def format(self, record): message = super(ConsoleFormatter, self).format(record) if record.levelname in ["DEBUG", "INFO"]: return message[0].upper() + message[1:] else: return { "WARNING": "Warning", "ERROR": "Error", "CRITICAL": "Fatal error" }[record.levelname] + ": " + message[0].lower() + message[1:] console_formatter = ConsoleFormatter() console_handler.setFormatter(console_formatter) logger.addHandler(console_handler) from confu.builds import Build from confu.platform import Platform def standard_parser(description="Confu configuration script"): import argparse from os import linesep from confu.platform import host, possible_targets parser = argparse.ArgumentParser(description=description, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--target", dest="target", metavar="PLATFORM", type=Platform, default=host.name, help="platform where the code will run. Potential options:" + linesep + " " + host.name + " (default)" + linesep + linesep.join(" " + target for target in possible_targets[1:])) parser.add_argument("--toolchain", dest="toolchain", metavar="TOOLCHAIN", choices=["auto", "gnu", "clang"], default="auto", help="toolchain to use for compilation. Potential options:" + linesep + linesep.join(" " + name for name in ["auto (default)", "gnu", "clang"])) return parser
the-stack_0_36
import pytest from commitizen import BaseCommitizen, defaults, factory from commitizen.config import BaseConfig from commitizen.exceptions import NoCommitizenFoundException def test_factory(): config = BaseConfig() config.settings.update({"name": defaults.name}) r = factory.commiter_factory(config) assert isinstance(r, BaseCommitizen) def test_factory_fails(): config = BaseConfig() config.settings.update({"name": "Nothing"}) with pytest.raises(NoCommitizenFoundException) as excinfo: factory.commiter_factory(config) assert "The committer has not been found in the system." in str(excinfo)
the-stack_0_38
import collections import enum from itertools import starmap, product import six from ibis.compat import suppress import ibis.util as util import ibis.common as com import ibis.expr.types as ir import ibis.expr.schema as sch import ibis.expr.datatypes as dt try: from cytoolz import curry, compose, identity except ImportError: from toolz import curry, compose, identity def highest_precedence_dtype(exprs): """Return the highest precedence type from the passed expressions Also verifies that there are valid implicit casts between any of the types and the selected highest precedence type. This is a thin wrapper around datatypes highest precedence check. Parameters ---------- exprs : Iterable[ir.ValueExpr] A sequence of Expressions Returns ------- dtype: DataType The highest precedence datatype """ if not exprs: raise ValueError('Must pass at least one expression') return dt.highest_precedence(expr.type() for expr in exprs) def castable(source, target): """Return whether source ir type is implicitly castable to target Based on the underlying datatypes and the value in case of Literals """ op = source.op() value = getattr(op, 'value', None) return dt.castable(source.type(), target.type(), value=value) def comparable(left, right): return castable(left, right) or castable(right, left) def cast(source, target): """Currently Literal to *Scalar implicit casts are allowed""" import ibis.expr.operations as ops # TODO: don't use ops here if not castable(source, target): raise com.IbisTypeError('Source is not castable to target type!') # currently it prevents column -> scalar implicit castings # however the datatypes are matching op = source.op() if not isinstance(op, ops.Literal): raise com.IbisTypeError('Only able to implicitly cast literals!') out_type = target.type().scalar_type() return out_type(op) # --------------------------------------------------------------------- # Input type validators / coercion functions class validator(curry): def __repr__(self): return '{}({}{})'.format( self.func.__name__, repr(self.args)[1:-1], ', '.join('{}={!r}'.format(k, v) for k, v in self.keywords.items()) ) noop = validator(identity) @validator def one_of(inners, arg): """At least one of the inner validators must pass""" for inner in inners: with suppress(com.IbisTypeError, ValueError): return inner(arg) rules_formatted = ', '.join(map(repr, inners)) raise com.IbisTypeError( 'Arg passes neither of the following rules: {}'.format(rules_formatted) ) @validator def all_of(inners, arg): """All of the inner valudators must pass. The order of inner validators matters. Parameters ---------- inners : List[validator] Functions are applied from right to left so allof([rule1, rule2], arg) is the same as rule1(rule2(arg)). arg : Any Value to be validated. Returns ------- arg : Any Value maybe coerced by inner validators to the appropiate types """ return compose(*inners)(arg) @validator def isin(values, arg): if arg not in values: raise ValueError( 'Value with type {} is not in {!r}'.format(type(arg), values) ) if isinstance(values, dict): # TODO check for mapping instead return values[arg] else: return arg @validator def member_of(obj, arg): if isinstance(arg, enum.Enum): enum.unique(obj) # check that enum has unique values arg = arg.name if not hasattr(obj, arg): raise com.IbisTypeError( 'Value with type {} is not a member of {}'.format(type(arg), obj) ) return getattr(obj, arg) @validator def list_of(inner, arg, min_length=0): if isinstance(arg, six.string_types) or not isinstance( arg, (collections.Sequence, ir.ListExpr) ): raise com.IbisTypeError('Argument must be a sequence') if len(arg) < min_length: raise com.IbisTypeError( 'Arg must have at least {} number of elements'.format(min_length) ) return ir.sequence(list(map(inner, arg))) @validator def datatype(arg): return dt.dtype(arg) @validator def instance_of(klass, arg): """Require that a value has a particular Python type.""" if not isinstance(arg, klass): raise com.IbisTypeError( 'Given argument with type {} is not an instance of {}'.format( type(arg), klass ) ) return arg @validator def value(dtype, arg): """Validates that the given argument is a Value with a particular datatype Parameters ---------- dtype : DataType subclass or DataType instance arg : python literal or an ibis expression If a python literal is given the validator tries to coerce it to an ibis literal. Returns ------- arg : AnyValue An ibis value expression with the specified datatype """ if not isinstance(arg, ir.Expr): # coerce python literal to ibis literal arg = ir.literal(arg) if not isinstance(arg, ir.AnyValue): raise com.IbisTypeError('Given argument with type {} is not a value ' 'expression'.format(type(arg))) # retrieve literal values for implicit cast check value = getattr(arg.op(), 'value', None) if isinstance(dtype, type) and isinstance(arg.type(), dtype): # dtype class has been specified like dt.Interval or dt.Decimal return arg elif dt.castable(arg.type(), dt.dtype(dtype), value=value): # dtype instance or string has been specified and arg's dtype is # implicitly castable to it, like dt.int8 is castable to dt.int64 return arg else: raise com.IbisTypeError('Given argument with datatype {} is not ' 'subtype of {} nor implicitly castable to ' 'it'.format(arg.type(), dtype)) @validator def scalar(inner, arg): return instance_of(ir.ScalarExpr, inner(arg)) @validator def column(inner, arg): return instance_of(ir.ColumnExpr, inner(arg)) @validator def array_of(inner, arg): val = arg if isinstance(arg, ir.Expr) else ir.literal(arg) argtype = val.type() if not isinstance(argtype, dt.Array): raise com.IbisTypeError( 'Argument must be an array, got expression {} which is of type ' '{}'.format(val, val.type())) return value(dt.Array(inner(val[0]).type()), val) any = value(dt.any) double = value(dt.double) string = value(dt.string) boolean = value(dt.boolean) integer = value(dt.int64) decimal = value(dt.Decimal) floating = value(dt.float64) date = value(dt.date) time = value(dt.time) timestamp = value(dt.Timestamp) category = value(dt.category) temporal = one_of([timestamp, date, time]) strict_numeric = one_of([integer, floating, decimal]) soft_numeric = one_of([integer, floating, decimal, boolean]) numeric = soft_numeric set_ = value(dt.Set) array = value(dt.Array) struct = value(dt.Struct) mapping = value(dt.Map(dt.any, dt.any)) @validator def interval(arg, units=None): arg = value(dt.Interval, arg) unit = arg.type().unit if units is not None and unit not in units: msg = 'Interval unit `{}` is not among the allowed ones {}' raise com.IbisTypeError(msg.format(unit, units)) return arg @validator def client(arg): from ibis.client import Client return instance_of(Client, arg) # --------------------------------------------------------------------- # Ouput type promoter functions def promoter(fn): def wrapper(name_or_value, *args, **kwargs): if isinstance(name_or_value, str): return lambda self: fn(getattr(self, name_or_value), *args, **kwargs) else: return fn(name_or_value, *args, **kwargs) return wrapper @promoter def shape_like(arg, dtype=None): if isinstance(arg, (tuple, list, ir.ListExpr)): datatype = dtype or highest_precedence_dtype(arg) columnar = util.any_of(arg, ir.AnyColumn) else: datatype = dtype or arg.type() columnar = isinstance(arg, ir.AnyColumn) dtype = dt.dtype(datatype) if columnar: return dtype.array_type() else: return dtype.scalar_type() @promoter def scalar_like(arg): output_dtype = arg.type() return output_dtype.scalar_type() @promoter def array_like(arg): output_dtype = arg.type() return output_dtype.array_type() column_like = array_like @promoter def typeof(arg): return arg._factory @validator def table(schema, arg): """A table argument. Parameters ---------- schema : Union[sch.Schema, List[Tuple[str, dt.DataType]] A validator for the table's columns. Only column subset validators are currently supported. Accepts any arguments that `sch.schema` accepts. See the example for usage. arg : The validatable argument. Examples -------- The following op will accept an argument named ``'table'``. Note that the ``schema`` argument specifies rules for columns that are required to be in the table: ``time``, ``group`` and ``value1``. These must match the types specified in the column rules. Column ``value2`` is optional, but if present it must be of the specified type. The table may have extra columns not specified in the schema. """ assert isinstance(arg, ir.TableExpr) if arg.schema() >= sch.schema(schema): return arg raise com.IbisTypeError( 'Argument is not a table with column subset of {}'.format(schema) ) # TODO: might just use bounds instead of actual literal values # that could simplify interval binop output_type methods def _promote_numeric_binop(exprs, op): bounds, dtypes = [], [] for arg in exprs: dtypes.append(arg.type()) if hasattr(arg.op(), 'value'): # arg.op() is a literal bounds.append([arg.op().value]) else: bounds.append(arg.type().bounds) # In some cases, the bounding type might be int8, even though neither # of the types are that small. We want to ensure the containing type is # _at least_ as large as the smallest type in the expression. values = starmap(op, product(*bounds)) dtypes += [dt.infer(value, allow_overflow=True) for value in values] return dt.highest_precedence(dtypes) @promoter def numeric_like(args, op): if util.all_of(args, ir.IntegerValue): dtype = _promote_numeric_binop(args, op) return shape_like(args, dtype=dtype) else: return shape_like(args) # TODO: create varargs marker for impala udfs
the-stack_0_39
""" Test Convex Breaking """ import pytest import secrets from convex_api.account import Account from convex_api.api import API from convex_api.exceptions import ConvexAPIError from convex_api.utils import ( add_0x_prefix, to_address ) def test_convex_recursion(convex, test_account): chain_length = 4 address_list = [] for index in range(0, chain_length): contract = f""" (def chain-{index} (deploy '(do (def stored-data ^{{:private? true}} nil ) (def chain-address ^{{:private? true}} nil ) (defn get ^{{:callable? true}} [] (call chain-address (get)) ) (defn set ^{{:callable? true}} [x] ( if chain-address (call chain-address(set x)) (def stored-data x)) ) (defn set-chain-address ^{{:callable? true}} [x] (def chain-address x) ) ) ) ) """ convex.topup_account(test_account) result = convex.send(contract, test_account) address_list.append(to_address(result['value'])) for index in range(0, chain_length): next_index = index + 1 if next_index == chain_length: next_index = 0 call_address = address_list[next_index] result = convex.send(f'(call chain-{index} (set-chain-address #{call_address}))', test_account) test_number = secrets.randbelow(1000) if index == chain_length - 1: with pytest.raises(ConvexAPIError, match='DEPTH'): result = convex.send(f'(call chain-{index} (set {test_number}))', test_account) else: result = convex.send(f'(call chain-0 (set {test_number}))', test_account) assert(result) assert(result['value'] == test_number) with pytest.raises(ConvexAPIError, match='DEPTH'): convex.query('(call chain-0 (get))', test_account) def test_schedule_transfer(convex, test_account, other_account): # you can send coins to an actor , if it exports the receive-coin function contract = """ (def transfer-for-ever (deploy '(do (defn tx-delay ^{:callable? true} [to-address amount] (transfer to-address amount) (def call-address *address*) (schedule (+ *timestamp* 1000) (call call-address (tx-delay to-address amount))) ) (defn tx-now ^{:callable? true} [to-address amount] (transfer to-address amount) ) (defn show-schedule ^{:callable? true} [] [(get *state* :schedule) *address*] ) (defn receive-coin ^{:callable? true} [sender amount data] (accept amount) ) ) ) ) """ # (call contract-address (tx-to to-address amount)) convex.topup_account(test_account) convex.topup_account(other_account, 8000000) result = convex.send(contract, test_account) contract_address = to_address(result['value']) convex.transfer(contract_address, 800000, other_account) convex.topup_account(test_account) result = convex.send(f'(call #{contract_address} (tx-delay #{other_account.address} 1000))', test_account) print(result) result = convex.send(f'(call #{contract_address} (show-schedule))', test_account) print(result)
the-stack_0_40
# Autores: # Darlan de Castro Silva Filho # Marcos Henrique Fernandes Marcone from pandas import Series, DataFrame import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.graph_objs as go import plotly.express as px import dash import dash_core_components as dcc import dash_html_components as html import dash_table # Funções de estilização e opções das bibliotecas utilizadas plt.style.use('classic') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # Função para o path das bases de dados # Entrada: nome = string # Saida: path = string def path(nome): return './'+nome+'.csv' # Importa os arquivos (bases de dados) utilizados unidades = pd.read_csv(path('unidades'), sep=';') docentes = pd.read_csv(path('docentes'), sep=';') avaliacao = pd.read_csv(path('avaliacaoDocencia'), sep=';') # Filtra os docentes que trabalham em Natal e que tenham a categoria de Professor do Magistério Superior unidadesFiltradas = unidades.loc[:, [ 'id_unidade', 'municipio', 'unidade_responsavel']] docentesComUnidadeAcademica = pd.merge( docentes, unidadesFiltradas, left_on="id_unidade_lotacao", right_on="id_unidade").drop('id_unidade', axis=1) docentesNatalUnidadeAcademica = docentesComUnidadeAcademica[ docentesComUnidadeAcademica['municipio'] == 'NATAL'] docentesNatalMSUnidadeAcademica = docentesNatalUnidadeAcademica[ docentesNatalUnidadeAcademica['categoria'] == 'PROFESSOR DO MAGISTERIO SUPERIOR'] # Filtra as unidades_dirigentes não aceitas pela aplicação docentesNatalMSUnidadeAcademica['unidade_dirigente'] = np.where(docentesNatalMSUnidadeAcademica['unidade_responsavel'] == 'UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE', ( docentesNatalMSUnidadeAcademica['lotacao']), (docentesNatalMSUnidadeAcademica['unidade_responsavel'])) unidadesNaoAceitas = ['PRÓ-REITORIA DE EXTENSÃO UNIVERSITÁRIA', 'MUSEU CÂMARA CASCUDO', 'UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE', 'EDITORA UNIVERSITÁRIA', 'EMPRESA BRASILEIRA DE SERVICOS HOSPITALARES', 'REITORIA', 'INSTITUTO DE MEDICINA TROPICAL - IMT-RN', 'SECRETARIA DE EDUCAÇÃO A DISTÂNCIA', 'GABINETE DO REITOR', 'SUPERINTENDENCIA DE COMUNICACAO', 'PRÓ-REITORIA DE ADMINISTRAÇÃO (PROAD)'] docentesNatalMSUnidadeAcademica = docentesNatalMSUnidadeAcademica[~docentesNatalMSUnidadeAcademica['unidade_dirigente'].isin( unidadesNaoAceitas)] # Gráfico de barras da distribuição dos docentes da UFRN por unidade acadêmica quantidadeDocentesUnidadeDirigente = docentesNatalMSUnidadeAcademica['unidade_dirigente'].value_counts( ) barraDocentesUnidadeDirigente = go.Bar(x=quantidadeDocentesUnidadeDirigente.index, y=quantidadeDocentesUnidadeDirigente.values, text=quantidadeDocentesUnidadeDirigente.values, textposition='auto') layoutDocentesUnidadeDirigente = go.Layout(title='Gráfico de docentes por unidade responsável (UFRN 2021 - Unidades de Natal - Magistério Superior)', xaxis={ 'title': 'Unidade responsável'}, yaxis={'title': 'Número de docentes'}) figuraDocentesUnidadeDirigente = go.Figure( data=[barraDocentesUnidadeDirigente], layout=layoutDocentesUnidadeDirigente) # Gráfico de pizza da distribuição dos docentes da UFRN por sexo quantidadeDocentesSexo = docentesNatalMSUnidadeAcademica['sexo'].value_counts() piechartSexo = go.Pie(labels=['Masculino', 'Feminino'], values=quantidadeDocentesSexo.values, text=quantidadeDocentesSexo.values, marker={ 'colors': ['#665FD1', '#FFFF7E'], 'line': dict(color='#000000', width=2)}) layoutDocentesSexo = go.Layout(title='Gráfico de docentes por sexo (UFRN 2021 - Unidades de Natal - Magistério Superior)', xaxis={'title': 'Docentes'}, yaxis={'title': 'Número de docentes'}, barmode='stack') figuraDocentesSexo = go.Figure(data=piechartSexo, layout=layoutDocentesSexo) # Gráfico de pizza da distribuição dos docentes da UFRN por formação acadêmica quantidadeDocentesFormacao = docentesNatalMSUnidadeAcademica['formacao'].value_counts( ) piechartFormacao = go.Pie(labels=quantidadeDocentesFormacao.index, values=quantidadeDocentesFormacao.values, text=quantidadeDocentesFormacao.values, marker={ 'colors': ['#665FD1', '#FFFF7E', '#F5054F', '#3F012C'], 'line': dict(color='#000000', width=2)}) layoutDocentesFormacao = go.Layout(title='Gráfico de docentes por formação (UFRN 2021 - Unidades de Natal - Magistério Superior)', xaxis={'title': 'Formação'}, yaxis={'title': 'Número de docentes'}) figuraDocentesFormacao = go.Figure( data=[piechartFormacao], layout=layoutDocentesFormacao) # Gráfico de pizza da distribuição dos docentes da UFRN por classe funcional quantidadeDocentesClasseFuncional = docentesNatalMSUnidadeAcademica['classe_funcional'].value_counts( ).sort_index() piechartClasseFuncional = go.Pie(labels=quantidadeDocentesClasseFuncional.index, values=quantidadeDocentesClasseFuncional.values, text=quantidadeDocentesClasseFuncional.values, marker={'colors': px.colors.qualitative.Dark24, 'line': dict(color='#000000', width=2)}) barraDocentesClasseFuncional = go.Bar(x=quantidadeDocentesClasseFuncional.index, y=quantidadeDocentesClasseFuncional.values, text=quantidadeDocentesClasseFuncional.values, textposition='auto', marker={'color': '#5D21D0'}) layoutDocentesClasseFuncional = go.Layout(title='Gráfico de docentes por classe funcional (UFRN 2021 - Unidades de Natal - Magistério Superior)', xaxis={ 'title': 'Classe funcional'}, yaxis={'title': 'Número de docentes'}, height=450) figuraDocentesClasseFuncional = go.Figure( data=[piechartClasseFuncional], layout=layoutDocentesClasseFuncional) # Cria gráfico para ressaltar os dados de classe funcional dos docentes agrupados por unidade_dirigente filtroClasseFuncional = ['unidade_dirigente', 'classe_funcional'] docentesClasseGroupBy = docentesNatalMSUnidadeAcademica.groupby( filtroClasseFuncional).count().reset_index().loc[:, filtroClasseFuncional + ['nome']] docentesClasseGroupBy['quantidade'] = docentesClasseGroupBy['nome'] del docentesClasseGroupBy['nome'] figClasseDetalhe = px.bar(docentesClasseGroupBy, x="unidade_dirigente", y="quantidade", color="classe_funcional", text='quantidade', color_discrete_sequence=px.colors.qualitative.Bold, height=800) # Cria gráfico para ressaltar os dados de sexo dos docentes agrupados por unidade_dirigente filtroSexo = ['unidade_dirigente', 'sexo'] docentesSexoGroupBy = docentesNatalMSUnidadeAcademica.groupby( filtroSexo).count().reset_index().loc[:, filtroSexo + ['nome']] docentesSexoGroupBy['quantidade'] = docentesSexoGroupBy['nome'] del docentesSexoGroupBy['nome'] figSexoDetalhe = px.bar(docentesSexoGroupBy, x="unidade_dirigente", y="quantidade", color="sexo", text='quantidade', color_discrete_sequence=px.colors.qualitative.Bold) # Cria gráfico para ressaltar os dados de formação acadêmica dos docentes agrupados por unidade_dirigente filtroFormacao = ['unidade_dirigente', 'formacao'] docentesFormacaoGroupBy = docentesNatalMSUnidadeAcademica.groupby( filtroFormacao).count().reset_index().loc[:, filtroFormacao + ['nome']] docentesFormacaoGroupBy['quantidade'] = docentesFormacaoGroupBy['nome'] del docentesFormacaoGroupBy['nome'] figFormacaoDetalhe = px.bar(docentesFormacaoGroupBy, x="unidade_dirigente", y="quantidade", color="formacao", text='quantidade', range_y=[0, 400]) # Cria um dicionário com os dados indexados por unidade_dirigente unidadesDirigentes = docentesNatalMSUnidadeAcademica['unidade_dirigente'].unique( ) unidadesDirigentes dfUnidadesDirigentes = {} for unidadeDirigente in unidadesDirigentes: df = docentesNatalMSUnidadeAcademica[docentesNatalMSUnidadeAcademica['unidade_dirigente'] == unidadeDirigente] dfUnidadesDirigentes[unidadeDirigente] = df # Função utilizada na filtragem de um dataFrame agrupando os dados por uma propriedade e o filtrando por outras duas # Entradas: df = DataFrame, title = string, x = string, y = string, cor = ['rgb(a,b,c)','rgb(d,e,f)'...] # Saídas: figAdmissao = Gráfico de barras def filtrarDFPorUnidadeDirigente(df, title, x, y, cor=px.colors.qualitative.Bold): dfFinal = df[title] filtro = [x, y] docentesFiltroGroupBy = dfFinal.groupby( filtro).count().reset_index().loc[:, filtro + ['nome']] docentesFiltroGroupBy['quantidade'] = docentesFiltroGroupBy['nome'] del docentesFiltroGroupBy['nome'] figAdmissao = px.bar(docentesFiltroGroupBy, x=x, y="quantidade", color=y, text='quantidade', color_discrete_sequence=cor, title=title) return figAdmissao # Cria e formata um dataFrame geral com todos os professores e os atributos necessários para a geração dos gráficos e da tabela por média avaliacaoDocentesFiltro = avaliacao[avaliacao['nome_docente'].isin( docentesNatalMSUnidadeAcademica['nome'])] avaliacaoDocentesFiltro['total_postura'] = avaliacaoDocentesFiltro['postura_profissional_media'] * \ avaliacaoDocentesFiltro['qtd_discentes'] avaliacaoDocentesFiltro['total_atuacao'] = avaliacaoDocentesFiltro['atuacao_profissional_media'] * \ avaliacaoDocentesFiltro['qtd_discentes'] docentesMedias = avaliacaoDocentesFiltro.loc[:, [ 'nome_docente', 'qtd_discentes', 'total_postura', 'total_atuacao']] docentesMediasGroupBy = docentesMedias.groupby(['nome_docente']).sum() docentesMediasGroupBy['media_postura'] = docentesMediasGroupBy['total_postura'] / \ docentesMediasGroupBy['qtd_discentes'] docentesMediasGroupBy['media_atuacao'] = docentesMediasGroupBy['total_atuacao'] / \ docentesMediasGroupBy['qtd_discentes'] docentesMediasGroupBy['media_alunos'] = avaliacaoDocentesFiltro.groupby( ['nome_docente']).mean().loc[:, 'autoavaliacao_aluno_media'] docentesMediasNatalMSUnidadeAcademica = pd.merge( docentesNatalMSUnidadeAcademica, docentesMediasGroupBy, left_on="nome", right_on="nome_docente").round(3) # Exclui os campos não necessários para a geração da tabela de notas e assinala os campos restantes para um novo dataFrame docenteParaTabelaNotas = docentesMediasNatalMSUnidadeAcademica.loc[:, [ 'nome', 'media_postura', 'media_atuacao', 'media_alunos', 'unidade_dirigente', 'lotacao', 'qtd_discentes']] # Faz a filtragem e formatação de um dataFrame para agrupas os dados da media_postura, media_atuacao e media_alunos por undade_dirigente docentesMediaUnidadeDirigente = docentesMediasNatalMSUnidadeAcademica.groupby( 'unidade_dirigente').mean().loc[:, ['media_postura', 'media_atuacao', 'media_alunos']] docentesMediaUnidadeDirigente['unidade_dirigente'] = docentesMediaUnidadeDirigente.index # Faz a filtragem e formatação de um dataFrame para conter as informações da media_postura, media_atuacao e media_alunos a serem apresentas no gráfico de linha por evolução temporal docentesMediasAno = avaliacaoDocentesFiltro.loc[:, [ 'nome_docente', 'qtd_discentes', 'total_postura', 'total_atuacao', 'ano']] docentesMediasAnoGroupBy = docentesMediasAno.groupby(['ano']).sum() docentesMediasAnoGroupBy['media_postura'] = docentesMediasAnoGroupBy['total_postura'] / \ docentesMediasAnoGroupBy['qtd_discentes'] docentesMediasAnoGroupBy['media_atuacao'] = docentesMediasAnoGroupBy['total_atuacao'] / \ docentesMediasAnoGroupBy['qtd_discentes'] docentesMediasAnoGroupBy['media_alunos'] = avaliacaoDocentesFiltro.groupby( ['ano']).mean().loc[:, 'autoavaliacao_aluno_media'] docentesMediasAnoGroupBy['ano'] = docentesMediasAnoGroupBy.index # Cria o gráfico de linhas da evolução temporal da media_postura, media_atuacao e media_alunos figuraMediasAnoGroupBy = go.Figure() figuraMediasAnoGroupBy.add_trace(go.Scatter(x=docentesMediasAnoGroupBy['ano'], y=docentesMediasAnoGroupBy['media_postura'], mode='lines', name='media_postura')) figuraMediasAnoGroupBy.add_trace(go.Scatter(x=docentesMediasAnoGroupBy['ano'], y=docentesMediasAnoGroupBy['media_atuacao'], mode='lines', name='media_atuacao')) figuraMediasAnoGroupBy.add_trace(go.Scatter(x=docentesMediasAnoGroupBy['ano'], y=docentesMediasAnoGroupBy['media_alunos'], mode='lines', name='media_alunos')) figuraMediasAnoGroupBy.update_layout( title='Evolução da avaliação dos discentes e docentes do magistério superior da UFRN nos anos de 2013 à 2019') # Define as opções de unidades dirigentes que serão mostradas no 'dropdown-1' indicadoresDropdown1 = [ 'GERAL'] + list(docentesNatalMSUnidadeAcademica['unidade_dirigente'].unique()) # Estilos das divs dos gráficos iniciais estilosDivGraficosIniciais = {'width': '95%', 'display': 'inline-block', 'padding': '0 20'} # Cria a variável app e escolhe os stylesheets da aplicação external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) # Define o layout a ser apresentado na página web app.layout = html.Div([ html.H1(children='Análise dos dados dos docentes do magistério superior da UFRN das unidades de Natal no ano de 2021'), html.Div([ dcc.Markdown(''' Trabalho referente à disciplina DCA-0131, Ciência de Dados, ministrada pelo professor Luiz Affonso Hederson Guedes de Oliveira. Plataforma desenvolvida pelos discentes Darlan de Castro e Marcos Henrique, alunos do curso de Engenharia Computação da UFRN. A aplicação web desenvolvida consiste em uma análise exploratória dos dados sobre os docentes do magistério superior das unidades de Natal da Universidade Federal do Rio Grande do Norte (UFRN) no ano de 2021. Os dados utilizados aqui podem ser acessados pelo seguinte site: [http://dados.ufrn.br](http://dados.ufrn.br) As principais tecnologias usadas para o desenvolvimento da plataforma foram: * Linguagem Python; * Pacotes Pandas, Plotly e Dash; * Heroku (deploy da aplicação). ''') ]), html.H2( children='Divisão dos docentes do magistério superior da UFRN no ano de 2021'), html.Div([ html.Div([ dcc.Markdown(''' Nesta seção da aplicação pode-se acompanhar a divisão dos docentes através de difentes categorias, como sexo, formação e classe funcional, assim como ver como eles estão distribuídos por cada unidade responsável na UFRN. Na primeira caixa de seleção pode-se escolher qual unidade responsável deseja-se analisar. Assim, são atualizados os três primeiros gráficos com informações das divisões dos decentes referentes a cada lotação que compõe aquela unidade responsável. Se a opção for escolhida for "GERAL", então pode-se mostar gráficos gerais sobre toda as unidades de Natal da UFRN, ou gráficos detalhados mostrando a divisão por unidades responsáveis. '''), dcc.Dropdown( id='dropdown-1', options=[{'label': i, 'value': i} for i in indicadoresDropdown1], value='GERAL' ), dcc.RadioItems( id='radioitems-1', options=[{'label': i, 'value': i} for i in ['GERAL', 'DETALHADA']], value='GERAL', labelStyle={'display': 'inline-block'} ) ], style={'width': '80%', 'display': 'inline-block'}), html.Div([ dcc.Graph( id='grafico-sexo') ], style=estilosDivGraficosIniciais), html.Div([ dcc.Graph( id='grafico-formacao') ], style=estilosDivGraficosIniciais), html.Div([ dcc.Graph( id='grafico-classe') ], style=estilosDivGraficosIniciais), html.Div([ dcc.Graph( id='grafico-sobra', figure=figuraDocentesUnidadeDirigente) ], style=estilosDivGraficosIniciais, id='div-grafico-sobra'), ]), html.H2(children='Estatísticas das avaliações dos docentes do magistério superior da UFRN (campus Natal) nos anos de 2013 à 2019'), dcc.Markdown(''' Nesta seção da aplicação pode-se acompanhar dados sobre as avaliações dos docentes da UFRN e da autoavalição dos alunos feita a cada fim de semestre. Os dados disponibilizados constam do período de 2013 à 2019. Ao todo são três dados importantes a serem considerados a média de postura dos docentes, a média de atuação dos docentes e autoavaliação dos alunos. No primeiro gráfico pode-se acompanhar a média desses três quesitos por cada unidade responsável. '''), html.Div([ dcc.Graph( id='grafico-nota-1') ], style={'width': '95%', 'display': 'inline-block', 'padding': '0 20'}), html.Div([ dcc.Slider( id='slider-grafico-nota-1', min=1, max=3, value=1, marks={str(i): str(i) for i in [1, 2, 3]}, step=None)], style={'width': '80%', 'padding': '0px 15px 15px 15px'}), dcc.Markdown(''' * Opção 1 - Média de atuação dos docentes; * Opção 2 - Média de postura dos docentes; * Opção 3 - Média da autoavaliação dos discentes. '''), dcc.Markdown(''' No segundo gráfico há dados sobre a evolução das médias de postura e atuação dos docentes e autoavaliação dos discentes ao longo dos anos. '''), html.Div([ dcc.Graph( id='grafico-nota-2', figure=figuraMediasAnoGroupBy) ], style={'width': '95%', 'display': 'inline-block', 'padding': '0 20'}), dcc.Markdown(''' No terceito gráfico pode-se ver um histograma com a frequência das médias de postura e atuação dos docentes dividida por sexo. '''), html.Div([ dcc.Graph( id='grafico-histograma') ], style={'width': '95%', 'display': 'inline-block', 'padding': '0 20'}), html.Div([ dcc.Slider( id='slider-grafico-histograma', min=1, max=2, value=1, marks={str(i): str(i) for i in [1, 2]}, step=None)], style={'width': '80%', 'padding': '0px 15px 15px 15px'}), dcc.Markdown(''' * Opção 1 - Média de atuação dos docentes; * Opção 2 - Média de postura dos docentes. '''), dcc.Markdown(''' Nesta parte, pode-se selecionar uma unidade responsável (primeira caixa de seleção) e a partir dela escolher uma lotação (segunda caixa de seleção) para verificar a média de atuação e postura de cada profressor, assim como da autoavaliação dos discentes das turmas desses docentes e quantidade de discentes que passaram por eles, para cada departamento da UFRN. '''), html.Div([ dcc.Dropdown( id='dropdown-2', options=[{'label': i, 'value': i} for i in docenteParaTabelaNotas['unidade_dirigente'].unique()], value=docenteParaTabelaNotas['unidade_dirigente'].iloc[0] )], style={'width': '80%', 'display': 'inline-block'}), html.Div([ dcc.Dropdown( id='dropdown-3', )], style={'width': '80%', 'display': 'inline-block'}), html.Div([ dash_table.DataTable( id='table-nota', columns=[{"name": i, "id": i} for i in [ 'nome', 'media_postura', 'media_atuacao', 'media_alunos', 'qtd_discentes']], style_cell={'textAlign': 'left'}, ) ], style={'width': '95%', 'display': 'inline-block', 'padding': '0 20'}), ]) # Callback para atualização do estilo dos gráfico de barras (quatantidadeDocente x unidade_dirigente) # Entradas: 'value' - 'dropdown-1', 'value' - 'radioitems-1' # Saída: 'figure' - 'grafico-classe' @app.callback( dash.dependencies.Output('div-grafico-sobra', 'style'), [dash.dependencies.Input('dropdown-1', 'value'), dash.dependencies.Input('radioitems-1', 'value')]) def visibility_graficoSobra(dropValue, radioValue): if(radioValue == 'GERAL' and dropValue == 'GERAL'): estilosDivGraficosIniciais['display'] = 'inline-block' return estilosDivGraficosIniciais estilosDivGraficosIniciais['display'] = 'none' return estilosDivGraficosIniciais # Callback para atualização da 'figure' no gráfico por sexo. # Entradas: 'value' - 'dropdown-1', 'value' - 'radioitems-1' # Saída: 'figure' - 'grafico-sexo' @app.callback( dash.dependencies.Output('grafico-sexo', 'figure'), [dash.dependencies.Input('dropdown-1', 'value'), dash.dependencies.Input('radioitems-1', 'value')]) def att_sexo(dropValue, radioValue): if(radioValue == 'GERAL' and dropValue == 'GERAL'): return figuraDocentesSexo elif(radioValue == 'DETALHADA' and dropValue == 'GERAL'): return figSexoDetalhe return filtrarDFPorUnidadeDirigente(dfUnidadesDirigentes, dropValue, 'lotacao', 'sexo') # Callback para atualização da 'figure' no gráfico por formação # Entradas: 'value' - 'dropdown-1', 'value' - 'radioitems-1' # Saída: 'figure' - 'grafico-formacao' @app.callback( dash.dependencies.Output('grafico-formacao', 'figure'), [dash.dependencies.Input('dropdown-1', 'value'), dash.dependencies.Input('radioitems-1', 'value')]) def att_formacao(dropValue, radioValue): if(radioValue == 'GERAL' and dropValue == 'GERAL'): return figuraDocentesFormacao elif(radioValue == 'DETALHADA' and dropValue == 'GERAL'): return figFormacaoDetalhe return filtrarDFPorUnidadeDirigente(dfUnidadesDirigentes, dropValue, 'lotacao', 'formacao') # Callback para atualização da 'figure' no gráfico por classe # Entradas: 'value' - 'dropdown-1', 'value' - 'radioitems-1' # Saída: 'figure' - 'grafico-classe' @app.callback( dash.dependencies.Output('grafico-classe', 'figure'), [dash.dependencies.Input('dropdown-1', 'value'), dash.dependencies.Input('radioitems-1', 'value')]) def att_classe(dropValue, radioValue): if(radioValue == 'GERAL' and dropValue == 'GERAL'): return figuraDocentesClasseFuncional elif(radioValue == 'DETALHADA' and dropValue == 'GERAL'): return figClasseDetalhe return filtrarDFPorUnidadeDirigente(dfUnidadesDirigentes, dropValue, 'lotacao', 'classe_funcional') # Callback para atualização da 'figure' no gráfico por nota # Entradas: 'value' - 'slider-grafico-nota-1' # Saída: 'figure' - 'grafico-nota-1' @app.callback( dash.dependencies.Output('grafico-nota-1', 'figure'), [dash.dependencies.Input('slider-grafico-nota-1', 'value')]) def att_nota1(sliderValue): var = 'media_atuacao' if sliderValue == 2: var = 'media_postura' elif sliderValue == 3: var = 'media_alunos' return px.scatter(docentesMediaUnidadeDirigente, x="unidade_dirigente", y=var, size=var, hover_name="unidade_dirigente", color="unidade_dirigente") # Callback para atualização da 'figure' no histograma # Entradas: 'value' - 'slider-grafico-histograma' # Saída: 'figure' - 'grafico-histograma' @app.callback( dash.dependencies.Output('grafico-histograma', 'figure'), [dash.dependencies.Input('slider-grafico-histograma', 'value')]) def att_histograma(sliderValue): var = 'media_atuacao' if sliderValue == 2: var = 'media_postura' return px.histogram(docentesMediasNatalMSUnidadeAcademica, x=var, color="sexo", title='Histograma da avaliação dos docentes do magistério superior da UFRN nos anos de 2013 à 2019') # Callback para atualização das 'options' no dropdown por lotação da tabela # Entradas: 'value' - 'dropdown-2' # Saída: 'options' - 'dropdown-3' @app.callback( dash.dependencies.Output('dropdown-3', 'options'), [dash.dependencies.Input('dropdown-2', 'value')]) def att_dropdown3Options(dropValue): df = docenteParaTabelaNotas[docenteParaTabelaNotas['unidade_dirigente'] == dropValue] del df['unidade_dirigente'] return [{'label': 'GERAL', 'value': 'GERAL'}] + [{'label': i, 'value': i} for i in df['lotacao'].unique()] # Callback para atualização do 'value' no dropdown por lotação da tabela # Entradas: 'value' - 'dropdown-2' # Saída: 'value' - 'dropdown-3' @app.callback( dash.dependencies.Output('dropdown-3', 'value'), [dash.dependencies.Input('dropdown-2', 'value')]) def att_dropdown3Value(dropValue): return 'GERAL' # Callback para atualização da 'data' na tabela de exposição das notas dos professores por unidade_dirigente e lotação # Entradas: 'value' - 'dropdown-2', value' - 'dropdown-3' # Saída: 'data' - 'table-nota' @app.callback( dash.dependencies.Output('table-nota', 'data'), [dash.dependencies.Input('dropdown-2', 'value'), dash.dependencies.Input('dropdown-3', 'value')]) def att_table(dropValue2, dropValue3): df = docenteParaTabelaNotas[docenteParaTabelaNotas['unidade_dirigente'] == dropValue2] del df['unidade_dirigente'] if dropValue3 == 'GERAL': del df['lotacao'] return df.to_dict("records") df = docenteParaTabelaNotas[docenteParaTabelaNotas['lotacao'] == dropValue3] del df['lotacao'] return df.to_dict("records") # Atribui o servidor da aplicação a variável server server = app.server if __name__ == '__main__': app.run_server(debug=True)
the-stack_0_43
# -*- coding: utf-8 -*- """ werkzeug.testapp ~~~~~~~~~~~~~~~~ Provide a small test application that can be used to test a WSGI server and check it for WSGI compliance. :copyright: (c) 2013 by the Werkzeug Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import os import sys import werkzeug from textwrap import wrap from werkzeug.wrappers import BaseRequest as Request, BaseResponse as Response from werkzeug.utils import escape import base64 logo = Response(base64.b64decode( '''R0lGODlhoACgAOMIAAEDACwpAEpCAGdgAJaKAM28AOnVAP3rAP///////// //////////////////////yH5BAEKAAgALAAAAACgAKAAAAT+EMlJq704680R+F0ojmRpnuj0rWnrv nB8rbRs33gu0bzu/0AObxgsGn3D5HHJbCUFyqZ0ukkSDlAidctNFg7gbI9LZlrBaHGtzAae0eloe25 7w9EDOX2fst/xenyCIn5/gFqDiVVDV4aGeYiKkhSFjnCQY5OTlZaXgZp8nJ2ekaB0SQOjqphrpnOiq ncEn65UsLGytLVmQ6m4sQazpbtLqL/HwpnER8bHyLrLOc3Oz8PRONPU1crXN9na263dMt/g4SzjMeX m5yDpLqgG7OzJ4u8lT/P69ej3JPn69kHzN2OIAHkB9RUYSFCFQYQJFTIkCDBiwoXWGnowaLEjRm7+G p9A7Hhx4rUkAUaSLJlxHMqVMD/aSycSZkyTplCqtGnRAM5NQ1Ly5OmzZc6gO4d6DGAUKA+hSocWYAo SlM6oUWX2O/o0KdaVU5vuSQLAa0ADwQgMEMB2AIECZhVSnTno6spgbtXmHcBUrQACcc2FrTrWS8wAf 78cMFBgwIBgbN+qvTt3ayikRBk7BoyGAGABAdYyfdzRQGV3l4coxrqQ84GpUBmrdR3xNIDUPAKDBSA ADIGDhhqTZIWaDcrVX8EsbNzbkvCOxG8bN5w8ly9H8jyTJHC6DFndQydbguh2e/ctZJFXRxMAqqPVA tQH5E64SPr1f0zz7sQYjAHg0In+JQ11+N2B0XXBeeYZgBZFx4tqBToiTCPv0YBgQv8JqA6BEf6RhXx w1ENhRBnWV8ctEX4Ul2zc3aVGcQNC2KElyTDYyYUWvShdjDyMOGMuFjqnII45aogPhz/CodUHFwaDx lTgsaOjNyhGWJQd+lFoAGk8ObghI0kawg+EV5blH3dr+digkYuAGSaQZFHFz2P/cTaLmhF52QeSb45 Jwxd+uSVGHlqOZpOeJpCFZ5J+rkAkFjQ0N1tah7JJSZUFNsrkeJUJMIBi8jyaEKIhKPomnC91Uo+NB yyaJ5umnnpInIFh4t6ZSpGaAVmizqjpByDegYl8tPE0phCYrhcMWSv+uAqHfgH88ak5UXZmlKLVJhd dj78s1Fxnzo6yUCrV6rrDOkluG+QzCAUTbCwf9SrmMLzK6p+OPHx7DF+bsfMRq7Ec61Av9i6GLw23r idnZ+/OO0a99pbIrJkproCQMA17OPG6suq3cca5ruDfXCCDoS7BEdvmJn5otdqscn+uogRHHXs8cbh EIfYaDY1AkrC0cqwcZpnM6ludx72x0p7Fo/hZAcpJDjax0UdHavMKAbiKltMWCF3xxh9k25N/Viud8 ba78iCvUkt+V6BpwMlErmcgc502x+u1nSxJSJP9Mi52awD1V4yB/QHONsnU3L+A/zR4VL/indx/y64 gqcj+qgTeweM86f0Qy1QVbvmWH1D9h+alqg254QD8HJXHvjQaGOqEqC22M54PcftZVKVSQG9jhkv7C JyTyDoAJfPdu8v7DRZAxsP/ky9MJ3OL36DJfCFPASC3/aXlfLOOON9vGZZHydGf8LnxYJuuVIbl83y Az5n/RPz07E+9+zw2A2ahz4HxHo9Kt79HTMx1Q7ma7zAzHgHqYH0SoZWyTuOLMiHwSfZDAQTn0ajk9 YQqodnUYjByQZhZak9Wu4gYQsMyEpIOAOQKze8CmEF45KuAHTvIDOfHJNipwoHMuGHBnJElUoDmAyX c2Qm/R8Ah/iILCCJOEokGowdhDYc/yoL+vpRGwyVSCWFYZNljkhEirGXsalWcAgOdeAdoXcktF2udb qbUhjWyMQxYO01o6KYKOr6iK3fE4MaS+DsvBsGOBaMb0Y6IxADaJhFICaOLmiWTlDAnY1KzDG4ambL cWBA8mUzjJsN2KjSaSXGqMCVXYpYkj33mcIApyhQf6YqgeNAmNvuC0t4CsDbSshZJkCS1eNisKqlyG cF8G2JeiDX6tO6Mv0SmjCa3MFb0bJaGPMU0X7c8XcpvMaOQmCajwSeY9G0WqbBmKv34DsMIEztU6Y2 KiDlFdt6jnCSqx7Dmt6XnqSKaFFHNO5+FmODxMCWBEaco77lNDGXBM0ECYB/+s7nKFdwSF5hgXumQe EZ7amRg39RHy3zIjyRCykQh8Zo2iviRKyTDn/zx6EefptJj2Cw+Ep2FSc01U5ry4KLPYsTyWnVGnvb UpyGlhjBUljyjHhWpf8OFaXwhp9O4T1gU9UeyPPa8A2l0p1kNqPXEVRm1AOs1oAGZU596t6SOR2mcB Oco1srWtkaVrMUzIErrKri85keKqRQYX9VX0/eAUK1hrSu6HMEX3Qh2sCh0q0D2CtnUqS4hj62sE/z aDs2Sg7MBS6xnQeooc2R2tC9YrKpEi9pLXfYXp20tDCpSP8rKlrD4axprb9u1Df5hSbz9QU0cRpfgn kiIzwKucd0wsEHlLpe5yHXuc6FrNelOl7pY2+11kTWx7VpRu97dXA3DO1vbkhcb4zyvERYajQgAADs ='''), mimetype='image/png') TEMPLATE = u'''\ <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <title>WSGI Information</title> <style type="text/css"> @import url(http://fonts.googleapis.com/css?family=Ubuntu); body { font-family: 'Lucida Grande', 'Lucida Sans Unicode', 'Geneva', 'Verdana', sans-serif; background-color: white; color: #000; font-size: 15px; text-align: center; } #logo { float: right; padding: 0 0 10px 10px; } div.box { text-align: left; width: 45em; margin: auto; padding: 50px 0; background-color: white; } h1, h2 { font-family: 'Ubuntu', 'Lucida Grande', 'Lucida Sans Unicode', 'Geneva', 'Verdana', sans-serif; font-weight: normal; } h1 { margin: 0 0 30px 0; } h2 { font-size: 1.4em; margin: 1em 0 0.5em 0; } table { width: 100%%; border-collapse: collapse; border: 1px solid #AFC5C9 } table th { background-color: #AFC1C4; color: white; font-size: 0.72em; font-weight: normal; width: 18em; vertical-align: top; padding: 0.5em 0 0.1em 0.5em; } table td { border: 1px solid #AFC5C9; padding: 0.1em 0 0.1em 0.5em; } code { font-family: 'Consolas', 'Monaco', 'Bitstream Vera Sans Mono', monospace; font-size: 0.7em; } ul li { line-height: 1.5em; } ul.path { font-size: 0.7em; margin: 0 -30px; padding: 8px 30px; list-style: none; background: #E8EFF0; } ul.path li { line-height: 1.6em; } li.virtual { color: #999; text-decoration: underline; } li.exp { background: white; } </style> <div class="box"> <img src="?resource=logo" id="logo" alt="[The Werkzeug Logo]" /> <h1>WSGI Information</h1> <p> This page displays all available information about the WSGI server and the underlying Python interpreter. <h2 id="python-interpreter">Python Interpreter</h2> <table> <tr> <th>Python Version <td>%(python_version)s <tr> <th>Platform <td>%(platform)s [%(os)s] <tr> <th>API Version <td>%(api_version)s <tr> <th>Byteorder <td>%(byteorder)s <tr> <th>Werkzeug Version <td>%(werkzeug_version)s </table> <h2 id="wsgi-environment">WSGI Environment</h2> <table>%(wsgi_env)s</table> <h2 id="installed-eggs">Installed Eggs</h2> <p> The following python packages were installed on the system as Python eggs: <ul>%(python_eggs)s</ul> <h2 id="sys-path">System Path</h2> <p> The following paths are the current contents of the load path. The following entries are looked up for Python packages. Note that not all items in this path are folders. Gray and underlined items are entries pointing to invalid resources or used by custom import hooks such as the zip importer. <p> Items with a bright background were expanded for display from a relative path. If you encounter such paths in the output you might want to check your setup as relative paths are usually problematic in multithreaded environments. <ul class="path">%(sys_path)s</ul> </div> ''' def iter_sys_path(): if os.name == 'posix': def strip(x): prefix = os.path.expanduser('~') if x.startswith(prefix): x = '~' + x[len(prefix):] return x else: strip = lambda x: x cwd = os.path.abspath(os.getcwd()) for item in sys.path: path = os.path.join(cwd, item or os.path.curdir) yield strip(os.path.normpath(path)), \ not os.path.isdir(path), path != item def render_testapp(req): try: import pkg_resources except ImportError: eggs = () else: eggs = sorted(pkg_resources.working_set, key=lambda x: x.project_name.lower()) python_eggs = [] for egg in eggs: try: version = egg.version except (ValueError, AttributeError): version = 'unknown' python_eggs.append('<li>%s <small>[%s]</small>' % ( escape(egg.project_name), escape(version) )) wsgi_env = [] sorted_environ = sorted(req.environ.items(), key=lambda x: repr(x[0]).lower()) for key, value in sorted_environ: wsgi_env.append('<tr><th>%s<td><code>%s</code>' % ( escape(str(key)), ' '.join(wrap(escape(repr(value)))) )) sys_path = [] for item, virtual, expanded in iter_sys_path(): class_ = [] if virtual: class_.append('virtual') if expanded: class_.append('exp') sys_path.append('<li%s>%s' % ( class_ and ' class="%s"' % ' '.join(class_) or '', escape(item) )) return (TEMPLATE % { 'python_version': '<br>'.join(escape(sys.version).splitlines()), 'platform': escape(sys.platform), 'os': escape(os.name), 'api_version': sys.api_version, 'byteorder': sys.byteorder, 'werkzeug_version': werkzeug.__version__, 'python_eggs': '\n'.join(python_eggs), 'wsgi_env': '\n'.join(wsgi_env), 'sys_path': '\n'.join(sys_path) }).encode('utf-8') def test_app(environ, start_response): """Simple test application that dumps the environment. You can use it to check if Werkzeug is working properly: .. sourcecode:: pycon >>> from werkzeug.serving import run_simple >>> from werkzeug.testapp import test_app >>> run_simple('localhost', 3000, test_app) * Running on http://localhost:3000/ The application displays important information from the WSGI environment, the Python interpreter and the installed libraries. """ req = Request(environ, populate_request=False) if req.args.get('resource') == 'logo': response = logo else: response = Response(render_testapp(req), mimetype='text/html') return response(environ, start_response) if __name__ == '__main__': from werkzeug.serving import run_simple run_simple('localhost', 5000, test_app, use_reloader=True)
the-stack_0_44
# -*- coding: utf-8 -*- import pandas as pd from .ecg_eventrelated import ecg_eventrelated from .ecg_intervalrelated import ecg_intervalrelated def ecg_analyze(data, sampling_rate=1000, method="auto"): """Performs ECG analysis on either epochs (event-related analysis) or on longer periods of data such as resting-state data. Parameters ---------- data : dict, DataFrame A dictionary of epochs, containing one DataFrame per epoch, usually obtained via `epochs_create()`, or a DataFrame containing all epochs, usually obtained via `epochs_to_df()`. Can also take a DataFrame of processed signals from a longer period of data, typically generated by `ecg_process()` or `bio_process()`. Can also take a dict containing sets of separate periods of data. sampling_rate : int The sampling frequency of the signal (in Hz, i.e., samples/second). Defaults to 1000Hz. method : str Can be one of 'event-related' for event-related analysis on epochs, or 'interval-related' for analysis on longer periods of data. Defaults to 'auto' where the right method will be chosen based on the mean duration of the data ('event-related' for duration under 10s). Returns ------- DataFrame A dataframe containing the analyzed ECG features. If event-related analysis is conducted, each epoch is indicated by the `Label` column. See `ecg_eventrelated()` and `ecg_intervalrelated()` docstrings for details. See Also -------- bio_process, ecg_process, epochs_create, ecg_eventrelated, ecg_intervalrelated Examples ---------- >>> import neurokit2 as nk >>> >>> # Example 1: Download the data for event-related analysis >>> data = nk.data("bio_eventrelated_100hz") >>> >>> # Process the data for event-related analysis >>> df, info = nk.bio_process(ecg=data["ECG"], sampling_rate=100) >>> events = nk.events_find(data["Photosensor"], threshold_keep='below', event_conditions=["Negative", "Neutral", "Neutral", "Negative"]) >>> epochs = nk.epochs_create(df, events, sampling_rate=100, epochs_start=-0.1, epochs_end=1.9) >>> nk.ecg_analyze(epochs, sampling_rate=100) >>> >>> # Example 2: Download the resting-state data >>> data = nk.data("bio_resting_5min_100hz") >>> >>> # Process the data >>> df, info = nk.ecg_process(data["ECG"], sampling_rate=100) >>> >>> # Analyze >>> nk.ecg_analyze(df, sampling_rate=100) """ method = method.lower() # Event-related analysis if method in ["event-related", "event", "epoch"]: # Sanity checks if isinstance(data, dict): for i in data: colnames = data[i].columns.values elif isinstance(data, pd.DataFrame): colnames = data.columns.values if len([i for i in colnames if "Label" in i]) == 0: raise ValueError("NeuroKit error: ecg_analyze(): Wrong input" "or method, we couldn't extract" "extract epochs features.") else: features = ecg_eventrelated(data) # Interval-related analysis elif method in ["interval-related", "interval", "resting-state"]: features = ecg_intervalrelated(data) # Auto elif method in ["auto"]: if isinstance(data, dict): for i in data: duration = len(data[i]) / sampling_rate if duration >= 10: features = ecg_intervalrelated(data) else: features = ecg_eventrelated(data) if isinstance(data, pd.DataFrame): if 'Label' in data.columns: epoch_len = data['Label'].value_counts()[0] duration = epoch_len / sampling_rate else: duration = len(data) / sampling_rate if duration >= 10: features = ecg_intervalrelated(data) else: features = ecg_eventrelated(data) return features
the-stack_0_46
# 47. Permutations II class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: """ Given a collection of numbers that might contain duplicates, return all possible unique permutations. """ permutations = set() self.helper(nums, [], permutations) return permutations def helper(self, array, currentPermutation, permutations): if not len(array) and len(currentPermutation): permutations.add(tuple(currentPermutation)) else: for index in range(len(array)): newArray = array[: index] + array[index + 1:] newPermutation = currentPermutation + [array[index]] self.helper(newArray, newPermutation, permutations)
the-stack_0_47
import torch import numpy as np def train_perm_orth(train_loader, model, optimizer, scheduler, criterion, regularizer=None, rho=1E-4, delta=0.5, nu=1E-2, eps=1E-3, tau=1E-2, lagrange_pen=1E-2, perm_flag=True, t_step=40): if perm_flag: tau_min = 1E-24 tau_max = 1E-1 c = None lam_lm = [] for p in optimizer.param_groups[0]['params']: lam_lm.append(torch.zeros_like(p)) k_iter = 0 ts = torch.empty(len(train_loader), device=model.device).uniform_(0.0, 1.0) with torch.no_grad(): for p in optimizer.param_groups[0]['params']: p.data = torch.rand_like(p.data) p.data, _, _ = torch.svd(p.data) input_cml = [] target_cml = [] t_cml = [] inner_iter = 0 loss = 0.0 loss_obj = 0.0 for iter, (input, target) in enumerate(train_loader): t = ts[iter] input = input.to(model.device, non_blocking=False) target = target.to(model.device, non_blocking=False) output = model(input, perm_train=True, t=t) input_all = input target_all = target new_loss = criterion(output, target_all) loss_obj += new_loss # This part is for the augmented Lagrangian method int_pen = integer_penalty(optimizer.param_groups[0]['params'], lam_lm, lagrange_pen) loss += new_loss + int_pen inner_iter += 1 input_cml.append(input.clone()) target_cml.append(target.clone()) t_cml.append(t.clone()) if inner_iter % t_step == 0: optimizer.zero_grad() loss.backward() grad_norm = 0.0 violator = 0.0 for p in optimizer.param_groups[0]['params']: param_norm = p.grad.data.norm(2) grad_norm += param_norm.item() ** 2 violator += torch.sum((torch.matmul(p.data.t(), p.data) - torch.eye(p.data.shape[0], device=p.device)) ** 2) grad_norm = grad_norm ** (1. / 2) if c is None: c = loss.clone().item() q_opt = 1 loss_inner = loss.clone() print('Iteration: %03d, Loss %.2E, Objective %.2E, Negative Penalty: %.2E,' 'Grad Norm: %.2E, Ortho Violation: %.2E, tau: %.2E' % (k_iter, loss_inner.item(), loss_obj.item(), int_pen.item(), grad_norm, violator.item(), tau)) # Compute F for defining Y function F_list = [] with torch.no_grad(): for p in optimizer.param_groups[0]['params']: f = torch.matmul(p.grad.data, p.t().data) - torch.matmul(p.data, p.grad.t().data) F_list.append(f) # Store old parameters params_old = [None] * len(optimizer.param_groups[0]['params']) for idx, param in enumerate(optimizer.param_groups[0]['params']): params_old[idx] = param.clone() grads_old = [p.grad.data.clone() for p in optimizer.param_groups[0]['params']] # Compute the values of Y(tau) and Y'(tau), store them into the model Y_t, Y_ft_prime = compute_ytau(tau, F_list, optimizer.param_groups[0]['params']) for p, y_t in zip(optimizer.param_groups[0]['params'], Y_t): p.data = y_t.clone() loss_inner = 0.0 for t_2, input_2, target_2 in zip(t_cml, input_cml, target_cml): output = model(input_2, perm_train=True, t=t_2) loss_inner += criterion(output, target_2) int_pen = integer_penalty(optimizer.param_groups[0]['params'], lam_lm, lagrange_pen) loss_inner += int_pen optimizer.zero_grad() loss_inner.backward() grads_new = [p.grad.data.clone() for p in optimizer.param_groups[0]['params']] with torch.no_grad(): dF_dt = 0.0 for g_new, y_ft_p in zip(grads_new, Y_ft_prime): df = g_new * (y_ft_p / torch.norm(y_ft_p.data)) df = torch.sum(df) dF_dt += df.item() threshold_flag = True k_inner = 0 while threshold_flag: with torch.no_grad(): threshold = c + rho * tau * dF_dt if loss_inner.item() >= threshold: # Compute Y for smaller value of tau with torch.no_grad(): tau *= delta Y_t, Y_ft_prime = compute_ytau(tau, F_list, optimizer.param_groups[0]['params']) for p, y_t in zip(optimizer.param_groups[0]['params'], Y_t): p.data = y_t.clone() loss_old = loss_inner.clone() loss_inner = 0.0 for t_2, input_2, target_2 in zip(t_cml, input_cml, target_cml): output = model(input_2, perm_train=True, t=t_2) loss_inner += criterion(output, target_2) int_pen = integer_penalty(optimizer.param_groups[0]['params'], lam_lm, lagrange_pen) loss_inner += int_pen optimizer.zero_grad() loss_inner.backward() grads_new = [p.grad.data.clone() for p in optimizer.param_groups[0]['params']] k_inner += 1 if (loss_inner.item() - loss_old.item()) / (1 + loss_old.item()) < 1E-5: threshold_flag = False else: threshold_flag = False with torch.no_grad(): c = (nu * q_opt * c + loss_inner.item()) q_opt = nu * q_opt + 1 c = c / q_opt bb_num = 0.0 bb_denom = 0.0 yy_sum = 0.0 for p_old, g_old, p_new, g_new in zip(params_old, grads_old, optimizer.param_groups[0]['params'], grads_new): s_bb = p_new - p_old y_bb = g_new - g_old bb_num += torch.sum(s_bb ** 2) bb_denom += torch.sum(s_bb * y_bb) yy_sum += torch.sum(y_bb ** 2) tau_bb = bb_num / torch.abs(bb_denom) tau_bb = tau_bb.item() tau_bb2 = torch.abs(bb_denom) / yy_sum tau_bb2 = tau_bb2.item() tau_bb = np.minimum(tau_bb, tau_bb2) tau = np.minimum(tau_bb, tau_max) tau = np.maximum(tau, tau_min) lam_lm, lagrange_pen = integer_penalty_update(optimizer.param_groups[0]['params'], lam_lm, lagrange_pen) loss_inner = 0.0 for t_2, input_2, target_2 in zip(t_cml, input_cml, target_cml): output = model(input_2, perm_train=True, t=t_2) loss_obj = criterion(output, target_2) int_pen = integer_penalty(optimizer.param_groups[0]['params'], lam_lm, lagrange_pen) loss_inner += loss_obj + int_pen optimizer.zero_grad() loss_inner.backward() grads_new = [p.grad.data.clone() for p in optimizer.param_groups[0]['params']] grad_norm = 0.0 for g_new in grads_new: gn = g_new.norm(2) grad_norm += gn.item() ** 2 grad_norm = grad_norm ** (1. / 2) k_iter += 1 input_cml = [] target_cml = [] t_cml = [] loss = 0.0 loss_obj = 0.0 model.train() loss_sum = 0.0 correct = 0.0 change_P = np.nan params_before = [None] * len(optimizer.param_groups[0]['params']) if nu is not None: for idx, param in enumerate(optimizer.param_groups[0]['params']): params_before[idx] = param.clone().detach() optimizer.step() lr = scheduler.get_lr()[0] with torch.no_grad(): for param, param_o in zip(optimizer.param_groups[0]['params'], params_old): param.data = 1 / (1 + lr / nu) * (param + lr / nu * param_o) output = model(input_all, perm_train=True) loss = criterion(output, target_all) if regularizer is not None: loss += regularizer(model) loss_sum += loss.item() * input.size(0) pred = output.data.argmax(1, keepdim=True) correct += pred.eq(target_all.data.view_as(pred)).sum().item() return { 'loss': loss_sum / len(train_loader.dataset), 'accuracy': correct * 100.0 / len(train_loader.dataset), 'change_perm': change_P } def hard_int_penalty(p_list, pen=1E1): pen_loss = 0.0 for p in p_list: p_mask = p.data * (p.data <= 0) pen_loss += pen * torch.sum(p_mask ** 2) return pen_loss def integer_penalty(p_list, lam_list, mu): pen_loss = 0.0 for p, lam in zip(p_list, lam_list): mask = (p - lam / mu) <= 0 mask_alt = (p - lam / mu) > 0 p_l = torch.sum((- lam * p + 0.5 * mu * (p ** 2)) * mask) p_l += torch.sum((-1/(2 * mu) * lam ** 2) * mask_alt) pen_loss += p_l return pen_loss def integer_penalty_update(p_list, lam_list, mu): new_lam_list = [] with torch.no_grad(): for p, lam in zip(p_list, lam_list): upd = lam - mu * p new_lam_list.append(upd * (upd > 0)) new_mu = mu * 1.01 return new_lam_list, new_mu def compute_ytau(tau, f_list, p_list): y_tau = [] y_tau_prime = [] for p, f in zip(p_list, f_list): eye = torch.eye(f.shape[0], device=f.device) qmat_inv = torch.inverse(eye + tau / 2 * f) y_ft = torch.matmul(qmat_inv, eye - tau / 2 * f) y_ft = torch.matmul(y_ft, p) y_ft_prime = - torch.matmul(qmat_inv, f) y_ft_prime = torch.matmul(y_ft_prime, (p + y_ft) / 2) y_tau.append(y_ft.clone()) y_tau_prime.append(y_ft_prime.clone()) return y_tau, y_tau_prime
the-stack_0_48
"""The test for the History Statistics sensor platform.""" # pylint: disable=protected-access from datetime import timedelta import unittest from unittest.mock import patch from homeassistant.const import STATE_UNKNOWN from homeassistant.setup import setup_component from homeassistant.components.sensor.history_stats import HistoryStatsSensor import homeassistant.core as ha from homeassistant.helpers.template import Template import homeassistant.util.dt as dt_util from tests.common import init_recorder_component, get_test_home_assistant class TestHistoryStatsSensor(unittest.TestCase): """Test the History Statistics sensor.""" def setUp(self): """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() def tearDown(self): """Stop everything that was started.""" self.hass.stop() def test_setup(self): """Test the history statistics sensor setup.""" self.init_recorder() config = { 'history': { }, 'sensor': { 'platform': 'history_stats', 'entity_id': 'binary_sensor.test_id', 'state': 'on', 'start': '{{ now().replace(hour=0)' '.replace(minute=0).replace(second=0) }}', 'duration': '02:00', 'name': 'Test', } } self.assertTrue(setup_component(self.hass, 'sensor', config)) state = self.hass.states.get('sensor.test') self.assertEqual(state.state, STATE_UNKNOWN) def test_period_parsing(self): """Test the conversion from templates to period.""" today = Template('{{ now().replace(hour=0).replace(minute=0)' '.replace(second=0) }}', self.hass) duration = timedelta(hours=2, minutes=1) sensor1 = HistoryStatsSensor( self.hass, 'test', 'on', today, None, duration, 'time', 'test') sensor2 = HistoryStatsSensor( self.hass, 'test', 'on', None, today, duration, 'time', 'test') sensor1.update_period() sensor1_start, sensor1_end = sensor1._period sensor2.update_period() sensor2_start, sensor2_end = sensor2._period # Start = 00:00:00 self.assertEqual(sensor1_start.hour, 0) self.assertEqual(sensor1_start.minute, 0) self.assertEqual(sensor1_start.second, 0) # End = 02:01:00 self.assertEqual(sensor1_end.hour, 2) self.assertEqual(sensor1_end.minute, 1) self.assertEqual(sensor1_end.second, 0) # Start = 21:59:00 self.assertEqual(sensor2_start.hour, 21) self.assertEqual(sensor2_start.minute, 59) self.assertEqual(sensor2_start.second, 0) # End = 00:00:00 self.assertEqual(sensor2_end.hour, 0) self.assertEqual(sensor2_end.minute, 0) self.assertEqual(sensor2_end.second, 0) def test_measure(self): """Test the history statistics sensor measure.""" t0 = dt_util.utcnow() - timedelta(minutes=40) t1 = t0 + timedelta(minutes=20) t2 = dt_util.utcnow() - timedelta(minutes=10) # Start t0 t1 t2 End # |--20min--|--20min--|--10min--|--10min--| # |---off---|---on----|---off---|---on----| fake_states = { 'binary_sensor.test_id': [ ha.State('binary_sensor.test_id', 'on', last_changed=t0), ha.State('binary_sensor.test_id', 'off', last_changed=t1), ha.State('binary_sensor.test_id', 'on', last_changed=t2), ] } start = Template('{{ as_timestamp(now()) - 3600 }}', self.hass) end = Template('{{ now() }}', self.hass) sensor1 = HistoryStatsSensor( self.hass, 'binary_sensor.test_id', 'on', start, end, None, 'time', 'Test') sensor2 = HistoryStatsSensor( self.hass, 'unknown.id', 'on', start, end, None, 'time', 'Test') sensor3 = HistoryStatsSensor( self.hass, 'binary_sensor.test_id', 'on', start, end, None, 'count', 'test') sensor4 = HistoryStatsSensor( self.hass, 'binary_sensor.test_id', 'on', start, end, None, 'ratio', 'test') self.assertEqual(sensor1._type, 'time') self.assertEqual(sensor3._type, 'count') self.assertEqual(sensor4._type, 'ratio') with patch('homeassistant.components.history.' 'state_changes_during_period', return_value=fake_states): with patch('homeassistant.components.history.get_state', return_value=None): sensor1.update() sensor2.update() sensor3.update() sensor4.update() self.assertEqual(sensor1.state, 0.5) self.assertEqual(sensor2.state, None) self.assertEqual(sensor3.state, 2) self.assertEqual(sensor4.state, 50) def test_wrong_date(self): """Test when start or end value is not a timestamp or a date.""" good = Template('{{ now() }}', self.hass) bad = Template('{{ TEST }}', self.hass) sensor1 = HistoryStatsSensor( self.hass, 'test', 'on', good, bad, None, 'time', 'Test') sensor2 = HistoryStatsSensor( self.hass, 'test', 'on', bad, good, None, 'time', 'Test') before_update1 = sensor1._period before_update2 = sensor2._period sensor1.update_period() sensor2.update_period() self.assertEqual(before_update1, sensor1._period) self.assertEqual(before_update2, sensor2._period) def test_wrong_duration(self): """Test when duration value is not a timedelta.""" self.init_recorder() config = { 'history': { }, 'sensor': { 'platform': 'history_stats', 'entity_id': 'binary_sensor.test_id', 'name': 'Test', 'state': 'on', 'start': '{{ now() }}', 'duration': 'TEST', } } setup_component(self.hass, 'sensor', config) self.assertEqual(self.hass.states.get('sensor.test'), None) self.assertRaises(TypeError, setup_component(self.hass, 'sensor', config)) def test_bad_template(self): """Test Exception when the template cannot be parsed.""" bad = Template('{{ x - 12 }}', self.hass) # x is undefined duration = '01:00' sensor1 = HistoryStatsSensor( self.hass, 'test', 'on', bad, None, duration, 'time', 'Test') sensor2 = HistoryStatsSensor( self.hass, 'test', 'on', None, bad, duration, 'time', 'Test') before_update1 = sensor1._period before_update2 = sensor2._period sensor1.update_period() sensor2.update_period() self.assertEqual(before_update1, sensor1._period) self.assertEqual(before_update2, sensor2._period) def test_not_enough_arguments(self): """Test config when not enough arguments provided.""" self.init_recorder() config = { 'history': { }, 'sensor': { 'platform': 'history_stats', 'entity_id': 'binary_sensor.test_id', 'name': 'Test', 'state': 'on', 'start': '{{ now() }}', } } setup_component(self.hass, 'sensor', config) self.assertEqual(self.hass.states.get('sensor.test'), None) self.assertRaises(TypeError, setup_component(self.hass, 'sensor', config)) def test_too_many_arguments(self): """Test config when too many arguments provided.""" self.init_recorder() config = { 'history': { }, 'sensor': { 'platform': 'history_stats', 'entity_id': 'binary_sensor.test_id', 'name': 'Test', 'state': 'on', 'start': '{{ as_timestamp(now()) - 3600 }}', 'end': '{{ now() }}', 'duration': '01:00', } } setup_component(self.hass, 'sensor', config) self.assertEqual(self.hass.states.get('sensor.test'), None) self.assertRaises(TypeError, setup_component(self.hass, 'sensor', config)) def init_recorder(self): """Initialize the recorder.""" init_recorder_component(self.hass) self.hass.start()
the-stack_0_49
""" This module implements some special functions that commonly appear in combinatorial contexts (e.g. in power series); in particular, sequences of rational numbers such as Bernoulli and Fibonacci numbers. Factorials, binomial coefficients and related functions are located in the separate 'factorials' module. """ from __future__ import print_function, division from sympy.core import S, Symbol, Rational, Integer, Add, Dummy from sympy.core.compatibility import as_int, SYMPY_INTS, range from sympy.core.cache import cacheit from sympy.core.function import Function, expand_mul from sympy.core.numbers import E, pi from sympy.core.relational import LessThan, StrictGreaterThan from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.functions.elementary.miscellaneous import sqrt from sympy.utilities.memoization import recurrence_memo from mpmath import bernfrac, workprec from mpmath.libmp import ifib as _ifib def _product(a, b): p = 1 for k in range(a, b + 1): p *= k return p # Dummy symbol used for computing polynomial sequences _sym = Symbol('x') _symbols = Function('x') #----------------------------------------------------------------------------# # # # Fibonacci numbers # # # #----------------------------------------------------------------------------# class fibonacci(Function): r""" Fibonacci numbers / Fibonacci polynomials The Fibonacci numbers are the integer sequence defined by the initial terms F_0 = 0, F_1 = 1 and the two-term recurrence relation F_n = F_{n-1} + F_{n-2}. This definition extended to arbitrary real and complex arguments using the formula .. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5} The Fibonacci polynomials are defined by F_1(x) = 1, F_2(x) = x, and F_n(x) = x*F_{n-1}(x) + F_{n-2}(x) for n > 2. For all positive integers n, F_n(1) = F_n. * fibonacci(n) gives the nth Fibonacci number, F_n * fibonacci(n, x) gives the nth Fibonacci polynomial in x, F_n(x) Examples ======== >>> from sympy import fibonacci, Symbol >>> [fibonacci(x) for x in range(11)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fibonacci(5, Symbol('t')) t**4 + 3*t**2 + 1 References ========== .. [1] http://en.wikipedia.org/wiki/Fibonacci_number .. [2] http://mathworld.wolfram.com/FibonacciNumber.html See Also ======== bell, bernoulli, catalan, euler, harmonic, lucas """ @staticmethod def _fib(n): return _ifib(n) @staticmethod @recurrence_memo([None, S.One, _sym]) def _fibpoly(n, prev): return (prev[-2] + _sym*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: n = int(n) if n < 0: return S.NegativeOne**(n + 1) * fibonacci(-n) if sym is None: return Integer(cls._fib(n)) else: if n < 1: raise ValueError("Fibonacci polynomials are defined " "only for positive integer indices.") return cls._fibpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n): return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 def _eval_rewrite_as_GoldenRatio(self,n): return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1) class lucas(Function): """ Lucas numbers Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the preceding two. They are generated by choosing the initial values L_0 = 2 and L_1 = 1. * lucas(n) gives the nth Lucas number Examples ======== >>> from sympy import lucas >>> [lucas(x) for x in range(11)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123] References ========== .. [1] http://en.wikipedia.org/wiki/Lucas_number .. [2] http://mathworld.wolfram.com/LucasNumber.html See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic """ @classmethod def eval(cls, n): if n is S.Infinity: return S.Infinity if n.is_Integer: return fibonacci(n + 1) + fibonacci(n - 1) def _eval_rewrite_as_sqrt(self, n): return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n) #----------------------------------------------------------------------------# # # # Bernoulli numbers # # # #----------------------------------------------------------------------------# class bernoulli(Function): r""" Bernoulli numbers / Bernoulli polynomials The Bernoulli numbers are a sequence of rational numbers defined by B_0 = 1 and the recursive relation (n > 0):: n ___ \ / n + 1 \ 0 = ) | | * B . /___ \ k / k k = 0 They are also commonly defined by their exponential generating function, which is x/(exp(x) - 1). For odd indices > 1, the Bernoulli numbers are zero. The Bernoulli polynomials satisfy the analogous formula:: n ___ \ / n \ n-k B (x) = ) | | * B * x . n /___ \ k / k k = 0 Bernoulli numbers and Bernoulli polynomials are related as B_n(0) = B_n. We compute Bernoulli numbers using Ramanujan's formula:: / n + 3 \ B = (A(n) - S(n)) / | | n \ n / where A(n) = (n+3)/3 when n = 0 or 2 (mod 6), A(n) = -(n+3)/6 when n = 4 (mod 6), and:: [n/6] ___ \ / n + 3 \ S(n) = ) | | * B /___ \ n - 6*k / n-6*k k = 1 This formula is similar to the sum given in the definition, but cuts 2/3 of the terms. For Bernoulli polynomials, we use the formula in the definition. * bernoulli(n) gives the nth Bernoulli number, B_n * bernoulli(n, x) gives the nth Bernoulli polynomial in x, B_n(x) Examples ======== >>> from sympy import bernoulli >>> [bernoulli(n) for n in range(11)] [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] >>> bernoulli(1000001) 0 References ========== .. [1] http://en.wikipedia.org/wiki/Bernoulli_number .. [2] http://en.wikipedia.org/wiki/Bernoulli_polynomial .. [3] http://mathworld.wolfram.com/BernoulliNumber.html .. [4] http://mathworld.wolfram.com/BernoulliPolynomial.html See Also ======== bell, catalan, euler, fibonacci, harmonic, lucas """ # Calculates B_n for positive even n @staticmethod def _calc_bernoulli(n): s = 0 a = int(binomial(n + 3, n - 6)) for j in range(1, n//6 + 1): s += a * bernoulli(n - 6*j) # Avoid computing each binomial coefficient from scratch a *= _product(n - 6 - 6*j + 1, n - 6*j) a //= _product(6*j + 4, 6*j + 9) if n % 6 == 4: s = -Rational(n + 3, 6) - s else: s = Rational(n + 3, 3) - s return s / binomial(n + 3, n) # We implement a specialized memoization scheme to handle each # case modulo 6 separately _cache = {0: S.One, 2: Rational(1, 6), 4: Rational(-1, 30)} _highest = {0: 0, 2: 2, 4: 4} @classmethod def eval(cls, n, sym=None): if n.is_Number: if n.is_Integer and n.is_nonnegative: if n is S.Zero: return S.One elif n is S.One: if sym is None: return -S.Half else: return sym - S.Half # Bernoulli numbers elif sym is None: if n.is_odd: return S.Zero n = int(n) # Use mpmath for enormous Bernoulli numbers if n > 500: p, q = bernfrac(n) return Rational(int(p), int(q)) case = n % 6 highest_cached = cls._highest[case] if n <= highest_cached: return cls._cache[n] # To avoid excessive recursion when, say, bernoulli(1000) is # requested, calculate and cache the entire sequence ... B_988, # B_994, B_1000 in increasing order for i in range(highest_cached + 6, n + 6, 6): b = cls._calc_bernoulli(i) cls._cache[i] = b cls._highest[case] = i return b # Bernoulli polynomials else: n, result = int(n), [] for k in range(n + 1): result.append(binomial(n, k)*cls(k)*sym**(n - k)) return Add(*result) else: raise ValueError("Bernoulli numbers are defined only" " for nonnegative integer indices.") if sym is None: if n.is_odd and (n - 1).is_positive: return S.Zero #----------------------------------------------------------------------------# # # # Bell numbers # # # #----------------------------------------------------------------------------# class bell(Function): r""" Bell numbers / Bell polynomials The Bell numbers satisfy `B_0 = 1` and .. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k. They are also given by: .. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}. The Bell polynomials are given by `B_0(x) = 1` and .. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x). The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}. * bell(n) gives the `n^{th}` Bell number, `B_n`. * bell(n, x) gives the `n^{th}` Bell polynomial, `B_n(x)`. * bell(n, k, (x1, x2, ...)) gives Bell polynomials of the second kind, `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`. Notes ===== Not to be confused with Bernoulli numbers and Bernoulli polynomials, which use the same notation. Examples ======== >>> from sympy import bell, Symbol, symbols >>> [bell(n) for n in range(11)] [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975] >>> bell(30) 846749014511809332450147 >>> bell(4, Symbol('t')) t**4 + 6*t**3 + 7*t**2 + t >>> bell(6, 2, symbols('x:6')[1:]) 6*x1*x5 + 15*x2*x4 + 10*x3**2 References ========== .. [1] http://en.wikipedia.org/wiki/Bell_number .. [2] http://mathworld.wolfram.com/BellNumber.html .. [3] http://mathworld.wolfram.com/BellPolynomial.html See Also ======== bernoulli, catalan, euler, fibonacci, harmonic, lucas """ @staticmethod @recurrence_memo([1, 1]) def _bell(n, prev): s = 1 a = 1 for k in range(1, n): a = a * (n - k) // k s += a * prev[k] return s @staticmethod @recurrence_memo([S.One, _sym]) def _bell_poly(n, prev): s = 1 a = 1 for k in range(2, n + 1): a = a * (n - k + 1) // (k - 1) s += a * prev[k - 1] return expand_mul(_sym * s) @staticmethod def _bell_incomplete_poly(n, k, symbols): r""" The second kind of Bell polynomials (incomplete Bell polynomials). Calculated by recurrence formula: .. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) = \sum_{m=1}^{n-k+1} \x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k}) where B_{0,0} = 1; B_{n,0} = 0; for n>=1 B_{0,k} = 0; for k>=1 """ if (n == 0) and (k == 0): return S.One elif (n == 0) or (k == 0): return S.Zero s = S.Zero a = S.One for m in range(1, n - k + 2): s += a * bell._bell_incomplete_poly( n - m, k - 1, symbols) * symbols[m - 1] a = a * (n - m) / m return expand_mul(s) @classmethod def eval(cls, n, k_sym=None, symbols=None): if n.is_Integer and n.is_nonnegative: if k_sym is None: return Integer(cls._bell(int(n))) elif symbols is None: return cls._bell_poly(int(n)).subs(_sym, k_sym) else: r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols) return r def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None): from sympy import Sum if (k_sym is not None) or (symbols is not None): return self # Dobinski's formula if not n.is_nonnegative: return self k = Dummy('k', integer=True, nonnegative=True) return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity)) #----------------------------------------------------------------------------# # # # Harmonic numbers # # # #----------------------------------------------------------------------------# class harmonic(Function): r""" Harmonic numbers The nth harmonic number is given by `\operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`. More generally: .. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m} As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`, the Riemann zeta function. * ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n` * ``harmonic(n, m)`` gives the nth generalized harmonic number of order `m`, `\operatorname{H}_{n,m}`, where ``harmonic(n) == harmonic(n, 1)`` Examples ======== >>> from sympy import harmonic, oo >>> [harmonic(n) for n in range(6)] [0, 1, 3/2, 11/6, 25/12, 137/60] >>> [harmonic(n, 2) for n in range(6)] [0, 1, 5/4, 49/36, 205/144, 5269/3600] >>> harmonic(oo, 2) pi**2/6 >>> from sympy import Symbol, Sum >>> n = Symbol("n") >>> harmonic(n).rewrite(Sum) Sum(1/_k, (_k, 1, n)) We can evaluate harmonic numbers for all integral and positive rational arguments: >>> from sympy import S, expand_func, simplify >>> harmonic(8) 761/280 >>> harmonic(11) 83711/27720 >>> H = harmonic(1/S(3)) >>> H harmonic(1/3) >>> He = expand_func(H) >>> He -log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1)) + 3*Sum(1/(3*_k + 1), (_k, 0, 0)) >>> He.doit() -log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3 >>> H = harmonic(25/S(7)) >>> He = simplify(expand_func(H).doit()) >>> He log(sin(pi/7)**(-2*cos(pi/7))*sin(2*pi/7)**(2*cos(16*pi/7))*cos(pi/14)**(-2*sin(pi/14))/14) + pi*tan(pi/14)/2 + 30247/9900 >>> He.n(40) 1.983697455232980674869851942390639915940 >>> harmonic(25/S(7)).n(40) 1.983697455232980674869851942390639915940 We can rewrite harmonic numbers in terms of polygamma functions: >>> from sympy import digamma, polygamma >>> m = Symbol("m") >>> harmonic(n).rewrite(digamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n).rewrite(polygamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n,3).rewrite(polygamma) polygamma(2, n + 1)/2 - polygamma(2, 1)/2 >>> harmonic(n,m).rewrite(polygamma) (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) Integer offsets in the argument can be pulled out: >>> from sympy import expand_func >>> expand_func(harmonic(n+4)) harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) >>> expand_func(harmonic(n-4)) harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n Some limits can be computed as well: >>> from sympy import limit, oo >>> limit(harmonic(n), n, oo) oo >>> limit(harmonic(n, 2), n, oo) pi**2/6 >>> limit(harmonic(n, 3), n, oo) -polygamma(2, 1)/2 However we can not compute the general relation yet: >>> limit(harmonic(n, m), n, oo) harmonic(oo, m) which equals ``zeta(m)`` for ``m > 1``. References ========== .. [1] http://en.wikipedia.org/wiki/Harmonic_number .. [2] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber/ .. [3] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/ See Also ======== bell, bernoulli, catalan, euler, fibonacci, lucas """ # Generate one memoized Harmonic number-generating function for each # order and store it in a dictionary _functions = {} @classmethod def eval(cls, n, m=None): from sympy import zeta if m is S.One: return cls(n) if m is None: m = S.One if m.is_zero: return n if n is S.Infinity and m.is_Number: # TODO: Fix for symbolic values of m if m.is_negative: return S.NaN elif LessThan(m, S.One): return S.Infinity elif StrictGreaterThan(m, S.One): return zeta(m) else: return cls if n.is_Integer and n.is_nonnegative and m.is_Integer: if n == 0: return S.Zero if not m in cls._functions: @recurrence_memo([0]) def f(n, prev): return prev[-1] + S.One / n**m cls._functions[m] = f return cls._functions[m](int(n)) def _eval_rewrite_as_polygamma(self, n, m=1): from sympy.functions.special.gamma_functions import polygamma return S.NegativeOne**m/factorial(m - 1) * (polygamma(m - 1, 1) - polygamma(m - 1, n + 1)) def _eval_rewrite_as_digamma(self, n, m=1): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_trigamma(self, n, m=1): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_Sum(self, n, m=None): from sympy import Sum k = Dummy("k", integer=True) if m is None: m = S.One return Sum(k**(-m), (k, 1, n)) def _eval_expand_func(self, **hints): from sympy import Sum n = self.args[0] m = self.args[1] if len(self.args) == 2 else 1 if m == S.One: if n.is_Add: off = n.args[0] nnew = n - off if off.is_Integer and off.is_positive: result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)] return Add(*result) elif off.is_Integer and off.is_negative: result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)] return Add(*result) if n.is_Rational: # Expansions for harmonic numbers at general rational arguments (u + p/q) # Split n as u + p/q with p < q p, q = n.as_numer_denom() u = p // q p = p - u * q if u.is_nonnegative and p.is_positive and q.is_positive and p < q: k = Dummy("k") t1 = q * Sum(1 / (q * k + p), (k, 0, u)) t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) * log(sin((pi * k) / S(q))), (k, 1, floor((q - 1) / S(2)))) t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q) return t1 + t2 - t3 return self def _eval_rewrite_as_tractable(self, n, m=1): from sympy import polygamma return self.rewrite(polygamma).rewrite("tractable", deep=True) def _eval_evalf(self, prec): from sympy import polygamma if all(i.is_number for i in self.args): return self.rewrite(polygamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Euler numbers # # # #----------------------------------------------------------------------------# class euler(Function): r""" Euler numbers The euler numbers are given by:: 2*n+1 k ___ ___ j 2*n+1 \ \ / k \ (-1) * (k-2*j) E = I ) ) | | -------------------- 2n /___ /___ \ j / k k k = 1 j = 0 2 * I * k E = 0 2n+1 * euler(n) gives the n-th Euler number, E_n Examples ======== >>> from sympy import Symbol >>> from sympy.functions import euler >>> [euler(n) for n in range(10)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0] >>> n = Symbol("n") >>> euler(n+2*n) euler(3*n) References ========== .. [1] http://en.wikipedia.org/wiki/Euler_numbers .. [2] http://mathworld.wolfram.com/EulerNumber.html .. [3] http://en.wikipedia.org/wiki/Alternating_permutation .. [4] http://mathworld.wolfram.com/AlternatingPermutation.html See Also ======== bell, bernoulli, catalan, fibonacci, harmonic, lucas """ @classmethod def eval(cls, m): if m.is_odd: return S.Zero if m.is_Integer and m.is_nonnegative: from mpmath import mp m = m._to_mpmath(mp.prec) res = mp.eulernum(m, exact=True) return Integer(res) def _eval_rewrite_as_Sum(self, arg): from sympy import Sum if arg.is_even: k = Dummy("k", integer=True) j = Dummy("j", integer=True) n = self.args[0] / 2 Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * ((-1)**j * (k - 2*j)**(2*n + 1)) / (2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1))) return Em def _eval_evalf(self, prec): m = self.args[0] if m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = m._to_mpmath(prec) with workprec(prec): res = mp.eulernum(m) return Expr._from_mpmath(res, prec) #----------------------------------------------------------------------------# # # # Catalan numbers # # # #----------------------------------------------------------------------------# class catalan(Function): r""" Catalan numbers The n-th catalan number is given by:: 1 / 2*n \ C = ----- | | n n + 1 \ n / * catalan(n) gives the n-th Catalan number, C_n Examples ======== >>> from sympy import (Symbol, binomial, gamma, hyper, polygamma, ... catalan, diff, combsimp, Rational, I) >>> [ catalan(i) for i in range(1,10) ] [1, 2, 5, 14, 42, 132, 429, 1430, 4862] >>> n = Symbol("n", integer=True) >>> catalan(n) catalan(n) Catalan numbers can be transformed into several other, identical expressions involving other mathematical functions >>> catalan(n).rewrite(binomial) binomial(2*n, n)/(n + 1) >>> catalan(n).rewrite(gamma) 4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2)) >>> catalan(n).rewrite(hyper) hyper((-n + 1, -n), (2,), 1) For some non-integer values of n we can get closed form expressions by rewriting in terms of gamma functions: >>> catalan(Rational(1,2)).rewrite(gamma) 8/(3*pi) We can differentiate the Catalan numbers C(n) interpreted as a continuous real funtion in n: >>> diff(catalan(n), n) (polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n) As a more advanced example consider the following ratio between consecutive numbers: >>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial)) 2*(2*n + 1)/(n + 2) The Catalan numbers can be generalized to complex numbers: >>> catalan(I).rewrite(gamma) 4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I)) and evaluated with arbitrary precision: >>> catalan(I).evalf(20) 0.39764993382373624267 - 0.020884341620842555705*I References ========== .. [1] http://en.wikipedia.org/wiki/Catalan_number .. [2] http://mathworld.wolfram.com/CatalanNumber.html .. [3] http://functions.wolfram.com/GammaBetaErf/CatalanNumber/ .. [4] http://geometer.org/mathcircles/catalan.pdf See Also ======== bell, bernoulli, euler, fibonacci, harmonic, lucas sympy.functions.combinatorial.factorials.binomial """ @classmethod def eval(cls, n): from sympy import gamma if (n.is_Integer and n.is_nonnegative) or \ (n.is_noninteger and n.is_negative): return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) if (n.is_integer and n.is_negative): if (n + 1).is_negative: return S.Zero if (n + 1).is_zero: return -S.Half def fdiff(self, argindex=1): from sympy import polygamma, log n = self.args[0] return catalan(n)*(polygamma(0, n + Rational(1, 2)) - polygamma(0, n + 2) + log(4)) def _eval_rewrite_as_binomial(self, n): return binomial(2*n, n)/(n + 1) def _eval_rewrite_as_factorial(self, n): return factorial(2*n) / (factorial(n+1) * factorial(n)) def _eval_rewrite_as_gamma(self, n): from sympy import gamma # The gamma function allows to generalize Catalan numbers to complex n return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) def _eval_rewrite_as_hyper(self, n): from sympy import hyper return hyper([1 - n, -n], [2], 1) def _eval_rewrite_as_Product(self, n): from sympy import Product if not (n.is_integer and n.is_nonnegative): return self k = Dummy('k', integer=True, positive=True) return Product((n + k) / k, (k, 2, n)) def _eval_evalf(self, prec): from sympy import gamma if self.args[0].is_number: return self.rewrite(gamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Genocchi numbers # # # #----------------------------------------------------------------------------# class genocchi(Function): r""" Genocchi numbers The Genocchi numbers are a sequence of integers G_n that satisfy the relation:: oo ____ \ ` 2*t \ n ------ = \ G_n*t t / ------ e + 1 / n! /___, n = 1 Examples ======== >>> from sympy import Symbol >>> from sympy.functions import genocchi >>> [genocchi(n) for n in range(1, 9)] [1, -1, 0, 1, 0, -3, 0, 17] >>> n = Symbol('n', integer=True, positive=True) >>> genocchi(2 * n + 1) 0 References ========== .. [1] https://en.wikipedia.org/wiki/Genocchi_number .. [2] http://mathworld.wolfram.com/GenocchiNumber.html See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas """ @classmethod def eval(cls, n): if n.is_Number: if (not n.is_Integer) or n.is_nonpositive: raise ValueError("Genocchi numbers are defined only for " + "positive integers") return 2 * (1 - S(2) ** n) * bernoulli(n) if n.is_odd and (n - 1).is_positive: return S.Zero if (n - 1).is_zero: return S.One def _eval_rewrite_as_bernoulli(self, n): if n.is_integer and n.is_nonnegative: return (1 - S(2) ** n) * bernoulli(n) * 2 def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_positive: return True def _eval_is_negative(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return False return (n / 2).is_odd def _eval_is_positive(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return fuzzy_not((n - 1).is_positive) return (n / 2).is_even def _eval_is_even(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return False return (n - 1).is_positive def _eval_is_odd(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return True return fuzzy_not((n - 1).is_positive) def _eval_is_prime(self): n = self.args[0] # only G_6 = -3 and G_8 = 17 are prime, # but SymPy does not consider negatives as prime # so only n=8 is tested return (n - 8).is_zero ####################################################################### ### ### Functions for enumerating partitions, permutations and combinations ### ####################################################################### class _MultisetHistogram(tuple): pass _N = -1 _ITEMS = -2 _M = slice(None, _ITEMS) def _multiset_histogram(n): """Return tuple used in permutation and combination counting. Input is a dictionary giving items with counts as values or a sequence of items (which need not be sorted). The data is stored in a class deriving from tuple so it is easily recognized and so it can be converted easily to a list. """ if type(n) is dict: # item: count if not all(isinstance(v, int) and v >= 0 for v in n.values()): raise ValueError tot = sum(n.values()) items = sum(1 for k in n if n[k] > 0) return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot]) else: n = list(n) s = set(n) if len(s) == len(n): n = [1]*len(n) n.extend([len(n), len(n)]) return _MultisetHistogram(n) m = dict(zip(s, range(len(s)))) d = dict(zip(range(len(s)), [0]*len(s))) for i in n: d[m[i]] += 1 return _multiset_histogram(d) def nP(n, k=None, replacement=False): """Return the number of permutations of ``n`` items taken ``k`` at a time. Possible values for ``n``:: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all permutations of length 0 through the number of items represented by ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' permutations of 2 would include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nP >>> from sympy.utilities.iterables import multiset_permutations, multiset >>> nP(3, 2) 6 >>> nP('abc', 2) == nP(multiset('abc'), 2) == 6 True >>> nP('aab', 2) 3 >>> nP([1, 2, 2], 2) 3 >>> [nP(3, i) for i in range(4)] [1, 3, 6, 6] >>> nP(3) == sum(_) True When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nP('aabc', replacement=True) 121 >>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 9, 27, 81] >>> sum(_) 121 References ========== .. [1] http://en.wikipedia.org/wiki/Permutation See Also ======== sympy.utilities.iterables.multiset_permutations """ try: n = as_int(n) except ValueError: return Integer(_nP(_multiset_histogram(n), k, replacement)) return Integer(_nP(n, k, replacement)) @cacheit def _nP(n, k=None, replacement=False): from sympy.functions.combinatorial.factorials import factorial from sympy.core.mul import prod if k == 0: return 1 if isinstance(n, SYMPY_INTS): # n different items # assert n >= 0 if k is None: return sum(_nP(n, i, replacement) for i in range(n + 1)) elif replacement: return n**k elif k > n: return 0 elif k == n: return factorial(k) elif k == 1: return n else: # assert k >= 0 return _product(n - k + 1, n) elif isinstance(n, _MultisetHistogram): if k is None: return sum(_nP(n, i, replacement) for i in range(n[_N] + 1)) elif replacement: return n[_ITEMS]**k elif k == n[_N]: return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1]) elif k > n[_N]: return 0 elif k == 1: return n[_ITEMS] else: # assert k >= 0 tot = 0 n = list(n) for i in range(len(n[_M])): if not n[i]: continue n[_N] -= 1 if n[i] == 1: n[i] = 0 n[_ITEMS] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[_ITEMS] += 1 n[i] = 1 else: n[i] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[i] += 1 n[_N] += 1 return tot @cacheit def _AOP_product(n): """for n = (m1, m2, .., mk) return the coefficients of the polynomial, prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients of the product of AOPs (all-one polynomials) or order given in n. The resulting coefficient corresponding to x**r is the number of r-length combinations of sum(n) elements with multiplicities given in n. The coefficients are given as a default dictionary (so if a query is made for a key that is not present, 0 will be returned). Examples ======== >>> from sympy.functions.combinatorial.numbers import _AOP_product >>> from sympy.abc import x >>> n = (2, 2, 3) # e.g. aabbccc >>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand() >>> c = _AOP_product(n); dict(c) {0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1} >>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)] True The generating poly used here is the same as that listed in http://tinyurl.com/cep849r, but in a refactored form. """ from collections import defaultdict n = list(n) ord = sum(n) need = (ord + 2)//2 rv = [1]*(n.pop() + 1) rv.extend([0]*(need - len(rv))) rv = rv[:need] while n: ni = n.pop() N = ni + 1 was = rv[:] for i in range(1, min(N, len(rv))): rv[i] += rv[i - 1] for i in range(N, need): rv[i] += rv[i - 1] - was[i - N] rev = list(reversed(rv)) if ord % 2: rv = rv + rev else: rv[-1:] = rev d = defaultdict(int) for i in range(len(rv)): d[i] = rv[i] return d def nC(n, k=None, replacement=False): """Return the number of combinations of ``n`` items taken ``k`` at a time. Possible values for ``n``:: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all combinations of length 0 through the number of items represented in ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa', 'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nC >>> from sympy.utilities.iterables import multiset_combinations >>> nC(3, 2) 3 >>> nC('abc', 2) 3 >>> nC('aab', 2) 2 When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nC('aabc', replacement=True) 35 >>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 6, 10, 15] >>> sum(_) 35 If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k`` then the total of all combinations of length 0 hrough ``k`` is the product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity of each item is 1 (i.e., k unique items) then there are 2**k combinations. For example, if there are 4 unique items, the total number of combinations is 16: >>> sum(nC(4, i) for i in range(5)) 16 References ========== .. [1] http://en.wikipedia.org/wiki/Combination .. [2] http://tinyurl.com/cep849r See Also ======== sympy.utilities.iterables.multiset_combinations """ from sympy.functions.combinatorial.factorials import binomial from sympy.core.mul import prod if isinstance(n, SYMPY_INTS): if k is None: if not replacement: return 2**n return sum(nC(n, i, replacement) for i in range(n + 1)) if k < 0: raise ValueError("k cannot be negative") if replacement: return binomial(n + k - 1, k) return binomial(n, k) if isinstance(n, _MultisetHistogram): N = n[_N] if k is None: if not replacement: return prod(m + 1 for m in n[_M]) return sum(nC(n, i, replacement) for i in range(N + 1)) elif replacement: return nC(n[_ITEMS], k, replacement) # assert k >= 0 elif k in (1, N - 1): return n[_ITEMS] elif k in (0, N): return 1 return _AOP_product(tuple(n[_M]))[k] else: return nC(_multiset_histogram(n), k, replacement) @cacheit def _stirling1(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero n1 = n - 1 # some special values if n == k: return S.One elif k == 1: return factorial(n1) elif k == n1: return binomial(n, 2) elif k == n - 2: return (3*n - 1)*binomial(n, 3)/4 elif k == n - 3: return binomial(n, 2)*binomial(n, 4) # general recurrence return n1*_stirling1(n1, k) + _stirling1(n1, k - 1) @cacheit def _stirling2(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero n1 = n - 1 # some special values if k == n1: return binomial(n, 2) elif k == 2: return 2**n1 - 1 # general recurrence return k*_stirling2(n1, k) + _stirling2(n1, k - 1) def stirling(n, k, d=None, kind=2, signed=False): """Return Stirling number S(n, k) of the first or second (default) kind. The sum of all Stirling numbers of the second kind for k = 1 through n is bell(n). The recurrence relationship for these numbers is:: {0} {n} {0} {n + 1} {n} { n } { } = 1; { } = { } = 0; { } = j*{ } + { } {0} {0} {k} { k } {k} {k - 1} where ``j`` is:: ``n`` for Stirling numbers of the first kind ``-n`` for signed Stirling numbers of the first kind ``k`` for Stirling numbers of the second kind The first kind of Stirling number counts the number of permutations of ``n`` distinct items that have ``k`` cycles; the second kind counts the ways in which ``n`` distinct items can be partitioned into ``k`` parts. If ``d`` is given, the "reduced Stirling number of the second kind" is returned: ``S^{d}(n, k) = S(n - d + 1, k - d + 1)`` with ``n >= k >= d``. (This counts the ways to partition ``n`` consecutive integers into ``k`` groups with no pairwise difference less than ``d``. See example below.) To obtain the signed Stirling numbers of the first kind, use keyword ``signed=True``. Using this keyword automatically sets ``kind`` to 1. Examples ======== >>> from sympy.functions.combinatorial.numbers import stirling, bell >>> from sympy.combinatorics import Permutation >>> from sympy.utilities.iterables import multiset_partitions, permutations First kind (unsigned by default): >>> [stirling(6, i, kind=1) for i in range(7)] [0, 120, 274, 225, 85, 15, 1] >>> perms = list(permutations(range(4))) >>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)] [0, 6, 11, 6, 1] >>> [stirling(4, i, kind=1) for i in range(5)] [0, 6, 11, 6, 1] First kind (signed): >>> [stirling(4, i, signed=True) for i in range(5)] [0, -6, 11, -6, 1] Second kind: >>> [stirling(10, i) for i in range(12)] [0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0] >>> sum(_) == bell(10) True >>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2) True Reduced second kind: >>> from sympy import subsets, oo >>> def delta(p): ... if len(p) == 1: ... return oo ... return min(abs(i[0] - i[1]) for i in subsets(p, 2)) >>> parts = multiset_partitions(range(5), 3) >>> d = 2 >>> sum(1 for p in parts if all(delta(i) >= d for i in p)) 7 >>> stirling(5, 3, 2) 7 References ========== .. [1] http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind .. [2] http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind See Also ======== sympy.utilities.iterables.multiset_partitions """ # TODO: make this a class like bell() n = as_int(n) k = as_int(k) if n < 0: raise ValueError('n must be nonnegative') if k > n: return S.Zero if d: # assert k >= d # kind is ignored -- only kind=2 is supported return _stirling2(n - d + 1, k - d + 1) elif signed: # kind is ignored -- only kind=1 is supported return (-1)**(n - k)*_stirling1(n, k) if kind == 1: return _stirling1(n, k) elif kind == 2: return _stirling2(n, k) else: raise ValueError('kind must be 1 or 2, not %s' % k) @cacheit def _nT(n, k): """Return the partitions of ``n`` items into ``k`` parts. This is used by ``nT`` for the case when ``n`` is an integer.""" if k == 0: return 1 if k == n else 0 return sum(_nT(n - k, j) for j in range(min(k, n - k) + 1)) def nT(n, k=None): """Return the number of ``k``-sized partitions of ``n`` items. Possible values for ``n``:: integer - ``n`` identical items sequence - converted to a multiset internally multiset - {element: multiplicity} Note: the convention for ``nT`` is different than that of ``nC`` and ``nP`` in that here an integer indicates ``n`` *identical* items instead of a set of length ``n``; this is in keeping with the ``partitions`` function which treats its integer-``n`` input like a list of ``n`` 1s. One can use ``range(n)`` for ``n`` to indicate ``n`` distinct items. If ``k`` is None then the total number of ways to partition the elements represented in ``n`` will be returned. Examples ======== >>> from sympy.functions.combinatorial.numbers import nT Partitions of the given multiset: >>> [nT('aabbc', i) for i in range(1, 7)] [1, 8, 11, 5, 1, 0] >>> nT('aabbc') == sum(_) True >>> [nT("mississippi", i) for i in range(1, 12)] [1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1] Partitions when all items are identical: >>> [nT(5, i) for i in range(1, 6)] [1, 2, 2, 1, 1] >>> nT('1'*5) == sum(_) True When all items are different: >>> [nT(range(5), i) for i in range(1, 6)] [1, 15, 25, 10, 1] >>> nT(range(5)) == sum(_) True References ========== .. [1] http://undergraduate.csse.uwa.edu.au/units/CITS7209/partition.pdf See Also ======== sympy.utilities.iterables.partitions sympy.utilities.iterables.multiset_partitions """ from sympy.utilities.enumerative import MultisetPartitionTraverser if isinstance(n, SYMPY_INTS): # assert n >= 0 # all the same if k is None: return sum(_nT(n, k) for k in range(1, n + 1)) return _nT(n, k) if not isinstance(n, _MultisetHistogram): try: # if n contains hashable items there is some # quick handling that can be done u = len(set(n)) if u == 1: return nT(len(n), k) elif u == len(n): n = range(u) raise TypeError except TypeError: n = _multiset_histogram(n) N = n[_N] if k is None and N == 1: return 1 if k in (1, N): return 1 if k == 2 or N == 2 and k is None: m, r = divmod(N, 2) rv = sum(nC(n, i) for i in range(1, m + 1)) if not r: rv -= nC(n, m)//2 if k is None: rv += 1 # for k == 1 return rv if N == n[_ITEMS]: # all distinct if k is None: return bell(N) return stirling(N, k) m = MultisetPartitionTraverser() if k is None: return m.count_partitions(n[_M]) # MultisetPartitionTraverser does not have a range-limited count # method, so need to enumerate and count tot = 0 for discard in m.enum_range(n[_M], k-1, k): tot += 1 return tot
the-stack_0_52
from __future__ import annotations import ast import functools import sys from typing import Iterable from tokenize_rt import NON_CODING_TOKENS from tokenize_rt import Offset from tokenize_rt import Token from pyupgrade._ast_helpers import ast_to_offset from pyupgrade._ast_helpers import is_name_attr from pyupgrade._data import register from pyupgrade._data import State from pyupgrade._data import TokenFunc from pyupgrade._token_helpers import CLOSING from pyupgrade._token_helpers import find_closing_bracket from pyupgrade._token_helpers import find_token from pyupgrade._token_helpers import OPENING def _fix_optional(i: int, tokens: list[Token]) -> None: j = find_token(tokens, i, '[') k = find_closing_bracket(tokens, j) if tokens[j].line == tokens[k].line: tokens[k] = Token('CODE', ' | None') del tokens[i:j + 1] else: tokens[j] = tokens[j]._replace(src='(') tokens[k] = tokens[k]._replace(src=')') tokens[i:j] = [Token('CODE', 'None | ')] def _fix_union( i: int, tokens: list[Token], *, arg_count: int, ) -> None: depth = 1 parens_done = [] open_parens = [] commas = [] coding_depth = None j = find_token(tokens, i, '[') k = j + 1 while depth: # it's possible our first coding token is a close paren # so make sure this is separate from the if chain below if ( tokens[k].name not in NON_CODING_TOKENS and tokens[k].src != '(' and coding_depth is None ): if tokens[k].src == ')': # the coding token was an empty tuple coding_depth = depth - 1 else: coding_depth = depth if tokens[k].src in OPENING: if tokens[k].src == '(': open_parens.append((depth, k)) depth += 1 elif tokens[k].src in CLOSING: if tokens[k].src == ')': paren_depth, open_paren = open_parens.pop() parens_done.append((paren_depth, (open_paren, k))) depth -= 1 elif tokens[k].src == ',': commas.append((depth, k)) k += 1 k -= 1 assert coding_depth is not None assert not open_parens, open_parens comma_depth = min((depth for depth, _ in commas), default=sys.maxsize) min_depth = min(comma_depth, coding_depth) to_delete = [ paren for depth, positions in parens_done if depth < min_depth for paren in positions ] if comma_depth <= coding_depth: comma_positions = [k for depth, k in commas if depth == comma_depth] if len(comma_positions) == arg_count: to_delete.append(comma_positions.pop()) else: comma_positions = [] to_delete.sort() if tokens[j].line == tokens[k].line: del tokens[k] for comma in comma_positions: tokens[comma] = Token('CODE', ' |') for paren in reversed(to_delete): del tokens[paren] del tokens[i:j + 1] else: tokens[j] = tokens[j]._replace(src='(') tokens[k] = tokens[k]._replace(src=')') for comma in comma_positions: tokens[comma] = Token('CODE', ' |') for paren in reversed(to_delete): del tokens[paren] del tokens[i:j] def _supported_version(state: State) -> bool: return ( state.in_annotation and ( state.settings.min_version >= (3, 10) or ( not state.settings.keep_runtime_typing and 'annotations' in state.from_imports['__future__'] ) ) ) def _any_arg_is_str(node_slice: ast.expr) -> bool: return ( isinstance(node_slice, ast.Str) or ( isinstance(node_slice, ast.Tuple) and any(isinstance(elt, ast.Str) for elt in node_slice.elts) ) ) @register(ast.Subscript) def visit_Subscript( state: State, node: ast.Subscript, parent: ast.AST, ) -> Iterable[tuple[Offset, TokenFunc]]: if not _supported_version(state): return # prevent rewriting forward annotations if ( (sys.version_info >= (3, 9) and _any_arg_is_str(node.slice)) or ( sys.version_info < (3, 9) and isinstance(node.slice, ast.Index) and _any_arg_is_str(node.slice.value) ) ): return if is_name_attr( node.value, state.from_imports, ('typing',), ('Optional',), ): yield ast_to_offset(node), _fix_optional elif is_name_attr(node.value, state.from_imports, ('typing',), ('Union',)): if sys.version_info >= (3, 9): # pragma: >=3.9 cover node_slice = node.slice elif isinstance(node.slice, ast.Index): # pragma: <3.9 cover node_slice: ast.AST = node.slice.value else: # pragma: <3.9 cover node_slice = node.slice # unexpected slice type if isinstance(node_slice, ast.Slice): # not a valid annotation return if isinstance(node_slice, ast.Tuple): if node_slice.elts: arg_count = len(node_slice.elts) else: return # empty Union else: arg_count = 1 func = functools.partial(_fix_union, arg_count=arg_count) yield ast_to_offset(node), func
the-stack_0_53
import argparse import logging import time import sys from twilio.rest import Client import settings import RPi.GPIO as GPIO twilio = Client(settings.TWILIO_PUBLIC_KEY, settings.TWILIO_SECRET_KEY) log = logging.getLogger(__name__) class SaltLevelMonitor(object): def __init__(self, force_report=False, unit=settings.METRIC, threshold=0, tank_depth=settings.DEFAULT_TANK_DEPTH): self.force_report = force_report self.unit = unit if unit in settings.VALID_UNITS else settings.METRIC self.notation = 'inches' if unit == settings.IMPERIAL else 'centimeters' self.threshold = float(threshold) self.tank_depth = float(tank_depth) self.distance = None self.remaining_salt = None def check_salt_level(self): self.distance = self.get_average_distance() self._convert_units() self.remaining_salt = self.tank_depth - self.distance message = self._get_report_message() log.info('Salt level is: {0:.2f} {1}'.format(self.remaining_salt, self.notation)) if self.remaining_salt < self.threshold or self.force_report: log.info(message['body']) self.report_salt_level(message) def get_average_distance(self): """ used to get an average read since the sensor isn't 100% accurate """ reads = [self.get_distance() for _ in range(settings.READS_PER_CHECK)] return sum(reads) / settings.READS_PER_CHECK @staticmethod def get_distance(): """ returns distance in centimeters """ # set Trigger to HIGH GPIO.output(settings.GPIO_TRIGGER, True) # set Trigger after 0.01ms to LOW time.sleep(0.00001) GPIO.output(settings.GPIO_TRIGGER, False) start_time = time.time() stop_time = time.time() # save StartTime while GPIO.input(settings.GPIO_ECHO) == 0: start_time = time.time() # save time of arrival while GPIO.input(settings.GPIO_ECHO) == 1: stop_time = time.time() # time difference between start and arrival time_elapsed = stop_time - start_time return (time_elapsed * settings.SPEED_OF_SOUND) / 2 def _convert_units(self): """ convert distance to inches if IMPERIAL or convert tank_depth and threshold to centimeters """ if self.unit == settings.IMPERIAL: self.distance = self.distance / settings.CM_TO_INCHES else: self.tank_depth = self.tank_depth * settings.CM_TO_INCHES self.threshold = self.threshold * settings.CM_TO_INCHES def _get_report_message(self): message = settings.MESSAGE_TEMPLATE.copy() message['body'] = settings.SALT_LEVEL_ALERT_MESSAGE.format( self.remaining_salt, self.notation) if self.force_report: message['body'] = '{} (forced report)'.format(message['body']) return message @staticmethod def report_salt_level(message): twilio.messages.create(**message) def __enter__(self): GPIO.setmode(GPIO.BCM) # set GPIO direction (IN / OUT) GPIO.setup(settings.GPIO_TRIGGER, GPIO.OUT) GPIO.setup(settings.GPIO_ECHO, GPIO.IN) return self def __exit__(self, *args): GPIO.cleanup() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Salty Dog') parser.add_argument('-u', '--unit', action='store', dest='unit', default='metric', help='Unit of measure used in reporting') parser.add_argument('-t', '--threshold', action='store', dest='threshold', help='Threshold for reporting in inches or cm (must match --unit)') parser.add_argument('-d', '--tank-depth', action='store', dest='tank_depth', help='Total depth of your salt tank in inches or cm (must match --unit)') parser.add_argument('-f', '--force-report', action='store_true', dest='force_report', default=False, help='Force Salty Dog to send SMS regardless of salt level measured') args = parser.parse_args(sys.argv[1:]) parsed_kwargs = { 'force_report': args.force_report, 'unit': args.unit, 'threshold': args.threshold, 'tank_depth': args.tank_depth, } with SaltLevelMonitor(**parsed_kwargs) as monitor: monitor.check_salt_level()
the-stack_0_54
from __future__ import absolute_import from __future__ import unicode_literals import time import socket import logging from ._compat import bytes_types, string_types from ._compat import struct_l from .version import __version__ try: import ssl except ImportError: ssl = None # pyflakes.ignore try: from .snappy_socket import SnappySocket except ImportError: SnappySocket = None # pyflakes.ignore try: import simplejson as json except ImportError: import json # pyflakes.ignore import tornado.iostream import tornado.ioloop try: from tornado.simple_httpclient import _default_ca_certs as default_ca_certs except ImportError: # Tornado < 4 from tornado.simple_httpclient import _DEFAULT_CA_CERTS def default_ca_certs(): return _DEFAULT_CA_CERTS from nsq import event, protocol from .deflate_socket import DeflateSocket logger = logging.getLogger(__name__) # states INIT = 'INIT' DISCONNECTED = 'DISCONNECTED' CONNECTING = 'CONNECTING' CONNECTED = 'CONNECTED' DEFAULT_USER_AGENT = 'pynsq/%s' % __version__ class AsyncConn(event.EventedMixin): """ Low level object representing a TCP connection to nsqd. When a message on this connection is requeued and the requeue delay has not been specified, it calculates the delay automatically by an increasing multiple of ``requeue_delay``. Generates the following events that can be listened to with :meth:`nsq.AsyncConn.on`: * ``connect`` * ``close`` * ``error`` * ``identify`` * ``identify_response`` * ``auth`` * ``auth_response`` * ``heartbeat`` * ``ready`` * ``message`` * ``response`` * ``backoff`` * ``resume`` :param host: the host to connect to :param port: the post to connect to :param timeout: the timeout for read/write operations (in seconds) :param heartbeat_interval: the amount of time (in seconds) to negotiate with the connected producers to send heartbeats (requires nsqd 0.2.19+) :param requeue_delay: the base multiple used when calculating requeue delay (multiplied by # of attempts) :param tls_v1: enable TLS v1 encryption (requires nsqd 0.2.22+) :param tls_options: dictionary of options to pass to `ssl.wrap_socket() <http://docs.python.org/2/library/ssl.html#ssl.wrap_socket>`_ as ``**kwargs`` :param snappy: enable Snappy stream compression (requires nsqd 0.2.23+) :param deflate: enable deflate stream compression (requires nsqd 0.2.23+) :param deflate_level: configure the deflate compression level for this connection (requires nsqd 0.2.23+) :param output_buffer_size: size of the buffer (in bytes) used by nsqd for buffering writes to this connection :param output_buffer_timeout: timeout (in ms) used by nsqd before flushing buffered writes (set to 0 to disable). **Warning**: configuring clients with an extremely low (``< 25ms``) ``output_buffer_timeout`` has a significant effect on ``nsqd`` CPU usage (particularly with ``> 50`` clients connected). :param sample_rate: take only a sample of the messages being sent to the client. Not setting this or setting it to 0 will ensure you get all the messages destined for the client. Sample rate can be greater than 0 or less than 100 and the client will receive that percentage of the message traffic. (requires nsqd 0.2.25+) :param user_agent: a string identifying the agent for this client in the spirit of HTTP (default: ``<client_library_name>/<version>``) (requires nsqd 0.2.25+) :param auth_secret: a byte string passed when using nsq auth (requires nsqd 1.0+) :param msg_timeout: the amount of time (in seconds) that nsqd will wait before considering messages that have been delivered to this consumer timed out (requires nsqd 0.2.28+) :param hostname: a string identifying the host where this client runs (default: ``<hostname>``) """ def __init__( self, host, port, timeout=1.0, heartbeat_interval=30, requeue_delay=90, tls_v1=False, tls_options=None, snappy=False, deflate=False, deflate_level=6, user_agent=DEFAULT_USER_AGENT, output_buffer_size=16 * 1024, output_buffer_timeout=250, sample_rate=0, io_loop=None, auth_secret=None, msg_timeout=None, hostname=None): assert isinstance(host, string_types) assert isinstance(port, int) assert isinstance(timeout, float) assert isinstance(tls_options, (dict, None.__class__)) assert isinstance(deflate_level, int) assert isinstance(heartbeat_interval, int) and heartbeat_interval >= 1 assert isinstance(requeue_delay, int) and requeue_delay >= 0 assert isinstance(output_buffer_size, int) and output_buffer_size >= 0 assert isinstance(output_buffer_timeout, int) and output_buffer_timeout >= 0 assert isinstance(sample_rate, int) and sample_rate >= 0 and sample_rate < 100 assert isinstance(auth_secret, bytes_types + (None.__class__,)) assert tls_v1 and ssl or not tls_v1, \ 'tls_v1 requires Python 2.6+ or Python 2.5 w/ pip install ssl' assert msg_timeout is None or (isinstance(msg_timeout, (float, int)) and msg_timeout > 0) self.state = INIT self.host = host self.port = port self.timeout = timeout self.last_recv_timestamp = time.time() self.last_msg_timestamp = time.time() self.in_flight = 0 self.rdy = 0 self.rdy_timeout = None # for backwards compatibility when interacting with older nsqd # (pre 0.2.20), default this to their hard-coded max self.max_rdy_count = 2500 self.tls_v1 = tls_v1 self.tls_options = tls_options self.snappy = snappy self.deflate = deflate self.deflate_level = deflate_level self.hostname = hostname if self.hostname is None: self.hostname = socket.gethostname() self.short_hostname = self.hostname.split('.')[0] self.heartbeat_interval = heartbeat_interval * 1000 self.msg_timeout = int(msg_timeout * 1000) if msg_timeout else None self.requeue_delay = requeue_delay self.io_loop = io_loop if not self.io_loop: self.io_loop = tornado.ioloop.IOLoop.instance() self.output_buffer_size = output_buffer_size self.output_buffer_timeout = output_buffer_timeout self.sample_rate = sample_rate self.user_agent = user_agent self._authentication_required = False # tracking server auth state self.auth_secret = auth_secret self.socket = None self.stream = None self._features_to_enable = [] self.last_rdy = 0 self.rdy = 0 self.callback_queue = [] super(AsyncConn, self).__init__() @property def id(self): return str(self) def __str__(self): return self.host + ':' + str(self.port) def connected(self): return self.state == CONNECTED def connecting(self): return self.state == CONNECTING def closed(self): return self.state in (INIT, DISCONNECTED) def connect(self): if not self.closed(): return self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.settimeout(self.timeout) self.socket.setblocking(0) self.stream = tornado.iostream.IOStream(self.socket, io_loop=self.io_loop) self.stream.set_close_callback(self._socket_close) self.stream.set_nodelay(True) self.state = CONNECTING self.on(event.CONNECT, self._on_connect) self.on(event.DATA, self._on_data) self.stream.connect((self.host, self.port), self._connect_callback) def _connect_callback(self): self.state = CONNECTED self.stream.write(protocol.MAGIC_V2) self._start_read() self.trigger(event.CONNECT, conn=self) def _read_bytes(self, size, callback): try: self.stream.read_bytes(size, callback) except IOError: self.close() self.trigger( event.ERROR, conn=self, error=protocol.ConnectionClosedError('Stream is closed'), ) def _start_read(self): self._read_bytes(4, self._read_size) def _socket_close(self): self.state = DISCONNECTED self.trigger(event.CLOSE, conn=self) def close(self): self.stream.close() def _read_size(self, data): try: size = struct_l.unpack(data)[0] except Exception: self.close() self.trigger( event.ERROR, conn=self, error=protocol.IntegrityError('failed to unpack size'), ) return self._read_bytes(size, self._read_body) def _read_body(self, data): try: self.trigger(event.DATA, conn=self, data=data) except Exception: logger.exception('uncaught exception in data event') self._start_read() def send(self, data): self.stream.write(data) def upgrade_to_tls(self, options=None): assert ssl, 'tls_v1 requires Python 2.6+ or Python 2.5 w/ pip install ssl' # in order to upgrade to TLS we need to *replace* the IOStream... # # first remove the event handler for the currently open socket # so that when we add the socket to the new SSLIOStream below, # it can re-add the appropriate event handlers. self.io_loop.remove_handler(self.socket.fileno()) opts = { 'cert_reqs': ssl.CERT_REQUIRED, 'ca_certs': default_ca_certs() } opts.update(options or {}) self.socket = ssl.wrap_socket(self.socket, ssl_version=ssl.PROTOCOL_TLSv1, do_handshake_on_connect=False, **opts) self.stream = tornado.iostream.SSLIOStream(self.socket, io_loop=self.io_loop) self.stream.set_close_callback(self._socket_close) # now that the IOStream has been swapped we can kickstart # the SSL handshake self.stream._do_ssl_handshake() def upgrade_to_snappy(self): assert SnappySocket, 'snappy requires the python-snappy package' # in order to upgrade to Snappy we need to use whatever IOStream # is currently in place (normal or SSL)... # # first read any compressed bytes the existing IOStream might have # already buffered and use that to bootstrap the SnappySocket, then # monkey patch the existing IOStream by replacing its socket # with a wrapper that will automagically handle compression. existing_data = self.stream._consume(self.stream._read_buffer_size) self.socket = SnappySocket(self.socket) self.socket.bootstrap(existing_data) self.stream.socket = self.socket def upgrade_to_deflate(self): # in order to upgrade to DEFLATE we need to use whatever IOStream # is currently in place (normal or SSL)... # # first read any compressed bytes the existing IOStream might have # already buffered and use that to bootstrap the DefalteSocket, then # monkey patch the existing IOStream by replacing its socket # with a wrapper that will automagically handle compression. existing_data = self.stream._consume(self.stream._read_buffer_size) self.socket = DeflateSocket(self.socket, self.deflate_level) self.socket.bootstrap(existing_data) self.stream.socket = self.socket def send_rdy(self, value): try: self.send(protocol.ready(value)) except Exception as e: self.close() self.trigger( event.ERROR, conn=self, error=protocol.SendError('failed to send RDY %d' % value, e), ) return False self.last_rdy = value self.rdy = value return True def _on_connect(self, **kwargs): identify_data = { 'short_id': self.short_hostname, # TODO remove when deprecating pre 1.0 support 'long_id': self.hostname, # TODO remove when deprecating pre 1.0 support 'client_id': self.short_hostname, 'hostname': self.hostname, 'heartbeat_interval': self.heartbeat_interval, 'feature_negotiation': True, 'tls_v1': self.tls_v1, 'snappy': self.snappy, 'deflate': self.deflate, 'deflate_level': self.deflate_level, 'output_buffer_timeout': self.output_buffer_timeout, 'output_buffer_size': self.output_buffer_size, 'sample_rate': self.sample_rate, 'user_agent': self.user_agent } if self.msg_timeout: identify_data['msg_timeout'] = self.msg_timeout self.trigger(event.IDENTIFY, conn=self, data=identify_data) self.on(event.RESPONSE, self._on_identify_response) try: self.send(protocol.identify(identify_data)) except Exception as e: self.close() self.trigger( event.ERROR, conn=self, error=protocol.SendError('failed to bootstrap connection', e), ) def _on_identify_response(self, data, **kwargs): self.off(event.RESPONSE, self._on_identify_response) if data == b'OK': logger.warning('nsqd version does not support feature netgotiation') return self.trigger(event.READY, conn=self) try: data = json.loads(data.decode('utf-8')) except ValueError: self.close() self.trigger( event.ERROR, conn=self, error=protocol.IntegrityError( 'failed to parse IDENTIFY response JSON from nsqd - %r' % data ), ) return self.trigger(event.IDENTIFY_RESPONSE, conn=self, data=data) if self.tls_v1 and data.get('tls_v1'): self._features_to_enable.append('tls_v1') if self.snappy and data.get('snappy'): self._features_to_enable.append('snappy') if self.deflate and data.get('deflate'): self._features_to_enable.append('deflate') if data.get('auth_required'): self._authentication_required = True if data.get('max_rdy_count'): self.max_rdy_count = data.get('max_rdy_count') else: # for backwards compatibility when interacting with older nsqd # (pre 0.2.20), default this to their hard-coded max logger.warn('setting max_rdy_count to default value of 2500') self.max_rdy_count = 2500 self.on(event.RESPONSE, self._on_response_continue) self._on_response_continue(conn=self, data=None) def _on_response_continue(self, data, **kwargs): if self._features_to_enable: feature = self._features_to_enable.pop(0) if feature == 'tls_v1': self.upgrade_to_tls(self.tls_options) elif feature == 'snappy': self.upgrade_to_snappy() elif feature == 'deflate': self.upgrade_to_deflate() # the server will 'OK' after these conneciton upgrades triggering another response return self.off(event.RESPONSE, self._on_response_continue) if self.auth_secret and self._authentication_required: self.on(event.RESPONSE, self._on_auth_response) self.trigger(event.AUTH, conn=self, data=self.auth_secret) try: self.send(protocol.auth(self.auth_secret)) except Exception as e: self.close() self.trigger( event.ERROR, conn=self, error=protocol.SendError('Error sending AUTH', e), ) return self.trigger(event.READY, conn=self) def _on_auth_response(self, data, **kwargs): try: data = json.loads(data.decode('utf-8')) except ValueError: self.close() self.trigger( event.ERROR, conn=self, error=protocol.IntegrityError( 'failed to parse AUTH response JSON from nsqd - %r' % data ), ) return self.off(event.RESPONSE, self._on_auth_response) self.trigger(event.AUTH_RESPONSE, conn=self, data=data) return self.trigger(event.READY, conn=self) def _on_data(self, data, **kwargs): self.last_recv_timestamp = time.time() frame, data = protocol.unpack_response(data) if frame == protocol.FRAME_TYPE_MESSAGE: self.last_msg_timestamp = time.time() self.in_flight += 1 message = protocol.decode_message(data) message.on(event.FINISH, self._on_message_finish) message.on(event.REQUEUE, self._on_message_requeue) message.on(event.TOUCH, self._on_message_touch) self.trigger(event.MESSAGE, conn=self, message=message) elif frame == protocol.FRAME_TYPE_RESPONSE and data == b'_heartbeat_': self.send(protocol.nop()) self.trigger(event.HEARTBEAT, conn=self) elif frame == protocol.FRAME_TYPE_RESPONSE: self.trigger(event.RESPONSE, conn=self, data=data) elif frame == protocol.FRAME_TYPE_ERROR: self.trigger(event.ERROR, conn=self, error=protocol.Error(data)) def _on_message_requeue(self, message, backoff=True, time_ms=-1, **kwargs): if backoff: self.trigger(event.BACKOFF, conn=self) else: self.trigger(event.CONTINUE, conn=self) self.in_flight -= 1 try: time_ms = self.requeue_delay * message.attempts * 1000 if time_ms < 0 else time_ms self.send(protocol.requeue(message.id, time_ms)) except Exception as e: self.close() self.trigger(event.ERROR, conn=self, error=protocol.SendError( 'failed to send REQ %s @ %d' % (message.id, time_ms), e)) def _on_message_finish(self, message, **kwargs): self.trigger(event.RESUME, conn=self) self.in_flight -= 1 try: self.send(protocol.finish(message.id)) except Exception as e: self.close() self.trigger( event.ERROR, conn=self, error=protocol.SendError('failed to send FIN %s' % message.id, e), ) def _on_message_touch(self, message, **kwargs): try: self.send(protocol.touch(message.id)) except Exception as e: self.close() self.trigger( event.ERROR, conn=self, error=protocol.SendError('failed to send TOUCH %s' % message.id, e), )
the-stack_0_56
import numpy as np from openmdao.api import ExplicitComponent from pycycle.constants import P_REF, R_UNIVERSAL_ENG, R_UNIVERSAL_SI, MIN_VALID_CONCENTRATION class PropsCalcs(ExplicitComponent): """computes, S, H, Cp, Cv, gamma, given a converged equilibirum mixture""" def initialize(self): self.options.declare('thermo', desc='thermodynamic data object', recordable=False) def setup(self): thermo = self.options['thermo'] self.add_input('T', val=284., units="degK", desc="Temperature") self.add_input('P', val=1., units='bar', desc="Pressure") self.add_input('n', val=np.ones(thermo.num_prod), desc="molar concentration of the mixtures, last element is the total molar concentration") self.add_input('n_moles', val=1., desc="1/molar_mass for gaseous mixture") ne1 = thermo.num_element + 1 self.add_input('result_T', val=np.ones(ne1), desc="result of the linear solve for T", shape=ne1) self.add_input('result_P', val=np.ones(ne1), desc="result of the linear solve for T", shape=ne1) self.add_output('h', val=1., units="cal/g", desc="enthalpy") self.add_output('S', val=1., units="cal/(g*degK)", desc="entropy") self.add_output('gamma', val=1.4, lower=1.0, upper=2.0, desc="ratio of specific heats") self.add_output('Cp', val=1., units="cal/(g*degK)", desc="Specific heat at constant pressure") self.add_output('Cv', val=1., units="cal/(g*degK)", desc="Specific heat at constant volume") self.add_output('rho', val=0.0004, units="g/cm**3", desc="density") self.add_output('R', val=1., units='(N*m)/(kg*degK)', desc='Specific gas constant') # self.deriv_options['check_type'] = "cs" # partial derivs setup self.declare_partials('h', ['n', 'T']) self.declare_partials('S', ['n', 'T', 'P']) self.declare_partials('S', 'n_moles') self.declare_partials('Cp', ['n', 'T', 'result_T']) self.declare_partials('rho', ['T', 'P', 'n_moles']) self.declare_partials('gamma', ['n', 'n_moles', 'T', 'result_T', 'result_P']) self.declare_partials('Cv', ['n', 'n_moles', 'T', 'result_T', 'result_P']) self.declare_partials('R', 'n_moles', val=R_UNIVERSAL_SI) def compute(self, inputs, outputs): thermo = self.options['thermo'] num_prod = thermo.num_prod num_element = thermo.num_element T = inputs['T'] P = inputs['P'] result_T = inputs['result_T'] nj = inputs['n'][:num_prod] # nj[nj<0] = 1e-10 # ensure all concentrations stay non-zero n_moles = inputs['n_moles'] self.dlnVqdlnP = dlnVqdlnP = -1 + inputs['result_P'][num_element] self.dlnVqdlnT = dlnVqdlnT = 1 - result_T[num_element] self.Cp0_T = Cp0_T = thermo.Cp0(T) Cpf = np.sum(nj*Cp0_T) self.H0_T = H0_T = thermo.H0(T) self.S0_T = S0_T = thermo.S0(T) self.nj_H0 = nj_H0 = nj*H0_T # Cpe = 0 # for i in range(0, num_element): # for j in range(0, num_prod): # Cpe -= thermo.aij[i][j]*nj[j]*H0_T[j]*self.result_T[i] # vectorization of this for loop for speed Cpe = -np.sum(np.sum(thermo.aij*nj_H0, axis=1)*result_T[:num_element]) Cpe += np.sum(nj_H0*H0_T) # nj*H0_T**2 Cpe -= np.sum(nj_H0)*result_T[num_element] outputs['h'] = np.sum(nj_H0)*R_UNIVERSAL_ENG*T try: val = (S0_T+np.log(n_moles/nj/(P/P_REF))) except FloatingPointError: P = 1e-5 val = (S0_T+np.log(n_moles/nj/(P/P_REF))) outputs['S'] = R_UNIVERSAL_ENG * np.sum(nj*val) outputs['Cp'] = Cp = (Cpe+Cpf)*R_UNIVERSAL_ENG outputs['Cv'] = Cv = Cp + n_moles*R_UNIVERSAL_ENG*dlnVqdlnT**2/dlnVqdlnP outputs['gamma'] = -1*Cp/Cv/dlnVqdlnP outputs['rho'] = P/(n_moles*R_UNIVERSAL_SI*T)*100 # 1 Bar is 100 Kpa outputs['R'] = R_UNIVERSAL_SI*n_moles #(m**3 * Pa)/(mol*degK) def compute_partials(self, inputs, J): thermo = self.options['thermo'] num_prod = thermo.num_prod num_element = thermo.num_element T = inputs['T'] P = inputs['P'] nj = inputs['n'] n_moles = inputs['n_moles'] result_T = inputs['result_T'] result_T_last = result_T[num_element] result_T_rest = result_T[:num_element] dlnVqdlnP = -1 + inputs['result_P'][num_element] dlnVqdlnT = 1 - result_T_last Cp0_T = thermo.Cp0(T) Cpf = np.sum(nj * Cp0_T) H0_T = thermo.H0(T) S0_T = thermo.S0(T) nj_H0 = nj * H0_T # Cpe = 0 # for i in range(0, num_element): # for j in range(0, num_prod): # Cpe -= thermo.aij[i][j]*nj[j]*H0_T[j]*self.result_T[i] # vectorization of this for loop for speed Cpe = -np.sum(np.sum(thermo.aij * nj_H0, axis=1) * result_T_rest) Cpe += np.sum(nj_H0 * H0_T) # nj*H0_T**2 Cpe -= np.sum(nj_H0) * result_T_last Cp = (Cpe + Cpf) * R_UNIVERSAL_ENG Cv = Cp + n_moles * R_UNIVERSAL_ENG * dlnVqdlnT ** 2 / dlnVqdlnP dH0_dT = thermo.H0_applyJ(T, 1.) dS0_dT = thermo.S0_applyJ(T, 1.) dCp0_dT = thermo.Cp0_applyJ(T, 1.) sum_nj_R = n_moles*R_UNIVERSAL_SI drho_dT = P/(sum_nj_R*T**2)*100 drho_dnmoles = -P/(n_moles**2*R_UNIVERSAL_SI*T)*100 dCpe_dT = 2*np.sum(nj*H0_T*dH0_dT) # for i in range(num_element): # self.dCpe_dT -= np.sum(aij[i]*nj*self.dH0_dT)*self.result_T[i] dCpe_dT -= np.sum(np.sum(thermo.aij*nj*dH0_dT, axis=1)*result_T_rest) dCpe_dT -= np.sum(nj*dH0_dT)*result_T_last dCpf_dT = np.sum(nj*dCp0_dT) J['h', 'T'] = R_UNIVERSAL_ENG*(np.sum(nj*dH0_dT)*T + np.sum(nj*H0_T)) J['h', 'n'] = R_UNIVERSAL_ENG*T*H0_T J['S', 'n'] = R_UNIVERSAL_ENG*(S0_T + np.log(n_moles) - np.log(P/P_REF) - np.log(nj) - 1) # zero out any derivs w.r.t trace species _trace = np.where(nj <= MIN_VALID_CONCENTRATION+1e-20) J['S', 'n'][0, _trace] = 0 J['S', 'T'] = R_UNIVERSAL_ENG*np.sum(nj*dS0_dT) J['S', 'P'] = -R_UNIVERSAL_ENG*np.sum(nj/P) J['S', 'n_moles'] = R_UNIVERSAL_ENG*np.sum(nj)/n_moles J['rho', 'T'] = -P/(sum_nj_R*T**2)*100 J['rho', 'n_moles'] = -P/(n_moles**2*R_UNIVERSAL_SI*T)*100 J['rho', 'P'] = 1/(sum_nj_R*T)*100 dCp_dnj = R_UNIVERSAL_ENG*(Cp0_T + H0_T**2) for j in range(num_prod): for i in range(num_element): dCp_dnj[j] -= R_UNIVERSAL_ENG*thermo.aij[i][j]*H0_T[j]*result_T[i] dCp_dnj -= R_UNIVERSAL_ENG * H0_T * result_T_last J['Cp', 'n'] = dCp_dnj dCp_dresultT = np.zeros(num_element+1, dtype=inputs._data.dtype) # for i in range(num_element): # self.dCp_dresultT[i] = -R_UNIVERSAL_ENG*np.sum(aij[i]*nj_H0) dCp_dresultT[:num_element] = -R_UNIVERSAL_ENG*np.sum(thermo.aij*nj_H0, axis=1) dCp_dresultT[num_element] = - R_UNIVERSAL_ENG*np.sum(nj_H0) J['Cp', 'result_T'] = dCp_dresultT dCp_dT = (dCpe_dT + dCpf_dT)*R_UNIVERSAL_ENG J['Cp', 'T'] = dCp_dT J['Cv', 'n'] = dCp_dnj dCv_dnmoles = R_UNIVERSAL_ENG*dlnVqdlnT**2/dlnVqdlnP J['Cv', 'n_moles'] = dCv_dnmoles J['Cv', 'T'] = dCp_dT dCv_dresultP = np.zeros((1, num_element+1), dtype=inputs._data.dtype) dCv_dresultP[0, -1] = -R_UNIVERSAL_ENG*n_moles*(dlnVqdlnT/dlnVqdlnP)**2 J['Cv', 'result_P'] = dCv_dresultP dCv_dresultT = dCp_dresultT.copy() dCv_dresultT[-1] -= n_moles*R_UNIVERSAL_ENG/dlnVqdlnP*(2*dlnVqdlnT) dCv_dresultT_last = dCv_dresultT[-1] J['Cv', 'result_T'] = dCv_dresultT J['gamma', 'n'] = dCp_dnj*(Cp/Cv-1)/(dlnVqdlnP*Cv) J['gamma', 'n_moles'] = Cp/dlnVqdlnP/Cv**2*dCv_dnmoles J['gamma', 'T'] = dCp_dT/dlnVqdlnP/Cv*(Cp/Cv-1) dgamma_dresultT = np.zeros((1, num_element+1), dtype=inputs._data.dtype) dgamma_dresultT[0, :num_element] = 1/Cv/dlnVqdlnP*dCp_dresultT[:num_element]*(Cp/Cv-1) dgamma_dresultT[0, -1] = (-dCp_dresultT[-1]/Cv+Cp/Cv**2*dCv_dresultT_last)/dlnVqdlnP J['gamma', 'result_T'] = dgamma_dresultT gamma_dresultP = np.zeros((1, num_element+1), dtype=inputs._data.dtype) gamma_dresultP[0, num_element] = Cp/Cv/dlnVqdlnP*(dCv_dresultP[0, -1]/Cv + 1/dlnVqdlnP) J['gamma', 'result_P'] = gamma_dresultP if __name__ == "__main__": from openmdao.api import Problem, Group, IndepVarComp from pycycle.cea import species_data thermo = species_data.Properties(species_data.co2_co_o2) p = Problem() model = p.model = Group() indeps = model.add_subsystem('indeps', IndepVarComp(), promotes=['*']) indeps.add_output('T', 2761.56784655, units='degK') indeps.add_output('P', 1.034210, units='bar') indeps.add_output('n', val=np.array([2.272e-02, 1.000e-10, 1.136e-02])) indeps.add_output('n_moles', val=0.0340831628675) indeps.add_output('result_T', val=np.array([-3.02990116, 1.95459777, -0.05024694])) indeps.add_output('result_P', val=np.array([0.53047724, 0.48627081, -0.00437025])) model.add_subsystem('calcs', PropsCalcs(thermo=thermo), promotes=['*']) p.setup() p.run_model() print("outputs") print('h', p['h']) print('S', p['S']) print('gamma', p['gamma']) print('Cp', p['Cp']) print('Cv', p['Cv']) print('rho', p['rho']) print() print() print('############################################') p.model.run_linearize() jac = p.model.get_subsystem('calcs').jacobian._subjacs for pair in jac: print(pair) print(jac[pair]) print
the-stack_0_57
import numpy as np from PIL import Image from tqdm import tqdm import torch from torch import nn, optim from torch.autograd import Variable, grad from torchvision import utils from model import Generator, Discriminator from datetime import datetime import random import copy import os import config import utils import data import evaluate import torch.backends.cudnn as cudnn cudnn.benchmark = True from torch.nn import functional as F args = config.get_config() writer = None def batch_size(reso): if args.gpu_count == 1: save_memory = False if not save_memory: batch_table = {4:128, 8:128, 16:128, 32:64, 64:32, 128:16, 256:8, 512:4, 1024:1} else: batch_table = {4:128, 8:128, 16:128, 32:32, 64:16, 128:4, 256:2, 512:2, 1024:1} elif args.gpu_count == 2: batch_table = {4:256, 8:256, 16:256, 32:128, 64:64, 128:32, 256:16, 512:8, 1024:2} elif args.gpu_count == 4: batch_table = {4:512, 8:256, 16:128, 32:64, 64:32, 128:32, 256:32, 512:16, 1024:4} elif args.gpu_count == 8: batch_table = {4:512, 8:512, 16:512, 32:256, 64:256, 128:128, 256:64, 512:32, 1024:8} else: assert(False) return batch_table[reso] def batch_size_by_phase(phase): return batch_size(4 * 2 ** phase) class Session: def __init__(self): # Note: 4 requirements for sampling from pre-existing models: # 1) Ensure you save and load both multi-gpu versions (DataParallel) or both not. # 2) Ensure you set the same phase value as the pre-existing model and that your local and global alpha=1.0 are set # 3) Sample from the g_running, not from the latest generator # 4) You may need to warm up the g_running by running evaluate.reconstruction_dryrun() first self.alpha = -1 self.sample_i = min(args.start_iteration, 0) self.phase = args.start_phase self.generator = nn.DataParallel( Generator(args.nz+1, args.n_label).cuda() ) self.g_running = nn.DataParallel( Generator(args.nz+1, args.n_label).cuda() ) self.encoder = nn.DataParallel( Discriminator(nz = args.nz+1, n_label = args.n_label, binary_predictor = args.train_mode == config.MODE_GAN).cuda() ) print("Using ", torch.cuda.device_count(), " GPUs!") self.reset_opt() print('Session created.') def reset_opt(self): self.optimizerG = optim.Adam(self.generator.parameters(), args.lr, betas=(0.0, 0.99)) self.optimizerD = optim.Adam(self.encoder.parameters(), args.lr, betas=(0.0, 0.99)) # includes all the encoder parameters... def save_all(self, path): torch.save({'G_state_dict': self.generator.state_dict(), 'D_state_dict': self.encoder.state_dict(), 'G_running_state_dict': self.g_running.state_dict(), 'optimizerD': self.optimizerD.state_dict(), 'optimizerG': self.optimizerG.state_dict(), 'iteration': self.sample_i, 'phase': self.phase, 'alpha': self.alpha}, path) def load(self, path): checkpoint = torch.load(path) self.sample_i = int(checkpoint['iteration']) self.generator.load_state_dict(checkpoint['G_state_dict']) self.g_running.load_state_dict(checkpoint['G_running_state_dict']) self.encoder.load_state_dict(checkpoint['D_state_dict']) if args.reset_optimizers <= 0: self.optimizerD.load_state_dict(checkpoint['optimizerD']) self.optimizerG.load_state_dict(checkpoint['optimizerG']) print("Reloaded old optimizers") else: print("Despite loading the state, we reset the optimizers.") self.alpha = checkpoint['alpha'] self.phase = int(checkpoint['phase']) if args.start_phase > 0: #If the start phase has been manually set, try to actually use it (e.g. when have trained 64x64 for extra rounds and then turning the model over to 128x128) self.phase = min(args.start_phase, self.phase) print("Use start phase: {}".format(self.phase)) if self.phase > args.max_phase: print('Warning! Loaded model claimed phase {} but max_phase={}'.format(self.phase, args.max_phase)) self.phase = args.max_phase def create(self): if args.start_iteration <= 0: args.start_iteration = 1 if args.no_progression: self.sample_i = args.start_iteration = int( (args.max_phase + 0.5) * args.images_per_stage ) # Start after the fade-in stage of the last iteration args.force_alpha = 1.0 print("Progressive growth disabled. Setting start step = {} and alpha = {}".format(args.start_iteration, args.force_alpha)) else: reload_from = '{}/checkpoint/{}_state'.format(args.save_dir, str(args.start_iteration).zfill(6)) #e.g. '604000' #'600000' #latest' print(reload_from) if os.path.exists(reload_from): self.load(reload_from) print("Loaded {}".format(reload_from)) print("Iteration asked {} and got {}".format(args.start_iteration, self.sample_i)) if args.testonly: self.generator = copy.deepcopy(self.g_running) else: assert(not args.testonly) self.sample_i = args.start_iteration print('Start from iteration {}'.format(self.sample_i)) self.g_running.train(False) if args.force_alpha >= 0.0: self.alpha = args.force_alpha accumulate(self.g_running, self.generator, 0) def setup(): utils.make_dirs() if not args.testonly: config.log_args(args) if args.use_TB: from dateutil import tz from tensorboardX import SummaryWriter dt = datetime.now(tz.gettz('Europe/Helsinki')).strftime(r"%y%m%d_%H%M") global writer writer = SummaryWriter("{}/{}/{}".format(args.summary_dir, args.save_dir, dt)) random.seed(args.manual_seed) torch.manual_seed(args.manual_seed) torch.cuda.manual_seed_all(args.manual_seed) def accumulate(model1, model2, decay=0.999): par1 = dict(model1.named_parameters()) par2 = dict(model2.named_parameters()) for k in par1.keys(): par1[k].data.mul_(decay).add_(1 - decay, par2[k].data) def get_grad_penalty(discriminator, real_image, fake_image, step, alpha): """ Used in WGAN-GP version only. """ eps = torch.rand(batch_size_by_phase(step), 1, 1, 1).cuda() if eps.size(0) != real_image.size(0) or eps.size(0) != fake_image.size(0): # If end-of-batch situation, we restrict other vectors to matcht the number of training images available. eps = eps[:real_image.size(0)] fake_image = fake_image[:real_image.size(0)] x_hat = eps * real_image.data + (1 - eps) * fake_image.data x_hat = Variable(x_hat, requires_grad=True) if args.train_mode == config.MODE_GAN: # Regular GAN mode hat_predict, _ = discriminator(x_hat, step, alpha, args.use_ALQ) grad_x_hat = grad( outputs=hat_predict.sum(), inputs=x_hat, create_graph=True)[0] else: hat_z = discriminator(x_hat, step, alpha, args.use_ALQ) # KL_fake: \Delta( e(g(Z)) , Z ) -> max_e KL_maximizer = KLN01Loss(direction=args.KL, minimize=False) KL_fake = KL_maximizer(hat_z) * args.fake_D_KL_scale grad_x_hat = grad( outputs=KL_fake.sum(), inputs=x_hat, create_graph=True)[0] # Push the gradients of the interpolated samples towards 1 grad_penalty = ((grad_x_hat.view(grad_x_hat.size(0), -1) .norm(2, dim=1) - 1)**2).mean() grad_penalty = 10 * grad_penalty return grad_penalty def D_prediction_of_G_output(generator, encoder, step, alpha): # To use labels, enable here and elsewhere: #label = Variable(torch.ones(batch_size_by_phase(step), args.n_label)).cuda() # label = Variable( # torch.multinomial( # torch.ones(args.n_label), args.batch_size, replacement=True)).cuda() myz = Variable(torch.randn(batch_size_by_phase(step), args.nz)).cuda(non_blocking=(args.gpu_count>1)) myz = utils.normalize(myz) myz, label = utils.split_labels_out_of_latent(myz) fake_image = generator(myz, label, step, alpha) fake_predict, _ = encoder(fake_image, step, alpha, args.use_ALQ) loss = fake_predict.mean() return loss, fake_image class KLN01Loss(torch.nn.Module): #Adapted from https://github.com/DmitryUlyanov/AGE def __init__(self, direction, minimize): super(KLN01Loss, self).__init__() self.minimize = minimize assert direction in ['pq', 'qp'], 'direction?' self.direction = direction def forward(self, samples): assert samples.nelement() == samples.size(1) * samples.size(0), '?' samples = samples.view(samples.size(0), -1) self.samples_var = utils.var(samples) self.samples_mean = samples.mean(0) samples_mean = self.samples_mean samples_var = self.samples_var if self.direction == 'pq': t1 = (1 + samples_mean.pow(2)) / (2 * samples_var.pow(2)) t2 = samples_var.log() KL = (t1 + t2 - 0.5).mean() else: # In the AGE implementation, there is samples_var^2 instead of samples_var^1 t1 = (samples_var + samples_mean.pow(2)) / 2 # In the AGE implementation, this did not have the 0.5 scaling factor: t2 = -0.5*samples_var.log() KL = (t1 + t2 - 0.5).mean() if not self.minimize: KL *= -1 return KL def train(generator, encoder, g_running, train_data_loader, test_data_loader, session, total_steps, train_mode): pbar = tqdm(initial=session.sample_i, total = total_steps) benchmarking = False match_x = args.match_x generatedImagePool = None refresh_dataset = True refresh_imagePool = True # After the Loading stage, we cycle through successive Fade-in and Stabilization stages batch_count = 0 reset_optimizers_on_phase_start = False # TODO Unhack this (only affects the episode count statistics anyway): if args.data != 'celebaHQ': epoch_len = len(train_data_loader(1,4).dataset) else: epoch_len = train_data_loader._len['data4x4'] if args.step_offset != 0: if args.step_offset == -1: args.step_offset = session.sample_i print("Step offset is {}".format(args.step_offset)) session.phase += args.phase_offset session.alpha = 0.0 while session.sample_i < total_steps: ####################### Phase Maintenance ####################### steps_in_previous_phases = max(session.phase * args.images_per_stage, args.step_offset) sample_i_current_stage = session.sample_i - steps_in_previous_phases # If we can move to the next phase if sample_i_current_stage >= args.images_per_stage: if session.phase < args.max_phase: # If any phases left iteration_levels = int(sample_i_current_stage / args.images_per_stage) session.phase += iteration_levels sample_i_current_stage -= iteration_levels * args.images_per_stage match_x = args.match_x # Reset to non-matching phase print("iteration B alpha={} phase {} will be reduced to 1 and [max]".format(sample_i_current_stage, session.phase)) refresh_dataset = True refresh_imagePool = True # Reset the pool to avoid images of 2 different resolutions in the pool if reset_optimizers_on_phase_start: utils.requires_grad(generator) utils.requires_grad(encoder) generator.zero_grad() encoder.zero_grad() session.reset_opt() print("Optimizers have been reset.") reso = 4 * 2 ** session.phase # If we can switch from fade-training to stable-training if sample_i_current_stage >= args.images_per_stage/2: if session.alpha < 1.0: refresh_dataset = True # refresh dataset generator since no longer have to fade match_x = args.match_x * args.matching_phase_x else: match_x = args.match_x session.alpha = min(1, sample_i_current_stage * 2.0 / args.images_per_stage) # For 100k, it was 0.00002 = 2.0 / args.images_per_stage if refresh_dataset: train_dataset = data.Utils.sample_data2(train_data_loader, batch_size(reso), reso, session) refresh_dataset = False print("Refreshed dataset. Alpha={} and iteration={}".format(session.alpha, sample_i_current_stage)) if refresh_imagePool: imagePoolSize = 200 if reso < 256 else 100 generatedImagePool = utils.ImagePool(imagePoolSize) #Reset the pool to avoid images of 2 different resolutions in the pool refresh_imagePool = False print('Image pool created with size {} because reso is {}'.format(imagePoolSize, reso)) ####################### Training init ####################### z = Variable( torch.FloatTensor(batch_size(reso), args.nz, 1, 1) ).cuda(non_blocking=(args.gpu_count>1)) KL_minimizer = KLN01Loss(direction=args.KL, minimize=True) KL_maximizer = KLN01Loss(direction=args.KL, minimize=False) stats = {} one = torch.FloatTensor([1]).cuda(non_blocking=(args.gpu_count>1)) try: real_image, _ = next(train_dataset) except (OSError, StopIteration): train_dataset = data.Utils.sample_data2(train_data_loader, batch_size(reso), reso, session) real_image, _ = next(train_dataset) ####################### DISCRIMINATOR / ENCODER ########################### utils.switch_grad_updates_to_first_of(encoder, generator) encoder.zero_grad() x = Variable(real_image).cuda(non_blocking=(args.gpu_count>1)) kls = "" if train_mode == config.MODE_GAN: # Discriminator for real samples real_predict, _ = encoder(x, session.phase, session.alpha, args.use_ALQ) real_predict = real_predict.mean() \ - 0.001 * (real_predict ** 2).mean() real_predict.backward(-one) # Towards 1 # (1) Generator => D. Identical to (2) see below fake_predict, fake_image = D_prediction_of_G_output(generator, encoder, session.phase, session.alpha) fake_predict.backward(one) # Grad penalty grad_penalty = get_grad_penalty(encoder, x, fake_image, session.phase, session.alpha) grad_penalty.backward() elif train_mode == config.MODE_CYCLIC: e_losses = [] # e(X) real_z = encoder(x, session.phase, session.alpha, args.use_ALQ) if args.use_real_x_KL: # KL_real: - \Delta( e(X) , Z ) -> max_e KL_real = KL_minimizer(real_z) * args.real_x_KL_scale e_losses.append(KL_real) stats['real_mean'] = KL_minimizer.samples_mean.data.mean() stats['real_var'] = KL_minimizer.samples_var.data.mean() stats['KL_real'] = KL_real.data.item() kls = "{0:.3f}".format(stats['KL_real']) # The final entries are the label. Normal case, just 1. Extract it/them, and make it [b x 1]: real_z, label = utils.split_labels_out_of_latent(real_z) recon_x = generator(real_z, label, session.phase, session.alpha) if args.use_loss_x_reco: # match_x: E_x||g(e(x)) - x|| -> min_e err = utils.mismatch(recon_x, x, args.match_x_metric) * match_x e_losses.append(err) stats['x_reconstruction_error'] = err.item() args.use_wpgan_grad_penalty = False grad_penalty = 0.0 if args.use_loss_fake_D_KL: # TODO: The following codeblock is essentially the same as the KL_minimizer part on G side. Unify utils.populate_z(z, args.nz+args.n_label, args.noise, batch_size(reso)) z = torch.squeeze(z) z, label = utils.split_labels_out_of_latent(z) fake = generator(z, label, session.phase, session.alpha).detach() if session.alpha >= 1.0: fake = generatedImagePool.query(fake.data) # e(g(Z)) egz = encoder(fake, session.phase, session.alpha, args.use_ALQ) # KL_fake: \Delta( e(g(Z)) , Z ) -> max_e KL_fake = KL_maximizer(egz) * args.fake_D_KL_scale e_losses.append(KL_fake) stats['fake_mean'] = KL_maximizer.samples_mean.data.mean() stats['fake_var'] = KL_maximizer.samples_var.data.mean() stats['KL_fake'] = -KL_fake.item() kls = "{0}/{1:.3f}".format(kls, stats['KL_fake']) if args.use_wpgan_grad_penalty: grad_penalty = get_grad_penalty(encoder, x, fake, session.phase, session.alpha) # Update e if len(e_losses) > 0: e_loss = sum(e_losses) stats['E_loss'] = np.float32(e_loss.cpu().detach().numpy()) e_loss.backward() if args.use_wpgan_grad_penalty: grad_penalty.backward() stats['Grad_penalty'] = grad_penalty.data #book-keeping disc_loss_val = e_loss.item() session.optimizerD.step() torch.cuda.empty_cache() ######################## GENERATOR / DECODER ############################# if (batch_count + 1) % args.n_critic == 0: utils.switch_grad_updates_to_first_of(generator, encoder) for _ in range(args.n_generator): generator.zero_grad() g_losses = [] if train_mode == config.MODE_GAN: fake_predict, _ = D_prediction_of_G_output(generator, encoder, session.phase, session.alpha) loss = -fake_predict g_losses.append(loss) elif train_mode == config.MODE_CYCLIC: #TODO We push the z variable around here like idiots def KL_of_encoded_G_output(generator, z): utils.populate_z(z, args.nz+args.n_label, args.noise, batch_size(reso)) z, label = utils.split_labels_out_of_latent(z) fake = generator(z, label, session.phase, session.alpha) egz = encoder(fake, session.phase, session.alpha, args.use_ALQ) # KL_fake: \Delta( e(g(Z)) , Z ) -> min_g return egz, label, KL_minimizer(egz) * args.fake_G_KL_scale, z egz, label, kl, z = KL_of_encoded_G_output(generator, z) if args.use_loss_KL_z: g_losses.append(kl) # G minimizes this KL stats['KL(Phi(G))'] = kl.item() kls = "{0}/{1:.3f}".format(kls, stats['KL(Phi(G))']) if args.use_loss_z_reco: z = torch.cat((z, label), 1) z_diff = utils.mismatch(egz, z, args.match_z_metric) * args.match_z # G tries to make the original z and encoded z match g_losses.append(z_diff) if len(g_losses) > 0: loss = sum(g_losses) stats['G_loss'] = np.float32(loss.cpu().detach().numpy()) loss.backward() # Book-keeping only: gen_loss_val = loss.item() session.optimizerG.step() torch.cuda.empty_cache() if train_mode == config.MODE_CYCLIC: if args.use_loss_z_reco: stats['z_reconstruction_error'] = z_diff.item() accumulate(g_running, generator) del z, x, one, real_image, real_z, KL_real, label, recon_x, fake, egz, KL_fake, kl, z_diff if train_mode == config.MODE_CYCLIC: if args.use_TB: for key,val in stats.items(): writer.add_scalar(key, val, session.sample_i) elif batch_count % 100 == 0: print(stats) if args.use_TB: writer.add_scalar('LOD', session.phase + session.alpha, session.sample_i) ######################## Statistics ######################## b = batch_size_by_phase(session.phase) zr, xr = (stats['z_reconstruction_error'], stats['x_reconstruction_error']) if train_mode == config.MODE_CYCLIC else (0.0, 0.0) e = (session.sample_i / float(epoch_len)) pbar.set_description( ('{0}; it: {1}; phase: {2}; b: {3:.1f}; Alpha: {4:.3f}; Reso: {5}; E: {6:.2f}; KL(real/fake/fakeG): {7}; z-reco: {8:.2f}; x-reco {9:.3f}; real_var {10:.4f}').format(batch_count+1, session.sample_i+1, session.phase, b, session.alpha, reso, e, kls, zr, xr, stats['real_var']) ) #(f'{i + 1}; it: {iteration+1}; b: {b:.1f}; G: {gen_loss_val:.5f}; D: {disc_loss_val:.5f};' # f' Grad: {grad_loss_val:.5f}; Alpha: {alpha:.3f}; Reso: {reso}; S-mean: {real_mean:.3f}; KL(real/fake/fakeG): {kls}; z-reco: {zr:.2f}')) pbar.update(batch_size(reso)) session.sample_i += batch_size(reso) # if not benchmarking else 100 batch_count += 1 ######################## Saving ######################## if batch_count % args.checkpoint_cycle == 0: for postfix in {'latest', str(session.sample_i).zfill(6)}: session.save_all('{}/{}_state'.format(args.checkpoint_dir, postfix)) print("Checkpointed to {}".format(session.sample_i)) ######################## Tests ######################## try: evaluate.tests_run(g_running, encoder, test_data_loader, session, writer, reconstruction = (batch_count % 800 == 0), interpolation = (batch_count % 800 == 0), collated_sampling = (batch_count % 800 == 0), individual_sampling = (batch_count % (args.images_per_stage/batch_size(reso)/4) == 0) ) except (OSError, StopIteration): print("Skipped periodic tests due to an exception.") pbar.close() def main(): setup() session = Session() session.create() print('PyTorch {}'.format(torch.__version__)) if args.train_path: train_data_loader = data.get_loader(args.data, args.train_path) else: train_data_loader = None if args.test_path: test_data_loader = data.get_loader(args.data, args.test_path) elif args.aux_inpath: test_data_loader = data.get_loader(args.data, args.aux_inpath) else: test_data_loader = None # 4 modes: Train (with data/train), test (with data/test), aux-test (with custom aux_inpath), dump-training-set if args.run_mode == config.RUN_TRAIN: train(session.generator, session.encoder, session.g_running, train_data_loader, test_data_loader, session = session, total_steps = args.total_kimg * 1000, train_mode = args.train_mode) elif args.run_mode == config.RUN_TEST: if args.reconstructions_N > 0 or args.interpolate_N > 0: evaluate.Utils.reconstruction_dryrun(session.generator, session.encoder, test_data_loader, session=session) evaluate.tests_run(session.generator, session.encoder, test_data_loader, session=session, writer=writer) elif args.run_mode == config.RUN_DUMP: session.phase = args.start_phase data.dump_training_set(train_data_loader, args.dump_trainingset_N, args.dump_trainingset_dir, session) if __name__ == '__main__': main()
the-stack_0_58
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import copy import itertools import json import logging import math import os import pkgutil import socket import traceback from collections import defaultdict from datetime import datetime, timedelta from typing import Dict, List, Optional, Tuple from urllib.parse import quote, unquote import lazy_object_proxy import markdown import sqlalchemy as sqla from flask import ( Markup, Response, escape, flash, jsonify, make_response, redirect, render_template, request, session as flask_session, url_for, ) from flask_appbuilder import BaseView, ModelView, expose, has_access, permission_name from flask_appbuilder.actions import action from flask_appbuilder.models.sqla.filters import BaseFilter from flask_babel import lazy_gettext from jinja2.utils import htmlsafe_json_dumps # type: ignore from pygments import highlight, lexers from pygments.formatters import HtmlFormatter from sqlalchemy import and_, desc, func, or_, union_all from sqlalchemy.orm import joinedload from wtforms import SelectField, validators import airflow from airflow import models, settings from airflow._vendor import nvd3 from airflow.api.common.experimental.mark_tasks import ( set_dag_run_state_to_failed, set_dag_run_state_to_success, ) from airflow.configuration import AIRFLOW_CONFIG, conf from airflow.exceptions import AirflowException from airflow.executors.executor_loader import ExecutorLoader from airflow.jobs.base_job import BaseJob from airflow.jobs.scheduler_job import SchedulerJob from airflow.models import Connection, DagModel, DagTag, Log, SlaMiss, TaskFail, XCom, errors from airflow.models.dagcode import DagCode from airflow.models.dagrun import DagRun, DagRunType from airflow.settings import STORE_SERIALIZED_DAGS from airflow.ti_deps.dep_context import DepContext from airflow.ti_deps.dependencies_deps import RUNNING_DEPS, SCHEDULER_QUEUED_DEPS from airflow.utils import timezone from airflow.utils.dates import infer_time_unit, scale_time_units from airflow.utils.helpers import alchemy_to_dict, render_log_filename from airflow.utils.session import create_session, provide_session from airflow.utils.state import State from airflow.www import utils as wwwutils from airflow.www.app import appbuilder from airflow.www.decorators import action_logging, gzipped, has_dag_access from airflow.www.forms import ( ConnectionForm, DagRunForm, DateTimeForm, DateTimeWithNumRunsForm, DateTimeWithNumRunsWithDagRunsForm, ) from airflow.www.widgets import AirflowModelListWidget PAGE_SIZE = conf.getint('webserver', 'page_size') FILTER_TAGS_COOKIE = 'tags_filter' FILTER_STATUS_COOKIE = 'dag_status_filter' if os.environ.get('SKIP_DAGS_PARSING') != 'True': dagbag = models.DagBag(settings.DAGS_FOLDER, store_serialized_dags=STORE_SERIALIZED_DAGS) else: dagbag = models.DagBag(os.devnull, include_examples=False) def get_date_time_num_runs_dag_runs_form_data(request, session, dag): dttm = request.args.get('execution_date') if dttm: dttm = timezone.parse(dttm) else: dttm = dag.get_latest_execution_date(session=session) or timezone.utcnow() base_date = request.args.get('base_date') if base_date: base_date = timezone.parse(base_date) else: # The DateTimeField widget truncates milliseconds and would loose # the first dag run. Round to next second. base_date = (dttm + timedelta(seconds=1)).replace(microsecond=0) default_dag_run = conf.getint('webserver', 'default_dag_run_display_number') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else default_dag_run DR = models.DagRun drs = ( session.query(DR) .filter( DR.dag_id == dag.dag_id, DR.execution_date <= base_date) .order_by(desc(DR.execution_date)) .limit(num_runs) .all() ) dr_choices = [] dr_state = None for dr in drs: dr_choices.append((dr.execution_date.isoformat(), dr.run_id)) if dttm == dr.execution_date: dr_state = dr.state # Happens if base_date was changed and the selected dag run is not in result if not dr_state and drs: dr = drs[0] dttm = dr.execution_date dr_state = dr.state return { 'dttm': dttm, 'base_date': base_date, 'num_runs': num_runs, 'execution_date': dttm.isoformat(), 'dr_choices': dr_choices, 'dr_state': dr_state, } ###################################################################################### # Error handlers ###################################################################################### def circles(error): return render_template( 'airflow/circles.html', hostname=socket.getfqdn() if conf.getboolean( 'webserver', 'EXPOSE_HOSTNAME', fallback=True) else 'redact'), 404 def show_traceback(error): from airflow.utils import asciiart as ascii_ return render_template( 'airflow/traceback.html', hostname=socket.getfqdn() if conf.getboolean( 'webserver', 'EXPOSE_HOSTNAME', fallback=True) else 'redact', nukular=ascii_.nukular, info=traceback.format_exc() if conf.getboolean( 'webserver', 'EXPOSE_STACKTRACE', fallback=True) else 'Error! Please contact server admin'), 500 ###################################################################################### # BaseViews ###################################################################################### class AirflowBaseView(BaseView): from airflow import macros route_base = '' # Make our macros available to our UI templates too. extra_args = { 'macros': macros, } def render_template(self, *args, **kwargs): return super().render_template( *args, # Cache this at most once per request, not for the lifetime of the view instance scheduler_job=lazy_object_proxy.Proxy(SchedulerJob.most_recent_job), **kwargs ) class Airflow(AirflowBaseView): @expose('/health') def health(self): """ An endpoint helping check the health status of the Airflow instance, including metadatabase and scheduler. """ payload = { 'metadatabase': {'status': 'unhealthy'} } latest_scheduler_heartbeat = None scheduler_status = 'unhealthy' payload['metadatabase'] = {'status': 'healthy'} try: scheduler_job = SchedulerJob.most_recent_job() if scheduler_job: latest_scheduler_heartbeat = scheduler_job.latest_heartbeat.isoformat() if scheduler_job.is_alive(): scheduler_status = 'healthy' except Exception: payload['metadatabase']['status'] = 'unhealthy' payload['scheduler'] = {'status': scheduler_status, 'latest_scheduler_heartbeat': latest_scheduler_heartbeat} return wwwutils.json_response(payload) @expose('/home') @has_access def index(self): hide_paused_dags_by_default = conf.getboolean('webserver', 'hide_paused_dags_by_default') default_dag_run = conf.getint('webserver', 'default_dag_run_display_number') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else default_dag_run def get_int_arg(value, default=0): try: return int(value) except ValueError: return default arg_current_page = request.args.get('page', '0') arg_search_query = request.args.get('search', None) arg_tags_filter = request.args.getlist('tags', None) arg_status_filter = request.args.get('status', None) if request.args.get('reset_tags') is not None: flask_session[FILTER_TAGS_COOKIE] = None arg_tags_filter = None else: cookie_val = flask_session.get(FILTER_TAGS_COOKIE) if arg_tags_filter: flask_session[FILTER_TAGS_COOKIE] = ','.join(arg_tags_filter) elif cookie_val: arg_tags_filter = cookie_val.split(',') if arg_status_filter is None: cookie_val = flask_session.get(FILTER_STATUS_COOKIE) if cookie_val: arg_status_filter = cookie_val else: arg_status_filter = 'active' if hide_paused_dags_by_default else 'all' flask_session[FILTER_STATUS_COOKIE] = arg_status_filter else: status = arg_status_filter.strip().lower() flask_session[FILTER_STATUS_COOKIE] = status arg_status_filter = status dags_per_page = PAGE_SIZE current_page = get_int_arg(arg_current_page, default=0) start = current_page * dags_per_page end = start + dags_per_page # Get all the dag id the user could access filter_dag_ids = appbuilder.sm.get_accessible_dag_ids() with create_session() as session: # read orm_dags from the db dags_query = session.query(DagModel).filter( ~DagModel.is_subdag, DagModel.is_active ) if arg_search_query: dags_query = dags_query.filter( DagModel.dag_id.ilike('%' + arg_search_query + '%') | DagModel.owners.ilike('%' + arg_search_query + '%') ) if arg_tags_filter: dags_query = dags_query.filter(DagModel.tags.any(DagTag.name.in_(arg_tags_filter))) if 'all_dags' not in filter_dag_ids: dags_query = dags_query.filter(DagModel.dag_id.in_(filter_dag_ids)) all_dags = dags_query active_dags = dags_query.filter(~DagModel.is_paused) paused_dags = dags_query.filter(DagModel.is_paused) is_paused_count = dict( all_dags.with_entities(DagModel.is_paused, func.count(DagModel.dag_id)) .group_by(DagModel.is_paused).all() ) status_count_active = is_paused_count.get(False, 0) status_count_paused = is_paused_count.get(True, 0) all_dags_count = status_count_active + status_count_paused if arg_status_filter == 'active': current_dags = active_dags num_of_all_dags = status_count_active elif arg_status_filter == 'paused': current_dags = paused_dags num_of_all_dags = status_count_paused else: current_dags = all_dags num_of_all_dags = all_dags_count dags = current_dags.order_by(DagModel.dag_id).options( joinedload(DagModel.tags)).offset(start).limit(dags_per_page).all() dagtags = session.query(DagTag.name).distinct(DagTag.name).all() tags = [ {"name": name, "selected": bool(arg_tags_filter and name in arg_tags_filter)} for name, in dagtags ] import_errors = session.query(errors.ImportError).all() for ie in import_errors: flash( "Broken DAG: [{ie.filename}] {ie.stacktrace}".format(ie=ie), "dag_import_error") from airflow.plugins_manager import import_errors as plugin_import_errors for filename, stacktrace in plugin_import_errors.items(): flash( "Broken plugin: [{filename}] {stacktrace}".format( stacktrace=stacktrace, filename=filename), "error") num_of_pages = int(math.ceil(num_of_all_dags / float(dags_per_page))) state_color_mapping = State.state_color.copy() state_color_mapping["null"] = state_color_mapping.pop(None) return self.render_template( 'airflow/dags.html', dags=dags, current_page=current_page, search_query=arg_search_query if arg_search_query else '', page_size=dags_per_page, num_of_pages=num_of_pages, num_dag_from=min(start + 1, num_of_all_dags), num_dag_to=min(end, num_of_all_dags), num_of_all_dags=num_of_all_dags, paging=wwwutils.generate_pages(current_page, num_of_pages, search=escape(arg_search_query) if arg_search_query else None, status=arg_status_filter if arg_status_filter else None), num_runs=num_runs, tags=tags, state_color=state_color_mapping, status_filter=arg_status_filter, status_count_all=all_dags_count, status_count_active=status_count_active, status_count_paused=status_count_paused) @expose('/dag_stats', methods=['POST']) @has_access @provide_session def dag_stats(self, session=None): dr = models.DagRun allowed_dag_ids = appbuilder.sm.get_accessible_dag_ids() if 'all_dags' in allowed_dag_ids: allowed_dag_ids = [dag_id for dag_id, in session.query(models.DagModel.dag_id)] dag_state_stats = session.query(dr.dag_id, dr.state, sqla.func.count(dr.state))\ .group_by(dr.dag_id, dr.state) # Filter by post parameters selected_dag_ids = { unquote(dag_id) for dag_id in request.form.getlist('dag_ids') if dag_id } if selected_dag_ids: filter_dag_ids = selected_dag_ids.intersection(allowed_dag_ids) else: filter_dag_ids = allowed_dag_ids if not filter_dag_ids: return wwwutils.json_response({}) payload = {} dag_state_stats = dag_state_stats.filter(dr.dag_id.in_(filter_dag_ids)) data = {} for dag_id, state, count in dag_state_stats: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count for dag_id in filter_dag_ids: payload[dag_id] = [] for state in State.dag_states: count = data.get(dag_id, {}).get(state, 0) payload[dag_id].append({ 'state': state, 'count': count }) return wwwutils.json_response(payload) @expose('/task_stats', methods=['POST']) @has_access @provide_session def task_stats(self, session=None): TI = models.TaskInstance DagRun = models.DagRun Dag = models.DagModel allowed_dag_ids = set(appbuilder.sm.get_accessible_dag_ids()) if not allowed_dag_ids: return wwwutils.json_response({}) if 'all_dags' in allowed_dag_ids: allowed_dag_ids = {dag_id for dag_id, in session.query(models.DagModel.dag_id)} # Filter by post parameters selected_dag_ids = { unquote(dag_id) for dag_id in request.form.getlist('dag_ids') if dag_id } if selected_dag_ids: filter_dag_ids = selected_dag_ids.intersection(allowed_dag_ids) else: filter_dag_ids = allowed_dag_ids RunningDagRun = ( session.query(DagRun.dag_id, DagRun.execution_date) .join(Dag, Dag.dag_id == DagRun.dag_id) .filter(DagRun.state == State.RUNNING, Dag.is_active) ) if selected_dag_ids: RunningDagRun = RunningDagRun.filter(DagRun.dag_id.in_(filter_dag_ids)) RunningDagRun = RunningDagRun.subquery('running_dag_run') # Select all task_instances from active dag_runs. RunningTI = ( session.query(TI.dag_id.label('dag_id'), TI.state.label('state')) .join(RunningDagRun, and_(RunningDagRun.c.dag_id == TI.dag_id, RunningDagRun.c.execution_date == TI.execution_date)) ) if selected_dag_ids: RunningTI = RunningTI.filter(TI.dag_id.in_(filter_dag_ids)) if conf.getboolean('webserver', 'SHOW_RECENT_STATS_FOR_COMPLETED_RUNS', fallback=True): LastDagRun = ( session.query( DagRun.dag_id, sqla.func.max(DagRun.execution_date).label('execution_date') ) .join(Dag, Dag.dag_id == DagRun.dag_id) .filter(DagRun.state != State.RUNNING, Dag.is_active) .group_by(DagRun.dag_id) ) if selected_dag_ids: LastDagRun = LastDagRun.filter(DagRun.dag_id.in_(filter_dag_ids)) LastDagRun = LastDagRun.subquery('last_dag_run') # Select all task_instances from active dag_runs. # If no dag_run is active, return task instances from most recent dag_run. LastTI = ( session.query(TI.dag_id.label('dag_id'), TI.state.label('state')) .join(LastDagRun, and_(LastDagRun.c.dag_id == TI.dag_id, LastDagRun.c.execution_date == TI.execution_date)) ) if selected_dag_ids: LastTI = LastTI.filter(TI.dag_id.in_(filter_dag_ids)) FinalTI = union_all(LastTI, RunningTI).alias('final_ti') else: FinalTI = RunningTI.subquery('final_ti') qry = ( session.query(FinalTI.c.dag_id, FinalTI.c.state, sqla.func.count()) .group_by(FinalTI.c.dag_id, FinalTI.c.state) ) data = {} for dag_id, state, count in qry: if dag_id not in data: data[dag_id] = {} data[dag_id][state] = count payload = {} for dag_id in filter_dag_ids: payload[dag_id] = [] for state in State.task_states: count = data.get(dag_id, {}).get(state, 0) payload[dag_id].append({ 'state': state, 'count': count }) return wwwutils.json_response(payload) @expose('/last_dagruns', methods=['POST']) @has_access @provide_session def last_dagruns(self, session=None): DagRun = models.DagRun allowed_dag_ids = appbuilder.sm.get_accessible_dag_ids() if 'all_dags' in allowed_dag_ids: allowed_dag_ids = [dag_id for dag_id, in session.query(models.DagModel.dag_id)] # Filter by post parameters selected_dag_ids = { unquote(dag_id) for dag_id in request.form.getlist('dag_ids') if dag_id } if selected_dag_ids: filter_dag_ids = selected_dag_ids.intersection(allowed_dag_ids) else: filter_dag_ids = allowed_dag_ids if not filter_dag_ids: return wwwutils.json_response({}) query = session.query( DagRun.dag_id, sqla.func.max(DagRun.execution_date).label('last_run') ).group_by(DagRun.dag_id) # Filter to only ask for accessible and selected dags query = query.filter(DagRun.dag_id.in_(filter_dag_ids)) resp = { r.dag_id.replace('.', '__dot__'): { 'dag_id': r.dag_id, 'last_run': r.last_run.isoformat(), } for r in query } return wwwutils.json_response(resp) @expose('/code') @has_dag_access(can_dag_read=True) @has_access @provide_session def code(self, session=None): all_errors = "" try: dag_id = request.args.get('dag_id') dag_orm = DagModel.get_dagmodel(dag_id, session=session) code = DagCode.get_code_by_fileloc(dag_orm.fileloc) html_code = highlight( code, lexers.PythonLexer(), HtmlFormatter(linenos=True)) except Exception as e: all_errors += ( "Exception encountered during " + "dag_id retrieval/dag retrieval fallback/code highlighting:\n\n{}\n".format(e) ) html_code = '<p>Failed to load file.</p><p>Details: {}</p>'.format( escape(all_errors)) return self.render_template( 'airflow/dag_code.html', html_code=html_code, dag=dag_orm, title=dag_id, root=request.args.get('root'), demo_mode=conf.getboolean('webserver', 'demo_mode'), wrapped=conf.getboolean('webserver', 'default_wrap')) @expose('/dag_details') @has_dag_access(can_dag_read=True) @has_access @provide_session def dag_details(self, session=None): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) title = "DAG details" root = request.args.get('root', '') TI = models.TaskInstance states = ( session.query(TI.state, sqla.func.count(TI.dag_id)) .filter(TI.dag_id == dag_id) .group_by(TI.state) .all() ) active_runs = models.DagRun.find( dag_id=dag_id, state=State.RUNNING, external_trigger=False ) return self.render_template( 'airflow/dag_details.html', dag=dag, title=title, root=root, states=states, State=State, active_runs=active_runs) @expose('/rendered') @has_dag_access(can_dag_read=True) @has_access @action_logging def rendered(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = timezone.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) root = request.args.get('root', '') logging.info("Retrieving rendered templates.") dag = dagbag.get_dag(dag_id) task = copy.copy(dag.get_task(task_id)) ti = models.TaskInstance(task=task, execution_date=dttm) try: ti.get_rendered_template_fields() except AirflowException as e: msg = "Error rendering template: " + escape(e) if e.__cause__: msg += Markup("<br/><br/>OriginalError: ") + escape(e.__cause__) flash(msg, "error") except Exception as e: flash("Error rendering template: " + str(e), "error") title = "Rendered Template" html_dict = {} for template_field in task.template_fields: content = getattr(task, template_field) if template_field in wwwutils.get_attr_renderer(): html_dict[template_field] = \ wwwutils.get_attr_renderer()[template_field](content) else: html_dict[template_field] = ( "<pre><code>" + str(content) + "</pre></code>") return self.render_template( 'airflow/ti_code.html', html_dict=html_dict, dag=dag, task_id=task_id, execution_date=execution_date, form=form, root=root, title=title) @expose('/get_logs_with_metadata') @has_dag_access(can_dag_read=True) @has_access @action_logging @provide_session def get_logs_with_metadata(self, session=None): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = timezone.parse(execution_date) if request.args.get('try_number') is not None: try_number = int(request.args.get('try_number')) else: try_number = None metadata = request.args.get('metadata') metadata = json.loads(metadata) response_format = request.args.get('format', 'json') # metadata may be null if not metadata: metadata = {} # Convert string datetime into actual datetime try: execution_date = timezone.parse(execution_date) except ValueError: error_message = ( 'Given execution date, {}, could not be identified ' 'as a date. Example date format: 2015-11-16T14:34:15+00:00'.format( execution_date)) response = jsonify({'error': error_message}) response.status_code = 400 return response logger = logging.getLogger('airflow.task') task_log_reader = conf.get('logging', 'task_log_reader') handler = next((handler for handler in logger.handlers if handler.name == task_log_reader), None) ti = session.query(models.TaskInstance).filter( models.TaskInstance.dag_id == dag_id, models.TaskInstance.task_id == task_id, models.TaskInstance.execution_date == dttm).first() def _get_logs_with_metadata(try_number, metadata): if ti is None: logs = ["*** Task instance did not exist in the DB\n"] metadata['end_of_log'] = True else: logs, metadatas = handler.read(ti, try_number, metadata=metadata) metadata = metadatas[0] return logs, metadata try: if ti is not None: dag = dagbag.get_dag(dag_id) if dag: ti.task = dag.get_task(ti.task_id) if response_format == 'json': logs, metadata = _get_logs_with_metadata(try_number, metadata) message = logs[0] if try_number is not None else logs return jsonify(message=message, metadata=metadata) filename_template = conf.get('logging', 'LOG_FILENAME_TEMPLATE') attachment_filename = render_log_filename( ti=ti, try_number="all" if try_number is None else try_number, filename_template=filename_template) metadata['download_logs'] = True def _generate_log_stream(try_number, metadata): if try_number is None and ti is not None: next_try = ti.next_try_number try_numbers = list(range(1, next_try)) else: try_numbers = [try_number] for try_number in try_numbers: metadata.pop('end_of_log', None) metadata.pop('max_offset', None) metadata.pop('offset', None) while 'end_of_log' not in metadata or not metadata['end_of_log']: logs, metadata = _get_logs_with_metadata(try_number, metadata) yield "\n".join(logs) + "\n" return Response(_generate_log_stream(try_number, metadata), mimetype="text/plain", headers={"Content-Disposition": "attachment; filename={}".format( attachment_filename)}) except AttributeError as e: error_message = ["Task log handler {} does not support read logs.\n{}\n" .format(task_log_reader, str(e))] metadata['end_of_log'] = True return jsonify(message=error_message, error=True, metadata=metadata) @expose('/log') @has_dag_access(can_dag_read=True) @has_access @action_logging @provide_session def log(self, session=None): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') dttm = timezone.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) dag_model = DagModel.get_dagmodel(dag_id) ti = session.query(models.TaskInstance).filter( models.TaskInstance.dag_id == dag_id, models.TaskInstance.task_id == task_id, models.TaskInstance.execution_date == dttm).first() num_logs = 0 if ti is not None: num_logs = ti.next_try_number - 1 if ti.state == State.UP_FOR_RESCHEDULE: # Tasks in reschedule state decremented the try number num_logs += 1 logs = [''] * num_logs root = request.args.get('root', '') return self.render_template( 'airflow/ti_log.html', logs=logs, dag=dag_model, title="Log by attempts", dag_id=dag_id, task_id=task_id, execution_date=execution_date, form=form, root=root, wrapped=conf.getboolean('webserver', 'default_wrap')) @expose('/elasticsearch') @has_dag_access(can_dag_read=True) @has_access @action_logging def elasticsearch(self): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') try_number = request.args.get('try_number', 1) elasticsearch_frontend = conf.get('elasticsearch', 'frontend') log_id_template = conf.get('elasticsearch', 'log_id_template') log_id = log_id_template.format( dag_id=dag_id, task_id=task_id, execution_date=execution_date, try_number=try_number) url = 'https://' + elasticsearch_frontend.format(log_id=quote(log_id)) return redirect(url) @expose('/task') @has_dag_access(can_dag_read=True) @has_access @action_logging def task(self): TI = models.TaskInstance dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = timezone.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) root = request.args.get('root', '') dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect(url_for('Airflow.index')) task = copy.copy(dag.get_task(task_id)) task.resolve_template_files() ti = TI(task=task, execution_date=dttm) ti.refresh_from_db() ti_attrs = [] for attr_name in dir(ti): if not attr_name.startswith('_'): attr = getattr(ti, attr_name) if type(attr) != type(self.task): # noqa ti_attrs.append((attr_name, str(attr))) task_attrs = [] for attr_name in dir(task): if not attr_name.startswith('_'): attr = getattr(task, attr_name) if type(attr) != type(self.task) and \ attr_name not in wwwutils.get_attr_renderer(): # noqa task_attrs.append((attr_name, str(attr))) # Color coding the special attributes that are code special_attrs_rendered = {} for attr_name in wwwutils.get_attr_renderer(): if hasattr(task, attr_name): source = getattr(task, attr_name) special_attrs_rendered[attr_name] = \ wwwutils.get_attr_renderer()[attr_name](source) no_failed_deps_result = [( "Unknown", "All dependencies are met but the task instance is not running. In most " "cases this just means that the task will probably be scheduled soon " "unless:<br/>\n- The scheduler is down or under heavy load<br/>\n{}\n" "<br/>\nIf this task instance does not start soon please contact your " "Airflow administrator for assistance.".format( "- This task instance already ran and had it's state changed manually " "(e.g. cleared in the UI)<br/>" if ti.state == State.NONE else ""))] # Use the scheduler's context to figure out which dependencies are not met dep_context = DepContext(SCHEDULER_QUEUED_DEPS) failed_dep_reasons = [(dep.dep_name, dep.reason) for dep in ti.get_failed_dep_statuses( dep_context=dep_context)] title = "Task Instance Details" return self.render_template( 'airflow/task.html', task_attrs=task_attrs, ti_attrs=ti_attrs, failed_dep_reasons=failed_dep_reasons or no_failed_deps_result, task_id=task_id, execution_date=execution_date, special_attrs_rendered=special_attrs_rendered, form=form, root=root, dag=dag, title=title) @expose('/xcom') @has_dag_access(can_dag_read=True) @has_access @action_logging @provide_session def xcom(self, session=None): dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') # Carrying execution_date through, even though it's irrelevant for # this context execution_date = request.args.get('execution_date') dttm = timezone.parse(execution_date) form = DateTimeForm(data={'execution_date': dttm}) root = request.args.get('root', '') dm_db = models.DagModel ti_db = models.TaskInstance dag = session.query(dm_db).filter(dm_db.dag_id == dag_id).first() ti = session.query(ti_db).filter(ti_db.dag_id == dag_id and ti_db.task_id == task_id).first() if not ti: flash( "Task [{}.{}] doesn't seem to exist" " at the moment".format(dag_id, task_id), "error") return redirect(url_for('Airflow.index')) xcomlist = session.query(XCom).filter( XCom.dag_id == dag_id, XCom.task_id == task_id, XCom.execution_date == dttm).all() attributes = [] for xcom in xcomlist: if not xcom.key.startswith('_'): attributes.append((xcom.key, xcom.value)) title = "XCom" return self.render_template( 'airflow/xcom.html', attributes=attributes, task_id=task_id, execution_date=execution_date, form=form, root=root, dag=dag, title=title) @expose('/run', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def run(self): dag_id = request.form.get('dag_id') task_id = request.form.get('task_id') origin = request.form.get('origin') dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) execution_date = request.form.get('execution_date') execution_date = timezone.parse(execution_date) ignore_all_deps = request.form.get('ignore_all_deps') == "true" ignore_task_deps = request.form.get('ignore_task_deps') == "true" ignore_ti_state = request.form.get('ignore_ti_state') == "true" executor = ExecutorLoader.get_default_executor() valid_celery_config = False valid_kubernetes_config = False try: from airflow.executors.celery_executor import CeleryExecutor valid_celery_config = isinstance(executor, CeleryExecutor) except ImportError: pass try: from airflow.executors.kubernetes_executor import KubernetesExecutor valid_kubernetes_config = isinstance(executor, KubernetesExecutor) except ImportError: pass if not valid_celery_config and not valid_kubernetes_config: flash("Only works with the Celery or Kubernetes executors, sorry", "error") return redirect(origin) ti = models.TaskInstance(task=task, execution_date=execution_date) ti.refresh_from_db() # Make sure the task instance can be run dep_context = DepContext( deps=RUNNING_DEPS, ignore_all_deps=ignore_all_deps, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state) failed_deps = list(ti.get_failed_dep_statuses(dep_context=dep_context)) if failed_deps: failed_deps_str = ", ".join( ["{}: {}".format(dep.dep_name, dep.reason) for dep in failed_deps]) flash("Could not queue task instance for execution, dependencies not met: " "{}".format(failed_deps_str), "error") return redirect(origin) executor.start() executor.queue_task_instance( ti, ignore_all_deps=ignore_all_deps, ignore_task_deps=ignore_task_deps, ignore_ti_state=ignore_ti_state) executor.heartbeat() flash( "Sent {} to the message queue, " "it should start any moment now.".format(ti)) return redirect(origin) @expose('/delete', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def delete(self): from airflow.api.common.experimental import delete_dag from airflow.exceptions import DagNotFound, DagFileExists dag_id = request.values.get('dag_id') origin = request.values.get('origin') or url_for('Airflow.index') try: delete_dag.delete_dag(dag_id) except DagNotFound: flash("DAG with id {} not found. Cannot delete".format(dag_id), 'error') return redirect(request.referrer) except DagFileExists: flash("Dag id {} is still in DagBag. " "Remove the DAG file first.".format(dag_id), 'error') return redirect(request.referrer) flash("Deleting DAG with id {}. May take a couple minutes to fully" " disappear.".format(dag_id)) # Upon success return to origin. return redirect(origin) @expose('/trigger', methods=['POST', 'GET']) @has_dag_access(can_dag_edit=True) @has_access @action_logging @provide_session def trigger(self, session=None): dag_id = request.values.get('dag_id') origin = request.values.get('origin') or url_for('Airflow.index') if request.method == 'GET': return self.render_template( 'airflow/trigger.html', dag_id=dag_id, origin=origin, conf='' ) dag_orm = session.query(models.DagModel).filter(models.DagModel.dag_id == dag_id).first() if not dag_orm: flash("Cannot find dag {}".format(dag_id)) return redirect(origin) execution_date = timezone.utcnow() run_id = f"{DagRunType.MANUAL.value}__{execution_date.isoformat()}" dr = DagRun.find(dag_id=dag_id, run_id=run_id) if dr: flash("This run_id {} already exists".format(run_id)) return redirect(origin) run_conf = {} conf = request.values.get('conf') if conf: try: run_conf = json.loads(conf) except json.decoder.JSONDecodeError: flash("Invalid JSON configuration", "error") return self.render_template( 'airflow/trigger.html', dag_id=dag_id, origin=origin, conf=conf ) dag = dagbag.get_dag(dag_id) dag.create_dagrun( run_id=run_id, execution_date=execution_date, state=State.RUNNING, conf=run_conf, external_trigger=True ) flash( "Triggered {}, " "it should start any moment now.".format(dag_id)) return redirect(origin) def _clear_dag_tis(self, dag, start_date, end_date, origin, recursive=False, confirmed=False, only_failed=False): from airflow.exceptions import AirflowException if confirmed: count = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive, include_parentdag=recursive, only_failed=only_failed, ) flash("{0} task instances have been cleared".format(count)) return redirect(origin) try: tis = dag.clear( start_date=start_date, end_date=end_date, include_subdags=recursive, include_parentdag=recursive, only_failed=only_failed, dry_run=True, ) except AirflowException as ex: flash(str(ex), 'error') return redirect(origin) if not tis: flash("No task instances to clear", 'error') response = redirect(origin) else: details = "\n".join([str(t) for t in tis]) response = self.render_template( 'airflow/confirm.html', message=("Here's the list of task instances you are about " "to clear:"), details=details) return response @expose('/clear', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def clear(self): dag_id = request.form.get('dag_id') task_id = request.form.get('task_id') origin = request.form.get('origin') dag = dagbag.get_dag(dag_id) execution_date = request.form.get('execution_date') execution_date = timezone.parse(execution_date) confirmed = request.form.get('confirmed') == "true" upstream = request.form.get('upstream') == "true" downstream = request.form.get('downstream') == "true" future = request.form.get('future') == "true" past = request.form.get('past') == "true" recursive = request.form.get('recursive') == "true" only_failed = request.form.get('only_failed') == "true" dag = dag.sub_dag( task_regex=r"^{0}$".format(task_id), include_downstream=downstream, include_upstream=upstream) end_date = execution_date if not future else None start_date = execution_date if not past else None return self._clear_dag_tis(dag, start_date, end_date, origin, recursive=recursive, confirmed=confirmed, only_failed=only_failed) @expose('/dagrun_clear', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def dagrun_clear(self): dag_id = request.form.get('dag_id') origin = request.form.get('origin') execution_date = request.form.get('execution_date') confirmed = request.form.get('confirmed') == "true" dag = dagbag.get_dag(dag_id) execution_date = timezone.parse(execution_date) start_date = execution_date end_date = execution_date return self._clear_dag_tis(dag, start_date, end_date, origin, recursive=True, confirmed=confirmed) @expose('/blocked', methods=['POST']) @has_access @provide_session def blocked(self, session=None): allowed_dag_ids = appbuilder.sm.get_accessible_dag_ids() if 'all_dags' in allowed_dag_ids: allowed_dag_ids = [dag_id for dag_id, in session.query(models.DagModel.dag_id)] # Filter by post parameters selected_dag_ids = { unquote(dag_id) for dag_id in request.form.getlist('dag_ids') if dag_id } if selected_dag_ids: filter_dag_ids = selected_dag_ids.intersection(allowed_dag_ids) else: filter_dag_ids = allowed_dag_ids if not filter_dag_ids: return wwwutils.json_response([]) DR = models.DagRun dags = ( session.query(DR.dag_id, sqla.func.count(DR.id)) .filter(DR.state == State.RUNNING) .filter(DR.dag_id.in_(filter_dag_ids)) .group_by(DR.dag_id) ) payload = [] for dag_id, active_dag_runs in dags: max_active_runs = 0 dag = dagbag.get_dag(dag_id) if dag: # TODO: Make max_active_runs a column so we can query for it directly max_active_runs = dag.max_active_runs payload.append({ 'dag_id': dag_id, 'active_dag_run': active_dag_runs, 'max_active_runs': max_active_runs, }) return wwwutils.json_response(payload) def _mark_dagrun_state_as_failed(self, dag_id, execution_date, confirmed, origin): if not execution_date: flash('Invalid execution date', 'error') return redirect(origin) execution_date = timezone.parse(execution_date) dag = dagbag.get_dag(dag_id) if not dag: flash('Cannot find DAG: {}'.format(dag_id), 'error') return redirect(origin) new_dag_state = set_dag_run_state_to_failed(dag, execution_date, commit=confirmed) if confirmed: flash('Marked failed on {} task instances'.format(len(new_dag_state))) return redirect(origin) else: details = '\n'.join([str(t) for t in new_dag_state]) response = self.render_template( 'airflow/confirm.html', message="Here's the list of task instances you are about to mark as failed", details=details) return response def _mark_dagrun_state_as_success(self, dag_id, execution_date, confirmed, origin): if not execution_date: flash('Invalid execution date', 'error') return redirect(origin) execution_date = timezone.parse(execution_date) dag = dagbag.get_dag(dag_id) if not dag: flash('Cannot find DAG: {}'.format(dag_id), 'error') return redirect(origin) new_dag_state = set_dag_run_state_to_success(dag, execution_date, commit=confirmed) if confirmed: flash('Marked success on {} task instances'.format(len(new_dag_state))) return redirect(origin) else: details = '\n'.join([str(t) for t in new_dag_state]) response = self.render_template( 'airflow/confirm.html', message="Here's the list of task instances you are about to mark as success", details=details) return response @expose('/dagrun_failed', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def dagrun_failed(self): dag_id = request.form.get('dag_id') execution_date = request.form.get('execution_date') confirmed = request.form.get('confirmed') == 'true' origin = request.form.get('origin') return self._mark_dagrun_state_as_failed(dag_id, execution_date, confirmed, origin) @expose('/dagrun_success', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def dagrun_success(self): dag_id = request.form.get('dag_id') execution_date = request.form.get('execution_date') confirmed = request.form.get('confirmed') == 'true' origin = request.form.get('origin') return self._mark_dagrun_state_as_success(dag_id, execution_date, confirmed, origin) def _mark_task_instance_state(self, dag_id, task_id, origin, execution_date, confirmed, upstream, downstream, future, past, state): dag = dagbag.get_dag(dag_id) task = dag.get_task(task_id) task.dag = dag latest_execution_date = dag.get_latest_execution_date() if not latest_execution_date: flash(f"Cannot make {state}, seem that dag {dag_id} has never run", "error") return redirect(origin) execution_date = timezone.parse(execution_date) from airflow.api.common.experimental.mark_tasks import set_state if confirmed: altered = set_state(tasks=[task], execution_date=execution_date, upstream=upstream, downstream=downstream, future=future, past=past, state=state, commit=True) flash("Marked {} on {} task instances".format(state, len(altered))) return redirect(origin) to_be_altered = set_state(tasks=[task], execution_date=execution_date, upstream=upstream, downstream=downstream, future=future, past=past, state=state, commit=False) details = "\n".join([str(t) for t in to_be_altered]) response = self.render_template( "airflow/confirm.html", message=("Here's the list of task instances you are about to mark as {}:".format(state)), details=details) return response @expose('/failed', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def failed(self): dag_id = request.form.get('dag_id') task_id = request.form.get('task_id') origin = request.form.get('origin') execution_date = request.form.get('execution_date') confirmed = request.form.get('confirmed') == "true" upstream = request.form.get('failed_upstream') == "true" downstream = request.form.get('failed_downstream') == "true" future = request.form.get('failed_future') == "true" past = request.form.get('failed_past') == "true" return self._mark_task_instance_state(dag_id, task_id, origin, execution_date, confirmed, upstream, downstream, future, past, State.FAILED) @expose('/success', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def success(self): dag_id = request.form.get('dag_id') task_id = request.form.get('task_id') origin = request.form.get('origin') execution_date = request.form.get('execution_date') confirmed = request.form.get('confirmed') == "true" upstream = request.form.get('success_upstream') == "true" downstream = request.form.get('success_downstream') == "true" future = request.form.get('success_future') == "true" past = request.form.get('success_past') == "true" return self._mark_task_instance_state(dag_id, task_id, origin, execution_date, confirmed, upstream, downstream, future, past, State.SUCCESS) @expose('/tree') @has_dag_access(can_dag_read=True) @has_access @gzipped @action_logging def tree(self): dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) if not dag: flash('DAG "{0}" seems to be missing from DagBag.'.format(dag_id), "error") return redirect(url_for('Airflow.index')) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_downstream=False, include_upstream=True) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') if num_runs: num_runs = int(num_runs) else: num_runs = conf.getint('webserver', 'default_dag_run_display_number') if base_date: base_date = timezone.parse(base_date) else: base_date = dag.get_latest_execution_date() or timezone.utcnow() with create_session() as session: dag_runs = ( session.query(DagRun) .filter( DagRun.dag_id == dag.dag_id, DagRun.execution_date <= base_date) .order_by(DagRun.execution_date.desc()) .limit(num_runs) .all() ) dag_runs = { dr.execution_date: alchemy_to_dict(dr) for dr in dag_runs } dates = sorted(list(dag_runs.keys())) max_date = max(dates) if dates else None min_date = min(dates) if dates else None tis = dag.get_task_instances(start_date=min_date, end_date=base_date) task_instances: Dict[Tuple[str, datetime], models.TaskInstance] = {} for ti in tis: task_instances[(ti.task_id, ti.execution_date)] = ti expanded = set() # The default recursion traces every path so that tree view has full # expand/collapse functionality. After 5,000 nodes we stop and fall # back on a quick DFS search for performance. See PR #320. node_count = 0 node_limit = 5000 / max(1, len(dag.leaves)) def encode_ti(ti: Optional[models.TaskInstance]) -> Optional[List]: if not ti: return None # NOTE: order of entry is important here because client JS relies on it for # tree node reconstruction. Remember to change JS code in tree.html # whenever order is altered. data = [ ti.state, ti.try_number, None, # start_ts None, # duration ] if ti.start_date: # round to seconds to reduce payload size data[2] = int(ti.start_date.timestamp()) if ti.duration is not None: data[3] = int(ti.duration) return data def recurse_nodes(task, visited): nonlocal node_count node_count += 1 visited.add(task) task_id = task.task_id node = { 'name': task.task_id, 'instances': [ encode_ti(task_instances.get((task_id, d))) for d in dates ], 'num_dep': len(task.downstream_list), 'operator': task.task_type, 'retries': task.retries, 'owner': task.owner, 'ui_color': task.ui_color, } if task.downstream_list: children = [ recurse_nodes(t, visited) for t in task.downstream_list if node_count < node_limit or t not in visited] # D3 tree uses children vs _children to define what is # expanded or not. The following block makes it such that # repeated nodes are collapsed by default. if task.task_id not in expanded: children_key = 'children' expanded.add(task.task_id) else: children_key = "_children" node[children_key] = children if task.depends_on_past: node['depends_on_past'] = task.depends_on_past if task.start_date: # round to seconds to reduce payload size node['start_ts'] = int(task.start_date.timestamp()) if task.end_date: # round to seconds to reduce payload size node['end_ts'] = int(task.end_date.timestamp()) if task.extra_links: node['extra_links'] = task.extra_links return node data = { 'name': '[DAG]', 'children': [recurse_nodes(t, set()) for t in dag.roots], 'instances': [ dag_runs.get(d) or {'execution_date': d.isoformat()} for d in dates ], } form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) external_logs = conf.get('elasticsearch', 'frontend') # avoid spaces to reduce payload size data = htmlsafe_json_dumps(data, separators=(',', ':')) # escape slashes to avoid JSON parse error in JS data = data.replace('\\', '\\\\') return self.render_template( 'airflow/tree.html', operators=sorted({op.task_type: op for op in dag.tasks}.values(), key=lambda x: x.task_type), root=root, form=form, dag=dag, data=data, blur=blur, num_runs=num_runs, show_external_logs=bool(external_logs)) @expose('/graph') @has_dag_access(can_dag_read=True) @has_access @gzipped @action_logging @provide_session def graph(self, session=None): dag_id = request.args.get('dag_id') blur = conf.getboolean('webserver', 'demo_mode') dag = dagbag.get_dag(dag_id) if not dag: flash('DAG "{0}" seems to be missing.'.format(dag_id), "error") return redirect(url_for('Airflow.index')) root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) arrange = request.args.get('arrange', dag.orientation) nodes = [] edges = [] for task in dag.tasks: nodes.append({ 'id': task.task_id, 'value': { 'label': task.task_id, 'labelStyle': "fill:{0};".format(task.ui_fgcolor), 'style': "fill:{0};".format(task.ui_color), 'rx': 5, 'ry': 5, } }) def get_downstream(task): for t in task.downstream_list: edge = { 'source_id': task.task_id, 'target_id': t.task_id, } if edge not in edges: edges.append(edge) get_downstream(t) for t in dag.roots: get_downstream(t) dt_nr_dr_data = get_date_time_num_runs_dag_runs_form_data(request, session, dag) dt_nr_dr_data['arrange'] = arrange dttm = dt_nr_dr_data['dttm'] class GraphForm(DateTimeWithNumRunsWithDagRunsForm): arrange = SelectField("Layout", choices=( ('LR', "Left->Right"), ('RL', "Right->Left"), ('TB', "Top->Bottom"), ('BT', "Bottom->Top"), )) form = GraphForm(data=dt_nr_dr_data) form.execution_date.choices = dt_nr_dr_data['dr_choices'] task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(dttm, dttm)} tasks = { t.task_id: { 'dag_id': t.dag_id, 'task_type': t.task_type, 'extra_links': t.extra_links, } for t in dag.tasks} if not tasks: flash("No tasks found", "error") session.commit() doc_md = markdown.markdown(dag.doc_md) \ if hasattr(dag, 'doc_md') and dag.doc_md else '' external_logs = conf.get('elasticsearch', 'frontend') return self.render_template( 'airflow/graph.html', dag=dag, form=form, width=request.args.get('width', "100%"), height=request.args.get('height', "800"), execution_date=dttm.isoformat(), state_token=wwwutils.state_token(dt_nr_dr_data['dr_state']), doc_md=doc_md, arrange=arrange, operators=sorted({op.task_type: op for op in dag.tasks}.values(), key=lambda x: x.task_type), blur=blur, root=root or '', task_instances=task_instances, tasks=tasks, nodes=nodes, edges=edges, show_external_logs=bool(external_logs)) @expose('/duration') @has_dag_access(can_dag_read=True) @has_access @action_logging @provide_session def duration(self, session=None): default_dag_run = conf.getint('webserver', 'default_dag_run_display_number') dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else default_dag_run if dag is None: flash('DAG "{0}" seems to be missing.'.format(dag_id), "error") return redirect(url_for('Airflow.index')) if base_date: base_date = timezone.parse(base_date) else: base_date = dag.get_latest_execution_date() or timezone.utcnow() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else timezone.utc_epoch() root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart_height = wwwutils.get_chart_height(dag) chart = nvd3.lineChart( name="lineChart", x_is_date=True, height=chart_height, width="1200") cum_chart = nvd3.lineChart( name="cumLineChart", x_is_date=True, height=chart_height, width="1200") y = defaultdict(list) x = defaultdict(list) cum_y = defaultdict(list) tis = dag.get_task_instances(start_date=min_date, end_date=base_date) TF = TaskFail ti_fails = ( session.query(TF) .filter(TF.dag_id == dag.dag_id, TF.execution_date >= min_date, TF.execution_date <= base_date, TF.task_id.in_([t.task_id for t in dag.tasks])) .all() # noqa ) fails_totals = defaultdict(int) for tf in ti_fails: dict_key = (tf.dag_id, tf.task_id, tf.execution_date) if tf.duration: fails_totals[dict_key] += tf.duration for ti in tis: if ti.duration: dttm = wwwutils.epoch(ti.execution_date) x[ti.task_id].append(dttm) y[ti.task_id].append(float(ti.duration)) fails_dict_key = (ti.dag_id, ti.task_id, ti.execution_date) fails_total = fails_totals[fails_dict_key] cum_y[ti.task_id].append(float(ti.duration + fails_total)) # determine the most relevant time unit for the set of task instance # durations for the DAG y_unit = infer_time_unit([d for t in y.values() for d in t]) cum_y_unit = infer_time_unit([d for t in cum_y.values() for d in t]) # update the y Axis on both charts to have the correct time units chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Duration ({})'.format(y_unit)) chart.axislist['yAxis']['axisLabelDistance'] = '-15' cum_chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Duration ({})'.format(cum_y_unit)) cum_chart.axislist['yAxis']['axisLabelDistance'] = '-15' for task in dag.tasks: if x[task.task_id]: chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(y[task.task_id], y_unit)) cum_chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(cum_y[task.task_id], cum_y_unit)) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() cum_chart.buildcontent() s_index = cum_chart.htmlcontent.rfind('});') cum_chart.htmlcontent = (cum_chart.htmlcontent[:s_index] + "$( document ).trigger('chartload')" + cum_chart.htmlcontent[s_index:]) return self.render_template( 'airflow/duration_chart.html', dag=dag, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, chart=chart.htmlcontent, cum_chart=cum_chart.htmlcontent ) @expose('/tries') @has_dag_access(can_dag_read=True) @has_access @action_logging @provide_session def tries(self, session=None): default_dag_run = conf.getint('webserver', 'default_dag_run_display_number') dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else default_dag_run if base_date: base_date = timezone.parse(base_date) else: base_date = dag.get_latest_execution_date() or timezone.utcnow() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else timezone.utc_epoch() root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart_height = wwwutils.get_chart_height(dag) chart = nvd3.lineChart( name="lineChart", x_is_date=True, y_axis_format='d', height=chart_height, width="1200") for task in dag.tasks: y = [] x = [] for ti in task.get_task_instances(start_date=min_date, end_date=base_date): dttm = wwwutils.epoch(ti.execution_date) x.append(dttm) # y value should reflect completed tries to have a 0 baseline. y.append(ti.prev_attempted_tries) if x: chart.add_serie(name=task.task_id, x=x, y=y) tis = dag.get_task_instances(start_date=min_date, end_date=base_date) tries = sorted(list({ti.try_number for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if tries else None session.commit() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() return self.render_template( 'airflow/chart.html', dag=dag, demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, chart=chart.htmlcontent, tab_title='Tries', ) @expose('/landing_times') @has_dag_access(can_dag_read=True) @has_access @action_logging @provide_session def landing_times(self, session=None): default_dag_run = conf.getint('webserver', 'default_dag_run_display_number') dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) base_date = request.args.get('base_date') num_runs = request.args.get('num_runs') num_runs = int(num_runs) if num_runs else default_dag_run if base_date: base_date = timezone.parse(base_date) else: base_date = dag.get_latest_execution_date() or timezone.utcnow() dates = dag.date_range(base_date, num=-abs(num_runs)) min_date = dates[0] if dates else timezone.utc_epoch() root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) chart_height = wwwutils.get_chart_height(dag) chart = nvd3.lineChart( name="lineChart", x_is_date=True, height=chart_height, width="1200") y = {} x = {} for task in dag.tasks: task_id = task.task_id y[task_id] = [] x[task_id] = [] for ti in task.get_task_instances(start_date=min_date, end_date=base_date): ts = ti.execution_date if dag.schedule_interval and dag.following_schedule(ts): ts = dag.following_schedule(ts) if ti.end_date: dttm = wwwutils.epoch(ti.execution_date) secs = (ti.end_date - ts).total_seconds() x[task_id].append(dttm) y[task_id].append(secs) # determine the most relevant time unit for the set of landing times # for the DAG y_unit = infer_time_unit([d for t in y.values() for d in t]) # update the y Axis to have the correct time units chart.create_y_axis('yAxis', format='.02f', custom_format=False, label='Landing Time ({})'.format(y_unit)) chart.axislist['yAxis']['axisLabelDistance'] = '-15' for task in dag.tasks: if x[task.task_id]: chart.add_serie(name=task.task_id, x=x[task.task_id], y=scale_time_units(y[task.task_id], y_unit)) tis = dag.get_task_instances(start_date=min_date, end_date=base_date) dates = sorted(list({ti.execution_date for ti in tis})) max_date = max([ti.execution_date for ti in tis]) if dates else None session.commit() form = DateTimeWithNumRunsForm(data={'base_date': max_date, 'num_runs': num_runs}) chart.buildcontent() return self.render_template( 'airflow/chart.html', dag=dag, chart=chart.htmlcontent, height=str(chart_height + 100) + "px", demo_mode=conf.getboolean('webserver', 'demo_mode'), root=root, form=form, tab_title='Landing times', ) @expose('/paused', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging def paused(self): dag_id = request.args.get('dag_id') is_paused = True if request.args.get('is_paused') == 'false' else False models.DagModel.get_dagmodel(dag_id).set_is_paused( is_paused=is_paused) return "OK" @expose('/refresh', methods=['POST']) @has_dag_access(can_dag_edit=True) @has_access @action_logging @provide_session def refresh(self, session=None): DagModel = models.DagModel dag_id = request.values.get('dag_id') orm_dag = session.query( DagModel).filter(DagModel.dag_id == dag_id).first() if orm_dag: orm_dag.last_expired = timezone.utcnow() session.merge(orm_dag) session.commit() dag = dagbag.get_dag(dag_id) # sync dag permission appbuilder.sm.sync_perm_for_dag(dag_id, dag.access_control) flash("DAG [{}] is now fresh as a daisy".format(dag_id)) return redirect(request.referrer) @expose('/gantt') @has_dag_access(can_dag_read=True) @has_access @action_logging @provide_session def gantt(self, session=None): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) demo_mode = conf.getboolean('webserver', 'demo_mode') root = request.args.get('root') if root: dag = dag.sub_dag( task_regex=root, include_upstream=True, include_downstream=False) dt_nr_dr_data = get_date_time_num_runs_dag_runs_form_data(request, session, dag) dttm = dt_nr_dr_data['dttm'] form = DateTimeWithNumRunsWithDagRunsForm(data=dt_nr_dr_data) form.execution_date.choices = dt_nr_dr_data['dr_choices'] tis = [ ti for ti in dag.get_task_instances(dttm, dttm) if ti.start_date and ti.state] tis = sorted(tis, key=lambda ti: ti.start_date) TF = TaskFail ti_fails = list(itertools.chain(*[( session .query(TF) .filter(TF.dag_id == ti.dag_id, TF.task_id == ti.task_id, TF.execution_date == ti.execution_date) .all() ) for ti in tis])) # determine bars to show in the gantt chart gantt_bar_items = [] tasks = [] for ti in tis: end_date = ti.end_date or timezone.utcnow() # prev_attempted_tries will reflect the currently running try_number # or the try_number of the last complete run # https://issues.apache.org/jira/browse/AIRFLOW-2143 try_count = ti.prev_attempted_tries gantt_bar_items.append((ti.task_id, ti.start_date, end_date, ti.state, try_count)) d = alchemy_to_dict(ti) d['extraLinks'] = dag.get_task(ti.task_id).extra_links tasks.append(d) tf_count = 0 try_count = 1 prev_task_id = "" for tf in ti_fails: end_date = tf.end_date or timezone.utcnow() start_date = tf.start_date or end_date if tf_count != 0 and tf.task_id == prev_task_id: try_count = try_count + 1 else: try_count = 1 prev_task_id = tf.task_id gantt_bar_items.append((tf.task_id, start_date, end_date, State.FAILED, try_count)) tf_count = tf_count + 1 task = dag.get_task(tf.task_id) d = alchemy_to_dict(tf) d['state'] = State.FAILED d['operator'] = task.task_type d['try_number'] = try_count d['extraLinks'] = task.extra_links tasks.append(d) data = { 'taskNames': [ti.task_id for ti in tis], 'tasks': tasks, 'height': len(tis) * 25 + 25, } session.commit() return self.render_template( 'airflow/gantt.html', dag=dag, execution_date=dttm.isoformat(), form=form, data=data, base_date='', demo_mode=demo_mode, root=root, ) @expose('/extra_links') @has_dag_access(can_dag_read=True) @has_access @action_logging def extra_links(self): """ A restful endpoint that returns external links for a given Operator It queries the operator that sent the request for the links it wishes to provide for a given external link name. API: GET Args: dag_id: The id of the dag containing the task in question task_id: The id of the task in question execution_date: The date of execution of the task link_name: The name of the link reference to find the actual URL for Returns: 200: {url: <url of link>, error: None} - returned when there was no problem finding the URL 404: {url: None, error: <error message>} - returned when the operator does not return a URL """ dag_id = request.args.get('dag_id') task_id = request.args.get('task_id') execution_date = request.args.get('execution_date') link_name = request.args.get('link_name') dttm = timezone.parse(execution_date) dag = dagbag.get_dag(dag_id) if not dag or task_id not in dag.task_ids: response = jsonify( {'url': None, 'error': "can't find dag {dag} or task_id {task_id}".format( dag=dag, task_id=task_id )} ) response.status_code = 404 return response task = dag.get_task(task_id) try: url = task.get_extra_links(dttm, link_name) except ValueError as err: response = jsonify({'url': None, 'error': str(err)}) response.status_code = 404 return response if url: response = jsonify({'error': None, 'url': url}) response.status_code = 200 return response else: response = jsonify( {'url': None, 'error': 'No URL found for {dest}'.format(dest=link_name)}) response.status_code = 404 return response @expose('/object/task_instances') @has_dag_access(can_dag_read=True) @has_access @action_logging def task_instances(self): dag_id = request.args.get('dag_id') dag = dagbag.get_dag(dag_id) dttm = request.args.get('execution_date') if dttm: dttm = timezone.parse(dttm) else: return "Error: Invalid execution_date" task_instances = { ti.task_id: alchemy_to_dict(ti) for ti in dag.get_task_instances(dttm, dttm)} return json.dumps(task_instances) class VersionView(AirflowBaseView): default_view = 'version' @expose('/version') @has_access def version(self): try: airflow_version = airflow.__version__ except Exception as e: airflow_version = None logging.error(e) # Get the Git repo and git hash git_version = None try: git_version = str(pkgutil.get_data('airflow', 'git_version'), encoding="UTF-8") except Exception as e: logging.error(e) # Render information title = "Version Info" return self.render_template( 'airflow/version.html', title=title, airflow_version=airflow_version, git_version=git_version) class ConfigurationView(AirflowBaseView): default_view = 'conf' @expose('/configuration') @has_access def conf(self): raw = request.args.get('raw') == "true" title = "Airflow Configuration" subtitle = AIRFLOW_CONFIG # Don't show config when expose_config variable is False in airflow config if conf.getboolean("webserver", "expose_config"): with open(AIRFLOW_CONFIG, 'r') as file: config = file.read() table = [(section, key, value, source) for section, parameters in conf.as_dict(True, True).items() for key, (value, source) in parameters.items()] else: config = ( "# Your Airflow administrator chose not to expose the " "configuration, most likely for security reasons.") table = None if raw: return Response( response=config, status=200, mimetype="application/text") else: code_html = Markup(highlight( config, lexers.IniLexer(), # Lexer call HtmlFormatter(noclasses=True)) ) return self.render_template( 'airflow/config.html', pre_subtitle=settings.HEADER + " v" + airflow.__version__, code_html=code_html, title=title, subtitle=subtitle, table=table) ###################################################################################### # ModelViews ###################################################################################### class DagFilter(BaseFilter): def apply(self, query, func): # noqa if appbuilder.sm.has_all_dags_access(): return query filter_dag_ids = appbuilder.sm.get_accessible_dag_ids() return query.filter(self.model.dag_id.in_(filter_dag_ids)) class AirflowModelView(ModelView): list_widget = AirflowModelListWidget page_size = PAGE_SIZE CustomSQLAInterface = wwwutils.CustomSQLAInterface class SlaMissModelView(AirflowModelView): route_base = '/slamiss' datamodel = AirflowModelView.CustomSQLAInterface(SlaMiss) base_permissions = ['can_list'] list_columns = ['dag_id', 'task_id', 'execution_date', 'email_sent', 'timestamp'] add_columns = ['dag_id', 'task_id', 'execution_date', 'email_sent', 'timestamp'] edit_columns = ['dag_id', 'task_id', 'execution_date', 'email_sent', 'timestamp'] search_columns = ['dag_id', 'task_id', 'email_sent', 'timestamp', 'execution_date'] base_order = ('execution_date', 'desc') base_filters = [['dag_id', DagFilter, lambda: []]] formatters_columns = { 'task_id': wwwutils.task_instance_link, 'execution_date': wwwutils.datetime_f('execution_date'), 'timestamp': wwwutils.datetime_f('timestamp'), 'dag_id': wwwutils.dag_link, } class XComModelView(AirflowModelView): route_base = '/xcom' datamodel = AirflowModelView.CustomSQLAInterface(XCom) base_permissions = ['can_add', 'can_list', 'can_edit', 'can_delete'] search_columns = ['key', 'value', 'timestamp', 'execution_date', 'task_id', 'dag_id'] list_columns = ['key', 'value', 'timestamp', 'execution_date', 'task_id', 'dag_id'] add_columns = ['key', 'value', 'execution_date', 'task_id', 'dag_id'] edit_columns = ['key', 'value', 'execution_date', 'task_id', 'dag_id'] base_order = ('execution_date', 'desc') base_filters = [['dag_id', DagFilter, lambda: []]] formatters_columns = { 'task_id': wwwutils.task_instance_link, 'execution_date': wwwutils.datetime_f('execution_date'), 'timestamp': wwwutils.datetime_f('timestamp'), 'dag_id': wwwutils.dag_link, } @action('muldelete', 'Delete', "Are you sure you want to delete selected records?", single=False) def action_muldelete(self, items): self.datamodel.delete_all(items) self.update_redirect() return redirect(self.get_redirect()) def pre_add(self, item): item.execution_date = timezone.make_aware(item.execution_date) item.value = XCom.serialize_value(item.value) def pre_update(self, item): item.execution_date = timezone.make_aware(item.execution_date) item.value = XCom.serialize_value(item.value) class ConnectionModelView(AirflowModelView): route_base = '/connection' datamodel = AirflowModelView.CustomSQLAInterface(Connection) base_permissions = ['can_add', 'can_list', 'can_edit', 'can_delete'] extra_fields = ['extra__jdbc__drv_path', 'extra__jdbc__drv_clsname', 'extra__google_cloud_platform__project', 'extra__google_cloud_platform__key_path', 'extra__google_cloud_platform__keyfile_dict', 'extra__google_cloud_platform__scope', 'extra__google_cloud_platform__num_retries', 'extra__grpc__auth_type', 'extra__grpc__credential_pem_file', 'extra__grpc__scopes', 'extra__yandexcloud__service_account_json', 'extra__yandexcloud__service_account_json_path', 'extra__yandexcloud__oauth', 'extra__yandexcloud__public_ssh_key', 'extra__yandexcloud__folder_id', 'extra__kubernetes__in_cluster', 'extra__kubernetes__kube_config', 'extra__kubernetes__namespace'] list_columns = ['conn_id', 'conn_type', 'host', 'port', 'is_encrypted', 'is_extra_encrypted'] add_columns = edit_columns = ['conn_id', 'conn_type', 'host', 'schema', 'login', 'password', 'port', 'extra'] + extra_fields add_form = edit_form = ConnectionForm add_template = 'airflow/conn_create.html' edit_template = 'airflow/conn_edit.html' base_order = ('conn_id', 'asc') @action('muldelete', 'Delete', 'Are you sure you want to delete selected records?', single=False) @has_dag_access(can_dag_edit=True) def action_muldelete(self, items): self.datamodel.delete_all(items) self.update_redirect() return redirect(self.get_redirect()) def process_form(self, form, is_created): formdata = form.data if formdata['conn_type'] in ['jdbc', 'google_cloud_platform', 'grpc', 'yandexcloud', 'kubernetes']: extra = { key: formdata[key] for key in self.extra_fields if key in formdata} form.extra.data = json.dumps(extra) def prefill_form(self, form, pk): try: d = json.loads(form.data.get('extra', '{}')) except Exception: d = {} if not hasattr(d, 'get'): logging.warning('extra field for {} is not iterable'.format( form.data.get('conn_id', '<unknown>'))) return for field in self.extra_fields: value = d.get(field, '') if value: field = getattr(form, field) field.data = value class PoolModelView(AirflowModelView): route_base = '/pool' datamodel = AirflowModelView.CustomSQLAInterface(models.Pool) base_permissions = ['can_add', 'can_list', 'can_edit', 'can_delete'] list_columns = ['pool', 'slots', 'running_slots', 'queued_slots'] add_columns = ['pool', 'slots', 'description'] edit_columns = ['pool', 'slots', 'description'] base_order = ('pool', 'asc') @action('muldelete', 'Delete', 'Are you sure you want to delete selected records?', single=False) def action_muldelete(self, items): if any(item.pool == models.Pool.DEFAULT_POOL_NAME for item in items): flash("default_pool cannot be deleted", 'error') self.update_redirect() return redirect(self.get_redirect()) self.datamodel.delete_all(items) self.update_redirect() return redirect(self.get_redirect()) def pool_link(attr): pool_id = attr.get('pool') if pool_id is not None: url = url_for('TaskInstanceModelView.list', _flt_3_pool=pool_id) return Markup("<a href='{url}'>{pool_id}</a>").format(url=url, pool_id=pool_id) else: return Markup('<span class="label label-danger">Invalid</span>') def frunning_slots(attr): pool_id = attr.get('pool') running_slots = attr.get('running_slots') if pool_id is not None and running_slots is not None: url = url_for('TaskInstanceModelView.list', _flt_3_pool=pool_id, _flt_3_state='running') return Markup("<a href='{url}'>{running_slots}</a>").format(url=url, running_slots=running_slots) else: return Markup('<span class="label label-danger">Invalid</span>') def fqueued_slots(attr): pool_id = attr.get('pool') queued_slots = attr.get('queued_slots') if pool_id is not None and queued_slots is not None: url = url_for('TaskInstanceModelView.list', _flt_3_pool=pool_id, _flt_3_state='queued') return Markup("<a href='{url}'>{queued_slots}</a>").format(url=url, queued_slots=queued_slots) else: return Markup('<span class="label label-danger">Invalid</span>') formatters_columns = { 'pool': pool_link, 'running_slots': frunning_slots, 'queued_slots': fqueued_slots } validators_columns = { 'pool': [validators.DataRequired()], 'slots': [validators.NumberRange(min=-1)] } class VariableModelView(AirflowModelView): route_base = '/variable' list_template = 'airflow/variable_list.html' edit_template = 'airflow/variable_edit.html' datamodel = AirflowModelView.CustomSQLAInterface(models.Variable) base_permissions = ['can_add', 'can_list', 'can_edit', 'can_delete', 'can_varimport'] list_columns = ['key', 'val', 'is_encrypted'] add_columns = ['key', 'val'] edit_columns = ['key', 'val'] search_columns = ['key', 'val'] base_order = ('key', 'asc') def hidden_field_formatter(attr): key = attr.get('key') val = attr.get('val') if wwwutils.should_hide_value_for_key(key): return Markup('*' * 8) if val: return val else: return Markup('<span class="label label-danger">Invalid</span>') formatters_columns = { 'val': hidden_field_formatter, } validators_columns = { 'key': [validators.DataRequired()] } def prefill_form(self, form, id): if wwwutils.should_hide_value_for_key(form.key.data): form.val.data = '*' * 8 @action('muldelete', 'Delete', 'Are you sure you want to delete selected records?', single=False) def action_muldelete(self, items): self.datamodel.delete_all(items) self.update_redirect() return redirect(self.get_redirect()) @action('varexport', 'Export', '', single=False) def action_varexport(self, items): var_dict = {} d = json.JSONDecoder() for var in items: try: val = d.decode(var.val) except Exception: val = var.val var_dict[var.key] = val response = make_response(json.dumps(var_dict, sort_keys=True, indent=4)) response.headers["Content-Disposition"] = "attachment; filename=variables.json" response.headers["Content-Type"] = "application/json; charset=utf-8" return response @expose('/varimport', methods=["POST"]) @has_access @action_logging def varimport(self): try: out = request.files['file'].read() if isinstance(out, bytes): d = json.loads(out.decode('utf-8')) else: d = json.loads(out) except Exception: self.update_redirect() flash("Missing file or syntax error.", 'error') return redirect(self.get_redirect()) else: suc_count = fail_count = 0 for k, v in d.items(): try: models.Variable.set(k, v, serialize_json=not isinstance(v, str)) except Exception as e: logging.info('Variable import failed: {}'.format(repr(e))) fail_count += 1 else: suc_count += 1 flash("{} variable(s) successfully updated.".format(suc_count)) if fail_count: flash("{} variable(s) failed to be updated.".format(fail_count), 'error') self.update_redirect() return redirect(self.get_redirect()) class JobModelView(AirflowModelView): route_base = '/job' datamodel = AirflowModelView.CustomSQLAInterface(BaseJob) base_permissions = ['can_list'] list_columns = ['id', 'dag_id', 'state', 'job_type', 'start_date', 'end_date', 'latest_heartbeat', 'executor_class', 'hostname', 'unixname'] search_columns = ['id', 'dag_id', 'state', 'job_type', 'start_date', 'end_date', 'latest_heartbeat', 'executor_class', 'hostname', 'unixname'] base_order = ('start_date', 'desc') base_filters = [['dag_id', DagFilter, lambda: []]] formatters_columns = { 'start_date': wwwutils.datetime_f('start_date'), 'end_date': wwwutils.datetime_f('end_date'), 'hostname': wwwutils.nobr_f('hostname'), 'state': wwwutils.state_f, 'latest_heartbeat': wwwutils.datetime_f('latest_heartbeat'), } class DagRunModelView(AirflowModelView): route_base = '/dagrun' datamodel = AirflowModelView.CustomSQLAInterface(models.DagRun) base_permissions = ['can_list', 'can_add'] add_columns = ['state', 'dag_id', 'execution_date', 'run_id', 'external_trigger', 'conf'] list_columns = ['state', 'dag_id', 'execution_date', 'run_id', 'external_trigger'] search_columns = ['state', 'dag_id', 'execution_date', 'run_id', 'external_trigger'] base_order = ('execution_date', 'desc') base_filters = [['dag_id', DagFilter, lambda: []]] add_form = edit_form = DagRunForm formatters_columns = { 'execution_date': wwwutils.datetime_f('execution_date'), 'state': wwwutils.state_f, 'start_date': wwwutils.datetime_f('start_date'), 'dag_id': wwwutils.dag_link, 'run_id': wwwutils.dag_run_link, } @action('muldelete', "Delete", "Are you sure you want to delete selected records?", single=False) @has_dag_access(can_dag_edit=True) @provide_session def action_muldelete(self, items, session=None): self.datamodel.delete_all(items) self.update_redirect() dirty_ids = [] for item in items: dirty_ids.append(item.dag_id) return redirect(self.get_redirect()) @action('set_running', "Set state to 'running'", '', single=False) @provide_session def action_set_running(self, drs, session=None): try: DR = models.DagRun count = 0 dirty_ids = [] for dr in session.query(DR).filter( DR.id.in_([dagrun.id for dagrun in drs])).all(): dirty_ids.append(dr.dag_id) count += 1 dr.start_date = timezone.utcnow() dr.state = State.RUNNING session.commit() flash("{count} dag runs were set to running".format(count=count)) except Exception as ex: flash(str(ex), 'error') flash('Failed to set state', 'error') return redirect(self.get_default_url()) @action('set_failed', "Set state to 'failed'", "All running task instances would also be marked as failed, are you sure?", single=False) @provide_session def action_set_failed(self, drs, session=None): try: DR = models.DagRun count = 0 dirty_ids = [] altered_tis = [] for dr in session.query(DR).filter( DR.id.in_([dagrun.id for dagrun in drs])).all(): dirty_ids.append(dr.dag_id) count += 1 altered_tis += \ set_dag_run_state_to_failed(dagbag.get_dag(dr.dag_id), dr.execution_date, commit=True, session=session) altered_ti_count = len(altered_tis) flash( "{count} dag runs and {altered_ti_count} task instances " "were set to failed".format(count=count, altered_ti_count=altered_ti_count)) except Exception: flash('Failed to set state', 'error') return redirect(self.get_default_url()) @action('set_success', "Set state to 'success'", "All task instances would also be marked as success, are you sure?", single=False) @provide_session def action_set_success(self, drs, session=None): try: DR = models.DagRun count = 0 dirty_ids = [] altered_tis = [] for dr in session.query(DR).filter( DR.id.in_([dagrun.id for dagrun in drs])).all(): dirty_ids.append(dr.dag_id) count += 1 altered_tis += \ set_dag_run_state_to_success(dagbag.get_dag(dr.dag_id), dr.execution_date, commit=True, session=session) altered_ti_count = len(altered_tis) flash( "{count} dag runs and {altered_ti_count} task instances " "were set to success".format(count=count, altered_ti_count=altered_ti_count)) except Exception: flash('Failed to set state', 'error') return redirect(self.get_default_url()) class LogModelView(AirflowModelView): route_base = '/log' datamodel = AirflowModelView.CustomSQLAInterface(Log) base_permissions = ['can_list'] list_columns = ['id', 'dttm', 'dag_id', 'task_id', 'event', 'execution_date', 'owner', 'extra'] search_columns = ['dag_id', 'task_id', 'event', 'execution_date', 'owner', 'extra'] base_order = ('dttm', 'desc') base_filters = [['dag_id', DagFilter, lambda: []]] formatters_columns = { 'dttm': wwwutils.datetime_f('dttm'), 'execution_date': wwwutils.datetime_f('execution_date'), 'dag_id': wwwutils.dag_link, } class TaskInstanceModelView(AirflowModelView): route_base = '/taskinstance' datamodel = AirflowModelView.CustomSQLAInterface(models.TaskInstance) base_permissions = ['can_list'] page_size = PAGE_SIZE list_columns = ['state', 'dag_id', 'task_id', 'execution_date', 'operator', 'start_date', 'end_date', 'duration', 'job_id', 'hostname', 'unixname', 'priority_weight', 'queue', 'queued_dttm', 'try_number', 'pool', 'log_url'] order_columns = [item for item in list_columns if item not in ['try_number', 'log_url']] search_columns = ['state', 'dag_id', 'task_id', 'execution_date', 'hostname', 'queue', 'pool', 'operator', 'start_date', 'end_date'] base_order = ('job_id', 'asc') base_filters = [['dag_id', DagFilter, lambda: []]] def log_url_formatter(attr): log_url = attr.get('log_url') return Markup( '<a href="{log_url}">' ' <span class="glyphicon glyphicon-book" aria-hidden="true">' '</span></a>').format(log_url=log_url) def duration_f(attr): end_date = attr.get('end_date') duration = attr.get('duration') if end_date and duration: return timedelta(seconds=duration) formatters_columns = { 'log_url': log_url_formatter, 'task_id': wwwutils.task_instance_link, 'hostname': wwwutils.nobr_f('hostname'), 'state': wwwutils.state_f, 'execution_date': wwwutils.datetime_f('execution_date'), 'start_date': wwwutils.datetime_f('start_date'), 'end_date': wwwutils.datetime_f('end_date'), 'queued_dttm': wwwutils.datetime_f('queued_dttm'), 'dag_id': wwwutils.dag_link, 'duration': duration_f, } @provide_session @action('clear', lazy_gettext('Clear'), lazy_gettext('Are you sure you want to clear the state of the selected task' ' instance(s) and set their dagruns to the running state?'), single=False) def action_clear(self, tis, session=None): try: dag_to_tis = {} for ti in tis: dag = dagbag.get_dag(ti.dag_id) tis = dag_to_tis.setdefault(dag, []) tis.append(ti) for dag, tis in dag_to_tis.items(): models.clear_task_instances(tis, session, dag=dag) session.commit() flash("{0} task instances have been cleared".format(len(tis))) self.update_redirect() return redirect(self.get_redirect()) except Exception: flash('Failed to clear task instances', 'error') @provide_session def set_task_instance_state(self, tis, target_state, session=None): try: count = len(tis) for ti in tis: ti.set_state(target_state, session) session.commit() flash("{count} task instances were set to '{target_state}'".format( count=count, target_state=target_state)) except Exception: flash('Failed to set state', 'error') @action('set_running', "Set state to 'running'", '', single=False) @has_dag_access(can_dag_edit=True) def action_set_running(self, tis): self.set_task_instance_state(tis, State.RUNNING) self.update_redirect() return redirect(self.get_redirect()) @action('set_failed', "Set state to 'failed'", '', single=False) @has_dag_access(can_dag_edit=True) def action_set_failed(self, tis): self.set_task_instance_state(tis, State.FAILED) self.update_redirect() return redirect(self.get_redirect()) @action('set_success', "Set state to 'success'", '', single=False) @has_dag_access(can_dag_edit=True) def action_set_success(self, tis): self.set_task_instance_state(tis, State.SUCCESS) self.update_redirect() return redirect(self.get_redirect()) @action('set_retry', "Set state to 'up_for_retry'", '', single=False) @has_dag_access(can_dag_edit=True) def action_set_retry(self, tis): self.set_task_instance_state(tis, State.UP_FOR_RETRY) self.update_redirect() return redirect(self.get_redirect()) class DagModelView(AirflowModelView): route_base = '/dagmodel' datamodel = AirflowModelView.CustomSQLAInterface(models.DagModel) base_permissions = ['can_list', 'can_show'] list_columns = ['dag_id', 'is_paused', 'last_scheduler_run', 'last_expired', 'scheduler_lock', 'fileloc', 'owners'] formatters_columns = { 'dag_id': wwwutils.dag_link } base_filters = [['dag_id', DagFilter, lambda: []]] def get_query(self): """ Default filters for model """ return ( super().get_query() .filter(or_(models.DagModel.is_active, models.DagModel.is_paused)) .filter(~models.DagModel.is_subdag) ) def get_count_query(self): """ Default filters for model """ return ( super().get_count_query() .filter(models.DagModel.is_active) .filter(~models.DagModel.is_subdag) ) @has_access @permission_name("list") @provide_session @expose('/autocomplete') def autocomplete(self, session=None): query = unquote(request.args.get('query', '')) if not query: wwwutils.json_response([]) # Provide suggestions of dag_ids and owners dag_ids_query = session.query(DagModel.dag_id.label('item')).filter( ~DagModel.is_subdag, DagModel.is_active, DagModel.dag_id.ilike('%' + query + '%')) owners_query = session.query(func.distinct(DagModel.owners).label('item')).filter( ~DagModel.is_subdag, DagModel.is_active, DagModel.owners.ilike('%' + query + '%')) # Hide DAGs if not showing status: "all" status = flask_session.get(FILTER_STATUS_COOKIE) if status == 'active': dag_ids_query = dag_ids_query.filter(~DagModel.is_paused) owners_query = owners_query.filter(~DagModel.is_paused) elif status == 'paused': dag_ids_query = dag_ids_query.filter(DagModel.is_paused) owners_query = owners_query.filter(DagModel.is_paused) filter_dag_ids = appbuilder.sm.get_accessible_dag_ids() if 'all_dags' not in filter_dag_ids: dag_ids_query = dag_ids_query.filter(DagModel.dag_id.in_(filter_dag_ids)) owners_query = owners_query.filter(DagModel.dag_id.in_(filter_dag_ids)) payload = [row[0] for row in dag_ids_query.union(owners_query).limit(10).all()] return wwwutils.json_response(payload)
the-stack_0_59
# -*- coding: utf-8 -*- # Copyright (c) 2010-2017 Tuukka Turto # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ Module defining classes related to inventory actions """ from pyherc.data import is_armour, is_weapon, is_boots from pyherc.aspects import log_debug, log_info from pyherc.events import new_unequip_event from pyherc.rules.factory import SubActionFactory class UnEquipFactory(SubActionFactory): """ Factory for creating unequip actions .. versionadded:: 0.8 """ @log_debug def __init__(self): """ Constructor for this factory """ super().__init__() self.sub_action = 'unequip' @log_debug def can_handle(self, parameters): """ Can this factory process these parameters :param parameters: parameters to check :returns: True if factory is capable of handling parameters :rtype: Boolean """ return self.sub_action == parameters.sub_action @log_info def get_action(self, parameters): """ Create an unequip action :param parameters: parameters used to control creation :type parameters: InventoryParameters """ return UnEquipAction(parameters.character, parameters.item) class UnEquipAction(): """ Action for unequiping an item .. versionadded:: 0.8 """ @log_debug def __init__(self, character, item): """ Default constructor :param character: character wearing the item :type character: Character :param item: item to unequip :type item: Item """ super().__init__() self.character = character self.item = item @log_info def execute(self): """ Executes this action """ if is_armour(self.item): self.character.inventory.armour = None self.character.raise_event(new_unequip_event(self.character, self.item)) if is_weapon(self.item): self.character.inventory.weapon = None self.character.raise_event(new_unequip_event(self.character, self.item)) if is_boots(self.item): self.character.inventory.boots = None self.character.raise_event(new_unequip_event(self.character, self.item)) @log_debug def is_legal(self): """ Check if the action is possible to perform :returns: True if move is possible, false otherwise :rtype: Boolean """ return True
the-stack_0_61
# pylint: disable=W0611 # coding: utf-8 ''' Window ====== Core class for creating the default Kivy window. Kivy supports only one window per application: please don't try to create more than one. ''' __all__ = ('Keyboard', 'WindowBase', 'Window') from os.path import join, exists from os import getcwd from kivy.core import core_select_lib from kivy.clock import Clock from kivy.config import Config from kivy.logger import Logger from kivy.base import EventLoop, stopTouchApp from kivy.modules import Modules from kivy.event import EventDispatcher from kivy.properties import ListProperty, ObjectProperty, AliasProperty, \ NumericProperty, OptionProperty, StringProperty, BooleanProperty from kivy.utils import platform, reify from kivy.context import get_current_context from kivy.uix.behaviors import FocusBehavior from kivy.setupconfig import USE_SDL2 from kivy.graphics.transformation import Matrix # late import VKeyboard = None android = None class Keyboard(EventDispatcher): '''Keyboard interface that is returned by :meth:`WindowBase.request_keyboard`. When you request a keyboard, you'll get an instance of this class. Whatever the keyboard input is (system or virtual keyboard), you'll receive events through this instance. :Events: `on_key_down`: keycode, text, modifiers Fired when a new key is pressed down `on_key_up`: keycode Fired when a key is released (up) Here is an example of how to request a Keyboard in accordance with the current configuration: .. include:: ../../examples/widgets/keyboardlistener.py :literal: ''' # Keycodes mapping, between str <-> int. These keycodes are # currently taken from pygame.key. But when a new provider will be # used, it must do the translation to these keycodes too. keycodes = { # specials keys 'backspace': 8, 'tab': 9, 'enter': 13, 'rshift': 303, 'shift': 304, 'alt': 308, 'rctrl': 306, 'lctrl': 305, 'super': 309, 'alt-gr': 307, 'compose': 311, 'pipe': 310, 'capslock': 301, 'escape': 27, 'spacebar': 32, 'pageup': 280, 'pagedown': 281, 'end': 279, 'home': 278, 'left': 276, 'up': 273, 'right': 275, 'down': 274, 'insert': 277, 'delete': 127, 'numlock': 300, 'print': 144, 'screenlock': 145, 'pause': 19, # a-z keys 'a': 97, 'b': 98, 'c': 99, 'd': 100, 'e': 101, 'f': 102, 'g': 103, 'h': 104, 'i': 105, 'j': 106, 'k': 107, 'l': 108, 'm': 109, 'n': 110, 'o': 111, 'p': 112, 'q': 113, 'r': 114, 's': 115, 't': 116, 'u': 117, 'v': 118, 'w': 119, 'x': 120, 'y': 121, 'z': 122, # 0-9 keys '0': 48, '1': 49, '2': 50, '3': 51, '4': 52, '5': 53, '6': 54, '7': 55, '8': 56, '9': 57, # numpad 'numpad0': 256, 'numpad1': 257, 'numpad2': 258, 'numpad3': 259, 'numpad4': 260, 'numpad5': 261, 'numpad6': 262, 'numpad7': 263, 'numpad8': 264, 'numpad9': 265, 'numpaddecimal': 266, 'numpaddivide': 267, 'numpadmul': 268, 'numpadsubstract': 269, 'numpadadd': 270, 'numpadenter': 271, # F1-15 'f1': 282, 'f2': 283, 'f3': 284, 'f4': 285, 'f5': 286, 'f6': 287, 'f7': 288, 'f8': 289, 'f9': 290, 'f10': 291, 'f11': 292, 'f12': 293, 'f13': 294, 'f14': 295, 'f15': 296, # other keys '(': 40, ')': 41, '[': 91, ']': 93, '{': 123, '}': 125, ':': 59, ';': 59, '=': 61, '+': 43, '-': 45, '_': 95, '/': 47, '*': 42, '?': 47, '`': 96, '~': 126, '´': 180, '¦': 166, '\\': 92, '|': 124, '"': 34, "'": 39, ',': 44, '.': 46, '<': 60, '>': 62, '@': 64, '!': 33, '#': 35, '$': 36, '%': 37, '^': 94, '&': 38, '¬': 172, '¨': 168, '…': 8230, 'ù': 249, 'à': 224, 'é': 233, 'è': 232, } __events__ = ('on_key_down', 'on_key_up', 'on_textinput') def __init__(self, **kwargs): super(Keyboard, self).__init__() #: Window which the keyboard is attached too self.window = kwargs.get('window', None) #: Callback that will be called when the keyboard is released self.callback = kwargs.get('callback', None) #: Target that have requested the keyboard self.target = kwargs.get('target', None) #: VKeyboard widget, if allowed by the configuration self.widget = kwargs.get('widget', None) def on_key_down(self, keycode, text, modifiers): pass def on_key_up(self, keycode): pass def on_textinput(self, text): pass def release(self): '''Call this method to release the current keyboard. This will ensure that the keyboard is no longer attached to your callback.''' if self.window: self.window.release_keyboard(self.target) def _on_window_textinput(self, instance, text): return self.dispatch('on_textinput', text) def _on_window_key_down(self, instance, keycode, scancode, text, modifiers): keycode = (keycode, self.keycode_to_string(keycode)) if text == '\x04': Window.trigger_keyboard_height() return return self.dispatch('on_key_down', keycode, text, modifiers) def _on_window_key_up(self, instance, keycode, *largs): keycode = (keycode, self.keycode_to_string(keycode)) return self.dispatch('on_key_up', keycode) def _on_vkeyboard_key_down(self, instance, keycode, text, modifiers): if keycode is None: keycode = text.lower() keycode = (self.string_to_keycode(keycode), keycode) return self.dispatch('on_key_down', keycode, text, modifiers) def _on_vkeyboard_key_up(self, instance, keycode, text, modifiers): if keycode is None: keycode = text keycode = (self.string_to_keycode(keycode), keycode) return self.dispatch('on_key_up', keycode) def _on_vkeyboard_textinput(self, instance, text): return self.dispatch('on_textinput', text) def string_to_keycode(self, value): '''Convert a string to a keycode number according to the :attr:`Keyboard.keycodes`. If the value is not found in the keycodes, it will return -1. ''' return Keyboard.keycodes.get(value, -1) def keycode_to_string(self, value): '''Convert a keycode number to a string according to the :attr:`Keyboard.keycodes`. If the value is not found in the keycodes, it will return ''. ''' keycodes = list(Keyboard.keycodes.values()) if value in keycodes: return list(Keyboard.keycodes.keys())[keycodes.index(value)] return '' class WindowBase(EventDispatcher): '''WindowBase is an abstract window widget for any window implementation. :Parameters: `borderless`: str, one of ('0', '1') Set the window border state. Check the :mod:`~kivy.config` documentation for a more detailed explanation on the values. `fullscreen`: str, one of ('0', '1', 'auto', 'fake') Make the window fullscreen. Check the :mod:`~kivy.config` documentation for a more detailed explanation on the values. `width`: int Width of the window. `height`: int Height of the window. :Events: `on_motion`: etype, motionevent Fired when a new :class:`~kivy.input.motionevent.MotionEvent` is dispatched `on_touch_down`: Fired when a new touch event is initiated. `on_touch_move`: Fired when an existing touch event changes location. `on_touch_up`: Fired when an existing touch event is terminated. `on_draw`: Fired when the :class:`Window` is being drawn. `on_flip`: Fired when the :class:`Window` GL surface is being flipped. `on_rotate`: rotation Fired when the :class:`Window` is being rotated. `on_close`: Fired when the :class:`Window` is closed. `on_request_close`: Fired when the event loop wants to close the window, or if the escape key is pressed and `exit_on_escape` is `True`. If a function bound to this event returns `True`, the window will not be closed. If the the event is triggered because of the keyboard escape key, the keyword argument `source` is dispatched along with a value of `keyboard` to the bound functions. .. versionadded:: 1.9.0 `on_keyboard`: key, scancode, codepoint, modifier Fired when the keyboard is used for input. .. versionchanged:: 1.3.0 The *unicode* parameter has been deprecated in favor of codepoint, and will be removed completely in future versions. `on_key_down`: key, scancode, codepoint Fired when a key pressed. .. versionchanged:: 1.3.0 The *unicode* parameter has been deprecated in favor of codepoint, and will be removed completely in future versions. `on_key_up`: key, scancode, codepoint Fired when a key is released. .. versionchanged:: 1.3.0 The *unicode* parameter has be deprecated in favor of codepoint, and will be removed completely in future versions. `on_dropfile`: str Fired when a file is dropped on the application. ''' __instance = None __initialized = False _fake_fullscreen = False _density = 1 # private properties _size = ListProperty([0, 0]) _modifiers = ListProperty([]) _rotation = NumericProperty(0) _clearcolor = ObjectProperty([0, 0, 0, 1]) children = ListProperty([]) '''List of the children of this window. :attr:`children` is a :class:`~kivy.properties.ListProperty` instance and defaults to an empty list. Use :meth:`add_widget` and :meth:`remove_widget` to manipulate the list of children. Don't manipulate the list directly unless you know what you are doing. ''' parent = ObjectProperty(None, allownone=True) '''Parent of this window. :attr:`parent` is a :class:`~kivy.properties.ObjectProperty` instance and defaults to None. When created, the parent is set to the window itself. You must take care of it if you are doing a recursive check. ''' icon = StringProperty() def _get_modifiers(self): return self._modifiers modifiers = AliasProperty(_get_modifiers, None) '''List of keyboard modifiers currently active. ''' def _get_size(self): r = self._rotation w, h = self._size if self._density != 1: w, h = self._win._get_gl_size() if self.softinput_mode == 'resize': h -= self.keyboard_height if r in (0, 180): return w, h return h, w def _set_size(self, size): if self._size != size: r = self._rotation if r in (0, 180): self._size = size else: self._size = size[1], size[0] self.dispatch('on_resize', *size) return True else: return False size = AliasProperty(_get_size, _set_size, bind=('_size', )) '''Get the rotated size of the window. If :attr:`rotation` is set, then the size will change to reflect the rotation. ''' def _get_clearcolor(self): return self._clearcolor def _set_clearcolor(self, value): if value is not None: if type(value) not in (list, tuple): raise Exception('Clearcolor must be a list or tuple') if len(value) != 4: raise Exception('Clearcolor must contain 4 values') self._clearcolor = value clearcolor = AliasProperty(_get_clearcolor, _set_clearcolor, bind=('_clearcolor', )) '''Color used to clear the window. :: from kivy.core.window import Window # red background color Window.clearcolor = (1, 0, 0, 1) # don't clear background at all Window.clearcolor = None .. versionchanged:: 1.7.2 The clearcolor default value is now: (0, 0, 0, 1). ''' # make some property read-only def _get_width(self): _size = self._size if self._density != 1: _size = self._win._get_gl_size() r = self._rotation if r == 0 or r == 180: return _size[0] return _size[1] width = AliasProperty(_get_width, None, bind=('_rotation', '_size')) '''Rotated window width. :attr:`width` is a read-only :class:`~kivy.properties.AliasProperty`. ''' def _get_height(self): '''Rotated window height''' r = self._rotation _size = self._size if self._density != 1: _size = self._win._get_gl_size() kb = self.keyboard_height if self.softinput_mode == 'resize' else 0 if r == 0 or r == 180: return _size[1] - kb return _size[0] - kb height = AliasProperty(_get_height, None, bind=('_rotation', '_size')) '''Rotated window height. :attr:`height` is a read-only :class:`~kivy.properties.AliasProperty`. ''' def _get_center(self): return self.width / 2., self.height / 2. center = AliasProperty(_get_center, None, bind=('width', 'height')) '''Center of the rotated window. :attr:`center` is a :class:`~kivy.properties.AliasProperty`. ''' def _get_rotation(self): return self._rotation def _set_rotation(self, x): x = int(x % 360) if x == self._rotation: return if x not in (0, 90, 180, 270): raise ValueError('can rotate only 0, 90, 180, 270 degrees') self._rotation = x if self.initialized is False: return self.dispatch('on_resize', *self.size) self.dispatch('on_rotate', x) rotation = AliasProperty(_get_rotation, _set_rotation, bind=('_rotation', )) '''Get/set the window content rotation. Can be one of 0, 90, 180, 270 degrees. ''' softinput_mode = OptionProperty('', options=('', 'pan', 'scale', 'resize')) '''This specifies the behavior of window contents on display of soft keyboard on mobile platform. Can be one of '', 'pan', 'scale', 'resize'. When '' The main window is left as it is allowing the user to use :attr:`keyboard_height` to manage the window contents the way they want. when 'pan' The main window pans moving the bottom part of the window to be always on top of the keyboard. when 'resize' The window is resized and the contents scaled to fit the remaining space. .. versionadded:: 1.9.0 :attr:`softinput_mode` is a :class:`OptionProperty` defaults to None. ''' _keyboard_changed = BooleanProperty(False) def _upd_kbd_height(self, *kargs): self._keyboard_changed = not self._keyboard_changed def _get_ios_kheight(self): return 0 def _get_android_kheight(self): global android if not android: import android return android.get_keyboard_height() def _get_kheight(self): if platform == 'android': return self._get_android_kheight() if platform == 'ios': return self._get_ios_kheight() return 0 keyboard_height = AliasProperty(_get_kheight, None, bind=('_keyboard_changed',)) '''Rerturns the height of the softkeyboard/IME on mobile platforms. Will return 0 if not on mobile platform or if IME is not active. .. versionadded:: 1.9.0 :attr:`keyboard_height` is a read-only :class:`AliasProperty` defaults to 0. ''' def _set_system_size(self, size): self._size = size def _get_system_size(self): if self.softinput_mode == 'resize': return self._size[0], self._size[1] - self.keyboard_height return self._size system_size = AliasProperty( _get_system_size, _set_system_size, bind=('_size', )) '''Real size of the window ignoring rotation. ''' borderless = BooleanProperty(False) '''When set to True, this property removes the window border/decoration. .. versionadded:: 1.9.0 :attr:`borderless` is a :class:`BooleanProperty`, defaults to False. ''' fullscreen = OptionProperty(False, options=(True, False, 'auto', 'fake')) '''This property sets the fullscreen mode of the window. Available options are: True, False, 'auto', 'fake'. Check the :mod:`~kivy.config` documentation for a more detailed explanation on the values. .. versionadded:: 1.2.0 .. note:: The 'fake' option has been deprecated, use the :attr:`borderless` property instead. ''' mouse_pos = ObjectProperty([0, 0]) '''2d position of the mouse within the window. .. versionadded:: 1.2.0 ''' @property def __self__(self): return self top = NumericProperty(None, allownone=True) left = NumericProperty(None, allownone=True) position = OptionProperty('auto', options=['auto', 'custom']) render_context = ObjectProperty(None) canvas = ObjectProperty(None) title = StringProperty('Kivy') __events__ = ( 'on_draw', 'on_flip', 'on_rotate', 'on_resize', 'on_close', 'on_motion', 'on_touch_down', 'on_touch_move', 'on_touch_up', 'on_mouse_down', 'on_mouse_move', 'on_mouse_up', 'on_keyboard', 'on_key_down', 'on_key_up', 'on_textinput', 'on_dropfile', 'on_request_close', 'on_joy_axis', 'on_joy_hat', 'on_joy_ball', 'on_joy_button_down', "on_joy_button_up") def __new__(cls, **kwargs): if cls.__instance is None: cls.__instance = EventDispatcher.__new__(cls) return cls.__instance def __init__(self, **kwargs): force = kwargs.pop('force', False) # don't init window 2 times, # except if force is specified if WindowBase.__instance is not None and not force: return self.initialized = False self._is_desktop = Config.getboolean('kivy', 'desktop') # create a trigger for update/create the window when one of window # property changes self.trigger_create_window = Clock.create_trigger( self.create_window, -1) # Create a trigger for updating the keyboard height self.trigger_keyboard_height = Clock.create_trigger( self._upd_kbd_height, .5) # set the default window parameter according to the configuration if 'borderless' not in kwargs: kwargs['borderless'] = Config.getboolean('graphics', 'borderless') if 'fullscreen' not in kwargs: fullscreen = Config.get('graphics', 'fullscreen') if fullscreen not in ('auto', 'fake'): fullscreen = fullscreen.lower() in ('true', '1', 'yes', 'yup') kwargs['fullscreen'] = fullscreen if 'width' not in kwargs: kwargs['width'] = Config.getint('graphics', 'width') if 'height' not in kwargs: kwargs['height'] = Config.getint('graphics', 'height') if 'rotation' not in kwargs: kwargs['rotation'] = Config.getint('graphics', 'rotation') if 'position' not in kwargs: kwargs['position'] = Config.getdefault('graphics', 'position', 'auto') if 'top' in kwargs: kwargs['position'] = 'custom' kwargs['top'] = kwargs['top'] else: kwargs['top'] = Config.getint('graphics', 'top') if 'left' in kwargs: kwargs['position'] = 'custom' kwargs['left'] = kwargs['left'] else: kwargs['left'] = Config.getint('graphics', 'left') kwargs['_size'] = (kwargs.pop('width'), kwargs.pop('height')) super(WindowBase, self).__init__(**kwargs) # bind all the properties that need to recreate the window self._bind_create_window() self.bind(size=self.trigger_keyboard_height, rotation=self.trigger_keyboard_height) self.bind(softinput_mode=lambda *dt: self.update_viewport(), keyboard_height=lambda *dt: self.update_viewport()) # init privates self._system_keyboard = Keyboard(window=self) self._keyboards = {'system': self._system_keyboard} self._vkeyboard_cls = None self.children = [] self.parent = self # before creating the window import kivy.core.gl # NOQA # configure the window self.create_window() # attach modules + listener event EventLoop.set_window(self) Modules.register_window(self) EventLoop.add_event_listener(self) # manage keyboard(s) self.configure_keyboards() # assign the default context of the widget creation if not hasattr(self, '_context'): self._context = get_current_context() # mark as initialized self.initialized = True def _bind_create_window(self): for prop in ( 'fullscreen', 'borderless', 'position', 'top', 'left', '_size', 'system_size'): self.bind(**{prop: self.trigger_create_window}) def _unbind_create_window(self): for prop in ( 'fullscreen', 'borderless', 'position', 'top', 'left', '_size', 'system_size'): self.unbind(**{prop: self.trigger_create_window}) def toggle_fullscreen(self): '''Toggle between fullscreen and windowed mode. .. deprecated:: 1.9.0 Use :attr:`fullscreen` instead. ''' pass def maximize(self): '''Maximizes the window. This method should be used on desktop platforms only. .. versionadded:: 1.9.0 .. note:: This feature requires a SDL2 window provider and is currently only supported on desktop platforms. .. warning:: This code is still experimental, and its API may be subject to change in a future version. ''' Logger.warning('Window: maximize() is not implemented in the current ' 'window provider.') def minimize(self): '''Minimizes the window. This method should be used on desktop platforms only. .. versionadded:: 1.9.0 .. note:: This feature requires a SDL2 window provider and is currently only supported on desktop platforms. .. warning:: This code is still experimental, and its API may be subject to change in a future version. ''' Logger.warning('Window: minimize() is not implemented in the current ' 'window provider.') def restore(self): '''Restores the size and position of a maximized or minimized window. This method should be used on desktop platforms only. .. versionadded:: 1.9.0 .. note:: This feature requires a SDL2 window provider and is currently only supported on desktop platforms. .. warning:: This code is still experimental, and its API may be subject to change in a future version. ''' Logger.warning('Window: restore() is not implemented in the current ' 'window provider.') def hide(self): '''Hides the window. This method should be used on desktop platforms only. .. versionadded:: 1.9.0 .. note:: This feature requires a SDL2 window provider and is currently only supported on desktop platforms. .. warning:: This code is still experimental, and its API may be subject to change in a future version. ''' Logger.warning('Window: hide() is not implemented in the current ' 'window provider.') def show(self): '''Shows the window. This method should be used on desktop platforms only. .. versionadded:: 1.9.0 .. note:: This feature requires a SDL2 window provider and is currently only supported on desktop platforms. .. warning:: This code is still experimental, and its API may be subject to change in a future version. ''' Logger.warning('Window: show() is not implemented in the current ' 'window provider.') def close(self): '''Close the window''' pass def create_window(self, *largs): '''Will create the main window and configure it. .. warning:: This method is called automatically at runtime. If you call it, it will recreate a RenderContext and Canvas. This means you'll have a new graphics tree, and the old one will be unusable. This method exist to permit the creation of a new OpenGL context AFTER closing the first one. (Like using runTouchApp() and stopTouchApp()). This method has only been tested in a unittest environment and is not suitable for Applications. Again, don't use this method unless you know exactly what you are doing! ''' # just to be sure, if the trigger is set, and if this method is # manually called, unset the trigger Clock.unschedule(self.create_window) # ensure the window creation will not be called twice if platform in ('android', 'ios'): self._unbind_create_window() if not self.initialized: from kivy.core.gl import init_gl init_gl() # create the render context and canvas, only the first time. from kivy.graphics import RenderContext, Canvas self.render_context = RenderContext() self.canvas = Canvas() self.render_context.add(self.canvas) else: # if we get initialized more than once, then reload opengl state # after the second time. # XXX check how it's working on embed platform. if platform == 'linux' or Window.__class__.__name__ == 'WindowSDL': # on linux, it's safe for just sending a resize. self.dispatch('on_resize', *self.system_size) else: # on other platform, window are recreated, we need to reload. from kivy.graphics.context import get_context get_context().reload() Clock.schedule_once(lambda x: self.canvas.ask_update(), 0) self.dispatch('on_resize', *self.system_size) # ensure the gl viewport is correct self.update_viewport() def on_flip(self): '''Flip between buffers (event)''' self.flip() def flip(self): '''Flip between buffers''' pass def _update_childsize(self, instance, value): self.update_childsize([instance]) def add_widget(self, widget, canvas=None): '''Add a widget to a window''' widget.parent = self self.children.insert(0, widget) canvas = self.canvas.before if canvas == 'before' else \ self.canvas.after if canvas == 'after' else self.canvas canvas.add(widget.canvas) self.update_childsize([widget]) widget.bind( pos_hint=self._update_childsize, size_hint=self._update_childsize, size=self._update_childsize, pos=self._update_childsize) def remove_widget(self, widget): '''Remove a widget from a window ''' if not widget in self.children: return self.children.remove(widget) if widget.canvas in self.canvas.children: self.canvas.remove(widget.canvas) elif widget.canvas in self.canvas.after.children: self.canvas.after.remove(widget.canvas) elif widget.canvas in self.canvas.before.children: self.canvas.before.remove(widget.canvas) widget.parent = None widget.unbind( pos_hint=self._update_childsize, size_hint=self._update_childsize, size=self._update_childsize, pos=self._update_childsize) def clear(self): '''Clear the window with the background color''' # XXX FIXME use late binding from kivy.graphics.opengl import glClearColor, glClear, \ GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_BIT cc = self._clearcolor if cc is not None: glClearColor(*cc) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT) def set_title(self, title): '''Set the window title. .. versionadded:: 1.0.5 ''' self.title = title def set_icon(self, filename): '''Set the icon of the window. .. versionadded:: 1.0.5 ''' self.icon = filename def to_widget(self, x, y, initial=True, relative=False): return (x, y) def to_window(self, x, y, initial=True, relative=False): return (x, y) def _apply_transform(self, m): return m def get_window_matrix(self, x=0, y=0): m = Matrix() m.translate(x, y, 0) return m def get_root_window(self): return self def get_parent_window(self): return self def get_parent_layout(self): return None def on_draw(self): self.clear() self.render_context.draw() def on_motion(self, etype, me): '''Event called when a Motion Event is received. :Parameters: `etype`: str One of 'begin', 'update', 'end' `me`: :class:`~kivy.input.motionevent.MotionEvent` The Motion Event currently dispatched. ''' if me.is_touch: w, h = self.system_size if platform == 'ios' or self._density != 1: w, h = self.size me.scale_for_screen(w, h, rotation=self._rotation, smode=self.softinput_mode, kheight=self.keyboard_height) if etype == 'begin': self.dispatch('on_touch_down', me) elif etype == 'update': self.dispatch('on_touch_move', me) elif etype == 'end': self.dispatch('on_touch_up', me) FocusBehavior._handle_post_on_touch_up(me) def on_touch_down(self, touch): '''Event called when a touch down event is initiated. .. versionchanged:: 1.9.0 The touch `pos` is now transformed to window coordinates before this method is called. Before, the touch `pos` coordinate would be `(0, 0)` when this method was called. ''' for w in self.children[:]: if w.dispatch('on_touch_down', touch): return True def on_touch_move(self, touch): '''Event called when a touch event moves (changes location). .. versionchanged:: 1.9.0 The touch `pos` is now transformed to window coordinates before this method is called. Before, the touch `pos` coordinate would be `(0, 0)` when this method was called. ''' for w in self.children[:]: if w.dispatch('on_touch_move', touch): return True def on_touch_up(self, touch): '''Event called when a touch event is released (terminated). .. versionchanged:: 1.9.0 The touch `pos` is now transformed to window coordinates before this method is called. Before, the touch `pos` coordinate would be `(0, 0)` when this method was called. ''' for w in self.children[:]: if w.dispatch('on_touch_up', touch): return True def on_resize(self, width, height): '''Event called when the window is resized.''' self.update_viewport() def update_viewport(self): from kivy.graphics.opengl import glViewport from kivy.graphics.transformation import Matrix from math import radians w, h = self.system_size if self._density != 1: w, h = self.size smode = self.softinput_mode kheight = self.keyboard_height w2, h2 = w / 2., h / 2. r = radians(self.rotation) x, y = 0, 0 _h = h if smode: y = kheight if smode == 'scale': _h -= kheight # prepare the viewport glViewport(x, y, w, _h) # do projection matrix projection_mat = Matrix() projection_mat.view_clip(0.0, w, 0.0, h, -1.0, 1.0, 0) self.render_context['projection_mat'] = projection_mat # do modelview matrix modelview_mat = Matrix().translate(w2, h2, 0) modelview_mat = modelview_mat.multiply(Matrix().rotate(r, 0, 0, 1)) w, h = self.size w2, h2 = w / 2., h / 2. modelview_mat = modelview_mat.multiply(Matrix().translate(-w2, -h2, 0)) self.render_context['modelview_mat'] = modelview_mat # redraw canvas self.canvas.ask_update() # and update childs self.update_childsize() def update_childsize(self, childs=None): width, height = self.size if childs is None: childs = self.children for w in childs: shw, shh = w.size_hint if shw and shh: w.size = shw * width, shh * height elif shw: w.width = shw * width elif shh: w.height = shh * height for key, value in w.pos_hint.items(): if key == 'x': w.x = value * width elif key == 'right': w.right = value * width elif key == 'y': w.y = value * height elif key == 'top': w.top = value * height elif key == 'center_x': w.center_x = value * width elif key == 'center_y': w.center_y = value * height def screenshot(self, name='screenshot{:04d}.png'): '''Save the actual displayed image in a file ''' i = 0 path = None if name != 'screenshot{:04d}.png': _ext = name.split('.')[-1] name = ''.join((name[:-(len(_ext) + 1)], '{:04d}.', _ext)) while True: i += 1 path = join(getcwd(), name.format(i)) if not exists(path): break return path def on_rotate(self, rotation): '''Event called when the screen has been rotated. ''' pass def on_close(self, *largs): '''Event called when the window is closed''' Modules.unregister_window(self) EventLoop.remove_event_listener(self) def on_request_close(self, *largs, **kwargs): '''Event called before we close the window. If a bound function returns `True`, the window will not be closed. If the the event is triggered because of the keyboard escape key, the keyword argument `source` is dispatched along with a value of `keyboard` to the bound functions. .. warning:: When the bound function returns True the window will not be closed, so use with care because the user would not be able to close the program, even if the red X is clicked. ''' pass def on_mouse_down(self, x, y, button, modifiers): '''Event called when the mouse is used (pressed/released)''' pass def on_mouse_move(self, x, y, modifiers): '''Event called when the mouse is moved with buttons pressed''' pass def on_mouse_up(self, x, y, button, modifiers): '''Event called when the mouse is moved with buttons pressed''' pass def on_joy_axis(self, stickid, axisid, value): '''Event called when a joystick has a stick or other axis moved .. versionadded:: 1.9.0''' pass def on_joy_hat(self, stickid, hatid, value): '''Event called when a joystick has a hat/dpad moved .. versionadded:: 1.9.0''' pass def on_joy_ball(self, stickid, ballid, value): '''Event called when a joystick has a ball moved .. versionadded:: 1.9.0''' pass def on_joy_button_down(self, stickid, buttonid): '''Event called when a joystick has a button pressed .. versionadded:: 1.9.0''' pass def on_joy_button_up(self, stickid, buttonid): '''Event called when a joystick has a button released .. versionadded:: 1.9.0''' pass def on_keyboard(self, key, scancode=None, codepoint=None, modifier=None, **kwargs): '''Event called when keyboard is used. .. warning:: Some providers may omit `scancode`, `codepoint` and/or `modifier`. ''' if 'unicode' in kwargs: Logger.warning("The use of the unicode parameter is deprecated, " "and will be removed in future versions. Use " "codepoint instead, which has identical " "semantics.") # Quit if user presses ESC or the typical OSX shortcuts CMD+q or CMD+w # TODO If just CMD+w is pressed, only the window should be closed. is_osx = platform == 'darwin' if WindowBase.on_keyboard.exit_on_escape: if key == 27 or all([is_osx, key in [113, 119], modifier == 1024]): if not self.dispatch('on_request_close', source='keyboard'): stopTouchApp() self.close() return True if Config: on_keyboard.exit_on_escape = Config.getboolean('kivy', 'exit_on_escape') def __exit(section, name, value): WindowBase.__dict__['on_keyboard'].exit_on_escape = \ Config.getboolean('kivy', 'exit_on_escape') Config.add_callback(__exit, 'kivy', 'exit_on_escape') def on_key_down(self, key, scancode=None, codepoint=None, modifier=None, **kwargs): '''Event called when a key is down (same arguments as on_keyboard)''' if 'unicode' in kwargs: Logger.warning("The use of the unicode parameter is deprecated, " "and will be removed in future versions. Use " "codepoint instead, which has identical " "semantics.") def on_key_up(self, key, scancode=None, codepoint=None, modifier=None, **kwargs): '''Event called when a key is released (same arguments as on_keyboard) ''' if 'unicode' in kwargs: Logger.warning("The use of the unicode parameter is deprecated, " "and will be removed in future versions. Use " "codepoint instead, which has identical " "semantics.") def on_textinput(self, text): '''Event called whem text: i.e. alpha numeric non control keys or set of keys is entered. As it is not gaurenteed whether we get one character or multiple ones, this event supports handling multiple characters. .. versionadded:: 1.9.0 ''' pass def on_dropfile(self, filename): '''Event called when a file is dropped on the application. .. warning:: This event currently works with sdl2 window provider, on pygame window provider and MacOSX with a patched version of pygame. This event is left in place for further evolution (ios, android etc.) .. versionadded:: 1.2.0 ''' pass @reify def dpi(self): '''Return the DPI of the screen. If the implementation doesn't support any DPI lookup, it will just return 96. .. warning:: This value is not cross-platform. Use :attr:`kivy.base.EventLoop.dpi` instead. ''' return 96. def configure_keyboards(self): # Configure how to provide keyboards (virtual or not) # register system keyboard to listening keys from window sk = self._system_keyboard self.bind( on_key_down=sk._on_window_key_down, on_key_up=sk._on_window_key_up, on_textinput=sk._on_window_textinput) # use the device's real keyboard self.use_syskeyboard = True # use the device's real keyboard self.allow_vkeyboard = False # one single vkeyboard shared between all widgets self.single_vkeyboard = True # the single vkeyboard is always sitting at the same position self.docked_vkeyboard = False # now read the configuration mode = Config.get('kivy', 'keyboard_mode') if mode not in ('', 'system', 'dock', 'multi', 'systemanddock', 'systemandmulti'): Logger.critical('Window: unknown keyboard mode %r' % mode) # adapt mode according to the configuration if mode == 'system': self.use_syskeyboard = True self.allow_vkeyboard = False self.single_vkeyboard = True self.docked_vkeyboard = False elif mode == 'dock': self.use_syskeyboard = False self.allow_vkeyboard = True self.single_vkeyboard = True self.docked_vkeyboard = True elif mode == 'multi': self.use_syskeyboard = False self.allow_vkeyboard = True self.single_vkeyboard = False self.docked_vkeyboard = False elif mode == 'systemanddock': self.use_syskeyboard = True self.allow_vkeyboard = True self.single_vkeyboard = True self.docked_vkeyboard = True elif mode == 'systemandmulti': self.use_syskeyboard = True self.allow_vkeyboard = True self.single_vkeyboard = False self.docked_vkeyboard = False Logger.info( 'Window: virtual keyboard %sallowed, %s, %s' % ( '' if self.allow_vkeyboard else 'not ', 'single mode' if self.single_vkeyboard else 'multiuser mode', 'docked' if self.docked_vkeyboard else 'not docked')) def set_vkeyboard_class(self, cls): '''.. versionadded:: 1.0.8 Set the VKeyboard class to use. If set to None, it will use the :class:`kivy.uix.vkeyboard.VKeyboard`. ''' self._vkeyboard_cls = cls def release_all_keyboards(self): '''.. versionadded:: 1.0.8 This will ensure that no virtual keyboard / system keyboard is requested. All instances will be closed. ''' for key in list(self._keyboards.keys())[:]: keyboard = self._keyboards[key] if keyboard: keyboard.release() def request_keyboard(self, callback, target, input_type='text'): '''.. versionadded:: 1.0.4 Internal widget method to request the keyboard. This method is rarely required by the end-user as it is handled automatically by the :class:`~kivy.uix.textinput.TextInput`. We expose it in case you want to handle the keyboard manually for unique input scenarios. A widget can request the keyboard, indicating a callback to call when the keyboard is released (or taken by another widget). :Parameters: `callback`: func Callback that will be called when the keyboard is closed. This can be because somebody else requested the keyboard or the user closed it. `target`: Widget Attach the keyboard to the specified `target`. This should be the widget that requested the keyboard. Ensure you have a different target attached to each keyboard if you're working in a multi user mode. .. versionadded:: 1.0.8 `input_type`: string Choose the type of soft keyboard to request. Can be one of 'text', 'number', 'url', 'mail', 'datetime', 'tel', 'address'. .. note:: `input_type` is currently only honored on mobile devices. .. versionadded:: 1.8.0 :Return: An instance of :class:`Keyboard` containing the callback, target, and if the configuration allows it, a :class:`~kivy.uix.vkeyboard.VKeyboard` instance attached as a *.widget* property. .. note:: The behavior of this function is heavily influenced by the current `keyboard_mode`. Please see the Config's :ref:`configuration tokens <configuration-tokens>` section for more information. ''' # release any previous keyboard attached. self.release_keyboard(target) # if we can use virtual vkeyboard, activate it. if self.allow_vkeyboard: keyboard = None # late import global VKeyboard if VKeyboard is None and self._vkeyboard_cls is None: from kivy.uix.vkeyboard import VKeyboard self._vkeyboard_cls = VKeyboard # if the keyboard doesn't exist, create it. key = 'single' if self.single_vkeyboard else target if key not in self._keyboards: vkeyboard = self._vkeyboard_cls() keyboard = Keyboard(widget=vkeyboard, window=self) vkeyboard.bind( on_key_down=keyboard._on_vkeyboard_key_down, on_key_up=keyboard._on_vkeyboard_key_up, on_textinput=keyboard._on_vkeyboard_textinput) self._keyboards[key] = keyboard else: keyboard = self._keyboards[key] # configure vkeyboard keyboard.target = keyboard.widget.target = target keyboard.callback = keyboard.widget.callback = callback # add to the window self.add_widget(keyboard.widget) # only after add, do dock mode keyboard.widget.docked = self.docked_vkeyboard keyboard.widget.setup_mode() else: # system keyboard, just register the callback. keyboard = self._system_keyboard keyboard.callback = callback keyboard.target = target # use system (hardware) keyboard according to flag if self.allow_vkeyboard and self.use_syskeyboard: self.unbind( on_key_down=keyboard._on_window_key_down, on_key_up=keyboard._on_window_key_up, on_textinput=keyboard._on_window_textinput) self.bind( on_key_down=keyboard._on_window_key_down, on_key_up=keyboard._on_window_key_up, on_textinput=keyboard._on_window_textinput) return keyboard def release_keyboard(self, target=None): '''.. versionadded:: 1.0.4 Internal method for the widget to release the real-keyboard. Check :meth:`request_keyboard` to understand how it works. ''' if self.allow_vkeyboard: key = 'single' if self.single_vkeyboard else target if key not in self._keyboards: return keyboard = self._keyboards[key] callback = keyboard.callback if callback: keyboard.callback = None callback() keyboard.target = None self.remove_widget(keyboard.widget) if key != 'single' and key in self._keyboards: del self._keyboards[key] elif self._system_keyboard.callback: # this way will prevent possible recursion. callback = self._system_keyboard.callback self._system_keyboard.callback = None callback() return True #: Instance of a :class:`WindowBase` implementation window_impl = [] if platform == 'linux': window_impl += [('egl_rpi', 'window_egl_rpi', 'WindowEglRpi')] if USE_SDL2: window_impl += [('sdl2', 'window_sdl2', 'WindowSDL')] else: window_impl += [ ('pygame', 'window_pygame', 'WindowPygame')] if platform == 'linux': window_impl += [('x11', 'window_x11', 'WindowX11')] Window = core_select_lib('window', window_impl, True)
the-stack_0_62
import pytest from nmcli.data import Connection from nmcli.dummy._connection import DummyConnectionControl def test_call(): result_call = [Connection('a', 'b', 'ethernet', 'eth0')] c = DummyConnectionControl(result_call) assert c() == result_call def test_call_when_raise_error(): c = DummyConnectionControl(raise_error=Exception) with pytest.raises(Exception): c() def test_add(): c = DummyConnectionControl() conn_type = 'ethernet' options = { 'key': 'value' } ifname = 'eth0' name = 'MyHome' autoconnect = True c.add(conn_type, options, ifname, name, autoconnect) assert c.add_args[0] == (conn_type, options, ifname, name, autoconnect) c.add(conn_type, options, ifname, name, False) assert c.add_args[1] == (conn_type, options, ifname, name, False) c.add(conn_type, options, ifname, name) assert c.add_args[2] == (conn_type, options, ifname, name, None) def test_add_when_raise_error(): c = DummyConnectionControl(raise_error=Exception) with pytest.raises(Exception): c.add('ethernet') def test_modify(): c = DummyConnectionControl() options = { 'key': 'value' } name = 'MyHome' c.modify(name, options) assert c.modify_args[0] == (name, options) def test_modify_when_raise_error(): c = DummyConnectionControl(raise_error=Exception) with pytest.raises(Exception): c.modify('ethernet', {'key': 'value'}) def test_delete(): c = DummyConnectionControl() name = 'MyHome' c.delete(name) assert c.delete_args[0] == name def test_delete_when_raise_error(): c = DummyConnectionControl(raise_error=Exception) with pytest.raises(Exception): c.delete('ethernet') def test_up(): c = DummyConnectionControl() name = 'MyHome' c.up(name) assert c.up_args[0] == name def test_up_when_raise_error(): c = DummyConnectionControl(raise_error=Exception) with pytest.raises(Exception): c.up('ethernet') def test_down(): c = DummyConnectionControl() name = 'MyHome' c.down(name) assert c.down_args[0] == name def test_down_when_raise_error(): c = DummyConnectionControl(raise_error=Exception) with pytest.raises(Exception): c.down('ethernet') def test_show(): result_show = { 'key': 'value' } c = DummyConnectionControl(result_show=result_show) name = 'MyHome' assert c.show(name) == result_show def test_show_when_raise_error(): c = DummyConnectionControl(raise_error=Exception) with pytest.raises(Exception): c.show('MyHome') def test_show_when_no_arguments_are_passed(): c = DummyConnectionControl() with pytest.raises(ValueError): c.show('MyHome') def test_reload(): c = DummyConnectionControl() c.reload() assert c.called_reload == 1 def test_reload_when_raise_error(): c = DummyConnectionControl(raise_error=Exception) with pytest.raises(Exception): c.reload()
the-stack_0_63
# Copyright 2017 Workonline Communications (Pty) Ltd. All rights reserved. # # The contents of this file are licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Method test classes for djangolg.""" from __future__ import print_function from __future__ import unicode_literals from django.test import TestCase from djangolg import dialects, methods from djangolg.methods.base import BaseMethod class MethodTestCase(TestCase): """Test djangolg methods.""" def test_available_methods(self): """Test available_methods helper.""" methods_map = methods.available_methods("map") methods_list = methods.available_methods("list") assert isinstance(methods_map, dict) assert isinstance(methods_list, list) try: methods.available_methods("wrong") except Exception as e: assert isinstance(e, ValueError) assert "{}".format(e) == "invalid output type: wrong" def test_get_method(self): """Test get_method helper.""" for method_name in methods.available_methods("list"): method = methods.get_method(name=method_name) assert isinstance(method, BaseMethod) try: methods.get_method() except Exception as e: assert isinstance(e, methods.MethodNotFound) try: methods.get_method(name=dict()) except Exception as e: assert isinstance(e, methods.LookingGlassMethodError) def test_method_init_failure(self): """Test method initiation failure.""" try: BaseMethod(dialect="string") except Exception as e: assert isinstance(e, TypeError) def test_method_dialect_functions(self): """Test method dialect getter and setter and other methods.""" for method_name in methods.available_methods(output="list"): method = methods.get_method(name=method_name) assert method.dialect is None try: method.dialect = "wrong_type" except Exception as e: assert isinstance(e, TypeError) for dialect_name in dialects.available_dialects(output="list"): dialect = dialects.get_dialect(dialect_name) method.dialect = dialect assert method.dialect is dialect if method.options: for index, option in method.option_choices(): assert method.get_command(target=method.test_target, option_index=index) else: assert method.get_command(target=method.test_target)
the-stack_0_64
import numpy as np import tensorflow as tf from numbers import Number import gym import time from spinup.algos.tf1.sac1 import core from spinup.algos.tf1.sac1.core import get_vars from spinup.utils.logx import EpochLogger from gym.spaces import Box, Discrete from spinup.utils.frame_stack import FrameStack import os class ReplayBuffer: """ A simple FIFO experience replay buffer for SAC agents. """ def __init__(self, obs_dim, act_dim, size): self.obs1_buf = np.zeros([size, obs_dim], dtype=np.float32) self.obs2_buf = np.zeros([size, obs_dim], dtype=np.float32) self.acts_buf = np.zeros([size, act_dim], dtype=np.float32) self.rews_buf = np.zeros(size, dtype=np.float32) self.done_buf = np.zeros(size, dtype=np.float32) self.ptr, self.size, self.max_size = 0, 0, size def store(self, obs, act, rew, next_obs, done): self.obs1_buf[self.ptr] = obs self.obs2_buf[self.ptr] = next_obs self.acts_buf[self.ptr] = act self.rews_buf[self.ptr] = rew self.done_buf[self.ptr] = done self.ptr = (self.ptr+1) % self.max_size self.size = min(self.size+1, self.max_size) def sample_batch(self, batch_size=32): idxs = np.random.randint(0, self.size, size=batch_size) return dict(obs1=self.obs1_buf[idxs], obs2=self.obs2_buf[idxs], acts=self.acts_buf[idxs], rews=self.rews_buf[idxs], done=self.done_buf[idxs]) """ Soft Actor-Critic (With slight variations that bring it closer to TD3) """ def sac1(args, env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, steps_per_epoch=1000, epochs=100, replay_size=int(2e6), gamma=0.99, reward_scale=1.0, polyak=0.995, lr=5e-4, alpha=0.2, batch_size=200, start_steps=10000, max_ep_len_train=1000, max_ep_len_test=1000, logger_kwargs=dict(), save_freq=1): """ Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: A function which takes in placeholder symbols for state, ``x_ph``, and action, ``a_ph``, and returns the main outputs from the agent's Tensorflow computation graph: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``mu`` (batch, act_dim) | Computes mean actions from policy | given states. ``pi`` (batch, act_dim) | Samples actions from policy given | states. ``logp_pi`` (batch,) | Gives log probability, according to | the policy, of the action sampled by | ``pi``. Critical: must be differentiable | with respect to policy parameters all | the way through action sampling. ``q1`` (batch,) | Gives one estimate of Q* for | states in ``x_ph`` and actions in | ``a_ph``. ``q2`` (batch,) | Gives another estimate of Q* for | states in ``x_ph`` and actions in | ``a_ph``. ``q1_pi`` (batch,) | Gives the composition of ``q1`` and | ``pi`` for states in ``x_ph``: | q1(x, pi(x)). ``q2_pi`` (batch,) | Gives the composition of ``q2`` and | ``pi`` for states in ``x_ph``: | q2(x, pi(x)). =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the actor_critic function you provided to SAC. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs to run and train agent. replay_size (int): Maximum length of replay buffer. gamma (float): Discount factor. (Always between 0 and 1.) polyak (float): Interpolation factor in polyak averaging for target networks. Target networks are updated towards main networks according to: .. math:: \\theta_{\\text{targ}} \\leftarrow \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta where :math:`\\rho` is polyak. (Always between 0 and 1, usually close to 1.) lr (float): Learning rate (used for policy/value/alpha learning). alpha (float/'auto'): Entropy regularization coefficient. (Equivalent to inverse of reward scale in the original SAC paper.) / 'auto': alpha is automated. batch_size (int): Minibatch size for SGD. start_steps (int): Number of steps for uniform-random action selection, before running real policy. Helps exploration. max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. """ if not args.is_test: logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) tf.set_random_seed(seed) np.random.seed(seed) env, test_env = env_fn(3), env_fn(1) obs_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] # Action limit for clamping: critically, assumes all dimensions share the same bound! act_limit = env.action_space.high[0] # Share information about action space with policy architecture ac_kwargs['action_space'] = env.action_space # Inputs to computation graph x_ph, a_ph, x2_ph, r_ph, d_ph = core.placeholders(obs_dim, act_dim, obs_dim, None, None) # Main outputs from computation graph with tf.variable_scope('main'): mu, pi, logp_pi, logp_pi2, q1, q2, q1_pi, q2_pi = actor_critic(x_ph, x2_ph, a_ph, **ac_kwargs) # Target value network with tf.variable_scope('target'): _, _, logp_pi_, _, _, _,q1_pi_, q2_pi_= actor_critic(x2_ph, x2_ph, a_ph, **ac_kwargs) # Experience buffer replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size) # Count variables var_counts = tuple(core.count_vars(scope) for scope in ['main/pi', 'main/q1', 'main/q2', 'main']) print(('\nNumber of parameters: \t pi: %d, \t' + \ 'q1: %d, \t q2: %d, \t total: %d\n')%var_counts) ###### if alpha == 'auto': target_entropy = (-np.prod(env.action_space.shape)) log_alpha = tf.get_variable( 'log_alpha', dtype=tf.float32, initializer=0.0) alpha = tf.exp(log_alpha) alpha_loss = tf.reduce_mean(-log_alpha * tf.stop_gradient(logp_pi + target_entropy)) alpha_optimizer = tf.train.AdamOptimizer(learning_rate=lr*0.1, name='alpha_optimizer') train_alpha_op = alpha_optimizer.minimize(loss=alpha_loss, var_list=[log_alpha]) ###### # Min Double-Q: min_q_pi = tf.minimum(q1_pi_, q2_pi_) # Targets for Q and V regression v_backup = tf.stop_gradient(min_q_pi - alpha * logp_pi2) q_backup = r_ph + gamma*(1-d_ph)*v_backup # Soft actor-critic losses pi_loss = tf.reduce_mean(alpha * logp_pi - q1_pi) q1_loss = 0.5 * tf.reduce_mean((q_backup - q1)**2) q2_loss = 0.5 * tf.reduce_mean((q_backup - q2)**2) value_loss = q1_loss + q2_loss # Policy train op # (has to be separate from value train op, because q1_pi appears in pi_loss) pi_optimizer = tf.train.AdamOptimizer(learning_rate=lr) train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi')) # Value train op # (control dep of train_pi_op because sess.run otherwise evaluates in nondeterministic order) value_optimizer = tf.train.AdamOptimizer(learning_rate=lr) value_params = get_vars('main/q') with tf.control_dependencies([train_pi_op]): train_value_op = value_optimizer.minimize(value_loss, var_list=value_params) # Polyak averaging for target variables # (control flow because sess.run otherwise evaluates in nondeterministic order) with tf.control_dependencies([train_value_op]): target_update = tf.group([tf.assign(v_targ, polyak*v_targ + (1-polyak)*v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target'))]) # All ops to call during one training step if isinstance(alpha, Number): step_ops = [pi_loss, q1_loss, q2_loss, q1, q2, logp_pi, tf.identity(alpha), train_pi_op, train_value_op, target_update] else: step_ops = [pi_loss, q1_loss, q2_loss, q1, q2, logp_pi, alpha, train_pi_op, train_value_op, target_update, train_alpha_op] # Initializing targets to match main variables target_init = tf.group([tf.assign(v_targ, v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target'))]) sess = tf.Session() sess.run(tf.global_variables_initializer()) sess.run(target_init) ############################## save and restore ############################ saver = tf.train.Saver() checkpoint_path = logger_kwargs['output_dir'] + '/checkpoints' if not os.path.exists(checkpoint_path): os.makedirs(checkpoint_path) if args.is_test or args.is_restore_train: ckpt = tf.train.get_checkpoint_state(checkpoint_path) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print("Model restored.") def get_action(o, deterministic=False): act_op = mu if deterministic else pi return sess.run(act_op, feed_dict={x_ph: o.reshape(1,-1)})[0] ############################## test ############################ if args.is_test: test_env = gym.make(args.env) ave_ep_ret = 0 for j in range(10000): o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0 while not d: # (d or (ep_len == 2000)): o, r, d, _ = test_env.step(get_action(o, True)) ep_ret += r ep_len += 1 if args.test_render: test_env.render() ave_ep_ret = (j*ave_ep_ret + ep_ret)/(j+1) print('ep_len', ep_len, 'ep_ret:', ep_ret, 'ave_ep_ret:',ave_ep_ret,'({}/10000)'.format(j+1) ) return ############################## train ############################ def test_agent(n=25): global sess, mu, pi, q1, q2, q1_pi, q2_pi for j in range(n): o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0 while not(d or (ep_len == max_ep_len_test)): # Take deterministic actions at test time o, r, d, _ = test_env.step(get_action(o, True)) ep_ret += r ep_len += 1 # test_env.render() logger.store(TestEpRet=ep_ret, TestEpLen=ep_len) start_time = time.time() o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 total_steps = steps_per_epoch * epochs ep_index = 0 test_ep_ret_best = test_ep_ret = -10000.0 # Main loop: collect experience in env and update/log each epoch for t in range(total_steps): """ Until start_steps have elapsed, randomly sample actions from a uniform distribution for better exploration. Afterwards, use the learned policy. """ if t > start_steps: a = get_action(o) else: a = env.action_space.sample() # Step the env o2, r, d, _ = env.step(a) ep_ret += r ep_len += 1 # Ignore the "done" signal if it comes from hitting the time # horizon (that is, when it's an artificial terminal signal # that isn't based on the agent's state) # d = False if ep_len==max_ep_len_train else d # Store experience to replay buffer replay_buffer.store(o, a, r, o2, d) # Super critical, easy to overlook step: make sure to update # most recent observation! o = o2 # End of episode. Training (ep_len times). if d or (ep_len == max_ep_len_train): ep_index += 1 print('episode: {}, ep_len: {}, reward: {}'.format(ep_index, ep_len, ep_ret/reward_scale)) """ Perform all SAC updates at the end of the trajectory. This is a slight difference from the SAC specified in the original paper. """ for j in range(int(1.5*ep_len)): batch = replay_buffer.sample_batch(batch_size) feed_dict = {x_ph: batch['obs1'], x2_ph: batch['obs2'], a_ph: batch['acts'], r_ph: batch['rews'], d_ph: batch['done'], } # step_ops = [pi_loss, q1_loss, q2_loss, q1, q2, logp_pi, alpha, train_pi_op, train_value_op, target_update] outs = sess.run(step_ops, feed_dict) logger.store(LossPi=outs[0], LossQ1=outs[1], LossQ2=outs[2], Q1Vals=outs[3], Q2Vals=outs[4], LogPi=outs[5], Alpha=outs[6]) logger.store(EpRet=ep_ret/reward_scale, EpLen=ep_len) o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 # End of epoch wrap-up if t > 0 and t % steps_per_epoch == 0: epoch = t // steps_per_epoch test_agent(10) # test_ep_ret = logger.get_stats('TestEpRet')[0] # print('TestEpRet', test_ep_ret, 'Best:', test_ep_ret_best) if logger.get_stats('TestEpRet')[0] >= 180: print('Recalculating TestEpRet...') test_agent(100) test_ep_ret = logger.get_stats('TestEpRet')[0] # logger.epoch_dict['TestEpRet'] = [] print('TestEpRet', test_ep_ret, 'Best:', test_ep_ret_best) # logger.store(): store the data; logger.log_tabular(): log the data; logger.dump_tabular(): write the data # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('Num_Ep', ep_index) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('TestEpRet', with_min_and_max=False) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('TestEpLen', average_only=True) logger.log_tabular('TotalEnvInteracts', t) logger.log_tabular('Alpha',average_only=True) logger.log_tabular('Q1Vals', with_min_and_max=True) logger.log_tabular('Q2Vals', with_min_and_max=True) # logger.log_tabular('VVals', with_min_and_max=True) logger.log_tabular('LogPi', with_min_and_max=True) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossQ1', average_only=True) logger.log_tabular('LossQ2', average_only=True) # logger.log_tabular('LossV', average_only=True) logger.log_tabular('Time', time.time()-start_time) logger.dump_tabular() # Save model if ((epoch % save_freq == 0) or (epoch == epochs - 1)) and test_ep_ret > test_ep_ret_best: save_path = saver.save(sess, checkpoint_path+'/model.ckpt', t) print("Model saved in path: %s" % save_path) test_ep_ret_best = test_ep_ret if test_ep_ret >= 200: print("Model saved in path: %s" % save_path) print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(ep_index, test_ep_ret)) exit() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='LunarLanderContinuous-v2') # 'Pendulum-v0' parser.add_argument('--is_restore_train', type=bool, default=False) parser.add_argument('--is_test', type=bool, default=False) parser.add_argument('--test_render', type=bool, default=False) parser.add_argument('--max_ep_len_test', type=int, default=2000) # 'BipedalWalkerHardcore-v2' max_ep_len is 2000 parser.add_argument('--max_ep_len_train', type=int, default=1000) # max_ep_len_train < 2000//3 # 'BipedalWalkerHardcore-v2' max_ep_len is 2000 parser.add_argument('--start_steps', type=int, default=100) parser.add_argument('--hid', type=int, default=300) parser.add_argument('--l', type=int, default=1) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--seed', '-s', type=int, default=np.random.random_integers(1000)) parser.add_argument('--epochs', type=int, default=10000) parser.add_argument('--alpha', default='auto', help="alpha can be either 'auto' or float(e.g:0.2).") parser.add_argument('--reward_scale', type=float, default=1.0) parser.add_argument('--act_noise', type=float, default=0.3) parser.add_argument('--obs_noise', type=float, default=0.0) parser.add_argument('--exp_name', type=str, default='sac1_LunarLanderContinuous-v2_debug3') parser.add_argument('--stack_frames', type=int, default=4) args = parser.parse_args() from spinup.utils.run_utils import setup_logger_kwargs logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed) class Wrapper(object): def __init__(self, env, action_repeat): self._env = env self.action_repeat = action_repeat def __getattr__(self, name): return getattr(self._env, name) def step(self, action): r = 0.0 for _ in range(self.action_repeat): obs_, reward_, done_, info_ = self._env.step(action) reward_ = reward_ if reward_ > -99.0 else 0.0 r = r + reward_ if done_: return obs_, r, done_, info_ return obs_, r, done_, info_ # env = FrameStack(env, args.stack_frames) env_lunar1 = gym.make(args.env) env_lunar3 = Wrapper(gym.make(args.env),3) sac1(args, lambda n : env_lunar3 if n==3 else env_lunar1, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(hidden_sizes=[200,150]), start_steps = args.start_steps, gamma=args.gamma, seed=args.seed, epochs=args.epochs, alpha=args.alpha, logger_kwargs=logger_kwargs, lr = args.lr, reward_scale=args.reward_scale, max_ep_len_train = args.max_ep_len_train, max_ep_len_test=args.max_ep_len_test)
the-stack_0_66
"""1248. Count Number of Nice Subarrays Medium""" class Solution(object): def numberOfSubarrays(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ ######### m = [0]*50001 res = 0 curr = 0 m[0] = 1 for i in range(len(nums)): curr += (nums[i]%2) if curr >= k: res += m[curr-k] m[curr] += 1 return res ####### return self.atMost(nums, k)-self.atMost(nums, k-1) def atMost(self, nums, k): res = 0 count = 0 left = 0 right = 0 while right < len(nums): n = nums[right] count += n%2 while count >= k: c = nums[left] count -= c%2 left += 1 res += right - left + 1 right += 1 return res ################# def atMost(k): res = 0 left = 0 for right in range(len(nums)): k -= nums[right]%2 while k < 0: k += nums[left]%2 left += 1 res += right -left + 1 return res return atMost(k) - atMost(k-1) #
the-stack_0_68
#!/usr/bin/env python # coding=utf-8 """ __created__ = '4/22/16' __author__ = 'deling.ma' """ import multiprocessing bind = '0.0.0.0:7777' max_requests = 10000 keepalive = 5 proc_name = 'fitahol' workers = multiprocessing.cpu_count() * 2 + 1 worker_class = 'gaiohttp' loglevel = 'info' errorlog = '-' x_forwarded_for_header = 'X-FORWARDED-FOR'
the-stack_0_69
import numpy as np import tensorflow as tf import tensorflow.compat.v1.keras as keras import pickle import os from math import ceil from utils import preprocess_flags, save_kernel, save_kernel_partial from utils import load_data,load_model,load_model_json,load_kernel from utils import data_folder,kernel_folder,arch_folder def main(_): FLAGS = tf.compat.v1.app.flags.FLAGS.flag_values_dict() FLAGS = preprocess_flags(FLAGS) globals().update(FLAGS) if init_dist != "gaussian": raise NotImplementedError("Initialization distributions other than Gaussian are not implemented for computing kernels!") from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() print(rank) if n_gpus>0: os.environ["CUDA_VISIBLE_DEVICES"]=str((rank)%n_gpus) config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True set_session = keras.backend.set_session config.log_device_placement = False # to log device placement (on which device the operation ran) config.allow_soft_placement = True # so that it uses any other existing and supported devices, if the requested GPU:0 isn't found sess = tf.compat.v1.Session(config=config) set_session(sess) # set this TensorFlow session as the default session for Keras train_images,flat_train_images,_,test_images,_ = load_data(FLAGS) image_size = train_images.shape[1] number_channels = train_images.shape[-1] #print("image_size", image_size) X = train_images flat_X = flat_train_images if compute_for_GP_train: test_images = test_images[:1000] data = test_images tp_order = np.concatenate([[0,len(data.shape)-1], np.arange(1, len(data.shape)-1)]) print(data.shape,tp_order) flat_data = np.transpose(data, tp_order) # NHWC -> NCHW # this is because the cnn GP kernels assume this flat_test_images = np.array([test_image.flatten() for test_image in flat_data]) Xfull = np.concatenate([flat_train_images,flat_test_images]) flat_X = Xfull X = np.concatenate([train_images,test_images]) print("compute kernel", network, dataset) # COMPUTE KERNEL if use_empirical_NTK: from nngp_kernel.empirical_ntk import empirical_NTK print(ceil(int(X.shape[0])*n_samples_repeats)) from tensorflow.keras.models import model_from_json model = load_model(FLAGS) K = empirical_NTK(model,X)#,sess=sess) elif use_empirical_K: from nngp_kernel.empirical_kernel import empirical_K print("n_samples_repeats",n_samples_repeats) print(ceil(int(X.shape[0])*n_samples_repeats)) arch_json_string = load_model_json(FLAGS) K = empirical_K(arch_json_string,X,ceil(int(X.shape[0])*n_samples_repeats),sigmaw=sigmaw,sigmab=sigmab,n_gpus=n_gpus,empirical_kernel_batch_size=empirical_kernel_batch_size, sess=sess, truncated_init_dist=truncated_init_dist,data_parallelism=False,store_partial_kernel=store_partial_kernel,partial_kernel_n_proc=partial_kernel_n_proc,partial_kernel_index=partial_kernel_index) if rank == 0: if not (use_empirical_K or use_empirical_NTK): if network=="cnn": from nngp_kernel.cnn_kernel import kernel_matrix K = kernel_matrix(flat_X,image_size=image_size,number_channels=number_channels,filter_sizes=filter_sizes,padding=padding,strides=strides,sigmaw=sigmaw,sigmab=sigmab,n_gpus=n_gpus) elif network=="resnet": from nngp_kernel.resnet_kernel import kernel_matrix K = kernel_matrix(flat_X,depth=number_layers,image_size=image_size,number_channels=number_channels,n_blocks=3,sigmaw=sigmaw,sigmab=sigmab,n_gpus=n_gpus) elif network == "fc": from nngp_kernel.fc_kernel import kernel_matrix K = kernel_matrix(flat_X,number_layers=number_layers,sigmaw=sigmaw,sigmab=sigmab,n_gpus=n_gpus) print(K) '''SAVE KERNEL''' if store_partial_kernel: save_kernel_partial(K,FLAGS,partial_kernel_index) else: save_kernel(K,FLAGS) if __name__ == '__main__': f = tf.compat.v1.app.flags from utils import define_default_flags define_default_flags(f) f.DEFINE_boolean('compute_for_GP_train', False, "Whether to add a bit of test set to kernel, to be able to use it for GP training") f.DEFINE_boolean('store_partial_kernel', False, "Whether to store the kernels partially on a file to free the processes") f.DEFINE_integer('empirical_kernel_batch_size', 256, "batch size to use when computing the empirical kernel, larger models need smaller values, but smaller models can use larger values") f.DEFINE_integer('partial_kernel_n_proc', 175, "number of processes over which we are parallelizing the when computing partial kernels and saving") f.DEFINE_integer('partial_kernel_index', 0, "index of the process when using partial_kernels method") tf.compat.v1.app.run()
the-stack_0_71
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import re from nose.plugins.skip import SkipTest from nose.tools import assert_true, assert_equal, assert_false from django.contrib.auth.models import User from django.urls import reverse import desktop.conf as desktop_conf from desktop.lib.django_test_util import make_logged_in_client from desktop.lib.test_utils import add_to_group from desktop.models import Document from hadoop.pseudo_hdfs4 import get_db_prefix, is_live_cluster from beeswax import data_export from beeswax.design import hql_query from beeswax.data_export import download from beeswax.models import SavedQuery, QueryHistory from beeswax.server import dbms from beeswax.test_base import get_query_server_config, wait_for_query_to_finish, fetch_query_result_data from beeswax.tests import _make_query from impala import conf from impala.dbms import ImpalaDbms LOG = logging.getLogger(__name__) class MockDbms: def get_databases(self): return ['db1', 'db2'] def get_tables(self, database): return ['table1', 'table2'] class TestMockedImpala: def setUp(self): self.client = make_logged_in_client() # Mock DB calls as we don't need the real ones self.prev_dbms = dbms.get dbms.get = lambda a, b: MockDbms() def tearDown(self): # Remove monkey patching dbms.get = self.prev_dbms def test_basic_flow(self): response = self.client.get("/impala/") assert_true(re.search('Impala', response.content), response.content) assert_true('Query Editor' in response.content) response = self.client.get("/impala/execute/") assert_true('Query Editor' in response.content) def test_saved_queries(self): user = User.objects.get(username='test') response = self.client.get("/impala/list_designs") assert_equal(len(response.context[0]['page'].object_list), 0) try: beewax_query = create_saved_query('beeswax', user) response = self.client.get("/impala/list_designs") assert_equal(len(response.context[0]['page'].object_list), 0) impala_query = create_saved_query('impala', user) response = self.client.get("/impala/list_designs") assert_equal(len(response.context[0]['page'].object_list), 1) # Test my query page QueryHistory.objects.create(owner=user, design=impala_query, query='', last_state=QueryHistory.STATE.available.value) resp = self.client.get('/impala/my_queries') assert_equal(len(resp.context[0]['q_page'].object_list), 1) assert_equal(resp.context[0]['h_page'].object_list[0].design.name, 'create_saved_query') finally: if beewax_query is not None: beewax_query.delete() if impala_query is not None: impala_query.delete() class TestImpalaIntegration: @classmethod def setup_class(cls): cls.finish = [] if not is_live_cluster(): raise SkipTest cls.client = make_logged_in_client() cls.user = User.objects.get(username='test') add_to_group('test') cls.db = dbms.get(cls.user, get_query_server_config(name='impala')) cls.DATABASE = get_db_prefix(name='impala') queries = [""" DROP TABLE IF EXISTS %(db)s.tweets; """ % {'db': cls.DATABASE}, """ DROP DATABASE IF EXISTS %(db)s CASCADE; """ % {'db': cls.DATABASE}, """ CREATE DATABASE %(db)s; """ % {'db': cls.DATABASE}] for query in queries: resp = _make_query(cls.client, query, database='default', local=False, server_name='impala') resp = wait_for_query_to_finish(cls.client, resp, max=180.0) content = json.loads(resp.content) assert_true(content['status'] == 0, resp.content) queries = [""" CREATE TABLE tweets (row_num INTEGER, id_str STRING, text STRING) STORED AS PARQUET; """, """ INSERT INTO TABLE tweets VALUES (1, "531091827395682000", "My dad looks younger than costa"); """, """ INSERT INTO TABLE tweets VALUES (2, "531091827781550000", "There is a thin line between your partner being vengeful and you reaping the consequences of your bad actions towards your partner."); """, """ INSERT INTO TABLE tweets VALUES (3, "531091827768979000", "@Mustang_Sally83 and they need to get into you :))))"); """, """ INSERT INTO TABLE tweets VALUES (4, "531091827114668000", "@RachelZJohnson thank you rach!xxx"); """, """ INSERT INTO TABLE tweets VALUES (5, "531091827949309000", "i think @WWERollins was robbed of the IC title match this week on RAW also i wonder if he will get a rematch i hope so @WWE"); """] for query in queries: resp = _make_query(cls.client, query, database=cls.DATABASE, local=False, server_name='impala') resp = wait_for_query_to_finish(cls.client, resp, max=180.0) content = json.loads(resp.content) assert_true(content['status'] == 0, resp.content) @classmethod def teardown_class(cls): # We need to drop tables before dropping the database queries = [""" DROP TABLE IF EXISTS %(db)s.tweets; """ % {'db': cls.DATABASE}, """ DROP DATABASE %(db)s CASCADE; """ % {'db': cls.DATABASE}] for query in queries: resp = _make_query(cls.client, query, database='default', local=False, server_name='impala') resp = wait_for_query_to_finish(cls.client, resp, max=180.0) # Check the cleanup databases = cls.db.get_databases() assert_false(cls.DATABASE in databases) assert_false('%(db)s_other' % {'db': cls.DATABASE} in databases) for f in cls.finish: f() def test_basic_flow(self): dbs = self.db.get_databases() assert_true('_impala_builtins' in dbs, dbs) assert_true(self.DATABASE in dbs, dbs) tables = self.db.get_tables(database=self.DATABASE) assert_true('tweets' in tables, tables) QUERY = """ SELECT * FROM tweets ORDER BY row_num; """ response = _make_query(self.client, QUERY, database=self.DATABASE, local=False, server_name='impala') content = json.loads(response.content) query_history = QueryHistory.get(content['id']) response = wait_for_query_to_finish(self.client, response, max=180.0) results = [] # Check that we multiple fetches get all the result set while len(results) < 5: content = fetch_query_result_data(self.client, response, n=len(results), server_name='impala') # We get less than 5 results most of the time, so increase offset results += content['results'] assert_equal([1, 2, 3, 4, 5], [col[0] for col in results]) # Check start over results_start_over = [] while len(results_start_over) < 5: content = fetch_query_result_data(self.client, response, n=len(results_start_over), server_name='impala') results_start_over += content['results'] assert_equal(results_start_over, results) # Check cancel query resp = self.client.post(reverse('impala:api_cancel_query', kwargs={'query_history_id': query_history.id})) content = json.loads(resp.content) assert_equal(0, content['status']) def test_data_download(self): hql = 'SELECT * FROM tweets %(limit)s' FETCH_SIZE = data_export.FETCH_SIZE data_export.FETCH_SIZE = 2 # Decrease fetch size to validate last fetch logic try: query = hql_query(hql % {'limit': ''}) handle = self.db.execute_and_wait(query) # Get the result in csv. Should have 5 + 1 header row. csv_resp = download(handle, 'csv', self.db) csv_content = ''.join(csv_resp.streaming_content) assert_equal(len(csv_content.strip().split('\n')), 5 + 1) query = hql_query(hql % {'limit': 'LIMIT 0'}) handle = self.db.execute_and_wait(query) csv_resp = download(handle, 'csv', self.db) csv_content = ''.join(csv_resp.streaming_content) assert_equal(len(csv_content.strip().split('\n')), 1) query = hql_query(hql % {'limit': 'LIMIT 1'}) handle = self.db.execute_and_wait(query) csv_resp = download(handle, 'csv', self.db) csv_content = ''.join(csv_resp.streaming_content) assert_equal(len(csv_content.strip().split('\n')), 1 + 1) query = hql_query(hql % {'limit': 'LIMIT 2'}) handle = self.db.execute_and_wait(query) csv_resp = download(handle, 'csv', self.db) csv_content = ''.join(csv_resp.streaming_content) assert_equal(len(csv_content.strip().split('\n')), 1 + 2) finally: data_export.FETCH_SIZE = FETCH_SIZE def test_explain(self): QUERY = """ SELECT * FROM tweets ORDER BY row_num; """ response = _make_query(self.client, QUERY, database=self.DATABASE, local=False, server_name='impala', submission_type='Explain') json_response = json.loads(response.content) assert_true('MERGING-EXCHANGE' in json_response['explanation'], json_response) assert_true('SCAN HDFS' in json_response['explanation'], json_response) def test_get_table_sample(self): client = make_logged_in_client() resp = client.get(reverse('impala:get_sample_data', kwargs={'database': self.DATABASE, 'table': 'tweets'})) data = json.loads(resp.content) assert_equal(0, data['status'], data) assert_equal([u'row_num', u'id_str', u'text'], data['headers'], data) assert_true(len(data['rows']), data) def test_get_session(self): session = None try: # Create open session session = self.db.open_session(self.user) resp = self.client.get(reverse("impala:api_get_session")) data = json.loads(resp.content) assert_true('properties' in data) assert_true(data['properties'].get('http_addr')) assert_true('session' in data, data) assert_true('id' in data['session'], data['session']) finally: if session is not None: try: self.db.close_session(session) except Exception: pass def test_get_settings(self): resp = self.client.get(reverse("impala:get_settings")) json_resp = json.loads(resp.content) assert_equal(0, json_resp['status']) assert_true('QUERY_TIMEOUT_S' in json_resp['settings']) def test_invalidate_tables(self): # Helper function to get Impala and Beeswax (HMS) tables def get_impala_beeswax_tables(): impala_resp = self.client.get(reverse('impala:api_autocomplete_tables', kwargs={'database': self.DATABASE})) impala_tables_meta = json.loads(impala_resp.content)['tables_meta'] impala_tables = [table['name'] for table in impala_tables_meta] beeswax_resp = self.client.get(reverse('beeswax:api_autocomplete_tables', kwargs={'database': self.DATABASE})) beeswax_tables_meta = json.loads(beeswax_resp.content)['tables_meta'] beeswax_tables = [table['name'] for table in beeswax_tables_meta] return impala_tables, beeswax_tables impala_tables, beeswax_tables = get_impala_beeswax_tables() assert_equal(impala_tables, beeswax_tables, "\ntest_invalidate_tables: `%s`\nImpala Tables: %s\nBeeswax Tables: %s" % (self.DATABASE, ','.join(impala_tables), ','.join(beeswax_tables))) hql = """ CREATE TABLE new_table (a INT); """ resp = _make_query(self.client, hql, wait=True, local=False, max=180.0, database=self.DATABASE) impala_tables, beeswax_tables = get_impala_beeswax_tables() # New table is not found by Impala assert_true('new_table' in beeswax_tables, beeswax_tables) assert_false('new_table' in impala_tables, impala_tables) resp = self.client.post(reverse('impala:invalidate'), {'database': self.DATABASE}) impala_tables, beeswax_tables = get_impala_beeswax_tables() # Invalidate picks up new table assert_equal(impala_tables, beeswax_tables, "\ntest_invalidate_tables: `%s`\nImpala Tables: %s\nBeeswax Tables: %s" % (self.DATABASE, ','.join(impala_tables), ','.join(beeswax_tables))) def test_refresh_table(self): # Helper function to get Impala and Beeswax (HMS) columns def get_impala_beeswax_columns(): impala_resp = self.client.get(reverse('impala:api_autocomplete_columns', kwargs={'database': self.DATABASE, 'table': 'tweets'})) impala_columns = json.loads(impala_resp.content)['columns'] beeswax_resp = self.client.get(reverse('beeswax:api_autocomplete_columns', kwargs={'database': self.DATABASE, 'table': 'tweets'})) beeswax_columns = json.loads(beeswax_resp.content)['columns'] return impala_columns, beeswax_columns impala_columns, beeswax_columns = get_impala_beeswax_columns() assert_equal(impala_columns, beeswax_columns, "\ntest_refresh_table: `%s`.`%s`\nImpala Columns: %s\nBeeswax Columns: %s" % (self.DATABASE, 'tweets', ','.join(impala_columns), ','.join(beeswax_columns))) hql = """ ALTER TABLE tweets ADD COLUMNS (new_column INT); """ resp = _make_query(self.client, hql, wait=True, local=False, max=180.0, database=self.DATABASE) impala_columns, beeswax_columns = get_impala_beeswax_columns() # New column is not found by Impala assert_true('new_column' in beeswax_columns, beeswax_columns) assert_false('new_column' in impala_columns, impala_columns) resp = self.client.post(reverse('impala:refresh_table', kwargs={'database': self.DATABASE, 'table': 'tweets'})) impala_columns, beeswax_columns = get_impala_beeswax_columns() # Invalidate picks up new column assert_equal(impala_columns, beeswax_columns, "\ntest_refresh_table: `%s`.`%s`\nImpala Columns: %s\nBeeswax Columns: %s" % (self.DATABASE, 'tweets', ','.join(impala_columns), ','.join(beeswax_columns))) def test_get_exec_summary(self): query = """ SELECT COUNT(1) FROM tweets; """ response = _make_query(self.client, query, database=self.DATABASE, local=False, server_name='impala') content = json.loads(response.content) query_history = QueryHistory.get(content['id']) wait_for_query_to_finish(self.client, response, max=180.0) resp = self.client.post(reverse('impala:get_exec_summary', kwargs={'query_history_id': query_history.id})) data = json.loads(resp.content) assert_equal(0, data['status'], data) assert_true('nodes' in data['summary'], data) assert_true(len(data['summary']['nodes']) > 0, data['summary']['nodes']) # Attempt to call get_exec_summary on a closed query resp = self.client.post(reverse('impala:get_exec_summary', kwargs={'query_history_id': query_history.id})) data = json.loads(resp.content) assert_equal(0, data['status'], data) assert_true('nodes' in data['summary'], data) assert_true(len(data['summary']['nodes']) > 0, data['summary']['nodes']) def test_get_runtime_profile(self): query = """ SELECT COUNT(1) FROM tweets; """ response = _make_query(self.client, query, database=self.DATABASE, local=False, server_name='impala') content = json.loads(response.content) query_history = QueryHistory.get(content['id']) wait_for_query_to_finish(self.client, response, max=180.0) resp = self.client.post(reverse('impala:get_runtime_profile', kwargs={'query_history_id': query_history.id})) data = json.loads(resp.content) assert_equal(0, data['status'], data) assert_true('Execution Profile' in data['profile'], data) # Could be refactored with SavedQuery.create_empty() def create_saved_query(app_name, owner): query_type = SavedQuery.TYPES_MAPPING[app_name] design = SavedQuery(owner=owner, type=query_type) design.name = 'create_saved_query' design.desc = '' design.data = hql_query('show $tables', database='db1').dumps() design.is_auto = False design.save() Document.objects.link(design, owner=design.owner, extra=design.type, name=design.name, description=design.desc) return design def test_ssl_cacerts(): for desktop_kwargs, conf_kwargs, expected in [ ({'present': False}, {'present': False}, ''), ({'present': False}, {'data': 'local-cacerts.pem'}, 'local-cacerts.pem'), ({'data': 'global-cacerts.pem'}, {'present': False}, 'global-cacerts.pem'), ({'data': 'global-cacerts.pem'}, {'data': 'local-cacerts.pem'}, 'local-cacerts.pem'), ]: resets = [ desktop_conf.SSL_CACERTS.set_for_testing(**desktop_kwargs), conf.SSL.CACERTS.set_for_testing(**conf_kwargs), ] try: assert_equal(conf.SSL.CACERTS.get(), expected, 'desktop:%s conf:%s expected:%s got:%s' % (desktop_kwargs, conf_kwargs, expected, conf.SSL.CACERTS.get())) finally: for reset in resets: reset() def test_ssl_validate(): for desktop_kwargs, conf_kwargs, expected in [ ({'present': False}, {'present': False}, True), ({'present': False}, {'data': False}, False), ({'present': False}, {'data': True}, True), ({'data': False}, {'present': False}, False), ({'data': False}, {'data': False}, False), ({'data': False}, {'data': True}, True), ({'data': True}, {'present': False}, True), ({'data': True}, {'data': False}, False), ({'data': True}, {'data': True}, True), ]: resets = [ desktop_conf.SSL_VALIDATE.set_for_testing(**desktop_kwargs), conf.SSL.VALIDATE.set_for_testing(**conf_kwargs), ] try: assert_equal(conf.SSL.VALIDATE.get(), expected, 'desktop:%s conf:%s expected:%s got:%s' % (desktop_kwargs, conf_kwargs, expected, conf.SSL.VALIDATE.get())) finally: for reset in resets: reset() class TestImpalaDbms(): def test_get_impala_nested_select(self): assert_equal(ImpalaDbms.get_nested_select('default', 'customers', 'id', None), ('id', '`default`.`customers`')) assert_equal(ImpalaDbms.get_nested_select('default', 'customers', 'email_preferences', 'categories/promos/'), ('email_preferences.categories.promos', '`default`.`customers`')) assert_equal(ImpalaDbms.get_nested_select('default', 'customers', 'addresses', 'key'), ('key', '`default`.`customers`.`addresses`')) assert_equal(ImpalaDbms.get_nested_select('default', 'customers', 'addresses', 'value/street_1/'), ('street_1', '`default`.`customers`.`addresses`')) assert_equal(ImpalaDbms.get_nested_select('default', 'customers', 'orders', 'item/order_date'), ('order_date', '`default`.`customers`.`orders`')) assert_equal(ImpalaDbms.get_nested_select('default', 'customers', 'orders', 'item/items/item/product_id'), ('product_id', '`default`.`customers`.`orders`.`items`'))
the-stack_0_72
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import random import math def concat(list): return reduce(lambda l, c: l+c, list, []) def makedata(topic_count, word_count, paper_count, common_words, number_topics_paper=1, word_count_min=1, word_count_max=20, common_word_count_min=10, common_word_count_max=100): # generate topic specific words # res :: [[[(string, string, string, string)]]] with open("lda_big.csv", "w", 10**9) as f: for paper in range(paper_count): for topicval in [random.randint(1, topic_count) for _ in range(number_topics_paper)]: for word in range(word_count): f.write(','.join(("paper-"+str(paper),"word-"+str(word)+str(topicval), str(random.randint(word_count_min,word_count_max)), str(topicval), "\n"))) # generate general words # res2 :: [[(string, string, string, string)]] for paper in range(paper_count): for word in range(common_words): f.write(','.join(("paper-"+str(paper),"word-"+str(word), str(int(math.ceil(random.uniform(common_word_count_min, common_word_count_max)))), "-1", "\n"))) if __name__ == '__main__': makedata(10000, 1000, 20000, 100000)
the-stack_0_74
#!/usr/bin/env python3 ############################################################################## # EVOLIFE http://evolife.telecom-paris.fr Jean-Louis Dessalles # # Telecom Paris 2021 www.dessalles.fr # # -------------------------------------------------------------------------- # # License: Creative Commons BY-NC-SA # ############################################################################## ############################################################################## # Draw curves offline using matplotlib # ############################################################################## """ Draw curves offline. Takes a csv file as input and draws curves. Creates image file. """ import sys import os import re import glob import numpy as np import matplotlib matplotlib.use('Agg') # to use offline import matplotlib.pyplot as plt import logging # for tracing # modifying print priority of console handler logging.basicConfig(level='WARNING') sys.path.append('..') sys.path.append('../..') sys.path.append('../../..') sys.path.append('../../../..') import Evolife.Scenarii.Parameters as EP try: import TableCsv as CSV except ImportError: import Evolife.Tools.TableCsv as CSV def figsave(FileName): if os.path.exists(FileName): os.remove(FileName) plt.savefig(FileName) print("%s created" % FileName) def str2nb(x): try: return int(x) except ValueError: return float(x) """ plt.plot(*zip(*Maxima), c='k', linewidth=1, marker='o') plt.clf() plt.scatter(alphaValues, [p[1] for p in Prices], color=colours, s=44) plt.plot(alphaValues, [p[1] for p in Prices], 'r', label='Signal prices') plt.scatter(alphaValues, [thetaU(a, UC) for a in alphaValues], color=colours, s=44) """ class Plot: def __init__(self, ExpeFile, FieldDraw=True, ConstantConfigFileName=None): self.ExpeFile = os.path.splitext(ExpeFile)[0] if self.ExpeFile.endswith('_res'): self.ExpeFile = self.ExpeFile[:-4] SkipFile = True # not a data file OutputFile = self.ExpeFile + '.png' if not os.path.exists(OutputFile): self.Dirname, self.ExpeName = os.path.split(self.ExpeFile) PlotFile = self.ExpeFile + '.csv' self.ConfigFileName = self.ExpeFile + '_res.csv' self.Cfg = self.RetrieveConfig(self.ConfigFileName) # retrieve actual parameters from _res file self.RelevantParam = self.RelevantConfig(self.ExpeName, ConstantConfigFileName) # display parameters # drawing curves plt.figure(1, figsize=(6 + 6 * FieldDraw, 4)) if FieldDraw: plt.subplot(1,2,1) ymax = self.Draw_Curve(PlotFile) if self.RelevantParam: plt.title(' '.join(sorted(['%s = %s' % (P, self.RelevantParam[P]) for P in self.RelevantParam]))) if FieldDraw: # drawing field plt.subplot(1,2,2) # self.Draw_Field(self.ExpeFile + '_dmp.csv', ymax=ymax) self.Draw_Field(self.ExpeFile + '_dmp.csv', ymax=100) plt.title(self.ExpeFile) self.save(OutputFile) else: print('%s already exists' % OutputFile) def Draw_Curve(self, CurveFileName): # colours = ['#000000', '#00BF00', '#78FF78', '#BF0000', '#FF7878', '#0000BF', '#7878FF'] colours = ['#00BF00', '#78FF78', '#BF0000', '#FF7878', '#0000BF', '#7878FF'] # Retrieving coordinates PlotOrders = CSV.load(CurveFileName, sniff=True) # loading csv file # Retrieving legend try: Legend = next(PlotOrders) # reading first line with curve names except StopIteration: sys.exit(0) # Retrieving data Data = list(zip(*PlotOrders)) Data = list(map(lambda L: list(map(str2nb, L)), Data)) # Data = list(map(lambda L: list(map(str2nb, L)), [*PlotOrders])) for Col in range(1,len(Data)): plt.plot(Data[0], Data[Col], linewidth=2, color=colours[Col-1], label=Legend[Col]) x1,x2,y1,y2 = plt.axis() plt.axis((x1, x2, 0, y2+0.05)) # plt.ylim(top=100) plt.xlabel('year') # plt.ylabel('price or sales') # plt.legend(bbox_to_anchor=(0.1, 1)) plt.legend(loc='upper right') return plt.ylim()[1] # max coordinate @classmethod def RetrieveConfig(self, ConfigFile): " Retrieves parameters from _res file " if os.path.exists(ConfigFile): CfgLines = open(ConfigFile).readlines() # reading parameters Sep = max([';', '\t', ','], key=lambda x: CfgLines[0].count(x)) if len(CfgLines) > 1: Parameters = dict(zip(*map(lambda x: x.strip().split(Sep), CfgLines[:2]))) return EP.Parameters(ParamDict=Parameters) return None def RelevantConfig(self, ExpeName, ConstantParameterFile): " Try to find relevant parameters " Irrelevant = ['BatchMode', 'DisplayPeriod', 'TimeLimit', 'DumpStart'] if self.Cfg is None or not ConstantParameterFile: print('ConfigFile not found') return None RelevantParameters = {} CP = EP.Parameters(ConstantParameterFile) # determining relevant parameters for p in CP: if p in Irrelevant: continue if p in self.Cfg and CP[p] != self.Cfg[p]: # print(p, RelevantParameters[p], self.Cfg[p]) RelevantParameters[p] = self.Cfg[p] # CP.addParameter(p, self.Cfg[p]) RelevantParameters = EP.Parameters(ParamDict=RelevantParameters) print(RelevantParameters) return RelevantParameters def Draw_Field(self, DumpFile, ymax=None): if not os.path.exists(DumpFile): return None Lines = open(DumpFile).readlines() # reading recorded positions FieldPlot = None if len(Lines) > 1: FieldPlot = Lines[1].strip().split(';')[1:] NbP = len(FieldPlot) plt.scatter(list(range(NbP)), list(map(float, FieldPlot)), s=11) # print(FieldPlot) if ymax is not None: plt.ylim(top=ymax) plt.xlabel('quality') plt.ylabel('signal') return FieldPlot def save(self, OutputFile): figsave(OutputFile) def Parse(Args): Files = [] ConstantConfigFileName = None if len(Args) < 2: # find last file CsvFiles = glob.glob('___Results/*.csv') if CsvFiles: CsvFiles.sort(key=lambda x: os.stat(x).st_mtime) Files = [CsvFiles[-1]] elif len(Args) > 3: print('''Usage: %s <curve file name> [<constant config file name>]''' % os.path.basename(Args[0])) else: Files = glob.glob(Args[1]) ConstantConfigFileName = Args[2] if (len(Args) == 3) else None for Argfile in Files: yield (Argfile, ConstantConfigFileName) if __name__ == "__main__": for (Argfile, ConstantConfigFileName) in Parse(sys.argv): if Argfile: print(Argfile) plot = Plot(Argfile, FieldDraw=True, ConstantConfigFileName=ConstantConfigFileName) # print() __author__ = 'Dessalles'
the-stack_0_76
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for bucketing data into groups. The classes and functions in this module are used to queue up data into buckets conditional on side information (e.g. sequence length). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.summary import summary from tensorflow.python.training import input as input_py from tensorflow.python.training import queue_runner # pylint: disable=protected-access _as_original_type = input_py._as_original_type _as_tensor_list = input_py._as_tensor_list _restore_sparse_tensors = input_py._restore_sparse_tensors _dtypes = input_py._dtypes _store_sparse_tensors = input_py._store_sparse_tensors _shapes = input_py._shapes _which_queue = input_py._which_queue # pylint: enable=protected-access def _validate_bucket(tensor_list): tensor_list = ops.convert_n_to_tensor_or_indexed_slices(tensor_list) if not tensor_list: raise ValueError("Expected at least one tensor in bucket().") return tensor_list def bucket(tensors, which_bucket, batch_size, num_buckets, num_threads=1, capacity=32, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, keep_input=None, shared_name=None, name=None): """Lazy bucketing of input tensors according to `which_bucket`. The argument `tensors` can be a list or a dictionary of tensors. The value returned by the function will be of the same type as `tensors`. The tensors entering this function are put into the bucket given by `which_bucket`. Each bucket has its own queue. When a bucket contains `batch_size` elements, this minibatch is pushed onto a top queue. The tensors returned from this function are a the result of dequeueing the next minibatch from this top queue. This function is implemented using several queues. A `QueueRunner` for the queues is added to the current `Graph`'s `QUEUE_RUNNER` collection. As the returned tensors are the result of of a dequeue operation, evaluating them will throw a `tf.errors.OutOfRangeError` when the input queue is exhausted. If these tensors are feeding another input queue, its queue runner will catch this exception, however, if they are used in your main thread you are responsible for catching this yourself. *N.B.:* If `dynamic_pad` is `False`, you must ensure that either (i) the `shapes` argument is passed, or (ii) all of the tensors in `tensors` must have fully-defined shapes. `ValueError` will be raised if neither of these conditions holds. If `dynamic_pad` is `True`, it is sufficient that the *rank* of the tensors is known, but individual dimensions may have shape `None`. In this case, for each enqueue the dimensions with value `None` may have a variable length; upon dequeue, the output tensors will be padded on the right to the maximum shape of the tensors in the current minibatch. For numbers, this padding takes value 0. For strings, this padding is the empty string. See `PaddingFIFOQueue` for more info. If `allow_smaller_final_batch` is `True`, a smaller batch value than `batch_size` is returned when the queues are closed and there are not enough elements to fill the batch, otherwise the pending elements are discarded. In addition, all output tensors' static shapes, as accessed via the `get_shape()` method will have a 0th `Dimension` value of `None`, and operations that depend on fixed batch_size would fail. Args: tensors: The list or dictionary of tensors, representing a single element, to bucket. Nested lists are not supported. which_bucket: An `int32` scalar Tensor taking a value in `[0, num_buckets)`. batch_size: The new batch size pulled from the queue (all queues will have the same size). If a list is passed in then each bucket will have a different batch_size. (python int, int32 scalar or iterable of integers of length num_buckets). num_buckets: A python integer, the number of buckets. num_threads: An integer. The number of threads enqueuing `tensors`. capacity: An integer. The maximum number of minibatches in the top queue, and also the maximum number of elements within each bucket. shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for `tensors`. dynamic_pad: Boolean. Allow variable dimensions in input shapes. The given dimensions are padded upon dequeue so that tensors within a batch have the same shapes. allow_smaller_final_batch: (Optional) Boolean. If `True`, allow the final batches to be smaller if there are insufficient items left in the queues. keep_input: (Optional). A `bool` scalar Tensor. If provided, this tensor controls whether the input is added to the queue or not. If it evaluates `True`, then `tensors` are added to the bucket; otherwise they are dropped. This tensor essentially acts as a filtering mechanism. The default behavior is to assume `keep_input=True`. shared_name: (Optional). If set, the queues will be shared under the given name across multiple sessions. name: (Optional) A name for the operations. Returns: A tuple `(bucket, outputs)` where `bucket` is a `int32` scalar tensor and `outputs` is a list or dictionary of batched outputs corresponding to elements of `tensors`. Every step will receive a new bucket of outputs. Raises: ValueError: If the `shapes` are not specified, and cannot be inferred from the elements of `tensors` or if batch_size is a sequence but it's length != num_buckets. """ batch_size_per_bucket = False if isinstance(batch_size, (list, tuple)): batch_size_per_bucket = True if len(batch_size) != num_buckets: raise ValueError( "If batch_size is a list it must have num_buckets elements") else: batch_size = [batch_size] * num_buckets tensor_list = _as_tensor_list(tensors) with ops.name_scope(name, "bucket", tensor_list) as name: tensor_list = _validate_bucket(tensor_list) (tensor_list, sparse_info) = _store_sparse_tensors( tensor_list, enqueue_many=False, keep_input=constant_op.constant(True)) # Round-trip batch_size to a tensor, and possibly back for i, bucket_batch_size in enumerate(batch_size): bucket_batch_size = ops.convert_to_tensor( bucket_batch_size, dtype=dtypes.int32, name="batch_size") static_batch_size = tensor_util.constant_value(bucket_batch_size) batch_size[i] = (static_batch_size if static_batch_size is not None else bucket_batch_size) types = _dtypes([tensor_list]) shapes = _shapes([tensor_list], shapes, enqueue_many=False) which_bucket = ops.convert_to_tensor( which_bucket, dtype=dtypes.int32, name="which_bucket") queue_creator = _which_queue(dynamic_pad) bucket_queues = [] for i in range(num_buckets): shared_name_i = ("%s_%d" % (shared_name, i) if shared_name is not None else None) bucket_queues.append( queue_creator( capacity=capacity, dtypes=types, shapes=shapes, shared_name=shared_name_i, name="bucket_queue_%d" % i)) maybe_static_batch_size = ( None if (allow_smaller_final_batch or batch_size_per_bucket) else static_batch_size) bucket_shapes = [ tensor_shape.vector(maybe_static_batch_size).concatenate(s) for s in bucket_queues[0].shapes ] # top_queue is a PaddingFIFOQueue even if the bucket queues are regular FIFO # queues because if we use allow_smaller_final_batch, shapes will # contain Nones in their first entry; as a result, a regular # FIFOQueue would die when being passed shapes that are not fully defined. top_queue = data_flow_ops.PaddingFIFOQueue( capacity=capacity, dtypes=[dtypes.int32] + types, shapes=[tensor_shape.scalar()] + bucket_shapes, shared_name=shared_name, name="top_queue") def enqueue_which(): def enqueue_single(i): return bucket_queues[i].enqueue(tensor_list) enqueues = [ control_flow_ops.cond( math_ops.equal(which_bucket, i), functools.partial(enqueue_single, i), control_flow_ops.no_op) for i in range(num_buckets) ] return control_flow_ops.group(*enqueues, name="group_enqueues") if keep_input is not None: # TODO(ebrevdo): Expand keep_input param to core training # methods, and pipe through to _store_sparse_tensors; so # that expensive serialization is guarded by keep_input. maybe_enqueue = control_flow_ops.cond(keep_input, enqueue_which, control_flow_ops.no_op) else: maybe_enqueue = enqueue_which() bucket_enqueue_ops = [maybe_enqueue] * num_threads if allow_smaller_final_batch: which_dequeue = lambda q: q.dequeue_up_to else: which_dequeue = lambda q: q.dequeue_many enqueues_to_top = [ top_queue.enqueue( [constant_op.constant(i)] + which_dequeue(q)( bs, name="read_bucket_%d" % i), name="enqueue_from_bucket_%d" % i) for i, (q, bs) in enumerate(zip(bucket_queues, batch_size)) ] for i, q in enumerate(bucket_queues): queue_runner.add_queue_runner( queue_runner.QueueRunner( q, [enqueues_to_top[i]], queue_closed_exception_types=(errors.OutOfRangeError, errors.CancelledError))) queue_runner.add_queue_runner( queue_runner.QueueRunner( top_queue, bucket_enqueue_ops, queue_closed_exception_types=(errors.OutOfRangeError, errors.CancelledError))) for q in bucket_queues: summary.scalar("bucket/%s/size" % q.name, math_ops.cast(top_queue.size(), dtypes.float32)) summary.scalar("bucket/%s/fraction_of_%d_full" % (top_queue.name, capacity), math_ops.cast(top_queue.size(), dtypes.float32) * (1. / capacity)) dequeued = top_queue.dequeue(name="dequeue_top") which_bucket_dequeued = dequeued[0] dequeued = dequeued[1:] dequeued = _restore_sparse_tensors(dequeued, sparse_info) return (which_bucket_dequeued, _as_original_type(tensors, dequeued)) def bucket_by_sequence_length(input_length, tensors, batch_size, bucket_boundaries, num_threads=1, capacity=32, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, keep_input=None, shared_name=None, name=None): """Lazy bucketing of inputs according to their length. This method calls `tf.contrib.training.bucket` under the hood, after first subdividing the bucket boundaries into separate buckets and identifying which bucket the given `input_length` belongs to. See the documentation for `which_bucket` for details of the other arguments. Args: input_length: `int32` scalar `Tensor`, the sequence length of tensors. tensors: The list or dictionary of tensors, representing a single element, to bucket. Nested lists are not supported. batch_size: The new batch size pulled from the queue (all queues will have the same size). If a list is passed in then each bucket will have a different batch_size. (python int, int32 scalar or iterable of integers of length num_buckets). bucket_boundaries: int list, increasing non-negative numbers. The edges of the buckets to use when bucketing tensors. Two extra buckets are created, one for `input_length < bucket_boundaries[0]` and one for `input_length >= bucket_boundaries[-1]`. num_threads: An integer. The number of threads enqueuing `tensors`. capacity: An integer. The maximum number of minibatches in the top queue, and also the maximum number of elements within each bucket. shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for `tensors`. dynamic_pad: Boolean. Allow variable dimensions in input shapes. The given dimensions are padded upon dequeue so that tensors within a batch have the same shapes. allow_smaller_final_batch: (Optional) Boolean. If `True`, allow the final batches to be smaller if there are insufficient items left in the queues. keep_input: (Optional). A `bool` scalar Tensor. If provided, this tensor controls whether the input is added to the queue or not. If it evaluates `True`, then `tensors` are added to the bucket; otherwise they are dropped. This tensor essentially acts as a filtering mechanism. The default behavior is to assume `keep_input=True`. shared_name: (Optional). If set, the queues will be shared under the given name across multiple sessions. name: (Optional) A name for the operations. Returns: A tuple `(sequence_length, outputs)` where `sequence_length` is a 1-D `Tensor` of size `batch_size` and `outputs` is a list or dictionary of batched, bucketed, outputs corresponding to elements of `tensors`. Raises: TypeError: if `bucket_boundaries` is not a list of python integers. ValueError: if `bucket_boundaries` is empty or contains non-increasing values or if batch_size is a list and it's length doesn't equal the number of buckets. """ tensor_list = _as_tensor_list(tensors) if not isinstance(bucket_boundaries, (list, tuple)): raise TypeError( "bucket_boundaries must be a list or tuple, but received: %s" % bucket_boundaries) if not bucket_boundaries: raise ValueError("bucket_boundaries must not be empty") for (s, e) in zip(bucket_boundaries[:-1], bucket_boundaries[1:]): if not isinstance(s, int) or not isinstance(e, int): raise TypeError("bucket boundaries must be integers, but saw: %s and %s" % (s, e)) if s >= e: raise ValueError( "Buckets must contain sequential increasing lengths, but saw: " "%d before %d" % (s, e)) with ops.name_scope(name, "bucket_by_sequence_length", [input_length] + tensor_list) as name: input_length = ops.convert_to_tensor( input_length, dtype=dtypes.int32, name="input_length") # Bucketing conditions are: # l < b[0] # b[0] <= l < b[1] # b[1] <= l < b[2] # ... # b[N-2] <= l < b[N-1] # b[N-1] <= l # Equivalent to: # [-inf, b[0], b[1], ..., b[N-1]] <= l < [b[0], b[1], ..., b[N-1], inf] buckets_min = [np.iinfo(np.int32).min] + list(bucket_boundaries) buckets_max = list(bucket_boundaries) + [np.iinfo(np.int32).max] conditions_c = math_ops.logical_and( math_ops.less_equal(buckets_min, input_length), math_ops.less(input_length, buckets_max)) which_bucket = math_ops.reduce_min(array_ops.where(conditions_c)) which_bucket = math_ops.to_int32(which_bucket) if shapes is not None: shapes = [tensor_shape.scalar()] + shapes _, dequeued = bucket( tensors=[input_length] + tensor_list, which_bucket=which_bucket, batch_size=batch_size, num_buckets=len(bucket_boundaries) + 1, num_threads=num_threads, capacity=capacity, shapes=shapes, dynamic_pad=dynamic_pad, allow_smaller_final_batch=allow_smaller_final_batch, keep_input=keep_input, shared_name=shared_name) return (dequeued[0], _as_original_type(tensors, dequeued[1:])) __all__ = ["bucket", "bucket_by_sequence_length"]
the-stack_0_77
import hashlib import json import logging from pathlib import Path from typing import List import ckanapi import pandas as pd from airflow.models.baseoperator import BaseOperator from airflow.utils.decorators import apply_defaults class BackupDatastoreResourceOperator(BaseOperator): """ Reads datastore resource, creates backup files for fields (json) and records (parquet). Args: - address: CKAN instance URL - apikey: CKAN API key - resource_task_id: task_id that returns resource object (ie. GetOrCreateResourcePackage) - dir_task_id: task_id that returns backup directory Returns dictionary containing: - fields: json file path containing fields for datastore resource - data: parquet file path containing fields for datastore resource - columns: number of columns in datastore resource - rows: number of rows in datastore_resource - resource_id: datastore resource ID """ @apply_defaults def __init__( self, address: str, apikey: str, resource_task_id: str, dir_task_id: str, sort_columns: List[str] = [], **kwargs, ) -> None: super().__init__(**kwargs) self.dir_task_id = dir_task_id self.resource_task_id = resource_task_id self.sort_columns = sort_columns self.ckan = ckanapi.RemoteCKAN(apikey=apikey, address=address) def _checksum_datastore_response(self, datastore_response): data = pd.DataFrame(datastore_response["records"]) if "_id" in data.columns.values: data = data.drop("_id", axis=1) if len(self.sort_columns) > 0: data = data.sort_values(by=self.sort_columns) data_hash = hashlib.md5() data_hash.update(data.to_csv(index=False).encode("utf-8")) return data_hash.hexdigest() def _build_dataframe(self, records): data = pd.DataFrame(records) if "_id" in data.columns.values: data = data.drop("_id", axis=1) return data def _save_fields_json(self, datastore_response, checksum, backups_dir): fields_file_path = backups_dir / f"fields.{checksum}.json" if not fields_file_path.exists(): fields = [f for f in datastore_response["fields"] if f["id"] != "_id"] with open(fields_file_path, "w") as f: json.dump(fields, f) return fields_file_path def _save_data_parquet(self, datastore_response, checksum, backups_dir, data): data_file_path = backups_dir / f"data.{checksum}.parquet" if not data_file_path.exists(): data.to_parquet(path=data_file_path, engine="fastparquet", compression=None) return data_file_path def execute(self, context): # get a resource and backup directory via xcom ti = context["ti"] resource = ti.xcom_pull(task_ids=self.resource_task_id) backups_dir = Path(ti.xcom_pull(task_ids=self.dir_task_id)) # get number of records for this datastore resource record_count = self.ckan.action.datastore_search(id=resource["id"], limit=0)[ "total" ] # get data from datastore resource datastore_response = self.ckan.action.datastore_search( id=resource["id"], limit=record_count ) # turn data into dataframe data = self._build_dataframe(datastore_response["records"]) checksum = self._checksum_datastore_response(datastore_response) # return filepath for fields json, data parquet, row/col counts, checksum, and resource_id result = { "fields_file_path": self._save_fields_json( datastore_response, checksum, backups_dir ), "data_file_path": self._save_data_parquet( datastore_response, checksum, backups_dir, data ), "records": data.shape[0], "columns": data.shape[1], "resource_id": datastore_response["resource_id"], "checksum": checksum, } logging.info(f"Returning: {result}") return result class DeleteDatastoreResourceOperator(BaseOperator): """ Deletes a datastore resource Inputs: - address: CKAN instance URL - apikey: CKAN API key - resource_id: CKAN resource id to be deleted Resource id can be given with n actual value, or with a reference to a task_id and task_key that returns the value Note: Deleting the entire resource also deletes the data dictionary (i.e. schema, field definitions and types). To keep the existing schema, delete the datastore resource records instead by using the DeleteDatastoreResourceRecordsOperator - this keeps the schema. """ @apply_defaults def __init__( self, address: str, apikey: str, resource_id: str = None, resource_id_task_id: str = None, resource_id_task_key: str = None, **kwargs, ) -> None: # init ckan client and resource_id to be truncated super().__init__(**kwargs) self.resource_id, self.resource_id_task_id, self.resource_id_task_key = resource_id, resource_id_task_id, resource_id_task_key self.ckan = ckanapi.RemoteCKAN(apikey=apikey, address=address) def execute(self, context): # get task instance from context ti = context['ti'] # get resource id from task, if task info provided in input if self.resource_id_task_id and self.resource_id_task_key: self.resource_id = ti.xcom_pull(task_ids=self.resource_id_task_id)[self.resource_id_task_key] self.resource = ti.xcom_pull(task_ids=self.resource_id_task_id) logging.info(self.resource) logging.info("Pulled {} from {} via xcom".format(self.resource_id, self.resource_id_task_id) ) assert self.resource_id, "Resource ID is empty! This operator needs a way to get the resource ID in order to delete the right datastore resource!" # Delete the resource try: self.ckan.action.datastore_delete(id=self.resource_id, force=True) logging.info("Deleted " + self.resource_id) except Exception as e: logging.error("Error while trying to delete resource: " + e) class DeleteDatastoreResourceRecordsOperator(BaseOperator): """ Deletes datastore resource records. Args: - address: CKAN instance URL - apikey: CKAN API key - backup_task_id: task_id that returns backup file information (BackupDatastoreResourceOperator) """ @apply_defaults def __init__( self, address: str, apikey: str, backup_task_id: str, **kwargs, ) -> None: super().__init__(**kwargs) self.backup_task_id = backup_task_id self.ckan = ckanapi.RemoteCKAN(apikey=apikey, address=address) def execute(self, context): backups_info = context["ti"].xcom_pull(task_ids=self.backup_task_id) self.ckan.action.datastore_delete(id=backups_info["resource_id"], force=True) with open(Path(backups_info["fields_file_path"]), "r") as f: fields = json.load(f) self.ckan.action.datastore_create(id=backups_info["resource_id"], fields=fields, force=True) record_count = self.ckan.action.datastore_search( id=backups_info["resource_id"], limit=0 )["total"] assert record_count == 0, f"Resource not empty after cleanup: {record_count}" class InsertDatastoreResourceRecordsOperator(BaseOperator): @apply_defaults def __init__( self, address: str, apikey: str, resource_task_id: str, parquet_filepath_task_id: str = None, fields_json_path_task_id: str = None, chunk_size: int = 20000, **kwargs, ) -> None: super().__init__(**kwargs) self.parquet_filepath_task_id = parquet_filepath_task_id self.resource_task_id = resource_task_id self.chunk_size = chunk_size self.fields_json_path_task_id = fields_json_path_task_id self.ckan = ckanapi.RemoteCKAN(apikey=apikey, address=address) def _create_empty_resource_with_fields(self, fields_path, resource_id): with open(fields_path, "r") as f: fields = json.load(f) self.ckan.action.datastore_create(id=resource_id, fields=fields, force=True) def execute(self, context): ti = context["ti"] resource = ti.xcom_pull(task_ids=self.resource_task_id) if self.fields_json_path_task_id is not None: fields_path = Path(ti.xcom_pull(task_ids=self.fields_json_path_task_id)) self._create_empty_resource_with_fields(fields_path, resource["id"]) if self.parquet_filepath_task_id is not None: path = Path(ti.xcom_pull(task_ids=self.parquet_filepath_task_id)) data = pd.read_parquet(path) records = data.to_dict(orient="records") chunks = [ records[i : i + self.chunk_size] for i in range(0, len(records), self.chunk_size) ] for chunk in chunks: clean_records = [] logging.info(f"Removing NaNs and inserting {len(records)} records") for r in chunk: record = {} for key, value in r.items(): if value == value: record[key] = value clean_records.append(record) self.ckan.action.datastore_create( id=resource["id"], records=clean_records, force=True ) logging.info(f"Records inserted: {data.shape[0]}") return data.shape[0] class RestoreDatastoreResourceBackupOperator(BaseOperator): @apply_defaults def __init__( self, address: str, apikey: str, backup_task_id: str, **kwargs, ) -> None: super().__init__(**kwargs) self.backup_task_id = backup_task_id self.ckan = ckanapi.RemoteCKAN(apikey=apikey, address=address) def execute(self, context): backups_info = context["ti"].xcom_pull(task_ids=self.backup_task_id) assert backups_info is not None, "No backup information" resource_id = backups_info["resource_id"] with open(Path(backups_info["fields_file_path"]), "r") as f: fields = json.load(f) data = pd.read_parquet(Path(backups_info["data_file_path"])) records = data.to_dict(orient="records") try: self.ckan.action.datastore_delete(id=resource_id) except Exception as e: logging.error(e) result = self.ckan.action.datastore_create( id=resource_id, fields=fields, records=records ) logging.info(f"Result: {result}") return result class InsertDatastoreResourceRecordsFromJSONOperator(BaseOperator): ''' Reads a JSON file and write the output into a CKAN datastore resource. JSON must be a list of dicts, with each dict being a record, like the following: [ { "column1": "string", "column2": 100, "column3": true}, { "column1": "some other string", "column2": 34, "column3": false} ] The fields must match the CKAN standard, like the following: [ { "id": "column1", "type": "text" , "info": { "notes": "Description of the field goes here. Info key is optional." } }, { "id": "column2", "type": "int" }, { "id": "column3", "type": "bool" } ] Expects as inputs: - address - url of target ckan - apikey - key needed to make authorized ckan calls - resource_id - id of the resource that will receive this data - data_path - location of the json data file - fields_path - location of the data's fields, already in a CKAN-friendly format All of the above, except the address and apikey, can be given with an actual value, or with a reference to a task_id and task_key that returns the value ''' @apply_defaults def __init__( self, address: str, apikey: str, resource_id: str = None, resource_id_task_id: str = None, resource_id_task_key: str = None, data_path: str = None, data_path_task_id: str = None, data_path_task_key: str = None, fields_path: str = None, fields_path_task_id: str = None, fields_path_task_key: str = None, **kwargs, ) -> None: super().__init__(**kwargs) self.resource_id, self.resource_id_task_id, self.resource_id_task_key = resource_id, resource_id_task_id, resource_id_task_key self.data_path, self.data_path_task_id, self.data_path_task_key = data_path, data_path_task_id, data_path_task_key self.fields_path, self.fields_path_task_id, self.fields_path_task_key = fields_path, fields_path_task_id, fields_path_task_key self.ckan = ckanapi.RemoteCKAN(apikey=apikey, address=address) def execute(self, context): # init task instance from context ti = context['ti'] # assign important vars if provided from other tasks if self.resource_id_task_id and self.resource_id_task_key: self.resource_id = ti.xcom_pull(task_ids=self.resource_id_task_id)[self.resource_id_task_key] if self.data_path_task_id and self.data_path_task_key: self.data_path = ti.xcom_pull(task_ids=self.data_path_task_id)[self.data_path_task_key] if self.fields_path_task_id and self.fields_path_task_key: self.fields_path = ti.xcom_pull(task_ids=self.fields_path_task_id)[self.fields_path_task_key] # get fields from file with open(self.fields_path, "r") as f: fields = json.load(f) logging.info("Loaded the following fields from {}: {}".format( self.fields_path, fields )) # populate that resource w data from the path provided assert self.data_path, "Data path, or the filepath to the data to be inserted, must be provided!" with open(self.data_path) as f: data = json.load(f) logging.info("Data parsed from JSON file") logging.info("Fields from fields file: " + str(fields)) logging.info("Fields from data file: " + str(data[0].keys())) self.ckan.action.datastore_create(id=self.resource_id, fields=fields, records=data) logging.info("Resource created and populated from input fields and data") return {"resource_id": self.resource_id, "data_inserted": len(data)}
the-stack_0_78
import os import torch from utils.runs import Run from utils.utils import print_message, save_checkpoint from parameters import SAVED_CHECKPOINTS def print_progress(scores): positive_avg, negative_avg = round(scores[:, 0].mean().item(), 2), round(scores[:, 1].mean().item(), 2) print("#>>> ", positive_avg, negative_avg, '\t\t|\t\t', positive_avg - negative_avg) def manage_checkpoints(args, colbert, optimizer, batch_idx): arguments = args.input_arguments.__dict__ path = os.path.join(Run.path, 'checkpoints') if not os.path.exists(path): os.mkdir(path) if batch_idx % 2000 == 0: name = os.path.join(path, "colbert.dnn") save_checkpoint(name, 0, batch_idx, colbert, optimizer, arguments) if batch_idx in SAVED_CHECKPOINTS: name = os.path.join(path, "colbert-{}.dnn".format(batch_idx)) save_checkpoint(name, 0, batch_idx, colbert, optimizer, arguments)
the-stack_0_80
import os import numpy as np import tables import os from .normalize import normalize_data_storage, reslice_image_set def create_data_file(out_file, n_channels, n_samples, n_truth_labels, image_shape): """ Initializes the hdf5 file and gives pointers for its three arrays """ try: os.makedirs(os.path.dirname(out_file)) except: pass hdf5_file = tables.open_file(out_file, mode='w') filters = tables.Filters(complevel=5, complib='blosc') data_shape = tuple([0, n_channels] + list(image_shape)) truth_shape = tuple([0, n_truth_labels] + list(image_shape)) data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape, filters=filters, expectedrows=n_samples) truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape, filters=filters, expectedrows=n_samples) affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', tables.Float32Atom(), shape=(0, 4, 4), filters=filters, expectedrows=n_samples) return hdf5_file, data_storage, truth_storage, affine_storage def write_image_data_to_file(image_files, data_storage, truth_storage, image_shape, n_channels, affine_storage, truth_dtype=np.uint8, crop=True): for set_of_files in image_files: # set_of_files is both the volume file and the label file images = reslice_image_set(set_of_files, image_shape, label_indices=len(set_of_files) - 1, crop=crop) # both volume and label is resliced subject_data = [image.get_data() for image in images] add_data_to_storage(data_storage, truth_storage, affine_storage, subject_data, images[0].affine, n_channels, truth_dtype) return data_storage, truth_storage def add_data_to_storage(data_storage, truth_storage, affine_storage, subject_data, affine, n_channels, truth_dtype): data_storage.append(np.asarray(subject_data[:n_channels])[ np.newaxis]) # Anything but the last element of subject_data must be volume data # split_truth_into_binary_labels(subject_data[n_channels]) # what_to_append = split_truth_into_binary_labels(subject_data[n_channels], truth_dtype, truth_labels)[np.newaxis] # truth_storage.append(what_to_append) truth_storage.append(np.asarray(subject_data[n_channels], dtype=truth_dtype)[np.newaxis][ np.newaxis]) # the last element of subject_data must be the labels affine_storage.append(np.asarray(affine)[np.newaxis]) def write_data_to_file(training_data_files, out_file, image_shape, truth_dtype=np.uint8, subject_ids=None, normalize=True, crop=True): """ Takes in a set of training images and writes those images to an hdf5 file. :param training_data_files: List of tuples containing the training data files. The modalities should be listed in the same order in each tuple. The last item in each tuple must be the labeled image. Example: [('sub1-T1.nii.gz', 'sub1-T2.nii.gz', 'sub1-truth.nii.gz'), ('sub2-T1.nii.gz', 'sub2-T2.nii.gz', 'sub2-truth.nii.gz')] :param out_file: Where the hdf5 file will be written to. :param image_shape: Shape of the images that will be saved to the hdf5 file. :param truth_dtype: Default is 8-bit unsigned integer. :return: Location of the hdf5 file with the image data written to it. """ n_samples = len(training_data_files) n_channels = len(training_data_files[0]) - 1 n_truth_labels = 1 try: hdf5_file, data_storage, truth_storage, affine_storage = create_data_file(out_file, n_channels=n_channels, n_samples=n_samples, n_truth_labels=n_truth_labels, image_shape=image_shape) except Exception as e: # If something goes wrong, delete the incomplete data file os.remove(out_file) raise e write_image_data_to_file(training_data_files, data_storage, truth_storage, image_shape, truth_dtype=truth_dtype, n_channels=n_channels, affine_storage=affine_storage, crop=crop) if subject_ids: hdf5_file.create_earray(hdf5_file.root, 'subject_ids', obj=subject_ids) if normalize: normalize_data_storage(data_storage) hdf5_file.close() return out_file def open_data_file(filename, readwrite="r"): return tables.open_file(filename, readwrite)
the-stack_0_83
import os import time from collections import defaultdict import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from torchvision.utils import save_image from config import get_cfg # models from models.volume_rendering import VolumeRenderer from models.anim_nerf import AnimNeRF from models.body_model_params import BodyModelParams # losses # datasets from datasets import dataset_dict # optimizer, scheduler, visualization from utils import * from utils.util import load_pickle_file # pytorch-lightning from torchmetrics.functional import psnr, ssim from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning import LightningDataModule, LightningModule, Trainer from pytorch_lightning.loggers import TensorBoardLogger class AnimNeRFData(LightningDataModule): def __init__(self, hparams): super(AnimNeRFData, self).__init__() # self.hparams = hparams self.save_hyperparameters(hparams) def setup(self, stage=None): dataset = dataset_dict[self.hparams.dataset_name] if self.hparams.deformation_dim + self.hparams.apperance_dim > 0 or self.hparams.optim_body_params: frame_ids_index = {} for i, frame_id in enumerate(self.hparams.frame_IDs): frame_ids_index[frame_id] = i else: frame_ids_index = None kwargs = {'root_dir': self.hparams.root_dir, 'img_wh': tuple(self.hparams.img_wh), 'frame_start_ID': self.hparams.train.frame_start_ID, 'frame_end_ID': self.hparams.train.frame_end_ID, 'frame_skip': self.hparams.train.frame_skip, 'subsampletype': self.hparams.train.subsampletype, 'subsamplesize': self.hparams.train.subsamplesize, 'model_type': self.hparams.model_type, 'cam_IDs': self.hparams.train.cam_IDs } self.train_dataset = dataset(mode='train', frame_ids_index=frame_ids_index, **kwargs) kwargs = {'root_dir': self.hparams.root_dir, 'img_wh': tuple(self.hparams.img_wh), 'frame_start_ID': self.hparams.val.frame_start_ID, 'frame_end_ID': self.hparams.val.frame_end_ID, 'frame_skip': self.hparams.val.frame_skip, 'model_type': self.hparams.model_type, 'cam_IDs': self.hparams.val.cam_IDs } self.val_dataset = dataset(mode='val', frame_ids_index=frame_ids_index, **kwargs) kwargs = {'root_dir': self.hparams.root_dir, 'img_wh': tuple(self.hparams.img_wh), 'frame_start_ID': self.hparams.test.frame_start_ID, 'frame_end_ID': self.hparams.test.frame_end_ID, 'frame_skip': self.hparams.test.frame_skip, 'model_type': self.hparams.model_type, 'cam_IDs': self.hparams.test.cam_IDs } self.test_dataset = dataset(mode='val', frame_ids_index=frame_ids_index, **kwargs) def train_dataloader(self): return DataLoader(self.train_dataset, shuffle=True, num_workers=self.hparams.train.num_workers, batch_size=self.hparams.train.batch_size, pin_memory=False) def val_dataloader(self): return DataLoader(self.val_dataset, shuffle=False, num_workers=self.hparams.val.num_workers, batch_size=self.hparams.val.batch_size, # validate one image (H*W rays) at a time pin_memory=False) def test_dataloader(self): return DataLoader(self.test_dataset, shuffle=False, num_workers=self.hparams.test.num_workers, batch_size=self.hparams.test.batch_size, # validate one image (H*W rays) at a time pin_memory=False) class AnimNeRFSystem(LightningModule): def __init__(self, hparams): super(AnimNeRFSystem, self).__init__() # self.hparams = hparams self.save_hyperparameters(hparams) self.anim_nerf = AnimNeRF( model_path=self.hparams.model_path, model_type=self.hparams.model_type, gender=self.hparams.gender, freqs_xyz=self.hparams.freqs_xyz, freqs_dir=self.hparams.freqs_dir, use_view=self.hparams.use_view, k_neigh=self.hparams.k_neigh, use_knn=self.hparams.use_knn, use_unpose=self.hparams.use_unpose, unpose_view=self.hparams.unpose_view, use_deformation=self.hparams.use_deformation, pose_dim=self.hparams.pose_dim, deformation_dim=self.hparams.deformation_dim, apperance_dim=self.hparams.apperance_dim, use_fine=self.hparams.n_importance>0 or self.hparams.n_depth>0, share_fine=self.hparams.share_fine, dis_threshold=self.hparams.dis_threshold, query_inside=self.hparams.query_inside, ) self.models = [self.anim_nerf] if self.hparams.deformation_dim > 0 or self.hparams.apperance_dim > 0: self.hparams.latent_dim = self.hparams.deformation_dim + self.hparams.apperance_dim self.latent_codes = nn.Embedding(self.hparams.num_frames, self.hparams.latent_dim) self.latent_codes.weight.data.normal_(0, 0.1) self.models += [self.latent_codes] self.body_model_params = BodyModelParams(self.hparams.num_frames, model_type=self.hparams.model_type) self.load_body_model_params() if self.hparams.optim_body_params: optim_params = self.body_model_params.param_names for param_name in optim_params: self.body_model_params.set_requires_grad(param_name, requires_grad=True) self.models += [self.body_model_params] self.volume_renderer = VolumeRenderer(n_coarse=self.hparams.n_samples, n_fine=self.hparams.n_importance, n_fine_depth=self.hparams.n_depth, share_fine=self.hparams.share_fine, white_bkgd=self.hparams.white_bkgd) def load_body_model_params(self): body_model_params = {param_name: [] for param_name in self.body_model_params.param_names} body_model_params_dir = os.path.join(self.hparams.root_dir, '{}s'.format(self.hparams.model_type)) for frame_id in self.hparams.frame_IDs: params = load_pickle_file(os.path.join(body_model_params_dir, "{:0>6}.pkl".format(frame_id))) for param_name in body_model_params.keys(): body_model_params[param_name].append(torch.from_numpy(params[param_name]).float().unsqueeze(0)) for param_name in body_model_params.keys(): body_model_params[param_name] = torch.cat(body_model_params[param_name], dim=0) self.body_model_params.init_parameters(param_name, body_model_params[param_name], requires_grad=False) @torch.no_grad() def decode_batch(self, batch): frame_id = batch['frame_id'] cam_id = batch['cam_id'] frame_idx = batch['frame_idx'] rays = batch['rays'] # (bs, n_rays, 8) rgbs = batch['rgbs'] # (bs, n_rays, 3) alphas = batch['alphas'] # (bs, n_rays, 1) body_model_params = { 'betas': batch['betas'], 'global_orient': batch['global_orient'], 'body_pose': batch['body_pose'], 'transl': batch['transl'] } body_model_params_template = { 'betas': batch['betas_template'], 'global_orient': batch['global_orient_template'], 'body_pose': batch['body_pose_template'], 'transl': batch['transl_template'] } fg_points = batch['fg_points'] # (bs, num_points, 3) bg_points = batch['bg_points'] # (bs, num_points, 3) return frame_id, cam_id, frame_idx, rays, rgbs, alphas, body_model_params, body_model_params_template, fg_points, bg_points def forward(self, rays, body_model_params, body_model_params_template, latent_code=None, perturb=1.0): bs, n_rays = rays.shape[:2] results = defaultdict(list) chunk = self.hparams.chunk self.anim_nerf.set_body_model(body_model_params, body_model_params_template) rays = self.anim_nerf.convert_to_body_model_space(rays) self.anim_nerf.clac_ober2cano_transform() if latent_code is not None: self.anim_nerf.set_latent_code(latent_code) for i in range(0, n_rays, chunk): rays_chunk = rays[:, i:i+chunk, :] rendered_ray_chunks = self.volume_renderer(self.anim_nerf, rays_chunk, perturb=perturb) for k, v in rendered_ray_chunks.items(): results[k] += [v] for k, v in results.items(): results[k] = torch.cat(v, 1) return results def configure_optimizers(self): parameters = [ {'params': self.anim_nerf.parameters(), 'lr': self.hparams.train.lr}] if self.hparams.deformation_dim > 0 or self.hparams.apperance_dim > 0: parameters.append({'params': self.latent_codes.parameters(), 'lr': self.hparams.train.lr}) if self.hparams.optim_body_params: parameters.append({'params': self.body_model_params.parameters(), 'lr': self.hparams.train.lr*0.5}) self.optimizer = get_optimizer(self.hparams.train, parameters) self.scheduler = get_scheduler(self.hparams.train, self.optimizer) return [self.optimizer], [self.scheduler] def compute_loss(self, rgbs, alphas, results, frame_idx=None, latent_code=None, fg_points=None, bg_points=None): loss = 0 loss_details = {} # rgb loss_rgb = F.mse_loss(results['rgbs'], rgbs, reduction='mean') loss += loss_rgb loss_details['loss_rgb'] = loss_rgb if self.hparams.n_importance > 0 and not self.hparams.share_fine: loss_rgb_fine = F.mse_loss(results['rgbs_fine'], rgbs, reduction='mean') loss += loss_rgb_fine loss_details['loss_rgb_fine'] = loss_rgb_fine # alphas loss_alphas = F.l1_loss(results['alphas'], alphas) loss += self.hparams.train.lambda_alphas * loss_alphas loss_details['loss_alphas'] = loss_alphas if self.hparams.n_importance > 0 and not self.hparams.share_fine: loss_alphas_fine = F.l1_loss(results['alphas_fine'], alphas) loss += self.hparams.train.lambda_alphas * loss_alphas_fine loss_details['loss_alphas_fine'] = loss_alphas_fine # if latent_code is not None: # loss_latent = torch.mean(torch.pow(latent_code, 2)) # loss += self.hparams.lambda_latent * loss_latent # loss_details['loss_latent'] = loss_latent # frame_idx_ = torch.clamp(frame_idx+1, 0, self.hparams.num_frames) # latent_code_ = self.latent_codes(frame_idx_) # loss_latent_smooth = F.mse_loss(latent_code, latent_code_) # loss += self.hparams.lambda_latent_smooth * loss_latent_smooth # loss_details['loss_latent_smooth'] = loss_latent_smooth if self.hparams.use_unpose and fg_points is not None: fg_points_sigma = self.anim_nerf.query_canonical_space(fg_points, use_fine=False, only_sigma=True) loss_foreground = torch.mean(torch.exp(-2.0/self.hparams.n_samples * torch.relu(fg_points_sigma))) loss += self.hparams.train.lambda_foreground * loss_foreground loss_details['loss_foreground'] = loss_foreground if self.hparams.n_importance > 0 and not self.hparams.share_fine: fg_points_sigma_fine = self.anim_nerf.query_canonical_space(fg_points, use_fine=True, only_sigma=True) loss_foreground_fine = torch.mean(torch.exp(-2.0/self.hparams.n_samples * torch.relu(fg_points_sigma_fine))) loss += self.hparams.train.lambda_foreground * loss_foreground_fine loss_details['loss_foreground_fine'] = loss_foreground_fine if self.hparams.use_unpose and bg_points is not None: bg_points_sigma = self.anim_nerf.query_canonical_space(bg_points, use_fine=False, only_sigma=True) loss_background = torch.mean(1 - torch.exp(-2.0/self.hparams.n_samples * torch.relu(bg_points_sigma))) loss += self.hparams.train.lambda_background * loss_background loss_details['loss_background'] = loss_background if self.hparams.n_importance > 0 and not self.hparams.share_fine: bg_points_sigma_fine = self.anim_nerf.query_canonical_space(bg_points, use_fine=True, only_sigma=True) loss_background_fine = torch.mean(1 - torch.exp(-2.0/self.hparams.n_samples * torch.relu(bg_points_sigma_fine))) loss += self.hparams.train.lambda_background * loss_background_fine loss_details['loss_background_fine'] = loss_background_fine # normal points = self.anim_nerf.verts_template.detach() points += torch.randn_like(points) * self.hparams.dis_threshold * 0.5 points_neighbs = points + torch.randn_like(points) * self.hparams.train.epsilon points_normal = self.anim_nerf.query_canonical_space(points, use_fine=False, only_normal=True) points_neighbs_normal = self.anim_nerf.query_canonical_space(points_neighbs, use_fine=False, only_normal=True) points_normal = points_normal / (torch.norm(points_normal, p=2, dim=-1, keepdim=True) + 1e-5) points_neighbs_normal = points_neighbs_normal / (torch.norm(points_neighbs_normal, p=2, dim=-1, keepdim=True) + 1e-5) loss_normals = F.mse_loss(points_normal, points_neighbs_normal) # loss_normals = torch.mean((torch.norm(points_normal, p=2, dim=-1) - 1)**2) loss += self.hparams.train.lambda_normals * loss_normals loss_details['loss_normals'] = loss_normals if self.hparams.n_importance > 0 and not self.hparams.share_fine: points_normal_fine = self.anim_nerf.query_canonical_space(points, use_fine=True, only_normal=True) points_neighbs_normal_fine = self.anim_nerf.query_canonical_space(points_neighbs, use_fine=True, only_normal=True) points_normal_fine = points_normal_fine / (torch.norm(points_normal_fine, p=2, dim=-1, keepdim=True) + 1e-5) points_neighbs_normal_fine = points_neighbs_normal_fine / (torch.norm(points_neighbs_normal_fine, p=2, dim=-1, keepdim=True) + 1e-5) loss_normals_fine = F.mse_loss(points_normal_fine, points_neighbs_normal_fine) # loss_normals_fine = torch.mean((torch.norm(points_normal_fine, p=2, dim=-1) - 1)**2) loss += self.hparams.train.lambda_normals * loss_normals_fine loss_details['loss_normals_fine'] = loss_normals_fine # if body_model_params is not None: # loss_pose = F.mse_loss(results['joints'].clone(), self.anim_nerf.model(**body_model_params)['joints'].clone()) # loss += self.hparams.lambda_pose * loss_pose # loss_details['loss_pose'] = loss_pose # frame_id_ = torch.clamp(frame_id+1, 0, self.body_model_params.num_frame-1) # body_model_params_ref_ = self.body_model_params(frame_id_) # loss_pose_smooth = F.mse_loss(self.anim_nerf.joints, self.anim_nerf.model(**body_model_params_ref_)['joints']) # loss += self.hparams.lambda_pose_smooth * loss_pose_smooth # loss_details['loss_pose_smooth'] = loss_pose_smooth return loss, loss_details def training_step(self, batch, batch_nb): frame_id, cam_id, frame_idx, rays, rgbs, alphas, body_model_params, body_model_params_template, fg_points, bg_points = self.decode_batch(batch) if self.hparams.latent_dim > 0: latent_code = self.latent_codes(frame_idx) else: latent_code = None if self.hparams.optim_body_params: body_model_params = self.body_model_params(frame_idx) results = self(rays, body_model_params, body_model_params_template, latent_code=latent_code) loss, loss_details = self.compute_loss(rgbs, alphas, results, frame_idx=frame_idx, fg_points=fg_points, bg_points=bg_points) self.log('train/loss', loss, on_step=True, on_epoch=False, prog_bar=True, logger=True) for loss_name in loss_details.keys(): self.log('train/{}'.format(loss_name), loss_details[loss_name], on_step=True, on_epoch=False, prog_bar=True, logger=True) with torch.no_grad(): if 'rgbs_fine' in results: train_psnr = psnr(results['rgbs_fine'], rgbs) else: train_psnr = psnr(results['rgbs'], rgbs) self.log('train/psnr', train_psnr, on_step=True, on_epoch=False, prog_bar=True, logger=True) lr = get_learning_rate(self.optimizer) self.log('lr', lr, on_step=False, on_epoch=True, prog_bar=False, logger=True) return loss def validation_step(self, batch, batch_nb): frame_id, cam_id, frame_idx, rays, rgbs, alphas, body_model_params, body_model_params_template, fg_points, bg_points = self.decode_batch(batch) if self.hparams.latent_dim > 0: if frame_idx != -1: latent_code = self.latent_codes(frame_idx) else: latent_code = self.latent_codes(torch.zeros_like(frame_idx)) else: latent_code = None if self.hparams.optim_body_params and frame_idx != -1: body_model_params = self.body_model_params(frame_idx) # else: # body_model_params['betas'] = self.body_model_params.betas(torch.zeros_like(frame_idx)) results = self(rays, body_model_params, body_model_params_template, latent_code=latent_code) loss, _ = self.compute_loss(rgbs, alphas, results) self.log('val/loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=True) if 'rgbs_fine' in results: val_psnr = psnr(results['rgbs_fine'], rgbs) else: val_psnr = psnr(results['rgbs'], rgbs) self.log('val/psnr', val_psnr, on_step=False, on_epoch=True, prog_bar=True, logger=True) W, H = self.hparams.img_wh def visualize(frame_id, cam_id, rgbs_gt, rgbs, depths, W, H): img = rgbs.cpu().view(H, W, 3).permute(2, 0, 1) # (3, H, W) img_gt = rgbs_gt.cpu().view(H, W, 3).permute(2, 0, 1) # (3, H, W) depth = visualize_depth(depths.cpu().view(H, W)) stack = torch.stack([img_gt, img, depth]) # (3, 3, H, W) self.logger.experiment.add_images('val/GT_pred_depth_cam{:0>3d}_{:0>6d}'.format(cam_id, frame_id), stack, self.global_step) if batch_nb % self.hparams.val.vis_freq == 0: if 'rgbs_fine' in results: visualize(frame_id.item(), cam_id.item(), rgbs, results['rgbs_fine'], results['depths_fine'], W, H) else: visualize(frame_id.item(), cam_id.item(), rgbs, results['rgbs'], results['depths'], W, H) return loss def test_step(self, batch, batch_nb): frame_id, cam_id, frame_idx, rays, rgbs, alphas, body_model_params, body_model_params_template, fg_points, bg_points = self.decode_batch(batch) if self.hparams.latent_dim > 0: if frame_idx != -1: latent_code = self.latent_codes(frame_idx) else: latent_code = self.latent_codes(torch.zeros_like(frame_idx)) else: latent_code = None if self.hparams.optim_body_params and frame_idx != -1: body_model_params = self.body_model_params(frame_idx) # else: # body_model_params['betas'] = self.body_model_params.betas(torch.zeros_like(frame_idx)) results = self(rays, body_model_params, body_model_params_template, latent_code=latent_code, perturb=0.0) loss, _ = self.compute_loss(rgbs, alphas, results) self.log('test/loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=False) if 'rgbs_fine' in results: test_psnr = psnr(results['rgbs_fine'], rgbs) else: test_psnr = psnr(results['rgbs'], rgbs) self.log('test/psnr', test_psnr, on_step=False, on_epoch=True, prog_bar=True, logger=False) W, H = self.hparams.img_wh def visualize(frame_id, cam_id, rgbs_gt, rgbs, depths, W, H): img = rgbs.cpu().view(H, W, 3).permute(2, 0, 1) # (3, H, W) img_gt = rgbs_gt.cpu().view(H, W, 3).permute(2, 0, 1) # (3, H, W) depth = visualize_depth(depths.cpu().view(H, W)) stack = torch.stack([img_gt, img, depth]) # (3, 3, H, W) os.makedirs(os.path.join(self.hparams.outputs_dir, self.hparams.exp_name, 'cam{:0>3d}'.format(cam_id)), exist_ok=True) save_image(stack, '{}/{}/cam{:0>3d}/{:0>6d}.png'.format(self.hparams.outputs_dir, self.hparams.exp_name, cam_id, frame_id)) #self.logger.experiment.add_images('test/GT_pred_depth_{}'.format(nb), stack, self.global_step) if batch_nb % self.hparams.test.vis_freq == 0: if 'rgbs_fine' in results: visualize(frame_id.item(), cam_id.item(), rgbs, results['rgbs_fine'], results['depths_fine'], W, H) else: visualize(frame_id.item(), cam_id.item(), rgbs, results['rgbs'], results['depths'], W, H) return loss if __name__ == '__main__': # torch.autograd.set_detect_anomaly(True) train_start_time = time.time() cfg = get_cfg() data = AnimNeRFData(cfg) system = AnimNeRFSystem(cfg) print(system) if cfg.train.ckpt_path is not None: for model_name in cfg.train.model_names_to_load: load_ckpt(getattr(system, model_name), cfg.train.ckpt_path, model_name) for param in getattr(system, model_name).parameters(): param.requires_grad = cfg.train.pretrained_model_requires_grad checkpoint_callback = ModelCheckpoint(dirpath=f'{cfg.checkpoints_dir}/{cfg.exp_name}', filename='{epoch:d}', monitor='train/psnr', mode='max', save_top_k=cfg.train.save_top_k, save_last=cfg.train.save_last) logger = TensorBoardLogger( save_dir=cfg.logs_dir, name=cfg.exp_name, ) trainer = Trainer(max_epochs=cfg.train.max_epochs, callbacks=[checkpoint_callback], logger=logger, gpus=cfg.num_gpus, strategy=cfg.train.strategy, num_sanity_val_steps=1, benchmark=True, profiler="simple") trainer.fit(system, data, ckpt_path=cfg.train.ckpt_path if cfg.train.resume else None) trainer.test(datamodule=data) train_end_message = 'End of training \t Time Taken: %.3f hours' % ((time.time() - train_start_time)/3600.0) print(train_end_message)
the-stack_0_84
from mmdet.models.builder import DETECTORS from .single_stage_text_detector import SingleStageTextDetector from .text_detector_mixin import TextDetectorMixin @DETECTORS.register_module() class FCENet(TextDetectorMixin, SingleStageTextDetector): """The class for implementing FCENet text detector FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped Text Detection [https://arxiv.org/abs/2104.10442] """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, show_score=False, init_cfg=None): SingleStageTextDetector.__init__(self, backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) TextDetectorMixin.__init__(self, show_score) def simple_test(self, img, img_metas, rescale=False): x = self.extract_feat(img) outs = self.bbox_head(x) boundaries = self.bbox_head.get_boundary(outs, img_metas, rescale) return [boundaries]
the-stack_0_87
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import string PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 if PY3: string_types = str, integer_types = int, else: string_types = basestring, integer_types = (int, long) SEP = "____" KLS_NAME_CHARSET = set(string.ascii_letters + string.digits) VAR_NAME_CHARSET = set(string.ascii_lowercase + string.digits + "_") VAR_FORBIDDEN_CHARSET = set( r"""~`!@#$%^&*()-+={}[]|\:;"'<,>.?/""" + string.ascii_uppercase) INDEX_KEY_FORBIDDEN_CHARSET = set(r"""~`!@#$%^&*()-+={}[]|\:;"'<,>.?/""") WHITE_SPACE = set(string.whitespace) def is_valid_class_name(name): """Check if it is a valid variable name. A valid variable name has to: - start wither upper case - only alpha digits """ try: assert name[0].isupper() assert len(set(name).difference(KLS_NAME_CHARSET)) == 0 return True except: return False def is_valid_variable_name(name): """Check if it is a valid variable name. A valid variable name has to: - start wither lower case - reserved SEPTERATOR is not in it. """ try: assert name[0].islower() assert SEP not in name assert len(set(name).difference(VAR_NAME_CHARSET)) == 0 return True except: return False def is_valid_surfix(name): """Surfix is the attribute name used for index. **中文文档** 此方法暂时没用。 """ try: assert SEP not in name assert len(VAR_FORBIDDEN_CHARSET.intersection(name)) == 0 return True except: return False def to_variable_name(cls_name): """Convert class name to variable name format. usually use "_" to connect each word. **中文文档** 将类名转化为其实例的变量名。 """ assert is_valid_class_name(cls_name) words = list() chunks = list() for char in cls_name: if char.isupper(): words.append("".join(chunks)) chunks = ["_", char.lower()] else: chunks.append(char) words.append("".join(chunks)) return "".join(words)[1:] def to_index_key(value): """Convert a value to it's index key in string. Only alpha and digits and underscore is allowed. Whitespace delimiter will replaced with underscore. `` *David# #John* `` -> ``David_John`` """ if isinstance(value, integer_types): key = str(value) elif isinstance(value, string_types): l = list() for c in value: if c not in INDEX_KEY_FORBIDDEN_CHARSET: if c in WHITE_SPACE: l.append(" ") else: l.append(c) words = [word for word in "".join( l).strip().split(" ") if word.strip()] key = "_".join(words) elif isinstance(value, float): key = str(value).replace(".", "d") else: raise TypeError("%r is not an indexable value.") return key def test_is_valid_class_name(): for name in ["User", "MyClass", "TestCase"]: assert is_valid_class_name(name) is True for name in ["user", "My_Class", "testCase"]: assert is_valid_class_name(name) is False def test_is_valid_variable_name(): for name in ["name", "my_class", "num1"]: assert is_valid_variable_name(name) is True for name in ["Name", "myClass", "1a"]: assert is_valid_variable_name(name) is False def test_is_valid_surfix(): assert is_valid_surfix("大卫") is True def test_to_variable_name(): assert to_variable_name("User") == "user" assert to_variable_name("MyClass") == "my_class" def test_to_index_key(): assert to_index_key(1) == "1" assert to_index_key("David John") == "David_John" assert to_index_key(" *David+ +John* ") == "David_John" assert to_index_key("中文") == "中文" assert to_index_key(" 英 文 ") == "英_文" assert to_index_key(3.14) == "3d14" if __name__ == "__main__": test_is_valid_class_name() test_is_valid_variable_name() test_is_valid_surfix() test_to_variable_name() test_to_index_key()
the-stack_0_88
from typing import List import dash_html_components as html from .. import WebvizPluginABC class ExampleTour(WebvizPluginABC): @property def tour_steps(self) -> List[dict]: return [ {"id": self.uuid("blue_text"), "content": "This is the first step"}, {"id": self.uuid("red_text"), "content": "This is the second step"}, ] @property def layout(self) -> html.Div: return html.Div( children=[ html.Span( "Here is some blue text to explain... ", id=self.uuid("blue_text"), style={"color": "blue"}, ), html.Span( " ...and here is some red text that also needs an explanation.", id=self.uuid("red_text"), style={"color": "red"}, ), ] )
the-stack_0_92
#!/usr/bin/env python try: from setuptools import setup requires = { 'install_requires': ['django >= 4.0'], } except ImportError: from distutils.core import setup requires = {} from os.path import abspath, dirname, join with open(join(dirname(abspath(__file__)), 'src', 'rfdoc', 'version.py')) as f: exec(f.read()) # Maximum width in Windows installer seems to be 70 characters -------| DESCRIPTION = """ RFDoc is a web application for storing and searching Robot Framework test library and resource file documentations. Required packages: django >= 4.0 """[1:-1] CLASSIFIERS = """ Development Status :: 5 - Production/Stable License :: OSI Approved :: Apache Software License Operating System :: OS Independent Programming Language :: Python Topic :: Software Development :: Testing """[1:-1] setup( name = 'robotframework-rfdoc', version = VERSION, description = 'Web-based Robot Framework library documentation server', long_description = DESCRIPTION, author = 'Robot Framework Developers', author_email = '[email protected]', url = 'http://code.google.com/p/rfdoc/', license = 'Apache License 2.0', keywords = 'robotframework testing testautomation documentation', platforms = 'any', classifiers = CLASSIFIERS.splitlines(), package_dir = {'rfdoc': 'src/rfdoc'}, packages = ['rfdoc', 'rfdoc.rfdocapp', 'rfdoc.rfdocapp.views', 'rfdoc.rfdocapp.templatetags', 'rfdoc.rfdocapp.utils'], package_data = {'rfdoc': ['*.tmpl', 'rfdocapp/templates/*.html', 'rfdocapp/static/*.css', 'rfdocapp/static/*.js']}, **requires )
the-stack_0_94
from pelican import signals from pelican.generators import ArticlesGenerator, PagesGenerator # Make sure than when a title breaks, there will never be # a single word "alone" on its line # Does not work if the last "word" of the title is an emoji # in the form of an image (like Twemoji) # Title has to be more than four words # in order to be considered SMART_BREAK_MIN_LEN = 4 def smart_break(document): # Get the number of words splited = document.title.split(' ') length = len(splited) if length > SMART_BREAK_MIN_LEN: # Join the last two elements with a non-breaking space end = '&nbsp;'.join(splited[length - 2:]) # Get the start of the title back start = ' '.join(splited[:length-2]) # Glue the title back together final = f'{start} {end}' # Write to a custom property # Writing the title directly leads to &nbsp; not being # interpreted at various places document.smart_title = final def run(generators): for g in generators: if isinstance(g, ArticlesGenerator): for a in g.articles: smart_break(a) if isinstance(g, PagesGenerator): for p in g.pages: smart_break(p) def register(): signals.all_generators_finalized.connect(run)
the-stack_0_95
from werkzeug.local import LocalStack, LocalProxy def _find_bot(): from .wx import get_bot top = _wx_ctx_stack.top if top is None: top = get_bot() _wx_ctx_stack.push(top) return top _wx_ctx_stack = LocalStack() current_bot = LocalProxy(_find_bot)
the-stack_0_96
_base_ = 'faster_rcnn_r50_fpn_mstrain_3x_coco.py' model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
the-stack_0_99
#!/usr/bin/env python3 import os os.environ['NOCRASH'] = '1' import unittest import matplotlib matplotlib.use('svg') from selfdrive.config import Conversions as CV from selfdrive.car.honda.values import CruiseButtons as CB from selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver from selfdrive.manager.process_config import managed_processes from common.file_helpers import mkdirs_exists_ok from common.params import Params def check_no_collision(log): return min(log['d_rel']) > 0 def check_fcw(log): return any(log['fcw']) def check_engaged(log): return log['controls_state_msgs'][-1][-1].active maneuvers = [ Maneuver( 'while cruising at 40 mph, change cruise speed to 50mph', duration=30., initial_speed=40. * CV.MPH_TO_MS, cruise_button_presses=[(CB.DECEL_SET, 2.), (0, 2.3), (CB.RES_ACCEL, 10.), (0, 10.1), (CB.RES_ACCEL, 10.2), (0, 10.3)], checks=[check_engaged], ), Maneuver( 'while cruising at 60 mph, change cruise speed to 50mph', duration=30., initial_speed=60. * CV.MPH_TO_MS, cruise_button_presses=[(CB.DECEL_SET, 2.), (0, 2.3), (CB.DECEL_SET, 10.), (0, 10.1), (CB.DECEL_SET, 10.2), (0, 10.3)], checks=[check_engaged], ), Maneuver( 'while cruising at 20mph, uphill grade of 10%', duration=25., initial_speed=20. * CV.MPH_TO_MS, cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3)], grade_values=[0., 0., .1], grade_breakpoints=[0., 10., 11.], checks=[check_engaged], ), Maneuver( 'while cruising at 20mph, downhill grade of -10%', duration=25., initial_speed=20. * CV.MPH_TO_MS, cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3)], grade_values=[0., 0., -.1], grade_breakpoints=[0., 10., 11.], checks=[check_engaged], ), Maneuver( 'approaching a 40mph car while cruising at 60mph from 100m away', duration=30., initial_speed=60. * CV.MPH_TO_MS, lead_relevancy=True, initial_distance_lead=100., speed_lead_values=[40. * CV.MPH_TO_MS, 40. * CV.MPH_TO_MS], speed_lead_breakpoints=[0., 100.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3)], checks=[check_engaged, check_no_collision], ), Maneuver( 'approaching a 0mph car while cruising at 40mph from 150m away', duration=30., initial_speed=40. * CV.MPH_TO_MS, lead_relevancy=True, initial_distance_lead=150., speed_lead_values=[0. * CV.MPH_TO_MS, 0. * CV.MPH_TO_MS], speed_lead_breakpoints=[0., 100.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3)], checks=[check_engaged, check_no_collision], ), Maneuver( 'steady state following a car at 20m/s, then lead decel to 0mph at 1m/s^2', duration=50., initial_speed=20., lead_relevancy=True, initial_distance_lead=35., speed_lead_values=[20., 20., 0.], speed_lead_breakpoints=[0., 15., 35.0], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3)], checks=[check_engaged, check_no_collision], ), Maneuver( 'steady state following a car at 20m/s, then lead decel to 0mph at 2m/s^2', duration=50., initial_speed=20., lead_relevancy=True, initial_distance_lead=35., speed_lead_values=[20., 20., 0.], speed_lead_breakpoints=[0., 15., 25.0], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3)], checks=[check_engaged, check_no_collision], ), Maneuver( 'steady state following a car at 20m/s, then lead decel to 0mph at 3m/s^2', duration=50., initial_speed=20., lead_relevancy=True, initial_distance_lead=35., speed_lead_values=[20., 20., 0.], speed_lead_breakpoints=[0., 15., 21.66], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3)], checks=[check_engaged, check_fcw], ), Maneuver( 'steady state following a car at 20m/s, then lead decel to 0mph at 5m/s^2', duration=40., initial_speed=20., lead_relevancy=True, initial_distance_lead=35., speed_lead_values=[20., 20., 0.], speed_lead_breakpoints=[0., 15., 19.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3)], checks=[check_engaged, check_fcw], ), Maneuver( 'starting at 0mph, approaching a stopped car 100m away', duration=30., initial_speed=0., lead_relevancy=True, initial_distance_lead=100., cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3), (CB.RES_ACCEL, 1.4), (0.0, 1.5), (CB.RES_ACCEL, 1.6), (0.0, 1.7), (CB.RES_ACCEL, 1.8), (0.0, 1.9)], checks=[check_engaged, check_no_collision], ), Maneuver( "following a car at 60mph, lead accel and decel at 0.5m/s^2 every 2s", duration=25., initial_speed=30., lead_relevancy=True, initial_distance_lead=49., speed_lead_values=[30., 30., 29., 31., 29., 31., 29.], speed_lead_breakpoints=[0., 6., 8., 12., 16., 20., 24.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3), (CB.RES_ACCEL, 1.4), (0.0, 1.5), (CB.RES_ACCEL, 1.6), (0.0, 1.7)], checks=[check_engaged, check_no_collision], ), Maneuver( "following a car at 10mph, stop and go at 1m/s2 lead dece1 and accel", duration=70., initial_speed=10., lead_relevancy=True, initial_distance_lead=20., speed_lead_values=[10., 0., 0., 10., 0., 10.], speed_lead_breakpoints=[10., 20., 30., 40., 50., 60.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3), (CB.RES_ACCEL, 1.4), (0.0, 1.5), (CB.RES_ACCEL, 1.6), (0.0, 1.7)], checks=[check_engaged, check_no_collision], ), Maneuver( "green light: stopped behind lead car, lead car accelerates at 1.5 m/s", duration=30., initial_speed=0., lead_relevancy=True, initial_distance_lead=4., speed_lead_values=[0, 0, 45], speed_lead_breakpoints=[0, 10., 40.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3), (CB.RES_ACCEL, 1.4), (0.0, 1.5), (CB.RES_ACCEL, 1.6), (0.0, 1.7), (CB.RES_ACCEL, 1.8), (0.0, 1.9), (CB.RES_ACCEL, 2.0), (0.0, 2.1), (CB.RES_ACCEL, 2.2), (0.0, 2.3)], checks=[check_engaged, check_no_collision], ), Maneuver( "stop and go with 1m/s2 lead decel and accel, with full stops", duration=70., initial_speed=0., lead_relevancy=True, initial_distance_lead=20., speed_lead_values=[10., 0., 0., 10., 0., 0.], speed_lead_breakpoints=[10., 20., 30., 40., 50., 60.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3), (CB.RES_ACCEL, 1.4), (0.0, 1.5), (CB.RES_ACCEL, 1.6), (0.0, 1.7)], checks=[check_engaged, check_no_collision], ), Maneuver( "stop and go with 1.5m/s2 lead accel and 3.3m/s^2 lead decel, with full stops", duration=45., initial_speed=0., lead_relevancy=True, initial_distance_lead=20., speed_lead_values=[10., 0., 0., 10., 0., 0.], speed_lead_breakpoints=[10., 13., 26., 33., 36., 45.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3), (CB.RES_ACCEL, 1.4), (0.0, 1.5), (CB.RES_ACCEL, 1.6), (0.0, 1.7)], checks=[check_engaged, check_no_collision], ), Maneuver( "accelerate from 20 while lead vehicle decelerates from 40 to 20 at 1m/s2", duration=30., initial_speed=10., lead_relevancy=True, initial_distance_lead=10., speed_lead_values=[20., 10.], speed_lead_breakpoints=[1., 11.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3), (CB.RES_ACCEL, 1.4), (0.0, 1.5), (CB.RES_ACCEL, 1.6), (0.0, 1.7), (CB.RES_ACCEL, 1.8), (0.0, 1.9), (CB.RES_ACCEL, 2.0), (0.0, 2.1), (CB.RES_ACCEL, 2.2), (0.0, 2.3)], checks=[check_engaged, check_no_collision], ), Maneuver( "accelerate from 20 while lead vehicle decelerates from 40 to 0 at 2m/s2", duration=30., initial_speed=10., lead_relevancy=True, initial_distance_lead=10., speed_lead_values=[20., 0.], speed_lead_breakpoints=[1., 11.], cruise_button_presses=[(CB.DECEL_SET, 1.2), (0, 1.3), (CB.RES_ACCEL, 1.4), (0.0, 1.5), (CB.RES_ACCEL, 1.6), (0.0, 1.7), (CB.RES_ACCEL, 1.8), (0.0, 1.9), (CB.RES_ACCEL, 2.0), (0.0, 2.1), (CB.RES_ACCEL, 2.2), (0.0, 2.3)], checks=[check_engaged, check_no_collision], ), Maneuver( "fcw: traveling at 30 m/s and approaching lead traveling at 20m/s", duration=15., initial_speed=30., lead_relevancy=True, initial_distance_lead=100., speed_lead_values=[20.], speed_lead_breakpoints=[1.], cruise_button_presses=[], checks=[check_fcw], ), Maneuver( "fcw: traveling at 20 m/s following a lead that decels from 20m/s to 0 at 1m/s2", duration=18., initial_speed=20., lead_relevancy=True, initial_distance_lead=35., speed_lead_values=[20., 0.], speed_lead_breakpoints=[3., 23.], cruise_button_presses=[], checks=[check_fcw], ), Maneuver( "fcw: traveling at 20 m/s following a lead that decels from 20m/s to 0 at 3m/s2", duration=13., initial_speed=20., lead_relevancy=True, initial_distance_lead=35., speed_lead_values=[20., 0.], speed_lead_breakpoints=[3., 9.6], cruise_button_presses=[], checks=[check_fcw], ), Maneuver( "fcw: traveling at 20 m/s following a lead that decels from 20m/s to 0 at 5m/s2", duration=8., initial_speed=20., lead_relevancy=True, initial_distance_lead=35., speed_lead_values=[20., 0.], speed_lead_breakpoints=[3., 7.], cruise_button_presses=[], checks=[check_fcw], ) ] def setup_output(): output_dir = os.path.join(os.getcwd(), 'out/longitudinal') if not os.path.exists(os.path.join(output_dir, "index.html")): # write test output header css_style = """ .maneuver_title { font-size: 24px; text-align: center; } .maneuver_graph { width: 100%; } """ view_html = "<html><head><style>%s</style></head><body><table>" % (css_style,) for i, man in enumerate(maneuvers): view_html += "<tr><td class='maneuver_title' colspan=5><div>%s</div></td></tr><tr>" % (man.title,) for c in ['distance.svg', 'speeds.svg', 'acceleration.svg', 'pedals.svg', 'pid.svg']: view_html += "<td><img class='maneuver_graph' src='%s'/></td>" % (os.path.join("maneuver" + str(i + 1).zfill(2), c), ) view_html += "</tr>" mkdirs_exists_ok(output_dir) with open(os.path.join(output_dir, "index.html"), "w") as f: f.write(view_html) class LongitudinalControl(unittest.TestCase): @classmethod def setUpClass(cls): os.environ['SIMULATION'] = "1" os.environ['SKIP_FW_QUERY'] = "1" os.environ['NO_CAN_TIMEOUT'] = "1" setup_output() params = Params() params.clear_all() params.put_bool("Passive", bool(os.getenv("PASSIVE"))) params.put_bool("OpenpilotEnabledToggle", True) params.put_bool("CommunityFeaturesToggle", True) # hack def test_longitudinal_setup(self): pass def run_maneuver_worker(k): man = maneuvers[k] output_dir = os.path.join(os.getcwd(), 'out/longitudinal') def run(self): print(man.title) valid = False for _ in range(3): managed_processes['radard'].start() managed_processes['controlsd'].start() managed_processes['plannerd'].start() plot, valid = man.evaluate() plot.write_plot(output_dir, "maneuver" + str(k + 1).zfill(2)) managed_processes['radard'].stop() managed_processes['controlsd'].stop() managed_processes['plannerd'].stop() if valid: break self.assertTrue(valid) return run for k in range(len(maneuvers)): setattr(LongitudinalControl, "test_longitudinal_maneuvers_%d" % (k + 1), run_maneuver_worker(k)) if __name__ == "__main__": unittest.main(failfast=True)
the-stack_0_101
import numpy as np from .._helpers import _writer_map, read, reader_map, write def add_args(parser): parser.add_argument("infile", type=str, help="mesh file to be read from") parser.add_argument( "--input-format", "-i", type=str, choices=sorted(list(reader_map.keys())), help="input file format", default=None, ) parser.add_argument( "--output-format", "-o", type=str, choices=sorted(list(_writer_map.keys())), help="output file format", default=None, ) parser.add_argument( "--ascii", "-a", action="store_true", help="write in ASCII format variant (where applicable, default: binary)", ) parser.add_argument("outfile", type=str, help="mesh file to be written to") parser.add_argument( "--float-format", "-f", type=str, help="float format used in output ASCII files (default: .16e)", ) parser.add_argument( "--sets-to-int-data", "-s", action="store_true", help="if possible, convert sets to integer data (useful if the output type does not support sets)", ) parser.add_argument( "--int-data-to-sets", "-d", action="store_true", help="if possible, convert integer data to sets (useful if the output type does not support integer data)", ) def convert(args): # read mesh data mesh = read(args.infile, file_format=args.input_format) # Some converters (like VTK) require `points` to be contiguous. mesh.points = np.ascontiguousarray(mesh.points) if args.sets_to_int_data: mesh.point_sets_to_data() mesh.cell_sets_to_data() if args.int_data_to_sets: for key in mesh.point_data: mesh.point_data_to_sets(key) for key in mesh.cell_data: mesh.cell_data_to_sets(key) # write it out kwargs = {"file_format": args.output_format} if args.float_format is not None: kwargs["float_fmt"] = args.float_format if args.ascii: kwargs["binary"] = False write(args.outfile, mesh, **kwargs)
the-stack_0_102
from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_predict, cross_val_score import matplotlib.pyplot as plt import pandas as pd # load the data set we'll be working with. In this case the Boston housing boston = load_boston() boston_df = pd.DataFrame(data=boston.data, columns=boston.feature_names) # get it into a pandas data frame y = pd.DataFrame(data=boston.data) # get it into a pandas data frame X = boston_df[['LSTAT', 'AGE']] # boston_df.describe() # take a look at the data boston = None # help garbage collector # Task 2) make a linear regression model with LSTAT+AGE to predict median value lr1 = LinearRegression() # create the object lr1.fit(X, y) # cross_val_predict returns an array of the same size as `y` where each entry # is a prediction obtained by cross validation: predicted = cross_val_predict(lr1, X, y, cv=10) scores = cross_val_score(lr1, X, y, cv=10) print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) fig, ax = plt.subplots() ax.scatter(y, predicted, edgecolors=(0, 0, 0)) # predicted values ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) # regression line ax.set_xlabel('Measured') ax.set_ylabel('Predicted') # uncomment line below to show graph plt.show()
the-stack_0_103
########################################################################### ### Estimation of Slope along the boundary using the buffer distance ### ### Author : Lakshmi E ### ### Last Edit: 13-April-2020 ### ########################################################################### import arcpy import os,glob import numpy as np from arcpy.sa import * from arcpy import env import dbf import csv # work in the current directory env.workspace=(input("give the current directory:")) #'C:\Users\Laks\Desktop\REGSim module' dirpath = os.getcwd() #assign the buffer distance buffer_dist = input('Buffer distance between the study area (meters):') num_pts = input('no. of points considered across the boundary:') # Load required toolboxes arcpy.ImportToolbox(".\Module\CreatePointsLines.tbx") arcpy.CheckOutExtension("spatial") # create buffer in and out def buffer(bound): print('Creating buffer inside and outside the boundary area...') arcpy.Buffer_analysis(bound, 'buffin{0}.shp'.format(buffer_dist),'-{0}'.format(buffer_dist),'FULL','ROUND','NONE','') arcpy.Buffer_analysis(bound, 'bufout{0}.shp'.format(buffer_dist),'{0}'.format(buffer_dist),'FULL','ROUND','NONE','') bound='bound_hmda.shp' buffer(bound) # create points to the feature class print('Converting polygon to line feature class...') def ext_pts(bound,boundin,boundout,bufin,bufout): list=[bound,boundin,boundout,bufin,bufout] for i in list: print(i) arcpy.FeatureToLine_management(i,'{0}_line.shp'.format(i[:-4]),'','ATTRIBUTES') arcpy.AddField_management('{0}_line.shp'.format(i[:-4]),'Length','FLOAT','','','','','NULLABLE','NON_REQUIRED',"") arcpy.CalculateField_management('{0}_line.shp'.format(i[:-4]), "Length", "!SHAPE.Length!", "PYTHON", "") length = arcpy.da.SearchCursor('{0}_line.shp'.format(i[:-4]), "Length").next()[0] dist_intv = length/num_pts #point_num arcpy.CreatePointsLines_CreatePointsLines('{0}_line.shp'.format(i[:-4]),'INTERVAL BY DISTANCE', 'BEGINNING','NO','',dist_intv,'NO','{0}_pts.shp'.format(i[:-4])) print('Created points to the feature class...') bound = 'bound_hmda.shp' boundin = 'bndin_hmda.shp' boundout = 'bndou_hmda.shp' bufin = 'buffin{0}.shp'.format(buffer_dist) bufout = 'bufout{0}.shp'.format(buffer_dist) ext_pts(bound,boundin,boundout,bufin,bufout) # extract elevation value to the points print('Extracting the elevation data from the raster to the point featureclass...') def pts_value(raster,list): for i in raster: print(i) ExtractValuesToPoints('bound_hmda_pts.shp','{0}'.format(i),'bound{1}_{0}_extrpts{2}_{3}.shp'.format(i[9:12],buffer_dist,num_pts,i[2:4]),'INTERPOLATE','VALUE_ONLY') arcpy.AddField_management('bound{1}_{0}_extrpts{2}_{3}.shp'.format(i[9:12],buffer_dist,num_pts,i[2:4]),"Slope","DOUBLE","", "", "", "", "NULLABLE", "NON_REQUIRED", "") for j,z in zip(list,list_bound): print(j) print(z) ExtractValuesToPoints('{0}_pts.shp'.format(j[:-4]),'{0}'.format(i),'{0}_{1}_extrpts.shp'.format(j[0:5],i[9:12]),'INTERPOLATE','VALUE_ONLY') ExtractValuesToPoints('{0}_pts.shp'.format(z[:-4]),'{0}'.format(i),'{0}_{1}_extrpts.shp'.format(z[0:5],i[9:12]),'INTERPOLATE','VALUE_ONLY') for k,l in zip(list_bound,list): arcpy.Near_analysis('{0}_{1}_extrpts.shp'.format(k[0:5],i[9:12]),'{0}_{1}_extrpts.shp'.format(l[0:5],i[9:12]),'','NO_LOCATION','NO_ANGLE') arcpy.JoinField_management('{0}_{1}_extrpts.shp'.format(k[0:5],i[9:12]),'NEAR_FID','{0}_{1}_extrpts.shp'.format(l[0:5],i[9:12]),"FID","#") arcpy.AddField_management('{0}_{1}_extrpts.shp'.format(k[0:5],i[9:12]), "Slope", "FLOAT", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") arcpy.AddField_management('{0}_{1}_extrpts.shp'.format(l[0:5],i[9:12]), "Slope", "FLOAT", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") arcpy.CalculateField_management('bndou_{0}_extrpts.shp'.format(i[9:12]), "Slope", "(!RASTERVALU!- !RASTERVA_1!) / !NEAR_DIST!", "PYTHON_9.3", "") arcpy.CalculateField_management('bndin_{0}_extrpts.shp'.format(i[9:12]), "Slope", "(!RASTERVA_1!-!RASTERVALU!) / !NEAR_DIST!", "PYTHON_9.3", "") raster=sorted(glob.glob("*_GWL_*.tif")) list=['buffin{0}.shp'.format(buffer_dist),'bufout{0}.shp'.format(buffer_dist)] list_bound = ['bndin_hmda.shp','bndou_hmda.shp'] pts_value(raster,list) # estimae the average slope print('Estimating slope in each point of the boundary area...') filesav = [] def avg_sl(raster): for i in raster: list=sorted(glob.glob('bnd*{0}_extrpts.dbf'.format(i[9:12]))) print(list) tabin=dbf.Table('{0}'.format(list[0])) tabin.open() tabout=dbf.Table('{0}'.format(list[1])) tabout.open() tabbou=dbf.Table('bound{1}_{0}_extrpts{2}_{3}.dbf'.format(i[9:12],buffer_dist,num_pts,i[2:4])) tabbou.open(mode=dbf.READ_WRITE) for l,j,k in zip(tabin,tabout,range(0,len(tabbou))): mas=l[-1] sla=j[-1] res=((mas+sla)/2) with tabbou[k] as record: record.slope=res tabin.close() tabout.close() tabbou.close() print(tabbou) f = 'bound{1}_{0}_extrpts{2}_{3}'.format(i[9:12],buffer_dist,num_pts,i[2:4]) filesav.append(f) raster=sorted(glob.glob("*_GWL_*.tif")) avg_sl(raster) print(' Saving the output file') with open('output.csv', 'wb') as output: csvwriter = csv.writer(output,dialect='excel') for row in filesav: csvwriter.writerow([row]) output.close() #end of the script
the-stack_0_104
import leveldb db = leveldb.LevelDB('./db') # single put db.Put(b'hello', b'hello world') print(db.Get(b'hello').decode('utf-8')) # multiple put/delete applied atomically, and committed to disk batch = leveldb.WriteBatch() batch.Put(b'hello', b'world') batch.Put(b'hello again', b'world') batch.Delete(b'hello') db.Write(batch, sync = True)
the-stack_0_106
from __future__ import absolute_import, unicode_literals from datetime import date from django.db import models from modelcluster.contrib.taggit import ClusterTaggableManager from modelcluster.fields import ParentalKey from taggit.models import TaggedItemBase from wagtail.utils.pagination import paginate from wagtail.wagtailadmin.edit_handlers import ( FieldPanel, InlinePanel, MultiFieldPanel, PageChooserPanel) from wagtail.wagtailcore.fields import RichTextField from wagtail.wagtailcore.models import Orderable, Page from wagtail.wagtaildocs.edit_handlers import DocumentChooserPanel from wagtail.wagtailimages.edit_handlers import ImageChooserPanel from wagtail.wagtailsearch import index # ABSTRACT MODELS # ============================= class AbstractLinkFields(models.Model): link_external = models.URLField("External link", blank=True) link_page = models.ForeignKey( 'wagtailcore.Page', null=True, blank=True, related_name='+', on_delete=models.CASCADE ) link_document = models.ForeignKey( 'wagtaildocs.Document', null=True, blank=True, related_name='+', on_delete=models.CASCADE ) @property def link(self): if self.link_page: return self.link_page.url elif self.link_document: return self.link_document.url else: return self.link_external api_fields = ('link', ) panels = [ FieldPanel('link_external'), PageChooserPanel('link_page'), DocumentChooserPanel('link_document'), ] class Meta: abstract = True class AbstractRelatedLink(AbstractLinkFields): title = models.CharField(max_length=255, help_text="Link title") api_fields = ('title', ) + AbstractLinkFields.api_fields panels = [ FieldPanel('title'), MultiFieldPanel(AbstractLinkFields.panels, "Link"), ] class Meta: abstract = True class AbstractCarouselItem(AbstractLinkFields): image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) embed_url = models.URLField("Embed URL", blank=True) caption = models.CharField(max_length=255, blank=True) api_fields = ( 'image', 'embed_url', 'caption', ) + AbstractLinkFields.api_fields panels = [ ImageChooserPanel('image'), FieldPanel('embed_url'), FieldPanel('caption'), MultiFieldPanel(AbstractLinkFields.panels, "Link"), ] class Meta: abstract = True class ContactFieldsMixin(models.Model): telephone = models.CharField(max_length=20, blank=True) email = models.EmailField(blank=True) address_1 = models.CharField(max_length=255, blank=True) address_2 = models.CharField(max_length=255, blank=True) city = models.CharField(max_length=255, blank=True) country = models.CharField(max_length=255, blank=True) post_code = models.CharField(max_length=10, blank=True) api_fields = ( 'telephone', 'email', 'address_1', 'address_2', 'city', 'country', 'post_code', ) panels = [ FieldPanel('telephone'), FieldPanel('email'), FieldPanel('address_1'), FieldPanel('address_2'), FieldPanel('city'), FieldPanel('country'), FieldPanel('post_code'), ] class Meta: abstract = True # PAGE MODELS # ============================= # Home page class HomePage(Page): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) body = RichTextField(blank=True) api_fields = ( 'body', 'carousel_items', 'related_links', ) search_fields = Page.search_fields + [ index.SearchField('body'), ] class Meta: verbose_name = "homepage" class HomePageCarouselItem(Orderable, AbstractCarouselItem): page = ParentalKey('HomePage', related_name='carousel_items', on_delete=models.CASCADE) class HomePageRelatedLink(Orderable, AbstractRelatedLink): page = ParentalKey('HomePage', related_name='related_links', on_delete=models.CASCADE) HomePage.content_panels = Page.content_panels + [ FieldPanel('body', classname="full"), InlinePanel('carousel_items', label="Carousel items"), InlinePanel('related_links', label="Related links"), ] # Standard pages class StandardPage(Page): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) intro = RichTextField(blank=True) body = RichTextField(blank=True) feed_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) api_fields = ( 'intro', 'body', 'feed_image', 'carousel_items', 'related_links', ) search_fields = Page.search_fields + [ index.SearchField('intro'), index.SearchField('body'), ] class StandardPageCarouselItem(Orderable, AbstractCarouselItem): page = ParentalKey('StandardPage', related_name='carousel_items', on_delete=models.CASCADE) class StandardPageRelatedLink(Orderable, AbstractRelatedLink): page = ParentalKey('StandardPage', related_name='related_links', on_delete=models.CASCADE) StandardPage.content_panels = Page.content_panels + [ FieldPanel('intro', classname="full"), InlinePanel('carousel_items', label="Carousel items"), FieldPanel('body', classname="full"), InlinePanel('related_links', label="Related links"), ] StandardPage.promote_panels = [ MultiFieldPanel(Page.promote_panels, "Common page configuration"), ImageChooserPanel('feed_image'), ] class StandardIndexPage(Page): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) intro = RichTextField(blank=True) feed_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) api_fields = ( 'intro', 'feed_image', 'related_links', ) search_fields = Page.search_fields + [ index.SearchField('intro'), ] class StandardIndexPageRelatedLink(Orderable, AbstractRelatedLink): page = ParentalKey('StandardIndexPage', related_name='related_links', on_delete=models.CASCADE) StandardIndexPage.content_panels = Page.content_panels + [ FieldPanel('intro', classname="full"), InlinePanel('related_links', label="Related links"), ] StandardIndexPage.promote_panels = [ MultiFieldPanel(Page.promote_panels, "Common page configuration"), ImageChooserPanel('feed_image'), ] # Blog pages class BlogEntryPage(Page): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) body = RichTextField() tags = ClusterTaggableManager(through='BlogEntryPageTag', blank=True) date = models.DateField("Post date") feed_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) api_fields = ( 'body', 'tags', 'date', 'feed_image', 'carousel_items', 'related_links', ) search_fields = Page.search_fields + [ index.SearchField('body'), ] def get_blog_index(self): # Find closest ancestor which is a blog index return BlogIndexPage.ancestor_of(self).last() class BlogEntryPageCarouselItem(Orderable, AbstractCarouselItem): page = ParentalKey('BlogEntryPage', related_name='carousel_items', on_delete=models.CASCADE) class BlogEntryPageRelatedLink(Orderable, AbstractRelatedLink): page = ParentalKey('BlogEntryPage', related_name='related_links', on_delete=models.CASCADE) class BlogEntryPageTag(TaggedItemBase): content_object = ParentalKey('BlogEntryPage', related_name='tagged_items', on_delete=models.CASCADE) BlogEntryPage.content_panels = Page.content_panels + [ FieldPanel('date'), FieldPanel('body', classname="full"), InlinePanel('carousel_items', label="Carousel items"), InlinePanel('related_links', label="Related links"), ] BlogEntryPage.promote_panels = [ MultiFieldPanel(Page.promote_panels, "Common page configuration"), ImageChooserPanel('feed_image'), FieldPanel('tags'), ] class BlogIndexPage(Page): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) intro = RichTextField(blank=True) api_fields = ( 'intro', 'related_links', ) search_fields = Page.search_fields + [ index.SearchField('intro'), ] def get_blog_entries(self): # Get list of live blog pages that are descendants of this page entries = BlogEntryPage.objects.descendant_of(self).live() # Order by most recent date first entries = entries.order_by('-date') return entries def get_context(self, request): # Get blog entries entries = self.get_blog_entries() # Filter by tag tag = request.GET.get('tag') if tag: entries = entries.filter(tags__name=tag) paginator, entries = paginate(request, entries, page_key='page', per_page=10) # Update template context context = super(BlogIndexPage, self).get_context(request) context['entries'] = entries return context class BlogIndexPageRelatedLink(Orderable, AbstractRelatedLink): page = ParentalKey('BlogIndexPage', related_name='related_links', on_delete=models.CASCADE) BlogIndexPage.content_panels = Page.content_panels + [ FieldPanel('intro', classname="full"), InlinePanel('related_links', label="Related links"), ] # Events pages class EventPage(Page): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) AUDIENCE_CHOICES = ( ('public', "Public"), ('private', "Private"), ) date_from = models.DateField("Start date") date_to = models.DateField( "End date", null=True, blank=True, help_text="Not required if event is on a single day" ) time_from = models.TimeField("Start time", null=True, blank=True) time_to = models.TimeField("End time", null=True, blank=True) audience = models.CharField(max_length=255, choices=AUDIENCE_CHOICES) location = models.CharField(max_length=255) body = RichTextField(blank=True) cost = models.CharField(max_length=255) signup_link = models.URLField(blank=True) feed_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) api_fields = ( 'date_from', 'date_to', 'time_from', 'time_to', 'audience', 'location', 'body', 'cost', 'signup_link', 'feed_image', 'carousel_items', 'related_links', 'speakers', ) search_fields = Page.search_fields + [ index.SearchField('get_audience_display'), index.SearchField('location'), index.SearchField('body'), ] def get_event_index(self): # Find closest ancestor which is an event index return EventIndexPage.objects.ancester_of(self).last() class EventPageCarouselItem(Orderable, AbstractCarouselItem): page = ParentalKey('EventPage', related_name='carousel_items', on_delete=models.CASCADE) class EventPageRelatedLink(Orderable, AbstractRelatedLink): page = ParentalKey('EventPage', related_name='related_links', on_delete=models.CASCADE) class EventPageSpeaker(Orderable, AbstractLinkFields): page = ParentalKey('EventPage', related_name='speakers', on_delete=models.CASCADE) first_name = models.CharField("Name", max_length=255, blank=True) last_name = models.CharField("Surname", max_length=255, blank=True) image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) api_fields = ( 'first_name', 'last_name', 'image', ) panels = [ FieldPanel('first_name'), FieldPanel('last_name'), ImageChooserPanel('image'), MultiFieldPanel(AbstractLinkFields.panels, "Link"), ] EventPage.content_panels = Page.content_panels + [ FieldPanel('date_from'), FieldPanel('date_to'), FieldPanel('time_from'), FieldPanel('time_to'), FieldPanel('location'), FieldPanel('audience'), FieldPanel('cost'), FieldPanel('signup_link'), InlinePanel('carousel_items', label="Carousel items"), FieldPanel('body', classname="full"), InlinePanel('speakers', label="Speakers"), InlinePanel('related_links', label="Related links"), ] EventPage.promote_panels = [ MultiFieldPanel(Page.promote_panels, "Common page configuration"), ImageChooserPanel('feed_image'), ] class EventIndexPage(Page): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) intro = RichTextField(blank=True) api_fields = ( 'intro', 'related_links', ) search_fields = Page.search_fields + [ index.SearchField('intro'), ] def get_events(self): # Get list of live event pages that are descendants of this page events = EventPage.objects.descendant_of(self).live() # Filter events list to get ones that are either # running now or start in the future events = events.filter(date_from__gte=date.today()) # Order by date events = events.order_by('date_from') return events class EventIndexPageRelatedLink(Orderable, AbstractRelatedLink): page = ParentalKey('EventIndexPage', related_name='related_links', on_delete=models.CASCADE) EventIndexPage.content_panels = Page.content_panels + [ FieldPanel('intro', classname="full"), InlinePanel('related_links', label="Related links"), ] # Person page class PersonPage(Page, ContactFieldsMixin): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) first_name = models.CharField(max_length=255) last_name = models.CharField(max_length=255) intro = RichTextField(blank=True) biography = RichTextField(blank=True) image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) feed_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) api_fields = ( 'first_name', 'last_name', 'intro', 'biography', 'image', 'feed_image', 'related_links', ) + ContactFieldsMixin.api_fields search_fields = Page.search_fields + [ index.SearchField('first_name'), index.SearchField('last_name'), index.SearchField('intro'), index.SearchField('biography'), ] class PersonPageRelatedLink(Orderable, AbstractRelatedLink): page = ParentalKey('PersonPage', related_name='related_links', on_delete=models.CASCADE) PersonPage.content_panels = Page.content_panels + [ FieldPanel('first_name'), FieldPanel('last_name'), FieldPanel('intro', classname="full"), FieldPanel('biography', classname="full"), ImageChooserPanel('image'), MultiFieldPanel(ContactFieldsMixin.panels, "Contact"), InlinePanel('related_links', label="Related links"), ] PersonPage.promote_panels = [ MultiFieldPanel(Page.promote_panels, "Common page configuration"), ImageChooserPanel('feed_image'), ] # Contact page class ContactPage(Page, ContactFieldsMixin): page_ptr = models.OneToOneField(Page, parent_link=True, related_name='+', on_delete=models.CASCADE) body = RichTextField(blank=True) feed_image = models.ForeignKey( 'wagtailimages.Image', null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) api_fields = ( 'body', 'feed_image', ) + ContactFieldsMixin.api_fields search_fields = Page.search_fields + [ index.SearchField('body'), ] ContactPage.content_panels = Page.content_panels + [ FieldPanel('body', classname="full"), MultiFieldPanel(ContactFieldsMixin.panels, "Contact"), ] ContactPage.promote_panels = [ MultiFieldPanel(Page.promote_panels, "Common page configuration"), ImageChooserPanel('feed_image'), ]
the-stack_0_109
#!/usr/bin/env python from os import path import setuptools def parse_requirements(filename): """ load requirements from a pip requirements file """ lineiter = (line.strip() for line in open(filename)) return [line for line in lineiter if line and not line.startswith("#")] from metaappscriptsdk import info here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst')) as f: long_description = f.read() packages = [ 'metaappscriptsdk', 'metaappscriptsdk.logger', 'metaappscriptsdk.services', 'metaappscriptsdk.schedule', 'metaappscriptsdk.feed', ] install_reqs = parse_requirements('requirements.txt') reqs = install_reqs setuptools.setup( name=info.__package_name__, version=info.__version__, description='Meta App Scripts SDK', long_description=long_description, url='https://github.com/rw-meta/meta-app-script-py-sdk', author='Artur Geraschenko', author_email='[email protected]', license='MIT', classifiers=[ 'Programming Language :: Python :: 3' ], install_requires=reqs, packages=packages, package_data={'': ['LICENSE']}, package_dir={'metaappscriptsdk': 'metaappscriptsdk'}, include_package_data=True, )
the-stack_0_110
""" Module description: """ __version__ = '0.1' __author__ = 'Vito Walter Anelli, Claudio Pomo' __email__ = '[email protected], [email protected]' import numpy as np from ast import literal_eval as make_tuple from tqdm import tqdm from elliot.dataset.samplers import pointwise_pos_neg_sampler as pws from elliot.recommender.neural.NeuMF.neural_matrix_factorization_model import NeuralMatrixFactorizationModel from elliot.recommender.recommender_utils_mixin import RecMixin from elliot.utils.write import store_recommendation from elliot.recommender.base_recommender_model import BaseRecommenderModel from elliot.recommender.base_recommender_model import init_charger np.random.seed(42) class NeuMF(RecMixin, BaseRecommenderModel): r""" Neural Collaborative Filtering For further details, please refer to the `paper <https://arxiv.org/abs/1708.05031>`_ Args: mf_factors: Number of MF latent factors mlp_factors: Number of MLP latent factors mlp_hidden_size: List of units for each layer lr: Learning rate dropout: Dropout rate is_mf_train: Whether to train the MF embeddings is_mlp_train: Whether to train the MLP layers To include the recommendation model, add it to the config file adopting the following pattern: .. code:: yaml models: NeuMF: meta: save_recs: True epochs: 10 mf_factors: 10 mlp_factors: 10 mlp_hidden_size: (64,32) lr: 0.001 dropout: 0.0 is_mf_train: True is_mlp_train: True """ @init_charger def __init__(self, data, config, params, *args, **kwargs): self._random = np.random self._sampler = pws.Sampler(self._data.i_train_dict) self._params_list = [ ("_learning_rate", "lr", "lr", 0.001, None, None), ("_mf_factors", "mf_factors", "mffactors", 10, int, None), ("_mlp_factors", "mlp_factors", "mlpfactors", 10, int, None), ("_mlp_hidden_size", "mlp_hidden_size", "mlpunits", "(64,32)", lambda x: list(make_tuple(str(x))), lambda x: self._batch_remove(str(x), " []").replace(",", "-")), ("_dropout", "dropout", "drop", 0, None, None), ("_is_mf_train", "is_mf_train", "mftrain", True, None, None), ("_is_mlp_train", "is_mlp_train", "mlptrain", True, None, None), ] self.autoset_params() if self._batch_size < 1: self._batch_size = self._data.transactions self._ratings = self._data.train_dict self._sp_i_train = self._data.sp_i_train self._i_items_set = list(range(self._num_items)) self._model = NeuralMatrixFactorizationModel(self._num_users, self._num_items, self._mf_factors, self._mlp_factors, self._mlp_hidden_size, self._dropout, self._is_mf_train, self._is_mlp_train, self._learning_rate) @property def name(self): return "NeuMF"\ + "_e:" + str(self._epochs) \ + "_bs:" + str(self._batch_size) \ + f"_{self.get_params_shortcut()}" def train(self): if self._restore: return self.restore_weights() best_metric_value = 0 for it in range(self._epochs): loss = 0 steps = 0 with tqdm(total=int(self._data.transactions // self._batch_size), disable=not self._verbose) as t: for batch in self._sampler.step(self._data.transactions, self._batch_size): steps += 1 loss += self._model.train_step(batch) t.set_postfix({'loss': f'{loss.numpy() / steps:.5f}'}) t.update() if not (it + 1) % self._validation_rate: recs = self.get_recommendations(self.evaluator.get_needed_recommendations()) result_dict = self.evaluator.eval(recs) self._results.append(result_dict) print(f'Epoch {(it + 1)}/{self._epochs} loss {loss/steps:.5f}') if self._results[-1][self._validation_k]["val_results"][self._validation_metric] > best_metric_value: print("******************************************") best_metric_value = self._results[-1][self._validation_k]["val_results"][self._validation_metric] if self._save_weights: self._model.save_weights(self._saving_filepath) if self._save_recs: store_recommendation(recs, self._config.path_output_rec_result + f"{self.name}-it:{it + 1}.tsv") def get_recommendations(self, k: int = 100): predictions_top_k = {} for index, offset in enumerate(range(0, self._num_users, self._batch_size)): offset_stop = min(offset + self._batch_size, self._num_users) predictions = self._model.get_recs( ( np.repeat(np.array(list(range(offset, offset_stop)))[:, None], repeats=self._num_items, axis=1), np.array([self._i_items_set for _ in range(offset, offset_stop)]) ) ) v, i = self._model.get_top_k(predictions, self.get_train_mask(offset, offset_stop), k=k) items_ratings_pair = [list(zip(map(self._data.private_items.get, u_list[0]), u_list[1])) for u_list in list(zip(i.numpy(), v.numpy()))] predictions_top_k.update(dict(zip(map(self._data.private_users.get, range(offset, offset_stop)), items_ratings_pair))) return predictions_top_k
the-stack_0_112
class BuySellStock: # @param prices, a list of stock prices # @return index of buy and sell price def choiceStocks(self, prices): n = len(prices) if n == 0: return None, None if n == 1: return 0, 0 maxPrice = prices[n - 1] mpIndex = n - 1 maxProfit = 0 for price in range(n): currPrice = prices[n - price - 1] if currPrice > maxPrice: maxPrice = currPrice mpIndex = n - price - 1 currProfit = maxPrice - currPrice if currProfit > maxProfit: maxProfit = currProfit bpIndex = n - price - 1 return bpIndex, mpIndex # Driver code to test the program run = BuySellStock() print(run.choiceStocks([5,6,7,8,10,3,8,7,11,1,2,11]))
the-stack_0_114
m = h = mu = 0 while True: print(25*'-') print(' CADASTRE UMA PESSOA') print(25*'-') i = int(input('Idade: ')) if i > 17: m+=1 while True: s = input('Sexo: [M/F] ').strip().upper()[0] if s in 'MF': break print(25*'-') if s == 'M': h+=1 if s == 'F' and i < 21: mu+=1 while True: q = input('Quer continuar? [S/N] ').strip().upper()[0] if q in 'SN': break if q == 'N': break print(f'====== FIM DO PROGRAMA ======\nTotal de pessoas com mais de 18 anos: {m}\nAo todo temos {h} homens cadastrados.\nE temos {mu} mulheres com menos de 20 anos.')
the-stack_0_115
# -*- coding: utf-8 -*- """ MTD Parser to sqlAlchemy model. Creates a Python file side by side with the original MTD file. Can be overloaded with a custom class to enhance/change available functions. See pineboolib/pnobjectsfactory.py """ from pineboolib import application, logging from pineboolib.application import file import os from typing import List, Union, TYPE_CHECKING if TYPE_CHECKING: from pineboolib.application.metadata import pnfieldmetadata, pntablemetadata # pragma: no cover LOGGER = logging.get_logger(__name__) RESERVER_WORDS = ["pass"] def mtd_parse( meta_or_name: Union[str, "pntablemetadata.PNTableMetaData"], path_mtd: str = "" ) -> str: """ Parse MTD into SqlAlchemy model. """ if application.PROJECT.conn_manager is None: raise Exception("Project is not connected yet") dest_file = "%s_model.py" % ( path_mtd if isinstance(meta_or_name, str) else "%s/cache/%s" % (application.PROJECT.tmpdir, meta_or_name.name()) ) if os.path.exists(dest_file): return dest_file if isinstance(meta_or_name, str): metadata = application.PROJECT.conn_manager.manager().metadata(meta_or_name, True) else: metadata = meta_or_name if metadata is None: return "" lines = _generate_model(metadata) if not lines: dest_file = "" else: _write_file(dest_file, lines) return dest_file def _write_file(file_name: str, lines: List[str]) -> None: """Write lines to a file.""" file_ = open(file_name, "w", encoding="UTF-8") file_.writelines([line if line.endswith("\n") else "%s\n" % line for line in lines]) file_.close() def _get_meta(file_mtd: "file.File") -> List[str]: """Return list with meta.""" mtd_data_list: List[str] = [] if os.path.exists(file_mtd.path()): mtd_data = application.PROJECT.conn_manager.manager().metadata(file_mtd.filename, True) if mtd_data is not None: mtd_data_list = _generate_model(mtd_data, False) return mtd_data_list def _generate_model(mtd_table: "pntablemetadata.PNTableMetaData", header: bool = True) -> List[str]: """ Create a list of lines from a mtd_table (pntablemetadata.PNTableMetaData). """ return _create_declaration(mtd_table, header) def generate_field(field: "pnfieldmetadata.PNFieldMetaData") -> str: """ Get text representation for sqlAlchemy of a field type given its pnfieldmetadata.PNFieldMetaData. """ data: List[str] = [] # TYPE # = "String" ret = "" type_ = field.type() if type_ in ("int, serial"): ret = "sqlalchemy.Integer" elif type_ in ("uint"): ret = "sqlalchemy.BigInteger" elif type_ in ("calculated"): ret = "sqlalchemy.String" # elif field.type() in ("double"): # ret = "sqlalchemy.Numeric" # ret += "(%s , %s)" % (field.partInteger(), field.partDecimal()) elif type_ == "double": ret = "sqlalchemy.Float" elif type_ in ("string", "stringlist", "pixmap"): ret = "sqlalchemy.String" if field.length(): ret += "(%s)" % field.length() elif type_ in ("bool", "unlock"): ret = "sqlalchemy.Boolean" elif type_ == "timestamp": ret = "sqlalchemy.DateTime" elif type_ == "json": ret = "sqlalchemy.types.JSON" elif type_ == "time": ret = "sqlalchemy.Time" elif type_ == "date": ret = "sqlalchemy.Date" elif type_ in ("bytearray"): ret = "sqlalchemy.LargeBinary" else: ret = "Desconocido %s" % type_ data.append(ret) if field.isPrimaryKey(): data.append("primary_key = True") return ", ".join(data) def generate_field_metadata(field: "pnfieldmetadata.PNFieldMetaData") -> List[str]: """Generate field data from a PNFieldMetaData.""" field_data: List = [] # NAME field_data.append("'name' : '%s'" % field.name()) # ALIAS if field.alias(): field_data.append("'alias' : '%s'" % field.alias().replace("'", '"')) # PK if field.isPrimaryKey(): field_data.append("'pk' : True") # CK if field.isCompoundKey(): field_data.append("'ck' : True") # TYPE field_relation: List[str] = [] field_data.append("'type' : '%s'" % field.type()) # LENGTH if field.length(): field_data.append("'length' : %s" % field.length()) # REGEXP if field.regExpValidator(): field_data.append("'regexp' : '%s'" % field.regExpValidator()) rel_list: List[str] # RELATIONS 1M for rel in field.relationList(): rel_list = [] rel_list.append("'card' : '%s'" % rel.cardinality()) rel_list.append("'table' : '%s'" % rel.foreignTable()) rel_list.append("'field' : '%s'" % rel.foreignField()) if rel.deleteCascade(): rel_list.append("'delc' : True") if rel.updateCascade(): rel_list.append("'updc' : True") if not rel.checkIn(): rel_list.append("'checkin' : False") field_relation.append("{%s}" % ", ".join(rel_list)) # if field_relation: # field_data.append("'relations' : [%s]" % ", ".join(field_relation)) # RELATIONS M1 if field.private._relation_m1: rel = field.private._relation_m1 rel_list = [] rel_list.append("'card' : '%s'" % rel.cardinality()) rel_list.append("'table' : '%s'" % rel.foreignTable()) rel_list.append("'field' : '%s'" % rel.foreignField()) if rel.deleteCascade(): rel_list.append("'delC' : True") if rel.updateCascade(): rel_list.append("'updC' : True") if not rel.checkIn(): rel_list.append("'checkIn' : False") field_relation.append("{%s}" % ", ".join(rel_list)) if field_relation: field_data.append("'relations' : [%s]" % ", ".join(field_relation)) # ASSOCIATED if field.private.associated_field_name: field_data.append( "'associated':{'with' : '%s', 'by' : '%s' }" % (field.private.associated_field_filter_to, field.private.associated_field_name) ) # UNIQUE if field.isUnique(): field_data.append("'isunique' : True") # ALLOW_NULL if not field.allowNull(): field_data.append("'null' : False") # DEFAULT_VALUE if field.defaultValue() is not None: value = ( field.defaultValue() if field.type() in ["bool", "unlock", "int", "uint", "double", "serial", "json"] else "'%s'" % field.defaultValue() ) field_data.append("'default' : %s" % value) # OUT_TRANSACTION if field.outTransaction(): field_data.append("'outtransaction' : True") # COUNTER if field.isCounter(): field_data.append("'counter' : True") # CALCULATED if field.calculated(): field_data.append("'calculated' : True") # FULLY_CALCULATED if field.fullyCalculated(): field_data.append("'fullycalculated' : True") # TRIMMED if field.trimmed(): field_data.append("'trimmed' : True") # VISIBLE if not field.visible(): field_data.append("'visible' : False") # VISIBLE_GRID if not field.visibleGrid(): field_data.append("'visiblegrid' : False") # EDITABLE if not field.editable(): field_data.append("'editable' : False") if field.type() == "double": # PARTI if field.partInteger(): field_data.append("'partI' : %s" % field.partInteger()) # PARTD if field.partDecimal(): field_data.append("'partD' : %s" % field.partDecimal()) # INDEX if field.isIndex(): field_data.append("'index' : True") # OPTIONS_LIST if field.optionsList(): texto = "" for item in field.optionsList(): texto += "'%s', " % item field_data.append("'optionslist' : [%s]" % texto) # SEARCH_OPTIONS if field.searchOptions(): texto = "" for item in field.searchOptions(): texto += "'%s', " % item field_data.append("'searchoptions' : [%s]" % texto) return field_data def use_mtd_fields(path_model: str) -> bool: """Return if models use mtd fields.""" file_ = open(path_model, "r", encoding="UTF-8") lines = file_.readlines() file_.close() for line in lines: if line.find("legacy_metadata") > -1: return False return True def populate_fields(dest_file_name: str, mtd_name: str) -> str: """Populate models fields with mtd field.""" new_file_path: str = "" if mtd_name in application.PROJECT.files.keys(): file_mtd = application.PROJECT.files[mtd_name] file_ = open(dest_file_name, "r") lines = file_.readlines() file_.close() new_lines: List[str] = [] for number, line in enumerate(list(lines)): if line.find("__tablename__") > -1: new_lines = lines[0 : number + 1] + _get_meta(file_mtd) + lines[number + 1 :] break if new_lines: new_key = "%s_model.py" % file_mtd.filename[:-4] conn = application.PROJECT.conn_manager.mainConn() db_name = conn.DBName() application.PROJECT.files[new_key] = file.File( file_mtd.module, "%s_model.py" % file_mtd.path(), basedir=file_mtd.basedir, sha=file_mtd.sha, db_name=db_name, ) application.PROJECT.files[new_key].filekey = "%s_model.py" % file_mtd.filekey new_file_path = application.PROJECT.files[new_key].path() if os.path.exists(new_file_path): os.remove(new_file_path) _write_file(new_file_path, new_lines) return new_file_path def _create_declaration( mtd_table: "pntablemetadata.PNTableMetaData", header: bool = True ) -> List[str]: """Create metadata section.""" data: List[str] = [] list_data_field: List[str] = [] validator_list: List[str] = [] metadata_table: List = [] metadata_table.append("'name' : '%s'" % mtd_table.name()) metadata_table.append("'alias' : '%s'" % mtd_table.alias()) if mtd_table.isQuery(): metadata_table.append("'query':'%s'" % mtd_table.query()) if mtd_table.concurWarn(): metadata_table.append("'concurwarn': True") if mtd_table.detectLocks(): metadata_table.append("'detectlocks':True") if mtd_table.FTSFunction(): metadata_table.append("'ftsfunction' :'%s'" % mtd_table.FTSFunction()) try: mtd_table.primaryKey() except Exception as error: # noqa: F841 pass field_list: List[List[str]] = [] pk_found = False for field in mtd_table.fieldList(): # Crea los campos if field.isPrimaryKey(): pk_found = True if field.name() in validator_list: LOGGER.warning( "Hay un campo %s duplicado en %s.mtd. Omitido", field.name(), mtd_table.name() ) else: field_data = [] field_data.append(" ") if field.name() in RESERVER_WORDS: field_data.append("%s_" % field.name()) else: field_data.append(field.name()) field_data.append(" = sqlalchemy.Column('%s', " % field.name()) field_list.append(generate_field_metadata(field)) field_data.append(generate_field(field)) field_data.append(")") validator_list.append(field.name()) if field.isPrimaryKey(): pk_found = True list_data_field.append("".join(field_data)) meta_fields: List = [] for meta_field in field_list: meta_fields.append("{%s}" % ", ".join(meta_field)) metadata_table.append( "\n 'fields' : [\n %s\n ]" % ",\n ".join(meta_fields) ) class_name = "%s%s" % (mtd_table.name()[0].upper(), mtd_table.name()[1:]) if header: data.append("# -*- coding: utf-8 -*-") data.append("# Translated with pineboolib %s" % application.PINEBOO_VER) data.append( '"""%s%s_model module."""' % (mtd_table.name()[0].upper(), mtd_table.name()[1:]) ) data.append("") data.append("from pineboolib.application.database.orm import basemodel") data.append("from pineboolib.qsa import qsa") data.append("") data.append("import sqlalchemy") data.append("") data.append("") data.append("# @class_declaration Oficial") data.append("class Oficial(basemodel.BaseModel): # type: ignore [misc] # noqa: F821") data.append(' """Oficial class."""') data.append(" __tablename__ = '%s'" % mtd_table.name()) # si query nombre query data.append("") else: data.append("") data.append("") data.append(" # --- POPULATED WITH METADATA FIELDS ---") data.append("") data.append("") data.append(" # --- Metadata --->") data.append(" legacy_metadata = {%s}" % ", ".join(metadata_table)) data.append("\n") data.append(" # <--- Metadata ---") data.append("") data.append("") data.append(" # --- Fields --->") data.append("") for data_field in list_data_field: data.append(data_field) data.append("") data.append(" # <--- Fields ---") data.append("") if header: data.append("# @class_declaration %s" % class_name) data.append( "class %s(Oficial): # type: ignore [misc] # noqa: F821" % class_name ) # si query nombre query data.append(' """%s class."""' % class_name) data.append(" pass") if not pk_found and not mtd_table.isQuery(): LOGGER.warning( "La tabla %s no tiene definida una clave primaria. No se generará el model." % (mtd_table.name()) ) data = [] return data
the-stack_0_116
#!/usr/bin/python # Tests if the SS segment override prefix is not explicitly produced when unnecessary # Github issue: #9 # Author: Duncan (mrexodia) from keystone import * import regress class TestX86(regress.RegressTest): def runTest(self): # Initialize Keystone engine ks = Ks(KS_ARCH_X86, KS_MODE_32) # Assemble to get back insn encoding & statement count encoding1, _ = ks.asm(b"MOV EAX,DWORD PTR SS:[ESP+8]") encoding2, _ = ks.asm(b"MOV EAX,DWORD PTR SS:[EBP+8]") # Assert the result self.assertEqual(encoding1, [ 0x8B, 0x44, 0x24, 0x08 ]) self.assertEqual(encoding2, [ 0x8B, 0x45, 0x08 ]) encoding, _ = ks.asm(b"MOV DWORD PTR SS:[EBP-0xC],0x1994000") self.assertEqual(encoding, [ 0xC7, 0x45, 0xF4, 0x00, 0x40, 0x99, 0x01 ]) if __name__ == '__main__': regress.main()
the-stack_0_117
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. """ The main training/evaluation loop Modified from: https://github.com/facebookresearch/deit """ import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.data import Mixup from timm.models import create_model from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.scheduler import create_scheduler from timm.optim import create_optimizer from timm.utils import NativeScaler, get_state_dict, ModelEma from datasets import build_dataset from engine import train_one_epoch, evaluate from losses import DistillationLoss from samplers import RASampler import utils import xcit def get_args_parser(): parser = argparse.ArgumentParser('XCiT training and evaluation script', add_help=False) parser.add_argument('--batch-size', default=64, type=int) parser.add_argument('--epochs', default=400, type=int) # Model parameters parser.add_argument('--model', default='xcit_s_12', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--input-size', default=224, type=int, help='images input size') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--model-ema', action='store_true') parser.add_argument('--no-model-ema', action='store_false', dest='model_ema') parser.set_defaults(model_ema=True) parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='') parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.05, help='weight decay (default: 0.05)') # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "cosine"') parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation parameters parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + \ "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train-interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--repeated-aug', action='store_true') parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug') parser.set_defaults(repeated_aug=True) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0. (default: 0.8)') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)') parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # Distillation parameters parser.add_argument('--teacher-model', default='regnety_160', type=str, metavar='MODEL', help='Name of teacher model to train (default: "regnety_160"') parser.add_argument('--teacher-path', type=str, default='') parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="") parser.add_argument('--distillation-alpha', default=0.5, type=float, help="") parser.add_argument('--distillation-tau', default=1.0, type=float, help="") # Dataset parameters parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--data-set', default='IMNET', choices=['CIFAR10', 'CIFAR100', 'IMNET', 'INAT', 'INAT19', 'CARS', 'FLOWERS', 'IMNET22k'], type=str, help='Image Net dataset path') parser.add_argument('--inat-category', default='name', choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'], type=str, help='semantic granularity') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--test-freq', default=1, type=int, help='Number of epochs between \ validation runs.') parser.add_argument('--full_crop', action='store_true', help='use crop_ratio=1.0 instead of the\ default 0.875 (Used by CaiT).') parser.add_argument("--pretrained", default=None, type=str, help='Path to pre-trained checkpoint') parser.add_argument('--surgery', default=None, type=str, help='Path to checkpoint to copy the \ patch projection from. \ Can improve stability for very \ large models.') return parser def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) dataset_val, _ = build_dataset(is_train=False, args=args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() if args.repeated_aug: sampler_train = RASampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) else: sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) print(f"Creating model: {args.model}") model = create_model( args.model, pretrained=False, num_classes=args.nb_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, drop_block_rate=None ) model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) if args.pretrained: if args.pretrained.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.pretrained, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.pretrained, map_location='cpu') checkpoint_model = checkpoint['model'] state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] model.load_state_dict(checkpoint_model, strict=True) model.to(device) if args.surgery: checkpoint = torch.load(args.surgery, map_location='cpu') checkpoint_model = checkpoint['model'] patch_embed_weights = {key.replace("patch_embed.", ""): value for key, value in checkpoint['model'].items() if 'patch_embed' in key} model.patch_embed.load_state_dict(patch_embed_weights) for p in model.patch_embed.parameters(): p.requires_grad = False model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 512.0 args.lr = linear_scaled_lr optimizer = create_optimizer(args, model_without_ddp) loss_scaler = NativeScaler() lr_scheduler, _ = create_scheduler(args, optimizer) criterion = LabelSmoothingCrossEntropy() if args.mixup > 0.: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() teacher_model = None if args.distillation_type != 'none': assert args.teacher_path, 'need to specify teacher-path when using distillation' print(f"Creating teacher model: {args.teacher_model}") teacher_model = create_model( args.teacher_model, pretrained=False, num_classes=args.nb_classes, global_pool='avg', ) if args.teacher_path.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.teacher_path, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.teacher_path, map_location='cpu') teacher_model.load_state_dict(checkpoint['model']) teacher_model.to(device) teacher_model.eval() # wrap the criterion in our custom DistillationLoss, which # just dispatches to the original criterion if args.distillation_type is 'none' criterion = DistillationLoss( criterion, teacher_model, args.distillation_type, args.distillation_alpha, args.distillation_tau ) output_dir = Path(args.output_dir) if not os.path.exists(output_dir): os.mkdir(output_dir) resume_path = os.path.join(output_dir, 'checkpoint.pth') if args.resume and os.path.exists(resume_path): if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: print("Loading from checkpoint ...") checkpoint = torch.load(resume_path, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) args.start_epoch = checkpoint['epoch'] + 1 if args.model_ema: utils._load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") return print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, surgery=args.surgery ) lr_scheduler.step(epoch) if args.output_dir: checkpoint_paths = [output_dir / 'checkpoint.pth'] for checkpoint_path in checkpoint_paths: utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'model_ema': get_state_dict(model_ema), 'scaler': loss_scaler.state_dict(), 'args': args, }, checkpoint_path) if (epoch % args.test_freq == 0) or (epoch == args.epochs - 1): test_stats = evaluate(data_loader_val, model, device) if test_stats["acc1"] >= max_accuracy: utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'model_ema': get_state_dict(model_ema), 'args': args, }, os.path.join(output_dir, 'best_model.pth')) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") max_accuracy = max(max_accuracy, test_stats["acc1"]) print(f'Max accuracy: {max_accuracy:.2f}%') log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': parser = argparse.ArgumentParser('XCiT training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
the-stack_0_118
################################### # File Name : exception_performance.py ################################### #!/usr/bin/python3 import os import time TRY_TEST_FILE="performance_try_file" TRY_ELSE_TEST_FILE="performance_try_else_file" def write_file_only_try(): try: f = open(TRY_TEST_FILE, "w") for i in range(10000000): f.write(str(i)) f.close() except: print ("File open error") finally: os.remove(TRY_TEST_FILE) def write_file_try_else(): try: f = open(TRY_ELSE_TEST_FILE, "w") except: print ("File open error") else: for i in range(10000000): f.write(str(i)) f.close() finally: os.remove(TRY_ELSE_TEST_FILE) def check_runtime(func): accumulate_time = 0 for i in range(10): start = time.time() func() accumulate_time += (time.time() - start) print ("Run time summary : %s" % str(accumulate_time / 10)) if __name__ == "__main__": print ("=== Try Performance Test ===") check_runtime(write_file_only_try) print ("=== Try/Else Performance Test ===") check_runtime(write_file_try_else)
the-stack_0_120
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ ########################################################### Runner Validation Test Suite for Cross-language Transforms ########################################################### As per Beams's Portability Framework design, Cross-language transforms should work out of the box. In spite of this, there always exists a possibility of rough edges existing. It could be caused due to unpolished implementation of any part of the execution code path, for example: - Transform expansion [SDK] - Pipeline construction [SDK] - Cross-language artifact staging [Runner] - Language specific serialization/deserialization of PCollection (and other data types) [Runner/SDK] In an effort to improve developer visibility into potential problems, this test suite validates correct execution of 5 Core Beam transforms when used as cross-language transforms within the Python SDK from any foreign SDK: - ParDo (https://beam.apache.org/documentation/programming-guide/#pardo) - GroupByKey (https://beam.apache.org/documentation/programming-guide/#groupbykey) - CoGroupByKey (https://beam.apache.org/documentation/programming-guide/#cogroupbykey) - Combine (https://beam.apache.org/documentation/programming-guide/#combine) - Flatten (https://beam.apache.org/documentation/programming-guide/#flatten) - Partition (https://beam.apache.org/documentation/programming-guide/#partition) See Runner Validation Test Plan for Cross-language transforms at https://docs.google.com/document/d/1xQp0ElIV84b8OCVz8CD2hvbiWdR8w4BvWxPTZJZA6NA for further details. """ import logging import os import typing import unittest from nose.plugins.attrib import attr import apache_beam as beam from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to from apache_beam.transforms.external import ImplicitSchemaPayloadBuilder TEST_PREFIX_URN = "beam:transforms:xlang:test:prefix" TEST_MULTI_URN = "beam:transforms:xlang:test:multi" TEST_GBK_URN = "beam:transforms:xlang:test:gbk" TEST_CGBK_URN = "beam:transforms:xlang:test:cgbk" TEST_COMGL_URN = "beam:transforms:xlang:test:comgl" TEST_COMPK_URN = "beam:transforms:xlang:test:compk" TEST_FLATTEN_URN = "beam:transforms:xlang:test:flatten" TEST_PARTITION_URN = "beam:transforms:xlang:test:partition" class CrossLanguageTestPipelines(object): def __init__(self, expansion_service=None): self.expansion_service = expansion_service or ( 'localhost:%s' % os.environ.get('EXPANSION_PORT')) def run_prefix(self, pipeline): """ Target transform - ParDo (https://beam.apache.org/documentation/programming-guide/#pardo) Test scenario - Mapping elements from a single input collection to a single output collection Boundary conditions checked - - PCollection<?> to external transforms - PCollection<?> from external transforms """ with pipeline as p: res = ( p | beam.Create(['a', 'b']).with_output_types(str) | beam.ExternalTransform( TEST_PREFIX_URN, ImplicitSchemaPayloadBuilder({'data': u'0'}), self.expansion_service)) assert_that(res, equal_to(['0a', '0b'])) def run_multi_input_output_with_sideinput(self, pipeline): """ Target transform - ParDo (https://beam.apache.org/documentation/programming-guide/#pardo) Test scenario - Mapping elements from multiple input collections (main and side) to multiple output collections (main and side) Boundary conditions checked - - PCollectionTuple to external transforms - PCollectionTuple from external transforms """ with pipeline as p: main1 = p | 'Main1' >> beam.Create( ['a', 'bb'], reshuffle=False).with_output_types(str) main2 = p | 'Main2' >> beam.Create( ['x', 'yy', 'zzz'], reshuffle=False).with_output_types(str) side = p | 'Side' >> beam.Create(['s']).with_output_types(str) res = dict( main1=main1, main2=main2, side=side) | beam.ExternalTransform( TEST_MULTI_URN, None, self.expansion_service) assert_that(res['main'], equal_to(['as', 'bbs', 'xs', 'yys', 'zzzs'])) assert_that(res['side'], equal_to(['ss']), label='CheckSide') def run_group_by_key(self, pipeline): """ Target transform - GroupByKey (https://beam.apache.org/documentation/programming-guide/#groupbykey) Test scenario - Grouping a collection of KV<K,V> to a collection of KV<K, Iterable<V>> by key Boundary conditions checked - - PCollection<KV<?, ?>> to external transforms - PCollection<KV<?, Iterable<?>>> from external transforms """ with pipeline as p: res = ( p | beam.Create([(0, "1"), (0, "2"), (1, "3")], reshuffle=False).with_output_types( typing.Tuple[int, str]) | beam.ExternalTransform(TEST_GBK_URN, None, self.expansion_service) | beam.Map(lambda x: "{}:{}".format(x[0], ','.join(sorted(x[1]))))) assert_that(res, equal_to(['0:1,2', '1:3'])) def run_cogroup_by_key(self, pipeline): """ Target transform - CoGroupByKey (https://beam.apache.org/documentation/programming-guide/#cogroupbykey) Test scenario - Grouping multiple input collections with keys to a collection of KV<K, CoGbkResult> by key Boundary conditions checked - - KeyedPCollectionTuple<?> to external transforms - PCollection<KV<?, Iterable<?>>> from external transforms """ with pipeline as p: col1 = p | 'create_col1' >> beam.Create( [(0, "1"), (0, "2"), (1, "3")], reshuffle=False).with_output_types( typing.Tuple[int, str]) col2 = p | 'create_col2' >> beam.Create( [(0, "4"), (1, "5"), (1, "6")], reshuffle=False).with_output_types( typing.Tuple[int, str]) res = ( dict(col1=col1, col2=col2) | beam.ExternalTransform(TEST_CGBK_URN, None, self.expansion_service) | beam.Map(lambda x: "{}:{}".format(x[0], ','.join(sorted(x[1]))))) assert_that(res, equal_to(['0:1,2,4', '1:3,5,6'])) def run_combine_globally(self, pipeline): """ Target transform - Combine (https://beam.apache.org/documentation/programming-guide/#combine) Test scenario - Combining elements globally with a predefined simple CombineFn Boundary conditions checked - - PCollection<?> to external transforms - PCollection<?> from external transforms """ with pipeline as p: res = ( p | beam.Create([1, 2, 3]).with_output_types(int) | beam.ExternalTransform( TEST_COMGL_URN, None, self.expansion_service)) assert_that(res, equal_to([6])) def run_combine_per_key(self, pipeline): """ Target transform - Combine (https://beam.apache.org/documentation/programming-guide/#combine) Test scenario - Combining elements per key with a predefined simple merging function Boundary conditions checked - - PCollection<?> to external transforms - PCollection<?> from external transforms """ with pipeline as p: res = ( p | beam.Create([('a', 1), ('a', 2), ('b', 3)]).with_output_types(typing.Tuple[str, int]) | beam.ExternalTransform( TEST_COMPK_URN, None, self.expansion_service)) assert_that(res, equal_to([('a', 3), ('b', 3)])) def run_flatten(self, pipeline): """ Target transform - Flatten (https://beam.apache.org/documentation/programming-guide/#flatten) Test scenario - Merging multiple collections into a single collection Boundary conditions checked - - PCollectionList<?> to external transforms - PCollection<?> from external transforms """ with pipeline as p: col1 = p | 'col1' >> beam.Create([1, 2, 3]).with_output_types(int) col2 = p | 'col2' >> beam.Create([4, 5, 6]).with_output_types(int) res = ((col1, col2) | beam.ExternalTransform( TEST_FLATTEN_URN, None, self.expansion_service)) assert_that(res, equal_to([1, 2, 3, 4, 5, 6])) def run_partition(self, pipeline): """ Target transform - Partition (https://beam.apache.org/documentation/programming-guide/#partition) Test scenario - Splitting a single collection into multiple collections with a predefined simple PartitionFn Boundary conditions checked - - PCollection<?> to external transforms - PCollectionList<?> from external transforms """ with pipeline as p: res = ( p | beam.Create([1, 2, 3, 4, 5, 6]).with_output_types(int) | beam.ExternalTransform( TEST_PARTITION_URN, None, self.expansion_service)) assert_that(res['0'], equal_to([2, 4, 6]), label='check_even') assert_that(res['1'], equal_to([1, 3, 5]), label='check_odd') @attr('UsesCrossLanguageTransforms') @unittest.skipUnless( os.environ.get('EXPANSION_PORT'), "EXPANSION_PORT environment var is not provided.") class ValidateRunnerXlangTest(unittest.TestCase): _multiprocess_can_split_ = True def create_pipeline(self): test_pipeline = TestPipeline() test_pipeline.not_use_test_runner_api = True return test_pipeline def test_prefix(self, test_pipeline=None): CrossLanguageTestPipelines().run_prefix( test_pipeline or self.create_pipeline()) def test_multi_input_output_with_sideinput(self, test_pipeline=None): CrossLanguageTestPipelines().run_multi_input_output_with_sideinput( test_pipeline or self.create_pipeline()) def test_group_by_key(self, test_pipeline=None): CrossLanguageTestPipelines().run_group_by_key( test_pipeline or self.create_pipeline()) def test_cogroup_by_key(self, test_pipeline=None): CrossLanguageTestPipelines().run_cogroup_by_key( test_pipeline or self.create_pipeline()) def test_combine_globally(self, test_pipeline=None): CrossLanguageTestPipelines().run_combine_globally( test_pipeline or self.create_pipeline()) def test_combine_per_key(self, test_pipeline=None): CrossLanguageTestPipelines().run_combine_per_key( test_pipeline or self.create_pipeline()) def test_flatten(self, test_pipeline=None): CrossLanguageTestPipelines().run_flatten( test_pipeline or self.create_pipeline()) def test_partition(self, test_pipeline=None): CrossLanguageTestPipelines().run_partition( test_pipeline or self.create_pipeline()) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) unittest.main()
the-stack_0_121
# coding: utf-8 """ EPIC API REST API for interacting with EPIC (https://epic.zenotech.com) services. <br /> Please note this API is in BETA and does not yet contain all EPIC functionality. # noqa: E501 The version of the OpenAPI document: v2 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from epiccore.configuration import Configuration class TeamDetails(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'id': 'int', 'name': 'str', 'number_of_members': 'int', 'user_role': 'str', 'members': 'str' } attribute_map = { 'id': 'id', 'name': 'name', 'number_of_members': 'number_of_members', 'user_role': 'user_role', 'members': 'members' } def __init__(self, id=None, name=None, number_of_members=None, user_role=None, members=None, local_vars_configuration=None): # noqa: E501 """TeamDetails - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._id = None self._name = None self._number_of_members = None self._user_role = None self._members = None self.discriminator = None if id is not None: self.id = id if name is not None: self.name = name if number_of_members is not None: self.number_of_members = number_of_members if user_role is not None: self.user_role = user_role if members is not None: self.members = members @property def id(self): """Gets the id of this TeamDetails. # noqa: E501 ID for this team # noqa: E501 :return: The id of this TeamDetails. # noqa: E501 :rtype: int """ return self._id @id.setter def id(self, id): """Sets the id of this TeamDetails. ID for this team # noqa: E501 :param id: The id of this TeamDetails. # noqa: E501 :type id: int """ self._id = id @property def name(self): """Gets the name of this TeamDetails. # noqa: E501 Name of this team # noqa: E501 :return: The name of this TeamDetails. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this TeamDetails. Name of this team # noqa: E501 :param name: The name of this TeamDetails. # noqa: E501 :type name: str """ if (self.local_vars_configuration.client_side_validation and name is not None and len(name) < 1): raise ValueError("Invalid value for `name`, length must be greater than or equal to `1`") # noqa: E501 self._name = name @property def number_of_members(self): """Gets the number_of_members of this TeamDetails. # noqa: E501 Number of members in this team # noqa: E501 :return: The number_of_members of this TeamDetails. # noqa: E501 :rtype: int """ return self._number_of_members @number_of_members.setter def number_of_members(self, number_of_members): """Sets the number_of_members of this TeamDetails. Number of members in this team # noqa: E501 :param number_of_members: The number_of_members of this TeamDetails. # noqa: E501 :type number_of_members: int """ self._number_of_members = number_of_members @property def user_role(self): """Gets the user_role of this TeamDetails. # noqa: E501 Your role in this team # noqa: E501 :return: The user_role of this TeamDetails. # noqa: E501 :rtype: str """ return self._user_role @user_role.setter def user_role(self, user_role): """Sets the user_role of this TeamDetails. Your role in this team # noqa: E501 :param user_role: The user_role of this TeamDetails. # noqa: E501 :type user_role: str """ self._user_role = user_role @property def members(self): """Gets the members of this TeamDetails. # noqa: E501 List of user ids and roles for members of this team # noqa: E501 :return: The members of this TeamDetails. # noqa: E501 :rtype: str """ return self._members @members.setter def members(self, members): """Sets the members of this TeamDetails. List of user ids and roles for members of this team # noqa: E501 :param members: The members of this TeamDetails. # noqa: E501 :type members: str """ self._members = members def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TeamDetails): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, TeamDetails): return True return self.to_dict() != other.to_dict()
the-stack_0_123
"""InVEST specific code utils.""" import codecs import math import os import contextlib import logging import tempfile import shutil from datetime import datetime import time import pandas import numpy from shapely.wkt import loads from osgeo import gdal from osgeo import osr import pygeoprocessing LOGGER = logging.getLogger(__name__) LOG_FMT = ( "%(asctime)s " "(%(name)s) " "%(module)s.%(funcName)s(%(lineno)d) " "%(levelname)s %(message)s") # GDAL has 5 error levels, python's logging has 6. We skip logging.INFO. # A dict clarifies the mapping between levels. GDAL_ERROR_LEVELS = { gdal.CE_None: logging.NOTSET, gdal.CE_Debug: logging.DEBUG, gdal.CE_Warning: logging.WARNING, gdal.CE_Failure: logging.ERROR, gdal.CE_Fatal: logging.CRITICAL, } # In GDAL 3.0 spatial references no longer ignore Geographic CRS Axis Order # and conform to Lat first, Lon Second. Transforms expect (lat, lon) order # as opposed to the GIS friendly (lon, lat). See # https://trac.osgeo.org/gdal/wiki/rfc73_proj6_wkt2_srsbarn Axis order # issues. SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) swaps the # axis order, which will use Lon,Lat order for Geographic CRS, but otherwise # leaves Projected CRS alone DEFAULT_OSR_AXIS_MAPPING_STRATEGY = osr.OAMS_TRADITIONAL_GIS_ORDER @contextlib.contextmanager def capture_gdal_logging(): """Context manager for logging GDAL errors with python logging. GDAL error messages are logged via python's logging system, at a severity that corresponds to a log level in ``logging``. Error messages are logged with the ``osgeo.gdal`` logger. Args: ``None`` Returns: ``None`` """ osgeo_logger = logging.getLogger('osgeo') def _log_gdal_errors(err_level, err_no, err_msg): """Log error messages to osgeo. All error messages are logged with reasonable ``logging`` levels based on the GDAL error level. Args: err_level (int): The GDAL error level (e.g. ``gdal.CE_Failure``) err_no (int): The GDAL error number. For a full listing of error codes, see: http://www.gdal.org/cpl__error_8h.html err_msg (string): The error string. Returns: ``None`` """ osgeo_logger.log( level=GDAL_ERROR_LEVELS[err_level], msg='[errno {err}] {msg}'.format( err=err_no, msg=err_msg.replace('\n', ' '))) gdal.PushErrorHandler(_log_gdal_errors) try: yield finally: gdal.PopErrorHandler() def _format_time(seconds): """Render the integer number of seconds as a string. Returns a string.""" hours, remainder = divmod(seconds, 3600) minutes, seconds = divmod(remainder, 60) hours = int(hours) minutes = int(minutes) if hours > 0: return "%sh %sm %ss" % (hours, minutes, seconds) if minutes > 0: return "%sm %ss" % (minutes, seconds) return "%ss" % seconds @contextlib.contextmanager def prepare_workspace( workspace, name, logging_level=logging.NOTSET, exclude_threads=None): """Prepare the workspace.""" if not os.path.exists(workspace): os.makedirs(workspace) logfile = os.path.join( workspace, 'InVEST-{modelname}-log-{timestamp}.txt'.format( modelname='-'.join(name.replace(':', '').split(' ')), timestamp=datetime.now().strftime("%Y-%m-%d--%H_%M_%S"))) with capture_gdal_logging(), log_to_file(logfile, exclude_threads=exclude_threads, logging_level=logging_level): with sandbox_tempdir(dir=workspace): logging.captureWarnings(True) LOGGER.info('Writing log messages to %s', logfile) start_time = time.time() try: yield finally: LOGGER.info('Elapsed time: %s', _format_time(round(time.time() - start_time, 2))) logging.captureWarnings(False) class ThreadFilter(logging.Filter): """Filters out log messages issued by the given thread. Any log messages generated by a thread with the name matching the threadname provided to the constructor will be excluded. """ def __init__(self, thread_name): """Construct a ThreadFilter. Args: thread_name (string): The thread name to filter on. """ logging.Filter.__init__(self) self.thread_name = thread_name def filter(self, record): """Filter the given log record. Args: record (log record): The log record to filter. Returns: True if the record should be included, false if not. """ if record.threadName == self.thread_name: return False return True @contextlib.contextmanager def log_to_file(logfile, exclude_threads=None, logging_level=logging.NOTSET, log_fmt=LOG_FMT, date_fmt=None): """Log all messages within this context to a file. Args: logfile (string): The path to where the logfile will be written. If there is already a file at this location, it will be overwritten. exclude_threads=None (list): If None, logging from all threads will be included in the log. If a list, it must be a list of string thread names that should be excluded from logging in this file. logging_level=logging.NOTSET (int): The logging threshold. Log messages with a level less than this will be automatically excluded from the logfile. The default value (``logging.NOTSET``) will cause all logging to be captured. log_fmt=LOG_FMT (string): The logging format string to use. If not provided, ``utils.LOG_FMT`` will be used. date_fmt (string): The logging date format string to use. If not provided, ISO8601 format will be used. Yields: ``handler``: An instance of ``logging.FileHandler`` that represents the file that is being written to. Returns: ``None`` """ try: if os.path.exists(logfile): LOGGER.warning('Logfile %s exists and will be overwritten', logfile) except SystemError: # This started happening in Windows tests: # SystemError: <built-in function stat> returned NULL without # setting an error # Looking at https://bugs.python.org/issue28040#msg276223, this might # be a low-level python error. pass handler = logging.FileHandler(logfile, 'w', encoding='UTF-8') formatter = logging.Formatter(log_fmt, date_fmt) root_logger = logging.getLogger() root_logger.setLevel(logging.NOTSET) root_logger.addHandler(handler) handler.setFormatter(formatter) handler.setLevel(logging_level) if exclude_threads is not None: for threadname in exclude_threads: thread_filter = ThreadFilter(threadname) handler.addFilter(thread_filter) try: yield handler finally: handler.close() root_logger.removeHandler(handler) @contextlib.contextmanager def sandbox_tempdir(suffix='', prefix='tmp', dir=None): """Create a temporary directory for this context and clean it up on exit. Parameters are identical to those for :py:func:`tempfile.mkdtemp`. When the context manager exits, the created temporary directory is recursively removed. Args: suffix='' (string): a suffix for the name of the directory. prefix='tmp' (string): the prefix to use for the directory name. dir=None (string or None): If a string, a directory that should be the parent directory of the new temporary directory. If None, tempfile will determine the appropriate tempdir to use as the parent folder. Yields: ``sandbox`` (string): The path to the new folder on disk. Returns: ``None`` """ sandbox = tempfile.mkdtemp(suffix=suffix, prefix=prefix, dir=dir) try: yield sandbox finally: try: shutil.rmtree(sandbox) except OSError: LOGGER.exception('Could not remove sandbox %s', sandbox) def make_suffix_string(args, suffix_key): """Make an InVEST appropriate suffix string. Creates an InVEST appropriate suffix string given the args dictionary and suffix key. In general, prepends an '_' when necessary and generates an empty string when necessary. Args: args (dict): the classic InVEST model parameter dictionary that is passed to `execute`. suffix_key (string): the key used to index the base suffix. Returns: If `suffix_key` is not in `args`, or `args['suffix_key']` is "" return "", If `args['suffix_key']` starts with '_' return `args['suffix_key']` else return '_'+`args['suffix_key']` """ try: file_suffix = args[suffix_key] if file_suffix != "" and not file_suffix.startswith('_'): file_suffix = '_' + file_suffix except KeyError: file_suffix = '' return file_suffix def exponential_decay_kernel_raster(expected_distance, kernel_filepath): """Create a raster-based exponential decay kernel. The raster created will be a tiled GeoTiff, with 256x256 memory blocks. Args: expected_distance (int or float): The distance (in pixels) of the kernel's radius, the distance at which the value of the decay function is equal to `1/e`. kernel_filepath (string): The path to the file on disk where this kernel should be stored. If this file exists, it will be overwritten. Returns: None """ max_distance = expected_distance * 5 kernel_size = int(numpy.round(max_distance * 2 + 1)) driver = gdal.GetDriverByName('GTiff') kernel_dataset = driver.Create( kernel_filepath.encode('utf-8'), kernel_size, kernel_size, 1, gdal.GDT_Float32, options=[ 'BIGTIFF=IF_SAFER', 'TILED=YES', 'BLOCKXSIZE=256', 'BLOCKYSIZE=256']) # Make some kind of geotransform, it doesn't matter what but # will make GIS libraries behave better if it's all defined kernel_dataset.SetGeoTransform([0, 1, 0, 0, 0, -1]) srs = osr.SpatialReference() srs.SetWellKnownGeogCS('WGS84') kernel_dataset.SetProjection(srs.ExportToWkt()) kernel_band = kernel_dataset.GetRasterBand(1) kernel_band.SetNoDataValue(-9999) cols_per_block, rows_per_block = kernel_band.GetBlockSize() n_cols = kernel_dataset.RasterXSize n_rows = kernel_dataset.RasterYSize n_col_blocks = int(math.ceil(n_cols / float(cols_per_block))) n_row_blocks = int(math.ceil(n_rows / float(rows_per_block))) integration = 0.0 for row_block_index in range(n_row_blocks): row_offset = row_block_index * rows_per_block row_block_width = n_rows - row_offset if row_block_width > rows_per_block: row_block_width = rows_per_block for col_block_index in range(n_col_blocks): col_offset = col_block_index * cols_per_block col_block_width = n_cols - col_offset if col_block_width > cols_per_block: col_block_width = cols_per_block # Numpy creates index rasters as ints by default, which sometimes # creates problems on 32-bit builds when we try to add Int32 # matrices to float64 matrices. row_indices, col_indices = numpy.indices((row_block_width, col_block_width), dtype=float) row_indices += float(row_offset - max_distance) col_indices += float(col_offset - max_distance) kernel_index_distances = numpy.hypot( row_indices, col_indices) kernel = numpy.where( kernel_index_distances > max_distance, 0.0, numpy.exp(-kernel_index_distances / expected_distance)) integration += numpy.sum(kernel) kernel_band.WriteArray(kernel, xoff=col_offset, yoff=row_offset) # Need to flush the kernel's cache to disk before opening up a new Dataset # object in interblocks() kernel_band.FlushCache() kernel_dataset.FlushCache() for block_data in pygeoprocessing.iterblocks( (kernel_filepath, 1), offset_only=True): kernel_block = kernel_band.ReadAsArray(**block_data) kernel_block /= integration kernel_band.WriteArray(kernel_block, xoff=block_data['xoff'], yoff=block_data['yoff']) kernel_band.FlushCache() kernel_dataset.FlushCache() kernel_band = None kernel_dataset = None def build_file_registry(base_file_path_list, file_suffix): """Combine file suffixes with key names, base filenames, and directories. Args: base_file_tuple_list (list): a list of (dict, path) tuples where the dictionaries have a 'file_key': 'basefilename' pair, or 'file_key': list of 'basefilename's. 'path' indicates the file directory path to prepend to the basefile name. file_suffix (string): a string to append to every filename, can be empty string Returns: dictionary of 'file_keys' from the dictionaries in `base_file_tuple_list` mapping to full file paths with suffixes or lists of file paths with suffixes depending on the original type of the 'basefilename' pair. Raises: ValueError if there are duplicate file keys or duplicate file paths. ValueError if a path is not a string or a list of strings. """ all_paths = set() duplicate_keys = set() duplicate_paths = set() f_reg = {} def _build_path(base_filename, path): """Internal helper to avoid code duplication.""" pre, post = os.path.splitext(base_filename) full_path = os.path.join(path, pre+file_suffix+post) # Check for duplicate keys or paths if full_path in all_paths: duplicate_paths.add(full_path) else: all_paths.add(full_path) return full_path for base_file_dict, path in base_file_path_list: for file_key, file_payload in base_file_dict.items(): # check for duplicate keys if file_key in f_reg: duplicate_keys.add(file_key) else: # handle the case whether it's a filename or a list of strings if isinstance(file_payload, str): full_path = _build_path(file_payload, path) f_reg[file_key] = full_path elif isinstance(file_payload, list): f_reg[file_key] = [] for filename in file_payload: full_path = _build_path(filename, path) f_reg[file_key].append(full_path) else: raise ValueError( "Unknown type in base_file_dict[%s]=%s" % ( file_key, path)) if len(duplicate_paths) > 0 or len(duplicate_keys): raise ValueError( "Cannot consolidate because of duplicate paths or keys: " "duplicate_keys: %s duplicate_paths: %s" % ( duplicate_keys, duplicate_paths)) return f_reg def build_lookup_from_csv( table_path, key_field, column_list=None, to_lower=True): """Read a CSV table into a dictionary indexed by ``key_field``. Creates a dictionary from a CSV whose keys are unique entries in the CSV table under the column named by ``key_field`` and values are dictionaries indexed by the other columns in ``table_path`` including ``key_field`` whose values are the values on that row of the CSV table. If an entire row is NA/NaN (including ``key_field``) then it is dropped from the table and a warning is given of the dropped rows. Args: table_path (string): path to a CSV file containing at least the header key_field key_field: (string): a column in the CSV file at `table_path` that can uniquely identify each row in the table and sets the row index. column_list (list): a list of column names to subset from the CSV file, default=None to_lower (bool): if True, converts all unicode in the CSV, including headers and values to lowercase, otherwise uses raw string values. default=True. Returns: lookup_dict (dict): a dictionary of the form {key_field_0: {csv_header_0: value0, csv_header_1: value1...}, key_field_1: {csv_header_0: valuea, csv_header_1: valueb...}} if ``to_lower`` all strings including key_fields and values are converted to lowercase unicode. Raise: ValueError If ValueError occurs during conversion to dictionary. KeyError If ``key_field`` is not present during ``set_index`` call. """ # Reassign to avoid mutation col_list = column_list # if a list of columns are provided to use and return, make sure # 'key_field' is one of them. if col_list and key_field not in col_list: col_list.append(key_field) table = read_csv_to_dataframe( table_path, to_lower=to_lower, sep=None, index_col=False, engine='python') # if 'to_lower`, case handling is done before trying to access the data. # the columns are stripped of leading/trailing whitespace in # ``read_csv_to_dataframe``, and also lowercased if ``to_lower`` so we only # need to convert the rest of the table. if to_lower: key_field = key_field.lower() # lowercase column names if col_list: col_list = [col.lower() for col in col_list] # lowercase values table = table.applymap( lambda x: x.lower() if isinstance(x, str) else x) # Set 'key_field' as the index of the dataframe try: table.set_index(key_field, drop=False, inplace=True) except KeyError: # If 'key_field' is not a column then KeyError is raised for using # it as the index column LOGGER.error(f"'key_field' : '{key_field}' could not be found as a" f" column in the table. Table path: {table_path}.") raise # Subset dataframe by columns if desired if col_list: table = table.loc[:, col_list] # look for NaN values and warn if any are found. table_na = table.isna() if table_na.values.any(): LOGGER.warning( f"Empty or NaN values were found in the table: {table_path}.") # look to see if an entire row is NA values table_na_rows = table_na.all(axis=1) na_rows = table_na_rows.index[table_na_rows].tolist() # if a completely empty row, drop it if na_rows: LOGGER.warning( "Encountered an entirely blank row on line(s)" f" {[x+2 for x in na_rows]}. Dropping rows from table.") table.dropna(how="all", inplace=True) # fill the rest of empty or NaN values with empty string table.fillna(value="", inplace=True) try: lookup_dict = table.to_dict(orient='index') except ValueError: # If 'key_field' is not unique then a value error is raised. LOGGER.error(f"The 'key_field' : '{key_field}' column values are not" f" unique: {table.index.tolist()}") raise return lookup_dict def read_csv_to_dataframe( path, to_lower=False, sep=None, encoding=None, engine='python', **kwargs): """Return a dataframe representation of the CSV. Wrapper around ``pandas.read_csv`` that standardizes the column names by stripping leading/trailing whitespace and optionally making all lowercase. This helps avoid common errors caused by user-supplied CSV files with column names that don't exactly match the specification. Args: path (string): path to a CSV file to_lower (bool): if True, convert all column names to lowercase sep: separator to pass to pandas.read_csv. Defaults to None, which lets the Python engine infer the separator (if engine='python'). encoding (string): name of encoding codec to pass to `pandas.read_csv`. Defaults to None. Setting engine='python' when encoding=None allows a lot of non-UTF8 encodings to be read without raising an error. Any special characters in other encodings may get replaced with the replacement character. If encoding=None, and the file begins with a BOM, the encoding gets set to 'utf-8-sig'; otherwise the BOM causes an error. engine (string): kwarg for pandas.read_csv: 'c', 'python', or None. Defaults to 'python' (see note about encoding). **kwargs: any kwargs that are valid for ``pandas.read_csv`` Returns: pandas.DataFrame with the contents of the given CSV """ # Check if the file encoding is UTF-8 BOM first # allow encoding kwarg to override this if it's provided if not encoding and has_utf8_bom(path): encoding = 'utf-8-sig' try: dataframe = pandas.read_csv(path, engine=engine, encoding=encoding, sep=sep, **kwargs) except UnicodeDecodeError as error: LOGGER.error( f'{path} must be encoded as utf-8 or ASCII') raise error # this won't work on integer types, which happens if you set header=None # however, there's little reason to use this function if there's no header dataframe.columns = dataframe.columns.str.strip() if to_lower: dataframe.columns = dataframe.columns.str.lower() return dataframe def make_directories(directory_list): """Create directories in `directory_list` if they do not already exist.""" if not isinstance(directory_list, list): raise ValueError( "Expected `directory_list` to be an instance of `list` instead " "got type %s instead", type(directory_list)) for path in directory_list: # From http://stackoverflow.com/a/14364249/42897 try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise def mean_pixel_size_and_area(pixel_size_tuple): """Convert to mean and raise Exception if they are not close. Parameter: pixel_size_tuple (tuple): a 2 tuple indicating the x/y size of a pixel. Returns: tuple of (mean absolute average of pixel_size, area of pixel size) Raises: ValueError if the dimensions of pixel_size_tuple are not almost square. """ x_size, y_size = abs(pixel_size_tuple[0]), abs(pixel_size_tuple[1]) if not numpy.isclose(x_size, y_size): raise ValueError( "pixel size is not square. dimensions: %s" % repr( pixel_size_tuple)) return (x_size, x_size*y_size) def create_coordinate_transformer( base_ref, target_ref, osr_axis_mapping_strategy=DEFAULT_OSR_AXIS_MAPPING_STRATEGY): """Create a spatial reference coordinate transformation function. Args: base_ref (osr spatial reference): A defined spatial reference to transform FROM target_ref (osr spatial reference): A defined spatial reference to transform TO osr_axis_mapping_strategy (int): OSR axis mapping strategy for ``SpatialReference`` objects. Defaults to ``utils.DEFAULT_OSR_AXIS_MAPPING_STRATEGY``. This parameter should not be changed unless you know what you are doing. Returns: An OSR Coordinate Transformation object """ # Make a copy of the base and target spatial references to avoid side # effects from mutation of setting the axis mapping strategy base_ref_wkt = base_ref.ExportToWkt() target_ref_wkt = target_ref.ExportToWkt() base_ref_copy = osr.SpatialReference() target_ref_copy = osr.SpatialReference() base_ref_copy.ImportFromWkt(base_ref_wkt) target_ref_copy.ImportFromWkt(target_ref_wkt) base_ref_copy.SetAxisMappingStrategy(osr_axis_mapping_strategy) target_ref_copy.SetAxisMappingStrategy(osr_axis_mapping_strategy) transformer = osr.CreateCoordinateTransformation( base_ref_copy, target_ref_copy) return transformer def _assert_vectors_equal( expected_vector_path, actual_vector_path, field_value_atol=1e-3): """Assert two vectors are equal. Assert spatial reference, feature count, geometries, field names, and values are equal with no respect to order of field names or geometries. Args: actual_vector_path (string): path on disk to a gdal Vector dataset. expected_vector_path (string): path on disk to a gdal Vector dataset to use as the ground truth. field_value_atol (float): the absolute tolerance for comparing field attribute values, default=1e-3. Returns: None on success Raise: AssertionError If vector projections, feature counts, field names, or geometries do not match. """ try: # Open vectors actual_vector = gdal.OpenEx(actual_vector_path, gdal.OF_VECTOR) actual_layer = actual_vector.GetLayer() expected_vector = gdal.OpenEx(expected_vector_path, gdal.OF_VECTOR) expected_layer = expected_vector.GetLayer() # Check projections expected_projection = expected_layer.GetSpatialRef() expected_projection_wkt = expected_projection.ExportToWkt() actual_projection = actual_layer.GetSpatialRef() actual_projection_wkt = actual_projection.ExportToWkt() if expected_projection_wkt != actual_projection_wkt: raise AssertionError( "Vector projections are not the same. \n" f"Expected projection wkt: {expected_projection_wkt}. \n" f"Actual projection wkt: {actual_projection_wkt}. ") # Check feature count actual_feat_count = actual_layer.GetFeatureCount() expected_feat_count = expected_layer.GetFeatureCount() if expected_feat_count != actual_feat_count: raise AssertionError( "Vector feature counts are not the same. \n" f"Expected feature count: {expected_feat_count}. \n" f"Actual feature count: {actual_feat_count}. ") # Check field names expected_field_names = [field.name for field in expected_layer.schema] actual_field_names = [field.name for field in actual_layer.schema] if sorted(expected_field_names) != sorted(actual_field_names): raise AssertionError( "Vector field names are not the same. \n" f"Expected field names: {sorted(expected_field_names)}. \n" f"Actual field names: {sorted(actual_field_names)}. ") # Check field values and geometries for expected_feature in expected_layer: fid = expected_feature.GetFID() expected_values = [ expected_feature.GetField(field) for field in expected_field_names] actual_feature = actual_layer.GetFeature(fid) actual_values = [ actual_feature.GetField(field) for field in expected_field_names] for av, ev in zip(actual_values, expected_values): if av is not None: # Number comparison if isinstance(av, int) or isinstance(av, float): if not numpy.allclose(numpy.array([av]), numpy.array([ev]), atol=field_value_atol): raise AssertionError( "Vector field values are not equal: \n" f"Expected value: {ev}. \n" f"Actual value: {av}. ") # String and other comparison else: if av != ev: raise AssertionError( "Vector field values are not equal. \n" f"Expected value : {ev}. \n" f"Actual value : {av}. ") else: if ev is not None: raise AssertionError( "Vector field values are not equal: \n" f"Expected value: {ev}. \n" f"Actual value: {av}. ") expected_geom = expected_feature.GetGeometryRef() expected_geom_wkt = expected_geom.ExportToWkt() actual_geom = actual_feature.GetGeometryRef() actual_geom_wkt = actual_geom.ExportToWkt() expected_geom_shapely = loads(expected_geom_wkt) actual_geom_shapely = loads(actual_geom_wkt) # Try comparing geoms exactly equal allowing for different # geometry ordering geoms_equal = expected_geom_shapely.equals(actual_geom_shapely) if not geoms_equal: # Try almost_equal allowing for precision differences geoms_almost_eq = expected_geom_shapely.almost_equals( actual_geom_shapely) if not geoms_almost_eq: raise AssertionError( "Vector geometry assertion fail. \n" f"Expected geometry: {expected_geom_wkt}. \n" f"Actual geometry: {actual_geom_wkt}. ") expected_feature = None actual_feature = None finally: actual_layer = None actual_vector = None expected_layer = None expected_vector = None return None def has_utf8_bom(textfile_path): """Determine if the text file has a UTF-8 byte-order marker. Args: textfile_path (str): The path to a file on disk. Returns: A bool indicating whether the textfile has a BOM. If ``True``, a BOM is present. """ with open(textfile_path, 'rb') as file_obj: first_line = file_obj.readline() return first_line.startswith(codecs.BOM_UTF8) def reclassify_raster( raster_path_band, value_map, target_raster_path, target_datatype, target_nodata, error_details): """A wrapper function for calling ``pygeoprocessing.reclassify_raster``. This wrapper function is helpful when added as a ``TaskGraph.task`` so a better error message can be provided to the users if a ``pygeoprocessing.ReclassificationMissingValuesError`` is raised. Args: raster_path_band (tuple): a tuple including file path to a raster and the band index to operate over. ex: (path, band_index) value_map (dictionary): a dictionary of values of {source_value: dest_value, ...} where source_value's type is the same as the values in ``base_raster_path`` at band ``band_index``. Must contain at least one value. target_raster_path (string): target raster output path; overwritten if it exists target_datatype (gdal type): the numerical type for the target raster target_nodata (numerical type): the nodata value for the target raster Must be the same type as target_datatype error_details (dict): a dictionary with key value pairs that provide more context for a raised ``pygeoprocessing.ReclassificationMissingValuesError``. keys must be {'raster_name', 'column_name', 'table_name'}. Values each key represent: 'raster_name' - string for the raster name being reclassified 'column_name' - name of the table column that ``value_map`` dictionary keys came from. 'table_name' - table name that ``value_map`` came from. Returns: None Raises: ValueError if ``values_required`` is ``True`` and a pixel value from ``raster_path_band`` is not a key in ``value_map``. """ # Error early if 'error_details' keys are invalid raster_name = error_details['raster_name'] column_name = error_details['column_name'] table_name = error_details['table_name'] try: pygeoprocessing.reclassify_raster( raster_path_band, value_map, target_raster_path, target_datatype, target_nodata, values_required=True) except pygeoprocessing.ReclassificationMissingValuesError as err: error_message = ( f"Values in the {raster_name} raster were found that are not" f" represented under the '{column_name}' column of the" f" {table_name} table. The missing values found in the" f" {raster_name} raster but not the table are:" f" {err.missing_values}.") raise ValueError(error_message)
the-stack_0_125
# -*- coding: utf-8 -*- # python std lib import random # rediscluster imports from .crc import crc16 from .exceptions import RedisClusterException, RedisClusterConfigError # 3rd party imports from redis import Redis from redis._compat import unicode, long, basestring from redis.connection import Encoder from redis import ConnectionError, TimeoutError, ResponseError class NodeManager(object): """ """ RedisClusterHashSlots = 16384 def __init__(self, startup_nodes=None, reinitialize_steps=None, skip_full_coverage_check=False, nodemanager_follow_cluster=False, host_port_remap=None, **connection_kwargs): """ :skip_full_coverage_check: Skips the check of cluster-require-full-coverage config, useful for clusters without the CONFIG command (like aws) :nodemanager_follow_cluster: The node manager will during initialization try the last set of nodes that it was operating on. This will allow the client to drift along side the cluster if the cluster nodes move around alot. """ self.connection_kwargs = connection_kwargs self.nodes = {} self.slots = {} self.startup_nodes = [] if startup_nodes is None else startup_nodes self.orig_startup_nodes = [node for node in self.startup_nodes] self.reinitialize_counter = 0 self.reinitialize_steps = reinitialize_steps or 25 self._skip_full_coverage_check = skip_full_coverage_check self.nodemanager_follow_cluster = nodemanager_follow_cluster self.encoder = Encoder( connection_kwargs.get('encoding', 'utf-8'), connection_kwargs.get('encoding_errors', 'strict'), connection_kwargs.get('decode_responses', False) ) self._validate_host_port_remap(host_port_remap) self.host_port_remap = host_port_remap if not self.startup_nodes: raise RedisClusterException("No startup nodes provided") def _validate_host_port_remap(self, host_port_remap): """ Helper method that validates all entries in the host_port_remap config. """ if host_port_remap is None: # Nothing to validate if config not set return if not isinstance(host_port_remap, list): raise RedisClusterConfigError("host_port_remap must be a list") for item in host_port_remap: if not isinstance(item, dict): raise RedisClusterConfigError("items inside host_port_remap list must be of dict type") # If we have from_host, we must have a to_host option to allow for translation to work if ('from_host' in item and 'to_host' not in item) or ('from_host' not in item and 'to_host' in item): raise RedisClusterConfigError("Both from_host and to_host must be present in remap item if either is defined") if ('from_port' in item and 'to_port' not in item) or ('from_port' not in item and 'to_port' in item): raise RedisClusterConfigError("Both from_port and to_port must be present in remap item") def keyslot(self, key): """ Calculate keyslot for a given key. Tuned for compatibility with python 2.7.x """ k = self.encoder.encode(key) start = k.find(b"{") if start > -1: end = k.find(b"}", start + 1) if end > -1 and end != start + 1: k = k[start + 1:end] return crc16(k) % self.RedisClusterHashSlots def node_from_slot(self, slot): """ """ for node in self.slots[slot]: if node['server_type'] == 'master': return node def all_nodes(self): """ """ for node in self.nodes.values(): yield node def all_masters(self): """ """ for node in self.nodes.values(): if node["server_type"] == "master": yield node def random_startup_node(self): """ """ random.shuffle(self.startup_nodes) return self.startup_nodes[0] def random_startup_node_ittr(self): """ Generator that will return a random startup nodes. Works as a generator. """ while True: yield random.choice(self.startup_nodes) def random_node(self): """ """ key = random.choice(list(self.nodes.keys())) return self.nodes[key] def get_redis_link(self, host, port, decode_responses=False): """ """ allowed_keys = ( 'host', 'port', 'db', 'username', 'password', 'socket_timeout', 'socket_connect_timeout', 'socket_keepalive', 'socket_keepalive_options', 'connection_pool', 'unix_socket_path', 'encoding', 'encoding_errors', 'charset', 'errors', 'decode_responses', 'retry_on_timeout', 'ssl', 'ssl_keyfile', 'ssl_certfile', 'ssl_cert_reqs', 'ssl_ca_certs', 'max_connections', ) disabled_keys = ( 'host', 'port', 'decode_responses', ) connection_kwargs = {k: v for k, v in self.connection_kwargs.items() if k in set(allowed_keys) - set(disabled_keys)} return Redis(host=host, port=port, decode_responses=decode_responses, **connection_kwargs) def initialize(self): """ Init the slots cache by asking all startup nodes what the current cluster configuration is """ nodes_cache = {} tmp_slots = {} all_slots_covered = False disagreements = [] startup_nodes_reachable = False nodes = self.orig_startup_nodes # With this option the client will attempt to connect to any of the previous set of nodes instead of the original set of nodes if self.nodemanager_follow_cluster: nodes = self.startup_nodes for node in nodes: try: r = self.get_redis_link(host=node["host"], port=node["port"], decode_responses=True) cluster_slots = r.execute_command("cluster", "slots") startup_nodes_reachable = True except (ConnectionError, TimeoutError): continue except ResponseError as e: # Isn't a cluster connection, so it won't parse these exceptions automatically message = e.__str__() if 'CLUSTERDOWN' in message or 'MASTERDOWN' in message: continue else: raise RedisClusterException("ERROR sending 'cluster slots' command to redis server: {0}".format(node)) except Exception: raise RedisClusterException("ERROR sending 'cluster slots' command to redis server: {0}".format(node)) all_slots_covered = True # If there's only one server in the cluster, its ``host`` is '' # Fix it to the host in startup_nodes if (len(cluster_slots) == 1 and len(cluster_slots[0][2][0]) == 0 and len(self.startup_nodes) == 1): cluster_slots[0][2][0] = self.startup_nodes[0]['host'] # No need to decode response because Redis should handle that for us... for slot in cluster_slots: master_node = slot[2] if master_node[0] == '': master_node[0] = node['host'] master_node[1] = int(master_node[1]) master_node = self.remap_internal_node_object(master_node) node, node_name = self.make_node_obj(master_node[0], master_node[1], 'master') nodes_cache[node_name] = node for i in range(int(slot[0]), int(slot[1]) + 1): if i not in tmp_slots: tmp_slots[i] = [node] slave_nodes = [slot[j] for j in range(3, len(slot))] for slave_node in slave_nodes: slave_node = self.remap_internal_node_object(slave_node) target_slave_node, slave_node_name = self.make_node_obj(slave_node[0], slave_node[1], 'slave') nodes_cache[slave_node_name] = target_slave_node tmp_slots[i].append(target_slave_node) else: # Validate that 2 nodes want to use the same slot cache setup if tmp_slots[i][0]['name'] != node['name']: disagreements.append("{0} vs {1} on slot: {2}".format( tmp_slots[i][0]['name'], node['name'], i), ) if len(disagreements) > 5: raise RedisClusterException("startup_nodes could not agree on a valid slots cache. {0}".format(", ".join(disagreements))) self.populate_startup_nodes() self.refresh_table_asap = False if self._skip_full_coverage_check: need_full_slots_coverage = False else: need_full_slots_coverage = self.cluster_require_full_coverage(nodes_cache) # Validate if all slots are covered or if we should try next startup node for i in range(0, self.RedisClusterHashSlots): if i not in tmp_slots and need_full_slots_coverage: all_slots_covered = False if all_slots_covered: # All slots are covered and application can continue to execute break if not startup_nodes_reachable: raise RedisClusterException("Redis Cluster cannot be connected. Please provide at least one reachable node.") if not all_slots_covered: raise RedisClusterException("All slots are not covered after query all startup_nodes. {0} of {1} covered...".format( len(tmp_slots), self.RedisClusterHashSlots)) # Set the tmp variables to the real variables self.slots = tmp_slots self.nodes = nodes_cache self.reinitialize_counter = 0 def remap_internal_node_object(self, node_obj): if not self.host_port_remap: # No remapping rule set, return object unmodified return node_obj for remap_rule in self.host_port_remap: if 'from_host' in remap_rule and 'to_host' in remap_rule: if remap_rule['from_host'] in node_obj[0]: # print('remapping host', node_obj[0], remap_rule['to_host']) node_obj[0] = remap_rule['to_host'] ## The port value is always an integer if 'from_port' in remap_rule and 'to_port' in remap_rule: if remap_rule['from_port'] == node_obj[1]: # print('remapping port', node_obj[1], remap_rule['to_port']) node_obj[1] = remap_rule['to_port'] return node_obj def increment_reinitialize_counter(self, ct=1): for i in range(min(ct, self.reinitialize_steps)): self.reinitialize_counter += 1 if self.reinitialize_counter % self.reinitialize_steps == 0: self.initialize() def cluster_require_full_coverage(self, nodes_cache): """ if exists 'cluster-require-full-coverage no' config on redis servers, then even all slots are not covered, cluster still will be able to respond """ nodes = nodes_cache or self.nodes def node_require_full_coverage(node): try: r_node = self.get_redis_link(host=node["host"], port=node["port"], decode_responses=True) return "yes" in r_node.config_get("cluster-require-full-coverage").values() except ConnectionError: return False except Exception: raise RedisClusterException("ERROR sending 'config get cluster-require-full-coverage' command to redis server: {0}".format(node)) # at least one node should have cluster-require-full-coverage yes return any(node_require_full_coverage(node) for node in nodes.values()) def set_node_name(self, n): """ Format the name for the given node object # TODO: This shold not be constructed this way. It should update the name of the node in the node cache dict """ if "name" not in n: n["name"] = "{0}:{1}".format(n["host"], n["port"]) def make_node_obj(self, host, port, server_type): """ Create a node datastructure. Returns the node datastructure and the node name """ node_name = "{0}:{1}".format(host, port) node = { 'host': host, 'port': port, 'name': node_name, 'server_type': server_type } return (node, node_name) def set_node(self, host, port, server_type=None): """ Update data for a node. """ node, node_name = self.make_node_obj(host, port, server_type) self.nodes[node_name] = node return node def populate_startup_nodes(self): """ Do something with all startup nodes and filters out any duplicates """ for item in self.startup_nodes: self.set_node_name(item) for n in self.nodes.values(): if n not in self.startup_nodes: self.startup_nodes.append(n) # freeze it so we can set() it uniq = {frozenset(node.items()) for node in self.startup_nodes} # then thaw it back out into a list of dicts self.startup_nodes = [dict(node) for node in uniq] def reset(self): """ Drop all node data and start over from startup_nodes """ self.initialize()
the-stack_0_126
# Copyright 2014 Facebook, Inc. # You are hereby granted a non-exclusive, worldwide, royalty-free license to # use, copy, modify, and distribute this software in source code or binary # form for use in connection with the web services and APIs provided by # Facebook. # As with any software that integrates with the Facebook platform, your use # of this software is subject to the Facebook Developer Principles and # Policies [http://developers.facebook.com/policy/]. This copyright notice # shall be included in all copies or substantial portions of the software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from facebook_business.adobjects.abstractobject import AbstractObject from facebook_business.adobjects.abstractcrudobject import AbstractCrudObject from facebook_business.adobjects.objectparser import ObjectParser from facebook_business.api import FacebookRequest from facebook_business.typechecker import TypeChecker """ This class is auto-generated. For any issues or feature requests related to this class, please let us know on github and we'll fix in our codegen framework. We'll not be able to accept pull request for this class. """ class TargetingGeoLocationLocationCluster( AbstractCrudObject, ): def __init__(self, fbid=None, parent_id=None, api=None): self._isTargetingGeoLocationLocationCluster = True super(TargetingGeoLocationLocationCluster, self).__init__(fbid, parent_id, api) class Field(AbstractObject.Field): key = 'key' id = 'id' _field_types = { 'key': 'int', 'id': 'string', } @classmethod def _get_field_enum_info(cls): field_enum_info = {} return field_enum_info
the-stack_0_129
from unittest import mock from django.conf import settings from django.test import TestCase, override_settings from daiquiri.jobs.tests.mixins import AsyncTestMixin from daiquiri.query.models import QueryJob, Example @override_settings(QUERY_ANONYMOUS=True) @mock.patch(settings.ADAPTER_DATABASE + '.submit_query', mock.Mock()) @mock.patch(settings.ADAPTER_DATABASE + '.fetch_nrows', mock.Mock(return_value=100)) @mock.patch(settings.ADAPTER_DATABASE + '.fetch_size', mock.Mock(return_value=100)) @mock.patch(settings.ADAPTER_DATABASE + '.count_rows', mock.Mock(return_value=100)) @mock.patch(settings.ADAPTER_DATABASE + '.rename_table', mock.Mock()) @mock.patch(settings.ADAPTER_DATABASE + '.drop_table', mock.Mock()) @mock.patch(settings.ADAPTER_DATABASE + '.create_user_schema_if_not_exists', mock.Mock()) class AsyncTestCase(AsyncTestMixin, TestCase): databases = ('default', 'data', 'tap', 'oai') fixtures = ( 'auth.json', 'metadata.json', 'jobs.json', 'queryjobs.json', 'examples.json' ) users = ( ('admin', 'admin'), ('user', 'user'), ('evil', 'evil'), ('anonymous', None), ) url_names = { 'list': 'tap:async-list', 'detail': 'tap:async-detail', 'results': 'tap:async-results', 'result': 'tap:async-result', 'parameters': 'tap:async-parameters', 'destruction': 'tap:async-destruction', 'executionduration': 'tap:async-executionduration', 'phase': 'tap:async-phase', 'error': 'tap:async-error', 'quote': 'tap:async-quote', 'owner': 'tap:async-owner' } jobs = QueryJob.objects.filter(owner__username='user') def get_parameter_for_new_jobs(self, username): return [{ 'LANG': example.query_language, 'QUERY': example.query_string } for example in Example.objects.filter(access_level='PUBLIC')] def get_parameter_for_new_jobs_internal(self, username): return [{ 'LANG': example.query_language, 'QUERY': example.query_string } for example in Example.objects.filter(access_level='INTERNAL')]
the-stack_0_130
import json import traceback from datetime import timedelta from flask import request, g, current_app from sqlalchemy import desc, func from apps.auth.models.users import User from apps.project.business.credit import CreditBusiness from apps.project.models.assets import Phone, PhoneRecord, VirtualAsset, PhoneBorrow from apps.project.models.credit import Credit from apps.public.models.public import Config from library.api.db import db from library.api.transfer import transfer2json from library.notification import notification from library.trpc import Trpc user_trpc = Trpc('auth') class PhoneBusiness(object): public_trpc = Trpc('public') user_trpc = Trpc('auth') message_trpc = Trpc('message') @classmethod def _query(cls): return Phone.query.add_columns( Phone.id.label('id'), Phone.name.label('name'), Phone.asset_id.label('asset_id'), Phone.vendor.label('vendor'), Phone.device_number.label('device_number'), Phone.os.label('os'), Phone.cpu.label('cpu'), Phone.core.label('core'), Phone.ram.label('ram'), Phone.rom.label('rom'), Phone.resolution.label('resolution'), Phone.buy_date.label('buy_date'), Phone.region.label('region'), Phone.status.label('status'), Phone.borrow_id.label('borrow_id'), Phone.creator_id.label('creator_id'), Phone.device_source.label('device_source'), Phone.device_belong.label('device_belong'), ) @classmethod @transfer2json( '?id|!name|!asset_id|!vendor|!device_number|!os|!cpu|!core|!ram|!rom|!resolution|!buy_date|!region|!status|' '!borrow_id|!creator_id|!device_source|!device_belong' ) def query_all_json(cls, page_size, page_index): ret = cls._query().filter( Phone.status == Phone.ACTIVE).order_by( desc(Phone.id)).limit(int(page_size)).offset( int(page_index - 1) * int(page_size)).all() return ret @classmethod def query_all_count(cls): count = cls._query().filter(Phone.status == Phone.ACTIVE).count() return count @classmethod @transfer2json( '?id|!name|!asset_id|!vendor|!device_number|!os|!cpu|!core|!ram|!rom|!resolution|!buy_date|!region|!status|' '!borrow_id|!creator_id|!device_source|!device_belong' ) def query_json_by_id(cls, pid): return cls._query().filter( Phone.id == pid, Phone.status == Phone.ACTIVE).all() @classmethod def get_phone_by_id(cls, pid): users = user_trpc.requests(method='get', path='/user') phone = cls.query_json_by_id(pid) if len(phone) <= 0: return 101, 'phone not exist!' phone = phone[0] for user in users: if user.get('userid') == phone.get('creator_id'): phone['creator_nickname'] = user.get('nickname') if user.get('userid') == phone.get('borrow_id'): phone['borrow_nickname'] = user.get('nickname') return 0, [phone] @classmethod def send_message(cls, user_list, creator, text): if cls.message_trpc.requests('post', '/message', body={'send_id': creator, 'rec_id': user_list, 'content': text}): current_app.logger.info('发送站内信成功') else: current_app.logger.info('发送站内信失败') @classmethod def get_phone_all(cls, page_size, page_index): # 通过设备名称进行搜索 name = request.args.get('name', '') # 通过制造商进行搜索 vendor = request.args.get('vendor', '') # 通过系统进行搜索 os = request.args.get('os', '') # 通过分辨率进行搜索 resolution = request.args.get('resolution', '') # 通过借用人进行搜索 borrower_id = request.args.get('borrower_id') # 通过持有人进行搜索 creator_id = request.args.get('creator_id') # 通过 归属 device_belong = request.args.get('device_belong', '') # 通过 来源 device_source = request.args.get('device_source', '') # 通过 归属人 # 获取所有 手机设备列表 phones, count = cls.search_phone_all(name, vendor, os, resolution, borrower_id, device_belong, device_source, creator_id, page_size, page_index) # 获取所有用户的 基本信息 users = {int(user.get('userid')): user for user in user_trpc.requests(method='get', path='/user', query={'base_info': True})} # 获取所有借用关系列表 phone_borrows = {phone_borrow.phone_id: phone_borrow for phone_borrow in PhoneBorrow.query.all()} data = [] for phone in phones: phone_borrow = phone_borrows.get(phone.get('id')) if g.userid == phone.get('borrow_id'): phone["move_status"] = 1 else: phone["move_status"] = 0 if PhoneBusiness.in_confirm_status(phone_borrow): phone["move_status"] = 2 if PhoneBusiness.need_confirm_status(phone_borrow): phone["confirm_status"] = 0 else: phone["confirm_status"] = 1 try: borrower = users.get(phone.get('borrow_id')).get("nickname") creator = users.get(phone.get('creator_id')).get('nickname') phone['borrow_nickname'] = borrower phone['creator_nickname'] = creator # 有此条借用记录 if phone_borrow: user_list = [int(uid) for uid in phone_borrow.user_list.split(',') if uid != ''] # 有需要确认的用户 if phone_borrow.confirm_userid != 0: confirm_user_nickname = users.get(phone_borrow.confirm_userid).get('nickname') phone['borrow_status'] = f'[{confirm_user_nickname}] 待接收' # 用户借用列表 elif user_list: user_list_temp = [users.get(userid).get('nickname') for userid in user_list] phone['borrow_status'] = f'[{",".join(user_list_temp)}] 申请借用' phone['move_status'] = 3 if phone["move_status"] == 1 else 0 # 无借用、确认、归还 else: phone['borrow_status'] = f'[{borrower}] 持有' else: phone['borrow_status'] = f'[{borrower}] 持有' except Exception as e: current_app.logger.error(e) phone['borrow_status'] = '未知' phone['borrow_nickname'] = '未知' data.append(phone) current_app.logger.info(data) return data, count @classmethod @transfer2json( '?id|!name|!asset_id|!vendor|!device_number|!os|!cpu|!core|!ram|!rom|!resolution|!buy_date|!region|!status|' '!borrow_id|!creator_id|!device_source|!device_belong' ) def search_phone_json(cls, data): return data.all() @classmethod def search_phone_all(cls, name, vendor, os, resolution, borrower_id, device_belong, device_source, creator_id, page_size, page_index): try: data_all = cls._query().filter(Phone.status == Phone.ACTIVE) if name != '': data_all = data_all.filter(Phone.name.like(f'%{name}%')) if vendor != '': data_all = data_all.filter(Phone.vendor.like(f'%{vendor}%')) if os != '': data_all = data_all.filter(Phone.os.like(f'%{os}%')) if resolution != '': data_all = data_all.filter(Phone.resolution.like(f'%{resolution}%')) if device_belong != '': data_all = data_all.filter(Phone.device_belong.like(f'%{device_belong}%')) if device_source != '': data_all = data_all.filter(Phone.device_source.like(f'%{device_source}%')) if borrower_id: data_all = data_all.filter(Phone.borrow_id == borrower_id) if creator_id: data_all = data_all.filter(Phone.creator_id == creator_id) count = data_all.count() data = cls.search_phone_json( data_all.order_by(desc(Phone.id)).limit(int(page_size)).offset(int(page_index - 1) * int(page_size))) return data, count except Exception as e: current_app.logger.error(e) @classmethod def get_holder_json(cls): # 获取所有持有者的信息 try: data_all = [] temp = [] phones = Phone.query.add_columns(Phone.borrow_id.label('borrow_id')).filter( Phone.status == Phone.ACTIVE).all() for phone in phones: if phone.borrow_id not in temp: temp.append(phone.borrow_id) user = cls.user_trpc.requests('get', '/user/{}'.format(phone.borrow_id))[0] data = { 'nickname': user.get('nickname'), 'id': user.get('userid') } data_all.append(data) return data_all except Exception as e: current_app.logger.error(e) @classmethod def can_move_status(cls, phone_id): # 判断此设备是否归属于当前用户 phone = Phone.query.get(phone_id) if phone and phone.borrow_id == g.userid: return True else: return False @classmethod def need_confirm_status(cls, phone_borrow): # 判断此手机需要是否当前用户确认 try: if phone_borrow is not None: if int(phone_borrow.confirm_userid) == g.userid: return True else: return False else: return False except Exception as e: current_app.logger.error(e) current_app.logger.error(traceback.format_exc()) return 101, str(e) @classmethod def in_confirm_status(cls, phone_borrow): # 判断此设备是否存在于确认流程中 try: if phone_borrow is not None: if int(phone_borrow.confirm_userid) != 0: return True return False else: return False except Exception as e: current_app.logger.error(e) current_app.logger.error(traceback.format_exc()) return 101, str(e) @classmethod def qyweixin_email(cls, user_ids, text): if not isinstance(user_ids, list): user_ids = [user_ids] notification.send_notification(user_ids, text, creator=0) return 0, 'success' @classmethod def send_need_confirm_msg(cls, current_phone, phone_current_holder, phone_new_holder): deadline = PhoneBusiness.deadline(current_phone) new_holder_msg_text = """[TCloud] {} ({}) 您有一台设备需要确认接收: 设备 : {}, 资产编号 : {}, 原持有人 : {} (微信号: {}) 现持有人 : {} (微信号: {}) 请及时到系统中确认接收!""".format(phone_new_holder.nickname, phone_new_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid) # phone_current_holder 原持有人 # phone_new_holder 确认人 ret, msg = PhoneBusiness.qyweixin_email(phone_new_holder.id, new_holder_msg_text) return ret, msg @classmethod def send_cancel_move_msg(cls, current_phone, phone_current_holder, phone_new_holder): deadline = PhoneBusiness.deadline(current_phone) new_holder_msg_text = """[TCloud] {} ({}) 您有一台设备由于超过 3 天没有接收,已被系统退回: 设备 : {}, 资产编号 : {}, 现持有人 : {} (微信号: {}) """.format(phone_new_holder.nickname, phone_new_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_new_holder.nickname, phone_new_holder.wx_userid) # phone_current_holder 原持有人 # phone_new_holder 确认人 ret, msg = PhoneBusiness.qyweixin_email(phone_current_holder.id, new_holder_msg_text) return ret, msg @classmethod def send_need_move_msg(cls, current_phone, phone_current_holder): new_holder_msg_text = """[TCloud] {} ({}) 您有一条借用请求需要处理: 设备 : {} 资产编号 : {} 请及时到系统中处理! 请通过 TCloud->资产->流转 进行转出。""".format(phone_current_holder.nickname, phone_current_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.wx_userid) # phone_current_holder 当前持有人 ret, msg = PhoneBusiness.qyweixin_email(phone_current_holder.id, new_holder_msg_text) return ret, msg @classmethod def send_create_msg_qywx(cls, current_phone, phone_holder): msg_text = """[TCloud] {} ({}) 您拥有了一台新的设备: 设备 : {}, 资产编号 : {}, 持有人 : {} (微信号: {})""".format(phone_holder.nickname, phone_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_holder.nickname, phone_holder.wx_userid, ) ret, msg = PhoneBusiness.qyweixin_email(phone_holder.id, msg_text) return ret, msg @classmethod def send_delay_msg_qywx(cls, current_phone, phone_holder): deadline = PhoneBusiness.deadline(current_phone) msg_text = """[TCloud] {} ({}) 您拥有的一台设备需要归还: 设备 : {}, 资产编号 : {}, 持有人 : {} (微信号: {}) 到期时间: {} 续借 : 请到系统中点击 续借 进行续借 归还 : 请到系统中点击 退回 进行归还 过期 2 天后会根据超时时间扣除信用分!请及时归还!""".format(phone_holder.nickname, phone_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_holder.nickname, phone_holder.wx_userid, deadline) return PhoneBusiness.qyweixin_email(phone_holder.id, msg_text) @classmethod def send_move_msg_qywx(cls, current_phone, phone_current_holder, phone_new_holder): if phone_new_holder.id == phone_current_holder.id: current_app.logger.info('[{}](资产编号:{}) 设备状态未发生状态变化'.format(current_phone.name, current_phone.asset_id)) return current_holder_msg_text = """[TCloud] {} ({}) 您的一台设备状态将要发生变化: 设备 : {}, 资产编号 : {}, 变化 : 持有人将 由 {} (微信号: {}) 变为 {} (微信号: {}) 状态 : 等待接收人确认""".format(phone_current_holder.nickname, phone_current_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid) ret, msg = PhoneBusiness.qyweixin_email(phone_current_holder.id, current_holder_msg_text) deadline = PhoneBusiness.deadline(current_phone) new_holder_msg_text = """[TCloud] {} ({}) 您将拥有一台新的设备: 设备 : {}, 资产编号 : {}, 原持有人 : {} (微信号: {}) 现持有人 : {} (微信号: {}) 可持有时间: {} 天 到期时间: {} 请及时到系统中确认接收!""".format(phone_new_holder.nickname, phone_new_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid, Phone.HOLD_DATE, deadline) # phone_current_holder 原持有人 # phone_new_holder 新持有人 ret, msg = PhoneBusiness.qyweixin_email(phone_new_holder.id, new_holder_msg_text) return ret, msg @classmethod def send_move_confirm_msg_qywx(cls, current_phone, phone_current_holder, phone_new_holder): if phone_new_holder.id == phone_current_holder.id: current_app.logger.info('[{}](资产编号:{}) 设备状态未发生状态变化'.format(current_phone.name, current_phone.asset_id)) return current_holder_msg_text = """[TCloud] {} ({}) 您的一台设备状态发生了变化: 设备 : {}, 资产编号 : {}, 变化 : 持有人已 由 {} (微信号: {}) 变为 {} (微信号: {}) 状态 : 已接收""".format(phone_current_holder.nickname, phone_current_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid) ret, msg = PhoneBusiness.qyweixin_email(phone_current_holder.id, current_holder_msg_text) deadline = PhoneBusiness.deadline(current_phone) new_holder_msg_text = """[TCloud] {} ({}) 您拥有了一台新的设备: 设备 : {}, 资产编号 : {}, 原持有人 : {} (微信号: {}) 现持有人 : {} (微信号: {}) 可持有时间: {} 天 到期时间: {} 状态: 已接收!""".format(phone_new_holder.nickname, phone_new_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid, Phone.HOLD_DATE, deadline) # phone_current_holder 原持有人 # phone_new_holder 新持有人 ret, msg = PhoneBusiness.qyweixin_email(phone_new_holder.id, new_holder_msg_text) return ret, msg @classmethod def send_return_msg_qywx(cls, current_phone, phone_current_holder, phone_new_holder): if phone_new_holder.id == phone_current_holder.id: current_app.logger.info('[{}](资产编号:{}) 设备状态未发生状态变化'.format(current_phone.name, current_phone.asset_id)) return current_holder_msg_text = """[TCloud] {} ({}) 您归还了一台设备: 设备 : {}, 资产编号 : {}, 变化 : 持有人将 由 {} (微信号: {}) 变为 {} (微信号: {}) 状态 : 等待接收人确认""".format(phone_current_holder.nickname, phone_current_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid) PhoneBusiness.qyweixin_email(phone_current_holder.id, current_holder_msg_text) new_holder_msg_text = """[TCloud] {} ({}) 您收到别人归还的一台设备: 设备 : {}, 资产编号 : {}, 原持有人 : {} (微信号: {}) 持有人 : {} (微信号: {}) 状态 : 等待确认 请到系统中及时确认接收!""".format(phone_new_holder.nickname, phone_new_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid) ret, msg = PhoneBusiness.qyweixin_email(phone_new_holder.id, new_holder_msg_text) return ret, msg @classmethod def send_return_confirm_msg_qywx(cls, current_phone, phone_current_holder, phone_new_holder): if phone_new_holder.id == phone_current_holder.id: current_app.logger.info('[{}](资产编号:{}) 设备状态未发生状态变化'.format(current_phone.name, current_phone.asset_id)) return current_holder_msg_text = """[TCloud] {} ({}) 您成功归还了一台设备: 设备 : {}, 资产编号 : {}, 变化 : 持有人已 由 {} (微信号: {}) 变为 {} (微信号: {}) 状态 : 接收人已接收""".format(phone_current_holder.nickname, phone_current_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid) PhoneBusiness.qyweixin_email(phone_current_holder.id, current_holder_msg_text) new_holder_msg_text = """[TCloud] {} ({}) 您已接收别人归还的一台设备: 设备 : {}, 资产编号 : {}, 原持有人 : {} (微信号: {}) 持有人 : {} (微信号: {}) 状态 : 您已接收!""".format(phone_new_holder.nickname, phone_new_holder.wx_userid, current_phone.name, current_phone.asset_id, phone_current_holder.nickname, phone_current_holder.wx_userid, phone_new_holder.nickname, phone_new_holder.wx_userid) ret, msg = PhoneBusiness.qyweixin_email(phone_new_holder.id, new_holder_msg_text) return ret, msg @classmethod def deadline(cls, current_phone): # 根据 phone 最后一条记录计算到期时间 phone_recorder = PhoneRecord.query.filter(PhoneRecord.phone_id == current_phone.id).order_by( PhoneRecord.id.desc()).first() deadline = phone_recorder.creation_time + timedelta(days=Phone.HOLD_DATE) # 到期时间 return deadline @classmethod def create(cls, name, asset_id, vendor, device_number, os, cpu, core, ram, rom, resolution, buy_date, region, borrow_id, device_source, device_belong, creator_id): try: t = Phone( name=name, asset_id=asset_id, vendor=vendor, device_number=device_number, os=os, cpu=cpu, core=core, ram=ram, rom=rom, resolution=resolution, buy_date=buy_date, region=region, borrow_id=borrow_id or g.userid, creator_id=creator_id or g.userid, device_source=device_source, device_belong=device_belong, ) db.session.add(t) db.session.flush() PhoneRecordBusiness.create(t, g.userid) db.session.commit() phone_holder = User.query.get(t.creator_id) # 发送企业微信 PhoneBusiness.send_create_msg_qywx(t, phone_holder) return 0, None except Exception as e: current_app.logger.error(str(e)) current_app.logger.error(traceback.format_exc()) return 102, str(e) # 发起流转 @classmethod def move_to_user(cls, id, borrow_id): try: t = Phone.query.get(id) phone_new_holder = User.query.get(borrow_id) phone_current_holder = User.query.get(t.borrow_id) # 消除对应设备已有的申请借用用户列表, 将老用户 id 放入,等待接收 PhoneBorrowBusiness.clear_borrow_user_list(id, phone_current_holder.id) # 将设备的借出标志置为 1,等待接受者确认 PhoneBorrowBusiness.add_user_to_confirm(id, phone_new_holder.id) # 发送企业微信 PhoneBusiness.send_move_msg_qywx(t, phone_current_holder, phone_new_holder) return 0, None except Exception as e: current_app.logger.error(e) current_app.logger.error(traceback.format_exc()) return 102, str(e) # 确认流转 @classmethod def move(cls, id, borrow_id): try: t = Phone.query.get(id) phone_new_holder = User.query.get(borrow_id) if not phone_new_holder: return 101, '要转移的用户不存在,请检查用户信息' t.borrow_id = borrow_id db.session.add(t) PhoneRecordBusiness.update(t, g.userid) db.session.commit() return 0, None except Exception as e: current_app.logger.error(e) return 102, str(e) # 退回设备 @classmethod def return_to_admin(cls, id): try: # 此处返还给 创建人 current_phone = Phone.query.get(id) admin_id = current_phone.creator_id phone_current_holder = User.query.get(current_phone.borrow_id) phone_new_holder = User.query.get(admin_id) PhoneRecordBusiness.update(current_phone, g.userid) # 发送企业微信 PhoneBusiness.send_return_msg_qywx(current_phone, phone_current_holder, phone_new_holder) # 消除对应设备已有的申请借用用户列表, 将老用户 id 放入,等待接收 PhoneBorrowBusiness.clear_borrow_user_list(id, phone_current_holder.id) # 增加 admin 到 确认名单 PhoneBorrowBusiness.add_user_to_confirm(id, admin_id) return 0, None except Exception as e: current_app.logger.error(e) current_app.logger.error(traceback.format_exc()) return 102, str(e) # 超时 3 天未接收设备,将退回 @classmethod def cancel_move_to(cls, id): try: # 直接清除 phone borrow 数据 current_phone = Phone.query.get(id) phone_borrow = PhoneBorrowBusiness.get_borrow_by_phone_id(phone_id=id) admin_id = current_phone.creator_id phone_current_holder = User.query.get(phone_borrow.confirm_userid) phone_new_holder = User.query.get(admin_id) # 发送企业微信 cls.send_cancel_move_msg(current_phone, phone_current_holder, phone_new_holder) ret, msg = PhoneBorrowBusiness.update(phone_borrow.id, phone_borrow.phone_id, 0, '') return ret, msg except Exception as e: current_app.logger.error(e) current_app.logger.error(traceback.format_exc()) return 102, str(e) @classmethod def update(cls, id, name, asset_id, vendor, device_number, os, cpu, core, ram, rom, resolution, buy_date, region, borrow_id, device_source, device_belong, creator_id): try: t = Phone.query.get(id) t.name = name t.asset_id = asset_id t.vendor = vendor t.device_number = device_number t.os = os t.cpu = cpu t.core = core t.ram = ram t.rom = rom t.resolution = resolution t.buy_date = buy_date t.region = region t.borrow_id = borrow_id t.device_source = device_source t.device_belong = device_belong t.creator_id = creator_id db.session.add(t) PhoneRecordBusiness.update(t, g.userid) db.session.commit() return 0, None except Exception as e: current_app.logger.error(str(e)) return 102, str(e) @classmethod def delete(cls, id): try: t = Phone.query.get(id) if t is None: return 0 t.status = Phone.DISABLE db.session.add(t) PhoneRecordBusiness.delete(t, g.userid) db.session.commit() return 0 except Exception as e: current_app.logger.error(str(e)) return 105, str(e) class PhoneRecordBusiness(object): @classmethod @transfer2json( '?id|!phone_id|!name|!asset_id|!vendor|!creation_time|!modified_time|!device_number|!os|!cpu|!core|!ram|' '!rom|!resolution|!buy_date|!region|!status|!borrow_id|!creator_id|!device_source|!device_belong|!editor_id' ) def query_json_by_id(cls, id): return cls._query().filter( PhoneRecord.phone_id == id, Phone.status == Phone.ACTIVE).all() @classmethod @transfer2json( '?id|!phone_id|!name|!asset_id|!vendor|!creation_time|!modified_time|!device_number|!os|!cpu|!core|!ram|!rom' '|!resolution|!buy_date|!region|!status|!borrow_id|!creator_id|!device_source|!device_belong|!editor_id' ) def query_record_json(cls, phone_id): ret = cls._query().filter(PhoneRecord.phone_id == phone_id).order_by(PhoneRecord.id).all() return ret @classmethod def _query(cls): return PhoneRecord.query.add_columns( PhoneRecord.id.label('id'), PhoneRecord.phone_id.label('phone_id'), PhoneRecord.name.label('name'), PhoneRecord.asset_id.label('asset_id'), PhoneRecord.vendor.label('vendor'), func.date_format(PhoneRecord.creation_time, "%Y-%m-%d %H:%i:%s").label('creation_time'), func.date_format(PhoneRecord.modified_time, "%Y-%m-%d %H:%i:%s").label('modified_time'), PhoneRecord.device_number.label('device_number'), PhoneRecord.os.label('os'), PhoneRecord.cpu.label('cpu'), PhoneRecord.core.label('core'), PhoneRecord.ram.label('ram'), PhoneRecord.rom.label('rom'), PhoneRecord.resolution.label('resolution'), PhoneRecord.buy_date.label('buy_date'), PhoneRecord.region.label('region'), PhoneRecord.status.label('status'), PhoneRecord.borrow_id.label('borrow_id'), PhoneRecord.creator_id.label('creator_id'), PhoneRecord.device_source.label('device_source'), PhoneRecord.device_belong.label('device_belong'), PhoneRecord.editor_id.label('editor_id'), ) @classmethod def create(cls, t, editor_id): t_record = PhoneRecord( phone_id=t.id, name=t.name, asset_id=t.asset_id, vendor=t.vendor, device_number=t.device_number, os=t.os, cpu=t.cpu, core=t.core, ram=t.ram, rom=t.rom, resolution=t.resolution, buy_date=t.buy_date, region=t.region, borrow_id=t.borrow_id, creator_id=t.creator_id, device_source=t.device_source, device_belong=t.device_belong, editor_id=editor_id, ) db.session.add(t_record) @classmethod def update(cls, t, editor_id): t_record = PhoneRecord( phone_id=t.id, name=t.name, asset_id=t.asset_id, vendor=t.vendor, device_number=t.device_number, os=t.os, cpu=t.cpu, core=t.core, ram=t.ram, rom=t.rom, resolution=t.resolution, buy_date=t.buy_date, region=t.region, borrow_id=t.borrow_id, creator_id=t.creator_id, device_source=t.device_source, device_belong=t.device_belong, editor_id=editor_id, ) db.session.add(t_record) @classmethod def delete(cls, t, editor_id): t_record = PhoneRecord( phone_id=t.id, name=t.name, asset_id=t.asset_id, vendor=t.vendor, device_number=t.device_number, os=t.os, cpu=t.cpu, core=t.core, ram=t.ram, rom=t.rom, resolution=t.resolution, buy_date=t.buy_date, region=t.region, borrow_id=t.borrow_id, creator_id=t.creator_id, device_source=t.device_source, device_belong=t.device_belong, editor_id=editor_id, ) db.session.add(t_record) @classmethod def query_record_detail(cls, phone_id): ret = cls.query_record_json(phone_id) if not ret: return [] ret_list = [] asset_config = Config.query.add_columns(Config.content.label('content')).filter(Config.module == 'asset', Config.module_type == 1).first() content = json.loads(asset_config.content) operation_dict = content['operation_dict'] # name = operation_dict.get('name') # asset_id = operation_dict.get('asset_id') # status = operation_dict.get('status') # borrow_id = operation_dict.get('borrow_id') ret_dict = {} user_creater = User.query.get(int(ret[0]['editor_id'])) ret_dict['modified_time'] = ret[0]['creation_time'] ret_dict['operation'] = "[{}({})] : 增加新的资产 {}".format(user_creater.nickname, user_creater.wx_userid, ret[0]['name']) ret_list.append(ret_dict) current_app.logger.info(ret) for r in range(1, len(ret)): for asset_key, asset_value in ret[r - 1].items(): if asset_key in operation_dict.keys(): current_app.logger.info( "修改的字段:" + str(asset_key) + ", 字段值:" + str(asset_value) + "-->" + str(ret[r][asset_key])) user_editor = User.query.get(int(ret[r]['editor_id'])) ret_dict = None if asset_key in ('borrow_id',): ret_dict = {'modified_time': ret[r]['modified_time']} if asset_value != ret[r][asset_key]: user_from = User.query.filter(User.id == int(asset_value)).first() user_to = User.query.filter(User.id == int(ret[r][asset_key])).first() ret_dict['operation'] = "[{}({})] : {} 由 {}({}) 变更为 {}({})".format(user_editor.nickname, user_editor.wx_userid, operation_dict[ asset_key], user_from.nickname, user_from.wx_userid, user_to.nickname, user_to.wx_userid) else: # user_from = User.query.filter(User.id == int(asset_value)).first() user_to = User.query.filter(User.id == int(ret[r][asset_key])).first() ret_dict['operation'] = "[{}({})] : 续借了设备,{} 为 {}({})".format(user_editor.nickname, user_editor.wx_userid, operation_dict[asset_key], user_to.nickname, user_to.wx_userid) else: if asset_value != ret[r][asset_key]: ret_dict = { 'modified_time': ret[r]['modified_time'], 'operation': "[{}({})] : 修改了{} {} 为 {}".format(user_editor.nickname, user_editor.wx_userid, operation_dict[asset_key], asset_value, ret[r][asset_key]) } if ret_dict is not None: ret_list.append(ret_dict) ret_list = ret_list[::-1] return ret_list class VirtualAssetBusiness(object): @classmethod def _query(cls): return VirtualAsset.query.add_columns( VirtualAsset.id.label('id'), VirtualAsset.asset_id.label('asset_id'), VirtualAsset.passwd.label('passwd'), VirtualAsset.administrator.label('administrator'), VirtualAsset.bind_tel.label('bind_tel'), VirtualAsset.idcard.label('idcard'), VirtualAsset.status.label('status'), VirtualAsset.asset_type.label('asset_type'), VirtualAsset.operator.label('operator') ) @classmethod @transfer2json( '?id|!asset_id|!passwd|!administrator|!idcard|!bind_tel|!status|!asset_type|!operator' ) def query_json_by_id(cls, id): return cls._query().filter(VirtualAsset.id == id, VirtualAsset.status != VirtualAsset.DISABLE).all() @classmethod def create(cls, asset_id, passwd, administrator, bind_tel, idcard, asset_type, operator): try: va = VirtualAsset( asset_id=asset_id, passwd=passwd, administrator=administrator, bind_tel=bind_tel, idcard=idcard, asset_type=asset_type, operator=operator, ) db.session.add(va) db.session.commit() return 0, None except Exception as e: current_app.logger.error(str(e)) return 102, str(e) @classmethod def update(cls, id, asset_id, passwd, administrator, bind_tel, idcard, asset_type, operator): try: va = VirtualAsset.query.get(id) va.asset_id = asset_id va.passwd = passwd va.administrator = administrator va.bind_tel = bind_tel va.idcard = idcard va.asset_type = asset_type va.operator = operator db.session.add(va) db.session.commit() return 0, None except Exception as e: current_app.logger.error(str(e)) return 102, str(e) @classmethod def delete(cls, id): try: va = VirtualAsset.query.get(id) if va is None: return 0 va.status = VirtualAsset.DISABLE db.session.add(va) db.session.commit() return 0 except Exception as e: current_app.logger.error(str(e)) return 105, str(e) @classmethod @transfer2json( '?id|!asset_id|!passwd|!administrator|!idcard|!bind_tel|!status|!asset_type|!operator', ispagination=True ) def paginate_data(cls, page_size, page_index): asset_type = request.args.get('type') query = cls._query().filter(VirtualAsset.status != VirtualAsset.DISABLE) if asset_type: query = query.filter(VirtualAsset.asset_type == int(asset_type)) count = query.count() data = query.order_by(desc(VirtualAsset.id)).limit( int(page_size)).offset(int(page_index - 1) * int(page_size)).all() return data, count class PhoneBorrowBusiness(object): user_trpc = Trpc('auth') @classmethod def _query(cls): return PhoneBorrow.query.add_columns( PhoneBorrow.id.label('id'), PhoneBorrow.phone_id.label('phone_id'), PhoneBorrow.user_list.label('user_list'), PhoneBorrow.confirm_userid.label('confirm_userid'), func.date_format(PhoneBorrow.creation_time, "%Y-%m-%d %H:%i:%s").label('creation_time'), func.date_format(PhoneBorrow.modified_time, "%Y-%m-%d %H:%i:%s").label('modified_time'), ) @classmethod @transfer2json('?id|!phone_id|!user_list|!confirm_userid|!creation_time|!modified_time') def get_borrow_all(cls): phone_borrows = cls._query().all() return phone_borrows @classmethod def get_borrow_by_phone_id(cls, phone_id): phone_borrow = cls._query().filter(PhoneBorrow.phone_id == phone_id).first() return phone_borrow @classmethod def create(cls, phone_id, confirm_userid=0, user_list=''): try: phone_borrow = PhoneBorrow( phone_id=phone_id, user_list=user_list, confirm_userid=confirm_userid, ) db.session.add(phone_borrow) db.session.commit() return 0, None except Exception as e: current_app.logger.error(str(e)) return 102, str(e) @classmethod def update(cls, id, phone_id, confirm_userid, user_list): try: phone_borrow = PhoneBorrow.query.get(id) if not phone_borrow: cls.create(phone_id, confirm_userid, user_list) phone_borrow.user_list = user_list phone_borrow.confirm_userid = confirm_userid db.session.add(phone_borrow) db.session.commit() return 0, None except Exception as e: current_app.logger.error(e) return 102, str(e) @classmethod def clear_borrow_user_list(cls, phone_id, old_holder_id): # 清除 申请用户列表 # 只剩 原持有者 ID try: old_holder_id = str(old_holder_id) phone_borrow = cls.get_borrow_by_phone_id(phone_id) if not phone_borrow: ret, msg = cls.create(phone_id, 0, old_holder_id) else: ret, msg = cls.update(phone_borrow.id, phone_borrow.phone_id, 0, old_holder_id) return ret, msg except Exception as e: current_app.logger.error(e) current_app.logger.error(traceback.format_exc()) return 102, str(e) @classmethod def add_user_to_confirm(cls, phone_id, user_id): # 添加 用户ID 到 当前设备的 接收确认列表 try: phone_borrow = cls.get_borrow_by_phone_id(phone_id) if not phone_borrow: ret, msg = cls.create(phone_id, user_id) else: ret, msg = cls.update(phone_borrow.id, phone_borrow.phone_id, user_id, phone_borrow.user_list) return ret, msg except Exception as e: current_app.logger.error(e) current_app.logger.error(traceback.format_exc()) return 102, str(e) @classmethod def add_user_to_userlist(cls, phone_id, user_id): # 将 申请用户 ID 添加到申请列表 try: phone_borrow = cls.get_borrow_by_phone_id(phone_id) if not phone_borrow: cls.create(phone_id) phone_borrow = cls.get_borrow_by_phone_id(phone_id) old_user_list = [id for id in phone_borrow.user_list.split(',')] user_id = str(user_id) if user_id not in old_user_list: old_user_list.append(user_id) else: return 103, "不能重复借用" new_user_list = ','.join(old_user_list) cls.update(phone_borrow.id, phone_id, 0, new_user_list) return 0, None except Exception as e: current_app.logger.error(e) current_app.logger.error(traceback.format_exc()) return 102, str(e) @classmethod @transfer2json( '?id|!nickname' ) def get_user_list_by_phone_id(cls, phone_id): try: phone_borrow = cls.get_borrow_by_phone_id(phone_id) if not phone_borrow: return [] user_list = [id for id in phone_borrow.user_list.split(',')] users = [] for user_id in user_list: if len(user_id) > 0: user = User.query.get(int(user_id)) if user: users.append(user) return users except Exception as e: current_app.logger.error(str(e)) current_app.logger.error(traceback.format_exc()) return 102, str(e) @classmethod def send_borrow_msg_qywx(cls, current_phone, phone_holder, current_user): current_user_nickname = current_user.nickname current_user_wx_userid = current_user.wx_userid receiver_id = phone_holder.wx_userid msg_text = """[TCloud] {}({}) 您收到一个设备借用请求: 借用的设备 : {}, 资产编号 : {}, 借用人 : {} (微信号: {}), 请通过企业微信沟通,如借出,请通过 TCloud->资产->流转 进行转出。""".format(phone_holder.nickname, phone_holder.wx_userid, current_phone.name, current_phone.asset_id, current_user_nickname, current_user_wx_userid) PhoneBusiness.qyweixin_email(phone_holder.id, msg_text) @classmethod def send_borrow_continue_msg_qywx(cls, current_phone, phone_holder, current_user): deadline = PhoneBusiness.deadline(current_phone) current_user_nickname = current_user.nickname current_user_wx_userid = current_user.wx_userid receiver_id = phone_holder.wx_userid msg_text = """[TCloud] {} ({}) 您续借了一台设备: 借用的设备 : {}, 资产编号 : {}, 借用人 : {} (微信号: {}) 可持有时间: {} 天 到期时间: {}""".format(phone_holder.nickname, phone_holder.wx_userid, current_phone.name, current_phone.asset_id, current_user_nickname, current_user_wx_userid, Phone.HOLD_DATE, deadline) PhoneBusiness.qyweixin_email(phone_holder.id, msg_text) @classmethod def borrow(cls, phone_id): # 发起借用 try: ret, msg = 0, None current_phone = Phone.query.get(phone_id) if current_phone: current_user = User.query.get(g.userid) phone_holder = User.query.get(current_phone.borrow_id) if current_phone.borrow_id == g.userid: ret, msg = PhoneBusiness.move(phone_id, phone_holder.id) PhoneBorrowBusiness.send_borrow_continue_msg_qywx(current_phone, phone_holder, current_user) else: ret, msg = PhoneBorrowBusiness.add_user_to_userlist(phone_id, g.userid) if ret == 103: return ret, msg PhoneBorrowBusiness.send_borrow_msg_qywx(current_phone, phone_holder, current_user) else: return 101, '设备无效' return ret, msg except Exception as e: current_app.logger.error(traceback.format_exc()) current_app.logger.error(e) return 101, e @classmethod def confirm_borrow(cls, phone_id): # 确认借用, admin 确认接收 try: current_phone = Phone.query.get(phone_id) phone_borrow = cls.get_borrow_by_phone_id(phone_id) if int(phone_borrow.confirm_userid) != g.userid: return 403, '只有接收人可以确认' phone_current_holder = User.query.get(current_phone.borrow_id) phone_new_holder = User.query.get(phone_borrow.confirm_userid) ret, msg = PhoneBusiness.move(phone_id, int(phone_borrow.confirm_userid)) admins = cls.user_trpc.requests('get', '/user/admin') current_app.logger.info('{} 确认接收设备'.format(int(phone_borrow.confirm_userid))) if (int(phone_borrow.confirm_userid) in admins or int(phone_borrow.confirm_userid) == current_phone.creator_id): try: PhoneBusiness.send_return_confirm_msg_qywx(current_phone, phone_current_holder, phone_new_holder) reason = '成功归还了设备 {}({}) '.format(current_phone.name, current_phone.asset_id) current_app.logger.info(reason) user_old_id = int(phone_borrow.user_list) ret, msg = CreditBusiness.add_sub_score(user_old_id, Credit.CREDIT_ADD_ONCE, reason) except Exception as e: current_app.logger.error(e) else: PhoneBusiness.send_move_confirm_msg_qywx(current_phone, phone_current_holder, phone_new_holder) ret, msg = cls.update(phone_borrow.id, phone_borrow.phone_id, 0, '') return ret, msg except Exception as e: current_app.logger.error(str(e)) current_app.logger.error(traceback.format_exc()) return 102, e
the-stack_0_135
from functools import reduce from jinja2 import Markup import json import logging import os import shutil from sigal import signals from sigal.utils import url_from_path from sigal.writer import AbstractWriter logger = logging.getLogger(__name__) ASSETS_PATH = os.path.normpath( os.path.join(os.path.abspath(os.path.dirname(__file__)), 'static', 'js')) class PageWriter(AbstractWriter): '''A writer for writing media pages, based on writer''' template_file = "search.html" def write(self, album): ''' Generate the media page and save it ''' from sigal import __url__ as sigal_link page = self.template.render({ 'album': album, 'index_title': self.index_title, 'settings': self.settings, 'sigal_link': sigal_link, 'theme': {'name': os.path.basename(self.theme), 'url': url_from_path(os.path.relpath(self.theme_path, album.dst_path))}, }) output_file = os.path.join(album.dst_path, 'search.html') with open(output_file, 'w', encoding='utf-8') as f: f.write(page) def generate_search(gallery): id = 1 output_file = os.path.join(gallery.albums['.'].dst_path, 'static/js/search-content.js') store = {} for album in gallery.albums.values(): album_titles = " , ".join([*map(lambda x: x[1], album.breadcrumb)]) for item in album.medias: data = {} data['title'] = item.title if 'author' in item.meta: data['author'] = item.meta['author'][0] data['url'] = "/" + item.path + "/" + item.url data['thumbnail'] = item.thumbnail data['mime'] = item.mime if 'slides' in item.meta: data['slides'] = item.meta['slides'][0] data['album'] = album_titles; store[str(id)] = data id = id + 1 with open(output_file, 'w', encoding='utf8') as f: f.write("window.store = ") f.write(json.dumps(store)) writer = PageWriter(gallery.settings, index_title="Search Results") writer.write(gallery.albums['.']) shutil.copyfile(os.path.join(ASSETS_PATH, 'lunr.js'), os.path.join(gallery.albums['.'].dst_path, 'static', 'js', 'lunr.js')) def register(settings): signals.gallery_build.connect(generate_search)
the-stack_0_136
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Dec 12 11:52:04 2021 @author: Sarah """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 7 11:30:49 2021 @author: Sarah """ import pandas as pd import pandasql import dash from dash.dependencies import Input, Output import dash_core_components as dcc #this had to be changed #from dash import dcc import dash_html_components as html #this as well #from dash import html import plotly.express as px from urllib.request import urlopen import json pd.options.mode.chained_assignment = None # default='warn' # get vaccination data from rki vaccination github repo: # (https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland) url_vacc_data = "https://raw.githubusercontent.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland/master/Aktuell_Deutschland_Impfquoten_COVID-19.csv" # read-in data from csv-file (filter out Deutschland & Bundesressorts) vacc_data = pd.read_csv(url_vacc_data, skiprows=[1, 18]) # Open Germany map as GeoJSON with urlopen("https://raw.githubusercontent.com/isellsoap/deutschlandGeoJSON/main/2_bundeslaender/2_hoch.geo.json") as file: germany_states = json.load(file) # Read-in Covid-Data (States) with urlopen("https://services7.arcgis.com/mOBPykOjAyBO2ZKk/arcgis/rest/services/Coronaf%C3%A4lle_in_den_Bundesl%C3%A4ndern/FeatureServer/0/query?where=1%3D1&outFields=LAN_ew_AGS,LAN_ew_GEN,Aktualisierung,cases7_bl_per_100k,death7_bl,cases7_bl_per_100k_txt,cases7_bl&outSR=4326&f=json") as cases_states: covid_states = json.load(cases_states) covid_data = pd.json_normalize(covid_states, record_path=['features']) ## Read in Voting-Results with urlopen("https://raw.githubusercontent.com/julianrosenberger/VisualizationSDU/main/data/kerg2.csv?token=AQYCHUSY2GHUHR23UV3RZU3BYGNO2") as f: data = pd.read_csv(f, delimiter=';', skiprows=9, usecols=['Gebietsnummer', 'Gebietsname', 'UegGebietsnummer', 'Gruppenart', 'Gruppenname', 'Gruppenreihenfolge', 'Stimme', 'Prozent']) # #Deleting where Gruppenart!=Partei df_clear=data[data.Gruppenart=="Partei"] # deleting Stimme==2: df_clear2 = df_clear[df_clear.Stimme==1] # Grouped dataframe with only the states 1-16 (both incl.) df_clear3 = df_clear2[df_clear2.Gebietsnummer < 17] # Make sure Gebietsnummer belongs to state df_clear4 = df_clear3[df_clear3.UegGebietsnummer == 99] df_clear = df_clear4 # cleaning print(type('Prozent')) # string --> convert to int #(nan --> 0 df_clear['Prozent'] = df_clear['Prozent'].fillna(0) # , --> . df_clear['Prozent'] = (df_clear['Prozent'].replace(',', '.', regex=True).astype(float)) # string --> int df_clear['Prozent'] = pd.to_numeric(df_clear['Prozent']) #print(df_clear.to_string()) # Gruping by state: df_group = df_clear.groupby('Gebietsnummer') print(df_group) #print(df_group['Gebietsnummer'] == 11) for key, item in df_group: print(df_group.get_group(key)) # Get the indices of the original dataframe to find out which party etc. it belongs to: #idx = df_group(['Gebietsnummer'])['Prozent'].transform(max) == df_clear['Prozent'] #print(idx.head()) maximums = df_group['Prozent'].max() #print(maximums.to_string()) #print(df_clear.loc[df_clear.groupby(['Gebietsnummer'])['Prozent'].idxmax()].reset_index(drop=True)) winners = df_clear.loc[df_clear.groupby(['Gebietsnummer'])['Prozent'].idxmax()].reset_index(drop=True) print(winners.to_string()) ## Plot Vaccination Map vacc = px.choropleth_mapbox( mapbox_style='white-bg', data_frame=vacc_data, geojson=germany_states, locations='Bundesland', featureidkey='properties.name', hover_name='Bundesland', hover_data={'Bundesland': False, 'Impfquote_gesamt_voll': ':.2f%', 'Datum': True}, color='Impfquote_gesamt_voll', color_continuous_scale=px.colors.sequential.Blues, labels={'Impfquote_gesamt_voll': 'Fully vaccinated', 'Bundesland': 'State', 'Datum': 'Date'} ) vacc.update_mapboxes( center_lat=51.5, center_lon=10.25, zoom=4.6 ) vacc.update_layout( margin={"r": 0, "t": 0, "l": 0, "b": 0}) ## Plot Covid-Map cov = px.choropleth_mapbox( mapbox_style='white-bg', data_frame=covid_data, geojson=germany_states, locations='attributes.LAN_ew_GEN', featureidkey='properties.name', hover_name='attributes.LAN_ew_GEN', hover_data={'attributes.LAN_ew_GEN': False, 'attributes.cases7_bl_per_100k': ':.2f', 'attributes.death7_bl': True}, color='attributes.cases7_bl_per_100k', color_continuous_scale=px.colors.sequential.YlOrRd, labels={'attributes.cases7_bl_per_100k': '7-day incidence', 'attributes.LAN_ew_GEN': 'State', 'attributes.death7_bl': '7-day deaths'} ) cov.update_layout( margin={"r": 0, "t": 0, "l": 0, "b": 0}) cov.update_mapboxes( center_lat=51.5, center_lon=10.25, zoom=4.6 ) ## Plot Voting-results vote = px.choropleth_mapbox( mapbox_style='white-bg', data_frame=winners, geojson=germany_states, locations='Gebietsname', featureidkey='properties.name', hover_name='Gebietsname', hover_data={'Gebietsname': False, 'Gruppenname': True, 'Prozent': ':.2f%'}, color='Gruppenname', color_discrete_map={'SPD': "#E3000F", "CDU": "#32302e", "CSU": "#32302e", "AfD": "#009ee0"}, labels={'Gebietsname': 'State', 'Gruppenname': 'Party', 'Prozent': 'Result'} ) vote.update_layout( margin={"r": 0, "t": 0, "l": 0, "b": 0}) vote.update_mapboxes( center_lat=51.5, center_lon=10.25, zoom=4.6 ) ## Plot Voting-results in form of pie chart: # want for entire Germany, instead of states: vote_germ=data[data.Gebietsnummer==99] vote_germ = vote_germ[vote_germ.Stimme==1] vote_germ=vote_germ[vote_germ.Gruppenart=="Partei"] vote_germ=vote_germ[vote_germ.Gebietsname=="Bundesgebiet"] # cleaning #(nan --> 0 vote_germ['Prozent'] = vote_germ['Prozent'].fillna(0) # , --> . vote_germ['Prozent'] = (vote_germ['Prozent'].replace(',', '.', regex=True).astype(float)) # string --> int vote_germ['Prozent'] = pd.to_numeric(vote_germ['Prozent']) #print(vote_germ.to_string()) # 47 different states. Diving into: SPD, CDU/CSU, AfD, and "Others": #vote_germ.loc[vote_germ['Gruppenname'] == "CDU", 'Gruppenname'] = "CDU/CSU" #vote_germ.loc[vote_germ['Gruppenname'] == "CSU", 'Gruppenname'] = "CDU/CSU" vote_germ.loc[vote_germ['Prozent'] < 6, 'Gruppenname'] = "Other" vote_germ.loc[vote_germ['Gruppenname'] == "FDP", 'Gruppenname'] = "Other" vote_germ.loc[vote_germ['Gruppenname'] == "GRÜNE", 'Gruppenname'] = "Other" vote_chart = px.pie(vote_germ, values='Prozent', names='Gruppenname', color='Gruppenname', color_discrete_map={'SPD':'#E3000F', 'CDU':'32302e', 'CSU':'#0080c8', 'AfD':'009ee0', 'Other':'grey'}) #vote_chart.show() ## Build web app with dash app = dash.Dash(__name__) app.layout = lambda: html.Div([ # H1-Header html.H1(children="Does voting against vaccinations mean voting for COVID?", style={'textAlign': 'center', 'fontFamily': 'Helvetica, Arial, sans-serif'}), html.Div([ html.Div([ dcc.Graph(figure=vacc) ], style={'width': '33%', 'float': 'left'}), html.Div([ dcc.Graph(figure=cov) ], style={'width': '33%', 'float': 'left'}), html.Div([ dcc.Graph(figure=vote) ], style={'width': '33%', 'float': 'left'}) ]), html.Div([ html.Div([ dcc.Graph(figure=vacc) ], style={'width': '33%', 'float': 'left'}), html.Div([ dcc.Graph(figure=cov) ], style={'width': '33%', 'float': 'left'}), html.Div([ dcc.Graph(figure=vote) ], style={'width': '33%', 'float': 'left'}) ]) ]) if __name__ == '__main__': app.run_server(debug=True, port=8080)
the-stack_0_137
# -*- coding: utf-8 -*- __version__ = '19.9.0.dev1' PROJECT_NAME = "galaxy-data" PROJECT_OWNER = PROJECT_USERAME = "galaxyproject" PROJECT_URL = "https://github.com/galaxyproject/galaxy" PROJECT_AUTHOR = 'Galaxy Project and Community' PROJECT_DESCRIPTION = 'Galaxy Datatype Framework and Datatypes' PROJECT_EMAIL = '[email protected]' RAW_CONTENT_URL = "https://raw.github.com/%s/%s/master/" % ( PROJECT_USERAME, PROJECT_NAME )
the-stack_0_138
from __future__ import unicode_literals from crispy_forms.helper import FormHelper from crispy_forms.layout import Field, Layout, Submit from django import forms from django.contrib.auth import get_user_model from . import models User = get_user_model() class UserForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(UserForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_tag = False self.helper.layout = Layout( Field('name'), ) class Meta: model = User fields = ['name'] class ProfileForm(forms.ModelForm): def __init__(self, *args, **kwargs): super(ProfileForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_tag = False self.helper.layout = Layout( Field('picture'), Field('bio'), Submit('update', 'Update', css_class="btn-success"), ) class Meta: model = models.Profile fields = ['picture', 'bio']
the-stack_0_139
# SPDX-FileCopyrightText: 2019 Scott Shawcroft for Adafruit Industries # # SPDX-License-Identifier: MIT """ `adafruit_bitmap_font.bdf` ==================================================== Loads BDF format fonts. * Author(s): Scott Shawcroft Implementation Notes -------------------- **Hardware:** **Software and Dependencies:** * Adafruit CircuitPython firmware for the supported boards: https://github.com/adafruit/circuitpython/releases """ import gc from fontio import Glyph from .glyph_cache import GlyphCache __version__ = "1.3.4" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font.git" class BDF(GlyphCache): """Loads glyphs from a BDF file in the given bitmap_class.""" def __init__(self, f, bitmap_class): super().__init__() self.file = f self.name = f self.file.seek(0) self.bitmap_class = bitmap_class line = self.file.readline() line = str(line, "utf-8") if not line or not line.startswith("STARTFONT 2.1"): raise ValueError("Unsupported file version") self.point_size = None self.x_resolution = None self.y_resolution = None self._ascent = None self._descent = None @property def descent(self): """The number of pixels below the baseline of a typical descender""" if self._descent is None: self.file.seek(0) while True: line = self.file.readline() if not line: break if line.startswith(b"FONT_DESCENT "): self._descent = int(line.split()[1]) break return self._descent @property def ascent(self): """The number of pixels above the baseline of a typical ascender""" if self._ascent is None: self.file.seek(0) while True: line = self.file.readline() line = str(line, "utf-8") if not line: break if line.startswith("FONT_ASCENT "): self._ascent = int(line.split()[1]) break return self._ascent def get_bounding_box(self): """Return the maximum glyph size as a 4-tuple of: width, height, x_offset, y_offset""" self.file.seek(0) while True: line = self.file.readline() line = str(line, "utf-8") if not line: break if line.startswith("FONTBOUNDINGBOX "): _, x, y, x_offset, y_offset = line.split() return (int(x), int(y), int(x_offset), int(y_offset)) return None def load_glyphs(self, code_points): # pylint: disable=too-many-statements,too-many-branches,too-many-nested-blocks,too-many-locals metadata = True character = False code_point = None bytes_per_row = 1 desired_character = False current_info = {} current_y = 0 rounded_x = 1 if isinstance(code_points, int): remaining = set() remaining.add(code_points) elif isinstance(code_points, str): remaining = set(ord(c) for c in code_points) elif isinstance(code_points, set): remaining = code_points else: remaining = set(code_points) for code_point in remaining.copy(): if code_point in self._glyphs and self._glyphs[code_point]: remaining.remove(code_point) if not remaining: return x, _, _, _ = self.get_bounding_box() self.file.seek(0) while True: line = self.file.readline() if not line: break if line.startswith(b"CHARS "): metadata = False elif line.startswith(b"SIZE"): _, self.point_size, self.x_resolution, self.y_resolution = line.split() elif line.startswith(b"COMMENT"): pass elif line.startswith(b"STARTCHAR"): # print(lineno, line.strip()) # _, character_name = line.split() character = True elif line.startswith(b"ENDCHAR"): character = False if desired_character: bounds = current_info["bounds"] shift = current_info["shift"] gc.collect() self._glyphs[code_point] = Glyph( current_info["bitmap"], 0, bounds[0], bounds[1], bounds[2], bounds[3], shift[0], shift[1], ) remaining.remove(code_point) if not remaining: return desired_character = False elif line.startswith(b"BBX"): if desired_character: _, x, y, x_offset, y_offset = line.split() x = int(x) y = int(y) x_offset = int(x_offset) y_offset = int(y_offset) current_info["bounds"] = (x, y, x_offset, y_offset) current_info["bitmap"] = self.bitmap_class(x, y, 2) elif line.startswith(b"BITMAP"): if desired_character: rounded_x = x // 8 if x % 8 > 0: rounded_x += 1 bytes_per_row = rounded_x if bytes_per_row % 4 > 0: bytes_per_row += 4 - bytes_per_row % 4 current_y = 0 elif line.startswith(b"ENCODING"): _, code_point = line.split() code_point = int(code_point) if code_point in remaining: desired_character = True current_info = {"bitmap": None, "bounds": None, "shift": None} elif line.startswith(b"DWIDTH"): if desired_character: _, shift_x, shift_y = line.split() shift_x = int(shift_x) shift_y = int(shift_y) current_info["shift"] = (shift_x, shift_y) elif line.startswith(b"SWIDTH"): pass elif character: if desired_character: bits = int(line.strip(), 16) width = current_info["bounds"][0] start = current_y * width x = 0 for i in range(rounded_x): val = (bits >> ((rounded_x - i - 1) * 8)) & 0xFF for j in range(7, -1, -1): if x >= width: break bit = 0 if val & (1 << j) != 0: bit = 1 current_info["bitmap"][start + x] = bit x += 1 current_y += 1 elif metadata: # print(lineno, line.strip()) pass
the-stack_0_142
import torch from torch import nn from torch.nn import functional as F class DetLoss(nn.Module): def __init__(self): super().__init__() self.hm_criterion = nn.BCEWithLogitsLoss(reduction='none') self.ori_criterion = nn.SmoothL1Loss(reduction='none') self.box_criterion = nn.SmoothL1Loss(reduction='none') def forward(self, pred_heatmaps, heatmaps, pred_sizemaps, sizemaps, pred_orimaps , orimaps, ): size_w, _ = heatmaps.max(dim=1, keepdim=True) p_det = torch.sigmoid(pred_heatmaps * (1-2*heatmaps)) det_loss = (self.hm_criterion(pred_heatmaps, heatmaps)*p_det).mean() / p_det.mean() box_loss = (size_w * self.box_criterion(pred_sizemaps, sizemaps)).mean() / size_w.mean() ori_loss = (size_w * self.ori_criterion(pred_orimaps, orimaps)).mean() / size_w.mean() return det_loss, box_loss, ori_loss class SegLoss(nn.Module): def __init__(self): super().__init__() self.criterion = nn.BCEWithLogitsLoss(reduction='none') def forward(self, pred_bev, bev): return self.criterion(pred_bev, bev).mean() class MotLoss(nn.Module): def __init__(self, distill, smooth): super().__init__() self.bc_criterion = nn.L1Loss(reduction='none') self.cmd_criterion = nn.BCELoss() self.distill = distill self.smooth = smooth def forward(self, plan_locs, cast_locs, locs, pred_cmds, expert_locs, expert_cmds, cmds, idxs=None): T = locs.size(1) N = pred_cmds.size(1) plan_locs = plan_locs.gather(1, cmds.expand(T,2,1,-1).permute(3,2,0,1)).squeeze(1) plan_losses = self.bc_criterion(plan_locs, locs).mean(dim=[1,2]) if self.distill: cast_loss = self.bc_criterion(cast_locs, expert_locs.detach()).mean() cmd_loss = self.cmd_criterion(pred_cmds, expert_cmds.detach()) else: cast_locs = cast_locs.gather(1, cmds.expand(T,2,1,-1).permute(3,2,0,1)).squeeze(1) cast_loss = self.bc_criterion(cast_locs, locs).mean() cmds_label = (1.-self.smooth) * F.one_hot(cmds, N) + self.smooth / N cmd_loss = self.cmd_criterion(pred_cmds, cmds_label) if idxs is None: plan_loss = plan_losses.mean() else: plan_loss = plan_losses[idxs].mean() return (plan_loss + cast_loss) / 2, cmd_loss def others_forward(self, cast_locs, expert_locs, locs): if self.distill: return self.bc_criterion(cast_locs, expert_locs).mean() else: other_bc_losses = self.bc_criterion(cast_locs, locs).mean(dim=[2,3]) return other_bc_losses.min(1)[0].mean() def bev_forward(self, plan_locs, cast_locs, locs, pred_cmds, cmds, idxs=None): T = locs.size(1) N = pred_cmds.size(1) plan_locs = plan_locs.gather(1, cmds.expand(T,2,1,-1).permute(3,2,0,1)).squeeze(1) plan_losses = self.bc_criterion(plan_locs, locs).mean(dim=[1,2]) cast_locs = cast_locs.gather(1, cmds.expand(T,2,1,-1).permute(3,2,0,1)).squeeze(1) cast_loss = self.bc_criterion(cast_locs, locs).mean() cmd_loss = self.cmd_criterion(pred_cmds, F.one_hot(cmds, N).float()) if idxs is None: plan_loss = plan_losses.mean() else: plan_loss = plan_losses[idxs].mean() return (plan_loss + cast_loss) / 2, cmd_loss
the-stack_0_143
from django.db.models.signals import pre_save from django.dispatch import receiver from order.models import Order from order.tpaga import revertedPaid @receiver(pre_save, sender=Order) def changeReverted(sender, instance, **kwargs): try: old = sender.objects.get(id=instance.id) status = old.status except: status = 'created' if instance.status == 'reverted': isSuccess = revertedPaid(instance.token) if not isSuccess: instance.status = status instance.save()
the-stack_0_144
import bing_face_api as bfa if __name__ == '__main__': ''' コマンドライン引数を使用する場合 顔認識する画像のディレクトリ search_dir = sys.argv[0] ''' # 顔認識する画像のディレクトリ search_dir = "./image/original/" # 顔認識する画像のファイル名を取得 img_path_list = bfa.get_image_path_list(search_dir) # 顔認識 bfa.detect_image(img_path_list)
the-stack_0_148
# -*- coding: utf-8 -*- import asyncio from datetime import datetime from cmyui import log, Ansi from cmyui.osu import Mods from discord import Embed from discord.ext import commands from discord.threads import Thread from tinydb.operations import set as dbset from tinydb.queries import Query from objects.sakuro import Sakuro, ContextWrap from osu.calculator import Calculator from objects import glob, config from utils.misc import convert_status_str, convert_str_status, make_safe_name, convert_grade_emoji, sakuru_only from objects.user import UserHelper from utils.wrappers import sakuroCommand from utils.misc import BEATMAP_REGEX QUEUE_EMOJIS = ( '1️⃣', '2️⃣', '3️⃣', '4️⃣', '5️⃣' ) class AdminCog(commands.Cog, name='Admin'): """Utilities for admins.""" def __init__(self, bot: Sakuro): self.bot = bot self.hide = True @sakuroCommand(name='reload', hidden=True) @commands.is_owner() async def _reload(self, ctx: ContextWrap, module: str): """Reloads a module.""" try: self.bot.unload_extension(module) self.bot.load_extension(module) except Exception as e: await ctx.send('\N{PISTOL}') await ctx.send('{}: {}'.format(type(e).__name__, e)) else: await ctx.send('\N{OK HAND SIGN}') @sakuroCommand(hidden=True) @commands.is_owner() async def shutdown(self, ctx: ContextWrap) -> None: await ctx.send('Night night..') await self.bot.close() @sakuroCommand(hidden=True) @commands.check(sakuru_only) @commands.has_permissions(ban_members=True) async def replay(self, ctx: ContextWrap, nickname: str, mods: str, map_id: int): player = await UserHelper.getOsuUserByName(make_safe_name(nickname), 'info') description = "" if not player: async with glob.http.get("https://sakuru.pw/api/search", params={ "q": nickname }) as resp: if resp.status == 200: data = await resp.json() if data['length'] == 0: return await ctx.send(f"Nothing matched with {nickname} not found, check your spelling.") embed = Embed( color=ctx.author.color, timestamp=datetime.now() ) embed.set_author(name=f"Search queue for {nickname}") for idx, row in enumerate(data['matches']): description += f"**{idx + 1}.** [{row['name']}](https://sakuru.pw/u/{row['id']})\n" embed.description = description description = "" message = await ctx.send(embed=embed) for emoji in QUEUE_EMOJIS[:data['length']]: await message.add_reaction(emoji) try: reaction, user = await self.bot.wait_for('reaction_add', check=lambda r, u: r.message.id == message.id \ and r.emoji in QUEUE_EMOJIS \ and u == ctx.author, timeout=60.0) except asyncio.TimeoutError: await ctx.send('Time is out!') else: player = await UserHelper.getOsuUserByName( make_safe_name( data['matches'][QUEUE_EMOJIS.index(reaction.emoji)]['name']), 'info' ) await message.delete() else: return await ctx.send("Error! Try again.") scores = await UserHelper.getUserScores(player['id'], 0, mods, 5, 'best', map_id) if len(scores) == 0: return await ctx.send(f"This player has no scores on `{map_id}`!") map_fullname = "" for idx, score in enumerate(scores): calc = await Calculator.calculate( score['beatmap']['id'], 0, score['mods'], score['acc'], None ) map_fullname = calc['map_fullname'] description += f"""** {idx + 1}. {f' +{Mods(score["mods"])!r}' if score['mods'] != 0 else ''}** [{calc['stars']:.2f}★]\n""" \ f"▸ {convert_grade_emoji(score['grade'])} ▸ **{score['pp']:.2f}PP**" \ f"""{f' *({calc["pp"]:.2f}PP for {score["acc"]:.2f}% FC)*' if score['grade'] not in ('S', 'SS', 'X', 'SH') else ''} """ \ f"▸ {score['acc']:.2f}%\n▸ {score['score']} ▸ x{score['max_combo']}/{score['beatmap']['max_combo']} " \ f"▸ [{score['n300']}/{score['n100']}/{score['n50']}/{score['nmiss']}]\n" \ f"▸ [Score Set <t:{datetime.fromisoformat(score['play_time']).timestamp().__int__()}:R>]" \ f"(https://osu.sakuru.pw/api/get_replay?id={score['id']})\n" embed = Embed(color=ctx.author.color, description=description) embed.set_author(name=f"Top {len(scores)} Plays for {player['name']} on {map_fullname}", url=f"https://sakuru.pw/u/{player['id']}", icon_url=f"https://sakuru.pw/static/flags/{player['country'].upper()}.png") embed.set_footer(text="Click on Score Set to download replay.", icon_url="https://sakuru.pw/static/ingame.png") await ctx.send(embed=embed) @sakuroCommand(hidden=True) @commands.check(sakuru_only) @commands.has_permissions(ban_members=True) async def restrict(self, ctx: ContextWrap, nickname: str, *reason: str): if not await UserHelper.getOsuUserByName(make_safe_name(nickname), 'info'): return await ctx.send(f"Player with nickname {nickname} not found.") admin = await UserHelper.getDiscordUser(ctx.message.author.id) async with glob.http.get("https://osu.sakuru.pw/api/handle_admin", params={ "secret": config.API_SECRET, "action": "restrict", "nickname": make_safe_name(nickname), "reason": ' '.join(reason), "admin": admin['safe_name'] }) as resp: if resp.status == 200: await ctx.message.add_reaction('\N{OK HAND SIGN}') else: return await ctx.send("Error occurred.") @sakuroCommand(hidden=True) @commands.check(sakuru_only) @commands.has_permissions(ban_members=True) async def unrestrict(self, ctx: ContextWrap, nickname: str, *reason: str): if not await UserHelper.getOsuUserByName(make_safe_name(nickname), 'info'): return await ctx.send(f"Player with nickname {nickname} not found.") admin = await UserHelper.getDiscordUser(ctx.message.author.id) async with glob.http.get("https://osu.sakuru.pw/api/handle_admin", params={ "secret": config.API_SECRET, "action": "unrestrict", "nickname": make_safe_name(nickname), "reason": ' '.join(reason), "admin": admin['safe_name'] }) as resp: if resp.status == 200: await ctx.message.add_reaction('\N{OK HAND SIGN}') else: return await ctx.send("Error occurred.") @sakuroCommand(hidden=True) @commands.check(sakuru_only) @commands.has_permissions(ban_members=True) async def rqmap(self, ctx: ContextWrap, status: str, type: str): if ( not isinstance(ctx.message.channel, Thread) or not ctx.message.channel.parent_id == config.MAP_REQS ): return if ctx.message.channel.archived: return req_table = glob.db.table('map_reqs') Requests = Query() req = req_table.get((Requests.thread_id == ctx.message.channel.id) & (Requests.active == True)) admin = await UserHelper.getDiscordUser(ctx.message.author.id) if not admin: return await ctx.send('who are yo') if type not in ('map', 'set'): msg = await ctx.reply('Invalid type! (map, set)') await msg.delete(delay=15) await ctx.message.delete(delay=15) return if status not in ('love', 'rank', 'unrank'): msg = await ctx.reply('Invalid status! (love, rank, unrank)') await msg.delete(delay=15) await ctx.message.delete(delay=15) return if type == "map": params = { "set_id": req['beatmap']['set_id'] } async with glob.http.get("https://osu.sakuru.pw/api/get_map_info", params=params) as resp: if ( resp and resp.status == 200 and resp.content.total_bytes != 2 # b'[]' ): bmaps = await resp.json() embed = Embed( title=f"Pick a map to edit status on.", timestamp=datetime.now(), color=0xeaff00 ) description = "" for idx, bmap in enumerate(bmaps['set']): description += f"`#{idx + 1}.` **[{bmap['version']}]** - {convert_status_str(int(bmap['status']))}\n" embed.description = description emb_mess = await ctx.send("**Send position in chat to pick a map.**", embed=embed) valid = False while valid is False: try: reply = await self.bot.wait_for('message', check=lambda x: x.channel == ctx.channel and x.author == ctx.author and x.content.isdecimal(), timeout=60.0) except asyncio.TimeoutError: msg = await ctx.send('Time is up!') await msg.delete(delay=15) await emb_mess.delete(delay=15) return else: reply.content = int(reply.content) if reply.content > len(bmaps) or reply.content <= 0: msg = await ctx.send('Specified position is out of range.') await reply.delete(delay=15) await msg.delete(delay=15) else: if (bm_status := bmaps['set'][reply.content - 1]['status']) == convert_str_status(status): msg = await ctx.send(f"This map is already {convert_status_str(bm_status)}") await msg.delete(delay=15) await reply.delete(delay=15) else: await reply.delete() await emb_mess.delete() valid = True params = { "secret": config.API_SECRET, "action": "status_map", "admin": admin['safe_name'], "map_id": bmaps['set'][reply.content - 1]['id'], "status": status } async with glob.http.get("https://osu.sakuru.pw/api/handle_admin", params=params) as resp: if resp.status == 200: await ctx.message.add_reaction('\N{OK HAND SIGN}') else: pass elif type =="set": params = { "set_id": req['beatmap']['set_id'] } async with glob.http.get("https://osu.sakuru.pw/api/get_map_info", params=params) as resp: if ( resp and resp.status == 200 and resp.content.total_bytes != 2 # b'[]' ): bmaps = await resp.json() if all([x['status'] == convert_str_status(status) for x in bmaps['set']]): msg = await ctx.send(f"This set is already {convert_status_str(bmaps['set'][0]['status'])}") await ctx.message.delete(delay=15) await msg.delete(delay=15) return params = { "secret": config.API_SECRET, "action": "status_set", "admin": admin['safe_name'], "set_id": req['beatmap']['set_id'], "status": status } async with glob.http.get("https://osu.sakuru.pw/api/handle_admin", params=params) as resp: if resp.status == 200: await ctx.message.add_reaction('\N{OK HAND SIGN}') else: pass @sakuroCommand(hidden=True) @commands.check(sakuru_only) @commands.has_permissions(ban_members=True) async def rqclose(self, ctx: ContextWrap): if ( not isinstance(ctx.message.channel, Thread) or not ctx.message.channel.parent_id == config.MAP_REQS ): return if ctx.message.channel.archived: return req_table = glob.db.table('map_reqs') Requests = Query() req = req_table.get((Requests.thread_id == ctx.message.channel.id) & (Requests.active == True)) req_table.update( dbset('active', False), doc_ids=[req.doc_id] ) first_message = await ctx.message.channel.parent.fetch_message(req['original_id']) await first_message.delete() await ctx.channel.delete() @sakuroCommand(hidden=True) @commands.check(sakuru_only) @commands.has_permissions(ban_members=True) async def rqreject(self, ctx: ContextWrap, *reason: str): if ( not isinstance(ctx.message.channel, Thread) or not ctx.message.channel.parent_id == config.MAP_REQS ): return if ctx.message.channel.archived: return req_table = glob.db.table('map_reqs') Requests = Query() req = req_table.get((Requests.thread_id == ctx.message.channel.id) & (Requests.active == True)) first_message = await ctx.message.channel.parent.fetch_message(req['original_id']) requester = ctx.guild.get_member(req['requester']) params = { "id": req['beatmap']['id'] } async with glob.http.get("https://osu.sakuru.pw/api/get_map_info", params=params) as resp: if ( resp and resp.status == 200 and resp.content.total_bytes != 2 # b'[]' ): bmap = (await resp.json())['map'] embed = Embed( title=f"Map Request: {bmap['artist']} - {bmap['title']}", color=ctx.author.color, description=f"Your request has been rejected!\n**Reason:** `{' '.join(reason)}`\n\n**Nominator:** {ctx.author.mention}", timestamp=datetime.now() ) embed.set_footer(text="Sakuru.pw osu! Private Server.") embed.set_thumbnail(url=ctx.author.avatar.url) await requester.send(embed=embed) req_table.update( dbset('active', False), doc_ids=[req.doc_id] ) await first_message.delete() await ctx.channel.delete() def setup(bot): log(f"Initiated {__name__} cog!", Ansi.CYAN) bot.add_cog(AdminCog(bot))
the-stack_0_151
from gpflow.kernels import Kernel from gpflow.utilities import positive from gpflow import Parameter import tensorflow as tf from tensorflow_probability import bijectors as tfb class Batch_simple_SSK(Kernel): """ with hyperparameters: 1) match_decay float decrease the contribution of long subsequences 3) max_subsequence_length int largest subsequence considered """ def __init__(self,active_dims=[0],decay=0.1,max_subsequence_length=3, alphabet = [], maxlen=0, batch_size=100): super().__init__(active_dims=active_dims) # constrain decay kernel params to between 0 and 1 self.logistic = tfb.Chain([tfb.Shift(tf.cast(0,tf.float64))(tfb.Scale(tf.cast(1,tf.float64))),tfb.Sigmoid()]) self.decay_param= Parameter(decay, transform=self.logistic ,name="decay") # use will use copies of the kernel params to stop building expensive computation graph # we instead efficientely calculate gradients using dynamic programming # These params are updated at every call to K and K_diag (to check if parameters have been updated) self.decay = self.decay_param.numpy() self.decay_unconstrained = self.decay_param.unconstrained_variable.numpy() self.order_coefs=tf.ones(max_subsequence_length,dtype=tf.float64) # store additional kernel parameters self.max_subsequence_length = tf.constant(max_subsequence_length) self.alphabet = tf.constant(alphabet) self.alphabet_size=tf.shape(self.alphabet)[0] self.maxlen = tf.constant(maxlen) self.batch_size = tf.constant(batch_size) # build a lookup table of the alphabet to encode input strings self.table = tf.lookup.StaticHashTable( initializer=tf.lookup.KeyValueTensorInitializer( keys=tf.constant(["PAD"]+alphabet), values=tf.constant(range(0,len(alphabet)+1)),),default_value=0) # initialize helful construction matricies to be lazily computed once needed self.D = None self.dD_dgap = None def K_diag(self, X): r""" The diagonal elements of the string kernel are always unity (due to normalisation) """ return tf.ones(tf.shape(X)[:-1],dtype=tf.float64) def K(self, X1, X2=None): r""" Vectorized kernel calc. Following notation from Beck (2017), i.e have tensors S,D,Kpp,Kp Input is two tensors of shape (# strings , # characters) and we calc the pair-wise kernel calcs between the elements (i.e n kern calcs for two lists of length n) D is the tensor than unrolls the recursion and allows vecotrizaiton """ # Turn our inputs into lists of integers using one-hot embedding # first split up strings and pad to fixed length and prep for gpu # pad until all have length of self.maxlen # turn into one-hot i.e. shape (# strings, #characters+1, alphabet size) X1 = tf.strings.split(tf.squeeze(X1,1)).to_tensor("PAD",shape=[None,self.maxlen]) X1 = self.table.lookup(X1) # keep track of original input sizes X1_shape = tf.shape(X1)[0] X1 = tf.one_hot(X1,self.alphabet_size+1,dtype=tf.float64) if X2 is None: X2 = X1 X2_shape = X1_shape self.symmetric = True else: self.symmetric = False X2 = tf.strings.split(tf.squeeze(X2,1)).to_tensor("PAD",shape=[None,self.maxlen]) X2 = self.table.lookup(X2) X2_shape = tf.shape(X2)[0] X2 = tf.one_hot(X2,self.alphabet_size+1,dtype=tf.float64) # prep the decay tensors self._precalc() # combine all target strings and remove the ones in the first column that encode the padding (i.e we dont want them to count as a match) X_full = tf.concat([X1,X2],0)[:,:,1:] # get indicies of all possible pairings from X and X2 # this way allows maximum number of kernel calcs to be squished onto the GPU (rather than just doing individual rows of gram) indicies_2, indicies_1 = tf.meshgrid(tf.range(0, X1_shape ),tf.range(X1_shape , tf.shape(X_full)[0])) indicies = tf.concat([tf.reshape(indicies_1,(-1,1)),tf.reshape(indicies_2,(-1,1))],axis=1) if self.symmetric: # if symmetric then only calc upper matrix (fill in rest later) indicies = tf.boolean_mask(indicies,tf.greater_equal(indicies[:,1]+ X1_shape ,indicies[:,0])) else: # if not symmetric need to calculate some extra kernel evals for the normalization later on indicies = tf.concat([indicies,tf.tile(tf.expand_dims(tf.range(tf.shape(X_full)[0]),1),(1,2))],0) # make kernel calcs in batches num_batches = tf.cast(tf.math.ceil(tf.shape(indicies)[0]/self.batch_size),dtype=tf.int32) k_split = tf.TensorArray(tf.float64, size=num_batches,clear_after_read=False,infer_shape=False) # iterate through batches for j in tf.range(num_batches): # collect strings for this batch indicies_batch = indicies[self.batch_size*j:self.batch_size*(j+1)] X_batch = tf.gather(X_full,indicies_batch[:,0],axis=0) X2_batch = tf.gather(X_full,indicies_batch[:,1],axis=0) # Make S: the similarity tensor of shape (# strings, #characters, # characters) #S = tf.matmul( tf.matmul(X_batch,self.sim),tf.transpose(X2_batch,perm=(0,2,1))) S = tf.matmul(X_batch,tf.transpose(X2_batch,perm=(0,2,1))) # collect results for the batch result = self.kernel_calc(S) k_split = k_split.write(j,result) # combine batch results k = tf.expand_dims(k_split.concat(),1) k_split.close() # put results into the right places in the gram matrix and normalize if self.symmetric: # if symmetric then only put in top triangle (inc diag) mask = tf.linalg.band_part(tf.ones((X1_shape,X2_shape),dtype=tf.int64), 0, -1) non_zero = tf.not_equal(mask, tf.constant(0, dtype=tf.int64)) # Extracting the indices of upper triangle elements indices = tf.where(non_zero) out = tf.SparseTensor(indices,tf.squeeze(k),dense_shape=tf.cast((X1_shape,X2_shape),dtype=tf.int64)) k_results = tf.sparse.to_dense(out) # add in mising elements (lower diagonal) k_results = k_results + tf.linalg.set_diag(tf.transpose(k_results),tf.zeros(X1_shape,dtype=tf.float64)) # normalise X_diag_Ks = tf.linalg.diag_part(k_results) norm = tf.tensordot(X_diag_Ks, X_diag_Ks,axes=0) k_results = tf.divide(k_results, tf.sqrt(norm)) else: # otherwise can just reshape into gram matrix # but first take extra kernel calcs off end of k and use them to normalise X_diag_Ks = tf.reshape(k[X1_shape*X2_shape:X1_shape*X2_shape+X1_shape],(-1,)) X2_diag_Ks = tf.reshape(k[-X2_shape:],(-1,)) k = k[0:X1_shape*X2_shape] k_results = tf.transpose(tf.reshape(k,[X2_shape,X1_shape])) # normalise norm = tf.tensordot(X_diag_Ks, X2_diag_Ks,axes=0) k_results = tf.divide(k_results, tf.sqrt(norm)) return k_results def _precalc(self): r""" Update stored kernel params (incase they have changed) and precalc D and dD_dgap as required for kernel calcs following notation from Beck (2017) """ self.decay = self.decay_param.numpy() self.decay_unconstrained = self.decay_param.unconstrained_variable.numpy() tril = tf.linalg.band_part(tf.ones((self.maxlen,self.maxlen),dtype=tf.float64), -1, 0) # get upper triangle matrix of increasing intergers values = tf.TensorArray(tf.int32, size= self.maxlen) for i in tf.range(self.maxlen): values = values.write(i,tf.range(-i-1,self.maxlen-1-i)) power = tf.cast(values.stack(),tf.float64) values.close() power = tf.linalg.band_part(power, 0, -1) - tf.linalg.band_part(power, 0, 0) + tril tril = tf.transpose(tf.linalg.band_part(tf.ones((self.maxlen,self.maxlen),dtype=tf.float64), -1, 0))-tf.eye(self.maxlen,dtype=tf.float64) gaps = tf.fill([self.maxlen, self.maxlen],self.decay) self.D = tf.pow(gaps*tril, power) self.dD_dgap = tf.pow((tril * gaps), (power - 1.0)) * tril * power @tf.custom_gradient def kernel_calc(self,S): # fake computations to ensure we take the custom gradients for these two params a = tf.square(self.decay_param) if self.symmetric: k, dk_dgap = tf.stop_gradient(self.kernel_calc_with_grads(S)) else: k = tf.stop_gradient(self.kernel_calc_without_grads(S)) def grad(dy, variables=None): # get gradients of unconstrained params grads= {} if self.symmetric: grads['decay:0'] = tf.reduce_sum(tf.multiply(dy,dk_dgap*tf.math.exp(self.logistic.forward_log_det_jacobian(self.decay_unconstrained,0)))) gradient = [grads[v.name] for v in variables] else: gradient = [None for v in variables] return ((None),gradient) return k, grad def kernel_calc_without_grads(self,S): # store squared match coef for easier calc later match_sq = tf.square(self.decay) # calc subkernels for each subsequence length (See Moss et al. 2020 for notation) Kp = tf.TensorArray(tf.float64,size=self.max_subsequence_length,clear_after_read=False) # fill in first entries Kp = Kp.write(0, tf.ones(shape=tf.stack([tf.shape(S)[0], self.maxlen,self.maxlen]), dtype=tf.float64)) # calculate dynamic programs for i in tf.range(self.max_subsequence_length-1): Kp_temp = tf.multiply(S, Kp.read(i)) Kp_temp0 = match_sq * Kp_temp Kp_temp1 = tf.matmul(Kp_temp0,self.D) Kp_temp2 = tf.matmul(self.D,Kp_temp1,transpose_a=True) Kp = Kp.write(i+1,Kp_temp2) # Final calculation. We gather all Kps Kp_stacked = Kp.stack() Kp.close() # combine and get overall kernel aux = tf.multiply(S, Kp_stacked) aux = tf.reduce_sum(aux, -1) sum2 = tf.reduce_sum(aux, -1) Ki = sum2 * match_sq k = tf.linalg.matvec(tf.transpose(Ki),self.order_coefs) return k def kernel_calc_with_grads(self,S): # store squared match coef for easier calc later match_sq = tf.square(self.decay) # calc subkernels for each subsequence length (See Moss et al. 2020 for notation) Kp = tf.TensorArray(tf.float64,size=self.max_subsequence_length,clear_after_read=False) dKp_dgap = tf.TensorArray(tf.float64, size=self.max_subsequence_length, clear_after_read=False) # fill in first entries Kp = Kp.write(0, tf.ones(shape=tf.stack([tf.shape(S)[0], self.maxlen,self.maxlen]), dtype=tf.float64)) dKp_dgap = dKp_dgap.write(0, tf.zeros(shape=tf.stack([tf.shape(S)[0], self.maxlen,self.maxlen]), dtype=tf.float64)) # calculate dynamic programs for i in tf.range(self.max_subsequence_length-1): Kp_temp = tf.multiply(S, Kp.read(i)) Kp_temp0 = match_sq * Kp_temp Kp_temp1 = tf.matmul(Kp_temp0,self.D) Kp_temp2 = tf.matmul(self.D,Kp_temp1,transpose_a=True) Kp = Kp.write(i+1,Kp_temp2) dKp_dgap_temp_1 = tf.matmul(self.dD_dgap,Kp_temp1,transpose_a=True) dKp_dgap_temp_2 = tf.multiply(S, dKp_dgap.read(i)) dKp_dgap_temp_2 = dKp_dgap_temp_2 * match_sq dKp_dgap_temp_2 = tf.matmul(dKp_dgap_temp_2,self.D) dKp_dgap_temp_2 = dKp_dgap_temp_2 + tf.matmul(Kp_temp0,self.dD_dgap) dKp_dgap_temp_2 = tf.matmul(self.D,dKp_dgap_temp_2,transpose_a=True) dKp_dgap = dKp_dgap.write(i+1,dKp_dgap_temp_1 + dKp_dgap_temp_2) # Final calculation. We gather all Kps Kp_stacked = Kp.stack() Kp.close() dKp_dgap_stacked = dKp_dgap.stack() dKp_dgap.close() # combine and get overall kernel # get k aux = tf.multiply(S, Kp_stacked) aux = tf.reduce_sum(aux, -1) sum2 = tf.reduce_sum(aux, -1) Ki = sum2 * match_sq k = tf.linalg.matvec(tf.transpose(Ki),self.order_coefs) # get gap decay grads temp = tf.multiply(S, dKp_dgap_stacked) temp = tf.reduce_sum(temp, -1) temp = tf.reduce_sum(temp, -1) temp = temp * match_sq dk_dgap = tf.linalg.matvec(tf.transpose(temp),self.order_coefs) return k, dk_dgap
the-stack_0_154
from os import getcwd import sys sys.path.append(getcwd() + '/..') # Add src/ dir to import path import traceback import logging from os.path import join from itertools import combinations import networkx as nx import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import libs.osLib as ol def removeDiagonal(A): m = A.shape[0] strided = np.lib.stride_tricks.as_strided s0,s1 = A.strides return strided(A.ravel()[1:], shape=(m-1, m), strides=(s0+s1, s1)).reshape(m, -1) if __name__ == '__main__': root = logging.getLogger() root.setLevel(logging.DEBUG) baseDir, outputDir = '../../data/adjacencyMatrices', '../../data/plots' loadNodeMappings, loadAdjacencies = True, False numClusters = 2 classMapping = { 'time': 'T', 'content': 'C', 'tag': 'G', 'location': 'L', } try: # metapaths = [['time', 'content', 'time'], ['tag', 'content', 'tag'], ['location', 'content', 'location'] ] # ['time', 'content', 'time'] # # metapaths = [['time', 'content', 'time']] metapaths = [[classMapping[t] for t in metapath] for metapath in metapaths] for metapath in metapaths: nodeMapping = ol.loadPickle(join(baseDir, f'nodeMapping.pickle')) # PathSim load similarityM = ol.loadSparce(join(baseDir, f'similarity-{"".join(metapath)}.npz')).toarray() # Sclump load # similarityM = ol.loadNumpy(join(baseDir, f'SClump-similarity.npy')) similarityM = removeDiagonal(similarityM) # Carefull here - we're removing the relation with itself but breaking the mapping from nodeMapping # Remove all zeros print(f'Orig shape: {similarityM.shape}') similarityM = similarityM[~np.all(similarityM == 0, axis=1)] similarityM = similarityM[:, ~np.all(similarityM == 0, axis=0)] print(f'Without zeros shape: {similarityM.shape}') # Plot simple value histogram flattenSim = pd.Series(similarityM.flatten()) g = sns.distplot(flattenSim, kde=False, bins=10) g.set_yscale('log') plt.savefig(join(outputDir, f'similarityValueDistribution-{"".join(metapath)}.png')) plt.title('Value count in Similarity Matrix') print(similarityM.max()) # Count non-zeros per row rowCountNonZero = np.count_nonzero(similarityM, axis=1) # Count max value per row rowCountMax = np.amax(similarityM, 1) # Count min value (that's not a zero) per row rowCountMinNonZero = np.where(similarityM > 0, similarityM, similarityM.max()).min(1) # Count mean value (that's not a zero) per row rowCountMeanNonZero = np.true_divide(similarityM.sum(1), (similarityM!=0).sum(1)) plotDf = None for k, x in { 'Non zeros per row': rowCountNonZero, 'Max per row': rowCountMax, 'Mean per row (no zeros)': rowCountMeanNonZero, 'Min per row (no zeros)': rowCountMinNonZero, }.items(): auxDf = pd.Series(x, name='Count').to_frame() auxDf['Measure'] = k plotDf = auxDf if plotDf is None else pd.concat([plotDf, auxDf], ignore_index=False) # Make boxplot fig, ax = plt.subplots(figsize=(15, 15)) g = sns.boxplot(ax=ax, data=plotDf, x='Measure', y='Count', palette="Set2", showfliers=True, showmeans=True) g.set_yscale('log') g.set_yticklabels(g.get_yticks(), size=16) # g.set_xticklabels(g.get_xticks(), size=16) plt.savefig(join(outputDir, f'statsPerRow-log-{"".join(metapath)}.png')) plt.close() # Make boxplot fig, ax = plt.subplots(figsize=(15, 15)) g = sns.boxplot(ax=ax, data=plotDf, x='Measure', y='Count', palette="Set2", showfliers=False, showmeans=True) g.set_yticklabels(g.get_yticks(), size=16) # g.set_xticklabels(g.get_xticks(), size=16) plt.savefig(join(outputDir, f'statsPerRow-{"".join(metapath)}.png')) plt.close() # Make violin plots fig = plt.figure(figsize=(12, 12)) gs = fig.add_gridspec(3, 2) ax = fig.add_subplot(gs[0, 0]) sns.violinplot(data=similarityM.flatten()) ax.set_xlabel("Similarity as is") ax = fig.add_subplot(gs[0, 1]) sns.violinplot(data=rowCountNonZero) ax.set_xlabel("Non zeros per row") ax = fig.add_subplot(gs[1, 0]) sns.violinplot(rowCountMeanNonZero) ax.set_xlabel("Mean per row (no zeros)") ax = fig.add_subplot(gs[1, 1]) sns.violinplot(rowCountMinNonZero) ax.set_xlabel("Min per row (no zeros)") ax = fig.add_subplot(gs[2, 0]) sns.violinplot(data=rowCountMax) ax.set_xlabel("Max per row") fig.tight_layout() plt.savefig(join(outputDir, f'statsViolinPerRow-{"".join(metapath)}.png')) plt.close() # Plot as matrix """ fig = plt.figure(figsize=(15, 15)) ax = plt.axes() plt.spy(similarityM, precision=0.1, marker='.', markersize=0.05) plt.savefig(join(outputDir, f'similarityMatrixPlot-{"".join(metapath)}.png')) plt.close() """ # Select top k most similiar or wtv # Pick their similarity vectors # Plot them except Exception as ex: print(traceback.format_exc())
the-stack_0_155
import asyncio import datetime import logging import json import functools import re import csv from io import StringIO, BytesIO from pathlib import Path from tabulate import tabulate from typing import List, Literal, Optional, Union import discord from redbot.core import Config, checks, commands from redbot.core.i18n import Translator, cog_i18n from redbot.core.utils.chat_formatting import pagify, humanize_timedelta, humanize_list, box from redbot.core.utils.menus import start_adding_reactions from redbot.core.utils.predicates import ReactionPredicate from .api import DestinyAPI from .converter import DestinyActivity, StatsPage, SearchInfo, DestinyEververseItemType from .errors import Destiny2APIError, Destiny2MissingManifest from .menus import BaseMenu, BasePages DEV_BOTS = [552261846951002112] # If you want parsing the manifest data to be easier add your # bots ID to this list otherwise this should help performance # on bots that are just running the cog like normal BASE_URL = "https://www.bungie.net/Platform" IMAGE_URL = "https://www.bungie.net" AUTH_URL = "https://www.bungie.net/en/oauth/authorize" TOKEN_URL = "https://www.bungie.net/platform/app/oauth/token/" _ = Translator("Destiny", __file__) log = logging.getLogger("red.trusty-cogs.Destiny") @cog_i18n(_) class Destiny(DestinyAPI, commands.Cog): """ Get information from the Destiny 2 API """ __version__ = "1.5.5" __author__ = "TrustyJAID" def __init__(self, bot): self.bot = bot default_global = { "api_token": {"api_key": "", "client_id": "", "client_secret": ""}, "manifest_version": "", } default_user = {"oauth": {}, "account": {}} self.config = Config.get_conf(self, 35689771456) self.config.register_global(**default_global) self.config.register_user(**default_user) self.config.register_guild(clan_id=None) self.throttle: float = 0 def format_help_for_context(self, ctx: commands.Context) -> str: """ Thanks Sinbad! """ pre_processed = super().format_help_for_context(ctx) return f"{pre_processed}\n\nCog Version: {self.__version__}" async def red_delete_data_for_user( self, *, requester: Literal["discord_deleted_user", "owner", "user", "user_strict"], user_id: int, ): """ Method for finding a user's data inside the cog and deleting it. """ await self.config.user_from_id(user_id).clear() @commands.group() async def destiny(self, ctx: commands.Context) -> None: """Get information from the Destiny 2 API""" pass @destiny.command() async def forgetme(self, ctx: commands.Context) -> None: """ Remove your authorization to the destiny API on the bot """ await self.red_delete_data_for_user(requester="user", user_id=ctx.author.id) await ctx.send(_("Your authorization has been reset.")) @destiny.group(aliases=["s"]) async def search(self, ctx: commands.Context) -> None: """ Search for a destiny item, vendor, record, etc. """ pass async def get_weapon_possible_perks(self, weapon: dict) -> dict: perks = {} slot_counter = 1 count = 2 for socket in weapon["sockets"]["socketEntries"]: if socket["singleInitialItemHash"] in [ 4248210736, 2323986101, 0, 2285418970, 1282012138, 2993594586, ]: continue if socket["socketTypeHash"] in [2218962841, 1282012138, 1456031260]: continue if "randomizedPlugSetHash" in socket: pool = ( await self.get_definition( "DestinyPlugSetDefinition", [socket["randomizedPlugSetHash"]] ) )[str(socket["randomizedPlugSetHash"])] pool_perks = [v["plugItemHash"] for v in pool["reusablePlugItems"]] all_perks = await self.get_definition( "DestinyInventoryItemLiteDefinition", pool_perks ) try: # https://stackoverflow.com/questions/44914727/get-first-and-second-values-in-dictionary-in-cpython-3-6 it = iter(all_perks.values()) key_hash = next(it)["itemCategoryHashes"][0] key_data = ( await self.get_definition("DestinyItemCategoryDefinition", [key_hash]) )[str(key_hash)] key = key_data["displayProperties"]["name"] if key in perks: key = f"{key} {count}" count += 1 except IndexError: key = _("Perk {count}").format(count=slot_counter) perks[key] = "\n".join( [p["displayProperties"]["name"] for h, p in all_perks.items()] ) slot_counter += 1 continue if "reusablePlugSetHash" in socket: pool = ( await self.get_definition( "DestinyPlugSetDefinition", [socket["reusablePlugSetHash"]] ) )[str(socket["reusablePlugSetHash"])] pool_perks = [v["plugItemHash"] for v in pool["reusablePlugItems"]] all_perks = await self.get_definition( "DestinyInventoryItemLiteDefinition", pool_perks ) try: it = iter(all_perks.values()) key_hash = next(it)["itemCategoryHashes"][0] key_data = ( await self.get_definition("DestinyItemCategoryDefinition", [key_hash]) )[str(key_hash)] key = key_data["displayProperties"]["name"] if key in perks: key = f"{key} {count}" count += 1 except IndexError: key = _("Perk {count}").format(count=slot_counter) perks[key] = "\n".join( [p["displayProperties"]["name"] for h, p in all_perks.items()] ) slot_counter += 1 continue perk_hash = socket["singleInitialItemHash"] perk = (await self.get_definition("DestinyInventoryItemLiteDefinition", [perk_hash]))[ str(perk_hash) ] try: it = iter(all_perks.values()) key_hash = next(it)["itemCategoryHashes"][0] key_data = ( await self.get_definition("DestinyItemCategoryDefinition", [key_hash]) )[str(key_hash)] key = key_data[0]["displayProperties"]["name"] if key in perks: key = f"{key} {count}" count += 1 except (IndexError, KeyError): key = _("Perk {count}").format(count=slot_counter) perks[key] = perk["displayProperties"]["name"] slot_counter += 1 return perks @search.command(aliases=["item"]) @commands.bot_has_permissions(embed_links=True) @commands.max_concurrency(1, commands.BucketType.default) async def items( self, ctx: commands.Context, details_or_lore: Optional[SearchInfo] = None, *, search: str ) -> None: """ Search for a specific item in Destiny 2 `[details_or_lore]` signify what information to display for the item by default this command will show all available perks on weapons using `details`, `true`, or `stats` will show the weapons stat bars using `lore` here will instead display the weapons lore card instead if it exists. """ show_lore = True if details_or_lore is False else False if search.startswith("lore "): search = search.replace("lore ", "") async with ctx.typing(): try: items = await self.search_definition("DestinyInventoryItemDefinition", search) except Destiny2MissingManifest as e: await ctx.send(e) return if not items: await ctx.send(_("`{search}` could not be found.").format(search=search)) return embeds = [] # log.debug(items[0]) for item_hash, item in items.items(): if not (item["equippable"]): continue embed = discord.Embed() description = item["flavorText"] + "\n\n" damage_type = "" try: damage_data = ( await self.get_definition( "DestinyDamageTypeDefinition", [item["defaultDamageTypeHash"]] ) )[str(item["defaultDamageTypeHash"])] damage_type = damage_data["displayProperties"]["name"] except KeyError: pass if item["itemType"] in [3] and not show_lore: stats_str = "" rpm = "" recoil = "" magazine = "" for stat_hash, value in item["stats"]["stats"].items(): if stat_hash in ["1935470627", "1480404414", "1885944937"]: continue stat_info = ( await self.get_definition("DestinyStatDefinition", [stat_hash]) )[str(stat_hash)] stat_name = stat_info["displayProperties"]["name"] if not stat_name: continue prog = "█" * int(value["value"] / 10) empty = "░" * int((100 - value["value"]) / 10) bar = f"{prog}{empty}" if stat_hash == "4284893193": rpm = f"{stat_name}: **{value['value']}**\n" continue if stat_hash == "3871231066": recoil = f"{stat_name}: **{value['value']}**\n" continue if stat_hash == "2715839340": magazine = f"{stat_name}: **{value['value']}**\n" continue if details_or_lore: stats_str += f"{stat_name}: **{value['value']}** \n{bar}\n" stats_str += rpm + recoil + magazine description += stats_str embed.description = description perks = await self.get_weapon_possible_perks(item) for key, value in perks.items(): embed.add_field(name=key, value=value[:1024]) if "loreHash" in item and (show_lore or item["itemType"] in [2]): lore = ( await self.get_definition("DestinyLoreDefinition", [item["loreHash"]]) )[str(item["loreHash"])] description += _("Lore: \n\n") + lore["displayProperties"]["description"] if len(description) > 2048: count = 0 for page in pagify(description, page_length=1024): if count == 0: embed.description = page else: embed.add_field(name=_("Lore Continued"), value=page) count += 1 else: embed.description = description embed.title = damage_type + " " + item["itemTypeAndTierDisplayName"] name = item["displayProperties"]["name"] icon_url = IMAGE_URL + item["displayProperties"]["icon"] embed.set_author(name=name, icon_url=icon_url) embed.set_thumbnail(url=icon_url) if item.get("screenshot", False): embed.set_image(url=IMAGE_URL + item["screenshot"]) embeds.append(embed) await BaseMenu( source=BasePages( pages=embeds, ), delete_message_after=False, clear_reactions_after=True, timeout=60, cog=self, page_start=0, ).start(ctx=ctx) async def check_gilded_title(self, chars: dict, title: dict) -> bool: """ Checks a players records for a completed gilded title """ gilding_hash = title["titleInfo"].get("gildingTrackingRecordHash", None) records = chars["profileRecords"]["data"]["records"] if str(gilding_hash) in records: for objective in records[str(gilding_hash)]["objectives"]: if objective["complete"]: return True return False @destiny.command(name="joinme") @commands.bot_has_permissions(embed_links=True) async def destiny_join_command(self, ctx: commands.Context) -> None: """ Get your Steam ID to give people to join your in-game fireteam """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) bungie_id = await self.config.user(ctx.author).oauth.membership_id() creds = await self.get_bnet_user(ctx.author, bungie_id) steam_id = "" for cred in creds: if "credentialAsString" in cred: steam_id = cred["credentialAsString"] join_code = f"\n```py\n/join {steam_id}\n```" msg = _( "Use the following code in game to join {author}'s Fireteam:{join_code}" ).format(author=ctx.author.display_name, join_code=join_code) join_code = f"\n```py\n/join {steam_id}\n```" await ctx.send(msg) @destiny.group() @commands.bot_has_permissions(embed_links=True) async def clan(self, ctx: commands.Context) -> None: """ Clan settings """ return @clan.command(name="info") @commands.bot_has_permissions(embed_links=True) async def show_clan_info(self, ctx: commands.Context, clan_id: Optional[str]): """ Display basic information about the clan set in this server """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) if clan_id: clan_re = re.compile( r"(https:\/\/)?(www\.)?bungie\.net\/.*(groupid=(\d+))", flags=re.I ) clan_invite = clan_re.search(clan_id) if clan_invite: clan_id = clan_invite.group(4) else: clan_id = await self.config.guild(ctx.guild).clan_id() if not clan_id: return await ctx.send( _( "No clan ID has been setup for this server. " "Use `{prefix}destiny clan set` to set one." ).format(prefix=ctx.clean_prefix) ) try: clan_info = await self.get_clan_info(ctx.author, clan_id) embed = await self.make_clan_embed(clan_info) except Exception: log.exception("Error getting clan info") return await ctx.send( _("I could not find any information about this servers clan.") ) else: await ctx.send(embed=embed) async def make_clan_embed(self, clan_info: dict) -> discord.Embed: clan_id = clan_info["detail"]["groupId"] clan_name = clan_info["detail"]["name"] clan_about = clan_info["detail"]["about"] clan_motto = clan_info["detail"]["motto"] clan_callsign = clan_info["detail"]["clanInfo"]["clanCallsign"] clan_xp_data = clan_info["detail"]["clanInfo"]["d2ClanProgressions"]["584850370"] weekly_progress = clan_xp_data["weeklyProgress"] weekly_limit = clan_xp_data["weeklyLimit"] level = clan_xp_data["level"] level_cap = clan_xp_data["levelCap"] members = clan_info["detail"]["memberCount"] max_members = clan_info["detail"]["features"]["maximumMembers"] clan_creation_date = datetime.datetime.strptime( clan_info["detail"]["creationDate"], "%Y-%m-%dT%H:%M:%S.%fZ" ) clan_create_str = clan_creation_date.strftime("%I:%M %p %Y-%m-%d") clan_xp_str = _( "Level: {level}/{level_cap}\nWeekly Progress: " "{weekly_progress}/{weekly_limit}" ).format( level=level, level_cap=level_cap, weekly_progress=weekly_progress, weekly_limit=weekly_limit, ) join_link = f"https://www.bungie.net/en/ClanV2?groupid={clan_id}" embed = discord.Embed( title=f"{clan_name} [{clan_callsign}]", description=clan_about, url=join_link ) embed.add_field(name=_("Motto"), value=clan_motto, inline=False) embed.add_field(name=_("Clan XP"), value=clan_xp_str) embed.add_field(name=_("Members"), value=f"{members}/{max_members}") embed.add_field(name=_("Clan Founded"), value=clan_create_str) return embed @clan.command(name="set") @commands.bot_has_permissions(embed_links=True) @commands.admin_or_permissions(manage_guild=True) async def set_clan_id(self, ctx: commands.Context, clan_id: str) -> None: """ Set the clan ID for this server `<clan_id>` Must be either the clan's ID or you can provide the clan invite link at the `clan profile` setting on bungie.net example link: `https://www.bungie.net/en/ClanV2?groupid=1234567` the numbers after `groupid=` is the clan ID. """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) clan_re = re.compile( r"(https:\/\/)?(www\.)?bungie\.net\/.*(groupid=(\d+))", flags=re.I ) clan_invite = clan_re.search(clan_id) if clan_invite: clan_id = clan_invite.group(4) try: clan_info = await self.get_clan_info(ctx.author, clan_id) embed = await self.make_clan_embed(clan_info) except Exception: log.exception("Error getting clan info") return await ctx.send(_("I could not find a clan with that ID.")) else: await self.config.guild(ctx.guild).clan_id.set(clan_id) await ctx.send(_("Server's clan set to"), embed=embed) async def destiny_pick_profile( self, ctx: commands.Context, pending_users: dict ) -> Optional[dict]: """ Allows a clan admin to pick the user they want to approve in the clan """ users = pending_users["results"][:9] embed = discord.Embed( title=_("Pending Clan Members"), description=_("React with the user you would like to approve into the clan."), ) for index, user in enumerate(pending_users["results"]): destiny_name = user["destinyUserInfo"]["LastSeenDisplayName"] bungie_name = user["bungieNetUserInfo"]["displayName"] msg = _("Destiny/Steam Name: {destiny_name}\nBungie.net Name: {bungie_name}").format( destiny_name=destiny_name, bungie_name=bungie_name ) embed.add_field(name=_("User {count}").format(count=index + 1), value=msg) msg = await ctx.send(embed=embed) emojis = ReactionPredicate.NUMBER_EMOJIS[1 : len(users) + 1] start_adding_reactions(msg, emojis) pred = ReactionPredicate.with_emojis(emojis, msg) try: await ctx.bot.wait_for("reaction_add", check=pred) except asyncio.TimeoutError: return None else: return users[pred.result] @clan.command(name="pending") @commands.bot_has_permissions(embed_links=True) @commands.admin_or_permissions(manage_guild=True) async def clan_pending(self, ctx: commands.Context) -> None: """ Display pending clan members. Clan admin can further approve specified clan members by reacting to the resulting message. """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) clan_id = await self.config.guild(ctx.guild).clan_id() if not clan_id: return await ctx.send( _( "No clan ID has been setup for this server. " "Use `{prefix}destiny clan set` to set one." ).format(prefix=ctx.clean_prefix) ) clan_pending = await self.get_clan_pending(ctx.author, clan_id) if not clan_pending["results"]: return await ctx.send(_("There is no one pending clan approval.")) approved = await self.destiny_pick_profile(ctx, clan_pending) if not approved: return await ctx.send(_("No one will be approved into the clan.")) try: destiny_name = approved["destinyUserInfo"]["LastSeenDisplayName"] bungie_name = approved["bungieNetUserInfo"]["displayName"] membership_id = approved["destinyUserInfo"]["membershipId"] membership_type = approved["destinyUserInfo"]["membershipType"] await self.approve_clan_pending( ctx.author, clan_id, membership_type, membership_id, approved ) except Destiny2APIError as e: log.exception("error approving clan member.") await ctx.send(str(e)) else: await ctx.send( _("{destiny_name} AKA {bungie_name} has been approved into the clan.").format( destiny_name=destiny_name, bungie_name=bungie_name ) ) @clan.command(name="roster") @commands.bot_has_permissions(embed_links=True) @commands.mod_or_permissions(manage_messages=True) async def get_clan_roster(self, ctx: commands.Context, output_format: Optional[str]) -> None: """ Get the full clan roster `[output_format]` if `csv` is provided this will upload a csv file of the clan roster instead of displaying the output. """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) clan_id = await self.config.guild(ctx.guild).clan_id() if not clan_id: return await ctx.send( _( "No clan ID has been setup for this server. " "Use `{prefix}destiny clan set` to set one." ).format(prefix=ctx.clean_prefix) ) clan = await self.get_clan_members(ctx.author, clan_id) headers = [ "Discord Name", "Discord ID", "Destiny Name", "Destiny ID", "Bungie.net Name", "Bungie.net ID", "Last Seen Destiny", "Steam ID", "Join Date", ] clan_mems = "" rows = [] saved_users = await self.config.all_users() for member in clan["results"]: last_online = datetime.datetime.utcfromtimestamp( int(member["lastOnlineStatusChange"]) ) join_date = datetime.datetime.strptime(member["joinDate"], "%Y-%m-%dT%H:%M:%SZ") destiny_name = member["destinyUserInfo"]["LastSeenDisplayName"] destiny_id = member["destinyUserInfo"]["membershipId"] clan_mems += destiny_name + "\n" discord_id = None discord_name = None bungie_id = None bungie_name = None steam_id = None try: bungie_id = member["bungieNetUserInfo"]["membershipId"] bungie_name = member["bungieNetUserInfo"]["displayName"] creds = await self.get_bnet_user(ctx.author, bungie_id) steam_id = "" for cred in creds: if "credentialAsString" in cred: steam_id = cred["credentialAsString"] except Exception: pass for user_id, data in saved_users.items(): if data["oauth"]["membership_id"] == bungie_id: discord_user = ctx.guild.get_member(int(user_id)) if discord_user: discord_name = str(discord_user) discord_id = discord_user.id user_info = [ discord_name, f"'{discord_id}" if discord_id else None, destiny_name, f"'{destiny_id}" if destiny_id else None, bungie_name, f"'{bungie_id}" if bungie_id else None, last_online, f"'{steam_id}" if steam_id else None, str(join_date), ] rows.append(user_info) if output_format == "csv": outfile = StringIO() employee_writer = csv.writer( outfile, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL ) employee_writer.writerow(headers) for row in rows: employee_writer.writerow(row) outfile.seek(0) file = discord.File(outfile, filename="clan_roster.csv") await ctx.send(file=file) elif output_format == "md": data = tabulate(rows, headers=headers, tablefmt="github") file = discord.File(BytesIO(data.encode()), filename="clan_roster.md") await ctx.send(file=file) else: data = tabulate(rows, headers=headers, tablefmt="pretty") for page in pagify(data, page_length=1990): await ctx.send(box(page, lang="css")) @destiny.command() @commands.bot_has_permissions(embed_links=True) async def user(self, ctx: commands.Context, user: discord.Member = None) -> None: """ Display a menu of your basic character's info `[user]` A member on the server who has setup their account on this bot. """ async with ctx.typing(): if not await self.has_oauth(ctx, user): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) if not user: user = ctx.author try: chars = await self.get_characters(user) # await self.save(chars, "character.json") except Destiny2APIError as e: log.error(e, exc_info=True) msg = _("I can't seem to find your Destiny profile.") await ctx.send(msg) return embeds = [] currency_datas = await self.get_definition( "DestinyInventoryItemLiteDefinition", [v["itemHash"] for v in chars["profileCurrencies"]["data"]["items"]], ) player_currency = "" for item in chars["profileCurrencies"]["data"]["items"]: quantity = item["quantity"] name = currency_datas[str(item["itemHash"])]["displayProperties"]["name"] player_currency += f"{name}: **{quantity}**\n" for char_id, char in chars["characters"]["data"].items(): info = "" race = (await self.get_definition("DestinyRaceDefinition", [char["raceHash"]]))[ str(char["raceHash"]) ] gender = ( await self.get_definition("DestinyGenderDefinition", [char["genderHash"]]) )[str(char["genderHash"])] char_class = ( await self.get_definition("DestinyClassDefinition", [char["classHash"]]) )[str(char["classHash"])] info += "{race} {gender} {char_class} ".format( race=race["displayProperties"]["name"], gender=gender["displayProperties"]["name"], char_class=char_class["displayProperties"]["name"], ) titles = "" if "titleRecordHash" in char: # TODO: Add fetch for Destiny.Definitions.Records.DestinyRecordDefinition char_title = ( await self.get_definition( "DestinyRecordDefinition", [char["titleRecordHash"]] ) )[str(char["titleRecordHash"])] title_info = "**{title_name}**\n{title_desc}\n" try: gilded = "" if await self.check_gilded_title(chars, char_title): gilded = _("Gilded ") title_name = ( f"{gilded}" + char_title["titleInfo"]["titlesByGenderHash"][ str(char["genderHash"]) ] ) title_desc = char_title["displayProperties"]["description"] titles += title_info.format(title_name=title_name, title_desc=title_desc) except KeyError: pass embed = discord.Embed(title=info) embed.set_author(name=user.display_name, icon_url=user.avatar_url) if "emblemPath" in char: embed.set_thumbnail(url=IMAGE_URL + char["emblemPath"]) if titles: # embed.add_field(name=_("Titles"), value=titles) embed.set_author( name=f"{user.display_name} ({title_name})", icon_url=user.avatar_url ) # log.debug(data) stats_str = "" time_played = humanize_timedelta(seconds=int(char["minutesPlayedTotal"]) * 60) for stat_hash, value in char["stats"].items(): stat_info = (await self.get_definition("DestinyStatDefinition", [stat_hash]))[ str(stat_hash) ] stat_name = stat_info["displayProperties"]["name"] prog = "█" * int(value / 10) empty = "░" * int((100 - value) / 10) bar = f"{prog}{empty}" if stat_hash == "1935470627": bar = "" stats_str += f"{stat_name}: **{value}** \n{bar}\n" stats_str += _("Time Played Total: **{time}**").format(time=time_played) embed.description = stats_str embed = await self.get_char_colour(embed, char) if titles: embed.add_field(name=_("Titles"), value=titles) embed.add_field(name=_("Current Currencies"), value=player_currency) embeds.append(embed) await BaseMenu( source=BasePages( pages=embeds, ), delete_message_after=False, clear_reactions_after=True, timeout=60, cog=self, page_start=0, ).start(ctx=ctx) @search.command() @commands.bot_has_permissions(embed_links=True) async def lore(self, ctx: commands.Context, entry: str = None) -> None: """ Find Destiny Lore """ try: # the below is to prevent blocking reading the large # ~130mb manifest files and save on API calls task = functools.partial(self.get_entities, entity="DestinyLoreDefinition") task = self.bot.loop.run_in_executor(None, task) data: dict = await asyncio.wait_for(task, timeout=60) except Exception: return await ctx.send(_("The manifest needs to be downloaded for this to work.")) lore = [] for entry_hash, entries in data.items(): em = discord.Embed(title=entries["displayProperties"]["name"]) description = entries["displayProperties"]["description"] if len(description) < 2048: em.description = entries["displayProperties"]["description"] elif len(description) > 2048 and len(description) < 6000: em.description = description[:2048] new_desc = description[:2048] parts = [new_desc[i : i + 1024] for i in range(0, len(new_desc), 1024)] for i in parts: em.add_field(name=_("Continued"), value=i) if entries["displayProperties"]["hasIcon"]: icon = entries["displayProperties"]["icon"] em.set_thumbnail(url=f"{IMAGE_URL}{icon}") lore.append(em) if entry: for t in lore: if entry.lower() in str(t.title).lower(): print(t.title) lore.insert(0, lore.pop(lore.index(t))) await BaseMenu( source=BasePages( pages=embeds, ), delete_message_after=False, clear_reactions_after=True, timeout=60, cog=self, page_start=0, ).start(ctx=ctx) async def save(self, data: dict, loc: str = "sample.json"): if self.bot.user.id not in DEV_BOTS: return base_path = Path(__file__).parent path = base_path / loc with path.open(encoding="utf-8", mode="w") as f: json.dump(data, f, indent=4, sort_keys=False, separators=(",", " : ")) @destiny.command(aliases=["xûr"]) @commands.bot_has_permissions(embed_links=True) async def xur(self, ctx: commands.Context, full: bool = False) -> None: """ Display a menu of Xûr's current wares `[full=False]` Show perk definition on Xûr's current wares """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) try: chars = await self.get_characters(ctx.author) # await self.save(chars, "characters.json") except Destiny2APIError: # log.debug(e) msg = _("I can't seem to find your Destiny profile.") await ctx.send(msg) return for char_id, char in chars["characters"]["data"].items(): # log.debug(char) try: xur = await self.get_vendor(ctx.author, char_id, "2190858386") xur_def = ( await self.get_definition("DestinyVendorDefinition", ["2190858386"]) )["2190858386"] except Destiny2APIError: log.error("I can't seem to see Xûr at the moment") today = datetime.datetime.utcnow() friday = today.replace(hour=17, minute=0, second=0) + datetime.timedelta( (4 - today.weekday()) % 7 ) next_xur = self.humanize_timedelta(timedelta=(friday - today)) await ctx.send( _("Xûr's not around, come back in {next_xur}.").format(next_xur=next_xur) ) return break # items = [v["itemHash"] for k, v in xur["sales"]["data"].items()] embeds: List[discord.Embed] = [] # data = await self.get_definition("DestinyInventoryItemDefinition", items) embed = discord.Embed( colour=discord.Colour.red(), description=xur_def["displayProperties"]["description"], ) embed.set_thumbnail( url=IMAGE_URL + xur_def["displayProperties"]["largeTransparentIcon"] ) embed.set_author(name="Xûr's current wares") # location = xur_def["locations"][0]["destinationHash"] # log.debug(await self.get_definition("DestinyDestinationDefinition", [location])) for index, item_base in xur["sales"]["data"].items(): item = ( await self.get_definition( "DestinyInventoryItemDefinition", [item_base["itemHash"]] ) )[str(item_base["itemHash"])] if not (item["equippable"]): continue perk_hashes = [ str(p["singleInitialItemHash"]) for p in item["sockets"]["socketEntries"] ] perk_data = await self.get_definition( "DestinyInventoryItemDefinition", perk_hashes ) perks = "" item_embed = discord.Embed(title=item["displayProperties"]["name"]) item_embed.set_thumbnail(url=IMAGE_URL + item["displayProperties"]["icon"]) item_embed.set_image(url=IMAGE_URL + item["screenshot"]) for perk_hash, perk in perk_data.items(): properties = perk["displayProperties"] if "Common" in perk["itemTypeAndTierDisplayName"]: continue if ( properties["name"] == "Empty Mod Socket" or properties["name"] == "Default Ornament" or properties["name"] == "Change Energy Type" or properties["name"] == "Empty Catalyst Socket" ): continue if "name" in properties and "description" in properties: if not properties["name"]: continue # await self.save(perk, properties["name"] + ".json") if full: perks += "**{0}** - {1}\n".format( properties["name"], properties["description"] ) else: perks += "- **{0}**\n".format(properties["name"]) stats_str = "" if "armor" in item["equippingBlock"]["uniqueLabel"]: total = 0 for stat_hash, stat_data in xur["itemComponents"]["stats"]["data"][index][ "stats" ].items(): stat_info = ( await self.get_definition("DestinyStatDefinition", [stat_hash]) )[str(stat_hash)] stat_name = stat_info["displayProperties"]["name"] stat_value = stat_data["value"] prog = "█" * int(stat_value / 6) empty = "░" * int((42 - stat_value) / 6) bar = f"{prog}{empty}" stats_str += f"{stat_name}: \n{bar} **{stat_value}**\n" total += stat_value stats_str += _("Total: **{total}**\n").format(total=total) msg = ( item["itemTypeAndTierDisplayName"] + "\n" + stats_str + (item["displayProperties"]["description"] + "\n" if full else "") + perks ) item_embed.description = msg embed.insert_field_at( 0, name="**__" + item["displayProperties"]["name"] + "__**\n", value=msg ) embeds.insert(0, item_embed) embeds.insert(0, embed) # await ctx.send(embed=embed) # await ctx.tick() await BaseMenu( source=BasePages( pages=embeds, ), delete_message_after=False, clear_reactions_after=True, timeout=60, cog=self, page_start=0, ).start(ctx=ctx) @destiny.command() @commands.bot_has_permissions(embed_links=True) async def eververse( self, ctx: commands.Context, *, item_types: Optional[DestinyEververseItemType] ) -> None: """ Display items currently available on the Eververse in a menu `[item_types]` can be one of `ghosts`, `ships`, `sparrows`, `shaders`, `ornaments` and `finishers` to filter specific items. """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) if not item_types: item_types = {"item_types": [9, 19, 21, 22, 24, 29], "item_sub_types": [21, 20]} try: chars = await self.get_characters(ctx.author) except Destiny2APIError: # log.debug(e) msg = _("I can't seem to find your Destiny profile.") await ctx.send(msg) return embeds: List[discord.Embed] = [] eververse_sales = {} for char_id, char in chars["characters"]["data"].items(): try: ev = await self.get_vendor(ctx.author, char_id, "3361454721") eververse_sales.update(ev["sales"]["data"]) except Destiny2APIError: log.error("I can't seem to see the eververse at the moment", exc_info=True) await ctx.send(_("I can't access the eververse at the moment.")) return await self.save(eververse_sales, "eververse.json") embeds = [] item_hashes = [i["itemHash"] for k, i in eververse_sales.items()] item_defs = await self.get_definition("DestinyInventoryItemDefinition", item_hashes) item_costs = [c["itemHash"] for k, i in eververse_sales.items() for c in i["costs"]] item_cost_defs = await self.get_definition( "DestinyInventoryItemDefinition", item_costs ) for item_hash, vendor_item in eververse_sales.items(): item = item_defs[str(vendor_item["itemHash"])] if ( item["itemType"] not in item_types["item_types"] and item_types["item_types"] != [] ): # log.debug("ignoring item from type %s" % item["itemType"]) continue if ( item["itemSubType"] not in item_types["item_sub_types"] and item_types["item_sub_types"] != [] ): # log.debug("ignoring item from sub type %s" % item["itemSubType"]) continue embed = discord.Embed() embed.description = item["displayProperties"]["description"] embed.title = item["itemTypeAndTierDisplayName"] name = item["displayProperties"]["name"] icon_url = IMAGE_URL + item["displayProperties"]["icon"] embed.set_author(name=name, icon_url=icon_url) embed.set_thumbnail(url=icon_url) cost_str = "" for costs in vendor_item["costs"]: cost = costs["quantity"] cost_name = item_cost_defs[str(costs["itemHash"])]["displayProperties"]["name"] cost_str += f"{cost_name}: **{cost}**\n" embed.add_field(name=_("Cost"), value=cost_str) if "screenshot" in item: embed.set_image(url=IMAGE_URL + item["screenshot"]) embeds.append(embed) if embeds == []: return await ctx.send(_("I can't access the eververse at the moment.")) # await ctx.tick() await BaseMenu( source=BasePages( pages=embeds, ), delete_message_after=False, clear_reactions_after=True, timeout=60, cog=self, page_start=0, ).start(ctx=ctx) @destiny.command() @commands.bot_has_permissions(embed_links=True) async def spider(self, ctx: commands.Context) -> None: """ Display Spiders wares """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) try: chars = await self.get_characters(ctx.author) except Destiny2APIError: # log.debug(e) msg = _("I can't seem to find your Destiny profile.") await ctx.send(msg) return for char_id, char in chars["characters"]["data"].items(): try: spider = await self.get_vendor(ctx.author, char_id, "863940356") spider_def = ( await self.get_definition("DestinyVendorDefinition", ["863940356"]) )["863940356"] except Destiny2APIError: log.error("I can't seem to see the Spider at the moment", exc_info=True) await ctx.send(_("I can't access the Spider at the moment.")) return break # await self.save(spider, "spider.json") currency_datas = await self.get_definition( "DestinyInventoryItemLiteDefinition", [v["itemHash"] for v in chars["profileCurrencies"]["data"]["items"]], ) embed = discord.Embed(description=spider_def["displayProperties"]["description"]) embed.set_thumbnail( url=IMAGE_URL + spider_def["displayProperties"]["largeTransparentIcon"] ) embed.set_author( name=spider_def["displayProperties"]["name"] + ", " + spider_def["displayProperties"]["subtitle"] ) item_hashes = [i["itemHash"] for k, i in spider["sales"]["data"].items()] item_defs = await self.get_definition( "DestinyInventoryItemLiteDefinition", item_hashes ) item_costs = [ c["itemHash"] for k, i in spider["sales"]["data"].items() for c in i["costs"] ] item_cost_defs = await self.get_definition( "DestinyInventoryItemLiteDefinition", item_costs ) for key, data in spider["sales"]["data"].items(): item_hash = data["itemHash"] item = item_defs[str(item_hash)] if item["itemType"] in [0, 26]: continue try: costs = data["costs"][0] cost = item_cost_defs[str(costs["itemHash"])] cost_str = str(costs["quantity"]) + " " + cost["displayProperties"]["name"] except IndexError: cost_str = "None" embed.add_field(name=item["displayProperties"]["name"], value=cost_str) await asyncio.sleep(0) player_currency = "" for item in chars["profileCurrencies"]["data"]["items"]: quantity = item["quantity"] name = currency_datas[str(item["itemHash"])]["displayProperties"]["name"] player_currency += f"{name}: **{quantity}**\n" embed.add_field(name=_("Current Currencies"), value=player_currency) await ctx.send(embed=embed) @destiny.command(aliases=["banshee-44"]) @commands.bot_has_permissions(embed_links=True) async def banshee(self, ctx: commands.Context) -> None: """ Display Banshee-44's wares """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) try: chars = await self.get_characters(ctx.author) except Destiny2APIError: # log.debug(e) msg = _("I can't seem to find your Destiny profile.") await ctx.send(msg) return for char_id, char in chars["characters"]["data"].items(): try: banshee = await self.get_vendor(ctx.author, char_id, "672118013") banshee_def = ( await self.get_definition("DestinyVendorDefinition", ["672118013"]) )["672118013"] await self.save(banshee, "banshee.json") except Destiny2APIError: log.error( "I can't seem to see the Banshee-44's wares at the moment", exc_info=True ) await ctx.send(_("I can't access the Banshee-44 at the moment.")) return break # await self.save(spider, "spider.json") embed = discord.Embed(description=banshee_def["displayProperties"]["description"]) embed.set_thumbnail( url=IMAGE_URL + banshee_def["displayProperties"]["largeTransparentIcon"] ) embed.set_author( name=banshee_def["displayProperties"]["name"] + ", " + banshee_def["displayProperties"]["subtitle"] ) item_hashes = [i["itemHash"] for k, i in banshee["sales"]["data"].items()] item_defs = await self.get_definition( "DestinyInventoryItemLiteDefinition", item_hashes ) item_costs = [ c["itemHash"] for k, i in banshee["sales"]["data"].items() for c in i["costs"] ] item_cost_defs = await self.get_definition( "DestinyInventoryItemLiteDefinition", item_costs ) for key, data in banshee["sales"]["data"].items(): item_hash = data["itemHash"] item = item_defs[str(item_hash)] if item["itemType"] in [0]: continue try: costs = data["costs"][0] cost = item_cost_defs[str(costs["itemHash"])] cost_str = str(costs["quantity"]) + " " + cost["displayProperties"]["name"] except IndexError: cost_str = "None" embed.add_field(name=item["displayProperties"]["name"], value=cost_str) await asyncio.sleep(0) await ctx.send(embed=embed) @destiny.command() @commands.bot_has_permissions(embed_links=True, add_reactions=True) async def loadout( self, ctx: commands.Context, full: Optional[bool] = False, user: discord.Member = None ) -> None: """ Display a menu of each character's equipped weapons and their info `[full=False]` Display full information about weapons equipped. `[user]` A member on the server who has setup their account on this bot. """ async with ctx.typing(): if not await self.has_oauth(ctx, user): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) if not user: user = ctx.author try: chars = await self.get_characters(user) except Destiny2APIError: # log.debug(e) msg = _("I can't seem to find your Destiny profile.") await ctx.send(msg) return embeds = [] for char_id, char in chars["characters"]["data"].items(): info = "" race = (await self.get_definition("DestinyRaceDefinition", [char["raceHash"]]))[ str(char["raceHash"]) ] gender = ( await self.get_definition("DestinyGenderDefinition", [char["genderHash"]]) )[str(char["genderHash"])] char_class = ( await self.get_definition("DestinyClassDefinition", [char["classHash"]]) )[str(char["classHash"])] info += "{race} {gender} {char_class} ".format( race=race["displayProperties"]["name"], gender=gender["displayProperties"]["name"], char_class=char_class["displayProperties"]["name"], ) titles = "" if "titleRecordHash" in char: # TODO: Add fetch for Destiny.Definitions.Records.DestinyRecordDefinition char_title = ( await self.get_definition( "DestinyRecordDefinition", [char["titleRecordHash"]] ) )[str(char["titleRecordHash"])] title_info = "**{title_name}**\n{title_desc}\n" try: gilded = "" if await self.check_gilded_title(chars, char_title): gilded = _("Gilded ") title_name = ( f"{gilded}" + char_title["titleInfo"]["titlesByGenderHash"][ str(char["genderHash"]) ] ) title_desc = char_title["displayProperties"]["description"] titles += title_info.format(title_name=title_name, title_desc=title_desc) except KeyError: pass embed = discord.Embed(title=info) embed.set_author(name=user.display_name, icon_url=user.avatar_url) if "emblemPath" in char: embed.set_thumbnail(url=IMAGE_URL + char["emblemPath"]) if titles: # embed.add_field(name=_("Titles"), value=titles) embed.set_author( name=f"{user.display_name} ({title_name})", icon_url=user.avatar_url ) char_items = chars["characterEquipment"]["data"][char_id]["items"] item_list = [i["itemHash"] for i in char_items] # log.debug(item_list) items = await self.get_definition("DestinyInventoryItemDefinition", item_list) # log.debug(items) for item_hash, data in items.items(): # log.debug(data) for item in char_items: # log.debug(item) if data["hash"] == item["itemHash"]: instance_id = item["itemInstanceId"] item_instance = chars["itemComponents"]["instances"]["data"][instance_id] if not item_instance["isEquipped"]: continue if not (data["equippable"] and data["itemType"] == 3): continue name = data["displayProperties"]["name"] desc = data["displayProperties"]["description"] item_type = data["itemTypeAndTierDisplayName"] try: light = item_instance["primaryStat"]["value"] except KeyError: light = "" perk_list = chars["itemComponents"]["perks"]["data"][instance_id]["perks"] perk_hashes = [p["perkHash"] for p in perk_list] perk_data = await self.get_definition( "DestinySandboxPerkDefinition", perk_hashes ) perks = "" for perk_hash, perk in perk_data.items(): properties = perk["displayProperties"] if "name" in properties and "description" in properties: if full: perks += "**{0}** - {1}\n".format( properties["name"], properties["description"] ) else: perks += "- **{0}**\n".format(properties["name"]) value = f"**{light}** {item_type}\n{perks}" embed.add_field(name=name, value=value, inline=True) # log.debug(data) stats_str = "" for stat_hash, value in char["stats"].items(): stat_info = (await self.get_definition("DestinyStatDefinition", [stat_hash]))[ str(stat_hash) ] stat_name = stat_info["displayProperties"]["name"] prog = "█" * int(value / 10) empty = "░" * int((100 - value) / 10) bar = f"{prog}{empty}" if stat_hash == "1935470627": bar = "" stats_str += f"{stat_name}: **{value}** \n{bar}\n" embed.description = stats_str embed = await self.get_char_colour(embed, char) embeds.append(embed) await BaseMenu( source=BasePages( pages=embeds, ), delete_message_after=False, clear_reactions_after=True, timeout=60, cog=self, page_start=0, ).start(ctx=ctx) @destiny.command() @commands.bot_has_permissions(embed_links=True, add_reactions=True) async def gambit(self, ctx: commands.Context) -> None: """ Display a menu of each characters gambit stats """ await ctx.invoke(self.stats, "allPvECompetitive") @destiny.command() @commands.bot_has_permissions(embed_links=True, add_reactions=True) async def pvp(self, ctx: commands.Context) -> None: """ Display a menu of each character's pvp stats """ await ctx.invoke(self.stats, "allPvP") @destiny.command(aliases=["raids"]) @commands.bot_has_permissions(embed_links=True, add_reactions=True) async def raid(self, ctx: commands.Context) -> None: """ Display a menu for each character's RAID stats """ await ctx.invoke(self.stats, "raid") @destiny.command(aliases=["qp"]) @commands.bot_has_permissions(embed_links=True, add_reactions=True) async def quickplay(self, ctx: commands.Context) -> None: """ Display a menu of past quickplay matches """ await ctx.invoke(self.history, 70) @destiny.command() @commands.bot_has_permissions(embed_links=True, add_reactions=True) async def history(self, ctx: commands.Context, activity: DestinyActivity) -> None: """ Display a menu of each character's last 5 activities `<activity>` The activity type to display stats on available types include: all, story, strike, raid, allpvp, patrol, allpve, control, clash, crimsondoubles, nightfall, heroicnightfall, allstrikes, ironbanner, allmayhem, supremacy, privatematchesall, survival, countdown, trialsofthenine, social, trialscountdown, trialssurvival, ironbannercontrol, ironbannerclash, ironbannersupremacy, scorednightfall, scoredheroicnightfall, rumble, alldoubles, doubles, privatematchesclash, privatematchescontrol, privatematchessupremacy, privatematchescountdown, privatematchessurvival, privatematchesmayhem, privatematchesrumble, heroicadventure, showdown, lockdown, scorched, scorchedteam, gambit, allpvecompetitive, breakthrough, blackarmoryrun, salvage, ironbannersalvage, pvpcompetitive, pvpquickplay, clashquickplay, clashcompetitive, controlquickplay, controlcompetitive, gambitprime, reckoning, menagerie, vexoffensive, nightmarehunt, elimination, momentum, dungeon, sundial, trialsofosiris """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) user = ctx.author try: chars = await self.get_characters(user) except Destiny2APIError: # log.debug(e) msg = _("I can't seem to find your Destiny profile.") await ctx.send(msg) return RAID = { "assists": _("Assists"), "kills": _("Kills"), "deaths": _("Deaths"), "opponentsDefeated": _("Opponents Defeated"), "efficiency": _("Efficiency"), "killsDeathsRatio": _("KDR"), "killsDeathsAssists": _("KDA"), "score": _("Score"), "activityDurationSeconds": _("Duration"), "playerCount": _("Player Count"), "teamScore": _("Team Score"), "completed": _("Completed"), } embeds = [] for char_id, char in chars["characters"]["data"].items(): # log.debug(char) char_info = "" race = (await self.get_definition("DestinyRaceDefinition", [char["raceHash"]]))[ str(char["raceHash"]) ] gender = ( await self.get_definition("DestinyGenderDefinition", [char["genderHash"]]) )[str(char["genderHash"])] log.debug(gender) char_class = ( await self.get_definition("DestinyClassDefinition", [char["classHash"]]) )[str(char["classHash"])] char_info += "{user} - {race} {gender} {char_class} ".format( user=user.display_name, race=race["displayProperties"]["name"], gender=gender["displayProperties"]["name"], char_class=char_class["displayProperties"]["name"], ) try: data = await self.get_activity_history(user, char_id, activity) except Exception: log.error( _( "Something went wrong I couldn't get info on character {char_id} for activity {activity}" ).format(char_id=char_id, activity=activity) ) continue if not data: continue for activities in data["activities"]: activity_hash = str(activities["activityDetails"]["directorActivityHash"]) activity_data = ( await self.get_definition("DestinyActivityDefinition", [activity_hash]) )[str(activity_hash)] embed = discord.Embed( title=activity_data["displayProperties"]["name"], description=activity_data["displayProperties"]["description"], ) date = datetime.datetime.strptime(activities["period"], "%Y-%m-%dT%H:%M:%SZ") embed.timestamp = date if activity_data["displayProperties"]["hasIcon"]: embed.set_thumbnail( url=IMAGE_URL + activity_data["displayProperties"]["icon"] ) elif ( activity_data["pgcrImage"] != "/img/misc/missing_icon_d2.png" and "emblemPath" in char ): embed.set_thumbnail(url=IMAGE_URL + char["emblemPath"]) embed.set_author(name=char_info, icon_url=user.avatar_url) for attr, name in RAID.items(): if activities["values"][attr]["basic"]["value"] < 0: continue embed.add_field( name=name, value=str(activities["values"][attr]["basic"]["displayValue"]), ) embed = await self.get_char_colour(embed, char) embeds.append(embed) await BaseMenu( source=BasePages( pages=embeds, ), delete_message_after=False, clear_reactions_after=True, timeout=60, cog=self, page_start=0, ).start(ctx=ctx) @staticmethod async def get_extra_attrs(stat_type: str, attrs: dict) -> dict: """Helper function to receive the total attributes we care about""" EXTRA_ATTRS = {} if stat_type == "allPvECompetitive": EXTRA_ATTRS = { "winLossRatio": _("Win Loss Ratio"), "invasions": _("Invasions"), "invasionKills": _("Invasion Kills"), "invasionDeaths": _("Invasion Deaths"), "invaderDeaths": _("Invader Deaths"), "invaderKills": _("Invader Kills"), "primevalKills": _("Primeval Kills"), "blockerKills": _("Blocker Kills"), "mobKills": _("Mob Kills"), "highValueKills": _("High Value Targets Killed"), "motesPickedUp": _("Motes Picked Up"), "motesDeposited": _("Motes Deposited"), "motesDenied": _("Motes Denied"), "motesLost": _("Motes Lost"), } if stat_type == "allPvP": EXTRA_ATTRS = {"winLossRatio": _("Win Loss Ratio")} for k, v in EXTRA_ATTRS.items(): attrs[k] = v return attrs async def build_character_stats( self, user: discord.Member, chars: dict, stat_type: str ) -> List[discord.Embed]: embeds: List[discord.Embed] = [] for char_id, char in chars["characters"]["data"].items(): # log.debug(char) try: data = await self.get_historical_stats(user, char_id, 0) except Exception: log.error( _("Something went wrong I couldn't get info on character {char_id}").format( char_id=char_id ) ) continue if not data: continue try: if stat_type != "allPvECompetitive": embed = await self.build_stat_embed_char_basic(user, char, data, stat_type) embeds.append(embed) else: data = data[stat_type]["allTime"] embed = await self.build_stat_embed_char_gambit(user, char, data, stat_type) embeds.append(embed) except Exception: log.error( f"User {user.id} had an issue generating stats for character {char_id}", exc_info=True, ) continue return embeds async def build_stat_embed_char_basic( self, user: discord.Member, char: dict, data: dict, stat_type: str ) -> discord.Embed: char_info = "" race = (await self.get_definition("DestinyRaceDefinition", [char["raceHash"]]))[ str(char["raceHash"]) ] gender = (await self.get_definition("DestinyGenderDefinition", [char["genderHash"]]))[ str(char["genderHash"]) ] char_class = (await self.get_definition("DestinyClassDefinition", [char["classHash"]]))[ str(char["classHash"]) ] char_info += "{user} - {race} {gender} {char_class} ".format( user=user.display_name, race=race["displayProperties"]["name"], gender=gender["displayProperties"]["name"], char_class=char_class["displayProperties"]["name"], ) ATTRS = { "opponentsDefeated": _("Opponents Defeated"), "efficiency": _("Efficiency"), "bestSingleGameKills": _("Best Single Game Kills"), "bestSingleGameScore": _("Best Single Game Score"), "precisionKills": _("Precision Kills"), "longestKillSpree": _("Longest Killing Spree"), "longestSingleLife": _("Longest Single Life"), "totalActivityDurationSeconds": _("Total time playing"), "averageLifespan": _("Average Life Span"), "weaponBestType": _("Best Weapon Type"), } embed = discord.Embed(title=stat_type.title()) embed.set_author(name=char_info, icon_url=user.avatar_url) kills = data[stat_type]["allTime"]["kills"]["basic"]["displayValue"] deaths = data[stat_type]["allTime"]["deaths"]["basic"]["displayValue"] assists = data[stat_type]["allTime"]["assists"]["basic"]["displayValue"] kda = f"{kills} | {deaths} | {assists}" embed.add_field(name=_("Kills | Deaths | Assists"), value=kda) if "emblemPath" in char: embed.set_thumbnail(url=IMAGE_URL + char["emblemPath"]) for stat, values in data[stat_type]["allTime"].items(): if values["basic"]["value"] < 0 or stat not in ATTRS: continue embed.add_field(name=ATTRS[stat], value=str(values["basic"]["displayValue"])) if "killsDeathsRatio" in data[stat_type] and "killsDeathsAssists" in data[stat_type]: kdr = data[stat_type]["killsDeathsRatio"] kda = data[stat_type]["killsDeathsAssists"] if kdr or kda: embed.add_field(name=_("KDR/KDA"), value=f"{kdr}/{kda}") if ( "resurrectionsPerformed" in data[stat_type] and "resurrectionsReceived" in data[stat_type] ): res = data[stat_type]["resurrectionsPerformed"] resur = data[stat_type]["resurrectionsReceived"] if res or resur: embed.add_field(name=_("Resurrections/Received"), value=f"{res}/{resur}") return await self.get_char_colour(embed, char) async def build_stat_embed_char_gambit( self, user: discord.Member, char: dict, data: dict, stat_type: str ) -> discord.Embed: char_info = "" race = (await self.get_definition("DestinyRaceDefinition", [char["raceHash"]]))[ str(char["raceHash"]) ] gender = (await self.get_definition("DestinyGenderDefinition", [char["genderHash"]]))[ str(char["genderHash"]) ] char_class = (await self.get_definition("DestinyClassDefinition", [char["classHash"]]))[ str(char["classHash"]) ] char_info += "{user} - {race} {gender} {char_class} ".format( user=user.display_name, race=race["displayProperties"]["name"], gender=gender["displayProperties"]["name"], char_class=char_class["displayProperties"]["name"], ) ATTRS = { "opponentsDefeated": _("Opponents Defeated"), "efficiency": _("Efficiency"), "bestSingleGameKills": _("Best Single Game Kills"), "bestSingleGameScore": _("Best Single Game Score"), "precisionKills": _("Precision Kills"), "longestKillSpree": _("Longest Killing Spree"), "longestSingleLife": _("Longest Single Life"), "totalActivityDurationSeconds": _("Total time playing"), "averageLifespan": _("Average Life Span"), "weaponBestType": _("Best Weapon Type"), "winLossRatio": _("Win Loss Ratio"), } embed = discord.Embed(title="Gambit") embed.set_author(name=char_info, icon_url=user.avatar_url) kills = data["kills"]["basic"]["displayValue"] deaths = data["deaths"]["basic"]["displayValue"] assists = data["assists"]["basic"]["displayValue"] kda = f"{kills} | {deaths} | {assists}" embed.add_field(name=_("Kills | Deaths | Assists"), value=kda) small_blocker = data["smallBlockersSent"]["basic"]["displayValue"] med_blocker = data["mediumBlockersSent"]["basic"]["displayValue"] large_blocker = data["largeBlockersSent"]["basic"]["displayValue"] blockers = f"S {small_blocker}, M {med_blocker}, L {large_blocker}" embed.add_field(name=_("Blockers"), value=blockers) invasions = _("Invasions: {invasions}").format( invasions=data["invasions"]["basic"]["displayValue"] ) invasion_kills = _("Kills: {kills}\nDeaths: {deaths}").format( kills=data["invasionKills"]["basic"]["displayValue"], deaths=data["invasionDeaths"]["basic"]["displayValue"], ) embed.add_field(name=invasions, value=invasion_kills) invaders = _("Killed: {killed}\nKilled By: {by}").format( killed=data["invaderKills"]["basic"]["displayValue"], by=data["invaderDeaths"]["basic"]["displayValue"], ) embed.add_field(name=_("Invaders"), value=invaders) motes_dep = data["motesDeposited"]["basic"]["value"] try: lost = 1 - (motes_dep / data["motesPickedUp"]["basic"]["value"]) motes_lost = "{:.2%}".format(lost) except ZeroDivisionError: motes_lost = "0%" motes = _("{motes:,} ({lost} Lost)").format(motes=motes_dep, lost=motes_lost) embed.add_field(name=_("Motes Deposited"), value=motes) motes_denied = data["motesDenied"]["basic"]["value"] embed.add_field(name=_("Motes Denied"), value="{:,}".format(motes_denied)) mob_kills = data["mobKills"]["basic"]["value"] primeval_kills = data["primevalKills"]["basic"]["value"] high_kills = data["highValueKills"]["basic"]["value"] kills_msg = _("Primevals: {prime:,}\nHigh Value Targets: {high:,}\nMobs: {mobs:,}").format( prime=primeval_kills, high=high_kills, mobs=mob_kills ) embed.add_field(name=_("Kill Stats"), value=kills_msg) if "killsDeathsRatio" in data and "killsDeathsAssists" in data: kdr = data["killsDeathsRatio"]["basic"]["displayValue"] kda = data["killsDeathsAssists"]["basic"]["displayValue"] if kdr or kda: embed.add_field(name=_("KDR/KDA"), value=f"{kdr}/{kda}") if "resurrectionsPerformed" in data and "resurrectionsReceived" in data: res = data["resurrectionsPerformed"]["basic"]["displayValue"] resur = data["resurrectionsReceived"]["basic"]["displayValue"] if res or resur: embed.add_field(name=_("Resurrections/Received"), value=f"{res}/{resur}") if "emblemPath" in char: embed.set_thumbnail(url=IMAGE_URL + char["emblemPath"]) for stat, values in data.items(): if values["basic"]["value"] < 0 or stat not in ATTRS: continue embed.add_field(name=ATTRS[stat], value=str(values["basic"]["displayValue"])) return await self.get_char_colour(embed, char) @destiny.command() @commands.bot_has_permissions(embed_links=True, add_reactions=True) async def stats(self, ctx: commands.Context, stat_type: StatsPage, all: bool = True) -> None: """ Display each character's stats for a specific activity `<activity>` The type of stats to display, available options are: `raid`, `pvp`, `pve`, patrol, story, gambit, and strikes """ async with ctx.typing(): if not await self.has_oauth(ctx): msg = _( "You need to authenticate your Bungie.net account before this command will work." ) return await ctx.send(msg) user = ctx.author try: chars = await self.get_characters(user) except Destiny2APIError: # log.debug(e) msg = _("I can't seem to find your Destiny profile.") await ctx.send(msg) return # base stats should be available for all stat types embeds = await self.build_character_stats(user, chars, stat_type) if not embeds: return await ctx.send( _("No stats could be found for that activity and character.") ) await BaseMenu( source=BasePages( pages=embeds, ), delete_message_after=False, clear_reactions_after=True, timeout=60, cog=self, page_start=0, ).start(ctx=ctx) @destiny.command() @checks.is_owner() @commands.bot_has_permissions(add_reactions=True) async def manifest(self, ctx: commands.Context, d1: bool = False) -> None: """ See the current manifest version and optionally re-download it """ if not d1: try: headers = await self.build_headers() except Exception: return await ctx.send( _( "You need to set your API authentication tokens with `[p]destiny token` first." ) ) manifest_data = await self.request_url( f"{BASE_URL}/Destiny2/Manifest/", headers=headers ) version = await self.config.manifest_version() if not version: version = _("Not Downloaded") msg = _("Current manifest version is {version}.").format(version=version) redownload = _("re-download") if manifest_data["version"] != version: msg += _("\n\nThere is an update available to version {version}").format( version=manifest_data["version"] ) redownload = _("download") await ctx.send(msg) await ctx.trigger_typing() msg = await ctx.send( _("Would you like to {redownload} the manifest?").format(redownload=redownload) ) start_adding_reactions(msg, ReactionPredicate.YES_OR_NO_EMOJIS) pred = ReactionPredicate.yes_or_no(msg, ctx.author) try: react, user = await self.bot.wait_for("reaction_add", check=pred, timeout=15) except asyncio.TimeoutError: await msg.delete() if pred.result: try: version = await self.get_manifest() except Exception: log.exception("Error getting destiny manifest") return await ctx.send(_("There was an issue downloading the manifest.")) await msg.delete() await ctx.send(f"Manifest {version} was downloaded.") else: await msg.delete() else: try: version = await self.get_manifest(d1) except Exception: log.exception("Error getting D1 manifest") return await ctx.send(_("There was an issue downloading the manifest.")) @destiny.command() @checks.is_owner() async def token( self, ctx: commands.Context, api_key: str, client_id: str, client_secret: str ) -> None: """ Set the API tokens for Destiny 2's API Required information is found at: https://www.bungie.net/en/Application select **Create New App** Choose **Confidential** OAuth Client type Select the scope you would like the bot to have access to Set the redirect URL to https://localhost/ NOTE: It is strongly recommended to use this command in DM """ await self.config.api_token.api_key.set(api_key) await self.config.api_token.client_id.set(client_id) await self.config.api_token.client_secret.set(client_secret) if ctx.channel.permissions_for(ctx.me).manage_messages: await ctx.message.delete() await ctx.send("Destiny 2 API credentials set!")
the-stack_0_157
from api.api_error import APIError from api.api_message import APIMessage from api.json_connector import JSONConnector from api.api_config import APIConfig from api.ptp_connector import PTPConnector class BotMethods: @staticmethod def start_bot(req): """ Starts a PTP Bot object. :param req: :return: """ keys = req.keys() if 'bot_name' not in keys or not req['bot_name']: return APIError.create(message='No bot name in the request body.', code=400) elif 'action_name' not in keys or not req['action_name']: return APIError.create(message='No action name in the request body.', code=400) bots = JSONConnector.get_json_file_content( directory=APIConfig.json_save_path, name=APIConfig.json_bots_file_name ) bot_actions = JSONConnector.get_json_file_content( directory=APIConfig.json_save_path, name=APIConfig.json_bot_actions_file_name ) found_action = {} found_bot = {} for item in bot_actions['bot_actions']: print(req, item) if req['bot_name'] == item['bot_name'] and req['action_name'] == item['action_name']: found_action = item for item in bots['bots']: if req['bot_name'] == item['bot_name']: found_bot = item if found_action and found_bot: access_info = { 'access_token': found_bot['access_token'], 'access_token_secret': found_bot['access_token_secret'], 'consumer_key': found_bot['consumer_key'], 'consumer_secret': found_bot['consumer_secret'] } PTPConnector.start_bot(access_info, found_action['method'], {'actions': found_action['actions']}) return APIMessage.create(message='Bot successfully started.', code=200)
the-stack_0_158
from fastapi import APIRouter, BackgroundTasks, Depends, File, UploadFile from typing import List from sqlalchemy.orm import Session from api.utils.auth import get_db from api.auth.auth import auth_check from api.db.crud import templates as crud from api.db.crud import settings as scrud from api.db.schemas import templates as schemas from api.db.models import containers from api.db.database import engine from api.actions import resources from api.actions.apps import _update_self, check_self_update from api.settings import Settings from fastapi_jwt_auth import AuthJWT containers.Base.metadata.create_all(bind=engine) settings = Settings() router = APIRouter() @router.get( "/variables", response_model=List[schemas.TemplateVariables], operation_id="authorize", ) def read_template_variables( db: Session = Depends(get_db), Authorize: AuthJWT = Depends() ): auth_check(Authorize) return crud.read_template_variables(db=db) @router.post( "/variables", response_model=List[schemas.TemplateVariables], ) def set_template_variables( new_variables: List[schemas.TemplateVariables], db: Session = Depends(get_db), Authorize: AuthJWT = Depends(), ): auth_check(Authorize) return crud.set_template_variables(new_variables=new_variables, db=db) @router.get( "/export", response_model=schemas.Import_Export, ) def export_settings(db: Session = Depends(get_db), Authorize: AuthJWT = Depends()): auth_check(Authorize) return scrud.export_settings(db=db) @router.post( "/export", ) def import_settings( db: Session = Depends(get_db), upload: UploadFile = File(...), Authorize: AuthJWT = Depends(), ): auth_check(Authorize) return scrud.import_settings(db=db, upload=upload) @router.get( "/prune/{resource}", ) def prune_resources(resource: str, Authorize: AuthJWT = Depends()): auth_check(Authorize) return resources.prune_resources(resource) @router.get( "/update", ) def update_self(background_tasks: BackgroundTasks, Authorize: AuthJWT = Depends()): auth_check(Authorize) return _update_self(background_tasks) @router.get( "/check/update", ) def _check_self_update(Authorize: AuthJWT = Depends()): auth_check(Authorize) return check_self_update()
the-stack_0_161
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define statistical functions of a tensor import numpy as np from ..fluid.framework import Variable from ..fluid.layer_helper import LayerHelper from ..fluid.framework import core, in_dygraph_mode from ..fluid import layers from .search import where from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype import paddle from paddle import _C_ops __all__ = [] def mean(x, axis=None, keepdim=False, name=None): """ Computes the mean of the input tensor's elements along ``axis``. Args: x (Tensor): The input Tensor with data type float32, float64. axis (int|list|tuple, optional): The axis along which to perform mean calculations. ``axis`` should be int, list(int) or tuple(int). If ``axis`` is a list/tuple of dimension(s), mean is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . If ``axis`` is None, mean is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of average along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]], [[13., 14., 15., 16.], [17., 18., 19., 20.], [21., 22., 23., 24.]]]) out1 = paddle.mean(x) # [12.5] out2 = paddle.mean(x, axis=-1) # [[ 2.5 6.5 10.5] # [14.5 18.5 22.5]] out3 = paddle.mean(x, axis=-1, keepdim=True) # [[[ 2.5] # [ 6.5] # [10.5]] # [[14.5] # [18.5] # [22.5]]] out4 = paddle.mean(x, axis=[0, 2]) # [ 8.5 12.5 16.5] """ if isinstance(axis, int): axis = [axis] reduce_all = True if axis is None \ or len(axis)==0 \ or len(axis) == len(x.shape) else False if axis is None or len(axis) == 0: axis = [0] if in_dygraph_mode(): return _C_ops.reduce_mean(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all) check_variable_and_dtype(x, 'x/input', ['float32', 'float64'], 'mean/reduce_mean') check_type(axis, 'axis/dim', (int, list, tuple), 'mean/reduce_mean') if isinstance(axis, (list, tuple)): for item in axis: check_type(item, 'elements of axis/dim', (int), 'mean/reduce_mean') helper = LayerHelper('mean', **locals()) attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all} out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs) return out def var(x, axis=None, unbiased=True, keepdim=False, name=None): """ Computes the variance of ``x`` along ``axis`` . Args: x (Tensor): The input Tensor with data type float32, float64. axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int). If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None. unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) out1 = paddle.var(x) # [2.66666667] out2 = paddle.var(x, axis=1) # [1. 4.33333333] """ if not in_dygraph_mode(): check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var') u = mean(x, axis, True, name) out = paddle.sum((x - u)**2, axis, keepdim=keepdim, name=name) n = paddle.cast(paddle.numel(x), x.dtype) \ / paddle.cast(paddle.numel(out), x.dtype) if unbiased: one_const = paddle.ones([1], x.dtype) n = where(n > one_const, n - 1., one_const) out /= n return out def std(x, axis=None, unbiased=True, keepdim=False, name=None): """ Computes the standard-deviation of ``x`` along ``axis`` . Args: x (Tensor): The input Tensor with data type float32, float64. axis (int|list|tuple, optional): The axis along which to perform standard-deviation calculations. ``axis`` should be int, list(int) or tuple(int). If ``axis`` is a list/tuple of dimension(s), standard-deviation is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . If ``axis`` is None, standard-deviation is calculated over all elements of ``x``. Default is None. unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the standard-deviation is calculated via the unbiased estimator. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of standard-deviation along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) out1 = paddle.std(x) # [1.63299316] out2 = paddle.std(x, axis=1) # [1. 2.081666] """ if not in_dygraph_mode(): check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std') out = var(**locals()) return paddle.sqrt(out) def numel(x, name=None): """ Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode or a scalar value in imperative mode Args: x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64. Returns: Tensor: The number of elements for the input Tensor. Examples: .. code-block:: python import paddle x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32') numel = paddle.numel(x) # 140 """ if in_dygraph_mode(): return _C_ops.size(x) if not isinstance(x, Variable): raise TypeError("x must be a Tensor in numel") helper = LayerHelper('numel', **locals()) out = helper.create_variable_for_type_inference( dtype=core.VarDesc.VarType.INT64) helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out}) return out def median(x, axis=None, keepdim=False, name=None): """ Compute the median along the specified axis. Args: x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64. axis (int, optional): The axis along which to perform median calculations ``axis`` should be int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is None, median is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32. Examples: .. code-block:: python import paddle x = paddle.arange(12).reshape([3, 4]) # x is [[0 , 1 , 2 , 3 ], # [4 , 5 , 6 , 7 ], # [8 , 9 , 10, 11]] y1 = paddle.median(x) # y1 is [5.5] y2 = paddle.median(x, axis=0) # y2 is [4., 5., 6., 7.] y3 = paddle.median(x, axis=1) # y3 is [1.5, 5.5, 9.5] y4 = paddle.median(x, axis=0, keepdim=True) # y4 is [[4., 5., 6., 7.]] """ if not isinstance(x, Variable): raise TypeError("In median, the input x should be a Tensor.") is_flatten = axis is None dims = len(x.shape) if is_flatten: x = paddle.flatten(x) axis = 0 else: if not isinstance(axis, int) or not (axis < dims and axis >= -dims): raise ValueError( "In median, axis should be none or an integer in range [-rank(x), rank(x))." ) if axis < 0: axis += dims sz = x.shape[axis] kth = sz >> 1 tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False) dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32' if sz & 1 == 0: out_tensor = paddle.slice( tensor_topk, axes=[axis], starts=[kth - 1], ends=[kth]) + paddle.slice( tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]) out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2 else: out_tensor = paddle.cast( paddle.slice( tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]), dtype=dtype) if not keepdim or is_flatten: if not is_flatten: newshape = x.shape[:axis] + x.shape[axis + 1:] elif not keepdim: newshape = [1] else: newshape = [1] * dims else: newshape = out_tensor.shape out_tensor = out_tensor.reshape(newshape, name=name) return out_tensor
the-stack_0_162
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html from scrapy.item import Item, Field class XiaobaiheItem(Item): # define the fields for your item here like: # name = scrapy.Field() username = Field() text = Field() url = Field()
the-stack_0_164
""" Tests for the various cli programs """ from pyontutils.integration_test_helper import _TestCliBase, Folders class TestCli(Folders, _TestCliBase): commands = ( ['googapis', '--help'], ['graphml-to-ttl', '--help'], ['necromancy', '--help'], ['ontload', '--help'], ['overlaps', '--help'], ['qnamefix', '--help'], ['scigraph-codegen', '--help'], ['scig', '--help'], ['ttlfmt', '--help'], )
the-stack_0_165
#!/usr/bin/python import math import matplotlib.pyplot as plt from graphtheory.structures.edges import Edge from graphtheory.structures.graphs import Graph from graphtheory.structures.factory import GraphFactory from graphtheory.structures.points import Point from graphtheory.forests.treeplot import TreePlot from graphtheory.forests.treeplot import TreePlotRadiusAngle V = 20 gf = GraphFactory(Graph) G = gf.make_tree(V) #G.show() assert G.e() == V-1 algorithm = TreePlotRadiusAngle(G) algorithm.run() #print ( algorithm.point_dict ) # (radius, angle) D = dict() # node ---> point on the plane for node in algorithm.point_dict: (radius, angle) = algorithm.point_dict[node] D[node] = Point(radius * math.cos(angle), radius * math.sin(angle)) #print ( D ) for edge in G.iteredges(): x = [D[edge.source].x, D[edge.target].x] y = [D[edge.source].y, D[edge.target].y] plt.plot(x, y, 'k-') # black line x = [D[node].x for node in G.iternodes()] y = [D[node].y for node in G.iternodes()] plt.plot(x, y, 'bo') # blue circle plt.title("Random tree") plt.xlabel("x") plt.ylabel("y") plt.show() # EOF
the-stack_0_166
import pandas as pd import numpy as np import joblib import Levenshtein import argparse import ast from scipy import stats from src import nlp_preprocessing def preprocess_txt(txt: str): """Executa preprocessamento textual padrão""" cleaned_txt = nlp_preprocessing.clean_text(txt) token_txt = nlp_preprocessing.custom_tokenizer(cleaned_txt) return " ".join(token_txt) def get_top_docs(query, cleaned_doc_list, doc_titles, get_titles=True): """Gera as recomedações a partir de uma query e listas de referência""" cleaned_query = preprocess_txt(query) dists = [Levenshtein.distance(cleaned_query, doc) for doc in cleaned_doc_list] mask = np.array(dists).argsort()[:10] if get_titles: return doc_titles.iloc[mask].tolist() else: return doc_titles.iloc[mask].index.tolist() def load_data(): """Carrega os dados""" df = pd.concat([ pd.read_pickle("data/train_query.pickle"), pd.read_pickle("data/test_query.pickle") ]) return df def series_mode(serie: pd.Series): """Calcula a moda de uma série""" return stats.mode(serie)[0][0] def remove_duplicates(df, group="product_id", num_cols=["price", "weight", "minimum_quantity"], cat_cols=["title", "concatenated_tags"]) -> pd.DataFrame: """Função que remove os registros duplicados juntando os por média e moda a depender dos tipos de coluna""" mode_stats = {col: series_mode for col in cat_cols} mean_stats = {col: "mean" for col in num_cols} agg_stats = dict(**mode_stats, **mean_stats) return df.groupby(group).agg(agg_stats) def make_predictions(query, clf_model): """Função que realiza as recomendações com predição de categoria majoritária""" df = load_data() prod_titles = (df[["product_id", "title"]]. drop_duplicates().set_index("product_id")["title"]) cleaned_prod_titles = [preprocess_txt(txt) for txt in prod_titles] prod_id_select = get_top_docs(query, cleaned_prod_titles, prod_titles, False) selected_df = df.loc[df["product_id"].isin(prod_id_select)] selected_df = remove_duplicates(selected_df) predicted_cats = clf_model.predict(selected_df) major_cat = stats.mode(predicted_cats)[0][0] print(major_cat) for _id, title in selected_df["title"].iteritems(): print(f"{_id} - {title}") # função auxiliar do modelo de classificação def select_txt(X: pd.DataFrame, col: str): return X[col] # função auxiliar do modelo de classificação def select_base_features(X: pd.DataFrame): return X[["price", "weight", "minimum_quantity"]] def load_args() -> pd.DataFrame: """Função de carregamento de configurações. Returns: pd.DataFrame: resultado a ser categorizado. """ # criando os atributos que vão ser recebidos e parseando-os parser = argparse.ArgumentParser() parser.add_argument("-c", "--category", help="Texto de registro a ser categorizado", type=str) parser.add_argument("-r", "--recommendation", help="Sistema de recomendação de produtos", type=str) args = parser.parse_args() # extraindo dos atributos recebidos o registro a ser categorizado # e adequando-o para a predição if args.category is not None: product_dict = ast.literal_eval(args.category) product_df = pd.Series(product_dict).to_frame().T else: product_df = None return product_df, args.recommendation def predict_single_category(df, clf_model): product_category = clf_model.predict(df)[0] print(product_category) def main(): # carregando o modelo rf_clf_pipeline = joblib.load("assets/category_rf_clf_pipeline.joblib") # carregando o registro a ser categorizado product_df, query = load_args() # fazendo a previsão da categoria if product_df is not None: predict_single_category(product_df, rf_clf_pipeline) if query is not None: make_predictions(query, rf_clf_pipeline) if __name__ == "__main__": main()