filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_21305
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('blogs/', views.BlogListView.as_view(), name='blogs'), path('blog/<int:pk>', views.BlogDetailView.as_view(), name='blog-detail'), path('bloggers/', views.BlogAuthorListView.as_view(), name='bloggers'), path('blogger/<int:pk>', views.BlogAuthorDetailView.as_view(), name='blogs-by-author'), path('blog/<int:pk>/comment/', views.BlogCommentCreate.as_view(), name='blog_comment'), ]
the-stack_0_21306
"""show_lldp.py supported commands: * show lldp * show lldp entry * * show lldp entry [<WORD>] * show lldp interface [<WORD>] * show lldp neighbors * show lldp neighbors detail * show lldp traffic """ import re from genie.metaparser import MetaParser from genie.metaparser.util.schemaengine import Schema, \ Any, \ Optional, \ Or, \ And, \ Default, \ Use # import parser utils from genie.libs.parser.utils.common import Common class ShowLldpSchema(MetaParser): """Schema for show lldp""" schema = { 'status': str, 'enabled': bool, 'hello_timer': int, 'hold_timer': int, 'reinit_timer': int } class ShowLldp(ShowLldpSchema): """Parser for show lldp""" cli_command = 'show lldp' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # initial return dictionary ret_dict = {} # initial regexp pattern p1 = re.compile(r'^Status: +(?P<status>\w+)$') p2 = re.compile(r'^LLDP +(?P<pattern>[\w\s]+) +(?P<value>\d+) +seconds$') for line in out.splitlines(): line = line.strip() # Status: ACTIVE m = p1.match(line) if m: status = m.groupdict()['status'].lower() ret_dict['status'] = status ret_dict['enabled'] = True if 'active' in status else False continue # LLDP advertisements are sent every 30 seconds # LLDP hold time advertised is 120 seconds # LLDP interface reinitialisation delay is 2 seconds m = p2.match(line) if m: group = m.groupdict() if re.search('(advertisements +are +sent +every)', group['pattern']): key = 'hello_timer' elif re.search('(hold +time +advertised +is)', group['pattern']): key = 'hold_timer' elif re.search('(interface +reinitialisation +delay +is)', group['pattern']): key = 'reinit_timer' else: continue ret_dict[key] = int(group['value']) continue return ret_dict class ShowLldpEntrySchema(MetaParser): """Schema for show lldp entry [<WORD>|*]""" schema = { 'total_entries': int, Optional('interfaces'): { Any(): { 'if_name': str, 'port_id': { Any(): { 'neighbors': { Any(): { 'chassis_id': str, 'port_id': str, 'neighbor_id': str, Optional('port_description'): str, Optional('system_description'): str, Optional('system_name'): str, 'time_remaining': int, Optional('capabilities'): { Any():{ Optional('system'): bool, Optional('enabled'): bool, 'name': str, } }, Optional('management_address'): str, Optional('auto_negotiation'): str, Optional('physical_media_capabilities'): list, Optional('unit_type'): int, Optional('vlan_id'): int, } } } } } }, Optional('med_information'): { Optional('f/w_revision'): str, Optional('h/w_revision'): str, Optional('s/w_revision'): str, Optional('manufacturer'): str, Optional('model'): str, Optional('capabilities'): list, 'device_type': str, Optional('network_policy'): { Any(): { # 'voice'; 'voice_signal' 'vlan': int, # 110 'tagged': bool, 'layer_2_priority': int, 'dscp': int, }, }, Optional('serial_number'): str, Optional('power_source'): str, Optional('power_priority'): str, Optional('wattage'): float, 'location': str, } } class ShowLldpEntry(ShowLldpEntrySchema): """Parser for show lldp entry {* | word}""" CAPABILITY_CODES = {'R': 'router', 'B': 'mac_bridge', 'T': 'telephone', 'C': 'docsis_cable_device', 'W': 'wlan_access_point', 'P': 'repeater', 'S': 'station_only', 'O': 'other'} cli_command = ['show lldp entry {entry}', 'show lldp entry *'] def cli(self, entry='',output=None): if output is None: if entry: cmd = self.cli_command[0].format(entry=entry) else: cmd = self.cli_command[1] out = self.device.execute(cmd) else: out = output # initial return dictionary ret_dict = {} item = '' sub_dict = {} # ==== initial regexp pattern ==== # Local Intf: Gi2/0/15 p1 = re.compile(r'^Local\s+Intf:\s+(?P<intf>[\w\/\.\-]+)$') # Port id: Gi1/0/4 p1_1 = re.compile(r'^Port\s+id:\s+(?P<port_id>[\S\s]+)$') # Chassis id: 843d.c6ff.f1b8 # Chassis id: r2-rf2222-qwe p2 = re.compile(r'^Chassis\s+id:\s+(?P<chassis_id>[\w\.\:\-]+)$') # Port Description: GigabitEthernet1/0/4 p3 = re.compile(r'^Port\s+Description:\s+(?P<desc>[\w\/\.\-\s]+)$') # System Name: R5 # System Name - not advertised p4 = re.compile(r'^System\s+Name(?: +-|:)\s+(?P<name>[\S\s]+)$') # System Description: p5 = re.compile(r'^System\s+Description:.*$') # Cisco IOS Software, C3750E Software (C3750E-UNIVERSALK9-M), Version 12.2(58)SE2, RELEASE SOFTWARE (fc1) # Technical Support: http://www.cisco.com/techsupport # Copyright (c) 1986-2011 by Cisco Systems, Inc. # Cisco IP Phone 7962G,V12, SCCP42.9-3-1ES27S p5_1 = re.compile(r'^(?P<msg>(Cisco +IOS +Software|Technical Support|Copyright|Cisco IP Phone).*)$') # Compiled Thu 21-Jul-11 01:23 by prod_rel_team # Avaya 1220 IP Deskphone, Firmware:06Q # IP Phone, Firmware:90234AP # {"SN":"SN-NR","Owner":"OWNER"} p5_2 = re.compile(r'^(?P<msg>(Compile|Avaya|IP Phone|{).*)$') # Time remaining: 112 seconds p6 = re.compile(r'^Time\s+remaining:\s+(?P<time_remaining>\w+)\s+seconds$') # System Capabilities: B,R p7 = re.compile(r'^System\s+Capabilities:\s+(?P<capab>[\w\,\s]+)$') # Enabled Capabilities: B,R p8 = re.compile(r'^Enabled\s+Capabilities:\s+(?P<capab>[\w\,\s]+)$') # Management Addresses: # IP: 10.9.1.1 # Management Addresses: # IPV6: 0000:0000:0000:0000:0000:ffff:7f00:0001 # Management Addresses - not advertised p9 = re.compile(r'^(IP|IPV6):\s+(?P<ip>[\w\.:]+)$') p9_1 = re.compile(r'^Management\s+Addresses\s+-\s+(?P<ip>not\sadvertised)$') # Auto Negotiation - supported, enabled p10 = re.compile(r'^Auto\s+Negotiation\s+\-\s+(?P<auto_negotiation>[\w\s\,]+)$') # Physical media capabilities: p11 = re.compile(r'^Physical\s+media\s+capabilities:$') # 1000baseT(FD) # 100base-TX(HD) # Symm, Asym Pause(FD) # Symm Pause(FD) p11_1 = re.compile(r'^(?P<physical_media_capabilities>[\S\(\s]+(HD|FD)[\)])$') # Media Attachment Unit type: 30 p12 = re.compile(r'^Media\s+Attachment\s+Unit\s+type:\s+(?P<unit_type>\d+)$') # Vlan ID: 1 # Note: not parsing 'not advertised since value type is int p13 = re.compile(r'^^Vlan\s+ID:\s+(?P<vlan_id>\d+)$') # Total entries displayed: 4 p14 = re.compile(r'^Total\s+entries\s+displayed:\s+(?P<entry>\d+)$') # ==== MED Information patterns ===== # MED Information: med_p0 = re.compile(r'^MED\s+Information:.*$') # F/W revision: 06Q # S/W revision: SCCP42.9-3-1ES27S # H/W revision: 12 med_p1 = re.compile(r'^(?P<head>(H/W|F/W|S/W))\s+revision:\s+(?P<revision>\S+)$') # Manufacturer: Avaya-05 med_p2 = re.compile(r'^Manufacturer:\s+(?P<manufacturer>[\S\s]+)$') # Model: 1220 IP Deskphone med_p3 = re.compile(r'^Model:\s+(?P<model>[\S\s]+)$') # Capabilities: NP, LI, PD, IN med_p4 = re.compile(r'^Capabilities:\s*(?P<capabilities>[\S\s]+)$') # Device type: Endpoint Class III med_p5 = re.compile(r'^Device\s+type:\s+(?P<device_type>[\S\s]+)$') # Network Policy(Voice): VLAN 110, tagged, Layer-2 priority: 5, DSCP: 46 # Network Policy(Voice Signal): VLAN 110, tagged, Layer-2 priority: 0, DSCP: 0 med_p6 = re.compile(r'^Network\s+Policy\(Voice(\s+(?P<voice_signal>Signal))?\):' r'\s+VLAN\s+(?P<vlan>\d+),\s+(?P<tagged>tagged),\s+' r'Layer-2 priority:\s+(?P<layer_2_priority>\d+),\s+DSCP:\s+(?P<dscp>\d+)$') # PD device, Power source: Unknown, Power Priority: High, Wattage: 6.0 med_p7 = re.compile(r'^(?P<device_type>PD device),\s+Power\s+source:\s+(?P<power_source>\S+),\s+' r'Power\s+Priority:\s+(?P<power_priority>\S+),\s+Wattage:\s+(?P<wattage>\S+)$') # Location - not advertised med_p8 = re.compile(r'^Location\s+-\s+(?P<location>[\S\s]+)$') # Serial number: FCH1610A5S5 med_p9 = re.compile(r'^Serial\s+number:\s+(?P<serial_number>\S+)$') for line in out.splitlines(): line = line.strip() # Local Intf: Gi2/0/15 m = p1.match(line) if m: intf = Common.convert_intf_name(m.groupdict()['intf']) intf_dict = ret_dict.setdefault('interfaces', {}).setdefault(intf, {}) intf_dict['if_name'] = intf sub_dict = {} continue # Chassis id: 843d.c6ff.f1b8 m = p2.match(line) if m: sub_dict = {} chassis_id = m.groupdict()['chassis_id'] sub_dict.setdefault('chassis_id', chassis_id) continue # Port id: Gi1/0/4 m = p1_1.match(line) if m: if 'interfaces' not in ret_dict: intf_dict = ret_dict.setdefault('interfaces', {}).setdefault('N/A', {}) intf_dict['if_name'] = 'N/A' port_id = Common.convert_intf_name(m.groupdict()['port_id']) port_dict = intf_dict.setdefault('port_id', {}). \ setdefault(port_id, {}) sub_dict.setdefault('port_id', port_id) continue # Port Description: GigabitEthernet1/0/4 m = p3.match(line) if m: sub_dict.setdefault('port_description', m.groupdict()['desc']) continue # System Name: R5 # System Name - not advertised m = p4.match(line) if m: name = m.groupdict()['name'] nei_dict = port_dict.setdefault('neighbors', {}).setdefault(name, {}) sub_dict['system_name'] = name nei_dict['neighbor_id'] = name nei_dict.update(sub_dict) continue # System Description: m = p5.match(line) if m: nei_dict.update({'system_description': ''}) continue # Cisco IOS Software, C3750E Software (C3750E-UNIVERSALK9-M), Version 12.2(58)SE2, RELEASE SOFTWARE (fc1) # Technical Support: http://www.cisco.com/techsupport # Copyright (c) 1986-2011 by Cisco Systems, Inc. # Cisco IP Phone 7962G,V12, SCCP42.9-3-1ES27S m = p5_1.match(line) if m: nei_dict['system_description'] += m.groupdict()['msg'] + '\n' continue # Compiled Thu 21-Jul-11 01:23 by prod_rel_team # Avaya 1220 IP Deskphone, Firmware:06Q # IP Phone, Firmware:90234AP m = p5_2.match(line) if m: nei_dict['system_description'] += m.groupdict()['msg'] continue # Time remaining: 112 seconds m = p6.match(line) if m: nei_dict['time_remaining'] = int(m.groupdict()['time_remaining']) continue # System Capabilities: B,R m = p7.match(line) if m: cap = [self.CAPABILITY_CODES[n] for n in m.groupdict()['capab'].split(',')] for item in cap: cap_dict = nei_dict.setdefault('capabilities', {}).\ setdefault(item, {}) cap_dict['name'] = item cap_dict['system'] = True continue # Enabled Capabilities: B,R m = p8.match(line) if m: cap = [self.CAPABILITY_CODES[n] for n in m.groupdict()['capab'].split(',')] for item in cap: cap_dict = nei_dict.setdefault('capabilities', {}).\ setdefault(item, {}) cap_dict['name'] = item cap_dict['enabled'] = True continue # Management Addresses: # IP: 10.9.1.1 # Management Addresses - not advertised m = p9.match(line) or p9_1.match(line) if m: nei_dict['management_address'] = m.groupdict()['ip'] continue # Auto Negotiation - supported, enabled m = p10.match(line) if m: nei_dict['auto_negotiation'] = m.groupdict()['auto_negotiation'] continue # Physical media capabilities: m = p11.match(line) if m: nei_dict['physical_media_capabilities'] = [] continue # 1000baseT(FD) # 100base-TX(HD) # Symm, Asym Pause(FD) # Symm Pause(FD) m = p11_1.match(line) if m: item = nei_dict.get('physical_media_capabilities', []) item.append(m.groupdict()['physical_media_capabilities']) nei_dict['physical_media_capabilities'] = item continue # Media Attachment Unit type: 30 m = p12.match(line) if m: nei_dict['unit_type'] = int(m.groupdict()['unit_type']) continue # Vlan ID: 1 # Note: not parsing 'not advertised since value type is int m = p13.match(line) if m: nei_dict['vlan_id'] = int(m.groupdict()['vlan_id']) continue # Total entries displayed: 4 m = p14.match(line) if m: ret_dict['total_entries'] = int(m.groupdict()['entry']) continue # ==== Med Information ==== # MED Information: m = med_p0.match(line) if m: med_dict = ret_dict.setdefault('med_information', {}) continue # F/W revision: 06Q # S/W revision: SCCP42.9-3-1ES27S # H/W revision: 12 m = med_p1.match(line) if m: group = m.groupdict() med_dict[group['head'].lower()+'_revision'] = m.groupdict()['revision'] continue # Manufacturer: Avaya-05 # Model: 1220 IP Deskphone # Device type: Endpoint Class III m = med_p2.match(line) or med_p3.match(line) or med_p5.match(line) if m: match_key = [*m.groupdict().keys()][0] med_dict[match_key] = m.groupdict()[match_key] continue # Capabilities: NP, LI, PD, IN # Capabilities: m = med_p4.match(line) if m: list_capabilities = m.groupdict()['capabilities'].split(', ') med_dict['capabilities'] = list_capabilities continue # Network Policy(Voice): VLAN 110, tagged, Layer-2 priority: 5, DSCP: 46 # Network Policy(Voice Signal): VLAN 110, tagged, Layer-2 priority: 0, DSCP: 0 m = med_p6.match(line) if m: group = m.groupdict() if group['voice_signal']: voice = 'voice_signal' else: voice = 'voice' voice_sub_dict = med_dict.setdefault('network_policy', {}).\ setdefault(voice, {}) if group['tagged'] == 'tagged': voice_sub_dict['tagged'] = True else: voice_sub_dict['tagged'] = False for k in ['layer_2_priority', 'dscp', 'vlan']: voice_sub_dict[k] = int(group[k]) continue # PD device, Power source: Unknown, Power Priority: High, Wattage: 6.0 m = med_p7.match(line) if m: for k in ['device_type', 'power_source', 'power_priority']: med_dict[k] = m.groupdict()[k] med_dict['wattage'] = float(m.groupdict()['wattage']) continue # Location - not advertised m = med_p8.match(line) if m: med_dict['location'] = m.groupdict()['location'] continue # Serial number: FCH1610A5S5 m = med_p9.match(line) if m: med_dict['serial_number'] = m.groupdict()['serial_number'] continue return ret_dict class ShowLldpNeighborsDetail(ShowLldpEntry): '''Parser for show lldp neighbors detail''' cli_command = 'show lldp neighbors detail' exclude = ['time_remaining'] def cli(self,output=None): if output is None: show_output = self.device.execute(self.cli_command) else: show_output = output return super().cli(output=show_output) class ShowLldpTrafficSchema(MetaParser): """Schema for show lldp traffic""" schema = { "frame_in": int, "frame_out": int, "frame_error_in": int, "frame_discard": int, "tlv_discard": int, 'tlv_unknown': int, 'entries_aged_out': int } class ShowLldpTraffic(ShowLldpTrafficSchema): """Parser for show lldp traffic""" cli_command = 'show lldp traffic' exclude = ['frame_in' , 'frame_out', 'tlv_discard', 'tlv_unknown'] def cli(self,output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # initial return dictionary ret_dict = {} # initial regexp pattern p1 = re.compile(r'^(?P<pattern>[\w\s]+): +(?P<value>\d+)$') for line in out.splitlines(): line = line.strip() # Total frames out: 20372 # Total entries aged: 34 # Total frames in: 13315 # Total frames received in error: 0 # Total frames discarded: 14 # Total TLVs discarded: 0 # Total TLVs unrecognized: 0 m = p1.match(line) if m: group = m.groupdict() if re.search('(Total +frames +out)', group['pattern']): key = 'frame_out' elif re.search('(Total +entries +aged)', group['pattern']): key = 'entries_aged_out' elif re.search('(Total +frames +in)', group['pattern']): key = 'frame_in' elif re.search('(Total +frames +received +in +error)', group['pattern']): key = 'frame_error_in' elif re.search('(Total +frames +discarded)', group['pattern']): key = 'frame_discard' elif re.search('(Total +TLVs +discarded)', group['pattern']): key = 'tlv_discard' elif re.search('(Total +TLVs +unrecognized)', group['pattern']): key = 'tlv_unknown' else: continue ret_dict[key] = int(group['value']) continue return ret_dict class ShowLldpInterfaceSchema(MetaParser): """Schema for show lldp interface [<WORD>]""" schema = { 'interfaces': { Any(): { 'tx': str, 'rx': str, 'tx_state': str, 'rx_state': str, }, } } class ShowLldpInterface(ShowLldpInterfaceSchema): """Parser for show lldp interface [<WORD>]""" cli_command = ['show lldp interface {interface}','show lldp interface'] def cli(self, interface='',output=None): if output is None: if interface: cmd = self.cli_command[0].format(interface=interface) else: cmd = self.cli_command[1] out = self.device.execute(cmd) else: out = output # initial return dictionary ret_dict = {} # initial regexp pattern p1 = re.compile(r'^(?P<intf>[\w\/\-\.]+):$') p2 = re.compile(r'^(?P<key>[\w\s]+): +(?P<value>[\w\s]+)$') for line in out.splitlines(): line = line.strip() # GigabitEthernet1/0/15 m = p1.match(line) if m: intf_dict = ret_dict.setdefault('interfaces', {}).\ setdefault(m.groupdict()['intf'], {}) continue # Tx: enabled # Rx: enabled # Tx state: IDLE # Rx state: WAIT FOR FRAME m = p2.match(line) if m: group = m.groupdict() key = '_'.join(group['key'].lower().split()) intf_dict[key] = group['value'].lower() continue return ret_dict class ShowLldpNeighborsSchema(MetaParser): """ Schema for show lldp neighbors """ schema = { 'total_entries': int, 'interfaces': { Any(): { 'port_id': { Any(): { 'neighbors': { Any(): { 'hold_time': int, Optional('capabilities'): list, } } } } } } } class ShowLldpNeighbors(ShowLldpNeighborsSchema): """ Parser for show lldp neighbors """ CAPABILITY_CODES = {'R': 'router', 'B': 'mac_bridge', 'T': 'telephone', 'C': 'docsis_cable_device', 'W': 'wlan_access_point', 'P': 'repeater', 'S': 'station_only', 'O': 'other'} cli_command = ['show lldp neighbors'] def cli(self, output=None): if output is None: cmd = self.cli_command[0] out = self.device.execute(cmd) else: out = output parsed_output = {} # Total entries displayed: 4 p1 = re.compile(r'^Total\s+entries\s+displayed:\s+(?P<entry>\d+)$') # Device ID Local Intf Hold-time Capability Port ID # router Gi1/0/52 117 R Gi0/0/0 # 10.10.191.107 Gi1/0/14 155 B,T 7038.eeff.572d # d89e.f3ff.58fe Gi1/0/33 3070 d89e.f3ff.58fe # Polycom Trio Visual+Gi2/0/28 120 T 6416.7f1e.ff12 p2 = re.compile(r'(?P<device_id>.{20})(?P<interfaces>\S+)' r'\s+(?P<hold_time>\d+)\s+(?P<capabilities>[A-Z,]+)?' r'\s+(?P<port_id>\S+)') for line in out.splitlines(): line = line.strip() # Total entries displayed: 4 m = p1.match(line) if m: parsed_output['total_entries'] = int(m.groupdict()['entry']) continue # Device ID Local Intf Hold-time Capability Port ID # router Gi1/0/52 117 R Gi0/0/0 # 10.10.191.107 Gi1/0/14 155 B,T 7038.eeff.572d # d89e.f3ff.58fe Gi1/0/33 3070 d89e.f3ff.58fe m = p2.match(line) if m: group = m.groupdict() intf = Common.convert_intf_name(group['interfaces']) device_dict = parsed_output.setdefault('interfaces', {}). \ setdefault(intf, {}). \ setdefault('port_id', {}). \ setdefault(group['port_id'], {}).\ setdefault('neighbors', {}). \ setdefault(group['device_id'], {}) device_dict['hold_time'] = int(group['hold_time']) if group['capabilities']: capabilities = list(map(lambda x: x.strip(), group['capabilities'].split(','))) device_dict['capabilities'] = capabilities continue return parsed_output
the-stack_0_21308
def mergeSort(nList, left, right): if(right-left>1): middle = (left+right)//2 mergeSort(nList, left, middle) mergeSort(nList, middle, right) mergeCombine(nList, left, middle, right) def mergeCombine(nList, left, middle, right): lList = nList[left:middle] rList = nList[middle:right] k, i, j = left, 0, 0 while(left+i<middle and middle+j<right): if(lList[i]<=rList[j]): nList[k] = lList[i] i+=1 else: nList[k] = rList[j] j+=1 k+=1 if(left+i<middle): while(k<right): nList[k] = lList[i] i,k = i+1,k+1 else: while(k<right): nList[k] = rList[j] j,k = j+1,k+1 nList = [int(x) for x in input('Enter the array of elements to be sorted: ').split()] mergeSort(nList,0,len(nList)) print('The sorted array: '+str(nList))
the-stack_0_21311
from tensorflow.keras.models import model_from_json import pandas as pd import numpy as np import plotly.figure_factory as ff from scipy.spatial import Delaunay import pickle # Load scaler models with open("x_scaler.pkl", 'rb') as file: scaler_x = pickle.load(file) with open("y_scaler.pkl", 'rb') as file: scaler_y_2 = pickle.load(file) # read coordinates site = pd.read_csv('site_coordinates.csv') def load_generator_model(model): """ load the saved trained generator model """ json_file = open(f'{model}.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights(f"{model}.h5") return loaded_model g_model = load_generator_model('generator_model') def visualize(thickness): """ 3D interpolation of the thickness profile. """ site['SITE_Z'] = thickness points2D = np.vstack([site['SITE_X'], site['SITE_Y']]).T tri = Delaunay(points2D) simplices = tri.simplices fig = ff.create_trisurf(site['SITE_X'], site['SITE_Y'], site['SITE_Z'], simplices=simplices, title="wafare", aspectratio=dict(x=1, y=1, z=0.5)) fig.show() def create_process_vector(flow, space, dept, tool): """ Creat a procces vector of the parameters for the model. """ features = np.array([flow, space, dept]) if tool == 1: encode = np.array([1, 0, 0, 0]) features = np.concatenate([features, encode]) elif tool == 2: encode = np.array([0, 1, 0, 0]) features = np.concatenate([features, encode]) elif tool == 3: encode = np.array([0, 0, 1, 0]) features = np.concatenate([features, encode]) elif tool == 4: encode = np.array([0, 0, 0, 1]) features = np.concatenate([features, encode]) features = np.array(features).reshape(1, -1) print(features) process_vector = scaler_y_2.transform(features) return process_vector def generate_latent_points(latent_dim=32, n_samples=1): """ generate points in latent space as input for the generator """ # generate points in the latent space x_input = np.random.randn(latent_dim * n_samples) # reshape into a batch of inputs for the network z_input = x_input.reshape(n_samples, latent_dim) return z_input def generate_thickness(latent_points, process_vector, g_model): """ Genrerate thickness profile form the generator model with given parameters """ X_test = g_model.predict([latent_points, process_vector]) X_test = X_test.reshape(49,) X_test = scaler_x.inverse_transform(X_test.reshape(1, -1)) return X_test[0] if __name__ == '__main__': latent_points = generate_latent_points() print("Please enter flow rate value:\n") flow = 0.916000 #input() print("Please enter spacing value:\n") space = 0.344000 #input() print("Please enter deposition time value:\n") dept = 69.289000 #input() print("Please enter tool number from 1, 2, 3 and 4:\n") tool = 1 #input() process_vector = create_process_vector(flow, space, dept, tool) thickness = generate_thickness(latent_points, process_vector, g_model) visualize(thickness)
the-stack_0_21312
import os, sys, time import math import copy import re # import requests import urllib import lxml.html as ht # import lxml.etree as et from markdownify import markdownify # import markdown ##------------------------------------------------------------ sys.path.append(os.path.join(os.path.dirname(__file__), '../_public')) ## Note: ํ˜„์žฌ ๋””๋ ‰ํ† ๋ฆฌ ๊ธฐ์ค€ ์ƒ๋Œ€ ๊ฒฝ๋กœ ์„ค์ • from utils_basic import (_create_folder, _read_file, _file_to_json, _json_to_file, _to_lists, _fn) from utils_scraping import ( _root, _remove_punc, _pages_by_pagination, _scrape_list_pages, _extract_values, _scrape_detail_page, _scrape_full_html ) # from scrap_selenium import (go_selenium, _wait_xpath) base_path = '../../../__references/_python/sats/_scrap/wikidocs/2155_๋”ฅ ๋Ÿฌ๋‹์„ ์ด์šฉํ•œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์ž…๋ฌธ/source/' ## 'https://wikidocs.net/book/2155' base_url = 'https://wikidocs.net/' url = 'https://wikidocs.net/book/2155' defaults = dict( base_url = base_url, base_path = base_path, head = { 'create': { 'meta': { 'charset': 'utf-8' } }, # 'copy': { # "//style[@type='text/css']" # }, # 'files': ['js', 'css'] }, body = { 'title': './/h1[@class="page-subject"]', 'date': './/div[@class="muted text-right"]', 'content': './/div[contains(@class, "page-content")]', }, dels = [ # content์—์„œ ์ œ๊ฑฐํ•  ์š”์†Œ xpath # './/blockquote[last()]' ], # pres = [ ## NOTE: ์—ฌ๋ฐฑ, ์ค„๋ฐ”๊ฟˆ ์œ ์ง€ # './/pre' # ], full = False, files = { 'fig' : { 'xpath': './/img', 'url': { # 'xpath': 'span', 'target': 'src', }, 'path': { # 'xpath': './/img', # 'target': 'data-filename', # 'body': callback, 'prefix': 'images/', 'suffix': '' }, # 'swap': { # element๋ฅผ ์น˜ํ™˜ํ•˜๋Š” ๊ฒฝ์šฐ์—๋งŒ ์‚ฌ์šฉ # 'tag': 'img', # # 'attrs': [ # ์›๋ž˜ element์—์„œ ๋ณต์‚ฌํ•  attribute ์š”์†Œ # 'src', # 'data-origin-width', # 'data-origin-height', # ] # } } } ) ## NOTE: ์ฑ… ์ œ๋ชฉ ํŽ˜์ด์ง€ # _scrape_full_html(title='intro', url=url, base_url=base_url, base_path=base_path, files=defaults['files']) # time.sleep(5) # ## NOTE: detail pages from ์ œ๋ชฉ ํŽ˜์ด์ง€ # path = f'{base_path}intro.html' # # root = _root(path, encoding='utf-8') # root = _root(path) # root = root.xpath('.//div[contains(@class, "list-group-toc")]')[0] # detail_pages = {} # prefixs = ['', ''] # for el in root.xpath('.//a[contains(@class, "list-group-item")]'): # url = el.get('href') # if 'javascript' in url: # NOTE: ์ฑ… ์ œ๋ชฉ ์™ธ์—๋Š” ๋ชจ๋‘ ํ•ด๋‹น # url = f"/{url.split('(')[-1][:-1]}" # span = el.xpath('./span/span')[0] # style = span.attrib['style'] # title = span.text.strip() # if ':0px' in style: # # prefixs[0] = f"{title.split(' ')[0][:-1]}-" # # prefixs[0] = f"{title.split(' ')[0].replace('.', '').replace(')', '')}-" # ๋’ค์— ์žˆ๋Š” '.', ')' ์ œ๊ฑฐ # elif ':20px' in style: # # title = prefixs[0] + title # title = prefixs[0] + title.split(' ')[0].replace('.', '').replace(')', '') + ' ' + ' '.join(title.split(' ')[1:]) # # prefixs[1] = f"{title.split(' ')[0][:-1]}-" # prefixs[1] = f"{title.split(' ')[0].replace('.', '').replace(')', '')}-" # ๋’ค์— ์žˆ๋Š” '.', ')' ์ œ๊ฑฐ # elif ':40px' in style: # title = prefixs[1] + title.split(' ')[0].replace('.', '').replace(')', '') + ' ' + ' '.join(title.split(' ')[1:]) # detail_pages[title.replace('.', '').replace('/', '_')] = url # _json_to_file(detail_pages, f'{base_path}_json/detail_pages.json') # time.sleep(5) ## NOTE: scrape category detail_pages = _file_to_json(f'{base_path}_json/detail_pages.json') for title, url in detail_pages.items(): _defaults = copy.deepcopy(defaults) ## NOTE: ๊นŠ์€ ๋ณต์‚ฌ url = f"{base_url}{url[1:]}" detail_options = dict(_defaults, **dict(title=title, url=url, base_path=base_path)) _scrape_detail_page(**detail_options) ## NOTE: html -> markdown
the-stack_0_21314
from datetime import timezone import flask import json import math import time import re import psycopg2 import validators from datatypes import (AccessDeniedError, Account, Bot, Dashboard, Entity, Credential, Sensor, Measurement, Path, PathInputValue, PathFilter, Permission, Timestamp, UnfinishedPathFilter, ValidationError, Widget, Stats, ) from .common import mqtt_publish_changed, mqtt_publish_changed_multiple_payloads from const import SYSTEM_PATH_INSERTED_COUNT, SYSTEM_PATH_UPDATED_COUNT, SYSTEM_PATH_CHANGED_COUNT accounts_api = flask.Blueprint('accounts_api', __name__) @accounts_api.before_request def accounts_before_request(): # If bot has successfully logged in (and retrieved the list of its accounts), we should # publish an MQTT message so that frontend can update 'Last login' field of the bot, and # show/hide notification badges based on it: if flask.g.grafolean_data['user_is_bot']: bot_id = flask.g.grafolean_data['user_id'] m = re.match(r'^/api/accounts/([0-9]+)(/.*)?$', flask.request.path) if m: account_id = m.groups()[0] mqtt_publish_changed([ 'accounts/{account_id}/bots'.format(account_id=account_id), 'accounts/{account_id}/bots/{bot_id}'.format(account_id=account_id, bot_id=bot_id), ]) else: mqtt_publish_changed([ 'bots', 'bots/{bot_id}'.format(bot_id=bot_id), ]) def accounts_apidoc_schemas(): yield "AccountPOST", validators.AccountSchemaInputs yield "AccountGET", { 'type': 'object', 'properties': { 'id': { 'type': 'integer', 'description': "Account id", 'example': 123, }, 'name': { 'type': 'string', 'description': "Account name", 'example': 'My First Account', }, }, 'required': ['id', 'name'], } yield "ValuesGET", { 'type': 'object', 'properties': { 'paths': { 'type': 'object', 'additionalProperties': { # we don't define any properties (because keys are paths and are not known in advance), but # anything below must conform to this sub-schema: 'type': 'object', 'properties': { 'next_data_point': { 'type': ['number', 'null'], 'description': "Measurements time (UNIX timestamp) of the next value - null if limit was not reached", 'example': 1234567890.123456, }, 'data': { 'type': 'array', 'description': "List of values", 'items': { 'type': 'object', 'properties': { 't': { 'type': 'number', 'description': "Measurements time (UNIX timestamp) - middle of aggregation bucket if aggregation was requested", 'example': 1234567890.123456, }, 'v': { 'type': 'number', 'description': "Measurement value; median values if aggregation was requested", 'example': 12.33, }, } } }, }, }, }, }, } yield "TopValuesGET", { 'type': 'object', 'properties': { 't': { 'type': ['number', 'null'], 'description': "Measurements time (UNIX timestamp) - null if no results were found", 'example': 1234567890.123456, }, 'total': { 'type': ['number', 'null'], 'description': "Sum of values for all paths that match the path filter (useful for calculating percentages)", 'example': 1500.0, }, 'list': { 'type': 'array', 'description': "List of top N candidates", 'items': { 'type': 'object', 'properties': { 'p': { 'type': 'string', 'description': "Path", 'example': 'entity.1.interface.12.my.path', }, 'v': { 'type': 'number', 'description': "Measurement value", 'example': 12.33, }, } } }, }, } # -------------- # /accounts/ # -------------- @accounts_api.route('/', methods=['GET']) # CAREFUL: accessible to any authenticated user (permissions check bypassed) def accounts_root(): """ --- get: summary: Get all accounts this user has access to tags: - Accounts description: Returns the list of accounts that this user (person or bot) has permission to access. The list is returned in a single array (no pagination). responses: 200: content: application/json: schema: type: object properties: list: type: array items: "$ref": '#/definitions/AccountGET' """ user_id = flask.g.grafolean_data['user_id'] accounts = Account.get_list(user_id) return json.dumps({'list': accounts}), 200 @accounts_api.route('/<int:account_id>', methods=['GET', 'PUT']) def account_crud(account_id): """ --- get: summary: Get an account tags: - Accounts description: Returns account data. parameters: - name: account_id in: path description: "Account id" required: true schema: type: integer responses: 200: content: application/json: schema: "$ref": '#/definitions/AccountGET' 404: description: No such account put: summary: Update the account tags: - Accounts description: Updates account name. parameters: - name: account_id in: path description: "Account id" required: true schema: type: integer - name: "body" in: body description: "Account data" required: true schema: "$ref": '#/definitions/AccountPOST' responses: 204: description: Update successful 404: description: No such account """ if flask.request.method in ['GET', 'HEAD']: rec = Account.get(account_id) if not rec: return "No such account", 404 return json.dumps(rec), 200 elif flask.request.method == 'PUT': rec = Account.forge_from_input(flask.request.get_json(), force_id=account_id) rowcount = rec.update() if not rowcount: return "No such account", 404 mqtt_publish_changed([ 'accounts/{account_id}'.format(account_id=account_id), ]) return "", 204 @accounts_api.route('/<int:account_id>/bots', methods=['GET', 'POST']) def account_bots(account_id): if flask.request.method in ['GET', 'HEAD']: rec = Bot.get_list(account_id) return json.dumps({'list': rec}), 200 elif flask.request.method == 'POST': bot = Bot.forge_from_input(flask.request.get_json(), force_account=account_id) user_id, _ = bot.insert() rec = Bot.get(user_id, account_id) mqtt_publish_changed([ 'accounts/{account_id}/bots'.format(account_id=account_id), 'accounts/{account_id}/bots/{bot_id}'.format(account_id=account_id, bot_id=user_id), ]) return json.dumps(rec), 201 @accounts_api.route('/<int:account_id>/bots/<string:user_id>', methods=['GET', 'PUT', 'DELETE']) def account_bot_crud(account_id, user_id): if flask.request.method in ['GET', 'HEAD']: rec = Bot.get(user_id, account_id) if not rec: return "No such bot", 404 return json.dumps(rec), 200 elif flask.request.method == 'PUT': bot = Bot.forge_from_input(flask.request.get_json(), force_account=account_id, force_id=user_id) rowcount = bot.update() if not rowcount: return "No such bot", 404 mqtt_publish_changed([ 'accounts/{account_id}/bots'.format(account_id=account_id), 'accounts/{account_id}/bots/{bot_id}'.format(account_id=account_id, bot_id=user_id), ]) return "", 204 elif flask.request.method == 'DELETE': # bot should not be able to delete himself, otherwise they could lock themselves out: if int(flask.g.grafolean_data['user_id']) == int(user_id): return "Can't delete yourself", 403 rowcount = Bot.delete(user_id, force_account=account_id) if not rowcount: return "No such bot", 404 mqtt_publish_changed([ 'accounts/{account_id}/bots'.format(account_id=account_id), 'accounts/{account_id}/bots/{bot_id}'.format(account_id=account_id, bot_id=user_id), ]) return "", 204 @accounts_api.route('/<int:account_id>/bots/<int:user_id>/token', methods=['GET']) def account_bot_token_get(account_id, user_id): # make sure the user who is requesting to see the bot token has every permission that this token has, and # also that this user can add the bot: request_user_permissions = Permission.get_list(int(flask.g.grafolean_data['user_id'])) if not Permission.has_all_permissions(request_user_permissions, user_id): return "Not enough permissions to see this bot's token", 401 if not Permission.can_grant_permission(request_user_permissions, 'accounts/{}/bots'.format(account_id), 'POST'): return "Not enough permissions to see this bot's token - POST to accounts/:account_id/bots not allowed", 401 token = Bot.get_token(user_id, account_id) if not token: return "No such bot", 404 return {'token': token}, 200 @accounts_api.route('/<int:account_id>/entities', methods=['GET', 'POST']) def account_entities(account_id): if flask.request.method in ['GET', 'HEAD']: rec = Entity.get_list(account_id) return json.dumps({'list': rec}), 200 elif flask.request.method == 'POST': entity = Entity.forge_from_input(flask.request.get_json(), account_id) entity_id = entity.insert() rec = {'id': entity_id} mqtt_publish_changed([ 'accounts/{}/entities'.format(account_id), ]) return json.dumps(rec), 201 @accounts_api.route('/<int:account_id>/entities/<string:entity_id>', methods=['GET', 'PUT', 'DELETE']) def account_entity_crud(account_id, entity_id): if flask.request.method in ['GET', 'HEAD']: rec = Entity.get(entity_id, account_id) if not rec: return "No such entity", 404 return json.dumps(rec), 200 elif flask.request.method == 'PUT': entity = Entity.forge_from_input(flask.request.get_json(), account_id, force_id=entity_id) rowcount = entity.update() if not rowcount: return "No such entity", 404 mqtt_publish_changed([ 'accounts/{}/entities'.format(account_id), 'accounts/{}/entities/{}'.format(account_id, entity_id), ]) return "", 204 elif flask.request.method == 'DELETE': rowcount = Entity.delete(entity_id, account_id) if not rowcount: return "No such entity", 404 mqtt_publish_changed([ 'accounts/{}/entities'.format(account_id), 'accounts/{}/entities/{}'.format(account_id, entity_id), ]) return "", 204 @accounts_api.route('/<int:account_id>/credentials', methods=['GET', 'POST']) def account_credentials(account_id): if flask.request.method in ['GET', 'HEAD']: rec = Credential.get_list(account_id) return json.dumps({'list': rec}), 200 elif flask.request.method == 'POST': credential = Credential.forge_from_input(flask.request.get_json(), account_id) credential_id = credential.insert() rec = {'id': credential_id} mqtt_publish_changed([ 'accounts/{}/credentials'.format(account_id), ]) return json.dumps(rec), 201 @accounts_api.route('/<int:account_id>/credentials/<string:credential_id>', methods=['GET', 'PUT', 'DELETE']) def account_credential_crud(account_id, credential_id): if flask.request.method in ['GET', 'HEAD']: rec = Credential.get(credential_id, account_id) if not rec: return "No such credential", 404 return json.dumps(rec), 200 elif flask.request.method == 'PUT': credential = Credential.forge_from_input(flask.request.get_json(), account_id, force_id=credential_id) rowcount = credential.update() if not rowcount: return "No such credential", 404 mqtt_publish_changed([ 'accounts/{}/credentials'.format(account_id), 'accounts/{}/credentials/{}'.format(account_id, credential_id), ]) return "", 204 elif flask.request.method == 'DELETE': rowcount = Credential.delete(credential_id, account_id) if not rowcount: return "No such credential", 404 mqtt_publish_changed([ 'accounts/{}/credentials'.format(account_id), 'accounts/{}/credentials/{}'.format(account_id, credential_id), ]) return "", 204 @accounts_api.route('/<int:account_id>/sensors', methods=['GET', 'POST']) def account_sensors(account_id): if flask.request.method in ['GET', 'HEAD']: rec = Sensor.get_list(account_id) return json.dumps({'list': rec}), 200 elif flask.request.method == 'POST': sensor = Sensor.forge_from_input(flask.request.get_json(), account_id) sensor_id = sensor.insert() rec = {'id': sensor_id} mqtt_publish_changed([ 'accounts/{}/sensors'.format(account_id), ]) return json.dumps(rec), 201 @accounts_api.route('/<int:account_id>/sensors/<string:sensor_id>', methods=['GET', 'PUT', 'DELETE']) def account_sensor_crud(account_id, sensor_id): if flask.request.method in ['GET', 'HEAD']: rec = Sensor.get(sensor_id, account_id) if not rec: return "No such sensor", 404 return json.dumps(rec), 200 elif flask.request.method == 'PUT': sensor = Sensor.forge_from_input(flask.request.get_json(), account_id, force_id=sensor_id) rowcount = sensor.update() if not rowcount: return "No such sensor", 404 mqtt_publish_changed([ 'accounts/{}/sensors'.format(account_id), 'accounts/{}/sensors/{}'.format(account_id, sensor_id), ]) return "", 204 elif flask.request.method == 'DELETE': rowcount = Sensor.delete(sensor_id, account_id) if not rowcount: return "No such sensor", 404 mqtt_publish_changed([ 'accounts/{}/sensors'.format(account_id), 'accounts/{}/sensors/{}'.format(account_id, sensor_id), ]) return "", 204 @accounts_api.route('/<int:account_id>/bots/<string:user_id>/permissions', methods=['GET', 'POST']) def account_bot_permissions(account_id, user_id): """ Allows reading and assigning permissions to account bots (bots which are tied to a specific account). """ # make sure the bot really belongs to the account: rec = Bot.get(user_id, account_id) if not rec: return "No such bot", 404 if flask.request.method in ['GET', 'HEAD']: rec = Permission.get_list(user_id) return json.dumps({'list': rec}), 200 elif flask.request.method == 'POST': granting_user_id = flask.g.grafolean_data['user_id'] permission = Permission.forge_from_input(flask.request.get_json(), user_id) try: permission_id = permission.insert(granting_user_id) mqtt_publish_changed([ 'persons/{}'.format(permission.user_id), 'bots/{}'.format(permission.user_id), ]) return json.dumps({ 'user_id': permission.user_id, 'resource_prefix': permission.resource_prefix, 'methods': permission.methods, 'id': permission_id, }), 201 except AccessDeniedError as ex: return str(ex), 401 except psycopg2.IntegrityError: return "Invalid parameters", 400 @accounts_api.route('/<int:account_id>/bots/<int:user_id>/permissions/<int:permission_id>', methods=['DELETE']) def account_bot_permission_delete(account_id, user_id, permission_id): """ Revoke permission from account bot """ # make sure the bot really belongs to the account: rec = Bot.get(user_id, account_id) if not rec: return "No such bot", 404 granting_user_id = flask.g.grafolean_data['user_id'] try: rowcount = Permission.delete(permission_id, user_id, granting_user_id) except AccessDeniedError as ex: return str(ex), 401 if not rowcount: return "No such permission", 404 mqtt_publish_changed([ 'persons/{user_id}'.format(user_id=user_id), 'bots/{user_id}'.format(user_id=user_id), ]) return "", 204 @accounts_api.route("/<int:account_id>/values", methods=['PUT']) def values_put(account_id): data = flask.request.get_json() # let's just pretend our data is of correct form, otherwise Exception will be thrown and Flask will return error response: try: newly_created_paths = Measurement.save_values_data_to_db(account_id, data) except psycopg2.IntegrityError: return "Invalid input format", 400 # save the stats: minute = math.floor(time.time() / 60) * 60 stats_updates = { SYSTEM_PATH_UPDATED_COUNT: { 'v': len(data), 't': minute }, SYSTEM_PATH_CHANGED_COUNT: { 'v': len(data), 't': minute }, } topics_with_payloads_stats = Stats.update_account_stats(account_id, stats_updates) # publish the changes over MQTT: topics_with_payloads = [( f"accounts/{account_id}/values/{d['p']}", { 'v': d['v'], 't': d['t'] }, ) for d in data] topics_with_payloads.extend(topics_with_payloads_stats) if newly_created_paths: topics_with_payloads.append( ( f"accounts/{account_id}/paths", [{"p": p.path, "id": p.force_id} for p in newly_created_paths], ), ) mqtt_publish_changed_multiple_payloads(topics_with_payloads) return "", 204 @accounts_api.route("/<int:account_id>/values", methods=['POST']) def values_post(account_id): # data comes from two sources, query params and JSON body. We use both and append timestamp to each # piece, then we use the same function as for PUT: data = [] now = time.time() json_data = flask.request.get_json() query_params_p = flask.request.args.get('p') if json_data: for x in json_data: if x.get('t'): return "Parameter 't' shouldn't be specified with POST", 400 data = [{ 'p': x['p'], 'v': x['v'], 't': now, } for x in json_data] elif query_params_p: if flask.request.args.get('t'): return "Query parameter 't' shouldn't be specified with POST", 400 data.append({ 'p': query_params_p, 'v': flask.request.args.get('v'), 't': now, }) else: return "Missing data", 400 # let's just pretend our data is of correct form, otherwise Exception will be thrown and Flask will return error response: try: newly_created_paths = Measurement.save_values_data_to_db(account_id, data) except psycopg2.IntegrityError: return "Invalid input format", 400 # update stats: minute = math.floor(time.time() / 60) * 60 stats_updates = { SYSTEM_PATH_INSERTED_COUNT: { 'v': len(data), 't': minute }, SYSTEM_PATH_CHANGED_COUNT: { 'v': len(data), 't': minute }, } topics_with_payloads_stats = Stats.update_account_stats(account_id, stats_updates) # publish the changes over MQTT: topics_with_payloads = [( f"accounts/{account_id}/values/{d['p']}", { 'v': d['v'], 't': d['t'] }, ) for d in data] topics_with_payloads.extend(topics_with_payloads_stats) if newly_created_paths: topics_with_payloads.append( ( f"accounts/{account_id}/paths", [{"p": p.path, "id": p.force_id} for p in newly_created_paths], ), ) mqtt_publish_changed_multiple_payloads(topics_with_payloads) return "", 204 @accounts_api.route("/<int:account_id>/values/<string:path>", methods=['GET']) def values_get(account_id, path): """ --- get: summary: Get values within the specified timeframe tags: - Accounts description: Returns the values for the specified path. Similar to POST /accounts/<account_id>/getvalues/, except that only a single path can be specified (and GET is used). parameters: - name: account_id in: path description: "Account id" required: true schema: type: integer - name: path in: path description: "Path" required: true schema: type: string - name: t0 in: query description: "Start time (UNIX timestamp with up to 6 decimals)" required: true schema: type: string - name: t1 in: query description: "End time (UNIX timestamp with up to 6 decimals)" required: true schema: type: string - name: sort in: query description: "Sort order (default asc)" required: false schema: type: string enum: [asc, desc] - name: limit in: query description: "Limit number or returned results (default 100000, max 100000)" required: false schema: type: integer minimum: 1 maximum: 100000 responses: 200: content: application/json: schema: "$ref": '#/definitions/ValuesGET' """ args = flask.request.args if "," in path: return "Only a single path is allowed\n\n", 400 paths_input = path return _values_get(account_id, paths_input, None, args) @accounts_api.route("/<int:account_id>/getvalues", methods=['POST']) def values_get_with_post(account_id): # when we request data for too many paths at once, we run in trouble with URLs being too long. Using # POST is not ideal, but it works... We do however keep the interface as close to GET as possible, so # we use the same arguments: args = flask.request.get_json() paths_input = args.get('p') return _values_get(account_id, paths_input, None, args) @accounts_api.route("/<int:account_id>/getaggrvalues", methods=['POST']) def aggrvalues_get_with_post(account_id): args = flask.request.get_json() paths_input = args.get('p') try: aggr_level = int(args.get('a')) except: return "Invalid parameter: a\n\n", 400 if not (0 <= aggr_level <= 6): return "Invalid parameter a (should be a number in range from 0 to 6).\n\n", 400 return _values_get(account_id, paths_input, aggr_level, args) def _values_get(account_id, paths_input, aggr_level, args): if paths_input is None: return "Path(s) not specified\n\n", 400 try: paths = [Path(p, account_id).path for p in paths_input.split(',')] except: return "Path(s) not specified correctly\n\n", 400 t_from_input = args.get('t0') if t_from_input: try: t_froms = [Timestamp(t) for t in str(t_from_input).split(',')] if len(t_froms) == 1: t_froms = [t_froms[0] for _ in paths] elif len(t_froms) == len(paths): pass else: return "Number of t0 timestamps must be 1 or equal to number of paths\n\n", 400 except: return "Error parsing t0\n\n", 400 else: t_from = Measurement.get_oldest_measurement_time(account_id, paths) if not t_from: t_from = Timestamp(time.time()) t_froms = [t_from for _ in paths] t_to_input = args.get('t1') if t_to_input: try: t_to = Timestamp(t_to_input) except: return "Error parsing t1\n\n", 400 else: t_to = Timestamp(time.time()) sort_order = str(args.get('sort', 'asc')) if sort_order not in ['asc', 'desc']: return "Invalid parameter: sort (should be 'asc' or 'desc')\n\n", 400 should_sort_asc = True if sort_order == 'asc' else False try: max_records = int(args.get('limit', Measurement.MAX_DATAPOINTS_RETURNED)) if max_records > Measurement.MAX_DATAPOINTS_RETURNED: return "Invalid parameter: limit (max. value is {})\n\n".format(Measurement.MAX_DATAPOINTS_RETURNED), 400 except: return "Invalid parameter: limit\n\n", 400 # finally, return the data: paths_data = Measurement.fetch_data(account_id, paths, aggr_level, t_froms, t_to, should_sort_asc, max_records) return json.dumps({ 'paths': paths_data, }), 200 @accounts_api.route("/<int:account_id>/topvalues", methods=['GET']) def topvalues_get(account_id): """ --- get: summary: Get highest N measurements for the latest timestamp before specified time tags: - Accounts description: Finds the latest timestamp of any measurement that was recorded for any path that matches the path filter. Returns a list of highest `n` measurements (for the matching paths) that were taken at that timestamp. Note that timestamp must match exactly. It is possible to change the search for timestamp so that it is lower than some provided time (parameter `t`). parameters: - name: account_id in: path description: "Account id" required: true schema: type: integer - name: f in: query description: "Path filter (determines which paths are taken as candidates)" required: true schema: type: string - name: n in: query description: "Number of paths with highest measurements to return (default 5)" required: false schema: type: integer minimum: 1 - name: t in: query description: "Search for candidates older than this timestamp (default: current timestamp)" required: false schema: type: number responses: 200: content: application/json: schema: "$ref": '#/definitions/TopValuesGET' """ max_results_input = flask.request.args.get('n') max_results = max(0, int(max_results_input)) if max_results_input else 5 path_filter_input = flask.request.args.get('f') if not path_filter_input: return "Path filter not specified\n\n", 400 try: pf = str(PathFilter(path_filter_input)) except ValidationError: raise ValidationError("Invalid path filter") ts_to_input = flask.request.args.get('t', time.time()) try: ts_to = Timestamp(ts_to_input) except ValidationError: raise ValidationError("Invalid parameter t") ts, total, topn = Measurement.fetch_topn(account_id, pf, ts_to, max_results) return json.dumps({ 't': ts.replace(tzinfo=timezone.utc).timestamp(), 'total': float(total), 'list': topn, }), 200 @accounts_api.route("/<int:account_id>/paths", methods=['GET']) def paths_get(account_id): max_results_input = flask.request.args.get('limit') if not max_results_input: max_results = 10 else: max_results = max(0, int(max_results_input)) path_filters_input = flask.request.args.get('filter') failover_trailing = flask.request.args.get('failover_trailing', 'false').lower() == 'true' try: matching_paths = {} any_found = False any_limit_reached = False for path_filter_input in str(path_filters_input).split(','): pf = str(PathFilter(path_filter_input)) matching_paths[pf], limit_reached = PathFilter.find_matching_paths(account_id, pf, limit=max_results) any_found = len(matching_paths[pf]) > 0 or any_found any_limit_reached = any_limit_reached or limit_reached except ValidationError: if not failover_trailing: raise # looks like we don't have a valid filter, but that's ok - we allow trailing chars so it might fare better there matching_paths, any_limit_reached = {}, False ret = { 'paths': matching_paths if any_found else {}, 'limit_reached': any_limit_reached, } if failover_trailing and not any_found: ret['paths_with_trailing'] = {} for path_filter_input in str(path_filters_input).split(','): upf = str(UnfinishedPathFilter(path_filter_input)) ret['paths_with_trailing'][upf], limit_reached = UnfinishedPathFilter.find_matching_paths(account_id, upf, limit=max_results, allow_trailing_chars=True) ret['limit_reached'] = ret['limit_reached'] or limit_reached return json.dumps(ret), 200 @accounts_api.route('/<int:account_id>/paths/<int:path_id>', methods=['GET', 'PUT', 'DELETE']) def account_path_crud(account_id, path_id): if flask.request.method in ['GET', 'HEAD']: rec = Path.get(path_id, account_id) if not rec: return "No such path", 404 return json.dumps(rec), 200 elif flask.request.method == 'PUT': record = Path.forge_from_input(flask.request.get_json(), account_id, force_id=path_id) rowcount = record.update() if not rowcount: return "No such path", 404 return "", 204 elif flask.request.method == 'DELETE': rowcount = Path.delete(path_id, account_id) if not rowcount: return "No such path", 404 return "", 204 @accounts_api.route("/<int:account_id>/dashboards", methods=['GET', 'POST']) def dashboards_crud(account_id): if flask.request.method in ['GET', 'HEAD']: rec = Dashboard.get_list(account_id) return json.dumps({'list': rec}), 200 elif flask.request.method == 'POST': dashboard = Dashboard.forge_from_input(account_id, flask.request.get_json()) try: dashboard.insert() except psycopg2.IntegrityError: return "Dashboard with this slug already exists", 400 mqtt_publish_changed(['accounts/{}/dashboards'.format(account_id)]) return json.dumps({'slug': dashboard.slug}), 201 @accounts_api.route("/<int:account_id>/dashboards/<string:dashboard_slug>", methods=['GET', 'PUT', 'DELETE']) def dashboard_crud(account_id, dashboard_slug): if flask.request.method in ['GET', 'HEAD']: rec = Dashboard.get(account_id, slug=dashboard_slug) if not rec: return "No such dashboard", 404 return json.dumps(rec), 200 elif flask.request.method == 'PUT': dashboard = Dashboard.forge_from_input(account_id, flask.request.get_json(), force_slug=dashboard_slug) rowcount = dashboard.update() if not rowcount: return "No such dashboard", 404 mqtt_publish_changed([ 'accounts/{}/dashboards'.format(account_id), 'accounts/{}/dashboards/{}'.format(account_id, dashboard_slug), ]) return "", 204 elif flask.request.method == 'DELETE': rowcount = Dashboard.delete(account_id, dashboard_slug) if not rowcount: return "No such dashboard", 404 mqtt_publish_changed([ 'accounts/{}/dashboards'.format(account_id), 'accounts/{}/dashboards/{}'.format(account_id, dashboard_slug), ]) return "", 200 @accounts_api.route("/<int:account_id>/dashboards/<string:dashboard_slug>/widgets", methods=['GET', 'POST']) def widgets_crud(account_id, dashboard_slug): if flask.request.method in ['GET', 'HEAD']: try: paths_limit = int(flask.request.args.get('paths_limit', 200)) except: return "Invalid parameter: paths_limit\n\n", 400 rec = Widget.get_list(account_id, dashboard_slug, paths_limit=paths_limit) return json.dumps({'list': rec}), 200 elif flask.request.method == 'POST': widget = Widget.forge_from_input(account_id, dashboard_slug, flask.request.get_json()) try: widget_id = widget.insert() except psycopg2.IntegrityError as ex: return "Error inserting widget" + str(ex), 400 mqtt_publish_changed([ f'accounts/{account_id}/dashboards/{dashboard_slug}', ]) return json.dumps({'id': widget_id}), 201 @accounts_api.route("/<int:account_id>/dashboards/<string:dashboard_slug>/widgets/<string:widget_id>", methods=['GET', 'PUT', 'DELETE']) def widget_crud(account_id, dashboard_slug, widget_id): try: widget_id = int(widget_id) except: raise ValidationError("Invalid widget id") if flask.request.method in ['GET', 'HEAD']: try: paths_limit = int(flask.request.args.get('paths_limit', 200)) except: return "Invalid parameter: paths_limit\n\n", 400 rec = Widget.get(account_id, dashboard_slug, widget_id, paths_limit=paths_limit) if not rec: return "No such widget", 404 return json.dumps(rec), 200 elif flask.request.method == 'PUT': widget = Widget.forge_from_input(account_id, dashboard_slug, flask.request.get_json(), widget_id=widget_id) rowcount = widget.update() if not rowcount: return "No such widget", 404 mqtt_publish_changed([ f'accounts/{account_id}/dashboards/{dashboard_slug}', ]) return "", 204 elif flask.request.method == 'DELETE': rowcount = Widget.delete(account_id, dashboard_slug, widget_id) if not rowcount: return "No such widget", 404 mqtt_publish_changed([ f'accounts/{account_id}/dashboards/{dashboard_slug}', ]) return "", 200 @accounts_api.route("/<int:account_id>/dashboards/<string:dashboard_slug>/widgets_positions/", methods=['PUT']) def widgets_positions(account_id, dashboard_slug): Widget.set_positions(account_id, dashboard_slug, flask.request.get_json()) mqtt_publish_changed([ f'accounts/{account_id}/dashboards/{dashboard_slug}', ]) return "", 204
the-stack_0_21316
import os, sys import math, time import contextlib import gi gi.require_version('Gst', '1.0') from gi.repository import Gst import numpy as np import torch, torchvision frame_format, pixel_bytes, model_precision = 'RGBA', 4, 'fp32' model_dtype = torch.float16 if model_precision == 'fp16' else torch.float32 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') detector = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd', model_math=model_precision).eval().to(device) ssd_utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd_processing_utils') detection_threshold = 0.4 start_time, frames_processed = None, 0 # context manager to help keep track of ranges of time, using NVTX @contextlib.contextmanager def nvtx_range(msg): depth = torch.cuda.nvtx.range_push(msg) try: yield depth finally: torch.cuda.nvtx.range_pop() def on_frame_probe(pad, info): global start_time, frames_processed start_time = start_time or time.time() with nvtx_range('on_frame_probe'): buf = info.get_buffer() print(f'[{buf.pts / Gst.SECOND:6.2f}]') image_tensor = buffer_to_image_tensor(buf, pad.get_current_caps()) image_batch = preprocess(image_tensor.unsqueeze(0)) frames_processed += image_batch.size(0) with torch.no_grad(): with nvtx_range('inference'): locs, labels = detector(image_batch) postprocess(locs, labels) return Gst.PadProbeReturn.OK def buffer_to_image_tensor(buf, caps): with nvtx_range('buffer_to_image_tensor'): caps_structure = caps.get_structure(0) height, width = caps_structure.get_value('height'), caps_structure.get_value('width') is_mapped, map_info = buf.map(Gst.MapFlags.READ) if is_mapped: try: image_array = np.ndarray( (height, width, pixel_bytes), dtype=np.uint8, buffer=map_info.data ) return torch.from_numpy( image_array[:,:,:3].copy() # RGBA -> RGB, and extend lifetime beyond subsequent unmap ) finally: buf.unmap(map_info) def preprocess(image_batch): '300x300 centre crop, normalize, HWC -> CHW' with nvtx_range('preprocess'): batch_dim, image_height, image_width, image_depth = image_batch.size() copy_x, copy_y = min(300, image_width), min(300, image_height) dest_x_offset = max(0, (300 - image_width) // 2) source_x_offset = max(0, (image_width - 300) // 2) dest_y_offset = max(0, (300 - image_height) // 2) source_y_offset = max(0, (image_height - 300) // 2) input_batch = torch.zeros((batch_dim, 300, 300, 3), dtype=model_dtype, device=device) input_batch[:, dest_y_offset:dest_y_offset + copy_y, dest_x_offset:dest_x_offset + copy_x] = \ image_batch[:, source_y_offset:source_y_offset + copy_y, source_x_offset:source_x_offset + copy_x] return torch.einsum( 'bhwc -> bchw', normalize(input_batch / 255) ).contiguous() def normalize(input_tensor): 'Nvidia SSD300 code uses mean and std-dev of 128/256' return (2.0 * input_tensor) - 1.0 def postprocess(locs, labels): with nvtx_range('postprocess'): results_batch = ssd_utils.decode_results((locs.cpu(), labels.cpu())) results_batch = [ssd_utils.pick_best(results, detection_threshold) for results in results_batch] for bboxes, classes, scores in results_batch: if scores.shape[0] > 0: print(bboxes, classes, scores) Gst.init() pipeline = Gst.parse_launch(f''' filesrc location=media/in.mp4 num-buffers=256 ! decodebin ! nvvideoconvert ! video/x-raw,format={frame_format} ! fakesink name=s ''') pipeline.get_by_name('s').get_static_pad('sink').add_probe( Gst.PadProbeType.BUFFER, on_frame_probe ) pipeline.set_state(Gst.State.PLAYING) try: while True: msg = pipeline.get_bus().timed_pop_filtered( Gst.SECOND, Gst.MessageType.EOS | Gst.MessageType.ERROR ) if msg: text = msg.get_structure().to_string() if msg.get_structure() else '' msg_type = Gst.message_type_get_name(msg.type) print(f'{msg.src.name}: [{msg_type}] {text}') break finally: finish_time = time.time() open(f'logs/{os.path.splitext(sys.argv[0])[0]}.pipeline.dot', 'w').write( Gst.debug_bin_to_dot_data(pipeline, Gst.DebugGraphDetails.ALL) ) pipeline.set_state(Gst.State.NULL) print(f'FPS: {frames_processed / (finish_time - start_time):.2f}')
the-stack_0_21318
from app.Model.file_management import ManagerFile class Database: def __init__(self): self._manager_file = ManagerFile() self.name_archive = 'confirmed' self.fields = [] self.rows = [] def save_data(self, data_csv_for_update): for filename in data_csv_for_update: fields = filename[0] rows = filename[1] name_archive = filename[2] with open(f"app\Services\{name_archive}.txt",'w') as arc: arc.write(','.join(fields)+'\n') for row in rows: arc.write(','.join(row)+'\n') print(f"{name_archive.capitalize()} data updated successfully!") def load_data(self, option): name_archive = str() for filename in self._manager_file.filenames: if option == 1 and filename == 'confirmed': name_archive = filename elif option == 2 and filename == 'death': name_archive = filename elif option == 3 and filename == 'recovered': name_archive = filename with open(f'app\Services\{name_archive}.txt', 'r') as arc: for row in arc: row = row.strip() new_row = row.split(',') self.rows.append(new_row) self.fields = self.rows.pop(0) print("Data loaded successfully!") return self.fields, self.rows
the-stack_0_21319
# This file belongs to DWGranularSpeckles project. # The software is realeased with MIT license. import os import sys import subprocess def get_frame_rate(filename): if not os.path.exists(filename): sys.stderr.write("ERROR: filename %r was not found!" % (filename,)) return -1 out = subprocess.check_output(["ffprobe", filename, "-v", "0", "-select_streams", "v", "-print_format", "flat", "-show_entries", "stream=r_frame_rate"]) rate = out.split('=')[1].strip()[1:-1].split('/') if len(rate) == 1: return float(rate[0]) if len(rate) == 2: return float(rate[0])/float(rate[1]) return -1 def videoToFrame(args): import cv2 vidcap = cv2.VideoCapture(args.videofile) success, image = vidcap.read() count = 0 success = True if not os.path.exists(args.image_folder): os.makedirs(args.image_folder) success, image = vidcap.read() while success: # print 'Read a new frame: ', success cv2.imwrite(args.image_folder+"/frame_%04d.png" % count, image) # save frame as JPEG file count += 1 success, image = vidcap.read() return count
the-stack_0_21322
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import json import logging import os import pytest import shutil import subprocess import sys import tempfile import tensorflow as tf from .. import recordio_utils from sagemaker_tensorflow import PipeModeDataset, PipeModeDatasetException dimension = 100 tf.logging.set_verbosity(logging.INFO) @pytest.fixture(autouse=True, scope='session') def recordio_file(): recordio_utils.build_record_file('test.recordio', num_records=100, dimension=dimension) recordio_utils.validate_record_file('test.recordio', dimension=dimension) yield os.remove('test.recordio') @pytest.fixture(autouse=True, scope='session') def multipart_recordio_file(): recordio_utils.build_record_file('test.mp.recordio', num_records=100, dimension=dimension, multipart=True) yield os.remove('test.mp.recordio') @pytest.fixture(autouse=True, scope='session') def tfrecords_file(): writer = tf.python_io.TFRecordWriter("test.tfrecords") for i in range(100): writer.write(b"hello world") writer.close() yield os.remove('test.tfrecords') @pytest.fixture(autouse=True, scope='session') def csv_file(): with open('test.csv', 'w') as csv_file: for i in range(100): for j in range(100): csv_file.write(str(j)) if j < 99: csv_file.write(',') else: csv_file.write('\n') yield os.remove('test.csv') @pytest.fixture def model_dir(): model_dir = tempfile.mkdtemp() yield model_dir shutil.rmtree(model_dir) def write_config(directory, *channels): configpath = os.path.join(directory, 'inputdataconfig.json') input_data_config = { channel: { "TrainingInputMode": "Pipe" } for channel in channels } with open(configpath, 'w') as f: f.write(json.dumps(input_data_config)) def create_fifos(epochs, channel_dir, channel_name, input_file='test.recordio'): for epoch in range(epochs): fifo = '{}/{}_{}'.format(channel_dir, channel_name, epoch) subprocess.check_call(['mkfifo', fifo]) devnull = open(os.devnull, 'w') subprocess.Popen(['dd', 'if={}'.format(input_file), 'of={}'.format(fifo), 'bs=65536'], stdout=devnull, stderr=devnull) features = { 'data': tf.FixedLenFeature([], tf.string), 'labels': tf.FixedLenFeature([], tf.int64), } def parse(record): parsed = tf.parse_single_example(record, features) return ({ 'data': tf.decode_raw(parsed['data'], tf.float64) }, parsed['labels']) def make_estimator(model_dir): column = tf.feature_column.numeric_column('data', shape=(dimension, )) return tf.estimator.LinearClassifier(feature_columns=[column], model_dir=model_dir) def test_multi_epoch_pipeline(model_dir): channel_dir = tempfile.mkdtemp() state_dir = tempfile.mkdtemp() epochs = 3 channel_name = 'testchannel' create_fifos(epochs, channel_dir, channel_name) write_config(channel_dir, 'testchannel') def input_fn(): ds = PipeModeDataset(channel_name, pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir) ds = ds.map(parse, num_parallel_calls=12) ds = ds.repeat(count=2) ds = ds.prefetch(3) ds = ds.batch(3) it = ds.make_one_shot_iterator() return it.get_next() estimator = make_estimator(model_dir=model_dir) estimator.train(input_fn=input_fn) def test_multi_channels(): channel_dir = tempfile.mkdtemp() state_dir = tempfile.mkdtemp() epochs = 3 create_fifos(epochs, channel_dir, "channel_a") create_fifos(epochs, channel_dir, "channel_b") write_config(channel_dir, 'channel_a', 'channel_b') def make_dataset(channel_name): ds = PipeModeDataset(channel_name, pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir) ds = ds.map(parse, num_parallel_calls=12) ds = ds.repeat(count=2) ds = ds.prefetch(3) ds = ds.batch(10) return ds ds_a = make_dataset("channel_a") ds_b = make_dataset("channel_b") dataset = tf.data.Dataset.zip((ds_a, ds_b)) with tf.Session() as sess: it = dataset.make_one_shot_iterator() next = it.get_next() for i in range(20): a, b = sess.run(next) assert a[0]['data'].shape == (10, 100) assert len(a[1]) == 10 assert b[0]['data'].shape == (10, 100) assert len(b[1]) == 10 with pytest.raises(tf.errors.OutOfRangeError): sess.run(next) def test_multipart_recordio(model_dir): channel_dir = tempfile.mkdtemp() state_dir = tempfile.mkdtemp() channel_name = 'testchannel' create_fifos(1, channel_dir, channel_name, input_file='test.mp.recordio') write_config(channel_dir, 'testchannel') def input_fn(): ds = PipeModeDataset(channel_name, pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir) ds = ds.map(parse, num_parallel_calls=12) ds = ds.prefetch(3) ds = ds.batch(3) it = ds.make_one_shot_iterator() return it.get_next() estimator = make_estimator(model_dir=model_dir) estimator.train(input_fn=input_fn) def test_tf_record(): channel_dir = tempfile.mkdtemp() state_dir = tempfile.mkdtemp() epochs = 1 channel_name = 'testchannel' create_fifos(epochs, channel_dir, channel_name, input_file='test.tfrecords') write_config(channel_dir, 'testchannel') ds = PipeModeDataset(channel_name, pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir, record_format='TFRecord') with tf.Session() as sess: it = ds.make_one_shot_iterator() next = it.get_next() for i in range(100): assert sess.run(next) == b'hello world' FIELD_DEFAULTS = [[0] for i in range(100)] COLUMNS = [str(i) for i in range(100)] def test_csv(): channel_dir = tempfile.mkdtemp() state_dir = tempfile.mkdtemp() epochs = 1 channel_name = 'testchannel' write_config(channel_dir, 'testchannel') create_fifos(epochs, channel_dir, channel_name, input_file='test.csv') def parse(line): fields = tf.decode_csv(line, FIELD_DEFAULTS) features = dict(zip(COLUMNS, fields)) return features with tf.Session() as sess: ds = PipeModeDataset(channel_name, pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir, record_format='TextLine') ds = ds.map(parse) it = ds.make_one_shot_iterator() next = it.get_next() for i in range(100): d = sess.run(next) sys.stdout.flush() assert d == {str(i): i for i in range(100)} def test_input_config_validation_failure(): channel_dir = tempfile.mkdtemp() state_dir = tempfile.mkdtemp() write_config(channel_dir, 'testchannel') with pytest.raises(PipeModeDatasetException): with tf.Session(): PipeModeDataset("Not a Channel", pipe_dir=channel_dir, state_dir=state_dir, config_dir=channel_dir)
the-stack_0_21326
from typing import List from subsurface.writer.to_rex.common import file_header_size, encode from subsurface.writer.to_rex.data_struct import RexLineSet, RexMesh, RexMaterial from subsurface.writer.to_rex.material_encoder import material_encode from subsurface.writer.to_rex.mesh_encoder import mesh_encode def numpy_to_rex( rex_line_set: List[RexLineSet] = None, rex_meshes: List[RexMesh] = None, rex_material: List[RexMaterial] = None ): if rex_line_set is None: rex_line_set = list() if rex_meshes is None: rex_meshes = list() if rex_material is None: rex_material = list() data_block_bytes = bytearray() byte_size = 0 data_block_bytes, data_id = w_data_blocks(rex_meshes, rex_material) n_data_blocks = data_id header_and_coord_block_bytes = w_file_header_and_coord_system_block( n_data_blocks=n_data_blocks, size_data_blocks=len(data_block_bytes), start_data=file_header_size ) return header_and_coord_block_bytes + data_block_bytes def w_data_blocks(rex_meshes: List[RexMesh], rex_material: List[RexMaterial]): data_id = 0 rmesh_bytes, data_id = w_block_data_type(mesh_encode, rex_meshes, data_id) rmaterial_bytes, data_id = w_block_data_type(material_encode, rex_material, data_id) blocks_bytes = rmesh_bytes + rmaterial_bytes return blocks_bytes, data_id def w_block_data_type(encoder, rex_objects: List, data_id: int): data_block_bytes = bytearray() for rex_obj in rex_objects: data_block_bytes += encoder(rex_obj, data_id=data_id) data_id += 1 return data_block_bytes, data_id def w_file_header_and_coord_system_block(): return def w_file_header_and_coord_system_block(n_data_blocks, size_data_blocks, version=1, start_data=86, srid=3876, offsets=None): """ Function that writes the header block of a rexfile: Args: n_data_blocks: size_data_blocks: version (int): Version of the file start_data (int): Position where data start. This is after the header and coordinate system. If everything works fine it should be 86 srid (int): Spatial reference system identifier (srid) offsets: Returns: """ reserved = '0' * 42 if offsets is None: offsets = [0, 0, 0] input_ = [('REX1', 'bytes'), # REX1 (version, 'uint16'), # file version (0, 'uint32'), # CRC32 (n_data_blocks, 'uint16'), # Number of DATA BLOCKS (start_data, 'uint16'), # StartData (size_data_blocks, 'uint64'), # Size of all data blocks (reserved, 'bytes'), # Reserved # Coordinate system block (srid, 'uint32'), # Spatial reference system identifier (srid) (4, 'uint16'), # Size of the name of the used system. ('EPSG', 'bytes'), # name of the used system. (offsets, 'float32')] # Global x, y, z offset block_bytes = encode(input_) return block_bytes def write_rex_file(bytes, path: str): """Write to disk a rexfile from its binary format""" new_file = open(path + ".rex", "wb") new_file.write(bytes) return True def read_rex_file(path: str) -> bytes: with open(path, "rb") as f: bytes_read = f.read() return bytes_read
the-stack_0_21329
""" Copyright (c) 2020 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import cocotb from cocotb.triggers import RisingEdge, ReadOnly from cocotb.bus import Bus from cocotbext.axi.memory import Memory class PsdpRamWrite(Memory): _cmd_signals = ["wr_cmd_be", "wr_cmd_addr", "wr_cmd_data", "wr_cmd_valid", "wr_cmd_ready"] def __init__(self, entity, name, clock, reset=None, size=1024, mem=None, *args, **kwargs): self.log = logging.getLogger(f"cocotb.{entity._name}.{name}") self.entity = entity self.clock = clock self.reset = reset self.cmd_bus = Bus(self.entity, name, self._cmd_signals, **kwargs) self.log.info("Parallel Simple Dual Port RAM model (write)") self.log.info("Copyright (c) 2020 Alex Forencich") super().__init__(size, mem, *args, **kwargs) self.pause = False self._pause_generator = None self._pause_cr = None self.width = len(self.cmd_bus.wr_cmd_data) self.byte_width = len(self.cmd_bus.wr_cmd_be) self.seg_count = len(self.cmd_bus.wr_cmd_valid) self.seg_data_width = self.width // self.seg_count self.seg_byte_width = self.seg_data_width // 8 self.seg_addr_width = len(self.cmd_bus.wr_cmd_addr) // self.seg_count self.seg_be_width = self.seg_data_width // 8 self.seg_data_mask = 2**self.seg_data_width-1 self.seg_addr_mask = 2**self.seg_addr_width-1 self.seg_be_mask = 2**self.seg_be_width-1 self.log.info("Parallel Simple Dual Port RAM model configuration:") self.log.info(" Memory size: %d bytes", len(self.mem)) self.log.info(" Segment count: %d", self.seg_count) self.log.info(" Segment addr width: %d bits", self.seg_addr_width) self.log.info(" Segment data width: %d bits (%d bytes)", self.seg_data_width, self.seg_byte_width) self.log.info(" Total data width: %d bits (%d bytes)", self.width, self.width // 8) assert self.seg_be_width*self.seg_count == len(self.cmd_bus.wr_cmd_be) self.cmd_bus.wr_cmd_ready.setimmediatevalue(0) cocotb.fork(self._run()) def set_pause_generator(self, generator=None): if self._pause_cr is not None: self._pause_cr.kill() self._pause_cr = None self._pause_generator = generator if self._pause_generator is not None: self._pause_cr = cocotb.fork(self._run_pause()) def clear_pause_generator(self): self.set_pause_generator(None) async def _run(self): while True: await ReadOnly() cmd_be_sample = self.cmd_bus.wr_cmd_be.value cmd_addr_sample = self.cmd_bus.wr_cmd_addr.value cmd_data_sample = self.cmd_bus.wr_cmd_data.value cmd_ready_sample = self.cmd_bus.wr_cmd_ready.value cmd_valid_sample = self.cmd_bus.wr_cmd_valid.value if self.reset is not None and self.reset.value: await RisingEdge(self.clock) self.cmd_bus.wr_cmd_ready.setimmediatevalue(0) continue await RisingEdge(self.clock) # process segments for seg in range(self.seg_count): if cmd_ready_sample & cmd_valid_sample & (1 << seg): seg_addr = (cmd_addr_sample >> self.seg_addr_width*seg) & self.seg_addr_mask seg_data = (cmd_data_sample >> self.seg_data_width*seg) & self.seg_data_mask seg_be = (cmd_be_sample >> self.seg_be_width*seg) & self.seg_be_mask addr = (seg_addr*self.seg_count+seg)*self.seg_byte_width self.mem.seek(addr % self.size) data = seg_data.to_bytes(self.seg_byte_width, 'little') for i in range(self.seg_byte_width): if seg_be & (1 << i): self.mem.write(data[i:i+1]) else: self.mem.seek(1, 1) self.log.info("Write word seg: %d addr: 0x%08x be 0x%02x data %s", seg, addr, seg_be, ' '.join((f'{c:02x}' for c in data))) if self.pause: self.cmd_bus.wr_cmd_ready <= 0 else: self.cmd_bus.wr_cmd_ready <= 2**self.seg_count-1 async def _run_pause(self): for val in self._pause_generator: self.pause = val await RisingEdge(self.clock) class PsdpRamRead(Memory): _cmd_signals = ["rd_cmd_addr", "rd_cmd_valid", "rd_cmd_ready"] _resp_signals = ["rd_resp_data", "rd_resp_valid", "rd_resp_ready"] def __init__(self, entity, name, clock, reset=None, size=1024, mem=None, *args, **kwargs): self.log = logging.getLogger(f"cocotb.{entity._name}.{name}") self.entity = entity self.clock = clock self.reset = reset self.cmd_bus = Bus(self.entity, name, self._cmd_signals, **kwargs) self.resp_bus = Bus(self.entity, name, self._resp_signals, **kwargs) self.log.info("Parallel Simple Dual Port RAM model (read)") self.log.info("Copyright (c) 2020 Alex Forencich") super().__init__(size, mem, *args, **kwargs) self.pause = False self._pause_generator = None self._pause_cr = None self.width = len(self.resp_bus.rd_resp_data) self.byte_width = self.width // 8 self.seg_count = len(self.cmd_bus.rd_cmd_valid) self.seg_data_width = self.width // self.seg_count self.seg_byte_width = self.seg_data_width // 8 self.seg_addr_width = len(self.cmd_bus.rd_cmd_addr) // self.seg_count self.seg_data_mask = 2**self.seg_data_width-1 self.seg_addr_mask = 2**self.seg_addr_width-1 self.log.info("Parallel Simple Dual Port RAM model configuration:") self.log.info(" Memory size: %d bytes", len(self.mem)) self.log.info(" Segment count: %d", self.seg_count) self.log.info(" Segment addr width: %d bits", self.seg_addr_width) self.log.info(" Segment data width: %d bits (%d bytes)", self.seg_data_width, self.seg_byte_width) self.log.info(" Total data width: %d bits (%d bytes)", self.width, self.width // 8) self.cmd_bus.rd_cmd_ready.setimmediatevalue(0) self.resp_bus.rd_resp_valid.setimmediatevalue(0) cocotb.fork(self._run()) def set_pause_generator(self, generator=None): if self._pause_cr is not None: self._pause_cr.kill() self._pause_cr = None self._pause_generator = generator if self._pause_generator is not None: self._pause_cr = cocotb.fork(self._run_pause()) def clear_pause_generator(self): self.set_pause_generator(None) async def _run(self): pipeline = [[None for x in range(1)] for seg in range(self.seg_count)] cmd_ready = 0 resp_valid = 0 resp_data = 0 while True: await ReadOnly() cmd_addr_sample = self.cmd_bus.rd_cmd_addr.value cmd_ready_sample = self.cmd_bus.rd_cmd_ready.value cmd_valid_sample = self.cmd_bus.rd_cmd_valid.value resp_ready_sample = self.resp_bus.rd_resp_ready.value resp_valid_sample = self.resp_bus.rd_resp_valid.value if self.reset is not None and self.reset.value: await RisingEdge(self.clock) self.cmd_bus.rd_cmd_ready.setimmediatevalue(0) self.resp_bus.rd_resp_valid.setimmediatevalue(0) cmd_ready = 0 resp_valid = 0 continue await RisingEdge(self.clock) # process segments for seg in range(self.seg_count): seg_mask = 1 << seg if (resp_ready_sample & seg_mask) or not (resp_valid_sample & seg_mask): if pipeline[seg][-1] is not None: resp_data &= ~(self.seg_data_mask << self.seg_data_width*seg) resp_data |= ((pipeline[seg][-1] & self.seg_data_mask) << self.seg_data_width*seg) resp_valid |= seg_mask pipeline[seg][-1] = None else: resp_valid &= ~seg_mask for i in range(len(pipeline[seg])-1, 0, -1): if pipeline[seg][i] is None: pipeline[i] = pipeline[i-1] pipeline[i-1] = None if cmd_ready_sample & cmd_valid_sample & seg_mask: seg_addr = (cmd_addr_sample >> self.seg_addr_width*seg) & self.seg_addr_mask addr = (seg_addr*self.seg_count+seg)*self.seg_byte_width self.mem.seek(addr % self.size) data = self.mem.read(self.seg_byte_width) pipeline[seg][0] = int.from_bytes(data, 'little') self.log.info("Read word seg: %d addr: 0x%08x data %s", seg, addr, ' '.join((f'{c:02x}' for c in data))) if (not resp_valid & seg_mask) or None in pipeline[seg]: cmd_ready |= seg_mask else: cmd_ready &= ~seg_mask if self.pause: self.cmd_bus.rd_cmd_ready <= 0 else: self.cmd_bus.rd_cmd_ready <= cmd_ready self.resp_bus.rd_resp_data <= resp_data self.resp_bus.rd_resp_valid <= resp_valid async def _run_pause(self): for val in self._pause_generator: self.pause = val await RisingEdge(self.clock) class PsdpRam(Memory): def __init__(self, entity, name, clock, reset=None, size=1024, mem=None, *args, **kwargs): self.write_if = None self.read_if = None super().__init__(size, mem, *args, **kwargs) self.write_if = PsdpRamWrite(entity, name, clock, reset, mem=self.mem) self.read_if = PsdpRamRead(entity, name, clock, reset, mem=self.mem)
the-stack_0_21330
""" SMS backend for sending text messages using service SMSAPI.pl Requires: - https://github.com/smsapi/smsapi-python-client - SMSAPI_TOKEN to be set """ from typing import List, Optional from django.conf import settings # type: ignore from django.core.exceptions import ImproperlyConfigured # type: ignore from sms.backends.base import BaseSmsBackend from sms.message import Message try: from smsapi.client import SmsApiPlClient # type: ignore HAS_SMSAPI = True except ImportError: HAS_SMSAPI = False class SmsBackend(BaseSmsBackend): def __init__(self, fail_silently: bool = False, **kwargs) -> None: super().__init__(fail_silently=fail_silently, **kwargs) if not HAS_SMSAPI and not self.fail_silently: raise ImproperlyConfigured( "You're using the SMS backend " "'sms.backends.smsapi.SmsBackend' without having " "'smsapi-client' installed. Install 'smsapi-client' or use " "another SMS backend." ) access_key: Optional[str] = getattr(settings, 'SMSAPI_TOKEN') if not access_key and not self.fail_silently: raise ImproperlyConfigured( "You're using the SMS backend " "'sms.backends.smsapi.SmsBackend' without having the " "setting 'SMSAPI_TOKEN' set." ) self.client = None if HAS_SMSAPI: self.client = SmsApiPlClient(access_token=access_key) def send_messages(self, messages: List[Message]) -> int: if not self.client: return 0 msg_count: int = 0 for message in messages: for recipient in message.recipients: try: message.send_results = self.client.sms.send( to=recipient, message=message.body ) except Exception as exc: if not self.fail_silently: raise exc msg_count += 1 return msg_count
the-stack_0_21332
"""Template helper methods for rendering strings with Open Peer Power data.""" import base64 from datetime import datetime from functools import wraps import json import logging import math import random import re from typing import Any, Dict, Iterable, List, Optional, Union import jinja2 from jinja2 import contextfilter, contextfunction from jinja2.sandbox import ImmutableSandboxedEnvironment from jinja2.utils import Namespace # type: ignore from openpeerpower.const import ( ATTR_ENTITY_ID, ATTR_LATITUDE, ATTR_LONGITUDE, ATTR_UNIT_OF_MEASUREMENT, MATCH_ALL, STATE_UNKNOWN, ) from openpeerpower.core import State, callback, split_entity_id, valid_entity_id from openpeerpower.exceptions import TemplateError from openpeerpower.helpers import location as loc_helper from openpeerpower.helpers.typing import OpenPeerPowerType, TemplateVarsType from openpeerpower.loader import bind_opp from openpeerpower.util import convert, dt as dt_util, location as loc_util from openpeerpower.util.async_ import run_callback_threadsafe # mypy: allow-untyped-calls, allow-untyped-defs # mypy: no-check-untyped-defs, no-warn-return-any _LOGGER = logging.getLogger(__name__) _SENTINEL = object() DATE_STR_FORMAT = "%Y-%m-%d %H:%M:%S" _RENDER_INFO = "template.render_info" _ENVIRONMENT = "template.environment" _RE_NONE_ENTITIES = re.compile(r"distance\(|closest\(", re.I | re.M) _RE_GET_ENTITIES = re.compile( r"(?:(?:states\.|(?:is_state|is_state_attr|state_attr|states)" r"\((?:[\ \'\"]?))([\w]+\.[\w]+)|([\w]+))", re.I | re.M, ) _RE_JINJA_DELIMITERS = re.compile(r"\{%|\{\{") @bind_opp def attach(opp, obj): """Recursively attach opp to all template instances in list and dict.""" if isinstance(obj, list): for child in obj: attach(opp, child) elif isinstance(obj, dict): for child in obj.values(): attach(opp, child) elif isinstance(obj, Template): obj.opp = opp def render_complex(value, variables=None): """Recursive template creator helper function.""" if isinstance(value, list): return [render_complex(item, variables) for item in value] if isinstance(value, dict): return {key: render_complex(item, variables) for key, item in value.items()} if isinstance(value, Template): return value.async_render(variables) return value def extract_entities( template: Optional[str], variables: Optional[Dict[str, Any]] = None ) -> Union[str, List[str]]: """Extract all entities for state_changed listener from template string.""" if template is None or _RE_JINJA_DELIMITERS.search(template) is None: return [] if _RE_NONE_ENTITIES.search(template): return MATCH_ALL extraction = _RE_GET_ENTITIES.findall(template) extraction_final = [] for result in extraction: if ( result[0] == "trigger.entity_id" and variables and "trigger" in variables and "entity_id" in variables["trigger"] ): extraction_final.append(variables["trigger"]["entity_id"]) elif result[0]: extraction_final.append(result[0]) if ( variables and result[1] in variables and isinstance(variables[result[1]], str) and valid_entity_id(variables[result[1]]) ): extraction_final.append(variables[result[1]]) if extraction_final: return list(set(extraction_final)) return MATCH_ALL def _true(arg: Any) -> bool: return True class RenderInfo: """Holds information about a template render.""" def __init__(self, template): """Initialise.""" self.template = template # Will be set sensibly once frozen. self.filter_lifecycle = _true self._result = None self._exception = None self._all_states = False self._domains = [] self._entities = [] def filter(self, entity_id: str) -> bool: """Template should re-render if the state changes.""" return entity_id in self._entities def _filter_lifecycle(self, entity_id: str) -> bool: """Template should re-render if the state changes.""" return ( split_entity_id(entity_id)[0] in self._domains or entity_id in self._entities ) @property def result(self) -> str: """Results of the template computation.""" if self._exception is not None: raise self._exception return self._result def _freeze(self) -> None: self._entities = frozenset(self._entities) if self._all_states: # Leave lifecycle_filter as True del self._domains elif not self._domains: del self._domains self.filter_lifecycle = self.filter else: self._domains = frozenset(self._domains) self.filter_lifecycle = self._filter_lifecycle class Template: """Class to hold a template and manage caching and rendering.""" def __init__(self, template, opp=None): """Instantiate a template.""" if not isinstance(template, str): raise TypeError("Expected template to be a string") self.template: str = template self._compiled_code = None self._compiled = None self.opp = opp @property def _env(self): if self.opp is None: return _NO_OPP_ENV ret = self.opp.data.get(_ENVIRONMENT) if ret is None: ret = self.opp.data[_ENVIRONMENT] = TemplateEnvironment(self.opp) return ret def ensure_valid(self): """Return if template is valid.""" if self._compiled_code is not None: return try: self._compiled_code = self._env.compile(self.template) except jinja2.exceptions.TemplateSyntaxError as err: raise TemplateError(err) def extract_entities( self, variables: Dict[str, Any] = None ) -> Union[str, List[str]]: """Extract all entities for state_changed listener.""" return extract_entities(self.template, variables) def render(self, variables: TemplateVarsType = None, **kwargs: Any) -> str: """Render given template.""" if variables is not None: kwargs.update(variables) return run_callback_threadsafe( self.opp.loop, self.async_render, kwargs ).result() @callback def async_render(self, variables: TemplateVarsType = None, **kwargs: Any) -> str: """Render given template. This method must be run in the event loop. """ compiled = self._compiled or self._ensure_compiled() if variables is not None: kwargs.update(variables) try: return compiled.render(kwargs).strip() except jinja2.TemplateError as err: raise TemplateError(err) @callback def async_render_to_info( self, variables: TemplateVarsType = None, **kwargs: Any ) -> RenderInfo: """Render the template and collect an entity filter.""" assert self.opp and _RENDER_INFO not in self.opp.data render_info = self.opp.data[_RENDER_INFO] = RenderInfo(self) # pylint: disable=protected-access try: render_info._result = self.async_render(variables, **kwargs) except TemplateError as ex: render_info._exception = ex finally: del self.opp.data[_RENDER_INFO] render_info._freeze() return render_info def render_with_possible_json_value(self, value, error_value=_SENTINEL): """Render template with value exposed. If valid JSON will expose value_json too. """ return run_callback_threadsafe( self.opp.loop, self.async_render_with_possible_json_value, value, error_value, ).result() @callback def async_render_with_possible_json_value( self, value, error_value=_SENTINEL, variables=None ): """Render template with value exposed. If valid JSON will expose value_json too. This method must be run in the event loop. """ if self._compiled is None: self._ensure_compiled() variables = dict(variables or {}) variables["value"] = value try: variables["value_json"] = json.loads(value) except (ValueError, TypeError): pass try: return self._compiled.render(variables).strip() except jinja2.TemplateError as ex: if error_value is _SENTINEL: _LOGGER.error( "Error parsing value: %s (value: %s, template: %s)", ex, value, self.template, ) return value if error_value is _SENTINEL else error_value def _ensure_compiled(self): """Bind a template to a specific opp instance.""" self.ensure_valid() assert self.opp is not None, "opp variable not set on template" env = self._env self._compiled = jinja2.Template.from_code( env, self._compiled_code, env.globals, None ) return self._compiled def __eq__(self, other): """Compare template with another.""" return ( self.__class__ == other.__class__ and self.template == other.template and self.opp == other.opp ) def __hash__(self): """Hash code for template.""" return hash(self.template) def __repr__(self): """Representation of Template.""" return 'Template("' + self.template + '")' class AllStates: """Class to expose all HA states as attributes.""" def __init__(self, opp): """Initialize all states.""" self._opp = opp def __getattr__(self, name): """Return the domain state.""" if "." in name: if not valid_entity_id(name): raise TemplateError(f"Invalid entity ID '{name}'") return _get_state(self._opp, name) if not valid_entity_id(f"{name}.entity"): raise TemplateError(f"Invalid domain name '{name}'") return DomainStates(self._opp, name) def _collect_all(self): render_info = self._opp.data.get(_RENDER_INFO) if render_info is not None: # pylint: disable=protected-access render_info._all_states = True def __iter__(self): """Return all states.""" self._collect_all() return iter( _wrap_state(self._opp, state) for state in sorted( self._opp.states.async_all(), key=lambda state: state.entity_id ) ) def __len__(self): """Return number of states.""" self._collect_all() return len(self._opp.states.async_entity_ids()) def __call__(self, entity_id): """Return the states.""" state = _get_state(self._opp, entity_id) return STATE_UNKNOWN if state is None else state.state def __repr__(self): """Representation of All States.""" return "<template AllStates>" class DomainStates: """Class to expose a specific HA domain as attributes.""" def __init__(self, opp, domain): """Initialize the domain states.""" self._opp = opp self._domain = domain def __getattr__(self, name): """Return the states.""" entity_id = f"{self._domain}.{name}" if not valid_entity_id(entity_id): raise TemplateError(f"Invalid entity ID '{entity_id}'") return _get_state(self._opp, entity_id) def _collect_domain(self) -> None: entity_collect = self._opp.data.get(_RENDER_INFO) if entity_collect is not None: # pylint: disable=protected-access entity_collect._domains.append(self._domain) def __iter__(self): """Return the iteration over all the states.""" self._collect_domain() return iter( sorted( ( _wrap_state(self._opp, state) for state in self._opp.states.async_all() if state.domain == self._domain ), key=lambda state: state.entity_id, ) ) def __len__(self) -> int: """Return number of states.""" self._collect_domain() return len(self._opp.states.async_entity_ids(self._domain)) def __repr__(self) -> str: """Representation of Domain States.""" return f"<template DomainStates('{self._domain}')>" class TemplateState(State): """Class to represent a state object in a template.""" # Inheritance is done so functions that check against State keep working # pylint: disable=super-init-not-called def __init__(self, opp, state): """Initialize template state.""" self._opp = opp self._state = state def _access_state(self): state = object.__getattribute__(self, "_state") opp = object.__getattribute__(self, "_opp") _collect_state(opp, state.entity_id) return state @property def state_with_unit(self) -> str: """Return the state concatenated with the unit if available.""" state = object.__getattribute__(self, "_access_state")() unit = state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) if unit is None: return state.state return f"{state.state} {unit}" def __getattribute__(self, name): """Return an attribute of the state.""" # This one doesn't count as an access of the state # since we either found it by looking direct for the ID # or got it off an iterator. if name == "entity_id" or name in object.__dict__: state = object.__getattribute__(self, "_state") return getattr(state, name) if name in TemplateState.__dict__: return object.__getattribute__(self, name) state = object.__getattribute__(self, "_access_state")() return getattr(state, name) def __repr__(self) -> str: """Representation of Template State.""" state = object.__getattribute__(self, "_access_state")() rep = state.__repr__() return f"<template {rep[1:]}" def _collect_state(opp, entity_id): entity_collect = opp.data.get(_RENDER_INFO) if entity_collect is not None: # pylint: disable=protected-access entity_collect._entities.append(entity_id) def _wrap_state(opp, state): """Wrap a state.""" return None if state is None else TemplateState(opp, state) def _get_state(opp, entity_id): state = opp.states.get(entity_id) if state is None: # Only need to collect if none, if not none collect first actual # access to the state properties in the state wrapper. _collect_state(opp, entity_id) return None return _wrap_state(opp, state) def _resolve_state(opp, entity_id_or_state): """Return state or entity_id if given.""" if isinstance(entity_id_or_state, State): return entity_id_or_state if isinstance(entity_id_or_state, str): return _get_state(opp, entity_id_or_state) return None def expand(opp: OpenPeerPowerType, *args: Any) -> Iterable[State]: """Expand out any groups into entity states.""" search = list(args) found = {} while search: entity = search.pop() if isinstance(entity, str): entity_id = entity entity = _get_state(opp, entity) if entity is None: continue elif isinstance(entity, State): entity_id = entity.entity_id elif isinstance(entity, Iterable): search += entity continue else: # ignore other types continue from openpeerpower.components import group if split_entity_id(entity_id)[0] == group.DOMAIN: # Collect state will be called in here since it's wrapped group_entities = entity.attributes.get(ATTR_ENTITY_ID) if group_entities: search += group_entities else: found[entity_id] = entity return sorted(found.values(), key=lambda a: a.entity_id) def closest(opp, *args): """Find closest entity. Closest to home: closest(states) closest(states.device_tracker) closest('group.children') closest(states.group.children) Closest to a point: closest(23.456, 23.456, 'group.children') closest('zone.school', 'group.children') closest(states.zone.school, 'group.children') As a filter: states | closest states.device_tracker | closest ['group.children', states.device_tracker] | closest 'group.children' | closest(23.456, 23.456) states.device_tracker | closest('zone.school') 'group.children' | closest(states.zone.school) """ if len(args) == 1: latitude = opp.config.latitude longitude = opp.config.longitude entities = args[0] elif len(args) == 2: point_state = _resolve_state(opp, args[0]) if point_state is None: _LOGGER.warning("Closest:Unable to find state %s", args[0]) return None if not loc_helper.has_location(point_state): _LOGGER.warning( "Closest:State does not contain valid location: %s", point_state ) return None latitude = point_state.attributes.get(ATTR_LATITUDE) longitude = point_state.attributes.get(ATTR_LONGITUDE) entities = args[1] else: latitude = convert(args[0], float) longitude = convert(args[1], float) if latitude is None or longitude is None: _LOGGER.warning( "Closest:Received invalid coordinates: %s, %s", args[0], args[1] ) return None entities = args[2] states = expand(opp, entities) # state will already be wrapped here return loc_helper.closest(latitude, longitude, states) def closest_filter(opp, *args): """Call closest as a filter. Need to reorder arguments.""" new_args = list(args[1:]) new_args.append(args[0]) return closest(opp, *new_args) def distance(opp, *args): """Calculate distance. Will calculate distance from home to a point or between points. Points can be passed in using state objects or lat/lng coordinates. """ locations = [] to_process = list(args) while to_process: value = to_process.pop(0) point_state = _resolve_state(opp, value) if point_state is None: # We expect this and next value to be lat&lng if not to_process: _LOGGER.warning( "Distance:Expected latitude and longitude, got %s", value ) return None value_2 = to_process.pop(0) latitude = convert(value, float) longitude = convert(value_2, float) if latitude is None or longitude is None: _LOGGER.warning( "Distance:Unable to process latitude and longitude: %s, %s", value, value_2, ) return None else: if not loc_helper.has_location(point_state): _LOGGER.warning( "distance:State does not contain valid location: %s", point_state ) return None latitude = point_state.attributes.get(ATTR_LATITUDE) longitude = point_state.attributes.get(ATTR_LONGITUDE) locations.append((latitude, longitude)) if len(locations) == 1: return opp.config.distance(*locations[0]) return opp.config.units.length(loc_util.distance(*locations[0] + locations[1]), "m") def is_state(opp: OpenPeerPowerType, entity_id: str, state: State) -> bool: """Test if a state is a specific value.""" state_obj = _get_state(opp, entity_id) return state_obj is not None and state_obj.state == state def is_state_attr(opp, entity_id, name, value): """Test if a state's attribute is a specific value.""" attr = state_attr(opp, entity_id, name) return attr is not None and attr == value def state_attr(opp, entity_id, name): """Get a specific attribute from a state.""" state_obj = _get_state(opp, entity_id) if state_obj is not None: return state_obj.attributes.get(name) return None def forgiving_round(value, precision=0, method="common"): """Round accepted strings.""" try: # support rounding methods like jinja multiplier = float(10 ** precision) if method == "ceil": value = math.ceil(float(value) * multiplier) / multiplier elif method == "floor": value = math.floor(float(value) * multiplier) / multiplier elif method == "half": value = round(float(value) * 2) / 2 else: # if method is common or something else, use common rounding value = round(float(value), precision) return int(value) if precision == 0 else value except (ValueError, TypeError): # If value can't be converted to float return value def multiply(value, amount): """Filter to convert value to float and multiply it.""" try: return float(value) * amount except (ValueError, TypeError): # If value can't be converted to float return value def logarithm(value, base=math.e): """Filter to get logarithm of the value with a specific base.""" try: return math.log(float(value), float(base)) except (ValueError, TypeError): return value def sine(value): """Filter to get sine of the value.""" try: return math.sin(float(value)) except (ValueError, TypeError): return value def cosine(value): """Filter to get cosine of the value.""" try: return math.cos(float(value)) except (ValueError, TypeError): return value def tangent(value): """Filter to get tangent of the value.""" try: return math.tan(float(value)) except (ValueError, TypeError): return value def arc_sine(value): """Filter to get arc sine of the value.""" try: return math.asin(float(value)) except (ValueError, TypeError): return value def arc_cosine(value): """Filter to get arc cosine of the value.""" try: return math.acos(float(value)) except (ValueError, TypeError): return value def arc_tangent(value): """Filter to get arc tangent of the value.""" try: return math.atan(float(value)) except (ValueError, TypeError): return value def arc_tangent2(*args): """Filter to calculate four quadrant arc tangent of y / x.""" try: if len(args) == 1 and isinstance(args[0], (list, tuple)): args = args[0] return math.atan2(float(args[0]), float(args[1])) except (ValueError, TypeError): return args def square_root(value): """Filter to get square root of the value.""" try: return math.sqrt(float(value)) except (ValueError, TypeError): return value def timestamp_custom(value, date_format=DATE_STR_FORMAT, local=True): """Filter to convert given timestamp to format.""" try: date = dt_util.utc_from_timestamp(value) if local: date = dt_util.as_local(date) return date.strftime(date_format) except (ValueError, TypeError): # If timestamp can't be converted return value def timestamp_local(value): """Filter to convert given timestamp to local date/time.""" try: return dt_util.as_local(dt_util.utc_from_timestamp(value)).strftime( DATE_STR_FORMAT ) except (ValueError, TypeError): # If timestamp can't be converted return value def timestamp_utc(value): """Filter to convert given timestamp to UTC date/time.""" try: return dt_util.utc_from_timestamp(value).strftime(DATE_STR_FORMAT) except (ValueError, TypeError): # If timestamp can't be converted return value def forgiving_as_timestamp(value): """Try to convert value to timestamp.""" try: return dt_util.as_timestamp(value) except (ValueError, TypeError): return None def strptime(string, fmt): """Parse a time string to datetime.""" try: return datetime.strptime(string, fmt) except (ValueError, AttributeError): return string def fail_when_undefined(value): """Filter to force a failure when the value is undefined.""" if isinstance(value, jinja2.Undefined): value() return value def forgiving_float(value): """Try to convert value to a float.""" try: return float(value) except (ValueError, TypeError): return value def regex_match(value, find="", ignorecase=False): """Match value using regex.""" if not isinstance(value, str): value = str(value) flags = re.I if ignorecase else 0 return bool(re.match(find, value, flags)) def regex_replace(value="", find="", replace="", ignorecase=False): """Replace using regex.""" if not isinstance(value, str): value = str(value) flags = re.I if ignorecase else 0 regex = re.compile(find, flags) return regex.sub(replace, value) def regex_search(value, find="", ignorecase=False): """Search using regex.""" if not isinstance(value, str): value = str(value) flags = re.I if ignorecase else 0 return bool(re.search(find, value, flags)) def regex_findall_index(value, find="", index=0, ignorecase=False): """Find all matches using regex and then pick specific match index.""" if not isinstance(value, str): value = str(value) flags = re.I if ignorecase else 0 return re.findall(find, value, flags)[index] def bitwise_and(first_value, second_value): """Perform a bitwise and operation.""" return first_value & second_value def bitwise_or(first_value, second_value): """Perform a bitwise or operation.""" return first_value | second_value def base64_encode(value): """Perform base64 encode.""" return base64.b64encode(value.encode("utf-8")).decode("utf-8") def base64_decode(value): """Perform base64 denode.""" return base64.b64decode(value).decode("utf-8") def ordinal(value): """Perform ordinal conversion.""" return str(value) + ( list(["th", "st", "nd", "rd"] + ["th"] * 6)[(int(str(value)[-1])) % 10] if int(str(value)[-2:]) % 100 not in range(11, 14) else "th" ) def from_json(value): """Convert a JSON string to an object.""" return json.loads(value) def to_json(value): """Convert an object to a JSON string.""" return json.dumps(value) @contextfilter def random_every_time(context, values): """Choose a random value. Unlike Jinja's random filter, this is context-dependent to avoid caching the chosen value. """ return random.choice(values) class TemplateEnvironment(ImmutableSandboxedEnvironment): """The Open Peer Power template environment.""" def __init__(self, opp): """Initialise template environment.""" super().__init__() self.opp = opp self.filters["round"] = forgiving_round self.filters["multiply"] = multiply self.filters["log"] = logarithm self.filters["sin"] = sine self.filters["cos"] = cosine self.filters["tan"] = tangent self.filters["asin"] = arc_sine self.filters["acos"] = arc_cosine self.filters["atan"] = arc_tangent self.filters["atan2"] = arc_tangent2 self.filters["sqrt"] = square_root self.filters["as_timestamp"] = forgiving_as_timestamp self.filters["timestamp_custom"] = timestamp_custom self.filters["timestamp_local"] = timestamp_local self.filters["timestamp_utc"] = timestamp_utc self.filters["to_json"] = to_json self.filters["from_json"] = from_json self.filters["is_defined"] = fail_when_undefined self.filters["max"] = max self.filters["min"] = min self.filters["random"] = random_every_time self.filters["base64_encode"] = base64_encode self.filters["base64_decode"] = base64_decode self.filters["ordinal"] = ordinal self.filters["regex_match"] = regex_match self.filters["regex_replace"] = regex_replace self.filters["regex_search"] = regex_search self.filters["regex_findall_index"] = regex_findall_index self.filters["bitwise_and"] = bitwise_and self.filters["bitwise_or"] = bitwise_or self.filters["ord"] = ord self.globals["log"] = logarithm self.globals["sin"] = sine self.globals["cos"] = cosine self.globals["tan"] = tangent self.globals["sqrt"] = square_root self.globals["pi"] = math.pi self.globals["tau"] = math.pi * 2 self.globals["e"] = math.e self.globals["asin"] = arc_sine self.globals["acos"] = arc_cosine self.globals["atan"] = arc_tangent self.globals["atan2"] = arc_tangent2 self.globals["float"] = forgiving_float self.globals["now"] = dt_util.now self.globals["utcnow"] = dt_util.utcnow self.globals["as_timestamp"] = forgiving_as_timestamp self.globals["relative_time"] = dt_util.get_age self.globals["strptime"] = strptime if opp is None: return # We mark these as a context functions to ensure they get # evaluated fresh with every execution, rather than executed # at compile time and the value stored. The context itself # can be discarded, we only need to get at the opp object. def oppfunction(func): """Wrap function that depend on opp.""" @wraps(func) def wrapper(*args, **kwargs): return func(opp, *args[1:], **kwargs) return contextfunction(wrapper) self.globals["expand"] = oppfunction(expand) self.filters["expand"] = contextfilter(self.globals["expand"]) self.globals["closest"] = oppfunction(closest) self.filters["closest"] = contextfilter(oppfunction(closest_filter)) self.globals["distance"] = oppfunction(distance) self.globals["is_state"] = oppfunction(is_state) self.globals["is_state_attr"] = oppfunction(is_state_attr) self.globals["state_attr"] = oppfunction(state_attr) self.globals["states"] = AllStates(opp) def is_safe_callable(self, obj): """Test if callback is safe.""" return isinstance(obj, AllStates) or super().is_safe_callable(obj) def is_safe_attribute(self, obj, attr, value): """Test if attribute is safe.""" return isinstance(obj, Namespace) or super().is_safe_attribute(obj, attr, value) _NO_OPP_ENV = TemplateEnvironment(None)
the-stack_0_21333
"""Runner implementation.""" import logging import multiprocessing import multiprocessing.pool import os from dataclasses import dataclass from pathlib import Path from typing import TYPE_CHECKING, Any, FrozenSet, Generator, List, Optional, Set, Union import ansiblelint.skip_utils import ansiblelint.utils from ansiblelint._internal.rules import LoadingFailureRule from ansiblelint.errors import MatchError from ansiblelint.file_utils import Lintable, expand_dirs_in_lintables from ansiblelint.rules.AnsibleSyntaxCheckRule import AnsibleSyntaxCheckRule if TYPE_CHECKING: from argparse import Namespace from ansiblelint.rules import RulesCollection _logger = logging.getLogger(__name__) @dataclass class LintResult: """Class that tracks result of linting.""" matches: List[MatchError] files: Set[Lintable] class Runner: """Runner class performs the linting process.""" # pylint: disable=too-many-arguments def __init__( self, *lintables: Union[Lintable, str], rules: "RulesCollection", tags: FrozenSet[Any] = frozenset(), skip_list: List[str] = [], exclude_paths: List[str] = [], verbosity: int = 0, checked_files: Optional[Set[Lintable]] = None ) -> None: """Initialize a Runner instance.""" self.rules = rules self.lintables: Set[Lintable] = set() # Assure consistent type for item in lintables: if not isinstance(item, Lintable): item = Lintable(item) self.lintables.add(item) # Expand folders (roles) to their components expand_dirs_in_lintables(self.lintables) self.tags = tags self.skip_list = skip_list self._update_exclude_paths(exclude_paths) self.verbosity = verbosity if checked_files is None: checked_files = set() self.checked_files = checked_files def _update_exclude_paths(self, exclude_paths: List[str]) -> None: if exclude_paths: # These will be (potentially) relative paths paths = ansiblelint.file_utils.expand_paths_vars(exclude_paths) # Since ansiblelint.utils.find_children returns absolute paths, # and the list of files we create in `Runner.run` can contain both # relative and absolute paths, we need to cover both bases. self.exclude_paths = paths + [os.path.abspath(p) for p in paths] else: self.exclude_paths = [] def is_excluded(self, file_path: str) -> bool: """Verify if a file path should be excluded.""" # Any will short-circuit as soon as something returns True, but will # be poor performance for the case where the path under question is # not excluded. # Exclusions should be evaluated only using absolute paths in order # to work correctly. if not file_path: return False abs_path = os.path.abspath(file_path) _file_path = Path(file_path) return any( abs_path.startswith(path) or _file_path.match(path) for path in self.exclude_paths ) def run(self) -> List[MatchError]: """Execute the linting process.""" files: List[Lintable] = list() matches: List[MatchError] = list() # remove exclusions for lintable in self.lintables.copy(): if self.is_excluded(str(lintable.path.resolve())): _logger.debug("Excluded %s", lintable) self.lintables.remove(lintable) # -- phase 1 : syntax check in parallel -- def worker(lintable: Lintable) -> List[MatchError]: return AnsibleSyntaxCheckRule._get_ansible_syntax_check_matches(lintable) # playbooks: List[Lintable] = [] for lintable in self.lintables: if lintable.kind != 'playbook': continue files.append(lintable) pool = multiprocessing.pool.ThreadPool(processes=multiprocessing.cpu_count()) return_list = pool.map(worker, files, chunksize=1) pool.close() pool.join() for data in return_list: matches.extend(data) # -- phase 2 --- if not matches: # do our processing only when ansible syntax check passed in order # to avoid causing runtime exceptions. Our processing is not as # relisient to be able process garbage. matches.extend(self._emit_matches(files)) # remove duplicates from files list files = [value for n, value in enumerate(files) if value not in files[:n]] for file in self.lintables: if file in self.checked_files: continue _logger.debug( "Examining %s of type %s", ansiblelint.file_utils.normpath(file.path), file.kind, ) matches.extend( self.rules.run(file, tags=set(self.tags), skip_list=self.skip_list) ) # update list of checked files self.checked_files.update(self.lintables) # remove any matches made inside excluded files matches = list( filter(lambda match: not self.is_excluded(match.filename), matches) ) return sorted(set(matches)) def _emit_matches(self, files: List[Lintable]) -> Generator[MatchError, None, None]: visited: Set[Lintable] = set() while visited != self.lintables: for lintable in self.lintables - visited: try: for child in ansiblelint.utils.find_children(lintable): if self.is_excluded(str(child.path)): continue self.lintables.add(child) files.append(child) except MatchError as e: if not e.filename: e.filename = str(lintable.path) e.rule = LoadingFailureRule() yield e except AttributeError: yield MatchError( filename=str(lintable.path), rule=LoadingFailureRule() ) visited.add(lintable) def _get_matches(rules: "RulesCollection", options: "Namespace") -> LintResult: lintables = ansiblelint.utils.get_lintables(options=options, args=options.lintables) matches = list() checked_files: Set[Lintable] = set() runner = Runner( *lintables, rules=rules, tags=options.tags, skip_list=options.skip_list, exclude_paths=options.exclude_paths, verbosity=options.verbosity, checked_files=checked_files ) matches.extend(runner.run()) # Assure we do not print duplicates and the order is consistent matches = sorted(set(matches)) # Convert reported filenames into human redable ones, so we hide the # fact we used temporary files when processing input from stdin. for match in matches: for lintable in lintables: if match.filename == lintable.filename: match.filename = lintable.name break return LintResult(matches=matches, files=checked_files)
the-stack_0_21337
# coding=utf-8 # Copyright 2022 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for utils.""" import tensorflow as tf import utils # local file import from experimental.language_structure.vrnn class UtilsTest(tf.test.TestCase): def test_gumbel_softmax_sample_shape(self): sampler = utils.GumbelSoftmaxSampler(temperature=0.5) logits = tf.ones(shape=[5, 10]) samples = sampler(logits) self.assertEqual([5, 10], samples.shape.as_list()) def test_get_last_step(self): batch_size = 5 hidden_size = 4 inputs = tf.tile( tf.reshape(tf.range(1, 11), [1, 10, 1]), [batch_size, 1, hidden_size]) seqlen = tf.constant([2, 3, 10, 1, 0], dtype=tf.int32) last_step = utils.get_last_step(inputs, seqlen) expected = tf.tile(tf.expand_dims(seqlen, axis=1), [1, hidden_size]) self.assertAllEqual(last_step, expected) def test_to_one_hot(self): inputs = tf.constant([[0.6, 0.3, 0.1], [0.1, 0.8, 0.1]]) expected = tf.constant([[1, 0, 0], [0, 1, 0]]) self.assertAllEqual(utils.to_one_hot(inputs), expected) def test_to_one_hot_tie_inputs(self): inputs = tf.constant([[0.5, 0.5], [0.5, 0.5]]) expected = tf.constant([[1, 0], [1, 0]]) self.assertAllEqual(utils.to_one_hot(inputs), expected) def test_mlp_with_final_activitation(self): output_sizes = [5, 6] final_activation = tf.keras.layers.ReLU() test_model = utils.MLP( output_sizes=output_sizes, final_activation=final_activation) input_tensor = tf.keras.Input(shape=(8)) output_tensor = test_model(input_tensor) expected_output_shape = [None, 6] self.assertEqual(expected_output_shape, output_tensor.shape.as_list()) self.assertEqual(tf.float32, output_tensor.dtype) def test_sequential_word_loss_shape(self): max_dialog_length = 2 y_true = tf.keras.Input(shape=(max_dialog_length, None)) y_pred = tf.keras.Input(shape=(max_dialog_length, None, None)) loss_fn = utils.SequentialWordLoss() loss = loss_fn(y_true=y_true, y_pred=y_pred) self.assertEqual([None, max_dialog_length, None], loss.shape.as_list()) def test_sequential_word_loss(self): y_true = tf.constant([[1, 2], [1, 0]]) y_pred = tf.constant([[[0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 1, 0]]], dtype=tf.float32) loss_fn = utils.SequentialWordLoss() unit_loss = tf.keras.losses.SparseCategoricalCrossentropy()( y_true=tf.constant([1]), y_pred=tf.constant([0, 0, 1], dtype=tf.float32)).numpy() expected = tf.constant([[unit_loss, unit_loss], [0, 0]]) self.assertAllClose( loss_fn(y_true, y_pred, sample_weight=tf.sign(y_true)), expected) def test_sequential_word_loss_with_word_weights(self): y_true = tf.constant([[1, 2], [0, 0]]) y_pred = tf.constant([[[0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 1, 0]]], dtype=tf.float32) word_weights = [0, 1, 2] loss_fn = utils.SequentialWordLoss(word_weights=word_weights) unit_loss = tf.keras.losses.SparseCategoricalCrossentropy()( y_true=tf.constant([1]), y_pred=tf.constant([0, 0, 1], dtype=tf.float32)).numpy() expected = tf.constant([[unit_loss, 2 * unit_loss], [0, 0]]) self.assertAllClose( loss_fn(y_true, y_pred, sample_weight=tf.sign(y_true)), expected) def test_kl_loss_shape(self): max_dialog_length = 2 p = tf.keras.Input(shape=(max_dialog_length, None, None)) q = tf.keras.Input(shape=(max_dialog_length, None, None)) loss_fn = utils.KlLoss(bpr=True, reduction=tf.keras.losses.Reduction.NONE) loss = loss_fn(p, q) self.assertEqual([max_dialog_length, None], loss.shape.as_list()) def test_kl_loss(self): p = tf.constant([[[0, 1], [0, 1]], [[1, 0], [0, 1]]], dtype=tf.float32) q = tf.constant([[[1, 0], [0, 1]], [[0, 1], [0, 1]]], dtype=tf.float32) loss_fn = utils.KlLoss(bpr=False, reduction=tf.keras.losses.Reduction.NONE) unit_loss = tf.keras.losses.KLDivergence()( y_true=tf.constant([0, 1], dtype=tf.float32), y_pred=tf.constant([1, 0], dtype=tf.float32)).numpy() expected = tf.constant([[unit_loss, 0], [unit_loss, 0]]) self.assertAllEqual(loss_fn(p, q), expected) def test_kl_loss_with_bpr(self): p = tf.constant([[[0, 1], [1, 0]], [[0, 1], [0, 1]]], dtype=tf.float32) q = tf.constant([[[1, 0], [0, 1]], [[1, 0], [1, 0]]], dtype=tf.float32) loss_fn = utils.KlLoss(bpr=True, reduction=tf.keras.losses.Reduction.NONE) unit_loss = tf.keras.losses.KLDivergence()( y_true=tf.constant([0, 1], dtype=tf.float32), y_pred=tf.constant([1, 0], dtype=tf.float32)).numpy() expected = tf.constant([unit_loss * 2, 0]) self.assertAllEqual(loss_fn(p, q), expected) def test_bow_loss_shape(self): max_dialog_length = 2 y_true = tf.keras.Input(shape=(max_dialog_length, None)) y_pred = tf.keras.Input(shape=(max_dialog_length, None)) loss_fn = utils.BowLoss(sequence_axis=2) loss = loss_fn(y_true=y_true, y_pred=y_pred) self.assertEqual([None, max_dialog_length, None], loss.shape.as_list()) def test_bow_loss(self): y_true = tf.constant([[1, 2], [1, 0]]) y_pred = tf.constant([[0, 1, 0], [0, 1, 0]], dtype=tf.float32) loss_fn = utils.BowLoss() unit_loss = tf.keras.losses.SparseCategoricalCrossentropy()( y_true=tf.constant([1]), y_pred=tf.constant([0, 0, 1], dtype=tf.float32)).numpy() expected = tf.constant([[0, unit_loss], [0, 0]]) self.assertAllClose( loss_fn(y_true, y_pred, sample_weight=tf.sign(y_true)), expected) def test_create_mask(self): inputs = tf.constant([[1, 2], [2, 1], [3, 2]]) masking_prob = {1: 1., 2: 0., 3: 0.8} self.assertAllEqual( tf.constant([[1, 0], [0, 1], [0, 0]]), utils.create_mask(inputs, masking_prob, seed=1)) self.assertAllEqual( tf.constant([[1, 0], [0, 1], [1, 0]]), utils.create_mask(inputs, masking_prob, seed=2)) def test_value_in_tensor(self): inputs = tf.constant([[1, 2], [2, 1], [3, 2]]) tensor = tf.constant([1, 1, 2]) expected = tf.constant([[True, True], [True, True], [False, True]]) self.assertAllEqual(expected, utils.value_in_tensor(inputs, tensor)) def test_bert_preprocessor(self): tfhub_url = 'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3' max_seq_length = 10 batch_size = 12 preprocessor = utils.BertPreprocessor(tfhub_url, max_seq_length) self.assertEqual(preprocessor.vocab_size, 30522) inputs = [ tf.keras.layers.Input(shape=(), dtype=tf.string, batch_size=batch_size) for _ in range(2) ] outputs = preprocessor(inputs) self.assertLen(outputs, 2) for output in outputs: for key in ['input_word_ids', 'input_type_ids', 'input_mask']: self.assertEqual(output[key].shape.as_list(), [batch_size, 10]) outputs = preprocessor(inputs, concat=True) for key in ['input_word_ids', 'input_type_ids', 'input_mask']: self.assertEqual(outputs[key].shape.as_list(), [batch_size, 10]) def test_adjusted_mutual_info(self): a = tf.constant([[1, 2, 0], [2, 1, 0]]) b = tf.constant([[1, 2, 1], [2, 1, 1]]) self.assertEqual(utils.adjusted_mutual_info(a, b), 1.) def test_cluster_purity(self): a = tf.constant([[1, 0, 0], [1, 1, 0]]) b = tf.constant([[1, 2, 3], [1, 1, 2]]) self.assertEqual(utils.cluster_purity(a, b), 1.) def test_create_rebalanced_sample_weights(self): labels = tf.constant([[1, 2, 3], [1, 4, 0]]) sample_weights = utils.create_rebalanced_sample_weights(labels) self.assertAllEqual(sample_weights, tf.constant([[0.75, 1.5, 1.5], [0.75, 1.5, 0.]])) if __name__ == '__main__': tf.test.main()
the-stack_0_21338
import os import sys import shutil import tempfile import subprocess from shlex import quote class Error (Exception): pass def decode(x): try: s = x.decode() except: return x return s def _write_script(cmds,script): '''Write commands into a bash script''' f = open(script, 'w+') for cmd in cmds: print(cmd, file=f) f.close() def syscall(cmd, verbose=False): '''Manage error handling when making syscalls''' if verbose: print('Running command:', cmd, flush=True) try: output = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as error: print('The following command failed with exit code', error.returncode, file=sys.stderr) print(cmd, file=sys.stderr) print('\nThe output was:\n', file=sys.stderr) print(error.output.decode(), file=sys.stderr) raise Error('Error running command:', cmd) if verbose: print(decode(output)) def makeBlast(seq=None, outfile=None, pid=60): cmd = 'blastn -word_size 4 -outfmt "6 qstart qend sstart send length positive pident qlen slen qframe sframe qseqid sseqid" -query ' + quote(str(seq)) + ' -subject ' + quote(str(seq)) + ' -out ' + quote(str(outfile)) + ' -perc_identity ' + str(pid) return [cmd] def run_blast(cmds,verbose=False): '''Write and excute HMMER script''' tmpdir = tempfile.mkdtemp(prefix='tmp.', dir=os.getcwd()) original_dir = os.getcwd() os.chdir(tmpdir) script = 'run_jobs.sh' _write_script(cmds,script) syscall('bash ' + script, verbose=verbose) os.chdir(original_dir) shutil.rmtree(tmpdir) ''' Recreate pymummer-like coords file output from blast. #Blast field, coords field, Description qstart [S1] Start of the alignment region in the reference sequence qend [E1] End of the alignment region in the reference sequence sstart [S2] Start of the alignment region in the query sequence send [E2] End of the alignment region in the query sequence length [LEN 1] Length of the alignment region in the reference sequence positive [LEN 2] Length of the alignment region in the query sequence (#"positive" is just a filler as blast won't all repeated fields) pident [% IDY] Percent identity of the alignment qlen [LEN R] Length of the reference sequence slen [LEN Q] Length of the query sequence qframe sframe [FRM] Reading frame for the reference AND query sequence alignments respectively qseqid sseqid [TAGS] The reference AND query FastA IDs respectively. All output coordinates and lengths are relative to the forward strand of the reference DNA sequence. '''
the-stack_0_21340
import asyncio import subprocess import os import logs # COMMAND_LATEX = \ # "pdflatex -disable-pipes -disable-installer -disable-write18 -no-shell-escape -interaction=nonstopmode -output-directory={pdir} {fname}" COMMAND_LATEX = \ "pdflatex -no-shell-escape -interaction=nonstopmode -output-directory={pdir} {fname}" COMMAND_IMG_CONVERT = "convert -trim -density {density} -quality {quality} {pdf} {dest}" def mkdir(p): if not os.path.exists(p): os.makedirs(p) async def run_command_async(command, timeout = 3): INTERVAL = 0.25 if isinstance(command, str): command = command.split(' ') process = subprocess.Popen(command) for i in range(int(timeout / INTERVAL)): await asyncio.sleep(INTERVAL) retcode = process.poll() if retcode is not None: break if retcode is None: process.kill() raise subprocess.TimeoutExpired(command, timeout, process.stdout, process.stderr) if retcode == 0: return str(process.stdout) raise subprocess.CalledProcessError(retcode, command, process.stdout, process.stderr) async def render_latex(job_id, output_format, code, density, quality): try: pdir = './temp/' + job_id + '/' mkdir(pdir) fname = pdir + 'a.tex' latex_log = '' with open(fname, 'wt') as f: f.write(code) f.flush() f.close() try: try: output = await run_command_async( COMMAND_LATEX.format(pdir = pdir, fname = fname), timeout = 8 ) finally: log_file = fname.replace('.tex', '.log') try: latex_log = open(log_file, encoding = 'utf-8').read() except FileNotFoundError: pass except subprocess.TimeoutExpired as e: return { 'status': 'error', 'description': 'Time limit exceeded during latex rendering' } except subprocess.CalledProcessError as e: # NOTE: Sometimes a pdf file can still be produced. # Maybe we should let the caller access it anyway? return { 'status': 'error', 'description': 'pdflatex exited with non-zero return code', 'log': latex_log } pdf_file = fname.replace('.tex', '.pdf') if output_format == 'pdf': try: # Binary so as to avoid encoding errors with open(pdf_file, 'rb') as f: pass except FileNotFoundError: return { 'status': 'error', 'description': 'pdflatex produced no output', 'log': latex_log } return { 'status': 'success', # 'filename': pdf_file, 'log': latex_log } elif output_format in ('png', 'jpg'): img_file = pdf_file.replace('.pdf', '.' + output_format) try: output = await run_command_async( COMMAND_IMG_CONVERT.format( density = density, quality = quality, pdf = pdf_file, dest = img_file ), timeout = 3 ) # If there are multiple pages, need to make sure we get the first one # A later version of the API will allow for accessing the rest of the # pages. This is more of a temporary bug fix than anything. multipaged = img_file.replace('.', '-0.') if os.path.isfile(multipaged): os.rename(multipaged, img_file) except subprocess.TimeoutExpired: return { 'status': 'error', 'description': 'Time limit exceeded during image conversion', } except subprocess.CalledProcessError as proc: return { 'status': 'error', 'description': 'Image conversion exited with non-zero return code' } return { 'status': 'success', # 'filename': img_file, 'log': latex_log } return { 'status': 'error', 'description': 'Output format was invalid' } except Exception as e: logs.error(e) return { 'status': 'error', 'description': 'The server broke. This is bad.' # 'details': repr(e) }
the-stack_0_21342
# Copyright 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ import json import time import unittest import urllib from sawtooth_sdk.protobuf import validator_pb2 from sawtooth_sdk.protobuf import consensus_pb2 from sawtooth_sdk.messaging.stream import Stream from sawtooth_intkey.intkey_message_factory import IntkeyMessageFactory from sawtooth_integration.tests.integration_tools import wait_for_rest_apis REST_API_URL = "http://rest-api:8008" INTERBLOCK_PERIOD = 1 WAIT = 300 BATCH_KEYS = 'abcd' class TestConsensusEngineAPI(unittest.TestCase): def setUp(self): wait_for_rest_apis([REST_API_URL]) self.stream = Stream("tcp://validator:5005") def tearDown(self): self.stream.close() def test_consensus_engine_api(self): chain_head = self.head() batches = make_batches(BATCH_KEYS) committed = 0 for batch in batches: batch_response = self.publish_block(batch) self.commit_block() # Wait for the validator to respond that the batch was committed wait_for_batch(batch_response) committed += 1 self.assertEqual(committed, len(batches)) blocks = query_rest_api('/blocks') self.assertEqual( len(blocks['data']), len(BATCH_KEYS) + 1) def publish_block(self, batch): # Initialize a new block status = self._initialize() # Submit a batch and wait response = post_batch(batch) time.sleep(INTERBLOCK_PERIOD) # Finalize the block while True: status = self._finalize() if status == consensus_pb2.\ ConsensusFinalizeBlockResponse.BLOCK_NOT_READY: time.sleep(1) else: self.assertEqual( status, consensus_pb2.ConsensusFinalizeBlockResponse.OK) break return response def commit_block(self): block_id = self._receive_new() self._check_and_commit(block_id) def _receive_new(self): new_update = self._receive_update( validator_pb2.Message.CONSENSUS_NOTIFY_BLOCK_NEW, consensus_pb2.ConsensusNotifyBlockNew) return new_update.block.block_id def _check_and_commit(self, block_id): self._check(block_id) valid_update = self._receive_update( validator_pb2.Message.CONSENSUS_NOTIFY_BLOCK_VALID, consensus_pb2.ConsensusNotifyBlockValid) self.assertEqual( block_id, valid_update.block_id) self._commit(block_id) commit_update = self._receive_update( validator_pb2.Message.CONSENSUS_NOTIFY_BLOCK_COMMIT, consensus_pb2.ConsensusNotifyBlockCommit) self.assertEqual( block_id, commit_update.block_id) def _check(self, block_id): future = self.stream.send( validator_pb2.Message.CONSENSUS_CHECK_BLOCKS_REQUEST, consensus_pb2.ConsensusCheckBlocksRequest(block_ids=[block_id]) .SerializeToString()) result = future.result() self.assertEqual( result.message_type, validator_pb2.Message.CONSENSUS_CHECK_BLOCKS_RESPONSE) response = consensus_pb2.ConsensusCheckBlocksResponse() response.ParseFromString(result.content) return response.status def _commit(self, block_id): future = self.stream.send( validator_pb2.Message.CONSENSUS_COMMIT_BLOCK_REQUEST, consensus_pb2.ConsensusCommitBlockRequest(block_id=block_id) .SerializeToString()) result = future.result() self.assertEqual( result.message_type, validator_pb2.Message.CONSENSUS_COMMIT_BLOCK_RESPONSE) response = consensus_pb2.ConsensusCommitBlockResponse() response.ParseFromString(result.content) return response.status def head(self): future = self.stream.send( validator_pb2.Message.CONSENSUS_CHAIN_HEAD_GET_REQUEST, consensus_pb2.ConsensusChainHeadGetRequest() .SerializeToString()) result = future.result() self.assertEqual( result.message_type, validator_pb2.Message.CONSENSUS_CHAIN_HEAD_GET_RESPONSE) response = consensus_pb2.ConsensusChainHeadGetResponse() response.ParseFromString(result.content) return response.status def _initialize(self): future = self.stream.send( validator_pb2.Message.CONSENSUS_INITIALIZE_BLOCK_REQUEST, consensus_pb2.ConsensusInitializeBlockRequest() .SerializeToString()) result = future.result() self.assertEqual( result.message_type, validator_pb2.Message.CONSENSUS_INITIALIZE_BLOCK_RESPONSE) response = consensus_pb2.ConsensusInitializeBlockResponse() response.ParseFromString(result.content) return response.status def _finalize(self): future = self.stream.send( validator_pb2.Message.CONSENSUS_FINALIZE_BLOCK_REQUEST, consensus_pb2.ConsensusFinalizeBlockRequest(data=b"Devmode") .SerializeToString()) result = future.result() self.assertEqual( result.message_type, validator_pb2.Message.CONSENSUS_FINALIZE_BLOCK_RESPONSE) response = consensus_pb2.ConsensusFinalizeBlockResponse() response.ParseFromString(result.content) return response.status def _receive_update(self, update_type, update_class): message = self.stream.receive().result() self.stream.send_back( validator_pb2.Message.CONSENSUS_NOTIFY_ACK, message.correlation_id, consensus_pb2.ConsensusNotifyAck().SerializeToString()) self.assertEqual(message.message_type, update_type) update = update_class() update.ParseFromString(message.content) return update def post_batch(batch): headers = {'Content-Type': 'application/octet-stream'} response = query_rest_api( '/batches', data=batch, headers=headers) return response def wait_for_batch(post_response): response = submit_request('{}&wait={}'.format(post_response['link'], WAIT)) return response def query_rest_api(suffix='', data=None, headers=None): if headers is None: headers = {} url = REST_API_URL + suffix return submit_request(urllib.request.Request(url, data, headers)) def submit_request(request): response = urllib.request.urlopen(request).read().decode('utf-8') return json.loads(response) def make_batches(keys): imf = IntkeyMessageFactory() return [imf.create_batch([('set', k, 0)]) for k in keys]
the-stack_0_21343
import os import tkinter as tk import win32com.shell.shell as shell from tkinter import * from tkinter.ttk import * root= tk.Tk() root.geometry('400x200') root.configure(bg='black') #root.iconbitmap(r'F:\py\Lock\ok.png') root.resizable(width=False, height=False) root.title ("Lock Mount") w = tk.Label(root, text=" Abhishek Patel @imdarkcoder " ,font = ("Times New Roman", 12),bg='black',fg="white") w.pack() def myc(): commands = 'manage-bde -lock E: -forcedismount' shell.ShellExecuteEx(lpVerb='runas', lpFile='cmd.exe', lpParameters='/c '+commands) photo = PhotoImage(file = r"F:\py\Lock\b.ico") photoimage = photo.subsample(2,2) button1 = tk.Button (root,image = photoimage, compound = LEFT,text = "Lock E:Mount ", font = ("Times New Roman", 20),bg='darkslategray', command = myc) button1.pack (expand = 1) root.mainloop()
the-stack_0_21344
import torch import torch.nn as nn class DeconvolutionModule(nn.Module): def __init__(self, cin_conv=1024, cin_deconv=512, cout=512, norm_layer=nn.BatchNorm2d, elementwise_type="sum", deconv_kernel_size=2, deconv_out_padding=0): super(DeconvolutionModule, self).__init__() self.conv_layer = nn.Sequential( nn.Conv2d(cin_conv, cout, kernel_size=3, stride=1, padding=1, dilation=1, groups=1), norm_layer(cout), nn.ReLU(inplace=True), nn.Conv2d(cout, cout, kernel_size=3, stride=1, padding=1, dilation=1, groups=1), norm_layer(cout), ) self.deconv_layer = nn.Sequential( nn.ConvTranspose2d(cin_deconv, cout, kernel_size=deconv_kernel_size, stride=2, padding=0, output_padding=deconv_out_padding), nn.Conv2d(cout, cout, kernel_size=3, stride=1, padding=1, dilation=1), norm_layer(cout) ) if elementwise_type in ["sum", "prod"]: self.elementwise_type = elementwise_type else: raise RuntimeError("elementwise type incorrect!") self.relu = nn.ReLU(inplace=True) self.reset_parameters() def reset_parameters(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_uniform_(m.weight) nn.init.zeros_(m.bias) def forward(self, x_deconv, x_conv): y_deconv = self.deconv_layer(x_deconv) y_conv = self.conv_layer(x_conv) if self.elementwise_type == "sum": return self.relu(y_deconv + y_conv) elif self.elementwise_type == "prod": return self.relu(y_deconv + y_conv)
the-stack_0_21345
from django.utils.safestring import mark_safe #from markdown import markdown from django import template import re import pypandoc from django.contrib.staticfiles.templatetags import staticfiles from django.utils import timezone from django.contrib.auth.models import User from datetime import timedelta register = template.Library() InlineMathPat = re.compile(r'\\\((.+?)\\\)', flags=re.DOTALL) DisplayMathPat = re.compile(r'\\\[(.+?)\\\]', flags=re.DOTALL) StaticImagePat = re.compile(r'STATICIMAGE/([^"]+)') @register.filter(name='md2html') def md2html(txt, stripP=False): 'converst ReST to HTML using pandoc, w/ audio support' txt, markers = add_temporary_markers(txt, find_audio) txt, videoMarkers = add_temporary_markers(txt, find_video, len(markers)) try: txt = pypandoc.convert( txt, 'html', format='rst', extra_args=('--mathjax', '--email-obfuscation=none') ) except StandardError: pass txt = replace_temporary_markers(txt, audio_html, markers) txt = replace_temporary_markers(txt, video_html, videoMarkers) txt = StaticImagePat.sub(staticfiles.static('ct') + '/' + r'\1', txt) if stripP and txt.startswith('<p>') and txt.endswith('</p>'): txt = txt[3:-4] return mark_safe(txt) def nolongerused(): 'convert markdown to html, preserving latex delimiters' # markdown replaces \( with (, so have to protect our math... # replace \(math\) with \\(math\\) txt = InlineMathPat.sub(r'\\\\(\1\\\\)', txt) # replace \[math\] with \\[math\\] txt = DisplayMathPat.sub(r'\\\\[\1\\\\]', txt) txt = markdown(txt, safe_mode='escape') if stripP and txt.startswith('<p>') and txt.endswith('</p>'): txt = txt[3:-4] return mark_safe(txt) def find_audio(txt, lastpos, tag='.. audio::'): i = txt.find(tag, lastpos) if i < 0: return -1, None, None lastpos = i + len(tag) k = txt.find('\n', lastpos) if k < 0: k = txt.find('\r', lastpos) if k < 0: # no EOL, slurp to end of text k = len(txt) v = txt[lastpos:k].strip() return i, k, v def find_video(txt, lastpos, tag='.. video::'): return find_audio(txt, lastpos, tag) def audio_html(filename): i = filename.rfind('.') if i > 0: # remove file suffix filename = filename[:i] return '<audio controls><source src="%s.ogg" type="audio/ogg"><source src="%s.mp3" type="audio/mpeg">no support for audio!</audio>' \ % (filename,filename) def video_html(filename): try: sourceDB, sourceID = filename.split(':') except ValueError: return 'ERROR: bad video source: %s' % filename d = { 'youtube': '''<div class="embed-responsive embed-responsive-4by3"> <iframe class="embed-responsive-item" src="https://www.youtube.com/embed/%s" allowfullscreen></iframe></div> ''', 'vimeo': '''<div class="embed-responsive embed-responsive-4by3"> <iframe class="embed-responsive-item" src="https://player.vimeo.com/video/%s" webkitallowfullscreen mozallowfullscreen allowfullscreen></iframe></div> ''', } try: return d[sourceDB] % sourceID except KeyError: return 'ERROR: unknown video sourceDB: %s' % sourceDB def add_temporary_markers(txt, func, base=0, l=None): s = '' lastpos = 0 if l is None: l = [] while True: # replace selected content with unique markers i, j, v = func(txt, lastpos) if i < 0: # no more markers break marker = 'mArKeR:%d:' % (base + len(l)) l.append((marker, v)) s += txt[lastpos:i] + marker lastpos = j s += txt[lastpos:] return s, l def replace_temporary_markers(txt, func, l): s = '' lastpos = 0 for marker, v in l: # put them back in after conversion i = txt.find(marker, lastpos) if i < 0: continue # must have been removed by comment, so ignore s += txt[lastpos:i] + func(v) # substitute value lastpos = i + len(marker) s += txt[lastpos:] return s def get_base_url(path, extension=[], baseToken='units', tail=2): l = path.split('/') for i,v in enumerate(l): if v == baseToken: return '/'.join(l[:i + tail] + extension) + '/' raise ValueError('baseToken not found in path') def get_path_type(path, baseToken='units', typeOffset=2): l = path.split('/') for i, s in enumerate(l[:-typeOffset]): if s == baseToken: return l[i + typeOffset] raise ValueError('baseToken not found in path') def is_teacher_url(path): return path.startswith('/ct/teach/') @register.filter(name='get_object_url') def get_object_url(actionTarget, o, forceDefault=False, subpath=None): basePath = get_base_url(actionTarget) try: urlFunc = o.get_url except AttributeError: if subpath: tail = subpath + '/' elif subpath is None: tail = 'teach/' else: tail = '' head = getattr(o, '_headURL', o.__class__.__name__.lower()) return '%s%s/%d/%s' % (basePath, head, o.pk, getattr(o, '_subURL', tail)) else: return urlFunc(basePath, forceDefault, subpath, is_teacher_url(basePath)) @register.filter(name='get_home_url') def get_home_url(actionTarget, o): return get_object_url(actionTarget, o, subpath='') @register.filter(name='get_thread_url') def get_thread_url(actionTarget, r): 'get URL for FAQ thread for this student inquiry' return get_object_url(actionTarget, r.unitLesson, subpath='faq/%d' % r.pk) @register.filter(name='get_tasks_url') def get_tasks_url(actionTarget, ul): 'get URL for FAQ thread for this student inquiry' subpath = ul._tasksPath[ul.get_type()] return get_object_url(actionTarget, ul, subpath=subpath) @register.filter(name='get_dummy_navbar') def get_dummy_navbar(actionTarget, baseToken='courses'): l = actionTarget.split('/') try: i = l.index(baseToken) except ValueError: return '' m = [] for j, label in ((i + 2, 'Course'), (i + 4, 'Courselet')): if j + 2 < len(l): m.append('<li><a href="%s/">%s</a></li>' % ('/'.join(l[:j]), label)) return mark_safe('\n'.join(m)) @register.filter(name='get_base_faq_url') def get_base_faq_url(actionTarget, ul): return get_object_url(actionTarget, ul, subpath='faq') ############################################################## # time utilities timeUnits = (('seconds', timedelta(minutes=1), lambda t:int(t.seconds)), ('minutes', timedelta(hours=1), lambda t:int(t.seconds / 60)), ('hours', timedelta(1), lambda t:int(t.seconds / 3600)), ('days', timedelta(7), lambda t:t.days)) monthStrings = ('Jan.', 'Feb.', 'Mar.', 'Apr.', 'May', 'Jun.', 'Jul.', 'Aug.', 'Sep.', 'Oct.', 'Nov.', 'Dec.') @register.filter(name='display_datetime') def display_datetime(dt): 'get string that sidesteps timezone issues thus: 27 minutes ago' def singularize(i, s): if i == 1: return s[:-1] return s diff = timezone.now() - dt for unit, td, f in timeUnits: if diff < td: n = f(diff) return '%d %s ago' % (n, singularize(n, unit)) return '%s %d, %d' % (monthStrings[dt.month - 1], dt.day, dt.year) @register.filter def filter_input(edge, obj): """Filter input UnitLesson to be acceptable for this edge. :param edge: FSMEdge :param obj: data object to be checked whether it's acceptable input. :return: """ return edge.filter_input(obj) @register.filter def display_full_username(user=None): if user and isinstance(user, User): return user.get_full_name() or user.username else: return ''
the-stack_0_21346
# 2020.06.05 # activate learning methods import sys import numpy as np from scipy.spatial import distance from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from scipy.stats import entropy import time def entropy_query(prob, num_feature): #prob is the output of the clf.predict_proba on the pool of unlabeled data #num_feature is the number of images you want to select using the entropy method entropies = np.zeros(prob.shape[0]) for i in range(prob.shape[0]): entropies[i] = np.sum(-prob[i]*np.log(prob[i]+.0000001)) th = np.sort(entropies)[prob.shape[0]-num_feature] num_feature_idx = entropies <= th num_feature_idx = entropies >= th return num_feature_idx def coreset(x_pool, x_train,k): #x_pool is the pool of unlabeled data #x_train is the current set of labeled data #k is the number of images to select from x_pool dists = distance.cdist(x_pool, x_train, 'euclidean') nearesttolabeleds = np.min(dists,axis=1) th = np.sort(nearesttolabeleds)[nearesttolabeleds.shape[0]-k] num_feature_idx = nearesttolabeleds >= th return num_feature_idx class QBC(): def __init__(self, learners, init=0.01, n_increment=200, n_iter=40, percent=0.05): self.init = init self.n_increment = n_increment self.n_learner = len(learners) self.n_iter = n_iter self.num_class = 3 self.learners = learners self.percent = percent self.trained = False self.acc_t = [] self.acc_v = [] def metric(self, prob): return entropy(prob, base=self.num_class, axis=1) def fit(self, x, y, xv=None, yv=None): self.trained = True self.num_class = np.unique(y).shape[0] #x, xt, y, yt = train_test_split(x, y, train_size=self.init, random_state=42, stratify=y) idx = np.random.choice(x.shape[0], (int)(x.shape[0]*self.percent)) x_train, y_train = x[idx], y[idx] x_pool = np.delete(x, idx, axis=0) y_pool = np.delete(y, idx, axis=0) acc_t, acc_v, s = [], [], [] for k in range(self.n_iter): print(' start iter -> %3s'%str(k)) t0 = time.time() for i in range(self.n_learner): self.learners[i].fit(x_train, y_train) pt = self.predict_proba(x_pool) at = accuracy_score(y_pool, np.argmax(pt, axis=1)) acc_t.append(at) s.append(y_pool.shape[0]) ht = self.metric(pt) try: xv.shape print(' test shape: %s, val shape: %s'%(str(x_pool.shape), str(xv.shape))) pv = self.predict_proba(xv) av = accuracy_score(yv, np.argmax(pv, axis=1)) print(' <Acc> test: %s, val: %s'%(at, av)) acc_v.append(av) hv = self.metric(pv) print(' <Entropy> test: %s, val: %s'%(np.mean(ht), np.mean(hv))) except: pass idx = np.argsort(ht)[-self.n_increment:] x_train = np.concatenate((x_train, x_pool[idx]), axis=0) y_train = np.concatenate((y_train, y_pool[idx]), axis=0) x_pool = np.delete(x_pool, idx, axis=0) y_pool = np.delete(y_pool, idx, axis=0) print(' end iter -> %3s using %10s seconds\n'%(str(k),str(time.time()-t0))) self.acc_t = acc_t self.acc_v = acc_v return s, acc_t, acc_v def predict_proba(self, x): assert (self.trained == True), "Must call fit first!" pred = np.zeros((x.shape[0], self.num_class)) for i in range(self.n_learner): pred += self.learners[i].predict_proba(x) return pred / np.sum(pred, axis=1, keepdims=True) def predict(self, x): assert (self.trained == True), "Must call fit first!" pred = self.predict_proba(x) return np.argmax(pred, axis=1) def score(self, x, y): assert (self.trained == True), "Must call fit first!" pred = self.predict(x) return accuracy_score(y, pred)
the-stack_0_21349
# -*- coding: utf-8 -*- """ Created on 2017-5-20 @author: cheng.li """ import os import sys import arrow import datetime as dt import uqer import sqlalchemy import numpy as np import pandas as pd from airflow.operators.python_operator import PythonOperator from airflow.operators.email_operator import EmailOperator from airflow.operators.sensors import ExternalTaskSensor from airflow.models import DAG from uqer import DataAPI as api from alphamind.utilities import alpha_logger from sqlalchemy import select, and_, or_, MetaData, delete from PyFin.api import advanceDateByCalendar from PyFin.api import isBizDay from alphamind.api import SqlEngine from alphamind.data.dbmodel.models import * from alphamind.api import Universe as UniversProxy from alphamind.api import industry_styles from alphamind.api import risk_styles uqer.DataAPI.api_base.timeout = 300 start_date = dt.datetime(2018, 5, 4) dag_name = 'update_uqer_data_postgres' default_args = { 'owner': 'wegamekinglc', 'depends_on_past': True, 'start_date': start_date } dag = DAG( dag_id=dag_name, default_args=default_args, schedule_interval='0 1 * * 1,2,3,4,5' ) _ = uqer.Client(token=os.environ['DATAYES_TOKEN']) engine = sqlalchemy.create_engine(os.environ['DB_URI']) alpha_engine = SqlEngine(os.environ['DB_URI']) def process_date(ds): alpha_logger.info("Loading data at {0}".format(ds)) this_date = dt.datetime.strptime(ds, '%Y-%m-%d') ref_date = this_date.strftime('%Y%m%d') return ref_date, this_date def format_data(df, format='%Y%m%d'): df['trade_date'] = pd.to_datetime(df['trade_date'], format=format) def check_holiday(this_date): flag = isBizDay('china.sse', this_date) if not flag: alpha_logger.info('Job will be omitted as {0} is a holiday'.format(this_date)) return flag def data_info_log(df, table): data_len = len(df) if data_len > 0: alpha_logger.info("{0} records will be inserted in {1}".format(data_len, table)) else: msg = "No records will be inserted in {0}".format(table) alpha_logger.warning(msg) raise ValueError(msg) def update_uqer_factors(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return df = api.MktStockFactorsOneDayProGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date', 'ticker': 'code'}, inplace=True) df.code = df.code.astype(int) del df['secID'] query = delete(Uqer).where(Uqer.trade_date == this_date) engine.execute(query) data_info_log(df, Uqer) format_data(df, format='%Y-%m-%d') df.to_sql(Uqer.__table__.name, engine, index=False, if_exists='append') def update_uqer_market(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return df = api.MktEqudGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date', 'ticker': 'code'}, inplace=True) df.code = df.code.astype(int) del df['secID'] query = delete(Market).where(Market.trade_date == this_date) engine.execute(query) data_info_log(df, Market) format_data(df, format='%Y-%m-%d') df.to_sql(Market.__table__.name, engine, index=False, if_exists='append') def update_uqer_index_market(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return df = api.MktIdxdGet(tradeDate=ref_date) df = df[df.exchangeCD.isin(['XSHE', 'XSHG', 'ZICN'])] df = df[df.ticker <= '999999'] df.rename(columns={'tradeDate': 'trade_date', 'ticker': 'indexCode', 'CHGPct': 'chgPct', 'secShortName': 'indexShortName'}, inplace=True) df = df[['trade_date', 'indexCode', 'preCloseIndex', 'openIndex', 'highestIndex', 'lowestIndex', 'closeIndex', 'turnoverVol', 'turnoverValue', 'chgPct']] df['indexCode'] = df.indexCode.astype(int) query = delete(IndexMarket).where(IndexMarket.trade_date == this_date) engine.execute(query) data_info_log(df, Market) format_data(df, format='%Y-%m-%d') df.to_sql(IndexMarket.__table__.name, engine, index=False, if_exists='append') def update_uqer_halt_list(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return df = api.SecHaltGet(beginDate=ref_date, endDate=ref_date) df = df[df.assetClass == 'E'] df['trade_date'] = ref_date df.rename(columns={'ticker': 'code'}, inplace=True) df.code = df.code.astype(int) del df['secID'] query = delete(HaltList).where(HaltList.trade_date == this_date) engine.execute(query) data_info_log(df, HaltList) format_data(df) df.to_sql(HaltList.__table__.name, engine, index=False, if_exists='append') def update_universe(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return query = delete(Universe).where( Universe.trade_date == this_date, ) engine.execute(query) # indexed universe universe_map = {'hs300': 300, 'sh50': 16, 'zz500': 905, 'zz800': 906, 'zz1000': 852, 'zxb': 399005, 'cyb': 399006} total_df = None for u in universe_map: query = select([IndexComponent.code]).where( and_( IndexComponent.trade_date == this_date, IndexComponent.indexCode == universe_map[u] ) ) df = pd.read_sql(query, engine) df[u] = 1 if total_df is None: total_df = df else: total_df = pd.merge(total_df, df, on=['code'], how='outer') # ashare query = select([SecurityMaster.code]).where( and_( SecurityMaster.listDate <= this_date, or_( SecurityMaster.listStatusCD == 'L', SecurityMaster.delistDate > this_date ) ) ) df = pd.read_sql(query, engine) df['ashare'] = 1 total_df = pd.merge(total_df, df, on=['code'], how='outer') # ashare_ex ex_date = advanceDateByCalendar('china.sse', this_date, '-3m') query = select([SecurityMaster.code]).where( and_( SecurityMaster.listDate <= ex_date, or_( SecurityMaster.listStatusCD == "L", SecurityMaster.delistDate > this_date ) ) ) df = pd.read_sql(query, engine) df['ashare_ex'] = 1 total_df = pd.merge(total_df, df, on=['code'], how='outer') # industry universe codes = total_df.code.tolist() risk_models = alpha_engine.fetch_risk_model(ref_date, codes)[1] df = risk_models[['code'] + industry_styles] df.columns = [i.lower() for i in df.columns] total_df = pd.merge(total_df, df, on=['code'], how='outer') total_df['trade_date'] = this_date total_df.fillna(0, inplace=True) total_df.to_sql('universe', engine, if_exists='append', index=False) def update_uqer_universe_security_master(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return df = api.EquGet(equTypeCD='A').drop_duplicates() if df.empty: return query = delete(SecurityMaster) engine.execute(query) df = df[df.ticker.str.len() <= 6] df['code'] = df.ticker.astype(int) df['listDate'] = pd.to_datetime(df['listDate'], format='%Y-%m-%d') df['endDate'] = pd.to_datetime(df['endDate'], format='%Y-%m-%d') df['delistDate'] = pd.to_datetime(df['delistDate'], format='%Y-%m-%d') del df['ticker'] del df['secID'] data_info_log(df, SecurityMaster) df.to_sql(SecurityMaster.__table__.name, engine, index=False, if_exists='append') def update_sw1_adj_industry(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return industry = '็”ณไธ‡่กŒไธšๅˆ†็ฑป' query = select([Industry]).where( and_( Industry.trade_date == ref_date, Industry.industry == industry ) ) df = pd.read_sql(query, engine) df['industry'] = '็”ณไธ‡่กŒไธšๅˆ†็ฑปไฟฎ่ฎข' df['industryID'] = 10303330102 df['industrySymbol'] = '440102' ids = df[df.industryName2 == '่ฏๅˆธ'].index df.loc[ids, 'industryName1'] = df.loc[ids, 'industryName2'] df.loc[ids, 'industryID1'] = df.loc[ids, 'industryID2'] ids = df[df.industryName2 == '้“ถ่กŒ'].index df.loc[ids, 'industryName1'] = df.loc[ids, 'industryName2'] df.loc[ids, 'industryID1'] = df.loc[ids, 'industryID2'] ids = df[df.industryName2 == 'ไฟ้™ฉ'].index df.loc[ids, 'industryName1'] = df.loc[ids, 'industryName2'] df.loc[ids, 'industryID1'] = df.loc[ids, 'industryID2'] ids = df[df.industryName2 == 'ๅคšๅ…ƒ้‡‘่ž'].index df.loc[ids, 'industryName1'] = df.loc[ids, 'industryName2'] df.loc[ids, 'industryID1'] = df.loc[ids, 'industryID2'] query = delete(Industry).where( and_( Industry.trade_date == ref_date, Industry.industry == industry + "ไฟฎ่ฎข" ) ) engine.execute(query) df.to_sql(Industry.__table__.name, engine, if_exists='append', index=False) def update_dx_industry(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return barra_sector_dict = { 'Energy': [], 'Materials': ['ๅปบ็ญ‘ๅปบๆ', 'ๅŒ–ๅทฅ', 'ๆœ‰่‰ฒ้‡‘ๅฑž', '้’ข้“', 'ๅปบ็ญ‘ๆๆ–™'], 'Industrials': ['้‡‡ๆŽ˜', 'ๆœบๆขฐ่ฎพๅค‡', '็ปผๅˆ', 'ๅปบ็ญ‘่ฃ…้ฅฐ', '็”ตๅญ', 'ไบค้€š่ฟ่พ“', '่ฝปๅทฅๅˆถ้€ ', 'ๅ•†ไธš่ดธๆ˜“', 'ๅ†œๆž—็‰งๆธ”', '็”ตๆฐ”่ฎพๅค‡', 'ๅ›ฝ้˜ฒๅ†›ๅทฅ', '็บบ็ป‡ๆœ่ฃ…', 'ไบค่ฟ่ฎพๅค‡'], 'ConsumerDiscretionary': ['ไผ‘้—ฒๆœๅŠก', 'ๆฑฝ่ฝฆ', 'ไผ ๅช’'], 'ConsumerStaples': ['้ฃŸๅ“้ฅฎๆ–™', 'ๅฎถ็”จ็”ตๅ™จ'], 'HealthCare': ['ๅŒป่ฏ็”Ÿ็‰ฉ'], 'Financials': ['้“ถ่กŒ', '้ž้“ถ้‡‘่ž', '้‡‘่žๆœๅŠก'], 'IT': ['่ฎก็ฎ—ๆœบ', '้€šไฟก', 'ไฟกๆฏ่ฎพๅค‡', 'ไฟกๆฏๆœๅŠก'], 'Utilities': ['ๅ…ฌ็”จไบ‹ไธš'], 'RealEstate': ['ๆˆฟๅœฐไบง'], } # ref: https://en.wikipedia.org/wiki/Global_Industry_Classification_Standard barra_sector_id_dict = { 'Energy': 10, 'Materials': 15, 'Industrials': 20, 'ConsumerDiscretionary': 25, 'ConsumerStaples': 30, 'HealthCare': 35, 'Financials': 40, 'IT': 45, 'Utilities': 55, 'RealEstate': 60 } # ref: Morningstar Global Equity Classification Structure ms_supersector_dict = { 'Cyclical': ['Materials', 'Financials', 'RealEstate', 'ConsumerDiscretionary'], 'Defensive': ['ConsumerStaples', 'HealthCare', 'Utilities'], 'Sensitive': ['Energy', 'Industrials', 'IT'] } ms_supersector_id_dict = { 'Cyclical': 1, 'Defensive': 2, 'Sensitive': 3 } barra_sector_rev_dict = {} for x in barra_sector_dict: for y in barra_sector_dict[x]: barra_sector_rev_dict[y] = x ms_supersector_rev_dict = {} for x in ms_supersector_dict: for y in ms_supersector_dict[x]: ms_supersector_rev_dict[y] = x industry = '็”ณไธ‡่กŒไธšๅˆ†็ฑป' query = select([Industry]).where( and_( Industry.trade_date == ref_date, Industry.industry == industry ) ) df = pd.read_sql(query, engine) df['industry'] = 'ไธœๅ…ด่กŒไธšๅˆ†็ฑป' df['industryID'] = 0 df['industrySymbol'] = '0' df['industryID3'] = df['industryID1'] df['industryName3'] = df['industryName1'] df['industryName2'] = [barra_sector_rev_dict[x] for x in df['industryName3']] df['industryName1'] = [ms_supersector_rev_dict[x] for x in df['industryName2']] df['industryID1'] = [ms_supersector_id_dict[x] for x in df['industryName1']] df['industryID2'] = [barra_sector_id_dict[x] for x in df['industryName2']] query = delete(Industry).where( and_( Industry.trade_date == ref_date, Industry.industry == "ไธœๅ…ด่กŒไธšๅˆ†็ฑป" ) ) engine.execute(query) df.to_sql(Industry.__table__.name, engine, if_exists='append', index=False) def update_uqer_index_components(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return index_codes = ['000001', '000002', '000003', '000004', '000005', '000006', '000007', '000008', '000009', '000010', '000015', '000016', '000020', '000090', '000132', '000133', '000300', '000852', '000902', '000903', '000904', '000905', '000906', '000907', '000922', '399001', '399002', '399004', '399005', '399006', '399007', '399008', '399009', '399010', '399011', '399012', '399013', '399107', '399324', '399330', '399333', '399400', '399401', '399649'] total_data = pd.DataFrame() for index in index_codes: df = api.IdxCloseWeightGet(ticker=index, beginDate=ref_date, endDate=ref_date) if df.empty: ref_previous_date = advanceDateByCalendar('china.sse', this_date, '-1b') query = select([IndexComponent]).where( and_( IndexComponent.trade_date == ref_previous_date, IndexComponent.indexCode == int(index) ) ) df = pd.read_sql(query, engine) df['trade_date'] = this_date if df.empty: continue alpha_logger.info('{0} is finished with previous data {1}'.format(index, len(df))) else: ################################ # 2017-10-09, patch for uqer bug def filter_out_eqy(code: str): if code[0] in ['0', '3'] and code[-4:] in ['XSHE']: return True elif code[0] in ['6'] and code[-4:] in ['XSHG']: return True else: return False df = df[df.consID.apply(lambda x: filter_out_eqy(x))] ################################ df.rename(columns={'ticker': 'indexCode', 'secShortName': 'indexShortName', 'consTickerSymbol': 'code', 'consExchangeCD': 'exchangeCD', 'consShortName': 'secShortName'}, inplace=True) df['indexCode'] = df.indexCode.astype(int) df['code'] = df.code.astype(int) df['trade_date'] = this_date del df['secID'] del df['consID'] alpha_logger.info('{0} is finished with new data {1}'.format(index, len(df))) total_data = total_data.append(df) index_codes = total_data.indexCode.unique() index_codes = [int(index) for index in index_codes] query = delete(IndexComponent).where( and_(IndexComponent.trade_date == this_date, IndexComponent.indexCode.in_(index_codes))) engine.execute(query) if total_data.empty: return data_info_log(total_data, IndexComponent) format_data(total_data) total_data.to_sql(IndexComponent.__table__.name, engine, index=False, if_exists='append') def update_dummy_index_components(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return query = select([IndexComponent]).where( and_( IndexComponent.trade_date == '2018-05-04', IndexComponent.indexCode.in_([900300, 900905]) ) ) df = pd.read_sql(query, con=engine) df['trade_date'] = ref_date query = delete(IndexComponent).where( and_( IndexComponent.trade_date == ref_date, IndexComponent.indexCode.in_([900300, 900905]) ) ) engine.execute(query) df.to_sql(IndexComponent.__table__.name, engine, index=False, if_exists='append') def update_uqer_risk_model(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return df = api.RMExposureDayGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date', 'ticker': 'code'}, inplace=True) df.code = df.code.astype(int) del df['secID'] del df['exchangeCD'] del df['secShortName'] del df['updateTime'] engine.execute(delete(RiskExposure).where(RiskExposure.trade_date == this_date)) data_info_log(df, RiskExposure) format_data(df) df.to_sql(RiskExposure.__table__.name, engine, index=False, if_exists='append') df = api.RMFactorRetDayGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date'}, inplace=True) engine.execute(delete(RiskReturn).where(RiskReturn.trade_date == this_date)) data_info_log(df, RiskReturn) format_data(df) df.to_sql(RiskReturn.__table__.name, engine, index=False, if_exists='append') df = api.RMSpecificRetDayGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date', 'ticker': 'code'}, inplace=True) df.code = df.code.astype(int) del df['secID'] engine.execute(delete(SpecificReturn).where(SpecificReturn.trade_date == this_date)) data_info_log(df, SpecificReturn) format_data(df) df.to_sql(SpecificReturn.__table__.name, engine, index=False, if_exists='append') df = api.RMCovarianceDayGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date'}, inplace=True) engine.execute(delete(RiskCovDay).where(RiskCovDay.trade_date == this_date)) data_info_log(df, RiskCovDay) format_data(df) df.to_sql(RiskCovDay.__table__.name, engine, index=False, if_exists='append') df = api.RMCovarianceShortGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date'}, inplace=True) engine.execute(delete(RiskCovShort).where(RiskCovShort.trade_date == this_date)) data_info_log(df, RiskCovShort) format_data(df) df.to_sql(RiskCovShort.__table__.name, engine, index=False, if_exists='append') df = api.RMCovarianceLongGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date'}, inplace=True) engine.execute(delete(RiskCovLong).where(RiskCovLong.trade_date == this_date)) data_info_log(df, RiskCovLong) format_data(df) df.to_sql(RiskCovLong.__table__.name, engine, index=False, if_exists='append') df = api.RMSriskDayGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date', 'ticker': 'code'}, inplace=True) df.code = df.code.astype(int) del df['secID'] engine.execute(delete(SpecificRiskDay).where(SpecificRiskDay.trade_date == this_date)) data_info_log(df, SpecificRiskDay) format_data(df) df.to_sql(SpecificRiskDay.__table__.name, engine, index=False, if_exists='append') df = api.RMSriskShortGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date', 'ticker': 'code'}, inplace=True) df.code = df.code.astype(int) del df['secID'] engine.execute(delete(SpecificRiskShort).where(SpecificRiskShort.trade_date == this_date)) data_info_log(df, SpecificRiskShort) format_data(df) df.to_sql(SpecificRiskShort.__table__.name, engine, index=False, if_exists='append') df = api.RMSriskLongGet(tradeDate=ref_date) df.rename(columns={'tradeDate': 'trade_date', 'ticker': 'code'}, inplace=True) df.code = df.code.astype(int) del df['secID'] engine.execute(delete(SpecificRiskLong).where(SpecificRiskLong.trade_date == this_date)) data_info_log(df, SpecificRiskLong) format_data(df) df.to_sql(SpecificRiskLong.__table__.name, engine, index=False, if_exists='append') def update_uqer_industry_info(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return query = select([Market.code]).where(Market.trade_date == this_date) df = pd.read_sql(query, engine) codes = df.code.astype(str).str.zfill(6) engine.execute(delete(Industry).where(Industry.trade_date == this_date)) df = api.EquIndustryGet(intoDate=ref_date) df = df[df.ticker.isin(codes)] df['code'] = df.ticker.astype(int) df['trade_date'] = this_date df.rename(columns={'ticker': 'code'}, inplace=True) df = df[['trade_date', 'code', 'industry', 'industryID', 'industrySymbol', 'industryID1', 'industryName1', 'industryID2', 'industryName2', 'industryID3', 'industryName3', 'IndustryID4', 'IndustryName4']] data_info_log(df, Industry) format_data(df) df.to_sql(Industry.__table__.name, engine, index=False, if_exists='append') def update_category(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return codes = alpha_engine.fetch_codes(ref_date, UniversProxy('ashare')) industry_matrix1 = alpha_engine.fetch_industry_matrix(ref_date, codes, 'sw', 1) industry_matrix2 = alpha_engine.fetch_industry_matrix(ref_date, codes, 'sw_adj', 1) cols1 = sorted(industry_matrix1.columns[2:].tolist()) vals1 = (industry_matrix1[cols1].values * np.array(range(1, len(cols1)+1))).sum(axis=1) cols2 = sorted(industry_matrix2.columns[2:].tolist()) vals2 = (industry_matrix2[cols2].values * np.array(range(1, len(cols2) + 1))).sum(axis=1) df = pd.DataFrame() df['code'] = industry_matrix1.code.tolist() df['trade_date'] = ref_date df['sw1'] = vals1 df['sw1_adj'] = vals2 query = delete(Categories).where( Categories.trade_date == ref_date ) engine.execute(query) df.to_sql(Categories.__table__.name, con=engine, if_exists='append', index=False) def fetch_date(table, query_date, engine): query_date = query_date.replace('-', '') sql = "select * from {0} where Date = {1}".format(table, query_date) df = pd.read_sql_query(sql, engine) df.rename(columns={'Date': 'trade_date', 'Code': 'code'}, inplace=True) cols = df.columns.tolist() cols[2] = '็”ณไธ‡ไธ€็บง่กŒไธš' cols[3] = '็”ณไธ‡ไบŒ็บง่กŒไธš' cols[4] = '็”ณไธ‡ไธ‰็บง่กŒไธš' df.columns = cols df['trade_date'] = pd.to_datetime(df.trade_date.astype(str)) return df def update_factor_master(ds, **kwargs): ref_date, this_date = process_date(ds) flag = check_holiday(this_date) if not flag: return tables = [Uqer, Gogoal, Experimental, RiskExposure] meta = MetaData(bind=engine, reflect=True) df = pd.DataFrame(columns=['factor', 'source', 'alias', 'updateTime', 'description']) for t in tables: source = t.__table__.name table = meta.tables[source] columns = table.columns.keys() columns = list(set(columns).difference({'trade_date', 'code', 'secShortName', 'exchangeCD', 'updateTime', 'COUNTRY'})) col_alias = [c + '_' + source for c in columns] new_df = pd.DataFrame({'factor': columns, 'source': [source] * len(columns), 'alias': col_alias}) df = df.append(new_df) query = delete(FactorMaster) engine.execute(query) df['updateTime'] = arrow.now().format('YYYY-MM-DD, HH:mm:ss') df.to_sql(FactorMaster.__table__.name, engine, if_exists='append', index=False) uqer_task = PythonOperator( task_id='update_uqer_factors', provide_context=True, python_callable=update_uqer_factors, dag=dag ) market_task = PythonOperator( task_id='update_uqer_market', provide_context=True, python_callable=update_uqer_market, dag=dag ) universe_task = PythonOperator( task_id='update_universe', provide_context=True, python_callable=update_universe, dag=dag ) index_market_task = PythonOperator( task_id='update_uqer_index_market', provide_context=True, python_callable=update_uqer_index_market, dag=dag ) industry_task = PythonOperator( task_id='update_uqer_industry_info', provide_context=True, python_callable=update_uqer_industry_info, dag=dag ) sw1_adj_industry_task = PythonOperator( task_id='update_sw1_adj_industry', provide_context=True, python_callable=update_sw1_adj_industry, dag=dag ) dx_industry_task = PythonOperator( task_id='update_dx_industry', provide_context=True, python_callable=update_dx_industry, dag=dag ) industry_task.set_upstream(market_task) sw1_adj_industry_task.set_upstream(industry_task) dx_industry_task.set_upstream(industry_task) categories_task = PythonOperator( task_id='update_categories', provide_context=True, python_callable=update_category, dag=dag ) categories_task.set_upstream(sw1_adj_industry_task) index_task = PythonOperator( task_id='update_uqer_index_components', provide_context=True, python_callable=update_uqer_index_components, dag=dag ) security_master_task = PythonOperator( task_id='update_uqer_universe_security_master', provide_context=True, python_callable=update_uqer_universe_security_master, dag=dag ) universe_task.set_upstream(security_master_task) universe_task.set_upstream(index_task) risk_model_task = PythonOperator( task_id='update_uqer_risk_model', provide_context=True, python_callable=update_uqer_risk_model, dag=dag ) universe_task.set_upstream(risk_model_task) _ = PythonOperator( task_id='update_uqer_halt_list', provide_context=True, python_callable=update_uqer_halt_list, dag=dag ) factor_master_task = PythonOperator( task_id='update_factor_master', provide_context=True, python_callable=update_factor_master, dag=dag ) factor_master_task.set_upstream(uqer_task) if __name__ == '__main__': update_universe(ds='2018-05-09')
the-stack_0_21352
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jul 4 17:10:31 2021 @author: datadevil """ # Display logo from data import data from art import logo, vs import random from replit import clear print(logo) #Formatting the account data #{'name':,'follower count':,'description':,'country':} --> name, descrip, country def format_data(account): '''Takes the account of the celebrity and gives out the formatted neat output''' acc_name = account['name'] acc_fcount = account['follower_count'] acc_desc = account['description'] acc_country = account['country'] return (f"{acc_name}, {acc_desc}, from {acc_country}") def check_ans(guess, a_followers, b_followers): '''Takes the both followers count and return if they got it right''' if a_followers > b_followers: return guess == "a" else: return guess == "b" score = 0 game_over = False accB = random.choice(data) while game_over == False: accA = accB accB = random.choice(data) while accA == accB: accB = random.choice(data) print(f"Compare A: {format_data(accA)}") print(vs) print(f"Aganist B: {format_data(accB)}") #Ask user for the guess response = input("Who has more followers? A or B ").lower() A_fcount = accA['follower_count'] B_fcount = accB['follower_count'] is_crt = check_ans(response, A_fcount, B_fcount) clear() if is_crt: print("You're Right") score += 1 print(f"And your score is {score}") else: print("Sorry you're wrong") print(f"Your final score is {score}") game_over = True
the-stack_0_21353
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from io import BytesIO import pandas as pd import numpy as np from ... import opcodes as OperandDef from ...config import options from ...core import OutputType from ...utils import parse_readable_size, lazy_import, FixedSizeFileObject from ...serialize import StringField, DictField, ListField, Int32Field, Int64Field, BoolField, AnyField from ...filesystem import open_file, file_size, glob from ..arrays import ArrowStringDtype from ..core import IndexValue from ..utils import parse_index, build_empty_df, standardize_range_index, to_arrow_dtypes from ..operands import DataFrameOperand, DataFrameOperandMixin try: from pyarrow import HdfsFile except ImportError: # pragma: no cover HdfsFile = None cudf = lazy_import('cudf', globals=globals()) def _find_delimiter(f, block_size=2 ** 16): delimiter = b'\n' if f.tell() == 0: return 0 while True: b = f.read(block_size) if not b: return f.tell() elif delimiter in b: return f.tell() - len(b) + b.index(delimiter) + 1 def _find_hdfs_start_end(f, offset, size): # As pyarrow doesn't support `readline` operation (https://github.com/apache/arrow/issues/3838), # we need to find the start and end of file block manually. # Be careful with HdfsFile's seek, it doesn't allow seek beyond EOF. loc = min(offset, f.size()) f.seek(loc) start = _find_delimiter(f) loc = min(offset + size, f.size()) f.seek(loc) end = _find_delimiter(f) return start, end def _find_chunk_start_end(f, offset, size): if HdfsFile is not None and isinstance(f, HdfsFile): return _find_hdfs_start_end(f, offset, size) f.seek(offset) if f.tell() == 0: start = 0 else: f.readline() start = f.tell() f.seek(offset + size) f.readline() end = f.tell() return start, end class DataFrameReadCSV(DataFrameOperand, DataFrameOperandMixin): _op_type_ = OperandDef.READ_CSV _path = AnyField('path') _names = ListField('names') _sep = StringField('sep') _header = AnyField('header') _index_col = Int32Field('index_col') _compression = StringField('compression') _usecols = ListField('usecols') _offset = Int64Field('offset') _size = Int64Field('size') _nrows = Int64Field('nrows') _incremental_index = BoolField('incremental_index') _use_arrow_dtype = BoolField('use_arrow_dtype') _keep_usecols_order = BoolField('keep_usecols_order') _storage_options = DictField('storage_options') def __init__(self, path=None, names=None, sep=None, header=None, index_col=None, compression=None, usecols=None, offset=None, size=None, nrows=None, gpu=None, keep_usecols_order=None, incremental_index=None, use_arrow_dtype=None, storage_options=None, **kw): super().__init__(_path=path, _names=names, _sep=sep, _header=header, _index_col=index_col, _compression=compression, _usecols=usecols, _offset=offset, _size=size, _nrows=nrows, _gpu=gpu, _incremental_index=incremental_index, _keep_usecols_order=keep_usecols_order, _use_arrow_dtype=use_arrow_dtype, _storage_options=storage_options, _output_types=[OutputType.dataframe], **kw) @property def path(self): return self._path @property def names(self): return self._names @property def sep(self): return self._sep @property def header(self): return self._header @property def index_col(self): return self._index_col @property def compression(self): return self._compression @property def usecols(self): return self._usecols @property def nrows(self): return self._nrows @property def offset(self): return self._offset @property def size(self): return self._size @property def incremental_index(self): return self._incremental_index @property def use_arrow_dtype(self): return self._use_arrow_dtype @property def keep_usecols_order(self): return self._keep_usecols_order @property def storage_options(self): return self._storage_options @classmethod def _tile_compressed(cls, op): # Compression does not support break into small parts df = op.outputs[0] chunk_op = op.copy().reset_key() chunk_op._offset = 0 chunk_op._size = file_size(op.path) shape = df.shape new_chunk = chunk_op.new_chunk(None, shape=shape, index=(0, 0), index_value=df.index_value, columns_value=df.columns_value, dtypes=df.dtypes) new_op = op.copy() nsplits = ((np.nan,), (df.shape[1],)) return new_op.new_dataframes(None, df.shape, dtypes=df.dtypes, index_value=df.index_value, columns_value=df.columns_value, chunks=[new_chunk], nsplits=nsplits) @classmethod def _validate_dtypes(cls, dtypes, is_gpu): dtypes = dtypes.to_dict() # CuDF doesn't support object type, turn it to 'str'. if is_gpu: dtypes = dict((n, dt.name if dt != np.dtype('object') else 'str') for n, dt in dtypes.items()) return dtypes @classmethod def tile(cls, op): if op.compression: return cls._tile_compressed(op) df = op.outputs[0] chunk_bytes = df.extra_params.chunk_bytes chunk_bytes = int(parse_readable_size(chunk_bytes)[0]) dtypes = df.dtypes if op.use_arrow_dtype is None and not op.gpu and \ options.dataframe.use_arrow_dtype: # pragma: no cover # check if use_arrow_dtype set on the server side dtypes = to_arrow_dtypes(df.dtypes) paths = op.path if isinstance(op.path, (tuple, list)) else glob(op.path, storage_options=op.storage_options) out_chunks = [] index_num = 0 for path in paths: total_bytes = file_size(path) offset = 0 for _ in range(int(np.ceil(total_bytes * 1.0 / chunk_bytes))): chunk_op = op.copy().reset_key() chunk_op._path = path chunk_op._offset = offset chunk_op._size = min(chunk_bytes, total_bytes - offset) shape = (np.nan, len(dtypes)) index_value = parse_index(df.index_value.to_pandas(), path, index_num) new_chunk = chunk_op.new_chunk(None, shape=shape, index=(index_num, 0), index_value=index_value, columns_value=df.columns_value, dtypes=dtypes) out_chunks.append(new_chunk) index_num += 1 offset += chunk_bytes if op.incremental_index and len(out_chunks) > 1 and \ isinstance(df.index_value._index_value, IndexValue.RangeIndex): out_chunks = standardize_range_index(out_chunks) new_op = op.copy() nsplits = ((np.nan,) * len(out_chunks), (df.shape[1],)) return new_op.new_dataframes(None, df.shape, dtypes=dtypes, index_value=df.index_value, columns_value=df.columns_value, chunks=out_chunks, nsplits=nsplits) @classmethod def _pandas_read_csv(cls, f, op): csv_kwargs = op.extra_params.copy() out_df = op.outputs[0] start, end = _find_chunk_start_end(f, op.offset, op.size) f.seek(start) b = FixedSizeFileObject(f, end - start) if hasattr(out_df, 'dtypes'): dtypes = out_df.dtypes else: # Output will be a Series in some optimize rules. dtypes = pd.Series([out_df.dtype], index=[out_df.name]) if end == start: # the last chunk may be empty df = build_empty_df(dtypes) if op.keep_usecols_order and not isinstance(op.usecols, list): # convert to Series, if usecols is a scalar df = df[op.usecols] else: if start == 0: # The first chunk contains header # As we specify names and dtype, we need to skip header rows csv_kwargs['skiprows'] = 1 if op.header == 'infer' else op.header if op.usecols: usecols = op.usecols if isinstance(op.usecols, list) else [op.usecols] else: usecols = op.usecols if cls._contains_arrow_dtype(dtypes): # when keep_default_na is True which is default, # will replace null value with np.nan, # which will cause failure when converting to arrow string array csv_kwargs['keep_default_na'] = False df = pd.read_csv(b, sep=op.sep, names=op.names, index_col=op.index_col, usecols=usecols, dtype=dtypes.to_dict(), nrows=op.nrows, **csv_kwargs) if op.keep_usecols_order: df = df[op.usecols] return df @classmethod def _cudf_read_csv(cls, op): # pragma: no cover if op.usecols: usecols = op.usecols if isinstance(op.usecols, list) else [op.usecols] else: usecols = op.usecols csv_kwargs = op.extra_params if op.offset == 0: df = cudf.read_csv(op.path, byte_range=(op.offset, op.size), sep=op.sep, usecols=usecols, **csv_kwargs) else: df = cudf.read_csv(op.path, byte_range=(op.offset, op.size), sep=op.sep, names=op.names, usecols=usecols, dtype=cls._validate_dtypes(op.outputs[0].dtypes, op.gpu), nrows=op.nrows, **csv_kwargs) if op.keep_usecols_order: df = df[op.usecols] return df @classmethod def _contains_arrow_dtype(cls, dtypes): return any(isinstance(dtype, ArrowStringDtype) for dtype in dtypes) @classmethod def execute(cls, ctx, op): xdf = cudf if op.gpu else pd out_df = op.outputs[0] csv_kwargs = op.extra_params.copy() with open_file(op.path, compression=op.compression, storage_options=op.storage_options) as f: if op.compression is not None: # As we specify names and dtype, we need to skip header rows csv_kwargs['skiprows'] = 1 if op.header == 'infer' else op.header dtypes = cls._validate_dtypes(op.outputs[0].dtypes, op.gpu) if cls._contains_arrow_dtype(dtypes.values()): # when keep_default_na is True which is default, # will replace null value with np.nan, # which will cause failure when converting to arrow string array csv_kwargs['keep_default_na'] = False df = xdf.read_csv(f, sep=op.sep, names=op.names, index_col=op.index_col, usecols=op.usecols, dtype=dtypes, nrows=op.nrows, **csv_kwargs) if op.keep_usecols_order: df = df[op.usecols] else: df = cls._cudf_read_csv(op) if op.gpu else cls._pandas_read_csv(f, op) ctx[out_df.key] = df def __call__(self, index_value=None, columns_value=None, dtypes=None, chunk_bytes=None): shape = (np.nan, len(dtypes)) return self.new_dataframe(None, shape, dtypes=dtypes, index_value=index_value, columns_value=columns_value, chunk_bytes=chunk_bytes) def read_csv(path, names=None, sep=',', index_col=None, compression=None, header='infer', dtype=None, usecols=None, nrows=None, chunk_bytes='64M', gpu=None, head_bytes='100k', head_lines=None, incremental_index=False, use_arrow_dtype=None, storage_options=None, **kwargs): r""" Read a comma-separated values (csv) file into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Parameters ---------- path : str Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handler (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default ',' Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, default ``None`` Alias for sep. header : int, list of int, default 'infer' Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to ``header=0`` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to ``header=None``. Explicitly pass ``header=0`` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header=0`` denotes the first line of data rather than the first line of the file. names : array-like, optional List of column names to use. If the file contains a header row, then you should explicitly pass ``header=0`` to override the column names. Duplicates in this list are not allowed. index_col : int, str, sequence of int / str, or False, default ``None`` Column(s) to use as the row labels of the ``DataFrame``, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: ``index_col=False`` can be used to force pandas to *not* use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecols : list-like or callable, optional Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header row(s). For example, a valid list-like `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a DataFrame from ``data`` with element order preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. squeeze : bool, default False If the parsed data only contains one column then return a Series. prefix : str, optional Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ... mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32, 'c': 'Int64'} Use `str` or `object` together with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : {'c', 'python'}, optional Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. true_values : list, optional Values to consider as True. false_values : list, optional Values to consider as False. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : list-like, int or callable, optional Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine='c'). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is appended to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. skip_blank_lines : bool, default True If True, skip over blank lines rather than interpreting as NaN values. parse_dates : bool or list of int or names or list of lists or dict, default False The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result 'foo' If a column or index cannot be represented as an array of datetimes, say because of an unparseable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv``. To parse an index or column with a mixture of timezones, specify ``date_parser`` to be a partially-applied :func:`pandas.to_datetime` with ``utc=True``. See :ref:`io.csv.mixed_timezones` for more. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_format : bool, default False If True and `parse_dates` is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_col : bool, default False If True and `parse_dates` specifies combining multiple columns then keep the original columns. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Pandas will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. dayfirst : bool, default False DD/MM format dates, international and European format. cache_dates : bool, default True If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. .. versionadded:: 0.25.0 iterator : bool, default False Return TextFileReader object for iteration or getting chunks with ``get_chunk()``. chunksize : int, optional Return TextFileReader object for iteration. See the `IO Tools docs <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_ for more information on ``iterator`` and ``chunksize``. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no decompression). If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. thousands : str, optional Thousands separator. decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). lineterminator : str (length 1), optional Character to break file into lines. Only valid with C parser. quotechar : str (length 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequote : bool, default ``True`` When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single ``quotechar`` element. escapechar : str (length 1), optional One-character string used to escape other characters. comment : str, optional Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if ``comment='#'``, parsing ``#empty\na,b,c\n1,2,3`` with ``header=0`` will result in 'a,b,c' being treated as the header. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. error_bad_lines : bool, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these "bad lines" will dropped from the DataFrame that is returned. warn_bad_lines : bool, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each "bad line" will be output. delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``' '``) will be used as the sep. Equivalent to setting ``sep='\s+'``. If this option is set to True, nothing should be passed in for the ``delimiter`` parameter. low_memory : bool, default True Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single DataFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser). float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are `None` for the ordinary converter, `high` for the high-precision converter, and `round_trip` for the round-trip converter. chunk_bytes: int, float or str, optional Number of chunk bytes. gpu: bool, default False If read into cudf DataFrame. head_bytes: int, float or str, optional Number of bytes to use in the head of file, mainly for data inference. head_lines: int, optional Number of lines to use in the head of file, mainly for data inference. incremental_index: bool, default False Create a new RangeIndex if csv doesn't contain index columns. use_arrow_dtype: bool, default None If True, use arrow dtype to store columns. storage_options: dict, optional Options for storage connection. Returns ------- DataFrame A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. Examples -------- >>> import mars.dataframe as md >>> md.read_csv('data.csv') # doctest: +SKIP """ # infer dtypes and columns if isinstance(path, (list, tuple)): file_path = path[0] else: file_path = glob(path)[0] with open_file(file_path, compression=compression, storage_options=storage_options) as f: if head_lines is not None: b = b''.join([f.readline() for _ in range(head_lines)]) else: head_bytes = int(parse_readable_size(head_bytes)[0]) head_start, head_end = _find_chunk_start_end(f, 0, head_bytes) f.seek(head_start) b = f.read(head_end - head_start) mini_df = pd.read_csv(BytesIO(b), sep=sep, index_col=index_col, dtype=dtype, names=names, header=header) if isinstance(mini_df.index, pd.RangeIndex): index_value = parse_index(pd.RangeIndex(-1)) else: index_value = parse_index(mini_df.index) columns_value = parse_index(mini_df.columns, store_data=True) if index_col and not isinstance(index_col, int): index_col = list(mini_df.columns).index(index_col) names = list(mini_df.columns) op = DataFrameReadCSV(path=path, names=names, sep=sep, header=header, index_col=index_col, usecols=usecols, compression=compression, gpu=gpu, incremental_index=incremental_index, use_arrow_dtype=use_arrow_dtype, storage_options=storage_options, **kwargs) chunk_bytes = chunk_bytes or options.chunk_store_limit dtypes = mini_df.dtypes if use_arrow_dtype is None: use_arrow_dtype = options.dataframe.use_arrow_dtype if not gpu and use_arrow_dtype: dtypes = to_arrow_dtypes(dtypes, test_df=mini_df) ret = op(index_value=index_value, columns_value=columns_value, dtypes=dtypes, chunk_bytes=chunk_bytes) if nrows is not None: return ret.head(nrows) return ret
the-stack_0_21354
import copy from typing import Dict, Optional from . import rid, scd def limit_long_arrays(obj, limit: int): if isinstance(obj, dict): result = {} for k, v in obj.items(): result[k] = limit_long_arrays(v, limit) return result elif isinstance(obj, str): return obj elif isinstance(obj, list): if len(obj) > limit: return '<list of {} items>'.format(len(obj)) else: return [limit_long_arrays(item, limit) for item in obj] else: return obj def isas(fetched: rid.FetchedISAs) -> Dict: summary = {} if fetched.success: for isa_id, isa in fetched.isas.items(): if isa.flights_url not in summary: summary[isa.flights_url] = {} isa_summary = copy.deepcopy(isa) if 'id' in isa_summary: del isa_summary['id'] if 'owner' in isa_summary: del isa_summary['owner'] isa_key = '{} ({})'.format(isa.id, isa.owner) summary[isa.flights_url][isa_key] = isa_summary else: summary['error'] = fetched.error return summary def _entity(fetched: scd.FetchedEntities, id: str) -> Dict: entity = fetched.entities_by_id[id] if entity.success: return { 'reference': { 'dss': fetched.dss_query.references_by_id.get(id, None), 'uss': entity.reference, }, 'details': entity.details, } else: return { 'error': entity.error, } def entities(fetched: scd.FetchedEntities, entity_type: Optional[str]=None) -> Dict: if fetched.success: if entity_type is not None: return { entity_type: {id: _entity(fetched, id) for id in fetched.entities_by_id}, } else: return { 'new': {id: _entity(fetched, id) for id in fetched.new_entities_by_id}, 'cached': {id: _entity(fetched, id) for id in fetched.cached_entities_by_id}, } else: return { 'error': fetched.error, } def flights(fetched: rid.FetchedFlights) -> Dict: if fetched.success: isas_by_url = {} owners_by_url = {} for isa_id, isa in fetched.dss_isa_query.isas.items(): if isa.flights_url not in isas_by_url: isas_by_url[isa.flights_url] = {} isa_info = copy.deepcopy(isa) del isa_info['id'] isas_by_url[isa.flights_url][isa_id] = isa_info owners_by_url[isa.flights_url] = isa.owner summary = {} for url, flights_result in fetched.uss_flight_queries.items(): if flights_result.success: owner = owners_by_url[url] isas = isas_by_url[url] for rid_flight in flights_result.flights: flight = copy.deepcopy(rid_flight) flight['isas'] = isas if rid_flight.id in fetched.uss_flight_details_queries: flight['details'] = fetched.uss_flight_details_queries[rid_flight.id].details summary['{} ({})'.format(rid_flight.id, owner)] = flight return summary else: return { 'errors': fetched.errors }
the-stack_0_21355
from __future__ import print_function import pylab from rh_renderer.multiple_tiles_affine_renderer import MultipleTilesAffineRenderer from rh_renderer.single_tile_affine_renderer import SingleTileAffineRenderer import math import numpy as np import time def get_rigid_matrix(t): splitted = t.split() r = float(splitted[0]) cos_val = np.cos(r) sin_val = np.sin(r) delta = np.array([float(d) for d in splitted[1:]]) return np.vstack([ [cos_val, -sin_val, delta[0]], [sin_val, cos_val, delta[1]] ]) if __name__ == '__main__': img_paths = [ 'images/tile1.bmp', 'images/tile2.bmp' ] img_shapes = [ (2976, 3348), (2976, 3348) ] # Rigid transforms transform_models = [ '0.000385855181988 15014.2735713 11052.6315792', '0.000472672980423 18213.433402 11034.7113096' ] # Rigid transforms transform_models = [ '0.00139610475169 15771.948614 34106.6791879', '0.0012425735603 18776.1580651 34096.4384221', '0.00120817972641 17252.4365449 31500.3165185', '0.00117953590639 14242.9767036 31510.4183765' ] transform_matrices = [get_rigid_matrix(t) for t in transform_models] # Create all single tiles, and add their transformations single_tiles = [SingleTileAffineRenderer(img_path, img_shape[1], img_shape[0], compute_mask=True, compute_distances=True) for img_path, img_shape in zip(img_paths, img_shapes)] for single_tile, matrix in zip(single_tiles, transform_matrices): single_tile.add_transformation(matrix) # Create multiple tiles renderer using different blending techniques renderer1 = MultipleTilesAffineRenderer(single_tiles, blend_type="NO_BLENDING") renderer2 = MultipleTilesAffineRenderer(single_tiles, blend_type="AVERAGING") renderer3 = MultipleTilesAffineRenderer(single_tiles, blend_type="LINEAR") # Add a transformation transform_45 = np.array([[math.cos(math.pi/4), -math.sin(math.pi/4), 10.0], [math.sin(math.pi/4), math.cos(math.pi/4), 15.0]]) print("Adding transformation:", transform_45) renderer1.add_transformation(transform_45) renderer2.add_transformation(transform_45) renderer3.add_transformation(transform_45) start_time = time.time() img1, start_point1 = renderer1.render() print("NO_BLENDING Before transformations: Start point is at:", start_point1, "image shape:", img1.shape, "took: {} seconds".format(time.time() - start_time)) pylab.figure() pylab.imshow(img1, cmap='gray', vmin=0., vmax=255.) start_time = time.time() img2, start_point2 = renderer2.render() print("AVERAGING Before transformations: Start point is at:", start_point2, "image shape:", img2.shape, "took: {} seconds".format(time.time() - start_time)) pylab.figure() pylab.imshow(img2, cmap='gray', vmin=0., vmax=255.) start_time = time.time() img3, start_point3 = renderer3.render() print("LINEAR Before transformations: Start point is at:", start_point3, "image shape:", img3.shape, "took: {} seconds".format(time.time() - start_time)) pylab.figure() pylab.imshow(img3, cmap='gray', vmin=0., vmax=255.) pylab.show()
the-stack_0_21357
""" Simple test interface for quick and no error-prone setup """ from utility.json_utils import load_json, save_json import os import const_define as cd from utility.log_utils import get_logger logger = get_logger(__name__) if __name__ == '__main__': # Any model name model_type = "experimental_basic_memn2n_v2" # Leave this blank model_dataset_type = "" # This should be fixed dataset_name = "tos_100" # If using KB -> task1_kb - If not using KB -> task1 task_type = 'task1_kb' # A, CH, CR, TER, LTD category = 'CH' # This should be fixed test_type = "cv_test" # Leave this blank architecture_type = "" # If you want to save results and do a proper test -> True is_valid_test = False batch_size = 256 step_checkpoint = None quick_settings = load_json(os.path.join(cd.CONFIGS_DIR, cd.JSON_QUICK_SETUP_CONFIG_NAME)) logger.info('Quick setup start!') # Data loader data_loader_settings = load_json(os.path.join(cd.CONFIGS_DIR, cd.JSON_DATA_LOADER_CONFIG_NAME)) data_loader_settings['type'] = task_type data_loader_settings['configs'][task_type]['category'] = category if architecture_type in quick_settings['input_specific_settings']: logger.info('Uploading data loader settings...') for key, value in quick_settings['input_specific_settings'][architecture_type].items(): data_loader_settings['configs'][task_type][key] = value else: logger.warning('Could not find architecture type specific settings...Is it ok?') logger.info('Data loader settings uploaded! Do not forget to check loader specific args!!') save_json(os.path.join(cd.CONFIGS_DIR, cd.JSON_DATA_LOADER_CONFIG_NAME), data_loader_settings) # Specific test settings if model_dataset_type: actual_model_type = model_dataset_type + '_' + model_type else: actual_model_type = model_type test_settings = load_json(os.path.join(cd.CONFIGS_DIR, '{}_config.json'.format(test_type))) test_settings['model_type'] = actual_model_type if dataset_name in quick_settings['data_specific_settings']: logger.info('Uploading {} settings...'.format(test_type)) for key, value in quick_settings['data_specific_settings'][dataset_name].items(): test_settings[key] = value else: logger.warning('Could not find dataset test specific settings...Aborting..') exit(-1) if is_valid_test: if test_type in quick_settings['valid_test_settings'] and dataset_name in quick_settings['valid_test_settings'][test_type]: for key, value in quick_settings['valid_test_settings'][test_type][dataset_name].items(): test_settings[key] = value test_settings['save_model'] = True test_settings['compute_test_info'] = True else: if test_type in quick_settings['default_test_settings'] and dataset_name in quick_settings['default_test_settings'][test_type]: for key, value in quick_settings['default_test_settings'][test_type][dataset_name].items(): test_settings[key] = value test_settings['save_model'] = False if model_type in quick_settings['model_specific_settings']: for key, value in quick_settings['model_specific_settings'][model_type].items(): test_settings[key] = value else: logger.warning('Could not find model specific settings! Is this ok?') save_json(os.path.join(cd.CONFIGS_DIR, '{}_config.json'.format(test_type)), test_settings) # Training settings training_path = os.path.join(cd.CONFIGS_DIR, cd.JSON_TRAINING_CONFIG_NAME) training_settings = load_json(training_path) logger.info('Uploading {} training settings...'.format(test_type)) training_settings['batch_size'] = batch_size training_settings['metrics'] = quick_settings['data_specific_settings'][dataset_name]['error_metrics'] training_settings['additional_metrics_info'] = quick_settings['data_specific_settings'][dataset_name]['error_metrics_additional_info'] training_settings['metrics_nicknames'] = quick_settings['data_specific_settings'][dataset_name]['error_metrics_nicknames'] save_json(training_path, training_settings) logger.info('Quick setup upload done! Check loader specific settings and your model config before running the test!')
the-stack_0_21358
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D import h5py import sys from lib.constants import * def plot(fig, trajectory, sensor_height): # Filter out everything above block (start of trajectory) traj_inside = trajectory[trajectory[:, 2] < sensor_height] ax = fig.add_subplot(111, projection='3d') # type:Axes3D ax.view_init(elev=20., azim=32) # Plot track ax.plot(traj_inside[:, 0], traj_inside[:, 1], traj_inside[:, 2]) # Plot incident electron print("Traj incident: %f, %f" % (traj_inside[0, 1] / 55000, traj_inside[0, 0] / 55000)) ax.plot([traj_inside[0, 0]], [traj_inside[0, 1]], [sensor_height], 'ro') # Set axes scale ax.set_xlim3d(0, n_pixels * pixel_size) ax.set_ylim3d(0, n_pixels * pixel_size) ax.set_zlim3d(0, sensor_height) # Set tick lines to pixel size, xedges = np.arange(0, n_pixels * pixel_size, pixel_size) yedges = np.arange(0, n_pixels * pixel_size, pixel_size) zedges = np.arange(0, sensor_height, 100000) ax.set_yticks(yedges, minor=False) ax.yaxis.grid(True, which='major') ax.yaxis.set_ticklabels([]) ax.set_xticks(xedges, minor=False) ax.xaxis.grid(True, which='major') ax.xaxis.set_ticklabels([]) ax.set_zticks(zedges, minor=False) ax.zaxis.grid(True, which='major') # Change background color ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 1.0)) return fig, ax if __name__ == "__main__": filename = sys.argv[1] f = h5py.File(filename, 'r') # Get trajectory trajectory = f['trajectories'][sys.argv[2]][()] height = f.attrs['sensor_height'] ax = plot(plt.figure(), trajectory, height) # from matplotlib import animation # def animate(i): # ax[1].view_init(30, i) # plt.draw() # plt.pause(.001) # # Animate # anim = animation.FuncAnimation(ax[0], animate, # frames=360, interval=20) # # Save # anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx264']) plt.show()
the-stack_0_21359
#! /usr/bin/env python from __future__ import absolute_import, division, print_function from __future__ import unicode_literals import nose from nose.tools import assert_equals from sknano.testing import AtomsTestFixture, generate_atoms class TestCase(AtomsTestFixture): def test1(self): atoms = self.atoms atoms.kNN = 6 atoms.NNrc = 9.0 for atom in atoms: assert_equals(atom.CN, 0) atom.CN = 3 assert_equals(atom.CN, 3) atoms.update_attrs() atoms = atoms.filtered((atoms.z >= -5) & (atoms.z <= 5)) print('Natoms: {}'.format(atoms.Natoms)) for atom in atoms: assert_equals(atom.CN, atoms.kNN) def test2(self): atoms = self.atoms atoms.update_attrs() print(atoms.neighbors.tolist()) print(atoms.neighbor_distances) def test3(self): atoms = \ generate_atoms(generator_class='SWNTGenerator', n=10, m=0, nz=5) atoms.kNN = 30 atoms.NNrc = 10 atoms.update_neighbors(cutoffs=[1.5, 2.5, 2.9, 3.8, 4.3]) # print(atoms.neighbors.tolist()) print(atoms.neighbor_distances.tolist()) # print('first_neighbors:\n{}'.format(atoms.first_neighbors)) # print('second_neighbors:\n{}'.format(atoms.second_neighbors)) print('len(first_neighbors): {}'.format( [len(atom.first_neighbors) for atom in atoms])) print('len(second_neighbors): {}'.format( [len(atom.second_neighbors) for atom in atoms])) print('len(third_neighbors): {}'.format( [len(atom.third_neighbors) for atom in atoms])) print('len(4th_neighbors): {}'.format( [len(atom.get_neighbors(4)) for atom in atoms])) print('len(5th_neighbors): {}'.format( [len(atom.get_neighbors(5)) for atom in atoms])) if __name__ == '__main__': nose.runmodule()
the-stack_0_21360
from blueman.Functions import dprint import tty import termios import os import subprocess from gi.repository import GObject import errno import re pppd_errors = { 1: """An immediately fatal error of some kind occurred, such as an essential system call failing, or running out of virtual memory.""", 2: """An error was detected in processing the options given, such as two mutually exclusive options being used.""", 3: """Pppd is not setuid-root and the invoking user is not root.""", 4: """The kernel does not support PPP, for example, the PPP kernel driver is not included or cannot be loaded.""", 5: """Pppd terminated because it was sent a SIGINT, SIGTERM or SIGHUP signal.""", 6: """The serial port could not be locked.""", 7: """The serial port could not be opened.""", 8: """The connect script failed (returned a non-zero exit status).""", 9: """The command specified as the argument to the pty option could not be run.""", 10: """The PPP negotiation failed, that is, it didn't reach the point where at least one network protocol (e.g. IP) was running.""", 11: """The peer system failed (or refused) to authenticate itself.""", 12: """The link was established successfully and terminated because it was idle.""", 13: """The link was established successfully and terminated because the connect time limit was reached.""", 14: """Callback was negotiated and an incoming call should arrive shortly.""", 15: """The link was terminated because the peer is not responding to echo requests.""", 16: """The link was terminated by the modem hanging up.""", 17: """The PPP negotiation failed because serial loopback was detected.""", 18: """The init script failed (returned a non-zero exit status).""", 19: """We failed to authenticate ourselves to the peer.""" } class PPPException(Exception): pass class PPPConnection(GObject.GObject): __gsignals__ = { # arg: interface name eg. ppp0 'connected': (GObject.SignalFlags.NO_HOOKS, None, (GObject.TYPE_PYOBJECT,)), 'error-occurred': (GObject.SignalFlags.NO_HOOKS, None, (GObject.TYPE_PYOBJECT,)) } def __init__(self, port, number="*99#", apn="", user="", pwd=""): GObject.GObject.__init__(self) self.apn = apn self.number = number self.user = user self.pwd = pwd self.port = port self.interface = None self.pppd = None self.file = None self.commands = [ ("ATZ E0 V1 X4 &C1 +FCLASS=0", self.simple_callback), ("ATE0", self.simple_callback), ("AT+GCAP", self.simple_callback), ( "ATD%s" % self.number, self.connect_callback, ["CONNECT", "NO CARRIER", "BUSY", "NO ANSWER", "NO DIALTONE", "OK", "ERROR"] ) ] if self.apn != "": self.commands.insert(-1, ('AT+CGDCONT=1,"IP","%s"' % self.apn, self.simple_callback)) def cleanup(self): os.close(self.file) self.file = None def simple_callback(self, response): pass def connect_callback(self, response): if "CONNECT" in response: dprint("Starting pppd") self.pppd = subprocess.Popen( ["/usr/sbin/pppd", "%s" % self.port, "115200", "defaultroute", "updetach", "usepeerdns"], bufsize=1, stdout=subprocess.PIPE) GObject.io_add_watch(self.pppd.stdout, GObject.IO_IN | GObject.IO_ERR | GObject.IO_HUP, self.on_pppd_stdout) GObject.timeout_add(1000, self.check_pppd) self.cleanup() else: self.cleanup() raise PPPException("Bad modem response %s, expected CONNECT" % response[0]) def __cmd_response_cb(self, response, exception, item_id): if exception: self.emit("error-occurred", str(exception)) else: try: self.commands[item_id][1](response) except PPPException as e: self.emit("error-occurred", str(e)) return self.send_commands(item_id + 1) def send_commands(self, id=0): try: item = self.commands[id] except IndexError: return if len(item) == 3: (command, callback, terminators) = item else: (command, callback) = item terminators = ["OK", "ERROR"] self.send_command(command) self.wait_for_reply(self.__cmd_response_cb, terminators, id) def Connect(self): self.file = os.open(self.port, os.O_RDWR | os.O_EXCL | os.O_NONBLOCK | os.O_NOCTTY) tty.setraw(self.file) attrs = termios.tcgetattr(self.file) attrs[0] &= ~(termios.IGNCR | termios.ICRNL | termios.IUCLC | termios.INPCK | termios.IXON | termios.IXANY | termios.IGNPAR) attrs[1] &= ~(termios.OPOST | termios.OLCUC | termios.OCRNL | termios.ONLCR | termios.ONLRET) attrs[3] &= ~(termios.ICANON | termios.XCASE | termios.ECHO | termios.ECHOE | termios.ECHONL) attrs[3] &= ~(termios.ECHO | termios.ECHOE) attrs[6][termios.VMIN] = 1 attrs[6][termios.VTIME] = 0 attrs[6][termios.VEOF] = 1 attrs[2] &= ~(termios.CBAUD | termios.CSIZE | termios.CSTOPB | termios.CLOCAL | termios.PARENB) attrs[2] |= (termios.B9600 | termios.CS8 | termios.CREAD | termios.PARENB) termios.tcsetattr(self.file, termios.TCSANOW, attrs) termios.tcflush(self.file, termios.TCIOFLUSH) self.send_commands() def on_pppd_stdout(self, source, cond): if cond & GObject.IO_ERR or cond & GObject.IO_HUP: return False line = source.readline() m = re.match("Using interface (ppp[0-9]*)", line) if m: self.interface = m.groups(1)[0] print(line) return True def check_pppd(self): status = self.pppd.poll() if status is not None: if status == 0: self.emit("connected", self.interface) else: try: msg = "pppd exited: " + pppd_errors[int(status)] except KeyError: msg = "pppd exited with unknown error" self.emit("error-occurred", msg) print("pppd exited with status %d" % status) return False return True def send_command(self, command): dprint("-->", command) os.write(self.file, "%s\r\n" % command) termios.tcdrain(self.file) def on_data_ready(self, source, condition, terminators, on_done): if condition & GObject.IO_ERR or condition & GObject.IO_HUP: on_done(None, PPPException("Socket error")) self.cleanup() return False try: self.buffer += os.read(self.file, 1) except OSError as e: if e.errno == errno.EAGAIN: dprint("Got EAGAIN") return True else: on_done(None, PPPException("Socket error")) dprint(e) self.cleanup() return False lines = self.buffer.split("\r\n") found = False for l in lines: if l == "": pass else: for t in terminators: if t in l: found = True if found: lines = filter(lambda x: x != "", lines) lines = map(lambda x: x.strip("\r\n"), lines) dprint("<-- ", lines) on_done(lines, None) return False return True def wait_for_reply(self, callback, terminators=["OK", "ERROR"], *user_data): def on_timeout(): GObject.source_remove(self.io_watch) callback(None, PPPException("Modem initialization timed out"), *user_data) self.cleanup() return False def on_done(ret, exception): GObject.source_remove(self.timeout) callback(ret, exception, *user_data) self.buffer = "" self.term_found = False self.io_watch = GObject.io_add_watch(self.file, GObject.IO_IN | GObject.IO_ERR | GObject.IO_HUP, self.on_data_ready, terminators, on_done) self.timeout = GObject.timeout_add(15000, on_timeout)
the-stack_0_21363
# encoding=utf8 import sys import os import hashlib import re import time import requests import warcio from warcio.archiveiterator import ArchiveIterator from warcio.warcwriter import WARCWriter assert hasattr(warcio, 'ATWARCIO'), 'warcio was not imported correctly. Location: ' + warcio.__file__ def ia_available(url, digest): tries = 0 print('Deduplicating digest ' + digest + ', url ' + url) assert digest.startswith('sha1:') digest = digest.split(':', 1)[1] encoded = digest + ';' + re.sub('^https?://', '', url) encoded = encoded.encode('utf-8') hashed = hashlib.sha256(encoded).hexdigest() while tries < 10: try: tries += 1 ia_data = requests.get('http://NewsGrabberDedupe.b-cdn.net/?key={hashed}' \ .format(hashed=hashed), timeout=60) if not ';' in ia_data.text: return False return ia_data.text.split(';', 1) except: pass time.sleep(1) return False def revisit_record(writer, record, ia_record): warc_headers = record.rec_headers #warc_headers.add_header('WARC-Refers-To' warc_headers.replace_header('WARC-Refers-To-Date', '-'.join([ia_record[0][:4], ia_record[0][4:6], ia_record[0][6:8]]) + 'T' + ':'.join([ia_record[0][8:10], ia_record[0][10:12], ia_record[0][12:14]]) + 'Z') warc_headers.replace_header('WARC-Refers-To-Target-URI', ia_record[1]) warc_headers.replace_header('WARC-Type', 'revisit') warc_headers.replace_header('WARC-Truncated', 'length') warc_headers.replace_header('WARC-Profile', 'http://netpreserve.org/warc/1.0/revisit/identical-payload-digest') warc_headers.remove_header('WARC-Block-Digest') warc_headers.remove_header('Content-Length') return writer.create_warc_record( record.rec_headers.get_header('WARC-Target-URI'), 'revisit', warc_headers=warc_headers, http_headers=record.http_headers ) def process(filename_in, filename_out): with open(filename_in, 'rb') as file_in: with open(filename_out, 'wb') as file_out: writer = WARCWriter(filebuf=file_out, gzip=True) for record in ArchiveIterator(file_in): if record.rec_headers.get_header('WARC-Type') == 'response': record_url = record.rec_headers.get_header('WARC-Target-URI') record_digest = record.rec_headers.get_header('WARC-Payload-Digest') ia_record = ia_available(record_url, record_digest) #print(ia_record) if not ia_record: writer.write_record(record) else: print('Found duplicate, writing revisit record.') writer.write_record(revisit_record(writer, record, ia_record)) else: writer.write_record(record) if __name__ == '__main__': filename_in = sys.argv[1] filename_out = sys.argv[2] process(filename_in, filename_out)
the-stack_0_21364
from deepliif.models import ResnetGenerator, get_norm_layer class Resnet(ResnetGenerator): def __init__(self): super(Resnet, self).__init__( input_nc=3, output_nc=3, ngf=64, norm_layer=get_norm_layer(norm_type='batch'), use_dropout=True, n_blocks=9, padding_type='zero' )
the-stack_0_21366
from celery import Celery from kombu import Queue, Exchange import os import time BROKER_URL = os.getenv("BROKER_URL") RESULT_BACKEND_URL = os.getenv("RESULT_BACKEND_URL", None) celery_app = Celery( broker=BROKER_URL, ) if RESULT_BACKEND_URL: celery_app.conf.update(backend=RESULT_BACKEND_URL) celery_app.conf.update( CELERY_DEFAULT_QUEUE="queue1", CELERY_QUEUES=( Queue('queue1', exchange=Exchange('queue1', type='direct'), routing_key='queue1'), Queue('queue2', exchange=Exchange('queue2', type='direct'), routing_key='queue2'), Queue('queue3', exchange=Exchange('queue3', type='direct'), routing_key='queue3'), ), CELERY_ROUTES={ 'task1': {'queue': 'queue1', 'routing_key': 'queue1'}, 'task2': {'queue': 'queue2', 'routing_key': 'queue2'}, 'task3': {'queue': 'queue3', 'routing_key': 'queue3'}, } ) @celery_app.task def task1(): time.sleep(20) @celery_app.task def task2(): time.sleep(20) @celery_app.task def task3(): time.sleep(20)
the-stack_0_21369
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="pagent", # Replace with your own username version="0.0.1", author="Dylan Miracle", author_email="[email protected]", description="A probabalistic agent", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/dmiracle/pagent", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
the-stack_0_21370
# Django from django.db.models.query import QuerySet # APPs from systemtest.pts import models as pts_models from systemtest.utils.db2 import Database def get_request_by_status_name(status_name: str) -> QuerySet[pts_models.Request]: """ Django QuerySet with all Request objects/rows in a specific status Args: status_name: Name of status to fetch Returns: Django QuerySet of Request objects/rows """ return pts_models.Request.objects.filter(request_status__name=status_name) def get_status(status_name: str) -> pts_models.RequestStatus: """ Gets a specific RequestStatus by exact name Args: status_name: Name of status to fetch Raises: DoesNotExist: RequestStatus matching query does not exist Returns: RequestStatus object """ return pts_models.RequestStatus.objects.get(name=status_name) def get_ncm(request: pts_models.Request, database: Database) -> dict: """ Performs query to DB2 and get NCM data as tag and part location Args: request: Request object to fetch NCM data. database: Database instance to execute query Returns: Dictionary with NCM data if it exits and additional flag for location part or an empty dictionary in case of not finding ncm """ # Create a dict with data for execute query data = { "part_number": request.part_number, "serial_number": request.serial_number, "created": request.created } # Add dinamic data to SQL query sql = """ SELECT RPREJS AS NCM_TAG, RPCULC AS CURRENT_LOCATION FROM QRYQ.MFSGPRP10_GRC WHERE RPITEM = '00000{part_number}' AND -- Part number has 12 chars, -- 5 chars aditional to save in db, -- so filled extra chars with 0s RPPTSN = '{serial_number}' AND RPSTMP > '{created}'; """.format(**data) rows = database.fetch(sql, False) # Get first row from query if no row gets empty dict row = next(rows, {}) # If row has column 'NCM_TAG' named in the query above if ncm_tag := row.get("NCM_TAG"): data["ncm_tag"] = ncm_tag # Fetch next row if exists to validate the location of part row = next(rows, {}) data["is_returned"] = row.get("CURRENT_LOCATION", "").strip() == "PNCM" return data # If any ncm_data was found return empty dict return {}
the-stack_0_21372
import datetime import importlib import os import re import sys import yaml from src import const from src.ff import FF from src.log import log from src.utils import Util class Updater: def __init__(self, name): """Dispaching config to its updater by config name""" self.config_name = name self.modified = False def _save_yaml_file(self, path, config): _, yaml_dumper = Util.get_yaml() with open(path, 'wb') as f: f.write(yaml.dump(config, Dumper=yaml_dumper, encoding='utf-8', allow_unicode=True)) def update(self): """Perform update""" yaml_path = self.config_name + '.yaml' if os.path.isfile(yaml_path): # .yaml file path config = Util.read_config_file(yaml_path) getattr(self, self.config_name + "_yaml")(config) else: if FF.is_enabled("WALBOT_FEATURE_NEW_CONFIG") == "1": getattr(self, self.config_name + "_db")() else: log.error(f"File '{self.config_name}.yaml' does not exist") sys.exit(const.ExitStatus.CONFIG_FILE_ERROR) if self.modified: self._save_yaml_file(yaml_path, config) def result(self): """Get updater result: was config file actually updated or not""" return self.modified def _bump_version(self, config, new_version): config.version = new_version self.modified = True log.info(f"Successfully upgraded to version {new_version}") def config_yaml(self, config): """Update config.yaml""" if config.version == "0.0.1": for key in config.commands.data.keys(): if not hasattr(config.commands.data[key], "times_called"): config.commands.data[key].times_called = 0 self._bump_version(config, "0.0.2") if config.version == "0.0.2": config.__dict__["ids"] = {"reminder": 1} reminders = config.reminders config.reminders = {} for reminder in reminders: config.reminders[config.ids["reminder"]] = reminder config.ids["reminder"] += 1 self._bump_version(config, "0.0.3") if config.version == "0.0.3": for com in ("quote", "addquote", "listquote", "delquote", "setquoteauthor"): config.commands.data[com].module_name = "src.cmd.quote" config.commands.data[com].class_name = "QuoteCommands" for com in ("reminder", "updreminder", "listreminder", "delreminder"): config.commands.data[com].module_name = "src.cmd.reminder" config.commands.data[com].class_name = "ReminderCommands" self._bump_version(config, "0.0.4") if config.version == "0.0.4": for key in config.commands.data.keys(): if not hasattr(config.commands.data[key], "cmd_line"): config.commands.data[key].cmd_line = None self._bump_version(config, "0.0.5") if config.version == "0.0.5": for com in ("markov", "markovgc", "delmarkov", "findmarkov", "dropmarkov", "addmarkovfilter", "listmarkovfilter", "delmarkovfilter"): config.commands.data[com].module_name = "src.cmd.markov" config.commands.data[com].class_name = "MarkovCommands" self._bump_version(config, "0.0.6") if config.version == "0.0.6": if hasattr(config.commands, "config"): delattr(config.commands, "config") self._bump_version(config, "0.0.7") if config.version == "0.0.7": config.__dict__["saving"] = { "backup": { "compress": config.compress, "period": 10, }, "period": 10, } delattr(config, "compress") self._bump_version(config, "0.0.8") if config.version == "0.0.8": config.ids["reaction"] = 1 reactions = config.reactions config.reactions = {} for reaction in reactions: config.reactions[config.ids["reaction"]] = reaction config.ids["reaction"] += 1 self._bump_version(config, "0.0.9") if config.version == "0.0.9": config.__dict__["responses"] = dict() config.ids["response"] = 1 self._bump_version(config, "0.0.10") if config.version == "0.0.10": for index in config.reminders.keys(): config.reminders[index].__dict__["users"] = [] self._bump_version(config, "0.0.11") if config.version == "0.0.11": if "addreminder" in config.commands.aliases.keys(): del config.commands.aliases["addreminder"] config.commands.data["addreminder"] = config.commands.data["reminder"] del config.commands.data["reminder"] config.commands.data["addreminder"].module_name = "src.cmd.reminder" config.commands.data["addreminder"].perform = "_addreminder" self._bump_version(config, "0.0.12") if config.version == "0.0.12": for index, reminder in config.reminders.items(): reminder.__dict__["ping_users"] = reminder.users del reminder.__dict__["users"] reminder.__dict__["whisper_users"] = [] self._bump_version(config, "0.0.13") if config.version == "0.0.13": for guild in config.guilds.values(): guild.__dict__["markov_logging_whitelist"] = guild.markov_whitelist del guild.__dict__["markov_whitelist"] guild.__dict__["markov_responses_whitelist"] = guild.responses_whitelist del guild.__dict__["responses_whitelist"] self._bump_version(config, "0.0.14") if config.version == "0.0.14": for guild in config.guilds.values(): guild.__dict__["responses_whitelist"] = set() self._bump_version(config, "0.0.15") if config.version == "0.0.15": config.__dict__["repl"] = {} config.repl["port"] = 8080 # set default port for REPL self._bump_version(config, "0.0.16") if config.version == "0.0.16": for reminder in config.reminders.values(): reminder.__dict__["repeat_after"] = 0 self._bump_version(config, "0.0.17") if config.version == "0.0.17": config.ids["quote"] = 1 quotes = config.quotes config.quotes = {} for quote in quotes: config.quotes[config.ids["quote"]] = quote config.ids["quote"] += 1 self._bump_version(config, "0.0.18") if config.version == "0.0.18": for index in config.reminders.keys(): config.reminders[index].__dict__["author"] = "<unknown>" self._bump_version(config, "0.0.19") if config.version == "0.0.19": for index in config.reminders.keys(): config.reminders[index].__dict__["time_created"] = ( datetime.datetime(1970, 1, 1).strftime(const.REMINDER_DATETIME_FORMAT)) self._bump_version(config, "0.0.20") if config.version == "0.0.20": for key in config.commands.data.keys(): if not hasattr(config.commands.data[key], "is_private"): config.commands.data[key].is_private = False self._bump_version(config, "0.0.21") if config.version == "0.0.21": for key in config.commands.data.keys(): if (hasattr(config.commands.data[key], "module_name") and not config.commands.data[key].module_name.startswith("src.")): del config.commands.data[key].__dict__["module_name"] self._bump_version(config, "0.0.22") if config.version == "0.0.22": for index, reminder in config.reminders.items(): reminder.__dict__["repeat_interval_measure"] = "minutes" self._bump_version(config, "0.0.23") if config.version == "0.0.23": for guild in config.guilds.values(): guild.__dict__["ignored"] = False self._bump_version(config, "0.0.24") if config.version == "0.0.24": config.commands.data["listreminder"].subcommand = False self._bump_version(config, "0.0.25") if config.version == "0.0.25": config.commands.data["reminder"].subcommand = False self._bump_version(config, "0.0.26") if config.version == "0.0.26": for index in config.quotes.keys(): config.quotes[index].added_by = config.quotes[index].added_by[:-5] self._bump_version(config, "0.0.27") if config.version == "0.0.27": config.ids["timer"] = 1 self._bump_version(config, "0.0.28") if config.version == "0.0.28": config.__dict__["plugins"] = dict() self._bump_version(config, "0.0.29") if config.version == "0.0.29": config.ids["stopwatch"] = 1 self._bump_version(config, "0.0.30") if config.version == "0.0.30": for index, reminder in config.reminders.items(): reminder.__dict__["email_users"] = [] self._bump_version(config, "0.0.31") if config.version == "0.0.31": for index, reminder in config.reminders.items(): reminder.__dict__["prereminders_list"] = [] if config.version == "0.0.32": for index, reminder in config.reminders.items(): reminder.__dict__["used_prereminders_list"] = [False] * len(reminder.prereminders_list) self._bump_version(config, "0.0.33") if config.version == "0.0.33": config.commands.__dict__["module_help"] = dict() self._bump_version(config, "0.0.34") if config.version == "0.0.34": for index, reminder in config.reminders.items(): reminder.__dict__["notes"] = "" self._bump_version(config, "0.0.35") if config.version == "0.0.35": config.ids["markov_ignored_prefix"] = 1 self._bump_version(config, "0.0.36") if config.version == "0.0.36": log.info(f"Version of {self.config_name} is up to date!") else: log.error(f"Unknown version {config.version} for {self.config_name}!") def markov_yaml(self, config): """Update markov.yaml""" if config.version == "0.0.1": config.__dict__["min_chars"] = 1 config.__dict__["min_words"] = 1 self._bump_version(config, "0.0.2") if config.version == "0.0.2": config.__dict__["chains_generated"] = 0 self._bump_version(config, "0.0.3") if config.version == "0.0.3": config.__dict__["max_chars"] = 2000 config.__dict__["max_words"] = 500 self._bump_version(config, "0.0.4") if config.version == "0.0.4": config.model[""].__dict__["word"] = None self._bump_version(config, "0.0.5") if config.version == "0.0.5": for i, _ in enumerate(config.filters): config.__dict__["filters"][i] = re.compile(config.filters[i].pattern, re.DOTALL) self._bump_version(config, "0.0.6") if config.version == "0.0.6": config.__dict__["ignored_prefixes"] = dict() self._bump_version(config, "0.0.7") if config.version == "0.0.7": log.info(f"Version of {self.config_name} is up to date!") else: log.error(f"Unknown version {config.version} for {self.config_name}!") def secret_yaml(self, config): """Update secret.yaml""" if config.version == "0.0.1": if FF.is_enabled("WALBOT_FEATURE_NEW_CONFIG") == "1": os.makedirs("db", exist_ok=True) sqlite3 = importlib.import_module("sqlite3") con = sqlite3.connect(os.path.join("db", "secret.db")) cur = con.cursor() cur.execute("CREATE TABLE db_info (key text, value text)") cur.execute("INSERT INTO db_info VALUES ('version', '0.1.0')") cur.execute("CREATE TABLE tokens (key text, value text)") cur.execute("INSERT INTO tokens VALUES ('discord', ?)", (config.token,)) con.commit() con.close() os.remove(self.config_name + '.yaml') log.info("Successfully migrated contig.yaml to db/config.db!") else: config.__dict__["mail"] = { "smtp_server": None, "email": None, "password": None, } config.__dict__["admin_email_list"] = list() self._bump_version(config, "0.0.2") if config.version == "0.0.2": log.info(f"Version of {self.config_name} is up to date!") else: log.error(f"Unknown version {config.version} for {self.config_name}!") def secret_db(self): """Update db/secret.db""" pass
the-stack_0_21374
''' Test chunked request/responses ''' # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests import time import logging import json import uuid import socket import helpers import tsqa.test_cases import tsqa.utils import tsqa.endpoint log = logging.getLogger(__name__) import SocketServer class ChunkedHandler(SocketServer.BaseRequestHandler): """ A subclass of RequestHandler which return chunked encoding optionally /parts/sleep_time/close parts: number of parts to send sleep_time: time between parts close: bool whether to close properly """ def handle(self): # Receive the data in small chunks and retransmit it conn_id = uuid.uuid4().hex while True: data = self.request.recv(4096).strip() if data: log.info('sending data back to the client') else: log.info('Client disconnected') break inc_lines = data.splitlines() try: uri = inc_lines[0].split()[1] except IndexError: break parts = 5 # how many things to send sleep_time = 0.2 # how long to sleep between parts close = True # whether to close properly if uri[1:]: # if there is something besides / uri_parts = uri[1:].split('/') if len(uri_parts) >= 1: parts = int(uri_parts[0]) if len(uri_parts) >= 2: sleep_time = float(uri_parts[1]) if len(uri_parts) >= 3: close = json.loads(uri_parts[2]) resp = ('HTTP/1.1 200 OK\r\n' 'X-Conn-Id: ' + str(conn_id) + '\r\n' 'Transfer-Encoding: chunked\r\n' 'Connection: keep-alive\r\n' '\r\n') self.request.sendall(resp) for x in xrange(0, parts): self.request.sendall('{0}\r\n{1}\r\n'.format(len(str(x)), x)) time.sleep(sleep_time) if close: self.request.sendall('0\r\n\r\n') else: self.request.sendall('lkfjasd;lfjas;d') time.sleep(2) class TestChunked(helpers.EnvironmentCase): @classmethod def setUpEnv(cls, env): ''' This function is responsible for setting up the environment for this fixture This includes everything pre-daemon start ''' # create a socket server cls.port = tsqa.utils.bind_unused_port()[1] cls.server = tsqa.endpoint.SocketServerDaemon(ChunkedHandler, port=cls.port) cls.server.start() cls.server.ready.wait() cls.configs['remap.config'].add_line('map / http://127.0.0.1:{0}/'.format(cls.port)) cls.configs['records.config']['CONFIG'].update({ 'proxy.config.http.connect_attempts_timeout': 5, 'proxy.config.http.connect_attempts_max_retries': 0, 'proxy.config.http.keep_alive_enabled_in': 1, 'proxy.config.http.keep_alive_enabled_out': 1, 'proxy.config.exec_thread.limit': 1, 'proxy.config.exec_thread.autoconfig': 0, 'proxy.config.http.chunking_enabled': 1, }) def test_chunked_origin(self): ''' Test that the origin does in fact support keepalive ''' self._client_test_chunked_keepalive(self.port) self._client_test_chunked_keepalive(self.port, num_bytes=2) self._client_test_chunked_keepalive(self.port, num_bytes=2, sleep=1) def _client_test_chunked_keepalive(self, port=None, times=3, num_bytes=None, sleep=None, ): if port is None: port = int(self.configs['records.config']['CONFIG']['proxy.config.http.server_ports']) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(('127.0.0.1', port)) url = '/' if num_bytes is not None: url += str(num_bytes) if sleep is not None: if num_bytes is None: raise Exception() url += '/' + str(sleep) request = ('GET ' + url + ' HTTP/1.1\r\n' 'Host: 127.0.0.1\r\n' '\r\n') uuid = None # test basic for x in xrange(1, times): s.send(request) resp = '' while True: response = s.recv(4096) for line in response.splitlines(): line = line.strip() if line.startswith('X-Conn-Id:'): r_uuid = line.replace('X-Conn-Id:', '') if uuid is None: uuid = r_uuid else: self.assertEqual(uuid, r_uuid) resp += response if resp.endswith('\r\n0\r\n\r\n'): break for x in xrange(0, num_bytes or 4): self.assertIn('1\r\n{0}\r\n'.format(x), resp) s.close() def test_chunked_basic(self): url = 'http://127.0.0.1:{0}'.format(self.port) ret = requests.get(url, proxies=self.proxies) self.assertEqual(ret.status_code, 200) self.assertEqual(ret.text.strip(), '01234') # TODO: fix keepalive with chunked responses def test_chunked_keepalive_server(self): url = 'http://127.0.0.1:{0}'.format(self.port) ret = requests.get(url, proxies=self.proxies) conn_id = ret.headers['x-conn-id'] self.assertEqual(ret.status_code, 200) self.assertEqual(ret.text.strip(), '01234') # make sure that a second request works, and since we have keep-alive out # disabled it should be a new connection ret = requests.get(url, proxies=self.proxies) self.assertEqual(ret.status_code, 200) self.assertEqual(ret.text.strip(), '01234') self.assertEqual(conn_id, ret.headers['x-conn-id']) def test_chunked_keepalive_client(self): self._client_test_chunked_keepalive() self._client_test_chunked_keepalive(num_bytes=2) self._client_test_chunked_keepalive(num_bytes=2, sleep=1) def test_chunked_bad_close(self): url = 'http://127.0.0.1:{0}/5/0.1/false'.format(self.port) # TODO: better exception catch (seems to be ConnectionError) with self.assertRaises(Exception): requests.get(url, proxies=self.proxies, timeout=2)
the-stack_0_21375
import os import numpy as np import cv2 import matplotlib.pyplot as plt import argparse import textwrap from PIL import Image import matplotlib as mpl from osgeo import gdal, osr # -- Create a class for each vegetation_index -- # class Indexes: def __init__(self, img): self.img = img self.R = self.img[:, :, 2].astype(np.float32) self.G = self.img[:, :, 1].astype(np.float32) self.B = self.img[:, :, 0].astype(np.float32) # All these operations aim to not have ZeroDivisionError -- # # -- Visible Atmospheric Resistant Index -- # def VARI(self): vari = np.divide((self.G - self.R), (self.G + self.R - self.B + 0.00001)) return np.clip(vari, -1, 1) # -- VI values outside the [-1, 1] are clipped to this interval edges. -- # # -- Green Leaf Index -- # def GLI(self): gli = np.divide((2 * self.G - self.R - self.B), (2 * self.G + self.R + self.B + 0.00001)) return np.clip(gli, -1, 1) # -- Normalized Green Red Difference Index -- # def NGRDI(self): v_ndvi = np.divide((self.G - self.R), (self.G + self.R + 0.00001)) return np.clip(v_ndvi, -1, 1) # -- Normalized Green Blue Difference Index -- # def NGBDI(self): ngbdi = (self.G - self.B) / (self.G + self.B + 0.00001) return np.clip(ngbdi, -1, +1) # -- Identification of the Idx object -- # def get_index(self, index_name): if index_name == 'VARI': return self.VARI() elif index_name == 'GLI': return self.GLI() elif index_name == 'NGRDI': return self.NGRDI() elif index_name == 'NGBDI': return self.NGBDI() else: print('Uknown index') # -- Find the real values of the min, max based on the frequency of the vegetation_index histogramm' s bin in each examined interval -- # def find_real_min_max(perc, edges, index_clear): mask = perc > (0.05 * len(index_clear)) edges = edges[:-1] min_v = edges[mask].min() max_v = edges[mask].max() return min_v, max_v # -- Function that creates the georeferenced VI map -- # def array_to_raster(output_path, ds_reference, array, name1, name2): rows, cols, band_num = array.shape driver = gdal.GetDriverByName("GTiff") outRaster = driver.Create(os.path.join(output_path, name1+'_'+name2+'.tif'), cols, rows, band_num, gdal.GDT_Byte, options=["COMPRESS=DEFLATE"]) originX, pixelWidth, b, originY, d, pixelHeight = ds_reference.GetGeoTransform() outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight)) descriptions = ['Red Band', 'Green Band', 'Blue Band', 'Alpha Band', 'Index Array'] for b in range(band_num): outband = outRaster.GetRasterBand(b+1) outband.WriteArray(array[:,:,b]) outband.SetDescription(descriptions[b]) if b+1==1: outRaster.GetRasterBand(1).SetColorInterpretation(gdal.GCI_RedBand) elif b+1==2: outRaster.GetRasterBand(2).SetColorInterpretation(gdal.GCI_GreenBand) elif b+1==3: outRaster.GetRasterBand(3).SetColorInterpretation(gdal.GCI_BlueBand) elif b+1==4: outRaster.GetRasterBand(4).SetColorInterpretation(gdal.GCI_AlphaBand) outRasterSRS = osr.SpatialReference(wkt=prj) outRaster.SetProjection(outRasterSRS.ExportToWkt()) driver = None outband.FlushCache() print('Georeferenced {} map was extracted!'.format(index_name)) return outRaster # -- Arguments -- # parser = argparse.ArgumentParser(prog='index_calculation', description = textwrap.dedent('''\ The available VIs are: 1. Visible Atmospheric Resistant Index (VARI) 2. Green Leaf Index (GLI) 3. Normalized Green Red Difference Index (NGRDI) 4. Normalized Green Blue Difference Index (NGBDI) '''), formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--input_image', required=True, help="Please enter the absolute path of the input image.") parser.add_argument('--output_path', nargs='?', help="Please enter the absolute path of the output path.") parser.add_argument('--vis', nargs="*", required=False, help="Please enter the abbreviation of the Vegetation Index/Indices.") args = parser.parse_args() if args.output_path==None: os.makedirs('results', exist_ok=True) save_dir = os.path.join(os.getcwd(), 'results') else: save_dir = os.path.abspath(args.output_path) if len(args.vis) == 0: args.vis = ['VARI', 'GLI', 'NGRDI', 'NGBDI'] print('All VIs will be calculated!') else: args.vis = [elem.upper() for elem in args.vis] img_path = os.path.abspath(args.input_image) img_name = os.path.basename(img_path) name, ext = os.path.splitext(img_name) os.chdir(os.path.dirname(img_path)) img = cv2.imread(img_name, cv2.IMREAD_UNCHANGED) h, w, ch = img.shape if ch > 3: image = img[:, :, :3].astype(float) image[img[:, :, 3] == 0] = np.nan empty_space = img[:, :, 3] == 0 else: image = img # -- Print function for testing reasons -- # print('Processing image with shape {} x {}'.format(img.shape[0], img.shape[1])) Idx = Indexes(image) for index_name in args.vis: # -- Calculate index -- # idx = Idx.get_index(index_name) index_clear = idx[~np.isnan(idx)] # -- Calculate index histogram -- # perc, edges, _ = plt.hist(index_clear, bins=100, range=(-1, 1), color='darkcyan', edgecolor='black') plt.close() # -- Find the real min, max values of the vegetation_index -- # lower, upper = find_real_min_max(perc, edges, index_clear) index_clipped = np.clip(idx, lower, upper) cm = plt.get_cmap('RdYlGn') cNorm = mpl.colors.Normalize(vmax=upper, vmin=lower) colored_image = cm(cNorm(index_clipped)) img = Image.fromarray(np.uint8(colored_image * 255), mode='RGBA') rgba = np.array(img, dtype=np.float32) ds = gdal.Open(img_path, gdal.GA_ReadOnly) prj = ds.GetProjection() if prj: array_to_raster(save_dir, ds, rgba, name, index_name) else: img.save('{}/{}_{}.tif'.format(save_dir, name, index_name)) print('Non georeferrenced {} map was extracted!'.format(index_name)) np.save('{}/{}_{}.npy'.format(save_dir, name, index_name), index_clipped) print('Done!')
the-stack_0_21379
# Author: Jean-Remi King, <[email protected]> # # License: BSD (3-clause) import numpy as np from numpy.testing import assert_array_equal import pytest from mne.utils import requires_sklearn from mne.decoding.time_frequency import TimeFrequency @requires_sklearn def test_timefrequency(): """Test TimeFrequency.""" from sklearn.base import clone # Init n_freqs = 3 freqs = [20, 21, 22] tf = TimeFrequency(freqs, sfreq=100) for output in ['avg_power', 'foo', None]: pytest.raises(ValueError, TimeFrequency, freqs, output=output) tf = clone(tf) # Fit n_epochs, n_chans, n_times = 10, 2, 100 X = np.random.rand(n_epochs, n_chans, n_times) tf.fit(X, None) # Transform tf = TimeFrequency(freqs, sfreq=100) tf.fit_transform(X, None) # 3-D X Xt = tf.transform(X) assert_array_equal(Xt.shape, [n_epochs, n_chans, n_freqs, n_times]) # 2-D X Xt = tf.transform(X[:, 0, :]) assert_array_equal(Xt.shape, [n_epochs, n_freqs, n_times]) # 3-D with decim tf = TimeFrequency(freqs, sfreq=100, decim=2) Xt = tf.transform(X) assert_array_equal(Xt.shape, [n_epochs, n_chans, n_freqs, n_times // 2])
the-stack_0_21380
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2014-2015 CNRS # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # Hervรฉ BREDIN - http://herve.niderb.fr from __future__ import unicode_literals from ._version import get_versions __version__ = get_versions()['version'] del get_versions import os import sys from pkg_resources import iter_entry_points __all__ = [] ParserPlugins = {} # iterate over parser plugins for o in iter_entry_points(group='pyannote.parser.plugin', name=None): # obtain parser class name (e.g. "MDTMParser") parser_name = o.name # obtain parser class (e.g. MDTMParser) parser_class = o.load() # iterate over supported file extensions # (e.g. ['mdtm'] for MDTMParser) for extension in parser_class.file_extensions(): # if extension is already registered by another parser plugin # raise an exception if extension in ParserPlugins: msg = 'Extension {e} is registered by both {p1} and {p2}' raise ValueError( msg.format( e=extension, p1=parser_class.__name__, p2=ParserPlugins[extension].__name__)) # otherwise, register the extension with the parser class ParserPlugins[extension] = parser_class # import parser class at package root # (e.g. pyannote.parser.MDTMParser) setattr(sys.modules[__name__], parser_name, parser_class) # make sure parser class is imported with # >>> from pyannote.parser import * __all__.append(parser_name) class MagicParser(object): """Magic parser chooses which parser to use based on file extension Notes ----- kwargs are passed to selected parser """ @staticmethod def get_parser(extension): try: Parser = ParserPlugins[extension] except Exception: msg = 'Extension "{e}" is not supported.' raise NotImplementedError(msg.format(e=extension)) return Parser @staticmethod def guess_parser(path): # obtain file extension (without leading .) _, extension = os.path.splitext(path) extension = extension[1:] return MagicParser.get_parser(extension) def __init__(self, **kwargs): super(MagicParser, self).__init__() self.init_kwargs = kwargs def read(self, path, **kwargs): # obtain file extension (without leading .) _, extension = os.path.splitext(path) extension = extension[1:] # obtain parser based on the extension Parser = self.get_parser(extension) # initialize parser parser = Parser(**self.init_kwargs) # read file parser.read(path, **kwargs) # return parser with file loaded internally return parser __all__.append(str('MagicParser'))
the-stack_0_21384
import claripy import nose import math import logging l = logging.getLogger('claripy.test.solver') solver_list = (claripy.Solver, claripy.SolverReplacement, claripy.SolverHybrid, claripy.SolverComposite, claripy.SolverCacheless) def test_solver(): for s in solver_list: yield raw_solver, s, True yield raw_solver, s, False def test_hybrid_solver(): yield raw_hybrid_solver, True yield raw_hybrid_solver, False def raw_hybrid_solver(reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver s = claripy.SolverHybrid() x = claripy.BVS('x', 32, min=0, max=10, stride=2) y = claripy.BVS('y', 32, min=20, max=30, stride=5) # TODO: for now, the stride isn't respected in symbolic mode, but we'll fix that next. # until we do, let's add constraints s.add(x <= 10) s.add(x % 2 == 0) s.add(y >= 20) s.add(y <= 30) s.add((y-20) % 5 == 0) s.add(x != 8) nose.tools.assert_equal(sorted(s.eval(x, 20, exact=False)), [0, 2, 4, 6, 8, 10]) nose.tools.assert_equal(sorted(s.eval(x, 20)), [0, 2, 4, 6, 10]) nose.tools.assert_equal(sorted(s.eval(y, 20, exact=False)), [20, 25, 30]) nose.tools.assert_equal(sorted(s.eval(y, 20)), [20, 25, 30]) # test approximate_first option s._approximate_first = True old_solve_count = claripy._backends_module.backend_z3.solve_count nose.tools.assert_equal(sorted(s.eval(x, 20)), [0, 2, 4, 6, 8, 10]) nose.tools.assert_equal(claripy._backends_module.backend_z3.solve_count, old_solve_count) s._approximate_firsrt = False # now constrain things further so that the VSA overapproximates s.add(x <= 4) nose.tools.assert_equal(sorted(s.eval(x, 20, exact=False)), [0, 2, 4]) nose.tools.assert_equal(sorted(s.eval(x, 20)), [0, 2, 4]) s.add(y >= 27) nose.tools.assert_equal(s.eval(y, 20, exact=False), (30,)) nose.tools.assert_equal(s.eval(y, 20), (30,)) t = claripy.SolverHybrid() x = claripy.BVS('x', 32) t.add(x <= 10) print(t.eval(x, 80, exact=False)) nose.tools.assert_equal(len(t.eval(x, 5, exact=False)), 5) nose.tools.assert_equal(len(t.eval(x, 5, exact=False)), 5) nose.tools.assert_equal(len(t.eval(x, 6, exact=False)), 6) nose.tools.assert_equal(len(t.eval(x, 8, exact=False)), 8) nose.tools.assert_equal(len(t.eval(x, 99, exact=False)), 11) def test_replacement_solver(): yield raw_replacement_solver, True yield raw_replacement_solver, False def raw_replacement_solver(reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver sr = claripy.SolverReplacement() x = claripy.BVS('x', 32) nose.tools.assert_equal(len(sr.eval(x, 10)), 10) sr.add_replacement(x, claripy.BVV(0x101, 32)) nose.tools.assert_equal(sr.eval(x, 10), (0x101,)) y = claripy.BVS('y', 32) sr.add([y+1 == 200]) assert (y+1).cache_key in sr._replacements assert sr._replacement(y+1) is claripy.BVV(200, 32) srb = sr.branch() assert len(srb.constraints) == len(sr.constraints) #pylint:disable=no-member assert (y+1).cache_key in sr._replacements assert sr._replacement(y+1) is claripy.BVV(200, 32) sr = claripy.SolverReplacement() b = claripy.BoolS('b') assert sr._replacement(b) is b sr.add(claripy.Not(b)) assert sr._replacement(b) is claripy.false sr = claripy.SolverReplacement(claripy.SolverVSA(), complex_auto_replace=True) x = claripy.BVS('x', 64) sr.add([x + 8 <= 0xffffffffffffffff]) sr.add([x + 8 >= 0]) assert sr._replacement(x) is not x def raw_solver(solver_type, reuse_z3_solver): #bc = claripy.backends.BackendConcrete(clrp) #bz = claripy.backends.BackendZ3(clrp) #claripy.expression_backends = [ bc, bz, ba ] claripy._backend_z3.reuse_z3_solver = reuse_z3_solver s = solver_type() s.simplify() x = claripy.BVS('x', 32) y = claripy.BVS('y', 32) z = claripy.BVS('z', 32) l.debug("adding constraints") s.add(x == 10) s.add(y == 15) # Batch evaluation results = s.batch_eval([x + 5, x + 6, 3], 2) nose.tools.assert_equal(len(results), 1) nose.tools.assert_equal(results[0][0], 15) # x + 5 nose.tools.assert_equal(results[0][1], 16) # x + 6 nose.tools.assert_equal(results[0][2], 3) # constant l.debug("checking") nose.tools.assert_true(s.satisfiable()) nose.tools.assert_false(s.satisfiable(extra_constraints=[x == 5])) nose.tools.assert_equal(s.eval(x + 5, 1)[0], 15) nose.tools.assert_true(s.solution(x + 5, 15)) nose.tools.assert_true(s.solution(x, 10)) nose.tools.assert_true(s.solution(y, 15)) nose.tools.assert_false(s.solution(y, 13)) shards = s.split() nose.tools.assert_equal(len(shards), 2) nose.tools.assert_equal(len(shards[0].variables), 1) nose.tools.assert_equal(len(shards[1].variables), 1) if isinstance(s, claripy.frontend_mixins.ConstraintExpansionMixin) or ( isinstance(s, claripy.frontends.HybridFrontend) and isinstance(s._exact_frontend, claripy.frontend_mixins.ConstraintExpansionMixin) ): #the hybrid frontend actually uses the exact frontend for the split nose.tools.assert_equal({ len(shards[0].constraints), len(shards[1].constraints) }, { 2, 1 }) # adds the != from the solution() check if isinstance(s, claripy.frontends.ReplacementFrontend): nose.tools.assert_equal({ len(shards[0].constraints), len(shards[1].constraints) }, { 1, 1 }) # not a caching frontend # test result caching s = solver_type() s.add(x == 10) s.add(y == 15) nose.tools.assert_false(s.satisfiable(extra_constraints=(x==5,))) nose.tools.assert_true(s.satisfiable()) s = solver_type() #claripy.expression_backends = [ bc, ba, bz ] s.add(claripy.UGT(x, 10)) s.add(claripy.UGT(x, 20)) s.simplify() nose.tools.assert_equal(len(s.constraints), 1) #nose.tools.assert_equal(str(s.constraints[0]._obj), "Not(ULE(x <= 20))") s.add(claripy.UGT(y, x)) s.add(claripy.ULT(z, 5)) # test that duplicate constraints are ignored old_count = len(s.constraints) s.add(claripy.ULT(z, 5)) nose.tools.assert_equal(len(s.constraints), old_count) #print("========================================================================================") #print("========================================================================================") #print("========================================================================================") #print("========================================================================================") #a = s.eval(z, 100) #print("ANY:", a) #print("========================================================================================") #mx = s.max(z) #print("MAX",mx) #print("========================================================================================") #mn = s.min(z) #print("MIN",mn) #print("========================================================================================") #print("========================================================================================") #print("========================================================================================") #print("========================================================================================") print("CONSTRAINT COUNTS:", [ len(_.constraints) for _ in s.split() ]) nose.tools.assert_equal(s.max(z), 4) nose.tools.assert_equal(s.min(z), 0) nose.tools.assert_equal(s.min(y), 22) nose.tools.assert_equal(s.max(y), 2**y.size()-1) print("CONSTRAINT COUNTS:", [ len(_.constraints) for _ in s.split() ]) ss = s.split() nose.tools.assert_equal(len(ss), 2) #if isinstance(s, claripy.frontend_mixins.ConstraintExpansionMixin): # nose.tools.assert_equal({ len(_.constraints) for _ in ss }, { 3, 2 }) # constraints from min or max # Batch evaluation s.add(y < 24) s.add(z < x) # Just to make sure x, y, and z belong to the same solver, since batch evaluation does not support the # situation where expressions belong to more than one solver results = s.batch_eval([x, y, z], 20) nose.tools.assert_set_equal( set(results), {(21, 23, 1), (22, 23, 3), (22, 23, 2), (22, 23, 4), (21, 22, 4), (21, 23, 4), (22, 23, 0), (22, 23, 1), (21, 22, 1), (21, 22, 3), (21, 22, 2), (21, 22, 0), (21, 23, 0), (21, 23, 2), (21, 23, 3) } ) # test that False makes it unsat s = solver_type() s.add(claripy.BVV(1,1) == claripy.BVV(1,1)) nose.tools.assert_true(s.satisfiable()) s.add(claripy.BVV(1,1) == claripy.BVV(0,1)) nose.tools.assert_false(s.satisfiable()) # test extra constraints s = solver_type() x = claripy.BVS('x', 32) nose.tools.assert_equal(s.eval(x, 2, extra_constraints=[x==10]), ( 10, )) s.add(x == 10) nose.tools.assert_false(s.solution(x, 2)) nose.tools.assert_true(s.solution(x, 10)) # test result caching if isinstance(s, claripy.frontend_mixins.ModelCacheMixin): count = claripy._backends_module.backend_z3.solve_count s = solver_type() x = claripy.BVS('x', 32) s.add(x == 10) nose.tools.assert_true(s.satisfiable()) assert claripy._backends_module.backend_z3.solve_count == count nose.tools.assert_equal(s.eval(x, 1)[0], 10) assert claripy._backends_module.backend_z3.solve_count == count s.add(x == 10) s.add(x > 9) nose.tools.assert_equal(s.eval(x, 1)[0], 10) assert claripy._backends_module.backend_z3.solve_count == count y = claripy.BVS('y', 32) s.add(y < 999) assert s.satisfiable() assert claripy._backends_module.backend_z3.solve_count == count nose.tools.assert_equal(s.eval(y, 1)[0], 0) assert claripy._backends_module.backend_z3.solve_count == count def test_solver_branching(): for s in solver_list: yield raw_solver_branching, s, True yield raw_solver_branching, s, False def raw_solver_branching(solver_type, reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver s = solver_type() x = claripy.BVS("x", 32) y = claripy.BVS("y", 32) s.add(claripy.UGT(x, y)) s.add(claripy.ULT(x, 10)) nose.tools.assert_greater(s.eval(x, 1)[0], 0) t = s.branch() if isinstance(s, claripy.frontends.FullFrontend): nose.tools.assert_is(s._tls.solver, t._tls.solver) nose.tools.assert_true(s._finalized) nose.tools.assert_true(t._finalized) t.add(x == 5) #if isinstance(s, claripy.FullFrontend): # nose.tools.assert_is(t._solver, None) s.add(x == 3) nose.tools.assert_true(s.satisfiable()) t.add(x == 3) nose.tools.assert_false(t.satisfiable()) s.add(y == 2) nose.tools.assert_true(s.satisfiable()) nose.tools.assert_equal(s.eval(x, 1)[0], 3) nose.tools.assert_equal(s.eval(y, 1)[0], 2) nose.tools.assert_false(t.satisfiable()) def test_combine(): for s in solver_list: yield raw_combine, s, True yield raw_combine, s, False def raw_combine(solver_type, reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver s10 = solver_type() s20 = solver_type() s30 = solver_type() x = claripy.BVS("x", 32) s10.add(x >= 10) s20.add(x <= 20) s30.add(x == 30) nose.tools.assert_true(s10.satisfiable()) nose.tools.assert_true(s20.satisfiable()) nose.tools.assert_true(s30.satisfiable()) nose.tools.assert_true(s10.combine([s20]).satisfiable()) nose.tools.assert_true(s20.combine([s10]).satisfiable()) nose.tools.assert_true(s30.combine([s10]).satisfiable()) nose.tools.assert_false(s30.combine([s20]).satisfiable()) nose.tools.assert_equal(s30.combine([s10]).eval(x, 1), ( 30, )) nose.tools.assert_equal(len(s30.combine([s10]).constraints), 2) def test_composite_solver_with_strings(): try: s = claripy.SolverComposite( template_solver_string=claripy.SolverCompositeChild(backend=claripy.backend_manager.backends.smtlib_cvc4)) x = claripy.BVS("x", 32) y = claripy.BVS("y", 32) z = claripy.BVS("z", 32) str_1 = claripy.StringS("sym_str_1", 1024) c = claripy.And(x == 1, y == 2, z == 3, str_1 == claripy.StringV("cavallo")) s.add(c) nose.tools.assert_equal(len(s._solver_list), 4) nose.tools.assert_true(s.satisfiable()) nose.tools.assert_equal(list(s.eval(str_1, 1)), ["cavallo"]) except claripy.errors.MissingSolverError: raise nose.SkipTest() def test_composite_solver(): yield raw_composite_solver, True yield raw_composite_solver, False def raw_composite_solver(reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver #pylint:disable=no-member s = claripy.SolverComposite() x = claripy.BVS("x", 32) y = claripy.BVS("y", 32) z = claripy.BVS("z", 32) c = claripy.And(x == 1, y == 2, z == 3) s.add(c) nose.tools.assert_equal(len(s._solver_list), 3) nose.tools.assert_true(s.satisfiable()) s.add(x < y) nose.tools.assert_equal(len(s._solver_list), 2) nose.tools.assert_true(s.satisfiable()) s.simplify() nose.tools.assert_equal(len(s._solver_list), 3) nose.tools.assert_true(s.satisfiable()) s1 = s.branch() nose.tools.assert_equal(len(s1._solver_list), 3) s1.add(x > y) nose.tools.assert_equal(len(s1._solver_list), 2) nose.tools.assert_false(s1.satisfiable()) nose.tools.assert_equal(len(s._solver_list), 3) nose.tools.assert_true(s.satisfiable()) s.add(claripy.BVV(1, 32) == claripy.BVV(2, 32)) nose.tools.assert_equal(len(s._solver_list), 3) nose.tools.assert_false(s.satisfiable()) ss = s.branch() nose.tools.assert_equal(len(ss._solver_list), 3) nose.tools.assert_false(ss.satisfiable()) s = claripy.SolverComposite() x = claripy.BVS("x", 32) y = claripy.BVS("y", 32) z = claripy.BVS("z", 32) c = claripy.And(x == 1, y == 2, z > 3) s.add(c) if isinstance(s._template_frontend, claripy.frontend_mixins.ModelCacheMixin): assert len(s._solver_list) == 3 count = claripy._backends_module.backend_z3.solve_count assert s.satisfiable() assert claripy._backends_module.backend_z3.solve_count == count + 1 assert list(s.eval(x+y, 1)) == [3] assert claripy._backends_module.backend_z3.solve_count == count + 1 def test_minmax(): yield raw_minmax, True yield raw_minmax, False def raw_minmax(reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver s = claripy.Solver() x = claripy.BVS("x", 32) nose.tools.assert_equal(s.max(x), 2**32-1) nose.tools.assert_equal(s.min(x), 0) nose.tools.assert_true(s.satisfiable()) def test_composite_discrepancy(): yield raw_composite_discrepancy, True yield raw_composite_discrepancy, False def raw_composite_discrepancy(reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver a = claripy.BVS("a", 8) b = claripy.BVS("b", 8) x = claripy.BVS("x", 32) y = claripy.BVS("y", 32) z = claripy.BVS("z", 32) xy = x + y dst = claripy.BVV(0xbaaaaf50, 32) + xy constraints = [ ] constraints.append(x <= 0x1) constraints.append(x != 0x0) constraints.append(claripy.SignExt(24, claripy.If(x > 0x0, a, 0)) != 0xa) constraints.append(x < 0x80) constraints.append(y <= 0x1) constraints.append(x == 0x1) constraints.append((0xbaaaaf50 + x) == 0xbaaaaf51) constraints.append(y != 0x0) constraints.append(claripy.SignExt(24, claripy.If(y > 0x0, b, 0)) != 0xa) constraints.append((x + y) < 0x80) constraints.append(z <= 0x1) constraints.append((x + y) == 0x2) sn = claripy.Solver() sc = claripy.SolverComposite() sn.add(constraints) sc.add(constraints) print(sn.max(dst), sc.max(dst)) print(sn.min(dst), sc.min(dst)) assert sn.max(dst) == sc.max(dst) assert sn.min(dst) == sc.min(dst) def test_model(): x = claripy.BVS("x", 32) y = claripy.BVS("y", 32) s = claripy.Solver() s.add(x < 10) assert sorted(s.eval(x, 20)) == list(range(10)) s.add(y == 1337) assert sorted(s.eval(x, 20)) == list(range(10)) def test_unsatness(): x = claripy.BVS("x", 32) s = claripy.Solver() s.add(x == 10) assert s.satisfiable() s.add(claripy.false) assert not s.satisfiable() def test_simplification_annotations(): s = claripy.Solver() x = claripy.BVS("x", 32) s.add(x > 10) s.add(x > 11) s.add((x > 12).annotate(claripy.SimplificationAvoidanceAnnotation())) assert len(s.constraints) == 3 s.simplify() assert len(s.constraints) == 2 def raw_ancestor_merge(solver, reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver s = solver() x = claripy.BVS("x", 32) y = claripy.BVS("y", 32) z = claripy.BVS("z", 32) s.add(x == 10) s.add(y == x) p = s.branch() q = s.branch() p.add(z == 1) q.add(z == 2) r = p.merge([q], [claripy.true, claripy.true])[-1] t = p.merge([q], [p.constraints[-1], q.constraints[-1]], common_ancestor=s)[-1] if not isinstance(r, claripy.frontends.CompositeFrontend): assert len(r.constraints) == 1 assert len(t.constraints) == 3 assert t.constraints[-1].variables == z.variables assert t.constraints[-1].op == 'Or' assert len(t.constraints[-1].args) == 2 def test_ancestor_merge(): for s in solver_list: yield raw_ancestor_merge, s, True yield raw_ancestor_merge, s, False def raw_unsat_core(solver, reuse_z3_solver): claripy._backend_z3.reuse_z3_solver = reuse_z3_solver s = solver(track=True) x = claripy.BVS("x", 32) y = claripy.BVS("y", 32) z = claripy.BVS("z", 32) a = claripy.BVS("a", 32) s.add(x == y) s.add(x == 1) s.add(z != a) s.add(z == 2) s.add(a == 2) assert not s.satisfiable() unsat_core = s.unsat_core() assert len(unsat_core) == 3 assert unsat_core[0] is not None assert unsat_core[1] is not None assert unsat_core[2] is not None def test_unsat_core(): for s in (claripy.Solver, claripy.SolverComposite, claripy.SolverCacheless, claripy.SolverHybrid): yield raw_unsat_core, s, True yield raw_unsat_core, s, False def test_zero_division_in_cache_mixin(): # Bug in the caching backend. See issue #49 on github. num = claripy.BVS('num', 256) denum = claripy.BVS('denum', 256) e = claripy.BVS('e', 256) s = claripy.Solver() s.add(e == 8) assert s.satisfiable() s.add(claripy.If(denum == 0, 0, num / denum) == e) assert s.satisfiable() # As a bonus: s.add(num == 16) assert s.satisfiable() s.add(denum == 3) assert not s.satisfiable() def test_nan(): a = claripy.FPS('a', claripy.FSORT_FLOAT) b = claripy.BVS('b', 32) s1 = claripy.Solver() s1.add((a + 1).isNaN()) res = s1.eval(a, 1)[0] assert math.isnan(res) s2 = claripy.Solver() s2.add(b.raw_to_fp().isNaN()) res = s2.eval(b, 1)[0] assert res & 0xff800000 == 0x7f800000 and res & 0x007fffff != 0 s3 = claripy.Solver() s3.add(a.isNaN()) res = s3.eval(a.raw_to_bv(), 1)[0] assert res & 0xff800000 == 0x7f800000 and res & 0x007fffff != 0 if __name__ == '__main__': for fparams in test_unsat_core(): fparams[0](*fparams[1:]) for fparams in test_ancestor_merge(): fparams[0](*fparams[1:]) test_simplification_annotations() test_model() for fparams in test_composite_discrepancy(): fparams[0](*fparams[1:]) for fparams in test_solver(): fparams[0](*fparams[1:]) for fparams in test_hybrid_solver(): fparams[0](*fparams[1:]) test_replacement_solver() test_minmax() test_solver_branching() for fparams in test_solver_branching(): fparams[0](*fparams[1:]) for fparams in test_combine(): fparams[0](*fparams[1:]) test_composite_solver() test_zero_division_in_cache_mixin() test_nan()
the-stack_0_21387
import codecs import json import os from typing import List, Optional import click from click.core import Context, Option from .environ import _load_environ from .event import _load_dispatch_getter from .exception import _raise_exception_with_exit_code from ..event import _DEFAULT_FILENAME from ..script.result import result_to_json from ...config.meta import __TITLE__, __VERSION__, __AUTHOR__, __AUTHOR_EMAIL__ # noinspection DuplicatedCode,PyUnusedLocal def print_version(ctx: Context, param: Option, value: bool) -> None: """ Print version information of cli :param ctx: click context :param param: current parameter's metadata :param value: value of current parameter """ if not value or ctx.resilient_parsing: return click.echo('{title}, version {version}.'.format(title=__TITLE__.capitalize(), version=__VERSION__)) click.echo('Developed by {author}, {email}.'.format(author=__AUTHOR__, email=__AUTHOR_EMAIL__)) ctx.exit() CONTEXT_SETTINGS = dict( help_option_names=['-h', '--help'] ) _DEFAULT_TASK = 'main' @click.command(context_settings=CONTEXT_SETTINGS) @click.option('-v', '--version', is_flag=True, callback=print_version, expose_value=False, is_eager=True, help="Show package's version information.") @click.option('-s', '--script', type=click.Path(exists=True, readable=True), help='Path of pji script.', default=_DEFAULT_FILENAME, show_default=True) @click.option('-t', '--task', type=str, help='Task going to be executed.', default=_DEFAULT_TASK, show_default=True) @click.option('-e', '--environ', type=str, multiple=True, help='Environment variables (loaded before global config).') @click.option('-E', '--environ_after', type=str, multiple=True, help='Environment variables (loaded after global config).') @click.option('-i', '--information', type=click.Path(dir_okay=False), help='Information dump file (no dumping when not given).') def cli(script: str, task: str, environ: List[str], environ_after: List[str], information: Optional[str] = None): _dispatch_getter = _load_dispatch_getter(script) _success, _result = _dispatch_getter( environ=_load_environ(environ), environ_after=_load_environ(environ_after), )(task) if information: click.echo( click.style('Dumping result of this work to {info} ... '.format( info=repr(os.path.abspath(information))), bold=False), nl=False, ) with codecs.open(information, 'w') as info_file: json.dump(result_to_json(_success, _result), info_file, indent=4, sort_keys=True) click.echo(click.style('COMPLETE', fg='green'), nl=True) if _success: click.echo(click.style('Task success.', fg='green')) else: click.echo(click.style('Task failed.', fg='red')) raise _raise_exception_with_exit_code(1, 'task failed.')
the-stack_0_21390
from __future__ import division as __division__ import numpy as __np__ import matplotlib.pyplot as __plt__ import os from . glass_function.refractiveIndex import * # glass related functions # use polyanskiy's refractiveindex database(http://refractiveindex.info/) # polyanskiy's github: https://github.com/polyanskiy # https://github.com/polyanskiy/refractiveindex.info-database # Also use Pavel Dmitriev's script for return refractiveindex from database # https://github.com/kitchenknif/PyTMM def glass2indexlist(wavelength_list,glassname): lens_index_list = [] wavelength_num = len(wavelength_list) if glassname == 'air' or glassname == 'AIR': lens_index_list = [1]*wavelength_num return lens_index_list else: # this ABSOLUTELY REQUIRES that glass name is page_book with NO OTHER UNDERSCORES # you fucking bastard n = glassname.find('_') glass_catalog_name = glassname[n+1:] glass_name = glassname[:n] catalog = RefractiveIndex() for w in wavelength_list: mat = catalog.getMaterial('glass', glass_catalog_name, glass_name) # shelf, book, page n = mat.getRefractiveIndex(w) lens_index_list.append(round(n,6)) return lens_index_list def output(wavelength_list,lens_index_list): print('Lens wavelength vs index') print('wavelength-----index---') for wavelength,index in zip(wavelength_list,lens_index_list): print("| {0:<8s} | {1:<8s} |".\ format(str(wavelength),str(index))) print('-----------------------') return 0 #============================================================= # Old glass check functions # # def glass2indexlist(wavelength_list,glassname): # """ # convert glass to index list related to wavelength # glassname: str # """ # #print 'glass',glassname # wavelength_num = len(wavelength_list) # if glassname == 'air' or glassname == 'AIR': # lens_index_list = [1]*wavelength_num # #output(wavelength_list,lens_index_list) # return lens_index_list # else: # n = glassname.find('_') # glass_catalog_name = glassname[n+1:] # glass_name = glassname[:n] # dir = 'opticspy/ray_tracing/glass/' + glass_catalog_name+'/'+glassname # e = os.path.exists(dir) # if e == False: # print 'No This Kind Of Glass' # return None # else: # wave_list = [] # index_list = [] # lens_index_list = [] # file = open(dir) # while 1: # line = file.readline() # if not line: # break # a = line.split() # wave_list.append(float(a[0])) # index_list.append(float(a[1])) # file.close() # for wavelength in wavelength_list: # index = find_closest_wavelength(wavelength,wave_list,index_list) # lens_index_list.append(index) # #output(wavelength_list,lens_index_list) # return lens_index_list # def find_closest_wavelength(wavelength,wave_list,index_list): # n = 0 # for i in wave_list: # if wavelength == i: # return index_list[n] # elif wavelength < i: # return (index_list[n]+index_list[n])/2 # else: # n = n + 1
the-stack_0_21391
from abc import ABC class ModelMeta(type): """Model metaclass. By studying how SQLAlchemy and Django ORM work under the hood, we can see a metaclass can add useful abstractions to class definitions at runtime. That being said, this metaclass is a toy example and does not reflect everything that happens in either framework. The main use cases for a metaclass are (A) to modify a class before it is visible to a developer and (B) to add a class to a dynamic registry for further automation. Do NOT use a metaclass if a task can be done more simply with class composition, class inheritance or functions. Simple code is the reason why Python is attractive for 99% of users. For more on metaclass mechanisms, visit the link below: https://realpython.com/python-metaclasses/ """ # Model table registry tables = {} def __new__(mcs, name, bases, attrs): """Factory for modifying the defined class at runtime.""" kls = super().__new__(mcs, name, bases, attrs) # Abstract model does not have a `model_name` but a real model does. # We will leverage this fact later on this routine if attrs.get("__abstract__") is True: kls.model_name = None else: custom_name = attrs.get("__table_name__") default_name = kls.__name__.replace("Model", "").lower() kls.model_name = custom_name if custom_name else default_name # Ensure abstract and real models have fields so that # they can be inherited kls.model_fields = {} # Fill model fields from the parent classes (left-to-right) for base in bases: kls.model_fields.update(base.model_fields) # Fill model fields from itself kls.model_fields.update({ field_name: field_obj for field_name, field_obj in attrs.items() if isinstance(field_obj, BaseField) }) # Register a real table (a table with valid `model_name`) to # the metaclass `table` registry. After all the tables are # registered, the registry can be sent to a database adapter # which uses each table to create a properly defined schema # for the database of choice (i.e. PostgreSQL, MySQL) if kls.model_name: kls.model_table = ModelTable(kls.model_name, kls.model_fields) ModelMeta.tables[kls.model_name] = kls.model_table else: kls.model_table = None # Return newly modified class return kls @property def is_registered(cls): """Check if the model's name is valid and exists in the registry.""" return cls.model_name and cls.model_name in cls.tables class ModelTable: """Model table.""" def __init__(self, table_name, table_fields): self.table_name = table_name self.table_fields = table_fields def __repr__(self): return f"<ModelTable name={self.table_name}>" class BaseField(ABC): """Base field.""" def __repr__(self): """Brief representation of any field.""" return f"<{type(self).__name__}>" class CharField(BaseField): """Character field.""" class IntegerField(BaseField): """Integer field.""" class BaseModel(metaclass=ModelMeta): """Base model. Notice how `ModelMeta` is injected at the base class. The base class and its subclasses will be processed by the method `__new__` in the `ModelMeta` class before being created. In short, think of a metaclass as the creator of classes. This is very similar to how classes are the creator of instances. """ __abstract__ = True # This is NOT a real table row_id = IntegerField() class UserModel(BaseModel): """User model.""" __table_name__ = "user_rocks" # This is a custom table name username = CharField() password = CharField() age = CharField() sex = CharField() class AddressModel(BaseModel): """Address model.""" user_id = IntegerField() address = CharField() state = CharField() zip_code = CharField() def main(): # Real models are given a name at runtime with `ModelMeta` assert UserModel.model_name == "user_rocks" assert AddressModel.model_name == "address" # Real models are given fields at runtime with `ModelMeta` assert "row_id" in UserModel.model_fields assert "row_id" in AddressModel.model_fields assert "username" in UserModel.model_fields assert "address" in AddressModel.model_fields # Real models are registered at runtime with `ModelMeta` assert UserModel.is_registered assert AddressModel.is_registered # Real models have a `ModelTable` that can be used for DB setup assert isinstance(ModelMeta.tables[UserModel.model_name], ModelTable) assert isinstance(ModelMeta.tables[AddressModel.model_name], ModelTable) # Base model is given special treatment at runtime assert not BaseModel.is_registered assert BaseModel.model_name is None assert BaseModel.model_table is None # Every model is created by `ModelMeta` assert isinstance(BaseModel, ModelMeta) assert all(isinstance(model, ModelMeta) for model in BaseModel.__subclasses__()) # And `ModelMeta` is created by `type` assert isinstance(ModelMeta, type) # And `type` is created by `type` itself assert isinstance(type, type) # And everything in Python is an object! assert isinstance(BaseModel, object) assert isinstance(ModelMeta, object) assert isinstance(type, object) assert isinstance(object, object) if __name__ == "__main__": main()
the-stack_0_21394
#!/usr/bin/env python """ Finds issues with tA pages, links, TOC, config, etc. """ import logging import sys import os import yaml import codecs logger = logging.getLogger() logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) class TaInspector(object): def __init__(self, repo_dir): """ :param string repo_dir: """ self.repo_dir = repo_dir # Local directory self.dirs = [name for name in os.listdir(self.repo_dir) if os.path.isfile(os.path.join(self.repo_dir, name, 'toc.yaml'))] self.links = [] def check_exists(self, type, link, d=None, parent=None): dirs = [] if d: dirs.append(d) else: dirs = self.dirs found = None for d in dirs: if os.path.isdir(os.path.join(self.repo_dir, d, link)): if not found: found = d else: logger.critical('Dependency {0} found in {1} and {2}'.format(link, found, d)) if found: if not os.path.isfile(os.path.join(self.repo_dir, found, link, 'title.md')): logger.critical('No title.md for {0}/{1}'.format(found, link)) if not os.path.isfile(os.path.join(self.repo_dir, found, link, 'sub-title.md')): logger.critical('No sub-title.md for {0}/{1}'.format(found, link)) if not os.path.isfile(os.path.join(self.repo_dir, found, link, '01.md')): logger.critical('No 01.md for {0}/{1}'.format(found, link)) elif type == 'TOC': logger.critical('Article {0} in {1}/toc.yaml does not exist ({1}/{0} does not exist)'.format(link, d)) else: logger.critical('{0} {1} for {2} in {3}/config.yaml not found!'.format(type, link, parent, d)) def inspect_section(self, d, section, config): if 'link' in section: link = section['link'] if link in self.links: logger.critical('There is already a link called {0}'.format(link)) else: self.links.append(link) self.check_exists('TOC', link, d) if link in config: if 'dependencies' in config[link] and config[link]['dependencies']: for dependency in config[link]['dependencies']: self.check_exists('Dependency', dependency, None, link) if 'recommended' in config[link] and config[link]['recommended']: for recommended in config[link]['recommended']: self.check_exists('Recommended', recommended, None, link) else: logger.warning('{0} does not have an entry in the {1}/config.yaml file'.format(link, d)) if 'sections' in section: for section in section['sections']: self.inspect_section(d, section, config) def run(self): for d in self.dirs: toc_path = os.path.join(self.repo_dir, d, 'toc.yaml') config_path = os.path.join(self.repo_dir, d, 'config.yaml') with codecs.open(toc_path, 'r', encoding='utf-8-sig') as f: toc = yaml.load(f) with codecs.open(config_path, 'r', encoding='utf-8-sig') as f: config = yaml.load(f) for section in toc['sections']: self.inspect_section(d, section, config) for link in config: if link not in self.links: logger.warning('{0} in {1}/config.yaml is never used.'.format(link, d)) for sub in [name for name in os.listdir(os.path.join(self.repo_dir, d)) if os.path.isfile(os.path.join(self.repo_dir, name, 'toc.yaml'))]: if sub not in self.links: logger.warning('{0}/{1} is never used in the TOC.'.format(d, sub)) def main(): if len(sys.argv) < 2 or not os.path.isdir(sys.argv[1]): logger.critical('You must provide the path to the tA repo!') exit(1) repo_dir = sys.argv[1] ta = TaInspector(repo_dir) ta.run() if __name__ == '__main__': main()
the-stack_0_21397
"""Projects urls.""" # Django from django.urls import path # Blog views from projects import views urlpatterns = [ # Projects feed path(route = 'projects/', view = views.ProjectsList.as_view(), #views.temporal_function, #view = views.ProjectsList.as_view(), name = 'projects_feed'), # Project detailed path(route = 'project/<slug:slug>/', view = views.ProjectDetail.as_view(), name = 'project_detail'), ]
the-stack_0_21399
import logging from enum import Enum from pathlib import Path from subprocess import CalledProcessError, CompletedProcess from typing import Final, Iterable, List, Optional from ..cli_utils import check_dir_path, check_file_path, run_process _LOGGER: Final = logging.getLogger(__name__) class KompileBackend(Enum): LLVM = 'llvm' HASKELL = 'haskell' KORE = 'kore' JAVA = 'java' def kompile( main_file: Path, *, backend: Optional[KompileBackend], output_dir: Optional[Path] = None, include_dirs: Iterable[Path] = (), emit_json=False, ) -> Path: check_file_path(main_file) for include_dir in include_dirs: check_dir_path(include_dir) args = _build_arg_list(backend=backend, output_dir=output_dir, include_dirs=include_dirs, emit_json=emit_json) try: _kompile(str(main_file), *args) except CalledProcessError as err: raise RuntimeError(f'Command kompile exited with code {err.returncode} for: {main_file}', err.stdout, err.stderr) kompiled_dir = _kompiled_dir(main_file, output_dir) assert kompiled_dir.is_dir() return kompiled_dir def _build_arg_list( *, backend: Optional[KompileBackend], output_dir: Optional[Path], include_dirs: Iterable[Path], emit_json: bool, ) -> List[str]: args = [] if backend: args += ['--backend', backend.value] if output_dir: args += ['--output-definition', str(output_dir)] for include_dir in include_dirs: args += ['-I', str(include_dir)] if emit_json: args.append('--emit-json') return args def _kompile(main_file: str, *args: str) -> CompletedProcess: run_args = ['kompile', main_file] + list(args) return run_process(run_args, _LOGGER) def _kompiled_dir(main_file: Path, output_dir: Optional[Path] = None) -> Path: if output_dir: return output_dir return Path(main_file.stem + '-kompiled')
the-stack_0_21400
import streamlit as st import pandas as pd import numpy as np import plotly.express as px def app(): st.title('Simulation 2') st.write('The Sensitivity of distrubution of Token A is presented below with the parameter "weight_Token_A: (0.5, 0.01)."') # Load dataset df2 = pd.read_csv("./data/Simulation 2_ weight_Token_A 0.5 -_ 0.01 - Sheet1 (1).csv") # Chart building fig2 = px.line( df2, title='Sensitivity of distrubution of Token_A - Parameter: Weight of Token A (0.5 -> 0.01)', x='timestep', y='balance_of_Token_A', color='par_weight_token_A_inverse', animation_frame='par_weight_token_A_inverse', height=450, width=800) st.plotly_chart(fig2)
the-stack_0_21403
from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.nn as nn from torch.distributions import Distribution from pts.core.component import validated from pts.model import weighted_average from pts.modules import DistributionOutput, MeanScaler, NOPScaler, FeatureEmbedder def prod(xs): p = 1 for x in xs: p *= x return p class DeepARNetwork(nn.Module): @validated() def __init__( self, input_size: int, num_layers: int, num_cells: int, cell_type: str, history_length: int, context_length: int, prediction_length: int, distr_output: DistributionOutput, dropout_rate: float, cardinality: List[int], embedding_dimension: List[int], lags_seq: List[int], scaling: bool = True, dtype: np.dtype = np.float32, ) -> None: super().__init__() self.num_layers = num_layers self.num_cells = num_cells self.cell_type = cell_type self.history_length = history_length self.context_length = context_length self.prediction_length = prediction_length self.dropout_rate = dropout_rate self.cardinality = cardinality self.embedding_dimension = embedding_dimension self.num_cat = len(cardinality) self.scaling = scaling self.dtype = dtype self.lags_seq = lags_seq self.distr_output = distr_output rnn = {"LSTM": nn.LSTM, "GRU": nn.GRU}[self.cell_type] self.rnn = rnn( input_size=input_size, hidden_size=num_cells, num_layers=num_layers, dropout=dropout_rate, batch_first=True, ) self.target_shape = distr_output.event_shape self.proj_distr_args = distr_output.get_args_proj(num_cells) self.embedder = FeatureEmbedder( cardinalities=cardinality, embedding_dims=embedding_dimension ) if scaling: self.scaler = MeanScaler(keepdim=True) else: self.scaler = NOPScaler(keepdim=True) @staticmethod def get_lagged_subsequences( sequence: torch.Tensor, sequence_length: int, indices: List[int], subsequences_length: int = 1, ) -> torch.Tensor: """ Returns lagged subsequences of a given sequence. Parameters ---------- sequence : Tensor the sequence from which lagged subsequences should be extracted. Shape: (N, T, C). sequence_length : int length of sequence in the T (time) dimension (axis = 1). indices : List[int] list of lag indices to be used. subsequences_length : int length of the subsequences to be extracted. Returns -------- lagged : Tensor a tensor of shape (N, S, C, I), where S = subsequences_length and I = len(indices), containing lagged subsequences. Specifically, lagged[i, j, :, k] = sequence[i, -indices[k]-S+j, :]. """ assert max(indices) + subsequences_length <= sequence_length, ( f"lags cannot go further than history length, found lag {max(indices)} " f"while history length is only {sequence_length}" ) assert all(lag_index >= 0 for lag_index in indices) lagged_values = [] for lag_index in indices: begin_index = -lag_index - subsequences_length end_index = -lag_index if lag_index > 0 else None lagged_values.append(sequence[:, begin_index:end_index, ...]) return torch.stack(lagged_values, dim=-1) def unroll_encoder( self, feat_static_cat: torch.Tensor, # (batch_size, num_features) feat_static_real: torch.Tensor, # (batch_size, num_features) past_time_feat: torch.Tensor, # (batch_size, history_length, num_features) past_target: torch.Tensor, # (batch_size, history_length, *target_shape) past_observed_values: torch.Tensor, # (batch_size, history_length, *target_shape) future_time_feat: Optional[ torch.Tensor ] = None, # (batch_size, prediction_length, num_features) future_target: Optional[ torch.Tensor ] = None, # (batch_size, prediction_length, *target_shape) ) -> Tuple[torch.Tensor, Union[torch.Tensor, List], torch.Tensor, torch.Tensor]: if future_time_feat is None or future_target is None: time_feat = past_time_feat[ :, self.history_length - self.context_length :, ... ] sequence = past_target sequence_length = self.history_length subsequences_length = self.context_length else: time_feat = torch.cat( ( past_time_feat[:, self.history_length - self.context_length :, ...], future_time_feat, ), dim=1 ) sequence = torch.cat((past_target, future_target), dim=1) sequence_length = self.history_length + self.prediction_length subsequences_length = self.context_length + self.prediction_length lags = self.get_lagged_subsequences( sequence=sequence, sequence_length=sequence_length, indices=self.lags_seq, subsequences_length=subsequences_length ) # scale is computed on the context length last units of the past target # scale shape is (batch_size, 1, *target_shape) _, scale = self.scaler( past_target[:, self.context_length :, ...], past_observed_values[:, self.context_length :, ...], ) # (batch_size, num_features) embedded_cat = self.embedder(feat_static_cat) # in addition to embedding features, use the log scale as it can help # prediction too # (batch_size, num_features + prod(target_shape)) static_feat = torch.cat( ( embedded_cat, feat_static_real, scale.log() if len(self.target_shape) == 0 else scale.squeeze(1).log(), ), dim=1, ) # (batch_size, subsequences_length, num_features + 1) repeated_static_feat = static_feat.unsqueeze(1).expand( -1, subsequences_length, -1 ) # (batch_size, sub_seq_len, *target_shape, num_lags) lags_scaled = lags / scale.unsqueeze(-1) # from (batch_size, sub_seq_len, *target_shape, num_lags) # to (batch_size, sub_seq_len, prod(target_shape) * num_lags) input_lags = lags_scaled.reshape( (-1, subsequences_length, len(self.lags_seq) * prod(self.target_shape)) ) # (batch_size, sub_seq_len, input_dim) inputs = torch.cat((input_lags, time_feat, repeated_static_feat), dim=-1) # unroll encoder outputs, state = self.rnn(inputs) # outputs: (batch_size, seq_len, num_cells) # state: list of (num_layers, batch_size, num_cells) tensors # scale: (batch_size, 1, *target_shape) # static_feat: (batch_size, num_features + prod(target_shape)) return outputs, state, scale, static_feat class DeepARTrainingNetwork(DeepARNetwork): def distribution( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_time_feat: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, future_time_feat: torch.Tensor, future_target: torch.Tensor, future_observed_values: torch.Tensor, ) -> Distribution: rnn_outputs, _, scale, _ = self.unroll_encoder( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_time_feat=past_time_feat, past_target=past_target, past_observed_values=past_observed_values, future_time_feat=future_time_feat, future_target=future_target, ) distr_args = self.proj_distr_args(rnn_outputs) return self.distr_output.distribution(distr_args, scale=scale) def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_time_feat: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, future_time_feat: torch.Tensor, future_target: torch.Tensor, future_observed_values: torch.Tensor, ) -> torch.Tensor: distr = self.distribution( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_time_feat=past_time_feat, past_target=past_target, past_observed_values=past_observed_values, future_time_feat=future_time_feat, future_target=future_target, future_observed_values=future_observed_values, ) # put together target sequence # (batch_size, seq_len, *target_shape) target = torch.cat( ( past_target[:, self.history_length - self.context_length :, ...], future_target, ), dim=1, ) # (batch_size, seq_len) loss = -distr.log_prob(target) # (batch_size, seq_len, *target_shape) observed_values = torch.cat( ( past_observed_values[ :, self.history_length - self.context_length :, ... ], future_observed_values, ), dim=1, ) # mask the loss at one time step iff one or more observations is missing in the target dimensions # (batch_size, seq_len) loss_weights = ( observed_values if (len(self.target_shape) == 0) else observed_values.min(dim=-1, keepdim=False) ) weighted_loss = weighted_average(loss, weights=loss_weights) return weighted_loss, loss class DeepARPredictionNetwork(DeepARNetwork): def __init__(self, num_parallel_samples: int = 100, **kwargs) -> None: super().__init__(**kwargs) self.num_parallel_samples = num_parallel_samples # for decoding the lags are shifted by one, at the first time-step # of the decoder a lag of one corresponds to the last target value self.shifted_lags = [l - 1 for l in self.lags_seq] def sampling_decoder( self, static_feat: torch.Tensor, past_target: torch.Tensor, time_feat: torch.Tensor, scale: torch.Tensor, begin_states: Union[torch.Tensor, List[torch.Tensor]], ) -> torch.Tensor: """ Computes sample paths by unrolling the RNN starting with a initial input and state. Parameters ---------- static_feat : Tensor static features. Shape: (batch_size, num_static_features). past_target : Tensor target history. Shape: (batch_size, history_length). time_feat : Tensor time features. Shape: (batch_size, prediction_length, num_time_features). scale : Tensor tensor containing the scale of each element in the batch. Shape: (batch_size, 1, 1). begin_states : List or Tensor list of initial states for the LSTM layers or tensor for GRU. the shape of each tensor of the list should be (num_layers, batch_size, num_cells) Returns -------- Tensor A tensor containing sampled paths. Shape: (batch_size, num_sample_paths, prediction_length). """ # blows-up the dimension of each tensor to batch_size * self.num_parallel_samples for increasing parallelism repeated_past_target = past_target.repeat_interleave( repeats=self.num_parallel_samples, dim=0 ) repeated_time_feat = time_feat.repeat_interleave( repeats=self.num_parallel_samples, dim=0 ) repeated_static_feat = static_feat.repeat_interleave( repeats=self.num_parallel_samples, dim=0 ).unsqueeze(1) repeated_scale = scale.repeat_interleave( repeats=self.num_parallel_samples, dim=0 ) if self.cell_type == "LSTM": repeated_states = [ s.repeat_interleave(repeats=self.num_parallel_samples, dim=1) for s in begin_states ] else: repeated_states = begin_states.repeat_interleave( repeats=self.num_parallel_samples, dim=1 ) future_samples = [] # for each future time-units we draw new samples for this time-unit and update the state for k in range(self.prediction_length): # (batch_size * num_samples, 1, *target_shape, num_lags) lags = self.get_lagged_subsequences( sequence=repeated_past_target, sequence_length=self.history_length + k, indices=self.shifted_lags, subsequences_length=1, ) # (batch_size * num_samples, 1, *target_shape, num_lags) lags_scaled = lags / repeated_scale.unsqueeze(-1) # from (batch_size * num_samples, 1, *target_shape, num_lags) # to (batch_size * num_samples, 1, prod(target_shape) * num_lags) input_lags = lags_scaled.reshape( (-1, 1, prod(self.target_shape) * len(self.lags_seq)) ) # (batch_size * num_samples, 1, prod(target_shape) * num_lags + num_time_features + num_static_features) decoder_input = torch.cat( (input_lags, repeated_time_feat[:, k : k + 1, :], repeated_static_feat), dim=-1, ) # output shape: (batch_size * num_samples, 1, num_cells) # state shape: (batch_size * num_samples, num_cells) rnn_outputs, repeated_states = self.rnn(decoder_input, repeated_states) distr_args = self.proj_distr_args(rnn_outputs) # compute likelihood of target given the predicted parameters distr = self.distr_output.distribution(distr_args, scale=repeated_scale) # (batch_size * num_samples, 1, *target_shape) new_samples = distr.sample() # (batch_size * num_samples, seq_len, *target_shape) repeated_past_target = torch.cat((repeated_past_target, new_samples), dim=1) future_samples.append(new_samples) # (batch_size * num_samples, prediction_length, *target_shape) samples = torch.cat(future_samples, dim=1) # (batch_size, num_samples, prediction_length, *target_shape) return samples.reshape( ( (-1, self.num_parallel_samples) + (self.prediction_length,) + self.target_shape ) ) # noinspection PyMethodOverriding,PyPep8Naming def forward( self, feat_static_cat: torch.Tensor, # (batch_size, num_features) feat_static_real: torch.Tensor, # (batch_size, num_features) past_time_feat: torch.Tensor, # (batch_size, history_length, num_features) past_target: torch.Tensor, # (batch_size, history_length, *target_shape) past_observed_values: torch.Tensor, # (batch_size, history_length, *target_shape) future_time_feat: torch.Tensor, # (batch_size, prediction_length, num_features) ) -> torch.Tensor: """ Predicts samples, all tensors should have NTC layout. Parameters ---------- feat_static_cat : (batch_size, num_features) feat_static_real : (batch_size, num_features) past_time_feat : (batch_size, history_length, num_features) past_target : (batch_size, history_length, *target_shape) past_observed_values : (batch_size, history_length, *target_shape) future_time_feat : (batch_size, prediction_length, num_features) Returns ------- Tensor Predicted samples """ # unroll the decoder in "prediction mode", i.e. with past data only _, state, scale, static_feat = self.unroll_encoder( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_time_feat=past_time_feat, past_target=past_target, past_observed_values=past_observed_values, future_time_feat=None, future_target=None, ) return self.sampling_decoder( past_target=past_target, time_feat=future_time_feat, static_feat=static_feat, scale=scale, begin_states=state, )
the-stack_0_21404
#!/usr/bin/env python from typing import Tuple import torch import argparse from src.loadopts import * from src.config import SAVED_FILENAME, DEVICE from src.utils import timemeter from autoattack import AutoAttack METHOD = "AutoAttack" FMT = "{description}={norm}-{version}-{epsilon}" parser = argparse.ArgumentParser() parser.add_argument("model", type=str) parser.add_argument("dataset", type=str) parser.add_argument("info_path", type=str) parser.add_argument("--filename", type=str, default=SAVED_FILENAME) # for AA parser.add_argument("--norm", choices=("Linf", "L2", "L1"), default="Linf") parser.add_argument("--epsilon", type=float, default=8/255) parser.add_argument("--version", choices=("standard", "plus"), default="standard") # basic settings parser.add_argument("-b", "--batch_size", type=int, default=256) parser.add_argument("--transform", type=str, default='tensor,none') parser.add_argument("--log2file", action="store_false", default=True, help="False: remove file handler") parser.add_argument("--log2console", action="store_false", default=True, help="False: remove console handler if log2file is True ...") parser.add_argument("--seed", type=int, default=1) parser.add_argument("--benchmark", action="store_false", default=True, help="cudnn.benchmark == True ?") parser.add_argument("-m", "--description", type=str, default=METHOD) opts = parser.parse_args() opts.description = FMT.format(**opts.__dict__) @timemeter("Setup") def load_cfg() -> Tuple[Config, str]: from src.dict2obj import Config from src.utils import set_seed, activate_benchmark, load, set_logger from models.base import ADArch cfg = Config() # generate the log path _, log_path = generate_path(METHOD, opts.dataset, opts.model, opts.description) # set logger logger = set_logger( path=log_path, log2file=opts.log2file, log2console=opts.log2console ) logger.debug(opts.info_path) activate_benchmark(opts.benchmark) set_seed(opts.seed) # load the model model = load_model(opts.model)(num_classes=get_num_classes(opts.dataset)) mean, std = load_normalizer(opts.dataset) model = ADArch(model=model, mean=mean, std=std) load( model=model, path=opts.info_path, filename=opts.filename ) model.eval() # load the testset testset = load_dataset( dataset_type=opts.dataset, transforms=opts.transform, train=False ) data = [] targets = [] for i in range(len(testset)): img, label = testset[i] data.append(img) targets.append(label) cfg['data'] = torch.stack(data) cfg['targets'] = torch.tensor(targets, dtype=torch.long) cfg['attacker'] = AutoAttack( model, norm=opts.norm, eps=opts.epsilon, version=opts.version, device=DEVICE, ) return cfg, log_path @timemeter('Main') def main(attacker, data, targets): attacker.run_standard_evaluation(data, targets, bs=opts.batch_size) if __name__ == "__main__": from src.utils import readme cfg, log_path = load_cfg() readme(log_path, opts, mode="a") main(**cfg)
the-stack_0_21405
import pytest from faker import Faker from pastry_shop.blog.models import Post, Comment pytestmark = pytest.mark.django_db fake = Faker() class TestPostModel: def test_post_to_str(self, set_up): post = Post.objects.first() assert str(post) == post.title class TestCommentModel: def test_comment_to_str(self, set_up): comment = Comment.objects.first() assert str(comment) == f"{comment.content[:20]} - {comment.author.username}"
the-stack_0_21407
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """URI endpoint for nudging Anomaly entities and updating alert bug IDs.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import import json from google.appengine.api import users from google.appengine.ext import ndb from dashboard.common import request_handler from dashboard.common import utils from dashboard.common import xsrf class EditAnomaliesHandler(request_handler.RequestHandler): """Handles editing the bug IDs and revision range of Alerts.""" @xsrf.TokenRequired def post(self): """Allows adding or resetting bug IDs and invalid statuses to Alerts. Additionally, this endpoint is also responsible for changing the start and end revisions of Anomaly entities. Request parameters: keys: A comma-separated list of urlsafe keys of Anomaly entities. bug_id: The new bug ID. This should be either the string REMOVE (indicating resetting the bug ID to None), or an integer. A negative integer indicates an invalid or ignored alert. If this is given, then the start and end revision ranges are ignored. new_start_revision: New start revision value for the alert. new_end_revision: New end revision value for the alert. Outputs: JSON which indicates the result. If an error has occurred, the field "error" should be in the result. If successful, the response is still expected to be JSON. """ if not utils.IsValidSheriffUser(): user = users.get_current_user() self.ReportError('User "%s" not authorized.' % user, status=403) return # Get the list of alerts to modify. urlsafe_keys = self.request.get('keys') if not urlsafe_keys: self.response.out.write(json.dumps({ 'error': 'No alerts specified to add bugs to.'})) return keys = [ndb.Key(urlsafe=k) for k in urlsafe_keys.split(',')] alert_entities = ndb.get_multi(keys) # Get the parameters which specify the changes to make. bug_id = self.request.get('bug_id') new_start_revision = self.request.get('new_start_revision') new_end_revision = self.request.get('new_end_revision') result = None if bug_id: result = self.ChangeBugId(alert_entities, bug_id) elif new_start_revision and new_end_revision: result = self.NudgeAnomalies( alert_entities, new_start_revision, new_end_revision) else: result = {'error': 'No bug ID or new revision specified.'} self.response.out.write(json.dumps(result)) def ChangeBugId(self, alert_entities, bug_id): """Changes or resets the bug ID of all given alerts.""" # Change the bug ID if a new bug ID is specified and valid. if bug_id == 'REMOVE': bug_id = None else: try: bug_id = int(bug_id) except ValueError: return {'error': 'Invalid bug ID %s' % str(bug_id)} for a in alert_entities: a.bug_id = bug_id ndb.put_multi(alert_entities) return {'bug_id': bug_id} def NudgeAnomalies(self, anomaly_entities, start, end): # Change the revision range if a new revision range is specified and valid. try: start = int(start) end = int(end) except ValueError: return {'error': 'Invalid revisions %s, %s' % (start, end)} for a in anomaly_entities: a.start_revision = start a.end_revision = end ndb.put_multi(anomaly_entities) return {'success': 'Alerts nudged.'}
the-stack_0_21408
import sys,argparse,os import librosa from sklearn import preprocessing from sklearn.utils import shuffle import torch import numpy as np from utils import utils # Arguments parser=argparse.ArgumentParser(description='') parser.add_argument('--device',default='cuda',type=str,required=False,help='(default=%(default)s)') parser.add_argument('--mode',type=str,required=True,help='(default=%(default)s)', choices=['train','valid','test','random']) parser.add_argument('--path_in',default='',type=str,required=True,help='(default=%(default)s)') parser.add_argument('--fn_mask',default='_to_',type=str,required=False,help='(default=%(default)s)') parser.add_argument('--fn_cla',default='',type=str,required=True,help='(default=%(default)s)') parser.add_argument('--fn_res',default='',type=str,required=True,help='(default=%(default)s)') parser.add_argument('--extension',default='.wav',type=str,required=False,help='(default=%(default)s)') parser.add_argument('--pc_valid',default=0.1,type=float,required=False,help='(default=%(default)f)') parser.add_argument('--patience',default=5,type=int,required=False,help='(default=%(default)f)') parser.add_argument('--cut_last',default=0,type=int,required=False,help='(default=%(default)f)') args=parser.parse_args() utils.print_arguments(args) ######################################################################################################################## speakers={} if args.mode!='train': print('Load classifier') speakers,sca,model=torch.load(args.fn_cla) ######################################################################################################################## # Load filenames print('Filenames') fn_all=[] for dirpath,dirnames,filenames in os.walk(args.path_in): for fn in filenames: if fn.endswith(args.extension): if args.mode!='test' or (args.mode=='test' and args.fn_mask in fn): fn_all.append(os.path.join(dirpath,fn)) print(len(fn_all)) # Feature extraction print('Feature extraction') durations=[] features=[] labels=[] source,target=[],[] try: for i,fn in enumerate(fn_all): arrs=[] y,sr=librosa.load(fn,sr=16000) if args.cut_last>0: y=y[:-args.cut_last-1] spec=np.abs(librosa.stft(y=y,n_fft=2048,hop_length=128,win_length=256))**2 melspec=librosa.feature.melspectrogram(S=spec,n_mels=200) mfcc=librosa.feature.mfcc(S=librosa.power_to_db(melspec),n_mfcc=40) arrs.append(mfcc) mfcc=librosa.feature.delta(mfcc) arrs.append(mfcc) mfcc=librosa.feature.delta(mfcc) arrs.append(mfcc) #cqt=librosa.amplitude_to_db(np.abs(librosa.cqt(y,sr=sr,fmin=27.5,n_bins=96)),ref=np.max) #arrs.append(cqt) #cqt=librosa.feature.delta(cqt) #arrs.append(cqt) rms=librosa.feature.rms(y=y) arrs.append(rms) #zcr=librosa.feature.zero_crossing_rate(y=y) #arrs.append(zcr) feat=[] for x in arrs: feat+=list(np.mean(x,axis=1)) feat+=list(np.std(x,axis=1)) spk=os.path.split(fn)[-1].split('_')[0] if args.mode=='train' and spk not in speakers: speakers[spk]=len(speakers) elif spk not in speakers: continue source.append(speakers[spk]) if args.mode=='test' or args.mode=='random': spk=os.path.split(fn)[-1].split(args.fn_mask)[-1][:-len(args.extension)] if spk not in speakers: continue target.append(speakers[spk]) yy=(np.abs(y)>0.02).astype(np.float32) durations.append(np.sum(yy)/sr) features.append(feat) labels.append(speakers[spk]) print('\r{:5.1f}%'.format(100*(i+1)/len(fn_all)),end='') except KeyboardInterrupt: pass print() durations=np.array(durations,dtype=np.float32) features=np.array(features,dtype=np.float32) labels=np.array(labels,dtype=np.int32) source=np.array(source,dtype=np.int32) if target[0] is not None: target=np.array(target,dtype=np.int32) print(len(speakers),'speakers') print(features.shape,labels.shape) ######################################################################################################################## def batch_loop(e,r,x,y,eval): if eval: model.eval() else: model.train() r=shuffle(r) losses=[] predictions=[] for b in range(0,len(r),sbatch): if b+sbatch>len(r): rr=r[b:] else: rr=r[b:b+sbatch] rr=torch.LongTensor(rr) xb=x[rr,:].to(args.device) yb=y[rr].to(args.device) ybhat=model.forward(xb) loss=loss_function(ybhat,yb) losses+=list(loss.data.cpu().numpy()) predictions+=list(ybhat.data.max(1)[1].cpu().numpy()) if not eval: loss=loss.mean() optim.zero_grad() loss.backward() optim.step() print('\rEpoch {:03d}/{:03d} - {:5.1f}% : loss = {:7.3f}'.format(e+1,nepochs,100*len(losses)/len(x),np.mean(losses)),end='') return losses,predictions print('-'*100) nepochs=200 sbatch=128 loss_function=torch.nn.CrossEntropyLoss(reduction='none') if args.mode=='train': print('Train') sca=preprocessing.StandardScaler() x=sca.fit_transform(features) x,y=torch.FloatTensor(x),torch.LongTensor(labels) model=torch.nn.Sequential(torch.nn.Dropout(0.4),torch.nn.Linear(x.size(1),len(speakers))) model=model.to(args.device) optim=torch.optim.Adam(model.parameters()) r=list(range(len(x))) r=shuffle(r) split=int(args.pc_valid*len(r)) r_train,r_valid=r[:-split],r[-split:] try: loss_best=np.inf patience=args.patience for e in range(nepochs): batch_loop(e,r_train,x,y,False) with torch.no_grad(): losses,_=batch_loop(e,r_valid,x,y,True) print() if np.mean(losses)<loss_best: loss_best=np.mean(losses) patience=args.patience else: patience-=1 if patience==0: break except KeyboardInterrupt: print() torch.save([speakers,sca,model.cpu()],args.fn_cla) print('[Saved '+args.fn_cla+']') print('Predict') x,y=x[r_valid,:],y[r_valid] else: print('Predict') x=sca.transform(features) x,y=torch.FloatTensor(x),torch.LongTensor(labels) if args.mode=='random': losses,predictions=[],[] ymax=np.max(y.numpy()) for i in range(len(y)): losses.append(0) predictions.append(np.random.randint(ymax+1)) else: model=model.to(args.device) with torch.no_grad(): losses,predictions=batch_loop(-1,list(range(len(x))),x,y,True) print() losses=np.array(losses,dtype=np.float32) predictions=np.array(predictions,dtype=np.int32) print('NLL = {:7.3f}'.format(np.mean(losses))) print('Accuracy = {:5.1f}%'.format(100*np.mean((predictions==y.numpy()).astype(np.float32)))) print('-'*100) ######################################################################################################################## torch.save([durations,losses,predictions,labels,speakers,source,target],args.fn_res) print('[Saved '+args.fn_res+']')
the-stack_0_21409
import numpy as np from tqdm import trange, tqdm import tensorflow as tf import copy from .fedbase import BaseFedarated from flearn.utils.tf_utils import process_grad, cosine_sim, softmax, norm_grad, l2_clip, get_stdev from flearn.utils.model_utils import batch_data, gen_batch, gen_epoch, gen_batch_celeba class Server(BaseFedarated): def __init__(self, params, learner, dataset): print('Using fair fed avg to Train') self.inner_opt = tf.train.GradientDescentOptimizer(params['learning_rate']) super(Server, self).__init__(params, learner, dataset) def train(self): print('Training with {} workers ---'.format(self.clients_per_round)) np.random.seed(1234567+self.seed) corrupt_id = np.random.choice(range(len(self.clients)), size=self.num_corrupted, replace=False) print(corrupt_id) batches = {} for idx, c in enumerate(self.clients): if idx in corrupt_id: c.train_data['y'] = np.asarray(c.train_data['y']) if self.dataset == 'celeba': c.train_data['y'] = 1 - c.train_data['y'] elif self.dataset == 'femnist': c.train_data['y'] = np.random.randint(0, 62, len(c.train_data['y'])) # [0, 62) elif self.dataset == 'fmnist': # fashion mnist c.train_data['y'] = np.random.randint(0, 10, len(c.train_data['y'])) if self.dataset == 'celeba': batches[c] = gen_batch_celeba(c.train_data, self.batch_size, self.num_rounds * self.local_iters + 350) else: batches[c] = gen_batch(c.train_data, self.batch_size, self.num_rounds * self.local_iters + 350) initialization = copy.deepcopy(self.clients[0].get_params()) for i in range(self.num_rounds + 1): if i % self.eval_every == 0: num_test, num_correct_test, _ = self.test() # have set the latest model for all clients num_train, num_correct_train, loss_vector = self.train_error() avg_loss = np.dot(loss_vector, num_train) / np.sum(num_train) tqdm.write('At round {} training accu: {}, loss: {}'.format(i, np.sum(num_correct_train) * 1.0 / np.sum( num_train), avg_loss)) tqdm.write('At round {} test accu: {}'.format(i, np.sum(num_correct_test) * 1.0 / np.sum(num_test))) non_corrupt_id = np.setdiff1d(range(len(self.clients)), corrupt_id) tqdm.write('At round {} malicious test accu: {}'.format(i, np.sum( num_correct_test[corrupt_id]) * 1.0 / np.sum(num_test[corrupt_id]))) tqdm.write('At round {} benign test accu: {}'.format(i, np.sum( num_correct_test[non_corrupt_id]) * 1.0 / np.sum(num_test[non_corrupt_id]))) print("variance of the performance: ", np.var(num_correct_test[non_corrupt_id] / num_test[non_corrupt_id])) indices, selected_clients = self.select_clients(round=i, corrupt_id=corrupt_id, num_clients=self.clients_per_round) csolns = [] losses = [] for idx in indices: c = self.clients[idx] # communicate the latest model c.set_params(self.latest_model) weights_before = copy.deepcopy(self.latest_model) loss = c.get_loss() # compute loss on the whole training data losses.append(loss) for _ in range(self.local_iters): data_batch = next(batches[c]) _, _, _ = c.solve_sgd(data_batch) new_weights = c.get_params() grads = [(u - v) * 1.0 for u, v in zip(new_weights, weights_before)] if idx in corrupt_id: if self.boosting: # model replacement grads = [self.clients_per_round * u for u in grads] elif self.random_updates: # send random updates stdev_ = get_stdev(grads) grads = [np.random.normal(0, stdev_, size=u.shape) for u in grads] if self.q > 0: csolns.append((np.exp(self.q * loss), grads)) else: csolns.append(grads) if self.q > 0: overall_updates = self.aggregate(csolns) else: if self.gradient_clipping: csolns = l2_clip(csolns) expected_num_mali = int(self.clients_per_round * self.num_corrupted / len(self.clients)) if self.median: overall_updates = self.median_average(csolns) elif self.k_norm: overall_updates = self.k_norm_average(self.clients_per_round - expected_num_mali, csolns) elif self.k_loss: overall_updates = self.k_loss_average(self.clients_per_round - expected_num_mali, losses, csolns) elif self.krum: overall_updates = self.krum_average(self.clients_per_round - expected_num_mali - 2, csolns) elif self.mkrum: m = self.clients_per_round - expected_num_mali overall_updates = self.mkrum_average(self.clients_per_round - expected_num_mali - 2, m, csolns) else: overall_updates = self.simple_average(csolns) self.latest_model = [(u + v) for u, v in zip(self.latest_model, overall_updates)] distance = np.linalg.norm(process_grad(self.latest_model) - process_grad(initialization)) if i % self.eval_every == 0: print('distance to initialization:', distance) # local finetuning init_model = copy.deepcopy(self.latest_model) after_test_accu = [] test_samples = [] for idx, c in enumerate(self.clients): c.set_params(init_model) local_model = copy.deepcopy(init_model) for _ in range(max(int(self.finetune_iters * c.train_samples / self.batch_size), self.finetune_iters)): c.set_params(local_model) data_batch = next(batches[c]) _, grads, _ = c.solve_sgd(data_batch) for j in range(len(grads[1])): eff_grad = grads[1][j] + self.lam * (local_model[j] - init_model[j]) local_model[j] = local_model[j] - self.learning_rate * self.decay_factor * eff_grad c.set_params(local_model) tc, _, num_test = c.test() after_test_accu.append(tc) test_samples.append(num_test) after_test_accu = np.asarray(after_test_accu) test_samples = np.asarray(test_samples) tqdm.write('final test accu: {}'.format(np.sum(after_test_accu) * 1.0 / np.sum(test_samples))) tqdm.write('final malicious test accu: {}'.format(np.sum( after_test_accu[corrupt_id]) * 1.0 / np.sum(test_samples[corrupt_id]))) tqdm.write('final benign test accu: {}'.format(np.sum( after_test_accu[non_corrupt_id]) * 1.0 / np.sum(test_samples[non_corrupt_id]))) print("variance of the performance: ", np.var(after_test_accu[non_corrupt_id] / test_samples[non_corrupt_id]))
the-stack_0_21410
""" planner/urls.py """ # import statements from django.conf.urls import url from django.views.generic import ListView from planner import views from planner.models import Lawn from planner.views import LawnDetailView, ProfileUpdate, UserDetailView, UserLawnListView, LawnDeleteView,\ LawnNewView, LawnEditView from django.contrib.sitemaps.views import sitemap from .sitemaps import StaticViewSitemap sitemaps = { 'static': StaticViewSitemap, } urlpatterns = [ url(r'^$', views.index, name="index"), url(r'planner/$', LawnNewView.as_view(), name='lawn_new'), url(r'^planner/lawn/(?P<pk>\d+)/$', LawnDetailView.as_view(), name="lawn_detail"), url(r'^planner/lawn/(?P<pk>\d+)/edit/$', LawnEditView.as_view(), name='lawn_edit'), url(r'^planner/lawn/list/$', ListView.as_view( queryset=Lawn.objects.filter(user__username="examples").order_by('name'), template_name="planner/lawn_list.html"), name="example_lawn_list"), url(r'^planner/lawn/(?P<pk>\d+)/delete/$', LawnDeleteView.as_view(), name="lawn_delete"), url(r'^accounts/profile/$', UserDetailView.as_view(), name="account_profile"), url(r'^accounts/profile/edit/$', ProfileUpdate.as_view(), name="account_profile_edit"), url(r'^planner/mylawns/$', UserLawnListView.as_view(), name="user_lawn_list"), url(r'^sitemap\.xml$', sitemap, {'sitemaps': sitemaps}, name='django.contrib.sitemaps.views.sitemap'), ]
the-stack_0_21411
import binascii import copy import hashlib import logging from memoizer import memoize import os import plistlib from plistlib import _PlistWriter import re OUTPUT_DIRECTORY = '_CodeSignature' OUTPUT_FILENAME = 'CodeResources' TEMPLATE_FILENAME = 'code_resources_template.xml' # DIGEST_ALGORITHM = "sha1" HASH_BLOCKSIZE = 65536 log = logging.getLogger(__name__) # have to monkey patch Plist, in order to make the values # look the same - no .0 for floats # Apple's plist utils work like this: # 1234.5 ---> <real>1234.5</real> # 1234.0 ---> <real>1234</real> def write_value(self, value): if isinstance(value, float): if value.is_integer(): rep = repr(int(value)) else: rep = repr(value) self.simple_element("real", rep) else: self.old_write_value(value) _PlistWriter.old_write_value = _PlistWriter.write_value _PlistWriter.write_value = write_value # Simple reimplementation of ResourceBuilder, in the Apple Open Source # file bundlediskrep.cpp class PathRule(object): OPTIONAL = 0x01 OMITTED = 0x02 NESTED = 0x04 EXCLUSION = 0x10 # unused? TOP = 0x20 # unused? def __init__(self, pattern='', properties=None): # on Mac OS the FS is case-insensitive; simulate that here self.pattern = re.compile(pattern, re.IGNORECASE) self.flags = 0 self.weight = 0 if properties is not None: if type(properties) == 'bool': if properties is False: self.flags |= PathRule.OMITTED # if it was true, this file is required; # do nothing elif isinstance(properties, dict): for key, value in properties.items(): if key == 'optional' and value is True: self.flags |= PathRule.OPTIONAL elif key == 'omit' and value is True: self.flags |= PathRule.OMITTED elif key == 'nested' and value is True: self.flags |= PathRule.NESTED elif key == 'weight': self.weight = float(value) def is_optional(self): return self.flags & PathRule.OPTIONAL != 0 def is_omitted(self): return self.flags & PathRule.OMITTED != 0 def is_nested(self): return self.flags & PathRule.NESTED != 0 def is_exclusion(self): return self.flags & PathRule.EXCLUSION != 0 def is_top(self): return self.flags & PathRule.TOP != 0 def matches(self, path): return re.match(self.pattern, path) def __str__(self): return 'PathRule:' + str(self.flags) + ':' + str(self.weight) class ResourceBuilder(object): NULL_PATH_RULE = PathRule() def __init__(self, app_path, rules_data, respect_omissions=False, include_sha256=False): self.app_path = app_path self.app_dir = os.path.dirname(app_path) self.rules = [] self.respect_omissions = respect_omissions self.include_sha256 = include_sha256 for pattern, properties in rules_data.items(): self.rules.append(PathRule(pattern, properties)) def find_rule(self, path): best_rule = ResourceBuilder.NULL_PATH_RULE for rule in self.rules: # log.debug('trying rule ' + str(rule) + ' against ' + path) if rule.matches(path): if rule.flags and rule.is_exclusion(): best_rule = rule break elif rule.weight > best_rule.weight: best_rule = rule return best_rule def get_rule_and_paths(self, root, path): path = os.path.join(root, path) relative_path = os.path.relpath(path, self.app_dir) rule = self.find_rule(relative_path) return (rule, path, relative_path) def scan(self): """ Walk entire directory, compile mapping path relative to source_dir -> digest and other data """ file_entries = {} # rule_debug_fmt = "rule: {0}, path: {1}, relative_path: {2}" for root, dirs, filenames in os.walk(self.app_dir): # log.debug("root: {0}".format(root)) for filename in filenames: rule, path, relative_path = self.get_rule_and_paths(root, filename) # log.debug(rule_debug_fmt.format(rule, path, relative_path)) # specifically ignore the CodeResources symlink in base directory if it exists (iOS 11+ fix) if relative_path == "CodeResources" and os.path.islink(path): continue if rule.is_exclusion(): continue if rule.is_omitted() and self.respect_omissions is True: continue if self.app_path == path: continue # in the case of symlinks, we don't calculate the hash but rather add a key for it being a symlink if os.path.islink(path): # omit symlinks from files, leave in files2 if not self.respect_omissions: continue val = {'symlink': os.readlink(path)} else: # the Data element in plists is base64-encoded val = {'hash': plistlib.Data(get_hash_binary(path))} if self.include_sha256: val['hash2'] = plistlib.Data(get_hash_binary(path, 'sha256')) if rule.is_optional(): val['optional'] = True if len(val) == 1 and 'hash' in val: file_entries[relative_path] = val['hash'] else: file_entries[relative_path] = val for dirname in dirs: rule, path, relative_path = self.get_rule_and_paths(root, dirname) if rule.is_nested() and '.' not in path: dirs.remove(dirname) continue if relative_path == OUTPUT_DIRECTORY: dirs.remove(dirname) return file_entries def get_template(): """ Obtain the 'template' plist which also contains things like default rules about which files should count """ current_dir = os.path.dirname(os.path.abspath(__file__)) template_path = os.path.join(current_dir, TEMPLATE_FILENAME) return plistlib.readPlist(open(template_path, 'rb')) @memoize def get_hash_hex(path, hash_type='sha1'): """ Get the hash of a file at path, encoded as hexadecimal """ if hash_type == 'sha256': hasher = hashlib.sha256() elif hash_type == 'sha1': hasher = hashlib.sha1() else: raise ValueError("Incorrect hash type provided: {}".format(hash_type)) with open(path, 'rb') as afile: buf = afile.read(HASH_BLOCKSIZE) while len(buf) > 0: hasher.update(buf) buf = afile.read(HASH_BLOCKSIZE) return hasher.hexdigest() @memoize def get_hash_binary(path, hash_type='sha1'): """ Get the hash of a file at path, encoded as binary """ return binascii.a2b_hex(get_hash_hex(path, hash_type)) def write_plist(target_dir, plist): """ Write the CodeResources file """ output_dir = os.path.join(target_dir, OUTPUT_DIRECTORY) if not os.path.exists(output_dir): os.makedirs(output_dir) output_path = os.path.join(output_dir, OUTPUT_FILENAME) plistlib.writePlist(plist, open(output_path, 'wb')) return output_path def make_seal(source_app_path, target_dir=None): """ Given a source app, create a CodeResources file for the surrounding directory, and write it into the appropriate path in a target directory """ if target_dir is None: target_dir = os.path.dirname(source_app_path) template = get_template() # n.b. code_resources_template not only contains a template of # what the file should look like; it contains default rules # deciding which files should be part of the seal rules = template['rules'] plist = copy.deepcopy(template) resource_builder = ResourceBuilder(source_app_path, rules, respect_omissions=False) plist['files'] = resource_builder.scan() rules2 = template['rules2'] resource_builder2 = ResourceBuilder(source_app_path, rules2, respect_omissions=True, include_sha256=True) plist['files2'] = resource_builder2.scan() return write_plist(target_dir, plist)
the-stack_0_21412
# coding=utf8 import calendar from datetime import date, datetime class SCalendars: @staticmethod def get_last_day_of_this_month(year: int, month: int) -> date: return date(year, month, calendar.monthrange(year, month)[-1]) @staticmethod def get_fist_day_of_year_week(year: int, week: int) -> date: fmt = '{}-W{}-1'.format(year, week) return datetime.strptime(fmt, "%Y-W%W-%w").date()
the-stack_0_21413
# ********************************************************************** # Copyright (C) 2020 Johns Hopkins University Applied Physics Laboratory # # All Rights Reserved. # For any other permission, please contact the Legal Office at JHU/APL. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ********************************************************************** import json from flask import Blueprint from shared.config import config from system.extensions import FlaskExtensions from system.utils.biocontainers import get_biocontainers from system.utils.readtypes import get_read_types info_bp = Blueprint("info", __name__, url_prefix=config.SERVER_API_CHROOT) mongodb = FlaskExtensions.mongodb @info_bp.route("/info/classifiers", methods=["GET"]) def get_classifiers(): _, classifiers_info = get_biocontainers() classifier_links = get_classifiers_links(classifiers_info) res = json.dumps(dict(data=classifier_links)) return res, 200 def get_classifiers_links(classifier_info): data = [] for k, v in classifier_info.items(): data.append(dict(name=k, link=v.link)) return data @info_bp.route("/info/classifiers_only", methods=["GET"]) def get_classifiersOnly(): classifier_names, _ = get_biocontainers() names = get_classifiers_name(classifier_names) res = json.dumps(names) return res, 200 def get_classifiers_name(classifier_names): res = dict(data=classifier_names) return res @info_bp.route("/info/read_types", methods=["GET"]) def get_read_type(): _, read_types_info = get_read_types() read_type_links = get_read_types_links(read_types_info) res = json.dumps(dict(data=read_type_links)) return res, 200 def get_read_types_links(read_types_info): data = [] for k, v in read_types_info.items(): data.append(dict(name=k, prodlink=v.producturl, simlink=v.simurl)) return data @info_bp.route("/info/read_types_only", methods=["GET"]) def get_read_types_only(): read_type_names, _ = get_read_types() names = get_read_type_names(read_type_names) res = json.dumps(names) return res, 200 def get_read_type_names(read_type_names): res = dict(data=read_type_names) return res
the-stack_0_21415
import collections import numpy as np import itertools class General: def __init__(self, g_id, loyalty, post=None): self.g_id = g_id self.loyalty = loyalty self.post = post self.allMessagesReceived = [] self.previousRoundMessages = [] self.messages = [] def send_message(self, generalToSend, c_mes, round): mStr = str(self.g_id) + "," + c_mes if self.loyalty == "T": ord = mStr[-1] if round == 0: if ord == "A": new_ord = "R" elif ord == "R": new_ord = "A" mStr = mStr.replace(ord, new_ord) generalToSend.receive_message(mStr) #print("General {} (loyalty {}) sent message {} to General {}".format(self.g_id, self.loyalty, mStr, generalToSend.g_id)) def cm_send_message(self, generalToSend, order): mStr = str(self.g_id) + "," + order generalToSend.receive_message(mStr) def receive_message(self, messageStr): self.messages.append(messageStr) self.allMessagesReceived.append(messageStr) # Example Inputs NUM_OF_LEIUTENANTS = 6 COMMANDER_LOYALTY = "L" loyalties = "LTLLTL" ''' NUM_OF_LEIUTENANTS = 3 COMMANDER_LOYALTY = "L" loyalties = "LLT" ''' ''' NUM_OF_LEIUTENANTS = 9 COMMANDER_LOYALTY = "T" loyalties = "LLLLTTLLL" ''' traitorCount = (COMMANDER_LOYALTY + loyalties).count("T") if traitorCount > (NUM_OF_LEIUTENANTS + 1)*2/3: raise ValueError("Assumption Failure: Too many traitors!") print(traitorCount) # Initialize Commander commander = General(0, COMMANDER_LOYALTY, "CM") # Initialize Generals generals = [] generals.append(commander) for i in range(NUM_OF_LEIUTENANTS): generals.append(General(i+1, loyalties[i], "LT")) print("Initializing Generals: Starting State ->") for g in generals: print(g.__dict__) print("Total Generals: ", NUM_OF_LEIUTENANTS+1, " | ","Commander Loyalty: ", generals[0].loyalty, " | Traitor Lieutenants: ", loyalties.count("T")) #Oral Message Algorithm print("Oral Message Algorithm Starting: Phase 1") rounds = traitorCount #total rounds is equal to number of traitors + 1, use <= if using while with rounds var #Phase 1: Commander's Turn #print(generals[0].__dict__) #send initial set of messages including actual order for gens in generals[1:]: #print(gens.__dict__) if commander.loyalty == "L": #commander is loyal, send same message to all LTs order = "A" commander.cm_send_message(gens, order) elif commander.loyalty == "T": #commander is traitor, send different message to half n = len(generals[1:])//2 halfgens1 = generals[1:n] halfgens2 = generals[n:] for g in halfgens1: commander.cm_send_message(g, "A") for g in halfgens2: commander.cm_send_message(g, "R") for g in generals: g.previousRoundMessages += g.messages g.messages = [] print(g.__dict__) for r in range(rounds): print("\n Round: ",r+1 , "\n \n") for g in generals: for m in g.previousRoundMessages: #print("Message Sent: ", m) for other_g in generals: if g.post == "CM" or other_g.post == "CM": continue if g.g_id == other_g.g_id: continue if str(other_g.g_id) in m: #print("Message: ", m, " | Id Found: ", other_g.g_id) continue g.send_message(other_g, m, r) for g in generals: g.previousRoundMessages = g.messages g.messages = [] print("General {}: ".format(g.g_id)) print(g.__dict__, "\n") # Format messages to match assignment for g in generals[1:]: res = [x[-3::-1] + x[-2:] for x in g.allMessagesReceived if len(x) >= 3] g.allMessagesReceived = [] g.allMessagesReceived += res #Phase 2: Consensus print('Phase 2: Consensus \n') # Message Grouping for g in generals[1:]: util_func = lambda x: x[0:5] temp = sorted(g.allMessagesReceived, key = util_func) res = [list(ele) for i, ele in itertools.groupby(temp, util_func)] #print(g.allMessagesReceived) #print(res) consensusList = [] # 'A', 'R' for r in res: print(r) rConsensusCommands = [s[-1] for s in r] print(rConsensusCommands) res_con = collections.Counter(rConsensusCommands) aCons, rCons = res_con['A'], res_con['R'] #print("Consensus A: ", aCons, " Consensus R: ", rCons) if aCons > rCons: consensusList.append('A') else: consensusList.append('R') superConsensus = collections.Counter(consensusList) saCons, srCons = superConsensus['A'], superConsensus['R'] if saCons > srCons: g.consensus = 'A' else: g.consensus = 'R' #print(consensusList) print("\n General {} Consensus: {}".format(g.g_id, g.consensus)) print("#########################") ''' # Naive Consensus (takes consensus over all messages received) for g in generals[1:]: consensusCommands = [s[-1] for s in g.allMessagesReceived] #print("General {} (Loyalty {}) Consensus Str: {}".format(g.g_id, g.loyalty, consensusCommands)) cons = collections.Counter(consensusCommands) aCons, rCons = cons['A'], cons['R'] if aCons > rCons: g.consensus = "A" print("General {} (Loyalty {}) Consensus Reached. Command: {}".format(g.g_id, g.loyalty, "A")) else: g.consensus = "R" print("General {} (Loyalty {}) Consensus Reached. Command: {}".format(g.g_id, g.loyalty, "R")) ''' print("Final Consensus ->") for g in generals[1:]: print("General {} (Loyalty {}) Command: {}".format(g.g_id, g.loyalty, g.consensus))
the-stack_0_21420
""" Module holds all stuff regarding Gatling tool usage Copyright 2015 BlazeMeter Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import codecs import json import os import re import time from collections import defaultdict from distutils.version import LooseVersion from bzt import TaurusConfigError, ToolError from bzt.engine import ScenarioExecutor, Scenario, FileLister, HavingInstallableTools, SelfDiagnosable from bzt.modules.aggregator import ConsolidatingAggregator, ResultsReader from bzt.modules.console import WidgetProvider, ExecutorWidget from bzt.requests_model import HTTPRequest from bzt.six import string_types, numeric_types, PY2 from bzt.utils import TclLibrary, EXE_SUFFIX, dehumanize_time, get_full_path, FileReader, RESOURCES_DIR, BetterDict from bzt.utils import simple_body_dict, CALL_PROBLEMS from bzt.utils import unzip, RequiredTool, JavaVM, shutdown_process, ensure_is_dict, is_windows def is_gatling2(ver): return LooseVersion(ver) < LooseVersion("3") class GatlingScriptBuilder(object): def __init__(self, load, scenario, parent_logger, class_name, gatling_version=None): super(GatlingScriptBuilder, self).__init__() self.log = parent_logger.getChild(self.__class__.__name__) self.load = load self.feeder_names = {} self.scenario = scenario self.class_name = class_name if gatling_version is None: self.gatling_version = Gatling.VERSION else: self.gatling_version = gatling_version # add prefix 'http://' if user forgot it @staticmethod def fixed_addr(addr): if len(addr) > 0 and not addr.startswith('http'): return 'http://' + addr else: return addr @staticmethod def indent(text, level): return " " * level + text def _get_http(self): default_address = self.scenario.get("default-address", "") http_str = '("%(addr)s")\n' % {'addr': self.fixed_addr(default_address)} if self.scenario.get("retrieve-resources", False): regex = self.scenario.get("retrieve-resources-regex") params = 'BlackList(), WhiteList("""%s""")' % regex if regex else "" http_str += self.indent(".inferHtmlResources(%s)\n" % params, level=2) if not self.scenario.get('store-cache', True): http_str += self.indent('.disableCaching\n', level=2) scenario_headers = self.scenario.get_headers() for key in scenario_headers: http_str += self.indent('.header("%(key)s", "%(val)s")\n' % {'key': key, 'val': scenario_headers[key]}, level=2) return http_str def _get_exec(self): exec_str = '' for req in self.scenario.get_requests(): if not isinstance(req, HTTPRequest): msg = "Gatling simulation generator doesn't support '%s' blocks, skipping" self.log.warning(msg, req.NAME) continue if len(exec_str) > 0: exec_str += '.' default_address = self.scenario.get("default-address") if default_address: url = req.url else: url = self.fixed_addr(req.url) exec_str += 'exec(\n' exec_template = self.indent('http("%(req_label)s").%(method)s("%(url)s")\n', level=2) exec_str += exec_template % {'req_label': req.label, 'method': req.method.lower(), 'url': url} for key in req.headers: exec_template = self.indent('.header("%(key)s", "%(val)s")\n', level=3) exec_str += exec_template % {'key': key, 'val': req.headers[key]} # todo: join with the same in get_sampler_pair if isinstance(req.body, (dict, list, numeric_types)): if req.get_header('content-type') == 'application/json' or isinstance(req.body, numeric_types): req.body = json.dumps(req.body) elif not simple_body_dict(req.body): self.log.debug('Header "Content-Type: application/json" is required for body: "%s"', req.body) req.body = json.dumps(req.body) if isinstance(req.body, string_types): exec_str += self.indent('.body(%(method)s("""%(body)s"""))\n', level=3) exec_str = exec_str % {'method': 'StringBody', 'body': req.body} elif isinstance(req.body, dict): for key in sorted(req.body.keys()): exec_str += self.indent('.formParam("%(key)s", "%(val)s")\n', level=3) exec_str = exec_str % {'key': key, 'val': req.body[key]} elif req.body is not None: self.log.warning("Unknown body type: %s", req.body) exec_str += self.__get_assertions(req.config.get('assert', [])) if not req.priority_option('follow-redirects', default=True): exec_str += self.indent('.disableFollowRedirect\n', level=3) exec_str += self.indent(')', level=1) think_time = int(dehumanize_time(req.get_think_time())) if think_time: exec_str += '.pause(%(think_time)s)' % {'think_time': think_time} return exec_str @staticmethod def __get_check_template(assertion): a_not = assertion.get('not', False) a_regexp = assertion.get('regexp', False) a_subject = assertion.get('subject', Scenario.FIELD_BODY) if a_subject == Scenario.FIELD_RESP_CODE: if a_not: res = 'status.not(%(sample)s)' else: res = 'status.is(%(sample)s)' elif a_subject == Scenario.FIELD_HEADERS: res = '' else: # FIELD_BODY if a_regexp: res = 'regex("""%(sample)s""").' else: res = 'substring("""%(sample)s""").' if a_not: res += 'notExists' else: res += 'exists' return res def __get_assertions(self, assertions): if len(assertions) == 0: return '' first_check = True check_result = self.indent('.check(\n', level=3) for idx, assertion in enumerate(assertions): assertion = ensure_is_dict(assertions, idx, "contains") error_str = 'You must specify "contains" parameter for assertion item' a_contains = assertion.get('contains', TaurusConfigError(error_str)) check_template = self.__get_check_template(assertion) if check_template == '': # FIELD_HEADERS self.log.warning('Sorry, but "headers" subject is not implemented for gatling asserts') return '' if not isinstance(a_contains, list): a_contains = [a_contains] for sample in a_contains: if not first_check: check_result += ',\n' check_result += self.indent(check_template % {'sample': sample}, level=4) first_check = False check_result += '\n' + self.indent(')', level=3) + '\n' return check_result def _get_feeder_name(self, source_filename): base_feeder_name = ".".join(os.path.basename(source_filename).split(".")[:-1]) base_feeder_name = re.sub(r'[^A-Za-z0-9_]', '', base_feeder_name) + "Feed" index = 0 feeder_name = base_feeder_name while feeder_name in self.feeder_names and self.feeder_names[feeder_name] != source_filename: index += 1 feeder_name = base_feeder_name + "_%s" % index if feeder_name not in self.feeder_names: self.feeder_names[feeder_name] = source_filename return feeder_name def _get_feeders(self): feeders_def = "" feeding = "" for source in self.scenario.get_data_sources(): path = self.scenario.engine.find_file(source["path"]) delimiter = source.get('delimiter', None) loop_over = source.get("loop", True) var_name = self._get_feeder_name(path) params = dict(varname=var_name, filename=path, delimiter=delimiter) if delimiter is not None: tpl = """val %(varname)s = separatedValues("%(filename)s", '%(delimiter)s')""" else: tpl = 'val %(varname)s = csv("%(filename)s")' line = self.indent(tpl % params, level=1) if loop_over: line += '.circular' feeders_def += line + '\n' feeding += "feed(%s)." % var_name if feeders_def: feeders_def = '\n' + feeders_def return feeders_def, feeding def gen_test_case(self): if is_gatling2(self.gatling_version): version = 2 else: version = 3 template_path = os.path.join(RESOURCES_DIR, "gatling", ("v%s_script.tpl" % version)) with open(template_path) as template_file: template_line = template_file.read() feeders_def, feeding = self._get_feeders() params = { 'class_name': self.class_name, 'httpConf': self._get_http(), '_exec': self._get_exec(), 'feeders': feeders_def, 'feeding': feeding, } return template_line % params class GatlingExecutor(ScenarioExecutor, WidgetProvider, FileLister, HavingInstallableTools, SelfDiagnosable): """ Gatling executor module """ def __init__(self): super(GatlingExecutor, self).__init__() self.script = None self.process = None self.end_time = None self.retcode = None self.simulation_started = False self.dir_prefix = "gatling-%s" % id(self) self.tool = None def get_cp_from_files(self): jar_files = [] files = self.execution.get('files', []) for candidate in files: candidate = self.engine.find_file(candidate) if os.path.isfile(candidate) and candidate.lower().endswith('.jar'): jar_files.append(candidate) elif os.path.isdir(candidate): for element in os.listdir(candidate): element = os.path.join(candidate, element) if os.path.isfile(element) and element.lower().endswith('.jar'): jar_files.append(element) return jar_files def get_additional_classpath(self): cp = self.get_scenario().get("additional-classpath", []) cp.extend(self.settings.get("additional-classpath", [])) return cp def prepare(self): super(GatlingExecutor, self).prepare() self.install_required_tools() scenario = self.get_scenario() self.env.set({"GATLING_HOME": self.tool.tool_dir}) cpath = self.get_additional_classpath() self.log.debug("Classpath for Gatling: %s", cpath) for element in cpath: self.env.add_path({"JAVA_CLASSPATH": element}) self.env.add_path({"COMPILATION_CLASSPATH": element}) new_name = self.engine.create_artifact('gatling-launcher', EXE_SUFFIX) self.log.debug("Building Gatling launcher: %s", new_name) self.tool.build_launcher(new_name) self.script = self.get_script_path() if not self.script: if "requests" in scenario: self.get_scenario()['simulation'], self.script = self.__generate_script() else: msg = "There must be a script file or requests for its generation " msg += "to run Gatling tool (%s)" % self.execution.get('scenario') raise TaurusConfigError(msg) self.dir_prefix = self.settings.get("dir-prefix", self.dir_prefix) self.stdout = open(self.engine.create_artifact("gatling", ".out"), "w") self.stderr = open(self.engine.create_artifact("gatling", ".err"), "w") self.reader = DataLogReader(self.engine.artifacts_dir, self.log, self.dir_prefix) if isinstance(self.engine.aggregator, ConsolidatingAggregator): self.engine.aggregator.add_underling(self.reader) def __generate_script(self): simulation = "TaurusSimulation_%s" % id(self) file_name = self.engine.create_artifact(simulation, ".scala") gen_script = GatlingScriptBuilder(self.get_load(), self.get_scenario(), self.log, simulation, self.tool.version) with codecs.open(file_name, 'w', encoding='utf-8') as script: script.write(gen_script.gen_test_case()) return simulation, file_name def _get_simulation_props(self): props = {} if os.path.isfile(self.script): if self.script.endswith('.jar'): self.env.add_path({"JAVA_CLASSPATH": self.script}) self.env.add_path({"COMPILATION_CLASSPATH": self.script}) else: props['gatling.core.directory.simulations'] = get_full_path(self.script, step_up=1) else: props['gatling.core.directory.simulations'] = self.script simulation = self.get_scenario().get("simulation") if simulation: props['gatling.core.simulationClass'] = simulation else: props['gatling.core.runDescription'] = "Taurus_Test" return props def _get_load_props(self): load = self.get_load() props = {} if load.concurrency: props['concurrency'] = load.concurrency if load.ramp_up is not None: props['ramp-up'] = int(load.ramp_up) if load.hold is not None: props['hold-for'] = int(load.hold) if load.iterations: props['iterations'] = int(load.iterations) if load.throughput: if load.duration: props['throughput'] = load.throughput else: self.log.warning("You should set up 'ramp-up' and/or 'hold-for' for usage of 'throughput'") return props def _get_scenario_props(self): props = {} scenario = self.get_scenario() timeout = scenario.get('timeout', None) if timeout is not None: props['gatling.http.ahc.requestTimeout'] = int(dehumanize_time(timeout) * 1000) if scenario.get('keepalive', True): # gatling <= 2.2.0 props['gatling.http.ahc.allowPoolingConnections'] = 'true' props['gatling.http.ahc.allowPoolingSslConnections'] = 'true' # gatling > 2.2.0 props['gatling.http.ahc.keepAlive'] = 'true' else: # gatling <= 2.2.0 props['gatling.http.ahc.allowPoolingConnections'] = 'false' props['gatling.http.ahc.allowPoolingSslConnections'] = 'false' # gatling > 2.2.0 props['gatling.http.ahc.keepAlive'] = 'false' return props def _set_env(self): props = BetterDict() props.merge(self.settings.get('properties')) props.merge(self.get_scenario().get("properties")) props['gatling.core.outputDirectoryBaseName'] = self.dir_prefix props['gatling.core.directory.resources'] = self.engine.artifacts_dir props['gatling.core.directory.results'] = self.engine.artifacts_dir props.merge(self._get_simulation_props()) props.merge(self._get_load_props()) props.merge(self._get_scenario_props()) for key in sorted(props.keys()): prop = props[key] val_tpl = "%s" if isinstance(prop, string_types): if not is_windows(): # extend properties support (contained separators/quotes/etc.) on lin/mac val_tpl = "%r" if PY2: prop = prop.encode("utf-8", 'ignore') # to convert from unicode into str self.env.add_java_param({"JAVA_OPTS": ("-D%s=" + val_tpl) % (key, prop)}) self.env.set({"NO_PAUSE": "TRUE"}) self.env.add_java_param({"JAVA_OPTS": self.settings.get("java-opts", None)}) self.log.debug('JAVA_OPTS: "%s"', self.env.get("JAVA_OPTS")) def startup(self): self._set_env() self.process = self._execute(self._get_cmdline(), pgrp=False) def _get_cmdline(self): cmdline = [self.tool.tool_path] if is_gatling2(self.tool.version): cmdline += ["-m"] # default for 3.0.0 return cmdline def check(self): """ Checks if tool is still running. Also checks if resulting logs contains any data and throws exception otherwise. :return: bool :raise TaurusConfigError: :raise TaurusToolError: """ self.retcode = self.process.poll() # detect interactive mode and raise exception if it found if not self.simulation_started: wrong_line = "Choose a simulation number:" with open(self.stdout.name) as out: file_header = out.read(1024) if wrong_line in file_header: # gatling can't select test scenario scenarios = file_header[file_header.find(wrong_line) + len(wrong_line):].rstrip() msg = 'Several gatling simulations are found, you must ' msg += 'specify one of them to use in "simulation" option: %s' % scenarios raise TaurusConfigError(msg) if 'started...' in file_header: self.simulation_started = True if self.retcode is None: return False elif self.retcode == 0: return True else: raise ToolError("Gatling tool exited with non-zero code: %s" % self.retcode, self.get_error_diagnostics()) def shutdown(self): """ If tool is still running - let's stop it. """ shutdown_process(self.process, self.log) if self.start_time: self.end_time = time.time() self.log.debug("Gatling worked for %s seconds", self.end_time - self.start_time) def post_process(self): """ Save data log as artifact """ if self.reader and self.reader.file and self.reader.file.name: self.engine.existing_artifact(self.reader.file.name) super(GatlingExecutor, self).post_process() def install_required_tools(self): self.tool = self._get_tool(Gatling, config=self.settings) java = self._get_tool(JavaVM) required_tools = [self._get_tool(TclLibrary), java, self.tool] for tool in required_tools: if not tool.check_if_installed(): tool.install() # old gatling compiler (zinc) is incompatible with new jre new_java = java.version and int(java.version) > 8 if is_gatling2(self.tool.version) and new_java: self.log.warning('Gatling v%s is incompatible with Java %s', self.tool.version, java.version) def get_widget(self): if not self.widget: simulation = self.get_scenario().get('simulation', None) if simulation == "TaurusSimulation_%s" % id(self): simulation = 'generated script' if simulation is None: simulation = os.path.basename(self.script) self.widget = ExecutorWidget(self, 'Gatling: %s' % simulation) return self.widget def resource_files(self): files = [] script = self.get_script_path() if script: files.append(script) else: for source in self.get_scenario().get_data_sources(): source_path = self.engine.find_file(source["path"]) files.append(source_path) files.extend(self.get_additional_classpath()) return files def get_error_diagnostics(self): diagnostics = [] if self.stdout is not None: with open(self.stdout.name) as fds: contents = fds.read().strip() if contents.strip(): diagnostics.append("Gatling STDOUT:\n" + contents) if self.stderr is not None: with open(self.stderr.name) as fds: contents = fds.read().strip() if contents.strip(): diagnostics.append("Gatling STDERR:\n" + contents) if self.reader and self.reader.file and self.reader.file.name: with open(self.reader.file.name) as fds: contents = fds.read().strip() if contents.strip(): diagnostics.append("Simulation log:\n" + contents) return diagnostics class DataLogReader(ResultsReader): """ Class to read KPI from data log """ def __init__(self, basedir, parent_logger, dir_prefix): super(DataLogReader, self).__init__() self.concurrency = 0 self.log = parent_logger.getChild(self.__class__.__name__) self.basedir = basedir self.file = FileReader(file_opener=self.open_fds, parent_logger=self.log) self.partial_buffer = "" self.delimiter = "\t" self.dir_prefix = dir_prefix self.guessed_gatling_version = None self._group_errors = defaultdict(lambda: defaultdict(set)) def _extract_log_gatling_21(self, fields): """ Extract stats from Gatling 2.1 format. :param fields: :return: """ # $scenario $userId ${RequestRecordHeader.value} # ${serializeGroups(groupHierarchy)} $name # 5requestStartDate 6requestEndDate # 7responseStartDate 8responseEndDate # 9status # ${serializeMessage(message)}${serializeExtraInfo(extraInfo)}$Eol" if fields[2].strip() == "USER": if fields[3].strip() == "START": self.concurrency += 1 elif fields[3].strip() == "END": self.concurrency -= 1 if fields[2].strip() != "REQUEST": return None label = fields[4] t_stamp = int(fields[8]) / 1000.0 r_time = (int(fields[8]) - int(fields[5])) / 1000.0 latency = (int(fields[7]) - int(fields[6])) / 1000.0 con_time = (int(fields[6]) - int(fields[5])) / 1000.0 if fields[-1] == 'OK': r_code = '200' else: _tmp_rc = fields[-1].split(" ")[-1] r_code = _tmp_rc if _tmp_rc.isdigit() else 'No RC' if len(fields) >= 11 and fields[10]: error = fields[10] else: error = None return int(t_stamp), label, r_time, con_time, latency, r_code, error def _extract_log_gatling_22(self, fields): """ Extract stats from Gatling 2.2 format :param fields: :return: """ # 0 ${RequestRecordHeader.value} # 1 $scenario # 2 $userId # 3 ${serializeGroups(groupHierarchy)} # 4 $label # 5 $startTimestamp # 6 $endTimestamp # 7 $status # [8] ${serializeMessage(message)}${serializeExtraInfo(extraInfo)} if fields[0].strip() == "USER": user_id = fields[2] if fields[3].strip() == "START": self.concurrency += 1 self._group_errors[user_id].clear() elif fields[3].strip() == "END": self.concurrency -= 1 self._group_errors.pop(user_id) if fields[0].strip() == "GROUP": return self.__parse_group(fields) elif fields[0].strip() == "REQUEST": del fields[0] if self.guessed_gatling_version != "3.X": del fields[0] return self.__parse_request(fields) else: return None def __parse_group(self, fields): latency = 0.0 con_time = 0.0 if len(fields) < 4: label = "" t_stamp = int(fields[2]) / 1000.0 r_time = 0 error = fields[1] r_code = "N/A" else: if self.guessed_gatling_version != "3.X": del fields[1] user_id = fields[1] label = fields[2] if ',' in label: return None # skip nested groups for now t_stamp = int(fields[4]) / 1000.0 r_time = int(fields[5]) / 1000.0 if label in self._group_errors[user_id]: error = ';'.join(self._group_errors[user_id].pop(label)) else: error = None if fields[6] == 'OK': r_code = '200' else: r_code = self.__rc_from_msg(fields[-1]) assert error, label return int(t_stamp), label, r_time, con_time, latency, r_code, error def __parse_request(self, fields): # see LogFileDataWriter.ResponseMessageSerializer in gatling-core if len(fields) >= 7 and fields[6]: error = fields[6] else: error = None req_hierarchy = fields[1].split(',')[0] if req_hierarchy: user_id = fields[0] if error: self._group_errors[user_id][req_hierarchy].add(error) return None label = fields[2] t_stamp = int(fields[4]) / 1000.0 r_time = (int(fields[4]) - int(fields[3])) / 1000.0 latency = 0.0 con_time = 0.0 if fields[5] == 'OK': r_code = '200' else: r_code = self.__rc_from_msg(fields[-1]) return int(t_stamp), label, r_time, con_time, latency, r_code, error def __rc_from_msg(self, msg): _tmp_rc = msg.split("but actually ")[-1] # gatling-core/src/main/scala/io/gatling/core/check/Validator.scala if _tmp_rc.startswith("unexpectedly "): _tmp_rc = _tmp_rc[len("unexpectedly "):] if _tmp_rc.startswith("found "): _tmp_rc = _tmp_rc[len("found "):] parts = _tmp_rc.split(' ') if len(parts) > 1 and parts[1] == 'is': _tmp_rc = parts[0] return _tmp_rc if _tmp_rc.isdigit() else 'N/A' def _guess_gatling_version(self, fields): if fields and fields[-1].strip().startswith("3"): return "3.X" elif fields[0].strip() in ["USER", "REQUEST", "RUN"]: self.log.debug("Parsing Gatling 2.2+ stats") return "2.2+" elif len(fields) >= 3 and fields[2].strip() in ["USER", "REQUEST", "RUN"]: self.log.debug("Parsing Gatling 2.1 stats") return "2.1" else: return None def _extract_log_data(self, fields): if self.guessed_gatling_version is None: self.guessed_gatling_version = self._guess_gatling_version(fields) if self.guessed_gatling_version == "2.1": return self._extract_log_gatling_21(fields) elif self.guessed_gatling_version in ["2.2+", "3.X"]: return self._extract_log_gatling_22(fields) else: return None def _read(self, last_pass=False): """ Generator method that returns next portion of data :param last_pass: """ lines = self.file.get_lines(size=1024 * 1024, last_pass=last_pass) for line in lines: if not line.endswith("\n"): self.partial_buffer += line continue line = "%s%s" % (self.partial_buffer, line) self.partial_buffer = "" line = line.strip() fields = line.split(self.delimiter) data = self._extract_log_data(fields) if data is None: continue t_stamp, label, r_time, con_time, latency, r_code, error = data bytes_count = None yield t_stamp, label, self.concurrency, r_time, con_time, latency, r_code, error, '', bytes_count def open_fds(self, filename): """ open gatling simulation.log """ if os.path.isdir(self.basedir): prog = re.compile("^%s-[0-9]+$" % self.dir_prefix) for fname in os.listdir(self.basedir): if prog.match(fname): filename = os.path.join(self.basedir, fname, "simulation.log") break if not filename or not os.path.isfile(filename): self.log.debug('simulation.log not found') return elif os.path.isfile(self.basedir): filename = self.basedir else: self.log.debug('Path not found: %s', self.basedir) return if not os.path.getsize(filename): self.log.debug('simulation.log is empty') else: return open(filename, 'rb') class Gatling(RequiredTool): """ Gatling tool """ DOWNLOAD_LINK = "https://repo1.maven.org/maven2/io/gatling/highcharts/gatling-charts-highcharts-bundle" \ "/{version}/gatling-charts-highcharts-bundle-{version}-bundle.zip" VERSION = "3.1.2" LOCAL_PATH = "~/.bzt/gatling-taurus/{version}/bin/gatling{suffix}" def __init__(self, config=None, **kwargs): settings = config or {} version = settings.get("version", self.VERSION) def_path = self.LOCAL_PATH.format(version=version, suffix=EXE_SUFFIX) gatling_path = get_full_path(settings.get("path", def_path)) download_link = settings.get("download-link", self.DOWNLOAD_LINK).format(version=version) super(Gatling, self).__init__(tool_path=gatling_path, download_link=download_link, version=version, **kwargs) self.tool_dir = get_full_path(self.tool_path, step_up=2) def check_if_installed(self): self.log.debug("Trying Gatling...") try: out, err = self.call([self.tool_path, '--help']) self.log.debug("Gatling check output: %s", out) except CALL_PROBLEMS as exc: self.log.info("Gatling check failed: %s", exc) return False if err: self.log.warning("Gatling check stderr: %s", err) return True def install(self): dest = get_full_path(self.tool_path, step_up=2) self.log.info("Will install %s into %s", self.tool_name, dest) gatling_dist = self._download(use_link=True) self.log.info("Unzipping %s", gatling_dist) unzip(gatling_dist, dest, 'gatling-charts-highcharts-bundle-' + self.version) os.remove(gatling_dist) os.chmod(get_full_path(self.tool_path), 0o755) self.log.info("Installed Gatling successfully") if not self.check_if_installed(): raise ToolError("Unable to run %s after installation!" % self.tool_name) def build_launcher(self, new_name): # legacy, for v2 only def convert_v2(): modified_lines = [] mod_success = False with open(self.tool_path) as fds: for line in fds.readlines(): if is_windows(): if line.startswith('set COMPILATION_CLASSPATH=""'): mod_success = True continue # don't add it to modified_lines - just remove else: if line.startswith('COMPILATION_CLASSPATH='): mod_success = True line = line.rstrip() + ':"${COMPILATION_CLASSPATH}"\n' # add from env elif line.startswith('"$JAVA"'): line = 'eval ' + line modified_lines.append(line) if not mod_success: raise ToolError("Can't modify gatling launcher for jar usage, ability isn't supported") return modified_lines def convert_v3(): modified_lines = [] mod_success = False with open(self.tool_path) as fds: for line in fds.readlines(): if is_windows(): if line.startswith('set COMPILER_CLASSPATH='): mod_success = True line = line.rstrip() + ';%COMPILATION_CLASSPATH%\n' # add from env elif line.startswith('set GATLING_CLASSPATH='): mod_success = True line = line.rstrip() + ';%JAVA_CLASSPATH%\n' # add from env else: if line.startswith('COMPILER_CLASSPATH='): mod_success = True line = line.rstrip()[:-1] + '${COMPILATION_CLASSPATH}"\n' # add from env elif line.startswith('GATLING_CLASSPATH='): mod_success = True line = line.rstrip()[:-1] + '${JAVA_CLASSPATH}"\n' # add from env elif line.startswith('"$JAVA"'): line = 'eval ' + line modified_lines.append(line) if not mod_success: raise ToolError("Can't modify gatling launcher for jar usage, ability isn't supported") return modified_lines if is_gatling2(self.version): converted_lines = convert_v2() else: converted_lines = convert_v3() self.tool_path = new_name with open(self.tool_path, 'w') as modified: modified.writelines(converted_lines) if not is_windows(): os.chmod(self.tool_path, 0o755)
the-stack_0_21421
# mypy: allow_untyped_decorators import collections import os.path import pathlib import subprocess import typing import attr import click import pendulum import plotman.job import plotman.plotters @attr.frozen class Options: executable: str = "chia_plot" n_threads: int = 4 n_buckets: int = 256 n_buckets3: int = 256 n_rmulti2: int = 1 def check_configuration( options: Options, pool_contract_address: typing.Optional[str] ) -> None: if pool_contract_address is not None: completed_process = subprocess.run( args=[options.executable, "--help"], capture_output=True, check=True, encoding="utf-8", ) if "--contract" not in completed_process.stdout: raise Exception( f"found madMAx version does not support the `--contract`" f" option for pools." ) def create_command_line( options: Options, tmpdir: str, tmp2dir: typing.Optional[str], dstdir: str, farmer_public_key: typing.Optional[str], pool_public_key: typing.Optional[str], pool_contract_address: typing.Optional[str], ) -> typing.List[str]: args = [ options.executable, "-n", str(1), "-r", str(options.n_threads), "-u", str(options.n_buckets), "-t", tmpdir if tmpdir.endswith("/") else (tmpdir + "/"), "-d", dstdir if dstdir.endswith("/") else (dstdir + "/"), ] if tmp2dir is not None: args.append("-2") args.append(tmp2dir if tmp2dir.endswith("/") else (tmp2dir + "/")) if options.n_buckets3 is not None: args.append("-v") args.append(str(options.n_buckets3)) if options.n_rmulti2 is not None: args.append("-K") args.append(str(options.n_rmulti2)) if farmer_public_key is not None: args.append("-f") args.append(farmer_public_key) if pool_public_key is not None: args.append("-p") args.append(pool_public_key) if pool_contract_address is not None: args.append("-c") args.append(pool_contract_address) return args # @plotman.plotters.ProtocolChecker[plotman.plotters.SpecificInfo]() @plotman.plotters.check_SpecificInfo @attr.frozen class SpecificInfo: process_id: typing.Optional[int] = None phase: plotman.job.Phase = plotman.job.Phase(known=False) started_at: typing.Optional[pendulum.DateTime] = None plot_id: str = "" p1_buckets: int = 0 p34_buckets: int = 0 threads: int = 0 # buffer: int = 0 plot_size: int = 0 tmp_dir: str = "" tmp2_dir: str = "" dst_dir: str = "" phase1_duration_raw: float = 0 phase2_duration_raw: float = 0 phase3_duration_raw: float = 0 phase4_duration_raw: float = 0 total_time_raw: float = 0 # copy_time_raw: float = 0 filename: str = "" plot_name: str = "" def common(self) -> plotman.plotters.CommonInfo: return plotman.plotters.CommonInfo( type="madmax", dstdir=self.dst_dir, phase=self.phase, tmpdir=self.tmp_dir, tmp2dir=self.tmp2_dir, started_at=self.started_at, plot_id=self.plot_id, plot_size=self.plot_size, # TODO: handle p34_buckets as well somehow buckets=self.p1_buckets, threads=self.threads, phase1_duration_raw=self.phase1_duration_raw, phase2_duration_raw=self.phase2_duration_raw, phase3_duration_raw=self.phase3_duration_raw, phase4_duration_raw=self.phase4_duration_raw, total_time_raw=self.total_time_raw, filename=self.filename, ) @plotman.plotters.check_Plotter @attr.mutable class Plotter: decoder: plotman.plotters.LineDecoder = attr.ib( factory=plotman.plotters.LineDecoder ) info: SpecificInfo = attr.ib(factory=SpecificInfo) parsed_command_line: typing.Optional[ plotman.job.ParsedChiaPlotsCreateCommand ] = None @classmethod def identify_log(cls, line: str) -> bool: return "Multi-threaded pipelined Chia" in line @classmethod def identify_process(cls, command_line: typing.List[str]) -> bool: if len(command_line) == 0: return False return "chia_plot" == os.path.basename(command_line[0]).lower() def common_info(self) -> plotman.plotters.CommonInfo: return self.info.common() def parse_command_line(self, command_line: typing.List[str], cwd: str) -> None: # drop the chia_plot arguments = command_line[1:] # TODO: We could at some point do chia version detection and pick the # associated command. For now we'll just use the latest one we have # copied. command = commands.latest_command() self.parsed_command_line = plotman.plotters.parse_command_line_with_click( command=command, arguments=arguments, ) for key in ["tmpdir", "tmpdir2", "finaldir"]: original: os.PathLike[str] = self.parsed_command_line.parameters.get(key) # type: ignore[assignment] if original is not None: self.parsed_command_line.parameters[key] = pathlib.Path(cwd).joinpath( original ) def update(self, chunk: bytes) -> SpecificInfo: new_lines = self.decoder.update(chunk=chunk) for line in new_lines: if not self.info.phase.known: self.info = attr.evolve( self.info, phase=plotman.job.Phase(major=0, minor=0) ) for pattern, handler_functions in handlers.mapping.items(): match = pattern.search(line) if match is None: continue for handler_function in handler_functions: self.info = handler_function(match=match, info=self.info) break return self.info handlers = plotman.plotters.RegexLineHandlers[SpecificInfo]() @handlers.register(expression=r"^\[P1\] Table ([1-6])") def phase_1(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # [P1] Table 1 took 39.8662 sec # [P1] Table 2 took 211.248 sec, found 4294987039 matches # [P1] Table 3 took 295.536 sec, found 4295003219 matches # [P1] Table 4 took 360.731 sec, found 4295083991 matches # [P1] Table 5 took 346.816 sec, found 4295198226 matches # [P1] Table 6 took 337.844 sec, found 4295283897 matches minor = int(match.group(1)) + 1 return attr.evolve(info, phase=plotman.job.Phase(major=1, minor=minor)) @handlers.register(expression=r"^\[P2\] max_table_size") def phase_2_start(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # [P2] max_table_size = 4295422716 return attr.evolve(info, phase=plotman.job.Phase(major=2, minor=1)) @handlers.register(expression=r"^\[P2\] Table ([2-7]) rewrite") def phase_2(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # [P2] Table 7 scan took 18.4493 sec # [P2] Table 7 rewrite took 60.7659 sec, dropped 0 entries (0 %) # [P2] Table 6 scan took 82.9818 sec # [P2] Table 6 rewrite took 142.287 sec, dropped 581464719 entries (13.5373 %) # [P2] Table 5 scan took 122.71 sec # [P2] Table 5 rewrite took 205.382 sec, dropped 762140364 entries (17.744 %) # [P2] Table 4 scan took 119.723 sec # [P2] Table 4 rewrite took 131.374 sec, dropped 828922032 entries (19.2993 %) # [P2] Table 3 scan took 87.8078 sec # [P2] Table 3 rewrite took 135.269 sec, dropped 855096923 entries (19.9091 %) # [P2] Table 2 scan took 103.825 sec # [P2] Table 2 rewrite took 159.486 sec, dropped 865588810 entries (20.1532 %) minor_in_log = int(match.group(1)) active_minor = 8 - minor_in_log + 1 return attr.evolve(info, phase=plotman.job.Phase(major=2, minor=active_minor)) @handlers.register(expression=r"^Phase 2 took (\d+(\.\d+)) sec") def phase3_0(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Phase 2 took 1344.24 sec return attr.evolve( info, phase=plotman.job.Phase(major=3, minor=0), phase2_duration_raw=float(match.group(1)), ) @handlers.register(expression=r"^Wrote plot header") def phase_3_start(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Wrote plot header with 252 bytes return attr.evolve(info, phase=plotman.job.Phase(major=3, minor=1)) @handlers.register(expression=r"^\[P3-2\] Table ([2-6]) took") def phase_3(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # [P3-1] Table 2 took 80.1436 sec, wrote 3429403335 right entries # [P3-2] Table 2 took 69.0526 sec, wrote 3429403335 left entries, 3429403335 final # [P3-1] Table 3 took 104.477 sec, wrote 3439906296 right entries # [P3-2] Table 3 took 69.8111 sec, wrote 3439906296 left entries, 3439906296 final # [P3-1] Table 4 took 111.704 sec, wrote 3466161959 right entries # [P3-2] Table 4 took 68.1434 sec, wrote 3466161959 left entries, 3466161959 final # [P3-1] Table 5 took 106.097 sec, wrote 3533057862 right entries # [P3-2] Table 5 took 69.3742 sec, wrote 3533057862 left entries, 3533057862 final # [P3-1] Table 6 took 105.378 sec, wrote 3713819178 right entries # [P3-2] Table 6 took 60.371 sec, wrote 3713819178 left entries, 3713819178 final minor = int(match.group(1)) return attr.evolve(info, phase=plotman.job.Phase(major=3, minor=minor)) @handlers.register(expression=r"^Phase 3 took (\d+(\.\d+)) sec") def phase4(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Phase 3 took 1002.89 sec, wrote 21877315926 entries to final plot return attr.evolve( info, phase=plotman.job.Phase(major=4, minor=0), phase3_duration_raw=float(match.group(1)), ) @handlers.register(expression=r"^\[P4\] Starting") def phase_4_1(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # [P4] Starting to write C1 and C3 tables return attr.evolve(info, phase=plotman.job.Phase(major=4, minor=1)) @handlers.register(expression=r"^\[P4\] Writing C2 table") def phase_4_2(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # [P4] Writing C2 table return attr.evolve(info, phase=plotman.job.Phase(major=4, minor=2)) @handlers.register(expression=r"^Phase 4 took (\d+(\.\d+)) sec") def phase5(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Phase 4 took 77.9891 sec, final plot size is 108836186159 bytes return attr.evolve( info, phase=plotman.job.Phase(major=5, minor=0), phase4_duration_raw=float(match.group(1)), ) @handlers.register(expression=r"^Started copy to ") def phase_5_1(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Started copy to /farm/yards/902/fake_dst/plot-k32-2021-07-14-21-56-522acbd6308af7e229281352f746449134126482cfabd51d38e0f89745d21698.plot return attr.evolve(info, phase=plotman.job.Phase(major=5, minor=1)) @handlers.register(expression=r"^Renamed final plot to ") def phase_5_2(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Renamed final plot to /farm/yards/902/fake_dst/plot-k32-2021-07-14-21-56-522acbd6308af7e229281352f746449134126482cfabd51d38e0f89745d21698.plot return attr.evolve(info, phase=plotman.job.Phase(major=5, minor=2)) @handlers.register(expression=r"^Final Directory:\s*(.+)") def dst_dir(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Final Directory: /farm/yards/907/ return attr.evolve(info, dst_dir=match.group(1)) @handlers.register(expression=r"^Working Directory:\s*(.+)") def tmp_dir(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Working Directory: /farm/yards/907/ return attr.evolve(info, tmp_dir=match.group(1)) @handlers.register(expression=r"^Working Directory 2:\s*(.+)") def tmp2_dir(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Working Directory 2: /farm/yards/907/ return attr.evolve(info, tmp2_dir=match.group(1)) @handlers.register( expression=r"^Plot Name: (?P<name>plot-k(?P<size>\d+)-(?P<year>\d+)-(?P<month>\d+)-(?P<day>\d+)-(?P<hour>\d+)-(?P<minute>\d+)-(?P<plot_id>\w+))$" ) def plot_name_line(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Plot Name: plot-k32-2021-07-11-16-52-3a3872f5a124497a17fb917dfe027802aa1867f8b0a8cbac558ed12aa5b697b2 return attr.evolve( info, plot_size=int(match.group("size")), plot_name=match.group("name"), started_at=pendulum.datetime( year=int(match.group("year")), month=int(match.group("month")), day=int(match.group("day")), hour=int(match.group("hour")), minute=int(match.group("minute")), tz=None, ), plot_id=match.group("plot_id"), phase=plotman.job.Phase(major=1, minor=1), ) @handlers.register(expression=r"^Number of Threads:\s*(\d+)") def threads(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Number of Threads: 9 return attr.evolve(info, threads=int(match.group(1))) @handlers.register(expression=r"^Number of Buckets P1:.*\((\d+)\)") def p1_buckets(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Number of Buckets P1: 2^8 (256) return attr.evolve(info, p1_buckets=int(match.group(1))) @handlers.register(expression=r"^Number of Buckets P3\+P4:.*\((\d+)\)") def p34_buckets(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Number of Buckets P3+P4: 2^8 (256) return attr.evolve(info, p34_buckets=int(match.group(1))) @handlers.register(expression=r"^Phase 1 took (\d+(\.\d+)) sec") def phase1_duration_raw(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Phase 1 took 1851.12 sec return attr.evolve(info, phase1_duration_raw=float(match.group(1))) @handlers.register(expression=r"^Total plot creation time was (\d+(\.\d+)) sec") def total_time(match: typing.Match[str], info: SpecificInfo) -> SpecificInfo: # Total plot creation time was 4276.32 sec (71.272 min) return attr.evolve(info, total_time_raw=float(match.group(1))) commands = plotman.plotters.core.Commands() # Madmax Git on 2021-06-19 -> https://github.com/madMAx43v3r/chia-plotter/commit/c8121b987186c42c895b49818e6c13acecc51332 @commands.register(version=(0,)) @click.command() # https://github.com/madMAx43v3r/chia-plotter/blob/c8121b987186c42c895b49818e6c13acecc51332/LICENSE # https://github.com/madMAx43v3r/chia-plotter/blob/c8121b987186c42c895b49818e6c13acecc51332/src/chia_plot.cpp#L177-L188 @click.option( "-n", "--count", help="Number of plots to create (default = 1, -1 = infinite)", type=int, default=1, show_default=True, ) @click.option( "-r", "--threads", help="Number of threads (default = 4)", type=int, default=4, show_default=True, ) @click.option( "-u", "--buckets", help="Number of buckets (default = 256)", type=int, default=256, show_default=True, ) @click.option( "-v", "--buckets3", help="Number of buckets for phase 3+4 (default = buckets)", type=int, default=256, ) @click.option( "-t", "--tmpdir", help="Temporary directory, needs ~220 GiB (default = $PWD)", type=click.Path(), default=pathlib.Path("."), show_default=True, ) @click.option( "-2", "--tmpdir2", help="Temporary directory 2, needs ~110 GiB [RAM] (default = <tmpdir>)", type=click.Path(), default=None, ) @click.option( "-d", "--finaldir", help="Final directory (default = <tmpdir>)", type=click.Path(), default=pathlib.Path("."), show_default=True, ) @click.option( "-p", "--poolkey", help="Pool Public Key (48 bytes)", type=str, default=None ) @click.option( "-f", "--farmerkey", help="Farmer Public Key (48 bytes)", type=str, default=None ) @click.option( "-G", "--tmptoggle", help="Alternate tmpdir/tmpdir2", type=str, default=None ) def _cli_c8121b987186c42c895b49818e6c13acecc51332() -> None: pass # Madmax Git on 2021-07-12 -> https://github.com/madMAx43v3r/chia-plotter/commit/974d6e5f1440f68c48492122ca33828a98864dfc @commands.register(version=(1,)) @click.command() # https://github.com/madMAx43v3r/chia-plotter/blob/974d6e5f1440f68c48492122ca33828a98864dfc/LICENSE # https://github.com/madMAx43v3r/chia-plotter/blob/974d6e5f1440f68c48492122ca33828a98864dfc/src/chia_plot.cpp#L235-L249 @click.option( "-n", "--count", help="Number of plots to create (default = 1, -1 = infinite)", type=int, default=1, show_default=True, ) @click.option( "-r", "--threads", help="Number of threads (default = 4)", type=int, default=4, show_default=True, ) @click.option( "-u", "--buckets", help="Number of buckets (default = 256)", type=int, default=256, show_default=True, ) @click.option( "-v", "--buckets3", help="Number of buckets for phase 3+4 (default = buckets)", type=int, default=256, ) @click.option( "-t", "--tmpdir", help="Temporary directory, needs ~220 GiB (default = $PWD)", type=click.Path(), default=pathlib.Path("."), show_default=True, ) @click.option( "-2", "--tmpdir2", help="Temporary directory 2, needs ~110 GiB [RAM] (default = <tmpdir>)", type=click.Path(), default=None, ) @click.option( "-d", "--finaldir", help="Final directory (default = <tmpdir>)", type=click.Path(), default=pathlib.Path("."), show_default=True, ) @click.option( "-w", "--waitforcopy", help="Wait for copy to start next plot", type=bool, default=False, show_default=True, ) @click.option( "-p", "--poolkey", help="Pool Public Key (48 bytes)", type=str, default=None ) @click.option( "-c", "--contract", help="Pool Contract Address (62 chars)", type=str, default=None ) @click.option( "-f", "--farmerkey", help="Farmer Public Key (48 bytes)", type=str, default=None ) @click.option( "-G", "--tmptoggle", help="Alternate tmpdir/tmpdir2", type=str, default=None ) @click.option( "-K", "--rmulti2", help="Thread multiplier for P2 (default = 1)", type=int, default=1, ) def _cli_974d6e5f1440f68c48492122ca33828a98864dfc() -> None: pass # Madmax Git on 2021-08-22 -> https://github.com/madMAx43v3r/chia-plotter/commit/aaa3214d4abbd49bb99c2ec087e27c765424cd65 @commands.register(version=(2,)) @click.command() # https://github.com/madMAx43v3r/chia-plotter/blob/aaa3214d4abbd49bb99c2ec087e27c765424cd65/LICENSE # https://github.com/madMAx43v3r/chia-plotter/blob/aaa3214d4abbd49bb99c2ec087e27c765424cd65/src/chia_plot.cpp#L238-L253 @click.option( "-k", "--size", help="K size (default = 32, k <= 32)", type=int, default=32, show_default=True, ) @click.option( "-n", "--count", help="Number of plots to create (default = 1, -1 = infinite)", type=int, default=1, show_default=True, ) @click.option( "-r", "--threads", help="Number of threads (default = 4)", type=int, default=4, show_default=True, ) @click.option( "-u", "--buckets", help="Number of buckets (default = 256)", type=int, default=256, show_default=True, ) @click.option( "-v", "--buckets3", help="Number of buckets for phase 3+4 (default = buckets)", type=int, default=256, ) @click.option( "-t", "--tmpdir", help="Temporary directory, needs ~220 GiB (default = $PWD)", type=click.Path(), default=pathlib.Path("."), show_default=True, ) @click.option( "-2", "--tmpdir2", help="Temporary directory 2, needs ~110 GiB [RAM] (default = <tmpdir>)", type=click.Path(), default=None, ) @click.option( "-d", "--finaldir", help="Final directory (default = <tmpdir>)", type=click.Path(), default=pathlib.Path("."), show_default=True, ) @click.option( "-w", "--waitforcopy", help="Wait for copy to start next plot", type=bool, default=False, show_default=True, ) @click.option( "-p", "--poolkey", help="Pool Public Key (48 bytes)", type=str, default=None ) @click.option( "-c", "--contract", help="Pool Contract Address (62 chars)", type=str, default=None ) @click.option( "-f", "--farmerkey", help="Farmer Public Key (48 bytes)", type=str, default=None ) @click.option( "-G", "--tmptoggle", help="Alternate tmpdir/tmpdir2", type=str, default=None ) @click.option( "-K", "--rmulti2", help="Thread multiplier for P2 (default = 1)", type=int, default=1, ) def _cli_aaa3214d4abbd49bb99c2ec087e27c765424cd65() -> None: pass
the-stack_0_21422
import sys import os.path import re kReColorHex = re.compile(r'#[0-9A-Fa-f]{6}') def parse_key_value(line): line = line.strip() if not line or line[0] in ';#[': return None items = line.split('=', 2) if not items or len(items) != 2: return None items[0] = items[0].strip() items[1] = items[1].strip() if not items[0] or not items[1]: return None return items def find_color_in_file(path, color_map): with open(path, encoding='utf-8') as fd: lines = fd.readlines() for line in lines: items = parse_key_value(line) if not items: continue colors = kReColorHex.findall(items[1]) if not colors: continue key = items[0] for color in colors: color = color.upper() if color in color_map: color_stat = color_map[color] color_stat['total_count'] += 1 if key not in color_stat['usage']: color_stat['usage'][key] = 1 else: color_stat['usage'][key] += 1 else: color_stat = { 'total_count': 1, 'usage': { key: 1, }, } color_map[color] = color_stat def print_color_count(color_map): for color, color_stat in color_map.items(): print(f"{color}\t{color_stat['total_count']}") usage = color_stat['usage'] for key, count in usage.items(): print(f'\t{count}\t{key}') def count_color(path): # { color : { total_count: total_count, usage: { key: count}}} color_map = {} find_color_in_file(path, color_map) colors = sorted(color_map.items(), key=lambda m: m[0]) colors = sorted(colors, key=lambda m: m[1]['total_count'], reverse=True) color_map = dict(colors) for color_stat in color_map.values(): usage = color_stat['usage'] usage = sorted(usage.items(), key=lambda m: m[0]) usage = sorted(usage, key=lambda m: m[1], reverse=True) color_stat['usage'] = dict(usage) print_color_count(color_map) if __name__ == '__main__': if len(sys.argv) > 1 and os.path.isfile(sys.argv[1]): count_color(sys.argv[1]) else: print(f"""Usage: {sys.argv[0]} path""")
the-stack_0_21423
import os import copy import pickle import platform import subprocess import sys import unittest from unittest import mock from test import support from test.support import os_helper FEDORA_OS_RELEASE = """\ NAME=Fedora VERSION="32 (Thirty Two)" ID=fedora VERSION_ID=32 VERSION_CODENAME="" PLATFORM_ID="platform:f32" PRETTY_NAME="Fedora 32 (Thirty Two)" ANSI_COLOR="0;34" LOGO=fedora-logo-icon CPE_NAME="cpe:/o:fedoraproject:fedora:32" HOME_URL="https://fedoraproject.org/" DOCUMENTATION_URL="https://docs.fedoraproject.org/en-US/fedora/f32/system-administrators-guide/" SUPPORT_URL="https://fedoraproject.org/wiki/Communicating_and_getting_help" BUG_REPORT_URL="https://bugzilla.redhat.com/" REDHAT_BUGZILLA_PRODUCT="Fedora" REDHAT_BUGZILLA_PRODUCT_VERSION=32 REDHAT_SUPPORT_PRODUCT="Fedora" REDHAT_SUPPORT_PRODUCT_VERSION=32 PRIVACY_POLICY_URL="https://fedoraproject.org/wiki/Legal:PrivacyPolicy" """ UBUNTU_OS_RELEASE = """\ NAME="Ubuntu" VERSION="20.04.1 LTS (Focal Fossa)" ID=ubuntu ID_LIKE=debian PRETTY_NAME="Ubuntu 20.04.1 LTS" VERSION_ID="20.04" HOME_URL="https://www.ubuntu.com/" SUPPORT_URL="https://help.ubuntu.com/" BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/" PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy" VERSION_CODENAME=focal UBUNTU_CODENAME=focal """ TEST_OS_RELEASE = r""" # test data ID_LIKE="egg spam viking" EMPTY= # comments and empty lines are ignored SINGLE_QUOTE='single' EMPTY_SINGLE='' DOUBLE_QUOTE="double" EMPTY_DOUBLE="" QUOTES="double\'s" SPECIALS="\$\`\\\'\"" # invalid lines =invalid = INVALID IN-VALID=value IN VALID=value """ class PlatformTest(unittest.TestCase): def clear_caches(self): platform._platform_cache.clear() platform._sys_version_cache.clear() platform._uname_cache = None platform._os_release_cache = None def test_architecture(self): res = platform.architecture() @os_helper.skip_unless_symlink def test_architecture_via_symlink(self): # issue3762 with support.PythonSymlink() as py: cmd = "-c", "import platform; print(platform.architecture())" self.assertEqual(py.call_real(*cmd), py.call_link(*cmd)) def test_platform(self): for aliased in (False, True): for terse in (False, True): res = platform.platform(aliased, terse) def test_system(self): res = platform.system() def test_node(self): res = platform.node() def test_release(self): res = platform.release() def test_version(self): res = platform.version() def test_machine(self): res = platform.machine() def test_processor(self): res = platform.processor() def setUp(self): self.save_version = sys.version self.save_git = sys._git self.save_platform = sys.platform def tearDown(self): sys.version = self.save_version sys._git = self.save_git sys.platform = self.save_platform def test_sys_version(self): # Old test. for input, output in ( ('2.4.3 (#1, Jun 21 2006, 13:54:21) \n[GCC 3.3.4 (pre 3.3.5 20040809)]', ('CPython', '2.4.3', '', '', '1', 'Jun 21 2006 13:54:21', 'GCC 3.3.4 (pre 3.3.5 20040809)')), ('IronPython 1.0.60816 on .NET 2.0.50727.42', ('IronPython', '1.0.60816', '', '', '', '', '.NET 2.0.50727.42')), ('IronPython 1.0 (1.0.61005.1977) on .NET 2.0.50727.42', ('IronPython', '1.0.0', '', '', '', '', '.NET 2.0.50727.42')), ('2.4.3 (truncation, date, t) \n[GCC]', ('CPython', '2.4.3', '', '', 'truncation', 'date t', 'GCC')), ('2.4.3 (truncation, date, ) \n[GCC]', ('CPython', '2.4.3', '', '', 'truncation', 'date', 'GCC')), ('2.4.3 (truncation, date,) \n[GCC]', ('CPython', '2.4.3', '', '', 'truncation', 'date', 'GCC')), ('2.4.3 (truncation, date) \n[GCC]', ('CPython', '2.4.3', '', '', 'truncation', 'date', 'GCC')), ('2.4.3 (truncation, d) \n[GCC]', ('CPython', '2.4.3', '', '', 'truncation', 'd', 'GCC')), ('2.4.3 (truncation, ) \n[GCC]', ('CPython', '2.4.3', '', '', 'truncation', '', 'GCC')), ('2.4.3 (truncation,) \n[GCC]', ('CPython', '2.4.3', '', '', 'truncation', '', 'GCC')), ('2.4.3 (truncation) \n[GCC]', ('CPython', '2.4.3', '', '', 'truncation', '', 'GCC')), ): # branch and revision are not "parsed", but fetched # from sys._git. Ignore them (name, version, branch, revision, buildno, builddate, compiler) \ = platform._sys_version(input) self.assertEqual( (name, version, '', '', buildno, builddate, compiler), output) # Tests for python_implementation(), python_version(), python_branch(), # python_revision(), python_build(), and python_compiler(). sys_versions = { ("2.6.1 (r261:67515, Dec 6 2008, 15:26:00) \n[GCC 4.0.1 (Apple Computer, Inc. build 5370)]", ('CPython', 'tags/r261', '67515'), self.save_platform) : ("CPython", "2.6.1", "tags/r261", "67515", ('r261:67515', 'Dec 6 2008 15:26:00'), 'GCC 4.0.1 (Apple Computer, Inc. build 5370)'), ("IronPython 2.0 (2.0.0.0) on .NET 2.0.50727.3053", None, "cli") : ("IronPython", "2.0.0", "", "", ("", ""), ".NET 2.0.50727.3053"), ("2.6.1 (IronPython 2.6.1 (2.6.10920.0) on .NET 2.0.50727.1433)", None, "cli") : ("IronPython", "2.6.1", "", "", ("", ""), ".NET 2.0.50727.1433"), ("2.7.4 (IronPython 2.7.4 (2.7.0.40) on Mono 4.0.30319.1 (32-bit))", None, "cli") : ("IronPython", "2.7.4", "", "", ("", ""), "Mono 4.0.30319.1 (32-bit)"), ("2.5 (trunk:6107, Mar 26 2009, 13:02:18) \n[Java HotSpot(TM) Client VM (\"Apple Computer, Inc.\")]", ('Jython', 'trunk', '6107'), "java1.5.0_16") : ("Jython", "2.5.0", "trunk", "6107", ('trunk:6107', 'Mar 26 2009'), "java1.5.0_16"), ("2.5.2 (63378, Mar 26 2009, 18:03:29)\n[PyPy 1.0.0]", ('PyPy', 'trunk', '63378'), self.save_platform) : ("PyPy", "2.5.2", "trunk", "63378", ('63378', 'Mar 26 2009'), "") } for (version_tag, scm, sys_platform), info in \ sys_versions.items(): sys.version = version_tag if scm is None: if hasattr(sys, "_git"): del sys._git else: sys._git = scm if sys_platform is not None: sys.platform = sys_platform self.assertEqual(platform.python_implementation(), info[0]) self.assertEqual(platform.python_version(), info[1]) self.assertEqual(platform.python_branch(), info[2]) self.assertEqual(platform.python_revision(), info[3]) self.assertEqual(platform.python_build(), info[4]) self.assertEqual(platform.python_compiler(), info[5]) def test_system_alias(self): res = platform.system_alias( platform.system(), platform.release(), platform.version(), ) def test_uname(self): res = platform.uname() self.assertTrue(any(res)) self.assertEqual(res[0], res.system) self.assertEqual(res[-6], res.system) self.assertEqual(res[1], res.node) self.assertEqual(res[-5], res.node) self.assertEqual(res[2], res.release) self.assertEqual(res[-4], res.release) self.assertEqual(res[3], res.version) self.assertEqual(res[-3], res.version) self.assertEqual(res[4], res.machine) self.assertEqual(res[-2], res.machine) self.assertEqual(res[5], res.processor) self.assertEqual(res[-1], res.processor) self.assertEqual(len(res), 6) def test_uname_cast_to_tuple(self): res = platform.uname() expected = ( res.system, res.node, res.release, res.version, res.machine, res.processor, ) self.assertEqual(tuple(res), expected) def test_uname_replace(self): res = platform.uname() new = res._replace( system='system', node='node', release='release', version='version', machine='machine') self.assertEqual(new.system, 'system') self.assertEqual(new.node, 'node') self.assertEqual(new.release, 'release') self.assertEqual(new.version, 'version') self.assertEqual(new.machine, 'machine') # processor cannot be replaced self.assertEqual(new.processor, res.processor) def test_uname_copy(self): uname = platform.uname() self.assertEqual(copy.copy(uname), uname) self.assertEqual(copy.deepcopy(uname), uname) def test_uname_pickle(self): orig = platform.uname() for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.subTest(protocol=proto): pickled = pickle.dumps(orig, proto) restored = pickle.loads(pickled) self.assertEqual(restored, orig) def test_uname_slices(self): res = platform.uname() expected = tuple(res) self.assertEqual(res[:], expected) self.assertEqual(res[:5], expected[:5]) @unittest.skipIf(sys.platform in ['win32', 'OpenVMS'], "uname -p not used") def test_uname_processor(self): """ On some systems, the processor must match the output of 'uname -p'. See Issue 35967 for rationale. """ try: proc_res = subprocess.check_output(['uname', '-p'], text=True).strip() expect = platform._unknown_as_blank(proc_res) except (OSError, subprocess.CalledProcessError): expect = '' self.assertEqual(platform.uname().processor, expect) @unittest.skipUnless(sys.platform.startswith('win'), "windows only test") def test_uname_win32_ARCHITEW6432(self): # Issue 7860: make sure we get architecture from the correct variable # on 64 bit Windows: if PROCESSOR_ARCHITEW6432 exists we should be # using it, per # http://blogs.msdn.com/david.wang/archive/2006/03/26/HOWTO-Detect-Process-Bitness.aspx try: with os_helper.EnvironmentVarGuard() as environ: if 'PROCESSOR_ARCHITEW6432' in environ: del environ['PROCESSOR_ARCHITEW6432'] environ['PROCESSOR_ARCHITECTURE'] = 'foo' platform._uname_cache = None system, node, release, version, machine, processor = platform.uname() self.assertEqual(machine, 'foo') environ['PROCESSOR_ARCHITEW6432'] = 'bar' platform._uname_cache = None system, node, release, version, machine, processor = platform.uname() self.assertEqual(machine, 'bar') finally: platform._uname_cache = None def test_java_ver(self): res = platform.java_ver() if sys.platform == 'java': self.assertTrue(all(res)) def test_win32_ver(self): res = platform.win32_ver() def test_mac_ver(self): res = platform.mac_ver() if platform.uname().system == 'Darwin': # We are on a macOS system, check that the right version # information is returned output = subprocess.check_output(['sw_vers'], text=True) for line in output.splitlines(): if line.startswith('ProductVersion:'): real_ver = line.strip().split()[-1] break else: self.fail(f"failed to parse sw_vers output: {output!r}") result_list = res[0].split('.') expect_list = real_ver.split('.') len_diff = len(result_list) - len(expect_list) # On Snow Leopard, sw_vers reports 10.6.0 as 10.6 if len_diff > 0: expect_list.extend(['0'] * len_diff) # For compatibility with older binaries, macOS 11.x may report # itself as '10.16' rather than '11.x.y'. if result_list != ['10', '16']: self.assertEqual(result_list, expect_list) # res[1] claims to contain # (version, dev_stage, non_release_version) # That information is no longer available self.assertEqual(res[1], ('', '', '')) if sys.byteorder == 'little': self.assertIn(res[2], ('i386', 'x86_64', 'arm64')) else: self.assertEqual(res[2], 'PowerPC') @unittest.skipUnless(sys.platform == 'darwin', "OSX only test") def test_mac_ver_with_fork(self): # Issue7895: platform.mac_ver() crashes when using fork without exec # # This test checks that the fix for that issue works. # pid = os.fork() if pid == 0: # child info = platform.mac_ver() os._exit(0) else: # parent support.wait_process(pid, exitcode=0) def test_libc_ver(self): # check that libc_ver(executable) doesn't raise an exception if os.path.isdir(sys.executable) and \ os.path.exists(sys.executable+'.exe'): # Cygwin horror executable = sys.executable + '.exe' elif sys.platform == "win32" and not os.path.exists(sys.executable): # App symlink appears to not exist, but we want the # real executable here anyway import _winapi executable = _winapi.GetModuleFileName(0) else: executable = sys.executable platform.libc_ver(executable) filename = os_helper.TESTFN self.addCleanup(os_helper.unlink, filename) with mock.patch('os.confstr', create=True, return_value='mock 1.0'): # test os.confstr() code path self.assertEqual(platform.libc_ver(), ('mock', '1.0')) # test the different regular expressions for data, expected in ( (b'__libc_init', ('libc', '')), (b'GLIBC_2.9', ('glibc', '2.9')), (b'libc.so.1.2.5', ('libc', '1.2.5')), (b'libc_pthread.so.1.2.5', ('libc', '1.2.5_pthread')), (b'', ('', '')), ): with open(filename, 'wb') as fp: fp.write(b'[xxx%sxxx]' % data) fp.flush() # os.confstr() must not be used if executable is set self.assertEqual(platform.libc_ver(executable=filename), expected) # binary containing multiple versions: get the most recent, # make sure that 1.9 is seen as older than 1.23.4 chunksize = 16384 with open(filename, 'wb') as f: # test match at chunk boundary f.write(b'x'*(chunksize - 10)) f.write(b'GLIBC_1.23.4\0GLIBC_1.9\0GLIBC_1.21\0') self.assertEqual(platform.libc_ver(filename, chunksize=chunksize), ('glibc', '1.23.4')) @support.cpython_only def test__comparable_version(self): from platform import _comparable_version as V self.assertEqual(V('1.2.3'), V('1.2.3')) self.assertLess(V('1.2.3'), V('1.2.10')) self.assertEqual(V('1.2.3.4'), V('1_2-3+4')) self.assertLess(V('1.2spam'), V('1.2dev')) self.assertLess(V('1.2dev'), V('1.2alpha')) self.assertLess(V('1.2dev'), V('1.2a')) self.assertLess(V('1.2alpha'), V('1.2beta')) self.assertLess(V('1.2a'), V('1.2b')) self.assertLess(V('1.2beta'), V('1.2c')) self.assertLess(V('1.2b'), V('1.2c')) self.assertLess(V('1.2c'), V('1.2RC')) self.assertLess(V('1.2c'), V('1.2rc')) self.assertLess(V('1.2RC'), V('1.2.0')) self.assertLess(V('1.2rc'), V('1.2.0')) self.assertLess(V('1.2.0'), V('1.2pl')) self.assertLess(V('1.2.0'), V('1.2p')) self.assertLess(V('1.5.1'), V('1.5.2b2')) self.assertLess(V('3.10a'), V('161')) self.assertEqual(V('8.02'), V('8.02')) self.assertLess(V('3.4j'), V('1996.07.12')) self.assertLess(V('3.1.1.6'), V('3.2.pl0')) self.assertLess(V('2g6'), V('11g')) self.assertLess(V('0.9'), V('2.2')) self.assertLess(V('1.2'), V('1.2.1')) self.assertLess(V('1.1'), V('1.2.2')) self.assertLess(V('1.1'), V('1.2')) self.assertLess(V('1.2.1'), V('1.2.2')) self.assertLess(V('1.2'), V('1.2.2')) self.assertLess(V('0.4'), V('0.4.0')) self.assertLess(V('1.13++'), V('5.5.kw')) self.assertLess(V('0.960923'), V('2.2beta29')) def test_macos(self): self.addCleanup(self.clear_caches) uname = ('Darwin', 'hostname', '17.7.0', ('Darwin Kernel Version 17.7.0: ' 'Thu Jun 21 22:53:14 PDT 2018; ' 'root:xnu-4570.71.2~1/RELEASE_X86_64'), 'x86_64', 'i386') arch = ('64bit', '') with mock.patch.object(platform, 'uname', return_value=uname), \ mock.patch.object(platform, 'architecture', return_value=arch): for mac_ver, expected_terse, expected in [ # darwin: mac_ver() returns empty strings (('', '', ''), 'Darwin-17.7.0', 'Darwin-17.7.0-x86_64-i386-64bit'), # macOS: mac_ver() returns macOS version (('10.13.6', ('', '', ''), 'x86_64'), 'macOS-10.13.6', 'macOS-10.13.6-x86_64-i386-64bit'), ]: with mock.patch.object(platform, 'mac_ver', return_value=mac_ver): self.clear_caches() self.assertEqual(platform.platform(terse=1), expected_terse) self.assertEqual(platform.platform(), expected) def test_freedesktop_os_release(self): self.addCleanup(self.clear_caches) self.clear_caches() if any(os.path.isfile(fn) for fn in platform._os_release_candidates): info = platform.freedesktop_os_release() self.assertIn("NAME", info) self.assertIn("ID", info) info["CPYTHON_TEST"] = "test" self.assertNotIn( "CPYTHON_TEST", platform.freedesktop_os_release() ) else: with self.assertRaises(OSError): platform.freedesktop_os_release() def test_parse_os_release(self): info = platform._parse_os_release(FEDORA_OS_RELEASE.splitlines()) self.assertEqual(info["NAME"], "Fedora") self.assertEqual(info["ID"], "fedora") self.assertNotIn("ID_LIKE", info) self.assertEqual(info["VERSION_CODENAME"], "") info = platform._parse_os_release(UBUNTU_OS_RELEASE.splitlines()) self.assertEqual(info["NAME"], "Ubuntu") self.assertEqual(info["ID"], "ubuntu") self.assertEqual(info["ID_LIKE"], "debian") self.assertEqual(info["VERSION_CODENAME"], "focal") info = platform._parse_os_release(TEST_OS_RELEASE.splitlines()) expected = { "ID": "linux", "NAME": "Linux", "PRETTY_NAME": "Linux", "ID_LIKE": "egg spam viking", "EMPTY": "", "DOUBLE_QUOTE": "double", "EMPTY_DOUBLE": "", "SINGLE_QUOTE": "single", "EMPTY_SINGLE": "", "QUOTES": "double's", "SPECIALS": "$`\\'\"", } self.assertEqual(info, expected) self.assertEqual(len(info["SPECIALS"]), 5) if __name__ == '__main__': unittest.main()
the-stack_0_21424
import requests import os import pika import json import socket from flask import request from flask_restful import Resource from flask_jwt_extended import get_jwt_claims, get_jwt_identity, jwt_required from app.cache import redis_client from app.worker import celery from app.api.user.models import User from app.api.system.models import SystemSetting, SystemSettingSchema class SearchApi(Resource): @jwt_required def post(self): "Query the spotify api with the given params" data = request.get_json() trackName = data["trackName"] query = "%20".join(trackName.split(" ")) url = "https://api.spotify.com/v1/search?q={}&type=track&market=DE".format(query) spotify_token = redis_client.get("spotify_token").decode("utf-8") headers = {"Authorization": "Bearer {}".format(spotify_token)} r = requests.get(url, headers=headers) return r.json(), 201 class RecorderApi(Resource): @jwt_required def post(self): tracks = {} "Record the passed list" data = request.get_json() tracks['recordList'] = data['recordList'] settings = SystemSetting.get_settings() schema = SystemSettingSchema() connection = pika.BlockingConnection( pika.ConnectionParameters(host="rabbit") ) channel = connection.channel() channel.queue_declare(queue="recorder") tracks['settings'] = schema.dump(settings).data for record in tracks['recordList']: obj = { "trackname": record['name'], "id": record['id'], "duration_ms": record['duration_ms'], "settings": { "framesize": tracks['settings']['framesize'], "driver_path": tracks['settings']['driver_path'], "profile_path": tracks['settings']['profile_path'] } } for t in record['album']['artists']: obj['artist'] = t['name'] json_data = json.dumps(obj) channel.basic_publish( exchange="", routing_key="recorder", body=json_data ) connection.close() return { "message": "Jobs wurden erstellt. Nachricht wird verstand wenn fertig." }, 201 class TokenCacheApi(Resource): @jwt_required def post(self): """Put the token into the Cache""" data = request.get_json() spotify_token = data["spotify_token"] if redis_client.exists("spotify_token"): redis_client.delete("spotify_token") redis_client.set("spotify_token", spotify_token) saved_token = redis_client.get("spotify_token").decode("utf-8") return { "message": "Token wurde gespeichert!", "spotify_token": saved_token }, 201 else: redis_client.set("spotify_token", spotify_token) saved_token = redis_client.get("spotify_token").decode("utf-8") return { "message": "Token wurde gespeichert!", "spotify_token": saved_token }, 201
the-stack_0_21425
#!/usr/bin/env python # MIT License # # Copyright (c) 2017 Francesco Evangelista # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import print_function import argparse import sys import re import subprocess import os import datetime from os import listdir, environ from os.path import isfile, join from future.utils import iteritems vmd_cube_help = """vmd_cube is a script to render cube files with vmd. To generate cube files with Psi4 add the command cubeprop() at the end of your input file.""" vmd_exe = "" vmd_script_name = "vmd_mo_script.vmd" vmd_template = """# # VMD script to plot MOs from cube files # # Load the molecule and change the atom style mol load cube PARAM_CUBEFILE.cube mol modcolor 0 PARAM_CUBENUM Element mol modstyle 0 PARAM_CUBENUM Licorice 0.110000 10.000000 10.000000 #mol modstyle 0 PARAM_CUBENUM CPK 0.400000 0.40000 30.000000 16.000000 # Define the material material change ambient Opaque 0.310000 material change diffuse Opaque 0.720000 material change specular Opaque 0.500000 material change shininess Opaque 0.480000 material change opacity Opaque 1.000000 material change outline Opaque 0.000000 material change outlinewidth Opaque 0.000000 material change transmode Opaque 0.000000 material change specular Opaque 0.750000 material change ambient EdgyShiny 0.310000 material change diffuse EdgyShiny 0.720000 material change shininess EdgyShiny 1.0000 material change opacity EdgyShiny PARAM_OPACITY # Customize atom colors color Element C silver color Element H white # Rotate and translate the molecule rotate x by PARAM_RX rotate y by PARAM_RY rotate z by PARAM_RZ translate by PARAM_TX PARAM_TY PARAM_TZ scale by PARAM_SCALE # Eliminate the axis and perfect the view axes location Off display projection Orthographic display depthcue off display resize PARAM_IMAGEW PARAM_IMAGEH color Display Background white""" vmd_template_surface = """# # Add a surface mol color ColorID PARAM_ISOCOLOR mol representation Isosurface PARAM_ISOVALUE 0 0 0 1 1 mol selection all mol material EdgyShiny mol addrep PARAM_CUBENUM """ vmd_template_interactive = """# # Disable rendering mol off PARAM_CUBENUM """ vmd_template_render = """ # Render render TachyonInternal PARAM_CUBEFILE.tga mol delete PARAM_CUBENUM """ vmd_template_rotate = """ light 1 off light 0 rot y 30.0 light 0 rot x -30.0 """ default_path = os.getcwd() # Default parameters options = {"ISOVALUE" : [None,"Isosurface Value(s)"], "ISOCOLOR" : [None,"Isosurface Color(s)"], "ISOCUT" : [None,"Isosurface Value Cutoff"], "RX" : [None,"X-axis Rotation"], "RY" : [None,"Y-axis Rotation"], "RZ" : [None,"Z-axis Rotation"], "TX" : [None,"X-axis Translation"], "TY" : [None,"Y-axis Translation"], "TZ" : [None,"Z-axis Translation"], "OPACITY" : [None,"Opacity"], "CUBEDIR" : [None,"Cubefile Directory"], "SCALE" : [None,"Scaling Factor"], "MONTAGE" : [None,"Montage"], "LABEL_MOS" : [None,"Label MOs"], "FONTSIZE" : [None,"Font size"], "IMAGEW" : [None,"Image width"], "IMAGEH" : [None,"Image height"], "VMDPATH" : [None,"VMD Path"], "INTERACTIVE" : [None,"Interactive Mode"], "GZIP" : [None,"Gzip Cube Files"]} def which(program): import os def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def multigsub(subs,str): for k,v in subs.items(): str = re.sub(k,v,str) return str def find_vmd(options): if environ['VMDPATH']: vmdpath = environ['VMDPATH'] vmdpath = multigsub({" " : r"\ "},vmdpath) options["VMDPATH"][0] = vmdpath else: print("Please set the VMDPATH environmental variable to the path of VMD.") exit(1) def save_setup_command(argv): file_name = join(default_path, 'vmd_cube_command') f = open(file_name, 'w') f.write('# setup command was executed '+datetime.datetime.now().strftime("%d-%B-%Y %H:%M:%S"+"\n")) f.write(" ".join(argv[:])+"\n") f.close() def read_options(options): parser = argparse.ArgumentParser(description=vmd_cube_help) parser.add_argument('data', metavar='<cubefile dir>', type=str, nargs='?',default=".", help='The directory containing the cube files.') parser.add_argument('--isovalue', metavar='<isovalue>', type=float, nargs='*',default=[0.05,-0.05], help='a list of isosurface values (a list of floats, default = [0.05,-0.05])') parser.add_argument('--isocolor', metavar='<integer>', type=int, nargs='*',default=[3,23], help='a list of isosurface color IDs (a list of integers, default = [3,23])') parser.add_argument('--isocut', metavar='<isovalue cutoff>', type=float, nargs='?',default=1.0e-5, help='cutoff value for rendering an isosurface (float, default = 1.0e-5)') parser.add_argument('--rx', metavar='<angle>', type=float, nargs='?',default=30.0, help='the x-axis rotation angle (float, default = 30.0)') parser.add_argument('--ry', metavar='<angle>', type=float, nargs='?',default=40.0, help='the y-axis rotation angle (float, default = 40.0)') parser.add_argument('--rz', metavar='<angle>', type=float, nargs='?',default=15.0, help='the z-axis rotation angle (float, default = 15.0)') parser.add_argument('--tx', metavar='<length>', type=float, nargs='?',default=0.0, help='the x-axis translation (float, default = 0.0)') parser.add_argument('--ty', metavar='<length>', type=float, nargs='?',default=0.0, help='the y-axis translation (float, default = 0.0)') parser.add_argument('--tz', metavar='<length>', type=float, nargs='?',default=0.0, help='the z-axis translation (float, default = 0.0)') parser.add_argument('--opacity', metavar='<opacity>', type=float, nargs='?',default=1.0, help='opacity of the isosurface (float, default = 1.0)') parser.add_argument('--scale', metavar='<factor>', type=float, nargs='?',default=1.0, help='the scaling factor (float, default = 1.0)') parser.add_argument('--no-montage', action="store_true", help='call montage to combine images. (string, default = false)') parser.add_argument('--no-labels', action="store_true", help='do not add labels to images. (string, default = false)') parser.add_argument('--imagew', metavar='<integer>', type=int, nargs='?',default=250, help='the width of images (integer, default = 250)') parser.add_argument('--imageh', metavar='<integer>', type=int, nargs='?',default=250, help='the height of images (integer, default = 250)') parser.add_argument('--fontsize', metavar='<integer>', type=int, nargs='?',default=20, help='the font size (integer, default = 20)') parser.add_argument('--interactive', action="store_true", help='run in interactive mode (default = false)') parser.add_argument('--gzip', action="store_true", help='gzip cube files (default = false)') parser.add_argument('--national_scheme', action="store_true", help='use a red/blue color scheme. (string, default = false)') parser.add_argument('--silver_scheme', action="store_true", help='use a gray/white color scheme. (string, default = false)') parser.add_argument('--bright_scheme', action="store_true", help='use a soft yellow/blue color scheme. (string, default = false)') parser.add_argument('--electron_scheme', action="store_true", help='use a purple/green color scheme. (string, default = false)') args = parser.parse_args() options["CUBEDIR"][0] = str(args.data) options["ISOVALUE"][0] = args.isovalue options["ISOCOLOR"][0] = args.isocolor options["ISOCUT"][0] = str(args.isocut) options["RX"][0] = str(args.rx) options["RY"][0] = str(args.ry) options["RZ"][0] = str(args.rz) options["TX"][0] = str(args.tx) options["TY"][0] = str(args.ty) options["TZ"][0] = str(args.tz) options["OPACITY"][0] = str(args.opacity) options["SCALE"][0] = str(args.scale) options["LABEL_MOS"][0] = str(not args.no_labels) options["MONTAGE"][0] = str(not args.no_montage) options["FONTSIZE"][0] = str(args.fontsize) options["IMAGEW"][0] = str(args.imagew) options["IMAGEH"][0] = str(args.imageh) options["INTERACTIVE"][0] = str(args.interactive) options["GZIP"][0] = str(args.gzip) if args.national_scheme: options["ISOCOLOR"][0] = [23,30] if args.silver_scheme: options["ISOCOLOR"][0] = [2,8] if args.electron_scheme: options["ISOCOLOR"][0] = [13,12] if args.bright_scheme: options["ISOCOLOR"][0] = [32,22] print("Parameters:") sorted_parameters = sorted(options.keys()) for k in sorted_parameters: print(" %-20s %s" % (options[k][1],str(options[k][0]))) def find_cubes(options): # Find all the cube files in a given directory dir = options["CUBEDIR"][0] sorted_files = [] zipped_files = [] for f in listdir(options["CUBEDIR"][0]): if "\'" in f: nf = f.replace("\'", "p") os.rename(f,nf) f = nf if "\"" in f: nf = f.replace("\"", "pp") os.rename(f,nf) f = nf if f[-5:] == '.cube': sorted_files.append(f) elif f[-8:] == '.cube.gz': found_zipped = True # unzip file sorted_files.append(f[:-3]) zipped_files.append(f) if len(zipped_files) > 0: print("\nDecompressing gzipped cube files") FNULL = open(os.devnull, 'w') subprocess.call(("gzip -d %s" % " ".join(zipped_files)),stdout=FNULL, shell=True) options["GZIP"][0] = 'True' return sorted(sorted_files) def write_and_run_vmd_script(options,cube_files): vmd_script = open(vmd_script_name,"w+") vmd_script.write(vmd_template_rotate) # Define a map that contains all the values of the VMD parameters replacement_map = {} for (k, v) in iteritems(options): key = "PARAM_" + k.upper() replacement_map[key] = v[0] for n,f in enumerate(cube_files): replacement_map["PARAM_CUBENUM"] = '%03d' % n replacement_map["PARAM_CUBEFILE"] = options["CUBEDIR"][0] + '/' + f[:-5] # Default isocontour values or user-provided isovalue = options["ISOVALUE"][0][:] isocolor = options["ISOCOLOR"][0][:] # Read isocontour values from file, if available with open(f,'r') as file: l1 = file.readline() l2 = file.readline() m = re.search(r'density: \(([-+]?[0-9]*\.?[0-9]+)\,([-+]?[0-9]*\.?[0-9]+)\)',l2) if m: isovalue[0] = float(m.groups()[0]) isovalue[1] = float(m.groups()[1]) nisovalue = len(isovalue) nisocolor = len(isocolor) if nisovalue!= nisocolor: print("Quitting: Please specify the same number of isosurface values and colors.") quit() else: print("Plotting %s with isosurface values" % (f), str(isovalue)) vmd_script_surface = "" surf = zip(isovalue,isocolor) for c in surf: if abs(c[0]) > float(options["ISOCUT"][0]): replacement_map["PARAM_ISOVALUE"] = str(c[0]) replacement_map["PARAM_ISOCOLOR"] = str(c[1]) vmd_script_surface += multigsub(replacement_map,vmd_template_surface) else: print(" * Skipping isosurface with isocontour value %f" % c[0]) vmd_script_head = multigsub(replacement_map,vmd_template) if options["INTERACTIVE"][0] == 'True': vmd_script_render = multigsub(replacement_map,vmd_template_interactive) else: vmd_script_render = multigsub(replacement_map,vmd_template_render) vmd_script.write(vmd_script_head + "\n" + vmd_script_surface + "\n" + vmd_script_render) if options["INTERACTIVE"][0] == 'False': vmd_script.write("quit") vmd_script.close() # Call VMD in text mode FNULL = open(os.devnull, 'w') subprocess.call(("%s -dispdev text -e %s" % (options["VMDPATH"][0],vmd_script_name)),stdout=FNULL, shell=True) else: vmd_script.close() # Call VMD in graphic mode FNULL = open(os.devnull, 'w') subprocess.call(("%s -e %s" % (options["VMDPATH"][0],vmd_script_name)),stdout=FNULL, shell=True) def call_montage(options,cube_files): if options["MONTAGE"][0] == 'True': # Optionally, combine all figures into one image using montage montage_exe = which("montage") if montage_exe: alpha_mos = [] beta_mos = [] densities = [] basis_functions = [] for f in cube_files: tga_file = f[:-5] + ".tga" if "Psi_a" in f: alpha_mos.append(tga_file) if "Psi_b" in f: beta_mos.append(tga_file) if "D" in f: densities.append(tga_file) if "Phi" in f: basis_functions.append(tga_file) # Sort the MOs sorted_mos = [] for set in [alpha_mos,beta_mos]: sorted_set = [] for s in set: s_split = s.split('_') sorted_set.append((int(s_split[2]),"Psi_a_%s_%s" % (s_split[2],s_split[3]))) sorted_set = sorted(sorted_set) sorted_mos.append([s[1] for s in sorted_set]) os.chdir(options["CUBEDIR"][0]) # Add labels if options["LABEL_MOS"][0] == 'True': for f in sorted_mos[0]: f_split = f.split('_') label = '%s\ \(%s\)' % (f_split[3][:-4],f_split[2]) subprocess.call(("montage -pointsize %s -label %s %s -geometry '%sx%s+0+0>' %s" % (options["FONTSIZE"][0],label,f,options["IMAGEW"][0],options["IMAGEH"][0],f)), shell=True) # Combine together in one image if len(alpha_mos) > 0: subprocess.call(("%s %s -geometry +2+2 AlphaMOs.tga" % (montage_exe," ".join(sorted_mos[0]))), shell=True) if len(beta_mos) > 0: subprocess.call(("%s %s -geometry +2+2 BetaMOs.tga" % (montage_exe," ".join(sorted_mos[1]))), shell=True) if len(densities) > 0: subprocess.call(("%s %s -geometry +2+2 Densities.tga" % (montage_exe," ".join(densities))), shell=True) if len(basis_functions) > 0: subprocess.call(("%s %s -geometry +2+2 BasisFunctions.tga" % (montage_exe," ".join(basis_functions))), shell=True) def zip_files(cube_files,options): """Gzip cube files if requested or necessary.""" if options["GZIP"][0] == 'True': print("\nCompressing cube files") FNULL = open(os.devnull, 'w') subprocess.call(("gzip %s" % " ".join(cube_files)),stdout=FNULL, shell=True) def get_cumulative_density_iso_value(file,sigma): """Find the isosurface values that capture a certain amount of the total density (sigma).""" cube_data = [] norm = 0.0 k = 0 with open(file) as f: for line in f: if k > 6: for s in line.split(): value = float(s) value_sqr = value * value norm = norm + value_sqr cube_data.append((value_sqr,value)) k = k + 1 cube_data.sort(reverse=True) sum = 0.0 positive_iso = 0.0 negative_iso = 0.0 for (value_sqr,value) in cube_data: if sum < sigma: sum = sum + value_sqr / norm if value > 0: positive_iso = value else: negative_iso = value else: return (positive_iso, negative_iso) return (positive_iso, negative_iso) def main(argv): find_vmd(options) read_options(options) save_setup_command(argv) cube_files = find_cubes(options) write_and_run_vmd_script(options,cube_files) call_montage(options,cube_files) zip_files(cube_files,options) if __name__ == '__main__': main(sys.argv)
the-stack_0_21427
# -*- coding: utf-8 -*- """ Small prototype of a cost function and show difference between edge betweenness centrality and node betweenness centrality averaged over the edges. """ import numpy as np import networkx as nx import osmnx as ox import nerds_osmnx.simplification def normalized_array(arr): """Return any array of values normalized between 0 and 1.""" return (arr - min(arr))/(max(arr) - min(arr)) def average_node_to_edge(G, attr_name): """Return graph with edge attribute as average of node attribute""" G = G.copy() for edge in G.edges: G.edges[edge][attr_name] = np.mean([ G.nodes[edge[0]][attr_name], G.nodes[edge[1]][attr_name] ]) return G if __name__ == "__main__": G = ox.graph_from_bbox(43.5337, 43.5233, 5.4577, 5.4376, simplify=False) ox.plot_graph(G, figsize=(12, 8), bgcolor='w', node_color='r', node_size=30, edge_color='black', edge_linewidth=3) G = nerds_osmnx.simplification.simplify_graph(G) ox.plot_graph(G, figsize=(12, 8), bgcolor='w', node_color='r', node_size=30, edge_color='black', edge_linewidth=3) G = nerds_osmnx.simplification.multidigraph_to_graph(G) betw = nx.betweenness_centrality(G, weight="length") clos = nx.closeness_centrality(G, distance="length") A = 1. B = 1. cost_function = (A*normalized_array(np.array(list(betw.values()))) + B*normalized_array(np.array(list(clos.values())))) cost_dict = dict(zip(betw.keys(), cost_function)) nx.set_node_attributes(G, cost_dict, name="cost") cost_nc = ox.plot.get_node_colors_by_attr(G, "cost") e_betw = nx.edge_betweenness_centrality(G, weight="length") nx.set_edge_attributes(G, e_betw, name="edge_betweenness") nx.set_node_attributes(G, betw, name="betweenness") G = average_node_to_edge(G, 'betweenness') betw_ec = ox.plot.get_edge_colors_by_attr(G, "betweenness") ebet_ec = ox.plot.get_edge_colors_by_attr(G, "edge_betweenness") #osmx.plot_graph only take multigraph because it retrieves keys G = nx.MultiGraph(G) ox.plot_graph(G, figsize=(12, 8), bgcolor='w', node_color='black', node_size=30, edge_color=betw_ec, edge_linewidth=3) ox.plot_graph(G, figsize=(12, 8), bgcolor='w', node_color='black', node_size=30, edge_color=ebet_ec, edge_linewidth=3)
the-stack_0_21428
# # converted from matlab version to python in Jan 2018 import sys import numpy as np __doc__ = """ Density of Sea Water using McDougall et al. 2003 (JAOT 20) polynomial Functions: dens :: computes in-situ density from salinity, potential temperature and pressure """ # coefficients nonlinear equation of state in pressure coordinates for eosMDJWFnum = [ 7.35212840e+00, -5.45928211e-02, 3.98476704e-04, 2.96938239e+00, -7.23268813e-03, 2.12382341e-03, 1.04004591e-02, 1.03970529e-07, 5.18761880e-06, -3.24041825e-08, -1.23869360e-11, 9.99843699e+02 ] eosMDJWFden = [ 7.28606739e-03, -4.60835542e-05, 3.68390573e-07, 1.80809186e-10, 2.14691708e-03, -9.27062484e-06, -1.78343643e-10, 4.76534122e-06, 1.63410736e-09, 5.30848875e-06, -3.03175128e-16, -1.27934137e-17, 1.00000000e+00 ] def densmdjwf(s,theta,p): """ densmdjwf Density of sea water ========================================================================= USAGE: dens = densmdjwf(s,theta,p) DESCRIPTION: Density of Sea Water using McDougall et al. 2003 (JAOT 20) polynomial (Gibbs Potential). INPUT: (all must have same dimensions) S = salinity [psu (PSS-78)] Theta = potential temperature [degree C (IPTS-68)] P = pressure [dbar] (P may have dims 1x1, mx1, 1xn or mxn for S(mxn) ) OUTPUT: dens = density [kg/m^3] AUTHOR: Martin Losch 2002-08-09 ([email protected]) check value S = 35 PSU Theta = 25 degC P = 2000 dbar rho = 1031.654229 kg/m^3 McDougall et al., 2003, JAOT 20(5), pp. 730-741 """ # make sure arguments are floating point s = np.asfarray(s) t = np.asfarray(theta) p = np.asfarray(p) p1 = np.copy(p); t1 = np.copy(t); t2 = t*t; s1 = np.copy(s); if np.any(s1<0): sys.stderr.write('negative salinity values! setting to nan\n') # # the sqrt will take care of this # if s.ndim > 0: # s[s<0] = np.nan # else: # s = np.nan sp5 = np.sqrt(s1) p1t1=p1*t1 num = ( eosMDJWFnum[11] + t1*(eosMDJWFnum[0] + t1*(eosMDJWFnum[1] + eosMDJWFnum[2]*t1) ) + s1*(eosMDJWFnum[3] + eosMDJWFnum[4]*t1 + eosMDJWFnum[5]*s1) + p1*(eosMDJWFnum[6] + eosMDJWFnum[7]*t2 + eosMDJWFnum[8]*s1 + p1*(eosMDJWFnum[9] + eosMDJWFnum[10]*t2) ) ) den = ( eosMDJWFden[12] + t1*(eosMDJWFden[0] + t1*(eosMDJWFden[1] + t1*(eosMDJWFden[2] + t1*eosMDJWFden[3] ) ) ) + s1*(eosMDJWFden[4] + t1*(eosMDJWFden[5] + eosMDJWFden[6]*t2) + sp5*(eosMDJWFden[7] + eosMDJWFden[8]*t2) ) + p1*(eosMDJWFden[9] + p1t1*(eosMDJWFden[10]*t2 + eosMDJWFden[11]*p1) ) ) epsln = 0 denom = 1.0/(epsln+den) rho = num*denom; return rho # aliases dens = densmdjwf
the-stack_0_21429
#Web - Calculadora nome_pagina = 'Calculadora' from flask import Flask, render_template, request from calculoExercicio import * app = Flask(__name__) @app.route('/') def home(): return render_template('home.html', titulo =nome_pagina) @app.route('/calcular') def calcular(): x = int(request.args['numero1']) y = int(request.args['numero2']) r_soma = soma(x,y) r_sub = sub(x,y) r_multi = multi(x,y) r_div = div(x,y) r_div_fra = div_fra(x,y) r_rest_div = rest_div(x,y) r_raiz = raiz(x,y) resultados = {'soma':r_soma,'sub':r_sub,'multi':r_multi,'div':r_div,'div_fra':r_div_fra,'rest_div':r_rest_div,'raiz':r_raiz} return render_template( 'resultado.html' ,x = x ,y = y ,resultados = resultados) app.run()
the-stack_0_21430
import click from tabulate import tabulate from . import database @click.group() def cli(): ... @cli.command() def requests(): reqs = [] def update_requests(): nonlocal reqs reqs = database.get_pending_requests() update_requests() if len(reqs) == 0: click.secho('No pending requests!', fg='green') return dirty = [] def view(): update_requests() count = len(reqs) if count != 0: print(tabulate(reqs, ['ID', 'Nicename', 'Timestamp'], tablefmt='pretty')) if count == 1: print(f'There is {count} pending request.') else: print(f'There are {count} pending requests.') def approve(idx, *name): idx = int(idx) if idx not in (row[0] for row in reqs): click.secho('Invalid index provided!', fg='red') raise ValueError() if len(name) == 0: click.secho('Please provide a name!', fg='red') raise ValueError() name = ' '.join(name) database.approve_request(idx, name) dirty.append(f'approve {idx} {name}') update_requests() def reject(idx): idx = int(idx) if idx not in (row[0] for row in reqs): click.secho('Invalid index provided!', fg='red') raise ValueError() database.reject_request(idx) dirty.append(f'reject {idx}') update_requests() def purge(): database.purge_requests() dirty.append(f'purge') update_requests() def diff(): if dirty: [print(' - ' + stmt) for stmt in dirty] else: click.secho('No pending changes!') def print_help(): print("""Available commands: - view view all pending requests - accept (or approve) accept a request by providing an id and a name - reject (or deny) reject a request by id - purge reject all pending requests - diff (or history) view pending changes - commit commit changes to db - rollback rollback changes from db * help print this help message - exit exit the interactive CLI""") view() while True: try: cmd, *args = input(click.style('What would you like to do?\n> ', fg='cyan')).split() if cmd == 'view': view() elif cmd in ('accept', 'approve'): approve(*args) elif cmd in ('reject', 'deny'): reject(*args) elif cmd == 'purge': purge() elif cmd in ('diff', 'history'): diff() elif cmd == 'commit': if not dirty: click.secho('No changes to commit!', fg='yellow') continue database.commit() click.secho('Committed!', fg='green') dirty = [] elif cmd == 'rollback': if not dirty: click.secho('No changes to rollback!', fg='yellow') continue database.rollback() click.secho('Rolled back!', fg='green') dirty = [] elif cmd == 'help': print_help() elif cmd == 'exit': if dirty: response = input('You have unsaved changes! Save them? [y/N] ').lower() if response == 'y': database.commit() click.secho('Committed!', fg='green') else: database.rollback() click.secho('Rolled back!', fg='green') print('Goodbye!') return else: raise ValueError() except ValueError: click.secho('Invalid input!', fg='red') print() if __name__ == "__main__": cli()
the-stack_0_21431
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import hashlib from copy import deepcopy import numpy as np from graph.dim import Dim from graph.types.activations import ActivationParameters from graph.types.base import NNEdge from graph.types.input_output import ConstantInputParameters from graph.types.others import ReshapeParameters from importer.common.provisional_dim import ProvisionalDim from quantization.new_qrec import QRec from quantization.qtype import QType from utils.node_id import NodeId from ..tflite_schema_head.ActivationFunctionType import ActivationFunctionType from .handler import Handler class BackendHandler(Handler): """ This class is base backend handler class. All backend operator handler class MUST inherit this class. In backend, operator handler class's name should be pascal case of file name which should be snake case. Use ONNX operator name as class name. """ VAR_COUNT = 0 TF_ACTIVATIONS = { ActivationFunctionType.RELU: "relu", ActivationFunctionType.RELU6: "relu6", ActivationFunctionType.SIGN_BIT: "sign_bit", ActivationFunctionType.TANH: "tanh" } @classmethod def _get_real_dim(cls, shape): return np.array([elem for elem in shape if elem is not None]) @classmethod def _get_real_dims(cls, dims): return [cls._get_real_dim(dim.shape) for dim in dims] @classmethod def _verify_constant(cls, inp): if cls._is_constant(inp): return cls._get_constant(inp) raise ValueError("expected node %s to be constant input" % inp[0].name) @classmethod def _is_constant(cls, inp): return isinstance(inp[0], ConstantInputParameters) @classmethod def _get_constant(cls, inp): return inp[0].value @classmethod def _slice_len(cls, vstart, vend, vstep): if vstep < 0: vstart, vend = vend, vstart vstep = -vstep return (vend - vstart - 1) // vstep + 1 @classmethod def fuse_activation(cls, tfl_opts, name, params, **kwargs): G = kwargs['G'] opts = kwargs['opts'] ext = hashlib.sha1(name.encode( "UTF-8")).hexdigest()[:8] if opts.get('anonymise') else 'activation' if opts.get('load_quantization') and NodeId(params) in G.quantization: node_qrec = G.quantization[NodeId(params)] else: node_qrec = None # if node_qrec is not None and None in node_qrec.in_qs + node_qrec.out_qs: # # one of the input is a constant or strange behaviour -> may be is something fusions will get rid of # return add_node(self.G, node) aparams = None if tfl_opts.FusedActivationFunction() == ActivationFunctionType.NONE: if node_qrec is not None and node_qrec.ktype.startswith('scaled'): # and opts.get('insert_relus'): # here we have no activation in an asymmetric qtype -> may be an omitted relu if node_qrec.out_qs[0] is not None and node_qrec.out_qs[0].min_val == 0: if np.all(np.round(node_qrec.out_qs[0].max_val) == 6): aparams = ActivationParameters.get_activation( 'relu6', name + f"_{ext}") else: aparams = ActivationParameters.get_activation( 'relu', name + f"_{ext}") else: aparams = ActivationParameters.get_activation(cls.TF_ACTIVATIONS[tfl_opts.FusedActivationFunction()], name + f"_{ext}") if aparams: G.add_edge(NNEdge(from_node=params, to_node=aparams)) if opts.get('load_quantization'): # In between the fused operation and activation the # transfer is in int32 representation node_qrec = G.quantization[NodeId(params)] ina_qtype = deepcopy(node_qrec.out_qs[0]) outa_qtype = deepcopy(ina_qtype) G.quantization[NodeId(aparams)] = QRec.scaled( in_qs=[ina_qtype], out_qs=[outa_qtype]) params = aparams return params @classmethod def remove_unspecified_dim(cls, shape): return [dim for dim in shape if dim is not None] @classmethod def get_all_const_inputs(cls, G, all_nodes, opts, node, params, exclude=None, names=None, short_names=None, adjust_transposes=None, load_quantization_if_present=False, skip_empty_tensors=True): if exclude is None: exclude = [] if names is None: names = [None] * len(node.inputs) if short_names is None: short_names = [None] * len(node.inputs) if adjust_transposes is None: adjust_transposes = [None] * len(node.nputs) const_params = [] # TODO - this should just be picking up the existing constant nodes not creating new ones. for idx, tensor in enumerate(node.input): if tensor is None or idx in exclude or (skip_empty_tensors and not tensor.is_constant): const_params.append(None) continue tensor.used = True if tensor not in all_nodes: # this can occur for RNN/LSTM state nodes that have a buffer idx of 0 const_param = ConstantInputParameters( tensor.name, dims=Dim.unnamed(tensor.shape), value=tensor.value, constant_store=G.constant_store) all_nodes[tensor] = ( const_param, 0, ProvisionalDim.from_tflite_shape(tensor.shape) ) else: const_param = all_nodes[tensor][0] # some constant nodes can be connected to multiple nodes # changing their name is not a good idea if const_param not in G.nodes(): const_param.name = names[idx] const_param.adjust_transpose = adjust_transposes[idx] const_param.is_mutated = node.is_mutated(idx) const_param.is_intermediate = node.is_intermediate(idx) const_param.short_name = short_names[idx] const_param.value = np.reshape(tensor.value, tensor.shape) if opts.get('load_quantization'): G.quantization[NodeId(const_param)] = QRec.scaled( in_qs=[tensor.qtype], out_qs=[tensor.qtype]) if load_quantization_if_present and tensor.qtype: const_param.value_quantization = tensor.qtype const_params.append(const_param) G.add_edge(NNEdge(const_param, params, to_idx=idx)) return const_params @classmethod def remove_none_from_constants(cls, inputs, model): if None not in model: return for inp in inputs: if not isinstance(inp[0], ConstantInputParameters): continue val = inp[0].value if val is None or len(val.shape) != len(model): continue assert all(val.shape[idx] == 1 for idx, dim in enumerate(model) if dim is None),\ "value has axis that is larger than one in an unknown dimension" new_shape = [dim for idx, dim in enumerate( val.shape) if model[idx] is not None] inp[0].value = np.reshape(inp[0].value, new_shape) inp[0].dims = Dim.unnamed(new_shape) @classmethod def convert_to_symmetric(cls, qtypes): return [QType.from_min_max_sq(qtype.min_val, qtype.max_val) if qtype is not None and (qtype.asymmetric or not qtype.signed) else qtype for qtype in qtypes] @classmethod def load_tf_quantization(cls, input_tensors, output_tensors, in_qs=None, out_qs=None, qrec_class=None): if qrec_class is None: qrec = QRec.scaled( in_qs=cls.convert_to_symmetric( in_qs if in_qs is not None else [tensor.qtype if tensor is not None else None for tensor in input_tensors]), out_qs=cls.convert_to_symmetric( out_qs if out_qs is not None else [tensor.qtype for tensor in output_tensors])) else: qrec = qrec_class( in_qs=cls.convert_to_symmetric( in_qs if in_qs is not None else [tensor.qtype if tensor is not None else None for tensor in input_tensors]), out_qs=cls.convert_to_symmetric( out_qs if out_qs is not None else [tensor.qtype for tensor in output_tensors])) return qrec @classmethod def remove_known_batch_dimension(cls, G, x, node, batch_axis=0): x_shape = x[2].shape if x_shape[batch_axis] is not None: if x_shape[0] > 1: raise ValueError( f'multi batch (n={x_shape[batch_axis]}) operations are not supported by {node.name}') rparams = ReshapeParameters( f'{node.name}_batch', old_shape=Dim.unnamed(x_shape), shape=Dim.unnamed(x_shape[0:batch_axis:]+x_shape[batch_axis+1::])) if G.quantization: qrec = G.quantization[NodeId(x[0])] G.quantization[NodeId(rparams)] = QRec.copy_ktype( qrec, in_qs=[qrec.out_qs[0]], out_qs=[qrec.out_qs[0]]) G.add_edge( NNEdge(from_node=x[0], to_node=rparams, from_idx=x[1], to_idx=0)) return (rparams, 0, ProvisionalDim(x_shape[0:batch_axis:]+[None]+x_shape[batch_axis+1::])) else: return x
the-stack_0_21432
# coding: utf-8 """ Purity//FB REST Client Client for Purity//FB REST API, developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.4 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class ArrayResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'pagination_info': 'PaginationInfo', 'items': 'list[PureArray]' } attribute_map = { 'pagination_info': 'pagination_info', 'items': 'items' } def __init__(self, pagination_info=None, items=None): """ ArrayResponse - a model defined in Swagger """ self._pagination_info = None self._items = None if pagination_info is not None: self.pagination_info = pagination_info if items is not None: self.items = items @property def pagination_info(self): """ Gets the pagination_info of this ArrayResponse. pagination information, only available in GET requests :return: The pagination_info of this ArrayResponse. :rtype: PaginationInfo """ return self._pagination_info @pagination_info.setter def pagination_info(self, pagination_info): """ Sets the pagination_info of this ArrayResponse. pagination information, only available in GET requests :param pagination_info: The pagination_info of this ArrayResponse. :type: PaginationInfo """ self._pagination_info = pagination_info @property def items(self): """ Gets the items of this ArrayResponse. a list of array objects :return: The items of this ArrayResponse. :rtype: list[PureArray] """ return self._items @items.setter def items(self, items): """ Sets the items of this ArrayResponse. a list of array objects :param items: The items of this ArrayResponse. :type: list[PureArray] """ self._items = items def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, ArrayResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
the-stack_0_21433
import torch from tqdm import tqdm from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize import torchvision import BigGAN_utils.utils as utils import clip.clip import torch.nn.functional as F from DiffAugment_pytorch import DiffAugment import numpy as np import lpips import wandb LATENT_NOISE = 0.01 Z_THRES = 2.0 POLICY = 'color,translation,resize,cutout' TEST_POLICY = 'color,translation,resize,cutout' def ReconstructionLoss(img, target, clip_model, mean, std, interp_mode, loss_type, lpips=None): if loss_type == "reconstruct_l2": loss = torch.sum((img - target)**2, dim=[1, 2, 3]) loss = torch.sqrt(loss) mag = torch.sqrt(torch.sum((target)**2, dim=(1,2,3))) loss = loss / mag elif loss_type == "reconstruct_clip": img = (img+1.)/2. img = F.interpolate(img, size=224, mode=interp_mode) img.sub_(mean[None, :, None, None]).div_(std[None, :, None, None]) target = (target+1.)/2. target = F.interpolate(target, size=224, mode=interp_mode) target.sub_(mean[None, :, None, None]).div_(std[None, :, None, None]) img_encoding = clip_model.encode_image(img) target_encoding = clip_model.encode_image(target) loss = -torch.sum(img_encoding * target_encoding, -1) / (torch.norm(img_encoding) * torch.norm(target_encoding)) elif loss_type == "reconstruct_lpips": loss = lpips(img, target) else: raise ValueError("Invalid loss type specified") return loss def AugmentLoss(img, clip_model, text, mean, std, replicate=10, interp_mode='bilinear', policy=POLICY): clip_c = clip_model.logit_scale.exp() img_aug = DiffAugment(img.repeat(replicate, 1, 1, 1), policy=policy) img_aug = (img_aug+1.)/2. img_aug = F.interpolate(img_aug, size=224, mode=interp_mode) img_aug.sub_(mean[None, :, None, None]).div_(std[None, :, None, None]) logits_per_image, logits_per_text = clip_model(img_aug, text) logits_per_image = logits_per_image / clip_c concept_loss = (-1.) * logits_per_image return concept_loss.mean(dim=0, keepdim=False) def NaiveSemanticLoss(img, clip_model, text, mean, std, interp_mode='bilinear'): clip_c = clip_model.logit_scale.exp() img = (img+1.)/2. img = F.interpolate(img, size=224, mode=interp_mode) img.sub_(mean[None, :, None, None]).div_(std[None, :, None, None]) logits_per_image, logits_per_text = clip_model(img, text) logits_per_image = logits_per_image / clip_c concept_loss = (-1.) * logits_per_image return concept_loss.mean(dim=0, keepdim=False) def get_gaussian_mask(size=256): x, y = np.meshgrid(np.linspace(-1,1, size), np.linspace(-1,1,size)) dst = np.sqrt(x*x+y*y) # Intializing sigma and muu sigma = 1 muu = 0.000 # Calculating Gaussian array gauss = np.exp(-( (dst-muu)**2 / ( 2.0 * sigma**2 ) ) ) return gauss def save_image(img, path, n_per_row=1): with torch.no_grad(): torchvision.utils.save_image( torch.from_numpy(img.cpu().numpy()), ##hack, to turn Distribution back to tensor path, nrow=n_per_row, normalize=True, ) def get_G(resolution=256, device="cuda:0"): if resolution == 256: parser = utils.prepare_parser() parser = utils.add_sample_parser(parser) config = vars(parser.parse_args()) # See: https://github.com/ajbrock/BigGAN-PyTorch/blob/master/scripts/sample_BigGAN_bs256x8.sh. config["resolution"] = utils.imsize_dict["I128_hdf5"] config["n_classes"] = utils.nclass_dict["I128_hdf5"] config["G_activation"] = utils.activation_dict["inplace_relu"] config["D_activation"] = utils.activation_dict["inplace_relu"] config["G_attn"] = "128" config["D_attn"] = "128" config["G_ch"] = 96 config["D_ch"] = 96 config["hier"] = True config["dim_z"] = 140 config["shared_dim"] = 128 config["G_shared"] = True config = utils.update_config_roots(config) config["skip_init"] = True config["no_optim"] = True config["device"] = device config["resolution"] = 256 # Set up cudnn.benchmark for free speed. torch.backends.cudnn.benchmark = True # Import the model. model = __import__(config["model"]) G = model.Generator(**config).to(config["device"]) utils.count_parameters(G) # Load weights. weights_path = "./BigGAN_utils/weights/biggan-256.pth" # Change this. G.load_state_dict(torch.load(weights_path), strict=False) elif resolution == 512: parser = utils.prepare_parser() parser = utils.add_sample_parser(parser) config = vars(parser.parse_args()) # See: https://github.com/ajbrock/BigGAN-PyTorch/blob/master/scripts/sample_BigGAN_bs128x8.sh. config["resolution"] = 512 config["n_classes"] = utils.nclass_dict["I128_hdf5"] config["G_activation"] = utils.activation_dict["inplace_relu"] config["D_activation"] = utils.activation_dict["inplace_relu"] config["G_attn"] = "64" config["D_attn"] = "64" config["G_ch"] = 96 config["D_ch"] = 64 config["hier"] = True config["dim_z"] = 128 config["shared_dim"] = 128 config["G_shared"] = True config = utils.update_config_roots(config) config["skip_init"] = True config["no_optim"] = True config["device"] = device # Set up cudnn.benchmark for free speed. torch.backends.cudnn.benchmark = True # Import the model. model = __import__(config["model"]) #print(config["model"]) G = model.Generator(**config).to(config["device"]) utils.count_parameters(G) #print('G parameters:') #for p, m in G.named_parameters(): # print(p) # Load weights. weights_path = "./BigGAN_utils/weights/biggan-512.pth" # Change this. G.load_state_dict(torch.load(weights_path), strict=False) return G, config class FuseDreamBaseGenerator(): def __init__(self, G, G_config, G_batch_size=10, device="cuda:0", clip_mode="ViT-B/32", interp_mode='bilinear', use_wandb=False, target=None, loss_type="clip"): self.device = device self.G = G self.clip_model, _ = clip.load(clip_mode, device=device) self.mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda(device=device) self.std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda(device=device) self.use_wandb = use_wandb self.target = target self.loss_type = loss_type if self.loss_type == "reconstruct_lpips": self.lpips = lpips.LPIPS(net='vgg').to(device) else: self.lpips = None (self.z_, self.y_) = utils.prepare_z_y( G_batch_size, self.G.dim_z, G_config["n_classes"], device=device, fp16=G_config["G_fp16"], z_var=G_config["z_var"], ) self.G.eval() for p in self.G.parameters(): p.requires_grad = False for p in self.clip_model.parameters(): p.requires_grad = False self.interp_mode = interp_mode def generate_basis(self, text, init_iters=500, num_basis=5): text_tok = clip.tokenize([text]).to(self.device) clip_c = self.clip_model.logit_scale.exp() z_init_cllt = [] y_init_cllt = [] z_init = None y_init = None score_init = None with torch.no_grad(): for i in tqdm(range(init_iters)): self.z_.sample_() self.y_.sample_() self.z_.data = torch.clamp(self.z_.data.detach().clone(), min=-Z_THRES, max=Z_THRES) image_tensors = self.G(self.z_, self.G.shared(self.y_)) if "reconstruct" in self.loss_type and False: logits_per_image = -ReconstructionLoss(image_tensors, self.target, self.clip_model, self.mean, self.std, self.interp_mode, self.loss_type) else: image_tensors = (image_tensors+1.) / 2. image_tensors = F.interpolate(image_tensors, size=224, mode=self.interp_mode) image_tensors.sub_(self.mean[None, :, None, None]).div_(self.std[None, :, None, None]) logits_per_image, logits_per_text = self.clip_model(image_tensors, text_tok) logits_per_image = logits_per_image/clip_c if z_init is None: z_init = self.z_.data.detach().clone() y_init = self.y_.data.detach().clone() score_init = logits_per_image.squeeze() else: z_init = torch.cat([z_init, self.z_.data.detach().clone()], dim=0) y_init = torch.cat([y_init, self.y_.data.detach().clone()], dim=0) score_init = torch.cat([score_init, logits_per_image.squeeze()]) sorted, indices = torch.sort(score_init, descending=True) z_init = z_init[indices] y_init = y_init[indices] score_init = score_init[indices] z_init = z_init[:num_basis] y_init = y_init[:num_basis] score_init = score_init[:num_basis] #save_image(self.G(z_init, self.G.shared(y_init)), 'samples/init_%s.png'%text, 1) z_init_cllt.append(z_init.detach().clone()) y_init_cllt.append(self.G.shared(y_init.detach().clone())) return z_init_cllt, y_init_cllt def optimize_clip_score(self, z_init_cllt, y_init_cllt, text, latent_noise=False, augment=True, opt_iters=500, optimize_y=False): text_tok = clip.tokenize([text]).to(self.device) clip_c = self.clip_model.logit_scale.exp() z_init_ans = torch.stack(z_init_cllt) y_init_ans = torch.stack(y_init_cllt) z_init_ans = z_init_ans.view(-1, z_init_ans.shape[-1]) y_init_ans = y_init_ans.view(-1, y_init_ans.shape[-1]) w_z = torch.randn((z_init_ans.shape[0], z_init_ans.shape[1])).to(self.device) w_y = torch.randn((y_init_ans.shape[0], y_init_ans.shape[1])).to(self.device) w_z.requires_grad = True w_y.requires_grad = True opt_y = torch.zeros(y_init_ans.shape).to(self.device) opt_y.data = y_init_ans.data.detach().clone() opt_z = torch.zeros(z_init_ans.shape).to(self.device) opt_z.data = z_init_ans.data.detach().clone() opt_z.requires_grad = True if not optimize_y: optimizer = torch.optim.Adam([w_z, w_y, opt_z], lr=5e-3, weight_decay=0.0) else: opt_y.requires_grad = True optimizer = torch.optim.Adam([w_z, w_y,opt_y,opt_z], lr=5e-3, weight_decay=0.0) for i in tqdm(range(opt_iters)): #print(w_z.shape, w_y.shape) optimizer.zero_grad() if not latent_noise: s_z = torch.softmax(w_z, dim=0) s_y = torch.softmax(w_y, dim=0) #print(s_z) cur_z = s_z * opt_z cur_y = s_y * opt_y cur_z = cur_z.sum(dim=0, keepdim=True) cur_y = cur_y.sum(dim=0, keepdim=True) image_tensors = self.G(cur_z, cur_y) else: s_z = torch.softmax(w_z, dim=0) s_y = torch.softmax(w_y, dim=0) cur_z = s_z * opt_z cur_y = s_y * opt_y cur_z = cur_z.sum(dim=0, keepdim=True) cur_y = cur_y.sum(dim=0, keepdim=True) cur_z_aug = cur_z + torch.randn(cur_z.shape).to(cur_z.device) * LATENT_NOISE cur_y_aug = cur_y + torch.randn(cur_y.shape).to(cur_y.device) * LATENT_NOISE image_tensors = self.G(cur_z_aug, cur_y_aug) loss = 0.0 for j in range(image_tensors.shape[0]): if "reconstruct" in self.loss_type or self.loss_type == "joint": recons_loss = ReconstructionLoss(image_tensors[j:(j+1)], self.target, self.clip_model, self.mean, self.std, self.interp_mode, self.loss_type, self.lpips) recons_loss = torch.mean(recons_loss, axis=0) else: recons_loss = 0.0 if self.loss_type == "clip" or self.loss_type == "joint": if augment: clip_loss = AugmentLoss(image_tensors[j:(j+1)], self.clip_model, text_tok, self.mean, self.std, replicate=50, interp_mode=self.interp_mode) else: clip_loss = NaiveSemanticLoss(image_tensors[j:(j+1)], self.clip_model, text_tok, self.mean, self.std) else: clip_loss = 0.0 loss = loss + clip_loss + recons_loss loss.backward() optimizer.step() if self.use_wandb: wandb.log({"loss":loss, "clip_loss":clip_loss, "recons_loss":recons_loss}, step=i) opt_z.data = torch.clamp(opt_z.data.detach().clone(), min=-Z_THRES, max=Z_THRES) z_init_ans = cur_z.detach().clone() y_init_ans = cur_y.detach().clone() #save_image(self.G(z_init_ans, y_init_ans), 'samples/opt_%s.png'%text, 1) return self.G(z_init_ans, y_init_ans), z_init_ans, y_init_ans def measureAugCLIP(self, z, y, text, augment=False, num_samples=20): text_tok = clip.tokenize([text]).to(self.device) avg_loss = 0.0 for itr in range(num_samples): image_tensors = self.G(z, y) for j in range(image_tensors.shape[0]): if augment: loss = AugmentLoss(image_tensors[j:(j+1)], self.clip_model, text_tok, self.mean, self.std, replicate=50, interp_mode=self.interp_mode, policy=TEST_POLICY) else: loss = NaiveSemanticLoss(image_tensors[j:(j+1)], self.clip_model, text_tok, self.mean, self.std) avg_loss += loss.item() avg_loss /= num_samples return avg_loss * (-1.)
the-stack_0_21435
import json import os import re import sys import time import unittest import click import frappe import requests from .test_runner import (SLOW_TEST_THRESHOLD, make_test_records, set_test_email_config) click_ctx = click.get_current_context(True) if click_ctx: click_ctx.color = True class ParallelTestRunner(): def __init__(self, app, site, build_number=1, total_builds=1): self.app = app self.site = site self.build_number = frappe.utils.cint(build_number) or 1 self.total_builds = frappe.utils.cint(total_builds) self.setup_test_site() self.run_tests() def setup_test_site(self): frappe.init(site=self.site) if not frappe.db: frappe.connect() frappe.flags.in_test = True frappe.clear_cache() frappe.utils.scheduler.disable_scheduler() set_test_email_config() self.before_test_setup() def before_test_setup(self): start_time = time.time() for fn in frappe.get_hooks("before_tests", app_name=self.app): frappe.get_attr(fn)() test_module = frappe.get_module(f'{self.app}.tests') if hasattr(test_module, "global_test_dependencies"): for doctype in test_module.global_test_dependencies: make_test_records(doctype) elapsed = time.time() - start_time elapsed = click.style(f' ({elapsed:.03}s)', fg='red') click.echo(f'Before Test {elapsed}') def run_tests(self): self.test_result = ParallelTestResult(stream=sys.stderr, descriptions=True, verbosity=2) for test_file_info in self.get_test_file_list(): self.run_tests_for_file(test_file_info) self.print_result() def run_tests_for_file(self, file_info): if not file_info: return frappe.set_user('Administrator') path, filename = file_info module = self.get_module(path, filename) self.create_test_dependency_records(module, path, filename) test_suite = unittest.TestSuite() module_test_cases = unittest.TestLoader().loadTestsFromModule(module) test_suite.addTest(module_test_cases) test_suite(self.test_result) def create_test_dependency_records(self, module, path, filename): if hasattr(module, "test_dependencies"): for doctype in module.test_dependencies: make_test_records(doctype) if os.path.basename(os.path.dirname(path)) == "doctype": # test_data_migration_connector.py > data_migration_connector.json test_record_filename = re.sub('^test_', '', filename).replace(".py", ".json") test_record_file_path = os.path.join(path, test_record_filename) if os.path.exists(test_record_file_path): with open(test_record_file_path, 'r') as f: doc = json.loads(f.read()) doctype = doc["name"] make_test_records(doctype) def get_module(self, path, filename): app_path = frappe.get_pymodule_path(self.app) relative_path = os.path.relpath(path, app_path) if relative_path == '.': module_name = self.app else: relative_path = relative_path.replace('/', '.') module_name = os.path.splitext(filename)[0] module_name = f'{self.app}.{relative_path}.{module_name}' return frappe.get_module(module_name) def print_result(self): self.test_result.printErrors() click.echo(self.test_result) if self.test_result.failures or self.test_result.errors: if os.environ.get('CI'): sys.exit(1) def get_test_file_list(self): test_list = get_all_tests(self.app) split_size = frappe.utils.ceil(len(test_list) / self.total_builds) # [1,2,3,4,5,6] to [[1,2], [3,4], [4,6]] if split_size is 2 test_chunks = [test_list[x:x+split_size] for x in range(0, len(test_list), split_size)] return test_chunks[self.build_number - 1] class ParallelTestResult(unittest.TextTestResult): def startTest(self, test): self._started_at = time.time() super(unittest.TextTestResult, self).startTest(test) test_class = unittest.util.strclass(test.__class__) if not hasattr(self, 'current_test_class') or self.current_test_class != test_class: click.echo(f"\n{unittest.util.strclass(test.__class__)}") self.current_test_class = test_class def getTestMethodName(self, test): return test._testMethodName if hasattr(test, '_testMethodName') else str(test) def addSuccess(self, test): super(unittest.TextTestResult, self).addSuccess(test) elapsed = time.time() - self._started_at threshold_passed = elapsed >= SLOW_TEST_THRESHOLD elapsed = click.style(f' ({elapsed:.03}s)', fg='red') if threshold_passed else '' click.echo(f" {click.style(' โœ” ', fg='green')} {self.getTestMethodName(test)}{elapsed}") def addError(self, test, err): super(unittest.TextTestResult, self).addError(test, err) click.echo(f" {click.style(' โœ– ', fg='red')} {self.getTestMethodName(test)}") def addFailure(self, test, err): super(unittest.TextTestResult, self).addFailure(test, err) click.echo(f" {click.style(' โœ– ', fg='red')} {self.getTestMethodName(test)}") def addSkip(self, test, reason): super(unittest.TextTestResult, self).addSkip(test, reason) click.echo(f" {click.style(' = ', fg='white')} {self.getTestMethodName(test)}") def addExpectedFailure(self, test, err): super(unittest.TextTestResult, self).addExpectedFailure(test, err) click.echo(f" {click.style(' โœ– ', fg='red')} {self.getTestMethodName(test)}") def addUnexpectedSuccess(self, test): super(unittest.TextTestResult, self).addUnexpectedSuccess(test) click.echo(f" {click.style(' โœ” ', fg='green')} {self.getTestMethodName(test)}") def printErrors(self): click.echo('\n') self.printErrorList(' ERROR ', self.errors, 'red') self.printErrorList(' FAIL ', self.failures, 'red') def printErrorList(self, flavour, errors, color): for test, err in errors: click.echo(self.separator1) click.echo(f"{click.style(flavour, bg=color)} {self.getDescription(test)}") click.echo(self.separator2) click.echo(err) def __str__(self): return f"Tests: {self.testsRun}, Failing: {len(self.failures)}, Errors: {len(self.errors)}" def get_all_tests(app): test_file_list = [] for path, folders, files in os.walk(frappe.get_pymodule_path(app)): for dontwalk in ('locals', '.git', 'public', '__pycache__'): if dontwalk in folders: folders.remove(dontwalk) # for predictability folders.sort() files.sort() if os.path.sep.join(["doctype", "doctype", "boilerplate"]) in path: # in /doctype/doctype/boilerplate/ continue for filename in files: if filename.startswith("test_") and filename.endswith(".py") \ and filename != 'test_runner.py': test_file_list.append([path, filename]) return test_file_list class ParallelTestWithOrchestrator(ParallelTestRunner): ''' This can be used to balance-out test time across multiple instances This is dependent on external orchestrator which returns next test to run orchestrator endpoints - register-instance (<build_id>, <instance_id>, test_spec_list) - get-next-test-spec (<build_id>, <instance_id>) - test-completed (<build_id>, <instance_id>) ''' def __init__(self, app, site): self.orchestrator_url = os.environ.get('ORCHESTRATOR_URL') if not self.orchestrator_url: click.echo('ORCHESTRATOR_URL environment variable not found!') click.echo('Pass public URL after hosting https://github.com/frappe/test-orchestrator') sys.exit(1) self.ci_build_id = os.environ.get('CI_BUILD_ID') self.ci_instance_id = os.environ.get('CI_INSTANCE_ID') or frappe.generate_hash(length=10) if not self.ci_build_id: click.echo('CI_BUILD_ID environment variable not found!') sys.exit(1) ParallelTestRunner.__init__(self, app, site) def run_tests(self): self.test_status = 'ongoing' self.register_instance() super().run_tests() def get_test_file_list(self): while self.test_status == 'ongoing': yield self.get_next_test() def register_instance(self): test_spec_list = get_all_tests(self.app) response_data = self.call_orchestrator('register-instance', data={ 'test_spec_list': test_spec_list }) self.is_master = response_data.get('is_master') def get_next_test(self): response_data = self.call_orchestrator('get-next-test-spec') self.test_status = response_data.get('status') return response_data.get('next_test') def print_result(self): self.call_orchestrator('test-completed') return super().print_result() def call_orchestrator(self, endpoint, data=None): if data is None: data = {} # add repo token header # build id in header headers = { 'CI-BUILD-ID': self.ci_build_id, 'CI-INSTANCE-ID': self.ci_instance_id, 'REPO-TOKEN': '2948288382838DE' } url = f'{self.orchestrator_url}/{endpoint}' res = requests.get(url, json=data, headers=headers) res.raise_for_status() response_data = {} if 'application/json' in res.headers.get('content-type'): response_data = res.json() return response_data
the-stack_0_21436
""" CryptoAPIs Crypto APIs 2.0 is a complex and innovative infrastructure layer that radically simplifies the development of any Blockchain and Crypto related applications. Organized around REST, Crypto APIs 2.0 can assist both novice Bitcoin/Ethereum enthusiasts and crypto experts with the development of their blockchain applications. Crypto APIs 2.0 provides unified endpoints and data, raw data, automatic tokens and coins forwardings, callback functionalities, and much more. # noqa: E501 The version of the OpenAPI document: 2.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from cryptoapis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) class NewUnconfirmedTokensTransactionsRequestBodyDataItem(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'address': (str,), # noqa: E501 'callback_url': (str,), # noqa: E501 'allow_duplicates': (bool,), # noqa: E501 'callback_secret_key': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'address': 'address', # noqa: E501 'callback_url': 'callbackUrl', # noqa: E501 'allow_duplicates': 'allowDuplicates', # noqa: E501 'callback_secret_key': 'callbackSecretKey', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, address, callback_url, *args, **kwargs): # noqa: E501 """NewUnconfirmedTokensTransactionsRequestBodyDataItem - a model defined in OpenAPI Args: address (str): Represents the address of the transaction, per which the result is returned. callback_url (str): Represents the URL that is set by the customer where the callback will be received at. The callback notification will be received only if and when the event occurs. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) allow_duplicates (bool): Specifies a flag that permits or denies the creation of duplicate addresses.. [optional] if omitted the server will use the default value of False # noqa: E501 callback_secret_key (str): Represents the Secret Key value provided by the customer. This field is used for security purposes during the callback notification, in order to prove the sender of the callback as Crypto APIs.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.address = address self.callback_url = callback_url for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
the-stack_0_21437
from pyxer.base import * if GAE: import urllib from google.appengine.api import urlfetch else: import urllib2, urllib """ Adapted from http://pypi.python.org/pypi/recaptcha-client to use with Google App Engine by Joscha Feth <[email protected]> Version 0.1 """ API_SSL_SERVER ="https://api-secure.recaptcha.net" API_SERVER ="http://api.recaptcha.net" VERIFY_SERVER ="api-verify.recaptcha.net" class RecaptchaResponse(object): def __init__(self, is_valid, error_code=None): self.is_valid = is_valid self.error_code = error_code def displayhtml (public_key, use_ssl = False, error = None): """Gets the HTML to display for reCAPTCHA public_key -- The public api key use_ssl -- Should the request be sent over ssl? error -- An error message to display (from RecaptchaResponse.error_code)""" error_param = '' if error: error_param = '&error=%s' % error if use_ssl: server = API_SSL_SERVER else: server = API_SERVER return """<script type="text/javascript" src="%(ApiServer)s/challenge?k=%(PublicKey)s%(ErrorParam)s"></script> <noscript> <iframe src="%(ApiServer)s/noscript?k=%(PublicKey)s%(ErrorParam)s" height="300" width="500" frameborder="0"></iframe><br /> <textarea name="recaptcha_challenge_field" rows="3" cols="40"></textarea> <input type='hidden' name='recaptcha_response_field' value='manual_challenge' /> </noscript> """ % { 'ApiServer' : server, 'PublicKey' : public_key, 'ErrorParam' : error_param, } def submit (recaptcha_challenge_field, recaptcha_response_field, private_key, remoteip): """ Submits a reCAPTCHA request for verification. Returns RecaptchaResponse for the request recaptcha_challenge_field -- The value of recaptcha_challenge_field from the form recaptcha_response_field -- The value of recaptcha_response_field from the form private_key -- your reCAPTCHA private key remoteip -- the user's ip address """ if not (recaptcha_response_field and recaptcha_challenge_field and len (recaptcha_response_field) and len (recaptcha_challenge_field)): return RecaptchaResponse (is_valid = False, error_code = 'incorrect-captcha-sol') def encode_if_necessary(s): if isinstance(s, unicode): return s.encode('utf-8') return s params = urllib.urlencode ({ 'privatekey': encode_if_necessary(private_key), 'remoteip' : encode_if_necessary(remoteip), 'challenge': encode_if_necessary(recaptcha_challenge_field), 'response' : encode_if_necessary(recaptcha_response_field), }) request = urllib2.Request ( url = "http://%s/verify" % VERIFY_SERVER, data = params, headers = { "Content-type": "application/x-www-form-urlencoded", "User-agent": "reCAPTCHA Python" } ) httpresp = urllib2.urlopen (request) return_values = httpresp.read ().splitlines (); httpresp.close(); return_code = return_values [0] if (return_code == "true"): return RecaptchaResponse (is_valid=True) else: return RecaptchaResponse (is_valid=False, error_code = return_values [1]) def submit_gae (recaptcha_challenge_field, recaptcha_response_field, private_key, remoteip): """ Submits a reCAPTCHA request for verification. Returns RecaptchaResponse for the request recaptcha_challenge_field -- The value of recaptcha_challenge_field from the form recaptcha_response_field -- The value of recaptcha_response_field from the form private_key -- your reCAPTCHA private key remoteip -- the user's ip address """ if not (recaptcha_response_field and recaptcha_challenge_field and len (recaptcha_response_field) and len (recaptcha_challenge_field)): return RecaptchaResponse (is_valid = False, error_code = 'incorrect-captcha-sol') headers = { 'Content-type': 'application/x-www-form-urlencoded', "User-agent" : "reCAPTCHA GAE Python" } params = urllib.urlencode ({ 'privatekey': private_key, 'remoteip' : remoteip, 'challenge': recaptcha_challenge_field, 'response' : recaptcha_response_field, }) httpresp = urlfetch.fetch( url = "http://%s/verify" % VERIFY_SERVER, payload = params, method = urlfetch.POST, headers = headers ) if httpresp.status_code == 200: # response was fine # get the return values return_values = httpresp.content.splitlines(); # get the return code (true/false) return_code = return_values[0] if return_code == "true": # yep, filled perfectly return RecaptchaResponse (is_valid=True) else: # nope, something went wrong return RecaptchaResponse (is_valid=False, error_code = return_values [1]) else: # recaptcha server was not reachable return RecaptchaResponse (is_valid=False, error_code = "recaptcha-not-reachable") if GAE: submit = submit_gae from pyxer.template.genshi import HTML # Default keys for *.appspot.com _pub_key = "6LcrngQAAAAAAC1iVJGsWhkkpu4Fx3Z_pDCKkbvF" _private_key = "6LcrngQAAAAAAFtRJVKFZ6d-BJxZK-40BAdURQ30" def html(pub_key=_pub_key, use_ssl=False): if pub_key == _pub_key: log.warn("PLEASE GET YOUR OWN RECAPTCHA KEYS ON http://www.recaptcha.net!") return HTML(displayhtml( pub_key, use_ssl = use_ssl, error = req.params.get("error"))) def test(private_key=_private_key): if private_key == _private_key: log.warn("PLEASE GET YOUR OWN RECAPTCHA KEYS ON http://www.recaptcha.net!") remoteip = req.environ['REMOTE_ADDR'] cResponse = submit( req.params.get('recaptcha_challenge_field'), req.params.get('recaptcha_response_field'), private_key, remoteip) req.captcha_error = cResponse.error_code return cResponse.is_valid
the-stack_0_21438
""" Distributor init file Distributors: you can add custom code here to support particular distributions of scipy. For example, this is a good place to put any checks for hardware requirements. The scipy standard source distribution will not put code in this file, so you can safely replace this file with your own version. """ import os import sys import platform if os.name == 'nt': # on Windows SciPy loads important DLLs # and the code below aims to alleviate issues with DLL # path resolution portability with an absolute path DLL load from ctypes import WinDLL import glob # convention for storing / loading the DLL from # scipy/.libs/, if present libs_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '.libs')) if os.path.isdir(libs_path): # for Python >= 3.8, DLL resolution ignores the PATH variable # and the current working directory; see release notes: # https://docs.python.org/3/whatsnew/3.8.html#bpo-36085-whatsnew # Only the system paths, the directory containing the DLL, and # directories added with add_dll_directory() are searched for # load-time dependencies with Python >= 3.8 # this module was originally added to support DLL resolution in # Python 3.8 because of the changes described above--providing the # absolute paths to the DLLs allowed for proper resolution/loading # however, we also started to receive reports of problems with DLL # resolution with Python 3.7 that were sometimes alleviated with # inclusion of the _distributor_init.py module; see SciPy main # repo gh-11826 # we noticed in scipy-wheels repo gh-70 that inclusion of # _distributor_init.py in 32-bit wheels for Python 3.7 resulted # in failures in DLL resolution (64-bit 3.7 did not) # as a result, we decided to combine both the old (working directory) # and new (absolute path to DLL location) DLL resolution mechanisms # to improve the chances of resolving DLLs across a wider range of # Python versions # we did not experiment with manipulating the PATH environment variable # to include libs_path; it is not immediately clear if this would have # robustness or security advantages over changing working directories # as done below # we should remove the working directory shims when our minimum supported # Python version is 3.8 and trust the improvements to secure DLL loading # in the standard lib for Python >= 3.8 try: owd = os.getcwd() os.chdir(libs_path) for filename in glob.glob(os.path.join(libs_path, '*dll')): WinDLL(os.path.abspath(filename)) finally: os.chdir(owd) elif sys.platform == 'darwin' and platform.machine() == 'arm64': # On arm64 macOS the OpenBLAS runtimes of NumPy and SciPy don't seem to work # well together unless this timeout limit is set - it results in very slow # performance for some linalg functionality. # See https://github.com/scipy/scipy/issues/15050 for details. os.environ['OPENBLAS_THREAD_TIMEOUT'] = '1'
the-stack_0_21439
# Copyright (c) 2019 NVIDIA Corporation import torch import nemo from .parts.datasets import AudioOnlyDataset from nemo.backends.pytorch.nm import DataLayerNM from nemo.core import DeviceType from nemo.core.neural_types import * class AudioDataLayer(DataLayerNM): """ Data Layer for general speech tasks that loads only the audio. Module which reads speech data. It accepts comma-separated JSON manifest files describing the wav audio files and their metadata. JSON files should be of the following format:: {"audio_filepath": path_to_wav_0, "duration": time_in_sec_0} ... {"audio_filepath": path_to_wav_n, "duration": time_in_sec_n} Args: manifest_filepath (str): path to JSON containing data. batch_size (int): batch sizelse. min_duration (float): All training files which have a duration less than min_duration are dropped. Note: Duration is read from the manifest JSON. Defaults to 0.1. max_duration (float): All training files which have a duration more than max_duration are dropped. Note: Duration is read from the manifest JSON. Defaults to None. trim_silence (bool): Whether to use trim silence from beginning and end of audio signal using librosa.effects.trim(). Defaults to False. drop_last (bool): See PyTorch DataLoader. Defaults to False. shuffle (bool): See PyTorch DataLoader. Defaults to True. num_workers (int): See PyTorch DataLoader. Defaults to 0. n_segments (int): Number of samples to load per audiofile. Defaults to 0 which indicates to load the whole file. """ @property def output_ports(self): """Returns definitions of module output ports. audio_signal: 0: AxisType(BatchTag) 1: AxisType(TimeTag) a_sig_length: 0: AxisType(BatchTag) """ return { "audio_signal": NeuralType({0: AxisType(BatchTag), 1: AxisType(TimeTag)}), "a_sig_length": NeuralType({0: AxisType(BatchTag)}), } def __init__( self, *, manifest_filepath, batch_size, min_duration=0.1, max_duration=None, trim_silence=False, drop_last=False, shuffle=True, num_workers=0, n_segments=0, **kwargs ): DataLayerNM.__init__(self, **kwargs) self._dataset = AudioOnlyDataset( manifest_filepath=manifest_filepath, max_duration=max_duration, min_duration=min_duration, trim=trim_silence, n_segments=n_segments, ) sampler = None if self._placement == DeviceType.AllGpu: nemo.logging.info('Parallelizing DATALAYER') sampler = torch.utils.data.distributed.DistributedSampler(self._dataset) self._dataloader = torch.utils.data.DataLoader( dataset=self._dataset, batch_size=batch_size, collate_fn=self._dataset.AudioCollateFunc, drop_last=drop_last, shuffle=shuffle if sampler is None else False, sampler=sampler, num_workers=num_workers, ) def __len__(self): return len(self._dataset) @property def dataset(self): return None @property def data_iterator(self): return self._dataloader
the-stack_0_21440
import numpy as np import scipy.io as sio # load data.mat file datadict = sio.loadmat('../saved_data/pubfig_data.mat') # some variables are in bad format # process them to make them in correct format attr_names = [x[0] for x in datadict['attribute_names'][0]] datadict['attribute_names'] = attr_names datadict['im_names'] = datadict['im_names'][0] datadict['class_labels'] = datadict['class_labels'][:, 0] datadict['used_for_training'] = datadict['used_for_training'][:, 0] datadict['class_names'] = datadict['class_names'][0] np.save("./saved_data/datadict.npy", datadict) """ For loading back : d = np.load('../saved_data/datadict.npy').item() """
the-stack_0_21442
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Polyaxon SDKs and REST API specification. Polyaxon SDKs and REST API specification. # noqa: E501 The version of the OpenAPI document: 1.11.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from polyaxon_sdk.configuration import Configuration class V1ListComponentHubsResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'count': 'int', 'results': 'list[V1ComponentHub]', 'previous': 'str', 'next': 'str' } attribute_map = { 'count': 'count', 'results': 'results', 'previous': 'previous', 'next': 'next' } def __init__(self, count=None, results=None, previous=None, next=None, local_vars_configuration=None): # noqa: E501 """V1ListComponentHubsResponse - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._count = None self._results = None self._previous = None self._next = None self.discriminator = None if count is not None: self.count = count if results is not None: self.results = results if previous is not None: self.previous = previous if next is not None: self.next = next @property def count(self): """Gets the count of this V1ListComponentHubsResponse. # noqa: E501 :return: The count of this V1ListComponentHubsResponse. # noqa: E501 :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this V1ListComponentHubsResponse. :param count: The count of this V1ListComponentHubsResponse. # noqa: E501 :type: int """ self._count = count @property def results(self): """Gets the results of this V1ListComponentHubsResponse. # noqa: E501 :return: The results of this V1ListComponentHubsResponse. # noqa: E501 :rtype: list[V1ComponentHub] """ return self._results @results.setter def results(self, results): """Sets the results of this V1ListComponentHubsResponse. :param results: The results of this V1ListComponentHubsResponse. # noqa: E501 :type: list[V1ComponentHub] """ self._results = results @property def previous(self): """Gets the previous of this V1ListComponentHubsResponse. # noqa: E501 :return: The previous of this V1ListComponentHubsResponse. # noqa: E501 :rtype: str """ return self._previous @previous.setter def previous(self, previous): """Sets the previous of this V1ListComponentHubsResponse. :param previous: The previous of this V1ListComponentHubsResponse. # noqa: E501 :type: str """ self._previous = previous @property def next(self): """Gets the next of this V1ListComponentHubsResponse. # noqa: E501 :return: The next of this V1ListComponentHubsResponse. # noqa: E501 :rtype: str """ return self._next @next.setter def next(self, next): """Sets the next of this V1ListComponentHubsResponse. :param next: The next of this V1ListComponentHubsResponse. # noqa: E501 :type: str """ self._next = next def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1ListComponentHubsResponse): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1ListComponentHubsResponse): return True return self.to_dict() != other.to_dict()
the-stack_0_21443
from typing import List import click from dagster import __version__ as current_dagster_version from dagster import check from .dagster_docker import DagsterDockerImage from .ecr import ensure_ecr_login from .image_defs import get_image, list_images from .utils import current_time_str, execute_docker_push, execute_docker_tag CLI_HELP = """This CLI is used for building the various Dagster images we use in test """ AWS_ECR_REGISTRY = "public.ecr.aws/dagster" @click.group(help=CLI_HELP) def cli(): pass @cli.command() def list(): # pylint: disable=redefined-builtin for image in list_images(): print(image.image) # pylint: disable=print-call @cli.command() @click.option("--name", required=True, help="Name of image to build") @click.option( "--dagster-version", required=True, help="Version of image to build, must match current dagster version", ) @click.option( "-t", "--timestamp", type=click.STRING, required=False, default=current_time_str(), help="Timestamp to build in format 2020-07-11T040642 (defaults to now UTC)", ) @click.option("-v", "--python-version", type=click.STRING, required=True) def build(name, dagster_version, timestamp, python_version): get_image(name).build(timestamp, dagster_version, python_version) @cli.command() @click.option("--name", required=True, help="Name of image to build") @click.option( "--dagster-version", required=True, help="Version of image to build, must match current dagster version", ) @click.option( "-t", "--timestamp", type=click.STRING, required=False, default=current_time_str(), help="Timestamp to build in format 2020-07-11T040642 (defaults to now UTC)", ) def build_all(name, dagster_version, timestamp): """Build all supported python versions for image""" image = get_image(name) for python_version in image.python_versions: image.build(timestamp, dagster_version, python_version) @cli.command() @click.option("--name", required=True, help="Name of image to push") @click.option("-v", "--python-version", type=click.STRING, required=True) @click.option("-v", "--custom-tag", type=click.STRING, required=False) def push(name, python_version, custom_tag): ensure_ecr_login() get_image(name).push(python_version, custom_tag=custom_tag) @cli.command() @click.option("--name", required=True, help="Name of image to push") def push_all(name): ensure_ecr_login() image = get_image(name) for python_version in image.python_versions: image.push(python_version) def push_to_registry(name: str, tags: List[str]): check.str_param(name, "name") check.list_param(tags, "tags", of_type=str) image = DagsterDockerImage(name) python_version = next(iter(image.python_versions)) local_image = image.local_image(python_version) for tag in tags: execute_docker_tag(local_image, tag) execute_docker_push(tag) @cli.command() @click.option("--name", required=True, help="Name of image to push") @click.option( "--dagster-version", required=True, help="Version of image to push, must match current dagster version", ) def push_dockerhub(name, dagster_version): """Used for pushing k8s images to Docker Hub. Must be logged in to Docker Hub for this to succeed. """ check.invariant( dagster_version == current_dagster_version, desc=( f"Current dagster version ({current_dagster_version}) does not match provided arg " f"({dagster_version})" ), ) tags = [f"dagster/{name}:{current_dagster_version}", f"dagster/{name}:latest"] push_to_registry(name, tags) @cli.command() @click.option("--name", required=True, help="Name of image to push") @click.option( "--dagster-version", required=True, help="Version of image to push, must match current dagster version", ) def push_ecr(name, dagster_version): """Used for pushing k8s images to our public ECR. You must be authed for ECR. Run: aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws/dagster """ check.invariant( dagster_version == current_dagster_version, desc=( f"Current dagster version ({current_dagster_version}) does not match provided arg " f"({dagster_version})" ), ) tags = [ f"{AWS_ECR_REGISTRY}/{name}:{current_dagster_version}", f"{AWS_ECR_REGISTRY}/{name}:latest", ] push_to_registry(name, tags) def main(): click_cli = click.CommandCollection(sources=[cli], help=CLI_HELP) click_cli() if __name__ == "__main__": main()
the-stack_0_21444
import simpleaudio as sa import os from time import sleep import re MODULE_PATH = os.path.dirname(__file__) AUDIO_DIR = os.path.join(MODULE_PATH, "test_audio") def _gwo(wave_obj_file): return sa.WaveObject.from_wave_file(os.path.join(AUDIO_DIR, wave_obj_file)) def _clean_docstring(docstring): lines = [x.strip() for x in docstring.strip().splitlines()] return '\n'.join(lines) def run_all(countdown=0): func_checks = [LeftRightCheck, OverlappingCheck, StopCheck, StopAllCheck, IsPlayingCheck, WaitDoneCheck] for func_check in func_checks: func_check.run(countdown) class FunctionCheckBase(object): @classmethod def _check(cls): raise NotImplementedError() @classmethod def run(cls, countdown=3): # print function check header print("") print("=" * 80) print("--", cls.__name__, "--") print(_clean_docstring(cls.__doc__)) print("") if countdown > 0: print("Starting check in ...") for tick in reversed(range(1, countdown + 1)): print(tick, "...") sleep(1) print("RUNNING CHECK ...") cls._check() print("... DONE") print("=" * 80) class LeftRightCheck(FunctionCheckBase): """ Checks stereo playback by first playing a note in the left channel only, then a different note in the right channel only. """ @classmethod def _check(cls): wave_obj = _gwo("left_right.wav") wave_obj.play() sleep(4) class OverlappingCheck(FunctionCheckBase): """ Checks overlapped playback by playing three different notes spaced approximately a half-second apart but still overlapping. """ @classmethod def _check(cls): wave_obj_1 = _gwo("c.wav") wave_obj_2 = _gwo("e.wav") wave_obj_3 = _gwo("g.wav") wave_obj_1.play() sleep(0.5) wave_obj_2.play() sleep(0.5) wave_obj_3.play() sleep(3) class StopCheck(FunctionCheckBase): """ Checks stopping playback by playing three different notes simultaneously and stopping two after approximately a half-second, leaving only one note playing for two more seconds. """ @classmethod def _check(cls): wave_obj_1 = _gwo("c.wav") wave_obj_2 = _gwo("e.wav") wave_obj_3 = _gwo("g.wav") play_obj_1 = wave_obj_1.play() wave_obj_2.play() play_obj_3 = wave_obj_3.play() sleep(0.5) play_obj_1.stop() play_obj_3.stop() sleep(3) class StopAllCheck(FunctionCheckBase): """ Checks stopping playback of all audio by playing three different notes simultaneously and stopping all of them after approximately a half-second. """ @classmethod def _check(cls): wave_obj_1 = _gwo("c.wav") wave_obj_2 = _gwo("e.wav") wave_obj_3 = _gwo("g.wav") wave_obj_1.play() wave_obj_2.play() wave_obj_3.play() sleep(0.5) sa.stop_all() sleep(3) class IsPlayingCheck(FunctionCheckBase): """ Checks functionality of the is_playing() method by calling during playback (when it should return True) and calling it again after all playback has stopped (when it should return False). The output is printed. """ @classmethod def _check(cls): wave_obj = _gwo("notes_2_16_44.wav") play_obj = wave_obj.play() sleep(0.5) print("Is playing:", play_obj.is_playing()) sleep(4) print("Is playing:", play_obj.is_playing()) class WaitDoneCheck(FunctionCheckBase): """ Checks functionality of the wait_done() method by using it to allow the three-note clip to play until finished (before attempting to stop playback). """ @classmethod def _check(cls): wave_obj = _gwo("notes_2_16_44.wav") play_obj = wave_obj.play() play_obj.wait_done() play_obj.stop() if __name__ == "__main__": run_all()
the-stack_0_21447
import os import string import io import sys import trace class KeywordProcessor(object): """KeywordProcessor Note: * Based on Flashtext <https://github.com/vi3k6i5/flashtext> * loosely based on `Aho-Corasick algorithm <https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm>`. """ def __init__(self, case_sensitive=False): """ Args: case_sensitive (boolean): Keyword search should be case sensitive set or not. Defaults to False """ self._keyword = '_keyword_' self.non_word_boundaries = set(string.digits + string.ascii_letters + '_') self.keyword_trie_dict = dict() self.case_sensitive = case_sensitive def __setitem__(self, keyword, clean_name, punctuation=None): """To add keyword to the dictionary pass the keyword and the clean name it maps to. Args: keyword : string keyword that you want to identify clean_name : string clean term for that keyword that you would want to get back in return or replace if not provided, keyword will be used as the clean name also. puctuation : list[char] list of punctuation characters to add to the keyword before adding. """ if punctuation is None: punctuation = [''] status = False if keyword and clean_name: if not self.case_sensitive: keyword = keyword.lower() current_dict = self.keyword_trie_dict for letter in keyword: current_dict = current_dict.setdefault(letter, {}) for punc in punctuation: if len(punc) > 0: final_dict = current_dict.setdefault(punc, {}) else: final_dict = current_dict final_dict[self._keyword] = clean_name + punc status = True return status def add_keyword(self, keyword, clean_name, punctuation=None): """To add one or more keywords to the dictionary pass the keyword and the clean name it maps to. Args: keyword : string keyword that you want to identify clean_name : string clean term for that keyword that you would want to get back in return or replace if not provided, keyword will be used as the clean name also. punctuation : list[char] list of punctuation characters to add to the keyword before adding. Returns: status : bool The return value. True for success, False otherwise. """ return self.__setitem__(keyword, clean_name, punctuation) def replace_keywords(self, sentence): """Searches in the string for all keywords present in corpus. Keywords present are replaced by the clean name and a new string is returned. Args: sentence (str): Line of text where we will replace keywords Returns: new_sentence (str): Line of text with replaced keywords """ if not sentence: # if sentence is empty or none just return the same. return sentence new_sentence = [] orig_sentence = sentence if not self.case_sensitive: sentence = sentence.lower() current_word = '' current_dict = self.keyword_trie_dict sequence_end_pos = 0 idx = 0 sentence_len = len(sentence) while idx < sentence_len: char = sentence[idx] # when we reach whitespace if char not in self.non_word_boundaries: current_word += orig_sentence[idx] current_white_space = char # if end is present in current_dict if self._keyword in current_dict or char in current_dict: # update longest sequence found longest_sequence_found = None is_longer_seq_found = False if self._keyword in current_dict: longest_sequence_found = current_dict[self._keyword] sequence_end_pos = idx # re look for longest_sequence from this position if char in current_dict: current_dict_continued = current_dict[char] current_word_continued = current_word idy = idx + 1 while idy < sentence_len: inner_char = sentence[idy] if inner_char not in self.non_word_boundaries and self._keyword in current_dict_continued: current_word_continued += orig_sentence[idy] # update longest sequence found current_white_space = inner_char longest_sequence_found = current_dict_continued[self._keyword] sequence_end_pos = idy is_longer_seq_found = True if inner_char in current_dict_continued: current_word_continued += orig_sentence[idy] current_dict_continued = current_dict_continued[inner_char] else: break idy += 1 else: # end of sentence reached. if self._keyword in current_dict_continued: # update longest sequence found current_white_space = '' longest_sequence_found = current_dict_continued[self._keyword] sequence_end_pos = idy is_longer_seq_found = True if is_longer_seq_found: idx = sequence_end_pos current_word = current_word_continued current_dict = self.keyword_trie_dict if longest_sequence_found: new_sentence.append(longest_sequence_found + current_white_space) current_word = '' else: new_sentence.append(current_word) current_word = '' else: # we reset current_dict current_dict = self.keyword_trie_dict new_sentence.append(current_word) current_word = '' elif char in current_dict: # we can continue from this char current_word += orig_sentence[idx] current_dict = current_dict[char] else: current_word += orig_sentence[idx] # we reset current_dict current_dict = self.keyword_trie_dict # skip to end of word idy = idx + 1 while idy < sentence_len: char = sentence[idy] current_word += orig_sentence[idy] if char not in self.non_word_boundaries: break idy += 1 idx = idy new_sentence.append(current_word) current_word = '' # if we are end of sentence and have a sequence discovered if idx + 1 >= sentence_len: if self._keyword in current_dict: sequence_found = current_dict[self._keyword] new_sentence.append(sequence_found) else: new_sentence.append(current_word) idx += 1 return "".join(new_sentence) def file_to_list(filename, drop_first=True): items = [] with open(filename, "r", encoding="utf-8") as f: if drop_first: f.readline() for line in f.readlines(): items.append(line.rstrip()) return items def main(): proc = KeywordProcessor() punctuation = ['.', ',', ' ', ':', ';', '?', '!', ''] no_punctuation = [''] fields = { os.path.join('datasets', 'firstnames.csv'): {"replacement": "<NAAM>", "punctuation": punctuation}, os.path.join('datasets', 'countries.csv'): {"replacement": "<LAND>", "punctuation": no_punctuation}, } for field in fields: for name in file_to_list(field): proc.add_keyword(name, fields[field]["replacement"], punctuation) print(proc.replace_keywords("Leo.")) print(proc.replace_keywords("Leopaart")) print(proc.replace_keywords(".Leo")) print(proc.replace_keywords(".Leo.")) print(proc.replace_keywords("Leo")) if __name__ == "__main__": main()
the-stack_0_21451
import pandas import numpy as np from sklearn.svm import SVC from sklearn.model_selection import KFold, GridSearchCV from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import datasets import math newsgroups = datasets.fetch_20newsgroups( subset='all', categories=['alt.atheism', 'sci.space'] ) vectorizer = TfidfVectorizer(min_df=1) val_matrix = vectorizer.fit_transform(newsgroups.data) grid = {'C': np.power(10.0, np.arange(-5, 6))} cv = KFold(n_splits=5, shuffle=True, random_state=241) clf = SVC(kernel='linear', random_state=241) gs = GridSearchCV(clf, grid, scoring='accuracy', cv=cv) gs.fit(val_matrix, newsgroups.target) max_mean, c_val = 0, 0 # cv_results_ for a in gs.grid_scores_: if a.mean_validation_score > max_mean: max_mean = a.mean_validation_score c_val = a.parameters['C'] clf = SVC(C=c_val, kernel='linear', random_state=241) clf.fit(val_matrix, newsgroups.target) coef = clf.coef_ feature_mapping = dict(zip(vectorizer.get_feature_names(), coef.transpose().toarray())) result = sorted(feature_mapping.items(), key=lambda x: np.fabs(x[1]), reverse=True)[:10] result.sort() print(','.join(x[0] for x in result), end='')
the-stack_0_21453
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import click import collections import os import pathlib import subprocess import webbrowser import re import sys import requests import toml from gidgethub import sansio from . import __version__ CREATE_PR_URL_TEMPLATE = ("https://api.github.com/repos/" "{config[team]}/{config[repo]}/pulls") DEFAULT_CONFIG = collections.ChainMap({ 'team': 'python', 'repo': 'cpython', 'check_sha': '7f777ed95a19224294949e1b4ce56bbffcb1fe9f', 'fix_commit_msg': True, 'default_branch': 'master', }) class BranchCheckoutException(Exception): pass class CherryPickException(Exception): pass class InvalidRepoException(Exception): pass class CherryPicker: def __init__(self, pr_remote, commit_sha1, branches, *, dry_run=False, push=True, prefix_commit=True, config=DEFAULT_CONFIG, ): self.config = config self.check_repo() # may raise InvalidRepoException if dry_run: click.echo("Dry run requested, listing expected command sequence") self.pr_remote = pr_remote self.commit_sha1 = commit_sha1 self.branches = branches self.dry_run = dry_run self.push = push self.prefix_commit = prefix_commit @property def upstream(self): """Get the remote name to use for upstream branches Uses "upstream" if it exists, "origin" otherwise """ cmd = ['git', 'remote', 'get-url', 'upstream'] try: subprocess.check_output(cmd, stderr=subprocess.DEVNULL) except subprocess.CalledProcessError: return "origin" return "upstream" @property def sorted_branches(self): """Return the branches to cherry-pick to, sorted by version.""" return sorted( self.branches, reverse=True, key=version_from_branch) @property def username(self): cmd = ['git', 'config', '--get', f'remote.{self.pr_remote}.url'] raw_result = subprocess.check_output(cmd, stderr=subprocess.STDOUT) result = raw_result.decode('utf-8') # implicit ssh URIs use : to separate host from user, others just use / username = result.replace(':', '/').split('/')[-2] return username def get_cherry_pick_branch(self, maint_branch): return f"backport-{self.commit_sha1[:7]}-{maint_branch}" def get_pr_url(self, base_branch, head_branch): return f"https://github.com/{self.config['team']}/{self.config['repo']}/compare/{base_branch}...{self.username}:{head_branch}?expand=1" def fetch_upstream(self): """ git fetch <upstream> """ cmd = ['git', 'fetch', self.upstream] self.run_cmd(cmd) def run_cmd(self, cmd): assert not isinstance(cmd, str) if self.dry_run: click.echo(f" dry-run: {' '.join(cmd)}") return output = subprocess.check_output(cmd, stderr=subprocess.STDOUT) click.echo(output.decode('utf-8')) def checkout_branch(self, branch_name): """ git checkout -b <branch_name> """ cmd = ['git', 'checkout', '-b', self.get_cherry_pick_branch(branch_name), f'{self.upstream}/{branch_name}'] try: self.run_cmd(cmd) except subprocess.CalledProcessError as err: click.echo(f"Error checking out the branch {self.get_cherry_pick_branch(branch_name)}.") click.echo(err.output) raise BranchCheckoutException(f"Error checking out the branch {self.get_cherry_pick_branch(branch_name)}.") def get_commit_message(self, commit_sha): """ Return the commit message for the current commit hash, replace #<PRID> with GH-<PRID> """ cmd = ['git', 'show', '-s', '--format=%B', commit_sha] output = subprocess.check_output(cmd, stderr=subprocess.STDOUT) message = output.strip().decode('utf-8') if self.config['fix_commit_msg']: return message.replace('#', 'GH-') else: return message def checkout_default_branch(self): """ git checkout default branch """ cmd = 'git', 'checkout', self.config['default_branch'] self.run_cmd(cmd) def status(self): """ git status :return: """ cmd = ['git', 'status'] self.run_cmd(cmd) def cherry_pick(self): """ git cherry-pick -x <commit_sha1> """ cmd = ['git', 'cherry-pick', '-x', self.commit_sha1] try: self.run_cmd(cmd) except subprocess.CalledProcessError as err: click.echo(f"Error cherry-pick {self.commit_sha1}.") click.echo(err.output) raise CherryPickException(f"Error cherry-pick {self.commit_sha1}.") def get_exit_message(self, branch): return \ f""" Failed to cherry-pick {self.commit_sha1} into {branch} \u2639 ... Stopping here. To continue and resolve the conflict: $ cherry_picker --status # to find out which files need attention # Fix the conflict $ cherry_picker --status # should now say 'all conflict fixed' $ cherry_picker --continue To abort the cherry-pick and cleanup: $ cherry_picker --abort """ def amend_commit_message(self, cherry_pick_branch): """ prefix the commit message with (X.Y) """ commit_prefix = "" if self.prefix_commit: commit_prefix = f"[{get_base_branch(cherry_pick_branch)}] " updated_commit_message = f"""{commit_prefix}{self.get_commit_message(self.commit_sha1)} (cherry picked from commit {self.commit_sha1}) Co-authored-by: {get_author_info_from_short_sha(self.commit_sha1)}""" if self.dry_run: click.echo(f" dry-run: git commit --amend -m '{updated_commit_message}'") else: cmd = ['git', 'commit', '--amend', '-m', updated_commit_message] try: subprocess.check_output(cmd, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as cpe: click.echo("Failed to amend the commit message \u2639") click.echo(cpe.output) return updated_commit_message def push_to_remote(self, base_branch, head_branch, commit_message=""): """ git push <origin> <branchname> """ cmd = ['git', 'push', self.pr_remote, f'{head_branch}:{head_branch}'] try: self.run_cmd(cmd) except subprocess.CalledProcessError: click.echo(f"Failed to push to {self.pr_remote} \u2639") else: gh_auth = os.getenv("GH_AUTH") if gh_auth: self.create_gh_pr(base_branch, head_branch, commit_message=commit_message, gh_auth=gh_auth) else: self.open_pr(self.get_pr_url(base_branch, head_branch)) def create_gh_pr(self, base_branch, head_branch, *, commit_message, gh_auth): """ Create PR in GitHub """ request_headers = sansio.create_headers( self.username, oauth_token=gh_auth) title, body = normalize_commit_message(commit_message) if not self.prefix_commit: title = f"[{base_branch}] {title}" data = { "title": title, "body": body, "head": f"{self.username}:{head_branch}", "base": base_branch, "maintainer_can_modify": True } url = CREATE_PR_URL_TEMPLATE.format(config=self.config) response = requests.post(url, headers=request_headers, json=data) if response.status_code == requests.codes.created: click.echo(f"Backport PR created at {response.json()['html_url']}") else: click.echo(response.status_code) click.echo(response.text) def open_pr(self, url): """ open url in the web browser """ if self.dry_run: click.echo(f" dry-run: Create new PR: {url}") else: click.echo("Backport PR URL:") click.echo(url) webbrowser.open_new_tab(url) def delete_branch(self, branch): cmd = ['git', 'branch', '-D', branch] self.run_cmd(cmd) def cleanup_branch(self, branch): self.checkout_default_branch() try: self.delete_branch(branch) except subprocess.CalledProcessError: click.echo(f"branch {branch} NOT deleted.") else: click.echo(f"branch {branch} has been deleted.") def backport(self): if not self.branches: raise click.UsageError("At least one branch must be specified.") self.fetch_upstream() for maint_branch in self.sorted_branches: click.echo(f"Now backporting '{self.commit_sha1}' into '{maint_branch}'") cherry_pick_branch = self.get_cherry_pick_branch(maint_branch) self.checkout_branch(maint_branch) commit_message = "" try: self.cherry_pick() commit_message = self.amend_commit_message(cherry_pick_branch) except subprocess.CalledProcessError as cpe: click.echo(cpe.output) click.echo(self.get_exit_message(maint_branch)) except CherryPickException: click.echo(self.get_exit_message(maint_branch)) raise else: if self.push: self.push_to_remote(maint_branch, cherry_pick_branch, commit_message) self.cleanup_branch(cherry_pick_branch) else: click.echo(\ f""" Finished cherry-pick {self.commit_sha1} into {cherry_pick_branch} \U0001F600 --no-push option used. ... Stopping here. To continue and push the changes: $ cherry_picker --continue To abort the cherry-pick and cleanup: $ cherry_picker --abort """) def abort_cherry_pick(self): """ run `git cherry-pick --abort` and then clean up the branch """ cmd = ['git', 'cherry-pick', '--abort'] try: self.run_cmd(cmd) except subprocess.CalledProcessError as cpe: click.echo(cpe.output) # only delete backport branch created by cherry_picker.py if get_current_branch().startswith('backport-'): self.cleanup_branch(get_current_branch()) def continue_cherry_pick(self): """ git push origin <current_branch> open the PR clean up branch """ cherry_pick_branch = get_current_branch() if cherry_pick_branch.startswith('backport-'): # amend the commit message, prefix with [X.Y] base = get_base_branch(cherry_pick_branch) short_sha = cherry_pick_branch[cherry_pick_branch.index('-')+1:cherry_pick_branch.index(base)-1] full_sha = get_full_sha_from_short(short_sha) commit_message = self.get_commit_message(short_sha) co_author_info = f"Co-authored-by: {get_author_info_from_short_sha(short_sha)}" updated_commit_message = f"""[{base}] {commit_message}. (cherry picked from commit {full_sha}) {co_author_info}""" if self.dry_run: click.echo(f" dry-run: git commit -a -m '{updated_commit_message}' --allow-empty") else: cmd = ['git', 'commit', '-a', '-m', updated_commit_message, '--allow-empty'] subprocess.check_output(cmd, stderr=subprocess.STDOUT) self.push_to_remote(base, cherry_pick_branch) self.cleanup_branch(cherry_pick_branch) click.echo("\nBackport PR:\n") click.echo(updated_commit_message) else: click.echo(f"Current branch ({cherry_pick_branch}) is not a backport branch. Will not continue. \U0001F61B") def check_repo(self): """ Check that the repository is for the project we're configured to operate on. This function performs the check by making sure that the sha specified in the config is present in the repository that we're operating on. """ try: validate_sha(self.config['check_sha']) except ValueError: raise InvalidRepoException() CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) @click.command(context_settings=CONTEXT_SETTINGS) @click.version_option(version=__version__) @click.option('--dry-run', is_flag=True, help="Prints out the commands, but not executed.") @click.option('--pr-remote', 'pr_remote', metavar='REMOTE', help='git remote to use for PR branches', default='origin') @click.option('--abort', 'abort', flag_value=True, default=None, help="Abort current cherry-pick and clean up branch") @click.option('--continue', 'abort', flag_value=False, default=None, help="Continue cherry-pick, push, and clean up branch") @click.option('--status', 'status', flag_value=True, default=None, help="Get the status of cherry-pick") @click.option('--push/--no-push', 'push', is_flag=True, default=True, help="Changes won't be pushed to remote") @click.option('--config-path', 'config_path', metavar='CONFIG-PATH', help=("Path to config file, .cherry_picker.toml " "from project root by default"), default=None) @click.argument('commit_sha1', 'The commit sha1 to be cherry-picked', nargs=1, default = "") @click.argument('branches', 'The branches to backport to', nargs=-1) def cherry_pick_cli(dry_run, pr_remote, abort, status, push, config_path, commit_sha1, branches): click.echo("\U0001F40D \U0001F352 \u26CF") config = load_config(config_path) try: cherry_picker = CherryPicker(pr_remote, commit_sha1, branches, dry_run=dry_run, push=push, config=config) except InvalidRepoException: click.echo(f"You're not inside a {config['repo']} repo right now! \U0001F645") sys.exit(-1) if abort is not None: if abort: cherry_picker.abort_cherry_pick() else: cherry_picker.continue_cherry_pick() elif status: click.echo(cherry_picker.status()) else: try: cherry_picker.backport() except BranchCheckoutException: sys.exit(-1) except CherryPickException: sys.exit(-1) def get_base_branch(cherry_pick_branch): """ return '2.7' from 'backport-sha-2.7' raises ValueError if the specified branch name is not of a form that cherry_picker would have created """ prefix, sha, base_branch = cherry_pick_branch.split('-', 2) if prefix != 'backport': raise ValueError('branch name is not prefixed with "backport-". Is this a cherry_picker branch?') if not re.match('[0-9a-f]{7,40}', sha): raise ValueError(f'branch name has an invalid sha: {sha}') # Validate that the sha refers to a valid commit within the repo # Throws a ValueError if the sha is not present in the repo validate_sha(sha) # Subject the parsed base_branch to the same tests as when we generated it # This throws a ValueError if the base_branch doesn't meet our requirements version_from_branch(base_branch) return base_branch def validate_sha(sha): """ Validate that a hexdigest sha is a valid commit in the repo raises ValueError if the sha does not reference a commit within the repo """ cmd = ['git', 'log', '-r', sha] try: subprocess.check_output(cmd, stderr=subprocess.STDOUT) except subprocess.SubprocessError: raise ValueError(f'The sha listed in the branch name, {sha}, is not present in the repository') def version_from_branch(branch): """ return version information from a git branch name """ try: return tuple(map(int, re.match(r'^.*(?P<version>\d+(\.\d+)+).*$', branch).groupdict()['version'].split('.'))) except AttributeError as attr_err: raise ValueError(f'Branch {branch} seems to not have a version in its name.') from attr_err def get_current_branch(): """ Return the current branch """ cmd = ['git', 'rev-parse', '--abbrev-ref', 'HEAD'] output = subprocess.check_output(cmd, stderr=subprocess.STDOUT) return output.strip().decode('utf-8') def get_full_sha_from_short(short_sha): cmd = ['git', 'log', '-1', '--format=%H', short_sha] output = subprocess.check_output(cmd, stderr=subprocess.STDOUT) full_sha = output.strip().decode('utf-8') return full_sha def get_author_info_from_short_sha(short_sha): cmd = ['git', 'log', '-1', '--format=%aN <%ae>', short_sha] output = subprocess.check_output(cmd, stderr=subprocess.STDOUT) author = output.strip().decode('utf-8') return author def normalize_commit_message(commit_message): """ Return a tuple of title and body from the commit message """ split_commit_message = commit_message.split("\n") title = split_commit_message[0] body = "\n".join(split_commit_message[1:]) return title, body.lstrip("\n") def find_project_root(): cmd = ['git', 'rev-parse', '--show-toplevel'] output = subprocess.check_output(cmd, stderr=subprocess.STDOUT) return pathlib.Path(output.decode('utf-8').strip()) def find_config(): root = find_project_root() if root is not None: child = root / '.cherry_picker.toml' if child.exists() and not child.is_dir(): return child return None def load_config(path): if path is None: path = find_config() if path is None: return DEFAULT_CONFIG else: path = pathlib.Path(path) # enforce a cast to pathlib datatype with path.open() as f: d = toml.load(f) return DEFAULT_CONFIG.new_child(d) if __name__ == '__main__': cherry_pick_cli()
the-stack_0_21457
""" Controller module (adapter for UIs) """ from chess import engine from chess.pieces import * from chess.constants import * class Select: """ Select piece, shows suggestions and prepares piece for move """ def __init__(self): self.pos_1 = None self.moves = [] def make_selection(self, select, game): if select in engine.get_location(game): self.pos_1 = select self.moves = engine.get_valid_moves(game, game[select]) if game.player_white: suggestions = self.moves else: suggestions = [converter(coord) for coord in self.moves] return suggestions if self.pos_1 and select in self.moves: move = engine.Move(self.pos_1, select, game) if isinstance(game[self.pos_1], Pawn) and select[0] in (0, 7): move.promote = Queen # temporary move.execute() self._reset() self._reset() def _reset(self): self.pos_1 = None self.moves = [] def gui_coord(player, coord): y, x = coord if BORD < x < B_WIDTH + BORD and BORD < y < B_HEIGHT + BORD: row, col = (x // SQ_SIZE, y // SQ_SIZE) if player: return row, col else: return converter((row, col)) return False def check(game): if engine.king_checked(game, game.white_to_move): return engine.get_location(game, game.white_to_move, find_piece=King) return False def mate(game): if engine.check_mate(game): return engine.get_location(game, game.white_to_move, find_piece=King) return False def converter(coord): conv = {0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1, 7: 0} return conv[coord[0]], conv[coord[1]]
the-stack_0_21458
from apple.protocols.protocol_message_types import ProtocolMessageTypes as pmt, ProtocolMessageTypes NO_REPLY_EXPECTED = [ # full_node -> full_node messages pmt.new_peak, pmt.new_transaction, pmt.new_unfinished_block, pmt.new_signage_point_or_end_of_sub_slot, pmt.request_mempool_transactions, pmt.new_compact_vdf, pmt.request_mempool_transactions, ] """ VAILD_REPLY_MESSAGE_MAP: key: sent message type. value: valid reply message types, from the view of the requester. A state machine can be built from this message map. """ VAILD_REPLY_MESSAGE_MAP = { # messages for all services # pmt.handshake is handled in WSAppleConnection.perform_handshake # full_node -> full_node protocol messages pmt.request_transaction: [pmt.respond_transaction], pmt.request_proof_of_weight: [pmt.respond_proof_of_weight], pmt.request_block: [pmt.respond_block, pmt.reject_block], pmt.request_blocks: [pmt.respond_blocks, pmt.reject_blocks], pmt.request_unfinished_block: [pmt.respond_unfinished_block], pmt.request_signage_point_or_end_of_sub_slot: [pmt.respond_signage_point, pmt.respond_end_of_sub_slot], pmt.request_compact_vdf: [pmt.respond_compact_vdf], pmt.request_peers: [pmt.respond_peers], } def static_check_sent_message_response() -> None: """Check that allowed message data structures VALID_REPLY_MESSAGE_MAP and NO_REPLY_EXPECTED are consistent.""" # Reply and non-reply sets should not overlap: This check should be static overlap = set(NO_REPLY_EXPECTED).intersection(set(VAILD_REPLY_MESSAGE_MAP.keys())) if len(overlap) != 0: raise AssertionError("Overlapping NO_REPLY_EXPECTED and VAILD_REPLY_MESSAGE_MAP values: {}") def message_requires_reply(sent: ProtocolMessageTypes) -> bool: """Return True if message has an entry in the full node P2P message map""" # If we knew the peer NodeType is FULL_NODE, we could also check `sent not in NO_REPLY_EXPECTED` return sent in VAILD_REPLY_MESSAGE_MAP def message_response_ok(sent: ProtocolMessageTypes, received: ProtocolMessageTypes) -> bool: """ Check to see that peers respect protocol message types in reply. Call with received == None to indicate that we do not expect a specific reply message type. """ # Errors below are runtime protocol message mismatches from peers if sent in VAILD_REPLY_MESSAGE_MAP: if received not in VAILD_REPLY_MESSAGE_MAP[sent]: return False return True # Run `static_check_sent_message_response` to check this static invariant at import time static_check_sent_message_response()
the-stack_0_21459
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Geranium Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the listsinceblock RPC.""" from test_framework.test_framework import GeraniumTestFramework from test_framework.messages import BIP125_SEQUENCE_NUMBER from test_framework.util import ( assert_array_result, assert_equal, assert_raises_rpc_error, connect_nodes, ) from decimal import Decimal class ListSinceBlockTest(GeraniumTestFramework): def set_test_params(self): self.num_nodes = 4 self.setup_clean_chain = True def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # All nodes are in IBD from genesis, so they'll need the miner (node2) to be an outbound connection, or have # only one connection. (See fPreferredDownload in net_processing) connect_nodes(self.nodes[1], 2) self.nodes[2].generate(101) self.sync_all() self.test_no_blockhash() self.test_invalid_blockhash() self.test_reorg() self.test_double_spend() self.test_double_send() self.double_spends_filtered() def test_no_blockhash(self): self.log.info("Test no blockhash") txid = self.nodes[2].sendtoaddress(self.nodes[0].getnewaddress(), 1) blockhash, = self.nodes[2].generate(1) blockheight = self.nodes[2].getblockheader(blockhash)['height'] self.sync_all() txs = self.nodes[0].listtransactions() assert_array_result(txs, {"txid": txid}, { "category": "receive", "amount": 1, "blockhash": blockhash, "blockheight": blockheight, "confirmations": 1, }) assert_equal( self.nodes[0].listsinceblock(), {"lastblock": blockhash, "removed": [], "transactions": txs}) assert_equal( self.nodes[0].listsinceblock(""), {"lastblock": blockhash, "removed": [], "transactions": txs}) def test_invalid_blockhash(self): self.log.info("Test invalid blockhash") assert_raises_rpc_error(-5, "Block not found", self.nodes[0].listsinceblock, "42759cde25462784395a337460bde75f58e73d3f08bd31fdc3507cbac856a2c4") assert_raises_rpc_error(-5, "Block not found", self.nodes[0].listsinceblock, "0000000000000000000000000000000000000000000000000000000000000000") assert_raises_rpc_error(-8, "blockhash must be of length 64 (not 11, for 'invalid-hex')", self.nodes[0].listsinceblock, "invalid-hex") assert_raises_rpc_error(-8, "blockhash must be hexadecimal string (not 'Z000000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].listsinceblock, "Z000000000000000000000000000000000000000000000000000000000000000") def test_reorg(self): ''' `listsinceblock` did not behave correctly when handed a block that was no longer in the main chain: ab0 / \ aa1 [tx0] bb1 | | aa2 bb2 | | aa3 bb3 | bb4 Consider a client that has only seen block `aa3` above. It asks the node to `listsinceblock aa3`. But at some point prior the main chain switched to the bb chain. Previously: listsinceblock would find height=4 for block aa3 and compare this to height=5 for the tip of the chain (bb4). It would then return results restricted to bb3-bb4. Now: listsinceblock finds the fork at ab0 and returns results in the range bb1-bb4. This test only checks that [tx0] is present. ''' self.log.info("Test reorg") # Split network into two self.split_network() # send to nodes[0] from nodes[2] senttx = self.nodes[2].sendtoaddress(self.nodes[0].getnewaddress(), 1) # generate on both sides nodes1_last_blockhash = self.nodes[1].generate(6)[-1] nodes2_first_blockhash = self.nodes[2].generate(7)[0] self.log.debug("nodes[1] last blockhash = {}".format(nodes1_last_blockhash)) self.log.debug("nodes[2] first blockhash = {}".format(nodes2_first_blockhash)) self.sync_all(self.nodes[:2]) self.sync_all(self.nodes[2:]) self.join_network() # listsinceblock(nodes1_last_blockhash) should now include tx as seen from nodes[0] # and return the block height which listsinceblock now exposes since a5e7795. transactions = self.nodes[0].listsinceblock(nodes1_last_blockhash)['transactions'] found = next(tx for tx in transactions if tx['txid'] == senttx) assert_equal(found['blockheight'], self.nodes[0].getblockheader(nodes2_first_blockhash)['height']) def test_double_spend(self): ''' This tests the case where the same UTXO is spent twice on two separate blocks as part of a reorg. ab0 / \ aa1 [tx1] bb1 [tx2] | | aa2 bb2 | | aa3 bb3 | bb4 Problematic case: 1. User 1 receives GEAM in tx1 from utxo1 in block aa1. 2. User 2 receives GEAM in tx2 from utxo1 (same) in block bb1 3. User 1 sees 2 confirmations at block aa3. 4. Reorg into bb chain. 5. User 1 asks `listsinceblock aa3` and does not see that tx1 is now invalidated. Currently the solution to this is to detect that a reorg'd block is asked for in listsinceblock, and to iterate back over existing blocks up until the fork point, and to include all transactions that relate to the node wallet. ''' self.log.info("Test double spend") self.sync_all() # Split network into two self.split_network() # share utxo between nodes[1] and nodes[2] utxos = self.nodes[2].listunspent() utxo = utxos[0] privkey = self.nodes[2].dumpprivkey(utxo['address']) self.nodes[1].importprivkey(privkey) # send from nodes[1] using utxo to nodes[0] change = '%.8f' % (float(utxo['amount']) - 1.0003) recipient_dict = { self.nodes[0].getnewaddress(): 1, self.nodes[1].getnewaddress(): change, } utxo_dicts = [{ 'txid': utxo['txid'], 'vout': utxo['vout'], }] txid1 = self.nodes[1].sendrawtransaction( self.nodes[1].signrawtransactionwithwallet( self.nodes[1].createrawtransaction(utxo_dicts, recipient_dict))['hex']) # send from nodes[2] using utxo to nodes[3] recipient_dict2 = { self.nodes[3].getnewaddress(): 1, self.nodes[2].getnewaddress(): change, } self.nodes[2].sendrawtransaction( self.nodes[2].signrawtransactionwithwallet( self.nodes[2].createrawtransaction(utxo_dicts, recipient_dict2))['hex']) # generate on both sides lastblockhash = self.nodes[1].generate(3)[2] self.nodes[2].generate(4) self.join_network() self.sync_all() # gettransaction should work for txid1 assert self.nodes[0].gettransaction(txid1)['txid'] == txid1, "gettransaction failed to find txid1" # listsinceblock(lastblockhash) should now include txid1, as seen from nodes[0] lsbres = self.nodes[0].listsinceblock(lastblockhash) assert any(tx['txid'] == txid1 for tx in lsbres['removed']) # but it should not include 'removed' if include_removed=false lsbres2 = self.nodes[0].listsinceblock(blockhash=lastblockhash, include_removed=False) assert 'removed' not in lsbres2 def test_double_send(self): ''' This tests the case where the same transaction is submitted twice on two separate blocks as part of a reorg. The former will vanish and the latter will appear as the true transaction (with confirmations dropping as a result). ab0 / \ aa1 [tx1] bb1 | | aa2 bb2 | | aa3 bb3 [tx1] | bb4 Asserted: 1. tx1 is listed in listsinceblock. 2. It is included in 'removed' as it was removed, even though it is now present in a different block. 3. It is listed with a confirmation count of 2 (bb3, bb4), not 3 (aa1, aa2, aa3). ''' self.log.info("Test double send") self.sync_all() # Split network into two self.split_network() # create and sign a transaction utxos = self.nodes[2].listunspent() utxo = utxos[0] change = '%.8f' % (float(utxo['amount']) - 1.0003) recipient_dict = { self.nodes[0].getnewaddress(): 1, self.nodes[2].getnewaddress(): change, } utxo_dicts = [{ 'txid': utxo['txid'], 'vout': utxo['vout'], }] signedtxres = self.nodes[2].signrawtransactionwithwallet( self.nodes[2].createrawtransaction(utxo_dicts, recipient_dict)) assert signedtxres['complete'] signedtx = signedtxres['hex'] # send from nodes[1]; this will end up in aa1 txid1 = self.nodes[1].sendrawtransaction(signedtx) # generate bb1-bb2 on right side self.nodes[2].generate(2) # send from nodes[2]; this will end up in bb3 txid2 = self.nodes[2].sendrawtransaction(signedtx) assert_equal(txid1, txid2) # generate on both sides lastblockhash = self.nodes[1].generate(3)[2] self.nodes[2].generate(2) self.join_network() self.sync_all() # gettransaction should work for txid1 tx1 = self.nodes[0].gettransaction(txid1) assert_equal(tx1['blockheight'], self.nodes[0].getblockheader(tx1['blockhash'])['height']) # listsinceblock(lastblockhash) should now include txid1 in transactions # as well as in removed lsbres = self.nodes[0].listsinceblock(lastblockhash) assert any(tx['txid'] == txid1 for tx in lsbres['transactions']) assert any(tx['txid'] == txid1 for tx in lsbres['removed']) # find transaction and ensure confirmations is valid for tx in lsbres['transactions']: if tx['txid'] == txid1: assert_equal(tx['confirmations'], 2) # the same check for the removed array; confirmations should STILL be 2 for tx in lsbres['removed']: if tx['txid'] == txid1: assert_equal(tx['confirmations'], 2) def double_spends_filtered(self): ''' `listsinceblock` was returning conflicted transactions even if they occurred before the specified cutoff blockhash ''' self.log.info("Test spends filtered") spending_node = self.nodes[2] dest_address = spending_node.getnewaddress() tx_input = dict( sequence=BIP125_SEQUENCE_NUMBER, **next(u for u in spending_node.listunspent())) rawtx = spending_node.createrawtransaction( [tx_input], {dest_address: tx_input["amount"] - Decimal("0.00051000"), spending_node.getrawchangeaddress(): Decimal("0.00050000")}) signedtx = spending_node.signrawtransactionwithwallet(rawtx) orig_tx_id = spending_node.sendrawtransaction(signedtx["hex"]) original_tx = spending_node.gettransaction(orig_tx_id) double_tx = spending_node.bumpfee(orig_tx_id) # check that both transactions exist block_hash = spending_node.listsinceblock( spending_node.getblockhash(spending_node.getblockcount())) original_found = False double_found = False for tx in block_hash['transactions']: if tx['txid'] == original_tx['txid']: original_found = True if tx['txid'] == double_tx['txid']: double_found = True assert_equal(original_found, True) assert_equal(double_found, True) lastblockhash = spending_node.generate(1)[0] # check that neither transaction exists block_hash = spending_node.listsinceblock(lastblockhash) original_found = False double_found = False for tx in block_hash['transactions']: if tx['txid'] == original_tx['txid']: original_found = True if tx['txid'] == double_tx['txid']: double_found = True assert_equal(original_found, False) assert_equal(double_found, False) if __name__ == '__main__': ListSinceBlockTest().main()
the-stack_0_21460
#!/usr/bin/env python3 from subprocess import check_output import sys import os.path def main(tarname, gitroot): """Run this as ./compare_tar_against_git.py TARFILE GITROOT Args ==== TARFILE: Path to the built sdist (sympy-xx.tar.gz) GITROOT: Path ro root of git (dir containing .git) """ compare_tar_against_git(tarname, gitroot) ## TARBALL WHITELISTS # If a file does not end up in the tarball that should, add it to setup.py if # it is Python, or MANIFEST.in if it is not. (There is a command at the top # of setup.py to gather all the things that should be there). # TODO: Also check that this whitelist isn't growing out of date from files # removed from git. # Files that are in git that should not be in the tarball git_whitelist = { # Git specific dotfiles '.gitattributes', '.gitignore', '.mailmap', # Travis and CI '.travis.yml', '.github/workflows/runtests.yml', '.github/workflows/ci-sage.yml', '.github/workflows/comment-on-pr.yml', '.github/workflows/release.yml', '.ci/durations.json', '.ci/generate_durations_log.sh', '.ci/parse_durations_log.py', '.ci/blacklisted.json', '.ci/README.rst', '.github/FUNDING.yml', '.editorconfig', '.coveragerc', 'CODEOWNERS', 'asv.conf.actions.json', 'asv.conf.travis.json', 'coveragerc_travis', 'codecov.yml', 'pytest.ini', 'MANIFEST.in', 'banner.svg', # Code of conduct 'CODE_OF_CONDUCT.md', # Pull request template 'PULL_REQUEST_TEMPLATE.md', # Contributing guide 'CONTRIBUTING.md', # Nothing from bin/ should be shipped unless we intend to install it. Most # of this stuff is for development anyway. To run the tests from the # tarball, use setup.py test, or import sympy and run sympy.test() or # sympy.doctest(). 'bin/adapt_paths.py', 'bin/ask_update.py', 'bin/authors_update.py', 'bin/build_doc.sh', 'bin/coverage_doctest.py', 'bin/coverage_report.py', 'bin/deploy_doc.sh', 'bin/diagnose_imports', 'bin/doctest', 'bin/generate_module_list.py', 'bin/generate_test_list.py', 'bin/get_sympy.py', 'bin/mailmap_update.py', 'bin/py.bench', 'bin/strip_whitespace', 'bin/sympy_time.py', 'bin/sympy_time_cache.py', 'bin/test', 'bin/test_external_imports.py', 'bin/test_executable.py', 'bin/test_import', 'bin/test_import.py', 'bin/test_isolated', 'bin/test_py2_import.py', 'bin/test_setup.py', 'bin/test_submodule_imports.py', 'bin/test_travis.sh', 'bin/test_optional_dependencies.py', 'bin/test_sphinx.sh', 'bin/mailmap_check.py', 'bin/test_symengine.py', 'bin/test_tensorflow.py', # The notebooks are not ready for shipping yet. They need to be cleaned # up, and preferably doctested. See also # https://github.com/sympy/sympy/issues/6039. 'examples/advanced/identitysearch_example.ipynb', 'examples/beginner/plot_advanced.ipynb', 'examples/beginner/plot_colors.ipynb', 'examples/beginner/plot_discont.ipynb', 'examples/beginner/plot_gallery.ipynb', 'examples/beginner/plot_intro.ipynb', 'examples/intermediate/limit_examples_advanced.ipynb', 'examples/intermediate/schwarzschild.ipynb', 'examples/notebooks/density.ipynb', 'examples/notebooks/fidelity.ipynb', 'examples/notebooks/fresnel_integrals.ipynb', 'examples/notebooks/qubits.ipynb', 'examples/notebooks/sho1d_example.ipynb', 'examples/notebooks/spin.ipynb', 'examples/notebooks/trace.ipynb', 'examples/notebooks/Bezout_Dixon_resultant.ipynb', 'examples/notebooks/IntegrationOverPolytopes.ipynb', 'examples/notebooks/Macaulay_resultant.ipynb', 'examples/notebooks/Sylvester_resultant.ipynb', 'examples/notebooks/README.txt', # This stuff :) 'release/.gitignore', 'release/README.md', 'release/Vagrantfile', 'release/fabfile.py', 'release/Dockerfile', 'release/Dockerfile-base', 'release/release.sh', 'release/rever.xsh', 'release/pull_and_run_rever.sh', 'release/compare_tar_against_git.py', 'release/update_docs.py', 'release/aptinstall.sh', 'release/build_docs.py', 'release/github_release.py', 'release/helpers.py', 'release/releasecheck.py', 'release/requirements.txt', 'release/update_requirements.sh', 'release/test_install.py', 'release/sha256.py', 'release/authors.py', 'release/ci_release_script.sh', # This is just a distribute version of setup.py. Used mainly for setup.py # develop, which we don't care about in the release tarball 'setupegg.py', # pytest stuff 'conftest.py', # Encrypted deploy key for deploying dev docs to GitHub 'github_deploy_key.enc', } # Files that should be in the tarball should not be in git tarball_whitelist = { # Generated by setup.py. Contains metadata for PyPI. "PKG-INFO", # Generated by setuptools. More metadata. 'setup.cfg', 'sympy.egg-info/PKG-INFO', 'sympy.egg-info/SOURCES.txt', 'sympy.egg-info/dependency_links.txt', 'sympy.egg-info/requires.txt', 'sympy.egg-info/top_level.txt', 'sympy.egg-info/not-zip-safe', 'sympy.egg-info/entry_points.txt', # Not sure where this is generated from... 'doc/commit_hash.txt', } def blue(text): return "\033[34m%s\033[0m" % text def red(text): return "\033[31m%s\033[0m" % text def run(*cmdline, cwd=None): """ Run command in subprocess and get lines of output """ return check_output(cmdline, encoding='utf-8', cwd=cwd).splitlines() def full_path_split(path): """ Function to do a full split on a path. """ # Based on https://stackoverflow.com/a/13505966/161801 rest, tail = os.path.split(path) if not rest or rest == os.path.sep: return (tail,) return full_path_split(rest) + (tail,) def compare_tar_against_git(tarname, gitroot): """ Compare the contents of the tarball against git ls-files See the bottom of the file for the whitelists. """ git_lsfiles = set(i.strip() for i in run('git', 'ls-files', cwd=gitroot)) tar_output_orig = set(run('tar', 'tf', tarname)) tar_output = set() for file in tar_output_orig: # The tar files are like sympy-0.7.3/sympy/__init__.py, and the git # files are like sympy/__init__.py. split_path = full_path_split(file) if split_path[-1]: # Exclude directories, as git ls-files does not include them tar_output.add(os.path.join(*split_path[1:])) # print tar_output # print git_lsfiles fail = False print() print(blue("Files in the tarball from git that should not be there:")) print() for line in sorted(tar_output.intersection(git_whitelist)): fail = True print(line) print() print(blue("Files in git but not in the tarball:")) print() for line in sorted(git_lsfiles - tar_output - git_whitelist): fail = True print(line) print() print(blue("Files in the tarball but not in git:")) print() for line in sorted(tar_output - git_lsfiles - tarball_whitelist): fail = True print(line) print() if fail: sys.exit(red("Non-whitelisted files found or not found in the tarball")) if __name__ == "__main__": main(*sys.argv[1:])
the-stack_0_21462
#%% from cil.utilities.dataexample import SIMULATED_CONE_BEAM_DATA, SIMULATED_PARALLEL_BEAM_DATA, SIMULATED_SPHERE_VOLUME from cil.utilities.display import show2D from cil.plugins.tigre import ProjectionOperator, FBP as FBP_t from cil.recon import FDK as FBP from cil.utilities.display import show2D from cil.processors import CentreOfRotationCorrector import numpy as np #%% image_data = SIMULATED_SPHERE_VOLUME.get() data = SIMULATED_CONE_BEAM_DATA.get() data=np.log(data) data*=-1.0 data.reorder('tigre') #%% data_offset = data.copy() reco1 = FBP(data_offset).run() data_offset.geometry.config.system.rotation_axis.position=[20,0,0] reco2 = FBP(data_offset).run() show2D([reco1,reco2],title=['original','offset data']) #%% corrector = CentreOfRotationCorrector.image_sharpness('centre',FBP_t) corrector.set_input(data_offset) data_centred = corrector.get_output() #%% #method = 'interpolated' method = 'Siddon' #%% ag = data_offset.geometry ig = ag.get_ImageGeometry() PO = ProjectionOperator(ig, ag, direct_method=method) reco = FBP(data_offset).run() bp = PO.adjoint(data_offset) fp = PO.direct(bp) show2D([reco,bp,fp]) #%% ag = data_centred.geometry ig = ag.get_ImageGeometry() PO = ProjectionOperator(ig, ag, direct_method=method) reco = FBP(data_centred).run() bp = PO.adjoint(data_centred) fp = PO.direct(bp) show2D([reco,bp,fp]) # %%
the-stack_0_21463
"""Tests for the `cli` module.""" import pytest from duty import cli def test_no_duty(capsys): """ Run no duties. Arguments: capsys: Pytest fixture to capture output. """ assert cli.main([]) == 1 captured = capsys.readouterr() assert "choose at least one duty" in captured.err def test_show_help(capsys): """ Show help. Arguments: capsys: Pytest fixture to capture output. """ assert cli.main(["-h"]) == 0 captured = capsys.readouterr() assert "duty" in captured.out def test_show_help_for_given_duties(capsys): """ Show help for given duties. Arguments: capsys: Pytest fixture to capture output. """ assert cli.main(["-d", "tests/fixtures/basic.py", "-h", "hello"]) == 0 captured = capsys.readouterr() assert "hello" in captured.out def test_show_help_unknown_duty(capsys): """ Show help for an unknown duty. Arguments: capsys: Pytest fixture to capture output. """ assert cli.main(["-d", "tests/fixtures/basic.py", "-h", "not-here"]) == 0 captured = capsys.readouterr() assert "Unknown duty" in captured.out def test_select_duties(): """Run a duty.""" assert cli.main(["-d", "tests/fixtures/basic.py", "hello"]) == 0 def test_unknown_duty(): """Don't run an unknown duty.""" assert cli.main(["-d", "tests/fixtures/basic.py", "byebye"]) == 1 def test_incorrect_arguments(): """Use incorrect arguments.""" assert cli.main(["-d", "tests/fixtures/basic.py", "hello=1"]) == 1 # we use 300 because it's slightly above the valid maximum 255 @pytest.mark.parametrize("code", range(-100, 300, 7)) # noqa: WPS432 (magic number 300) def test_duty_failure(code): """ Check exit code. Arguments: code: Code to match. """ assert cli.main(["-d", "tests/fixtures/code.py", "exit_with", f"code={code}"]) == code def test_multiple_duties(capsys): """ Run multiple duties. Arguments: capsys: Pytest fixture to capture output. """ assert cli.main(["-d", "tests/fixtures/multiple.py", "first_duty", "second_duty"]) == 0 captured = capsys.readouterr() assert "first" in captured.out assert "second" in captured.out def test_duty_arguments(capsys): # noqa: WPS218 (too many assert statements) """ Run duty with arguments. Arguments: capsys: Pytest fixture to capture output. """ assert cli.main(["-d", "tests/fixtures/arguments.py", "say_hello", "cat=fabric"]) == 0 captured = capsys.readouterr() assert "cat fabric" in captured.out assert "dog dog" in captured.out assert cli.main(["-d", "tests/fixtures/arguments.py", "say_hello", "dog=paramiko", "cat=invoke"]) == 0 captured = capsys.readouterr() assert "cat invoke" in captured.out assert "dog paramiko" in captured.out def test_list_duties(capsys): """ List duties. Arguments: capsys: Pytest fixture to capture output. """ assert cli.main(["-d", "tests/fixtures/list.py", "-l"]) == 0 captured = capsys.readouterr() assert "Tong..." in captured.out assert "DEUM!" in captured.out def test_global_options(): """Test global options.""" assert cli.main(["-d", "tests/fixtures/code.py", "-z", "exit_with", "1"]) == 0 def test_global_and_local_options(): """Test global and local options.""" assert cli.main(["-d", "tests/fixtures/code.py", "-z", "exit_with", "-Z", "1"]) == 1 def test_options_precedence(): """Test options precedence.""" # @duty(nofail=True) is overridden by ctx.run(nofail=False) assert cli.main(["-d", "tests/fixtures/precedence.py", "precedence"]) == 1 # ctx.run(nofail=False) is overridden by local option -z assert cli.main(["-d", "tests/fixtures/precedence.py", "precedence", "-z"]) == 0 # ctx.run(nofail=False) is overridden by global option -z assert cli.main(["-d", "tests/fixtures/precedence.py", "-z", "precedence"]) == 0 # global option -z is overridden by local option -z assert cli.main(["-d", "tests/fixtures/precedence.py", "-z", "precedence", "-Z"]) == 1 # test options precedence (CLI option, env var, ctx.run, @duty # test positional arguments # test extra keyword arguments # test complete (global options + local options + multi duties + positional args + keyword args + extra keyword args) @pytest.mark.parametrize( ("param", "expected"), [ ("", 1), ("n", 1), ("N", 1), ("no", 1), ("NO", 1), ("false", 1), ("FALSE", 1), ("off", 1), ("OFF", 1), ("zero=", 1), ("zero=0", 1), ("zero=n", 1), ("zero=N", 1), ("zero=no", 1), ("zero=NO", 1), ("zero=false", 1), ("zero=FALSE", 1), ("zero=off", 1), ("zero=OFF", 1), ("y", 0), ("Y", 0), ("yes", 0), ("YES", 0), ("on", 0), ("ON", 0), ("true", 0), ("TRUE", 0), ("anything else", 0), ("-1", 0), ("1", 0), ("zero=y", 0), ("zero=Y", 0), ("zero=yes", 0), ("zero=YES", 0), ("zero=on", 0), ("zero=ON", 0), ("zero=true", 0), ("zero=TRUE", 0), ("zero=anything else", 0), ("zero=-1", 0), ("zero=1", 0), ], ) def test_cast_bool_parameter(param, expected): """ Test parameters casting as boolean. Arguments: param: Pytest parametrization fixture. expected: Pytest parametrization fixture. """ assert cli.main(["-d", "tests/fixtures/booleans.py", "boolean", param]) == expected def test_invalid_params(capsys): """ Check that invalid parameters are early and correctly detected. Arguments: capsys: Pytest fixture to capture output. """ assert cli.main(["-d", "tests/fixtures/booleans.py", "boolean", "zore=off"]) == 1 captured = capsys.readouterr() assert "unexpected keyword argument 'zore'" in captured.err assert cli.main(["-d", "tests/fixtures/code.py", "exit_with"]) == 1 captured = capsys.readouterr() assert "missing 1 required positional argument: 'code'" in captured.err
the-stack_0_21466
from django.conf.urls import url from django.urls import path from blog import views urlpatterns = [ path('', views.PostListView.as_view(), name='post_list'), path('about/', views.AboutView.as_view(), name='about'), path('post/<int:pk>', views.PostDetailView.as_view(), name='post_detail'), path('post/new/', views.CreatePostView.as_view(), name='post_new'), path('post/<int:pk>/edit/', views.PostUpdateView.as_view(), name='post_edit'), path('post/<int:pk>/remove/', views.PostDeleteView.as_view(), name='post_remove'), path('drafts/', views.DraftListView.as_view(), name='post_draft_list'), path('post/<int:pk>/comment/', views.add_comment_to_post, name='add_comment_to_post'), path('comment/<int:pk>/approve/', views.comment_approve, name='comment_approve'), path('comment/<int:pk>/remove/', views.comment_remove, name='comment_remove'), path('post/<int:pk>/publish/', views.post_publish, name='post_publish'), ]
the-stack_0_21468
#!/usr/bin/env python import ftplib import os import socket HOST = 'ftp.mozilla.org' DIRN = 'pub/mozilla.org/webtools' FILE = 'bugzilla-LATEST.tar.gz' def main(): try: f = ftplib.FTP(HOST) except (socket.error, socket.gaierror) as e: print('ERROR: cannot reach', HOST) return print('***Conntected to host ', HOST) try: f.login() except ftplib.error_perm: print('ERROR: cannot login anonymously') f.quit() return print('***Logged in as anonymous') try: f.cwd(DIRN) except ftplib.error_perm: print('ERROR: cannot cd to ', DIRN) f.quit() return print('***Changed to ', DIRN) try: f.retrbinary('RETR %s' %FILE, open(FILE, 'wb').write) except ftplib.error_perm: print('ERROR: cannot read file ', FILE) os.unlink(FILE) else: print('***Downloaded ', FILE) f.quit() if __name__ == '__main__': main()
the-stack_0_21472
from threading import Lock from meerk40t.svgelements import Length from ..device.lasercommandconstants import * from ..kernel import Modifier from .elements import MILS_IN_MM def plugin(kernel, lifecycle=None): if lifecycle == "register": kernel.register("modifier/Spoolers", Spoolers) kernel_root = kernel.root kernel_root.activate("modifier/Spoolers") class Spooler: """ A spooler stores spoolable lasercode events as a synchronous queue. * peek() * pop() * job(job) * jobs(iterable<job>) * job_if_idle(job) -- Will enqueue the job if the device is currently idle. * clear_queue() * remove(job) """ def __init__(self, context, spooler_name, *args, **kwargs): self.context = context self.name = spooler_name self.queue_lock = Lock() self._queue = [] self.next = None def __repr__(self): return "Spooler(%s)" % str(self.name) def __del__(self): self.name = None self.queue_lock = None self._queue = None self.next = None def __len__(self): return len(self._queue) def as_device(self): links = [] obj = self while obj is not None: links.append(str(obj)) obj = obj.next return " -> ".join(links) @property def queue(self): return self._queue def append(self, item): self.job(item) def peek(self): if len(self._queue) == 0: return None return self._queue[0] def pop(self): if len(self._queue) == 0: self.context.signal("spooler;queue", len(self._queue), self.name) return None self.queue_lock.acquire(True) queue_head = self._queue[0] del self._queue[0] self.queue_lock.release() self.context.signal("spooler;queue", len(self._queue), self.name) return queue_head def job(self, *job): """ Send a single job event with parameters as needed. The job can be a single command with (COMMAND_MOVE 20 20) or without parameters (COMMAND_HOME), or a generator which can yield many lasercode commands. :param job: job to send to the spooler. :return: """ self.queue_lock.acquire(True) if len(job) == 1: self._queue.extend(job) else: self._queue.append(job) self.queue_lock.release() self.context.signal("spooler;queue", len(self._queue)) def jobs(self, jobs): """ Send several jobs generators to be appended to the end of the queue. The jobs parameter must be suitable to be .extended to the end of the queue list. :param jobs: jobs to extend :return: """ self.queue_lock.acquire(True) if isinstance(jobs, (list, tuple)): self._queue.extend(jobs) else: self._queue.append(jobs) self.queue_lock.release() self.context.signal("spooler;queue", len(self._queue)) def job_if_idle(self, element): if len(self._queue) == 0: self.job(element) return True else: return False def clear_queue(self): self.queue_lock.acquire(True) self._queue = [] self.queue_lock.release() self.context.signal("spooler;queue", len(self._queue)) def remove(self, element, index=None): self.queue_lock.acquire(True) if index is None: self._queue.remove(element) else: del self._queue[index] self.queue_lock.release() self.context.signal("spooler;queue", len(self._queue)) class Spoolers(Modifier): def __init__(self, context, name=None, channel=None, *args, **kwargs): Modifier.__init__(self, context, name, channel) def get_or_make_spooler(self, device_name): dev = "device/%s" % device_name try: device = self.context.registered[dev] except KeyError: device = [None, None, None] self.context.registered[dev] = device self.context.signal("legacy_spooler_label", device_name) if device[0] is None: device[0] = Spooler(self.context, device_name) return device[0] def default_spooler(self): return self.get_or_make_spooler(self.context.root.active) def attach(self, *a, **kwargs): context = self.context context.spoolers = self bed_dim = context.root self.context.root.setting(str, "active", "0") kernel = self.context._kernel _ = kernel.translation @context.console_option( "register", "r", type=bool, action="store_true", help=_("Register this device"), ) @context.console_command( "spool", help=_("spool<?> <command>"), regex=True, input_type=(None, "plan", "device"), output_type="spooler", ) def spool( command, channel, _, data=None, register=False, remainder=None, **kwgs ): root = self.context.root if len(command) > 5: device_name = command[5:] else: if register: device_context = kernel.get_context("devices") index = 0 while hasattr(device_context, "device_%d" % index): index += 1 device_name = str(index) else: device_name = root.active if register: device_context = kernel.get_context("devices") setattr( device_context, "device_%s" % device_name, ("spool%s -r " % device_name) + remainder + "\n", ) spooler = self.get_or_make_spooler(device_name) if data is not None: # If plan data is in data, then we copy that and move on to next step. spooler.jobs(data.plan) channel(_("Spooled Plan.")) self.context.signal("plan", data.name, 6) if remainder is None: channel(_("----------")) channel(_("Spoolers:")) for d, d_name in enumerate(self.context.match("device", True)): channel("%d: %s" % (d, d_name)) channel(_("----------")) channel(_("Spooler %s:" % device_name)) for s, op_name in enumerate(spooler.queue): channel("%d: %s" % (s, op_name)) channel(_("----------")) return "spooler", (spooler, device_name) @context.console_command( "list", help=_("spool<?> list"), input_type="spooler", output_type="spooler", ) def spooler_list(command, channel, _, data_type=None, data=None, **kwgs): spooler, device_name = data channel(_("----------")) channel(_("Spoolers:")) for d, d_name in enumerate(self.context.match("device", True)): channel("%d: %s" % (d, d_name)) channel(_("----------")) channel(_("Spooler %s:" % device_name)) for s, op_name in enumerate(spooler.queue): channel("%d: %s" % (s, op_name)) channel(_("----------")) return data_type, data @context.console_argument("op", type=str, help=_("unlock, origin, home, etc")) @context.console_command( "send", help=_("send a plan-command to the spooler"), input_type="spooler", output_type="spooler", ) def spooler_send( command, channel, _, data_type=None, op=None, data=None, **kwgs ): spooler, device_name = data if op is None: raise SyntaxError try: for command_name in self.context.match("plan/%s" % op): plan_command = self.context.registered[command_name] spooler.job(plan_command) return data_type, data except (KeyError, IndexError): pass channel(_("No plan command found.")) return data_type, data @context.console_command( "clear", help=_("spooler<?> clear"), input_type="spooler", output_type="spooler", ) def spooler_clear(command, channel, _, data_type=None, data=None, **kwgs): spooler, device_name = data spooler.clear_queue() return data_type, data def execute_absolute_position(position_x, position_y): x_pos = Length(position_x).value( ppi=1000.0, relative_length=bed_dim.bed_width * MILS_IN_MM ) y_pos = Length(position_y).value( ppi=1000.0, relative_length=bed_dim.bed_height * MILS_IN_MM ) def move(): yield COMMAND_SET_ABSOLUTE yield COMMAND_MODE_RAPID yield COMMAND_MOVE, int(x_pos), int(y_pos) return move def execute_relative_position(position_x, position_y): x_pos = Length(position_x).value( ppi=1000.0, relative_length=bed_dim.bed_width * MILS_IN_MM ) y_pos = Length(position_y).value( ppi=1000.0, relative_length=bed_dim.bed_height * MILS_IN_MM ) def move(): yield COMMAND_SET_INCREMENTAL yield COMMAND_MODE_RAPID yield COMMAND_MOVE, int(x_pos), int(y_pos) yield COMMAND_SET_ABSOLUTE return move @context.console_command( "+laser", hidden=True, input_type=("spooler", None), output_type="spooler", help=_("turn laser on in place"), ) def plus_laser(data, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data spooler.job(COMMAND_LASER_ON) return "spooler", data @context.console_command( "-laser", hidden=True, input_type=("spooler", None), output_type="spooler", help=_("turn laser off in place"), ) def minus_laser(data, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data spooler.job(COMMAND_LASER_OFF) return "spooler", data @context.console_argument( "amount", type=Length, help=_("amount to move in the set direction.") ) @context.console_command( ("left", "right", "up", "down"), input_type=("spooler", None), output_type="spooler", help=_("cmd <amount>"), ) def direction(command, channel, _, data=None, amount=None, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data if amount is None: amount = Length("1mm") max_bed_height = bed_dim.bed_height * MILS_IN_MM max_bed_width = bed_dim.bed_width * MILS_IN_MM if not hasattr(spooler, "_dx"): spooler._dx = 0 if not hasattr(spooler, "_dy"): spooler._dy = 0 if command.endswith("right"): spooler._dx += amount.value(ppi=1000.0, relative_length=max_bed_width) elif command.endswith("left"): spooler._dx -= amount.value(ppi=1000.0, relative_length=max_bed_width) elif command.endswith("up"): spooler._dy -= amount.value(ppi=1000.0, relative_length=max_bed_height) elif command.endswith("down"): spooler._dy += amount.value(ppi=1000.0, relative_length=max_bed_height) context(".timer 1 0 spool%s jog\n" % device_name) return "spooler", data @context.console_option("force", "f", type=bool, action="store_true") @context.console_command( "jog", hidden=True, input_type="spooler", output_type="spooler", help=_("executes outstanding jog buffer"), ) def jog(command, channel, _, data, force=False, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data try: idx = int(spooler._dx) idy = int(spooler._dy) except AttributeError: return if idx == 0 and idy == 0: return if force: spooler.job(execute_relative_position(idx, idy)) else: if spooler.job_if_idle(execute_relative_position(idx, idy)): channel(_("Position moved: %d %d") % (idx, idy)) spooler._dx -= idx spooler._dy -= idy else: channel(_("Busy Error")) return "spooler", data @context.console_option("force", "f", type=bool, action="store_true") @context.console_argument("x", type=Length, help=_("change in x")) @context.console_argument("y", type=Length, help=_("change in y")) @context.console_command( ("move", "move_absolute"), input_type=("spooler", None), output_type="spooler", help=_("move <x> <y>: move to position."), ) def move(channel, _, x, y, data=None, force=False, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data if y is None: raise SyntaxError if force: spooler.job(execute_absolute_position(x, y)) else: if not spooler.job_if_idle(execute_absolute_position(x, y)): channel(_("Busy Error")) return "spooler", data @context.console_option("force", "f", type=bool, action="store_true") @context.console_argument("dx", type=Length, help=_("change in x")) @context.console_argument("dy", type=Length, help=_("change in y")) @context.console_command( "move_relative", input_type=("spooler", None), output_type="spooler", help=_("move_relative <dx> <dy>"), ) def move_relative(channel, _, dx, dy, data=None, force=False, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data if dy is None: raise SyntaxError if force: spooler.job(execute_relative_position(dx, dy)) else: if not spooler.job_if_idle(execute_relative_position(dx, dy)): channel(_("Busy Error")) return "spooler", data @context.console_argument("x", type=Length, help=_("x offset")) @context.console_argument("y", type=Length, help=_("y offset")) @context.console_command( "home", input_type=("spooler", None), output_type="spooler", help=_("home the laser"), ) def home(x=None, y=None, data=None, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data if x is not None and y is not None: x = x.value(ppi=1000.0, relative_length=bed_dim.bed_width * MILS_IN_MM) y = y.value(ppi=1000.0, relative_length=bed_dim.bed_height * MILS_IN_MM) spooler.job(COMMAND_HOME, int(x), int(y)) return "spooler", data spooler.job(COMMAND_HOME) return "spooler", data @context.console_command( "unlock", input_type=("spooler", None), output_type="spooler", help=_("unlock the rail"), ) def unlock(data=None, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data spooler.job(COMMAND_UNLOCK) return "spooler", data @context.console_command( "lock", input_type=("spooler", None), output_type="spooler", help=_("lock the rail"), ) def lock(data, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data spooler.job(COMMAND_LOCK) return "spooler", data for i in range(5): self.get_or_make_spooler(str(i)) @context.console_command( "test_dot_and_home", input_type=("spooler", None), hidden=True, ) def run_home_and_dot_test(data, **kwgs): if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data def home_dot_test(): for i in range(25): yield COMMAND_SET_ABSOLUTE yield COMMAND_MODE_RAPID yield COMMAND_HOME yield COMMAND_LASER_OFF yield COMMAND_WAIT_FINISH yield COMMAND_MOVE, 3000, 3000 yield COMMAND_WAIT_FINISH yield COMMAND_LASER_ON yield COMMAND_WAIT, 0.05 yield COMMAND_LASER_OFF yield COMMAND_WAIT_FINISH yield COMMAND_HOME yield COMMAND_WAIT_FINISH spooler.job(home_dot_test) @context.console_argument("transition_type", type=str) @context.console_command( "test_jog_transition", help="test_jog_transition <finish,jog,switch>", hidden=True, ) def run_jog_transition_test(data, transition_type, **kwgs): """ " The Jog Transition Test is intended to test the jogging """ if transition_type == "jog": command = COMMAND_JOG elif transition_type == "finish": command = COMMAND_JOG_FINISH elif transition_type == "switch": command = COMMAND_JOG_SWITCH else: raise SyntaxError if data is None: data = self.default_spooler(), self.context.root.active spooler, device_name = data def jog_transition_test(): yield COMMAND_SET_ABSOLUTE yield COMMAND_MODE_RAPID yield COMMAND_HOME yield COMMAND_LASER_OFF yield COMMAND_WAIT_FINISH yield COMMAND_MOVE, 3000, 3000 yield COMMAND_WAIT_FINISH yield COMMAND_LASER_ON yield COMMAND_WAIT, 0.05 yield COMMAND_LASER_OFF yield COMMAND_WAIT_FINISH yield COMMAND_SET_SPEED, 10.0 def pos(i): if i < 3: x = 200 elif i < 6: x = -200 else: x = 0 if i % 3 == 0: y = 200 elif i % 3 == 1: y = -200 else: y = 0 return x, y for q in range(8): top = q & 1 left = q & 2 x_val = q & 3 yield COMMAND_SET_DIRECTION, top, left, x_val, not x_val yield COMMAND_MODE_PROGRAM for j in range(9): jx, jy = pos(j) for k in range(9): kx, ky = pos(k) yield COMMAND_MOVE, 3000, 3000 yield COMMAND_MOVE, 3000 + jx, 3000 + jy yield command, 3000 + jx + kx, 3000 + jy + ky yield COMMAND_MOVE, 3000, 3000 yield COMMAND_MODE_RAPID yield COMMAND_WAIT_FINISH yield COMMAND_LASER_ON yield COMMAND_WAIT, 0.05 yield COMMAND_LASER_OFF yield COMMAND_WAIT_FINISH spooler.job(jog_transition_test)
the-stack_0_21473
import re import time import sqlalchemy as SA import pushmanager.core.db as db import pushmanager.core.util from pushmanager.core.git import GitQueue from pushmanager.servlets.checklist import checklist_reminders from pushmanager.core.git import GitTaskAction from pushmanager.core.requesthandler import RequestHandler TAGS_RE = re.compile(r'[a-zA-Z0-9_-]+') CONFLICT_TAGS = frozenset(('conflict-pickme', 'conflict-master')) class NewRequestServlet(RequestHandler): def _arg(self, key): return pushmanager.core.util.get_str_arg(self.request, key, '') def post(self): if not self.current_user: return self.send_error(403) self.requestid = self._arg('request-id') self.tag_list = [ x for x in TAGS_RE.findall(self._arg('request-tags')) if x and x not in CONFLICT_TAGS ] reviewid = self._arg('request-review') if reviewid: try: reviewid = int(reviewid) except (ValueError, TypeError): return self.send_error(500) watchers = ','.join(map(str.strip, self._arg('request-watchers').split(','))) if self.requestid != '': self.requestid = int(self.requestid) updated_values = { 'title': self._arg('request-title'), 'tags': ','.join(self.tag_list), 'reviewid': reviewid or None, 'repo': self._arg('request-repo').strip(), 'branch': self._arg('request-branch').strip(), 'comments': self._arg('request-comments'), 'description': self._arg('request-description'), 'watchers': watchers, 'modified': time.time(), 'revision': '0'*40, } if len(self._arg('request-takeover')): updated_values.update({'user': self.current_user}) self.request_user = self.current_user else: self.request_user = self._arg('request-user') query = db.push_requests.update().where( db.push_requests.c.id == self.requestid ).values(updated_values) else: query = db.push_requests.insert({ 'title': self._arg('request-title'), 'user': self.current_user, 'tags': ','.join(self.tag_list), 'reviewid': self._arg('request-review') or None, 'repo': self._arg('request-repo').strip(), 'branch': self._arg('request-branch').strip(), 'comments': self._arg('request-comments'), 'description': self._arg('request-description'), 'watchers': watchers, 'created': time.time(), 'modified': time.time(), 'state': 'requested', 'revision': '0'*40, }) self.request_user = self.current_user db.execute_cb(query, self.on_request_upsert_complete) def on_request_upsert_complete(self, success, db_results): self.check_db_results(success, db_results) if not self.requestid: self.requestid = db_results.lastrowid query = db.push_checklist.select().where(db.push_checklist.c.request == self.requestid) db.execute_cb(query, self.on_existing_checklist_retrieved) def on_existing_checklist_retrieved(self, success, db_results): if not success or not db_results: # We should have the new request in db by this time. return self.send_error(500) existing_checklist_types = set(x['type'] for x in db_results.fetchall()) queries = [] necessary_checklist_types = set() canonical_tag_name = { 'search': 'search-backend' } for cl_type in ['pushplans', 'search', 'hoods']: tag = canonical_tag_name.get(cl_type, cl_type) if tag in self.tag_list: necessary_checklist_types.add(cl_type) necessary_checklist_types.add('{0}-cleanup'.format(cl_type)) types_to_add = necessary_checklist_types - existing_checklist_types types_to_remove = existing_checklist_types - necessary_checklist_types for type_ in types_to_add: for target in checklist_reminders[type_].keys(): queries.append(db.push_checklist.insert().values( {'request': self.requestid, 'type': type_, 'target': target} )) if types_to_remove: queries.append(db.push_checklist.delete().where(SA.and_( db.push_checklist.c.request == self.requestid, db.push_checklist.c.type.in_(types_to_remove), ))) db.execute_transaction_cb(queries, self.on_checklist_upsert_complete) def on_checklist_upsert_complete(self, success, db_results): if not success: return self.send_error(500) if self.requestid: GitQueue.enqueue_request(GitTaskAction.VERIFY_BRANCH, self.requestid, pushmanager_url = self.get_base_url()) # Check if the request is already pickme'd for a push, and if # so also enqueue it to be checked for conflicts. request_push_id = GitQueue._get_push_for_request(self.requestid) if request_push_id: GitQueue.enqueue_request(GitTaskAction.TEST_PICKME_CONFLICT, self.requestid, pushmanager_url = self.get_base_url()) return self.redirect("/requests?user=%s" % self.request_user)
the-stack_0_21475
def find_salary_threshold(target_payroll, current_salaries): # custom algorithm, not from the book # first i take avg salary based on payroll and total number of current_salaries in current_salaries list # residue is the remainder left after comparing salary with avg_target for any salary that's more than avg_target, those will need to be adjusted later to the 'capped' salary, # since for salary below cap, nothing is changed # finally we compute cap by adding avg_target, k times for each count of salaries more than avg, # we divide this by the same count of salaries more than avg_target avg_target = target_payroll // len(current_salaries) residue = 0 i = 0 while i < len(current_salaries): if current_salaries[i] < avg_target: residue += avg_target - current_salaries[i] i += 1 else: break cap_salary = (residue + avg_target*(len(current_salaries) - i)) // (len(current_salaries) - i) print(cap_salary) # best case: O(1), avg case: o(k) for a[k] < avg_target, worst case: O(n) # if input is sorted, try utilizing binary sort A = [20, 30, 40, 90, 100] target_payroll = 210 find_salary_threshold(target_payroll, A)
the-stack_0_21476
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name, too-few-public-methods, bad-continuation """Test cases for the generic_autotools module""" from __future__ import unicode_literals from __future__ import print_function import logging # pylint: disable=unused-import import unittest from helpers import centos, docker, ubuntu from hpccm.building_blocks.generic_autotools import generic_autotools from hpccm.toolchain import toolchain class Test_generic_autotools(unittest.TestCase): def setUp(self): """Disable logging output messages""" logging.disable(logging.ERROR) @ubuntu @docker def test_defaults_ubuntu(self): """Default generic_autotools building block""" g = generic_autotools( directory='tcl8.6.9/unix', prefix='/usr/local/tcl', url='https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz') self.assertEqual(str(g), r'''# https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz && \ mkdir -p /var/tmp && tar -x -f /var/tmp/tcl8.6.9-src.tar.gz -C /var/tmp -z && \ cd /var/tmp/tcl8.6.9/unix && ./configure --prefix=/usr/local/tcl && \ make -j$(nproc) && \ make -j$(nproc) install && \ rm -rf /var/tmp/tcl8.6.9/unix /var/tmp/tcl8.6.9-src.tar.gz''') @ubuntu @docker def test_no_url(self): """missing url""" with self.assertRaises(RuntimeError): g = generic_autotools() @ubuntu @docker def test_both_repository_and_url(self): """both repository and url""" with self.assertRaises(RuntimeError): g = generic_autotools(repository='foo', url='bar') @ubuntu @docker def test_invalid_package(self): """invalid package url""" with self.assertRaises(RuntimeError): g = generic_autotools(url='https://foo/bar.sh') @ubuntu @docker def test_pre_and_post(self): """Preconfigure and postinstall options""" g = generic_autotools( directory='tcl8.6.9/unix', postinstall=['echo "post"'], preconfigure=['echo "pre"'], prefix='/usr/local/tcl', url='https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz') self.assertEqual(str(g), r'''# https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz && \ mkdir -p /var/tmp && tar -x -f /var/tmp/tcl8.6.9-src.tar.gz -C /var/tmp -z && \ cd /var/tmp/tcl8.6.9/unix && \ echo "pre" && \ cd /var/tmp/tcl8.6.9/unix && ./configure --prefix=/usr/local/tcl && \ make -j$(nproc) && \ make -j$(nproc) install && \ cd /usr/local/tcl && \ echo "post" && \ rm -rf /var/tmp/tcl8.6.9/unix /var/tmp/tcl8.6.9-src.tar.gz''') @ubuntu @docker def test_configure_opts_check(self): """Configure options and check enabled""" g = generic_autotools( check=True, configure_opts=['--disable-getpwuid', '--enable-orterun-prefix-by-default'], prefix='/usr/local/openmpi', url='https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.1.tar.bz2') self.assertEqual(str(g), r'''# https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.1.tar.bz2 RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.1.tar.bz2 && \ mkdir -p /var/tmp && tar -x -f /var/tmp/openmpi-4.0.1.tar.bz2 -C /var/tmp -j && \ cd /var/tmp/openmpi-4.0.1 && ./configure --prefix=/usr/local/openmpi --disable-getpwuid --enable-orterun-prefix-by-default && \ make -j$(nproc) && \ make -j$(nproc) check && \ make -j$(nproc) install && \ rm -rf /var/tmp/openmpi-4.0.1 /var/tmp/openmpi-4.0.1.tar.bz2''') @ubuntu @docker def test_environment_and_toolchain(self): """environment and toolchain""" tc = toolchain(CC='gcc', CXX='g++', FC='gfortran') g = generic_autotools( build_directory='/tmp/build', directory='/var/tmp/tcl8.6.9/unix', environment={'FOO': 'BAR'}, prefix='/usr/local/tcl', toolchain=tc, url='https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz') self.assertEqual(str(g), r'''# https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz RUN mkdir -p /var/tmp && wget -q -nc --no-check-certificate -P /var/tmp https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz && \ mkdir -p /var/tmp && tar -x -f /var/tmp/tcl8.6.9-src.tar.gz -C /var/tmp -z && \ mkdir -p /tmp/build && cd /tmp/build && FOO=BAR CC=gcc CXX=g++ FC=gfortran /var/tmp/tcl8.6.9/unix/configure --prefix=/usr/local/tcl && \ make -j$(nproc) && \ make -j$(nproc) install && \ rm -rf /var/tmp/tcl8.6.9/unix /var/tmp/tcl8.6.9-src.tar.gz /tmp/build''') @ubuntu @docker def test_repository_recursive(self): """test repository and recusive option""" g = generic_autotools(preconfigure=['./autogen.sh'], prefix='/usr/local/zeromq', recursive=True, repository='https://github.com/zeromq/libzmq.git') self.assertEqual(str(g), r'''# https://github.com/zeromq/libzmq.git RUN mkdir -p /var/tmp && cd /var/tmp && git clone --depth=1 --recursive https://github.com/zeromq/libzmq.git libzmq && cd - && \ cd /var/tmp/libzmq && \ ./autogen.sh && \ cd /var/tmp/libzmq && ./configure --prefix=/usr/local/zeromq && \ make -j$(nproc) && \ make -j$(nproc) install && \ rm -rf /var/tmp/libzmq''') @ubuntu @docker def test_runtime(self): """Runtime""" g = generic_autotools( directory='tcl8.6.9/unix', prefix='/usr/local/tcl', url='https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz') r = g.runtime() self.assertEqual(r, r'''# https://prdownloads.sourceforge.net/tcl/tcl8.6.9-src.tar.gz COPY --from=0 /usr/local/tcl /usr/local/tcl''')
the-stack_0_21477
# Copyright Jamie Allsop 2015-2015 # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) #------------------------------------------------------------------------------- # MarkdownToHtmlMethod #------------------------------------------------------------------------------- import os.path import itertools import grip import cuppa.progress class GripRunner(object): def __call__( self, target, source, env ): for s, t in itertools.izip( source, target ): in_file = str(s) out_file = str(t) try: grip.export( path=in_file, render_wide=True, out_filename=out_file ) except Exception as error: print( "cuppa: error: grip.export( path={}, render_wide=True, out_filename={}) failed with error [{}]".format( in_file, out_file, error )) return None class GripEmitter(object): def __init__( self, output_dir ): self._output_dir = output_dir def __call__( self, target, source, env ): target = [] for s in source: path = os.path.join( self._output_dir, os.path.split( str(s) )[1] ) t = os.path.splitext(path)[0] + ".html" target.append(t) return target, source class MarkdownToHtmlMethod(object): def __call__( self, env, source, final_dir=None ): if final_dir == None: final_dir = env['abs_final_dir'] env.AppendUnique( BUILDERS = { 'Grip' : env.Builder( action = GripRunner(), emitter = GripEmitter(final_dir) ) } ) html = env.Grip( [], source ) cuppa.progress.NotifyProgress.add( env, html ) return html @classmethod def add_to_env( cls, cuppa_env ): cuppa_env.add_method( "MarkdownToHtml", cls() )
the-stack_0_21478
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ estimate_gradient_norm.py A multithreaded gradient norm sampler Copyright (C) 2017-2018, IBM Corp. Copyright (C) 2017, Lily Weng <[email protected]> and Huan Zhang <[email protected]> This program is licenced under the Apache 2.0 licence, contained in the LICENCE file in this directory. """ from __future__ import division import numpy as np import random import ctypes import time import sys import os import tensorflow as tf from multiprocessing import Pool, current_process, cpu_count from shmemarray import ShmemRawArray, NpShmemArray from functools import partial from randsphere import randsphere from tensorflow.python.ops import gradients_impl class EstimateLipschitz(object): def __init__(self, sess, seed = 1215, nthreads = 0): """ sess: tensorflow session Nsamp: number of samples to take per iteration Niters: number of iterations, each iteration we return a max L """ self.sess = sess self.seed = seed # create a pool of workers to compute samples in advance if nthreads == 0: self.n_processes = max(cpu_count() // 2, 1) else: self.n_processes = nthreads # set up random seed during initialization def initializer(s): np.random.seed(s + current_process()._identity[0]) # using only 1 OpenMP thread os.environ['OMP_NUM_THREADS'] = "1" self.pool = Pool(processes = self.n_processes, initializer = initializer, initargs=(self.seed,)) def load_model(self, dataset = "mnist", model_name = "2-layer", activation = "relu", model = None, batch_size = 0, compute_slope = False, order = 1): """ model: if set to None, then load dataset with model_name. Otherwise use the model directly. dataset: mnist, cifar and imagenet. recommend to use mnist and cifar as a starting point. model_name: possible options are 2-layer, distilled, and normal """ from setup_cifar import CIFAR, CIFARModel, TwoLayerCIFARModel, MYCIFARModel from setup_mnist import MNIST, MNISTModel, TwoLayerMNISTModel, MYMNISTModel from nlayer_model import NLayerModel from setup_imagenet import ImageNet, ImageNetModel # if set this to true, we will use the logit layer output instead of probability # the logit layer's gradients are usually larger and more stable output_logits = True self.dataset = dataset self.model_name = model_name if model is None: print('Loading model...') if dataset == "mnist": self.batch_size = 1024 if model_name == "2-layer": model = TwoLayerMNISTModel("models/mnist_2layer", self.sess, not output_logits) elif model_name == "normal": if activation == "relu": model = MNISTModel("models/mnist", self.sess, not output_logits) else: print("actviation = {}".format(activation)) model = MNISTModel("models/mnist_cnn_7layer_"+activation, self.sess, not output_logits, activation= activation) time.sleep(5) elif model_name == "brelu": model = MNISTModel("models/mnist_brelu", self.sess, not output_logits, use_brelu = True) elif model_name == "distilled": model = MNISTModel("models/mnist-distilled-100", self.sess, not output_logits) elif model_name == 'rcnn_valid': model = MYMNISTModel('models/rcnn6t16_1.h5',self.sess,not output_logits) elif model_name == 'rcnn_wrong': model = MYMNISTModel('models/rcnn6t16_1.h5',self.sess,not output_logits) elif model_name == 'rcnn_fgsm1': model = MYMNISTModel('models/rcnn6t16_1.h5',self.sess,not output_logits) elif model_name == 'rcnn_fgsm05': model = MYMNISTModel('models/rcnn6t16_1.h5',self.sess,not output_logits) elif model_name == 'rcnn_cw': model = MYMNISTModel('models/rcnn6t16_1.h5',self.sess,not output_logits) elif model_name == 'rcnn_hop': model = MYMNISTModel('models/rcnn6t16_1.h5',self.sess,not output_logits) elif model_name == 'rfnn_valid': model = MYMNISTModel('models/rfnn3t30_1.h5',self.sess,not output_logits) elif model_name == 'rfnn_wrong': model = MYMNISTModel('models/rfnn3t30_1.h5',self.sess,not output_logits) elif model_name == 'rfnn_fgsm1': model = MYMNISTModel('models/rfnn3t30_1.h5',self.sess,not output_logits) elif model_name == 'rfnn_fgsm05': model = MYMNISTModel('models/rfnn3t30_1.h5',self.sess,not output_logits) elif model_name == 'rfnn_cw': model = MYMNISTModel('models/rfnn3t30_1.h5',self.sess,not output_logits) elif model_name == 'rfnn_hop': model = MYMNISTModel('models/rfnn3t30_1.h5',self.sess,not output_logits) else: # specify model parameters as N,M,opts model_params = model_name.split(",") if len(model_params) < 3: raise(RuntimeError("incorrect model option" + model_name)) numlayer = int(model_params[0]) nhidden = int(model_params[1]) modelfile = "models/mnist_{}layer_relu_{}_{}".format(numlayer, nhidden, model_params[2]) print("loading", modelfile) model = NLayerModel([nhidden] * (numlayer - 1), modelfile) elif dataset == "cifar": self.batch_size = 1024 if model_name == "2-layer": model = TwoLayerCIFARModel("models/cifar_2layer", self.sess, not output_logits) elif model_name == "normal": if activation == "relu": model = CIFARModel("models/cifar", self.sess, not output_logits) else: model = CIFARModel("models/cifar_cnn_7layer_"+activation, self.sess, not output_logits, activation = activation) elif model_name == "brelu": model = CIFARModel("models/cifar_brelu", self.sess, not output_logits, use_brelu = True) elif model_name == "distilled": model = CIFARModel("models/cifar-distilled-100", self.sess, not output_logits) else: # specify model parameters as N,M,opts model_params = model_name.split(",") if len(model_params) < 3: raise(RuntimeError("incorrect model option" + model_name)) numlayer = int(model_params[0]) nhidden = int(model_params[1]) modelfile = "models/cifar_{}layer_relu_{}_{}".format(numlayer, nhidden, model_params[2]) print("loading", modelfile) model = NLayerModel([nhidden] * (numlayer - 1), modelfile, image_size=32, image_channel=3) elif dataset == "imagenet": self.batch_size = 32 model = ImageNetModel(self.sess, use_softmax = not output_logits, model_name = model_name, create_prediction = False) else: raise(RuntimeError("dataset unknown")) #print("*** Loaded model successfully") self.model = model self.compute_slope = compute_slope if batch_size != 0: self.batch_size = batch_size ## placeholders: self.img, self.true_label, self.target_label # img is the placeholder for image input self.img = tf.placeholder(shape = [None, model.image_size, model.image_size, model.num_channels], dtype = tf.float32) # output is the output tensor of the entire network self.output = model.predict(self.img) # create the graph to compute gradient # get the desired true label and target label self.true_label = tf.placeholder(dtype = tf.int32, shape = []) self.target_label = tf.placeholder(dtype = tf.int32, shape = []) true_output = self.output[:, self.true_label] target_output = self.output[:, self.target_label] # get the difference self.objective = true_output - target_output # get the gradient(deprecated arguments) self.grad_op = tf.gradients(self.objective, self.img)[0] # compute gradient norm: (in computation graph, so is faster) grad_op_rs = tf.reshape(self.grad_op, (tf.shape(self.grad_op)[0], -1)) self.grad_2_norm_op = tf.norm(grad_op_rs, axis = 1) self.grad_1_norm_op = tf.norm(grad_op_rs, ord=1, axis = 1) self.grad_inf_norm_op = tf.norm(grad_op_rs, ord=np.inf, axis = 1) ### Lily: added Hessian-vector product calculation here for 2nd order bound: if order == 2: ## _hessian_vector_product(ys, xs, v): return a list of tensors containing the product between the Hessian and v ## ys: a scalar valur or a tensor or a list of tensors to be summed to yield of scalar ## xs: a list of tensors that we should construct the Hessian over ## v: a list of tensors with the same shape as xs that we want to multiply by the Hessian # self.randv: shape = (Nimg,28,28,1) (the v in _hessian_vector_product) self.randv = tf.placeholder(shape = [None, model.image_size, model.image_size, model.num_channels], dtype = tf.float32) # hv_op_tmp: shape = (Nimg,28,28,1) for mnist, same as self.img (the xs in _hessian_vector_product) hv_op_tmp = gradients_impl._hessian_vector_product(self.objective, [self.img], [self.randv])[0] # hv_op_rs: reshape hv_op_tmp to hv_op_rs whose shape = (Nimg, 784) for mnist hv_op_rs = tf.reshape(hv_op_tmp, (tf.shape(hv_op_tmp)[0],-1)) # self.hv_norm_op: norm of hessian vector product, keep shape = (Nimg,1) using keepdims self.hv_norm_op = tf.norm(hv_op_rs, axis = 1, keepdims=True) # hv_op_rs_normalize: normalize Hv to Hv/||Hv||, shape = (Nimg, 784) hv_op_rs_normalize = hv_op_rs/self.hv_norm_op # self.hv_op: reshape hv_op_rs_normalize to shape = (Nimg,28,28,1) self.hv_op = tf.reshape(hv_op_rs_normalize, tf.shape(hv_op_tmp)) ## reshape randv and compute its norm # shape: (Nimg, 784) randv_rs = tf.reshape(self.randv, (tf.shape(self.randv)[0],-1)) # shape: (Nimg,) self.randv_norm_op = tf.norm(randv_rs, axis = 1) ## compute v'Hv: use un-normalized Hv (hv_op_tmp, hv_op_rs) # element-wise multiplication and then sum over axis = 1 (now shape: (Nimg,)) self.vhv_op = tf.reduce_sum(tf.multiply(randv_rs,hv_op_rs),axis=1) ## compute Rayleigh quotient: v'Hv/v'v (estimated largest eigenvalue), shape: (Nimg,) # note: self.vhv_op and self.randv_norm_op has to be in the same dimension (either (Nimg,) or (Nimg,1)) self.eig_est = self.vhv_op/tf.square(self.randv_norm_op) ## Lily added the tf.while to compute the eigenvalue in computational graph later # cond for computing largest abs/neg eigen-value def cond(it, randv, eig_est, eig_est_prev, tfconst): norm_diff = tf.norm(eig_est-eig_est_prev,axis=0) return tf.logical_and(it < 500, norm_diff > 0.001) # compute largest abs eigenvalue: tfconst = 0 # compute largest neg eigenvalue: tfconst = 10 def body(it, randv, eig_est, eig_est_prev, tfconst): #hv_op_tmp = gradients_impl._hessian_vector_product(self.objective, [self.img], [randv])[0]-10*randv hv_op_tmp = gradients_impl._hessian_vector_product(self.objective, [self.img], [randv])[0]-tf.multiply(tfconst,randv) hv_op_rs = tf.reshape(hv_op_tmp, (tf.shape(hv_op_tmp)[0],-1)) hv_norm_op = tf.norm(hv_op_rs, axis = 1, keepdims=True) hv_op_rs_normalize = hv_op_rs/hv_norm_op hv_op = tf.reshape(hv_op_rs_normalize, tf.shape(hv_op_tmp)) randv_rs = tf.reshape(randv, (tf.shape(randv)[0],-1)) randv_norm_op = tf.norm(randv_rs, axis = 1) vhv_op = tf.reduce_sum(tf.multiply(randv_rs,hv_op_rs),axis=1) eig_est_prev = eig_est eig_est = vhv_op/tf.square(randv_norm_op) return (it+1, hv_op, eig_est, eig_est_prev, tfconst) it = tf.constant(0) # compute largest abs eigenvalue result = tf.while_loop(cond, body, [it, self.randv, self.vhv_op, self.eig_est, tf.constant(0.0)]) # compute largest neg eigenvalue self.shiftconst = tf.placeholder(shape = (), dtype = tf.float32) result_1 = tf.while_loop(cond, body, [it, self.randv, self.vhv_op, self.eig_est, self.shiftconst]) # computing largest abs eig value and save result self.it = result[0] self.while_hv_op = result[1] self.while_eig = result[2] # computing largest neg eig value and save result self.it_1 = result_1[0] #self.while_eig_1 = tf.add(result_1[2], tfconst) self.while_eig_1 = tf.add(result_1[2], result_1[4]) show_tensor_op = False if show_tensor_op: print("====================") print("Define hessian_vector_product operator: ") print("hv_op_tmp = {}".format(hv_op_tmp)) print("hv_op_rs = {}".format(hv_op_rs)) print("self.hv_norm_op = {}".format(self.hv_norm_op)) print("hv_op_rs_normalize = {}".format(hv_op_rs_normalize)) print("self.hv_op = {}".format(self.hv_op)) print("self.grad_op = {}".format(self.grad_op)) print("randv_rs = {}".format(randv_rs)) print("self.randv_norm_op = {}".format(self.randv_norm_op)) print("self.vhv_op = {}".format(self.vhv_op)) print("self.eig_est = {}".format(self.eig_est)) print("====================") return self.img, self.output def _estimate_Lipschitz_multiplerun(self, num, niters, input_image, target_label, true_label, sample_norm = "l2", transform=None, order = 1): """ num: number of samples per iteration niters: number of iterations input_image: original image (h*w*c) """ batch_size = self.batch_size shape = (batch_size, self.model.image_size, self.model.image_size, self.model.num_channels) dimension = self.model.image_size * self.model.image_size * self.model.num_channels if num < batch_size: print("Increasing num to", batch_size) num = batch_size """ 1. Compute input_image related quantities: """ # get the original prediction and gradient, gradient norms values on input image: pred, grad_val, grad_2_norm_val, grad_1_norm_val, grad_inf_norm_val = self.sess.run( [self.output, self.grad_op, self.grad_2_norm_op, self.grad_1_norm_op, self.grad_inf_norm_op], feed_dict = {self.img: [input_image], self.true_label: true_label, self.target_label: target_label}) pred = np.squeeze(pred) # print(pred) # print(grad_val) # class c and class j in Hein's paper. c is original class c = true_label j = target_label # get g_x0 = f_c(x_0) - f_j(x_0) g_x0 = pred[c] - pred[j] # grad_z_norm should be scalar g_x0_grad_2_norm = np.squeeze(grad_2_norm_val) g_x0_grad_1_norm = np.squeeze(grad_1_norm_val) g_x0_grad_inf_norm = np.squeeze(grad_inf_norm_val) print("** Evaluating g_x0, grad_2_norm_val on the input image x0: ") print("shape of input_image = {}".format(input_image.shape)) print("g_x0 = {:.3f}, grad_2_norm_val = {:3f}, grad_1_norm_val = {:.3f}, grad_inf_norm_val = {:3f}".format(g_x0, g_x0_grad_2_norm, g_x0_grad_1_norm, g_x0_grad_inf_norm)) ##### Lily ##### if order == 2: # evaluate the hv and hv norm on input_image # set randv as a random matrix with the same shape as input_image print("** Evaluating hv and hv_norm on the input image x0:") randv = np.random.randn(*input_image.shape) hv, hv_norm = self.sess.run([self.hv_op, self.hv_norm_op], feed_dict = {self.img: [input_image], self.randv:[randv], self.true_label: true_label, self.target_label: target_label}) print("hv shape = {}, hv_norm = {}".format(hv.shape, hv_norm)) """ 2. Prepare for sampling: """ def div_work_to_cores(njobs, nprocs): process_item_list = [] while njobs > 0: process_item_list.append(int(np.ceil(njobs / float(nprocs)))) njobs -= process_item_list[-1] nprocs -= 1 return process_item_list # n is the dimension if self.dataset == "imagenet": # for imagenet, generate random samples for this batch only # array in shared memory storing results of all threads total_item_size = batch_size else: # for cifar and mnist, generate random samples for this entire iteration total_item_size = num # divide the jobs evenly to all available threads process_item_list = div_work_to_cores(total_item_size, self.n_processes) self.n_processes = len(process_item_list) # select random sample generation function if sample_norm == "l2": # the scaling constant in [a,b]: scale the L2 norm of each sample (has originally norm ~1) a = 0; b = 3; elif sample_norm == "li": # for Linf we don't need the scaling a = 0.1; b = 0.1; elif sample_norm == "l1": # TODO: make the sample ball radius adjustable a = 0; b = 30; else: raise RuntimeError("Unknown sample_norm " + sample_norm) print('Using sphere', sample_norm) ## create necessary shared array structures (saved in /dev/shm) and will be used (and written) in randsphere.py: # result_arr, scale, input_example, all_inputs # note: need to use scale[:] = ... not scale = ..., o.w. the contents will not be saved to the shared array # inputs_0 is the image x_0 inputs_0 = np.array(input_image) tag_prefix = str(os.getpid()) + "_" result_arr = NpShmemArray(np.float32, (total_item_size, dimension), tag_prefix + "randsphere") # we have an extra batch_size to avoid overflow scale = NpShmemArray(np.float32, (num+batch_size), tag_prefix + "scale") scale[:] = (b-a)*np.random.rand(num+batch_size)+a; input_example = NpShmemArray(np.float32, inputs_0.shape, tag_prefix + "input_example") # this is a read-only array input_example[:] = inputs_0 # all_inputs is a shared memeory array and will be written in the randsphere to save the samples # all_inputs holds the perturbations for one batch or all samples all_inputs = NpShmemArray(np.float32, (total_item_size,) + inputs_0.shape, tag_prefix + "all_inputs") # holds the results copied from all_inputs clipped_all_inputs = np.empty(dtype=np.float32, shape = (total_item_size,) + inputs_0.shape) # prepare the argument list offset_list = [0] for item in process_item_list[:-1]: offset_list.append(offset_list[-1] + item) print(self.n_processes, "threads launched with parameter", process_item_list, offset_list) ## create multiple process to generate samples # randsphere: generate samples (see randsphere.py); partial is a function similar to lambda, now worker_func is a function of idx only worker_func = partial(randsphere, n = dimension, input_shape = inputs_0.shape, total_size = total_item_size, scale_size = num+batch_size, tag_prefix = tag_prefix, r = 1.0, norm = sample_norm, transform = transform) worker_args = list(zip(process_item_list, offset_list, [0] * self.n_processes)) # sample_results is an object to monitor if the process has ended (meaning finish generating samples in randsphere.py) # this line of code will initiate the worker_func to start working (like initiate the job) sample_results = self.pool.map_async(worker_func, worker_args) # num: # of samples to be run, \leq samples.shape[0] # number of iterations Niters = niters; if order == 1: # store the max L in each iteration L2_max = np.zeros(Niters) L1_max = np.zeros(Niters) Li_max = np.zeros(Niters) # store the max G in each iteration G2_max = np.zeros(Niters) G1_max = np.zeros(Niters) Gi_max = np.zeros(Niters) # store computed Lispschitz constants in each iteration L2 = np.zeros(num) L1 = np.zeros(num) Li = np.zeros(num) # store computed gradient norm in each iteration G2 = np.zeros(num) G1 = np.zeros(num) Gi = np.zeros(num) elif order == 2: # store the max H in each iteration H2_max = np.zeros(Niters) # store computed 2 norm of H in each iteration H2 = np.zeros(num) H2_neg = np.zeros(num) # how many batches we have Nbatches = num // batch_size # timer search_begin_time = time.time() """ 3. Start performing sampling: """ ## Start # multiple runs: generating the samples ## use worker_func to generate x samples, and then use sess.run to evaluate the gradient norm operator for iters in range(Niters): iter_begin_time = time.time() # shuffled index # idx_shuffle = np.random.permutation(num); # the scaling constant in [a,b]: scale the L2 norm of each sample (has originally norm ~1) scale[:] = (b-a)*np.random.rand(num+batch_size)+a; # number of L's we have computed L_counter = 0 G_counter = 0 H_counter = 0 overhead_time = 0.0 overhead_start = time.time() # for cifar and mnist, generate all the random input samples (x in the paper) at once # for imagenet, generate one batch of input samples (x in the paper) for each iteration if self.dataset != "imagenet": # get samples for this iteration: make sure randsphere finished computing samples and stored in all_inputs # if the samples have not yet done generating, then this line will block the codes until the processes are done, then it will return sample_results.get() # copy the results to a buffer and do clipping np.clip(all_inputs, -0.5, 0.5, out = clipped_all_inputs) # create multiple process again to generate samples for next batch (initiate a new job) because in below we will need to do sess.run in GPU which might be slow. So we want to generate samples on CPU while running sess.run on GPU to save time sample_results = self.pool.map_async(worker_func, worker_args) overhead_time += time.time() - overhead_start ## generate input samples "batch_inputs" and compute corresponding gradient norms samples "perturbed_grad_x_norm" for i in range(Nbatches): overhead_start = time.time() # for imagenet, generate random samples for this batch only if self.dataset == "imagenet": # get samples for this batch sample_results.get() # copy the results to a buffer and do clipping np.clip(all_inputs, -0.5, 0.5, out = clipped_all_inputs) # create multiple threads to generate samples for next batch worker_args = zip(process_item_list, offset_list, [(i + 1) * batch_size] * self.n_processes) sample_results = self.pool.map_async(worker_func, worker_args) if self.dataset == "imagenet": # we generate samples for each batch at a time batch_inputs = clipped_all_inputs else: # we generate samples for all batches batch_inputs = clipped_all_inputs[i * batch_size: (i + 1) * batch_size] # print(result_arr.shape, result_arr) # print('------------------------') # print(batch_inputs.shape, batch_inputs.reshape(result_arr.shape)) # print('------------------------') overhead_time += time.time() - overhead_start if order == 1: # run inference and get the gradient perturbed_predicts, perturbed_grad_2_norm, perturbed_grad_1_norm, perturbed_grad_inf_norm = self.sess.run( [self.output, self.grad_2_norm_op, self.grad_1_norm_op, self.grad_inf_norm_op], feed_dict = {self.img: batch_inputs, self.target_label: target_label, self.true_label: true_label}) if self.compute_slope: # compute distance between consecutive samples: not use sequential samples s12_2_norm = np.linalg.norm(s[0:batch_size-1:2] - s[1:batch_size:2], axis = 1) s12_1_norm = np.linalg.norm(s[0:batch_size-1:2] - s[1:batch_size:2], ord=1, axis = 1) s12_i_norm = np.linalg.norm(s[0:batch_size-1:2] - s[1:batch_size:2], ord=np.inf, axis = 1) # compute function value differences: not use sequential samples g_x1 = perturbed_predicts[0:batch_size-1:2, c] - perturbed_predicts[0:batch_size-1:2, j] g_x2 = perturbed_predicts[1:batch_size:2, c] - perturbed_predicts[1:batch_size:2, j] # estimated Lipschitz constants for this batch # for slope estimate, we need the DUAL norm batch_L2 = np.abs(g_x1 - g_x2) / s12_2_norm batch_L1 = np.abs(g_x1 - g_x2) / s12_i_norm batch_Li = np.abs(g_x1 - g_x2) / s12_1_norm L2[L_counter : L_counter + batch_size//2] = batch_L2 L1[L_counter : L_counter + batch_size//2] = batch_L1 Li[L_counter : L_counter + batch_size//2] = batch_Li G2[G_counter : G_counter + batch_size] = perturbed_grad_2_norm G1[G_counter : G_counter + batch_size] = perturbed_grad_1_norm Gi[G_counter : G_counter + batch_size] = perturbed_grad_inf_norm L_counter += (batch_size//2) G_counter += batch_size elif order == 2: ##### Lily ##### randv_batch = np.random.randn(*batch_inputs.shape) perturbed_hv, perturbed_hv_norm = self.sess.run([self.hv_op, self.hv_norm_op], feed_dict = {self.img: batch_inputs, self.randv: randv_batch, self.true_label: true_label, self.target_label: target_label}) show_tensor_dim = False if show_tensor_dim: print("====================") print("** Evaluating perturbed_hv and perturbed_hv_norm in batch {}: ".format(iters)) print("pertubed_hv_prod shape = {}".format(perturbed_hv.shape)) print("randv_batch shape = {}".format(randv_batch.shape)) print("perturbed_hv_norm = {}".format(perturbed_hv_norm[:,0])) # size: (Nimg, 1) print("perturbed_hv_norm shape = {}".format(perturbed_hv_norm.shape)) #print("perturbed_grad_2_norm= {}".format(perturbed_grad_2_norm)) #print("perturbed_grad_2_norm shape = {}".format(perturbed_grad_2_norm.shape)) pt_hvs = [] pt_hvs.append(perturbed_hv+0*randv_batch) #print("************** Using tf.while_loop:********************") # compute max eigenvalue temp_hv, temp_eig, niter_eig = self.sess.run([self.while_hv_op, self.while_eig, self.it], feed_dict = {self.img: batch_inputs, self.randv: randv_batch, self.true_label: true_label, self.target_label: target_label}) ##print("converge in {} steps, temp_eig = {}".format(niter_eig, temp_eig)) # if max eigenvalue is positive, compute the max neg eigenvalue by using the shiftconst if max(temp_eig) > 0: shiftconst = max(temp_eig) temp_eig_1, niter_eig_1 = self.sess.run([self.while_eig_1, self.it_1], feed_dict = {self.img: batch_inputs, self.randv: randv_batch, self.true_label: true_label, self.target_label: target_label, self.shiftconst: shiftconst}) ##print("converge in {} steps, temp_eig_1 = {}".format(niter_eig_1, temp_eig_1)) else: temp_eig_1 = temp_eig niter_eig_1 = -1 print("temp_eig (abs) converge in {} steps, temp_eig_1 (neg) converge in {} steps".format(niter_eig, niter_eig_1)) ## use outer while_loop #max_eig_iters = 10 #print_flag = True #final_est_eig_1 = self._compute_max_abseig(pt_hvs, batch_inputs, true_label, target_label, max_eig_iters, print_flag) #print("************** Using outer while_loop:********************") #print("outer loop final_est_eig_1 = {}".format(final_est_eig_1)) ## use tf while_loop final_est_eig = temp_eig final_est_eig_neg = temp_eig_1 H2[H_counter : H_counter + batch_size] = final_est_eig H2_neg[H_counter : H_counter + batch_size] = final_est_eig_neg H_counter += batch_size if order == 1: # at the end of each iteration: get the per-iteration max gradient norm if self.compute_slope: L2_max[iters] = np.max(L2) L1_max[iters] = np.max(L1) Li_max[iters] = np.max(Li) G2_max[iters] = np.max(G2) G1_max[iters] = np.max(G1) Gi_max[iters] = np.max(Gi) # if self.compute_slope: # print('[STATS][L2] loop = {}, time = {:.5g}, iter_time = {:.5g}, overhead = {:.5g}, L2 = {:.5g}, L1 = {:.5g}, Linf = {:.5g}, G2 = {:.5g}, G1 = {:.5g}, Ginf = {:.5g}'.format(iters, time.time() - search_begin_time, time.time() - iter_begin_time, overhead_time, L2_max[iters], L1_max[iters], Li_max[iters], G2_max[iters], G1_max[iters], Gi_max[iters])) # else: # print('[STATS][L2] loop = {}, time = {:.5g}, iter_time = {:.5g}, overhead = {:.5g}, G2 = {:.5g}, G1 = {:.5g}, Ginf = {:.5g}'.format(iters, time.time() - search_begin_time, time.time() - iter_begin_time, overhead_time, G2_max[iters], G1_max[iters], Gi_max[iters])) # sys.stdout.flush() # reset per iteration L and G by filling 0 if self.compute_slope: L2.fill(0) L1.fill(0) Li.fill(0) G2.fill(0) G1.fill(0) Gi.fill(0) elif order == 2: ## consider -lambda_min idx = H2 > 0 H2[idx] = H2_neg[idx] idx_max = np.argmax(abs(H2)) H2_max[iters] = H2[idx_max] #print('[STATS][L2] loop = {}, time = {:.5g}, iter_time = {:.5g}, overhead = {:.5g}, H2 = {:.5g}'.format(iters, time.time() - search_begin_time, time.time() - iter_begin_time, overhead_time, H2_max[iters])) if order == 1: # print('[STATS][L1] g_x0 = {:.5g}, L2_max = {:.5g}, L1_max = {:.5g}, Linf_max = {:.5g}, G2_max = {:.5g}, G1_max = {:.5g}, Ginf_max = {:.5g}'.format( # g_x0, np.max(L2_max), np.max(L1_max), np.max(Li_max), np.max(G2_max), np.max(G1_max), np.max(Gi_max))) # # when compute the bound we need the DUAL norm # if self.compute_slope: # print('[STATS][L1] bnd_L2_max = {:.5g}, bnd_L1_max = {:.5g}, bnd_Linf_max = {:.5g}, bnd_G2_max = {:.5g}, bnd_G1_max = {:.5g}, bnd_Ginf_max = {:.5g}'.format(g_x0/np.max(L2_max), g_x0/np.max(Li_max), g_x0/np.max(L1_max), g_x0/np.max(G2_max), g_x0/np.max(Gi_max), g_x0/np.max(G1_max))) # else: # print('[STATS][L1] bnd_G2_max = {:.5g}, bnd_G1_max = {:.5g}, bnd_Ginf_max = {:.5g}'.format(g_x0/np.max(G2_max), g_x0/np.max(Gi_max), g_x0/np.max(G1_max))) # sys.stdout.flush() # discard the last batch of samples sample_results.get() return [L2_max,L1_max,Li_max,G2_max,G1_max,Gi_max,g_x0,pred] elif order == 2: # find positive eig value and substitute with its corresponding negative eig value, then we only need to sort once #print("H2_max = {}".format(H2_max)) # find max abs(H2_max) H2_max_val = max(abs(H2_max)) # print('[STATS][L1] g_x0 = {:.5g}, g_x0_grad_2_norm = {:.5g}, g_x0_grad_1_norm = {:.5g}, g_x0_grad_inf_norm = {:.5g}, H2_max = {:.5g}'.format(g_x0, g_x0_grad_2_norm, g_x0_grad_1_norm, g_x0_grad_inf_norm, H2_max_val)) bnd = (-g_x0_grad_2_norm + np.sqrt(g_x0_grad_2_norm**2+2*g_x0*H2_max_val))/H2_max_val # print('[STATS][L1] bnd_H2_max = {:.5g}'.format(bnd)) # sys.stdout.flush() sample_results.get() return [H2_max, g_x0, g_x0_grad_2_norm, g_x0_grad_1_norm, g_x0_grad_inf_norm, pred] def _compute_max_abseig(self, pt_hvs, batch_inputs, true_label, target_label, max_eig_iters, print_flag): ## compute hv and est_eig: i = 0 cond = False pt_eigs = [] print("pt_hvs[0] shape = {}".format(pt_hvs[0].shape)) # perform power iteration loop outside tensorflow while (i<max_eig_iters and cond==False): tmp_hv, tmp_hv_norm, tmp_vhv, tmp_vnorm, tmp_est_eig = self.sess.run([self.hv_op, self.hv_norm_op, self.vhv_op, self.randv_norm_op, self.eig_est], feed_dict = {self.img: batch_inputs, self.randv: pt_hvs[i], self.true_label: true_label, self.target_label: target_label}) tmp_vhv = np.squeeze(tmp_vhv) tmp_vnorm = np.squeeze(tmp_vnorm) tmp_est_eig = np.squeeze(tmp_est_eig) if print_flag: #print("current step = {}, norm = {}".format(i, tmp_hv_norm[:,0])) #print("current step = {}, pt_hv_prod.shape = {}, pt_hvs_norm.shape = {}".format(i,tmp_hv.shape, tmp_hv_norm.shape)) print("current step = {}, est_eig = {}".format(i,tmp_est_eig-0)) #print("current step = {}, vhv = {}".format(i,tmp_vhv)) #print("current step = {}, vnorm (check: should be 1) = {}".format(i,tmp_vnorm)) pt_hvs.append(tmp_hv+0*pt_hvs[i]) pt_eigs.append(tmp_est_eig) # conditions if i > 0: cond_element = abs(tmp_est_eig-pt_eigs[i-1]) < 1e-3 if print_flag: print("cond = {}".format(cond_element)) cond = cond_element.all() i+=1 if i == max_eig_iters: print("==== Reach max iterations!!! ====") return pt_eigs[-1] def __del__(self): # terminate the pool self.pool.terminate() def estimate(self, x_0, true_label, target_label, Nsamp, Niters, sample_norm, transform, order): result = self._estimate_Lipschitz_multiplerun(Nsamp,Niters,x_0,target_label,true_label,sample_norm, transform, order) return result