filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_22150
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=g-import-not-at-top """Callbacks: utilities called at certain points during model training. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf import os import numpy as np from keras import backend as K from keras import callbacks from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import keras_export @keras_export(v1=['keras.callbacks.TensorBoard']) class TensorBoard(callbacks.TensorBoard): # pylint: disable=line-too-long """Enable visualizations for TensorBoard. TensorBoard is a visualization tool provided with TensorFlow. This callback logs events for TensorBoard, including: * Metrics summary plots * Training graph visualization * Activation histograms * Sampled profiling If you have installed TensorFlow with pip, you should be able to launch TensorBoard from the command line: ```sh tensorboard --logdir=path_to_your_logs ``` You can find more information about TensorBoard [here](https://www.tensorflow.org/get_started/summaries_and_tensorboard). Args: log_dir: the path of the directory where to save the log files to be parsed by TensorBoard. histogram_freq: frequency (in epochs) at which to compute activation and weight histograms for the layers of the model. If set to 0, histograms won't be computed. Validation data (or split) must be specified for histogram visualizations. write_graph: whether to visualize the graph in TensorBoard. The log file can become quite large when write_graph is set to True. write_grads: whether to visualize gradient histograms in TensorBoard. `histogram_freq` must be greater than 0. batch_size: size of batch of inputs to feed to the network for histograms computation. write_images: whether to write model weights to visualize as image in TensorBoard. embeddings_freq: frequency (in epochs) at which selected embedding layers will be saved. If set to 0, embeddings won't be computed. Data to be visualized in TensorBoard's Embedding tab must be passed as `embeddings_data`. embeddings_layer_names: a list of names of layers to keep eye on. If None or empty list all the embedding layer will be watched. embeddings_metadata: a dictionary which maps layer name to a file name in which metadata for this embedding layer is saved. [Here are details]( https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional) about metadata files format. In case if the same metadata file is used for all embedding layers, string can be passed. embeddings_data: data to be embedded at layers specified in `embeddings_layer_names`. Numpy array (if the model has a single input) or list of Numpy arrays (if the model has multiple inputs). Learn more about embeddings [in this guide]( https://www.tensorflow.org/programmers_guide/embedding). update_freq: `'batch'` or `'epoch'` or integer. When using `'batch'`, writes the losses and metrics to TensorBoard after each batch. The same applies for `'epoch'`. If using an integer, let's say `1000`, the callback will write the metrics and losses to TensorBoard every 1000 samples. Note that writing too frequently to TensorBoard can slow down your training. profile_batch: Profile the batch to sample compute characteristics. By default, it will profile the second batch. Set profile_batch=0 to disable profiling. Raises: ValueError: If histogram_freq is set and no validation data is provided. @compatibility(eager) Using the `TensorBoard` callback will work when eager execution is enabled, with the restriction that outputting histogram summaries of weights and gradients is not supported. Consequently, `histogram_freq` will be ignored. @end_compatibility """ # pylint: enable=line-too-long def __init__(self, log_dir='./logs', histogram_freq=0, batch_size=32, write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None, embeddings_data=None, update_freq='epoch', profile_batch=2): # Don't call super's init since it is an eager-only version. callbacks.Callback.__init__(self) self.log_dir = log_dir self.histogram_freq = histogram_freq if self.histogram_freq and tf.executing_eagerly(): logging.warning( UserWarning('Weight and gradient histograms not supported for eager' 'execution, setting `histogram_freq` to `0`.')) self.histogram_freq = 0 self.merged = None self.write_graph = write_graph self.write_grads = write_grads self.write_images = write_images self.batch_size = batch_size self._current_batch = 0 self._total_batches_seen = 0 self._total_val_batches_seen = 0 self.embeddings_freq = embeddings_freq self.embeddings_layer_names = embeddings_layer_names self.embeddings_metadata = embeddings_metadata self.embeddings_data = embeddings_data if update_freq == 'batch': self.update_freq = 1 else: self.update_freq = update_freq self._samples_seen = 0 self._samples_seen_at_last_write = 0 # TODO(fishx): Add a link to the full profiler tutorial. self._profile_batch = profile_batch # One profiler session is running if it is True. self._is_profiling = False # TensorBoard should only write summaries on the chief when in a # Multi-Worker setting. self._chief_worker_only = True def _init_writer(self, model): """Sets file writer.""" if tf.executing_eagerly(): self.writer = tf.summary.create_file_writer(self.log_dir) if not model.run_eagerly and self.write_graph: with self.writer.as_default(): tf.summary.graph(K.get_graph()) elif self.write_graph: self.writer = tf.compat.v1.summary.FileWriter(self.log_dir, K.get_graph()) else: self.writer = tf.compat.v1.summary.FileWriter(self.log_dir) def _make_histogram_ops(self, model): """Defines histogram ops when histogram_freq > 0.""" # only make histogram summary op if it hasn't already been made if self.histogram_freq and self.merged is None: for layer in self.model.layers: for weight in layer.weights: mapped_weight_name = weight.name.replace(':', '_') tf.compat.v1.summary.histogram(mapped_weight_name, weight) if self.write_images: w_img = tf.compat.v1.squeeze(weight) shape = K.int_shape(w_img) if len(shape) == 2: # dense layer kernel case if shape[0] > shape[1]: w_img = tf.compat.v1.transpose(w_img) shape = K.int_shape(w_img) w_img = tf.reshape(w_img, [1, shape[0], shape[1], 1]) elif len(shape) == 3: # convnet case if K.image_data_format() == 'channels_last': # switch to channels_first to display # every kernel as a separate image w_img = tf.compat.v1.transpose(w_img, perm=[2, 0, 1]) shape = K.int_shape(w_img) w_img = tf.reshape(w_img, [shape[0], shape[1], shape[2], 1]) elif len(shape) == 1: # bias case w_img = tf.reshape(w_img, [1, shape[0], 1, 1]) else: # not possible to handle 3D convnets etc. continue shape = K.int_shape(w_img) assert len(shape) == 4 and shape[-1] in [1, 3, 4] tf.compat.v1.summary.image(mapped_weight_name, w_img) if self.write_grads: for weight in layer.trainable_weights: mapped_weight_name = weight.name.replace(':', '_') grads = model.optimizer.get_gradients(model.total_loss, weight) def is_indexed_slices(grad): return type(grad).__name__ == 'IndexedSlices' grads = [ grad.values if is_indexed_slices(grad) else grad for grad in grads ] tf.compat.v1.summary.histogram('{}_grad'.format(mapped_weight_name), grads) if hasattr(layer, 'output'): if isinstance(layer.output, list): for i, output in enumerate(layer.output): tf.compat.v1.summary.histogram('{}_out_{}'.format(layer.name, i), output) else: tf.compat.v1.summary.histogram('{}_out'.format(layer.name), layer.output) def set_model(self, model): """Sets Keras model and creates summary ops.""" self.model = model self._init_writer(model) # histogram summaries only enabled in graph mode if not tf.executing_eagerly(): self._make_histogram_ops(model) self.merged = tf.compat.v1.summary.merge_all() # If both embedding_freq and embeddings_data are available, we will # visualize embeddings. if self.embeddings_freq and self.embeddings_data is not None: # Avoid circular dependency. from keras.engine import training_utils_v1 # pylint: disable=g-import-not-at-top self.embeddings_data = training_utils_v1.standardize_input_data( self.embeddings_data, model.input_names) # If embedding_layer_names are not provided, get all of the embedding # layers from the model. embeddings_layer_names = self.embeddings_layer_names if not embeddings_layer_names: embeddings_layer_names = [ layer.name for layer in self.model.layers if type(layer).__name__ == 'Embedding' ] self.assign_embeddings = [] embeddings_vars = {} self.batch_id = batch_id = tf.compat.v1.placeholder(tf.int32) self.step = step = tf.compat.v1.placeholder(tf.int32) for layer in self.model.layers: if layer.name in embeddings_layer_names: embedding_input = self.model.get_layer(layer.name).output embedding_size = np.prod(embedding_input.shape[1:]) embedding_input = tf.reshape(embedding_input, (step, int(embedding_size))) shape = (self.embeddings_data[0].shape[0], int(embedding_size)) embedding = tf.Variable( tf.zeros(shape), name=layer.name + '_embedding') embeddings_vars[layer.name] = embedding batch = tf.compat.v1.assign(embedding[batch_id:batch_id + step], embedding_input) self.assign_embeddings.append(batch) self.saver = tf.compat.v1.train.Saver(list(embeddings_vars.values())) # Create embeddings_metadata dictionary if isinstance(self.embeddings_metadata, str): embeddings_metadata = { layer_name: self.embeddings_metadata for layer_name in embeddings_vars.keys() } else: # If embedding_metadata is already a dictionary embeddings_metadata = self.embeddings_metadata try: from tensorboard.plugins import projector except ImportError: raise ImportError('Failed to import TensorBoard. Please make sure that ' 'TensorBoard integration is complete."') # TODO(psv): Add integration tests to test embedding visualization # with TensorBoard callback. We are unable to write a unit test for this # because TensorBoard dependency assumes TensorFlow package is installed. config = projector.ProjectorConfig() for layer_name, tensor in embeddings_vars.items(): embedding = config.embeddings.add() embedding.tensor_name = tensor.name if (embeddings_metadata is not None and layer_name in embeddings_metadata): embedding.metadata_path = embeddings_metadata[layer_name] projector.visualize_embeddings(self.writer, config) def _fetch_callback(self, summary): self.writer.add_summary(summary, self._total_val_batches_seen) self._total_val_batches_seen += 1 def _write_custom_summaries(self, step, logs=None): """Writes metrics out as custom scalar summaries. Args: step: the global step to use for TensorBoard. logs: dict. Keys are scalar summary names, values are NumPy scalars. """ logs = logs or {} if tf.executing_eagerly(): # use v2 summary ops with self.writer.as_default(), tf.summary.record_if(True): for name, value in logs.items(): if isinstance(value, np.ndarray): value = value.item() tf.summary.scalar(name, value, step=step) else: # use FileWriter from v1 summary for name, value in logs.items(): if isinstance(value, np.ndarray): value = value.item() summary = tf.compat.v1.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name self.writer.add_summary(summary, step) self.writer.flush() def on_train_batch_begin(self, batch, logs=None): if (not self._is_profiling and self._total_batches_seen == self._profile_batch - 1): tf.profiler.experimental.start(self.log_dir) self._is_profiling = True def on_train_batch_end(self, batch, logs=None): return self.on_batch_end(batch, logs) def on_test_begin(self, logs=None): pass def on_test_end(self, logs=None): pass def on_batch_end(self, batch, logs=None): """Writes scalar summaries for metrics on every training batch. Performs profiling if current batch is in profiler_batches. """ # Don't output batch_size and batch number as TensorBoard summaries logs = logs or {} self._samples_seen += logs.get('size', 1) samples_seen_since = self._samples_seen - self._samples_seen_at_last_write if self.update_freq != 'epoch' and samples_seen_since >= self.update_freq: batch_logs = {('batch_' + k): v for k, v in logs.items() if k not in ['batch', 'size', 'num_steps']} self._write_custom_summaries(self._total_batches_seen, batch_logs) self._samples_seen_at_last_write = self._samples_seen self._total_batches_seen += 1 if self._is_profiling: tf.profiler.experimental.stop() self._is_profiling = False def on_train_begin(self, logs=None): pass def on_epoch_begin(self, epoch, logs=None): """Add histogram op to Model eval_function callbacks, reset batch count.""" # check if histogram summary should be run for this epoch if self.histogram_freq and epoch % self.histogram_freq == 0: self._epoch = epoch # pylint: disable=protected-access # add the histogram summary op if it should run this epoch self.model._make_test_function() if self.merged not in self.model.test_function.fetches: self.model.test_function.fetches.append(self.merged) self.model.test_function.fetch_callbacks[ self.merged] = self._fetch_callback # pylint: enable=protected-access def on_epoch_end(self, epoch, logs=None): """Checks if summary ops should run next epoch, logs scalar summaries.""" # don't output batch_size and # batch number as TensorBoard summaries logs = {('epoch_' + k): v for k, v in logs.items() if k not in ['batch', 'size', 'num_steps']} if self.update_freq == 'epoch': step = epoch else: step = self._samples_seen self._write_custom_summaries(step, logs) # pop the histogram summary op after each epoch if self.histogram_freq: # pylint: disable=protected-access if self.merged in self.model.test_function.fetches: self.model.test_function.fetches.remove(self.merged) if self.merged in self.model.test_function.fetch_callbacks: self.model.test_function.fetch_callbacks.pop(self.merged) # pylint: enable=protected-access if self.embeddings_data is None and self.embeddings_freq: raise ValueError('To visualize embeddings, embeddings_data must ' 'be provided.') if self.embeddings_freq and self.embeddings_data is not None: if epoch % self.embeddings_freq == 0: # We need a second forward-pass here because we're passing # the `embeddings_data` explicitly. This design allows to pass # arbitrary data as `embeddings_data` and results from the fact # that we need to know the size of the `tf.Variable`s which # hold the embeddings in `set_model`. At this point, however, # the `validation_data` is not yet set. embeddings_data = self.embeddings_data n_samples = embeddings_data[0].shape[0] i = 0 sess = K.get_session() while i < n_samples: step = min(self.batch_size, n_samples - i) batch = slice(i, i + step) if isinstance(self.model.input, list): feed_dict = { model_input: embeddings_data[idx][batch] for idx, model_input in enumerate(self.model.input) } else: feed_dict = {self.model.input: embeddings_data[0][batch]} feed_dict.update({self.batch_id: i, self.step: step}) if not isinstance(K.learning_phase(), int): feed_dict[K.learning_phase()] = False sess.run(self.assign_embeddings, feed_dict=feed_dict) self.saver.save(sess, os.path.join(self.log_dir, 'keras_embedding.ckpt'), epoch) i += self.batch_size def on_train_end(self, logs=None): if self._is_profiling: tf.profiler.experimental.stop() self._is_profiling = False self.writer.close()
the-stack_0_22153
#!/usr/bin/env python import sys from framework.tee import Tee from framework.manager import Manager import tests if __name__ == "__main__": saveOutput = False output = sys.stdout testsToRun = [] for s in range (1, len(sys.argv)): if (sys.argv[s] == '--saveOutput'): saveOutput=True elif sys.argv[s].startswith('--log='): output = Tee( open( sys.argv[s].split('=', 1)[1], 'w'), sys.stdout ) else: testsToRun.append(sys.argv[s]) # Search everywhere in this module for tests manager = Manager() manager.collect( sys.modules[__name__] ) if len(testsToRun): manager.run(testsToRun, output=output, saveOutput=saveOutput) else: manager.run(output=output, saveOutput=saveOutput)
the-stack_0_22156
# (C) Copyright 2007-2020 Enthought, Inc., Austin, TX # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in LICENSE.txt and may be redistributed only under # the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # # Thanks for using Enthought open source! import logging from apptools.io.api import File from pyface.api import FileDialog, OK from pyface.action.api import Action from traits.api import Any from .editor.text_editor import TextEditor logger = logging.getLogger(__name__) class NewFileAction(Action): """ Open a new file in the text editor. """ tooltip = "Create a new file for editing" description = "Create a new file for editing" # The WorkbenchWindow the action is attached to. window = Any() def perform(self, event=None): logger.info("NewFileAction.perform()") self.window.workbench.edit( File(""), kind=TextEditor, use_existing=False ) class OpenFileAction(Action): """ Open an existing file in the text editor. """ tooltip = "Open a file for editing" description = "Open a file for editing" def perform(self, event=None): logger.info("OpenFileAction.perform()") dialog = FileDialog(parent=self.window.control, title="Open File") if dialog.open() == OK: self.window.workbench.edit(File(dialog.path), kind=TextEditor)
the-stack_0_22157
import datetime from typing import Tuple from aiobotocore.session import get_session from fastapi_cache.backends import Backend class DynamoBackend(Backend): """ Amazon DynamoDB backend provider This backend requires an existing table within your AWS environment to be passed during backend init. If ttl is going to be used, this needs to be manually enabled on the table using the `ttl` key. Dynamo will take care of deleting outdated objects, but this is not instant so don't be alarmed when they linger around for a bit. As with all AWS clients, credentials will be taken from the environment. Check the AWS SDK for more information. Usage: >> dynamodb = DynamoBackend(table_name="your-cache", region="eu-west-1") >> await dynamodb.init() >> FastAPICache.init(dynamodb) """ def __init__(self, table_name, region=None): self.session = get_session() self.client = None # Needs async init self.table_name = table_name self.region = region async def init(self): self.client = await self.session.create_client( "dynamodb", region_name=self.region ).__aenter__() async def close(self): self.client = await self.client.__aexit__(None, None, None) async def get_with_ttl(self, key: str) -> Tuple[int, str]: response = await self.client.get_item(TableName=self.table_name, Key={"key": {"S": key}}) if "Item" in response: value = response["Item"].get("value", {}).get("S") ttl = response["Item"].get("ttl", {}).get("N") if not ttl: return -1, value # It's only eventually consistent so we need to check ourselves expire = int(ttl) - int(datetime.datetime.now().timestamp()) if expire > 0: return expire, value return 0, None async def get(self, key) -> str: response = await self.client.get_item(TableName=self.table_name, Key={"key": {"S": key}}) if "Item" in response: return response["Item"].get("value", {}).get("S") async def set(self, key: str, value: str, expire: int = None): ttl = ( { "ttl": { "N": str( int( ( datetime.datetime.now() + datetime.timedelta(seconds=expire) ).timestamp() ) ) } } if expire else {} ) await self.client.put_item( TableName=self.table_name, Item={ **{ "key": {"S": key}, "value": {"S": value}, }, **ttl, }, ) async def clear(self, namespace: str = None, key: str = None) -> int: raise NotImplementedError
the-stack_0_22159
from django.contrib import admin from .models import Star, VariabilityType class StarAdmin(admin.ModelAdmin): list_display = ( "get_constellation_display", "name", "variability_type", "min_magnitude", "max_magnitude", ) list_display_links = ("name",) def get_queryset(self, request): queryset = super().get_queryset(request) return queryset.select_related("variability_type") class VariabilityTypeAdmin(admin.ModelAdmin): list_display = ("code", "short_description") admin.site.register(Star, StarAdmin) admin.site.register(VariabilityType, VariabilityTypeAdmin)
the-stack_0_22160
""" Launcher for experiments for Generalized Hindsight Experience Replay """ import torch import argparse import rlkit.torch.pytorch_util as ptu from rlkit.launchers.launcher_util import setup_logger, set_seed, run_experiment from rlkit.torch.sac.sac_gher import SACTrainer from rlkit.torch.networks import LatentConditionedMlp from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm from rlkit.data_management.task_relabeling_replay_buffer import MultiTaskReplayBuffer from rlkit.samplers.data_collector.path_collector import TaskConditionedPathCollector from rlkit.torch.sac.policies import MakeDeterministicLatentPolicy, LatentConditionedTanhGaussianPolicy, \ TanhGaussianPolicy from rlkit.util.hyperparameter import DeterministicHyperparameterSweeper # relabelers from rlkit.torch.multitask.pointmass_rewards import PointMassBestRandomRelabeler from rlkit.torch.multitask.gym_relabelers import ReacherRelabelerWithGoalAndObs from rlkit.torch.multitask.fetch_reach_relabelers import FetchReachRelabelerWithGoalAndObs from rlkit.torch.multitask.half_cheetah_relabeler import HalfCheetahRelabelerMoreFeatures from rlkit.torch.multitask.ant_direction_relabeler import AntDirectionRelabelerNewSparse # envs from gym.spaces import Discrete, MultiBinary from rlkit.envs.point_robot_new import PointEnv as PointEnv2 from rlkit.envs.point_reacher_env import PointReacherEnv from rlkit.envs.updated_half_cheetah import HalfCheetahEnv from rlkit.envs.wrappers import NormalizedBoxEnv, TimeLimit from rlkit.envs.fetch_reach import FetchReachEnv from rlkit.envs.updated_ant import AntEnv NUM_GPUS_AVAILABLE = 4 # change this to the number of gpus on your system def experiment(variant): set_seed(int(variant['seed'])) torch.manual_seed(int(args.seed)) if variant['mode'] != 'ec2' and not variant['local_docker'] and torch.cuda.is_available(): ptu.set_gpu_mode(True) if variant['env_name'] == 'pointmass2': print("pointmass") expl_env = NormalizedBoxEnv(PointEnv2(**variant['env_kwargs'])) eval_env = NormalizedBoxEnv(PointEnv2(**variant['env_kwargs'])) relabeler_cls = PointMassBestRandomRelabeler elif variant['env_name'] in {'antdirectionnewsparse'}: print(variant['env_name']) expl_env = NormalizedBoxEnv(AntEnv(**variant['env_kwargs'])) eval_env = NormalizedBoxEnv(AntEnv(**variant['env_kwargs'])) relabeler_cls = AntDirectionRelabelerNewSparse elif variant['env_name'] in {'halfcheetahhard'}: print("halfcheetah") expl_env = NormalizedBoxEnv(HalfCheetahEnv()) eval_env = NormalizedBoxEnv(HalfCheetahEnv()) relabeler_cls = HalfCheetahRelabelerMoreFeatures elif variant['env_name'] in {'pointreacherobs'}: print('pointreacher') expl_env = PointReacherEnv(**variant['env_kwargs']) eval_env = PointReacherEnv(**variant['env_kwargs']) relabeler_cls = ReacherRelabelerWithGoalAndObs elif variant['env_name'] in {'fetchreach'}: print('fetchreach') expl_env = TimeLimit(NormalizedBoxEnv(FetchReachEnv(**variant['env_kwargs'])), max_episode_steps=variant['algo_kwargs']['max_path_length'], insert_time=variant['insert_time']) eval_env = TimeLimit(NormalizedBoxEnv(FetchReachEnv(**variant['env_kwargs'])), max_episode_steps=variant['algo_kwargs']['max_path_length'], insert_time=variant['insert_time']) relabeler_cls = FetchReachRelabelerWithGoalAndObs variant['relabeler_kwargs']['fetchreach'] = variant['env_name'] == 'fetchreach' else: raise NotImplementedError if isinstance(expl_env.observation_space, Discrete) or isinstance(expl_env.observation_space, MultiBinary): obs_dim = expl_env.observation_space.n else: obs_dim = expl_env.observation_space.low.size action_dim = expl_env.action_space.low.size latent_dim = variant['replay_buffer_kwargs']['latent_dim'] qf1 = LatentConditionedMlp( input_size=obs_dim + action_dim, latent_size=latent_dim, output_size=1, **variant['qf_kwargs'] ) qf2 = LatentConditionedMlp( input_size=obs_dim + action_dim, latent_size=latent_dim, output_size=1, **variant['qf_kwargs'] ) target_qf1 = LatentConditionedMlp( input_size=obs_dim + action_dim, latent_size=latent_dim, output_size=1, **variant['qf_kwargs'] ) target_qf2 = LatentConditionedMlp( input_size=obs_dim + action_dim, latent_size=latent_dim, output_size=1, **variant['qf_kwargs'] ) policy = LatentConditionedTanhGaussianPolicy( obs_dim=obs_dim, latent_dim=latent_dim, action_dim=action_dim, **variant['policy_kwargs'] ) eval_policy = MakeDeterministicLatentPolicy(policy) trainer = SACTrainer( env=eval_env, policy=policy, qf1=qf1, qf2=qf2, target_qf1=target_qf1, target_qf2=target_qf2, **variant['trainer_kwargs'] ) expl_policy = policy variant['relabeler_kwargs']['discount'] = variant['trainer_kwargs']['discount'] relabeler = relabeler_cls(q1=qf1, q2=qf2, action_fn=eval_policy.wrapped_policy, **variant['relabeler_kwargs']) eval_relabeler = relabeler_cls(q1=qf1, q2=qf2, action_fn=eval_policy.wrapped_policy, **variant['relabeler_kwargs'], is_eval=True) replay_buffer = MultiTaskReplayBuffer( env=expl_env, relabeler=relabeler, **variant['replay_buffer_kwargs'] ) eval_path_collector = TaskConditionedPathCollector( eval_env, eval_policy, eval_relabeler, is_eval=True, # variant['plot'], # will attempt to plot if it's the pointmass **variant['path_collector_kwargs'] ) expl_path_collector = TaskConditionedPathCollector( expl_env, expl_policy, relabeler, # calculate_rewards=False, **variant['path_collector_kwargs'] ) algorithm = TorchBatchRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, replay_buffer=replay_buffer, **variant['algo_kwargs'] ) algorithm.to(ptu.device) algorithm.train() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='pointmass', help='name of env to run on') parser.add_argument('--alg', type=str, default='SAC', help='name of algorithm to run') parser.add_argument('--n_sampled_latents', type=int, default=5, help="number of latents to sample") parser.add_argument('--n_to_take', type=int, default=1, help="number of latents to relabel with, should be less than n_sampled_latents") parser.add_argument('--relabel', action='store_true', help='whether to relabel') parser.add_argument('--use_advantages', '-use_adv', action='store_true', help='use_advantages for relabeling') parser.add_argument('--irl', action='store_true', help='use approximate irl to choose relabeling latents') parser.add_argument('--plot', action='store_true', help='plot the trajectories') parser.add_argument('--cache', action='store_true') parser.add_argument('--sparse', type=float, default=None) parser.add_argument('--ngradsteps', type=int, default=100) parser.add_argument('--nexpl', type=int, default=None) parser.add_argument('--horizon', type=int, default=None) parser.add_argument('--tau', type=float, default=5E-3) parser.add_argument('--lr', type=float, default=None) parser.add_argument('--buffer_size', type=int, default=None) parser.add_argument('--discount', type=float, default=None) parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--ec2', '-ec2', action='store_true') parser.add_argument('--local_docker', '-local_docker', action='store_true') parser.add_argument('--reward_scale', type=float, default=None) parser.add_argument('--insert_time', action='store_true') parser.add_argument('--latent_shape_multiplier', type=int, default=1) parser.add_argument('--latent_to_all_layers', action='store_true') parser.add_argument('--seed', type=int, default=0, help="random seed") parser.add_argument('--n_experiments', '-n', type=int, default=-1, help="number of seeds to use. If not -1, overrides seed ") # experiment name parser.add_argument('--exp_name', '-name', type=str, default=None) parser.add_argument('--extra', '-x', type=str, default=None) parser.add_argument('--test', '-test', action='store_true') parser.add_argument('--epochs', type=int, default=50, help="number of latents to sample") parser.add_argument('--save_videos', action='store_true') # for reacher parser.add_argument('--safetyfn', '-safety', type=str, default='newlog') # newlog, linear, inverse parser.add_argument('--energyfn', '-energy', type=str, default='velocity') # work, kinetic, velocity parser.add_argument('--energyfactor', type=float, default=1.0, help="how much to multiply energy by") # for fetch reacher parser.add_argument('--truncate_obs', action='store_true', help='only return end_effector loc') # for ant parser.add_argument('--use_xy', action='store_true') parser.add_argument('--contact_forces', action='store_true') parser.add_argument('--directiontype', type=str, default='360') args = parser.parse_args() if args.n_experiments != -1: seeds = list(range(10, 10 + 10 * args.n_experiments, 10)) else: seeds = [args.seed] assert args.n_to_take <= args.n_sampled_latents variant = dict( algorithm=args.alg, env_name=args.env, algo_kwargs=dict( batch_size=256, num_epochs=args.epochs, num_eval_steps_per_epoch=5000, num_expl_steps_per_train_loop=75, num_trains_per_train_loop=args.ngradsteps, min_num_steps_before_training=1000, max_path_length=15, ), trainer_kwargs=dict( discount=0.90, # 0.99 soft_target_tau=args.tau, target_update_period=1, policy_lr=3E-3, # 3e-4 qf_lr=3E-3, # 3e-4 reward_scale=1, use_automatic_entropy_tuning=True, ), replay_buffer_kwargs=dict( max_replay_buffer_size=100000, latent_dim=3, approx_irl=args.irl, plot=args.plot, ), relabeler_kwargs=dict( relabel=args.relabel, use_adv=args.use_advantages, n_sampled_latents=args.n_sampled_latents, n_to_take=args.n_to_take, cache=args.cache, ), qf_kwargs=dict( hidden_sizes=[300, 300, 300], latent_shape_multiplier=args.latent_shape_multiplier, latent_to_all_layers=args.latent_to_all_layers, ), policy_kwargs=dict( hidden_sizes=[300, 300, 300], latent_shape_multiplier=args.latent_shape_multiplier, latent_to_all_layers=args.latent_to_all_layers, ), path_collector_kwargs=dict( save_videos=args.save_videos ), use_advantages=args.use_advantages, proper_advantages=True, plot=args.plot, test=args.test, gpu=args.gpu, mode='ec2' if args.ec2 else 'here_no_doodad', local_docker=args.local_docker, insert_time=args.insert_time, latent_shape_multiplier=args.latent_shape_multiplier ) logger_kwargs = dict(snapshot_mode='gap_and_last', snapshot_gap=min(50, args.epochs - 1)) if args.env == 'pointmass2': variant['relabeler_kwargs']['power'] = 1 variant['env_kwargs'] = dict(horizon=variant['algo_kwargs']['max_path_length']) exp_postfix = '' variant['algo_kwargs']['batch_size'] = 128 variant['qf_kwargs']['hidden_sizes'] = [400, 300] variant['policy_kwargs']['hidden_sizes'] = [400, 300] elif args.env in {'antdirectionnewsparse'}: variant['replay_buffer_kwargs']['latent_dim'] = 1 if args.env in {'antdirectionnewsparse'}: assert args.directiontype in {'90', '180', '360'} variant['relabeler_kwargs']['type'] = args.directiontype variant['algo_kwargs']['max_path_length'] = 1000 variant['trainer_kwargs']['discount'] = 0.99 variant['algo_kwargs']['num_expl_steps_per_train_loop'] = 1000 variant['algo_kwargs']['num_train_loops_per_epoch'] = 1 variant['algo_kwargs']['num_eval_steps_per_epoch'] = 25000 variant['algo_kwargs']['min_num_steps_before_training'] = 1000 variant['replay_buffer_kwargs']['max_replay_buffer_size'] = int(1E6) variant['qf_kwargs']['hidden_sizes'] = [256, 256] variant['policy_kwargs']['hidden_sizes'] = [256, 256] variant['env_kwargs'] = dict(use_xy=args.use_xy, contact_forces=args.contact_forces) exp_postfix = 'horizon{}'.format(variant['algo_kwargs']['max_path_length']) elif args.env in {'halfcheetahhard'}: variant['replay_buffer_kwargs']['latent_dim'] = 4 variant['algo_kwargs']['max_path_length'] = 1000 variant['trainer_kwargs']['discount'] = 0.99 variant['algo_kwargs']['num_expl_steps_per_train_loop'] = 1000 variant['algo_kwargs']['num_train_loops_per_epoch'] = 1 variant['algo_kwargs']['num_eval_steps_per_epoch'] = 25000 variant['algo_kwargs']['min_num_steps_before_training'] = 1000 variant['replay_buffer_kwargs']['max_replay_buffer_size'] = int(1E6) variant['qf_kwargs']['hidden_sizes'] = [256, 256] variant['policy_kwargs']['hidden_sizes'] = [256, 256] exp_postfix = '' elif args.env in {'pointreacherobs'}: variant['algo_kwargs']['max_path_length'] = 20 variant['trainer_kwargs']['discount'] = 0.97 variant['algo_kwargs']['num_expl_steps_per_train_loop'] = 20 variant['algo_kwargs']['num_train_loops_per_epoch'] = 5 variant['algo_kwargs']['num_eval_steps_per_epoch'] = 1000 variant['replay_buffer_kwargs']['max_replay_buffer_size'] = 2000 variant['env_kwargs'] = dict(horizon=20) exp_postfix = 'horizon{}'.format(variant['algo_kwargs']['max_path_length']) if args.sparse: exp_postfix += 'sparse{}'.format(str(args.sparse)) variant['replay_buffer_kwargs']['latent_dim'] = 6 print('using sparse reward if specified') variant['relabeler_kwargs']['sparse_reward'] = args.sparse variant['relabeler_kwargs']['fixed_ratio'] = None elif args.env in {'fetchreach'}: variant['replay_buffer_kwargs']['latent_dim'] = 8 variant['env_kwargs'] = dict(truncate_obs=args.truncate_obs) variant['algo_kwargs']['max_path_length'] = 50 variant['trainer_kwargs']['discount'] = 0.98 variant['algo_kwargs']['num_expl_steps_per_train_loop'] = 250 variant['algo_kwargs']['num_train_loops_per_epoch'] = 1 variant['algo_kwargs']['num_eval_steps_per_epoch'] = 25 * 50 variant['replay_buffer_kwargs']['max_replay_buffer_size'] = 250000 variant['qf_kwargs']['hidden_sizes'] = [256, 256] variant['policy_kwargs']['hidden_sizes'] = [256, 256] exp_postfix = 'horizon{}'.format(variant['algo_kwargs']['max_path_length']) variant['relabeler_kwargs']['sparse_reward'] = args.sparse if args.sparse: exp_postfix += 'sparse{}'.format(str(args.sparse)) else: raise NotImplementedError # various command line argument changing if args.nexpl is not None: variant['algo_kwargs']['num_expl_steps_per_train_loop'] = args.nexpl if args.discount is not None: variant['trainer_kwargs']['discount'] = args.discount if args.lr is not None: variant['trainer_kwargs']['policy_lr'] = args.lr variant['trainer_kwargs']['qf_lr'] = args.lr if args.buffer_size is not None: variant['replay_buffer_kwargs']['max_replay_buffer_size'] = args.buffer_size if args.reward_scale is not None and args.reward_scale > 0: variant['trainer_kwargs']['reward_scale'] = args.reward_scale variant['trainer_kwargs']['use_automatic_entropy_tuning'] = False if args.exp_name is not None: exp_dir = args.exp_name else: exp_dir = 'gher-{}-{}-{}e-{}s-disc{}'.format(args.env, variant['algorithm'], str(args.epochs), str(variant['algo_kwargs']['num_expl_steps_per_train_loop']), str(variant['trainer_kwargs']['discount'])) if len(exp_postfix) > 0: exp_dir += '-' + exp_postfix if args.extra is not None: exp_dir += '-' + args.extra if args.test: exp_dir += '-test' sweeper = DeterministicHyperparameterSweeper(dict(seed=seeds), variant) all_variants = sweeper.iterate_hyperparameters() for i, variant in enumerate(all_variants): variant['gpu_id'] = i % NUM_GPUS_AVAILABLE for variant in all_variants: if args.ec2: run_experiment(experiment, mode='ec2', exp_prefix=exp_dir, variant=variant, seed=variant['seed'], **logger_kwargs, use_gpu=False, instance_type=None, spot_price=None, verbose=False, region='us-west-1', num_exps_per_instance=1) elif args.local_docker: run_experiment(experiment, mode='local_docker', exp_prefix=exp_dir, variant=variant, seed=variant['seed'], **logger_kwargs, use_gpu=False, instance_type=None, spot_price=None, verbose=False, region='us-west-1', num_exps_per_instance=1) else: setup_logger(exp_dir, variant=variant, seed=variant['seed'], **logger_kwargs) experiment(variant)
the-stack_0_22162
from typing import FrozenSet, Type, Optional import torch from hypergraph_nets.hypergraphs import HypergraphsTuple from strips_hgn.features import ( GlobalFeatureMapper, HyperedgeFeatureMapper, NodeFeatureMapper, ) from strips_hgn.features.node_features import PropositionInStateAndGoal from strips_hgn.hypergraph.hypergraph_view import HypergraphView from strips_hgn.models.hypergraph_nets_adaptor import ( hypergraph_view_to_hypergraphs_tuple, ) from strips_hgn.planning import Proposition, STRIPSProblem class BaseFeatureMappingWorkflow(object): """ Base Workflow which maps features """ def __init__( self, global_feature_mapper_cls: Type[GlobalFeatureMapper], node_feature_mapper_cls: Type[NodeFeatureMapper], hyperedge_feature_mapper_cls: Type[HyperedgeFeatureMapper], max_receivers: int, max_senders: int, ): # Feature mappers self._global_feature_mapper_cls = global_feature_mapper_cls self._node_feature_mapper_cls = node_feature_mapper_cls self._hyperedge_feature_mapper_cls = hyperedge_feature_mapper_cls # Global feature mappers do not require context to anything, so we can # use a static object self._static_global_feature_mapper = global_feature_mapper_cls() # Hyperedge feature mappers do not require context to the current state # (at least for now), so we can use the same mapper self._static_hyperedge_feature_mapper = hyperedge_feature_mapper_cls() # Max receivers and senders self.max_receivers = max_receivers self.max_senders = max_senders def _get_global_feature_mapper(self) -> GlobalFeatureMapper: """ Get the Global feature mapper """ return self._static_global_feature_mapper def _get_hyperedge_feature_mapper( self, problem: STRIPSProblem ) -> HyperedgeFeatureMapper: """ Get the Hyperedge feature mapper for a STRIPS problem. For now, they do not require context to the current state, so we can just use the same static mapper. Parameters ---------- problem: the STRIPS problem Returns ------- HyperedgeFeatureMapper """ return self._static_hyperedge_feature_mapper def _get_node_feature_mapper(self, current_state: FrozenSet[Proposition], problem: STRIPSProblem, target: Optional[FrozenSet[Proposition]] = None) -> NodeFeatureMapper: """ The node feature mappers need to be instantiated based on the current state and goal states. Hence, a separate one is needed for each state and planning problem Parameters ---------- current_state: the current state problem: the STRIPS problem Returns ------- NodeFeatureMapper """ if self._node_feature_mapper_cls == PropositionInStateAndGoal: # Create node feature mapper for current state and the goal self._node_feature_mapper_cls: Type[PropositionInStateAndGoal] # if target is not given, set to goals by default if not target: target=problem.goals return self._node_feature_mapper_cls( current_state=current_state, goal_state=target ) else: raise RuntimeError( f"Unsupported node feature mapper " f"{self._node_feature_mapper_cls}" ) def _get_input_hypergraphs_tuple( self, current_state: FrozenSet[Proposition], hypergraph: HypergraphView, target: Optional[FrozenSet[Proposition]] = None ) -> HypergraphsTuple: """ Computes and returns the input HypergraphsTuple for a state and a hypergraph view of the planning problem with its: - Node features - Hyperedge features - *NO* global features as we don't support them at the moment Parameters ---------- current_state: the current state hypergraph: view of the hypergraph Returns ------- HypergraphsTuple """ # Get the global features and reshape so its shape is 1 x n global_features = hypergraph.global_features( self._get_global_feature_mapper() ) global_features = ( torch.tensor(global_features, dtype=torch.float32).reshape(1, -1) if global_features else None ) return hypergraph_view_to_hypergraphs_tuple( hypergraph=hypergraph, receiver_k=self.max_receivers, sender_k=self.max_senders, # Map the nodes to their features node_features=torch.tensor( hypergraph.node_features( self._get_node_feature_mapper( current_state, hypergraph.problem, target ) ), dtype=torch.float32, ), # Map the hyperedges to their features edge_features=torch.tensor( hypergraph.hyperedge_features( self._get_hyperedge_feature_mapper(hypergraph.problem) ), dtype=torch.float32, ), # Map the hypergraph to its global features global_features=global_features, )
the-stack_0_22163
"""base Revision ID: ae12a0763d41 Revises: Create Date: 2020-06-07 14:39:24.381306 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'ae12a0763d41' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('guilds', sa.Column('id', sa.BigInteger(), autoincrement=False, nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_table('youtube_playlists', sa.Column('id', sa.Integer(), nullable=False), sa.Column('channel', sa.String(length=100), nullable=True), sa.Column('playlist_id', sa.String(length=50), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('playlist_id') ) op.create_table('youtube_videos', sa.Column('id', sa.Integer(), nullable=False), sa.Column('video_id', sa.String(length=50), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('video_id') ) op.create_table('guild_playlists', sa.Column('guild_id', sa.BigInteger(), nullable=True), sa.Column('playlist_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['guild_id'], ['guilds.id'], ), sa.ForeignKeyConstraint(['playlist_id'], ['youtube_playlists.id'], ) ) op.create_table('playlist_videos', sa.Column('playlist_id', sa.BigInteger(), nullable=True), sa.Column('video_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['playlist_id'], ['youtube_playlists.id'], ), sa.ForeignKeyConstraint(['video_id'], ['youtube_videos.id'], ) ) op.create_table('settings', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=50), nullable=False), sa.Column('value', sa.String(length=500), nullable=False), sa.Column('guild_id', sa.BigInteger(), nullable=True), sa.ForeignKeyConstraint(['guild_id'], ['guilds.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('settings') op.drop_table('playlist_videos') op.drop_table('guild_playlists') op.drop_table('youtube_videos') op.drop_table('youtube_playlists') op.drop_table('guilds') # ### end Alembic commands ###
the-stack_0_22164
#!/usr/bin/env python3 # # Copyright (c) Bo Peng and the University of Texas MD Anderson Cancer Center # Distributed under the terms of the 3-clause BSD License. import contextlib import subprocess import sys from io import StringIO import zmq from .controller import close_socket, create_socket, send_message_to_controller from .eval import SoS_exec from .executor_utils import (clear_output, create_task, get_traceback_msg, kill_all_subprocesses, prepare_env, reevaluate_output, statementMD5, validate_step_sig, verify_input) from .targets import RemovedTarget, RuntimeInfo, UnavailableLock, sos_targets from .utils import ArgumentError, StopInputGroup, TerminateExecution, ProcessKilled, env @contextlib.contextmanager def stdoutIO(): oldout = sys.stdout olderr = sys.stderr stdout = StringIO() stderr = StringIO() sys.stdout = stdout sys.stderr = stderr yield stdout, stderr sys.stdout = oldout sys.stderr = olderr def execute_substep(stmt, global_def, global_vars, task='', task_params='', proc_vars={}, shared_vars=[], config={}): '''Execute a substep with specific input etc Substep executed by this function should be self-contained. It can contain tasks (which will be sent to the master process) but not nested workflows. The executor checks step signatures and might skip the substep if it has been executed and the signature matches. The executor accepts connections to the controller, and a socket using which the results will be returned. However, the calling process should take care of the connection and disconnection of controller sockets and this function only takes care of the connection and disconnection of result socket. stmt: Main statement of the substep global_def: Global definitions, might define functions useful to the substep task: External task proc_vars: Environmental variables, signature variables etc shared_vars: Variables that should be returned after the execution config: Runmode, signature mode, verbosity, etc. The return value should be a dictionary with the following keys: index: index of the substep within the step ret_code: (all) return code, 0 for successful sig_skipped: (optional) return if the step is skipped due to signature shared: (optional) shared variable as specified by 'shared_vars' stdout: (optional) if in interactive mode stderr: (optional) if in interactive mode exception: (optional) if an exception occures ''' assert not env.zmq_context.closed assert 'workflow_id' in proc_vars assert 'step_id' in proc_vars assert '_input' in proc_vars assert '_output' in proc_vars assert '_depends' in proc_vars assert 'step_output' in proc_vars assert '_index' in proc_vars assert 'result_push_socket' in config["sockets"] # this should not happen but check nevertheless if env.result_socket_port is not None and env.result_socket_port != config[ "sockets"]["result_push_socket"]: close_socket(env.result_socket) env.result_socket = None if env.result_socket is None: env.result_socket = create_socket(env.zmq_context, zmq.PUSH) env.result_socket_port = config["sockets"]["result_push_socket"] env.result_socket.connect(f'tcp://127.0.0.1:{env.result_socket_port}') res = _execute_substep( stmt=stmt, global_def=global_def, global_vars=global_vars, task=task, task_params=task_params, proc_vars=proc_vars, shared_vars=shared_vars, config=config) env.result_socket.send_pyobj(res) def _execute_substep(stmt, global_def, global_vars, task, task_params, proc_vars, shared_vars, config): # passing configuration and port numbers to the subprocess env.config.update(config) # prepare a working environment with sos symbols and functions prepare_env(global_def, global_vars) # update it with variables passed from master process env.sos_dict.quick_update(proc_vars) if env.config['sig_mode'] == 'ignore' or env.sos_dict[ '_output'].unspecified(): sig = None else: sig = RuntimeInfo( statementMD5([stmt, task]), env.sos_dict['_input'], env.sos_dict['_output'], env.sos_dict['_depends'], env.sos_dict['__signature_vars__'], shared_vars=shared_vars) outmsg = '' errmsg = '' capture_output = env.config['run_mode'] == 'interactive' try: if sig: matched = validate_step_sig(sig) if matched: # avoid sig being released in the final statement sig = None # complete case: concurrent ignore without task send_message_to_controller( ['progress', 'substep_ignored', env.sos_dict['step_id']]) res = { 'index': env.sos_dict['_index'], 'ret_code': 0, 'sig_skipped': 1, 'output': matched['output'], 'shared': matched['vars'] } if task: # if there is task, let the master know that the task is # skipped res['task_id'] = None return res sig.lock() # check if input and depends targets actually exist # # if depends on a sos_variable but the variable is not actually used in # the substep, it is ok to ignore it. If the variable is used in the substep # it should have been included as part of the signature variables. verify_input(ignore_internal_targets=True) if stmt: # statement can be empty for task only substep if capture_output: with stdoutIO() as (out, err): SoS_exec(stmt, return_result=False) outmsg = out.getvalue() errmsg = err.getvalue() else: SoS_exec(stmt, return_result=False) if task: task_id, taskdef, task_vars = create_task(global_def, global_vars, task, task_params) res = { 'index': env.sos_dict['_index'], 'task_id': task_id, 'task_def': taskdef, 'task_vars': task_vars } else: if env.sos_dict['step_output'].undetermined(): env.sos_dict.set('_output', reevaluate_output()) res = {'index': env.sos_dict['_index'], 'ret_code': 0} if sig: sig.set_output(env.sos_dict['_output']) # sig.write will use env.master_push_socket if sig.write(): res['shared'] = sig.content['end_context'] if 'output_obj' in sig.content: res['output'] = sig.content['output_obj'] else: res['output'] = env.sos_dict['_output'] if capture_output: res.update({'stdout': outmsg, 'stderr': errmsg}) # complete case: concurrent execution without task send_message_to_controller( ['progress', 'substep_completed', env.sos_dict['step_id']]) return res except (StopInputGroup, TerminateExecution, RemovedTarget, UnavailableLock) as e: # stop_if is not considered as an error if isinstance(e, StopInputGroup): if e.message: env.logger.info(e.message) # we do not really treat this as an exception if env.sos_dict['step_output'].undetermined(): env.sos_dict.set('_output', reevaluate_output()) res = {'index': env.sos_dict['_index'], 'ret_code': 0} if task: res['task_id'] = None if not e.keep_output: # treat as an error clear_output() res['output'] = sos_targets([]) elif sig: sig.set_output(env.sos_dict['_output']) # sig.write will use env.master_push_socket if sig.write(): res['shared'] = sig.content['end_context'] if 'output_obj' in sig.content: res['output'] = sig.content['output_obj'] else: res['output'] = env.sos_dict['_output'] else: clear_output() res = { 'index': env.sos_dict['_index'], 'ret_code': 1, 'exception': e } if capture_output: res.update({'stdout': outmsg, 'stderr': errmsg}) return res except (KeyboardInterrupt, SystemExit) as e: clear_output() kill_all_subprocesses() raise e except subprocess.CalledProcessError as e: clear_output() # cannot pass CalledProcessError back because it is not pickleable res = { 'index': env.sos_dict['_index'], 'ret_code': e.returncode, 'exception': RuntimeError(e.stderr) } if capture_output: res.update({'stdout': outmsg, 'stderr': errmsg}) return res except ArgumentError as e: clear_output() return {'index': env.sos_dict['_index'], 'ret_code': 1, 'exception': e} except ProcessKilled as e: clear_output() res = {'index': env.sos_dict['_index'], 'ret_code': 1, 'exception': e} return res except Exception as e: clear_output() res = { 'index': env.sos_dict['_index'], 'ret_code': 1, 'exception': RuntimeError(get_traceback_msg(e)) } if capture_output: res.update({'stdout': outmsg, 'stderr': errmsg}) return res finally: # release the lock even if the process becomes zombie? #871 if sig: sig.release(quiet=True)
the-stack_0_22165
import cv2 import numpy as np import os from FaceDetector import FaceDetector from KalmanFilter2D import KalmanFilter2D def closest_pairs(array1, array2): array1 = np.asarray(array1) array2 = np.asarray(array2) diff = np.abs(array1[:, None] - array2[None, :]) pairs = [] found = [] for _ in range(np.min(diff.shape)): idx = np.argmin(diff) x,y = np.unravel_index(idx, diff.shape) diff[x,:] = 10000 diff[:,y] = 10000 pairs.append((x,y)) found.append(x) unassigned = np.setdiff1d(np.arange(len(array1)), found) return pairs, unassigned class FaceTracking(): def __init__(self, lifetime): self.fd = FaceDetector() self.Ts = 1/30 self.R = 507 self.Qp = 10 self.Qv = 0.01 self.faces = [] self.lifetime = lifetime self.focus = 0 def __del__(self): self.fd.__del__() def runDetection(self, img): boxes, centers, labels, probs = self.fd.process(img) center_list = [p[0] for p in centers] face_list = [p.get_position()[0] for p in self.faces] if len(self.faces) < len(boxes): self.faces.append(KalmanFilter2D(self.Ts, self.R, self.Qp, self.Qv)) pairs, unassigned = closest_pairs(face_list, center_list) for face_index, center_index in pairs: if self.faces[face_index].lifetime < self.lifetime: self.faces[face_index].inc() z_k = np.asarray(centers[center_index]) x_k = self.faces[face_index].get_position() dist = np.linalg.norm(z_k - x_k) mah_dist = np.sqrt(((z_k - x_k)[None] @ np.linalg.inv(self.faces[face_index].P[:2, :2]) @ (z_k - x_k)[:, None])[0,0]) R = mah_dist*10 self.faces[face_index].run_filter(z_k, R) pop_index = -1 for face_index in unassigned: self.faces[face_index].dec() self.faces[face_index].run_filter(np.zeros((2,)), 10000000) if(self.faces[face_index].lifetime < 0): pop_index = face_index if pop_index != -1: self.faces.pop(face_index) if self.focus + 1 > len(self.faces): self.focus = 0 for i, fac in enumerate(self.faces): if np.max(np.linalg.eig(fac.P[:2, :2])[0]) < 1000: if i == self.focus and fac.lifetime >= self.lifetime / 2: cv2.circle(img, tuple([int(x) for x in fac.get_position()]), radius=0, color=(255, 0, 0), thickness=20) elif fac.lifetime >= self.lifetime / 2: cv2.circle(img, tuple([int(x) for x in fac.get_position()]), radius=0, color=(0, 0, 255), thickness=20) for box in boxes: cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2) return img def getDetectionCount(self): return len(self.faces) def setFocus(self, focus): if focus + 1 > len(self.faces): self.focus = 0 else: self.focus = focus def getFocus(self): return self.focus def getFocusLocation(self): if len(self.faces) > 0: return self.faces[self.focus].get_position() if __name__ == "__main__": dir_path = os.path.dirname(os.path.realpath(__file__)) filename = "dance3.mp4" cap = cv2.VideoCapture(os.path.join(dir_path, filename)) tracker = FaceTracking(lifetime=50) while cap.isOpened(): ret, frame = cap.read() if not ret: break img = tracker.runDetection(frame) print(tracker.getDetectionCount()) print(tracker.getFocusLocation()) cv2.imshow("frame", img) key = cv2.waitKey(1) if key == ord('s'): tracker.setFocus(tracker.getFocus() + 1) cap.release() cv2.destroyAllWindows()
the-stack_0_22167
# # abstract_net.py # # Author(s): # Matteo Spallanzani <[email protected]> # # Copyright (c) 2020-2021 ETH Zurich. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import torch from torch import nn class QuantProperties: def __init__(self, dtype : str = "float32", step_size : float = None, n_steps : int = None): assert dtype[0:5] == "float" or dtype[0:3] == "int", "Invalid dtype supplied to QuantProperties: {}".format(dtype) bits_str = dtype[5:] if dtype[0:5] == "float" else dtype[3:] assert bits_str.isdigit(), "Invalid dtype supplied to QuantProperties: {}".format(dtype) self.n_bits = int(bits_str) # if dtype is float, it's OK for n_steps and step_size to be None. self.n_steps = n_steps self.step_size = step_size #if dtype is int, fall back to defaults if dtype[0:3] == "int": if not n_steps: self.n_steps = 2**(self.n_bits)-1 assert self.n_steps % 2 == 1, "n_steps in QuantProperties must be odd, but it's {}!".format(self.n_steps) # by default, treat integers as ordinary integers (step size 1) if not step_size: self.step_size = 1.0 self.dtype = dtype @classmethod def from_numpy(cls, data : np.ndarray = None): # default: float32 if data is None: return cls() # otherwise, return QP according to data's dtype with default settings return cls(data.dtype.name) class AbstractTensor: def __init__(self, data : torch.Tensor, name : str, shape : tuple = None, is_param : bool = False, qp : QuantProperties = None): assert isinstance(name, str), "AbstractTensor name must be string, not {}".format(type(name).__name__) self.name = name if isinstance(data, torch.Tensor): data = data.clone().detach().numpy() if is_param: assert data is not None, "Parameter tensor must have data!" if shape is not None: assert data.shape == shape, "Mismatching tensor and shape specified: Tensor has shape {}, specified was {}".format(data.shape, shape) shape = data.shape self.shape = shape self.data = data if qp is None: qp = QuantProperties.from_numpy(data) self.qp = qp def __getattribute__(self, item): # overload this to provide direct access to quantProperties attributes try: return super(AbstractTensor, self).__getattribute__(item) except AttributeError as e_orig: try: return self.qp.__getattribute__(item) except AttributeError: raise e_orig @property def numel(self): if self.shape is None or None in self.shape: return None n = 1 for el in self.shape: n *= el return n # operators class AbstractOperator: # any operator keeps lists of tensors it operates on: # - parameters contains tensors of fixed size and with fixed values # which the operator uses as parameters # - inputs contains tensors it uses as inputs # - outputs contains tensors it uses as outputs # - all_tensors contains the concatenation of the above # Tensors are stored in dicts but are accessible as lists def __init__(self): self.parameter_dict = {} self.input_dict = {} self.output_dict = {} # helper function to add an unnamed tensor def _add_tensor(self, t : AbstractTensor, d : dict, base_key : str): key = "{}_{}".format(base_key, len(d)+1) done = False cnt = 1 while not done: try: # if the key already exists in the inputs dict, modify it until # we find one that does not cur_val = d[key] if cnt > 1: key = key[:-2] key += "_{}".format(cnt) cnt += 1 except KeyError: d[key] = t done = True def add_input(self, inp): self._add_tensor(inp, self.input_dict, "input") def add_output(self, outp): self._add_tensor(outp, self.output_dict, "output") def add_param(self, param): self._add_tensor(param, self.parameter_dict, "param") # make inputs/outputs/parameters easy to access as lists @property def inputs(self): return list(self.input_dict.values()) @property def parameters(self): return list(self.parameter_dict.values()) @property def outputs(self): return list(self.output_dict.values()) @property def all_tensors(self): return self.inputs + self.outputs + self.parameters class AbstractNet: # interface for complete (sequential) network def __init__(self, name : str): self.name = name self.layers = [] def add_layer(self, l : AbstractOperator): # add a layer to the network # returns nothing (to be overridden in child classes) self.layers.append(l) def _get_tensors(self, name): tensors = [] for l in self.layers: tensor_list = l.__getattribute__(name) tensors.extend([t for t in tensor_list if t not in tensors]) return tensors @property def all_tensors(self): return self._get_tensors("all_tensors") @property def parameters(self): return self._get_tensors("parameters") @property def data_tensors(self): # all tensor except parameters all_t = self.all_tensors p = self.parameters return [t for t in all_t if t not in p]
the-stack_0_22169
from django.urls import path from . import views urlpatterns = [ path('', views.index, name="blank_index"), path('index/', views.index, name="index"), path('about/', views.about, name="about"), path('register/', views.register_page, name="register"), path('login/', views.login_page, name="login"), path('logout/', views.logout_user, name="logout") ]
the-stack_0_22170
import _plotly_utils.basevalidators class YanchorValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name='yanchor', parent_name='scatterpolargl.marker.colorbar', **kwargs ): super(YanchorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='calc', role='style', values=['top', 'middle', 'bottom'], **kwargs )
the-stack_0_22171
import os import ujson from functools import partial from colbert.utils.utils import print_message from colbert.modeling.tokenization import QueryTokenizer, DocTokenizer, tensorize_triples from colbert.utils.runs import Run class EagerBatcher(): def __init__(self, args, rank=0, nranks=1): self.rank, self.nranks = rank, nranks self.bsize, self.accumsteps = args.bsize, args.accumsteps self.query_tokenizer = QueryTokenizer(args.query_maxlen, args.pretrained_tokenizer) self.doc_tokenizer = DocTokenizer(args.doc_maxlen, args.pretrained_tokenizer) self.tensorize_triples = partial(tensorize_triples, self.query_tokenizer, self.doc_tokenizer) self.triples_path = args.triples self._reset_triples() def _reset_triples(self): self.reader = open(self.triples_path, mode='r', encoding="utf-8") self.position = 0 def __iter__(self): return self def __next__(self): queries, positives, negatives = [], [], [] for line_idx, line in zip(range(self.bsize * self.nranks), self.reader): if (self.position + line_idx) % self.nranks != self.rank: continue query, pos, neg = line.strip().split('\t') queries.append(query) positives.append(pos) negatives.append(neg) self.position += line_idx + 1 if len(queries) < self.bsize: raise StopIteration return self.collate(queries, positives, negatives) def collate(self, queries, positives, negatives): assert len(queries) == len(positives) == len(negatives) == self.bsize return self.tensorize_triples(queries, positives, negatives, self.bsize // self.accumsteps) def skip_to_batch(self, batch_idx, intended_batch_size): self._reset_triples() Run.warn(f'Skipping to batch #{batch_idx} (with intended_batch_size = {intended_batch_size}) for training.') _ = [self.reader.readline() for _ in range(batch_idx * intended_batch_size)] return None
the-stack_0_22172
import os from work.unet import unet_model_functions from keras.callbacks import ReduceLROnPlateau from work.auxiliary import data_functions from work.auxiliary.logger_settings import configure_logger import logging LOG_PATH = os.path.abspath('logs') DATA_PATH = os.path.abspath('data') log_path = data_functions.create_path(LOG_PATH, 'unet_logs') configure_logger(name="cherry_stem", console_level='INFO', file_level='INFO', out_path=log_path) logger = logging.getLogger(__name__) def main(): """ for model debugging :return: """ # train_path = os.path.join(DATA_PATH, r'raw_data\with_maskes') #train_path = os.path.join(DATA_PATH, r'segmentation\augmented') train_path = os.path.join(DATA_PATH, r'segmentation\augmented') dest_path = os.path.join(DATA_PATH, r'unet_data\training') test_path = os.path.join(DATA_PATH, r'raw_data\images_orig') src_path = os.path.join(DATA_PATH, r'unet_data\training\2019-09-30_07-19-46') pretrained_weights = os.path.join(DATA_PATH, r'unet_data\training\2019-09-30_07-19-46\unet_cherry_stem.hdf5') steps = None params_dict = dict( train_path=train_path, save_path=dest_path, x_folder_name='image', y_folder_name='label', save_name='cherry', pretrained_weights=pretrained_weights, checkpoint=None, data_gen_args=dict(rotation_range=180, brightness_range=[0.2, 1.], shear_range=5, zoom_range=0.5, horizontal_flip=True, vertical_flip=True, fill_mode='nearest'), seed=78, optimizer='Adam', optimizer_params=dict(lr=1e-5, amsgrad=False), loss='binary_crossentropy', metrics=[], target_size=[256, 256], color_mode='grayscale', batch_size=10, # my GPU cant handel any more epochs=15, steps_per_epoch=100, validation_split=0.2, validation_steps=200, tensorboard_update_freq=1000, weights_update_freq='epoch', save_weights_only=True, ontop_display_threshold=0.4, callbacks=[ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, verbose=1, mode='auto', min_delta=0.0001, cooldown=0, min_lr=1e-6)]) update_dict = dict( callbacks=[ReduceLROnPlateau(monitor='loss', factor=0.2, patience=2, verbose=1, mode='auto', min_delta=0.0001, cooldown=0, min_lr=1e-6)]) model = unet_model_functions.ClarifruitUnet(**params_dict) #model = unet_model_functions.ClarifruitUnet.load_model(src_path,update_dict,steps) keras_logs_path=model.set_model_for_train() logger.info(f"for tensorboard, use: \ntensorboard --logdir={keras_logs_path}") model.fit_unet() #model.prediction(test_path=test_path,dest_path=dest_path) if __name__ == '__main__': main()
the-stack_0_22174
from setuptools import setup, find_packages # io.open is needed for projects that support Python 2.7 # Python 3 only projects can skip this import from io import open # Get the long description from the README file with open('README.md', encoding='utf-8', errors="ignore") as f: long_description = f.read() setup( name='codechecker_api_shared', version='6.27.0', description='Shared API stub types package for the CodeChecker API.', long_description_content_type='text/markdown', long_description=long_description, url='https://github.com/Ericsson/codechecker', classifiers=[ # Optional # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', # These classifiers are *not* checked by 'pip install'. See instead # 'python_requires' below. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', ], keywords='codechecker thrift api library', packages=find_packages(where='.'), # Required python_requires='>=2.7,', project_urls={ # Optional 'Bug Reports': 'https://github.com/Ericsson/codechecker/issues', 'Source': 'https://github.com/Ericsson/codechecker/tree/master/web/api', }, )
the-stack_0_22175
# -*- coding: utf-8 -*- import os import numpy as np import sys import struct from torch.utils.data import Dataset import scipy.io as scio def pixel2world(x, y, z, img_width, img_height, fx, fy): w_x = (x - img_width / 2) * z / fx w_y = (img_height / 2 - y) * z / fy w_z = z return w_x, w_y, w_z def world2pixel(x, y, z, img_width, img_height, fx, fy): p_x = x * fx / z + img_width / 2 p_y = img_height / 2 - y * fy / z return p_x, p_y def depthmap2points(image, fx, fy): h, w = image.shape x, y = np.meshgrid(np.arange(w) + 1, np.arange(h) + 1) points = np.zeros((h, w, 3), dtype=np.float32) points[:,:,0], points[:,:,1], points[:,:,2] = pixel2world(x, y, image, w, h, fx, fy) return points def points2pixels(points, img_width, img_height, fx, fy): pixels = np.zeros((points.shape[0], 2)) pixels[:, 0], pixels[:, 1] = \ world2pixel(points[:,0], points[:, 1], points[:, 2], img_width, img_height, fx, fy) return pixels def load_depthmap(filename, img_width, img_height, max_depth): with open(filename, mode='rb') as f: data = f.read() num_pixel = (img_width*img_height) cropped_image = struct.unpack('f'*num_pixel, data[:num_pixel * 4 ]) cropped_image = np.asarray(cropped_image).reshape(img_height, -1) depth_image = np.zeros((img_height, img_width), dtype=np.float32) depth_image[0:img_height, 0:img_width ] = cropped_image depth_image[depth_image == 0] = max_depth return depth_image class NYUDataset(Dataset): def __init__(self, root, center_dir, transform=None): self.img_width = 640 self.img_height = 480 self.max_depth = 1200 self.fx = 588.03 self.fy = 587.07 self.joint_num = 21 self.world_dim = 3 self.root = root self.center_dir = center_dir self.transform = transform self._load() def __getitem__(self, index): depthmap_img = load_depthmap(self.names[index], self.img_width, self.img_height, self.max_depth) points = depthmap2points(depthmap_img, self.fx, self.fy) points = points.reshape((-1, 3)) sample = { 'name': self.names[index], 'points': points, 'refpoint': self.ref_pts[index] } if self.transform: sample = self.transform(sample) return sample def __len__(self): return self.num_samples def _load(self): self.num_samples = 8252 self.ref_pts = np.zeros((self.num_samples, self.world_dim)) self.names = [] ref_pt_file = 'center_test_refined.txt' with open(os.path.join(self.center_dir, ref_pt_file)) as f: ref_pt_str = [l.rstrip() for l in f] # file_id = 0 frame_id = 0 for i in range(0, 8252): # referece point splitted = ref_pt_str[file_id].split() if splitted[0] == 'invalid': print('Warning: found invalid reference frame') file_id += 1 continue else: self.ref_pts[frame_id, 0] = float(splitted[0]) self.ref_pts[frame_id, 1] = float(splitted[1]) self.ref_pts[frame_id, 2] = float(splitted[2]) filename = os.path.join(self.root, str(i) + '.bin') self.names.append(filename) frame_id += 1 file_id += 1 class NYUDataset_train(Dataset): def __init__(self, root, center_dir, transform=None): self.img_width = 640 self.img_height = 480 self.max_depth = 1200 self.fx = 588.03 self.fy = 587.07 self.joint_num = 21 self.world_dim = 3 self.root = root self.center_dir = center_dir self.transform = transform self._load() def __getitem__(self, index): depthmap_img = load_depthmap(self.names[index], self.img_width, self.img_height, self.max_depth) points = depthmap2points(depthmap_img, self.fx, self.fy) points = points.reshape((-1, 3)) sample = { 'name': self.names[index], 'points': points, 'joints': self.joints_world[index], 'refpoint': self.ref_pts[index] } if self.transform: sample = self.transform(sample) return sample def __len__(self): return self.num_samples def _load(self): self.num_samples = 72757 self.ref_pts = np.zeros((self.num_samples, self.world_dim)) self.joints_world = np.zeros((self.num_samples, self.joint_num, self.world_dim)) self.names = [] keypoint_file = self.root + 'joint_data.mat' ref_pt_file = 'center_train_refined.txt' with open(os.path.join(self.center_dir, ref_pt_file)) as f: ref_pt_str = [l.rstrip() for l in f] keypointsXYZ_test = scio.loadmat(keypoint_file)["joint_xyz"].astype(np.float32)[0] EVAL_JOINTS = np.array([ 0, 6, 12, 18, 24, 1, 7, 13, 19, 25, 4, 10, 15, 21, 26, 5, 11, 17, 23, 28, 29 ]) keypointsXYZ_test = keypointsXYZ_test[::][:,EVAL_JOINTS,:] file_id = 0 frame_id = 0 for i in range(0, 72757): # referece point splitted = ref_pt_str[file_id].split() if splitted[0] == 'invalid': print('Warning: found invalid reference frame') file_id += 1 continue else: self.ref_pts[frame_id, 0] = float(splitted[0]) self.ref_pts[frame_id, 1] = float(splitted[1]) self.ref_pts[frame_id, 2] = float(splitted[2]) self.joints_world[i] = keypointsXYZ_test[i] filename = os.path.join(self.root, 'depth_1_{:0>7d}.bin'.format(i+1)) self.names.append(filename) frame_id += 1 file_id += 1
the-stack_0_22178
from itertools import combinations def nonDivisibleSubset(k, s): # Write your code here res=[] for pair in list(combinations(s, 2)): if sum(pair)%k != 0: # print(res, pair) res+=list(pair) print(set(res)) return len(set(res)) if __name__ == '__main__': first_multiple_input = input().rstrip().split() n = int(first_multiple_input[0]) k = int(first_multiple_input[1]) s = list(map(int, input().rstrip().split())) result = nonDivisibleSubset(k, s) print(result)
the-stack_0_22179
"""Check consistency of project.""" import re MAX_CODE_LINES = 120 MAX_LINE_LENGTH = 120 def check(options, config, xref, seen): """Check various aspects of project.""" if "bib" in options.check: _check_bib(config, seen) if "code" in options.check: _check_code(config) if "gloss" in options.check: _check_gloss(config, seen) # ---------------------------------------------------------------------- def _check_bib(config, seen): """Check consistency of bibliography.""" _show_unused("biblography", config.bib_keys - seen.cite) key = re.compile(r"^[A-Z][A-Za-z]+\d{4}[a-z]?$") previous = None for entry in config.bib_data: # Alphabetic order by key (ignoring case). if previous and (previous["ID"].lower() > entry["ID"].lower()): print(f"Bibliography entry {entry['ID']} out of order.") previous = entry # Keys are Name and 4-digit year. if not key.match(entry["ID"]): print(f"Badly-formatted bibliography key {entry['ID']}.") def _check_code(config): """Check code inclusions.""" pre = re.compile( r'<pre\s+title="(.*?)"><code\s+class="(.*?)">(.*?)</code></pre>', re.DOTALL ) lang = re.compile(r"^language-.+$") for info in config.pages: for (title, cls, body) in pre.findall(info.html): body = body.split("\n") # Code class. if not lang.search(cls): print( f"Code block {title} in {info.src} has unrecognized class {cls}." ) # Number of lines. if len(body) > MAX_CODE_LINES: print( f"Code block {title} in {info.src} has {len(body)} lines (> {MAX_CODE_LINES})." ) # Line length. long_lines = [x for x in body if len(x) > MAX_LINE_LENGTH] if long_lines: print( f"Code block {title} in {info.src} has {len(long_lines)} long lines (> {MAX_LINE_LENGTH})." ) def _check_gloss(config, seen): """Check consistency of glossary.""" _show_unused("glossary", config.gloss_keys - seen.gloss_ref) previous = None lang = config.lang for entry in config.gloss_data: # Alphabetic order by key (ignoring case). if previous and (previous[lang]["term"].lower() > entry[lang]["term"].lower()): print(f"Glossary entry {entry[lang]['key']} out of order.") previous = entry def _show_unused(kind, unused): if not unused: return print(f"Unused {kind} keys:") for key in sorted(unused): print(f"- {key}")
the-stack_0_22180
""" Reference: https://github.com/openai/imitation I follow the architecture from the official repository """ import gym import tensorflow as tf import numpy as np from stable_baselines.common.mpi_running_mean_std import RunningMeanStd from stable_baselines.common import tf_util as tf_util def logsigmoid(input_tensor): """ Equivalent to tf.log(tf.sigmoid(a)) :param input_tensor: (tf.Tensor) :return: (tf.Tensor) """ return -tf.nn.softplus(-input_tensor) def logit_bernoulli_entropy(logits): """ Reference: https://github.com/openai/imitation/blob/99fbccf3e060b6e6c739bdf209758620fcdefd3c/policyopt/thutil.py#L48-L51 :param logits: (tf.Tensor) the logits :return: (tf.Tensor) the Bernoulli entropy """ ent = (1. - tf.nn.sigmoid(logits)) * logits - logsigmoid(logits) return ent class TransitionClassifier(object): def __init__(self, observation_space, action_space, hidden_size, entcoeff=0.001, scope="adversary", normalize=True): """ Reward regression from observations and transitions :param observation_space: (gym.spaces) :param action_space: (gym.spaces) :param hidden_size: ([int]) the hidden dimension for the MLP :param entcoeff: (float) the entropy loss weight :param scope: (str) tensorflow variable scope :param normalize: (bool) Whether to normalize the reward or not """ # TODO: support images properly (using a CNN) self.scope = scope self.observation_shape = observation_space.shape self.actions_shape = action_space.shape if isinstance(action_space, gym.spaces.Box): # Continuous action space self.discrete_actions = False self.n_actions = action_space.shape[0] elif isinstance(action_space, gym.spaces.Discrete): self.n_actions = action_space.n self.discrete_actions = True else: raise ValueError('Action space not supported: {}'.format(action_space)) self.hidden_size = hidden_size self.normalize = normalize self.obs_rms = None # Placeholders self.generator_obs_ph = tf.placeholder(observation_space.dtype, (None,) + self.observation_shape, name="observations_ph") self.generator_acs_ph = tf.placeholder(action_space.dtype, (None,) + self.actions_shape, name="actions_ph") self.expert_obs_ph = tf.placeholder(observation_space.dtype, (None,) + self.observation_shape, name="expert_observations_ph") self.expert_acs_ph = tf.placeholder(action_space.dtype, (None,) + self.actions_shape, name="expert_actions_ph") # Build graph generator_logits = self.build_graph(self.generator_obs_ph, self.generator_acs_ph, reuse=False) expert_logits = self.build_graph(self.expert_obs_ph, self.expert_acs_ph, reuse=True) # Build accuracy generator_acc = tf.reduce_mean(tf.cast(tf.nn.sigmoid(generator_logits) < 0.5, tf.float32)) expert_acc = tf.reduce_mean(tf.cast(tf.nn.sigmoid(expert_logits) > 0.5, tf.float32)) # Build regression loss # let x = logits, z = targets. # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) generator_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=generator_logits, labels=tf.zeros_like(generator_logits)) generator_loss = tf.reduce_mean(generator_loss) expert_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=expert_logits, labels=tf.ones_like(expert_logits)) expert_loss = tf.reduce_mean(expert_loss) # Build entropy loss logits = tf.concat([generator_logits, expert_logits], 0) entropy = tf.reduce_mean(logit_bernoulli_entropy(logits)) entropy_loss = -entcoeff * entropy # Loss + Accuracy terms self.losses = [generator_loss, expert_loss, entropy, entropy_loss, generator_acc, expert_acc] self.loss_name = ["generator_loss", "expert_loss", "entropy", "entropy_loss", "generator_acc", "expert_acc"] self.total_loss = generator_loss + expert_loss + entropy_loss # Build Reward for policy self.reward_op = -tf.log(1 - tf.nn.sigmoid(generator_logits) + 1e-8) var_list = self.get_trainable_variables() self.lossandgrad = tf_util.function( [self.generator_obs_ph, self.generator_acs_ph, self.expert_obs_ph, self.expert_acs_ph], self.losses + [tf_util.flatgrad(self.total_loss, var_list)]) def build_graph(self, obs_ph, acs_ph, reuse=False): """ build the graph :param obs_ph: (tf.Tensor) the observation placeholder :param acs_ph: (tf.Tensor) the action placeholder :param reuse: (bool) :return: (tf.Tensor) the graph output """ with tf.variable_scope(self.scope): if reuse: tf.get_variable_scope().reuse_variables() if self.normalize: with tf.variable_scope("obfilter"): self.obs_rms = RunningMeanStd(shape=self.observation_shape) obs = (obs_ph - self.obs_rms.mean) / self.obs_rms.std else: obs = obs_ph if self.discrete_actions: one_hot_actions = tf.one_hot(acs_ph, self.n_actions) actions_ph = tf.cast(one_hot_actions, tf.float32) else: actions_ph = acs_ph _input = tf.concat([obs, actions_ph], axis=1) # concatenate the two input -> form a transition p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh) p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh) logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity) return logits def get_trainable_variables(self): """ Get all the trainable variables from the graph :return: ([tf.Tensor]) the variables """ return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope) def get_reward(self, obs, actions): """ Predict the reward using the observation and action :param obs: (tf.Tensor or np.ndarray) the observation :param actions: (tf.Tensor or np.ndarray) the action :return: (np.ndarray) the reward """ sess = tf.get_default_session() if len(obs.shape) == 1: obs = np.expand_dims(obs, 0) if len(actions.shape) == 1: actions = np.expand_dims(actions, 0) elif len(actions.shape) == 0: # one discrete action actions = np.expand_dims(actions, 0) feed_dict = {self.generator_obs_ph: obs, self.generator_acs_ph: actions} reward = sess.run(self.reward_op, feed_dict) return reward
the-stack_0_22182
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) sess = tf.InteractiveSession() def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) x_image = tf.reshape(x, [-1, 28, 28, 1]) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.global_variables_initializer().run() for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) batch = mnist.test.next_batch(2000) print("test accuracy %g" % accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}))
the-stack_0_22184
from typing import Any, Dict, List, Optional from .mock_server_exception import MockServerException class MockServerRequestNotFoundException(MockServerException): """ Exception when we found no expectation for a request """ def __init__( self, method: Optional[str], url: Optional[str], json_list: Optional[List[Dict[str, Any]]], ) -> None: """ Exception when we found no expectation for a request :param method: method of request :param url: url of request :param json_list: json body """ self.method: Optional[str] = method self.url: Optional[str] = url self.json_dict: Optional[List[Dict[str, Any]]] = json_list assert ( not json_list or isinstance(json_list, dict) or isinstance(json_list, list) ), type(json_list) super().__init__(f"Request was not expected: {url} {json_list}")
the-stack_0_22186
from tensorflow.python.framework import dtypes from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.framework import ops from tensorflow.python.training import optimizer, training_ops import tensorflow as tf import numpy as np class DFA(optimizer.Optimizer): # A lot copy-pasted from the optimizer base class, with anything that gave errors taken out... GATE_NONE = 0 GATE_OP = 1 GATE_GRAPH = 2 def __init__(self, learning_rate=0.001, stddev=0.5, use_locking=False, name="DFA"): super(DFA, self).__init__(use_locking, name) self._lr = learning_rate self._stddev = stddev self._B = [] self._lr_t = ops.convert_to_tensor(self._lr, name="learning_rate") # Normally these are in _prepare but it seems that doesn't get called before compute_gradients for this implementation? self._stddev_t = ops.convert_to_tensor(self._stddev, name="standard_deviation") def _prepare(self): # idk pass def compute_gradients(self, loss, var_list=None, # Copy-paste and black magic gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None): if callable(loss): with backprop.GradientTape() as tape: if var_list is not None: tape.watch(var_list) loss_value = loss() if var_list is None: var_list = tape.watched_variables() grads = tape.gradient(loss_value, var_list, grad_loss) return list(zip(grads, var_list)) if gate_gradients not in [optimizer.Optimizer.GATE_NONE, optimizer.Optimizer.GATE_OP, optimizer.Optimizer.GATE_GRAPH]: raise ValueError("gate_gradients must be one of: Optimizer.GATE_NONE, " "Optimizer.GATE_OP, Optimizer.GATE_GRAPH. Not %s" % gate_gradients) self._assert_valid_dtypes([loss]) if grad_loss is not None: self._assert_valid_dtypes([grad_loss]) if var_list is None: var_list = ( tf.trainable_variables() + ops.get_collection(ops.GraphKeys.TRAINABLE_RESOURCE_VARIABLES)) else: var_list = nest.flatten(var_list) # pylint: disable=protected-access var_list += ops.get_collection(ops.GraphKeys._STREAMING_MODEL_PORTS) # pylint: enable=protected-access processors = [optimizer._get_processor(v) for v in var_list] if not var_list: raise ValueError("No variables to optimize.") var_refs = [p.target() for p in processors] act_refs = [] if(self._B == []): stddev = math_ops.cast(self._stddev_t, tf.float32) for v in var_refs: shape = [10]+v.get_shape().as_list() shape.reverse() if(self._stddev == 0): stddev = tf.rsqrt(math_ops.cast(v.shape[-1], tf.float32)) self._B.append(tf.Variable(tf.random_uniform(shape, minval=tf.multiply(-1., stddev), maxval=stddev), trainable=False, name=v.op.name+'/B')) # random matrix, uniform distribution between [-stddev, stddev] act_name = "/".join(v.op.name.split("/")[:-1])+"/activations" act_refs.append(tf.get_default_graph().get_operation_by_name(act_name).outputs[0]) f_grad = tf.reduce_mean(tf.gradients(loss, act_refs[-1])[0], axis=0) grads = [tf.multiply(tf.reduce_sum(tf.transpose(tf.multiply(f_grad, self._B[i])),axis=0), tf.gradients(act_refs[i], var_refs[i], grad_ys=grad_loss, gate_gradients=(gate_gradients == optimizer.Optimizer.GATE_OP), aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops)[0]) for i in range(0,len(var_refs)-2)] grads.append(tf.gradients(loss, var_refs[-2], grad_ys=grad_loss, gate_gradients=(gate_gradients == optimizer.Optimizer.GATE_OP), aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops)[0]) grads.append(tf.gradients(loss, var_refs[-1], gate_gradients=(gate_gradients == optimizer.Optimizer.GATE_OP), aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops)[0]) # Get the gradients for the final layer as tensorflow does normally(?) if gate_gradients == optimizer.Optimizer.GATE_GRAPH: grads = control_flow_ops.tuple(grads) grads_and_vars = list(zip(grads, var_list)) self._assert_valid_dtypes( [v for g, v in grads_and_vars if g is not None and v.dtype != dtypes.resource]) return grads_and_vars def _apply_dense(self, grad, var): return training_ops.apply_gradient_descent( var, math_ops.cast(self._lr_t, var.dtype.base_dtype), grad, use_locking=self._use_locking).op
the-stack_0_22187
# Ex054.2 """Create a program that reads the year of birth of seven people, at the end, Show how many people are not yet of age and how many are already older""" from datetime import date current_year = date.today().year adulthood = 0 minority = 0 for y in range(0, 7): year_of_birth = int(input(f'What is the birth year of the {y + 1}° person?: ')) if year_of_birth + 18 <= current_year: adulthood += 1 else: minority += 1 print(f'Of the 07 registered people, {adulthood} are of legal age, and {minority} are minors')
the-stack_0_22188
### # Copyright Notice: # Copyright 2016 Distributed Management Task Force, Inc. All rights reserved. # License: BSD 3-Clause License. For full text see link: https://github.com/DMTF/python-redfish-utility/blob/master/LICENSE.md ### """ List Command for RDMC """ import redfish.ris from optparse import OptionParser from rdmc_base_classes import RdmcCommandBase from rdmc_helper import ReturnCodes, InvalidCommandLineErrorOPTS,\ NoContentsFoundForOperationError class ListCommand(RdmcCommandBase): """ Constructor """ def __init__(self, rdmcObj): RdmcCommandBase.__init__(self,\ name='list',\ usage='list [OPTIONS]\n\n\tDisplays the current values of the ' \ 'properties within\n\ta selected type including'\ ' reserved properties\n\texample: list\n\n\tNOTE: If ' \ 'you wish not to get all the reserved properties\n\t ' \ ' run the get command instead',\ summary='Displays the current value(s) of a' \ ' property(ies) within a selected type including'\ ' reserved properties.',\ aliases=['ls'],\ optparser=OptionParser()) self.definearguments(self.parser) self._rdmc = rdmcObj self.lobobj = rdmcObj.commandsDict["LoginCommand"](rdmcObj) self.selobj = rdmcObj.commandsDict["SelectCommand"](rdmcObj) self.getobj = rdmcObj.commandsDict["GetCommand"](rdmcObj) def run(self, line): """ Wrapper function for main list function :param line: command line input :type line: string. """ try: (options, args) = self._parse_arglist(line) except: if ("-h" in line) or ("--help" in line): return ReturnCodes.SUCCESS else: raise InvalidCommandLineErrorOPTS("") self.listvalidation(options) if args: for arg in args: newargs = list() if "/" in arg: newargs = arg.split("/") arg = newargs[0] if not self.getobj.getworkerfunction(arg, options, line,\ newargs=newargs, uselist=True): raise NoContentsFoundForOperationError('No contents found '\ 'for entry: %s\n' % arg) else: if not self.getobj.getworkerfunction(args, options, line, \ uselist=True): raise NoContentsFoundForOperationError('No contents found.') #Return code return ReturnCodes.SUCCESS def listvalidation(self, options): """ List data validation function :param options: command line options :type options: list. """ inputline = list() if self._rdmc.app.config._ac__format.lower() == 'json': options.json = True try: self._rdmc.app.get_current_client() except: if options.user or options.password or options.url: if options.url: inputline.extend([options.url]) if options.user: inputline.extend(["-u", options.user]) if options.password: inputline.extend(["-p", options.password]) else: if self._rdmc.app.config.get_url(): inputline.extend([self._rdmc.app.config.get_url()]) if self._rdmc.app.config.get_username(): inputline.extend(["-u", \ self._rdmc.app.config.get_username()]) if self._rdmc.app.config.get_password(): inputline.extend(["-p", \ self._rdmc.app.config.get_password()]) if len(inputline) and options.selector: if options.filter: inputline.extend(["--filter", options.filter]) if options.includelogs: inputline.extend(["--includelogs"]) if options.path: inputline.extend(["--path", options.path]) inputline.extend(["--selector", options.selector]) self.lobobj.loginfunction(inputline) elif options.selector: if options.filter: inputline.extend(["--filter", options.filter]) if options.includelogs: inputline.extend(["--includelogs"]) if options.path: inputline.extend(["--path", options.path]) inputline.extend([options.selector]) self.selobj.selectfunction(inputline) else: try: inputline = list() selector = self._rdmc.app.get_selector() if options.filter: inputline.extend(["--filter", options.filter]) if options.includelogs: inputline.extend(["--includelogs"]) if options.path: inputline.extend(["--path", options.path]) inputline.extend([selector]) self.selobj.selectfunction(inputline) except: raise redfish.ris.NothingSelectedError def definearguments(self, customparser): """ Wrapper function for new command main function :param customparser: command line input :type customparser: parser. """ if not customparser: return customparser.add_option( '--url', dest='url', help="Use the provided URL to login.", default=None, ) customparser.add_option( '-u', '--user', dest='user', help="If you are not logged in yet, including this flag along"\ " with the password and URL flags can be used to log into a"\ " server in the same command.""", default=None, ) customparser.add_option( '-p', '--password', dest='password', help="""Use the provided password to log in.""", default=None, ) customparser.add_option( '--includelogs', dest='includelogs', action="store_true", help="Optionally include logs in the data retrieval process.", default=False, ) customparser.add_option( '--selector', dest='selector', help="Optionally include this flag to select a type to run"\ " the current command on. Use this flag when you wish to"\ " select a type without entering another command, or if you"\ " wish to work with a type that is different from the one"\ " you currently have selected.", default=None, ) customparser.add_option( '--filter', dest='filter', help="Optionally set a filter value for a filter attribute."\ " This uses the provided filter for the currently selected"\ " type. Note: Use this flag to narrow down your results. For"\ " example, selecting a common type might return multiple"\ " objects that are all of that type. If you want to modify"\ " the properties of only one of those objects, use the filter"\ " flag to narrow down results based on properties."\ "\t\t\t\t\t Usage: --filter [ATTRIBUTE]=[VALUE]", default=None, ) customparser.add_option( '-j', '--json', dest='json', action="store_true", help="Optionally include this flag if you wish to change the"\ " displayed output to JSON format. Preserving the JSON data"\ " structure makes the information easier to parse.", default=False ) customparser.add_option( '--logout', dest='logout', action="store_true", help="Optionally include the logout flag to log out of the"\ " server after this command is completed. Using this flag when"\ " not logged in will have no effect", default=None, ) customparser.add_option( '--path', dest='path', help="Optionally set a starting point for data collection."\ " If you do not specify a starting point, the default path"\ " will be /redfish/v1/. Note: The path flag can only be specified"\ " at the time of login, so if you are already logged into the"\ " server, the path flag will not change the path. If you are"\ " entering a command that isn't the login command, but include"\ " your login information, you can still specify the path flag"\ " there. ", default=None, )
the-stack_0_22189
# @author SATO Kentaro # @license BSD 2-Clause License import struct import sys import urllib.robotparser rp = urllib.robotparser.RobotFileParser('http://www.example.com') while True: try: header = struct.unpack('>3l', sys.stdin.buffer.read(4 * 3)) text = ua = path = '' # urllib.robotparser internally treats external robots.txt as UTF-8 if header[0]: text = sys.stdin.buffer.read(header[0]).decode('utf-8') if header[1]: ua = sys.stdin.buffer.read(header[1]).decode('utf-8') if header[2]: path = sys.stdin.buffer.read(header[2]).decode('utf-8') rp.parse(text.splitlines()) print('1' if rp.can_fetch(ua, 'http://www.example.com' + path) else '0') print("<<<END>>>", file=sys.stderr) sys.stdout.flush() sys.stderr.flush() except EOFError: break
the-stack_0_22190
import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter from torch.utils import data from torch import optim import torchvision.models as models from torch.autograd import Variable import torchvision as tv import random import math import time from datetime import datetime import os import argparse import subprocess from util.LFUtil import * import numpy as np from networks.LFMNet import LFMNet torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True # Arguments parser = argparse.ArgumentParser() # Image indices to use for training and validation parser.add_argument('--imagesToUse', nargs='+', type=int, default=list(range(0,15,1))) # GPUs to use parser.add_argument('--GPUs', nargs='+', type=int, default=[0]) # Path to dataset parser.add_argument('--datasetPath', nargs='?', default="BrainLFMConfocalDataset/Brain_40x_64Depths_362imgs.h5") # Path to directory where models and tensorboard logs are stored parser.add_argument('--outputPath', nargs='?', default="eval/runsMouse/") # Path to model to use for testing parser.add_argument('--checkpointPath', nargs='?', default="runs/2020_10_11__14:23:21_TrueB_0.1bias_5I_128BS_FalseSk_9FOV_3nT_0.03ths_a8d9a2c_commit_") # File to use parser.add_argument('--checkpointFileName', nargs='?', default="model_130") # Write volumes to H5 file parser.add_argument('--writeVolsToH5', type=str2bool, default=False) # Write output to tensorboard parser.add_argument('--writeToTB', type=str2bool, default=True) argsTest = parser.parse_args() nImgs = len(argsTest.imagesToUse) # Setup multithreading num_workers = 0 if not torch.cuda.is_available(): print("GPU initialization error") exit(-1) # Select GPUs to use argsTest.GPUs = list(range(torch.cuda.device_count())) if argsTest.GPUs is None else argsTest.GPUs print('Using GPUs: ' + str(argsTest.GPUs)) # Load checkpoint if provided if argsTest.checkpointPath is not None: checkpointPath = argsTest.checkpointPath + "/" + argsTest.checkpointFileName checkpoint = torch.load(checkpointPath) # overwrite args argsModel = checkpoint['args'] argsModel.checkpointPath = checkpointPath # set Device to use device = torch.device("cuda:"+str(argsTest.GPUs[0]) if torch.cuda.is_available() else "cpu") # Create output folder save_folder = argsTest.outputPath + argsTest.checkpointPath[:-1].split('/')[1] + "_eval_" + datetime.now().strftime('%Y_%m_%d__%H:%M:%S') print(save_folder) # Create summary writer to log stuff if argsTest.writeToTB: writer = SummaryWriter(log_dir=save_folder) # Load dataset all_data = Dataset(argsTest.datasetPath, argsModel.randomSeed, \ fov=argsModel.fovInput, neighShape=argsModel.neighShape, img_indices=argsTest.imagesToUse, get_full_imgs=True, center_region=None) # Create data loader test_dataset = data.DataLoader(all_data, batch_size=1, shuffle=False, num_workers=num_workers, pin_memory=True) # Get Dataset information nDepths = all_data.get_n_depths() volShape, LFshape = all_data.__shape__() LFshape = LFshape[0:4] lateralTile = int(math.sqrt(nDepths)) # Find normalization values maxInputTrain, maxVolumeTrain = all_data.get_max() maxInputTest, maxVolumeTest = all_data.get_max() # Create network net = LFMNet(nDepths, argsModel.useBias, argsModel.useSkipCon, LFshape, LFfov=argsModel.fovInput, use_small_unet=argsModel.useShallowUnet).to(device) lossFunction = nn.L1Loss() lossFunction.eval() # Create SSIM criteria ssim = SSIM() ssim.eval() # Start distributed data parallel, as it's faster than DataParallel if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '1234'+str(argsTest.GPUs[0]) torch.distributed.init_process_group(backend="nccl", rank=0, world_size=1) #initialize torch.distributed # Move network to distributed data parallel net = nn.parallel.DistributedDataParallel(net, device_ids=argsTest.GPUs, output_device=argsTest.GPUs[0]).to(device) # Load network from checkpoint net.load_state_dict(checkpoint['model_state_dict']) # Move net to single GPU net = net.module.to("cuda:1") device = "cuda:1" # timers start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) print('Testing') net.eval() avg_psnr = 0 avg_ssim = 0 avg_loss = 0 avg_time = 0 with torch.no_grad(): # Evaluate images for nBatch,(inputs,labels) in enumerate(test_dataset): inputGPU = inputs.float().to(device) / maxInputTest outputsGT = labels.float().to(device) / maxVolumeTrain # Threshold GT to get rid of autofluorescence outputsGT = imadjust(outputsGT,argsModel.ths,outputsGT.max(), outputsGT.min(), outputsGT.max()) start.record() outputsVol = net(inputGPU) end.record() torch.cuda.synchronize() curr_time = start.elapsed_time(end) curr_loss = lossFunction(outputsGT,outputsVol).item() avg_loss += curr_loss / len(test_dataset) # Compute PSNR lossMSE = nn.functional.mse_loss(outputsVol.detach(), outputsGT.to(device).detach()) curr_psnr = 10 * math.log10(1 / lossMSE.item()) avg_psnr += curr_psnr / len(test_dataset) curr_ssim = ssim(outputsVol[:,0,:,:,:].permute(0,3,1,2).contiguous().detach(), outputsGT[:,0,:,:,:].permute(0,3,1,2).contiguous().to(device).detach()).sum().item() avg_ssim += curr_ssim / len(test_dataset) avg_time += curr_time / len(test_dataset) if argsTest.writeVolsToH5: h5file = h5py.File(save_folder+"/ReconVol_"+argsTest.checkpointFileName+'_'+str(nBatch+min(argsTest.imagesToUse))+".h5", 'w') h5file.create_dataset("LF4D", data=inputGPU.detach().cpu().squeeze().numpy()) h5file.create_dataset("LFimg", data=LF2Spatial(inputGPU, inputGPU.shape[2:]).squeeze().cpu().detach().numpy()) h5file.create_dataset("GT", data=outputsGT.detach().cpu().squeeze().numpy()) h5file.create_dataset("reconFull", data=outputsVol.detach().cpu().squeeze().numpy()) h5file.close() if argsTest.writeToTB: curr_it = nBatch lastBatchSize = 1 gridOut2 = torch.cat((outputsGT[0:lastBatchSize, :, :, :, :].sum(2).cpu().data.detach(), outputsVol[0:lastBatchSize, :, :, :, :].sum(2).cpu().data.detach()), dim=0) gridOut2 = tv.utils.make_grid(gridOut2, normalize=True, scale_each=False) LFImage = LF2Spatial(inputGPU, inputGPU.shape[2:]) writer.add_image('images_val_YZ_projection', gridOut2, curr_it) z_proj = outputsGT[0,:,:,:,:].sum(3) writer.add_image('z_proj_GT',(z_proj/z_proj.max()).detach().cpu(),curr_it) z_proj = outputsVol[0,:,:,:,:].sum(3) writer.add_image('z_proj_prediction',(z_proj/z_proj.max()).detach().cpu(),curr_it) writer.add_image('LFImage_in', LFImage[0,:,:,:], curr_it) writer.add_scalar('Loss/test', curr_loss, curr_it) writer.add_scalar('Loss/psnr', curr_psnr, curr_it) writer.add_scalar('Loss/ssim', curr_ssim, curr_it) writer.add_scalar('times/val', curr_time, curr_it) print('Img: ' + str(nBatch) + '/' + str(len(test_dataset)) + " L1: " + str(curr_loss) + " psnr: " + str(curr_psnr) + " SSIM: " + str(curr_ssim) + " recon_time: " + str(curr_time)) print("avg_loss: " + str(avg_loss) + " avg_psnr: " + str(avg_psnr) + " avg_ssim: " + str(avg_ssim) + " avg_time: " + str(avg_time) + "ms") writer.close()
the-stack_0_22191
import tensorflow as tf import numpy as np class OutputChecks: model_output = None state_object = None accuracy_over_time = None bot_data_over_time = None requires_input = False requires_bot_output = False controls = None def __init__(self, tf_session, action_handler, batch_size, model_output, state_object=None, bot=None, model_placeholder=None, batch_size_placeholder=None): self.sess = tf_session self.batch_size = batch_size self.state_object = state_object self.tutorial_bot = bot self.model_output = model_output self.model_input = model_placeholder self.actionHandler = action_handler self.batch_size_placeholder = batch_size_placeholder if self.tutorial_bot is None: self.requires_bot_output = True if self.model_input is not None: self.requires_input = True def create_model(self): # clear history self.accuracy_over_time = [] self.bot_data_over_time = [] self.controls = tf.transpose( self.actionHandler.create_tensorflow_controller_from_selection(self.model_output, self.batch_size)) def get_amounts(self, input_array=None, bot_output=None): if not self.requires_bot_output: bot_output = self.sess.run(self.tutorial_bot.get_output_vector_model(self.state_object)) else: if bot_output is None: print("Missing correct output") return if not self.requires_input: output = self.sess.run(self.controls) else: output = self.sess.run(self.controls, feed_dict={self.model_input: input_array, self.batch_size_placeholder: np.array([self.batch_size])}) accuracy = np.sum(np.isclose(output, bot_output, 0.2), 1) / np.size(output[1]) self.accuracy_over_time.append(accuracy) self.bot_data_over_time.append((output, bot_output)) analog_buckets = [-1.0001, -0.50001, -0.1000, 0.1000, 0.50001, 1.0001] boolean_buckets = [-0.001, 0.50001, 1.0001] np.set_printoptions(formatter={'int': '{0:5}'.format}) names = ["Throttle", "Steer", "Pitch", "Yaw", "Roll", "Jump", "Boost", "Handbrake"] print("Splitting up everything in ranges: [-1, -0.5>, [-0.5, -0.1>, [0], <0.1+, 0.5], <0.5, 1]") print("Real is model output, Expt is tutorialbot output and Acc. is accuracy") for i in range(8): print("From here the ranges are [0.0, 0.5>, [0.5, 1.0]") if i is 5 else None print(names[i] + ":") buckets = analog_buckets if i < 5 else boolean_buckets print(" Real: ", np.histogram(output[i], buckets)[0]) print(" Expt: ", np.histogram(bot_output[i], buckets)[0]) print(" Acc.: ", accuracy[i]) print("Overall accuracy: ", np.sum(accuracy) / 8.0) def get_final_stats(self): def average(numbers): return sum(numbers) / len(numbers) number_prints = len(self.accuracy_over_time) accuracy = np.transpose(self.accuracy_over_time) np.set_printoptions(formatter={'float': '{: 0.2f}'.format}) percentages = [10, 25, 50] names = ["Throttle", "Steer", "Pitch", "Yaw", "Roll", "Jump", "Boost", "Handbrake"] print("Every action is printed multiple times, once all values and then averages over percentages") for n in range(8): print(names[n] + ":") print("All: ", accuracy[n]) for p in percentages: r = int(100 / p) step = int(number_prints * p / 100) print(str(p) + "%:", np.array([average(accuracy[n][int(i * step):int(i * step + step) if not int(i * step + step) is int(i * step) else int(i * step) + 1]) for i in range(r)]))
the-stack_0_22192
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ReservationOrderOperations(object): """ReservationOrderOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.reservations.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def calculate( self, body, # type: "_models.PurchaseRequest" **kwargs # type: Any ): # type: (...) -> "_models.CalculatePriceResponse" """Calculate price for a ``ReservationOrder``. Calculate price for placing a ``ReservationOrder``. :param body: Information needed for calculate or purchase reservation. :type body: ~azure.mgmt.reservations.models.PurchaseRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: CalculatePriceResponse, or the result of cls(response) :rtype: ~azure.mgmt.reservations.models.CalculatePriceResponse :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CalculatePriceResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.calculate.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'PurchaseRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('CalculatePriceResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized calculate.metadata = {'url': '/providers/Microsoft.Capacity/calculatePrice'} # type: ignore def list( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.ReservationOrderList"] """Get all ``ReservationOrder``\ s. List of all the ``ReservationOrder``\ s that the user has access to in the current tenant. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ReservationOrderList or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.reservations.models.ReservationOrderList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ReservationOrderList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ReservationOrderList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.Error, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/providers/Microsoft.Capacity/reservationOrders'} # type: ignore def _purchase_initial( self, reservation_order_id, # type: str body, # type: "_models.PurchaseRequest" **kwargs # type: Any ): # type: (...) -> "_models.ReservationOrderResponse" cls = kwargs.pop('cls', None) # type: ClsType["_models.ReservationOrderResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._purchase_initial.metadata['url'] # type: ignore path_format_arguments = { 'reservationOrderId': self._serialize.url("reservation_order_id", reservation_order_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'PurchaseRequest') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ReservationOrderResponse', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('ReservationOrderResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _purchase_initial.metadata = {'url': '/providers/Microsoft.Capacity/reservationOrders/{reservationOrderId}'} # type: ignore def begin_purchase( self, reservation_order_id, # type: str body, # type: "_models.PurchaseRequest" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ReservationOrderResponse"] """Purchase ``ReservationOrder``. Purchase ``ReservationOrder`` and create resource under the specified URI. :param reservation_order_id: Order Id of the reservation. :type reservation_order_id: str :param body: Information needed for calculate or purchase reservation. :type body: ~azure.mgmt.reservations.models.PurchaseRequest :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ReservationOrderResponse or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.reservations.models.ReservationOrderResponse] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ReservationOrderResponse"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._purchase_initial( reservation_order_id=reservation_order_id, body=body, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ReservationOrderResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'reservationOrderId': self._serialize.url("reservation_order_id", reservation_order_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_purchase.metadata = {'url': '/providers/Microsoft.Capacity/reservationOrders/{reservationOrderId}'} # type: ignore def get( self, reservation_order_id, # type: str expand=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.ReservationOrderResponse" """Get a specific ``ReservationOrder``. Get the details of the ``ReservationOrder``. :param reservation_order_id: Order Id of the reservation. :type reservation_order_id: str :param expand: May be used to expand the planInformation. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ReservationOrderResponse, or the result of cls(response) :rtype: ~azure.mgmt.reservations.models.ReservationOrderResponse :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ReservationOrderResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-10-01-preview" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'reservationOrderId': self._serialize.url("reservation_order_id", reservation_order_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ReservationOrderResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/providers/Microsoft.Capacity/reservationOrders/{reservationOrderId}'} # type: ignore def change_directory( self, reservation_order_id, # type: str body, # type: "_models.ChangeDirectoryRequest" **kwargs # type: Any ): # type: (...) -> "_models.ChangeDirectoryResponse" """Change directory of ``ReservationOrder``. Change directory (tenant) of ``ReservationOrder`` and all ``Reservation`` under it to specified tenant id. :param reservation_order_id: Order Id of the reservation. :type reservation_order_id: str :param body: Information needed to change directory of reservation order. :type body: ~azure.mgmt.reservations.models.ChangeDirectoryRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: ChangeDirectoryResponse, or the result of cls(response) :rtype: ~azure.mgmt.reservations.models.ChangeDirectoryResponse :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ChangeDirectoryResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-15-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.change_directory.metadata['url'] # type: ignore path_format_arguments = { 'reservationOrderId': self._serialize.url("reservation_order_id", reservation_order_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'ChangeDirectoryRequest') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.Error, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ChangeDirectoryResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized change_directory.metadata = {'url': '/providers/Microsoft.Capacity/reservationOrders/{reservationOrderId}/changeDirectory'} # type: ignore
the-stack_0_22193
import socket def invert_dict(dict): rv = {} for key, values in dict.items(): for value in values: if value in rv: raise ValueError rv[value] = key return rv class HTTPException(Exception): def __init__(self, code, message=""): self.code = code self.message = message def _open_socket(host, port): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if port != 0: sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((host, port)) sock.listen(5) return sock def is_bad_port(port): """ Bad port as per https://fetch.spec.whatwg.org/#port-blocking """ return port in [ 1, # tcpmux 7, # echo 9, # discard 11, # systat 13, # daytime 15, # netstat 17, # qotd 19, # chargen 20, # ftp-data 21, # ftp 22, # ssh 23, # telnet 25, # smtp 37, # time 42, # name 43, # nicname 53, # domain 77, # priv-rjs 79, # finger 87, # ttylink 95, # supdup 101, # hostriame 102, # iso-tsap 103, # gppitnp 104, # acr-nema 109, # pop2 110, # pop3 111, # sunrpc 113, # auth 115, # sftp 117, # uucp-path 119, # nntp 123, # ntp 135, # loc-srv / epmap 139, # netbios 143, # imap2 179, # bgp 389, # ldap 427, # afp (alternate) 465, # smtp (alternate) 512, # print / exec 513, # login 514, # shell 515, # printer 526, # tempo 530, # courier 531, # chat 532, # netnews 540, # uucp 548, # afp 556, # remotefs 563, # nntp+ssl 587, # smtp (outgoing) 601, # syslog-conn 636, # ldap+ssl 993, # ldap+ssl 995, # pop3+ssl 2049, # nfs 3659, # apple-sasl 4045, # lockd 6000, # x11 6665, # irc (alternate) 6666, # irc (alternate) 6667, # irc (default) 6668, # irc (alternate) 6669, # irc (alternate) 6697, # irc+tls ] def get_port(host): port = 0 while True: free_socket = _open_socket(host, 0) port = free_socket.getsockname()[1] free_socket.close() if not is_bad_port(port): break return port
the-stack_0_22194
""" Tests of the XBlock-family functionality mixins """ from __future__ import absolute_import, division, print_function, unicode_literals from datetime import datetime from unittest import TestCase import ddt as ddt from lxml import etree import mock import pytz import six from xblock.core import XBlock, XBlockAside from xblock.fields import List, Scope, Integer, String, ScopeIds, UNIQUE_ID, DateTime from xblock.field_data import DictFieldData from xblock.mixins import ScopedStorageMixin, HierarchyMixin, IndexInfoMixin, ViewsMixin, XML_NAMESPACES from xblock.runtime import Runtime class AttrAssertionMixin(TestCase): """ A mixin to add attribute assertion methods to TestCases. """ def assertHasAttr(self, obj, attr): "Assert that `obj` has the attribute named `attr`." self.assertTrue(hasattr(obj, attr), "{!r} doesn't have attribute {!r}".format(obj, attr)) def assertNotHasAttr(self, obj, attr): "Assert that `obj` doesn't have the attribute named `attr`." self.assertFalse(hasattr(obj, attr), "{!r} has attribute {!r}".format(obj, attr)) class TestScopedStorageMixin(AttrAssertionMixin, TestCase): "Tests of the ScopedStorageMixin." class ScopedStorageMixinTester(ScopedStorageMixin): """Toy class for ScopedStorageMixin testing""" field_a = Integer(scope=Scope.settings) field_b = Integer(scope=Scope.content) class ChildClass(ScopedStorageMixinTester): """Toy class for ModelMetaclass testing""" pass class FieldsMixin(object): """Toy mixin for field testing""" field_c = Integer(scope=Scope.settings) class MixinChildClass(FieldsMixin, ScopedStorageMixinTester): """Toy class for ScopedStorageMixin testing with mixed-in fields""" pass class MixinGrandchildClass(MixinChildClass): """Toy class for ScopedStorageMixin testing with inherited mixed-in fields""" pass def test_scoped_storage_mixin(self): # `ModelMetaclassTester` and `ChildClass` both obtain the `fields` attribute # from the `ModelMetaclass`. Since this is not understood by static analysis, # silence this error for the duration of this test. # pylint: disable=E1101 self.assertIsNot(self.ScopedStorageMixinTester.fields, self.ChildClass.fields) self.assertHasAttr(self.ScopedStorageMixinTester, 'field_a') self.assertHasAttr(self.ScopedStorageMixinTester, 'field_b') self.assertIs(self.ScopedStorageMixinTester.field_a, self.ScopedStorageMixinTester.fields['field_a']) self.assertIs(self.ScopedStorageMixinTester.field_b, self.ScopedStorageMixinTester.fields['field_b']) self.assertHasAttr(self.ChildClass, 'field_a') self.assertHasAttr(self.ChildClass, 'field_b') self.assertIs(self.ChildClass.field_a, self.ChildClass.fields['field_a']) self.assertIs(self.ChildClass.field_b, self.ChildClass.fields['field_b']) def test_with_mixins(self): # Testing model metaclass with mixins # `MixinChildClass` and `MixinGrandchildClass` both obtain the `fields` attribute # from the `ScopedStorageMixin`. Since this is not understood by static analysis, # silence this error for the duration of this test. # pylint: disable=E1101 self.assertHasAttr(self.MixinChildClass, 'field_a') self.assertHasAttr(self.MixinChildClass, 'field_c') self.assertIs(self.MixinChildClass.field_a, self.MixinChildClass.fields['field_a']) self.assertIs(self.FieldsMixin.field_c, self.MixinChildClass.fields['field_c']) self.assertHasAttr(self.MixinGrandchildClass, 'field_a') self.assertHasAttr(self.MixinGrandchildClass, 'field_c') self.assertIs(self.MixinGrandchildClass.field_a, self.MixinGrandchildClass.fields['field_a']) self.assertIs(self.MixinGrandchildClass.field_c, self.MixinGrandchildClass.fields['field_c']) class TestHierarchyMixin(AttrAssertionMixin, TestCase): "Tests of the HierarchyMixin." class HasChildren(HierarchyMixin): """Toy class for ChildrenModelMetaclass testing""" has_children = True class WithoutChildren(HierarchyMixin): """Toy class for ChildrenModelMetaclass testing""" pass class InheritedChildren(HasChildren): """Toy class for ChildrenModelMetaclass testing""" pass def test_children_metaclass(self): # `HasChildren` and `WithoutChildren` both obtain the `children` attribute and # the `has_children` method from the `ChildrenModelMetaclass`. Since this is not # understood by static analysis, silence this error for the duration of this test. # pylint: disable=E1101 self.assertTrue(self.HasChildren.has_children) self.assertFalse(self.WithoutChildren.has_children) self.assertTrue(self.InheritedChildren.has_children) self.assertHasAttr(self.HasChildren, 'children') self.assertNotHasAttr(self.WithoutChildren, 'children') self.assertHasAttr(self.InheritedChildren, 'children') self.assertIsInstance(self.HasChildren.children, List) self.assertEqual(Scope.children, self.HasChildren.children.scope) self.assertIsInstance(self.InheritedChildren.children, List) self.assertEqual(Scope.children, self.InheritedChildren.children.scope) class TestIndexInfoMixin(AttrAssertionMixin): """ Tests for Index """ class IndexInfoMixinTester(IndexInfoMixin): """Test class for index mixin""" pass def test_index_info(self): self.assertHasAttr(self.IndexInfoMixinTester, 'index_dictionary') with_index_info = self.IndexInfoMixinTester().index_dictionary() self.assertFalse(with_index_info) self.assertTrue(isinstance(with_index_info, dict)) class TestViewsMixin(TestCase): """ Tests for ViewsMixin """ def test_supports_view_decorator(self): """ Tests the @supports decorator for xBlock view methods """ class SupportsDecoratorTester(ViewsMixin): """ Test class for @supports decorator """ @ViewsMixin.supports("a_functionality") def functionality_supported_view(self): """ A view that supports a functionality """ pass # pragma: no cover @ViewsMixin.supports("functionality1", "functionality2") def multi_featured_view(self): """ A view that supports multiple functionalities """ pass # pragma: no cover def an_unsupported_view(self): """ A view that does not support any functionality """ pass # pragma: no cover test_xblock = SupportsDecoratorTester() for view_name, functionality, expected_result in ( ("functionality_supported_view", "a_functionality", True), ("functionality_supported_view", "bogus_functionality", False), ("functionality_supported_view", None, False), ("an_unsupported_view", "a_functionality", False), ("multi_featured_view", "functionality1", True), ("multi_featured_view", "functionality2", True), ("multi_featured_view", "bogus_functionality", False), ): self.assertEqual( test_xblock.has_support(getattr(test_xblock, view_name), functionality), expected_result ) def test_has_support_override(self): """ Tests overriding has_support """ class HasSupportOverrideTester(ViewsMixin): """ Test class for overriding has_support """ def has_support(self, view, functionality): """ Overrides implementation of has_support """ return functionality == "a_functionality" test_xblock = HasSupportOverrideTester() for view_name, functionality, expected_result in ( ("functionality_supported_view", "a_functionality", True), ("functionality_supported_view", "bogus_functionality", False), ): self.assertEqual( test_xblock.has_support(getattr(test_xblock, view_name, None), functionality), expected_result ) @ddt.ddt class TestXmlSerializationMixin(TestCase): """ Tests for XmlSerialization Mixin """ # pylint:disable=invalid-name class TestXBlock(XBlock): """ XBlock for XML export test """ etree_node_tag = 'test_xblock' str_field = String() str_str_default = String(default="default") str_str_default_force_export = String(default="default", force_export=True) str_uid_default = String(default=UNIQUE_ID) str_uid_default_force_export = String(default=UNIQUE_ID, force_export=True) str_none_default = String(default=None) str_none_default_force_export = String(default=None, force_export=True) # pylint:disable=invalid-name class TestXBlockAside(XBlockAside): """ XBlockAside for XML export test """ etree_node_tag = 'test_xblock_aside' str_field = String() str_str_default = String(default="default") class TestXBlockWithDateTime(XBlock): """ XBlock for DateTime fields export """ etree_node_tag = 'test_xblock_with_datetime' datetime = DateTime(default=None) def setUp(self): """ Construct test XBlocks. """ self.test_xblock = self._make_block(self.TestXBlock) self.test_xblock_tag = self.TestXBlock.etree_node_tag self.test_xblock_datetime = self._make_block(self.TestXBlockWithDateTime) self.test_xblock_datetime_tag = self.TestXBlockWithDateTime.etree_node_tag self.test_xblock_aside = self._make_block(self.TestXBlockAside) self.test_xblock_aside_tag = self.TestXBlockAside.etree_node_tag def _make_block(self, block_type=None): """ Creates a test block """ block_type = block_type if block_type else self.TestXBlock runtime_mock = mock.Mock(spec=Runtime) scope_ids = ScopeIds("user_id", block_type.etree_node_tag, "def_id", "usage_id") return block_type(runtime=runtime_mock, field_data=DictFieldData({}), scope_ids=scope_ids) def _assert_node_attributes(self, node, expected_attributes, entry_point=None): """ Checks XML node attributes to match expected_attributes""" node_attributes = list(node.keys()) node_attributes.remove('xblock-family') self.assertEqual(node.get('xblock-family'), entry_point if entry_point else self.TestXBlock.entry_point) self.assertEqual(set(node_attributes), set(expected_attributes.keys())) for key, value in six.iteritems(expected_attributes): if value != UNIQUE_ID: self.assertEqual(node.get(key), value) else: self.assertIsNotNone(node.get(key)) def _assert_node_elements(self, node, expected_elements): """ Checks XML node elements to match expected elements. """ node_elements = list(node) self.assertEqual(set([elem.tag for elem in node_elements]), set(expected_elements.keys())) # All elements on the node are expected to have a "none"="true" attribute. for elem in node: self.assertEqual(elem.get('none'), 'true') def test_no_fields_set_add_xml_to_node(self): """ Tests that no fields are set on a TestXBlock when initially made and no fields are present in the XML (besides force-exported defaults). """ node = etree.Element(self.test_xblock_tag) # Precondition check: no fields are set. for field_name in six.iterkeys(self.test_xblock.fields): self.assertFalse(self.test_xblock.fields[field_name].is_set_on(self.test_xblock)) self.test_xblock.add_xml_to_node(node) self._assert_node_attributes( node, { 'str_str_default_force_export': 'default', 'str_uid_default_force_export': UNIQUE_ID } ) self._assert_node_elements( node, { # The tag is prefixed with {namespace}. '{{{}}}{}'.format( XML_NAMESPACES["option"], 'str_none_default_force_export' ): None } ) def test_set_fields_add_xml_to_node(self): """ Tests that set fields appear in XML after add_xml_to_node. """ node = etree.Element(self.test_xblock_tag) self.test_xblock.str_field = 'str_field_val' self.test_xblock.str_str_default = 'str_str_default_val' self.test_xblock.str_str_default_force_export = 'str_str_default_force_export_val' self.test_xblock.str_uid_default = 'str_uid_default_val' self.test_xblock.str_uid_default_force_export = 'str_uid_default_force_export_val' self.test_xblock.str_none_default = 'str_none_default_val' self.test_xblock.str_none_default_force_export = 'str_none_default_force_export_val' self.test_xblock.add_xml_to_node(node) self._assert_node_attributes( node, { 'str_field': 'str_field_val', 'str_str_default': 'str_str_default_val', 'str_str_default_force_export': 'str_str_default_force_export_val', 'str_uid_default': 'str_uid_default_val', 'str_uid_default_force_export': 'str_uid_default_force_export_val', 'str_none_default': 'str_none_default_val', 'str_none_default_force_export': 'str_none_default_force_export_val', } ) self._assert_node_elements(node, {}) def test_set_field_to_none_add_xml_to_node(self): """ Tests add_xml_to_node with String field value set to None. """ node = etree.Element(self.test_xblock_tag) # Now set all fields to None. self.test_xblock.str_field = None self.test_xblock.str_str_default = None self.test_xblock.str_str_default_force_export = None self.test_xblock.str_uid_default = None self.test_xblock.str_uid_default_force_export = None self.test_xblock.str_none_default = None self.test_xblock.str_none_default_force_export = None self.test_xblock.add_xml_to_node(node) self._assert_node_attributes(node, {}) self._assert_node_elements( node, { # The tags are prefixed with {namespace}. '{{{}}}{}'.format(XML_NAMESPACES["option"], tag): None for tag in [ 'str_field', 'str_str_default', 'str_str_default_force_export', 'str_uid_default', 'str_uid_default_force_export', 'str_none_default', 'str_none_default_force_export' ] } ) def test_set_unset_then_add_xml_to_node(self): """ Tests add_xml_to_node with non-UNIQUE_ID String field value unset after being set. """ node = etree.Element(self.test_xblock_tag) # Now set some fields to values. self.test_xblock.str_field = None self.test_xblock.str_str_default = 'water is wet' self.test_xblock.str_str_default_force_export = '' self.test_xblock.str_uid_default = 'smart' self.test_xblock.str_uid_default_force_export = '47' self.test_xblock.str_none_default = '' self.test_xblock.str_none_default_force_export = None # Now unset those same fields. del self.test_xblock.str_field del self.test_xblock.str_str_default del self.test_xblock.str_str_default_force_export del self.test_xblock.str_uid_default del self.test_xblock.str_uid_default_force_export del self.test_xblock.str_none_default del self.test_xblock.str_none_default_force_export self.test_xblock.add_xml_to_node(node) # The fields should no longer be present in the XML representation. self._assert_node_attributes( node, { 'str_str_default_force_export': 'default', 'str_uid_default_force_export': UNIQUE_ID } ) self._assert_node_elements( node, { # The tag is prefixed with {namespace}. '{{{}}}{}'.format( XML_NAMESPACES["option"], 'str_none_default_force_export' ): None } ) def test_xblock_aside_add_xml_to_node(self): """ Tests that add_xml_to_node works proper for xblock aside. """ node = etree.Element(self.test_xblock_aside_tag) self.test_xblock_aside.str_field = 'str_field_val_aside' self.test_xblock_aside.str_str_default = 'str_str_default_val' self.test_xblock_aside.add_xml_to_node(node) self._assert_node_attributes( node, { 'str_field': 'str_field_val_aside', 'str_str_default': 'str_str_default_val', }, self.TestXBlockAside.entry_point ) self._assert_node_elements(node, {}) @ddt.data( (None, {'datetime': ''}), (datetime(2014, 4, 1, 2, 3, 4, 567890).replace(tzinfo=pytz.utc), {'datetime': '2014-04-01T02:03:04.567890'}) ) @ddt.unpack def test_datetime_serialization(self, value, expected_attributes): """ Tests exporting DateTime fields to XML """ node = etree.Element(self.test_xblock_datetime_tag) self.test_xblock_datetime.datetime = value self.test_xblock_datetime.add_xml_to_node(node) self._assert_node_attributes(node, expected_attributes)
the-stack_0_22196
import inspect from collections import OrderedDict from typing import List, Callable, Tuple import torch from pytorch_toolbelt.modules import ACT_RELU, get_activation_block from pytorch_toolbelt.modules.encoders import EncoderModule, make_n_channel_input from torch import nn, Tensor __all__ = ["StackedHGEncoder", "StackedSupervisedHGEncoder"] def conv1x1_bn_act(in_channels, out_channels, activation=nn.ReLU): return nn.Sequential( OrderedDict( [ ("conv", nn.Conv2d(in_channels, out_channels, kernel_size=1)), ("bn", nn.BatchNorm2d(out_channels)), ("act", activation(inplace=True)), ] ) ) class HGResidualBlock(nn.Module): def __init__(self, input_channels: int, output_channels: int, reduction=2, activation: Callable = nn.ReLU): super(HGResidualBlock, self).__init__() mid_channels = input_channels // reduction self.bn1 = nn.BatchNorm2d(input_channels) self.act1 = activation(inplace=True) self.conv1 = nn.Conv2d(input_channels, mid_channels, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(mid_channels) self.act2 = activation(inplace=True) self.conv2 = nn.Conv2d(mid_channels, mid_channels, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(mid_channels) self.act3 = activation(inplace=True) self.conv3 = nn.Conv2d(mid_channels, output_channels, kernel_size=1, bias=True) if input_channels == output_channels: self.skip_layer = nn.Identity() else: self.skip_layer = nn.Conv2d(input_channels, output_channels, kernel_size=1) torch.nn.init.zeros_(self.skip_layer.bias) torch.nn.init.zeros_(self.conv3.bias) def forward(self, x: Tensor) -> Tensor: # skipcq: PYL-W0221 residual = self.skip_layer(x) out = self.bn1(x) out = self.act1(out) out = self.conv1(out) out = self.bn2(out) out = self.act2(out) out = self.conv2(out) out = self.bn3(out) out = self.act3(out) out = self.conv3(out) out += residual return out class HGStemBlock(nn.Module): def __init__(self, input_channels, output_channels, activation: Callable = nn.ReLU): super().__init__() self.conv1 = nn.Conv2d(input_channels, 16, kernel_size=3, padding=1, stride=2, bias=False) self.bn1 = nn.BatchNorm2d(16) self.act1 = activation(inplace=True) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1, stride=1, bias=False) self.bn2 = nn.BatchNorm2d(32) self.act2 = activation(inplace=True) self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2, bias=False) self.bn3 = nn.BatchNorm2d(64) self.act3 = activation(inplace=True) self.residual1 = HGResidualBlock(64, 128) self.residual2 = HGResidualBlock(128, output_channels) def forward(self, x: Tensor) -> Tensor: # skipcq: PYL-W0221 x = self.act1(self.bn1(self.conv1(x))) x = self.act2(self.bn2(self.conv2(x))) x = self.act3(self.bn3(self.conv3(x))) x = self.residual1(x) x = self.residual2(x) return x class HGBlock(nn.Module): """ A single Hourglass model block. """ def __init__( self, depth: int, input_features: int, features, increase=0, activation=nn.ReLU, repeats=1, pooling_block=nn.MaxPool2d, ): super(HGBlock, self).__init__() nf = features + increase if inspect.isclass(pooling_block) and issubclass(pooling_block, (nn.MaxPool2d, nn.AvgPool2d)): self.down = pooling_block(kernel_size=2, padding=0, stride=2) else: self.down = pooling_block(input_features) if repeats == 1: self.up1 = HGResidualBlock(input_features, features, activation=activation) self.low1 = HGResidualBlock(input_features, nf, activation=activation) else: up_blocks = [] up_input_features = input_features for _ in range(repeats): up_blocks.append(HGResidualBlock(up_input_features, features)) up_input_features = features self.up1 = nn.Sequential(*up_blocks) down_blocks = [] down_input_features = input_features for _ in range(repeats): up_blocks.append(HGResidualBlock(down_input_features, nf)) down_input_features = nf self.low1 = nn.Sequential(*down_blocks) self.depth = depth # Recursive hourglass if self.depth > 1: self.low2 = HGBlock( depth - 1, nf, nf, increase=increase, pooling_block=pooling_block, activation=activation, repeats=repeats, ) else: self.low2 = HGResidualBlock(nf, nf, activation=activation) self.low3 = HGResidualBlock(nf, features, activation=activation) self.up = nn.Upsample(scale_factor=2, mode="nearest") def forward(self, x: Tensor) -> Tensor: # skipcq: PYL-W0221 up1 = self.up1(x) pool1 = self.down(x) low1 = self.low1(pool1) low2 = self.low2(low1) low3 = self.low3(low2) up2 = self.up(low3) hg = up1 + up2 return hg class HGFeaturesBlock(nn.Module): def __init__(self, features: int, activation: Callable, blocks=1): super().__init__() residual_blocks = [HGResidualBlock(features, features, activation=activation) for _ in range(blocks)] self.residuals = nn.Sequential(*residual_blocks) self.linear = conv1x1_bn_act(features, features, activation=activation) def forward(self, x: Tensor) -> Tensor: # skipcq: PYL-W0221 x = self.residuals(x) x = self.linear(x) return x class HGSupervisionBlock(nn.Module): def __init__(self, features, supervision_channels: int): super().__init__() self.squeeze = nn.Conv2d(features, supervision_channels, kernel_size=1) self.expand = nn.Conv2d(supervision_channels, features, kernel_size=1) def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: # skipcq: PYL-W0221 sup_mask = self.squeeze(x) sup_features = self.expand(sup_mask) return sup_mask, sup_features class StackedHGEncoder(EncoderModule): """ Original implementation: https://github.com/princeton-vl/pytorch_stacked_hourglass/blob/master/models/layers.py """ def __init__( self, input_channels: int = 3, stack_level: int = 8, depth: int = 4, features: int = 256, activation=ACT_RELU, repeats=1, pooling_block=nn.MaxPool2d, ): super().__init__( channels=[features] + [features] * stack_level, strides=[4] + [4] * stack_level, layers=list(range(0, stack_level + 1)), ) self.stack_level = stack_level self.depth_level = depth self.num_features = features act = get_activation_block(activation) self.stem = HGStemBlock(input_channels, features, activation=act) input_features = features modules = [] for _ in range(stack_level): modules.append( HGBlock( depth, input_features, features, increase=0, activation=act, repeats=repeats, pooling_block=pooling_block, ) ) input_features = features self.num_blocks = len(modules) self.blocks = nn.ModuleList(modules) self.features = nn.ModuleList( [HGFeaturesBlock(features, blocks=4, activation=act) for _ in range(stack_level)] ) self.merge_features = nn.ModuleList( [nn.Conv2d(features, features, kernel_size=1) for _ in range(stack_level - 1)] ) def __str__(self): return f"hg_s{self.stack_level}_d{self.depth_level}_f{self.num_features}" def forward(self, x: Tensor) -> List[Tensor]: # skipcq: PYL-W0221 x = self.stem(x) outputs = [x] for i, hourglass in enumerate(self.blocks): features = self.features[i](hourglass(x)) outputs.append(features) if i < self.num_blocks - 1: x = x + self.merge_features[i](features) return outputs def change_input_channels(self, input_channels: int, mode="auto"): self.stem.conv1 = make_n_channel_input(self.stem.conv1, input_channels, mode) return self @property def encoder_layers(self) -> List[nn.Module]: return [self.stem] + list(self.blocks) class StackedSupervisedHGEncoder(StackedHGEncoder): def __init__( self, supervision_channels: int, input_channels: int = 3, stack_level: int = 8, depth: int = 4, features: int = 256, activation=ACT_RELU, repeats=1, pooling_block=nn.MaxPool2d, supervision_block=HGSupervisionBlock, ): super().__init__( input_channels=input_channels, stack_level=stack_level, depth=depth, features=features, activation=activation, repeats=repeats, pooling_block=pooling_block, ) self.supervision_blocks = nn.ModuleList( [supervision_block(features, supervision_channels) for _ in range(stack_level - 1)] ) def forward(self, x: Tensor) -> Tuple[List[Tensor], List[Tensor]]: # skipcq: PYL-W0221 x = self.stem(x) outputs = [x] supervision = [] for i, hourglass in enumerate(self.blocks): features = self.features[i](hourglass(x)) outputs.append(features) if i < self.num_blocks - 1: sup_mask, sup_features = self.supervision_blocks[i](features) supervision.append(sup_mask) x = x + self.merge_features[i](features) + sup_features return outputs, supervision
the-stack_0_22197
from datetime import date, datetime from decimal import Decimal import logging import re from django.contrib.auth.models import User from django.core.exceptions import ValidationError from django.core.urlresolvers import get_callable from django.db import models from django.db.models import F, ObjectDoesNotExist, Sum, Q from django.utils.translation import ugettext_lazy as _ import plata from plata.fields import CurrencyField, JSONField from plata.shop.countries import countries logger = logging.getLogger('plata.shop.order') #modified by fruitschen try: from custom_site.custom_order import OrderMinxin except: class OrderMinxin(object):pass class TaxClass(models.Model): """ Tax class, storing a tax rate TODO informational / advisory currency or country fields? """ name = models.CharField(_('name'), max_length=100) rate = models.DecimalField(_('rate'), max_digits=10, decimal_places=2, help_text=_('Tax rate in percent.')) priority = models.PositiveIntegerField(_('priority'), default=0, help_text = _('Used to order the tax classes in the administration interface.')) class Meta: ordering = ['-priority'] verbose_name = _('tax class') verbose_name_plural = _('tax classes') def __unicode__(self): return self.name class BillingShippingAddress(models.Model): """ Abstract base class for all models storing a billing and a shipping address """ ADDRESS_FIELDS = ['company', 'first_name', 'last_name', 'address', 'zip_code', 'city', 'country', 'call_prefix', 'phone'] billing_company = models.CharField(_('company'), max_length=100, blank=True) billing_first_name = models.CharField(_('first name'), max_length=100) billing_last_name = models.CharField(_('last name'), max_length=100) billing_call_prefix = models.CharField(_('phone prefix'), max_length=100) billing_phone = models.CharField(_('Phone'), max_length=50) billing_address = models.TextField(_('address')) billing_zip_code = models.CharField(_('ZIP code'), max_length=50) billing_city = models.CharField(_('city'), max_length=100) billing_country = models.CharField(_('country'), max_length=3, choices=countries) shipping_same_as_billing = models.BooleanField(_('shipping address equals billing address'), default=True) shipping_company = models.CharField(_('company'), max_length=100, blank=True) shipping_first_name = models.CharField(_('first name'), max_length=100, blank=True) shipping_last_name = models.CharField(_('last name'), max_length=100, blank=True) shipping_address = models.TextField(_('address'), blank=True) shipping_call_prefix = models.CharField(_('phone prefix'), max_length=100, blank=True) shipping_phone = models.CharField(_('Phone'), max_length=50, blank=True) shipping_zip_code = models.CharField(_('ZIP code'), max_length=50, blank=True) shipping_city = models.CharField(_('city'), max_length=100, blank=True) shipping_country = models.CharField(_('country'), max_length=3, blank=True, choices=countries) class Meta: abstract = True def addresses(self): """ Return a ``dict`` containing a billing and a shipping address, taking into account the value of the ``shipping_same_as_billing`` flag """ billing = dict((f, getattr(self, 'billing_%s' % f)) for f in self.ADDRESS_FIELDS) if 'country' in billing: billing['country'] = self.get_billing_country_display() if self.shipping_same_as_billing: shipping = billing else: shipping = dict((f, getattr(self, 'shipping_%s' % f)) for f in self.ADDRESS_FIELDS) if 'country' in shipping: shipping['country'] = self.get_shipping_country_display() or self.get_billing_country_display() return {'billing': billing, 'shipping': shipping} @classmethod def address_fields(cls, prefix=''): return ['%s%s' % (prefix, f) for f in cls.ADDRESS_FIELDS] class Order(BillingShippingAddress, OrderMinxin): """The main order model. Used for carts and orders alike.""" #: Order object is a cart. CART = 10 #: Checkout process has started. CHECKOUT = 20 #: Order has been confirmed, but it not (completely) paid for yet. CONFIRMED = 30 #: Order has been completely paid for. PAID = 40 #: Order has been completed. Plata itself never sets this state, #: it is only meant for use by the shop owners. COMPLETED = 50 STATUS_CHOICES = ( (CART, _('Is a cart')), (CHECKOUT, _('Checkout process started')), (CONFIRMED, _('Order has been confirmed')), (PAID, _('Order has been paid')), (COMPLETED, _('Order has been completed')), ) created = models.DateTimeField(_('created'), default=datetime.now) confirmed = models.DateTimeField(_('confirmed'), blank=True, null=True) user = models.ForeignKey(User, blank=True, null=True, verbose_name=_('user'), related_name='orders') language_code = models.CharField(_('language'), max_length=10, default='', blank=True) status = models.PositiveIntegerField(_('status'), choices=STATUS_CHOICES, default=CART) _order_id = models.CharField(_('order ID'), max_length=20, blank=True) email = models.EmailField(_('e-mail address')) currency = CurrencyField() items_subtotal = models.DecimalField(_('subtotal'), max_digits=18, decimal_places=4, default=Decimal('0.00')) items_discount = models.DecimalField(_('items discount'), max_digits=18, decimal_places=4, default=Decimal('0.00')) items_tax = models.DecimalField(_('items tax'), max_digits=18, decimal_places=4, default=Decimal('0.00')) shipping_method = models.CharField(_('shipping method'), max_length=100, blank=True) shipping_cost = models.DecimalField(_('shipping cost'), max_digits=18, decimal_places=4, blank=True, null=True) shipping_discount = models.DecimalField(_('shipping discount'), max_digits=18, decimal_places=4, blank=True, null=True) shipping_tax = models.DecimalField(_('shipping tax'), max_digits=18, decimal_places=4, default=Decimal('0.00')) total = models.DecimalField(_('total'), max_digits=18, decimal_places=4, default=Decimal('0.00')) paid = models.DecimalField(_('paid'), max_digits=18, decimal_places=4, default=Decimal('0.00'), help_text=_('This much has been paid already.')) notes = models.TextField(_('notes'), blank=True) data = JSONField(_('data'), blank=True, help_text=_('JSON-encoded additional data about the order payment.')) class Meta: verbose_name = _('order') verbose_name_plural = _('orders') def __unicode__(self): return self.order_id def save(self, *args, **kwargs): """Sequential order IDs for completed orders.""" if not self._order_id and self.status >= self.PAID: try: order = Order.objects.exclude(_order_id='').order_by('-_order_id')[0] latest = int(re.sub(r'[^0-9]', '', order._order_id)) except (IndexError, ValueError): latest = 0 self._order_id = 'O-%09d' % (latest + 1) super(Order, self).save(*args, **kwargs) @property def order_id(self): """ Returns ``_order_id`` (if it has been set) or a generic ID for this order. """ if self._order_id: return self._order_id return u'No. %d' % self.id def recalculate_total(self, save=True): """ Recalculates totals, discounts, taxes. """ items = list(self.items.all()) shared_state = {} processor_classes = [get_callable(processor) for processor\ in plata.settings.PLATA_ORDER_PROCESSORS] for p in (cls(shared_state) for cls in processor_classes): p.process(self, items) if save: self.save() [item.save() for item in items] @property def subtotal(self): """ Returns the order subtotal. """ # TODO: What about shipping? return sum((item.subtotal for item in self.items.all()), Decimal('0.00')).quantize(Decimal('0.00')) @property def discount(self): """ Returns the discount total. """ # TODO: What about shipping? return (sum((item.subtotal for item in self.items.all()), Decimal('0.00')) - sum((item.discounted_subtotal for item in self.items.all()), Decimal('0.00'))).quantize(Decimal('0.00')) @property def shipping(self): """ Returns the shipping cost, with or without tax depending on the ``PLATA_PRICE_INCLUDES_TAX`` setting. """ if plata.settings.PLATA_PRICE_INCLUDES_TAX: if self.shipping_cost is None: return None return self.shipping_cost - self.shipping_discount + self.shipping_tax else: logger.error('Shipping calculation with PLATA_PRICE_INCLUDES_TAX=False is not implemented yet') raise NotImplementedError @property def tax(self): """ Returns the tax total for this order, meaning tax on order items and tax on shipping. """ return (self.items_tax + self.shipping_tax).quantize(Decimal('0.00')) @property def balance_remaining(self): """ Returns the balance which needs to be paid by the customer to fully pay this order. This value is not necessarily the same as the order total, because there can be more than one order payment in principle. """ return (self.total - self.paid).quantize(Decimal('0.00')) def is_paid(self): import warnings warnings.warn( 'Order.is_paid() has been deprecated because its name is misleading. ' 'Test for `order.status >= order.PAID` or `not order.balance_remaining ' 'yourself.', DeprecationWarning) return self.balance_remaining <= 0 #: This validator is always called; basic consistency checks such as whether the #: currencies in the order match should be added here. VALIDATE_BASE = 10 #: A cart which fails the criteria added to the ``VALIDATE_CART`` group isn't #: considered a valid cart and the user cannot proceed to the checkout form. #: Stuff such as stock checking, minimal order total checking, or maximal items #: checking might be added here. VALIDATE_CART = 20 #: This should not be used while registering a validator, it's mostly useful as #: an argument to :meth:`~plata.shop.models.Order.validate` when you want to #: run all validators. VALIDATE_ALL = 100 VALIDATORS = {} @classmethod def register_validator(cls, validator, group): """ Registers another order validator in a validation group A validator is a callable accepting an order (and only an order). There are several types of order validators: - Base validators are always called - Cart validators: Need to validate for a valid cart - Checkout validators: Need to validate in the checkout process """ cls.VALIDATORS.setdefault(group, []).append(validator) def validate(self, group): """ Validates this order The argument determines which order validators are called: - ``Order.VALIDATE_BASE`` - ``Order.VALIDATE_CART`` - ``Order.VALIDATE_CHECKOUT`` - ``Order.VALIDATE_ALL`` """ for g in sorted(g for g in self.VALIDATORS.keys() if g<=group): for validator in self.VALIDATORS[g]: validator(self) def modify_item(self, product, relative=None, absolute=None, recalculate=True): """ Updates order with the given product - ``relative`` or ``absolute``: Add/subtract or define order item amount exactly - ``recalculate``: Recalculate order after cart modification (defaults to ``True``) Returns the ``OrderItem`` instance; if quantity is zero, the order item instance is deleted, the ``pk`` attribute set to ``None`` but the order item is returned anway. """ assert (relative is None) != (absolute is None), 'One of relative or absolute must be provided.' if self.status >= self.CONFIRMED: raise ValidationError(_('Cannot modify order once it has been confirmed.'), code='order_sealed') try: item = self.items.get(product=product) except self.items.model.DoesNotExist: item = self.items.model( order=self, product=product, quantity=0, currency=self.currency, ) if relative is not None: item.quantity += relative else: item.quantity = absolute if item.quantity > 0: try: price = product.get_price(currency=self.currency, orderitem=item) except ObjectDoesNotExist: logger.error('No price could be found for %s with currency %s' % ( product, self.currency)) raise price.handle_order_item(item) product.handle_order_item(item) item.save() else: if item.pk: item.delete() item.pk = None if recalculate: self.recalculate_total() # Reload item instance from DB to preserve field values # changed in recalculate_total if item.pk: item = self.items.get(pk=item.pk) try: self.validate(self.VALIDATE_BASE) except ValidationError: if item.pk: item.delete() raise return item @property def discount_remaining(self): """Remaining discount amount excl. tax""" return self.applied_discounts.remaining() def update_status(self, status, notes): """ Update the order status """ if status >= Order.CHECKOUT: if not self.items.count(): raise ValidationError(_('Cannot proceed to checkout without order items.'), code='order_empty') logger.info('Promoting %s to status %s' % (self, status)) instance = OrderStatus( order=self, status=status, notes=notes) instance.save() def reload(self): """ Return this order instance, reloaded from the database Used f.e. inside the payment processors when adding new payment records etc. """ return self.__class__._default_manager.get(pk=self.id) def validate_order_currencies(order): """Check whether order contains more than one or an invalid currency""" currencies = set(order.items.values_list('currency', flat=True)) if currencies and (len(currencies) > 1 or order.currency not in currencies): raise ValidationError(_('Order contains more than one currency.'), code='multiple_currency') Order.register_validator(validate_order_currencies, Order.VALIDATE_BASE) class OrderItem(models.Model): """Single order line item""" order = models.ForeignKey(Order, related_name='items') product = models.ForeignKey(plata.settings.PLATA_SHOP_PRODUCT, verbose_name=_('product'), blank=True, null=True, on_delete=models.SET_NULL) name = models.CharField(_('name'), max_length=100, blank=True) sku = models.CharField(_('SKU'), max_length=100, blank=True) quantity = models.IntegerField(_('quantity')) currency = CurrencyField() _unit_price = models.DecimalField(_('unit price'), max_digits=18, decimal_places=4, help_text=_('Unit price excl. tax')) _unit_tax = models.DecimalField(_('unit tax'), max_digits=18, decimal_places=4) tax_rate = models.DecimalField(_('tax rate'), max_digits=10, decimal_places=2) tax_class = models.ForeignKey(TaxClass, verbose_name=_('tax class'), blank=True, null=True, on_delete=models.SET_NULL) is_sale = models.BooleanField(_('is sale')) _line_item_price = models.DecimalField(_('line item price'), max_digits=18, decimal_places=4, default=0, help_text=_('Line item price excl. tax')) _line_item_discount = models.DecimalField(_('line item discount'), max_digits=18, decimal_places=4, blank=True, null=True, help_text=_('Discount excl. tax')) _line_item_tax = models.DecimalField(_('line item tax'), max_digits=18, decimal_places=4, default=0) data = JSONField(_('data'), blank=True, help_text=_('JSON-encoded additional data about the order payment.')) class Meta: ordering = ('product',) unique_together = (('order', 'product'),) verbose_name = _('order item') verbose_name_plural = _('order items') def __unicode__(self): return _(u'%(quantity)s of %(product)s') % {'quantity': self.quantity, 'product': self.product} @property def unit_price(self): if plata.settings.PLATA_PRICE_INCLUDES_TAX: return self._unit_price + self._unit_tax return self._unit_price @property def line_item_discount_excl_tax(self): return self._line_item_discount or 0 @property def line_item_discount_incl_tax(self): return self.line_item_discount_excl_tax * (1+self.tax_rate/100) @property def line_item_discount(self): if plata.settings.PLATA_PRICE_INCLUDES_TAX: return self.line_item_discount_incl_tax else: return self.line_item_discount_excl_tax @property def subtotal(self): return self.unit_price * self.quantity @property def discounted_subtotal_excl_tax(self): return self._line_item_price - (self._line_item_discount or 0) @property def discounted_subtotal_incl_tax(self): return self.discounted_subtotal_excl_tax + self._line_item_tax @property def discounted_subtotal(self): if plata.settings.PLATA_PRICE_INCLUDES_TAX: return self.discounted_subtotal_incl_tax else: return self.discounted_subtotal_excl_tax class OrderStatus(models.Model): """ Order status Stored in separate model so that the order status changes stay visible for analysis after the fact. """ order = models.ForeignKey(Order, related_name='statuses') created = models.DateTimeField(_('created'), default=datetime.now) status = models.PositiveIntegerField(_('status'), max_length=20, choices=Order.STATUS_CHOICES) notes = models.TextField(_('notes'), blank=True) class Meta: ordering = ('created', 'id') verbose_name = _('order status') verbose_name_plural = _('order statuses') def __unicode__(self): return (_(u'Status %(status)s for %(order)s') % { 'status': self.get_status_display(), 'order': self.order}) def save(self, *args, **kwargs): super(OrderStatus, self).save(*args, **kwargs) self.order.status = self.status if self.status >= Order.CONFIRMED and not self.order.confirmed: self.order.confirmed = datetime.now() elif self.status < Order.CONFIRMED: # Ensure that the confirmed date is not set self.order.confirmed = None self.order.save() class OrderPaymentManager(models.Manager): def pending(self): return self.filter(status=self.model.PENDING) def authorized(self): return self.filter(authorized__isnull=False) class OrderPayment(models.Model): """ Order payment Stores additional data from the payment interface for analysis and accountability. """ PENDING = 10 PROCESSED = 20 AUTHORIZED = 30 STATUS_CHOICES = ( (PENDING, _('pending')), (PROCESSED, _('processed')), (AUTHORIZED, _('authorized')), ) order = models.ForeignKey(Order, verbose_name=_('order'), related_name='payments') timestamp = models.DateTimeField(_('timestamp'), default=datetime.now) status = models.PositiveIntegerField(_('status'), choices=STATUS_CHOICES, default=PENDING) currency = CurrencyField() amount = models.DecimalField(_('amount'), max_digits=10, decimal_places=2) payment_module_key = models.CharField(_('payment module key'), max_length=20, help_text=_('Machine-readable identifier for the payment module used.')) payment_module = models.CharField(_('payment module'), max_length=50, blank=True, help_text=_('For example \'Cash on delivery\', \'PayPal\', ...')) payment_method = models.CharField(_('payment method'), max_length=50, blank=True, help_text=_('For example \'MasterCard\', \'VISA\' or some other card.')) transaction_id = models.CharField(_('transaction ID'), max_length=50, blank=True, help_text=_('Unique ID identifying this payment in the foreign system.')) authorized = models.DateTimeField(_('authorized'), blank=True, null=True, help_text=_('Point in time when payment has been authorized.')) notes = models.TextField(_('notes'), blank=True) data = JSONField(_('data'), blank=True, help_text=_('JSON-encoded additional data about the order payment.')) class Meta: ordering = ('-timestamp',) verbose_name = _('order payment') verbose_name_plural = _('order payments') objects = OrderPaymentManager() def __unicode__(self): return (_(u'%(authorized)s of %(currency)s %(amount).2f for %(order)s') % {'authorized': self.authorized and _(u'Authorized') or _(u'Not authorized'), 'currency': self.currency, 'amount': self.amount, 'order': self.order}) def _recalculate_paid(self): paid = OrderPayment.objects.authorized().filter( order=self.order_id, currency=F('order__currency'), ).aggregate(total=Sum('amount'))['total'] or 0 Order.objects.filter(id=self.order_id).update(paid=paid) def save(self, *args, **kwargs): super(OrderPayment, self).save(*args, **kwargs) self._recalculate_paid() if self.currency != self.order.currency: self.order.notes += u'\n' + _('Currency of payment %s does not match.') % self self.order.save() def delete(self, *args, **kwargs): super(OrderPayment, self).delete(*args, **kwargs) self._recalculate_paid() class PriceBase(models.Model): """ Price for a given product, currency, tax class and time period Prices should not be changed or deleted but replaced by more recent prices. (Deleting old prices does not hurt, but the price history cannot be reconstructed anymore if you'd need it.) The concrete implementation needs to provide a foreign key to the product model. """ class Meta: abstract = True ordering = ['-id'] verbose_name = _('price') verbose_name_plural = _('prices') currency = CurrencyField() _unit_price = models.DecimalField(_('unit price'), max_digits=18, decimal_places=4) tax_included = models.BooleanField(_('tax included'), help_text=_('Is tax included in given unit price?'), default=plata.settings.PLATA_PRICE_INCLUDES_TAX) tax_class = models.ForeignKey(TaxClass, verbose_name=_('tax class'), related_name='+') def __unicode__(self): return u'%s %.2f' % (self.currency, self.unit_price) def handle_order_item(self, item): """ Set price data on the ``OrderItem`` passed """ item._unit_price = self.unit_price_excl_tax item._unit_tax = self.unit_tax item.tax_rate = self.tax_class.rate item.tax_class = self.tax_class item.is_sale = False # Hardcoded; add an is_sale like in the ``Price`` class below @property def unit_tax(self): return self.unit_price_excl_tax * (self.tax_class.rate/100) @property def unit_price_incl_tax(self): if self.tax_included: return self._unit_price return self._unit_price * (1+self.tax_class.rate/100) @property def unit_price_excl_tax(self): if not self.tax_included: return self._unit_price return self._unit_price / (1+self.tax_class.rate/100) @property def unit_price(self): if plata.settings.PLATA_PRICE_INCLUDES_TAX: return self.unit_price_incl_tax else: return self.unit_price_excl_tax
the-stack_0_22199
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, division, print_function, unicode_literals) from numpy.testing import assert_allclose from ...datasets import ( load_arf_fits_table, load_poisson_stats_image, load_psf_fits_table, ) def test_load_arf_fits_table(): data = load_arf_fits_table() assert len(data) == 2 def test_load_poisson_stats_image(): data = load_poisson_stats_image() assert data.sum() == 40896 images = load_poisson_stats_image(extra_info=True) refs = dict(counts=40896, model=41000, source=1000, background=40000) for name, expected in refs.items(): assert_allclose(images[name].sum(), expected) def test_load_psf_fits_table(): data = load_psf_fits_table() assert len(data) == 2
the-stack_0_22200
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Tue Nov 28 16:58:46 2017 @author: kaihong """ from __future__ import print_function import numpy as np import scipy from optimizer import SolveGaussHelmertProblem from numpy.random import randn from pycppad import independent,adfun def GenerateAutoDiffFunction(g, x0, l0): dim_x = x0.shape[0] a_var = independent(np.hstack([x0, l0])) jacobian = adfun(a_var, g(a_var[:dim_x], a_var[dim_x:])).jacobian def g_autodiff(x, l): err = g(x, l) J = jacobian(np.hstack([x, l])) return err, J[:, :dim_x], J[:, dim_x:] return g_autodiff def Rot2ax(R): """Rotation matrix to angle-axis vector""" tr = np.trace(R) a = np.array( [R[2,1]-R[1,2], R[0,2]-R[2,0], R[1,0]-R[0,1]] ) an = np.linalg.norm(a) phi= np.arctan2(an, tr-1) if np.abs(phi) < 1e-12: return np.zeros(3,'d') else: return phi/an*a def skew(v): return np.array([[ 0, -v[2], v[1]], [ v[2], 0, -v[0]], [-v[1], v[0], 0 ]]) def ax2Rot(r): """Angle-axis vector to rotation matrix""" p = np.linalg.norm(r) if np.abs(p) < 1e-12: return np.eye(3) else: S = skew(r/p) return np.eye(3) + np.sin(p)*S + (1.0-np.cos(p))*S.dot(S) def MfromRT(r,t): T = np.eye(4) T[:3,:3] = ax2Rot(r) T[:3, 3] = t return T def RTfromM(mat): return Rot2ax(mat[:3,:3]), mat[:3,3] #%% def ExtrinsicCalibration3D(trajectories_list, trajectories_cov_list=None, *args): """ Motion-base sensor calibration Constrain equations: ( I3 - R(r_b) )*xi_b = t_b - R(eta_b)*t_a and R(eta_b)*r_a = r_b Input ----------- trajectories_list: list( list( 4x4 pose matrices ) ) Output ----------- calibration result as a list of matrix """ num_pose_list = list(map(len, trajectories_list)) if len(set(num_pose_list))!=1: raise ValueError("each trajectory should have the same number of poses") num_pose = num_pose_list[0] num_sensor = len(trajectories_list) num_solution = num_sensor-1 print("Input: %d sensors, each has %d poses" % (num_sensor, num_pose)) '''Assemble observation matrix lm, each row l = [ra,ta, ..., rm, tm]''' stacked_r_list = [ np.vstack( [ Rot2ax(pose_mat[:3,:3]) for pose_mat in trajectory] ) for trajectory in trajectories_list ] stacked_t_list = [ np.vstack( [ pose_mat[:3, 3] for pose_mat in trajectory] ) for trajectory in trajectories_list ] r_t_interleaved = map(np.hstack, zip(stacked_r_list, stacked_t_list)) lm = np.hstack( r_t_interleaved ) # lm.shape = (num_pose, 6*num_sensor) '''Assemble covariance matrix ''' if trajectories_cov_list is None: Cov_ll = np.tile(np.eye(6*num_sensor), (num_pose, 1, 1)) else: Cov_ll = np.zeros((num_pose, 6*num_sensor, 6*num_sensor)) cov_list_time_majored = list(zip(*trajectories_cov_list)) # list[sensor_idx][pose_idx] -> list[pose_idx][sensor_idx] for pose_idx in range(num_pose): Cov_ll[pose_idx, :, :] = scipy.linalg.block_diag(*cov_list_time_majored[pose_idx]) '''Calculate close form solution as initial guess''' x0_list = [] I3 = np.eye(3) for s in range(1, num_sensor): # rotation first H = stacked_r_list[0].T.dot(stacked_r_list[s]) U, d, Vt = np.linalg.svd(H) R = Vt.T.dot(U.T) # then translation A = np.vstack([ I3 - ax2Rot(r_) for r_ in stacked_r_list[s]]) b = np.hstack( stacked_t_list[s] - ( R.dot(stacked_t_list[0].T) ).T ) t = np.linalg.lstsq(A, b)[0] x0_list.append([Rot2ax(R), t]) x0 = np.array(x0_list).flatten() print('Initial guess:') map(lambda rt: print(MfromRT(*rt)), x0_list) '''Assemble constraint functions ''' def g(x, l): x = np.reshape(x, (num_solution, 6)) l = np.reshape(l, (num_sensor, 6)) r,t = np.split(l, 2, axis=1) e = [] for x_s, s in zip(x, range(1, num_sensor)): Rq = ax2Rot(x_s[0:3]) Rs = ax2Rot(r[s]) e.append(x_s[3:] - Rs.dot(x_s[3:]) + Rq.dot(t[0]) - t[s]) # g1 constraints e.append( Rq.dot(r[0]) - r[s] ) # full-constraints return np.hstack(e) g_diff = GenerateAutoDiffFunction(g, x0, lm[0,:]) '''solve''' xnu, Cov_xx, sigma_0, vv, w = SolveGaussHelmertProblem(g_diff, x0, lm, Cov_ll, *args) return [MfromRT(x[:3], x[3:]) for x in np.split(xnu, num_solution) ] #%% def demo_and_test(): def randsp(n=3): v = np.random.uniform(-1, 1, size=n) return v/np.linalg.norm(v) ''' ground truth transformation between sensors ''' num_sensor = 3 num_solution = num_sensor-1 x_true = np.array([randsp() for _ in range(num_solution*2) ]).ravel() # x= [r1,t1,...,rn,tn] Hm = [MfromRT(x[:3], x[3:]) for x in np.split(x_true, num_solution)] ''' generate ground truth trajectories ''' num_pose = 500 dM = [] Hm_inv = [np.linalg.inv(h) for h in Hm] for t in range(num_pose): dm = [MfromRT(randsp(),randsp())] # base sensor for h, h_inv in zip(Hm, Hm_inv): # other sensor dm.append( h.dot(dm[0]).dot(h_inv) ) dM.append(dm) trajectories_list = zip(*dM) ''' add measurement noise''' sigma_r = 1e-3 sigma_t = 1e-2 noisy_trajectories = [] for trajectory in trajectories_list: one_trajectory = [] for pose in trajectory: r,t = RTfromM(pose) new_pose = MfromRT( r+sigma_r*randn(3), t+sigma_t*randn(3)) one_trajectory.append(new_pose) noisy_trajectories.append(one_trajectory) trajectory_covs = [ [np.diag([sigma_r]*3 + [sigma_t]*3)**2] * num_pose ] * num_sensor H_est = ExtrinsicCalibration3D(noisy_trajectories, trajectory_covs) print("After refinement:") list(map(print, H_est)) print("Ground truth:") list(map(print, Hm)) if __name__ =='__main__': demo_and_test()
the-stack_0_22201
from . import api from flask import jsonify, request, g from ..models import Costs, Permission, WhoOwesWhom from main_app import db from .errors import forbidden from main_app.costs.cost_handler import cost_handle @api.route('/costs/<int:id>') def get_cost(id): cost = Costs.query.get_or_404(id) return jsonify(cost.to_json()), 200 @api.route('/costs/self') def view_user_costs(): costs = Costs.query.filter_by(who_spent=g.current_user.id).all() return jsonify({'costs': [cost.to_json() for cost in costs]}), 200 @api.route('/costs/group/<int:id>') def group_costs(id): costs = Costs.query.filter_by(group_id=id).all() return jsonify({'costs': [cost.to_json() for cost in costs]}), 200 @api.route('/costs/create', methods=['POST']) def create_cost(): cost = Costs.from_json(request.json) cost.who_spent = g.current_user.id db.session.add(cost) db.session.commit() return jsonify(cost.to_json()), 201 @api.route('/costs/<int:id>', methods=['DELETE']) def delete_cost(id): cost = Costs.query.get_or_404(id) if g.current_user.id == cost.who_spent or \ g.current_user.can(Permission.MODERATE): db.session.delete(cost) db.session.commit() return jsonify({'massage': 'Cost was deleted'}) else: return forbidden('Access denied') @api.route('/costs/<int:id>', methods=['PUT']) def update_cost(id): cost = Costs.query.get_or_404(id) if g.current_user == cost.author or \ g.current_user.can(Permission.MODERATE): cost.cost_title = request.json.get('cost_title') cost.spent_money = request.json.get('spent_money') cost.group_id = request.json.get('group_id') db.session.commit() return jsonify(cost.to_json()), {"massage": 'successfully updated'} return forbidden('Access denied') @api.route('/costs/calculate/<int:id>') def calculate_cost_group(id): cost_handle(id) return jsonify({'massage': 'All calculation, is done'}) @api.route('/costs/debt_table/<int:id>') def debt_table(id): who_to_whom = WhoOwesWhom.query.filter_by(group_id=id).all() for w in who_to_whom: if w.debt_amount == 0: db.session.delete(w) db.session.commit() continue return jsonify({"debt_row": [debt_row.to_json() for debt_row in who_to_whom]})
the-stack_0_22202
from functools import partial from .async_utils import fetch_schedules, fetch_episode_metadata from .remote import RemoteMixIn from .schedule import ChannelSchedule from ..search import ScheduleSearchMixIn from ..channel_ids import ChannelPicker from ...api.json_helpers import EpisodeMetadataPidJson from ...share import batch_multiprocess_with_return, async_errors from ...share.time import parse_abs_from_rel_date, parse_date_range __all__ = ["ChannelListings"] class ChannelListings(ScheduleSearchMixIn, RemoteMixIn): """ Listings for a given channel """ episode_reader_func = EpisodeMetadataPidJson.reader_func fetch_episode_metadata = fetch_episode_metadata # bind as method def __init__(self, channel_id, from_date=None, to_date=None, n_days=None): self.channel_id = channel_id from_date, to_date, n_days = parse_date_range(from_date, to_date, n_days) self.from_date, self.to_date, self.n_days = from_date, to_date, n_days self.schedules = self.make_schedules() self.fetch_schedules() @property def urlset(self): "Generator of URLs for async fetching" return (s.sched_url for s in self.schedules) def make_schedule(self, date, defer_pull=True): "Create schedule object; includes channel ID error handling" return ChannelSchedule(self.channel_id, date=date, defer_pull=defer_pull) def make_schedules(self, defer_pull=True): """ Make and return a list of ChannelSchedule objects and pull their URLs collectively in an efficient async procedure (not seriallly). """ return [ self.make_schedule( parse_abs_from_rel_date(self.from_date, ymd_ago=(0, 0, i)), defer_pull=defer_pull, ) for i in range(self.n_days) ] def fetch_schedules(self, verbose=False, n_retries=3): # (Due to httpx client bug documented in issue 6 of beeb issue tracker) for i in range(n_retries): try: fetch_schedules(self.urlset, self.schedules) except async_errors as e: if verbose: print(f"Error occurred {e}, retrying") if i == n_retries - 1: raise e # # Persisted after all retries, so throw it, don't proceed # Otherwise retry, connection was terminated due to httpx bug (see #6) else: break # exit the for loop if it succeeds self.boil_all_schedules(verbose=verbose) def boil_all_schedules(self, verbose=False): recipe_list = [ partial(s.boil_broadcasts, return_broadcasts=True) for s in self.schedules ] # Batch the soup parsing on all cores then sort to regain chronological order all_scheduled_broadcasts = sorted( batch_multiprocess_with_return( recipe_list, show_progress=verbose, tqdm_desc="Boiling schedules..." ), key=lambda b: b[0].time, ) for s, b in zip(self.schedules, all_scheduled_broadcasts): s.broadcasts = b @classmethod def from_channel_name(cls, name, from_date=None, to_date=None, n_days=None): ch = ChannelPicker.by_name(name, must_exist=True) return cls(ch.channel_id, from_date=from_date, to_date=to_date, n_days=n_days) @property def date_repr(self): return self.time.strftime("%d/%m/%Y") @property def time_repr(self): return self.time.strftime("%H:%M") def __repr__(self): return ( f"ChannelListings for {self.channel.title} " f"from {self.from_date} to {self.to_date} ({self.n_days} days)" ) @property def all_broadcasts(self): "Presuming the schedules are already boiled (i.e. parsed), enumerate broadcasts" return [b for s in self.schedules for b in s.broadcasts] @property def broadcasts_urlset(self): "Make a generator to produce the URLs for the broadcasts from all_broadcasts" return ( EpisodeMetadataPidJson(episode.pid, defer_pull=True).url for episode in self.all_broadcasts )
the-stack_0_22204
# -*- coding: utf-8 -*- ''' Connection module for Amazon Elasticsearch Service .. versionadded:: 2016.11.0 :configuration: This module accepts explicit AWS credentials but can also utilize IAM roles assigned to the instance trough Instance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration is necessary. More Information available at: .. code-block:: text http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html If IAM roles are not used you need to specify them either in a pillar or in the minion's config file: .. code-block:: yaml lambda.keyid: GKTADJGHEIQSXMKKRBJ08H lambda.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs A region may also be specified in the configuration: .. code-block:: yaml lambda.region: us-east-1 If a region is not specified, the default is us-east-1. It's also possible to specify key, keyid and region via a profile, either as a passed in dict, or as a string to pull from pillars or minion config: .. code-block:: yaml myprofile: keyid: GKTADJGHEIQSXMKKRBJ08H key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs region: us-east-1 Create and delete methods return: .. code-block:: yaml created: true or .. code-block:: yaml created: false error: message: error message Request methods (e.g., `describe_function`) return: .. code-block:: yaml domain: - {...} - {...} or .. code-block:: yaml error: message: error message :depends: boto3 ''' # keep lint from choking on _get_conn and _cache_id #pylint: disable=E0602 # Import Python libs from __future__ import absolute_import import logging import json from distutils.version import LooseVersion as _LooseVersion # pylint: disable=import-error,no-name-in-module # Import Salt libs import salt.ext.six as six import salt.utils.boto3 import salt.utils.compat import salt.utils from salt.exceptions import SaltInvocationError log = logging.getLogger(__name__) # Import third party libs # pylint: disable=import-error try: #pylint: disable=unused-import import boto import boto3 #pylint: enable=unused-import from botocore.exceptions import ClientError logging.getLogger('boto').setLevel(logging.CRITICAL) logging.getLogger('boto3').setLevel(logging.CRITICAL) HAS_BOTO = True except ImportError: HAS_BOTO = False # pylint: enable=import-error def __virtual__(): ''' Only load if boto libraries exist and if boto libraries are greater than a given version. ''' required_boto_version = '2.8.0' required_boto3_version = '1.4.0' # the boto_lambda execution module relies on the connect_to_region() method # which was added in boto 2.8.0 # https://github.com/boto/boto/commit/33ac26b416fbb48a60602542b4ce15dcc7029f12 if not HAS_BOTO: return (False, 'The boto_lambda module could not be loaded: ' 'boto libraries not found') elif _LooseVersion(boto.__version__) < _LooseVersion(required_boto_version): return (False, 'The boto_lambda module could not be loaded: ' 'boto version {0} or later must be installed.'.format(required_boto_version)) elif _LooseVersion(boto3.__version__) < _LooseVersion(required_boto3_version): return (False, 'The boto_lambda module could not be loaded: ' 'boto version {0} or later must be installed.'.format(required_boto3_version)) else: return True def __init__(opts): salt.utils.compat.pack_dunder(__name__) if HAS_BOTO: __utils__['boto3.assign_funcs'](__name__, 'es') def exists(DomainName, region=None, key=None, keyid=None, profile=None): ''' Given a domain name, check to see if the given domain exists. Returns True if the given domain exists and returns False if the given function does not exist. CLI Example: .. code-block:: bash salt myminion boto_elasticsearch_domain.exists mydomain ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: domain = conn.describe_elasticsearch_domain(DomainName=DomainName) return {'exists': True} except ClientError as e: if e.response.get('Error', {}).get('Code') == 'ResourceNotFoundException': return {'exists': False} return {'error': salt.utils.boto3.get_error(e)} def status(DomainName, region=None, key=None, keyid=None, profile=None): ''' Given a domain name describe its status. Returns a dictionary of interesting properties. CLI Example: .. code-block:: bash salt myminion boto_elasticsearch_domain.status mydomain ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: domain = conn.describe_elasticsearch_domain(DomainName=DomainName) if domain and 'DomainStatus' in domain: domain = domain.get('DomainStatus', {}) keys = ('Endpoint', 'Created', 'Deleted', 'DomainName', 'DomainId', 'EBSOptions', 'SnapshotOptions', 'AccessPolicies', 'Processing', 'AdvancedOptions', 'ARN', 'ElasticsearchVersion') return {'domain': dict([(k, domain.get(k)) for k in keys if k in domain])} else: return {'domain': None} except ClientError as e: return {'error': salt.utils.boto3.get_error(e)} def describe(DomainName, region=None, key=None, keyid=None, profile=None): ''' Given a domain name describe its properties. Returns a dictionary of interesting properties. CLI Example: .. code-block:: bash salt myminion boto_elasticsearch_domain.describe mydomain ''' conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: domain = conn.describe_elasticsearch_domain_config(DomainName=DomainName) if domain and 'DomainConfig' in domain: domain = domain['DomainConfig'] keys = ('ElasticsearchClusterConfig', 'EBSOptions', 'AccessPolicies', 'SnapshotOptions', 'AdvancedOptions') return {'domain': dict([(k, domain.get(k, {}).get('Options')) for k in keys if k in domain])} else: return {'domain': None} except ClientError as e: return {'error': salt.utils.boto3.get_error(e)} def create(DomainName, ElasticsearchClusterConfig=None, EBSOptions=None, AccessPolicies=None, SnapshotOptions=None, AdvancedOptions=None, region=None, key=None, keyid=None, profile=None, ElasticsearchVersion=None): ''' Given a valid config, create a domain. Returns {created: true} if the domain was created and returns {created: False} if the domain was not created. CLI Example: .. code-block:: bash salt myminion boto_elasticsearch_domain.create mydomain \\ {'InstanceType': 't2.micro.elasticsearch', 'InstanceCount': 1, \\ 'DedicatedMasterEnabled': false, 'ZoneAwarenessEnabled': false} \\ {'EBSEnabled': true, 'VolumeType': 'gp2', 'VolumeSize': 10, \\ 'Iops': 0} \\ {"Version": "2012-10-17", "Statement": [{"Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "es:*", \\ "Resource": "arn:aws:es:us-east-1:111111111111:domain/mydomain/*", \\ "Condition": {"IpAddress": {"aws:SourceIp": ["127.0.0.1"]}}}]} \\ {"AutomatedSnapshotStartHour": 0} \\ {"rest.action.multi.allow_explicit_index": "true"} ''' try: conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) kwargs = {} for k in ('ElasticsearchClusterConfig', 'EBSOptions', 'AccessPolicies', 'SnapshotOptions', 'AdvancedOptions', 'ElasticsearchVersion'): if locals()[k] is not None: val = locals()[k] if isinstance(val, six.string_types): try: val = json.loads(val) except ValueError as e: return {'updated': False, 'error': 'Error parsing {0}: {1}'.format(k, e.message)} kwargs[k] = val if 'AccessPolicies' in kwargs: kwargs['AccessPolicies'] = json.dumps(kwargs['AccessPolicies']) if 'ElasticsearchVersion' in kwargs: kwargs['ElasticsearchVersion'] = str(kwargs['ElasticsearchVersion']) domain = conn.create_elasticsearch_domain(DomainName=DomainName, **kwargs) if domain and 'DomainStatus' in domain: return {'created': True} else: log.warning('Domain was not created') return {'created': False} except ClientError as e: return {'created': False, 'error': salt.utils.boto3.get_error(e)} def delete(DomainName, region=None, key=None, keyid=None, profile=None): ''' Given a domain name, delete it. Returns {deleted: true} if the domain was deleted and returns {deleted: false} if the domain was not deleted. CLI Example: .. code-block:: bash salt myminion boto_elasticsearch_domain.delete mydomain ''' try: conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) conn.delete_elasticsearch_domain(DomainName=DomainName) return {'deleted': True} except ClientError as e: return {'deleted': False, 'error': salt.utils.boto3.get_error(e)} def update(DomainName, ElasticsearchClusterConfig=None, EBSOptions=None, AccessPolicies=None, SnapshotOptions=None, AdvancedOptions=None, region=None, key=None, keyid=None, profile=None): ''' Update the named domain to the configuration. Returns {updated: true} if the domain was updated and returns {updated: False} if the domain was not updated. CLI Example: .. code-block:: bash salt myminion boto_elasticsearch_domain.update mydomain \\ {'InstanceType': 't2.micro.elasticsearch', 'InstanceCount': 1, \\ 'DedicatedMasterEnabled': false, 'ZoneAwarenessEnabled': false} \\ {'EBSEnabled': true, 'VolumeType': 'gp2', 'VolumeSize': 10, \\ 'Iops': 0} \\ {"Version": "2012-10-17", "Statement": [{"Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "es:*", \\ "Resource": "arn:aws:es:us-east-1:111111111111:domain/mydomain/*", \\ "Condition": {"IpAddress": {"aws:SourceIp": ["127.0.0.1"]}}}]} \\ {"AutomatedSnapshotStartHour": 0} \\ {"rest.action.multi.allow_explicit_index": "true"} ''' call_args = {} for k in ('ElasticsearchClusterConfig', 'EBSOptions', 'AccessPolicies', 'SnapshotOptions', 'AdvancedOptions'): if locals()[k] is not None: val = locals()[k] if isinstance(val, six.string_types): try: val = json.loads(val) except ValueError as e: return {'updated': False, 'error': 'Error parsing {0}: {1}'.format(k, e.message)} call_args[k] = val if 'AccessPolicies' in call_args: call_args['AccessPolicies'] = json.dumps(call_args['AccessPolicies']) try: conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) domain = conn.update_elasticsearch_domain_config(DomainName=DomainName, **call_args) if not domain or 'DomainConfig' not in domain: log.warning('Domain was not updated') return {'updated': False} return {'updated': True} except ClientError as e: return {'updated': False, 'error': salt.utils.boto3.get_error(e)} def add_tags(DomainName=None, ARN=None, region=None, key=None, keyid=None, profile=None, **kwargs): ''' Add tags to a domain Returns {tagged: true} if the domain was tagged and returns {tagged: False} if the domain was not tagged. CLI Example: .. code-block:: bash salt myminion boto_elasticsearch_domain.add_tags mydomain tag_a=tag_value tag_b=tag_value ''' try: conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) tagslist = [] for k, v in six.iteritems(kwargs): if str(k).startswith('__'): continue tagslist.append({'Key': str(k), 'Value': str(v)}) if ARN is None: if DomainName is None: raise SaltInvocationError('One (but not both) of ARN or ' 'domain must be specified.') domaindata = status(DomainName=DomainName, region=region, key=key, keyid=keyid, profile=profile) if not domaindata or 'domain' not in domaindata: log.warning('Domain tags not updated') return {'tagged': False} ARN = domaindata.get('domain', {}).get('ARN') elif DomainName is not None: raise SaltInvocationError('One (but not both) of ARN or ' 'domain must be specified.') conn.add_tags(ARN=ARN, TagList=tagslist) return {'tagged': True} except ClientError as e: return {'tagged': False, 'error': salt.utils.boto3.get_error(e)} def remove_tags(TagKeys, DomainName=None, ARN=None, region=None, key=None, keyid=None, profile=None): ''' Remove tags from a trail Returns {tagged: true} if the trail was tagged and returns {tagged: False} if the trail was not tagged. CLI Example: .. code-block:: bash salt myminion boto_cloudtrail.remove_tags my_trail tag_a=tag_value tag_b=tag_value ''' try: conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) if ARN is None: if DomainName is None: raise SaltInvocationError('One (but not both) of ARN or ' 'domain must be specified.') domaindata = status(DomainName=DomainName, region=region, key=key, keyid=keyid, profile=profile) if not domaindata or 'domain' not in domaindata: log.warning('Domain tags not updated') return {'tagged': False} ARN = domaindata.get('domain', {}).get('ARN') elif DomainName is not None: raise SaltInvocationError('One (but not both) of ARN or ' 'domain must be specified.') conn.remove_tags(ARN=domaindata.get('domain', {}).get('ARN'), TagKeys=TagKeys) return {'tagged': True} except ClientError as e: return {'tagged': False, 'error': salt.utils.boto3.get_error(e)} def list_tags(DomainName=None, ARN=None, region=None, key=None, keyid=None, profile=None): ''' List tags of a trail Returns: tags: - {...} - {...} CLI Example: .. code-block:: bash salt myminion boto_cloudtrail.list_tags my_trail ''' try: conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) if ARN is None: if DomainName is None: raise SaltInvocationError('One (but not both) of ARN or ' 'domain must be specified.') domaindata = status(DomainName=DomainName, region=region, key=key, keyid=keyid, profile=profile) if not domaindata or 'domain' not in domaindata: log.warning('Domain tags not updated') return {'tagged': False} ARN = domaindata.get('domain', {}).get('ARN') elif DomainName is not None: raise SaltInvocationError('One (but not both) of ARN or ' 'domain must be specified.') ret = conn.list_tags(ARN=ARN) log.warning(ret) tlist = ret.get('TagList', []) tagdict = {} for tag in tlist: tagdict[tag.get('Key')] = tag.get('Value') return {'tags': tagdict} except ClientError as e: return {'error': salt.utils.boto3.get_error(e)}
the-stack_0_22205
from dataclasses import dataclass, field from typing import List from enum import Enum class TaskType(str, Enum): text_classification = "text-classification" named_entity_recognition = "named-entity-recognition" extractive_qa_squad = "extractive-qa-squad" summarization = "summarization" machine_translation = "machine-translation" text_pair_classification = "text-pair-classification" hellaswag = "hellaswag" aspect_based_sentiment_classification = "aspect-based-sentiment-classification" kg_link_tail_prediction = "kg-link-tail-prediction" qa_multiple_choice = "qa-multiple-choice" @staticmethod def list(): return list(map(lambda c: c.value, TaskType)) @dataclass class Task: name: str description: str = "task description" supported: bool = field(default=False) supported_metrics: List[str] = field(default_factory=list) supported_formats: List[str] = field(default_factory=list) supported_datasets: List[str] = field(default_factory=list) @dataclass class TaskCategory: name: str description: str tasks: List[Task] _task_categories: List[TaskCategory] = [ TaskCategory( "conditional-text-generation", "data-to-text and text transduction tasks such as translation or summarization", [ Task( name=TaskType.machine_translation, description="The process of using AI to automatically translate text from one language to another.", supported=True, supported_metrics=[ "bleu", "bart_score_summ", "bart_score_mt", "bart_score_cnn_hypo_ref", "rouge1", "rouge2", "rougeL", "bert_score_f", "bert_score_p", "bert_score_r", "chrf", "comet", "mover_score", "prism", ], supported_formats=["tsv"], supported_datasets=[], ), Task( name=TaskType.summarization, description="Summarize long documents into short texts. See more details about the format of upload files: https://github.com/neulab/ExplainaBoard/blob/main/docs/task_summarization.md", supported=True, supported_metrics=[ "bleu", "bart_score_summ", "bart_score_mt", "bart_score_cnn_hypo_ref", "rouge1", "rouge2", "rougeL", "bert_score_f", "bert_score_p", "bert_score_r", "chrf", "comet", "mover_score", "prism", ], supported_formats=["tsv"], supported_datasets=[], ), ], ), TaskCategory( "text-classification", "predicting a class index or boolean value. ", [ Task( name=TaskType.text_classification, description="Classify a text into one or multiple predefined categories. See more details about the format of upload files: https://github.com/neulab/ExplainaBoard/blob/main/docs/task_text_classification.md", supported=True, supported_metrics=["F1score", "Accuracy"], supported_formats=["tsv"], supported_datasets=[], ) ], ), TaskCategory( "structure-prediction", "predicting structural properties of the text, such as syntax", [ Task( name=TaskType.named_entity_recognition, description="Recognize named entities from a given text. See one example of the uploaded file: https://github.com/neulab/ExplainaBoard/blob/main/data/system_outputs/conll2003/conll2003.elmo", supported=True, supported_metrics=["f1_score_seqeval"], supported_formats=["conll"], supported_datasets=[], ) ], ), TaskCategory( "question-answering", "question answering tasks", [ Task( name=TaskType.extractive_qa_squad, description="A task of extracting an answer from a text given a question on the SQuAD dataset. See more details about the format of upload files: https://github.com/neulab/ExplainaBoard/blob/main/docs/task_extractive_qa_squad.md", supported=True, supported_metrics=["f1_score_qa", "exact_match_qa"], supported_formats=["json"], supported_datasets=["squad"], ), ], ), TaskCategory( "span-text-prediction", "prediction based on span and text", [ Task( name=TaskType.aspect_based_sentiment_classification, description="Predict the sentiment of a text based on a specific aspect. See more details about the format of upload files: https://github.com/neulab/ExplainaBoard/blob/main/data/system_outputs/absa/test-aspect.tsv", supported=True, supported_metrics=["F1score", "Accuracy"], supported_formats=["tsv"], supported_datasets=[], ), ], ), TaskCategory( "text-pair-classification", "predicting a class of two texts", [ Task( name=TaskType.text_pair_classification, description="predict the relationship of two texts. See more details about the format of upload files: https://github.com/neulab/ExplainaBoard/blob/main/docs/task_text_pair_classification.md", supported=True, supported_metrics=["F1score", "Accuracy"], supported_formats=["tsv"], supported_datasets=[], ), ], ), TaskCategory( "kg-link-tail-prediction", "predicting the tail entity of missing links in knowledge graphs", [ Task( name=TaskType.kg_link_tail_prediction, description="predicting the tail entity of missing links in knowledge graphs. See more details about the format of upload files: https://github.com/neulab/ExplainaBoard/blob/main/docs/task_kg_link_tail_prediction.md", supported=True, supported_metrics=["Hits"], supported_formats=["json"], supported_datasets=[], ), ], ), TaskCategory( "qa-multiple-choice", "Answer a question from multiple options", [ Task( name=TaskType.qa_multiple_choice, description="Answer a question from multiple options", supported=True, supported_metrics=["F1score", "Accuracy"], supported_formats=["json"], supported_datasets=[], ) ], ), ] def get_task_categories(): """getter for task categories data""" return _task_categories
the-stack_0_22207
# Copyright (C) 2014,2015 VA Linux Systems Japan K.K. # Copyright (C) 2014,2015 YAMAMOTO Takashi <yamamoto at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import netaddr import neutron.plugins.openvswitch.common.constants as ovs_const from neutron.tests.unit.plugins.openvswitch.agent.openflow.ovs_ofctl \ import ovs_bridge_test_base call = mock.call # short hand class OVSTunnelBridgeTest(ovs_bridge_test_base.OVSBridgeTestBase, ovs_bridge_test_base.OVSDVRProcessTestMixin): dvr_process_table_id = ovs_const.DVR_PROCESS dvr_process_next_table_id = ovs_const.PATCH_LV_TO_TUN def setUp(self): super(OVSTunnelBridgeTest, self).setUp() self.setup_bridge_mock('br-tun', self.br_tun_cls) def test_setup_default_table(self): patch_int_ofport = 5555 arp_responder_enabled = False self.br.setup_default_table(patch_int_ofport=patch_int_ofport, arp_responder_enabled=arp_responder_enabled) expected = [ call.add_flow(priority=1, in_port=patch_int_ofport, actions='resubmit(,2)'), call.add_flow(priority=0, actions='drop'), call.add_flow(priority=0, table=2, dl_dst='00:00:00:00:00:00/01:00:00:00:00:00', actions='resubmit(,20)'), call.add_flow(priority=0, table=2, dl_dst='01:00:00:00:00:00/01:00:00:00:00:00', actions='resubmit(,22)'), call.add_flow(priority=0, table=3, actions='drop'), call.add_flow(priority=0, table=4, actions='drop'), call.add_flow(priority=1, table=10, actions='learn(table=20,priority=1,' 'hard_timeout=300,NXM_OF_VLAN_TCI[0..11],' 'NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],' 'load:0->NXM_OF_VLAN_TCI[],' 'load:NXM_NX_TUN_ID[]->NXM_NX_TUN_ID[],' 'output:NXM_OF_IN_PORT[]),' 'output:%s' % patch_int_ofport), call.add_flow(priority=0, table=20, actions='resubmit(,22)'), call.add_flow(priority=0, table=22, actions='drop'), ] self.assertEqual(expected, self.mock.mock_calls) def test_setup_default_table_arp_responder_enabled(self): patch_int_ofport = 5555 arp_responder_enabled = True self.br.setup_default_table(patch_int_ofport=patch_int_ofport, arp_responder_enabled=arp_responder_enabled) expected = [ call.add_flow(priority=1, in_port=patch_int_ofport, actions='resubmit(,2)'), call.add_flow(priority=0, actions='drop'), call.add_flow(priority=1, table=2, dl_dst='ff:ff:ff:ff:ff:ff', actions='resubmit(,21)', proto='arp'), call.add_flow(priority=0, table=2, dl_dst='00:00:00:00:00:00/01:00:00:00:00:00', actions='resubmit(,20)'), call.add_flow(priority=0, table=2, dl_dst='01:00:00:00:00:00/01:00:00:00:00:00', actions='resubmit(,22)'), call.add_flow(priority=0, table=3, actions='drop'), call.add_flow(priority=0, table=4, actions='drop'), call.add_flow(priority=1, table=10, actions='learn(table=20,priority=1,' 'hard_timeout=300,NXM_OF_VLAN_TCI[0..11],' 'NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],' 'load:0->NXM_OF_VLAN_TCI[],' 'load:NXM_NX_TUN_ID[]->NXM_NX_TUN_ID[],' 'output:NXM_OF_IN_PORT[]),' 'output:%s' % patch_int_ofport), call.add_flow(priority=0, table=20, actions='resubmit(,22)'), call.add_flow(priority=0, table=21, actions='resubmit(,22)'), call.add_flow(priority=0, table=22, actions='drop'), ] self.assertEqual(expected, self.mock.mock_calls) def test_provision_local_vlan(self): network_type = 'vxlan' lvid = 888 segmentation_id = 777 distributed = False self.br.provision_local_vlan(network_type=network_type, lvid=lvid, segmentation_id=segmentation_id, distributed=distributed) expected = [ call.add_flow(priority=1, tun_id=segmentation_id, actions='mod_vlan_vid:%s,resubmit(,10)' % lvid, table=4), ] self.assertEqual(expected, self.mock.mock_calls) def test_reclaim_local_vlan(self): network_type = 'vxlan' segmentation_id = 777 self.br.reclaim_local_vlan(network_type=network_type, segmentation_id=segmentation_id) expected = [ call.delete_flows(tun_id=segmentation_id, table=4), ] self.assertEqual(expected, self.mock.mock_calls) def test_install_flood_to_tun(self): vlan = 3333 tun_id = 2222 ports = [11, 44, 22, 33] self.br.install_flood_to_tun(vlan=vlan, tun_id=tun_id, ports=ports) expected = [ call.mod_flow(table=22, dl_vlan=vlan, actions='strip_vlan,set_tunnel:%(tun)s,' 'output:%(ports)s' % { 'tun': tun_id, 'ports': ','.join(map(str, ports)), }), ] self.assertEqual(expected, self.mock.mock_calls) def test_delete_flood_to_tun(self): vlan = 3333 self.br.delete_flood_to_tun(vlan=vlan) expected = [ call.delete_flows(table=22, dl_vlan=vlan), ] self.assertEqual(expected, self.mock.mock_calls) def test_install_unicast_to_tun(self): vlan = 3333 port = 55 mac = '08:60:6e:7f:74:e7' tun_id = 2222 self.br.install_unicast_to_tun(vlan=vlan, tun_id=tun_id, port=port, mac=mac) expected = [ call.add_flow(priority=2, table=20, dl_dst=mac, dl_vlan=vlan, actions='strip_vlan,set_tunnel:%(tun)s,' 'output:%(port)s' % { 'tun': tun_id, 'port': port, }), ] self.assertEqual(expected, self.mock.mock_calls) def test_delete_unicast_to_tun(self): vlan = 3333 mac = '08:60:6e:7f:74:e7' self.br.delete_unicast_to_tun(vlan=vlan, mac=mac) expected = [ call.delete_flows(table=20, dl_dst=mac, dl_vlan=vlan), ] self.assertEqual(expected, self.mock.mock_calls) def test_delete_unicast_to_tun_without_mac(self): vlan = 3333 mac = None self.br.delete_unicast_to_tun(vlan=vlan, mac=mac) expected = [ call.delete_flows(table=20, dl_vlan=vlan), ] self.assertEqual(expected, self.mock.mock_calls) def test_install_arp_responder(self): vlan = 3333 ip = '192.0.2.1' mac = '08:60:6e:7f:74:e7' self.br.install_arp_responder(vlan=vlan, ip=ip, mac=mac) expected = [ call.add_flow(proto='arp', nw_dst=ip, actions='move:NXM_OF_ETH_SRC[]->NXM_OF_ETH_DST[],' 'mod_dl_src:%(mac)s,load:0x2->NXM_OF_ARP_OP[],' 'move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],' 'move:NXM_OF_ARP_SPA[]->NXM_OF_ARP_TPA[],' 'load:%(mac)#x->NXM_NX_ARP_SHA[],' 'load:%(ip)#x->NXM_OF_ARP_SPA[],in_port' % { 'mac': netaddr.EUI(mac, dialect=netaddr.mac_unix), 'ip': netaddr.IPAddress(ip), }, priority=1, table=21, dl_vlan=vlan), ] self.assertEqual(expected, self.mock.mock_calls) def test_delete_arp_responder(self): vlan = 3333 ip = '192.0.2.1' self.br.delete_arp_responder(vlan=vlan, ip=ip) expected = [ call.delete_flows(table=21, dl_vlan=vlan, proto='arp', nw_dst=ip), ] self.assertEqual(expected, self.mock.mock_calls) def test_delete_arp_responder_without_ip(self): vlan = 3333 ip = None self.br.delete_arp_responder(vlan=vlan, ip=ip) expected = [ call.delete_flows(table=21, dl_vlan=vlan, proto='arp'), ] self.assertEqual(expected, self.mock.mock_calls) def test_setup_tunnel_port(self): network_type = 'vxlan' port = 11111 self.br.setup_tunnel_port(network_type=network_type, port=port) expected = [ call.add_flow(priority=1, in_port=port, actions='resubmit(,4)'), ] self.assertEqual(expected, self.mock.mock_calls) def test_cleanup_tunnel_port(self): port = 11111 self.br.cleanup_tunnel_port(port=port) expected = [ call.delete_flows(in_port=port), ] self.assertEqual(expected, self.mock.mock_calls) def test_add_dvr_mac_tun(self): mac = '00:02:b3:13:fe:3d' port = 8888 self.br.add_dvr_mac_tun(mac=mac, port=port) expected = [ call.add_flow(priority=1, table=9, dl_src=mac, actions='output:%s' % port), ] self.assertEqual(expected, self.mock.mock_calls) def test_remove_dvr_mac_tun(self): mac = '00:02:b3:13:fe:3d' self.br.remove_dvr_mac_tun(mac=mac) expected = [ call.delete_flows(eth_src=mac, table_id=9), ] self.assertEqual(expected, self.mock.mock_calls) def _mock_add_tunnel_port(self, deferred_br=False): port_name = 'fake_port' remote_ip = '192.168.1.3' local_ip = '192.168.1.2' tunnel_type = 'vxlan' vxlan_udp_port = '4789' dont_fragment = True if deferred_br: with mock.patch('neutron.agent.common.ovs_lib.OVSBridge.add_port', return_value=9999) as add_port, \ self.br.deferred() as deferred_br: ofport = deferred_br.add_tunnel_port(port_name, remote_ip, local_ip, tunnel_type, vxlan_udp_port, dont_fragment) else: with mock.patch('neutron.agent.common.ovs_lib.OVSBridge.add_port', return_value=9999) as add_port: ofport = self.br.add_tunnel_port(port_name, remote_ip, local_ip, tunnel_type, vxlan_udp_port, dont_fragment) self.assertEqual(9999, ofport) self.assertEqual(1, add_port.call_count) self.assertEqual(port_name, add_port.call_args[0][0]) def _mock_delete_port(self, deferred_br=False): port_name = 'fake_port' if deferred_br: with mock.patch('neutron.agent.common.ovs_lib.OVSBridge.' 'delete_port') as delete_port, \ self.br.deferred() as deferred_br: deferred_br.delete_port(port_name) else: with mock.patch('neutron.agent.common.ovs_lib.OVSBridge.' 'delete_port') as delete_port: self.br.delete_port(port_name) self.assertEqual([call(port_name)], delete_port.mock_calls) def test_add_tunnel_port(self): self._mock_add_tunnel_port() def test_delete_port(self): self._mock_delete_port() def test_deferred_br_add_tunnel_port(self): self._mock_add_tunnel_port(True) def test_deferred_br_delete_port(self): self._mock_delete_port(True)
the-stack_0_22208
from concurrent import futures from functools import partial import logging import typing as ty import psutil import os import signal import sys import time from concurrent.futures import ProcessPoolExecutor try: from npshmex import ProcessPoolExecutor as SHMExecutor except ImportError: # This is allowed to fail, it only crashes if allow_shm = True SHMExecutor = None pass import numpy as np import strax export, __all__ = strax.exporter() @export class ProcessorComponents(ty.NamedTuple): """Specification to assemble a processor""" plugins: ty.Dict[str, strax.Plugin] loaders: ty.Dict[str, callable] savers: ty.Dict[str, ty.List[strax.Saver]] targets: ty.Tuple[str] class MailboxDict(dict): def __missing__(self, key): res = self[key] = strax.Mailbox(name=key + '_mailbox') return res @export class ThreadedMailboxProcessor: mailboxes: ty.Dict[str, strax.Mailbox] def __init__(self, components: ProcessorComponents, allow_rechunk=True, allow_shm=False, allow_multiprocess=False, max_workers=None): self.log = logging.getLogger(self.__class__.__name__) self.components = components self.mailboxes = MailboxDict() self.log.debug("Processor components are: " + str(components)) if max_workers in [None, 1]: # Disable the executors: work in one process. # Each plugin works completely in its own thread. self.process_executor = self.thread_executor = None else: # Use executors for parallelization of computations. self.thread_executor = futures.ThreadPoolExecutor( max_workers=max_workers) mp_plugins = {d: p for d, p in components.plugins.items() if p.parallel == 'process'} if (allow_multiprocess and len(mp_plugins)): _proc_ex = ProcessPoolExecutor if allow_shm: if SHMExecutor is None: raise RuntimeError( "You must install npshmex to enable shm" " transfer of numpy arrays.") _proc_ex = SHMExecutor self.process_executor = _proc_ex(max_workers=max_workers) # Combine as many plugins /savers as possible in one process # TODO: more intelligent start determination, multiple starts start_from = list(mp_plugins.keys())[ int(np.argmin([len(p.depends_on) for p in mp_plugins.values()]))] components = strax.ParallelSourcePlugin.inline_plugins( components, start_from, log=self.log) self.components = components self.log.debug("Altered components for multiprocessing: " + str(components)) else: self.process_executor = self.thread_executor for d, loader in components.loaders.items(): assert d not in components.plugins # If paralellizing, use threads for loading # the decompressor releases the gil, and we have a lot # of data transfer to do self.mailboxes[d].add_sender( loader(executor=self.thread_executor), name=f'load:{d}') multi_output_seen = [] for d, p in components.plugins.items(): if p in multi_output_seen: continue executor = None if p.parallel == 'process': executor = self.process_executor elif p.parallel: executor = self.thread_executor if p.multi_output: multi_output_seen.append(p) # Create temp mailbox that receives multi-output dicts # and sends them forth to other mailboxes mname = p.__class__.__name__ + '_divide_outputs' self.mailboxes[mname].add_sender( p.iter( iters={dep: self.mailboxes[dep].subscribe() for dep in p.depends_on}, executor=executor), name=f'divide_outputs:{d}') for d in p.provides: self.mailboxes[d] # creates mailbox d if doesn't exist self.mailboxes[mname].add_reader( partial(strax.divide_outputs, mailboxes=self.mailboxes, outputs=p.provides)) else: self.mailboxes[d].add_sender( p.iter( iters={dep: self.mailboxes[dep].subscribe() for dep in p.depends_on}, executor=executor), name=f'build:{d}') for d, savers in components.savers.items(): for s_i, saver in enumerate(savers): if d in components.plugins: rechunk = components.plugins[d].rechunk_on_save else: # This is storage conversion mode # TODO: Don't know how to get this info, for now, # be conservative and don't rechunk rechunk = False if not allow_rechunk: rechunk = False self.mailboxes[d].add_reader( partial(saver.save_from, rechunk=rechunk, # If paralellizing, use threads for saving # the compressor releases the gil, # and we have a lot of data transfer to do executor=self.thread_executor), name=f'save_{s_i}:{d}') def iter(self): target = self.components.targets[0] final_generator = self.mailboxes[target].subscribe() self.log.debug("Starting threads") for m in self.mailboxes.values(): m.start() self.log.debug(f"Yielding {target}") traceback = None exc = None try: yield from final_generator except Exception as e: self.log.debug(f"Target Mailbox ({target}) killed, exception {e}") for m in self.mailboxes.values(): if m != target: self.log.debug(f"Killing {m}") if isinstance(e, strax.MailboxKilled): _, exc, traceback = reason = e.args[0] else: exc = e reason = (e.__class__, e, sys.exc_info()[2]) traceback = reason[2] m.kill(upstream=True, reason=reason) # We will reraise it in just a moment... finally: self.log.debug("Closing threads") for m in self.mailboxes.values(): m.cleanup() self.log.debug("Closing threads completed") self.log.debug("Closing executors") if self.thread_executor is not None: self.thread_executor.shutdown(wait=False) if self.process_executor not in [None, self.thread_executor]: # Unfortunately there is no wait=timeout option, so we have to # roll our own pids = self.process_executor._processes.keys() self.process_executor.shutdown(wait=False) t0 = time.time() while time.time() < t0 + 20: if all([not psutil.pid_exists(pid) for pid in pids]): break self.log.info("Waiting for subprocesses to end") time.sleep(2) else: self.log.warning("Subprocesses failed to terminate, " "resorting to brute force killing") for pid in pids: try: os.kill(pid, signal.SIGTERM) except ProcessLookupError: # Didn't exist pass self.log.info("Sent SIGTERM to all subprocesses") self.log.debug("Closing executors completed") if traceback is not None: # Reraise exception. This is outside the except block # to avoid the 'during handling of this exception, another # exception occurred' stuff from confusing the traceback # which is printed for the user self.log.debug("Reraising exception") raise exc.with_traceback(traceback) # Check the savers for any exception that occurred during saving # These are thrown back to the mailbox, but if that has already closed # it doesn't trigger a crash... # TODO: add savers inlined by parallelsourceplugin # TODO: need to look at plugins too if we ever implement true # multi-target mode for k, saver_list in self.components.savers.items(): for s in saver_list: if s.got_exception: self.log.fatal(f"Caught error while saving {k}!") raise s.got_exception self.log.debug("Processing finished")
the-stack_0_22210
""" API operations on a jobs. .. seealso:: :class:`galaxy.model.Jobs` """ import json import logging from six import string_types from sqlalchemy import and_, false, or_ from sqlalchemy.orm import aliased from galaxy import exceptions from galaxy import managers from galaxy import model from galaxy import util from galaxy.web import _future_expose_api as expose_api from galaxy.web import _future_expose_api_anonymous as expose_api_anonymous from galaxy.web.base.controller import BaseAPIController from galaxy.web.base.controller import UsesLibraryMixinItems log = logging.getLogger( __name__ ) class JobController( BaseAPIController, UsesLibraryMixinItems ): def __init__( self, app ): super( JobController, self ).__init__( app ) self.hda_manager = managers.hdas.HDAManager( app ) self.dataset_manager = managers.datasets.DatasetManager( app ) @expose_api def index( self, trans, **kwd ): """ index( trans, state=None, tool_id=None, history_id=None, date_range_min=None, date_range_max=None, user_details=False ) * GET /api/jobs: return jobs for current user !! if user is admin and user_details is True, then return jobs for all galaxy users based on filtering - this is an extended service :type state: string or list :param state: limit listing of jobs to those that match one of the included states. If none, all are returned. Valid Galaxy job states include: 'new', 'upload', 'waiting', 'queued', 'running', 'ok', 'error', 'paused', 'deleted', 'deleted_new' :type tool_id: string or list :param tool_id: limit listing of jobs to those that match one of the included tool_ids. If none, all are returned. :type user_details: boolean :param user_details: if true, and requestor is an admin, will return external job id and user email. :type date_range_min: string '2014-01-01' :param date_range_min: limit the listing of jobs to those updated on or after requested date :type date_range_max: string '2014-12-31' :param date_range_max: limit the listing of jobs to those updated on or before requested date :type history_id: string :param history_id: limit listing of jobs to those that match the history_id. If none, all are returned. :rtype: list :returns: list of dictionaries containing summary job information """ state = kwd.get( 'state', None ) is_admin = trans.user_is_admin() user_details = kwd.get('user_details', False) if is_admin: query = trans.sa_session.query( trans.app.model.Job ) else: query = trans.sa_session.query( trans.app.model.Job ).filter(trans.app.model.Job.user == trans.user) def build_and_apply_filters( query, objects, filter_func ): if objects is not None: if isinstance( objects, string_types ): query = query.filter( filter_func( objects ) ) elif isinstance( objects, list ): t = [] for obj in objects: t.append( filter_func( obj ) ) query = query.filter( or_( *t ) ) return query query = build_and_apply_filters( query, state, lambda s: trans.app.model.Job.state == s ) query = build_and_apply_filters( query, kwd.get( 'tool_id', None ), lambda t: trans.app.model.Job.tool_id == t ) query = build_and_apply_filters( query, kwd.get( 'tool_id_like', None ), lambda t: trans.app.model.Job.tool_id.like(t) ) query = build_and_apply_filters( query, kwd.get( 'date_range_min', None ), lambda dmin: trans.app.model.Job.table.c.update_time >= dmin ) query = build_and_apply_filters( query, kwd.get( 'date_range_max', None ), lambda dmax: trans.app.model.Job.table.c.update_time <= dmax ) history_id = kwd.get( 'history_id', None ) if history_id is not None: try: decoded_history_id = self.decode_id(history_id) query = query.filter( trans.app.model.Job.history_id == decoded_history_id ) except: raise exceptions.ObjectAttributeInvalidException() out = [] if kwd.get( 'order_by' ) == 'create_time': order_by = trans.app.model.Job.create_time.desc() else: order_by = trans.app.model.Job.update_time.desc() for job in query.order_by( order_by ).all(): job_dict = job.to_dict( 'collection', system_details=is_admin ) j = self.encode_all_ids( trans, job_dict, True ) if user_details: j['user_email'] = job.user.email out.append(j) return out @expose_api def show( self, trans, id, **kwd ): """ show( trans, id ) * GET /api/jobs/{id}: return jobs for current user :type id: string :param id: Specific job id :type full: boolean :param full: whether to return extra information :rtype: dictionary :returns: dictionary containing full description of job data """ job = self.__get_job( trans, id ) is_admin = trans.user_is_admin() job_dict = self.encode_all_ids( trans, job.to_dict( 'element', system_details=is_admin ), True ) full_output = util.asbool( kwd.get( 'full', 'false' ) ) if full_output: job_dict.update( dict( stderr=job.stderr, stdout=job.stdout ) ) if is_admin: job_dict['user_email'] = job.user.email def metric_to_dict(metric): metric_name = metric.metric_name metric_value = metric.metric_value metric_plugin = metric.plugin title, value = trans.app.job_metrics.format(metric_plugin, metric_name, metric_value) return dict( title=title, value=value, plugin=metric_plugin, name=metric_name, raw_value=str(metric_value), ) job_dict['job_metrics'] = [metric_to_dict(metric) for metric in job.metrics] return job_dict @expose_api def inputs( self, trans, id, **kwd ): """ show( trans, id ) * GET /api/jobs/{id}/inputs returns input datasets created by job :type id: string :param id: Encoded job id :rtype: dictionary :returns: dictionary containing input dataset associations """ job = self.__get_job( trans, id ) return self.__dictify_associations( trans, job.input_datasets, job.input_library_datasets ) @expose_api def outputs( self, trans, id, **kwd ): """ show( trans, id ) * GET /api/jobs/{id}/outputs returns output datasets created by job :type id: string :param id: Encoded job id :rtype: dictionary :returns: dictionary containing output dataset associations """ job = self.__get_job( trans, id ) return self.__dictify_associations( trans, job.output_datasets, job.output_library_datasets ) @expose_api_anonymous def build_for_rerun( self, trans, id, **kwd ): """ * GET /api/jobs/{id}/build_for_rerun returns a tool input/param template prepopulated with this job's information, suitable for rerunning or rendering parameters of the job. :type id: string :param id: Encoded job id :rtype: dictionary :returns: dictionary containing output dataset associations """ job = self.__get_job(trans, id) if not job: raise exceptions.ObjectNotFound("Could not access job with id '%s'" % id) tool = self.app.toolbox.get_tool( job.tool_id, job.tool_version ) if not tool.is_workflow_compatible: raise exceptions.ConfigDoesNotAllowException( "Tool '%s' cannot be rerun." % ( job.tool_id ) ) return tool.to_json(trans, {}, job=job) def __dictify_associations( self, trans, *association_lists ): rval = [] for association_list in association_lists: rval.extend( map( lambda a: self.__dictify_association( trans, a ), association_list ) ) return rval def __dictify_association( self, trans, job_dataset_association ): dataset_dict = None dataset = job_dataset_association.dataset if dataset: if isinstance( dataset, model.HistoryDatasetAssociation ): dataset_dict = dict( src="hda", id=trans.security.encode_id( dataset.id ) ) else: dataset_dict = dict( src="ldda", id=trans.security.encode_id( dataset.id ) ) return dict( name=job_dataset_association.name, dataset=dataset_dict ) def __get_job( self, trans, id ): try: decoded_job_id = self.decode_id( id ) except Exception: raise exceptions.MalformedId() job = trans.sa_session.query( trans.app.model.Job ).filter( trans.app.model.Job.id == decoded_job_id ).first() if job is None: raise exceptions.ObjectNotFound() if not trans.user_is_admin() and job.user != trans.user: if not job.output_datasets: raise exceptions.ItemAccessibilityException( "Job has no output datasets." ) for data_assoc in job.output_datasets: if not self.dataset_manager.is_accessible( data_assoc.dataset.dataset, trans.user ): raise exceptions.ItemAccessibilityException( "You are not allowed to rerun this job." ) return job @expose_api def create( self, trans, payload, **kwd ): """ See the create method in tools.py in order to submit a job. """ raise NotImplementedError( 'Please POST to /api/tools instead.' ) @expose_api def search( self, trans, payload, **kwd ): """ search( trans, payload ) * POST /api/jobs/search: return jobs for current user :type payload: dict :param payload: Dictionary containing description of requested job. This is in the same format as a request to POST /apt/tools would take to initiate a job :rtype: list :returns: list of dictionaries containing summary job information of the jobs that match the requested job run This method is designed to scan the list of previously run jobs and find records of jobs that had the exact some input parameters and datasets. This can be used to minimize the amount of repeated work, and simply recycle the old results. """ tool_id = None if 'tool_id' in payload: tool_id = payload.get( 'tool_id' ) if tool_id is None: raise exceptions.ObjectAttributeMissingException( "No tool id" ) tool = trans.app.toolbox.get_tool( tool_id ) if tool is None: raise exceptions.ObjectNotFound( "Requested tool not found" ) if 'inputs' not in payload: raise exceptions.ObjectAttributeMissingException( "No inputs defined" ) inputs = payload[ 'inputs' ] input_data = {} input_param = {} for k, v in inputs.items(): if isinstance( v, dict ): if 'id' in v: if 'src' not in v or v[ 'src' ] == 'hda': hda_id = self.decode_id( v['id'] ) dataset = self.hda_manager.get_accessible( hda_id, trans.user ) else: dataset = self.get_library_dataset_dataset_association( trans, v['id'] ) if dataset is None: raise exceptions.ObjectNotFound( "Dataset %s not found" % ( v[ 'id' ] ) ) input_data[k] = dataset.dataset_id else: input_param[k] = json.dumps( str(v) ) query = trans.sa_session.query( trans.app.model.Job ).filter( trans.app.model.Job.tool_id == tool_id, trans.app.model.Job.user == trans.user ) if 'state' not in payload: query = query.filter( or_( trans.app.model.Job.state == 'running', trans.app.model.Job.state == 'queued', trans.app.model.Job.state == 'waiting', trans.app.model.Job.state == 'running', trans.app.model.Job.state == 'ok', ) ) else: if isinstance( payload[ 'state' ], string_types ): query = query.filter( trans.app.model.Job.state == payload[ 'state' ] ) elif isinstance( payload[ 'state' ], list ): o = [] for s in payload[ 'state' ]: o.append( trans.app.model.Job.state == s ) query = query.filter( or_( *o ) ) for k, v in input_param.items(): a = aliased( trans.app.model.JobParameter ) query = query.filter( and_( trans.app.model.Job.id == a.job_id, a.name == k, a.value == v ) ) for k, v in input_data.items(): # Here we are attempting to link the inputs to the underlying # dataset (not the dataset association). # This way, if the calculation was done using a copied HDA # (copied from the library or another history), the search will # still find the job a = aliased( trans.app.model.JobToInputDatasetAssociation ) b = aliased( trans.app.model.HistoryDatasetAssociation ) query = query.filter( and_( trans.app.model.Job.id == a.job_id, a.dataset_id == b.id, b.deleted == false(), b.dataset_id == v ) ) out = [] for job in query.all(): # check to make sure none of the output files have been deleted if all( list( a.dataset.deleted is False for a in job.output_datasets ) ): out.append( self.encode_all_ids( trans, job.to_dict( 'element' ), True ) ) return out
the-stack_0_22213
from gna.bindings import patchROOTClass, DataType, provided_precisions import ROOT as R from printing import printl, nextlevel import types import numpy as np classes = tuple(R.OutputDescriptorT(ft, ft) for ft in provided_precisions) classes_input = tuple(R.InputDescriptorT(ft, ft) for ft in provided_precisions) classes_object = tuple(R.GNAObjectT(ft, ft) for ft in provided_precisions) classes_td = tuple(R.TransformationDescriptorT(ft, ft) for ft in provided_precisions) @patchROOTClass(classes, '__str__') def OutputDescriptor____str__(self, **kwargs): ret = '[out] {}: {}'.format(self.name(), self.check() and self.datatype() or 'invalid') data, sl = kwargs.pop('data', False), kwargs.pop('slice', slice(None)) if data and self.check() and self.datatype(): values = str(self.data()[sl]) ret = ret+': '+values+'\n' return ret @patchROOTClass(classes, 'print') def OutputDescriptor__print(self, **kwargs): printl(OutputDescriptor____str__(self, **kwargs)) @patchROOTClass(classes, 'single') def OutputDescriptor__single(self): return self @patchROOTClass(classes, '__rshift__') def OutputDescriptor______rshift__(output, inputs): if isinstance(inputs, classes_input): inputs.connect(output) elif isinstance(inputs, (list, tuple, types.GeneratorType)): for inp in inputs: OutputDescriptor______rshift__(output, inp) elif isinstance(inputs, classes_object+classes_td): OutputDescriptor______rshift__(output, inputs.single_input()) else: raise Exception('Failed to connect {} to {}'.format(output.name(), inputs)) @patchROOTClass(classes, '__rlshift__') def OutputDescriptor______rlshift__(output, inputs): OutputDescriptor______rshift__(output, inputs) @patchROOTClass(classes, '__gt__') @patchROOTClass(classes, '__lt__') def OutputDescriptor______cmp__(a, b): raise Exception('Someone tried to use >/< operators. Perhaps you have meant >>/<< instead?') @patchROOTClass(classes, 'data') @patchROOTClass(classes, '__call__') def OutputDescriptor__data(self): buf = self.__data_orig() datatype = self.datatype() return np.frombuffer(buf, count=datatype.size(), dtype=buf.typecode).reshape(datatype.shape, order='F')
the-stack_0_22218
import json from psycopg2.extras import Json from django.contrib.postgres import forms, lookups from django.core import exceptions from django.db.models import Field, Transform from django.utils.translation import ugettext_lazy as _ __all__ = ['JSONField'] class JsonAdapter(Json): """ Customized psycopg2.extras.Json to allow for a custom encoder. """ def __init__(self, adapted, dumps=None, encoder=None): self.encoder = encoder super(JsonAdapter, self).__init__(adapted, dumps=dumps) def dumps(self, obj): options = {'cls': self.encoder} if self.encoder else {} return json.dumps(obj, **options) class JSONField(Field): empty_strings_allowed = False description = _('A JSON object') default_error_messages = { 'invalid': _("Value must be valid JSON."), } def __init__(self, verbose_name=None, name=None, encoder=None, **kwargs): if encoder and not callable(encoder): raise ValueError("The encoder parameter must be a callable object.") self.encoder = encoder super(JSONField, self).__init__(verbose_name, name, **kwargs) def db_type(self, connection): return 'jsonb' def deconstruct(self): name, path, args, kwargs = super(JSONField, self).deconstruct() if self.encoder is not None: kwargs['encoder'] = self.encoder return name, path, args, kwargs def get_transform(self, name): transform = super(JSONField, self).get_transform(name) if transform: return transform return KeyTransformFactory(name) def get_prep_value(self, value): if value is not None: return JsonAdapter(value, encoder=self.encoder) return value def validate(self, value, model_instance): super(JSONField, self).validate(value, model_instance) options = {'cls': self.encoder} if self.encoder else {} try: json.dumps(value, **options) except TypeError: raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def value_to_string(self, obj): value = self.value_from_object(obj) return value def formfield(self, **kwargs): defaults = {'form_class': forms.JSONField} defaults.update(kwargs) return super(JSONField, self).formfield(**defaults) JSONField.register_lookup(lookups.DataContains) JSONField.register_lookup(lookups.ContainedBy) JSONField.register_lookup(lookups.HasKey) JSONField.register_lookup(lookups.HasKeys) JSONField.register_lookup(lookups.HasAnyKeys) class KeyTransform(Transform): def __init__(self, key_name, *args, **kwargs): super(KeyTransform, self).__init__(*args, **kwargs) self.key_name = key_name def as_sql(self, compiler, connection): key_transforms = [self.key_name] previous = self.lhs while isinstance(previous, KeyTransform): key_transforms.insert(0, previous.key_name) previous = previous.lhs lhs, params = compiler.compile(previous) if len(key_transforms) > 1: return "{} #> %s".format(lhs), [key_transforms] + params try: int(self.key_name) except ValueError: lookup = "'%s'" % self.key_name else: lookup = "%s" % self.key_name return "(%s -> %s)" % (lhs, lookup), params class KeyTransformFactory(object): def __init__(self, key_name): self.key_name = key_name def __call__(self, *args, **kwargs): return KeyTransform(self.key_name, *args, **kwargs)
the-stack_0_22220
#!/usr/bin/env python3 # # Copyright 2013 The Flutter Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ A top level harness to run all unit-tests in a specific engine build. """ import argparse import glob import multiprocessing import os import re import subprocess import sys import time buildroot_dir = os.path.abspath( os.path.join(os.path.realpath(__file__), '..', '..', '..') ) out_dir = os.path.join(buildroot_dir, 'out') golden_dir = os.path.join(buildroot_dir, 'flutter', 'testing', 'resources') fonts_dir = os.path.join( buildroot_dir, 'flutter', 'third_party', 'txt', 'third_party', 'fonts' ) roboto_font_path = os.path.join(fonts_dir, 'Roboto-Regular.ttf') font_subset_dir = os.path.join(buildroot_dir, 'flutter', 'tools', 'font-subset') fml_unittests_filter = '--gtest_filter=-*TimeSensitiveTest*' def PrintDivider(char='='): print('\n') for _ in range(4): print(''.join([char for _ in range(80)])) print('\n') def RunCmd(cmd, forbidden_output=[], expect_failure=False, env=None, **kwargs): command_string = ' '.join(cmd) PrintDivider('>') print('Running command "%s"' % command_string) start_time = time.time() stdout_pipe = sys.stdout if not forbidden_output else subprocess.PIPE stderr_pipe = sys.stderr if not forbidden_output else subprocess.PIPE process = subprocess.Popen( cmd, stdout=stdout_pipe, stderr=stderr_pipe, env=env, universal_newlines=True, **kwargs ) stdout, stderr = process.communicate() end_time = time.time() if process.returncode != 0 and not expect_failure: PrintDivider('!') print( 'Failed Command:\n\n%s\n\nExit Code: %d\n' % (command_string, process.returncode) ) if stdout: print('STDOUT: \n%s' % stdout) if stderr: print('STDERR: \n%s' % stderr) PrintDivider('!') raise Exception( 'Command "%s" exited with code %d.' % (command_string, process.returncode) ) if stdout or stderr: print(stdout) print(stderr) for forbidden_string in forbidden_output: if (stdout and forbidden_string in stdout) or (stderr and forbidden_string in stderr): raise Exception( 'command "%s" contained forbidden string %s' % (command_string, forbidden_string) ) PrintDivider('<') print( 'Command run successfully in %.2f seconds: %s' % (end_time - start_time, command_string) ) def IsMac(): return sys.platform == 'darwin' def IsLinux(): return sys.platform.startswith('linux') def IsWindows(): return sys.platform.startswith(('cygwin', 'win')) def ExecutableSuffix(): return '.exe' if IsWindows() else '' def FindExecutablePath(path): if os.path.exists(path): return path if IsWindows(): exe_path = path + '.exe' if os.path.exists(exe_path): return exe_path bat_path = path + '.bat' if os.path.exists(bat_path): return bat_path raise Exception('Executable %s does not exist!' % path) def BuildEngineExecutableCommand( build_dir, executable_name, flags=[], coverage=False, gtest=False ): unstripped_exe = os.path.join(build_dir, 'exe.unstripped', executable_name) # We cannot run the unstripped binaries directly when coverage is enabled. if IsLinux() and os.path.exists(unstripped_exe) and not coverage: # Use unstripped executables in order to get better symbolized crash # stack traces on Linux. executable = unstripped_exe else: executable = FindExecutablePath(os.path.join(build_dir, executable_name)) coverage_script = os.path.join( buildroot_dir, 'flutter', 'build', 'generate_coverage.py' ) if coverage: coverage_flags = [ '-t', executable, '-o', os.path.join(build_dir, 'coverage', executable_name), '-f', 'html' ] updated_flags = ['--args=%s' % ' '.join(flags)] test_command = [coverage_script] + coverage_flags + updated_flags else: test_command = [executable] + flags if gtest: gtest_parallel = os.path.join( buildroot_dir, 'third_party', 'gtest-parallel', 'gtest-parallel' ) test_command = ['python3', gtest_parallel] + test_command return test_command def RunEngineExecutable( build_dir, executable_name, filter, flags=[], cwd=buildroot_dir, forbidden_output=[], expect_failure=False, coverage=False, extra_env={}, gtest=False ): if filter is not None and executable_name not in filter: print('Skipping %s due to filter.' % executable_name) return unstripped_exe = os.path.join(build_dir, 'exe.unstripped', executable_name) env = os.environ.copy() # We cannot run the unstripped binaries directly when coverage is enabled. if IsLinux() and os.path.exists(unstripped_exe) and not coverage: # Some tests depend on the EGL/GLES libraries placed in the build directory. env['LD_LIBRARY_PATH'] = os.path.join(build_dir, 'lib.unstripped') elif IsMac(): env['DYLD_LIBRARY_PATH'] = build_dir else: env['PATH'] = build_dir + ":" + env['PATH'] print('Running %s in %s' % (executable_name, cwd)) test_command = BuildEngineExecutableCommand( build_dir, executable_name, flags=flags, coverage=coverage, gtest=gtest, ) env['FLUTTER_BUILD_DIRECTORY'] = build_dir for key, value in extra_env.items(): env[key] = value try: RunCmd( test_command, cwd=cwd, forbidden_output=forbidden_output, expect_failure=expect_failure, env=env ) except: # The LUCI environment may provide a variable containing a directory path # for additional output files that will be uploaded to cloud storage. # If the command generated a core dump, then run a script to analyze # the dump and output a report that will be uploaded. luci_test_outputs_path = os.environ.get('FLUTTER_TEST_OUTPUTS_DIR') core_path = os.path.join(cwd, 'core') if luci_test_outputs_path and os.path.exists(core_path) and os.path.exists( unstripped_exe): dump_path = os.path.join( luci_test_outputs_path, '%s_%s.txt' % (executable_name, sys.platform) ) print('Writing core dump analysis to %s' % dump_path) subprocess.call([ os.path.join( buildroot_dir, 'flutter', 'testing', 'analyze_core_dump.sh' ), buildroot_dir, unstripped_exe, core_path, dump_path, ]) os.unlink(core_path) raise class EngineExecutableTask(object): def __init__( self, build_dir, executable_name, filter, flags=[], cwd=buildroot_dir, forbidden_output=[], expect_failure=False, coverage=False, extra_env={} ): self.build_dir = build_dir self.executable_name = executable_name self.filter = filter self.flags = flags self.cwd = cwd self.forbidden_output = forbidden_output self.expect_failure = expect_failure self.coverage = coverage self.extra_env = extra_env def __call__(self, *args): RunEngineExecutable( self.build_dir, self.executable_name, self.filter, flags=self.flags, cwd=self.cwd, forbidden_output=self.forbidden_output, expect_failure=self.expect_failure, coverage=self.coverage, extra_env=self.extra_env, ) def __str__(self): command = BuildEngineExecutableCommand( self.build_dir, self.executable_name, flags=self.flags, coverage=self.coverage ) return " ".join(command) def RunCCTests(build_dir, filter, coverage, capture_core_dump): print("Running Engine Unit-tests.") if capture_core_dump and IsLinux(): import resource resource.setrlimit( resource.RLIMIT_CORE, (resource.RLIM_INFINITY, resource.RLIM_INFINITY) ) shuffle_flags = [ "--gtest_repeat=2", "--gtest_shuffle", ] repeat_flags = [ "--repeat=2", ] def make_test(name, flags=repeat_flags, extra_env={}): return (name, flags, extra_env) unittests = [ make_test('client_wrapper_glfw_unittests'), make_test('client_wrapper_unittests'), make_test('common_cpp_core_unittests'), make_test('common_cpp_unittests'), make_test('dart_plugin_registrant_unittests'), make_test('display_list_rendertests'), make_test('display_list_unittests'), make_test('embedder_proctable_unittests'), make_test('embedder_unittests'), make_test('fml_unittests', flags=[fml_unittests_filter] + repeat_flags), make_test('no_dart_plugin_registrant_unittests'), make_test('runtime_unittests'), make_test('testing_unittests'), make_test('tonic_unittests'), # The image release unit test can take a while on slow machines. make_test('ui_unittests', flags=repeat_flags + ['--timeout=90']), ] if not IsWindows(): unittests += [ # https://github.com/google/googletest/issues/2490 make_test('android_external_view_embedder_unittests'), make_test('jni_unittests'), make_test('platform_view_android_delegate_unittests'), # https://github.com/flutter/flutter/issues/36295 make_test('shell_unittests'), ] if IsWindows(): unittests += [ # The accessibility library only supports Mac and Windows. make_test('accessibility_unittests'), make_test('client_wrapper_windows_unittests'), make_test('flutter_windows_unittests'), ] # These unit-tests are Objective-C and can only run on Darwin. if IsMac(): unittests += [ # The accessibility library only supports Mac and Windows. make_test('accessibility_unittests'), make_test('flutter_channels_unittests'), ] if IsLinux(): flow_flags = [ '--golden-dir=%s' % golden_dir, '--font-file=%s' % roboto_font_path, ] icu_flags = [ '--icu-data-file-path=%s' % os.path.join(build_dir, 'icudtl.dat') ] unittests += [ make_test('flow_unittests', flags=repeat_flags + ['--'] + flow_flags), make_test('flutter_glfw_unittests'), make_test( 'flutter_linux_unittests', extra_env={'G_DEBUG': 'fatal-criticals'} ), # https://github.com/flutter/flutter/issues/36296 make_test('txt_unittests', flags=repeat_flags + ['--'] + icu_flags), ] else: flow_flags = ['--gtest_filter=-PerformanceOverlayLayer.Gold'] unittests += [ make_test('flow_unittests', flags=repeat_flags + flow_flags), ] for test, flags, extra_env in unittests: RunEngineExecutable( build_dir, test, filter, flags, coverage=coverage, extra_env=extra_env, gtest=True ) if IsMac(): # flutter_desktop_darwin_unittests uses global state that isn't handled # correctly by gtest-parallel. # https://github.com/flutter/flutter/issues/104789 RunEngineExecutable( build_dir, 'flutter_desktop_darwin_unittests', filter, shuffle_flags, coverage=coverage ) # Impeller tests are only supported on macOS for now. RunEngineExecutable( build_dir, 'impeller_unittests', filter, shuffle_flags, coverage=coverage ) def RunEngineBenchmarks(build_dir, filter): print("Running Engine Benchmarks.") icu_flags = [ '--icu-data-file-path=%s' % os.path.join(build_dir, 'icudtl.dat') ] RunEngineExecutable(build_dir, 'shell_benchmarks', filter, icu_flags) RunEngineExecutable(build_dir, 'fml_benchmarks', filter, icu_flags) RunEngineExecutable(build_dir, 'ui_benchmarks', filter, icu_flags) if IsLinux(): RunEngineExecutable(build_dir, 'txt_benchmarks', filter, icu_flags) def GatherDartTest( build_dir, test_packages, dart_file, verbose_dart_snapshot, multithreaded, enable_observatory=False, expect_failure=False, alternative_tester=False ): kernel_file_name = os.path.basename(dart_file) + '.dill' kernel_file_output = os.path.join(build_dir, 'gen', kernel_file_name) error_message = "%s doesn't exist. Please run the build that populates %s" % ( kernel_file_output, build_dir ) assert os.path.isfile(kernel_file_output), error_message command_args = [] if not enable_observatory: command_args.append('--disable-observatory') dart_file_contents = open(dart_file, 'r') custom_options = re.findall( "// FlutterTesterOptions=(.*)", dart_file_contents.read() ) dart_file_contents.close() command_args.extend(custom_options) command_args += [ '--use-test-fonts', '--icu-data-file-path=%s' % os.path.join(build_dir, 'icudtl.dat'), '--flutter-assets-dir=%s' % os.path.join(build_dir, 'gen', 'flutter', 'lib', 'ui', 'assets'), '--disable-asset-fonts', kernel_file_output, ] if multithreaded: threading = 'multithreaded' command_args.insert(0, '--force-multithreading') else: threading = 'single-threaded' tester_name = 'flutter_tester' if alternative_tester: tester_name = 'flutter_tester_fractional_translation' print( "Running test '%s' using '%s' (%s)" % (kernel_file_name, tester_name, threading) ) forbidden_output = [] if 'unopt' in build_dir or expect_failure else [ '[ERROR' ] return EngineExecutableTask( build_dir, tester_name, None, command_args, forbidden_output=forbidden_output, expect_failure=expect_failure, ) def EnsureDebugUnoptSkyPackagesAreBuilt(): variant_out_dir = os.path.join(out_dir, 'host_debug_unopt') message = [] message.append('gn --runtime-mode debug --unopt --no-lto') message.append('ninja -C %s flutter/sky/packages' % variant_out_dir) final_message = '%s doesn\'t exist. Please run the following commands: \n%s' % ( variant_out_dir, '\n'.join(message) ) assert os.path.exists(variant_out_dir), final_message def EnsureIosTestsAreBuilt(ios_out_dir): """Builds the engine variant and the test dylib containing the XCTests""" tmp_out_dir = os.path.join(out_dir, ios_out_dir) ios_test_lib = os.path.join(tmp_out_dir, 'libios_test_flutter.dylib') message = [] message.append( 'gn --ios --unoptimized --runtime-mode=debug --no-lto --simulator' ) message.append('autoninja -C %s ios_test_flutter' % ios_out_dir) final_message = '%s or %s doesn\'t exist. Please run the following commands: \n%s' % ( ios_out_dir, ios_test_lib, '\n'.join(message) ) assert os.path.exists(tmp_out_dir ) and os.path.exists(ios_test_lib), final_message def AssertExpectedXcodeVersion(): """Checks that the user has a version of Xcode installed""" version_output = subprocess.check_output(['xcodebuild', '-version']) match = re.match(b"Xcode (\d+)", version_output) message = "Xcode must be installed to run the iOS embedding unit tests" assert match, message def JavaHome(): script_path = os.path.dirname(os.path.realpath(__file__)) if IsMac(): return os.path.join( script_path, '..', '..', 'third_party', 'java', 'openjdk', 'Contents', 'Home' ) else: return os.path.join( script_path, '..', '..', 'third_party', 'java', 'openjdk' ) def JavaBin(): return os.path.join(JavaHome(), 'bin', 'java.exe' if IsWindows() else 'java') def RunJavaTests(filter, android_variant='android_debug_unopt'): """Runs the Java JUnit unit tests for the Android embedding""" test_runner_dir = os.path.join( buildroot_dir, 'flutter', 'shell', 'platform', 'android', 'test_runner' ) gradle_bin = os.path.join( buildroot_dir, 'third_party', 'gradle', 'bin', 'gradle.bat' if IsWindows() else 'gradle' ) flutter_jar = os.path.join(out_dir, android_variant, 'flutter.jar') android_home = os.path.join( buildroot_dir, 'third_party', 'android_tools', 'sdk' ) build_dir = os.path.join( out_dir, android_variant, 'robolectric_tests', 'build' ) gradle_cache_dir = os.path.join( out_dir, android_variant, 'robolectric_tests', '.gradle' ) test_class = filter if filter else '*' command = [ gradle_bin, '-Pflutter_jar=%s' % flutter_jar, '-Pbuild_dir=%s' % build_dir, 'testDebugUnitTest', '--tests=%s' % test_class, '--rerun-tasks', '--no-daemon', '--project-cache-dir=%s' % gradle_cache_dir, '--gradle-user-home=%s' % gradle_cache_dir, ] env = dict(os.environ, ANDROID_HOME=android_home, JAVA_HOME=JavaHome()) RunCmd(command, cwd=test_runner_dir, env=env) def RunAndroidTests(android_variant='android_debug_unopt', adb_path=None): test_runner_name = 'flutter_shell_native_unittests' tests_path = os.path.join(out_dir, android_variant, test_runner_name) remote_path = '/data/local/tmp' remote_tests_path = os.path.join(remote_path, test_runner_name) if adb_path == None: adb_path = 'adb' RunCmd([adb_path, 'push', tests_path, remote_path], cwd=buildroot_dir) RunCmd([adb_path, 'shell', remote_tests_path]) systrace_test = os.path.join( buildroot_dir, 'flutter', 'testing', 'android_systrace_test.py' ) scenario_apk = os.path.join( out_dir, android_variant, 'firebase_apks', 'scenario_app.apk' ) RunCmd([ systrace_test, '--adb-path', adb_path, '--apk-path', scenario_apk, '--package-name', 'dev.flutter.scenarios', '--activity-name', '.TextPlatformViewActivity' ]) def RunObjcTests(ios_variant='ios_debug_sim_unopt', test_filter=None): """Runs Objective-C XCTest unit tests for the iOS embedding""" AssertExpectedXcodeVersion() ios_out_dir = os.path.join(out_dir, ios_variant) EnsureIosTestsAreBuilt(ios_out_dir) ios_unit_test_dir = os.path.join( buildroot_dir, 'flutter', 'testing', 'ios', 'IosUnitTests' ) # Avoid using xcpretty unless the following can be addressed: # - Make sure all relevant failure output is printed on a failure. # - Make sure that a failing exit code is set for CI. # See https://github.com/flutter/flutter/issues/63742 command = [ 'xcodebuild ' '-sdk iphonesimulator ' '-scheme IosUnitTests ' "-destination platform='iOS Simulator,name=iPhone 11' " 'test ' 'FLUTTER_ENGINE=' + ios_variant ] if test_filter != None: command[0] = command[0] + " -only-testing:%s" % test_filter RunCmd(command, cwd=ios_unit_test_dir, shell=True) def GatherDartTests(build_dir, filter, verbose_dart_snapshot): dart_tests_dir = os.path.join( buildroot_dir, 'flutter', 'testing', 'dart', ) # This one is a bit messy. The pubspec.yaml at flutter/testing/dart/pubspec.yaml # has dependencies that are hardcoded to point to the sky packages at host_debug_unopt/ # Before running Dart tests, make sure to run just that target (NOT the whole engine) EnsureDebugUnoptSkyPackagesAreBuilt() # Now that we have the Sky packages at the hardcoded location, run `dart pub get`. RunEngineExecutable( build_dir, os.path.join('dart-sdk', 'bin', 'dart'), None, flags=['pub', 'get', '--offline'], cwd=dart_tests_dir, ) dart_observatory_tests = glob.glob( '%s/observatory/*_test.dart' % dart_tests_dir ) dart_tests = glob.glob('%s/*_test.dart' % dart_tests_dir) test_packages = os.path.join(dart_tests_dir, '.packages') if 'release' not in build_dir: for dart_test_file in dart_observatory_tests: if filter is not None and os.path.basename(dart_test_file) not in filter: print("Skipping '%s' due to filter." % dart_test_file) else: print( "Gathering dart test '%s' with observatory enabled" % dart_test_file ) yield GatherDartTest( build_dir, test_packages, dart_test_file, verbose_dart_snapshot, True, True ) yield GatherDartTest( build_dir, test_packages, dart_test_file, verbose_dart_snapshot, False, True ) # Smoke test with tester variant that has no raster cache and enabled fractional translation yield GatherDartTest( build_dir, test_packages, dart_test_file, verbose_dart_snapshot, False, True, True ) for dart_test_file in dart_tests: if filter is not None and os.path.basename(dart_test_file) not in filter: print("Skipping '%s' due to filter." % dart_test_file) else: print("Gathering dart test '%s'" % dart_test_file) yield GatherDartTest( build_dir, test_packages, dart_test_file, verbose_dart_snapshot, True ) yield GatherDartTest( build_dir, test_packages, dart_test_file, verbose_dart_snapshot, False ) def GatherDartSmokeTest(build_dir, verbose_dart_snapshot): smoke_test = os.path.join( buildroot_dir, "flutter", "testing", "smoke_test_failure", "fail_test.dart" ) test_packages = os.path.join( buildroot_dir, "flutter", "testing", "smoke_test_failure", ".packages" ) yield GatherDartTest( build_dir, test_packages, smoke_test, verbose_dart_snapshot, True, expect_failure=True ) yield GatherDartTest( build_dir, test_packages, smoke_test, verbose_dart_snapshot, False, expect_failure=True ) def GatherFrontEndServerTests(build_dir): test_dir = os.path.join(buildroot_dir, 'flutter', 'flutter_frontend_server') dart_tests = glob.glob('%s/test/*_test.dart' % test_dir) for dart_test_file in dart_tests: opts = [ '--disable-dart-dev', dart_test_file, build_dir, os.path.join(build_dir, 'gen', 'frontend_server.dart.snapshot'), os.path.join(build_dir, 'flutter_patched_sdk') ] yield EngineExecutableTask( build_dir, os.path.join('dart-sdk', 'bin', 'dart'), None, flags=opts, cwd=test_dir ) def GatherConstFinderTests(build_dir): test_dir = os.path.join( buildroot_dir, 'flutter', 'tools', 'const_finder', 'test' ) opts = [ '--disable-dart-dev', os.path.join(test_dir, 'const_finder_test.dart'), os.path.join(build_dir, 'gen', 'frontend_server.dart.snapshot'), os.path.join(build_dir, 'flutter_patched_sdk') ] yield EngineExecutableTask( build_dir, os.path.join('dart-sdk', 'bin', 'dart'), None, flags=opts, cwd=test_dir ) def GatherLitetestTests(build_dir): test_dir = os.path.join(buildroot_dir, 'flutter', 'testing', 'litetest') dart_tests = glob.glob('%s/test/*_test.dart' % test_dir) for dart_test_file in dart_tests: opts = ['--disable-dart-dev', dart_test_file] yield EngineExecutableTask( build_dir, os.path.join('dart-sdk', 'bin', 'dart'), None, flags=opts, cwd=test_dir ) def RunBenchmarkTests(build_dir): test_dir = os.path.join(buildroot_dir, 'flutter', 'testing', 'benchmark') dart_tests = glob.glob('%s/test/*_test.dart' % test_dir) for dart_test_file in dart_tests: opts = ['--disable-dart-dev', dart_test_file] RunEngineExecutable( build_dir, os.path.join('dart-sdk', 'bin', 'dart'), None, flags=opts, cwd=test_dir ) def GatherGithooksTests(build_dir): test_dir = os.path.join(buildroot_dir, 'flutter', 'tools', 'githooks') dart_tests = glob.glob('%s/test/*_test.dart' % test_dir) for dart_test_file in dart_tests: opts = ['--disable-dart-dev', dart_test_file] yield EngineExecutableTask( build_dir, os.path.join('dart-sdk', 'bin', 'dart'), None, flags=opts, cwd=test_dir ) def GatherClangTidyTests(build_dir): test_dir = os.path.join(buildroot_dir, 'flutter', 'tools', 'clang_tidy') dart_tests = glob.glob('%s/test/*_test.dart' % test_dir) for dart_test_file in dart_tests: opts = [ '--disable-dart-dev', dart_test_file, os.path.join(build_dir, 'compile_commands.json'), os.path.join(buildroot_dir, 'flutter') ] yield EngineExecutableTask( build_dir, os.path.join('dart-sdk', 'bin', 'dart'), None, flags=opts, cwd=test_dir ) def GatherApiConsistencyTests(build_dir): test_dir = os.path.join(buildroot_dir, 'flutter', 'tools', 'api_check') dart_tests = glob.glob('%s/test/*_test.dart' % test_dir) for dart_test_file in dart_tests: opts = [ '--disable-dart-dev', dart_test_file, os.path.join(buildroot_dir, 'flutter') ] yield EngineExecutableTask( build_dir, os.path.join('dart-sdk', 'bin', 'dart'), None, flags=opts, cwd=test_dir ) def RunEngineTasksInParallel(tasks): # Work around a bug in Python. # # The multiprocessing package relies on the win32 WaitForMultipleObjects() # call, which supports waiting on a maximum of MAXIMUM_WAIT_OBJECTS (defined # by Windows to be 64) handles, processes in this case. To avoid hitting # this, we limit ourselves to 60 handles (since there are a couple extra # processes launched for the queue reader and thread wakeup reader). # # See: https://bugs.python.org/issue26903 max_processes = multiprocessing.cpu_count() if sys.platform.startswith(('cygwin', 'win')) and max_processes > 60: max_processes = 60 pool = multiprocessing.Pool(processes=max_processes) async_results = [(t, pool.apply_async(t, ())) for t in tasks] failures = [] for task, async_result in async_results: try: async_result.get() except Exception as exn: failures += [(task, exn)] if len(failures) > 0: print("The following commands failed:") for task, exn in failures: print("%s\n" % str(task)) raise Exception() def main(): parser = argparse.ArgumentParser() all_types = [ 'engine', 'dart', 'benchmarks', 'java', 'android', 'objc', 'font-subset' ] parser.add_argument( '--variant', dest='variant', action='store', default='host_debug_unopt', help='The engine build variant to run the tests for.' ) parser.add_argument( '--type', type=str, default='all', help='A list of test types, default is "all" (equivalent to "%s")' % (','.join(all_types)) ) parser.add_argument( '--engine-filter', type=str, default='', help='A list of engine test executables to run.' ) parser.add_argument( '--dart-filter', type=str, default='', help='A list of Dart test scripts to run.' ) parser.add_argument( '--java-filter', type=str, default='', help='A single Java test class to run (example: "io.flutter.SmokeTest")' ) parser.add_argument( '--android-variant', dest='android_variant', action='store', default='android_debug_unopt', help='The engine build variant to run java or android tests for' ) parser.add_argument( '--ios-variant', dest='ios_variant', action='store', default='ios_debug_sim_unopt', help='The engine build variant to run objective-c tests for' ) parser.add_argument( '--verbose-dart-snapshot', dest='verbose_dart_snapshot', action='store_true', default=False, help='Show extra dart snapshot logging.' ) parser.add_argument( '--objc-filter', type=str, default=None, help='Filter parameter for which objc tests to run (example: "IosUnitTestsTests/SemanticsObjectTest/testShouldTriggerAnnouncement")' ) parser.add_argument( '--coverage', action='store_true', default=None, help='Generate coverage reports for each unit test framework run.' ) parser.add_argument( '--engine-capture-core-dump', dest='engine_capture_core_dump', action='store_true', default=False, help='Capture core dumps from crashes of engine tests.' ) parser.add_argument( '--use-sanitizer-suppressions', dest='sanitizer_suppressions', action='store_true', default=False, help='Provide the sanitizer suppressions lists to the via environment to the tests.' ) parser.add_argument( '--adb-path', dest='adb_path', action='store', default=None, help='Provide the path of adb used for android tests. By default it looks on $PATH.' ) args = parser.parse_args() if args.type == 'all': types = all_types else: types = args.type.split(',') build_dir = os.path.join(out_dir, args.variant) if args.type != 'java' and args.type != 'android': assert os.path.exists( build_dir ), 'Build variant directory %s does not exist!' % build_dir if args.sanitizer_suppressions: assert IsLinux() or IsMac( ), "The sanitizer suppressions flag is only supported on Linux and Mac." file_dir = os.path.dirname(os.path.abspath(__file__)) command = [ "env", "-i", "bash", "-c", "source {}/sanitizer_suppressions.sh >/dev/null && env" .format(file_dir) ] process = subprocess.Popen(command, stdout=subprocess.PIPE) for line in process.stdout: key, _, value = line.decode('ascii').strip().partition("=") os.environ[key] = value process.communicate() # Avoid pipe deadlock while waiting for termination. engine_filter = args.engine_filter.split(',') if args.engine_filter else None if 'engine' in types: RunCCTests( build_dir, engine_filter, args.coverage, args.engine_capture_core_dump ) if 'dart' in types: assert not IsWindows( ), "Dart tests can't be run on windows. https://github.com/flutter/flutter/issues/36301." dart_filter = args.dart_filter.split(',') if args.dart_filter else None tasks = list(GatherDartSmokeTest(build_dir, args.verbose_dart_snapshot)) tasks += list(GatherLitetestTests(build_dir)) tasks += list(GatherGithooksTests(build_dir)) tasks += list(GatherClangTidyTests(build_dir)) tasks += list(GatherApiConsistencyTests(build_dir)) tasks += list(GatherConstFinderTests(build_dir)) tasks += list(GatherFrontEndServerTests(build_dir)) tasks += list( GatherDartTests(build_dir, dart_filter, args.verbose_dart_snapshot) ) RunEngineTasksInParallel(tasks) if 'java' in types: assert not IsWindows(), "Android engine files can't be compiled on Windows." java_filter = args.java_filter if ',' in java_filter or '*' in java_filter: print( 'Can only filter JUnit4 tests by single entire class name, eg "io.flutter.SmokeTest". Ignoring filter=' + java_filter ) java_filter = None RunJavaTests(java_filter, args.android_variant) if 'android' in types: assert not IsWindows(), "Android engine files can't be compiled on Windows." RunAndroidTests(args.android_variant, args.adb_path) if 'objc' in types: assert IsMac(), "iOS embedding tests can only be run on macOS." RunObjcTests(args.ios_variant, args.objc_filter) # https://github.com/flutter/flutter/issues/36300 if 'benchmarks' in types and not IsWindows(): RunBenchmarkTests(build_dir) RunEngineBenchmarks(build_dir, engine_filter) variants_to_skip = ['host_release', 'host_profile'] if ('engine' in types or 'font-subset' in types) and args.variant not in variants_to_skip: RunCmd(['python3', 'test.py'], cwd=font_subset_dir) if __name__ == '__main__': sys.exit(main())
the-stack_0_22221
# qubit number=4 # total number=50 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=31 prog.cz(input_qubit[0],input_qubit[3]) # number=32 prog.h(input_qubit[3]) # number=33 prog.x(input_qubit[3]) # number=27 prog.h(input_qubit[3]) # number=34 prog.cz(input_qubit[0],input_qubit[3]) # number=35 prog.h(input_qubit[3]) # number=36 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.cx(input_qubit[3],input_qubit[0]) # number=38 prog.z(input_qubit[3]) # number=39 prog.cx(input_qubit[3],input_qubit[0]) # number=40 prog.h(input_qubit[3]) # number=4 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.h(input_qubit[0]) # number=41 prog.cz(input_qubit[2],input_qubit[0]) # number=42 prog.h(input_qubit[0]) # number=43 prog.y(input_qubit[3]) # number=37 prog.h(input_qubit[0]) # number=14 prog.h(input_qubit[1]) # number=30 prog.cz(input_qubit[2],input_qubit[0]) # number=15 prog.h(input_qubit[0]) # number=16 prog.h(input_qubit[2]) # number=44 prog.cz(input_qubit[0],input_qubit[2]) # number=45 prog.h(input_qubit[2]) # number=46 prog.x(input_qubit[2]) # number=21 prog.cx(input_qubit[0],input_qubit[2]) # number=22 prog.h(input_qubit[2]) # number=47 prog.cz(input_qubit[0],input_qubit[2]) # number=48 prog.h(input_qubit[2]) # number=49 prog.cx(input_qubit[0],input_qubit[2]) # number=23 prog.x(input_qubit[2]) # number=24 prog.cx(input_qubit[0],input_qubit[2]) # number=25 prog.cx(input_qubit[0],input_qubit[2]) # number=19 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit3424.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
the-stack_0_22225
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-return-doc """Sampler decorator module for sampling of continuous pulses to discrete pulses to be exposed to user. Some atypical boilerplate has been added to solve the problem of decorators not preserving their wrapped function signatures. Below we explain the problem that samplers solve and how we implement this. A sampler is a function that takes an continuous pulse function with signature: ```python def f(times: np.ndarray, *args, **kwargs) -> np.ndarray: ... ``` and returns a new function: def f(duration: int, *args, **kwargs) -> SamplePulse: ... Samplers are used to build up pulse commands from continuous pulse functions. In Python the creation of a dynamic function that wraps another function will cause the underlying signature and documentation of the underlying function to be overwritten. In order to circumvent this issue the Python standard library provides the decorator `functools.wraps` which allows the programmer to expose the names and signature of the wrapped function as those of the dynamic function. Samplers are implemented by creating a function with signature @sampler def left(continuous_pulse: Callable, duration: int, *args, **kwargs) ... This will create a sampler function for `left`. Since it is a dynamic function it would not have the docstring of `left` available too `help`. This could be fixed by wrapping with `functools.wraps` in the `sampler`, but this would then cause the signature to be that of the sampler function which is called on the continuous pulse, below: `(continuous_pulse: Callable, duration: int, *args, **kwargs)`` This is not correct for the sampler as the output sampled functions accept only a function. For the standard sampler we get around this by not using `functools.wraps` and explicitly defining our samplers such as `left`, `right` and `midpoint` and calling `sampler` internally on the function that implements the sampling schemes such as `left_sample`, `right_sample` and `midpoint_sample` respectively. See `left` for an example of this. In this way our standard samplers will expose the proper help signature, but a user can still create their own sampler with @sampler def custom_sampler(time, *args, **kwargs): ... However, in this case it will be missing documentation of the underlying sampling methods. We believe that the definition of custom samplers will be rather infrequent. However, users will frequently apply sampler instances too continuous pulses. Therefore, a different approach was required for sampled continuous functions (the output of an continuous pulse function decorated by a sampler instance). A sampler instance is a decorator that may be used to wrap continuous pulse functions such as linear below: ```python @left def linear(times: np.ndarray, m: float, b: float) -> np.ndarray: ```Linear test function Args: times: Input times. m: Slope. b: Intercept Returns: np.ndarray ``` return m*times+b ``` Which after decoration may be called with a duration rather than an array of times ```python duration = 10 pulse_command = linear(10, 0.1, 0.1) ``` If one calls help on `linear` they will find ``` linear(duration:int, *args, **kwargs) -> numpy.ndarray Discretized continuous pulse function: `linear` using sampler: `_left`. The first argument (time) of the continuous pulse function has been replaced with a discretized `duration` of type (int). Args: duration (int) *args: Remaining arguments of continuous pulse function. See continuous pulse function documentation below. **kwargs: Remaining kwargs of continuous pulse function. See continuous pulse function documentation below. Sampled continuous function: function linear in module test.python.pulse.test_samplers linear(x:numpy.ndarray, m:float, b:float) -> numpy.ndarray Linear test function Args: x: Input times. m: Slope. b: Intercept Returns: np.ndarray ``` This is partly because `functools.wraps` has been used on the underlying function. This in itself is not sufficient as the signature of the sampled function has `duration`, whereas the signature of the continuous function is `time`. This is achieved by removing `__wrapped__` set by `functools.wraps` in order to preserve the correct signature and also applying `_update_annotations` and `_update_docstring` to the generated function which corrects the function annotations and adds an informative docstring respectively. The user therefore has access to the correct sampled function docstring in its entirety, while still seeing the signature for the continuous pulse function and all of its arguments. """ import functools from typing import Callable import textwrap import pydoc import numpy as np from qiskit.pulse.commands.sample_pulse import SamplePulse from qiskit.pulse.commands.pulse_decorators import functional_pulse from . import strategies def _update_annotations(discretized_pulse: Callable) -> Callable: """Update annotations of discretized continuous pulse function with duration. Args: discretized_pulse: Discretized decorated continuous pulse. """ undecorated_annotations = list(discretized_pulse.__annotations__.items()) decorated_annotations = undecorated_annotations[1:] decorated_annotations.insert(0, ('duration', int)) discretized_pulse.__annotations__ = dict(decorated_annotations) return discretized_pulse def _update_docstring(discretized_pulse: Callable, sampler_inst: Callable) -> Callable: """Update annotations of discretized continuous pulse function. Args: discretized_pulse: Discretized decorated continuous pulse. sampler_inst: Applied sampler. """ wrapped_docstring = pydoc.render_doc(discretized_pulse, '%s') header, body = wrapped_docstring.split('\n', 1) body = textwrap.indent(body, ' ') wrapped_docstring = header+body updated_ds = """ Discretized continuous pulse function: `{continuous_name}` using sampler: `{sampler_name}`. The first argument (time) of the continuous pulse function has been replaced with a discretized `duration` of type (int). Args: duration (int) *args: Remaining arguments of continuous pulse function. See continuous pulse function documentation below. **kwargs: Remaining kwargs of continuous pulse function. See continuous pulse function documentation below. Sampled continuous function: {continuous_doc} """.format(continuous_name=discretized_pulse.__name__, sampler_name=sampler_inst.__name__, continuous_doc=wrapped_docstring) discretized_pulse.__doc__ = updated_ds return discretized_pulse def sampler(sample_function: Callable) -> Callable: """Sampler decorator base method. Samplers are used for converting an continuous function to a discretized pulse. They operate on a function with the signature: `def f(times: np.ndarray, *args, **kwargs) -> np.ndarray` Where `times` is a numpy array of floats with length n_times and the output array is a complex numpy array with length n_times. The output of the decorator is an instance of `FunctionalPulse` with signature: `def g(duration: int, *args, **kwargs) -> SamplePulse` Note if your continuous pulse function outputs a `complex` scalar rather than a `np.ndarray`, you should first vectorize it before applying a sampler. This class implements the sampler boilerplate for the sampler. Args: sample_function: A sampler function to be decorated. """ def generate_sampler(continuous_pulse: Callable) -> Callable: """Return a decorated sampler function.""" @functools.wraps(continuous_pulse) def call_sampler(duration: int, *args, **kwargs) -> SamplePulse: """Replace the call to the continuous function with a call to the sampler applied to the analytic pulse function.""" sampled_pulse = sample_function(continuous_pulse, duration, *args, **kwargs) return np.asarray(sampled_pulse, dtype=np.complex_) # Update type annotations for wrapped continuous function to be discrete call_sampler = _update_annotations(call_sampler) # Update docstring with that of the sampler and include sampled function documentation. call_sampler = _update_docstring(call_sampler, sample_function) # Unset wrapped to return base sampler signature # but still get rest of benefits of wraps # such as __name__, __qualname__ call_sampler.__dict__.pop('__wrapped__') # wrap with functional pulse return functional_pulse(call_sampler) return generate_sampler def left(continuous_pulse: Callable) -> Callable: r"""Left sampling strategy decorator. See `pulse.samplers.sampler` for more information. For `duration`, return: $$\{f(t) \in \mathbb{C} | t \in \mathbb{Z} \wedge 0<=t<\texttt{duration}\}$$ Args: continuous_pulse: To sample. """ return sampler(strategies.left_sample)(continuous_pulse) def right(continuous_pulse: Callable) -> Callable: r"""Right sampling strategy decorator. See `pulse.samplers.sampler` for more information. For `duration`, return: $$\{f(t) \in \mathbb{C} | t \in \mathbb{Z} \wedge 0<t<=\texttt{duration}\}$$ Args: continuous_pulse: To sample. """ return sampler(strategies.right_sample)(continuous_pulse) def midpoint(continuous_pulse: Callable) -> Callable: r"""Midpoint sampling strategy decorator. See `pulse.samplers.sampler` for more information. For `duration`, return: $$\{f(t+0.5) \in \mathbb{C} | t \in \mathbb{Z} \wedge 0<=t<\texttt{duration}\}$$ Args: continuous_pulse: To sample. """ return sampler(strategies.midpoint_sample)(continuous_pulse)
the-stack_0_22229
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Thread based executor """ import Queue import threading from aria.utils import imports from .base import BaseExecutor class ThreadExecutor(BaseExecutor): """ Executor which runs tasks in a separate thread. It's easier writing tests using this executor rather than the full blown subprocess executor. Note: This executor is not capable of running plugin operations. """ def __init__(self, pool_size=1, *args, **kwargs): super(ThreadExecutor, self).__init__(*args, **kwargs) self._stopped = False self._queue = Queue.Queue() self._pool = [] for i in range(pool_size): name = 'ThreadExecutor-{index}'.format(index=i+1) thread = threading.Thread(target=self._processor, name=name) thread.daemon = True thread.start() self._pool.append(thread) def execute(self, task): self._queue.put(task) def close(self): self._stopped = True for thread in self._pool: thread.join() def _processor(self): while not self._stopped: try: task = self._queue.get(timeout=1) self._task_started(task) try: task_func = imports.load_attribute(task.operation_mapping) task_func(ctx=task.context, **task.inputs) self._task_succeeded(task) except BaseException as e: self._task_failed(task, exception=e) # Daemon threads except BaseException: pass
the-stack_0_22231
import matplotlib.pyplot as plt import numpy as np def bars(predictions, plt_name="graph"): prediction = predictions plt.style.use('ggplot') fig, axes = plt.subplots(ncols=1, nrows=1) ax3= axes x = np.arange(3) y1, y2, y3 = prediction width = 0.20 plt.title('%s\n Polarity Score for POS, NEG, NEU' % plt_name) plt.xlabel('Parameters') plt.ylabel('Score') ax3.bar(x, y1, width, label="Correct Positives") ax3.bar(x + width, y2, width, color=list(plt.rcParams['axes.prop_cycle'])[2]['color'], label="Correct Negatives") ax3.bar(x + width + width, y3, width, color=list(plt.rcParams['axes.prop_cycle'])[3]['color'], label="Correct Neutrals") ax3.set_xticks(x + width) ax3.set_xticklabels(['Positive', 'Negative', 'Neutral']) plt.legend() plt.show() def biplt(groundTruth, predictedValues, plt_name='<name>'): gt = groundTruth pr = predictedValues x = np.arange(3) y1, y2 = gt.values, pr.values fig, axes = plt.subplots(ncols=1, nrows=1) width = 0.20 plt.title('Accuracy with \n %s' % plt_name) plt.xlabel('Parameters') plt.ylabel('Score') axes.bar(x, y1, width, label="Ground Truth") axes.bar(x + width, y2, width, color=list(plt.rcParams['axes.prop_cycle'])[2]['color'], label="Predicted") axes.set_xticks(x + width/2) axes.set_xticklabels(['Positive', 'Negative', 'Neutral']) plt.legend() plt.show() # y, z, k = prediction # # ax = plt.subplot(111) # ax.bar(x - 0.2, y, width=0.2, color='b', align='center') # ax.bar(x, z, width=0.2, color='g', align='center') # ax.bar(x + 0.2, k, width=0.2, color='r', align='center') # ax.xaxis_date() # # plt.show() def uslplt(groundTruth, predictedValues, plt_name="<name>"): # data to plot n_groups = 3 gt = groundTruth.values pr = predictedValues.values # create plot fig, ax = plt.subplots() index = np.arange(n_groups) bar_width = 0.35 opacity = 0.8 rects1 = plt.bar(index, gt, bar_width, alpha=opacity, color='b', label='Frank') rects2 = plt.bar(index + bar_width, pr, bar_width, alpha=opacity, color='g', label='Guido') plt.xlabel('Person') plt.ylabel('Scores') plt.title('%s\nScores by person'%plt_name) plt.xticks(index + bar_width, ('A', 'B', 'C')) plt.legend() plt.tight_layout() plt.show() def stackplotter(HighlyNEG, ModeratelyNEG, NEG, HighlyPOS, ModeratelyPOS, POS, text): H_NG, M_NG, NG, H_PS, M_PS, PS = HighlyNEG, ModeratelyNEG, NEG, HighlyPOS, ModeratelyPOS, POS Polarities = [H_NG, M_NG, NG, H_PS, M_PS, PS] N = len(Polarities) # Number of Bars ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence p1 = plt.bar(ind, Polarities, width) plt.xlabel('Polarities') plt.ylabel('Scores') plt.title(text) plt.xticks(ind, ( 'Highly Negative', 'Moderately Negative', 'Negative', 'Highly Positive', 'Moderately Positive', 'Positive')) # plt.yticks(np.arange(0, 200, 10)) # plt.legend(p1[0], 'Polarity') plt.show() def simple_plot(dataframe): dataframe.plot.barh(stacked=True) plt.show() # from mpl_toolkits.mplot3d import Axes3D # import matplotlib.pyplot as plt # import numpy as np # fig = plt.figure() # ax = fig.add_subplot(111, projection="3d") # ax.set_xlabel("x") # ax.set_ylabel("y") # ax.set_zlabel("z") # ax.set_xlim3d(0, 10) # ax.set_ylim3d(0, 10) # xpos = [2, 5, 8, 2, 5, 8, 2, 5, 8] # ypos = [1, 1, 1, 5, 5, 5, 9, 9, 9] # zpos = np.zeros(9) # dx = np.ones(9) # dy = np.ones(9) # dz = [np.random.random(9) for i in range(4)] # the heights of the 4 bar sets # print(dz) # _zpos = zpos # the starting zpos for each bar # colors = ['r', 'b', 'g', 'y', 'r', 'b', 'y'] # for i in range(4): # ax.bar3d(xpos, ypos, _zpos, dx, dy, dz[i], color=colors[i]) # _zpos += dz[i] # add the height of each bar to know where to start the next # print(_zpos) # plt.gca().invert_xaxis() # plt.legend() # plt.show()
the-stack_0_22233
"""Provides device automations for Device tracker.""" from __future__ import annotations import voluptuous as vol from homeassistant.const import ( ATTR_ENTITY_ID, CONF_CONDITION, CONF_DEVICE_ID, CONF_DOMAIN, CONF_ENTITY_ID, CONF_TYPE, STATE_HOME, ) from homeassistant.core import HomeAssistant, callback from homeassistant.helpers import condition, config_validation as cv, entity_registry from homeassistant.helpers.config_validation import DEVICE_CONDITION_BASE_SCHEMA from homeassistant.helpers.typing import ConfigType, TemplateVarsType from .const import DOMAIN CONDITION_TYPES = {"is_home", "is_not_home"} CONDITION_SCHEMA = DEVICE_CONDITION_BASE_SCHEMA.extend( { vol.Required(CONF_ENTITY_ID): cv.entity_id, vol.Required(CONF_TYPE): vol.In(CONDITION_TYPES), } ) async def async_get_conditions( hass: HomeAssistant, device_id: str ) -> list[dict[str, str]]: """List device conditions for Device tracker devices.""" registry = entity_registry.async_get(hass) conditions = [] # Get all the integrations entities for this device for entry in entity_registry.async_entries_for_device(registry, device_id): if entry.domain != DOMAIN: continue # Add conditions for each entity that belongs to this integration base_condition = { CONF_CONDITION: "device", CONF_DEVICE_ID: device_id, CONF_DOMAIN: DOMAIN, CONF_ENTITY_ID: entry.entity_id, } conditions += [{**base_condition, CONF_TYPE: cond} for cond in CONDITION_TYPES] return conditions @callback def async_condition_from_config( hass: HomeAssistant, config: ConfigType ) -> condition.ConditionCheckerType: """Create a function to test a device condition.""" reverse = config[CONF_TYPE] == "is_not_home" @callback def test_is_state(hass: HomeAssistant, variables: TemplateVarsType) -> bool: """Test if an entity is a certain state.""" result = condition.state(hass, config[ATTR_ENTITY_ID], STATE_HOME) if reverse: result = not result return result return test_is_state
the-stack_0_22234
import sys from configparser import ConfigParser from typing import List class IniParserSingleton: config_path: str = "config.ini" global_section: str = "global" environment: str available_environments: List[str] configparser_obj: ConfigParser class IniParserError(Exception): pass def _init_configparser(self): self.configparser_obj = ConfigParser() self.configparser_obj.read(self.config_path) self.available_environments = self.configparser_obj.sections() self.available_environments.remove(self.global_section) def __init__(self, config_path: str = "", global_section: str = ""): if config_path: self.config_path = config_path if global_section: self.global_section = global_section self._init_configparser() def _resolve_value(self, key: str): environment_config = self.configparser_obj[self.environment] if key in environment_config: return environment_config[key] global_config = self.configparser_obj[self.global_section] if key in global_config: return global_config[key] raise self.IniParserError( f"Key `{key}` is not found in `global` section neither `{self.environment}`" ) @property def _available_environments_text(self): return f" | Available enviroments: {self.available_environments}" def get_environment_as_cmd_arg(self): args = sys.argv if len(args) != 2 or args[1] not in self.available_environments: raise self.IniParserError( "Usage: python3 [file.py] [enviroment]" + self._available_environments_text ) self.environment = args[1] return self def get_environment_from_file(self, file_path: str): try: with open(file_path, "r") as f: environment = f.read().replace("\n", "") except FileNotFoundError: raise self.IniParserError( f"Please, create file `{file_path}` with available environment" + self._available_environments_text ) from FileNotFoundError if not environment in self.available_environments: raise self.IniParserError( f"Environment `{environment}` in file `{file_path}` is incorrect" + self._available_environments_text ) self.environment = environment return self def config(self, key: str, converter=None): """gets key from config.ini and if converter, returns converter(value) else just value""" value = self._resolve_value(key) if converter: return converter(value) return value if __name__ == "__main__": ini_parser_singleton = IniParserSingleton().get_environment_as_cmd_arg() config = ini_parser_singleton.config ... PORT = config("PORT", int)
the-stack_0_22235
import pdb import json import numpy as np import matplotlib import matplotlib.pyplot as plt log_path = '/home/li.baol/GIT/dlrm/inference_data/colocation/64_bkgd/half/' batch_list = ['64', '128', '256', '512'] median_ls1 = [] mean_ls1 = [] tail_ls1 = [] median_ls2 = [] mean_ls2 = [] tail_ls2 = [] for batch in batch_list: with open(log_path+batch+'_diff_1.json') as f: read = json.load(f) # first inference is extremely slow # read = read[1:] median_ls1.append(round(np.median(read),3)) mean_ls1.append((round(np.mean(read),3))) tail_ls1.append(round(np.percentile(read,95),3)) with open(log_path+batch+'_diff_2.json') as f: read = json.load(f) # first inference is extremely slow # read = read[1:] median_ls2.append(round(np.median(read),3)) mean_ls2.append((round(np.mean(read),3))) tail_ls2.append(round(np.percentile(read,95),3)) log_path = '/home/li.baol/GIT/dlrm/inference_data/colocation/64_bkgd/empty/' median_base1 = [] mean_base1 = [] tail_base1 = [] median_base2 = [] mean_base2 = [] tail_base2 = [] for batch in batch_list: with open(log_path+batch+'_diff_1.json') as f: read = json.load(f) # first inference is extremely slow # read = read[1:] median_base1.append(round(np.median(read),3)) mean_base1.append((round(np.mean(read),3))) tail_base1.append(round(np.percentile(read,95),3)) with open(log_path+batch+'_diff_2.json') as f: read = json.load(f) # first inference is extremely slow # read = read[1:] median_base2.append(round(np.median(read),3)) mean_base2.append((round(np.mean(read),3))) tail_base2.append(round(np.percentile(read,95),3)) median_ls1 = np.asarray(median_ls1) mean_ls1 = np.asarray(mean_ls1) tail_ls1 = np.asarray(tail_ls1) median_base1 = np.asarray(median_base1) mean_base1 = np.asarray(mean_base1) tail_base1 = np.asarray(tail_base1) median_ls2 = np.asarray(median_ls2) mean_ls2 = np.asarray(mean_ls2) tail_ls2 = np.asarray(tail_ls2) median_base2 = np.asarray(median_base2) mean_base2 = np.asarray(mean_base2) tail_base2 = np.asarray(tail_base2) median_norm1 = median_ls1 / median_base1 mean_norm1 = mean_ls1 / mean_base1 tail_norm1 = tail_ls1 / tail_base1 median_norm2 = median_ls2 / median_base2 mean_norm2 = mean_ls2 / mean_base2 tail_norm2 = tail_ls2 / tail_base2 ############## plotting ################ x = np.arange(len(batch_list)) # the label locations width = 0.2 # the width of the bars fig, (ax1,ax2) = plt.subplots(1,2,figsize=(12,5)) ax1.bar(x - width, mean_norm1, width, label='mean') ax1.bar(x, median_norm1, width, label='median') ax1.bar(x + width, tail_norm1, width, label='95th tail') ax1.set_ylabel('Normalized value (lower is better)') ax1.set_ylim(0,5) ax1.set_xlabel('batch size') ax1.set_title('Background process using same cpu') ax1.set_xticks(x) ax1.set_xticklabels(batch_list) #ax1.legend() ax1.grid(axis='y', linestyle=':', color='black') ax2.bar(x - width, mean_norm2, width, label='mean') ax2.bar(x, median_norm2, width, label='median') ax2.bar(x + width, tail_norm2, width, label='95th tail') ax2.set_ylabel('Normalized value (lower is better)') ax2.set_ylim(0,5) ax2.set_xlabel('batch size') ax2.set_title('Background process using diff cpu') ax2.set_xticks(x) ax2.set_xticklabels(batch_list) ax2.legend() ax2.grid(axis='y', linestyle=':', color='black') #plt.show() plt.savefig('plot2.png')
the-stack_0_22236
# Copyright 2011 Justin Santa Barbara # Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Implementation of a fake image service.""" import copy import datetime import uuid from oslo.config import cfg from nova import exception import nova.image.glance from nova.openstack.common import log as logging CONF = cfg.CONF CONF.import_opt('null_kernel', 'nova.compute.api') LOG = logging.getLogger(__name__) class _FakeImageService(object): """Mock (fake) image service for unit testing.""" def __init__(self): self.images = {} # NOTE(justinsb): The OpenStack API can't upload an image? # So, make sure we've got one.. timestamp = datetime.datetime(2011, 1, 1, 1, 2, 3) image1 = {'id': '155d900f-4e14-4e4c-a73d-069cbf4541e6', 'name': 'fakeimage123456', 'created_at': timestamp, 'updated_at': timestamp, 'deleted_at': None, 'deleted': False, 'status': 'active', 'is_public': False, 'container_format': 'raw', 'disk_format': 'raw', 'size': '25165824', 'properties': {'kernel_id': CONF.null_kernel, 'ramdisk_id': CONF.null_kernel, 'architecture': 'x86_64'}} image2 = {'id': 'a2459075-d96c-40d5-893e-577ff92e721c', 'name': 'fakeimage123456', 'created_at': timestamp, 'updated_at': timestamp, 'deleted_at': None, 'deleted': False, 'status': 'active', 'is_public': True, 'container_format': 'ami', 'disk_format': 'ami', 'size': '58145823', 'properties': {'kernel_id': CONF.null_kernel, 'ramdisk_id': CONF.null_kernel}} image3 = {'id': '76fa36fc-c930-4bf3-8c8a-ea2a2420deb6', 'name': 'fakeimage123456', 'created_at': timestamp, 'updated_at': timestamp, 'deleted_at': None, 'deleted': False, 'status': 'active', 'is_public': True, 'container_format': None, 'disk_format': None, 'size': '83594576', 'properties': {'kernel_id': CONF.null_kernel, 'ramdisk_id': CONF.null_kernel}} image4 = {'id': 'cedef40a-ed67-4d10-800e-17455edce175', 'name': 'fakeimage123456', 'created_at': timestamp, 'updated_at': timestamp, 'deleted_at': None, 'deleted': False, 'status': 'active', 'is_public': True, 'container_format': 'ami', 'disk_format': 'ami', 'size': '84035174', 'properties': {'kernel_id': CONF.null_kernel, 'ramdisk_id': CONF.null_kernel}} image5 = {'id': 'c905cedb-7281-47e4-8a62-f26bc5fc4c77', 'name': 'fakeimage123456', 'created_at': timestamp, 'updated_at': timestamp, 'deleted_at': None, 'deleted': False, 'status': 'active', 'is_public': True, 'container_format': 'ami', 'disk_format': 'ami', 'size': '26360814', 'properties': {'kernel_id': '155d900f-4e14-4e4c-a73d-069cbf4541e6', 'ramdisk_id': None}} image6 = {'id': 'a440c04b-79fa-479c-bed1-0b816eaec379', 'name': 'fakeimage6', 'created_at': timestamp, 'updated_at': timestamp, 'deleted_at': None, 'deleted': False, 'status': 'active', 'is_public': False, 'container_format': 'ova', 'disk_format': 'vhd', 'size': '49163826', 'properties': {'kernel_id': CONF.null_kernel, 'ramdisk_id': CONF.null_kernel, 'architecture': 'x86_64', 'auto_disk_config': 'False'}} image7 = {'id': '70a599e0-31e7-49b7-b260-868f441e862b', 'name': 'fakeimage7', 'created_at': timestamp, 'updated_at': timestamp, 'deleted_at': None, 'deleted': False, 'status': 'active', 'is_public': False, 'container_format': 'ova', 'disk_format': 'vhd', 'size': '74185822', 'properties': {'kernel_id': CONF.null_kernel, 'ramdisk_id': CONF.null_kernel, 'architecture': 'x86_64', 'auto_disk_config': 'True'}} self.create(None, image1) self.create(None, image2) self.create(None, image3) self.create(None, image4) self.create(None, image5) self.create(None, image6) self.create(None, image7) self._imagedata = {} super(_FakeImageService, self).__init__() # TODO(bcwaldon): implement optional kwargs such as limit, sort_dir def detail(self, context, **kwargs): """Return list of detailed image information.""" return copy.deepcopy(self.images.values()) def download(self, context, image_id, dst_path=None, data=None): self.show(context, image_id) if data: data.write(self._imagedata.get(image_id, '')) elif dst_path: with open(dst_path, 'wb') as data: data.write(self._imagedata.get(image_id, '')) def show(self, context, image_id, include_locations=False): """Get data about specified image. Returns a dict containing image data for the given opaque image id. """ image = self.images.get(str(image_id)) if image: return copy.deepcopy(image) LOG.warn('Unable to find image id %s. Have images: %s', image_id, self.images) raise exception.ImageNotFound(image_id=image_id) def create(self, context, metadata, data=None): """Store the image data and return the new image id. :raises: Duplicate if the image already exist. """ image_id = str(metadata.get('id', uuid.uuid4())) metadata['id'] = image_id if image_id in self.images: raise exception.CouldNotUploadImage(image_id=image_id) self.images[image_id] = copy.deepcopy(metadata) if data: self._imagedata[image_id] = data.read() return self.images[image_id] def update(self, context, image_id, metadata, data=None, purge_props=False): """Replace the contents of the given image with the new data. :raises: ImageNotFound if the image does not exist. """ if not self.images.get(image_id): raise exception.ImageNotFound(image_id=image_id) if purge_props: self.images[image_id] = copy.deepcopy(metadata) else: image = self.images[image_id] try: image['properties'].update(metadata.pop('properties')) except KeyError: pass image.update(metadata) return self.images[image_id] def delete(self, context, image_id): """Delete the given image. :raises: ImageNotFound if the image does not exist. """ removed = self.images.pop(image_id, None) if not removed: raise exception.ImageNotFound(image_id=image_id) def get_location(self, context, image_id): if image_id in self.images: return 'fake_location' return None _fakeImageService = _FakeImageService() def FakeImageService(): return _fakeImageService def FakeImageService_reset(): global _fakeImageService _fakeImageService = _FakeImageService() def get_valid_image_id(): return _fakeImageService.images.keys()[0] def stub_out_image_service(stubs): image_service = FakeImageService() stubs.Set(nova.image.glance, 'get_remote_image_service', lambda x, y: (image_service, y)) stubs.Set(nova.image.glance, 'get_default_image_service', lambda: image_service) return image_service
the-stack_0_22237
"""Model-Based BPTT Agent.""" from itertools import chain import torch.nn.modules.loss as loss from torch.optim import Adam from rllib.algorithms.bptt import BPTT from rllib.policy import NNPolicy from rllib.value_function import NNEnsembleQFunction from .model_based_agent import ModelBasedAgent class BPTTAgent(ModelBasedAgent): """Implementation of a Back-Propagation Through Time Agent.""" def __init__( self, policy, critic, dynamical_model, reward_model, criterion=loss.MSELoss, termination_model=None, num_steps=1, num_samples=15, *args, **kwargs, ): algorithm = BPTT( policy=policy, critic=critic, dynamical_model=dynamical_model, reward_model=reward_model, termination_model=termination_model, criterion=criterion(reduction="mean"), num_steps=num_steps, num_samples=num_samples, *args, **kwargs, ) super().__init__( policy_learning_algorithm=algorithm, dynamical_model=dynamical_model, reward_model=reward_model, termination_model=termination_model, *args, **kwargs, ) self.optimizer = type(self.optimizer)( [ p for name, p in self.algorithm.named_parameters() if ("model" not in name and "target" not in name and p.requires_grad) ], **self.optimizer.defaults, ) @classmethod def default(cls, environment, critic=None, policy=None, lr=3e-4, *args, **kwargs): """See `AbstractAgent.default'.""" if critic is None: critic = NNEnsembleQFunction.default(environment) if policy is None: policy = NNPolicy.default(environment) optimizer = Adam(chain(policy.parameters(), critic.parameters()), lr=lr) return super().default( environment=environment, policy=policy, critic=critic, optimizer=optimizer, *args, **kwargs, )
the-stack_0_22240
#!/usr/bin/env python import types def fn(fn): def ansi(SEQ): def ANSIseq(ESC='\033', SEQ='{SEQ}', FN='{FN}'): return '{ESC}[{SEQ}{FN}'.format(ESC=ESC,SEQ=SEQ,FN=FN) return ANSIseq(SEQ=SEQ,FN=fn) return ansi def fn_m(): return fn('m') def m(): markup= fn_m() def rgb(t): def fn(rgb,*a): if a: return markup('{t};2;{r};{g};{b}'.format(t=t,r=rgb,g=a[0],b=a[1])) else: return markup('{t};2;{r};{g};{b}'.format(t=t,r=rgb[1:2],g=rgb[3:4],b=rgb[5:6])) return fn m = types.SimpleNamespace() # 0 - 9 m.reset = markup(0) m.bold = markup(1) m.faint = markup(2) m.italic = markup(3) m.uline = markup(4) m.sblink = markup(5) m.fblink = markup(6) m.inv = markup(7) m.hide = markup(8) m.strike = markup(9) m.font = types.SimpleNamespace() # 10 - 19 # A - J m.font.A = markup(10) m.font.B = markup(11) m.font.C = markup(12) m.font.D = markup(13) m.font.E = markup(14) m.font.F = markup(15) m.font.G = markup(16) m.font.H = markup(17) m.font.I = markup(18) m.font.J = markup(19) m.duline = markup(21) m.no = types.SimpleNamespace() m.no.uline = markup(24) m.no.blink = markup(25) m.no.strike = markup(29) m.fg = types.SimpleNamespace() m.fg.black = markup(30) m.fg.red = markup(31) m.fg.green = markup(32) m.fg.yellow = markup(33) m.fg.blue = markup(34) m.fg.magenta = markup(35) m.fg.cyan = markup(36) m.fg.white = markup(37) m.fg.rgb = rgb(38) m.bg = types.SimpleNamespace() m.bg.black = markup(40) m.bg.red = markup(41) m.bg.green = markup(42) m.bg.yellow = markup(43) m.bg.blue = markup(44) m.bg.magenta = markup(45) m.bg.cyan = markup(46) m.bg.white = markup(47) m.bg.rgb = rgb(48) m.black = markup(30) m.red = markup(31) m.green = markup(32) m.yellow = markup(33) m.blue = markup(34) m.magenta = markup(35) m.cyan = markup(36) m.white = markup(37) m.rgb = rgb(38) m.bblack = markup(40) m.bred = markup(41) m.bgreen = markup(42) m.byellow = markup(43) m.bblue = markup(44) m.bmagenta = markup(45) m.bcyan = markup(46) m.bwhite = markup(47) m.brgb = rgb(48) m.dct = m.__dict__ return m def markup(*a): m() return ''.join([m.__dict__.get(arg) for arg in a]) def txt(**k) -> str: """ examples: print(str(txt(txt='test',markup=[0,'green','line',0]))) print(str(txt(txt='ikkel',markup=['blue']))) print(str(txt(txt='ikkel',markup=['strike',0]))) :param k: :return: """ m() str_styles='{placeholder}' style_chain=k.get('markup') if style_chain[0]==0: #=start with reset style_chain=style_chain[1:] str_styles=str_styles.format(placeholder='{reset}{placeholder}'.format(reset=m.reset,placeholder='{placeholder}')) if style_chain[-1]==0: #=stop with reset style_chain=style_chain[0:-1] str_styles=str_styles.format(placeholder='{placeholder}{reset}'.format(reset=m.reset,placeholder='{placeholder}')) for style in style_chain: str_styles=str_styles.format(placeholder='{style}{placeholder}'.format(style=markup(style),placeholder='{placeholder}')) reset=m.reset text=str(k.get('txt')) return str_styles.format(placeholder=text,reset=reset) def settxt(*a, **k): text= k.get('txt') if k.get('txt') else str().join(a) if a else '' styles=[style for style in k.get('style') if k.get('style')] txt_styled=txt(text=text, m=styles) def stdout_text(): return str(txt_styled) return stdout_text() def setstyle(**k): text='{placeholder}' styles=[style for style in k.get('style') if k.get('style')] txt_styled=txt(txt=text, markup=styles) def stdout_text(text): return str(txt_styled.format(placeholder=text)) return stdout_text def markup_test(**k): for style in m.dct.keys(): print(m.dct[style],f'{style}',m.reset)
the-stack_0_22241
# -*- coding: utf-8 -*- """ Breneman Corresponding Chromaticities Dataset ============================================= Defines *Breneman (1987)* results for corresponding chromaticities experiments. See Also -------- `Corresponding Chromaticities Prediction Jupyter Notebook <http://nbviewer.jupyter.org/github/colour-science/colour-notebooks/\ blob/master/notebooks/corresponding/prediction.ipynb>`_ References ---------- - :cite:`Breneman1987b` : Breneman, E. J. (1987). Corresponding chromaticities for different states of adaptation to complex visual fields. Journal of the Optical Society of America A, 4(6), 1115. doi:10.1364/JOSAA.4.001115 """ from __future__ import division, unicode_literals import numpy as np from collections import namedtuple from colour.utilities.documentation import DocstringDict __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = [ 'BrenemanExperimentResult', 'PrimariesChromaticityCoordinates', 'BRENEMAN_EXPERIMENT_1_RESULTS', 'BRENEMAN_EXPERIMENT_2_RESULTS', 'BRENEMAN_EXPERIMENT_3_RESULTS', 'BRENEMAN_EXPERIMENT_4_RESULTS', 'BRENEMAN_EXPERIMENT_5_RESULTS', 'BRENEMAN_EXPERIMENT_6_RESULTS', 'BRENEMAN_EXPERIMENT_7_RESULTS', 'BRENEMAN_EXPERIMENT_10_RESULTS', 'BRENEMAN_EXPERIMENT_8_RESULTS', 'BRENEMAN_EXPERIMENT_9_RESULTS', 'BRENEMAN_EXPERIMENT_11_RESULTS', 'BRENEMAN_EXPERIMENT_12_RESULTS', 'BRENEMAN_EXPERIMENTS_PRIMARIES_CHROMATICITIES', 'BRENEMAN_EXPERIMENTS' ] class BrenemanExperimentResult( namedtuple('BrenemanExperimentResult', ('name', 'uv_t', 'uv_m', 's_uv', 'd_uv_i', 'd_uv_g'))): """ Experiment result. Parameters ---------- name : unicode Test colour name. uv_t : numeric Chromaticity coordinates :math:`uv_t^p` of test colour. uv_m : array_like, (2,) Chromaticity coordinates :math:`uv_m^p` of matching colour. s_uv : array_like, (2,), optional Interobserver variation (:math:`x10^3`) :math:`\\sigma_uv^p`. d_uv_i : array_like, (2,), optional Deviation of individual linear transformation (:math:`x10^3`) :math:`\\delta_uv_i^p`. d_uv_g : array_like, (2,), optional Deviation of individual linear transformation (:math:`x10^3`) :math:`\\delta_uv_g^p`. """ def __new__(cls, name, uv_t, uv_m, s_uv=None, d_uv_i=None, d_uv_g=None): """ Returns a new instance of the :class:`colour.corresponding.datasets.corresponding_chromaticities.\ BrenemanExperimentResult` class. """ return super(BrenemanExperimentResult, cls).__new__( cls, name, np.array(uv_t), np.array(uv_m), np.array(s_uv), np.array(d_uv_i), np.array(d_uv_g)) class PrimariesChromaticityCoordinates( namedtuple( 'PrimariesChromaticityCoordinates', ('experiment', 'illuminants', 'Y', 'P_uvp', 'D_uvp', 'T_uvp'))): """ Chromaticity coordinates of primaries. Parameters ---------- experiment : integer Experiment. illuminants : array_like, (2,) Chromaticity coordinates :math:`uv_t^p` of test colour. Y : numeric White luminance :math:`Y` in :math:`cd/m^2`. P_uvp : numeric Chromaticity coordinates :math:`uv^p` of primary :math:`P`. D_uvp : numeric Chromaticity coordinates :math:`uv^p` of primary :math:`D`. T_uvp : numeric Chromaticity coordinates :math:`uv^p` of primary :math:`T`. """ def __new__(cls, experiment, illuminants, Y, P_uvp=None, D_uvp=None, T_uvp=None): """ Returns a new instance of the :class:`colour.corresponding.datasets.corresponding_chromaticities.\ PrimariesChromaticityCoordinates` class. """ return super(PrimariesChromaticityCoordinates, cls).__new__( cls, experiment, np.array(illuminants), np.array(Y), np.array(P_uvp), np.array(D_uvp), np.array(T_uvp)) # yapf: disable BRENEMAN_EXPERIMENT_1_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.259, 0.526), (0.200, 0.475)), BrenemanExperimentResult( 'Gray', (0.259, 0.524), (0.199, 0.487), (4, 4), (2, 3), (0, 0)), BrenemanExperimentResult( 'Red', (0.459, 0.522), (0.420, 0.509), (19, 4), (-10, -7), (-19, -3)), BrenemanExperimentResult( 'Skin', (0.307, 0.526), (0.249, 0.497), (7, 4), (-1, 1), (-6, -1)), BrenemanExperimentResult( 'Orange', (0.360, 0.544), (0.302, 0.548), (12, 1), (1, -2), (-7, -6)), BrenemanExperimentResult( 'Brown', (0.350, 0.541), (0.290, 0.537), (11, 4), (3, 0), (-5, -3)), BrenemanExperimentResult( 'Yellow', (0.318, 0.550), (0.257, 0.554), (8, 2), (0, 2), (-5, -5)), BrenemanExperimentResult( 'Foliage', (0.258, 0.542), (0.192, 0.529), (4, 6), (3, 2), (3, -6)), BrenemanExperimentResult( 'Green', (0.193, 0.542), (0.129, 0.521), (7, 5), (3, 2), (9, -7)), BrenemanExperimentResult( 'Blue-green', (0.180, 0.516), (0.133, 0.469), (4, 6), (-3, -2), (2, -5)), BrenemanExperimentResult( 'Blue', (0.186, 0.445), (0.158, 0.340), (13, 33), (2, 7), (1, 13)), BrenemanExperimentResult( 'Sky', (0.226, 0.491), (0.178, 0.426), (3, 14), (1, -3), (0, -1)), BrenemanExperimentResult( 'Purple', (0.278, 0.456), (0.231, 0.365), (4, 25), (0, 2), (-5, 7))) # yapf: enable """ *Breneman (1987)* experiment 1 results. BRENEMAN_EXPERIMENT_1_RESULTS : tuple Notes ----- - Illuminants : *A*, *D65* - White Luminance : 1500 :math:`cd/m^2` - Observers Count : 7 """ # yapf: disable BRENEMAN_EXPERIMENT_2_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.222, 0.521), (0.204, 0.479)), BrenemanExperimentResult( 'Gray', (0.227, 0.517), (0.207, 0.486), (2, 5), (-1, 0), (0, 0)), BrenemanExperimentResult( 'Red', (0.464, 0.520), (0.449, 0.511), (22, 3), (-8, -8), (-7, -2)), BrenemanExperimentResult( 'Skin', (0.286, 0.526), (0.263, 0.505), (7, 2), (0, -1), (0, -1)), BrenemanExperimentResult( 'Orange', (0.348, 0.546), (0.322, 0.545), (13, 3), (3, -1), (3, -2)), BrenemanExperimentResult( 'Brown', (0.340, 0.543), (0.316, 0.537), (11, 3), (1, 1), (0, 0)), BrenemanExperimentResult( 'Yellow', (0.288, 0.554), (0.265, 0.553), (5, 2), (-2, 2), (-1, -2)), BrenemanExperimentResult( 'Foliage', (0.244, 0.547), (0.221, 0.538), (4, 3), (-2, 1), (0, -3)), BrenemanExperimentResult( 'Green', (0.156, 0.548), (0.135, 0.532), (4, 3), (-1, 3), (3, -4)), BrenemanExperimentResult( 'Blue-green', (0.159, 0.511), (0.145, 0.472), (9, 7), (-1, 2), (2, 1)), BrenemanExperimentResult( 'Blue', (0.160, 0.406), (0.163, 0.331), (23, 31), (2, -3), (-1, 3)), BrenemanExperimentResult( 'Sky', (0.190, 0.481), (0.176, 0.431), (5, 24), (2, -2), (2, 0)), BrenemanExperimentResult( 'Purple', (0.258, 0.431), (0.244, 0.349), (4, 19), (-3, 13), (-4, 19))) # yapf: enable """ *Breneman (1987)* experiment 2 results. BRENEMAN_EXPERIMENT_2_RESULTS : tuple Notes ----- - Illuminants : *Projector*, *D55* - White Luminance : 1500 :math:`cd/m^2` - Observers Count : 7 """ # yapf: disable BRENEMAN_EXPERIMENT_3_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.223, 0.521), (0.206, 0.478)), BrenemanExperimentResult( 'Gray', (0.228, 0.517), (0.211, 0.494), (1, 3), (0, 2), (0, 0)), BrenemanExperimentResult( 'Red', (0.462, 0.519), (0.448, 0.505), (11, 4), (-3, 6), (-4, 6)), BrenemanExperimentResult( 'Skin', (0.285, 0.524), (0.267, 0.507), (6, 3), (-1, 1), (-2, 1)), BrenemanExperimentResult( 'Orange', (0.346, 0.546), (0.325, 0.541), (11, 3), (1, -2), (2, 3)), BrenemanExperimentResult( 'Brown', (0.338, 0.543), (0.321, 0.532), (9, 6), (-3, 2), (-3, 7)), BrenemanExperimentResult( 'Yellow', (0.287, 0.554), (0.267, 0.548), (4, 5), (1, -2), (0, 5)), BrenemanExperimentResult( 'Foliage', (0.244, 0.547), (0.226, 0.531), (3, 6), (-1, 3), (-2, 8)), BrenemanExperimentResult( 'Green', (0.157, 0.548), (0.141, 0.528), (9, 6), (2, 2), (0, 6)), BrenemanExperimentResult( 'Blue-green', (0.160, 0.510), (0.151, 0.486), (8, 5), (-2, -1), (-2, -5)), BrenemanExperimentResult( 'Blue', (0.162, 0.407), (0.158, 0.375), (6, 7), (1, -6), (4, -23)), BrenemanExperimentResult( 'Sky', (0.191, 0.482), (0.179, 0.452), (4, 5), (0, 1), (1, -7)), BrenemanExperimentResult( 'Purple', (0.258, 0.432), (0.238, 0.396), (4, 8), (5, 3), (4, -11))) # yapf: enable """ *Breneman (1987)* experiment 3 results. BRENEMAN_EXPERIMENT_3_RESULTS : tuple Notes ----- - Illuminants : *Projector*, *D55* - White Luminance : 75 :math:`cd/m^2` - Observers Count : 7 """ # yapf: disable BRENEMAN_EXPERIMENT_4_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.258, 0.523), (0.199, 0.467)), BrenemanExperimentResult( 'Gray', (0.257, 0.524), (0.205, 0.495), (2, 2), (0, 4), (0, 0)), BrenemanExperimentResult( 'Red', (0.460, 0.521), (0.416, 0.501), (11, 6), (-6, 4), (-6, 9)), BrenemanExperimentResult( 'Skin', (0.308, 0.526), (0.253, 0.503), (7, 3), (-1, 1), (-1, 0)), BrenemanExperimentResult( 'Orange', (0.360, 0.544), (0.303, 0.541), (14, 5), (1, -4), (1, 2)), BrenemanExperimentResult( 'Brown', (0.350, 0.541), (0.296, 0.527), (11, 7), (-2, 4), (-3, 9)), BrenemanExperimentResult( 'Yellow', (0.317, 0.550), (0.260, 0.547), (9, 5), (1, -3), (0, 3)), BrenemanExperimentResult( 'Foliage', (0.258, 0.543), (0.203, 0.520), (4, 6), (0, 8), (0, 9)), BrenemanExperimentResult( 'Green', (0.193, 0.543), (0.142, 0.516), (6, 9), (3, 8), (2, 6)), BrenemanExperimentResult( 'Blue-green', (0.180, 0.516), (0.140, 0.484), (9, 5), (-2, -1), (-1, -9)), BrenemanExperimentResult( 'Blue', (0.185, 0.445), (0.151, 0.394), (8, 10), (2, -8), (8, -24)), BrenemanExperimentResult( 'Sky', (0.225, 0.490), (0.180, 0.448), (4, 8), (1, -1), (3, -11)), BrenemanExperimentResult( 'Purple', (0.278, 0.455), (0.229, 0.388), (6, 14), (1, 12), (3, 0))) # yapf: enable """ *Breneman (1987)* experiment 4 results. BRENEMAN_EXPERIMENT_4_RESULTS : tuple Notes ----- - Illuminants : *A*, *D65* - White Luminance : 75 :math:`cd/m^2` - Observers Count : 7 """ # yapf: disable BRENEMAN_EXPERIMENT_5_RESULTS = ( BrenemanExperimentResult( 'Gray', (0.028, 0.480), (0.212, 0.491), (2, 2)), BrenemanExperimentResult( 'Red', (0.449, 0.512), (0.408, 0.514), (11, 5)), BrenemanExperimentResult( 'Skin', (0.269, 0.505), (0.262, 0.511), (4, 2)), BrenemanExperimentResult( 'Orange', (0.331, 0.548), (0.303, 0.545), (4, 3)), BrenemanExperimentResult( 'Brown', (0.322, 0.541), (0.303, 0.538), (4, 4)), BrenemanExperimentResult( 'Yellow', (0.268, 0.555), (0.264, 0.550), (3, 2)), BrenemanExperimentResult( 'Foliage', (0.224, 0.538), (0.227, 0.535), (3, 3)), BrenemanExperimentResult( 'Green', (0.134, 0.531), (0.159, 0.530), (9, 3)), BrenemanExperimentResult( 'Blue-green', (0.145, 0.474), (0.165, 0.490), (8, 3)), BrenemanExperimentResult( 'Blue', (0.163, 0.329), (0.173, 0.378), (7, 12)), BrenemanExperimentResult( 'Sky', (0.179, 0.438), (0.189, 0.462), (5, 4)), BrenemanExperimentResult( 'Purple', (0.245, 0.364), (0.239, 0.401), (4, 16))) # yapf: enable """ *Breneman (1987)* experiment 5 results. BRENEMAN_EXPERIMENT_5_RESULTS : tuple Notes ----- - Effective White Levels : 130 and 2120 :math:`cd/m^2` - Observers Count : 7 """ # yapf: disable BRENEMAN_EXPERIMENT_6_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.257, 0.525), (0.201, 0.482)), BrenemanExperimentResult( 'Gray', (0.267, 0.521), (0.207, 0.485), (5, 3), (-1, 0), (0, 0)), BrenemanExperimentResult( 'Red', (0.457, 0.521), (0.398, 0.516), (9, 4), (-2, -5), (1, -9)), BrenemanExperimentResult( 'Skin', (0.316, 0.526), (0.253, 0.503), (5, 3), (-3, -2), (-1, -3)), BrenemanExperimentResult( 'Orange', (0.358, 0.545), (0.287, 0.550), (7, 3), (3, 0), (7, -6)), BrenemanExperimentResult( 'Brown', (0.350, 0.541), (0.282, 0.540), (6, 3), (-1, 0), (2, -5)), BrenemanExperimentResult( 'Yellow', (0.318, 0.551), (0.249, 0.556), (7, 2), (-1, 1), (2, -5)), BrenemanExperimentResult( 'Foliage', (0.256, 0.547), (0.188, 0.537), (5, 4), (3, 1), (4, -2)), BrenemanExperimentResult( 'Green', (0.193, 0.542), (0.133, 0.520), (13, 3), (5, -2), (5, -4)), BrenemanExperimentResult( 'Blue-green', (0.180, 0.516), (0.137, 0.466), (12, 10), (0, 0), (-2, 2)), BrenemanExperimentResult( 'Blue', (0.186, 0.445), (0.156, 0.353), (12, 45), (6, 1), (2, 6)), BrenemanExperimentResult( 'Sky', (0.225, 0.492), (0.178, 0.428), (6, 14), (1, -1), (-1, 3)), BrenemanExperimentResult( 'Purple', (0.276, 0.456), (0.227, 0.369), (6, 27), (-2, 4), (-3, 9))) # yapf: enable """ *Breneman (1987)* experiment 6 results. BRENEMAN_EXPERIMENT_6_RESULTS : tuple Notes ----- - Illuminants : *A*, *D55* - White Luminance : 11100 :math:`cd/m^2` - Observers Count : 8 """ # yapf: disable BRENEMAN_EXPERIMENT_7_RESULTS = ( BrenemanExperimentResult( 'Gray', (0.208, 0.481), (0.211, 0.486), (2, 3)), BrenemanExperimentResult( 'Red', (0.448, 0.512), (0.409, 0.516), (9, 2)), BrenemanExperimentResult( 'Skin', (0.269, 0.505), (0.256, 0.506), (4, 3)), BrenemanExperimentResult( 'Orange', (0.331, 0.549), (0.305, 0.547), (5, 4)), BrenemanExperimentResult( 'Brown', (0.322, 0.541), (0.301, 0.539), (5, 2)), BrenemanExperimentResult( 'Yellow', (0.268, 0.555), (0.257, 0.552), (3, 4)), BrenemanExperimentResult( 'Foliage', (0.225, 0.538), (0.222, 0.536), (3, 2)), BrenemanExperimentResult( 'Green', (0.135, 0.531), (0.153, 0.529), (8, 2)), BrenemanExperimentResult( 'Blue-green', (0.145, 0.475), (0.160, 0.484), (3, 5)), BrenemanExperimentResult( 'Blue', (0.163, 0.331), (0.171, 0.379), (4, 11)), BrenemanExperimentResult( 'Sky', (0.179, 0.438), (0.187, 0.452), (4, 7)), BrenemanExperimentResult( 'Purple', (0.245, 0.365), (0.240, 0.398), (4, 10))) # yapf: enable """ *Breneman (1987)* experiment 7 results. BRENEMAN_EXPERIMENT_7_RESULTS : tuple Notes ----- - Effective White Levels : 850 and 11100 :math:`cd/m^2` - Observers Count : 8 """ # yapf: disable BRENEMAN_EXPERIMENT_8_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.258, 0.524), (0.195, 0.469)), BrenemanExperimentResult( 'Gray', (0.257, 0.525), (0.200, 0.494), (2, 3), (1, 2), (0, 0)), BrenemanExperimentResult( 'Red', (0.458, 0.522), (0.410, 0.508), (12, 4), (-3, 5), (-7, 2)), BrenemanExperimentResult( 'Skin', (0.308, 0.526), (0.249, 0.502), (6, 2), (-1, 1), (-3, -1)), BrenemanExperimentResult( 'Orange', (0.359, 0.545), (0.299, 0.545), (12, 4), (0, -2), (-3, 0)), BrenemanExperimentResult( 'Brown', (0.349, 0.540), (0.289, 0.532), (10, 4), (0, 1), (-2, 2)), BrenemanExperimentResult( 'Yellow', (0.317, 0.550), (0.256, 0.549), (9, 5), (0, -3), (-3, 1)), BrenemanExperimentResult( 'Foliage', (0.260, 0.545), (0.198, 0.529), (5, 5), (3, 1), (0, 3)), BrenemanExperimentResult( 'Green', (0.193, 0.543), (0.137, 0.520), (9, 5), (3, 0), (2, 1)), BrenemanExperimentResult( 'Blue-green', (0.182, 0.516), (0.139, 0.477), (9, 4), (-3, 0), (-2, -4)), BrenemanExperimentResult( 'Blue', (0.184, 0.444), (0.150, 0.387), (5, 11), (3, -10), (6, -22)), BrenemanExperimentResult( 'Sky', (0.224, 0.489), (0.177, 0.439), (5, 6), (1, 1), (1, -7)), BrenemanExperimentResult( 'Purple', (0.277, 0.454), (0.226, 0.389), (4, 10), (1, 4), (1, -8))) # yapf: enable """ *Breneman (1987)* experiment 8 results. BRENEMAN_EXPERIMENT_8_RESULTS : tuple Notes ----- - Illuminants : *A*, *D65* - White Luminance : 350 :math:`cd/m^2` - Observers Count : 8 """ # yapf: disable BRENEMAN_EXPERIMENT_9_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.254, 0.525), (0.195, 0.465)), BrenemanExperimentResult( 'Gray', (0.256, 0.524), (0.207, 0.496), (4, 6), (3, 2), (0, 0)), BrenemanExperimentResult( 'Red', (0.459, 0.521), (0.415, 0.489), (20, 14), (2, 12), (-2, 21)), BrenemanExperimentResult( 'Skin', (0.307, 0.525), (0.261, 0.500), (7, 7), (0, 1), (-5, 2)), BrenemanExperimentResult( 'Orange', (0.359, 0.545), (0.313, 0.532), (7, 5), (-2, -3), (-6, 13)), BrenemanExperimentResult( 'Brown', (0.349, 0.540), (0.302, 0.510), (11, 15), (0, 12), (-5, 24)), BrenemanExperimentResult( 'Yellow', (0.317, 0.550), (0.268, 0.538), (7, 10), (1, -4), (-4, 12)), BrenemanExperimentResult( 'Foliage', (0.259, 0.544), (0.212, 0.510), (10, 11), (0, 14), (-4, 22)), BrenemanExperimentResult( 'Green', (0.193, 0.542), (0.150, 0.506), (6, 10), (-1, 13), (-2, 15)), BrenemanExperimentResult( 'Blue-green', (0.181, 0.517), (0.144, 0.487), (9, 6), (-3, 0), (-1, -9)), BrenemanExperimentResult( 'Blue', (0.184, 0.444), (0.155, 0.407), (4, 11), (-2, -6), (6, -36)), BrenemanExperimentResult( 'Sky', (0.225, 0.490), (0.183, 0.458), (5, 8), (1, -3), (2, -19)), BrenemanExperimentResult( 'Purple', (0.276, 0.454), (0.233, 0.404), (7, 12), (2, 9), (0, -16)), BrenemanExperimentResult( '(Gray)h', (0.256, 0.525), (0.208, 0.498)), BrenemanExperimentResult( '(Red)h', (0.456, 0.521), (0.416, 0.501), (15, 7), None, (-6, -9)), BrenemanExperimentResult( '(Brown)h', (0.349, 0.539), (0.306, 0.526), (11, 8), None, (-8, 7)), BrenemanExperimentResult( '(Foliage)h', (0.260, 0.545), (0.213, 0.528), (7, 9), None, (-4, 5)), BrenemanExperimentResult( '(Green)h', (0.193, 0.543), (0.149, 0.525), (10, 8), None, (-1, -1)), BrenemanExperimentResult( '(Blue)h', (0.184, 0.444), (0.156, 0.419), (7, 8), None, (4, -45)), BrenemanExperimentResult( '(Purple)h', (0.277, 0.456), (0.236, 0.422), (6, 11), None, (-2, -29))) # yapf: enable """ *Breneman (1987)* experiment 9 results. BRENEMAN_EXPERIMENT_9_RESULTS : tuple Notes ----- - Illuminants : *A*, *D65* - White Luminance : 15 :math:`cd/m^2` - Observers Count : 8 - The colors indicated by (.)h are the darker colors presented at the higher luminescence level of the lighter colors. """ # yapf: disable BRENEMAN_EXPERIMENT_10_RESULTS = ( BrenemanExperimentResult( 'Gray', (0.208, 0.482), (0.213, 0.494), (3, 3)), BrenemanExperimentResult( 'Red', (0.447, 0.512), (0.411, 0.506), (15, 7)), BrenemanExperimentResult( 'Skin', (0.269, 0.505), (0.269, 0.511), (4, 3)), BrenemanExperimentResult( 'Orange', (0.331, 0.549), (0.315, 0.536), (7, 8)), BrenemanExperimentResult( 'Brown', (0.323, 0.542), (0.310, 0.526), (6, 8)), BrenemanExperimentResult( 'Yellow', (0.268, 0.556), (0.268, 0.541), (3, 6)), BrenemanExperimentResult( 'Foliage', (0.226, 0.538), (0.230, 0.525), (4, 8)), BrenemanExperimentResult( 'Green', (0.135, 0.531), (0.158, 0.524), (6, 3)), BrenemanExperimentResult( 'Blue-green', (0.145, 0.476), (0.161, 0.491), (4, 4)), BrenemanExperimentResult( 'Blue', (0.163, 0.330), (0.171, 0.377), (6, 19)), BrenemanExperimentResult( 'Sky', (0.179, 0.439), (0.187, 0.465), (5, 5)), BrenemanExperimentResult( 'Purple', (0.245, 0.366), (0.240, 0.402), (3, 12))) # yapf: enable """ *Breneman (1987)* experiment 10 results. BRENEMAN_EXPERIMENT_10_RESULTS : tuple Notes ----- - Effective White Levels : 15 and 270 :math:`cd/m^2` - Observers Count : 7 """ # yapf: disable BRENEMAN_EXPERIMENT_11_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.208, 0.482), (0.174, 0.520)), BrenemanExperimentResult( 'Gray', (0.209, 0.483), (0.176, 0.513), (3, 4), (2, 2), (0, 0)), BrenemanExperimentResult( 'Red', (0.450, 0.512), (0.419, 0.524), (10, 2), (3, 2), (8, -1)), BrenemanExperimentResult( 'Skin', (0.268, 0.506), (0.240, 0.528), (6, 2), (-4, 0), (-3, 0)), BrenemanExperimentResult( 'Orange', (0.331, 0.547), (0.293, 0.553), (6, 2), (3, -1), (5, 1)), BrenemanExperimentResult( 'Brown', (0.323, 0.542), (0.290, 0.552), (5, 2), (-1, -3), (0, -1)), BrenemanExperimentResult( 'Yellow', (0.266, 0.549), (0.236, 0.557), (4, 2), (-3, -2), (-4, 2)), BrenemanExperimentResult( 'Foliage', (0.227, 0.538), (0.194, 0.552), (4, 2), (2, -3), (-1, 1)), BrenemanExperimentResult( 'Green', (0.146, 0.534), (0.118, 0.551), (8, 3), (4, -2), (-6, 3)), BrenemanExperimentResult( 'Blue-green', (0.160, 0.475), (0.130, 0.513), (9, 4), (1, -1), (-4, -3)), BrenemanExperimentResult( 'Blue', (0.177, 0.340), (0.133, 0.427), (6, 14), (4, -17), (11, -29)), BrenemanExperimentResult( 'Sky', (0.179, 0.438), (0.146, 0.482), (6, 10), (1, 4), (0, -1)), BrenemanExperimentResult( 'Purple', (0.245, 0.366), (0.216, 0.419), (4, 13), (-3, 8), (4, -2))) # yapf: enable """ *Breneman (1987)* experiment 1 results. BRENEMAN_EXPERIMENT_11_RESULTS : tuple Notes ----- - Illuminants : *green*, *D65* - White Luminance : 1560 :math:`cd/m^2` - Observers Count : 7 """ # yapf: disable BRENEMAN_EXPERIMENT_12_RESULTS = ( BrenemanExperimentResult( 'Illuminant', (0.205, 0.482), (0.174, 0.519)), BrenemanExperimentResult( 'Gray', (0.208, 0.482), (0.181, 0.507), (4, 3), (0, 1), (0, 0)), BrenemanExperimentResult( 'Red', (0.451, 0.512), (0.422, 0.526), (20, 3), (0, -5), (10, -5)), BrenemanExperimentResult( 'Skin', (0.268, 0.506), (0.244, 0.525), (5, 2), (-6, 0), (-2, -1)), BrenemanExperimentResult( 'Orange', (0.331, 0.548), (0.292, 0.553), (10, 2), (5, 2), (11, 1)), BrenemanExperimentResult( 'Brown', (0.324, 0.542), (0.286, 0.554), (8, 1), (5, -3), (10, -4)), BrenemanExperimentResult( 'Yellow', (0.266, 0.548), (0.238, 0.558), (6, 2), (-3, -1), (-1, -2)), BrenemanExperimentResult( 'Foliage', (0.227, 0.538), (0.196, 0.555), (6, 3), (3, -4), (2, -5)), BrenemanExperimentResult( 'Green', (0.145, 0.534), (0.124, 0.551), (8, 6), (1, -1), (-8, -1)), BrenemanExperimentResult( 'Blue-green', (0.160, 0.474), (0.135, 0.505), (5, 2), (1, -1), (-4, -3)), BrenemanExperimentResult( 'Blue', (0.178, 0.339), (0.149, 0.392), (4, 20), (-1, -5), (3, -7)), BrenemanExperimentResult( 'Sky', (0.179, 0.440), (0.150, 0.473), (4, 8), (3, 2), (2, 0)), BrenemanExperimentResult( 'Purple', (0.246, 0.366), (0.222, 0.404), (5, 15), (-4, 2), (4, 2))) # yapf: enable """ *Breneman (1987)* experiment 12 results. BRENEMAN_EXPERIMENT_12_RESULTS : tuple Notes ----- - Illuminants : *D55*, *green* - White Luminance : 75 :math:`cd/m^2` - Observers Count : 7 """ # yapf: disable BRENEMAN_EXPERIMENTS_PRIMARIES_CHROMATICITIES = DocstringDict({ 1: PrimariesChromaticityCoordinates( 1, ('A', 'D65'), 1500, (0.671, 0.519), (-0.586, 0.627), (0.253, 0.016)), 2: PrimariesChromaticityCoordinates( 2, ('Projector', 'D55'), 1500, (0.675, 0.523), (-0.466, 0.617), (0.255, 0.018)), 3: PrimariesChromaticityCoordinates( 3, ('Projector', 'D55'), 75, (0.664, 0.510), (-0.256, 0.729), (0.244, 0.003)), 4: PrimariesChromaticityCoordinates( 4, ('A', 'D65'), 75, (0.674, 0.524), (-0.172, 0.628), (0.218, -0.026)), 6: PrimariesChromaticityCoordinates( 6, ('A', 'D55'), 11100, (0.659, 0.506), (-0.141, 0.615), (0.249, 0.009)), 8: PrimariesChromaticityCoordinates( 8, ('A', 'D65'), 350, (0.659, 0.505), (-0.246, 0.672), (0.235, -0.006)), 9: PrimariesChromaticityCoordinates( 9, ('A', 'D65'), 15, (0.693, 0.546), (-0.446, 0.773), (0.221, -0.023)), 11: PrimariesChromaticityCoordinates( 11, ('D55', 'green'), 1560, (0.680, 0.529), (0.018, 0.576), (0.307, 0.080)), 12: PrimariesChromaticityCoordinates( 12, ('D55', 'green'), 75, (0.661, 0.505), (0.039, 0.598), (0.345, 0.127))}) # yapf: enable BRENEMAN_EXPERIMENTS_PRIMARIES_CHROMATICITIES.__doc__ = """ *Breneman (1987)* experiments primaries chromaticities. References ---------- :cite:`Breneman1987b` BRENEMAN_EXPERIMENTS_PRIMARIES_CHROMATICITIES : dict """ BRENEMAN_EXPERIMENTS = DocstringDict({ 1: BRENEMAN_EXPERIMENT_1_RESULTS, 2: BRENEMAN_EXPERIMENT_2_RESULTS, 3: BRENEMAN_EXPERIMENT_3_RESULTS, 4: BRENEMAN_EXPERIMENT_4_RESULTS, 5: BRENEMAN_EXPERIMENT_5_RESULTS, 6: BRENEMAN_EXPERIMENT_6_RESULTS, 7: BRENEMAN_EXPERIMENT_7_RESULTS, 8: BRENEMAN_EXPERIMENT_8_RESULTS, 9: BRENEMAN_EXPERIMENT_9_RESULTS, 10: BRENEMAN_EXPERIMENT_10_RESULTS, 11: BRENEMAN_EXPERIMENT_11_RESULTS, 12: BRENEMAN_EXPERIMENT_12_RESULTS }) BRENEMAN_EXPERIMENTS.__doc__ = """ *Breneman (1987)* experiments. References ---------- :cite:`Breneman1987b` BRENEMAN_EXPERIMENTS : dict """
the-stack_0_22242
from utils import * from generator import * from discriminator import * ## Hyperparameters criterion = nn.BCEWithLogitsLoss() n_epochs = 200 z_dim = 64 display_step = 500 batch_size = 128 lr = 0.00001 device = 'cpu' # Load MNIST with DataLoader dataloader = DataLoader( MNIST('.', download=True, transform=transforms.ToTensor()), batch_size=batch_size, shuffle=True ) gen = Generator(z_dim).to(device) gen_opt = torch.optim.Adam(gen.parameters(), lr=lr) disc = Discriminator().to(device) disc_opt = torch.optim.Adam(disc.parameters(), lr=lr) # States cur_step = 0 mean_generator_loss = 0 mean_discriminator_loss = 0 test_generator = True gen_loss = False error = False for epoch in range(n_epochs): # Dataloader returns the batches for real, _ in tqdm(dataloader): cur_batch_size = len(real) # Flatten batch of real images from dataset real = real.view(cur_batch_size, -1).to(device) # Zero out gradients before backprop disc_opt.zero_grad() # Discriminator loss disc_loss = get_disc_loss(gen, disc, criterion, real, cur_batch_size, z_dim, device) # Update gradients disc_loss.backward(retain_graph=True) # Update optimizer disc_opt.step() # Zero out gradients before backprop gen_opt.zero_grad() # Generator loss gen_loss = get_gen_loss(gen, disc, criterion, cur_batch_size, z_dim, device) # Update gradients gen_loss.backward() # Update optimizer gen_opt.step() # Keep track of average generator loss mean_generator_loss += gen_loss.item() / display_step # Monitoring progress if cur_step % display_step == 0 and cur_step > 0: print(f"Epoch {epoch}, step {cur_step} -> Generator loss: {mean_generator_loss}, discriminator_loss: {mean_discriminator_loss}") fake_noise = get_noise(cur_batch_size, z_dim, device=device) fake = gen(fake_noise) show_tensor_images(fake) show_tensor_images(real) mean_generator_loss = 0 mean_discriminator_loss = 0 cur_step += 1
the-stack_0_22244
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2014, John McNamara, [email protected] # import unittest import os from ...workbook import Workbook from ..helperfunctions import _compare_xlsx_files class TestCompareXLSXFiles(unittest.TestCase): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'autofilter04.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.txt_filename = test_dir + 'xlsx_files/' + 'autofilter_data.txt' self.ignore_files = [] self.ignore_elements = {} def test_create_file(self): """ Test the creation of a simple XlsxWriter file with an autofilter. This test corresponds to the following examples/autofilter.py example: Example 4. Autofilter with filter conditions in two columns. """ filename = self.got_filename #################################################### workbook = Workbook(filename) worksheet = workbook.add_worksheet() # Set the autofilter. worksheet.autofilter('A1:D51') # Add filter criteria. worksheet.filter_column('A', 'x == East') worksheet.filter_column('C', 'x > 3000 and x < 8000') # Open a text file with autofilter example data. textfile = open(self.txt_filename) # Read the headers from the first line of the input file. headers = textfile.readline().strip("\n").split() # Write out the headers. worksheet.write_row('A1', headers) # Start writing data after the headers. row = 1 # Read the rest of the text file and write it to the worksheet. for line in textfile: # Split the input data based on whitespace. data = line.strip("\n").split() # Convert the number data from the text file. for i, item in enumerate(data): try: data[i] = float(item) except ValueError: pass # Get some of the field data. region = data[0] volume = int(data[2]) # Check for rows that match the filter. if region == 'East' and volume > 3000 and volume < 8000: # Row matches the filter, no further action required. pass else: # We need to hide rows that don't match the filter. worksheet.set_row(row, options={'hidden': True}) # Write out the row data. worksheet.write_row(row, 0, data) # Move on to the next worksheet row. row += 1 textfile.close() workbook.close() #################################################### got, exp = _compare_xlsx_files(self.got_filename, self.exp_filename, self.ignore_files, self.ignore_elements) self.assertEqual(got, exp) def tearDown(self): # Cleanup. if os.path.exists(self.got_filename): os.remove(self.got_filename) if __name__ == '__main__': unittest.main()
the-stack_0_22245
"""Main entry point for running discord-hero discord-hero: Discord Application Framework for humans :copyright: (c) 2019-2020 monospacedmagic et al. :license: Apache-2.0 OR MIT """ import time import discord from discord import RawReactionActionEvent import hero from hero import checks, models, strings from hero.errors import InactiveUser, UserDoesNotExist class Essentials(hero.Cog): core: hero.Core @hero.command() @checks.is_owner() async def set_prefixes(self, ctx, *prefixes: str): await self.core.set_prefixes(prefixes) await ctx.send("Done.") @hero.command() @checks.is_owner() async def set_description(self, ctx, *, description: str): await self.core.set_description(description) await ctx.send("Done.") @hero.command() @checks.is_owner() async def set_status(self, ctx, *, status: str): await self.core.set_status(status) await ctx.send("Done.") @hero.command() async def ping(self, ctx): """Calculates the ping time.""" t_1 = time.perf_counter() await ctx.trigger_typing() t_2 = time.perf_counter() time_delta = round((t_2-t_1)*1000) await ctx.send("Pong.\nTime: {}ms".format(time_delta)) # GDPR @hero.command() async def register(self, ctx: hero.Context): """Registers you in my system.""" if ctx.guild: user = ctx.author._user else: user = ctx.author try: user = await self.db.wrap_user(user) print(user, user.is_active) await ctx.send("You are already registered in my system!") return except UserDoesNotExist: user = models.User(user.id) await user.async_save() except InactiveUser: user = models.User(user.id) user.is_active = True await user.async_save() await ctx.send("You are now registered. Thank you for using my commands and functions!\n\n" "If you ever change your mind, just use `{ctx.prefix}unregister` to " "remove yourself from my system, which will irreversibly and immediately " "delete all data related to your Discord ID from my system.") # GDPR @hero.command() async def unregister(self, ctx): """Removes you from my system.""" if ctx.guild: user = ctx.author._user else: user = ctx.author try: user = await self.db.wrap_user(user) print(user, user.is_active) await user.async_delete() except UserDoesNotExist: user = models.User(user.id) user.is_active = False await user.async_save() except InactiveUser: await ctx.send("You are already unregistered!") return await ctx.send(f"You have been successfully removed from my system! You will have to use " f"`{ctx.prefix}register` if you change your mind to enable storing data " f"related to your Discord user ID again.") @hero.listener() async def on_raw_reaction_add(self, payload: RawReactionActionEvent): user_id = payload.user_id emoji: discord.PartialEmoji = payload.emoji message_id = payload.message_id guild_id = payload.guild_id channel_id = payload.channel_id # obligatory checks for efficiency if user_id == self.core.user.id or emoji.is_custom_emoji(): return # check if message is user's register_message user = models.User(id=user_id) await user.async_load() register_message = user.register_message if register_message is None or register_message.id != message_id or emoji.name != self.core.YES_EMOJI: return # register the user user.is_active = True user.register_message.async_delete() await user.async_save() channel = None if guild_id is not None: guild = await self.core.get_guild(guild_id) if guild is None: await self.core.fetch_guild(guild_id) if guild is not None: channel = guild.get_channel(channel_id) message_text = "{user}, you have now been registered! Remember, you can use " \ "`{prefix}unregister` to immediately delete all data related to " \ "your Discord ID from my system." try: await user.send(message_text.format(user=user.name, prefix=self.core.default_prefix)) except discord.Forbidden: if channel is not None: await channel.send(message_text.format(user=user.mention, prefix=self.core.default_prefix))
the-stack_0_22247
from hir.Specifier import Specifier class PointerSpecifierException(Exception): def __init__(self, value): self.value = value class PointerSpecifier(Specifier): 'Pointer Specifier' __slots__ = ('qualifiers') def __init__(self, qual=None): self.qualifiers = [] if qual is not None: for k in qual: self.qualifiers.append(k) def __str__(self): retval = '*' jj = ' '.join([str(k) for k in self.qualifiers]) if jj != '': retval += ' ' + jj return retval __repr__ = __str__ def items(self): """Returns the 'dimensions' list of ints""" items = {} items['qualifiers'] = self.qualifiers for k in PointerSpecifier.__bases__: if hasattr(k, 'items'): supitems = k.items(self) for k, v in list(supitems.items()): items[k] = v return dict(items) def __getstate__(self): """Returns the 'qualifier' list of ints. Calls items directly""" return dict(self.items()) def __setstate__(self, statedict): """Blindly sets the state of this object, using a statedict""" for k, v in list(statedict.items()): setattr(self, k, v) def PointerSpecifierTest(): from hir.Keyword import CONST, VOLATILE, RESTRICT k = PointerSpecifier([CONST]) print(k) k = PointerSpecifier([CONST, VOLATILE]) print(k) k = PointerSpecifier([CONST, RESTRICT]) print(k) k = PointerSpecifier([CONST, RESTRICT, VOLATILE]) print(k) return k if __name__ == '__main__': PointerSpecifierTest()
the-stack_0_22248
#!/usr/bin/python """ Script to check language links for general pages. Uses existing translations of a page, plus hints from the command line, to download the equivalent pages from other languages. All of such pages are downloaded as well and checked for interwiki links recursively until there are no more links that are encountered. A rationalization process then selects the right interwiki links, and if this is unambiguous, the interwiki links in the original page will be automatically updated and the modified page uploaded. These command-line arguments can be used to specify which pages to work on: -days: Like -years, but runs through all date pages. Stops at Dec 31. If the argument is given in the form -days:X, it will start at month no. X through Dec 31. If the argument is simply given as -days, it will run from Jan 1 through Dec 31. E.g. for -days:9 it will run from Sep 1 through Dec 31. -years: run on all year pages in numerical order. Stop at year 2050. If the argument is given in the form -years:XYZ, it will run from [[XYZ]] through [[2050]]. If XYZ is a negative value, it is interpreted as a year BC. If the argument is simply given as -years, it will run from 1 through 2050. This implies -noredirect. -new: Work on the 100 newest pages. If given as -new:x, will work on the x newest pages. When multiple -namespace parameters are given, x pages are inspected, and only the ones in the selected name spaces are processed. Use -namespace:all for all namespaces. Without -namespace, only article pages are processed. This implies -noredirect. -restore: restore a set of "dumped" pages the bot was working on when it terminated. The dump file will be subsequently removed. -restore:all restore a set of "dumped" pages of all dumpfiles to a given family remaining in the "interwiki-dumps" directory. All these dump files will be subsequently removed. If restoring process interrupts again, it saves all unprocessed pages in one new dump file of the given site. -continue: like restore, but after having gone through the dumped pages, continue alphabetically starting at the last of the dumped pages. The dump file will be subsequently removed. &params; Additionally, these arguments can be used to restrict the bot to certain pages: -namespace:n Number or name of namespace to process. The parameter can be used multiple times. It works in combination with all other parameters, except for the -start parameter. If you e.g. want to iterate over all categories starting at M, use -start:Category:M. -number: used as -number:#, specifies that the bot should process that amount of pages and then stop. This is only useful in combination with -start. The default is not to stop. -until: used as -until:title, specifies that the bot should process pages in wiki default sort order up to, and including, "title" and then stop. This is only useful in combination with -start. The default is not to stop. Note: do not specify a namespace, even if -start has one. -bracket only work on pages that have (in the home language) parenthesis in their title. All other pages are skipped. (note: without ending colon) -skipfile: used as -skipfile:filename, skip all links mentioned in the given file. This does not work with -number! -skipauto use to skip all pages that can be translated automatically, like dates, centuries, months, etc. (note: without ending colon) -lack: used as -lack:xx with xx a language code: only work on pages without links to language xx. You can also add a number nn like -lack:xx:nn, so that the bot only works on pages with at least nn interwiki links (the default value for nn is 1). These arguments control miscellaneous bot behaviour: -quiet Use this option to get less output (note: without ending colon) -async Put page on queue to be saved to wiki asynchronously. This enables loading pages during saving throtteling and gives a better performance. NOTE: For post-processing it always assumes that saving the the pages was successful. (note: without ending colon) -summary: Set an additional action summary message for the edit. This could be used for further explainings of the bot action. This will only be used in non-autonomous mode. -hintsonly The bot does not ask for a page to work on, even if none of the above page sources was specified. This will make the first existing page of -hint or -hinfile slip in as start page, determining properties like namespace, disambiguation state, and so on. When no existing page is found in the hints, the bot does nothing. Hitting return without input on the "Which page to check:" prompt has the same effect as using -hintsonly. Options like -back, -same or -wiktionary are in effect only after a page has been found to work on. (note: without ending colon) These arguments are useful to provide hints to the bot: -hint: used as -hint:de:Anweisung to give the bot a hint where to start looking for translations. If no text is given after the second ':', the name of the page itself is used as the title for the hint, unless the -hintnobracket command line option (see there) is also selected. There are some special hints, trying a number of languages at once: * all: All languages with at least ca. 100 articles * 10: The 10 largest languages (sites with most articles). Analogous for any other natural number * arab: All languages using the Arabic alphabet * cyril: All languages that use the Cyrillic alphabet * chinese: All Chinese dialects * latin: All languages using the Latin script * scand: All Scandinavian languages Names of families that forward their interlanguage links to the wiki family being worked upon can be used, they are: * commons: Interlanguage links of Wikimedia Commons * incubator: Links in pages on the Wikimedia Incubator * meta: Interlanguage links of named pages on Meta * species: Interlanguage links of the Wikispecies wiki * strategy: Links in pages on Wikimedia Strategy wiki * test: Take interwiki links from Test Wikipedia * wikimania: Interwiki links of Wikimania Languages, groups and families having the same page title can be combined, as -hint:5,scand,sr,pt,commons:New_York -hintfile: similar to -hint, except that hints are taken from the given file, enclosed in [[]] each, instead of the command line. -askhints: for each page one or more hints are asked. See hint: above for the format, one can for example give "en:something" or "20:" as hint. -repository Include data repository -same looks over all 'serious' languages for the same title. -same is equivalent to -hint:all: (note: without ending colon) -wiktionary: similar to -same, but will ONLY accept names that are identical to the original. Also, if the title is not capitalized, it will only go through other wikis without automatic capitalization. -untranslated: works normally on pages with at least one interlanguage link; asks for hints for pages that have none. -untranslatedonly: same as -untranslated, but pages which already have a translation are skipped. Hint: do NOT use this in combination with -start without a -number limit, because you will go through the whole alphabet before any queries are performed! -showpage when asking for hints, show the first bit of the text of the page always, rather than doing so only when being asked for (by typing '?'). Only useful in combination with a hint-asking option like -untranslated, -askhints or -untranslatedonly. (note: without ending colon) -noauto Do not use the automatic translation feature for years and dates, only use found links and hints. (note: without ending colon) -hintnobracket used to make the bot strip everything in last brackets, and surrounding spaces from the page name, before it is used in a -hint:xy: where the page name has been left out, or -hint:all:, -hint:10:, etc. without a name, or an -askhint reply, where only a language is given. These arguments define how much user confirmation is required: -autonomous run automatically, do not ask any questions. If a question -auto to an operator is needed, write the name of the page to autonomous_problems.dat and continue on the next page. (note: without ending colon) -confirm ask for confirmation before any page is changed on the live wiki. Without this argument, additions and unambiguous modifications are made without confirmation. (note: without ending colon) -force do not ask permission to make "controversial" changes, like removing a language because none of the found alternatives actually exists. (note: without ending colon) -cleanup like -force but only removes interwiki links to non-existent or empty pages. -select ask for each link whether it should be included before changing any page. This is useful if you want to remove invalid interwiki links and if you do multiple hints of which some might be correct and others incorrect. Combining -select and -confirm is possible, but seems like overkill. (note: without ending colon) These arguments specify in which way the bot should follow interwiki links: -noredirect do not follow redirects nor category redirects. (note: without ending colon) -initialredirect work on its target if a redirect or category redirect is entered on the command line or by a generator (note: without ending colon). It is recommended to use this option with the -movelog pagegenerator. -neverlink: used as -neverlink:xx where xx is a language code: Disregard any links found to language xx. You can also specify a list of languages to disregard, separated by commas. -ignore: used as -ignore:xx:aaa where xx is a language code, and aaa is a page title to be ignored. -ignorefile: similar to -ignore, except that the pages are taken from the given file instead of the command line. -localright do not follow interwiki links from other pages than the starting page. (Warning! Should be used very sparingly, only when you are sure you have first gotten the interwiki links on the starting page exactly right). (note: without ending colon) -hintsareright do not follow interwiki links to sites for which hints on existing pages are given. Note that, hints given interactively, via the -askhint command line option, are only effective once they have been entered, thus interwiki links on the starting page are followed regardess of hints given when prompted. (Warning! Should be used with caution!) (note: without ending colon) -back only work on pages that have no backlink from any other language; if a backlink is found, all work on the page will be halted. (note: without ending colon) The following arguments are only important for users who have accounts for multiple languages, and specify on which sites the bot should modify pages: -localonly only work on the local wiki, not on other wikis in the family I have a login at. (note: without ending colon) -limittwo only update two pages - one in the local wiki (if logged-in) and one in the top available one. For example, if the local page has links to de and fr, this option will make sure that only the local site and the de: (larger) sites are updated. This option is useful to quickly set two way links without updating all of the wiki families sites. (note: without ending colon) -whenneeded works like limittwo, but other languages are changed in the following cases: * If there are no interwiki links at all on the page * If an interwiki link must be removed * If an interwiki link must be changed and there has been a conflict for this page Optionally, -whenneeded can be given an additional number (for example -whenneeded:3), in which case other languages will be changed if there are that number or more links to change or add. (note: without ending colon) The following arguments influence how many pages the bot works on at once: -array: The number of pages the bot tries to be working on at once. If the number of pages loaded is lower than this number, a new set of pages is loaded from the starting wiki. The default is 100, but can be changed in the config variable interwiki_min_subjects -query: The maximum number of pages that the bot will load at once. Default value is 50. Some configuration option can be used to change the working of this bot: interwiki_min_subjects: the minimum amount of subjects that should be processed at the same time. interwiki_backlink: if set to True, all problems in foreign wikis will be reported interwiki_shownew: should interwiki.py display every new link it discovers? interwiki_graph: output a graph PNG file on conflicts? You need pydot for this: https://pypi.org/project/pydot/ interwiki_graph_format: the file format for interwiki graphs without_interwiki: save file with local articles without interwikis All these options can be changed through the user-config.py configuration file. If interwiki.py is terminated before it is finished, it will write a dump file to the interwiki-dumps subdirectory. The program will read it if invoked with the "-restore" or "-continue" option, and finish all the subjects in that list. After finishing the dump file will be deleted. To run the interwiki-bot on all pages on a language, run it with option "-start:!", and if it takes so long that you have to break it off, use "-continue" next time. """ # # (C) Pywikibot team, 2003-2021 # # Distributed under the terms of the MIT license. # import codecs import os import re import socket import sys from collections import Counter, defaultdict from contextlib import suppress from textwrap import fill import pywikibot from pywikibot import ( config, i18n, interwiki_graph, pagegenerators, textlib, titletranslate, ) from pywikibot.bot import ListOption, OptionHandler, StandardOption from pywikibot.cosmetic_changes import moved_links from pywikibot.exceptions import ( EditConflictError, Error, InvalidTitleError, LockedPageError, NoCreateError, NoPageError, NoUsernameError, PageSaveRelatedError, ServerError, SiteDefinitionError, SpamblacklistError, UnknownSiteError, ) from pywikibot.tools import SizedKeyCollection, first_upper from pywikibot.tools.formatter import color_format docuReplacements = { '&params;': pagegenerators.parameterHelp } class SaveError(Error): """An attempt to save a page with changed interwiki has failed.""" class LinkMustBeRemoved(SaveError): """An interwiki link has to be removed manually. An interwiki link has to be removed, but this can't be done because of user preferences or because the user chose not to change the page. """ class GiveUpOnPage(Error): """User chose not to work on this page and its linked pages any more.""" # A list of template names in different languages. # Pages which contain these shouldn't be changed. ignoreTemplates = { '_default': ['delete'], 'ar': ['تحرر', 'تحويل لين'], 'ary': ['كاتبدل دابا'], 'arz': ['بتتطور'], 'cs': ['Pracuje_se'], 'de': ['inuse', 'in use', 'in bearbeitung', 'inbearbeitung', 'löschen', 'sla', 'löschantrag', 'löschantragstext', 'falschschreibung', 'obsolete schreibung', 'veraltete schreibweise'], 'en': ['inuse', 'softredirect'], 'fa': ['در دست ویرایش ۲', 'حذف سریع'], 'pdc': ['lösche'], 'zh': ['inuse'], } class InterwikiBotConfig: """Container class for interwikibot's settings.""" autonomous = False confirm = False always = False select = False followredirect = True initialredirect = False force = False cleanup = False remove = [] maxquerysize = 50 same = False skip = set() skipauto = False untranslated = False untranslatedonly = False auto = True neverlink = [] showtextlink = 0 showtextlinkadd = 300 localonly = False limittwo = False strictlimittwo = False needlimit = 0 ignore = [] parenthesesonly = False rememberno = False followinterwiki = True minsubjects = config.interwiki_min_subjects nobackonly = False askhints = False hintnobracket = False hints = [] hintsareright = False lacklanguage = None minlinks = 0 quiet = False restore_all = False asynchronous = False summary = '' repository = False def note(self, text): """Output a notification message with. The text will be printed only if conf.quiet isn't set. @param text: text to be shown @type text: str """ if not self.quiet: pywikibot.output('NOTE: ' + text) def readOptions(self, option): """Read all commandline parameters for the global container.""" arg, _, value = option.partition(':') if not arg.startswith('-'): return False arg = arg[1:] if arg == 'noauto': self.auto = False elif arg == 'hint': self.hints.append(value) elif arg == 'hintfile': hintfilename = value or pywikibot.input( 'Please enter the hint filename:') # hint or title ends either before | or before ]] R = re.compile(r'\[\[(.+?)(?:\]\]|\|)') with codecs.open(hintfilename, 'r', config.textfile_encoding) as f: self.hints += R.findall(f.read()) elif arg == 'wiktionary': self.same = 'wiktionary' # Don't use auto-translation in -wiktionary mode # where page titles must be the same self.auto = False elif arg == 'untranslatedonly': self.untranslated = True self.untranslatedonly = True elif arg == 'askhints': self.untranslated = True self.untranslatedonly = False self.askhints = True elif arg in ('autonomous', 'auto'): self.autonomous = True elif arg == 'noredirect': self.followredirect = False elif arg == 'limittwo': self.limittwo = True self.strictlimittwo = True elif arg == 'whenneeded': self.limittwo = True self.strictlimittwo = False if value.isdigit(): self.needlimit = int(value) elif arg == 'skipfile': skip_page_gen = pagegenerators.TextfilePageGenerator(value) self.skip.update(skip_page_gen) del skip_page_gen elif arg == 'neverlink': self.neverlink += value.split(',') elif arg == 'ignore': self.ignore += [pywikibot.Page(pywikibot.Site(), p) for p in value.split(',')] elif arg == 'ignorefile': ignore_page_gen = pagegenerators.TextfilePageGenerator(value) self.ignore.update(ignore_page_gen) del ignore_page_gen elif arg == 'showpage': self.showtextlink += self.showtextlinkadd elif arg == 'graph': # override configuration config.interwiki_graph = True elif arg == 'bracket': self.parenthesesonly = True elif arg == 'localright': self.followinterwiki = False elif arg == 'array' and value.isdigit(): self.minsubjects = int(value) elif arg == 'query' and value.isdigit(): self.maxquerysize = int(value) elif arg == 'back': self.nobackonly = True elif arg == 'async': self.asynchronous = True elif arg == 'summary': self.summary = value or pywikibot.input( 'What summary do you want to use?') elif arg == 'lack': self.lacklanguage, sep, minlinks = value.partition(':') self.minlinks = int(minlinks) if minlinks.isdigit() else 1 elif arg in ('cleanup', 'confirm', 'force', 'hintnobracket', 'hintsareright', 'initialredirect', 'localonly', 'quiet', 'repository', 'same', 'select', 'skipauto', 'untranslated'): assert hasattr(self, arg) assert value == '' setattr(self, arg, True) else: return False return True class PageTree(SizedKeyCollection): """ Structure to manipulate a set of pages. Allows filtering efficiently by Site. """ def __init__(self): """Initializer. While using dict values would be faster for the remove() operation, keeping list values is important, because the order in which the pages were found matters: the earlier a page is found, the closer it is to the Subject.origin. Chances are that pages found within 2 interwiki distance from the origin are more related to the original topic than pages found later on, after 3, 4, 5 or more interwiki hops. Keeping this order is hence important to display an ordered list of pages to the user when he'll be asked to resolve conflicts. @ivar data: dictionary with Site as keys and list of page as values. All pages found within Site are kept in self.data[site]. @type data: defaultdict(list) """ super().__init__('site') class Subject(interwiki_graph.Subject): """ Class to follow the progress of a single 'subject'. (i.e. a page with all its translations) Subject is a transitive closure of the binary relation on Page: "has_a_langlink_pointing_to". A formal way to compute that closure would be: With P a set of pages, NL ('NextLevel') a function on sets defined as: `NL(P) = { target | ∃ source ∈ P, target ∈ source.langlinks() }` pseudocode:: todo <- [origin] done <- [] while todo != []: pending <- todo todo <-NL(pending) / done done <- NL(pending) U done return done There is, however, one limitation that is induced by implementation: to compute efficiently NL(P), one has to load the page contents of pages in P. (Not only the langlinks have to be parsed from each Page, but we also want to know if the Page is a redirect, a disambiguation, etc...) Because of this, the pages in pending have to be preloaded. However, because the pages in pending are likely to be in several sites we cannot "just" preload them as a batch. Instead of doing "pending <- todo" at each iteration, we have to elect a Site, and we put in pending all the pages from todo that belong to that Site: Code becomes:: todo <- {origin.site: [origin]} done <- [] while todo != {}: site <- electSite() pending <- todo[site] preloadpages(site, pending) todo[site] <- NL(pending) / done done <- NL(pending) U done return done Subject objects only operate on pages that should have been preloaded before. In fact, at any time: * todo contains new Pages that have not been loaded yet * done contains Pages that have been loaded, and that have been treated. * If batch preloadings are successful, Page._get() is never called from this Object. """ def __init__(self, origin=None, hints=None, conf=None): """ Initializer. Takes as arguments the Page on the home wiki plus optionally a list of hints for translation """ self.conf = conf super().__init__(origin) self.repoPage = None # todo is a list of all pages that still need to be analyzed. # Mark the origin page as todo. self.todo = PageTree() if origin: self.todo.append(origin) # done is a list of all pages that have been analyzed and that # are known to belong to this subject. self.done = PageTree() # This is a list of all pages that are currently scheduled for # download. self.pending = PageTree() if self.conf.hintsareright: # This is a set of sites that we got hints to self.hintedsites = set() self.translate(hints, self.conf.hintsareright) self.confirm = self.conf.confirm self.problemfound = False self.untranslated = None self.hintsAsked = False self.forcedStop = False self.workonme = True def getFoundDisambig(self, site): """ Return the first disambiguation found. If we found a disambiguation on the given site while working on the subject, this method returns it. If several ones have been found, the first one will be returned. Otherwise, None will be returned. """ for tree in [self.done, self.pending]: for page in tree.filter(site): if page.exists() and page.isDisambig(): return page return None def getFoundNonDisambig(self, site): """ Return the first non-disambiguation found. If we found a non-disambiguation on the given site while working on the subject, this method returns it. If several ones have been found, the first one will be returned. Otherwise, None will be returned. """ for tree in [self.done, self.pending]: for page in tree.filter(site): if page.exists() \ and not page.isDisambig() \ and not page.isRedirectPage() \ and not page.isCategoryRedirect(): return page return None def getFoundInCorrectNamespace(self, site): """ Return the first page in the extended namespace. If we found a page that has the expected namespace on the given site while working on the subject, this method returns it. If several ones have been found, the first one will be returned. Otherwise, None will be returned. """ for tree in [self.done, self.pending, self.todo]: for page in tree.filter(site): # -hintsonly: before we have an origin page, any namespace will # do. if self.origin and page.namespace() == self.origin.namespace(): if page.exists() \ and not page.isRedirectPage() \ and not page.isCategoryRedirect(): return page return None def translate(self, hints=None, keephintedsites=False): """Add the given translation hints to the todo list.""" if self.conf.same and self.origin: if hints: hints += ['all:'] else: hints = ['all:'] site = self.origin.site else: site = pywikibot.Site() links = titletranslate.translate( self.origin, hints=hints, auto=self.conf.auto, removebrackets=self.conf.hintnobracket, site=site) for link in links: page = pywikibot.Page(link) self.todo.append(page) self.found_in[page] = [None] if keephintedsites: self.hintedsites.add(page.site) def openSites(self): """ Iterator. Yields (site, count) pairs: * site is a site where we still have work to do on * count is the number of items in that Site that need work on """ return self.todo.iter_values_len() def whatsNextPageBatch(self, site): """ Return the next page batch. By calling this method, you 'promise' this instance that you will preload all the 'site' Pages that are in the todo list. This routine will return a list of pages that can be treated. """ # Bug-check: Isn't there any work still in progress? We can't work on # different sites at a time! if self.pending: raise RuntimeError( "BUG: Can't start to work on {}; still working on {}" .format(site, self.pending)) # Prepare a list of suitable pages result = [] for page in self.todo.filter(site): self.pending.append(page) result.append(page) self.todo.remove_key(site) # If there are any, return them. Otherwise, nothing is in progress. return result def makeForcedStop(self, counter): """End work on the page before the normal end.""" for site, count in self.todo.iter_values_len(): counter.minus(site, count) self.todo.clear() self.forcedStop = True def addIfNew(self, page, counter, linkingPage): """ Add the pagelink given to the todo list, if it hasn't been seen yet. If it is added, update the counter accordingly. Also remembers where we found the page, regardless of whether it had already been found before or not. Returns True if the page is new. """ if self.forcedStop: return False # cannot check backlink before we have an origin page if self.conf.nobackonly and self.origin and page == self.origin: try: pywikibot.output('{} has a backlink from {}.' .format(page, linkingPage)) except UnicodeDecodeError: pywikibot.output('Found a backlink for a page.') self.makeForcedStop(counter) return False if page in self.found_in: # not new self.found_in[page].append(linkingPage) return False self.found_in[page] = [linkingPage] self.todo.append(page) counter.plus(page.site) return True def skipPage(self, page, target, counter): """Return whether page has to be skipped.""" return self.isIgnored(target) \ or self.namespaceMismatch(page, target, counter) \ or self.wiktionaryMismatch(target) def namespaceMismatch(self, linkingPage, linkedPage, counter): """ Check whether or not the given page has a different namespace. Returns True if the namespaces are different and the user has selected not to follow the linked page. """ if linkedPage in self.found_in: # We have seen this page before, don't ask again. return False if self.origin and self.origin.namespace() != linkedPage.namespace(): # Allow for a mapping between different namespaces crossFrom = self.origin.site.family.crossnamespace.get( self.origin.namespace(), {}) crossTo = crossFrom.get(self.origin.site.lang, crossFrom.get('_default', {})) nsmatch = crossTo.get(linkedPage.site.lang, crossTo.get('_default', [])) if linkedPage.namespace() in nsmatch: return False if self.conf.autonomous: pywikibot.output( 'NOTE: Ignoring link from page {} in namespace' ' {} to page {} in namespace {}.' .format(linkingPage, linkingPage.namespace(), linkedPage, linkedPage.namespace())) # Fill up found_in, so that we will not write this notice self.found_in[linkedPage] = [linkingPage] return True preferredPage = self.getFoundInCorrectNamespace(linkedPage.site) if preferredPage: pywikibot.output( 'NOTE: Ignoring link from page {} in namespace {} to ' 'page {} in namespace {} because page {} in the ' 'correct namespace has already been found.' .format(linkingPage, linkingPage.namespace(), linkedPage, linkedPage.namespace(), preferredPage)) return True choice = pywikibot.input_choice( 'WARNING: {} is in namespace "{}", but {} is in ' 'namespace "{}". Follow it anyway?' .format(self.origin, self.origin.namespace(), linkedPage, linkedPage.namespace()), [('Yes', 'y'), ('No', 'n'), ('Add an alternative', 'a'), ('give up', 'g')], automatic_quit=False) if choice != 'y': # Fill up found_in, so that we will not ask again self.found_in[linkedPage] = [linkingPage] if choice == 'g': self.makeForcedStop(counter) elif choice == 'a': newHint = pywikibot.input( 'Give the alternative for language {}, not ' 'using a language code:' .format(linkedPage.site.lang)) if newHint: alternativePage = pywikibot.Page( linkedPage.site, newHint) if alternativePage: # add the page that was entered by the user self.addIfNew(alternativePage, counter, None) else: pywikibot.output( 'NOTE: ignoring {} and its interwiki links' .format(linkedPage)) return True # same namespaces, no problem # or no origin page yet, also no problem return False def wiktionaryMismatch(self, page): """Check for ignoring pages.""" if self.origin and self.conf.same == 'wiktionary': if page.title().lower() != self.origin.title().lower(): pywikibot.output('NOTE: Ignoring {} for {} in wiktionary mode' .format(page, self.origin)) return True if (page.title() != self.origin.title() and self.origin.namespace().case == 'case-sensitive' and page.namespace().case == 'case-sensitive'): pywikibot.output( 'NOTE: Ignoring {} for {} in wiktionary mode because both ' 'languages are uncapitalized.' .format(page, self.origin)) return True return False def disambigMismatch(self, page, counter): """ Check whether the given page has a different disambiguation status. Returns a tuple (skip, alternativePage). skip is True if the pages have mismatching statuses and the bot is either in autonomous mode, or the user chose not to use the given page. alternativePage is either None, or a page that the user has chosen to use instead of the given page. """ if not self.origin: return (False, None) # any page matches til we have an origin page if self.conf.autonomous: if self.origin.isDisambig() and not page.isDisambig(): pywikibot.output( 'NOTE: Ignoring link from disambiguation page {} to ' 'non-disambiguation {}'.format(self.origin, page)) return (True, None) if not self.origin.isDisambig() and page.isDisambig(): pywikibot.output( 'NOTE: Ignoring link from non-disambiguation page {} to ' 'disambiguation {}'.format(self.origin, page)) return (True, None) else: choice = 'y' if self.origin.isDisambig() and not page.isDisambig(): disambig = self.getFoundDisambig(page.site) if disambig: pywikibot.output( 'NOTE: Ignoring non-disambiguation page {} for {} ' 'because disambiguation page {} has already been ' 'found.' .format(page, self.origin, disambig)) return (True, None) choice = pywikibot.input_choice( "WARNING: {} is a disambiguation page, but {} doesn't " 'seem to be one. Follow it anyway?' .format(self.origin, page), [('Yes', 'y'), ('No', 'n'), ('Add an alternative', 'a'), ('give up', 'g')], automatic_quit=False) elif not self.origin.isDisambig() and page.isDisambig(): nondisambig = self.getFoundNonDisambig(page.site) if nondisambig: pywikibot.output( 'NOTE: Ignoring disambiguation page {} for {} because ' 'non-disambiguation page {} has already been found.' .format(page, self.origin, nondisambig)) return (True, None) choice = pywikibot.input_choice( "WARNING: {} doesn't seem to be a disambiguation " 'page, but {} is one. Follow it anyway?' .format(self.origin, page), [('Yes', 'y'), ('No', 'n'), ('Add an alternative', 'a'), ('give up', 'g')], automatic_quit=False) if choice == 'n': return (True, None) if choice == 'a': newHint = pywikibot.input( 'Give the alternative for language {}, not using a ' 'language code:'.format(page.site.lang)) alternativePage = pywikibot.Page(page.site, newHint) return (True, alternativePage) if choice == 'g': self.makeForcedStop(counter) return (True, None) # We can follow the page. return (False, None) def isIgnored(self, page): """Return True if pages is to be ignored.""" if page.site.lang in self.conf.neverlink: pywikibot.output('Skipping link {} to an ignored language' .format(page)) return True if page in self.conf.ignore: pywikibot.output('Skipping link {} to an ignored page' .format(page)) return True return False def reportInterwikilessPage(self, page): """Report interwikiless page.""" self.conf.note('{} does not have any interwiki links' .format(self.origin)) if config.without_interwiki: with codecs.open( pywikibot.config.datafilepath('without_interwiki.txt'), 'a', 'utf-8') as f: f.write('# {} \n'.format(page)) def askForHints(self, counter): """Ask for hints to other sites.""" if (not self.workonme # we don't work on it anyway or not self.untranslated and not self.conf.askhints or self.hintsAsked or not self.origin or not self.origin.exists() or self.origin.isRedirectPage() or self.origin.isCategoryRedirect()): return self.hintsAsked = True if not self.conf.untranslated: return t = self.conf.showtextlink if t: pywikibot.output(self.origin.get()[:t]) while True: newhint = pywikibot.input('Give a hint (? to see pagetext):') if not newhint: break if newhint == '?': t += self.conf.showtextlinkadd pywikibot.output(self.origin.get()[:t]) elif ':' not in newhint: pywikibot.output(fill( 'Please enter a hint in the format language:pagename ' 'or type nothing if you do not have a hint.')) else: links = titletranslate.translate( self.origin, hints=[newhint], auto=self.conf.auto, removebrackets=self.conf.hintnobracket) for link in links: page = pywikibot.Page(link) self.addIfNew(page, counter, None) if self.conf.hintsareright: self.hintedsites.add(page.site) def batchLoaded(self, counter): """ Notify that the promised batch of pages was loaded. This is called by a worker to tell us that the promised batch of pages was loaded. In other words, all the pages in self.pending have already been preloaded. The only argument is an instance of a counter class, that has methods minus() and plus() to keep counts of the total work todo. """ # Loop over all the pages that should have been taken care of for page in self.pending: # Mark the page as done self.done.append(page) # make sure that none of the linked items is an auto item if self.conf.skipauto: dictName, year = page.autoFormat() if dictName is not None: if self.origin: pywikibot.warning( '{}:{} relates to {}:{}, which is an ' 'auto entry {}({})' .format(self.origin.site.lang, self.origin, page.site.lang, page, dictName, year)) # Abort processing if the bot is running in autonomous mode if self.conf.autonomous: self.makeForcedStop(counter) # Register this fact at the todo-counter. counter.minus(page.site) # Now check whether any interwiki links should be added to the # todo list. if not page.exists(): self.conf.remove.append(str(page)) self.conf.note('{} does not exist. Skipping.'.format(page)) if page == self.origin: # The page we are working on is the page that does not # exist. No use in doing any work on it in that case. for site, count in self.todo.iter_values_len(): counter.minus(site, count) self.todo.clear() # In some rare cases it might be we already did check some # 'automatic' links self.done.clear() continue if page.isRedirectPage() or page.isCategoryRedirect(): if page.isRedirectPage(): redirectTargetPage = page.getRedirectTarget() redir = '' else: redirectTargetPage = page.getCategoryRedirectTarget() redir = 'category ' self.conf.note('{} is {}redirect to {}' .format(page, redir, redirectTargetPage)) if self.origin is None or page == self.origin: # the 1st existig page becomes the origin page, if none was # supplied if self.conf.initialredirect: # don't follow another redirect; it might be a self # loop if not redirectTargetPage.isRedirectPage() \ and not redirectTargetPage.isCategoryRedirect(): self.origin = redirectTargetPage self.todo.append(redirectTargetPage) counter.plus(redirectTargetPage.site) else: # This is a redirect page to the origin. We don't need # to follow the redirection. # In this case we can also stop all hints! for site, count in self.todo.iter_values_len(): counter.minus(site, count) self.todo.clear() elif not self.conf.followredirect: self.conf.note('not following {}redirects.'.format(redir)) elif page.isStaticRedirect(): self.conf.note('not following static {}redirects.' .format(redir)) elif (page.site.family == redirectTargetPage.site.family and not self.skipPage(page, redirectTargetPage, counter)): if self.addIfNew(redirectTargetPage, counter, page): if config.interwiki_shownew: pywikibot.output('{}: {} gives new {}redirect {}' .format(self.origin, page, redir, redirectTargetPage)) continue # must be behind the page.isRedirectPage() part # otherwise a redirect error would be raised if page_empty_check(page): self.conf.remove.append(str(page)) self.conf.note('{} is empty. Skipping.'.format(page)) if page == self.origin: for site, count in self.todo.iter_values_len(): counter.minus(site, count) self.todo.clear() self.done.clear() self.origin = None continue if page.section(): self.conf.note('{} is a page section. Skipping.'.format(page)) continue # Page exists, isn't a redirect, and is a plain link (no section) if self.origin is None: # the 1st existig page becomes the origin page, if none was # supplied self.origin = page try: iw = page.langlinks() except UnknownSiteError: self.conf.note('site {} does not exist.'.format(page.site)) continue (skip, alternativePage) = self.disambigMismatch(page, counter) if skip: pywikibot.output('NOTE: ignoring {} and its interwiki links' .format(page)) self.done.remove(page) iw = () if alternativePage: # add the page that was entered by the user self.addIfNew(alternativePage, counter, None) duplicate = None for p in self.done.filter(page.site): if p != page and p.exists() and \ not p.isRedirectPage() and not p.isCategoryRedirect(): duplicate = p break if self.origin == page: self.untranslated = not iw if self.conf.untranslatedonly: # Ignore the interwiki links. iw = () if self.conf.lacklanguage: if self.conf.lacklanguage in (link.site.lang for link in iw): iw = () self.workonme = False if len(iw) < self.conf.minlinks: iw = () self.workonme = False elif self.conf.autonomous and duplicate and not skip: pywikibot.output('Stopping work on {} because duplicate pages' ' {} and {} are found' .format(self.originP, duplicate, page)) self.makeForcedStop(counter) try: with codecs.open( pywikibot.config.datafilepath( 'autonomous_problems.dat'), 'a', 'utf-8') as f: f.write('* {} {{Found more than one link for {}}}' .format(self.origin, page.site)) if config.interwiki_graph \ and config.interwiki_graph_url: filename = interwiki_graph.getFilename( self.origin, extension=config.interwiki_graph_formats[0]) f.write(' [{}{} graph]' .format(config.interwiki_graph_url, filename)) f.write('\n') # FIXME: What errors are we catching here? except Exception: # raise pywikibot.output( 'File autonomous_problems.dat open or corrupted! ' 'Try again with -restore.') sys.exit() iw = () for link in iw: linkedPage = pywikibot.Page(link) if self.conf.hintsareright \ and linkedPage.site in self.hintedsites: pywikibot.output( 'NOTE: {}: {} extra interwiki on hinted site ' 'ignored {}'.format(self.origin, page, linkedPage)) break if not self.skipPage(page, linkedPage, counter): if self.conf.followinterwiki or page == self.origin: if self.addIfNew(linkedPage, counter, page): # It is new. Also verify whether it is the second # on the same site lpsite = linkedPage.site for prevPage in self.found_in: if prevPage != linkedPage and \ prevPage.site == lpsite: # Still, this could be "no problem" as # either may be a redirect to the other. # No way to find out quickly! pywikibot.output( 'NOTE: {}: {} gives duplicate ' 'interwiki on same site {}' .format(self.origin, page, linkedPage)) break else: if config.interwiki_shownew: pywikibot.output( '{}: {} gives new interwiki {}' .format(self.origin, page, linkedPage)) if self.forcedStop: break # These pages are no longer 'in progress' self.pending.clear() # Check whether we need hints and the user offered to give them if self.untranslated and not self.hintsAsked: self.reportInterwikilessPage(page) self.askForHints(counter) def isDone(self): """Return True if all the work for this subject has completed.""" return not self.todo def problem(self, txt, createneed=True): """Report a problem with the resolution of this subject.""" pywikibot.error(txt) self.confirm = True if createneed: self.problemfound = True def whereReport(self, page, indent=4): """Report found interlanguage links with conflicts.""" for page2 in sorted(self.found_in[page]): if page2 is None: pywikibot.output(' ' * indent + 'Given as a hint.') else: pywikibot.output(' ' * indent + str(page2)) def assemble(self): """Assemble language links.""" # No errors have been seen so far, except.... errorCount = self.problemfound # Build up a dictionary of all pages found, with the site as key. # Each value will be a list of pages. new = defaultdict(list) for page in self.done: if page.exists() and not page.isRedirectPage() \ and not page.isCategoryRedirect(): site = page.site if site.family.interwiki_forward: # TODO: allow these cases to be propagated! # inhibit the forwarding families pages to be updated. continue if site != self.origin.site: new[site].append(page) elif page != self.origin: self.problem('Found link to ' + page) self.whereReport(page) errorCount += 1 # See if new{} contains any problematic values result = {} for site, pages in new.items(): if len(pages) > 1: errorCount += 1 self.problem('Found more than one link for ' + site) if not errorCount and not self.conf.select: # no errors, so all lists have only one item for site, pages in new.items(): result[site] = pages[0] return result # There are any errors. if config.interwiki_graph: graphDrawer = interwiki_graph.GraphDrawer(self) graphDrawer.createGraph() # We don't need to continue with the rest if we're in autonomous # mode. if self.conf.autonomous: return None # First loop over the ones that have more solutions for site, pages in new.items(): if len(pages) <= 1: continue pywikibot.output('=' * 30) pywikibot.output('Links to ' + site) for i, page2 in enumerate(pages, 1): pywikibot.output(' ({}) Found link to {} in:' .format(i, page2)) self.whereReport(page2, indent=8) # TODO: allow answer to repeat previous or go back after a mistake answer = pywikibot.input_choice( 'Which variant should be used?', (ListOption(pages), StandardOption('none', 'n'), StandardOption('give up', 'g'))) if answer == 'g': return None if answer != 'n': result[site] = answer[1] # Loop over the ones that have one solution, so are in principle # not a problem. acceptall = False for site, pages in new.items(): if len(pages) != 1: continue if not acceptall: pywikibot.output('=' * 30) page2 = pages[0] pywikibot.output('Found link to {} in:'.format(page2)) self.whereReport(page2, indent=4) while True: if acceptall: answer = 'a' else: # TODO: allow answer to repeat previous or go back # after a mistake answer = pywikibot.input_choice( 'What should be done?', [('accept', 'a'), ('reject', 'r'), ('give up', 'g'), ('accept all', 'l')], 'a', automatic_quit=False) if answer == 'l': # accept all acceptall = True answer = 'a' if answer == 'a': # accept this one result[site] = pages[0] break if answer == 'g': # give up return None if answer == 'r': # reject # None acceptable break return result def finish(self): """ Round up the subject, making any necessary changes. This should be called exactly once after the todo list has gone empty. """ if not self.isDone(): raise Exception('Bugcheck: finish called before done') if not self.workonme or not self.origin: return if self.origin.isRedirectPage() or self.origin.isCategoryRedirect(): return if not self.untranslated and self.conf.untranslatedonly: return if self.forcedStop: # autonomous with problem pywikibot.output('======Aborted processing {}======' .format(self.origin)) return # The following check is not always correct and thus disabled. # self.done might contain no interwiki links because of the -neverlink # argument or because of disambiguation conflicts. # if len(self.done) == 1: # # No interwiki at all # return pywikibot.output('======Post-processing {}======' .format(self.origin)) # Assemble list of accepted interwiki links new = self.assemble() if new is None: # User said give up pywikibot.output('======Aborted processing {}======' .format(self.origin)) return # Make sure new contains every page link, including the page we are # processing # TODO: should be move to assemble() # replaceLinks will skip the site it's working on. # TODO: make this possible as well. if self.origin.site not in new \ and not self.origin.site.family.interwiki_forward: new[self.origin.site] = self.origin updatedSites = [] notUpdatedSites = [] # Process all languages here self.conf.always = False if self.conf.limittwo: lclSite = self.origin.site lclSiteDone = False frgnSiteDone = False for siteCode in lclSite.family.languages_by_size: site = pywikibot.Site(siteCode, lclSite.family) if (not lclSiteDone and site == lclSite) \ or (not frgnSiteDone and site != lclSite and site in new): if site == lclSite: lclSiteDone = True # even if we fail the update if (site.family.name in config.usernames and site.code in config.usernames[ site.family.name]): try: if self.replaceLinks(new[site], new): updatedSites.append(site) if site != lclSite: frgnSiteDone = True except SaveError: notUpdatedSites.append(site) except GiveUpOnPage: break elif (not self.conf.strictlimittwo and site in new and site != lclSite): old = {} try: for link in new[site].iterlanglinks(): page = pywikibot.Page(link) old[page.site] = page except NoPageError: pywikibot.output('BUG>>> {} no longer exists?' .format(new[site])) continue mods, mcomment, adding, removing, modifying \ = compareLanguages(old, new, lclSite, self.conf.summary) if (removing and not self.conf.autonomous or modifying and self.problemfound or not old or (self.conf.needlimit and len(adding) + len(modifying) >= self.conf.needlimit + 1)): try: if self.replaceLinks(new[site], new): updatedSites.append(site) except SaveError: notUpdatedSites.append(site) except NoUsernameError: pass except GiveUpOnPage: break else: for (site, page) in new.items(): # if we have an account for this site if site.family.name in config.usernames \ and site.code in config.usernames[site.family.name] \ and not site.has_data_repository: # Try to do the changes try: if self.replaceLinks(page, new): # Page was changed updatedSites.append(site) except SaveError: notUpdatedSites.append(site) except GiveUpOnPage: break # disabled graph drawing for minor problems: it just takes too long # if notUpdatedSites != [] and config.interwiki_graph: # # at least one site was not updated, save a conflict graph # self.createGraph() # don't report backlinks for pages we already changed if config.interwiki_backlink: self.reportBacklinks(new, updatedSites) def replaceLinks(self, page, newPages): """Return True if saving was successful.""" # In this case only continue on the Page we started with if self.conf.localonly and page != self.origin: raise SaveError('-localonly and page != origin') if page.section(): # This is not a page, but a subpage. Do not edit it. pywikibot.output('Not editing {}: not doing interwiki on subpages' .format(page)) raise SaveError('Link has a #section') try: pagetext = page.get() except NoPageError: pywikibot.output('Not editing {}: page does not exist' .format(page)) raise SaveError("Page doesn't exist") if page_empty_check(page): pywikibot.output('Not editing {}: page is empty'.format(page)) raise SaveError('Page is empty.') # clone original newPages dictionary, so that we can modify it to the # local page's needs new = newPages.copy() interwikis = [pywikibot.Page(link) for link in page.iterlanglinks()] # remove interwiki links to ignore for iw in re.finditer(r'<!-- *\[\[(.*?:.*?)\]\] *-->', pagetext): with suppress(KeyError, SiteDefinitionError, InvalidTitleError): ignorepage = pywikibot.Page(page.site, iw.groups()[0]) if new[ignorepage.site] == ignorepage \ and ignorepage.site != page.site: param = {'to': ignorepage, 'from': page} if ignorepage not in interwikis: pywikibot.output('Ignoring link to {to} for {from}' .format_map(param)) new.pop(ignorepage.site) else: pywikibot.output( 'NOTE: Not removing interwiki from {from} to ' '{to} (exists both commented and non-commented)' .format_map(param)) # sanity check - the page we are fixing must be the only one for that # site. pltmp = new[page.site] if pltmp != page: s = 'None' if pltmp is not None: s = pltmp pywikibot.output( 'BUG>>> {} is not in the list of new links! Found {}.' .format(page, s)) raise SaveError('BUG: sanity check failed') # Avoid adding an iw link back to itself del new[page.site] # Do not add interwiki links to foreign families that page.site() does # not forward to for stmp in new.keys(): if stmp.family != page.site.family \ and stmp.family.name != page.site.family.interwiki_forward: del new[stmp] # Put interwiki links into a map old = {} for page2 in interwikis: old[page2.site] = page2 # Check what needs to get done mods, mcomment, adding, removing, modifying = compareLanguages( old, new, page.site, self.conf.summary ) # When running in autonomous mode without -force switch, make sure we # don't remove any items, but allow addition of the new ones if self.conf.autonomous and not self.conf.force and removing: for rmsite in removing: # Sometimes sites have an erroneous link to itself as an # interwiki if rmsite == page.site: continue rmPage = old[rmsite] # put it to new means don't delete it if (not self.conf.cleanup or str(rmPage) not in self.conf.remove): new[rmsite] = rmPage pywikibot.warning( '{} is either deleted or has a mismatching ' 'disambiguation state.'.format(rmPage)) # Re-Check what needs to get done mods, mcomment, adding, removing, modifying = compareLanguages( old, new, page.site, self.conf.summary ) if not mods: self.conf.note('No changes needed on page {}'.format(page)) return False # Show a message in purple. pywikibot.output(color_format( '{lightpurple}Updating links on page {0}.{default}', page)) pywikibot.output('Changes to be made: {}'.format(mods)) oldtext = page.get() template = (page.namespace() == 10) newtext = textlib.replaceLanguageLinks(oldtext, new, site=page.site, template=template) # This is for now. Later there should be different funktions for each # kind if not botMayEdit(page): if template: pywikibot.output( 'SKIPPING: {} should have interwiki links on subpage.' .format(page)) else: pywikibot.output( 'SKIPPING: {} is under construction or to be deleted.' .format(page)) return False if newtext == oldtext: return False pywikibot.showDiff(oldtext, newtext) # Determine whether we need permission to submit ask = False # Allow for special case of a self-pointing interwiki link if removing and removing != [page.site]: self.problem('Found incorrect link to {} in {}' .format(', '.join(x.code for x in removing), page), createneed=False) ask = True if self.conf.force or self.conf.cleanup: ask = False if self.conf.confirm and not self.conf.always: ask = True if not ask: # If we do not need to ask, allow answer = 'y' elif self.conf.autonomous: # If we cannot ask, deny permission answer = 'n' else: # If we need to ask, do so answer = pywikibot.input_choice('Submit?', [('Yes', 'y'), ('No', 'n'), ('open in Browser', 'b'), ('Give up', 'g'), ('Always', 'a')], automatic_quit=False) if answer == 'b': pywikibot.bot.open_webbrowser(page) return True if answer == 'a': # don't ask for the rest of this subject self.conf.always = True answer = 'y' if answer == 'g': raise GiveUpOnPage('User asked us to give up') # If we got permission to submit, do so if answer != 'y': raise LinkMustBeRemoved( 'Found incorrect link to {} in {}' .format(', '.join(x.code for x in removing), page)) self.conf.note('Updating live wiki...') timeout = 60 page.text = newtext while True: try: page.save(summary=mcomment, asynchronous=self.conf.asynchronous, nocreate=True) except NoCreateError: pywikibot.exception() return False except LockedPageError: pywikibot.output('Page {} is locked. Skipping.' .format(page)) raise SaveError('Locked') except EditConflictError: pywikibot.output( 'ERROR putting page: An edit conflict occurred. ' 'Giving up.') raise SaveError('Edit conflict') except SpamblacklistError as error: pywikibot.output( 'ERROR putting page: {} blacklisted by spamfilter. ' 'Giving up.'.format(error.url)) raise SaveError('Spam filter') except PageSaveRelatedError as error: pywikibot.output('ERROR putting page: {}' .format(error.args,)) raise SaveError('PageSaveRelatedError') except (socket.error, IOError) as error: if timeout > 3600: raise pywikibot.output('ERROR putting page: {}' .format(error.args,)) pywikibot.output('Sleeping {} seconds before trying again.' .format(timeout,)) timeout *= 2 pywikibot.sleep(timeout) except ServerError: if timeout > 3600: raise pywikibot.output('ERROR putting page: ServerError.') pywikibot.output('Sleeping {} seconds before trying again.' .format(timeout,)) timeout *= 2 pywikibot.sleep(timeout) else: break return True def reportBacklinks(self, new, updatedSites): """ Report missing back links. This will be called from finish() if needed. updatedSites is a list that contains all sites we changed, to avoid reporting of missing backlinks for pages we already fixed """ # use sets because searching an element is faster than in lists expectedPages = set(new.values()) expectedSites = set(new) try: for site in expectedSites - set(updatedSites): page = new[site] if page.section(): continue try: linkedPages = {pywikibot.Page(link) for link in page.iterlanglinks()} except NoPageError: pywikibot.warning( 'Page {} does no longer exist?!'.format(page)) break # To speed things up, create a dictionary which maps sites # to pages. This assumes that there is only one interwiki # link per language. linkedPagesDict = {} for linkedPage in linkedPages: linkedPagesDict[linkedPage.site] = linkedPage for expectedPage in expectedPages - linkedPages: if expectedPage == page: continue try: linkedPage = linkedPagesDict[expectedPage.site] pywikibot.warning( '{}: {} does not link to {} but to {}' .format(page.site.family.name, page, expectedPage, linkedPage)) except KeyError: if not expectedPage.site.is_data_repository(): pywikibot.warning('{}: {} does not link to {}' .format(page.site.family.name, page, expectedPage)) # Check for superfluous links for linkedPage in linkedPages: if linkedPage in expectedPages: continue # Check whether there is an alternative page on # that language. # In this case, it was already reported above. if linkedPage.site not in expectedSites: pywikibot.warning('{}: {} links to incorrect {}' .format(page.site.family.name, page, linkedPage)) except (socket.error, IOError): pywikibot.output('ERROR: could not report backlinks') class InterwikiBot: """ A class keeping track of a list of subjects. It controls which pages are queried from which languages when. """ def __init__(self, conf=None): """Initializer.""" self.subjects = [] # We count how many pages still need to be loaded per site. # This allows us to find out from which site to retrieve pages next # in a way that saves bandwidth. # sites are keys, integers are values. # Modify this only via plus() and minus()! self.counts = Counter() self.pageGenerator = None self.generated = 0 self.conf = conf self.site = pywikibot.Site() def add(self, page, hints=None): """Add a single subject to the list.""" subj = Subject(page, hints=hints, conf=self.conf) self.subjects.append(subj) for site, count in subj.openSites(): # Keep correct counters self.plus(site, count) def setPageGenerator(self, pageGenerator, number=None, until=None): """ Add a generator of subjects. Once the list of subjects gets too small, this generator is called to produce more Pages. """ self.pageGenerator = pageGenerator self.generateNumber = number self.generateUntil = until @property def dump_titles(self): """Return generator of titles for dump file.""" return (s.origin.title(as_link=True) for s in self.subjects) def generateMore(self, number): """Generate more subjects. This is called internally when the list of subjects becomes too small, but only if there is a PageGenerator """ fs = self.firstSubject() if fs: self.conf.note('The first unfinished subject is {}' .format(fs.origin)) pywikibot.output( 'NOTE: Number of pages queued is {}, trying to add {} more.' .format(len(self.subjects), number)) for i in range(number): for page in self.pageGenerator: if page in self.conf.skip: pywikibot.output('Skipping: {} is in the skip list' .format(page)) continue if self.conf.skipauto: dictName, year = page.autoFormat() if dictName is not None: pywikibot.output( 'Skipping: {} is an auto entry {}({})' .format(page, dictName, year)) continue if self.conf.parenthesesonly: # Only yield pages that have ( ) in titles if '(' not in page.title(): continue if page.isTalkPage(): pywikibot.output('Skipping: {} is a talk page' .format(page)) continue if page.namespace() == 10: loc = None with suppress(KeyError): tmpl, loc = moved_links[page.site.code] del tmpl if loc is not None and loc in page.title(): pywikibot.output( 'Skipping: {} is a templates subpage' .format(page.title())) continue break else: # generator stopped break if self.generateUntil: until = self.generateUntil page_namespace = ( page.site.namespaces[int(page.namespace())]) if page_namespace.case == 'first-letter': until = first_upper(until) if page.title(with_ns=False) > until: break self.add(page, hints=self.conf.hints) self.generated += 1 if self.generateNumber and self.generated >= self.generateNumber: break else: return # for loop was exited by break statement self.pageGenerator = None def firstSubject(self): """Return the first subject that is still being worked on.""" if self.subjects: return self.subjects[0] return None def maxOpenSite(self): """ Return the site that has the most open queries plus the number. If there is nothing left, return None. Only languages that are TODO for the first Subject are returned. """ if not self.firstSubject(): return None oc = dict(self.firstSubject().openSites()) if not oc: # The first subject is done. This might be a recursive call made # because we have to wait before submitting another modification to # go live. Select any language from counts. oc = self.counts if self.site in oc: return self.site for site, _ in self.counts.most_common(): if site in oc: return site return None def selectQuerySite(self): """Select the site the next query should go out for.""" # How many home-language queries we still have? mycount = self.counts[self.site] # Do we still have enough subjects to work on for which the # home language has been retrieved? This is rough, because # some subjects may need to retrieve a second home-language page! if len(self.subjects) - mycount < self.conf.minsubjects: # Can we make more home-language queries by adding subjects? if self.pageGenerator and mycount < self.conf.maxquerysize: timeout = 60 while timeout < 3600: try: self.generateMore(self.conf.maxquerysize - mycount) except ServerError: # Could not extract allpages special page? pywikibot.output( 'ERROR: could not retrieve more pages. ' 'Will try again in {} seconds' .format(timeout)) pywikibot.sleep(timeout) timeout *= 2 else: break # If we have a few, getting the home language is a good thing. if not self.conf.restore_all and self.counts[self.site] > 4: return self.site # If getting the home language doesn't make sense, see how many # foreign page queries we can find. return self.maxOpenSite() def oneQuery(self): """ Perform one step in the solution process. Returns True if pages could be preloaded, or false otherwise. """ # First find the best language to work on site = self.selectQuerySite() if site is None: pywikibot.output('NOTE: Nothing left to do') return False # Now assemble a reasonable list of pages to get subjectGroup = [] pageGroup = [] for subject in self.subjects: # Promise the subject that we will work on the site. # We will get a list of pages we can do. pages = subject.whatsNextPageBatch(site) if pages: pageGroup.extend(pages) subjectGroup.append(subject) if len(pageGroup) >= self.conf.maxquerysize: # We have found enough pages to fill the bandwidth. break if not pageGroup: pywikibot.output('NOTE: Nothing left to do 2') return False # Get the content of the assembled list in one blow gen = site.preloadpages(pageGroup, templates=True, langlinks=True, pageprops=True) for page in gen: # we don't want to do anything with them now. The # page contents will be read via the Subject class. pass # Tell all of the subjects that the promised work is done for subject in subjectGroup: subject.batchLoaded(self) return True def queryStep(self): """Delete the ones that are done now.""" self.oneQuery() for i in range(len(self.subjects) - 1, -1, -1): subj = self.subjects[i] if subj.isDone(): subj.finish() del self.subjects[i] def isDone(self): """Check whether there is still more work to do.""" return not self and self.pageGenerator is None def plus(self, site, count=1): """Helper routine that the Subject class expects in a counter.""" self.counts[site] += count def minus(self, site, count=1): """Helper routine that the Subject class expects in a counter.""" self.counts[site] -= count self.counts = +self.counts # remove zero and negative counts def run(self): """Start the process until finished.""" while not self.isDone(): self.queryStep() def __len__(self): """Return length of subjects.""" return len(self.subjects) def compareLanguages(old, new, insite, summary): """Compare changes and setup i18n message.""" oldiw = set(old) newiw = set(new) # sort by language code adding = sorted(newiw - oldiw) removing = sorted(oldiw - newiw) modifying = sorted(site for site in oldiw & newiw if old[site] != new[site]) if not summary and len(adding) + len(removing) + len(modifying) <= 3: # Use an extended format for the string linking to all added pages. def fmt(d, site): return str(d[site]) else: # Use short format, just the language code def fmt(d, site): return site.code mods = mcomment = '' commentname = 'interwiki' if adding: commentname += '-adding' if removing: commentname += '-removing' if modifying: commentname += '-modifying' if commentname == 'interwiki-modifying' and len(modifying) == 1: useFrom = True commentname += '-from' else: useFrom = False if adding or removing or modifying: mcomment += summary comma = insite.mediawiki_message('comma-separator') changes = {'adding': comma.join(fmt(new, x) for x in adding), 'removing': comma.join(fmt(old, x) for x in removing), 'modifying': comma.join(fmt(new, x) for x in modifying), 'from': '' if not useFrom else old[modifying[0]]} en_changes = {'adding': ', '.join(fmt(new, x) for x in adding), 'removing': ', '.join(fmt(old, x) for x in removing), 'modifying': ', '.join(fmt(new, x) for x in modifying), 'from': '' if not useFrom else old[modifying[0]]} mcomment += i18n.twtranslate(insite, commentname, changes) mods = i18n.twtranslate('en', commentname, en_changes) return mods, mcomment, adding, removing, modifying def botMayEdit(page): """Test for allowed edits.""" tmpl = [] with suppress(KeyError): tmpl, _ = moved_links[page.site.code] if not isinstance(tmpl, list): tmpl = [tmpl] with suppress(KeyError): tmpl += ignoreTemplates[page.site.code] tmpl += ignoreTemplates['_default'] if tmpl != []: templates = page.templatesWithParams() for template in templates: if template[0].title(with_ns=False).lower() in tmpl: return False return True def page_empty_check(page): """ Return True if page should be skipped as it is almost empty. Pages in content namespaces are considered empty if they contain less than 50 characters, and other pages are considered empty if they are not category pages and contain less than 4 characters excluding interlanguage links and categories. @rtype: bool """ txt = page.text # Check if the page is in content namespace if page.namespace().content: # Check if the page contains at least 50 characters return len(txt) < 50 if not page.is_categorypage(): txt = textlib.removeLanguageLinks(txt, site=page.site) txt = textlib.removeCategoryLinks(txt, site=page.site) return len(txt) < 4 return False class InterwikiDumps(OptionHandler): """Handle interwiki dumps.""" available_options = { 'do_continue': False, 'restore_all': False } FILE_PATTERN = '{site.family.name}-{site.code}.txt' def __init__(self, **kwargs): """Initializer. @keyword do_continue: If true, continue alphabetically starting at the last of the dumped pages. """ self.site = kwargs.pop('site', pywikibot.Site()) super().__init__(**kwargs) self.restored_files = set() self._next_page = '!' self._next_namespace = 0 self.path = pywikibot.config.datafilepath('data', 'interwiki-dumps') @property def next_page(self): """Return next page title string for continue option.""" if self._next_page == '!': pywikibot.output('Dump file is empty! Starting at the beginning.') return self._next_page @property def next_namespace(self): """Return next page namespace for continue option.""" return self._next_namespace def remove(self, filename: str): """Remove filename from restored files. @param filename: A filename to be removed from restored set. """ with suppress(KeyError): self.restored_files.remove(filename) def get_files(self): """Get dump files from directory.""" pattern = r'(?P<file>(?P<fam>[a-z]+)-(?P<code>[a-z]+)\.txt)' for filename in os.listdir(self.path): found = re.fullmatch(pattern, filename) if found: yield (found['file'], pywikibot.Site(found['code'], found['fam'])) @property def files(self): """Return file generator depending on restore_all option. rtype: generator """ if self.opt.restore_all: return self.get_files() return iter([(self.FILE_PATTERN.format(site=self.site), self.site)]) def read_dump(self): """Read the dump file. @rtype: generator """ for tail, site in self.files: filename = os.path.join(self.path, tail) if not os.path.exists(filename): pywikibot.output(tail + ' does not exist.') continue pywikibot.output('Retrieving pages from dump file ' + tail) for page in pagegenerators.TextfilePageGenerator(filename, site): if site == self.site: self._next_page = page.title(with_ns=False) + '!' self._next_namespace = page.namespace() yield page self.restored_files.add(filename) if self.opt.do_continue: yield from self.site.allpages(start=self.next_page, namespace=self.next_namespace, filterredir=False) def write_dump(self, iterable, append: bool = True): """Write dump file. @param iterable: an iterable of page titles to be dumped. @type iterable: iterable @param append: if a dump already exits, append the page titles to it if True else overwrite it. """ filename = os.path.join(self.path, self.FILE_PATTERN.format(site=self.site)) mode = 'appended' if append else 'written' with codecs.open(filename, mode[0], 'utf-8') as f: f.write('\r\n'.join(iterable)) f.write('\r\n') pywikibot.output('Dump {site.code} ({site.family.name}) {mode}.' .format(site=self.site, mode=mode)) self.remove(filename) def delete_dumps(self): """Delete processed dumps.""" for filename in self.restored_files: tail = os.path.split(filename)[-1] try: os.remove(filename) except OSError as e: pywikibot.error('Cannot delete {} due to\n{}\nDo it manually.' .format(tail, e)) else: pywikibot.output('Dumpfile {} deleted'.format(tail)) def main(*args): """Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: str """ singlePageTitle = '' opthintsonly = False # Which namespaces should be processed? # default to [] which means all namespaces will be processed namespaces = [] number = None until = None # a normal PageGenerator (which doesn't give hints, only Pages) hintlessPageGen = None optContinue = False optRestore = False append = True newPages = None # Process global args and prepare generator args parser local_args = pywikibot.handle_args(args) genFactory = pagegenerators.GeneratorFactory() iwconf = InterwikiBotConfig() for arg in local_args: if iwconf.readOptions(arg): continue if arg.startswith('-years'): # Look if user gave a specific year at which to start # Must be a natural number or negative integer. if len(arg) > 7 and (arg[7:].isdigit() or (arg[7] == '-' and arg[8:].isdigit())): startyear = int(arg[7:]) else: startyear = 1 # avoid problems where year pages link to centuries etc. iwconf.followredirect = False hintlessPageGen = pagegenerators.YearPageGenerator(startyear) elif arg.startswith('-days'): if len(arg) > 6 and arg[5] == ':' and arg[6:].isdigit(): # Looks as if the user gave a specific month at which to start # Must be a natural number. startMonth = int(arg[6:]) else: startMonth = 1 hintlessPageGen = pagegenerators.DayPageGenerator(startMonth) elif arg.startswith('-new'): if len(arg) > 5 and arg[4] == ':' and arg[5:].isdigit(): # Looks as if the user gave a specific number of pages newPages = int(arg[5:]) else: newPages = 100 elif arg.startswith('-restore'): iwconf.restore_all = arg[9:].lower() == 'all' optRestore = not iwconf.restore_all elif arg == '-continue': optContinue = True elif arg == '-hintsonly': opthintsonly = True elif arg.startswith('-namespace:'): try: namespaces.append(int(arg[11:])) except ValueError: namespaces.append(arg[11:]) # deprecated for consistency with other scripts elif arg.startswith('-number:'): number = int(arg[8:]) elif arg.startswith('-until:'): until = arg[7:] else: if not genFactory.handle_arg(arg): if not singlePageTitle: singlePageTitle = arg # Do not use additional summary with autonomous mode if iwconf.autonomous: iwconf.summary = '' elif iwconf.summary: iwconf.summary += '; ' site = pywikibot.Site() # ensure that we don't try to change main page mainpagename = site.siteinfo['mainpage'] iwconf.skip.add(pywikibot.Page(site, mainpagename)) dump = InterwikiDumps(site=site, do_continue=optContinue, restore_all=iwconf.restore_all) if newPages is not None: if not namespaces: ns = 0 elif len(namespaces) == 1: ns = namespaces[0] if isinstance(ns, str) and ns != 'all': index = site.namespaces.lookup_name(ns) if index is None: raise ValueError('Unknown namespace: ' + ns) ns = index.id namespaces = [] else: ns = 'all' hintlessPageGen = pagegenerators.NewpagesPageGenerator(total=newPages, namespaces=ns) elif optRestore or optContinue or iwconf.restore_all: hintlessPageGen = dump.read_dump() bot = InterwikiBot(iwconf) if not hintlessPageGen: hintlessPageGen = genFactory.getCombinedGenerator() if hintlessPageGen: if len(namespaces) > 0: hintlessPageGen = pagegenerators.NamespaceFilterPageGenerator( hintlessPageGen, namespaces, site) # we'll use iter() to create make a next() function available. bot.setPageGenerator(iter(hintlessPageGen), number=number, until=until) else: if not singlePageTitle and not opthintsonly: singlePageTitle = pywikibot.input('Which page to check:') if singlePageTitle: singlePage = pywikibot.Page(pywikibot.Site(), singlePageTitle) else: singlePage = None bot.add(singlePage, hints=iwconf.hints) append = not (optRestore or optContinue or iwconf.restore_all) try: bot.run() except KeyboardInterrupt: dump.write_dump(bot.dump_titles, append) except Exception: pywikibot.exception(tb=bool(config.verbose_output)) dump.write_dump(bot.dump_titles, append) else: pywikibot.output('Script terminated sucessfully.') finally: dump.delete_dumps() if __name__ == '__main__': main()
the-stack_0_22249
""" # Definition for a Node. class Node: def __init__(self, val=None, children=None): self.val = val self.children = children """ class Solution: def preorder(self, root: 'Node') -> List[int]: def _helper(p, lst): if not p: return for child in p.children: _helper(child, lst) lst.append(p.val) res = [] _helper(root, res) return res
the-stack_0_22250
import sys sys.path.append("/home/abdullah/Asac/data-structures-and-algorithms/python/code_challenges/graph") from graph.graph import * ver=Vertex('a') ver2=Vertex('b') # ver3=Vertex('d') # ver4=Vertex('p') graph=Graph() graph.add_vertex(ver) graph.add_vertex(ver2) # graph.add_vertex(ver3) # graph.add_vertex(ver4) graph.add_edges(ver,ver2) # graph.add_edges(ver,ver3) # graph.add_edges(ver,ver4) # print(len(graph.get_neighbors(ver))) # print(graph.size() # ) # print(graph._adjacency_list[f'{ver}']) # graph._depthFirst(test) # print(graph) def business_trip(graph,arr): """ Determine whether the trip is possible with direct flights, and how much it would cost. Args: graph (Graph): contains all the list of the cities and its cost arr (list): List of the cities Return tuple : (cost, Bool). cost: Total cost for Trip. Bool: True or False. """ cost=0 i=0 length=len(arr)-1 def check_cost(city1,city2): ''' Calculate the Cost value for the Trip between two City ''' neighbors=graph.get_neighbors(city1) for city in neighbors: if city.vertex.value == city2: nonlocal cost , i cost += city.weight i+=1 if i == length: return check_cost(arr[length-i-1],arr[length-i]) try: check_cost(arr[length-1],arr[length]) except: return (bool(cost),cost) return (bool(cost),cost)
the-stack_0_22253
import rlkit.misc.hyperparameter as hyp from rlkit.images.camera import ( sawyer_init_camera_zoomed_in, sawyer_init_camera, ) from rlkit.launchers.launcher_util import run_experiment from rlkit.misc.ml_util import PiecewiseLinearSchedule from rlkit.torch.vae.conv_vae import ConvVAE from rlkit.torch.vae.vae_trainer import ConvVAETrainer from rlkit.torch.vae.sawyer2d_push_new_easy_data import generate_vae_dataset def experiment(variant): from rlkit.core import logger import rlkit.torch.pytorch_util as ptu beta = variant["beta"] representation_size = variant["representation_size"] train_data, test_data, info = generate_vae_dataset( **variant['get_data_kwargs'] ) logger.save_extra_data(info) logger.get_snapshot_dir() if 'beta_schedule_kwargs' in variant: beta_schedule = PiecewiseLinearSchedule(**variant['beta_schedule_kwargs']) else: beta_schedule = None m = ConvVAE(representation_size, input_channels=3) if ptu.gpu_enabled(): m.to(ptu.device) t = ConvVAETrainer(train_data, test_data, m, beta=beta, beta_schedule=beta_schedule, **variant['algo_kwargs']) save_period = variant['save_period'] for epoch in range(variant['num_epochs']): should_save_imgs = (epoch % save_period == 0) t.train_epoch(epoch) t.test_epoch(epoch, save_reconstruction=should_save_imgs, save_scatterplot=should_save_imgs) if should_save_imgs: t.dump_samples(epoch) if __name__ == "__main__": n_seeds = 1 mode = 'local' exp_prefix = 'dev-sawyer-push-new-vae' use_gpu = True # n_seeds = 1 # mode = 'ec2' # exp_prefix = 'vae-sawyer-new-push-easy-zoomed-in-1000' exp_prefix = 'vae-sawyer-reset-free-zoomed-in' variant = dict( beta=5.0, num_epochs=100, get_data_kwargs=dict( # N=1000, # init_camera=sawyer_init_camera_zoomed_in, dataset_path='05-22-sawyer_push_dataset' '/sawyer_reset_free_push1000_sawyer_init_camera_zoomed_in.npy' ), algo_kwargs=dict( do_scatterplot=False, lr=1e-3, ), beta_schedule_kwargs=dict( x_values=[0, 30, 100], # y_values=[0, 0, 0.1, 0.5], y_values=[0, 5, 5], ), save_period=5, ) search_space = { 'representation_size': [16], # 'beta_schedule_kwargs.y_values': [ # [0, 0, 0.1, 0.5], # [0, 0, 0.1, 0.1], # [0, 0, 5, 5], # ], # 'algo_kwargs.lr': [1e-3, 1e-2], } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) for _ in range(n_seeds): for exp_id, variant in enumerate(sweeper.iterate_hyperparameters()): run_experiment( experiment, exp_prefix=exp_prefix, mode=mode, variant=variant, use_gpu=use_gpu, trial_dir_suffix='r'+str(variant.get('representation_size', 0)), )
the-stack_0_22255
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html project = "mcap" html_show_copyright = False extensions = [ "sphinx.ext.autodoc", "sphinx.ext.viewcode", "m2r2", ]
the-stack_0_22256
from moto import mock_s3_deprecated, mock_s3 import boto import json import os import tempfile from skills_utils.s3 import download, upload, upload_dict, list_files, S3BackedJsonDict @mock_s3_deprecated def test_download(): s3_conn = boto.connect_s3() bucket_name = 'test-bucket' bucket = s3_conn.create_bucket(bucket_name) key = boto.s3.key.Key( bucket=bucket, name='apath/akey' ) key.set_contents_from_string('test') s3_path = 'test-bucket/apath/akey' with tempfile.NamedTemporaryFile(mode='w+') as f: download(s3_conn, f.name, s3_path) f.seek(0) assert f.read() == 'test' @mock_s3_deprecated def test_upload(): s3_conn = boto.connect_s3() bucket_name = 'test-bucket' bucket = s3_conn.create_bucket(bucket_name) with tempfile.NamedTemporaryFile(mode='w+') as f: f.write('test') f.seek(0) s3_path = 'test-bucket/apath/akey' upload(s3_conn, f.name, s3_path) key = boto.s3.key.Key( bucket=bucket, name='apath/akey/{}'.format(os.path.basename(f.name)) ) s = key.get_contents_as_string() assert s.decode('utf-8') == 'test' @mock_s3_deprecated def test_upload_dict(): s3_conn = boto.connect_s3() bucket_name = 'test-bucket' bucket = s3_conn.create_bucket(bucket_name) path = 'apath/' key = boto.s3.key.Key( bucket=bucket, name='{}/keyone.json'.format(path) ) key.set_contents_from_string('old contents') data_to_sync = { 'keyone': {'stuff': 'new contents'}, 'keytwo': {'stuff2': 'new contents2'}, } upload_dict(s3_conn, 'test-bucket/apath', data_to_sync) assert key.get_contents_as_string().decode('utf-8')\ == '{"stuff": "new contents"}' @mock_s3_deprecated def test_list_files(): s3_conn = boto.connect_s3() bucket_name = 'test-bucket' bucket = s3_conn.create_bucket(bucket_name) key = boto.s3.key.Key( bucket=bucket, name='apath/test.json' ) key.set_contents_from_string('some contents') s3_path ='test-bucket/apath/' files = list_files(s3_conn, s3_path) assert files == ['test.json'] @mock_s3_deprecated @mock_s3 def test_S3BackedJSONDict_basic(): s3_conn = boto.connect_s3() bucket_name = 'test-bucket' bucket = s3_conn.create_bucket(bucket_name) # 1. Ensure that a new file is correctly created and saved to storage_one = S3BackedJsonDict(path='test-bucket/apath') storage_one['key1'] = 'value1' storage_one['key2'] = {'nestedkey2': 'value2'} storage_one.save() key = boto.s3.key.Key( bucket=bucket, name='apath.json' ) assert json.loads(key.get_contents_as_string().decode('utf-8'))\ == {'key1': 'value1', 'key2': {'nestedkey2': 'value2'}} # 2. Ensure that an existing file is correctly read, updated, and saved to storage_two = S3BackedJsonDict(path='test-bucket/apath') assert 'key1' in storage_two assert storage_two['key1'] == 'value1' storage_two['key3'] = 'value3' storage_two.save() assert json.loads(key.get_contents_as_string().decode('utf-8'))\ == {'key1': 'value1', 'key2': {'nestedkey2': 'value2'}, 'key3': 'value3'} # 3. Ensure that, in the same thread, updating and saving an old one gets new changes too storage_one['key4'] = 'value4' storage_one.save() assert json.loads(key.get_contents_as_string().decode('utf-8'))\ == {'key1': 'value1', 'key2': {'nestedkey2': 'value2'}, 'key3': 'value3', 'key4': 'value4'} # 4. test autosave - this will be the fourth update of this object storage_one.SAVE_EVERY_N_UPDATES = 4 storage_one['key5'] = 'value5' assert json.loads(key.get_contents_as_string().decode('utf-8'))\ == {'key1': 'value1', 'key2': {'nestedkey2': 'value2'}, 'key3': 'value3', 'key4': 'value4', 'key5': 'value5'} # 5. test length checking assert len(storage_one) == 5 # 6. test iteration assert sorted( [(key, value) for key, value in storage_one.items()], key=lambda x: x[0] ) == [ ('key1', 'value1'), ('key2', {'nestedkey2': 'value2'}), ('key3', 'value3'), ('key4', 'value4'), ('key5', 'value5') ]
the-stack_0_22258
while True: print('-'*20) n = int(input('Quer ver a tabuada de qual valor? [Valor negativo para encerrar] : ')) print('-'*20) if n < 0: break mult = 1 while mult <= 10: print(f'{n} x {mult} = {n * mult}') mult += 1 print('Programa encerrado!')
the-stack_0_22259
"""Config flow for Tradfri.""" import asyncio from uuid import uuid4 import async_timeout from pytradfri import Gateway, RequestError from pytradfri.api.aiocoap_api import APIFactory import voluptuous as vol from homeassistant import config_entries from .const import ( CONF_GATEWAY_ID, CONF_HOST, CONF_IDENTITY, CONF_IMPORT_GROUPS, CONF_KEY, DOMAIN, KEY_SECURITY_CODE, ) class AuthError(Exception): """Exception if authentication occurs.""" def __init__(self, code): """Initialize exception.""" super().__init__() self.code = code class FlowHandler(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow.""" VERSION = 1 def __init__(self): """Initialize flow.""" self._host = None self._import_groups = False async def async_step_user(self, user_input=None): """Handle a flow initialized by the user.""" return await self.async_step_auth() async def async_step_auth(self, user_input=None): """Handle the authentication with a gateway.""" errors = {} if user_input is not None: host = user_input.get(CONF_HOST, self._host) try: auth = await authenticate( self.hass, host, user_input[KEY_SECURITY_CODE] ) # We don't ask for import group anymore as group state # is not reliable, don't want to show that to the user. # But we still allow specifying import group via config yaml. auth[CONF_IMPORT_GROUPS] = self._import_groups return await self._entry_from_data(auth) except AuthError as err: if err.code == "invalid_security_code": errors[KEY_SECURITY_CODE] = err.code else: errors["base"] = err.code else: user_input = {} fields = {} if self._host is None: fields[vol.Required(CONF_HOST, default=user_input.get(CONF_HOST))] = str fields[ vol.Required(KEY_SECURITY_CODE, default=user_input.get(KEY_SECURITY_CODE)) ] = str return self.async_show_form( step_id="auth", data_schema=vol.Schema(fields), errors=errors ) async def async_step_homekit(self, discovery_info): """Handle homekit discovery.""" await self.async_set_unique_id(discovery_info["properties"]["id"]) self._abort_if_unique_id_configured({CONF_HOST: discovery_info["host"]}) host = discovery_info["host"] for entry in self._async_current_entries(): if entry.data.get(CONF_HOST) != host: continue # Backwards compat, we update old entries if not entry.unique_id: self.hass.config_entries.async_update_entry( entry, unique_id=discovery_info["properties"]["id"] ) return self.async_abort(reason="already_configured") self._host = host return await self.async_step_auth() async def async_step_import(self, user_input): """Import a config entry.""" self._async_abort_entries_match({CONF_HOST: user_input["host"]}) # Happens if user has host directly in configuration.yaml if "key" not in user_input: self._host = user_input["host"] self._import_groups = user_input[CONF_IMPORT_GROUPS] return await self.async_step_auth() try: data = await get_gateway_info( self.hass, user_input["host"], # Old config format had a fixed identity user_input.get("identity", "homeassistant"), user_input["key"], ) data[CONF_IMPORT_GROUPS] = user_input[CONF_IMPORT_GROUPS] return await self._entry_from_data(data) except AuthError: # If we fail to connect, just pass it on to discovery self._host = user_input["host"] return await self.async_step_auth() async def _entry_from_data(self, data): """Create an entry from data.""" host = data[CONF_HOST] gateway_id = data[CONF_GATEWAY_ID] same_hub_entries = [ entry.entry_id for entry in self._async_current_entries() if entry.data.get(CONF_GATEWAY_ID) == gateway_id or entry.data.get(CONF_HOST) == host ] if same_hub_entries: await asyncio.wait( [ self.hass.config_entries.async_remove(entry_id) for entry_id in same_hub_entries ] ) return self.async_create_entry(title=host, data=data) async def authenticate(hass, host, security_code): """Authenticate with a Tradfri hub.""" identity = uuid4().hex api_factory = await APIFactory.init(host, psk_id=identity) try: with async_timeout.timeout(5): key = await api_factory.generate_psk(security_code) except RequestError as err: raise AuthError("invalid_security_code") from err except asyncio.TimeoutError as err: raise AuthError("timeout") from err finally: await api_factory.shutdown() return await get_gateway_info(hass, host, identity, key) async def get_gateway_info(hass, host, identity, key): """Return info for the gateway.""" try: factory = await APIFactory.init(host, psk_id=identity, psk=key) api = factory.request gateway = Gateway() gateway_info_result = await api(gateway.get_gateway_info()) await factory.shutdown() except (OSError, RequestError) as err: # We're also catching OSError as PyTradfri doesn't catch that one yet # Upstream PR: https://github.com/ggravlingen/pytradfri/pull/189 raise AuthError("cannot_connect") from err return { CONF_HOST: host, CONF_IDENTITY: identity, CONF_KEY: key, CONF_GATEWAY_ID: gateway_info_result.id, }
the-stack_0_22261
# pylint: disable=line-too-long,invalid-name import warnings from allennlp import predictors from allennlp.predictors import Predictor from allennlp.models.archival import load_archive class PretrainedModel: """ A pretrained model is determined by both an archive file (representing the trained model) and a choice of predictor. """ def __init__(self, archive_file: str, predictor_name: str) -> None: self.archive_file = archive_file self.predictor_name = predictor_name def predictor(self) -> Predictor: archive = load_archive(self.archive_file) return Predictor.from_archive(archive, self.predictor_name) # TODO(Mark): Figure out a way to make PretrainedModel generic on Predictor, so we can remove these type ignores. #### Models in the demo #### def srl_with_elmo_luheng_2018() -> predictors.SemanticRoleLabelerPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/srl-model-2018.05.25.tar.gz', 'semantic-role-labeling') return model.predictor() # type: ignore def bidirectional_attention_flow_seo_2017() -> predictors.BidafPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/bidaf-model-2017.09.15-charpad.tar.gz', 'machine-comprehension') return model.predictor() # type: ignore def naqanet_dua_2019() -> predictors.BidafPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/naqanet-2019.03.01.tar.gz', 'machine-comprehension') return model.predictor() # type: ignore def open_information_extraction_stanovsky_2018() -> predictors.OpenIePredictor: model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/openie-model.2018-08-20.tar.gz', 'open-information-extraction') return model.predictor() # type: ignore def decomposable_attention_with_elmo_parikh_2017() -> predictors.DecomposableAttentionPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/decomposable-attention-elmo-2018.02.19.tar.gz', 'textual-entailment') return model.predictor() # type: ignore def neural_coreference_resolution_lee_2017() -> predictors.CorefPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/coref-model-2018.02.05.tar.gz', 'coreference-resolution') return model.predictor() # type: ignore def named_entity_recognition_with_elmo_peters_2018() -> predictors.SentenceTaggerPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/ner-model-2018.12.18.tar.gz', 'sentence-tagger') predictor = model.predictor() # pylint: disable=protected-access predictor._dataset_reader._token_indexers['token_characters']._min_padding_length = 3 # type: ignore return predictor # type: ignore def fine_grained_named_entity_recognition_with_elmo_peters_2018() -> predictors.SentenceTaggerPredictor: model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/fine-grained-ner-model-elmo-2018.08.31.tar.gz', 'sentence-tagger') predictor = model.predictor() # pylint: disable=protected-access predictor._dataset_reader._token_indexers['token_characters']._min_padding_length = 3 # type: ignore return predictor # type: ignore def span_based_constituency_parsing_with_elmo_joshi_2018() -> predictors.ConstituencyParserPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/elmo-constituency-parser-2018.03.14.tar.gz', 'constituency-parser') return model.predictor() # type: ignore def biaffine_parser_stanford_dependencies_todzat_2017() -> predictors.BiaffineDependencyParserPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/biaffine-dependency-parser-ptb-2018.08.23.tar.gz', 'biaffine-dependency-parser') return model.predictor() # type: ignore #### Models not in the demo #### def biaffine_parser_universal_dependencies_todzat_2017() -> predictors.BiaffineDependencyParserPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/biaffine-dependency-parser-ud-2018.08.23.tar.gz', 'biaffine-dependency-parser') return model.predictor() # type: ignore def esim_nli_with_elmo_chen_2017() -> predictors.DecomposableAttentionPredictor: with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=DeprecationWarning) model = PretrainedModel('https://s3-us-west-2.amazonaws.com/allennlp/models/esim-elmo-2018.05.17.tar.gz', 'textual-entailment') return model.predictor() # type: ignore
the-stack_0_22262
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from datetime import datetime import re from typing import List, Optional, Tuple from sqlalchemy.engine.interfaces import Dialect from sqlalchemy.types import String, TypeEngine, UnicodeText from superset.db_engine_specs.base import BaseEngineSpec, LimitMethod class MssqlEngineSpec(BaseEngineSpec): engine = "mssql" epoch_to_dttm = "dateadd(S, {col}, '1970-01-01')" limit_method = LimitMethod.WRAP_SQL max_column_name_length = 128 _time_grain_functions = { None: "{col}", "PT1S": "DATEADD(second, DATEDIFF(second, '2000-01-01', {col}), '2000-01-01')", "PT1M": "DATEADD(minute, DATEDIFF(minute, 0, {col}), 0)", "PT5M": "DATEADD(minute, DATEDIFF(minute, 0, {col}) / 5 * 5, 0)", "PT10M": "DATEADD(minute, DATEDIFF(minute, 0, {col}) / 10 * 10, 0)", "PT15M": "DATEADD(minute, DATEDIFF(minute, 0, {col}) / 15 * 15, 0)", "PT0.5H": "DATEADD(minute, DATEDIFF(minute, 0, {col}) / 30 * 30, 0)", "PT1H": "DATEADD(hour, DATEDIFF(hour, 0, {col}), 0)", "P1D": "DATEADD(day, DATEDIFF(day, 0, {col}), 0)", "P1W": "DATEADD(week, DATEDIFF(week, 0, {col}), 0)", "P1M": "DATEADD(month, DATEDIFF(month, 0, {col}), 0)", "P0.25Y": "DATEADD(quarter, DATEDIFF(quarter, 0, {col}), 0)", "P1Y": "DATEADD(year, DATEDIFF(year, 0, {col}), 0)", } @classmethod def convert_dttm(cls, target_type: str, dttm: datetime) -> str: return "CONVERT(DATETIME, '{}', 126)".format(dttm.isoformat()) @classmethod def fetch_data(cls, cursor, limit: int) -> List[Tuple]: data = super().fetch_data(cursor, limit) if data and type(data[0]).__name__ == "Row": data = [[elem for elem in r] for r in data] return data column_types = [ (String(), re.compile(r"^(?<!N)((VAR){0,1}CHAR|TEXT|STRING)", re.IGNORECASE)), (UnicodeText(), re.compile(r"^N((VAR){0,1}CHAR|TEXT)", re.IGNORECASE)), ] @classmethod def get_sqla_column_type(cls, type_: str) -> Optional[TypeEngine]: for sqla_type, regex in cls.column_types: if regex.match(type_): return sqla_type return None @classmethod def column_datatype_to_string( cls, sqla_column_type: TypeEngine, dialect: Dialect ) -> str: datatype = super().column_datatype_to_string(sqla_column_type, dialect) # MSSQL returns long overflowing datatype # as in 'VARCHAR(255) COLLATE SQL_LATIN1_GENERAL_CP1_CI_AS' # and we don't need the verbose collation type str_cutoff = " COLLATE " if str_cutoff in datatype: datatype = datatype.split(str_cutoff)[0] return datatype
the-stack_0_22263
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://github.com/gaogaotiantian/viztracer/blob/master/NOTICE.txt try: from IPython.core.magic import cell_magic, magics_class, Magics, needs_local_scope # type: ignore @magics_class class VizTracerMagics(Magics): @needs_local_scope @cell_magic def viztracer(self, line, cell, local_ns): from .viztracer import VizTracer from .viewer import ServerThread from IPython.display import display # type: ignore from ipywidgets import Button # type: ignore code = self.shell.transform_cell(cell) file_path = "./viztracer_report.json" with VizTracer(verbose=0, output_file=file_path): exec(code, local_ns, local_ns) server = ServerThread(file_path) button = Button(description="VizTracer Report") button.on_click(lambda b: server.view(file_path, once=True)) display(button) except ImportError: # pragma: no cover pass def load_ipython_extension(ipython): """ Use `%load_ext viztracer` """ ipython.register_magics(VizTracerMagics)
the-stack_0_22264
from numpy import dtype from ..spec.spec import DtypeHelper from ..utils import docval, getargs __all__ = [ "Error", "DtypeError", "MissingError", "ExpectedArrayError", "ShapeError", "MissingDataType", "IllegalLinkError", "IncorrectDataType", "IncorrectQuantityError" ] class Error: @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'reason', 'type': str, 'doc': 'the reason for the error'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}) def __init__(self, **kwargs): self.__name = getargs('name', kwargs) self.__reason = getargs('reason', kwargs) self.__location = getargs('location', kwargs) if self.__location is not None: self.__str = "%s (%s): %s" % (self.__name, self.__location, self.__reason) else: self.__str = "%s: %s" % (self.name, self.reason) @property def name(self): return self.__name @property def reason(self): return self.__reason @property def location(self): return self.__location @location.setter def location(self, loc): self.__location = loc self.__str = "%s (%s): %s" % (self.__name, self.__location, self.__reason) def __str__(self): return self.__str def __repr__(self): return self.__str__() class DtypeError(Error): @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'expected', 'type': (dtype, type, str, list), 'doc': 'the expected dtype'}, {'name': 'received', 'type': (dtype, type, str, list), 'doc': 'the received dtype'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}) def __init__(self, **kwargs): name = getargs('name', kwargs) expected = getargs('expected', kwargs) received = getargs('received', kwargs) if isinstance(expected, list): expected = DtypeHelper.simplify_cpd_type(expected) reason = "incorrect type - expected '%s', got '%s'" % (expected, received) loc = getargs('location', kwargs) super().__init__(name, reason, location=loc) class MissingError(Error): @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}) def __init__(self, **kwargs): name = getargs('name', kwargs) reason = "argument missing" loc = getargs('location', kwargs) super().__init__(name, reason, location=loc) class MissingDataType(Error): @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'data_type', 'type': str, 'doc': 'the missing data type'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}, {'name': 'missing_dt_name', 'type': str, 'doc': 'the name of the missing data type', 'default': None}) def __init__(self, **kwargs): name, data_type, missing_dt_name = getargs('name', 'data_type', 'missing_dt_name', kwargs) self.__data_type = data_type if missing_dt_name is not None: reason = "missing data type %s (%s)" % (self.__data_type, missing_dt_name) else: reason = "missing data type %s" % self.__data_type loc = getargs('location', kwargs) super().__init__(name, reason, location=loc) @property def data_type(self): return self.__data_type class IncorrectQuantityError(Error): """A validation error indicating that a child group/dataset/link has the incorrect quantity of matching elements""" @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'data_type', 'type': str, 'doc': 'the data type which has the incorrect quantity'}, {'name': 'expected', 'type': (str, int), 'doc': 'the expected quantity'}, {'name': 'received', 'type': (str, int), 'doc': 'the received quantity'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}) def __init__(self, **kwargs): name, data_type, expected, received = getargs('name', 'data_type', 'expected', 'received', kwargs) reason = "expected a quantity of %s for data type %s, received %s" % (str(expected), data_type, str(received)) loc = getargs('location', kwargs) super().__init__(name, reason, location=loc) class ExpectedArrayError(Error): @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'expected', 'type': (tuple, list), 'doc': 'the expected shape'}, {'name': 'received', 'type': str, 'doc': 'the received data'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}) def __init__(self, **kwargs): name = getargs('name', kwargs) expected = getargs('expected', kwargs) received = getargs('received', kwargs) reason = "incorrect shape - expected an array of shape '%s', got non-array data '%s'" % (expected, received) loc = getargs('location', kwargs) super().__init__(name, reason, location=loc) class ShapeError(Error): @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'expected', 'type': (tuple, list), 'doc': 'the expected shape'}, {'name': 'received', 'type': (tuple, list), 'doc': 'the received shape'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}) def __init__(self, **kwargs): name = getargs('name', kwargs) expected = getargs('expected', kwargs) received = getargs('received', kwargs) reason = "incorrect shape - expected '%s', got '%s'" % (expected, received) loc = getargs('location', kwargs) super().__init__(name, reason, location=loc) class IllegalLinkError(Error): """ A validation error for indicating that a link was used where an actual object (i.e. a dataset or a group) must be used """ @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}) def __init__(self, **kwargs): name = getargs('name', kwargs) reason = "illegal use of link (linked object will not be validated)" loc = getargs('location', kwargs) super().__init__(name, reason, location=loc) class IncorrectDataType(Error): """ A validation error for indicating that the incorrect data_type (not dtype) was used. """ @docval({'name': 'name', 'type': str, 'doc': 'the name of the component that is erroneous'}, {'name': 'expected', 'type': str, 'doc': 'the expected data_type'}, {'name': 'received', 'type': str, 'doc': 'the received data_type'}, {'name': 'location', 'type': str, 'doc': 'the location of the error', 'default': None}) def __init__(self, **kwargs): name = getargs('name', kwargs) expected = getargs('expected', kwargs) received = getargs('received', kwargs) reason = "incorrect data_type - expected '%s', got '%s'" % (expected, received) loc = getargs('location', kwargs) super().__init__(name, reason, location=loc)
the-stack_0_22266
from intermol.decorators import * from abstract_nonbonded_type import * class NonbondedLJCR1Type(AbstractNonbondedType): @accepts_compatible_units(None, None, None, units.kilojoules_per_mole * units.nanometers**(6), units.kilojoules_per_mole * units.nanometers**(12)) def __init__(self, atom1, atom2, type, sigma, epsilon): AbstractNonbondedType.__init__(self, atom1, atom2, type) self.sigma = sigma self.epsilon = epsilon
the-stack_0_22267
# -*- coding: utf-8 -* import xlrd import pdfkit import copy import sys reload(sys) sys.setdefaultencoding('utf-8') options = { 'page-size': 'A4', 'margin-top': '0.75in', 'margin-right': '0.75in', 'margin-bottom': '0.75in', 'margin-left': '0.75in', } def readProfileTemplate(): file = open('profile.html',mode='r') all_of_it = file.read() file.close() return all_of_it loc = ("data.xlsx") wb = xlrd.open_workbook(loc)#, #encoding_override="utf-8") sheet = wb.sheet_by_index(0) master_profile = readProfileTemplate() flag = int(0) profile1 = str() profile2 = str() profile3 = str() counter = 0 for i in range(sheet.nrows): if flag == 0: profile1 = copy.copy(master_profile) profile2 = copy.copy(master_profile) profile3 = copy.copy(master_profile) flag=1 #print(sheet.cell_value(i, 0)) profile1 = profile1.replace('#'+str(counter)+'#', str(sheet.cell_value(i, 1))) profile2 = profile2.replace('#'+str(counter)+'#', str(sheet.cell_value(i, 2))) profile3 = profile3.replace('#'+str(counter)+'#', str(sheet.cell_value(i, 3))) counter += 1 if counter == 18: pdfkit.from_string(profile1, '1.pdf', options) pdfkit.from_string(profile2, '2.pdf', options) pdfkit.from_string(profile3, '3.pdf', options)
the-stack_0_22268
# The probability a patient has cancer # Bayesian Network Homework from probability import BayesNet T, F = True, False burglary = BayesNet([ ('Pollution', '', 0.1), ('Smoker', '', 0.3), ('Cancer', 'Pollution Smoker', {(T, T): 0.05, (T, F): 0.02, (F, T): 0.03, (F, F): 0.001}), ('XRay', 'Cancer', {T: 0.90, F: 0.20}), ('Dyspnoea', 'Cancer', {T: 0.65, F: 0.30}) ]) burglary.label = 'Lung Cancer Probability' examples = { burglary: [ {'variable': 'Cancer', 'evidence': {'Dyspnoea':T,'Smoker':T}, }, {'variable': 'Smoker', 'evidence': {'Xray':T, 'Cancer':F}, }, {'variable': 'Pollution', 'evidence': {'Dyspnoea':T, 'XRay':T}, }, {'variable': 'XRay', 'evidence': {'Dyspnoea':T, 'Smoker':T}, }, ], }
the-stack_0_22270
from typing_extensions import Literal from mad_gui.utils.model_base import BaseStateModel, Property MODES = Literal["investigate", "sync", "add", "modify", "remove"] class UiState(BaseStateModel): menu_collapsed = Property(True) class PlotState(BaseStateModel): x_range = Property((0, 1)) y_range = Property((0, 1)) x_range_max = Property((0, 1)) mode: MODES = Property("investigate", dtype=str)
the-stack_0_22271
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Jul 4 15:12:25 2017 @author: jiahuei """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from ptb_tokenizer import PTBTokenizer from tqdm import tqdm from PIL import Image import numpy as np import h5py, json import os, sys, time, re CURR_DIR = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(CURR_DIR, '..', '..', 'common')) import utils pjoin = os.path.join def _convert_split(split, include_restval): if split == 'val': return 'valid' if include_restval and split == 'restval': return 'train' return split def tokenise(dataset, image_id_key='cocoid', retokenise=False): """ Tokenise captions (optional), remove non-alphanumerics. Args: dataset: Dictionary object loaded from Karpathy's dataset JSON file. image_id_key: String. Used to access `image_id` field. retokenise: Boolean. Whether to retokenise the raw captions using Stanford-CoreNLP-3.4.1. Returns: A dictionary with tokenised captions. The dict is a list of length-5 dicts: filepath : Unicode string. image_id : Int raw : Length-N list of Unicode strings. split : Unicode string. tokens : Length-N list of lists. Each list has M Unicode tokens. """ if retokenise: print("\nINFO: Tokenising captions using PTB Tokenizer.\n") utils.maybe_download_from_url( r'http://central.maven.org/maven2/edu/stanford/nlp/stanford-corenlp/3.4.1/stanford-corenlp-3.4.1.jar', CURR_DIR) tokenizer = PTBTokenizer() raw_list = [] for d in dataset['images']: for s in d['sentences']: raw_list.append(s['raw']) tokenised_cap, tokenised_cap_w_punc = tokenizer.tokenize(raw_list) tokenised_data = [] cap_id = 0 for d in dataset['images']: if 'filepath' in d.keys(): filepath = os.path.join(d['filepath'], d['filename']) else: filepath = d['filename'] temp_dict = dict(split=d['split'], filepath=filepath, image_id=d[image_id_key], raw=[], tokens=[]) for s in d['sentences']: temp_dict['raw'].append(s['raw']) temp_dict['tokens'].append( [unicode(w) for w in tokenised_cap[cap_id].split(' ') if w != '']) cap_id += 1 tokenised_data.append(temp_dict) else: print("\nINFO: Using tokenised captions.\n") #pattern = re.compile(r'([^\s\w]|_)+', re.UNICODE) # matches non-alphanumerics pattern = re.compile(r'([^\w]|_)+', re.UNICODE) # matches non-alphanumerics and whitespaces tokenised_data = [] for d in dataset['images']: if 'filepath' in d.keys(): filepath = os.path.join(d['filepath'], d['filename']) else: filepath = d['filename'] temp_dict = dict(split=d['split'], filepath=filepath, image_id=d[image_id_key], raw=[], tokens=[]) for s in d['sentences']: temp_dict['raw'].append(s['raw']) temp_list = [] for w in s['tokens']: w = re.sub(pattern, '', w.lower()) if w != '': temp_list.append(w) temp_dict['tokens'].append(temp_list) tokenised_data.append(temp_dict) return tokenised_data def get_truncate_length(tokenised_dataset, truncate_percentage, include_restval=True): """ Calculates the maximum caption length such that truncated captions makes up `truncate_precentage` of the training corpus. Args: tokenised_dataset: Dictionary from output of `tokenise()`. truncate_percentage: The percentage of truncated captions. include_restval: Boolean. Whether to include `restval` split. Only applies to MS-COCO dataset. Returns: The maximum caption length. """ lengths = {} num_captions = 0 for d in tokenised_dataset: split = _convert_split(d['split'], include_restval) if split == 'train': for s in d['tokens']: lengths[len(s)] = lengths.get(len(s), 0) + 1 num_captions += 1 truncate_length = 0 percentage = .0 for key, value in sorted(lengths.iteritems()): if percentage > (100.0 - truncate_percentage): truncate_length = key break percentage += lengths[key] / num_captions * 100 print("INFO: Captions longer than {} words will be truncated.\n".format(truncate_length)) return truncate_length def build_vocab(tokenised_dataset, word_count_thres, caption_len_thres, vocab_size=None, include_restval=True, pad_value=0, include_GO_EOS_tokens=True): """ Builds the word-to-id and id-to-word dictionaries. Args: tokenised_dataset: Dictionary from output of `tokenise()`. word_count_thres: Threshold for word occurrence. Words that appear less than this threshold will be converted to <UNK> token. caption_len_thres: Threshold for sentence length in words. Captions with longer lengths are truncated. include_restval: Boolean. Whether to include `restval` split. Only applies to MS-COCO dataset. pad_value: Value assigned to <PAD> token. Returns: Word-to-id and id-to-word dictionaries. """ print("INFO: Building vocabulary.\n") assert pad_value >= -1 counts = {} for d in tokenised_dataset: #split = d['split'] #if _split_check(split, include_restval): split = _convert_split(d['split'], include_restval) if split == 'train': for s in d['tokens']: for w_count, w in enumerate(s): if w_count < caption_len_thres: counts[w] = counts.get(w, 0) + 1 cw = sorted([(count,w) for w,count in counts.iteritems()], reverse=True) if vocab_size is None: print("INFO: Vocab: Filtering out words with count less than {}.\n".format( word_count_thres)) vocab = [w[1] for w in cw if counts[w[1]] >= word_count_thres] else: print("INFO: Vocab: Generating vocab with fixed size {}.\n".format( vocab_size)) vocab = [w[1] for w in cw[:vocab_size]] #vocab_count = [w for w in cw if counts[w[1]] >= WORD_COUNT_THRES] #vocab_inv_freq = [1.0 - (w[0] / float(vocab_count[0][0])) for w in vocab_count] #vocab_weights = [0.5 + (f * 1.5) for f in vocab_inv_freq] wtoi = {} itow = {} idx = pad_value wtoi['<PAD>'] = idx itow[idx] = '<PAD>' idx += 1 for w in vocab: wtoi[w] = idx itow[idx] = w idx += 1 wtoi['<UNK>'] = idx itow[idx] = '<UNK>' idx += 1 if include_GO_EOS_tokens: wtoi['<GO>'] = idx itow[idx] = '<GO>' idx += 1 wtoi['<EOS>'] = idx itow[idx] = '<EOS>' time.sleep(0.5) return wtoi, itow def tokenised_word_to_txt_V1(tokenised_dataset, caption_len_thres, include_restval=True): """ Builds the train, validation and test lists of texts. Args: tokenised_dataset: Dictionary from output of `tokenise()`. caption_len_thres: Threshold for sentence length in words. Captions with longer lengths are truncated. include_restval: Boolean. Whether to include `restval` split. Only applies to MS-COCO dataset. Returns: `train`, `valid` and `test` dictionaries. """ dataset = dict(train=[], valid=[], test=[]) for i, d in enumerate(tqdm(tokenised_dataset, ncols=100, desc='Word-to-txt-V1')): split = _convert_split(d['split'], include_restval) if split == 'restval': continue fp = d['filepath'] for tokens in d['tokens']: sent = ' '.join(tokens[:caption_len_thres]) sent = '<GO> {} <EOS>'.format(sent) sent_out = '{},{}'.format(fp, sent) dataset[split].append(sent_out) return dataset def tokenised_word_to_txt_V2(tokenised_dataset, caption_len_thres, include_restval=True): """ Builds the train, validation and test lists of texts. Args: tokenised_dataset: Dictionary from output of `tokenise()`. caption_len_thres: Threshold for sentence length in words. Captions with longer lengths are truncated. include_restval: Boolean. Whether to include `restval` split. Only applies to MS-COCO dataset. Returns: `train`, `valid` and `test` dictionaries. """ dataset = dict(train=[], valid=[], test=[]) for i, d in enumerate(tqdm(tokenised_dataset, ncols=100, desc='Word-to-txt-V2')): split = _convert_split(d['split'], include_restval) if split == 'restval': continue fp = d['filepath'] for tokens in d['tokens']: tokens = ['<GO>'] + tokens + ['<EOS>'] sent = ' '.join(tokens[:caption_len_thres + 2]) sent_out = '{},{}'.format(fp, sent) dataset[split].append(sent_out) return dataset def serialise_everything(output_filepath, image_dir, image_size, image_chunk_num, word_to_txt_dict, wtoi, itow): assert len(image_size) == 2 # Assert no overlaps between sets train_set = set([s.split(',')[0] for s in word_to_txt_dict['train']]) valid_set = set([s.split(',')[0] for s in word_to_txt_dict['valid']]) test_set = set([s.split(',')[0] for s in word_to_txt_dict['test']]) assert not bool(train_set.intersection(valid_set)) assert not bool(train_set.intersection(test_set)) assert not bool(valid_set.intersection(test_set)) train_set = list(train_set) valid_set = list(valid_set) test_set = list(test_set) with h5py.File('{}.h5'.format(output_filepath), 'w') as f: sdt = h5py.special_dtype(vlen=unicode) # Store dictionaries f.create_dataset('wtoi', data=json.dumps(wtoi)) f.create_dataset('itow', data=json.dumps(itow)) # Store inference filepaths d = f.create_dataset('filenames_valid', (len(valid_set),), dtype=sdt) d[:] = valid_set d = f.create_dataset('filenames_test', (len(test_set),), dtype=sdt) d[:] = test_set # Create index lookup and add image index all_set = train_set + valid_set + test_set idx = {} for i, p in enumerate(all_set): idx[p] = i final_dict = {} for split in word_to_txt_dict.keys(): final_dict[split] = [] for s in word_to_txt_dict[split]: fidx = idx[s.split(',')[0]] final_dict[split].append('{},{}'.format(fidx, s)) # Store captions used during training for split in final_dict.keys(): captions = final_dict[split] d = f.create_dataset(split, (len(captions),), dtype=sdt) d[:] = captions # Store decoded images as NumPy array dsize = tuple([len(all_set)] + list(image_size) + [3]) chunks = tuple([image_chunk_num] + list(image_size) + [3]) d = f.create_dataset('images', dsize, chunks=chunks, dtype='uint8') desc = 'INFO: h5py: Writing images' for i, fname in enumerate(tqdm(all_set, ncols=100, desc=desc)): fpath = pjoin(image_dir, fname) img = Image.open(fpath) img = img.resize(image_size, Image.BILINEAR) img_arr = np.array(img) assert img_arr.dtype == 'uint8' err_mssg = 'Corrupted or unsupported image file: `{}`.' if len(img_arr.shape) == 3: if img_arr.shape[-1] == 3: pass elif img_arr.shape[-1] == 1: img_arr = np.concatenate([img_arr] * 3, axis=2) else: raise ValueError(err_mssg.format(fpath)) elif len(img_arr.shape) == 2: img_arr = np.stack([img_arr] * 3, axis=2) else: raise ValueError(err_mssg.format(fpath)) d[i, :, :, :] = img_arr print('INFO: h5py: Dataset serialisation complete.\n') def test_h5_file(filepath): data = {} with h5py.File(filepath, 'r') as f: data['wtoi'] = json.loads(f['wtoi'][()]) data['itow'] = json.loads(f['itow'][()]) data['filenames_valid'] = list(f['filenames_valid'][:]) data['filenames_test'] = list(f['filenames_test'][:]) data['train'] = list(f['train'][:]) data['valid'] = list(f['valid'][:]) data['test'] = list(f['test'][:]) data['images'] = f['images'][:20] for i in range(10): img = Image.fromarray(data['images'][i]) img.save(pjoin(os.path.split(filepath)[0], 'img_{}.jpg'.format(i))) return data
the-stack_0_22272
# -*- coding: utf-8 -*- # # Copyright 2020 Data61, CSIRO # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras import activations, initializers, constraints, regularizers from tensorflow.keras.layers import Input, Layer, Lambda, Dropout, Reshape, Embedding from ..mapper.knowledge_graph import KGTripleGenerator, KGTripleSequence from ..core.experimental import experimental from ..core.validation import require_integer_in_range class ComplExScore(Layer): """ ComplEx scoring Keras layer. Original Paper: Complex Embeddings for Simple Link Prediction, Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier and Guillaume Bouchard, ICML 2016. http://jmlr.org/proceedings/papers/v48/trouillon16.pdf This combines subject, relation and object embeddings into a score of the likelihood of the link. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def build(self, input_shape): self.built = True def call(self, inputs): """ Applies the layer. Args: inputs: a list of 6 tensors (``shape = batch size × 1 × embedding dimension k``), where the three consecutive pairs represent real and imaginary parts of the subject, relation and object embeddings, respectively, that is, ``inputs == [Re(subject), Im(subject), Re(relation), ...]`` """ s_re, s_im, r_re, r_im, o_re, o_im = inputs def inner(r, s, o): return tf.reduce_sum(r * s * o, axis=2) # expansion of Re(<w_r, e_s, conjugate(e_o)>) score = ( inner(r_re, s_re, o_re) + inner(r_re, s_im, o_im) + inner(r_im, s_re, o_im) - inner(r_im, s_im, o_re) ) return score class ComplEx: """ Embedding layers and a ComplEx scoring layers that implement the ComplEx knowledge graph embedding algorithm as in http://jmlr.org/proceedings/papers/v48/trouillon16.pdf Args: generator (KGTripleGenerator): A generator of triples to feed into the model. embedding_dimension (int): the dimension of the embedding (that is, a vector in ``C^embedding_dimension`` is learnt for each node and each link type) embeddings_initializer (str or func, optional): The initialiser to use for the embeddings (the default of random normal values matches the paper's reference implementation). embeddings_regularizer (str or func, optional): The regularizer to use for the embeddings. """ def __init__( self, generator, embedding_dimension, embeddings_initializer="normal", embeddings_regularizer=None, ): if not isinstance(generator, KGTripleGenerator): raise TypeError( f"generator: expected KGTripleGenerator, found {type(generator).__name__}" ) graph = generator.G self.num_nodes = graph.number_of_nodes() self.num_edge_types = len(graph._edges.types) self.embedding_dimension = embedding_dimension def embed(count): return Embedding( count, embedding_dimension, embeddings_initializer=embeddings_initializer, embeddings_regularizer=embeddings_regularizer, ) # ComplEx generates embeddings in C, which we model as separate real and imaginary # embeddings self._node_embeddings_real = embed(self.num_nodes) self._node_embeddings_imag = embed(self.num_nodes) self._edge_type_embeddings_real = embed(self.num_edge_types) self._edge_type_embeddings_imag = embed(self.num_edge_types) def embeddings(self): """ Retrieve the embeddings for nodes/entities and edge types/relations in this ComplEx model. Returns: A tuple of numpy complex arrays: the first element is the embeddings for nodes/entities (``shape = number of nodes × k``), the second element is the embeddings for edge types/relations (``shape = number of edge types x k``). """ node = 1j * self._node_embeddings_imag.embeddings.numpy() node += self._node_embeddings_real.embeddings.numpy() rel = 1j * self._edge_type_embeddings_imag.embeddings.numpy() rel += self._edge_type_embeddings_real.embeddings.numpy() return node, rel def rank_edges_against_all_nodes(self, test_data, known_edges_graph): """ Returns the ranks of the true edges in ``test_data``, when scored against all other similar edges. For each input edge ``E = (s, r, o)``, the score of the *modified-object* edge ``(s, r, n)`` is computed for every node ``n`` in the graph, and similarly the score of the *modified-subject* edge ``(n, r, o)``. This computes "raw" and "filtered" ranks: raw The score of each edge is ranked against all of the modified-object and modified-subject ones, for instance, if ``E = ("a", "X", "b")`` has score 3.14, and only one modified-object edge has a higher score (e.g. ``F = ("a", "X", "c")``), then the raw modified-object rank for ``E`` will be 2; if all of the ``(n, "X", "b")`` edges have score less than 3.14, then the raw modified-subject rank for ``E`` will be 1. filtered The score of each edge is ranked against only the unknown modified-object and modified-subject edges. An edge is considered known if it is in ``known_edges_graph`` which should typically hold every edge in the dataset (that is everything from the train, test and validation sets, if the data has been split). For instance, continuing the raw example, if the higher-scoring edge ``F`` is in the graph, then it will be ignored, giving a filtered modified-object rank for ``E`` of 1. (If ``F`` was not in the graph, the filtered modified-object rank would be 2.) Args: test_data: the output of :meth:`KGTripleGenerator.flow` on some test triples known_edges_graph (StellarGraph): a graph instance containing all known edges/triples Returns: A numpy array of integer raw ranks. It has shape ``N × 2``, where N is the number of test triples in ``test_data``; the first column (``array[:, 0]``) holds the modified-object ranks, and the second (``array[:, 1]``) holds the modified-subject ranks. """ if not isinstance(test_data, KGTripleSequence): raise TypeError( "test_data: expected KGTripleSequence; found {type(test_data).__name__}" ) num_nodes = known_edges_graph.number_of_nodes() all_node_embs, all_rel_embs = self.embeddings() all_node_embs_conj = all_node_embs.conj() raws = [] filtereds = [] # run through the batches and compute the ranks for each one num_tested = 0 for ((subjects, rels, objects),) in test_data: num_tested += len(subjects) # batch_size x k ss = all_node_embs[subjects, :] rs = all_rel_embs[rels, :] os = all_node_embs[objects, :] # reproduce the scoring function for ranking the given subject and relation against all # other nodes (objects), and similarly given relation and object against all # subjects. The bulk operations give speeeeeeeeed. # (num_nodes x k, batch_size x k) -> num_nodes x batch_size mod_o_pred = np.inner(all_node_embs_conj, ss * rs).real mod_s_pred = np.inner(all_node_embs, rs * os.conj()).real mod_o_raw, mod_o_filt = _ranks_from_score_columns( mod_o_pred, true_modified_node_ilocs=objects, unmodified_node_ilocs=subjects, true_rel_ilocs=rels, modified_object=True, known_edges_graph=known_edges_graph, ) mod_s_raw, mod_s_filt = _ranks_from_score_columns( mod_s_pred, true_modified_node_ilocs=subjects, true_rel_ilocs=rels, modified_object=False, unmodified_node_ilocs=objects, known_edges_graph=known_edges_graph, ) raws.append(np.column_stack((mod_o_raw, mod_s_raw))) filtereds.append(np.column_stack((mod_o_filt, mod_s_filt))) # make one big array raw = np.concatenate(raws) filtered = np.concatenate(filtereds) # for each edge, there should be an pair of raw ranks assert raw.shape == filtered.shape == (num_tested, 2) return raw, filtered def __call__(self, x): """ Apply embedding layers to the source, relation and object input "ilocs" (sequential integer labels for the nodes and edge types). Args: x (list): list of 3 tensors (each batch size x 1) storing the ilocs of the subject, relation and object elements for each edge in the batch. """ s_iloc, r_iloc, o_iloc = x s_re = self._node_embeddings_real(s_iloc) s_im = self._node_embeddings_imag(s_iloc) r_re = self._edge_type_embeddings_real(r_iloc) r_im = self._edge_type_embeddings_imag(r_iloc) o_re = self._node_embeddings_real(o_iloc) o_im = self._node_embeddings_imag(o_iloc) scoring = ComplExScore() return scoring([s_re, s_im, r_re, r_im, o_re, o_im]) def build(self): """ Builds a ComplEx model. Returns: A tuple of (list of input tensors, tensor for ComplEx model score outputs) """ s_iloc = Input(shape=1) r_iloc = Input(shape=1) o_iloc = Input(shape=1) x_inp = [s_iloc, r_iloc, o_iloc] x_out = self(x_inp) return x_inp, x_out class DistMultScore(Layer): """ DistMult scoring Keras layer. Original Paper: Embedding Entities and Relations for Learning and Inference in Knowledge Bases. Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng. ICLR 2015 This combines subject, relation and object embeddings into a score of the likelihood of the link. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def build(self, input_shape): self.built = True def call(self, inputs): """ Applies the layer. Args: inputs: a list of 3 tensors (``shape = batch size × 1 × embedding dimension``), representing the subject, relation and object embeddings, respectively, that is, ``inputs == [subject, relation, object]`` """ y_e1, m_r, y_e2 = inputs # y_e1^T M_r y_e2, where M_r = diag(m_r) is a diagonal matrix score = tf.reduce_sum(y_e1 * m_r * y_e2, axis=2) return score class DistMult: """ Embedding layers and a DistMult scoring layers that implement the DistMult knowledge graph embedding algorithm as in https://arxiv.org/pdf/1412.6575.pdf Args: generator (KGTripleGenerator): A generator of triples to feed into the model. embedding_dimension (int): the dimension of the embedding (that is, a vector in ``R^embedding_dimension`` is learnt for each node and each link type) embeddings_initializer (str or func, optional): The initialiser to use for the embeddings. embeddings_regularizer (str or func, optional): The regularizer to use for the embeddings. """ def __init__( self, generator, embedding_dimension, embeddings_initializer="uniform", embeddings_regularizer=None, ): if not isinstance(generator, KGTripleGenerator): raise TypeError( f"generator: expected KGTripleGenerator, found {type(generator).__name__}" ) require_integer_in_range(embedding_dimension, "embedding_dimension", min_val=1) graph = generator.G self.num_nodes = graph.number_of_nodes() self.num_edge_types = len(graph._edges.types) self.embedding_dimension = embedding_dimension def embed(count): # FIXME(#980,https://github.com/tensorflow/tensorflow/issues/33755): embeddings can't use # constraints to be normalized: per section 4 in the paper, the embeddings should be # normalised to have unit norm. return Embedding( count, embedding_dimension, embeddings_initializer=embeddings_initializer, embeddings_regularizer=embeddings_regularizer, ) # DistMult generates embeddings in R self._node_embeddings = embed(self.num_nodes) self._edge_type_embeddings = embed(self.num_edge_types) def embeddings(self): """ Retrieve the embeddings for nodes/entities and edge types/relations in this DistMult model. Returns: A tuple of numpy arrays: the first element is the embeddings for nodes/entities (``shape = number of nodes × k``), the second element is the embeddings for edge types/relations (``shape = number of edge types x k``). """ return ( self._node_embeddings.embeddings.numpy(), self._edge_type_embeddings.embeddings.numpy(), ) def rank_edges_against_all_nodes(self, test_data, known_edges_graph): """ Returns the ranks of the true edges in ``test_data``, when scored against all other similar edges. For each input edge ``E = (s, r, o)``, the score of the *modified-object* edge ``(s, r, n)`` is computed for every node ``n`` in the graph, and similarly the score of the *modified-subject* edge ``(n, r, o)``. This computes "raw" and "filtered" ranks: raw The score of each edge is ranked against all of the modified-object and modified-subject ones, for instance, if ``E = ("a", "X", "b")`` has score 3.14, and only one modified-object edge has a higher score (e.g. ``F = ("a", "X", "c")``), then the raw modified-object rank for ``E`` will be 2; if all of the ``(n, "X", "b")`` edges have score less than 3.14, then the raw modified-subject rank for ``E`` will be 1. filtered The score of each edge is ranked against only the unknown modified-object and modified-subject edges. An edge is considered known if it is in ``known_edges_graph`` which should typically hold every edge in the dataset (that is everything from the train, test and validation sets, if the data has been split). For instance, continuing the raw example, if the higher-scoring edge ``F`` is in the graph, then it will be ignored, giving a filtered modified-object rank for ``E`` of 1. (If ``F`` was not in the graph, the filtered modified-object rank would be 2.) Args: test_data: the output of :meth:`KGTripleGenerator.flow` on some test triples known_edges_graph (StellarGraph): a graph instance containing all known edges/triples Returns: A numpy array of integer raw ranks. It has shape ``N × 2``, where N is the number of test triples in ``test_data``; the first column (``array[:, 0]``) holds the modified-object ranks, and the second (``array[:, 1]``) holds the modified-subject ranks. """ if not isinstance(test_data, KGTripleSequence): raise TypeError( "test_data: expected KGTripleSequence; found {type(test_data).__name__}" ) num_nodes = known_edges_graph.number_of_nodes() all_node_embs, all_rel_embs = self.embeddings() raws = [] filtereds = [] # run through the batches and compute the ranks for each one num_tested = 0 for ((subjects, rels, objects),) in test_data: num_tested += len(subjects) # batch_size x k ss = all_node_embs[subjects, :] rs = all_rel_embs[rels, :] os = all_node_embs[objects, :] # reproduce the scoring function for ranking the given subject and relation against all # other nodes (objects), and similarly given relation and object against all # subjects. The bulk operations give speeeeeeeeed. # (num_nodes x k, batch_size x k) -> num_nodes x batch_size mod_o_pred = np.inner(all_node_embs, ss * rs) mod_s_pred = np.inner(all_node_embs, rs * os) mod_o_raw, mod_o_filt = _ranks_from_score_columns( mod_o_pred, true_modified_node_ilocs=objects, unmodified_node_ilocs=subjects, true_rel_ilocs=rels, modified_object=True, known_edges_graph=known_edges_graph, ) mod_s_raw, mod_s_filt = _ranks_from_score_columns( mod_s_pred, true_modified_node_ilocs=subjects, true_rel_ilocs=rels, modified_object=False, unmodified_node_ilocs=objects, known_edges_graph=known_edges_graph, ) raws.append(np.column_stack((mod_o_raw, mod_s_raw))) filtereds.append(np.column_stack((mod_o_filt, mod_s_filt))) # make one big array raw = np.concatenate(raws) filtered = np.concatenate(filtereds) # for each edge, there should be an pair of raw ranks assert raw.shape == filtered.shape == (num_tested, 2) return raw, filtered def __call__(self, x): """ Apply embedding layers to the source, relation and object input "ilocs" (sequential integer labels for the nodes and edge types). Args: x (list): list of 3 tensors (``shape = batch size × 1``) storing the ilocs of the subject, relation and object elements for each edge in the batch. """ e1_iloc, r_iloc, e2_iloc = x y_e1 = self._node_embeddings(e1_iloc) m_r = self._edge_type_embeddings(r_iloc) y_e2 = self._node_embeddings(e2_iloc) scoring = DistMultScore() return scoring([y_e1, m_r, y_e2]) def build(self): """ Builds a DistMult model. Returns: A tuple of (list of input tensors, tensor for DistMult model score outputs) """ e1_iloc = Input(shape=(None,)) r_iloc = Input(shape=(None,)) e2_iloc = Input(shape=(None,)) x_inp = [e1_iloc, r_iloc, e2_iloc] x_out = self(x_inp) return x_inp, x_out def _ranks_from_score_columns( pred, *, true_modified_node_ilocs, unmodified_node_ilocs, true_rel_ilocs, modified_object, known_edges_graph, ): """ Compute the raw and filtered ranks of a set of true edges ``E = (s, r, o)`` against all mutations of one end of them, e.g. ``E' = (s, r, n)`` for "modified-object". The raw rank is the total number of edges scored higher than the true edge ``E``, and the filtered rank is the total number of unknown edges (not in ``known_edges_graph``). Args: pred: a 2D array: each column represents the scores for a single true edge and its mutations, where the row indicates the ``n`` in ``E'`` (e.g. row 0 corresponds to ``n`` = node with iloc 0) true_modified_node_ilocs: an array of ilocs of the actual node that was modified, that is, ``o`` for modified-object and ``s`` for modified subject``, index ``i`` corresponds to the iloc for column ``pred[:, i]``. unmodified_node_ilocs: similar to ``true_modified_node_ilocs``, except for the other end of the edge: the node that was not modified. true_rel_ilocs: similar to ``true_modified_node_ilocs``, except for the relationship type of the edge (``r``). modified_object (bool): whether the object was modified (``True``), or the subject (``False``) known_edges_graph (StellarGraph): a graph containing all the known edges that should be ignored when computing filtered ranks Returns: a tuple of raw ranks and filtered ranks, each is an array of integers >= 1 where index ``i`` corresponds to the rank of the true edge among all of the scores in column ``pred[:, i]``. """ batch_size = len(true_modified_node_ilocs) assert pred.shape == (known_edges_graph.number_of_nodes(), batch_size) assert unmodified_node_ilocs.shape == true_rel_ilocs.shape == (batch_size,) # the score of the true edge, for each edge in the batch (this indexes in lock-step, # i.e. [pred[true_modified_node_ilocs[0], range(batch_size)[0]], ...]) true_scores = pred[true_modified_node_ilocs, range(batch_size)] # for each column, compare all the scores against the score of the true edge greater = pred > true_scores # the raw rank is the number of elements scored higher than the true edge raw_rank = 1 + greater.sum(axis=0) # the filtered rank is the number of unknown elements scored higher, where an element is # known if the edge (s, r, n) (for modified-object) or (n, r, o) (for modified-subject) # exists in known_edges_graph. # FIXME(#870): this would be better without external IDs <-> ilocs translation unmodified_nodes = known_edges_graph._nodes.ids.from_iloc(unmodified_node_ilocs) true_rels = known_edges_graph._edges.types.from_iloc(true_rel_ilocs) if modified_object: neigh_func = known_edges_graph.out_nodes else: neigh_func = known_edges_graph.in_nodes # collect all the neighbours into a single array to do one _get_index_for_nodes call, # which has relatively high constant cost neighbours = [] columns = [] for batch_column, (unmodified, r) in enumerate(zip(unmodified_nodes, true_rels)): this_neighs = neigh_func(unmodified, edge_types=[r]) neighbours.extend(this_neighs) columns.extend(batch_column for _ in this_neighs) neighbour_ilocs = known_edges_graph._get_index_for_nodes(neighbours) greater[neighbour_ilocs, columns] = False filtered_rank = 1 + greater.sum(axis=0) assert raw_rank.shape == filtered_rank.shape == (batch_size,) return raw_rank, filtered_rank
the-stack_0_22275
# ======================================================================# # Functions to handle sequences for people who hold a grudge against # Biopython: # - load fasta file # - generate reverse complement # ======================================================================# import Bio from Bio import SeqIO def parse_fasta(fasta_file) -> dict: """ Reads a fasta file. """ fasta = open(fasta_file, "r") seq_record = {} # Part 1: compile list of lines per sequence for line in fasta: if ">" in line: # new name line; remember current sequence's short name short_name = line.strip().split()[0] seq_record[short_name] = "" else: # append nucleotides to current sequence seq_record[short_name] = seq_record[short_name] + line.strip() return seq_record def rev_comp(seq: str) -> str: """ Generates the reverse complement of a sequence. """ comp = { "A": "T", "C": "G", "G": "C", "T": "A", "B": "N", "N": "N", "R": "N", "M": "N", "Y": "N", "S": "N", "W": "N", "K": "N", "a": "t", "c": "g", "g": "c", "t": "a", "n": "n", " ": "", } rev_seq = "".join(comp.get(base, base) for base in reversed(seq)) return rev_seq def make_seq_length_file(assembly, output_file, namelist_file="abc"): """ Compute sequences length. """ seq_data = SeqIO.parse(assembly, "fasta") outlength = open(output_file, "w") if namelist_file != "abc": namelist = open(namelist_file, "w") for record in seq_data: outlength.write("{0}\t{1}\n".format(record.id, len(record.seq))) if namelist_file != "abc": namelist.write("{0}\n".format(record.id)) outlength.close() namelist.close()
the-stack_0_22277
from unittest import TestCase from zmodulo.plot.text.font_size import FontSize __author__ = 'aruff' class TestFontSize(TestCase): """ Tester for the plot text FontSize """ def test_default_declaration_generation(self): """ Tests the generation of a font size declaration with no parameters """ font_size = FontSize() self.assertEqual(font_size.to_str(), '\tfontsize = 20;\n') def test_string_named_value_declaration_generation(self): """ Tests the generation of a font size declaration with string parameters """ font_size = FontSize("Pooky") self.assertEqual(font_size.to_str(), '\tfontsize = Pooky;\n') if __name__ == '__main__': TestCase.main()
the-stack_0_22279
import warnings import pytest from vectorhub.auto_encoder import AutoEncoder, ENCODER_MAPPINGS, list_all_auto_models, BIENCODER_MAPPINGS, AutoBiEncoder from .test_utils import * @pytest.mark.audio @pytest.mark.parametrize('name', list(ENCODER_MAPPINGS.keys())[0:3]) def test_encoders_instantiation_audio(name): if 'audio' in name: encoder = AutoEncoder.from_model(name) assert_encoder_works(encoder, data_type='audio') else: # Default to test passing otherwise assert True @pytest.mark.text @pytest.mark.parametrize('name', list(ENCODER_MAPPINGS.keys())[0:3]) def test_encoders_instantiation_text(name): if name not in ['text/use-lite', 'text/elmo']: if 'text' in name: encoder = AutoEncoder.from_model(name) assert_encoder_works(encoder, data_type='text') else: # Default to test passing otherwise assert True @pytest.mark.image @pytest.mark.parametrize('name', list(ENCODER_MAPPINGS.keys())[0:3]) def test_encoders_instantiation_image(name): if 'image' in name: encoder = AutoEncoder.from_model(name) assert_encoder_works(encoder, data_type='image') if 'fastai' not in name: sample = encoder.to_grayscale(encoder.read('https://getvectorai.com/_nuxt/img/dog-1.3cc5fe1.png')) result = encoder.encode(sample) assert not is_dummy_vector(result) else: # Default to test passing otherwise assert True @pytest.mark.text @pytest.mark.parametrize('name', list(BIENCODER_MAPPINGS.keys())[0:3]) def test_auto_biencoders(name): if 'qa' in name: bi_encoder = AutoBiEncoder.from_model(name) assert_encoder_works(bi_encoder, data_type='text', model_type='bi_encoder') def test_listing_all_models(): """ Simple test to ensure model listing works. """ assert len(list_all_auto_models()) > 1
the-stack_0_22282
#! coding:utf-8 # python2 requires: pip install futures import atexit from concurrent.futures import (ProcessPoolExecutor, ThreadPoolExecutor, as_completed) from concurrent.futures._base import (CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED, PENDING, RUNNING, CancelledError, Error, Executor, Future, TimeoutError) from concurrent.futures.thread import _threads_queues, _WorkItem from functools import wraps from logging import getLogger from threading import Thread, Timer from time import sleep from time import time as time_time from weakref import WeakSet from requests import PreparedRequest, RequestException, Session from requests.adapters import HTTPAdapter from urllib3 import disable_warnings from .configs import Config from .exceptions import FailureException, ValidationError from .frequency_controller.sync_tools import Frequency from .versions import PY2, PY3 try: from queue import Empty, Queue except ImportError: from Queue import Empty, Queue if PY3: from concurrent.futures.process import BrokenProcessPool __all__ = [ "Pool", "ProcessPool", "NewFuture", "Async", "threads", "get_results_generator", "run_after_async", "tPool", "get", "post", "options", "delete", "put", "head", "patch", "request", "disable_warnings", "Workshop" ] logger = getLogger("torequests") def _abandon_all_tasks(): """Only used for abandon_all_tasks and exit the main thread, to prevent the main thread waiting for unclosed thread while exiting.""" _threads_queues.clear() def ensure_waiting_for_threads(): if Config.wait_futures_before_exiting: _abandon_all_tasks() atexit.register(ensure_waiting_for_threads) class NewExecutorPoolMixin(Executor): """Add async_func decorator for wrapping a function to return the NewFuture.""" def async_func(self, function): """Decorator for let a normal function return the NewFuture""" @wraps(function) def wrapped(*args, **kwargs): return self.submit(function, *args, **kwargs) return wrapped def close(self, wait=True): """Same as self.shutdown""" return self.shutdown(wait=wait) def _get_cpu_count(self): """Get the cpu count.""" try: from multiprocessing import cpu_count return cpu_count() except Exception as e: logger.error("_get_cpu_count failed for %s" % e) @property def x(self): """Return self.wait_futures_done""" return self.wait_futures_done(list(self._all_futures)) def wait_futures_done(self, tasks=None): # ignore the order of tasks tasks = tasks or self._all_futures fs = [] try: for f in as_completed(tasks, timeout=self._timeout): fs.append(f.x) except TimeoutError: pass return fs class Pool(ThreadPoolExecutor, NewExecutorPoolMixin): """Let ThreadPoolExecutor use NewFuture instead of origin concurrent.futures.Future. WARNING: NewFutures in Pool will not block main thread without NewFuture.x. Basic Usage:: from torequests.main import Pool import time pool = Pool() def use_submit(i): time.sleep(i) result = 'use_submit: %s' % i print(result) return result @pool.async_func def use_decorator(i): time.sleep(i) result = 'use_decorator: %s' % i print(result) return result tasks = [pool.submit(use_submit, i) for i in (2, 1, 0) ] + [use_decorator(i) for i in (2, 1, 0)] # pool.x can be ignore pool.x results = [i.x for i in tasks] print(results) # use_submit: 0 # use_decorator: 0 # use_submit: 1 # use_decorator: 1 # use_submit: 2 # use_decorator: 2 # ['use_submit: 2', 'use_submit: 1', 'use_submit: 0', 'use_decorator: 2', 'use_decorator: 1', 'use_decorator: 0'] """ def __init__(self, n=None, timeout=None, default_callback=None, catch_exception=True, *args, **kwargs): n = n or kwargs.pop("max_workers", None) if PY2 and n is None: # python2 n!=None n = (self._get_cpu_count() or 1) * 5 super(Pool, self).__init__(n, *args, **kwargs) #: set the default timeout self._timeout = timeout #: set the default_callback if not set single task's callback self.default_callback = default_callback #: WeakSet of _all_futures for self.x self._all_futures = WeakSet() #: catch_exception=True will not raise exceptions, return object FailureException(exception) self.catch_exception = catch_exception @property def all_tasks(self): """Keep the same api for dummy, return self._all_futures actually""" return self._all_futures def submit(self, func, *args, **kwargs): """Submit a function to the pool, `self.submit(function,arg1,arg2,arg3=3)`""" with self._shutdown_lock: if self._shutdown: raise RuntimeError("cannot schedule new futures after shutdown") callback = kwargs.pop("callback", self.default_callback) future = NewFuture( self._timeout, args, kwargs, callback=callback, catch_exception=self.catch_exception, ) w = _WorkItem(future, func, args, kwargs) self._work_queue.put(w) self._adjust_thread_count() self._all_futures.add(future) return future class ProcessPool(ProcessPoolExecutor, NewExecutorPoolMixin): """Simple ProcessPool covered ProcessPoolExecutor. :: from torequests.main import ProcessPool import time pool = ProcessPool() def use_submit(i): time.sleep(i) result = 'use_submit: %s' % i print(result) return result def main(): tasks = [pool.submit(use_submit, i) for i in (2, 1, 0)] # pool.x can be ignore pool.x results = [i.x for i in tasks] print(results) if __name__ == '__main__': main() # ['use_submit: 2', 'use_submit: 1', 'use_submit: 0'] # use_submit: 0 # use_submit: 1 # use_submit: 2 """ def __init__(self, n=None, timeout=None, default_callback=None, catch_exception=True, *args, **kwargs): n = n or kwargs.pop("max_workers", None) if PY2 and n is None: # python2 n!=None n = self._get_cpu_count() or 1 super(ProcessPool, self).__init__(n, *args, **kwargs) self._timeout = timeout self.default_callback = default_callback self._all_futures = WeakSet() self.catch_exception = catch_exception def submit(self, func, *args, **kwargs): """Submit a function to the pool, `self.submit(function,arg1,arg2,arg3=3)`""" with self._shutdown_lock: if PY3 and self._broken: raise BrokenProcessPool( "A child process terminated " "abruptly, the process pool is not usable anymore") if self._shutdown_thread: raise RuntimeError("cannot schedule new futures after shutdown") callback = kwargs.pop("callback", self.default_callback) future = NewFuture( self._timeout, args, kwargs, callback=callback, catch_exception=self.catch_exception, ) w = _WorkItem(future, func, args, kwargs) self._pending_work_items[self._queue_count] = w self._work_ids.put(self._queue_count) self._queue_count += 1 self._result_queue.put(None) self._start_queue_management_thread() if PY2: self._adjust_process_count() self._all_futures.add(future) return future def async_func(self, *args): """Decorator mode not support for ProcessPool for _pickle.PicklingError.""" raise NotImplementedError class NewFuture(Future): """Add `.x` attribute and timeout args for original Future class WARNING: Future thread will not stop running until function finished or pid killed. :attr cx: blocking until the task finish and return the callback_result. :attr x: blocking until the task finish and return the value as `coro` returned. :attr task_start_time: timestamp when the task start up. :attr task_end_time: timestamp when the task end up. :attr task_cost_time: seconds of task costs. :param catch_exception: `True` will catch all exceptions and return as :class:`FailureException <FailureException>` """ if PY3: from ._py3_patch import _new_future_await __await__ = _new_future_await def __init__(self, timeout=None, args=None, kwargs=None, callback=None, catch_exception=True): super(NewFuture, self).__init__() self._timeout = timeout self._args = args or () self._kwargs = kwargs or {} self._callback_result = None self.catch_exception = catch_exception self.task_start_time = time_time() self.task_end_time = 0 self.task_cost_time = 0 self._user_callbacks = set() if callback: if not isinstance(callback, (list, tuple)): callback = [callback] for fn in callback: self.add_done_callback(fn) self._user_callbacks.add(fn) def __getattr__(self, name): return getattr(self.x, name) def _invoke_callbacks(self): """Record the task_end_time & task_cost_time, set result for self._callback_result.""" self.task_end_time = time_time() self.task_cost_time = self.task_end_time - self.task_start_time with self._condition: for callback in self._done_callbacks: try: result = callback(self) if callback in self._user_callbacks: self._callback_result = result except Exception as e: logger.error("exception calling callback for %s" % e) self._condition.notify_all() @property def _callbacks(self): """Keep same api for NewTask.""" return self._done_callbacks @property def cx(self): """Block the main thead until future finish, return the future.callback_result.""" return self.callback_result @property def callback_result(self): """Block the main thead until future finish, return the future.callback_result.""" if self._state in [PENDING, RUNNING]: self.x if self._user_callbacks: return self._callback_result else: return self.x @property def x(self): """Block the main thead until future finish, return the future.result().""" with self._condition: result = None if not self.done(): self._condition.wait(self._timeout) if not self.done(): # timeout self.set_exception(TimeoutError()) if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]: # cancelled result = CancelledError() elif self._state == FINISHED: # finished if self._exception: result = self._exception else: result = self._result if isinstance(result, Exception): if self.catch_exception: result = FailureException(result) return result else: raise result return result def Async(f, n=None, timeout=None): """Concise usage for pool.submit. Basic Usage Asnyc & threads :: from torequests.main import Async, threads import time def use_submit(i): time.sleep(i) result = 'use_submit: %s' % i print(result) return result @threads() def use_decorator(i): time.sleep(i) result = 'use_decorator: %s' % i print(result) return result new_use_submit = Async(use_submit) tasks = [new_use_submit(i) for i in (2, 1, 0) ] + [use_decorator(i) for i in (2, 1, 0)] print([type(i) for i in tasks]) results = [i.x for i in tasks] print(results) # use_submit: 0 # use_decorator: 0 # [<class 'torequests.main.NewFuture'>, <class 'torequests.main.NewFuture'>, <class 'torequests.main.NewFuture'>, <class 'torequests.main.NewFuture'>, <class 'torequests.main.NewFuture'>, <class 'torequests.main.NewFuture'>] # use_submit: 1 # use_decorator: 1 # use_submit: 2 # use_decorator: 2 # ['use_submit: 2', 'use_submit: 1', 'use_submit: 0', 'use_decorator: 2', 'use_decorator: 1', 'use_decorator: 0'] """ return threads(n=n, timeout=timeout)(f) def threads(n=None, timeout=None): """Decorator usage like Async.""" return Pool(n, timeout).async_func def get_results_generator(future_list, timeout=None, sort_by_completed=False): """Return as a generator of tasks order by completed sequence.""" try: # python2 not support yield from if sort_by_completed: for future in as_completed(future_list, timeout=timeout): yield future.x else: for future in future_list: yield future.x except TimeoutError: return def run_after_async(seconds, func, *args, **kwargs): """Run the function after seconds asynchronously.""" t = Timer(seconds, func, args, kwargs) t.daemon = True t.start() return t class FailedRequest(PreparedRequest): allow_keys = { "method", "url", "headers", "files", "data", "params", "auth", "cookies", "hooks", "json", } def __init__(self, **kwargs): # self.kwargs for retry tPool.request self.kwargs = kwargs filted_kwargs = { key: value for key, value in kwargs.items() if key in self.allow_keys } super(FailedRequest, self).__init__() self.prepare(**filted_kwargs) class tPool(object): """Async wrapper for requests. :param n: thread pool size for concurrent limit. :param interval: time.sleep(interval) after each task finished. :param timeout: timeout for each task.result(timeout). But it will not shutdown the raw funtion. :param session: individually given a available requests.Session instance if necessary. :param catch_exception: `True` will catch all exceptions and return as :class:`FailureException <FailureException>` :param default_callback: default_callback for tasks which not set callback param. Usage:: from torequests.main import tPool from torequests.logs import print_info trequests = tPool(2, 1) test_url = 'http://p.3.cn' ss = [ trequests.get( test_url, retry=2, callback=lambda x: (len(x.content), print_info(len(x.content)))) for i in range(3) ] # or [i.x for i in ss] trequests.x ss = [i.cx for i in ss] print_info(ss) # [2020-02-11 11:36:33] temp_code.py(10): 612 # [2020-02-11 11:36:33] temp_code.py(10): 612 # [2020-02-11 11:36:34] temp_code.py(10): 612 # [2020-02-11 11:36:34] temp_code.py(16): [(612, None), (612, None), (612, None)] """ def __init__( self, n=None, interval=0, timeout=None, session=None, catch_exception=True, default_callback=None, retry_exceptions=(RequestException, Error), ): self.pool = Pool(n, timeout) self.session = session if session else Session() self.n = n or 10 # adapt the concurrent limit. custom_adapter = HTTPAdapter(pool_connections=self.n, pool_maxsize=self.n) self.session.mount("http://", custom_adapter) self.session.mount("https://", custom_adapter) self.interval = interval self.catch_exception = catch_exception self.default_callback = default_callback self.frequency = Frequency(self.n, self.interval) self.retry_exceptions = retry_exceptions @property def all_tasks(self): """Return self.pool._all_futures""" return self.pool._all_futures @property def x(self): """Return self.pool.x""" return self.pool.x def close(self, wait=False): """Close session, shutdown pool.""" self.session.close() self.pool.shutdown(wait=wait) def __enter__(self): return self def __exit__(self, *args): self.close() def __del__(self): self.close() def _request(self, method, url, retry=0, response_validator=None, retry_interval=0, **kwargs): if not url: raise ValueError("url should not be null, but given: %s" % url) kwargs["url"] = url kwargs["method"] = method # non-official request args referer_info = kwargs.pop("referer_info", None) encoding = kwargs.pop("encoding", None) error = Exception() for _ in range(retry + 1): with self.frequency: try: resp = self.session.request(**kwargs) if encoding: resp.encoding = encoding logger.debug("%s done, %s" % (url, kwargs)) resp.referer_info = referer_info if response_validator and not response_validator(resp): raise ValidationError(response_validator.__name__) return resp except self.retry_exceptions as e: error = e logger.debug( "Retry %s for the %s time, Exception: %r . kwargs= %s" % (url, _ + 1, e, kwargs)) if retry_interval: sleep(retry_interval) continue # for unofficial request args kwargs["retry"] = retry if referer_info: kwargs["referer_info"] = referer_info if encoding: kwargs["encoding"] = encoding logger.debug("Retry %s times failed again: %s." % (retry, error)) failure = FailureException(error) failure.request = FailedRequest(**kwargs) if self.catch_exception: return failure else: raise failure def request(self, method, url, callback=None, retry=0, response_validator=None, **kwargs): """Similar to `requests.request`, but return as NewFuture.""" return self.pool.submit(self._request, method=method, url=url, retry=retry, response_validator=response_validator, callback=callback or self.default_callback, **kwargs) def get(self, url, params=None, callback=None, retry=0, response_validator=None, **kwargs): """Similar to `requests.get`, but return as NewFuture.""" kwargs.setdefault("allow_redirects", True) return self.request("get", url=url, params=params, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def post(self, url, data=None, json=None, callback=None, retry=0, response_validator=None, **kwargs): """Similar to `requests.post`, but return as NewFuture.""" return self.request("post", url=url, data=data, json=json, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def delete(self, url, callback=None, retry=0, response_validator=None, **kwargs): """Similar to `requests.delete`, but return as NewFuture.""" return self.request("delete", url=url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def put(self, url, data=None, callback=None, retry=0, response_validator=None, **kwargs): """Similar to `requests.put`, but return as NewFuture.""" return self.request("put", url=url, data=data, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def head(self, url, callback=None, retry=0, response_validator=None, allow_redirects=False, **kwargs): """Similar to `requests.head`, but return as NewFuture.""" kwargs['allow_redirects'] = allow_redirects return self.request("head", url=url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def options(self, url, callback=None, retry=0, response_validator=None, **kwargs): """Similar to `requests.options`, but return as NewFuture.""" kwargs.setdefault("allow_redirects", True) return self.request("options", url=url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def patch(self, url, callback=None, retry=0, response_validator=None, **kwargs): """Similar to `requests.patch`, but return as NewFuture.""" return self.request("patch", url=url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def get(url, params=None, callback=None, retry=0, response_validator=None, **kwargs): return tPool().get(url, params=params, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def post(url, data=None, json=None, callback=None, retry=0, response_validator=None, **kwargs): return tPool().post(url, data=data, json=json, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def delete(url, callback=None, retry=0, response_validator=None, **kwargs): return tPool().delete(url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def put(url, data=None, callback=None, retry=0, response_validator=None, **kwargs): return tPool().put(url, data=data, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def head(url, callback=None, retry=0, response_validator=None, **kwargs): return tPool().head(url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def options(url, callback=None, retry=0, response_validator=None, **kwargs): return tPool().options(url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def patch(url, callback=None, retry=0, response_validator=None, **kwargs): return tPool().patch(url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) def request(method, url, callback=None, retry=0, response_validator=None, **kwargs): return tPool().request(method, url, callback=callback, retry=retry, response_validator=response_validator, **kwargs) class Workshop: """Simple solution for producer-consumer problem. WARNING: callback should has its own timeout to avoid blocking to long. Demo:: import time from torequests.main import Workshop def callback(todo, worker_arg): time.sleep(todo) if worker_arg == 'worker1': return None return [todo, worker_arg] fc = Workshop(range(1, 5), ['worker1', 'worker2', 'worker3'], callback) for i in fc.get_result_as_completed(): print(i) # [2, 'worker2'] # [3, 'worker3'] # [1, 'worker2'] # [4, 'worker3'] for i in fc.get_result_as_sequence(): print(i) # [1, 'worker3'] # [2, 'worker3'] # [3, 'worker3'] # [4, 'worker2'] """ def __init__(self, todo_args, worker_args, callback, timeout=None, wait_empty_secs=1, handle_exceptions=(), max_failure=None, fail_returned=None): """ :param todo_args: args to be send to callback :type todo_args: List[Any] :param worker_args: args for launching worker threads, you can use like [worker1, worker1, worker1] for concurrent workers :type worker_args: List[Any] :param callback: callback to consume the todo_arg from queue, handle args like callback(todo_arg, worker_arg) :type callback: Callable :param timeout: timeout for worker running, defaults to None :type timeout: [float, int], optional :param wait_empty_secs: seconds to sleep while queue is Empty, defaults to 1 :type wait_empty_secs: float, optional :param handle_exceptions: ignore Exceptions raise from callback, defaults to () :type handle_exceptions: Tuple[Exception], optional :param max_failure: stop worker while failing too many times, defaults to None :type max_failure: int, optional :param fail_returned: returned from callback will be treated as a failure, defaults to None :type fail_returned: Any, optional """ self.q = Queue() self.futures = self.init_futures(todo_args) self.worker_args = worker_args self.callback = callback self.timeout = timeout or float('inf') self.wait_empty_secs = wait_empty_secs self.result = None self.handle_exceptions = handle_exceptions self.max_failure = float('inf') if max_failure is None else max_failure self.fail_returned = fail_returned self._done = False self._done_signal = object() def init_futures(self, todo_args): futures = [] for arg in todo_args: f = Future() f.arg = arg futures.append(f) self.q.put(f) return futures def run(self, as_completed=False): """run until all tasks finished""" if as_completed: return list(self.get_result_as_completed()) return list(self.get_result_as_sequence()) def get_result_as_sequence(self): """return a generator of results with same sequence as self.todo_args""" self.start_workers() for f in self.futures: yield f.result() def get_result_as_completed(self): """return a generator of results as completed sequence""" self.start_workers() for f in as_completed(self.futures): yield f.result() @property def done(self): self._done = self._done or all((f.done() for f in self.futures)) return self._done def worker(self, worker_arg): fails = 0 start_time = time_time() while time_time( ) - start_time < self.timeout and fails <= self.max_failure: try: f = self.q.get(timeout=self.wait_empty_secs) if f is self._done_signal: break except TimeoutError: if self.done: break fails += 1 continue try: result = self.callback(f.arg, worker_arg) except self.handle_exceptions as err: logger.error( 'Raised {err!r}, worker_arg: {worker_arg}, todo_arg: {arg}'. format_map( dict(err=err, worker_arg=repr(worker_arg)[:100], arg=repr(f.arg)[:100]))) result = self.fail_returned if result == self.fail_returned: self.q.put(f) fails += 1 sleep(self.wait_empty_secs) continue else: f.set_result(result) if fails > 0: fails -= 1 self.q.put_nowait def start_workers(self): self._done = False for worker_arg in self.worker_args: t = Thread(target=self.worker, args=(worker_arg,)) t.daemon = True t.start()
the-stack_0_22283
"""ApacheParser is a member object of the ApacheConfigurator class.""" import copy import fnmatch import logging import re from typing import Dict from typing import List from certbot import errors from certbot.compat import os from certbot_apache._internal import apache_util from certbot_apache._internal import constants logger = logging.getLogger(__name__) class ApacheParser: """Class handles the fine details of parsing the Apache Configuration. .. todo:: Make parsing general... remove sites-available etc... :ivar str root: Normalized absolute path to the server root directory. Without trailing slash. :ivar set modules: All module names that are currently enabled. :ivar dict loc: Location to place directives, root - configuration origin, default - user config file, name - NameVirtualHost, """ arg_var_interpreter = re.compile(r"\$\{[^ \}]*}") fnmatch_chars = {"*", "?", "\\", "[", "]"} def __init__(self, root, vhostroot=None, version=(2, 4), configurator=None): # Note: Order is important here. # Needed for calling save() with reverter functionality that resides in # AugeasConfigurator superclass of ApacheConfigurator. This resolves # issues with aug.load() after adding new files / defines to parse tree self.configurator = configurator # Initialize augeas self.aug = None self.init_augeas() if not self.check_aug_version(): raise errors.NotSupportedError( "Apache plugin support requires libaugeas0 and augeas-lenses " "version 1.2.0 or higher, please make sure you have you have " "those installed.") self.modules: Dict[str, str] = {} self.parser_paths: Dict[str, List[str]] = {} self.variables: Dict[str, str] = {} # Find configuration root and make sure augeas can parse it. self.root = os.path.abspath(root) self.loc = {"root": self._find_config_root()} self.parse_file(self.loc["root"]) if version >= (2, 4): # Look up variables from httpd and add to DOM if not already parsed self.update_runtime_variables() # This problem has been fixed in Augeas 1.0 self.standardize_excl() # Parse LoadModule directives from configuration files self.parse_modules() # Set up rest of locations self.loc.update(self._set_locations()) # list of the active include paths, before modifications self.existing_paths = copy.deepcopy(self.parser_paths) # Must also attempt to parse additional virtual host root if vhostroot: self.parse_file(os.path.abspath(vhostroot) + "/" + self.configurator.option("vhost_files")) # check to see if there were unparsed define statements if version < (2, 4): if self.find_dir("Define", exclude=False): raise errors.PluginError("Error parsing runtime variables") def init_augeas(self): """ Initialize the actual Augeas instance """ try: import augeas except ImportError: # pragma: no cover raise errors.NoInstallationError("Problem in Augeas installation") self.aug = augeas.Augeas( # specify a directory to load our preferred lens from loadpath=constants.AUGEAS_LENS_DIR, # Do not save backup (we do it ourselves), do not load # anything by default flags=(augeas.Augeas.NONE | augeas.Augeas.NO_MODL_AUTOLOAD | augeas.Augeas.ENABLE_SPAN)) def check_parsing_errors(self, lens): """Verify Augeas can parse all of the lens files. :param str lens: lens to check for errors :raises .errors.PluginError: If there has been an error in parsing with the specified lens. """ error_files = self.aug.match("/augeas//error") for path in error_files: # Check to see if it was an error resulting from the use of # the httpd lens lens_path = self.aug.get(path + "/lens") # As aug.get may return null if lens_path and lens in lens_path: msg = ( "There has been an error in parsing the file {0} on line {1}: " "{2}".format( # Strip off /augeas/files and /error path[13:len(path) - 6], self.aug.get(path + "/line"), self.aug.get(path + "/message"))) raise errors.PluginError(msg) def check_aug_version(self): """ Checks that we have recent enough version of libaugeas. If augeas version is recent enough, it will support case insensitive regexp matching""" self.aug.set("/test/path/testing/arg", "aRgUMeNT") try: matches = self.aug.match( "/test//*[self::arg=~regexp('argument', 'i')]") except RuntimeError: self.aug.remove("/test/path") return False self.aug.remove("/test/path") return matches def unsaved_files(self): """Lists files that have modified Augeas DOM but the changes have not been written to the filesystem yet, used by `self.save()` and ApacheConfigurator to check the file state. :raises .errors.PluginError: If there was an error in Augeas, in an attempt to save the configuration, or an error creating a checkpoint :returns: `set` of unsaved files """ save_state = self.aug.get("/augeas/save") self.aug.set("/augeas/save", "noop") # Existing Errors ex_errs = self.aug.match("/augeas//error") try: # This is a noop save self.aug.save() except (RuntimeError, IOError): self._log_save_errors(ex_errs) # Erase Save Notes self.configurator.save_notes = "" raise errors.PluginError( "Error saving files, check logs for more info.") # Return the original save method self.aug.set("/augeas/save", save_state) # Retrieve list of modified files # Note: Noop saves can cause the file to be listed twice, I used a # set to remove this possibility. This is a known augeas 0.10 error. save_paths = self.aug.match("/augeas/events/saved") save_files = set() if save_paths: for path in save_paths: save_files.add(self.aug.get(path)[6:]) return save_files def ensure_augeas_state(self): """Makes sure that all Augeas dom changes are written to files to avoid loss of configuration directives when doing additional augeas parsing, causing a possible augeas.load() resulting dom reset """ if self.unsaved_files(): self.configurator.save_notes += "(autosave)" self.configurator.save() def save(self, save_files): """Saves all changes to the configuration files. save() is called from ApacheConfigurator to handle the parser specific tasks of saving. :param list save_files: list of strings of file paths that we need to save. """ self.configurator.save_notes = "" self.aug.save() # Force reload if files were modified # This is needed to recalculate augeas directive span if save_files: for sf in save_files: self.aug.remove("/files/"+sf) self.aug.load() def _log_save_errors(self, ex_errs): """Log errors due to bad Augeas save. :param list ex_errs: Existing errors before save """ # Check for the root of save problems new_errs = self.aug.match("/augeas//error") # logger.error("During Save - %s", mod_conf) logger.error("Unable to save files: %s. Attempted Save Notes: %s", ", ".join(err[13:len(err) - 6] for err in new_errs # Only new errors caused by recent save if err not in ex_errs), self.configurator.save_notes) def add_include(self, main_config, inc_path): """Add Include for a new configuration file if one does not exist :param str main_config: file path to main Apache config file :param str inc_path: path of file to include """ if not self.find_dir(case_i("Include"), inc_path): logger.debug("Adding Include %s to %s", inc_path, get_aug_path(main_config)) self.add_dir( get_aug_path(main_config), "Include", inc_path) # Add new path to parser paths new_dir = os.path.dirname(inc_path) new_file = os.path.basename(inc_path) self.existing_paths.setdefault(new_dir, []).append(new_file) def add_mod(self, mod_name): """Shortcut for updating parser modules.""" if mod_name + "_module" not in self.modules: self.modules[mod_name + "_module"] = None if "mod_" + mod_name + ".c" not in self.modules: self.modules["mod_" + mod_name + ".c"] = None def reset_modules(self): """Reset the loaded modules list. This is called from cleanup to clear temporarily loaded modules.""" self.modules = {} self.update_modules() self.parse_modules() def parse_modules(self): """Iterates on the configuration until no new modules are loaded. ..todo:: This should be attempted to be done with a binary to avoid the iteration issue. Else... parse and enable mods at same time. """ mods: Dict[str, str] = {} matches = self.find_dir("LoadModule") iterator = iter(matches) # Make sure prev_size != cur_size for do: while: iteration prev_size = -1 while len(mods) != prev_size: prev_size = len(mods) for match_name, match_filename in zip( iterator, iterator): mod_name = self.get_arg(match_name) mod_filename = self.get_arg(match_filename) if mod_name and mod_filename: mods[mod_name] = mod_filename mods[os.path.basename(mod_filename)[:-2] + "c"] = mod_filename else: logger.debug("Could not read LoadModule directive from Augeas path: %s", match_name[6:]) self.modules.update(mods) def update_runtime_variables(self): """Update Includes, Defines and Includes from httpd config dump data""" self.update_defines() self.update_includes() self.update_modules() def update_defines(self): """Updates the dictionary of known variables in the configuration""" self.variables = apache_util.parse_defines(self.configurator.option("ctl")) def update_includes(self): """Get includes from httpd process, and add them to DOM if needed""" # Find_dir iterates over configuration for Include and IncludeOptional # directives to make sure we see the full include tree present in the # configuration files _ = self.find_dir("Include") matches = apache_util.parse_includes(self.configurator.option("ctl")) if matches: for i in matches: if not self.parsed_in_current(i): self.parse_file(i) def update_modules(self): """Get loaded modules from httpd process, and add them to DOM""" matches = apache_util.parse_modules(self.configurator.option("ctl")) for mod in matches: self.add_mod(mod.strip()) def filter_args_num(self, matches, args): """Filter out directives with specific number of arguments. This function makes the assumption that all related arguments are given in order. Thus /files/apache/directive[5]/arg[2] must come immediately after /files/apache/directive[5]/arg[1]. Runs in 1 linear pass. :param string matches: Matches of all directives with arg nodes :param int args: Number of args you would like to filter :returns: List of directives that contain # of arguments. (arg is stripped off) """ filtered = [] if args == 1: for i, match in enumerate(matches): if match.endswith("/arg"): filtered.append(matches[i][:-4]) else: for i, match in enumerate(matches): if match.endswith("/arg[%d]" % args): # Make sure we don't cause an IndexError (end of list) # Check to make sure arg + 1 doesn't exist if (i == (len(matches) - 1) or not matches[i + 1].endswith("/arg[%d]" % (args + 1))): filtered.append(matches[i][:-len("/arg[%d]" % args)]) return filtered def add_dir_to_ifmodssl(self, aug_conf_path, directive, args): """Adds directive and value to IfMod ssl block. Adds given directive and value along configuration path within an IfMod mod_ssl.c block. If the IfMod block does not exist in the file, it is created. :param str aug_conf_path: Desired Augeas config path to add directive :param str directive: Directive you would like to add, e.g. Listen :param args: Values of the directive; str "443" or list of str :type args: list """ # TODO: Add error checking code... does the path given even exist? # Does it throw exceptions? if_mod_path = self.get_ifmod(aug_conf_path, "mod_ssl.c") # IfModule can have only one valid argument, so append after self.aug.insert(if_mod_path + "arg", "directive", False) nvh_path = if_mod_path + "directive[1]" self.aug.set(nvh_path, directive) if len(args) == 1: self.aug.set(nvh_path + "/arg", args[0]) else: for i, arg in enumerate(args): self.aug.set("%s/arg[%d]" % (nvh_path, i + 1), arg) def get_ifmod(self, aug_conf_path, mod, beginning=False): """Returns the path to <IfMod mod> and creates one if it doesn't exist. :param str aug_conf_path: Augeas configuration path :param str mod: module ie. mod_ssl.c :param bool beginning: If the IfModule should be created to the beginning of augeas path DOM tree. :returns: Augeas path of the requested IfModule directive that pre-existed or was created during the process. The path may be dynamic, i.e. .../IfModule[last()] :rtype: str """ if_mods = self.aug.match(("%s/IfModule/*[self::arg='%s']" % (aug_conf_path, mod))) if not if_mods: return self.create_ifmod(aug_conf_path, mod, beginning) # Strip off "arg" at end of first ifmod path return if_mods[0].rpartition("arg")[0] def create_ifmod(self, aug_conf_path, mod, beginning=False): """Creates a new <IfMod mod> and returns its path. :param str aug_conf_path: Augeas configuration path :param str mod: module ie. mod_ssl.c :param bool beginning: If the IfModule should be created to the beginning of augeas path DOM tree. :returns: Augeas path of the newly created IfModule directive. The path may be dynamic, i.e. .../IfModule[last()] :rtype: str """ if beginning: c_path_arg = "{}/IfModule[1]/arg".format(aug_conf_path) # Insert IfModule before the first directive self.aug.insert("{}/directive[1]".format(aug_conf_path), "IfModule", True) retpath = "{}/IfModule[1]/".format(aug_conf_path) else: c_path = "{}/IfModule[last() + 1]".format(aug_conf_path) c_path_arg = "{}/IfModule[last()]/arg".format(aug_conf_path) self.aug.set(c_path, "") retpath = "{}/IfModule[last()]/".format(aug_conf_path) self.aug.set(c_path_arg, mod) return retpath def add_dir(self, aug_conf_path, directive, args): """Appends directive to the end fo the file given by aug_conf_path. .. note:: Not added to AugeasConfigurator because it may depend on the lens :param str aug_conf_path: Augeas configuration path to add directive :param str directive: Directive to add :param args: Value of the directive. ie. Listen 443, 443 is arg :type args: list or str """ self.aug.set(aug_conf_path + "/directive[last() + 1]", directive) if isinstance(args, list): for i, value in enumerate(args, 1): self.aug.set( "%s/directive[last()]/arg[%d]" % (aug_conf_path, i), value) else: self.aug.set(aug_conf_path + "/directive[last()]/arg", args) def add_dir_beginning(self, aug_conf_path, dirname, args): """Adds the directive to the beginning of defined aug_conf_path. :param str aug_conf_path: Augeas configuration path to add directive :param str dirname: Directive to add :param args: Value of the directive. ie. Listen 443, 443 is arg :type args: list or str """ first_dir = aug_conf_path + "/directive[1]" self.aug.insert(first_dir, "directive", True) self.aug.set(first_dir, dirname) if isinstance(args, list): for i, value in enumerate(args, 1): self.aug.set(first_dir + "/arg[%d]" % (i), value) else: self.aug.set(first_dir + "/arg", args) def add_comment(self, aug_conf_path, comment): """Adds the comment to the augeas path :param str aug_conf_path: Augeas configuration path to add directive :param str comment: Comment content """ self.aug.set(aug_conf_path + "/#comment[last() + 1]", comment) def find_comments(self, arg, start=None): """Finds a comment with specified content from the provided DOM path :param str arg: Comment content to search :param str start: Beginning Augeas path to begin looking :returns: List of augeas paths containing the comment content :rtype: list """ if not start: start = get_aug_path(self.root) comments = self.aug.match("%s//*[label() = '#comment']" % start) results = [] for comment in comments: c_content = self.aug.get(comment) if c_content and arg in c_content: results.append(comment) return results def find_dir(self, directive, arg=None, start=None, exclude=True): """Finds directive in the configuration. Recursively searches through config files to find directives Directives should be in the form of a case insensitive regex currently .. todo:: arg should probably be a list .. todo:: arg search currently only supports direct matching. It does not handle the case of variables or quoted arguments. This should be adapted to use a generic search for the directive and then do a case-insensitive self.get_arg filter Note: Augeas is inherently case sensitive while Apache is case insensitive. Augeas 1.0 allows case insensitive regexes like regexp(/Listen/, "i"), however the version currently supported by Ubuntu 0.10 does not. Thus I have included my own case insensitive transformation by calling case_i() on everything to maintain compatibility. :param str directive: Directive to look for :param arg: Specific value directive must have, None if all should be considered :type arg: str or None :param str start: Beginning Augeas path to begin looking :param bool exclude: Whether or not to exclude directives based on variables and enabled modules """ # Cannot place member variable in the definition of the function so... if not start: start = get_aug_path(self.loc["root"]) # No regexp code # if arg is None: # matches = self.aug.match(start + # "//*[self::directive='" + directive + "']/arg") # else: # matches = self.aug.match(start + # "//*[self::directive='" + directive + # "']/* [self::arg='" + arg + "']") # includes = self.aug.match(start + # "//* [self::directive='Include']/* [label()='arg']") regex = "(%s)|(%s)|(%s)" % (case_i(directive), case_i("Include"), case_i("IncludeOptional")) matches = self.aug.match( "%s//*[self::directive=~regexp('%s')]" % (start, regex)) if exclude: matches = self.exclude_dirs(matches) if arg is None: arg_suffix = "/arg" else: arg_suffix = "/*[self::arg=~regexp('%s')]" % case_i(arg) ordered_matches: List[str] = [] # TODO: Wildcards should be included in alphabetical order # https://httpd.apache.org/docs/2.4/mod/core.html#include for match in matches: dir_ = self.aug.get(match).lower() if dir_ in ("include", "includeoptional"): ordered_matches.extend(self.find_dir( directive, arg, self._get_include_path(self.get_arg(match + "/arg")), exclude)) # This additionally allows Include if dir_ == directive.lower(): ordered_matches.extend(self.aug.match(match + arg_suffix)) return ordered_matches def get_all_args(self, match): """ Tries to fetch all arguments for a directive. See get_arg. Note that if match is an ancestor node, it returns all names of child directives as well as the list of arguments. """ if match[-1] != "/": match = match+"/" allargs = self.aug.match(match + '*') return [self.get_arg(arg) for arg in allargs] def get_arg(self, match): """Uses augeas.get to get argument value and interprets result. This also converts all variables and parameters appropriately. """ value = self.aug.get(match) # No need to strip quotes for variables, as apache2ctl already does # this, but we do need to strip quotes for all normal arguments. # Note: normal argument may be a quoted variable # e.g. strip now, not later if not value: return None value = value.strip("'\"") variables = ApacheParser.arg_var_interpreter.findall(value) for var in variables: # Strip off ${ and } try: value = value.replace(var, self.variables[var[2:-1]]) except KeyError: raise errors.PluginError("Error Parsing variable: %s" % var) return value def get_root_augpath(self): """ Returns the Augeas path of root configuration. """ return get_aug_path(self.loc["root"]) def exclude_dirs(self, matches): """Exclude directives that are not loaded into the configuration.""" filters = [("ifmodule", self.modules.keys()), ("ifdefine", self.variables)] valid_matches = [] for match in matches: for filter_ in filters: if not self._pass_filter(match, filter_): break else: valid_matches.append(match) return valid_matches def _pass_filter(self, match, filter_): """Determine if directive passes a filter. :param str match: Augeas path :param list filter: list of tuples of form [("lowercase if directive", set of relevant parameters)] """ match_l = match.lower() last_match_idx = match_l.find(filter_[0]) while last_match_idx != -1: # Check args end_of_if = match_l.find("/", last_match_idx) # This should be aug.get (vars are not used e.g. parser.aug_get) expression = self.aug.get(match[:end_of_if] + "/arg") if expression.startswith("!"): # Strip off "!" if expression[1:] in filter_[1]: return False else: if expression not in filter_[1]: return False last_match_idx = match_l.find(filter_[0], end_of_if) return True def standard_path_from_server_root(self, arg): """Ensure paths are consistent and absolute :param str arg: Argument of directive :returns: Standardized argument path :rtype: str """ # Remove beginning and ending quotes arg = arg.strip("'\"") # Standardize the include argument based on server root if not arg.startswith("/"): # Normpath will condense ../ arg = os.path.normpath(os.path.join(self.root, arg)) else: arg = os.path.normpath(arg) return arg def _get_include_path(self, arg): """Converts an Apache Include directive into Augeas path. Converts an Apache Include directive argument into an Augeas searchable path .. todo:: convert to use os.path.join() :param str arg: Argument of Include directive :returns: Augeas path string :rtype: str """ # Check to make sure only expected characters are used <- maybe remove # validChars = re.compile("[a-zA-Z0-9.*?_-/]*") # matchObj = validChars.match(arg) # if matchObj.group() != arg: # logger.error("Error: Invalid regexp characters in %s", arg) # return [] arg = self.standard_path_from_server_root(arg) # Attempts to add a transform to the file if one does not already exist if os.path.isdir(arg): self.parse_file(os.path.join(arg, "*")) else: self.parse_file(arg) # Argument represents an fnmatch regular expression, convert it # Split up the path and convert each into an Augeas accepted regex # then reassemble split_arg = arg.split("/") for idx, split in enumerate(split_arg): if any(char in ApacheParser.fnmatch_chars for char in split): # Turn it into an augeas regex # TODO: Can this instead be an augeas glob instead of regex split_arg[idx] = ("* [label()=~regexp('%s')]" % self.fnmatch_to_re(split)) # Reassemble the argument # Note: This also normalizes the argument /serverroot/ -> /serverroot arg = "/".join(split_arg) return get_aug_path(arg) def fnmatch_to_re(self, clean_fn_match): """Method converts Apache's basic fnmatch to regular expression. Assumption - Configs are assumed to be well-formed and only writable by privileged users. https://apr.apache.org/docs/apr/2.0/apr__fnmatch_8h_source.html :param str clean_fn_match: Apache style filename match, like globs :returns: regex suitable for augeas :rtype: str """ # Since Python 3.6, it returns a different pattern like (?s:.*\.load)\Z return fnmatch.translate(clean_fn_match)[4:-3] # pragma: no cover def parse_file(self, filepath): """Parse file with Augeas Checks to see if file_path is parsed by Augeas If filepath isn't parsed, the file is added and Augeas is reloaded :param str filepath: Apache config file path """ use_new, remove_old = self._check_path_actions(filepath) # Ensure that we have the latest Augeas DOM state on disk before # calling aug.load() which reloads the state from disk self.ensure_augeas_state() # Test if augeas included file for Httpd.lens # Note: This works for augeas globs, ie. *.conf if use_new: inc_test = self.aug.match( "/augeas/load/Httpd['%s' =~ glob(incl)]" % filepath) if not inc_test: # Load up files # This doesn't seem to work on TravisCI # self.aug.add_transform("Httpd.lns", [filepath]) if remove_old: self._remove_httpd_transform(filepath) self._add_httpd_transform(filepath) self.aug.load() def parsed_in_current(self, filep): """Checks if the file path is parsed by current Augeas parser config ie. returns True if the file is found on a path that's found in live Augeas configuration. :param str filep: Path to match :returns: True if file is parsed in existing configuration tree :rtype: bool """ return self._parsed_by_parser_paths(filep, self.parser_paths) def parsed_in_original(self, filep): """Checks if the file path is parsed by existing Apache config. ie. returns True if the file is found on a path that matches Include or IncludeOptional statement in the Apache configuration. :param str filep: Path to match :returns: True if file is parsed in existing configuration tree :rtype: bool """ return self._parsed_by_parser_paths(filep, self.existing_paths) def _parsed_by_parser_paths(self, filep, paths): """Helper function that searches through provided paths and returns True if file path is found in the set""" for directory in paths: for filename in paths[directory]: if fnmatch.fnmatch(filep, os.path.join(directory, filename)): return True return False def _check_path_actions(self, filepath): """Determine actions to take with a new augeas path This helper function will return a tuple that defines if we should try to append the new filepath to augeas parser paths, and / or remove the old one with more narrow matching. :param str filepath: filepath to check the actions for """ try: new_file_match = os.path.basename(filepath) existing_matches = self.parser_paths[os.path.dirname(filepath)] if "*" in existing_matches: use_new = False else: use_new = True remove_old = new_file_match == "*" except KeyError: use_new = True remove_old = False return use_new, remove_old def _remove_httpd_transform(self, filepath): """Remove path from Augeas transform :param str filepath: filepath to remove """ remove_basenames = self.parser_paths[os.path.dirname(filepath)] remove_dirname = os.path.dirname(filepath) for name in remove_basenames: remove_path = remove_dirname + "/" + name remove_inc = self.aug.match( "/augeas/load/Httpd/incl [. ='%s']" % remove_path) self.aug.remove(remove_inc[0]) self.parser_paths.pop(remove_dirname) def _add_httpd_transform(self, incl): """Add a transform to Augeas. This function will correctly add a transform to augeas The existing augeas.add_transform in python doesn't seem to work for Travis CI as it loads in libaugeas.so.0.10.0 :param str incl: filepath to include for transform """ last_include = self.aug.match("/augeas/load/Httpd/incl [last()]") if last_include: # Insert a new node immediately after the last incl self.aug.insert(last_include[0], "incl", False) self.aug.set("/augeas/load/Httpd/incl[last()]", incl) # On first use... must load lens and add file to incl else: # Augeas uses base 1 indexing... insert at beginning... self.aug.set("/augeas/load/Httpd/lens", "Httpd.lns") self.aug.set("/augeas/load/Httpd/incl", incl) # Add included path to paths dictionary try: self.parser_paths[os.path.dirname(incl)].append( os.path.basename(incl)) except KeyError: self.parser_paths[os.path.dirname(incl)] = [ os.path.basename(incl)] def standardize_excl(self): """Standardize the excl arguments for the Httpd lens in Augeas. Note: Hack! Standardize the excl arguments for the Httpd lens in Augeas Servers sometimes give incorrect defaults Note: This problem should be fixed in Augeas 1.0. Unfortunately, Augeas 0.10 appears to be the most popular version currently. """ # attempt to protect against augeas error in 0.10.0 - ubuntu # *.augsave -> /*.augsave upon augeas.load() # Try to avoid bad httpd files # There has to be a better way... but after a day and a half of testing # I had no luck # This is a hack... work around... submit to augeas if still not fixed excl = ["*.augnew", "*.augsave", "*.dpkg-dist", "*.dpkg-bak", "*.dpkg-new", "*.dpkg-old", "*.rpmsave", "*.rpmnew", "*~", self.root + "/*.augsave", self.root + "/*~", self.root + "/*/*augsave", self.root + "/*/*~", self.root + "/*/*/*.augsave", self.root + "/*/*/*~"] for i, excluded in enumerate(excl, 1): self.aug.set("/augeas/load/Httpd/excl[%d]" % i, excluded) self.aug.load() def _set_locations(self): """Set default location for directives. Locations are given as file_paths .. todo:: Make sure that files are included """ default = self.loc["root"] temp = os.path.join(self.root, "ports.conf") if os.path.isfile(temp): listen = temp name = temp else: listen = default name = default return {"default": default, "listen": listen, "name": name} def _find_config_root(self): """Find the Apache Configuration Root file.""" location = ["apache2.conf", "httpd.conf", "conf/httpd.conf"] for name in location: if os.path.isfile(os.path.join(self.root, name)): return os.path.join(self.root, name) raise errors.NoInstallationError("Could not find configuration root") def case_i(string): """Returns case insensitive regex. Returns a sloppy, but necessary version of a case insensitive regex. Any string should be able to be submitted and the string is escaped and then made case insensitive. May be replaced by a more proper /i once augeas 1.0 is widely supported. :param str string: string to make case i regex """ return "".join("[" + c.upper() + c.lower() + "]" if c.isalpha() else c for c in re.escape(string)) def get_aug_path(file_path): """Return augeas path for full filepath. :param str file_path: Full filepath """ return "/files%s" % file_path
the-stack_0_22284
''' Copyright (C) 2018 CG Cookie https://github.com/CGCookie/retopoflow This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import bpy import bgl from .cookiecutter import CookieCutter from ..common.maths import Point2D from ..common import ui from ..common.drawing import Drawing class CookieCutter_Test(CookieCutter): bl_idname = "view3d.cookiecutter_test" bl_label = "CookieCutter Test (Example)" default_keymap = { 'commit': 'RET', 'cancel': 'ESC', 'grab': 'G', } def start(self): opts = { 'pos': 9, 'movable': True, 'bgcolor': (0.2, 0.2, 0.2, 0.8), 'padding': 0, } win = self.wm.create_window('test', opts) self.lbl = win.add(ui.UI_Label('main')) self.ui_action = win.add(ui.UI_Label('nothing')) exitbuttons = win.add(ui.UI_Container(margin=0,vertical=False)) exitbuttons.add(ui.UI_Button('commit', self.done)) exitbuttons.add(ui.UI_Button('cancel', lambda:self.done(cancel=True))) #self.window_manager.set_focus(win, darken=False, close_on_leave=True) def update(self): self.ui_action.set_label('Press: %s' % (','.join(self.actions.now_pressed.keys()),)) @CookieCutter.FSM_State('main') def modal_main(self): Drawing.set_cursor('DEFAULT') if self.actions.pressed('grab'): self.lbl.set_label('grab!') return 'grab' @CookieCutter.FSM_State('grab') def modal_grab(self): Drawing.set_cursor('HAND') if self.actions.pressed('commit'): self.lbl.set_label('commit grab') return 'main' if self.actions.pressed('cancel'): self.lbl.set_label('cancel grab') return 'main' @CookieCutter.Draw('pre3d') def draw_preview(self): bgl.glPushAttrib(bgl.GL_ALL_ATTRIB_BITS) bgl.glMatrixMode(bgl.GL_MODELVIEW) bgl.glPushMatrix() bgl.glLoadIdentity() bgl.glMatrixMode(bgl.GL_PROJECTION) bgl.glPushMatrix() bgl.glLoadIdentity() bgl.glEnable(bgl.GL_BLEND) bgl.glDisable(bgl.GL_DEPTH_TEST) bgl.glBegin(bgl.GL_QUADS) # TODO: not use immediate mode bgl.glColor4f(0,0,0.2,0.5) bgl.glVertex2f(-1, -1) bgl.glVertex2f( 1, -1) bgl.glColor4f(0,0,0.2,0) bgl.glVertex2f( 1, 1) bgl.glVertex2f(-1, 1) bgl.glEnd() bgl.glPopMatrix() bgl.glMatrixMode(bgl.GL_MODELVIEW) bgl.glPopMatrix() bgl.glMatrixMode(bgl.GL_PROJECTION) bgl.glPopAttrib() @CookieCutter.Draw('post3d') def draw_postview(self): bgl.glPushAttrib(bgl.GL_ALL_ATTRIB_BITS) bgl.glMatrixMode(bgl.GL_MODELVIEW) bgl.glPushMatrix() bgl.glLoadIdentity() bgl.glMatrixMode(bgl.GL_PROJECTION) bgl.glPushMatrix() bgl.glLoadIdentity() bgl.glEnable(bgl.GL_BLEND) bgl.glDisable(bgl.GL_DEPTH_TEST) bgl.glBegin(bgl.GL_QUADS) # TODO: not use immediate mode bgl.glColor4f(0,0,0,0) bgl.glVertex2f(-1, -1) bgl.glVertex2f( 1, -1) bgl.glColor4f(0,0.2,0,0.5) bgl.glVertex2f( 1, 1) bgl.glVertex2f(-1, 1) bgl.glEnd() bgl.glPopMatrix() bgl.glMatrixMode(bgl.GL_MODELVIEW) bgl.glPopMatrix() bgl.glMatrixMode(bgl.GL_PROJECTION) bgl.glPopAttrib() @CookieCutter.Draw('post2d') def draw_postpixel(self): bgl.glPushAttrib(bgl.GL_ALL_ATTRIB_BITS) bgl.glEnable(bgl.GL_BLEND) bgl.glMatrixMode(bgl.GL_MODELVIEW) bgl.glPushMatrix() bgl.glLoadIdentity() bgl.glMatrixMode(bgl.GL_PROJECTION) bgl.glPushMatrix() bgl.glLoadIdentity() bgl.glColor4f(1,0,0,0.2) # TODO: use window background color?? bgl.glEnable(bgl.GL_BLEND) bgl.glDisable(bgl.GL_DEPTH_TEST) bgl.glBegin(bgl.GL_QUADS) # TODO: not use immediate mode bgl.glVertex2f(-1, -1) bgl.glVertex2f( 1, -1) bgl.glVertex2f( 1, 1) bgl.glVertex2f(-1, 1) bgl.glEnd() bgl.glPopMatrix() bgl.glMatrixMode(bgl.GL_MODELVIEW) bgl.glPopMatrix() bgl.glMatrixMode(bgl.GL_PROJECTION) bgl.glPopAttrib()
the-stack_0_22285
from aleph.tests.util import TestCase from aleph.logic.extractors.aggregate import EntityAggregator from aleph.logic.extractors.extract import extract_entities class TestNER(TestCase): def test_ner_service(self): ctx = EntityAggregator() text = """This is a document about the United States. But also about Syria and Germany. """ text = text + text + text + text entities = extract_entities(ctx, text, 'en') entities = [str(r) for r in entities] assert 'United States' in entities, entities assert 'Germany' in entities, entities assert 'Syria' in entities, entities
the-stack_0_22286
import enaml from enaml.qt.qt_application import QtApplication from enaml.qt.qt_factories import QT_FACTORIES from enaml.application import ProxyResolver # stub for now CUSTOM_FACTORIES = {} class App(QtApplication): def __init__(self): super(App, self).__init__() factories = dict(QT_FACTORIES) factories.update(CUSTOM_FACTORIES) self.resolver = ProxyResolver(factories=factories) def main(): app = App() with enaml.imports(): from pystudio import Main view = Main() view.show() app.start() if __name__ == "__main__": main()
the-stack_0_22287
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import EncoCoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, Decimal, disconnect_nodes, sync_blocks, sync_mempools ) class AbandonConflictTest(EncoCoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True self.extra_args = [["-minrelaytxfee=0.00001"],[]] def run_test(self): self.nodes[0].generate(5) sync_blocks(self.nodes) self.nodes[1].generate(110) sync_blocks(self.nodes) balance = self.nodes[0].getbalance() txA = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 10) txB = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 10) txC = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 10) sync_mempools(self.nodes) self.nodes[1].generate(1) sync_blocks(self.nodes) newbalance = self.nodes[0].getbalance() assert(balance - newbalance < Decimal("0.001")) #no more than fees lost balance = newbalance # Disconnect nodes so node0's transactions don't get into node1's mempool disconnect_nodes(self.nodes[0], 1) # Identify the 10btc outputs nA = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txA, 1)["vout"]) if vout["value"] == 10) nB = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txB, 1)["vout"]) if vout["value"] == 10) nC = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txC, 1)["vout"]) if vout["value"] == 10) inputs =[] # spend 10btc outputs from txA and txB inputs.append({"txid":txA, "vout":nA}) inputs.append({"txid":txB, "vout":nB}) outputs = {} outputs[self.nodes[0].getnewaddress()] = 14.99998 outputs[self.nodes[1].getnewaddress()] = 5 signed = self.nodes[0].signrawtransaction(self.nodes[0].createrawtransaction(inputs, outputs)) txAB1 = self.nodes[0].sendrawtransaction(signed["hex"]) # Identify the 14.99998btc output nAB = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txAB1, 1)["vout"]) if vout["value"] == Decimal("14.99998")) #Create a child tx spending AB1 and C inputs = [] inputs.append({"txid":txAB1, "vout":nAB}) inputs.append({"txid":txC, "vout":nC}) outputs = {} outputs[self.nodes[0].getnewaddress()] = 24.9996 signed2 = self.nodes[0].signrawtransaction(self.nodes[0].createrawtransaction(inputs, outputs)) txABC2 = self.nodes[0].sendrawtransaction(signed2["hex"]) # Create a child tx spending ABC2 inputs = [] inputs.append({"txid":txABC2, "vout":0}) outputs = {} outputs[self.nodes[0].getnewaddress()] = 24.999 signed3 = self.nodes[0].signrawtransaction(self.nodes[0].createrawtransaction(inputs, outputs)) # note tx is never directly referenced, only abandoned as a child of the above self.nodes[0].sendrawtransaction(signed3["hex"]) # In mempool txs from self should increase balance from change newbalance = self.nodes[0].getbalance() assert_equal(newbalance, Decimal(round(balance - Decimal("30") + Decimal(24.999), 8))) balance = newbalance # Restart the node with a higher min relay fee so the parent tx is no longer in mempool # TODO: redo with eviction # Note had to make sure tx did not have AllowFree priority self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.0001"]) # Verify txs no longer in mempool assert_equal(len(self.nodes[0].getrawmempool()), 0) # Not in mempool txs from self should only reduce balance # inputs are still spent, but change not received newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("24.999")) # Unconfirmed received funds that are not in mempool, also shouldn't show # up in unconfirmed balance unconfbalance = self.nodes[0].getunconfirmedbalance() + self.nodes[0].getbalance() assert_equal(unconfbalance, newbalance) # Also shouldn't show up in listunspent assert(not txABC2 in [utxo["txid"] for utxo in self.nodes[0].listunspent(0)]) balance = newbalance # Abandon original transaction and verify inputs are available again # including that the child tx was also abandoned self.nodes[0].abandontransaction(txAB1) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance + Decimal("30")) balance = newbalance # Verify that even with a low min relay fee, the tx is not reaccepted from wallet on startup once abandoned self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.00001"]) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(self.nodes[0].getbalance(), balance) # But if its received again then it is unabandoned # And since now in mempool, the change is available # But its child tx remains abandoned self.nodes[0].sendrawtransaction(signed["hex"]) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("20") + Decimal("14.99998")) balance = newbalance # Send child tx again so its unabandoned self.nodes[0].sendrawtransaction(signed2["hex"]) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("10") - Decimal("14.99998") + Decimal("24.9996")) balance = newbalance # Remove using high relay fee again self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.0001"]) assert_equal(len(self.nodes[0].getrawmempool()), 0) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("24.9996")) balance = newbalance # Create a double spend of AB1 by spending again from only A's 10 output # Mine double spend from node 1 inputs =[] inputs.append({"txid":txA, "vout":nA}) outputs = {} outputs[self.nodes[1].getnewaddress()] = 9.9999 tx = self.nodes[0].createrawtransaction(inputs, outputs) signed = self.nodes[0].signrawtransaction(tx) self.nodes[1].sendrawtransaction(signed["hex"]) self.nodes[1].generate(1) connect_nodes(self.nodes[0], 1) sync_blocks(self.nodes) # Verify that B and C's 10 BTC outputs are available for spending again because AB1 is now conflicted newbalance = self.nodes[0].getbalance() #assert_equal(newbalance, balance + Decimal("20")) balance = newbalance # There is currently a minor bug around this and so this test doesn't work. See Issue #7315 # Invalidate the block with the double spend and B's 10 BTC output should no longer be available # Don't think C's should either self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) newbalance = self.nodes[0].getbalance() #assert_equal(newbalance, balance - Decimal("10")) print("If balance has not declined after invalidateblock then out of mempool wallet tx which is no longer") print("conflicted has not resumed causing its inputs to be seen as spent. See Issue #7315") print(str(balance) + " -> " + str(newbalance) + " ?") if __name__ == '__main__': AbandonConflictTest().main()
the-stack_0_22288
# # This file is part of pyasn1 software. # # Copyright (c) 2005-2019, Ilya Etingof <[email protected]> # License: http://snmplabs.com/pyasn1/license.html # from pyasn1 import error from pyasn1.codec.cer import encoder from pyasn1.type import univ __all__ = ['Encoder', 'encode'] class SetEncoder(encoder.SetEncoder): @staticmethod def _componentSortKey(componentAndType): """Sort SET components by tag Sort depending on the actual Choice value (dynamic sort) """ component, asn1Spec = componentAndType if asn1Spec is None: compType = component else: compType = asn1Spec if compType.typeId == univ.Choice.typeId and not compType.tagSet: if asn1Spec is None: return component.getComponent().tagSet else: # TODO: move out of sorting key function names = [namedType.name for namedType in asn1Spec.componentType.namedTypes if namedType.name in component] if len(names) != 1: raise error.PyAsn1Error( '%s components for Choice at %r' % (len(names) and 'Multiple ' or 'None ', component)) # TODO: support nested CHOICE ordering return asn1Spec[names[0]].tagSet else: return compType.tagSet TAG_MAP = encoder.TAG_MAP.copy() TAG_MAP.update({ # Set & SetOf have same tags univ.Set.tagSet: SetEncoder() }) TYPE_MAP = encoder.TYPE_MAP.copy() TYPE_MAP.update({ # Set & SetOf have same tags univ.Set.typeId: SetEncoder() }) class SingleItemEncoder(encoder.SingleItemEncoder): fixedDefLengthMode = True fixedChunkSize = 0 TAG_MAP = TAG_MAP TYPE_MAP = TYPE_MAP class Encoder(encoder.Encoder): SINGLE_ITEM_ENCODER = SingleItemEncoder #: Turns ASN.1 object into DER octet stream. #: #: Takes any ASN.1 object (e.g. :py:class:`~pyasn1.type.base.PyAsn1Item` derivative) #: walks all its components recursively and produces a DER octet stream. #: #: Parameters #: ---------- #: value: either a Python or pyasn1 object (e.g. :py:class:`~pyasn1.type.base.PyAsn1Item` derivative) #: A Python or pyasn1 object to encode. If Python object is given, `asnSpec` #: parameter is required to guide the encoding process. #: #: Keyword Args #: ------------ #: asn1Spec: #: Optional ASN.1 schema or value object e.g. :py:class:`~pyasn1.type.base.PyAsn1Item` derivative #: #: Returns #: ------- #: : :py:class:`bytes` (Python 3) or :py:class:`str` (Python 2) #: Given ASN.1 object encoded into BER octet-stream #: #: Raises #: ------ #: ~pyasn1.error.PyAsn1Error #: On encoding errors #: #: Examples #: -------- #: Encode Python value into DER with ASN.1 schema #: #: .. code-block:: pycon #: #: >>> seq = SequenceOf(componentType=Integer()) #: >>> encode([1, 2, 3], asn1Spec=seq) #: b'0\t\x02\x01\x01\x02\x01\x02\x02\x01\x03' #: #: Encode ASN.1 value object into DER #: #: .. code-block:: pycon #: #: >>> seq = SequenceOf(componentType=Integer()) #: >>> seq.extend([1, 2, 3]) #: >>> encode(seq) #: b'0\t\x02\x01\x01\x02\x01\x02\x02\x01\x03' #: encode = Encoder()
the-stack_0_22294
# -*- coding: utf-8 -*- from unittest import TestCase import QUANTAXIS as QA from QUANTAXIS.QAFetch import QATdx from QUANTAXIS.QAFetch.QATdx import QA_fetch_get_stock_day, select_best_ip, ping from QUANTAXIS.QAUtil.QASetting import QA_Setting import datetime class TestSelect_best_ip(TestCase): def test_select_best_ip(self): best_ip = select_best_ip() ip = best_ip['stock']['ip'] port = best_ip['stock']['port'] self.assertTrue(isinstance(ip, str), '未获取到ip') self.assertTrue(isinstance(port, int), '未获取到端口号') self.assertTrue(ping(ip, port, 'stock') < datetime.timedelta(0, 1, 0), '地址ping不通: {} {} {}'.format(ip, port, ping(ip, port, 'stock'))) # ip = best_ip['future']['ip'] # port = best_ip['future']['port'] # self.assertTrue(ping(ip, port, 'stock') < datetime.timedelta(0, 1, 0), '地址ping不通: {} {} {}'.format(ip, port, ping(ip, port, 'stock'))) code = '000001' days = 300 start = datetime.datetime.now().date() - datetime.timedelta(days) end = datetime.datetime.now().date() - datetime.timedelta(10) data = QA_fetch_get_stock_day(code, start_date=start, end_date=end) print(data) self.assertTrue(len(data) > (end - start).days / 2, '返回数据个数不匹配,数据长度:{},天数(包含节假日):{}'.format(len(data), (end - start).days / 2)) default_ip = {'stock': {'ip': None, 'port': None}, 'future': {'ip': None, 'port': None}} qasetting = QA_Setting() qasetting.set_config( section='IPLIST', option='default', default_value=default_ip) best_ip = select_best_ip() ip = best_ip['stock']['ip'] port = best_ip['stock']['port'] self.assertTrue(isinstance(ip, str) or ip is None, '未获取到ip') self.assertTrue(isinstance(port, int) or port is None, '未获取到端口号') ip = best_ip['future']['ip'] port = best_ip['future']['port'] self.assertTrue(isinstance(ip, str) or ip is None, '未获取到ip') self.assertTrue(isinstance(port, int) or port is None, '未获取到端口号') data = QA_fetch_get_stock_day(code, start, end) self.assertTrue(len(data) > (end - start).days / 2, '返回数据个数不匹配,数据长度:{},天数(包含节假日):{}'.format(len(data), (end - start).days / 2))
the-stack_0_22296
import random import math from environment import Agent, Environment from planner import RoutePlanner from simulator import Simulator class LearningAgent(Agent): """ An agent that learns to drive in the Smartcab world. This is the object you will be modifying. """ def __init__(self, env, learning=False, epsilon=1.0, alpha=0.5): super(LearningAgent, self).__init__(env) # Set the agent in the environment self.planner = RoutePlanner(self.env, self) # Create a route planner self.valid_actions = self.env.valid_actions # The set of valid actions # Set parameters of the learning agent self.learning = learning # Whether the agent is expected to learn self.Q = dict() # Create a Q-table which will be a dictionary of tuples self.epsilon = epsilon # Random exploration factor self.alpha = alpha # Learning factor ########### ## TO DO ## ########### # Set any additional class parameters as needed self.t = 1 self.a = 0.01 def reset(self, destination=None, testing=False): """ The reset function is called at the beginning of each trial. 'testing' is set to True if testing trials are being used once training trials have completed. """ # Select the destination as the new location to route to self.planner.route_to(destination) ########### ## TO DO ## ########### # Update epsilon using a decay function of your choice # Update additional class parameters as needed # If 'testing' is True, set epsilon and alpha to 0 if testing: self.epsilon = 0 self.alpha = 0 else: # self.epsilon = self.epsilon - 0.05 #Linear decay self.epsilon = math.exp(-self.a*self.t) #Exponential decay self.t += 1 # self.epsilon = self.a**self.t # self.t += 1 # self.epsilon = 1 / self.t**2 # self.t += 1 # self.epsilon = math.cos(self.a*self.t) # self.t += 1 return None def build_state(self): """ The build_state function is called when the agent requests data from the environment. The next waypoint, the intersection inputs, and the deadline are all features available to the agent. """ # Collect data about the environment waypoint = self.planner.next_waypoint() # The next waypoint inputs = self.env.sense(self) # Visual input - intersection light and traffic deadline = self.env.get_deadline(self) # Remaining deadline del inputs['right'] ########### ## TO DO ## ########### # NOTE : you are not allowed to engineer features outside of the inputs available. # Because the aim of this project is to teach Reinforcement Learning, we have placed # constraints in order for you to learn how to adjust epsilon and alpha, and thus learn about the balance between exploration and exploitation. # With the hand-engineered features, this learning process gets entirely negated. # Set 'state' as a tuple of relevant data for the agent # state = (waypoint, inputs) return (waypoint,) + tuple(inputs.values()) def get_maxQ(self, state): """ The get_max_Q function is called when the agent is asked to find the maximum Q-value of all actions based on the 'state' the smartcab is in. """ ########### ## TO DO ## ########### # Calculate the maximum Q-value of all actions for a given state maxQ = None for action, q_value in self.Q[state].items(): if (maxQ == None) or (maxQ < q_value): maxQ = q_value return maxQ def createQ(self, state): """ The createQ function is called when a state is generated by the agent. """ ########### ## TO DO ## ########### if self.learning: # When learning, check if the 'state' is not in the Q-table if not (state in self.Q.keys()): # If it is not, create a new dictionary for that state self.Q[state] = {None: 0.0, 'forward': 0.0, 'left': 0.0 , 'right': 0.0} # Then, for each action available, set the initial Q-value to 0.0 return def choose_action(self, state): """ The choose_action function is called when the agent is asked to choose which action to take, based on the 'state' the smartcab is in. """ # Set the agent state and default action self.state = state self.next_waypoint = self.planner.next_waypoint() ########### ## TO DO ## ########### if self.learning: # When learning, choose a random action if (random.random() < self.epsilon): action = random.choice(self.valid_actions) else: # Otherwise, choose an action with the highest Q-value for the current state maxQ = self.get_maxQ(state) best_actions = [] for action, q_value in self.Q[state].items(): # Be sure that when choosing an action with highest Q-value that you randomly select between actions that "tie". if q_value == maxQ: best_actions.append(action) action = random.choice(best_actions) else:# When not learning, choose a random action action = random.choice(self.valid_actions) return action def learn(self, state, action, reward): """ The learn function is called after the agent completes an action and receives a reward. This function does not consider future rewards when conducting learning. """ ########### ## TO DO ## ########### # When learning, implement the value iteration update rule # Use only the learning rate 'alpha' (do not use the discount factor 'gamma') if self.learning: self.Q[state][action] = (1 - self.alpha) * self.Q[state][action] + self.alpha * reward return def update(self): """ The update function is called when a time step is completed in the environment for a given trial. This function will build the agent state, choose an action, receive a reward, and learn if enabled. """ state = self.build_state() # Get current state self.createQ(state) # Create 'state' in Q-table action = self.choose_action(state) # Choose an action reward = self.env.act(self, action) # Receive a reward self.learn(state, action, reward) # Q-learn return def run(): """ Driving function for running the simulation. Press ESC to close the simulation, or [SPACE] to pause the simulation. """ ############## # Create the environment # Flags: # verbose - set to True to display additional output from the simulation # num_dummies - discrete number of dummy agents in the environment, default is 100 # grid_size - discrete number of intersections (columns, rows), default is (8, 6) env = Environment(verbose=True) ############## # Create the driving agent # Flags: # learning - set to True to force the driving agent to use Q-learning # * epsilon - continuous value for the exploration factor, default is 1 # * alpha - continuous value for the learning rate, default is 0.5 agent = env.create_agent(LearningAgent, learning = True, alpha=0.5, epsilon=1) ############## # Follow the driving agent # Flags: # enforce_deadline - set to True to enforce a deadline metric env.set_primary_agent(agent, enforce_deadline = True) ############## # Create the simulation # Flags: # update_delay - continuous time (in seconds) between actions, default is 2.0 seconds # display - set to False to disable the GUI if PyGame is enabled # log_metrics - set to True to log trial and simulation results to /logs # optimized - set to True to change the default log file name sim = Simulator(env, update_delay = 0.01, log_metrics = True, display=True, optimized=True) ############## # Run the simulator # Flags: # tolerance - epsilon tolerance before beginning testing, default is 0.05 # n_test - discrete number of testing trials to perform, default is 0 sim.run(n_test = 10, tolerance=0.05) if __name__ == '__main__': run()
the-stack_0_22298
import discord from redbot.core import commands from redbot.core import Config from redbot.core import checks from redbot.core.i18n import Translator, cog_i18n import aiohttp import asyncio from datetime import date from io import BytesIO import logging import time _ = Translator('GiftAway', __file__) class GuildConvert(commands.Converter): """Attempts to convert a value into a guild object.""" async def convert(self, ctx, value): try: guild = ctx.bot.get_guild(int(value)) if guild is not None: return guild raise commands.BadArgument(_('Could not find guild `{value}`.').format(value=value)) except ValueError: for guild in ctx.bot.guilds: if guild.name == value: return guild raise commands.BadArgument(_('Could not find guild `{value}`.').format(value=value)) class GiftError(RuntimeError): """Generic error for the Gift class.""" pass class Gift: """Object representing a specific gift.""" def __repr__(self): return f'<Gift game_name={self.game_name!r}, invoke_id={self.invoke_id!r}>' @classmethod async def create(cls, cog, ctx, channels: list, game_name: str, keys: list): obj = cls() obj.cog = cog obj.author = ctx.author obj.invoke_id = str(ctx.message.id) #keys auto cast to str, avoid confusion obj.game_name = game_name obj.keys = keys obj.claimed = [] obj.claimed_by_text = [] obj.claimed_by_id = [] obj.link_url = None obj.cover_url = None obj.fields = [] if len(keys) == 0: raise GiftError(_('At least one key must be provided.')) if not channels: raise GiftError(_('No channels provided.')) await obj.get_game_data() embed = obj.gen_embed() messages = await asyncio.gather(*(channel.send(embed=embed) for channel in channels), return_exceptions=True) #filter exceptions obj.messages = [x for x in messages if isinstance(x, discord.Message)] asyncio.gather(*(message.add_reaction('\N{WHITE HEAVY CHECK MARK}') for message in obj.messages), return_exceptions=True) return obj @classmethod async def from_dict(cls, cog, invoke_id, dict): obj = cls() obj.cog = cog author = cog.bot.get_user(dict['author']) if not author: raise GiftError(_('Could not find the author.')) obj.author = author obj.invoke_id = invoke_id obj.game_name = dict['game_name'] obj.keys = dict['keys'] obj.claimed = dict['claimed'] obj.claimed_by_id = dict['claimed_by_id'] obj.claimed_by_text = dict['claimed_by_text'] obj.link_url = dict['link_url'] obj.cover_url = dict['cover_url'] obj.fields = dict['fields'] messages = [] for message_data in dict['messages']: g = cog.bot.get_guild(message_data[0]) if not g: continue c = g.get_channel(message_data[1]) if not c: continue try: m = await c.fetch_message(message_data[2]) except discord.NotFound: continue messages.append(m) if not messages: raise GiftError(_('No messages could be found.')) obj.messages = messages return obj def to_dict(self): return self.invoke_id, { 'author': self.author.id, 'game_name': self.game_name, 'keys': self.keys.copy(), 'claimed': self.claimed.copy(), 'claimed_by_id': self.claimed_by_id.copy(), 'claimed_by_text': self.claimed_by_text.copy(), 'link_url': self.link_url, 'cover_url': self.cover_url, 'fields': self.fields.copy(), 'messages': [[message.guild.id, message.channel.id, message.id] for message in self.messages] } def gen_embed(self): total = len(self.keys) + len(self.claimed) if self.keys: desc = _( 'Click the reaction below to grab a key.\n\n' 'Currently available: **{top}/{bottom}**' ).format(top=len(self.keys), bottom=total) else: desc = _('All keys have been claimed!') if self.claimed_by_text: desc += _('\n\nGrabbed by:') for text in self.claimed_by_text: desc += text embed = discord.Embed( title=_( '{author} is gifting {num} keys for **{game}**.' ).format(author=self.author.display_name, num=total, game=self.game_name), description=desc, url = self.link_url or discord.Embed.Empty ) for field in self.fields: embed.add_field(name=field[0], value=field[1], inline=False) if self.cover_url: embed.set_image(url=self.cover_url) return embed async def get_game_data(self): """Get some data for a game from IGDB""" client_id, access_token = await self.cog._get_api_keys() if not (client_id and access_token): return URL_BASE = 'https://api.igdb.com/v4' headers = {'Accept': 'application/json', 'Client-ID': client_id, 'Authorization': f'Bearer {access_token}'} async with aiohttp.ClientSession() as session: async with session.post( URL_BASE + '/games', headers=headers, data=f'search "{self.game_name}"; fields cover,first_release_date,genres,rating,summary,url,websites; limit 1;' ) as response: resp = await response.json(content_type=None) #The game could not be found if not resp: return game = resp[0] released = game.get('first_release_date', None) rating = game.get('rating', None) summary = game.get('summary', None) game_url = game.get('url', None) cover_id = game.get('cover', None) if game.get('genres', None): genre_ids = '(' + ','.join(str(g) for g in game['genres']) + ')' else: genre_ids = None if game.get('websites', None): website_ids = '(' + ','.join(str(w) for w in game['websites']) + ')' else: website_ids = None if cover_id: async with session.post( URL_BASE + '/covers', headers=headers, data=f'where id = {cover_id}; fields url; limit 1;' ) as response: resp = await response.json(content_type=None) if resp: cover_url = resp[0]['url'][2:].replace('t_thumb', 't_cover_big_2x') self.cover_url = 'https://' + cover_url if genre_ids: async with session.post( URL_BASE + '/genres', headers=headers, data=f'where id = {genre_ids}; fields name;' ) as response: resp = await response.json(content_type=None) genres = [g['name'] for g in resp] else: genres = None if website_ids: async with session.post( URL_BASE + '/websites', headers=headers, data=f'where id = {website_ids} & category = 1; fields url; limit 1;' ) as response: resp = await response.json(content_type=None) if not resp: website = None else: website = resp[0]['url'] else: website = None game_info = '' if released: game_info += _('**Released:** {released}\n').format(released=date.fromtimestamp(released)) if genres: game_info += _('**Genres:** {genres}\n').format(genres=", ".join(genres)) if rating: game_info += _('**Rating:** {rating:.1f}').format(rating=rating) self.link_url = website or game_url if game_info: self.fields.append([_('Game info'), game_info]) if summary: self.fields.append([_('Summary'), summary[:1000]]) async def give_key(self, member): """Give one of the keys to a particular user.""" key = self.keys.pop(0) self.claimed_by_id.append(member.id) self.claimed_by_text.append(_( '\n**{name}** in **{guild}**' ).format(name=member.display_name, guild=member.guild.name)) self.claimed.append(key) await member.send(_('Here is your key for `{game}`: `{key}`').format(game=self.game_name, key=key)) await self.refresh_messages() if len(self.keys) == 0: async with self.cog.config.gifts() as gifts: del gifts[self.invoke_id] self.cog.gifts.remove(self) else: async with self.cog.config.gifts() as gifts: gifts[self.invoke_id] = self.to_dict()[1] async def refresh_messages(self): """Edits all existing messages to match the current state of the gift.""" embed = self.gen_embed() await asyncio.gather(*(message.edit(embed=embed) for message in self.messages)) @cog_i18n(_) class GiftAway(commands.Cog): """Create grabbable key giveaways.""" def __init__(self, bot): self.bot = bot self.log = logging.getLogger('red.flamecogs.giftaway') self.config = Config.get_conf(self, identifier=145519400223506432) self.config.register_global( gifts = {} ) self.config.register_guild( giftChannel = None ) self.gifts = [] self.access_token = None self.token_expire = 0 asyncio.create_task(self.setup()) async def setup(self): await self.bot.wait_until_red_ready() to_del = [] async with self.config.gifts() as data: for invoke_id in data: try: gift = await Gift.from_dict(self, invoke_id, data[invoke_id]) except GiftError as e: self.log.warning( f'Game {data[invoke_id]["game_name"]} by {data[invoke_id]["author"]} ' 'could not be created and has been deleted.' ) to_del.append(invoke_id) continue self.gifts.append(gift) for invoke_id in to_del: del data[invoke_id] @commands.command(aliases=['ga']) async def giftaway(self, ctx, guild: GuildConvert, game_name, *keys): """ Giftaway a key to a specific server. Wrap any parameters that require spaces in quotes. """ try: await ctx.message.delete() except: pass cid = await self.config.guild(guild).giftChannel() if not cid: return await ctx.send(_('That guild has not set up a giftaway channel.')) channel = guild.get_channel(cid) if not channel: return await ctx.send(_('That giftaway channel for that guild does not exist.')) if not guild.me.permissions_in(channel).embed_links: return await ctx.send(_('I do not have permission to send embeds in the giftaway channel.')) try: gift = await Gift.create(self, ctx, [channel], game_name, list(keys)) except GiftError as e: return await ctx.send(e) self.gifts.append(gift) key, value = gift.to_dict() async with self.config.gifts() as gifts: gifts[key] = value await ctx.tick() @commands.command(aliases=['gg']) async def globalgift(self, ctx, game_name, *keys): """ Giftaway a key to all servers. Wrap any parameters that require spaces in quotes. """ try: await ctx.message.delete() except: pass guilds = [] for guild in self.bot.guilds: cid = await self.config.guild(guild).giftChannel() if not cid: continue channel = guild.get_channel(cid) if not channel: continue if not guild.me.permissions_in(channel).embed_links: continue guilds.append(channel) try: gift = await Gift.create(self, ctx, guilds, game_name, list(keys)) except GiftError as e: return await ctx.send(e) self.gifts.append(gift) key, value = gift.to_dict() async with self.config.gifts() as gifts: gifts[key] = value await ctx.tick() @commands.guild_only() @commands.command() async def giftat(self, ctx, channel: discord.TextChannel, game_name, *keys): """ Giftaway a key to a specific channel. You probably should run this command from a location people can't see to protect the keys. Wrap any parameters that require spaces in quotes. """ try: await ctx.message.delete() except: pass if not ctx.guild.me.permissions_in(channel).embed_links: return await ctx.send(_('I do not have permission to send embeds in the giftaway channel.')) try: gift = await Gift.create(self, ctx, [channel], game_name, list(keys)) except GiftError as e: return await ctx.send(e) self.gifts.append(gift) key, value = gift.to_dict() async with self.config.gifts() as gifts: gifts[key] = value await ctx.tick() @commands.guild_only() @commands.group() async def giftawayset(self, ctx): """Group command for giftaway.""" pass @giftawayset.group(invoke_without_command=True) async def channel(self, ctx, channel: discord.TextChannel=None): """Set the channel that giftaway messages will be sent to in this server.""" if channel is None: cid = await self.config.guild(ctx.guild).giftChannel() if cid is None: return await ctx.send(_('The giftaway channel has not been set up.')) channel = ctx.guild.get_channel(cid) if channel is None: await self.config.guild(ctx.guild).giftChannel.set(None) return await ctx.send(_('The giftaway channel has been deleted or could not be found.')) await ctx.send(_('The current giftaway channel is {channel}.').format(channel=channel.mention)) else: await self.config.guild(ctx.guild).giftChannel.set(channel.id) await ctx.send(_('The giftaway channel is now {channel}.').format(channel=channel.mention)) @channel.command() async def remove(self, ctx): """Remove the giftaway channel from this server and stop receiving giftaway messages.""" await self.config.guild(ctx.guild).giftChannel.set(None) await ctx.send(_('Removed.')) async def _get_api_keys(self): """Gets an up to date client id and access token.""" api = await self.bot.get_shared_api_tokens('igdb') old_key = api.get('key') if old_key: await self.bot.remove_shared_api_tokens('igdb', 'key') await self.bot.send_to_owners( 'Hi! You had previously set an api key for `GiftAway` to allow the cog to display info about the game being given away. ' 'However, that API has recently changed and you need to create a new API key to continue using this functionality. ' 'Please follow the instructions at <https://github.com/Flame442/FlameCogs/blob/master/giftaway/setup.md> ' 'if you want to re-enable that functionality, and have a good day! (This message will NOT be sent again)' ) return (None, None) client_id = api.get('id') secret = api.get('secret') if not (client_id and secret): return (None, None) if self.access_token and time.time() < self.token_expire: return (client_id, self.access_token) async with aiohttp.ClientSession() as session: async with session.post( f'https://id.twitch.tv/oauth2/token?client_id={client_id}&client_secret={secret}&grant_type=client_credentials' ) as response: resp = await response.json(content_type=None) if msg := resp.get('message'): self.log.warning(f'Got an error response getting the access token: {msg}') return (None, None) self.access_token = resp['access_token'] self.token_expire = time.time() + resp['expires_in'] - 5 return (client_id, self.access_token) @commands.Cog.listener() async def on_raw_reaction_add(self, payload): if payload.member is None: return member = payload.member if member.bot: return if await self.bot.cog_disabled_in_guild(self, member.guild): return if str(payload.emoji) != '\N{WHITE HEAVY CHECK MARK}': return gift = None for g in self.gifts: if payload.message_id in [x.id for x in g.messages]: gift = g break if not gift: return if not gift.keys: return if member.id in gift.claimed_by_id: return await gift.give_key(member)
the-stack_0_22304
from muti_creep import * from champion_genetic_algorithm import GA from neural_network import MLP import pygame import numpy as np from sys import exit from pygame.locals import * import time pygame.init() width = 1280 height = 720 screen = pygame.display.set_mode((width ,height), 0, 32) Layers = (9, 15,8, 5) Parameter = 323 CROSS_RATE = 0.3 MUTATE_RATE = 0.3 POP_SIZE = 500 N_GENERATIONS = 300 clock = pygame.time.Clock() show_sensors = True draw_screen = True start=(99,621) font = pygame.font.SysFont("arial", 32) font_2 = pygame.font.SysFont("arial", 16) creep_ga=[] generation=0 distance_limit=100000 # pop=np.array(False) # train_historys = np.zeros(2) # np.save("data/train_historys_map7_2(9, 15,8, 3).npy", train_historys) pop = np.load("data/parameter_EXB_train_2.npy") # pop=np.array(False) ga = GA(DNA_size=Parameter, cross_rate=CROSS_RATE, mutation_rate=MUTATE_RATE, pop_size=POP_SIZE,pop=pop) world = World() for creep_no in range(POP_SIZE): creep = CREEP(world, creep_image, [start[0], start[1]], speed=1, direction=90+np.random.rand()) world.add_entity(creep) creep_ga.append([]) while True: clock.tick() for idx, individual in enumerate(ga.pop): creep_ga[idx] = MLP(individual, Layers) while world.all_not_crashed : for event in pygame.event.get(): if event.type == QUIT: exit() for idx, reading in enumerate(world.get_reading()): creep_ga[idx].forward(reading) action=np.vstack([np.argmax(creep_ga_one.p) for creep_ga_one in creep_ga]) # action = np.random.randint(0, 3, (POP_SIZE)) # print(world.get_distance().max()) text="max distance:"+str(world.get_distance().max()) text_2="Number of survivors:"+str(POP_SIZE-world.crash_num) world.process(action) world.render(screen) screen.blit(font.render(text, True, (255, 0, 0)), (0, 0)) screen.blit(font_2.render(text_2, True, (255, 0, 0)), (0, 32)) # if world.get_distance().max()>distance_limit: # distance_limit=world.get_distance().max*1.5 # break pygame.display.update() if world.all_not_crashed!=True: generation += 1 print("generation",generation,text,"mean distance:",world.get_distance().mean()) distances=world.get_distance() ga.evolve(distances) world = World() # train_historys = np.load("data/train_historys_map7_2(9, 15,8, 3).npy") # train_history = np.hstack((distances.mean(),distances.max())) # train_historys = np.vstack((train_historys, train_history)) # np.save("data/train_historys_map7_2(9, 15,8, 3).npy", train_historys) # np.save("data/parameter_EXB_train_2.npy", ga.pop) for creep_no in range(POP_SIZE): creep = CREEP(world, creep_image, [start[0], start[1]], speed=2, direction=90+np.random.rand()) world.add_entity(creep)
the-stack_0_22306
import os from fire._version import __version__ from fire.utils import setRandomSeed, printDash def initFire(cfg): if cfg["cfg_verbose"]: printDash() print(cfg) printDash() print("[INFO] Fire verison: "+__version__) os.environ["CUDA_VISIBLE_DEVICES"] = cfg['GPU_ID'] setRandomSeed(cfg['random_seed']) if not os.path.exists(cfg['save_dir']): os.makedirs(cfg['save_dir'])
the-stack_0_22307
__version__ = "0.1.0" __version_info__ = tuple( [ int(num) if num.isdigit() else num for num in __version__.replace("-", ".", 1).split(".") ] ) from miseq_portal.taskapp.celery import app as celery_app __all__ = ['celery_app']
the-stack_0_22310
# pyright: strict from typing import Tuple, List, Union import re from .strip import strip_comments, strip_macros def get_unscoped_blobs(filetext: str): filetext = strip_comments(filetext) filetext = strip_macros(filetext) blobs: List[str] = [] bracket_count: int = 0 blob: str = '' for c in filetext: blob += c if c == '{': bracket_count += 1 elif c == '}': bracket_count -= 1 if not bracket_count and c in ['}', ';']: if re.search(r'^\s*(struct|typedef) ', blob, re.MULTILINE) and c != ';': continue blob = blob.strip() blobs.append(blob) blob = '' return blobs def get_func_name(funcdef: str) -> str: match = re.search(r'(\S)*(?=\()', funcdef) return '' if match is None else match.group() def get_funcdefs(filetext: str) -> List[str]: return [blob for blob in get_unscoped_blobs(filetext) if blob[-1] == '}'] def get_funcdecs(filetext: str) -> List[str]: return [blob for blob in get_unscoped_blobs(filetext) if blob[-2:] == ');'] def sub_forwarded_func(tem_func: str) -> Union[Tuple[str, str], None]: def get_modifier_regex(x: str) -> str: return r'\b{}(?=[^\w])'.format(re.escape(x)) if re.search(get_modifier_regex('P'), tem_func): val_func: str = tem_func val_func = re.sub(get_modifier_regex('A'), '', val_func) val_func = re.sub(get_modifier_regex('P'), '', val_func) val_func = re.sub('_R', '', val_func) ref_func: str = tem_func ref_func = re.sub(get_modifier_regex('A'), '&', ref_func) ref_func = re.sub(get_modifier_regex('P'), '*', ref_func) ref_func = re.sub('_R', '_r', ref_func) return (val_func, ref_func) return None def sub_forwarded_funcdefs(filetext: str) -> str: for tem_funcdef in get_funcdefs(filetext): forwarded_funcdefs = sub_forwarded_func(tem_funcdef) if forwarded_funcdefs: filetext = re.sub(re.escape(tem_funcdef), '\n\n'.join(forwarded_funcdefs), filetext) return filetext def sub_forwarded_funcdecs(filetext: str) -> str: for tem_func_dec in get_funcdecs(filetext): forwarded_funcdecs = sub_forwarded_func(tem_func_dec) if forwarded_funcdecs: filetext = re.sub(re.escape(tem_func_dec), '\n\n'.join(forwarded_funcdecs), filetext) return filetext
the-stack_0_22311
from autodesk.application.autodeskservice import AutoDeskService from autodesk.application.deskservice import DeskService from autodesk.application.sessionservice import SessionService from autodesk.application.timeservice import TimeService from autodesk.deskcontroller import DeskController from autodesk.lightcontroller import LightController from autodesk.model import Model from autodesk.operation import Operation from autodesk.scheduler import Scheduler from autodesk.sqlitedatastore import SqliteDataStore from autodesk.timer import Timer class AutoDeskServiceFactory: def __init__(self, database_path, pin_factory, limits, delay, motor_pins, light_pins): self.database_path = database_path self.pin_factory = pin_factory self.limits = limits self.delay = delay self.motor_pins = motor_pins self.light_pins = light_pins def create(self, loop): operation = Operation() timer = Timer(loop) model = Model(SqliteDataStore(self.database_path)) scheduler = Scheduler(self.limits) desk_controller = DeskController( self.delay, self.pin_factory.create_output(self.motor_pins[0]), self.pin_factory.create_output(self.motor_pins[1]), self.pin_factory.create_output(self.light_pins[0])) light_controller = LightController( self.pin_factory.create_output(self.light_pins[1])) timer_service = TimeService() session_service = SessionService( model, light_controller, timer_service) desk_service = DeskService( operation, model, desk_controller, timer_service) return AutoDeskService( operation, scheduler, timer, timer_service, session_service, desk_service)
the-stack_0_22312
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import Counter from multiprocessing import Pool import os import torch from fairseq.binarizer import safe_readline from fairseq.tokenizer import tokenize_line from fairseq.data import data_utils class Dictionary(object): """A mapping from symbols to consecutive integers""" def __init__( self, pad='<pad>', eos='</s>', unk='<unk>', bos='<s>', extra_special_symbols=None, ): self.unk_word, self.pad_word, self.eos_word = unk, pad, eos self.symbols = [] self.count = [] self.indices = {} self.bos_index = self.add_symbol(bos) self.pad_index = self.add_symbol(pad) self.eos_index = self.add_symbol(eos) self.unk_index = self.add_symbol(unk) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(s) self.nspecial = len(self.symbols) def __eq__(self, other): return self.indices == other.indices def __getitem__(self, idx): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__(self): """Returns the number of symbols in the dictionary""" return len(self.symbols) def __contains__(self, sym): return sym in self.indices def index(self, sym): """Returns the index of the specified symbol""" assert isinstance(sym, str) if sym in self.indices: return self.indices[sym] return self.unk_index def string(self, tensor, bpe_symbol=None, escape_unk=False): """Helper for converting a tensor of token indices to a string. Can optionally remove BPE symbols or escape <unk> words. """ if torch.is_tensor(tensor) and tensor.dim() == 2: return '\n'.join(self.string(t, bpe_symbol, escape_unk) for t in tensor) def token_string(i): if i == self.unk(): return self.unk_string(escape_unk) else: return self[i] if hasattr(self, 'bos_index'): sent = ' '.join(token_string(i) for i in tensor if (i != self.eos()) and (i != self.bos())) else: sent = ' '.join(token_string(i) for i in tensor if i != self.eos()) return data_utils.process_bpe_symbol(sent, bpe_symbol) def unk_string(self, escape=False): """Return unknown string, optionally escaped as: <<unk>>""" if escape: return '<{}>'.format(self.unk_word) else: return self.unk_word def add_symbol(self, word, n=1): """Adds a word to the dictionary""" if word in self.indices: idx = self.indices[word] self.count[idx] = self.count[idx] + n return idx else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(n) return idx def update(self, new_dict): """Updates counts from new dictionary.""" for word in new_dict.symbols: idx2 = new_dict.indices[word] if word in self.indices: idx = self.indices[word] self.count[idx] = self.count[idx] + new_dict.count[idx2] else: idx = len(self.symbols) self.indices[word] = idx self.symbols.append(word) self.count.append(new_dict.count[idx2]) def finalize(self, threshold=-1, nwords=-1, padding_factor=8): """Sort symbols by frequency in descending order, ignoring special ones. Args: - threshold defines the minimum word count - nwords defines the total number of words in the final dictionary, including special symbols - padding_factor can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ if nwords <= 0: nwords = len(self) new_indices = dict(zip(self.symbols[:self.nspecial], range(self.nspecial))) new_symbols = self.symbols[:self.nspecial] new_count = self.count[:self.nspecial] c = Counter(dict(sorted(zip(self.symbols[self.nspecial:], self.count[self.nspecial:])))) for symbol, count in c.most_common(nwords - self.nspecial): if count >= threshold: new_indices[symbol] = len(new_symbols) new_symbols.append(symbol) new_count.append(count) else: break threshold_nwords = len(new_symbols) if padding_factor > 1: i = 0 while threshold_nwords % padding_factor != 0: symbol = 'madeupword{:04d}'.format(i) new_indices[symbol] = len(new_symbols) new_symbols.append(symbol) new_count.append(0) i += 1 threshold_nwords += 1 assert len(new_symbols) % padding_factor == 0 assert len(new_symbols) == len(new_indices) self.count = list(new_count) self.symbols = list(new_symbols) self.indices = new_indices def bos(self): """Helper to get index of beginning-of-sentence symbol""" return self.bos_index def pad(self): """Helper to get index of pad symbol""" return self.pad_index def eos(self): """Helper to get index of end-of-sentence symbol""" return self.eos_index def unk(self): """Helper to get index of unk symbol""" return self.unk_index @classmethod def load(cls, f, ignore_utf_errors=False): """Loads the dictionary from a text file with the format: ``` <symbol0> <count0> <symbol1> <count1> ... ``` """ d = cls() d.add_from_file(f, ignore_utf_errors) return d def add_from_file(self, f, ignore_utf_errors=False): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: if not ignore_utf_errors: with open(f, 'r', encoding='utf-8') as fd: self.add_from_file(fd) else: with open(f, 'r', encoding='utf-8', errors='ignore') as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please " "rebuild the dataset".format(f)) return lines = f.readlines() indices_start_line = self._load_meta(lines) for line in lines[indices_start_line:]: idx = line.rfind(' ') if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") word = line[:idx] count = int(line[idx + 1:]) self.indices[word] = len(self.symbols) self.symbols.append(word) self.count.append(count) def _save(self, f, kv_iterator): if isinstance(f, str): os.makedirs(os.path.dirname(f), exist_ok=True) with open(f, 'w', encoding='utf-8') as fd: return self.save(fd) for k, v in kv_iterator: print('{} {}'.format(k, v), file=f) def _get_meta(self): return [], [] def _load_meta(self, lines): return 0 def save(self, f): """Stores dictionary into a text file""" ex_keys, ex_vals = self._get_meta() self._save(f, zip(ex_keys + self.symbols[self.nspecial:], ex_vals + self.count[self.nspecial:])) def dummy_sentence(self, length): t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long() t[-1] = self.eos() return t def encode_line(self, line, line_tokenizer=tokenize_line, add_if_not_exist=True, consumer=None, append_eos=True, reverse_order=False): words = line_tokenizer(line) if reverse_order: words = list(reversed(words)) nwords = len(words) ids = torch.IntTensor(nwords + 1 if append_eos else nwords) for i, word in enumerate(words): if add_if_not_exist: idx = self.add_symbol(word) else: idx = self.index(word) if consumer is not None: consumer(word, idx) ids[i] = idx if append_eos: ids[nwords] = self.eos_index return ids @staticmethod def _add_file_to_dictionary_single_worker(filename, tokenize, eos_word, worker_id=0, num_workers=1): counter = Counter() with open(filename, 'r', encoding='utf-8') as f: size = os.fstat(f.fileno()).st_size chunk_size = size // num_workers offset = worker_id * chunk_size end = offset + chunk_size f.seek(offset) if offset > 0: safe_readline(f) # drop first incomplete line line = f.readline() while line: for word in tokenize(line): counter.update([word]) counter.update([eos_word]) if f.tell() > end: break line = f.readline() return counter @staticmethod def add_file_to_dictionary(filename, dict, tokenize, num_workers): def merge_result(counter): for w, c in sorted(counter.items()): dict.add_symbol(w, c) if num_workers > 1: pool = Pool(processes=num_workers) results = [] for worker_id in range(num_workers): results.append(pool.apply_async( Dictionary._add_file_to_dictionary_single_worker, (filename, tokenize, dict.eos_word, worker_id, num_workers) )) pool.close() pool.join() for r in results: merge_result(r.get()) else: merge_result(Dictionary._add_file_to_dictionary_single_worker(filename, tokenize, dict.eos_word)) class TruncatedDictionary(object): def __init__(self, wrapped_dict, length): self.__class__ = type( wrapped_dict.__class__.__name__, (self.__class__, wrapped_dict.__class__), {} ) self.__dict__ = wrapped_dict.__dict__ self.wrapped_dict = wrapped_dict self.length = min(len(self.wrapped_dict), length) def __len__(self): return self.length def __getitem__(self, i): if i < self.length: return self.wrapped_dict[i] return self.wrapped_dict.unk()
the-stack_0_22313
import copy import logging import os import sys from panda3d.bullet import BulletBodyNode from metadrive.constants import TerminationState def import_pygame(): os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide" import pygame return pygame def setup_logger(debug=False): logging.basicConfig( level=logging.DEBUG if debug else logging.WARNING, format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s' ) def recursive_equal(data1, data2, need_assert=False): from metadrive.utils.config import Config if isinstance(data1, Config): data1 = data1.get_dict() if isinstance(data2, Config): data2 = data2.get_dict() if isinstance(data1, dict): is_ins = isinstance(data2, dict) key_right = set(data1.keys()) == set(data2.keys()) if need_assert: assert is_ins and key_right, (data1.keys(), data2.keys()) if not (is_ins and key_right): return False ret = [] for k in data1: ret.append(recursive_equal(data1[k], data2[k])) return all(ret) elif isinstance(data1, list): len_right = len(data1) == len(data2) is_ins = isinstance(data2, list) if need_assert: assert len_right and is_ins, (len(data1), len(data2), data1, data2) if not (is_ins and len_right): return False ret = [] for i in range(len(data1)): ret.append(recursive_equal(data1[i], data2[i])) return all(ret) else: ret = data1 == data2 if need_assert: assert ret, (type(data1), type(data2), data1, data2) return ret def is_mac(): return sys.platform == "darwin" def is_win(): return sys.platform == "win32" def concat_step_infos(step_info_list): """We only conduct simply shallow update here!""" old_dict = dict() for new_dict in step_info_list: old_dict = merge_dicts(old_dict, new_dict, allow_new_keys=True, without_copy=True) return old_dict # The following two functions is copied from ray/tune/utils/util.py, raise_error and pgconfig support is added by us! def merge_dicts(old_dict, new_dict, allow_new_keys=False, without_copy=False): """ Args: old_dict (dict, Config): Dict 1. new_dict (dict, Config): Dict 2. raise_error (bool): Whether to raise error if new key is found. Returns: dict: A new dict that is d1 and d2 deep merged. """ old_dict = old_dict or dict() new_dict = new_dict or dict() if without_copy: merged = old_dict else: merged = copy.deepcopy(old_dict) _deep_update( merged, new_dict, new_keys_allowed=allow_new_keys, allow_new_subkey_list=[], raise_error=not allow_new_keys ) return merged def _deep_update( original, new_dict, new_keys_allowed=False, allow_new_subkey_list=None, override_all_if_type_changes=None, raise_error=True ): allow_new_subkey_list = allow_new_subkey_list or [] override_all_if_type_changes = override_all_if_type_changes or [] for k, value in new_dict.items(): if k not in original and not new_keys_allowed: if raise_error: raise Exception("Unknown config parameter `{}` ".format(k)) else: continue # Both orginal value and new one are dicts. if isinstance(original.get(k), dict) and isinstance(value, dict): # Check old type vs old one. If different, override entire value. if k in override_all_if_type_changes and \ "type" in value and "type" in original[k] and \ value["type"] != original[k]["type"]: original[k] = value # Allowed key -> ok to add new subkeys. elif k in allow_new_subkey_list: _deep_update(original[k], value, True, raise_error=raise_error) # Non-allowed key. else: _deep_update(original[k], value, new_keys_allowed, raise_error=raise_error) # Original value not a dict OR new value not a dict: # Override entire value. else: original[k] = value return original def deprecation_warning(old, new, error=False) -> None: """Warns (via the `logger` object) or throws a deprecation warning/error. Args: old (str): A description of the "thing" that is to be deprecated. new (Optional[str]): A description of the new "thing" that replaces it. error (Optional[Union[bool, Exception]]): Whether or which exception to throw. If True, throw ValueError. If False, just warn. If Exception, throw that Exception. """ msg = "`{}` has been deprecated.{}".format(old, (" Use `{}` instead.".format(new) if new else "")) if error is True: raise ValueError(msg) elif error and issubclass(error, Exception): raise error(msg) else: logger = logging.getLogger(__name__) logger.warning("DeprecationWarning: " + msg + " This will raise an error in the future!") def get_object_from_node(node: BulletBodyNode): """ Use this api to get the python object from bullet RayCast/SweepTest/CollisionCallback result """ if node.getPythonTag(node.getName()) is None: return None from metadrive.engine.engine_utils import get_object ret = node.getPythonTag(node.getName()).base_object_name if isinstance(ret, str): return get_object(ret)[ret] else: return ret def auto_termination(vehicle, should_done): return {TerminationState.MAX_STEP: True if should_done else False}
the-stack_0_22315
from __future__ import absolute_import, division, print_function from stripe import util from stripe.six.moves.urllib.parse import quote_plus def custom_method(name, http_verb, http_path=None): if http_verb not in ["get", "post", "delete"]: raise ValueError( "Invalid http_verb: %s. Must be one of 'get', 'post' or 'delete'" % http_verb ) if http_path is None: http_path = name def wrapper(cls): def custom_method_request(cls, sid, **params): url = "%s/%s/%s" % ( cls.class_url(), quote_plus(util.utf8(sid)), http_path, ) return cls._static_request(http_verb, url, **params) existing_method = getattr(cls, name, None) if existing_method is None: setattr(cls, name, classmethod(custom_method_request)) else: # If a method with the same name we want to use already exists on # the class, we assume it's an instance method. In this case, the # new class method is prefixed with `_cls_`, and the original # instance method is decorated with `util.class_method_variant` so # that the new class method is called when the original method is # called as a class method. setattr(cls, "_cls_" + name, classmethod(custom_method_request)) instance_method = util.class_method_variant("_cls_" + name)( existing_method ) setattr(cls, name, instance_method) return cls return wrapper
the-stack_0_22317
"""Treadmill AWS image CLI Create, delete and manage configurations of AWS images. """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import gzip import io import logging import click from treadmill import cli from treadmill import dnsutils from treadmill import restclient from treadmill_aws import cli as aws_cli _LOGGER = logging.getLogger(__name__) _EXCEPTIONS = [] _EXCEPTIONS.extend(restclient.CLI_REST_EXCEPTIONS) _ON_EXCEPTIONS = cli.handle_exceptions(_EXCEPTIONS) _REST_PATH = '/aws-image/' def init(): # pylint: disable=R0912 """Configures application monitor""" formatter = cli.make_formatter('aws_image') ctx = {} @click.group() @click.option('--api', help='API url to use.', metavar='URL', type=cli.LIST, envvar='TREADMILL_AWSIMAGE_API') @click.option('--srvrec', help='API srv record.', envvar='TREADMILL_AWSIMAGE_API_SRVREC') def image_group(api, srvrec): """Manage Treadmill app monitor configuration""" ctx['api'] = api if not ctx['api']: ctx['api'] = [] if srvrec: result = dnsutils.srv(srvrec, None) for host, port, _p, _w in result: ctx['api'].append('http://{}:{}'.format(host, port)) @image_group.command() @click.argument('name') @_ON_EXCEPTIONS def configure(name): """Configure AWS image.""" restapi = ctx['api'] url = _REST_PATH + name image_entry = restclient.get(restapi, url) cli.out(formatter(image_entry.json())) @image_group.command(name='list') @_ON_EXCEPTIONS def _list(): """List AWS images.""" restapi = ctx['api'] url = _REST_PATH response = restclient.get(ctx['api'], url) cli.out(formatter(response.json())) @image_group.command() @click.argument('name', nargs=1, required=True) @_ON_EXCEPTIONS def delete(name): """Delete AWS image""" restapi = ctx['api'] url = _REST_PATH + name restclient.delete(restapi, url) @image_group.command(name='create') @click.option( '--base-image', required=True, type=aws_cli.IMAGE, help='Base image.' ) @click.option( '--base-image-account', required=False, help='Base image account.' ) @click.option( '--userdata', required=True, type=click.Path(exists=True), multiple=True, help='Cloud-init user data.' ) @click.option( '--instance-profile', required=False, help='Instance profile with create image privs.' ) @click.option( '--secgroup', required=False, type=aws_cli.SECGROUP, help='Security group' ) @click.option( '--subnet', required=False, type=aws_cli.SUBNET, help='Subnet' ) @click.option( '--key', help='SSH key' ) @click.argument('name', required=True, type=str) @_ON_EXCEPTIONS def create(base_image, base_image_account, userdata, instance_profile, secgroup, subnet, key, name): """Create image""" restapi = ctx['api'] payload = { 'base_image': base_image, 'base_image_account': base_image_account, 'instance_profile': instance_profile, 'userdata': [], 'secgroup': secgroup, 'subnet': subnet, 'key': key, } for filename in userdata: with io.open(filename, 'rb') as f: content = f.read() if filename.endswith('.gz'): content = gzip.decompress(content) payload['userdata'].append(content.decode()) url = _REST_PATH + name response = restclient.post(restapi, url, payload=payload) cli.out(response.json().get('instance', '-')) del delete del _list del configure del create return image_group